IRIX® Interactive Desktop
User Interface Guidelines

Document Number 007-2167-005

CONTRIBUTORS

Written by Jackie Neider, Deb Galdes, and Wendy Ferguson
Part Il by Renate Kempf, Deb Galdes, and Mike Mohageg
Updated by Max Anderson

Mlustrated by Dany Galgani, Delle Maxwell, and Doug O’'Morain

Production by Kirsten Pekarek

Principal architects of the IRIX Interactive Desktop Style: Deb Galdes, Delle Maxwell,
Mike Mohageg, Michael Portuesi, Rob Myers, and Betsy Zeller.

Principal architects of the 3D Style: Rikk Carey, Deb Galdes, Paul Isaacs, Mike
Mohageg, and Rob Myers.

Special thanks to Donna Davilla, Debbie Myers, Peter Sullivan, and Dave
Ciemiewicz.

St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower
image courtesy of Xavier Berenguer, Animatica.

© Copyright 1998, Silicon Graphics, Inc.— All Rights Reserved

This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, IRIS, and IRIX are registered trademarks
of Silicon Graphics, Inc. IRIX, IconSmith, InPerson, IRIS IM, IRIS InSight, and IRIS
Showcase are trademarks of Silicon Graphics, Inc. MediaMail is a trademark of
Z-Code Software Corp. Motif and OSF/Motif are trademarks of the Open Systems
Foundation. PostScript is a registered trademark of Adobe Systems, Inc. UNIX is a
registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd. X Window System is a trademark of the
Massachusets Institute of Technology.

IRIX® Interactive Desktop User Interface Guidelines
Document Number 007-2167-005

PART I

Contents

List of Figures xv
List of Tables xix

About This Guide xxi
What This Guide Contains xxii
Part One: Integrating With the IRIX Interactive Desktop
Part Two: Interface Components xxiii
Part Three: Designing 3D Applications xxiv
Appendix xxiv
What You Should Know Before Reading This Guide xxiv
Suggestions for Further Reading xxv
Conventions Used in This Guide xxvi
Style Guidelines xxvi

Font Conventions xxvii

Integrating With the IRIX Interactive Desktop

Overview of the IRIX Interactive Desktop 3
Overview of the Desktop 4

How Users Interact With Desktop Icons 6
Mouse and Keyboard Hardware 9

XXii

Contents

2. Icons 11

Designing the Appearance of Icons 12
General Icon Design: Components, Size, and Colors 14
Application Icon Design 22
File Icon Design 24
Icon Appearance Design Guidelines 26

Defining the Behavior of Icons With FTRs 27
User and Icon Interaction 28
Icon Behavior Guidelines 29

Making Application Icons Accessible 30
Putting Icons Into the Icon Catalog 30

Naming and Locating Executables for the
Find an Icon Tool 31

Application Icon Accessibility Guidelines 33

3. Windows in the IRIX Interactive Desktop Environment 35
The IRIX Interactive Desktop Look: Graphic Features and Schemes 36
Enhanced Graphics in the IRIX Interactive Desktop Look 36
Schemes for Colors and Fonts 39
IRIX Interactive Desktop Look Guidelines 40
Application Window Categories and Characteristics 41
Application Window Categories 41
Application Models 42
Window Decorations and the Window Menu 43
Window Title Bar 46
Window Size 49
Window Placement 51
Application Window Characteristic Guidelines 52
Keyboard Focus Across Windows 55
Single-Action Pointer Grab Model 56
Multiple-Action Pointer Grab Model 58
Guidelines for Keyboard Focus Across Windows 59

Contents

Minimized Windows 60
Choosing an Image for Your Minimized Window 60
Labeling a Minimized Window 63
Processing While Minimized 64
Using the Minimized Window to Show Status 64
Minimized Window Guidelines 64
Desks 66
Desks Guidelines 67
Session Management 67
Session Management Guidelines 71

IRIX Interactive Desktop Services 73
Software Installation 74
Software Installation Guideline 75
Online Help 76
Providing Help Using SGIHelp 76
Types of Online Help 77
Providing Help through a Help Menu 82
Providing Help Through a Help Button 83
Guidelines for Designing Online Help 85
Writing Online Help Content for SGIHelp 87
Guidelines for Creating SGIHelp Content 90
Online Documentation 92
Desktop Variables 93
Scheme Setting 93
Auto Window Placement Setting 93
Language Setting 94
Mouse Double-Click Speed Setting 95
Editor Preference Setting 96
Desktop Variables Guidelines 98
File Alteration Monitor (FAM) 99
File Monitoring Guideline 99

Contents

Vi

PART II

6.

Data Exchange on the IRIX Interactive Desktop 101
Supporting the Clipboard Transfer Model 102
Supporting the Primary Transfer Model 104

Data Types Supported for Inter-Application Transfer 108
Data Exchange Guidelines 109

Interface Components

Application Windows 113

Application Models 114
Window Types 114
Standard Application Models 115
Application Model Guidelines 119

Main and Co-Primary Windows 120
Menu Bars in Primary Windows 122
Scrollable Work Areas in Primary Windows 123
Control Areas in Primary Windows 123
Status Areas in Primary Windows 124
Splitting Primary Windows Into Panes 125
Popup Menus in Primary Windows 125
Primary Window Guidelines 125

Support Windows 127
General Support Window Design 127

A Specific Standard Support Window: The IRIX Interactive Desktop Color Chooser
129

Support Window Guidelines 131
Pointer Behavior in a Window 132
Pointer Behavior Guidelines 132

Focus, Selection, and Drag and Drop 133

Keyboard Focus and Navigation 133
Keyboard Focus Policy and Navigation Within a Window 134
Keyboard Focus and Navigation Guidelines 138

Contents

Selection 139
Selection Models—What Can Be Selected and How To Select It
Highlighting a Selection 142
Multiple Collections in One Application Window 142
Selection Guidelines 143
Drag and Drop 144
Two Models of Drag and Drop 144
Pointers for Drag Operations 147
Drag and Drop Guidelines 147

Menus 149
Types of Menus 149
Pull Down Menus 150
Popup Menus 151
Option Menus 151
Menu Traversal and Activation 152
Using the Mouse to Manipulate Menus 153
Using the Keyboard to Manipulate Menus 154
Menu Traversal and Activation Guidelines 154
The Menu Bar and Pull-Down Menus 155
Standard Menus 157
What to Put in the Pull-Down Menus 165
Choosing Mnemonics 171
Choosing Keyboard Accelerators 171
Disabling Menu Entries 173
Dynamic Menu Entries 174
Pull-Down Menu Guidelines 174
Popup Menus 177
What to Put in Popup Menus 178
Disabling Popup Menu Entries 179
Popup Menu Guidelines 179

139

vii

Contents

9. Controls 181

Pushbuttons 182

Pushbutton Guidelines 182
Option Buttons 184

Option Button Guidelines 184
Checkboxes 186

Checkbox Guidelines 186
Radio Buttons 187

Radio Button Guidelines 188
LED Indicators 189

LED Button Guidelines 189
Lists 190

List Guidelines 191
Text Fields 192

Text Field Guidelines 193
Scrollbars 194

Scrollbar Guidelines 195
IRIX Interactive Desktop Scales 196

IRIX Interactive Desktop Scale Guidelines 197
Labels 198

Label Guidelines 198
File Finder 199

File Finder Guidelines 199
Thumbwheels 200

Thumbwheel Guidelines 200
Dials 201

Dial Guidelines 201

10. Dialogs 203
Types and Modes of Dialogs 203
Dialog Modes 207
Guidelines for Using the Various Types and Modes of Dialogs 208

viii

Contents

11.

PART III

12.

Designing Dialogs 209
Decorations, Initial State, and Layout of Dialogs 209
Standard Dialog Actions 211
Content of Specific Types of Dialogs 214
Guidelines for Designing Dialogs 216

Invoking Dialogs 218
Invoking Dialogs When Manipulating Files 219
Other Situations for Invoking Dialogs 221
Guidelines for Invoking Dialogs 221

User Feedback 223
Types of Feedback 223
Providing Graphic Feedback 224
Keeping Information Up to Date 224
Providing Messages to the User 225
General User Feedback Guidelines 226
Pointer Shapes and Colors 226
Standard Pointer Shapes and Colors 226
Designing New Pointer Shapes 228
Pointer Shapes and Colors Guidelines 229

3D Style Guidelines

Introduction to 3D Style Guidelines 233
Making 3D Functionality Available 234
Designing Mouse Input for 3D Applications 234
Using Modifier Keys in 3D Applications 235
Basic 3D Interface Design Guidelines 236
Pointer Shapes for 3D Functions 236
Pointer Feedback Guidelines for 3D Applications 238
Resizing the 3D Viewing Window 238
Guidelines for Resizing Windows in 3D Applications 238

Contents

13. Interactive Viewing of 3D Objects 239

Introduction to 3D Viewing 240

3D Viewing Functions 241
Inspection Functions for 3D Viewing 243
Navigation Functions for 3D Viewing 251
Guidelines for 3D Viewing Functions 257

3D Viewing Interface Trade-Offs 259
Viewing and Editing in 3D Applications 259
Single-Viewport and Multi-Viewport Viewing in 3D Applications 262
3D Viewing Performance and Scene Fidelity 263
3D Viewing Trade-Offs and Related Guidelines 265

14. Selection in 3D Applications 267

3D Selection Concepts and Models 267
The Object-Action Paradigm in 3D Applications 268
Direct Selection in 3D Applications 268
Indirect Selection in 3D Applications 269
3D Selection Models 270
Selection in Hierarchies of Objects 271
3D Selection Design Guidelines 271

Selection Feedback for 3D Objects 273
Bounding Box Selection Feedback 273
Manipulator Selection Feedback 274
Highlight Selection Feedback 275
3D Selection Feedback Design Guidelines 275

Lead Objects in 3D Applications 276
Lead Object When Selecting Multiple Objects 276
Lead Object During Grouping and Ungrouping 277
Lead Object Design Guidelines for 3D Applications 279

Contents

15.

Manipulating 3D Objects 281
Basic 3D Manipulation Techniques 282
Phases of 3D Manipulation 282
3D Manipulation Feedback 284
Free and Constrained 3D Manipulation 285
Manipulator Presentation and Selection 285
Basic 3D Manipulation Guidelines 286
Translating 3D Objects 287
3D Translation Basics 288
Simple (Planar) 3D Translation 289
Constrained 3D Translation 290
3D Translation User Interface Guidelines 294
Rotating 3D Objects 294
3D Rotation Basics 295
Constrained 3D Rotation 296
Free 3D Rotation 297
3D Rotation User Interface Guidelines 299
Scaling 3D Objects 300
3D Scaling Basics 300
Uniform 3D Scaling 301
Axial 3D Scaling (Stretching) 303
Scaling Around the Opposite Corner or Side 306
3D Scaling User Interface Guidelines 309
Changing the Center of Rotation and Scaling for 3D Objects 310
Guidelines for Changing the Center of 3D Rotation 313
Object Manipulation for Multiple Selected 3D Objects 313
Translation of Multiple Selected 3D Objects 314
Rotation of Multiple Selected 3D Objects 314
Scaling of Multiple Selected 3D Objects 315
Guidelines for Manipulating More Than One 3D Object 315

Xi

Contents

A. Summary of Guidelines 317
Guidelines for Integrating With the IRIX Interactive Desktop 319
Icon Appearance Design Guidelines 319
Icon Behavior Guidelines 321
Application Icon Accessibility Guidelines 322
IRIX Interactive Desktop Look Guidelines 322
Application Window Characteristic Guidelines 322
Guidelines for Keyboard Focus Across Windows 325
Minimized Window Guidelines 326
Desks Guidelines 327
Session Management Guidelines 327
Software Installation Guideline 328
Guidelines for Designing Online Help 328
Guidelines for Creating SGIHelp Content 330
Desktop Variables Guidelines 332
File Monitoring Guideline 333
Data Exchange Guidelines 333
Interface Component Guidelines 334
Application Model Guidelines 334
Primary Window Guidelines 334
Support Window Guidelines 336
Pointer Behavior Guidelines 336
Keyboard Focus and Navigation Guidelines 337
Selection Guidelines 337
Drag and Drop Guidelines 338
Menu Traversal and Activation Guidelines 338
Pull-Down Menu Guidelines 339
Popup Menu Guidelines 342
Tab Panel Guidelines 343
Pushbutton Guidelines 343
Option Button Guidelines 345
Checkbox Guidelines 346

Xii

Contents

Radio Button Guidelines 347
LED Button Guidelines 348
List Guidelines 348
Text Field Guidelines 349
Scrollbar Guidelines 350
IRIX Interactive Desktop Scale Guidelines 352
Label Guidelines 352
File Finder Guidelines 353
Thumbwheel Guidelines 354
Dial Guidelines 354
Guidelines for Using the Various Types and Modes of Dialogs 355
Guidelines for Designing Dialogs 356
Guidelines for Invoking Dialogs 358
General User Feedback Guidelines 360
Pointer Shapes and Colors Guidelines 360
3D Style Guidelines 361
Basic 3D Interface Design Guidelines 361
Pointer Feedback Guidelines for 3D Applications 362
Guidelines for Resizing Windows in 3D Applications 362
Guidelines for 3D Viewing Functions 363
3D Viewing Trade-Offs and Related Guidelines 365
3D Selection Design Guidelines 367
3D Selection Feedback Design Guidelines 368
Lead Object Design Guidelines for 3D Applications 369
Basic 3D Manipulation Guidelines 369
3D Translation User Interface Guidelines 371
3D Rotation User Interface Guidelines 372
3D Scaling User Interface Guidelines 372
Guidelines for Changing the Center of 3D Rotation 373
Guidelines for Manipulating More Than One 3D Object 374

Index 375

Xiii

List of Figures

Figure 1-1
Figure 1-2
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 3-1

Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9

Major Elements of the IRIX Interactive Desktop 5

Icon States: User Actions and Effects 8

Web Tools Icons 12

File Icons 13

Application and File Icon Components 15

IconSmith Examples 16

IconSmith Color Palette 18

Icon States and Effects on Color 19

Potential Icon Background Areas and Colors 21
Application Icon in Running and Not Running States 22
Examples of Application Icons That Could be Improved 24
Examples of Standard File Icons 25

Examples of File Icons for Application-Specific File Formats 26
Launch Dialog Box 29

Icon Catalog 31

The Find an Icon Tool 32

Examples of Graphic Modifications in the IRIX Interactive
Desktop Look 38

Scheme Setting Control Panel 39

Features of a Typical Main Primary Window 44

Title Bar Label Appearing in Desks Overview 47

Labels for Main Window Title Bars 48

Default Maximum and Minimum Window Size Examples 50
Setting Auto Window Placement 51

Single-Action Pointer Grab Example: Capture by Sweeping 57
Multiple-Action Pointer Grab Example 59

XV

List of Figures

Figure 3-10 Minimized Window Example: Good User Association
With Application 60

Figure 3-11 Minimized Window Examples 61

Figure 3-12 Minimized Window Example: Incorrect Design 62

Figure 3-13 Minimized Window Example: Design That’s Too Literal 62

Figure 3-14 Minimized Window Example: Indicating Status With the Label 64
Figure 3-15 Desks Overview Window 66

Figure 3-16 Setting Session Management 68

Figure 3-17 Setting Auto Window Placement 69

Figure 4-1 The IRIX Interactive Desktop Software Manager 74

Figure 4-2 Typical Help Menu and Related Windows 78

Figure 4-3 Context-Sensitive Help Example 79

Figure 4-4 Typical Help Menu 82

Figure 4-5 Help Button Example 84

Figure 4-6 Task-Oriented Help Example 89

Figure 4-7 Language Control Panel 94

Figure 4-8 Mouse Settings Control Panel 95

Figure 4-9 Desktop Settings Control Panel 96

Figure 4-10 Selecting Preferred Editor in MediaMail 97

Figure 5-1 Clipboard Transfer Example 103

Figure 5-2 Primary Selection Example 105

Figure 5-3 Primary Transfer Example: Before Transfer 106

Figure 5-4 Primary Transfer Example: After Transfer 106

Figure 6-1 Allowable Parent-Child Window Relationships 115

Figure 6-2 ”Single Document, One Primary” Application Model 116
Figure 6-3 ”Single Document, Multiple Primaries” Application Model 117
Figure 6-4 “Multiple Document, Visible Main” Application Model 118
Figure 6-5 “Multiple Document, No Visible Main” Application Model 119
Figure 6-6 Basic Primary Window 120

Figure 6-7 Primary Windows With Tool Palettes 121

Figure 6-8 Primary Window With Two Panes 122

Figure 6-9 The IRIS Showcase Align Gizmo 128

Figure 6-10 The IRIX Interactive Desktop Color Chooser 129

XVi

List of Figures

Figure 7-1
Figure 7-2
Figure 7-3
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11
Figure 8-12
Figure 8-13
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8
Figure 9-9
Figure 9-10
Figure 9-11
Figure 10-1

Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5

Location Cursor Example 134
Components and Fields 136

File Finder Component 146

Menu Bar 150

Pull-Down Menu 150

Cascading Menu 151

Popup Menu 151

Option Menu Button 151

An Open Option Menu 152
Elements of a Pull-Down Menu 155
Standard Menus for Menu Bars 157
The Standard File Menu 158

The Standard Edit Menu 161

Radio buttons 170

Checkboxes 170

Popup Menu 178

Pushbuttons 182

Option Button and Option Menu 184
Checkboxes 186

Radio Buttons 187

LED Button 189

List 190

Scrollbar 194

IRIX Interactive Desktop Scale 196
The File Finder 199

Thumbwheel 200

Dials 201

Sample Prompt, Error, Warning, Working, Question and
Information Dialogs 205

The IRIX Interactive Desktop File Selection Dialog 206
Warning Dialog Layout 210

Warning Dialog With Save, Discard, and Cancel Buttons 213
Error Dialog With Specific Entity 215

XVii

List of Figures

Xviii

Figure 10-6
Figure 10-7
Figure 10-8
Figure 10-9
Figure 13-1
Figure 13-2
Figure 13-3
Figure 13-4
Figure 13-5
Figure 13-6
Figure 13-7
Figure 13-8
Figure 13-9
Figure 13-10
Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 15-1
Figure 15-2
Figure 15-3
Figure 15-4
Figure 15-5
Figure 15-6
Figure 15-7
Figure 15-8
Figure 15-9
Figure 15-10
Figure 15-11
Figure 15-12
Figure 15-13
Figure 15-14

Working Dialog with IRIX Interactive Desktop Scale 215

Warning Dialog for Overwriting a File 220

Warning Dialog for Reverting to Previous Version 220

Product Information Dialog 221

The Camera Analogy in 3D Viewing 240

Schematic Illustration of Tumbling (Implementation Perspective) 245
Schematic Illustration of Dollying (Implementation Perspective) 246
Schematic Illustration of Zooming (Implementation Perspective) 247
Schematic Illustration of Panning (User Drags Right) 248

Simple Example of Seeking to Door 250

Schematic illustration of Roaming (Implementation Perspective) 254
Schematic Illustration of Tilting (Implementation Perspective). 255
Schematic Illustration of Sidling (User Drags Left) 256

Application With Viewing Controls 261

Two Objects with Bounding Box Feedback 273

Object With Manipulator 274

Selection Feedback: Lead Object Has Manipulator. 277

Grouped Collection of Objects With Manipulator. 278

Ungrouped Collection of Objects (Knight Is Lead Object) 278

Object With Translation Manipulator (Bounding Box) 288

Simple Planar Translation Sequence 290

Constrained Translation Along One Axis of the Selected Plane 292
Constrained Translation Along the Normal to the Selected Plane 293
Object With Rotation Manipulator (Rotation Handles) 295
Constrained Rotation Sequence 297

Free Rotation Sequence 298

Object With Scaling Manipulator (Scaling Handles) 301

Uniform Scaling Sequence 303

Axial Scaling Sequence 305

Uniform Scaling Around a Corner 307

Axial Scaling Around a Side 308

Changing the Center of Rotation and Scaling 311

Changing the Center of Rotation and Scaling Along An Axis 312

List of Tables

Table 1-1
Table 1-2
Table 2-1
Table 3-1

Table 5-1

Table 7-1

Table 8-1

Table 8-2

Table 8-3

Table 10-1
Table 11-1
Table 12-1
Table 12-2
Table 13-1
Table 13-2
Table 13-3
Table 14-1
Table 15-1
Table 15-2
Table 15-3
Table 15-4
Table 15-5
Table 15-6

Mouse Button Names and Functions 9
Keyboard Substitutes 10
User /Icon Interactions and Expected Behavior 28

Window Decorations and Window Menu Entries by
Window Category 45

Data Types Supported for Inter-Application Transfer 108
Selection Actions and Results 140

File Menu Entries 159

Standard Edit Menu Entries 162

Keyboard Accelerators 172

Types of Dialogs, Their Modality, and When to Use Them 204
Standard Pointer Shapes and Colors 227

Use of Modifier Keys in a 3D Application 235

Pointers for 3D Functionality 237

3D Viewing Functions and User Interface 242

Overview of Inspection Viewing Functions 244

Overview of Navigation Viewing Functions 252

3D Selection Actions and Results 270

Overview of Manipulation Techniques 285

Phases of Planar Translation 289

Phases of Translation Along One Axis of the Selected Plane 291
Phases of Translation Along the Normal to the Selected Plane 293
Phases of Constrained Rotation 296

Phases of Free Rotation 298

XiX

List of Tables

XX

Table 15-7
Table 15-8
Table 15-9
Table 15-10
Table 15-11

Table 15-12

Phases of Uniform Scaling 302

Phases of Axial Scaling (Stretching) 304

Phases of Uniform Scaling Around a Corner 306
Phases of Axial Scaling Around a Side 307

Phases of Changing the Center of Rotation and
Scaling Along a Plane 310

Phases of Changing the Center of Rotation and
Scaling Along an Axis 311

About This Guide

This guide is written for developers of software products used on Silicon Graphics
workstations, including software engineers, graphical user interface designers, usability
specialists, and others involved in the design process. It contains guidelines to help you
design products that are consistent with other applications and that integrate seamlessly
into the IRIX Interactive Desktop. The result of this consistency and integration is that
your products work the way end users expect them to work; consequently, end users find
your products easier to learn and use.

Using this guide, you learn how to design user interfaces for Silicon Graphics
applications. There are also specific examples of what is and isn’t appropriate and why.
Note that the guidelines discussed in this guide are just that—guidelines, not rules;
they’re designed to apply to the majority of applications, but there will certainly be
anomalous applications for which these guidelines don’t make sense.

Developers using this guide are expected to be programming with the IRIS IM user
interface toolkit. IRIS IM is the Silicon Graphics port of the industry-standard OSF/Motif
user interface toolkit for use on Silicon Graphics computers. The IRIX Interactive
Desktop guidelines encourage compliance with the OSF/Motif guidelines described in
OSFE/Motif Style Guide, Release 1.2, so you should be familiar with the OSF/Motif manual
before reading this one. In addition, the IRIX Interactive Desktop guidelines clarify and
elaborate on many OSF/Motif style issues; they recommend many value-added
extensions and improvements to the OSF/Motif style that don’t conflict with the basic
OSF/Motif interface. Following the recommendations in this guide will help ensure that
your software product provides all of the functionality and ease of use designed into the
IRIX Interactive Desktop.

One focus of this guide is how your application should look and feel on the IRIX
Interactive Desktop when you're finished creating it—that is, how users will expect to be
able to interact with your application. The implementation details of how to achieve this
look and feel are covered in the OSF/Motif Programmer’s Guide and the IRIX Interactive
Desktop Integration Guide.

XXi

About This Guide

What This Guide Contains

This guide has three parts, which are described in the following sections. For your
convenience, this guide is available online so that you can search it using the IRIS InSight
Viewer. This guide is also available on the World Wide Web.

Part One: Integrating With the IRIX Interactive Desktop

The first part of this guide describes how users expect to be able to interact with your
application from the IRIX Interactive Desktop; it contains these chapters:

e Chapter 1, “Overview of the IRIX Interactive Desktop,” sets the context for Part
One; it gives you an overview of the desktop environment in which users encounter
your application and describes the mouse and keyboard hardware provided with
Silicon Graphics systems.

* Chapter 2, “Icons,” describes how to design your application and file icons so that
they’re meaningful, they properly reflect their state (such as selected or open), and
they behave appropriately for user actions such as double-click and drag-and-drop.
It also describes how to make your application icon accessible so that users can
interact with your application through the desktop tools, such as the Icon Catalog
and the Find an Icon tool.

e Chapter 3, “Windows in the IRIX Interactive Desktop Environment,” defines the
various categories of windows and describes the IRIX Interactive Desktop look for
your application’s windows. This look is an enhanced version of IRIS IM and
includes pre-packaged color and font schemes. The chapter also covers the expected
behaviors that your application’s windows should support—such as sizing,
moving, and minimizing windows, managing the keyboard focus across windows,
interacting with desks, and responding to session management.

¢ Chapter 4, “IRIX Interactive Desktop Services,” explains how your application can
take advantage of several services provided by the IRIX Interactive Desktop, such
as Software Manager, SGIHelp, the IRIS InSight online documentation viewer, and
global desktop settings.

¢ Chapter 5, “Data Exchange on the IRIX Interactive Desktop,” describes the data
transfer models that your application should support. It also lists the data types
supported for data exchange in the IRIX Interactive Desktop environment.

XXii

About This Guide

Part Two: Interface Components

The second part of this guide describes the individual components of an application,
such as windows, menus, controls, and dialogs. Part Two contains these chapters:

Chapter 6, “Application Windows,” discusses the different types of windows, how
your application should combine them, what elements are appropriate for primary
and support windows, and how these elements should be arranged.

Chapter 7, “Focus, Selection, and Drag and Drop,” discusses three general
mechanisms by which users interact with your application: keyboard focus (within
a window), selection, and drag and drop.

Chapter 8, “Menus,” describes the kinds of menus your application can use
(pull-down, popup, and option menus), how users display, traverse, activate, and
close these menus, and how to design menus and menu items for your application.

Chapter 9, “Controls,” describes controls that are supported in the standard
OSF/Motif environment (such as push buttons, lists, and scrollbars) and those that
are unique to the IRIX Interactive Desktop environment (such as thumbwheels and
dials). Each description consists of a general description of the control, and

guidelines for when to use the control, how to label the control, and how the control
should behave.

Chapter 10, “Dialogs,” defines the standard types of dialogs and discusses when to
use them. It also discusses how to design application-specific dialogs.

Chapter 11, “User Feedback,” describes various types of feedback users expect your
application to provide. It also tells you when to use each of the standard pointer
shapes and provides guidelines for designing your own pointer shapes.

XxXiii

About This Guide

Part Three: Designing 3D Applications

The third part of this guide provides user interface guidelines specifically for 3D
applications. These guidelines address design issues that are not relevant in a 2D context.
In addition, 3D applications should also follow the guidelines described in the first two
parts of this guide. Part Three contains these chapters:

e Chapter 12, “Introduction to 3D Style Guidelines,” provides an overview of general
3D user interface design guidelines.

e Chapter 13, “Interactive Viewing of 3D Objects,” first discusses inspection and
navigation, which are the two approaches to viewing, and the associated viewing
functions users expect. It then considers some trade-offs designers commonly have
to make: Making both viewing and editing available in an intuitive way, deciding
on single-viewport or multi-viewport viewing, and dealing with scene fidelity vs.
speed.

e Chapter 14, “Selection in 3D Applications,” provides recommendations for
designing the selection interface of a 3D application. It builds on the selection
models discussed in Chapter 7, “Focus, Selection, and Drag and Drop”.

¢ Chapter 15, “Manipulating 3D Objects,” provides recommendations for designing
the translation, rotation, and scaling user interface of a 3D application.

Appendix

Appendix A, “Summary of Guidelines,” provides a checklist that you can use to
determine whether your product follows the IRIX Interactive Desktop user interface
guidelines. This checklist contains all of the individual guidelines that appear
throughout the guide.

What You Should Know Before Reading This Guide

XXiv

This guide assumes that you understand the concepts and terminology used with
computers whose user interface is based on the X Window System and OSF/Motif. It also
assumes that you're familiar with the OSF/Motif Style Guide, Release 1.2; the material
presented in this guide enhances and clarifies information presented in that manual.

About This Guide

Suggestions for Further Reading

The programming details of how to implement the style guidelines described in this
guide are described in the following books, all of which are available online through IRIS
InSight:

IRIX Interactive Desktop Integration Guide

Software Packager User’s Guide

Topics in IRIX Programming

OSF/Motif Programmer’s Guide

OSF/Motif Reference Manual

The X Window System, Volume 1: XIlib Programming Manual

The X Window System, Volume 4: X Toolkit Intrinsics Programming Manual

In addition, you may want to take a look at Desktop Users Guide (also an online manual),
which explains how users interact with the IRIX Interactive Desktop.

If you're new to creating 3D applications, either in general or on Silicon Graphics
systems, you'll find the following books useful:

Foley,].D., A. van Dam, S. Feiner, and J.F. Hughes. Computer Graphics Principles and
Practice, second edition. Reading, Massachusetts: Addison-Wesley Publishing Co.,
1990. (This book is the classic introductory text to 3D programming.)

Kalwick, David. 3D Graphics Tips, Tricks, and Techniques. Chestnut Hill,
Massachusetts: Academic Press, Inc. 1996. (This book defines the many 3D graphics
terms and explains how to create 3D graphics using existing software applications
rather than writing your own code.)

Wernecke, Josie, The Inventor Mentor. Reading, Massachusetts: Addison-Wesley
Publishing Co., 1994. (This book provides basic information on programming with
Open Inventor. It includes detailed program examples in C++ and describes key
aspects of the Open Inventor toolkit, including its 3D scene database.)

XXV

About This Guide

Finally, you may want to refer to additional references that describe user interface design:

Brown, C. Marlin “Lin.” Human-Computer Interface Design Guidelines. Norwood,
New Jersey: Ablex Publishing Corporation, 1989. (This book presents general user
interface guidelines.)

Laurel, Brenda, ed. The Art of Human-Computer Interface Design. Reading,
Massachusetts: Addison-Wesley Publishing Co., 1990. (This book addresses future
directions in user interface design.)

Mayhew, Deborah J. Principles and Guidelines in Software User Interface Design
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1992. (This book covers the
overall design process and presents general user interface guidelines.)

Norman, Donald A. The Design of Everyday Things. Reading, Massachusetts:
Addison-Wesley Publishing Co., 1991. (This book uses examples of commonly used
products to illustrate why good design is necessary.)

Shneiderman, Ben. Designing the User Interface: Strategies for Effective
Human-Computer Interaction, second edition. Reading, Massachusetts:
Addison-Wesley Publishing Co., 1992. (This book presents general user interface
guidelines.)

Conventions Used in This Guide

XXVi

In this guide, the following conventions act as visual cues for different types of
information.

Style Guidelines

[] This icon indicates a guideline that summarizes the preceding discussion. The

guidelines appear at the end of each main section; a complete list is provided in
Appendix A, “Summary of Guidelines.”

About This Guide

Font Conventions

The typographical conventions used in this guide include:

¢ Bold text indicates that a term is a data type, a keyword, an X or IRIS IM widget
name, a function, a command-line option, or an X resource.

e [talic text indicates that a term is a file name, a button name, a variable, an IRIX
command, or a document title.

e Screen type indicates screen displays and code examples.

e Bold screen type indicates user input and nonprinting keyboard keys.
¢ “Quoted text” indicates menu items.

* Angle brackets indicate special keys, as in <Ctrl>.

® Regular text is used for menu and window names.

XXVii

PART ONE

Integrating With the IRIX Interactive Desktop

Chapter 1

Overview of the IRIX Interactive Desktop

Chapter 2

Icons

Chapter 3

Windows in the IRIX Interactive Desktop Environment
Chapter 4

IRIX Interactive Desktop Services

Chapter 5

Data Exchange on the IRIX Interactive Desktop

Chapter 1

Overview of the IRIX Interactive Desktop

The IRIX Interactive Desktop environment allows users to interact with applications by
using a graphical, point-and-click interface based on icons and windows. It offers an
easy, powerful alternative to typing commands in the traditional UNIX style.

This chapter provides a brief overview of the IRIX Interactive Desktop environment from
the user’s perspective. It describes how users expect to interact with their graphical
environment and with your application. The specific implications for your application
are discussed in the remainder of Part One, “Integrating With the IRIX Interactive
Desktop.” For details on how users interact with the IRIX Interactive Desktop, see the
online Desktop Users Guide.

This chapter covers the following topics:

¢ “Overview of the Desktop” briefly describes the major elements of the IRIX
Interactive Desktop including the various types of desktop icons.

e “How Users Interact With Desktop Icons” describes how users interact with icons
and how icons appear on the desktop during these interactions.

* “Mouse and Keyboard Hardware” describes the mouse and keyboard hardware
provided for use with Silicon Graphics systems.

Chapter 1: Overview of the IRIX Interactive Desktop

Overview of the Desktop

The IRIX Interactive Desktop appears in Figure 1-1 along with the major desktop tools
and examples of icons and minimized windows. The important elements in the IRIX
Interactive Desktop environment are:

4Dwm—the window manager application underlying the IRIX Interactive Desktop.
(4Dwm is the only sanctioned window manager for the IRIX Interactive Desktop
environment.) It is an X Window System client based on the Motif Window
Manager (MWM). 4Dwm provides window management, desks (defined below),
and session management. It provides facilities for controlling window placement,
window size, keyboard focus ownership, and minimized windows.

Toolchest—a menu bar that provides general system commands not specific to any
application. This menu bar is displayed horizontally or vertically, depending on the
user’s preference, and is positioned by default in the upper left corner of the
desktop.

Find an Icon tool—a tool for either retrieving a file’s icon, given the name, or
obtaining the full path and filename given the icon.

Directory Views—windows that display the contents of a UNIX file directory
(folder icon) in various formats involving icons. The Directory View has an optional
shelf pane where users can store frequently used icons. Note the thumbwheel on the
lower left side of the window—it lets users adjust the viewing size of icons in the
display area of the Directory View window.

Desks Overview—a tool for creating and managing multiple virtual screens (desks).
It lets users set up and switch desks, typically for organizing their work. 4Dwm
allows these desks to display different backgrounds.

Search tool—a tool that lets users search for files, printers, hosts, drives, and people.

Icons on the screen background—symbols that represent entities, such as
applications, files, directories, people, printers, the Indy Cam camera, removable
media devices (for example, CDROM, floppy, and DAT drives), and other devices.
Users can place icons in any portion of the desktop to have them readily accessible.

Customize control panels—windows that let users specify various types of
preferences, such as screen background and language.

Icon Catalog—a window that allows users to access application icons directly. It
uses a page-oriented metaphor with six default pages: Applications, Collaboration,
Demos, Desktop Tools, Media Tools, and Control Panels. Users can also create their
own pages.

These tools affect the design of your application. Specific design implications are
discussed in detail in the remainder of Part One. For more information on the tools
themselves, see the Desktop Users Guide.

Overview of the Desktop

Find An
Icon tool

Directory
View

Directory
View
shelf

Desks
Overview

Minimized windows Search tool

Page Selected Arrange View Mateh Help

Search for hosts whose:

Files } Printers) H Mouse Settings

idouse Acceleration:

myShowCaseFile

3
{monk

;

Slow Fast Finer Control

N R

IO Acceleration

[T Threshold

Mouse Mapping:

Overview Desk Windew Help

[Global

Figure 1-1 Major Elements of the IRIX Interactive Desktop

Device icon
(CDROM)

Device
icon (DAT)

Directory
icon

Data file
icon

Application
icon
(showcase)

Device
icon
(printer)

Dumpster
icon

Customize
control
panel
(Mouse
Settings)

Icon

Catalog
(Applications
page)

Chapter 1: Overview of the IRIX Interactive Desktop

How Users Interact With Desktop Icons

Users interact with icons on the IRIX Interactive Desktop using a point-and-click
graphical user interface. For example, the following techniques represent some of the
ways a user can launch an application using icons:

* double-clicking the application icon, which launches the application and opens a
new file

¢ double-clicking a file icon, which launches the application opened to that specific
file

¢ selecting the application icon (by single-clicking or dragging a rectangle that
encloses it) and then choosing “Open Icon” from the Selected menu (in the
Toolchest for icons on the screen background or in the specific tool window for
other icons)

¢ dragging a compatible file icon and dropping it on top of the application icon,
which launches the application and opens that specific file

The six states that are used to represent icon manipulations are indicated primarily by
painting specific portions of the icon with a predefined “icon color.” As the state changes,
the areas painted with the icon color change color. For the specific implications on the
design of your application’s icons, see “General Icon Design: Components, Size, and
Colors” in Chapter 2.

The icon states of the IRIS Showcase application icon are illustrated in Figure 1-2. (Note
that the magic carpet under the magician’s hat is the generic executable symbol used in
the IRIX Interactive Desktop environment to identify the icon as an application icon.) In
the figure, the hat brim, the light shading on the hat, and the carpet are in the predefined
icon color and thus change color as the state changes. The states are:

* neutral—the icon isn’t involved in any operations. The icon appears in the base
colors you've chosen. The portions containing the icon color appear in light gray.

* locate highlight—the pointer is resting on the icon and the icon isn’t currently
selected (see the following description of the selected state). The icon color portions
change from the neutral state color light gray to white. The locate highlight feature
lets the user know that the highlighted icon will be selected if the user single-clicks
or opened if the user double-clicks. (The locate highlight feature also applies to
components in windows to provide feedback as to which objects are true
components and which are passive graphics, as described in “Enhanced Graphics in
the IRIX Interactive Desktop Look” in Chapter 3.)

How Users Interact With Desktop Icons

selected—the icon has been chosen potentially for some operation. Users select an
icon by single-clicking on it with the left mouse button or dragging a rectangle
around it using the left mouse button. When an icon is selected, the icon color
portions turn yellow. Note that the icon color is bright yellow when the window
containing the icon (or the screen background) has the keyboard focus; otherwise,
the icon color is a dim yellow. Users can choose entries from the Selected menu (from
the Toolchest if the icon is on the screen background or from a window’s menu bar
if contained in a tool window) to perform various operations on the object
represented by the icon.

open—applies to application icons but not to data file icons. For application icons,
the open state indicates that the application is running. Application icons indicate
their open state by moving the magic carpet from a horizontal to a vertical position
and by changing their application icon symbol. This is discussed in more detail in
“Application Icon Design” in Chapter 2. Note that application icons don’t indicate
their open state with colors.

drag—an icon is in the process of being moved on the screen. Users drag icons by
pressing and holding down the left mouse button while the pointer is positioned
over the icon and then moving the mouse. The icon moves around the desktop with
the pointer. As an icon is dragged, the portions colored with the icon color display in
yellow since it’s in the selected state, and a ghost image of the icon with the icon
color portions displaying in dark gray remains in the original position. The ghost
image remains until the user drops or places the icon or cancels the drag operation.

drop-accepting—an icon has another icon moved on top of it to perform some
operation. For example, users can move a file from one directory to another by
dragging the icon representing the file and dropping it onto the icon representing
the new directory. When an icon has another icon positioned over it, the icon color
portions of the destination icon turn royal blue if the destination icon can accept
dropped icons or remain in their current color if the destination icon doesn’t accept
them.

Chapter 1: Overview of the IRIX Interactive Desktop

Neutral

No user action;

standard icon displays in
base colors. Icon color is

s

Locate highlight

User moves cursor over
icon; icon color turns
white if the icon is not

&

light gray. currently selected; otherwise
there is no change.

showcase showcase
Selected Open ‘
User single-clicks icon or User launches application;
drags a rectangle around no color changes, but the
it; icon color turns bright magic carpet rises and the
yellow while the window open icon symbol displays
containing the icon has to indicate that the application
keyboard focus and turns showcase is running.
dim yellow when the window showcase

loses keyboard focus.

Drag

User moves icon. Icon
color portions turn bright
yellow and the icon moves
with the pointer. Ghost
image with an icon color
of dark gray remains in

@

original position until showcase
move is completed.
showcase

Drop-accepting

User drags an icon

on top of another icon;
icon color turns royal
blue only if icon is able to
accept dropped icons.

myShowCaseFile

myShowcalie

showcase

Figure 1-2

Icon States: User Actions and Effects

Mouse and Keyboard Hardware

Mouse and Keyboard Hardware

The Silicon Graphics three-button mouse supports the mouse actions defined in the
OSE/Motif Style Guide (such as press, release, click, motion, multiclick, multipress, and
multimotion). Table 1-1 lists these buttons and their functions. If a mouse action is
mentioned in this guide without reference to a specific mouse button, assume that the
button being used is the left mouse button. For example, “when the user clicks on the OK
button. . .” means “when the user positions the pointer over the OK button and clicks the
left mouse button. . . .” Note that users can switch the mouse to a left-handed mouse via
the Mouse Settings control panel available from the Desktop->Customize menu in the

Toolchest.
Table 1-1 Mouse Button Names and Functions
Button? OSF/Motif Silicon Graphics Function
Name Name
Leftmost button BSelect Left mouse Used for all primary interactions,
button including selection, activation, and
setting the location cursor.
Middle button BTransfer ~Middle mouse Used for moving and copying elements.
button Can be used for advanced user shortcuts
that are also included in a more obvious
interface.
Rightmost button =~ BMenu Right mouse Exclusively used for popping up menus.
button

a. This table assumes a right-handed mouse.

Silicon Graphics keyboards support the following special keys that are used to interact
with Motif-compliant applications:

<Tab>
<Space>
<Back Space>
<Escape>
<Insert>

<Delete>

Chapter 1: Overview of the IRIX Interactive Desktop

10

<Home>

<End>

<Page Up>

<Page Down>

Modifier keys: <Ctrl>, <Alt>, <Shift>

Ten function keys: <F1> through <F10>
Special printing characters: </>, <\>, <!>

Arrow keys: <down arrow>, <left arrow>, <right arrow>, <up arrow>

In addition to these keys, Silicon Graphics keyboards also support the function keys
<F11> and <F12>, which aren’t included in the OSF/Motif Style Guide. If your application
uses these keys, limit them to application-specific functionality rather than the general
functionality described in this guide.

Table 1-2 lists the keys that the OSF/Motif Style Guide defines but that don’t appear on
Silicon Graphics keyboards; it also lists the corresponding Motif-compliant substitutions
for Silicon Graphics keyboards.

Table 1-2 Keyboard Substitutes

OSF/Motif Key Silicon Graphics Substitute
<Return> <Enter>

<Cancel> <Escape>

<Help> <F1>

<Menu> <Shift><F10>

<Begin> <Home>

Chapter 2

Icons

The IRIX Interactive Desktop uses icons to represent entities such as applications, files,
directories, people, printers, the Indy Cam camera, removable media devices (for
example, CDROM, floptical, and DAT drives), and other devices. Users can manipulate
these icons through a point-and-click graphical user interface to initiate certain actions,
such as launching an application or sending a data file to the printer.

This chapter covers the following topics:

e “Designing the Appearance of Icons” tells you how to design an application icon to
represent your application’s executable file and a file icon to represent your data
files.

* “Defining the Behavior of Icons With FTRs” explains which File Typing Rules
(FTRs) you need to define for your application and file icons so that they will
respond to user actions such as double-click and drag-and-drop.

e “Making Application Icons Accessible” discusses adding your application icon to
the Icon Catalog and naming and locating your executable file in the file system so
that users can easily find your application icon.

Note: In this guide, the term icon refers to IRIX Interactive Desktop icons and not to

minimized windows, as in the OSF/Motif Style Guide. Minimized windows are described
in”Minimized Windows” in Chapter 3.

11

Chapter 2: Icons

Designing the Appearance of Icons

12

This section discusses icon design. Topics include:
® “General Icon Design: Components, Size, and Colors”
¢ “Application Icon Design”

* “File Icon Design”

Your application’s desktop icons can appear in any of several places on the IRIX
Interactive Desktop, along with icons from other applications. For example, your icons
can appear on the desktop background, in Directory View windows, and in the Icon
Catalog. Figure 2-1 shows the Icon Catalog, which displays several application icons
representing executable files. Figure 2-2 shows various data file icons that can appear on
a user’s desktop.

For each application, you'll need to create an application icon. If your application saves
its data in a unique format, you'll also need to create a data file icon. (If your application
saves its data in a standard data format, your application’s data files will automatically
appear on the desktop using the appropriate standard data icon.)

Page Selected Arrange View

L WebTools

Figure 2-1 Web Tools Icons

Designing the Appearance of Icons

mail folder icon

Code file icon —— “r(

VA

IRIS Showcase file icon PostScript file icon

&)
o

rgb image file icon

Text file icon ——M8M8M8 rFé

=

Audio file icon InPerson file icon

IRIS Inventor fileicon —— Move file icon

B W

Figure 2-2 File Icons

To make your application and file icons stand out in a group of icons, be sure to create
meaningful symbols that are distinctive and represent your product. Your icon designs
should also follow the guidelines detailed in the remainder of this section so that users
recognize your icons as desktop icons and know that they can interact with these icons
in expected ways.

13

Chapter 2: Icons

14

General Icon Design: Components, Size, and Colors

Design your application and file icons so that they:
e convey your product identity
¢ have the correct components and thus are recognizable as desktop icons

e are identifiable when zoomed to the minimum and maximum sizes allowed by the
IRIX Interactive Desktop

e use an effective color scheme, which allows the icon to reflect its state

Your primary goal is to differentiate your icons from those of other products and to make
the design fairly simple because desktop icons are small when minimized.

Icon Components

Application and file icons consist of several components (as shown in Figure 2-3):

* asymbol identifying the application or type of data file

¢ an outline around the edge of the symbol

® adrop shadow that helps give the icons a 3D appearance

* alabel identifying the executable or data file

Application icons also include a magic carpet, the generic executable symbol, which
differentiates them from file icons and shows whether or not the application is running
(by moving from the horizontal, at-rest position into a vertical, up-and-running

position). File icons for document-based applications incorporate the generic data file
symbol (three rectangles representing sheets of paper) into the file icon design.

Designing the Appearance of Icons

Outline Outline

Application symbol ———— Data file format symbol
Generic executable Generic data file symbol
symbol (magic carpet) (stack of papers)

Drop shadow —— —————— Drop shadow
Iégggﬁ?:gﬂe — Icon label (data file

file name) showcase jslides —— name)

Application Icon File Icon

Figure 2-3 Application and File Icon Components

You need to create the symbols for your application icon and for any unique file types
your application creates. Create the symbols with the IconSmith drawing tool, which is
described in Chapter 12, “Using IconSmith,” in the IRIX Interactive Desktop Integration
Guide. IconSmith provides a drawing grid with tools for creating 3D graphics. It also
supplies predefined templates for the magic carpet in both the running and not running
states and the data file format symbol, complete with drop shadows.

You can create your unique icon symbols in the drawing area and can readily add the
predefined templates to your design. Figure 2-4 shows four examples of IconSmith. The
drawing area in the example in the upper left corner contains the IRIS Showcase
application symbol for its not-running state. The other three examples contain the three
predefined templates. The icon labels are supplied automatically when the icons are
displayed on the desktop. This label is the name of the executable for application icons
and the name of the data file for file icons.

15

Chapter 2: Icons

Showcase application symbol (not running) Data file symbol

Current Pen Edit Properties

[——

5 5 I
—=—]

Magic carpet symbol (not running)

Figure 2-4 IconSmith Examples

16

Designing the Appearance of Icons

Icon Size

Draw your icon within the 100x100-pixel boundary box defined by IconSmith. Keep in

mind that your symbol designs should allow any generic icon components, such as the
magic carpet and stack of papers, to be at least partially visible. This is described in more
detail in “Application Icon Design” and “File Icon Design” later in this chapter.

By default, icons are reduced to fit within a 50x50 pixel area when they’re displayed on
the desktop. Because users can adjust the viewing scale for icons making the icons either
larger or smaller than this default, your icon drawings should look good across the range
of available sizes. You can use the IconSmith preview box to see what your icon looks like
when scaled to various sizes.

Icon Colors

IconSmith provides the color palette shown in Figure 2-5 for specifying the colors in your
icon. The following two buttons are of particular importance for applying color to icons:

® Specific—lets you apply a color from the color selection area to the selected part of
the graphic. The specific color remains constant as an icon goes through its states.

e Jcon—Ilets you apply the predefined icon color to the selected part of the graphic.
Portions painted with the icon color change color dynamically as the icon changes its
state.

When choosing colors for your icons, consider that the icon color changes to indicate state
and that icons appear against a variety of differently colored backgrounds. To
accommodate these issues, you need to enable your icon to show its state and make sure
your icon stands out from the most likely backgrounds, as explained in the following
paragraphs. (See Chapter 1, “Overview of the IRIX Interactive Desktop,” for
explanations of icon states from the user’s point of view.)

17

Chapter 2: Icons

18

=.§ Selection Properties

Comment:

Path Type: |§ Cpen | |§ Closed | |§ Paints | EEAS Is 1

Outline Color: [Anone | [Aspeciic |[Rasis |

t= Qutline | |§ Icon | |§ Shadow |

01 2 3 4 5 6 7 & 9 10 11 12 13 14 15

Specific color button

Fill Color: [RNone | [1Speciic | [Tasls |

A Outline Iﬁlcon I i Shadow

01 2 3 4 5 6 7 & 9 10 11 12 13 14 15

Defined color types
for fill areas

Icon color button

Color selection area
for fill areas

Current Colors

] outine
D lcon

Pen Colors: | Applyto Pen | | Get from Pen |

‘ Accept ‘ ‘ Cancel ‘

Figure 2-5 IconSmith Color Palette

To enable your icon to reflect what state it’s in, you need to paint portions of it with the
predefined icon color supplied by IconSmith. Those portions of your icon are changed
automatically by the IRIX Interactive Desktop to indicate the icon’s state. In the example
shown in Figure 2-6, the hat brim, the light shading on the hat, and the carpet of the IRIS
Showcase application icon use the predefined icon color (which is a light gray in the
neutral state). In addition, to make the state color changes easier for users to detect in
your icons, avoid (or use sparingly) intense, strongly saturated colors and the specific
colors used by the IRIX Interactive Desktop to indicate state—bright yellow, dim yellow,
royal blue, pure white, and light gray.

Designing the Appearance of Icons

Neutral Locate highlight Select (with input focus) Select (no input focus)
showcase showcase showcase showcase
icon color is light gray icon color is white icon color is bright yellow icon color is dim yellow
Drag Drop-accepting
showcase myShowCaseFile
showcase
myShowC ile
icon color is dark gray showcase
in ghost image and bright icon color is royal blue
yellow in dragged image in accepting icon

Figure 2-6 Icon States and Effects on Color

You can increase your icon’s visibility on user-customized desktops. (Remember that
users can customize the desktop background to be any color and pattern, as described in
Chapter 1, “Overview of the IRIX Interactive Desktop.”) To increase visibility:

¢ Use the icon color defined by IconSmith to color most of your icon.

¢ Use two or more areas of accent colors to help your icon stand out against
user-customized background colors.

¢ Avoid using only very small color areas (2-4 pixels) because these small areas may
be difficult to see against a patterned background.

¢ Use the outline color (which is black) supplied by IconSmith to define the outline of
your icon.

19

Chapter 2: Icons

20

* Since your icons can display in certain IRIX Interactive Desktop tools as shown in
Figure 2-7, avoid (or use sparingly) the following background colors used by these
tools:

— light gray-green—used in Directory View windows

— cadet blue—used in read /write panes such as drop pockets, shelves in
Directory View windows, and the Icon Catalog pages

— Navajo white—used in read-only panes such as the results area of the Search
tool

See /fusr/lib/X11/schemes/Base/OzSpec for colors used by these tools:

*o0zDi r Panel Col or: AlternateBackground4
*0zC t nPanel Col or: Al ternateBackground5
*0zDr opPocket Col or: Al ternat eBackground5

See /usr/lib/X11/schemes/Base/BaseColorPalette for definitions of these colors:

#define AlternateBackground4 #729c9c
#define AlternateBackground5 #5680ab
#define AlternateBackground6 #b6b6aa

Note: The color descriptions “light gray-green” and “cadet blue” are approximate since
hardware and gamma values vary. Look at these colors on your system in Directory View
windows and read /write panes, and avoid using these colors in your icon or use them

sparingly.
Icon Orientation

Icons on the IRIX Interactive Desktop should display at a three-quarter view and face the
lower right of the screen to make them appear 3D. When designing your application and
data file format symbols, draw them using this perspective. This is the same perspective
that is used for the generic executable symbol (the magic carpet) and the generic data file
symbol (stack of papers). Icons that don’t follow this convention appear to be facing the
wrong way.

Designing the Appearance of Icons

Directory View icon display
area (light gray-green)

Selected Arrange Page Selected Arrange View Maich Help

Search for files whose: {only on this host)

4

fd2/dougom/Class/Dougiclass.C %
fdZ/dougom/Class/Doug/eight :
fdz/dougom/Class/Dougleight.C

Directory View

shelf (cadet blue) fdz/dougom/Class/Dougleight.o

Drop pockets
(cadet blue)

@5 @0

fd2/dougom/Class/Doug/filel

fdZ/dougom/Class/Doug/file?

E < a’d2a’d0ugoma’CIasstouga’fiIepaste|

'\ Files /{ Printers /{ Hosts /{ Diski[)l'i\"es ////

Search tool
display area

Page Selected Arrange View (Navajo white)

[
=
=
=

Icon Catalog
display area
(cadet blue)

Applications Collaboration Demos DesktopTools

Figure 2-7 Potential Icon Background Areas and Colors

21

Chapter 2: Icons

22

Application Icon Design

In addition to adhering to the guidelines discussed in the previous section, “General Icon
Design: Components, Size, and Colors,” the application icon that represents your
application’s executable needs to convey to users:

e thatit’s an application icon (as opposed to a data file icon)

e what its current state is (whether or not the application is running)

The magic carpet is the generic executable symbol; it differentiates application icons from
data file icons. As mentioned in the previous section, the magic carpet and its drop
shadow are predefined components that can easily be incorporated into your icon design
when using IconSmith. For details of having them appear with your application symbol,
see Chapter 11, “Creating Desktop Icons: An Overview,” in the IRIX Interactive Desktop
Integration Guide.

As shown in Figure 2-8, the application icon uses both of the following techniques to
indicate its state—that is, whether or not the application is running:

e The 3D application symbol changes (in this example, items pop out of the hat in the
running state).

¢ The magic carpet moves from a horizontal, at-rest position to a vertical,
up-and-running one, and the drop shadow changes shape appropriately. Since the
magic carpet must be recognizable in both states, make sure that your application
symbol doesn’t completely obscure it in either position.

Not Running Running

Application symbol

(not running) Application symbol

(running)
Magic carpet in
horizontal position))
(not running) Magic carpet in
vertical position
(running)

showcase showcase

Figure 2-8 Application Icon in Running and Not Running States

Designing the Appearance of Icons

To have your application icon change to reflect its running state, create two different
symbols using IconSmith and associate them with your application. See Chapter 11,
“Creating Desktop Icons: An Overview,” in the IRIX Interactive Desktop Integration Guide
for details on how to do this. The specific design of the two symbols is up to you, but keep
in mind that you're trying to convey an inactive state and an active, running one. Also,
when viewed in succession, the two symbols look like a progressive animation rather
than two unrelated icons.

The IRIS Showcase application icon shown in Figure 2-8 is an example of a well-designed
icon: it animates to show which state the application is in, and the carpet is always
visible. Figure 2-9 shows three examples of application icon designs that can be
improved:

¢ The first example is an application icon for a point-and-click ASCII text editor. Its
carpet is clearly visible and functions properly. The application symbol doesn’t
change, however, to reflect that the application is running. To improve the design,
the existing symbol could be used to show the running state and the pencil could be
aligned at the bottom or side of a blank version of the pad when the application
isn’t running.

¢ The application icon in the second example represents an online book viewer. The
application symbol changes nicely to indicate its running state. The carpet,
however, is almost totally obscured when the application isn’t running and doesn’t
appear at all when the application is running.

® The third application icon represents a database application for tracking software
bugs. The application symbol is visually appealing but completely obscures the
carpet. In addition, there’s no change in the application symbol to reflect its running
state, and the symbol is oriented toward the lower left instead of the lower right.
The design could be improved by adding a second symbol for the not-running state
(perhaps showing the file drawer closed with the bug’s antennae sticking out),
making the application symbol smaller so that the magic carpet is visible, and
redrawing the symbol so that it faces the lower right.

23

Chapter 2: Icons

24

Not Running Running

No change in N
application symbol

| — Obscured carpet

— Missing carpet

Incorrect icon
orientaton ——

Incorrect icon orientation

No change in e

Obscured carpet —— application symbol ——— Obscured carpet

Figure 2-9 Examples of Application Icons That Could be Improved

File Icon Design

If your application creates files, those files need to be associated with data file icons. Silicon
Graphics defines a set of standard data formats and provides associated data file icons,
some of which are shown in Figure 2-10. (For information on these file formats, see
Appendix E, “Predefined File Types,” in the IRIX Interactive Desktop Integration Guide.) If
your application saves its data in any of these standard formats, it will automatically use
the appropriate data file icon for those files.

If your application saves its data in a unique format, however, you need to design a
distinctive file icon that relates graphically to the theme of your application icon.
Indicate, if possible, how the data is used. Your file icon should follow the guidelines
discussed in this section and in the earlier section “General Icon Design: Components,
Size, and Colors.”

Designing the Appearance of Icons

ASCI! text file

command script
N file
— PostScript file

L
i
aca— R
J g
S

C program
source file

rgb file AIFF sound file

Br — archivefile

shared library
executable file

Figure 2-10 Examples of Standard File Icons

The standard file icons shown in Figure 2-10 that symbolize documents all contain the
generic data file symbol (stack of papers). If your application creates data files, your file
icon should include this generic symbol. Both the generic symbol and its drop shadow
are predefined components available in IconSmith. If you're creating a unique icon that
does not use the generic data file symbol, create an appropriately shaped drop shadow
for your design and paint it with the shadow color predefined in IconSmith.

Figure 2-11 shows some file icons for application-specific file formats. For example, the
IRIS Showcase file icon includes the generic data file symbol (a stack of papers) to
indicate that it represents a document, and the data file format symbol is similar to that
found in the IRIS Showcase application symbol for the running state.

25

Chapter 2: Icons

26

Showcase data file

InPerson data file

Figure 2-11 Examples of File Icons for Application-Specific File Formats

Icon Appearance Design Guidelines

For any icon you create.. ..

[

O O O 0O oo

Provide a meaningful, distinctive symbol that gives your product an identity and
that allows users to readily identify your application and its corresponding custom
data files, if any.

Keep designs fairly simple because desktop icons can be displayed in small sizes.
Make sure that your icon can be identified across the range of viewing sizes.

Color most of your icon using the icon color predefined by IconSmith so that your
icon’s state is easy to detect.

Use two or more areas of accent colors to help your icon stand out against
user-customized background colors.

Avoid small areas of color (2-4 pixels) because they’re difficult to see against
patterned backgrounds.

Use an outline around your custom symbol, and use the outline color supplied by
IconSmith.

Avoid or use sparingly intense, strongly saturated colors and the specific colors used
by the IRIX Interactive Desktop—bright yellow, dim yellow, royal blue, light
gray-green, cadet blue, and Navajo white. These colors make it difficult to
distinguish between certain icon states and to find your icon against the background
colors of many desktop tools.

Orient your icon so that it displays a three-quarter view that faces the lower right
corner of the screen.

Defining the Behavior of Icons With FTRs

When designing an application icon. ..

[] Include the magic carpet, the generic executable symbol, with your application’s
symbol.

[] Indicate the state of the application (not running vs. running) by moving the magic
carpet from a horizontal (not running) to vertical (running) position, or by providing
two different application symbols and moving the magic carpet from a horizontal to
vertical position. Remember that your application symbols should resemble a
progressive animation when viewed in succession.

[] Make sure that your application symbols do not completely obscure the magic carpet
in either its horizontal or vertical position.

[Application icons that have two separate symbols for the not running and running
states should make sure that the main part of the symbol remains in the same
location during both states, so that the symbol appears stationary to the user.

If your application saves data in a custom file format . ..

[Design a unique data file format symbol that is readily associated with your
application icon design and also indicates how the data is used.

[1f your application is document-based, include the generic data file symbol (stack of
papers) in your design.

(] 1 your data file icon does not use the generic data file symbol, create an
appropriately shaped shadow for your file icon and use the predefined shadow color
supplied by IconSmith.

Defining the Behavior of Icons With FTRs

Define the behavior of icons on the IRIX Interactive Desktop by creating a File Typing
Rule (FTR) file for each icon. This behavior includes such things as what happens when
the user double-clicks on an icon and what happens when the user drags and drops one
type of icon onto another type of icon. This section describes:

e “User and Icon Interaction,” which explains how users can interact with icons, how
an FTR supports these interactions (in brief).

* “Icon Appearance Design Guidelines,” which lists the minimal set of standard
behaviors your application and file icons should support.

27

Chapter 2: Icons

User and Icon Interaction

Table 2-1 shows the behavior users expect for given interactions with application and file
icons. The last column lists the rules for each type of interaction. For information on

implementing these behaviors, see Chapter 11, “Creating Desktop Icons: An Overview,”
in the IRIX Interactive Desktop Integration Guide.

Table 2-1

User /Icon Interactions and Expected Behavior

User Goal

User Action

Expected Behavior

Implementation Hints

Launch application

Launch application
with a particular file
by directly opening
file

Launch application
with a particular file
by dragging and
dropping

Launch application
with command-line
arguments

Print file

Selects application icon and
chooses “Open” from the
corresponding Selected menu
-or-

Double-clicks application icon

Selects file icon and chooses
“Open” from the corresponding
Selected menu

-or-

Double-clicks file icon

Drops file icon onto application
icon

Double-clicks application icon
while holding down the <Alt>
key

Selects file icon and chooses
“Print” from the corresponding
Selected menu

-or-

Drops file icon onto printer icon

The magic carpet and the application
symbol change from the not-running to the
running state. The application launches, set
to a new file.

The magic carpet and the application
symbol change from the not-running to the
running state. The application launches, set
to the specified file.

If file is compatible, application launches, set
to specified file

If file is incompatible, application posts an
appropriate error message and doesn’t
launch.

In both cases, the magic carpet and the
application symbol change from the not
running to the running state.

The Launch dialog box opens, displaying the
path to your executable (see Figure 2-12).
Users can add arguments if desired. Clicking
OK executes the text input as specified. The
magic carpet and the application symbol
then change from the not-running to the
running state.

Specified file prints on default printer if
activated by a menu selection or prints on
specified printer if activated by a drag and
drop action.

Add a CMD OPEN
rule for the
application icon

Add a CMD OPEN
rule for the file icon
that specifies its
application?

Add a CMD DROP
rule for the
application icon

Add aCMD
ALTOPEN rule for the
application icon?

Add a PRINT rule for
the file icon?

a. Design the application so it can accept specific data (for example, a filename) as a command-line argument.

28

Defining the Behavior of Icons With FTRs

Complete the command line:

I /usr/shin/showcase |

| [o]4 || Apply || Cancel || Help I

Figure 2-12 Launch Dialog Box

Icon Behavior Guidelines

When creating an FTR to define your application icon’s behavior. . .

[] Provide a CMD OPEN rule that launches the application. This allows the user to
open your application either by selecting your application icon and then choosing
“Open” from the corresponding Selected menu, or by double-clicking your
application icon.

[] Provide a CMD ALTOPEN rule that opens the Launch dialog box shown in
Figure 2-12 with the path to your executable displayed in the text field of this
window. This allows the user to open the Launch dialog box by double-clicking your
application icon while holding down the <Alt> key.

[] Provide a CMD DROP rule that launches your application with the file specified by
the dropped icon. If your application doesn’t understand the type of file represented
by the icon dropped on it, your application should provide an appropriate error
message to the user rather than launching. This allows the user to launch your
application with a specific file by dragging the file icon and dropping it on your
application icon.

When creating an FTR for your file icon . . .

[] Provide a CMD OPEN rule that launches your application and automatically opens
the file represented by the file icon. This allows the user to open a file created by your
application either by selecting the file icon and then choosing “Open” from the
corresponding Selected menu, or by double-clicking the file icon.

[] Provide a CMD PRINT rule that sends the file represented by the file icon to the
specified printer. This allows the user to send your application’s data files to the
default printer by selecting the file icon and then choosing “Print” from the
corresponding Selected menu. It also allows the user to send your application’s data
files to any printer by dragging the file icon and dropping it on an icon that
represents the specific printer.

29

Chapter 2: Icons

Making Application Icons Accessible

In addition to designing the appearance and defining the behavior of your application
icon, you need to make it accessible to users. This section describes:

e “Putting Icons Into the Icon Catalog”

e “Naming and Locating Executables for the Find an Icon Tool”

Putting Icons Into the Icon Catalog

After users install an application, they expect to find its icon in the Icon Catalog
(described in “Overview of the Desktop” in Chapter 1), so you need to add your
application icon to the Catalog as part of the installation process. Also, decide on which
page of the Catalog your icon should appear or, if necessary, create a new page. Once
you’ve chosen an appropriate page for your application icon, refer to Chapter 11,
“Creating Desktop Icons: An Overview,” in the IRIX Interactive Desktop Integration Guide
for details on making your application icon appear on the chosen page.

As shown in Figure 2-13, the Icon Catalog lets users access applications visually without
having to search through the file hierarchy. Some of the Icon Catalog pages are listed
below along with typical applications that can appear on them:

* Application page—multimedia presentation application (showcase), text editor (jot),
electronic mail program (MediaMail)

* Collaboration page—desktop conferencing application (inperson), 3D model
annotator (annotator)

¢ Demos page—xlogo and buttonfly

® Desktop Tools page—calculator program (xcalc), clock program (xclock), select fonts
(xfontsel), mail notifier utility (mailbox), calendar display (ical), and screen magnifier

(mag)

* Media Tools page—compact disc player (cdman), digital audio tape player (datman),
image file format conversion utility (imgcopy), movie creation/editing application
(moviemaker), audio editing application (soundeditor)

¢ Control Panels page—audio control panel (apanel), background setting control
panel (background), desktop settings control panel (desktop)

* Web Tools page—Netscape Navigator (netscape), WebMagic (webmagic),
WebSpace Navigator, WebJumper (webjumper), OutBox/WebServer, DynaWeb
Server, What’s New, TarDist

30

Making Application Icons Accessible

In most cases your application icon will appear on the Applications page, since that’s
where users will expect to find it. If you're developing a suite of applications, however,
you may want to create a new page for your icons and let users know (in your product’s
documentation) that you’'ve done this.

Page Selected Arrange View

Applications Collaboration Demos DesktopTools

Figure 2-13 Icon Catalog

Naming and Locating Executables for the
Find an Icon Tool

The Find an Icon tool, shown in Figure 2-14, allows users to find applications by typing
the name of the executable. If they type the correct name and if the executable is located
in a directory on the user’s search path or under the user’s home directory, the
corresponding icon appears in the drop pocket. The user can then drag the icon to
another location such as the desktop, or open it directly from the Find an Icon tool by
double-clicking the icon.

31

Chapter 2: Icons

32

= Find an lcon

Drop pocket, for Text entry field, Recycle button,
operating on for entering the filename for retrieving a previously
found icon or complete pathname entered pathname

Figure 2-14 The Find an Icon Tool

Since users may be guessing at the most likely name for the application’s executable,
adhere to the following naming conventions:

® Choose a name that matches the product name or is strongly associated with the
product. For example, the name of the IRIS Showcase executable is showcase, and the
name of the online book application, IRIS InSight, is insight. Don’t use an
abbreviation of your product name.

* Use only lowercase letters for the name. For example, the name for the SoundEditor
executable is soundeditor.

¢ Don’t include spaces in the name since UNIX doesn’t handle spaces elegantly.

¢ Don’t use numbers in the name to represent versions of a product. For example, the
executables for IRIS InSight 2.2.1 and its earlier versions are all named insight.

¢ Don’t use any special characters in the name, such as underlines or periods. Simply
remove any spaces when converting your product’s name to an appropriate name
for your executable.

Since the Find an Icon tool searches only directories on the user’s search path and under
the user’s home directory, put your executable—or a link to it, which is preferable—in
one of the directories on the user’s default path. The directories included in the default
path are:

Jusr/sbin Jusr/bsd /sbin
Jusr/bin /bin Jusr/bin/X11

The most appropriate place to put a link to your executable—and the one that will result
in users finding your application the fastest—is /usr/sbin.

Making Application Icons Accessible

Application Icon Accessibility Guidelines

When making your application icons accessible to users . ..

[]
[]
[]

Place your application icon on the Applications page in the Icon Catalog. If you
produce a suite of software applications, consider creating your own page.

In your documentation, refer users to the appropriate page in the Icon Catalog after
they’ve installed your application.

When naming your executable, use the product name or choose a name that’s
strongly associated with the product.

When naming your executable, use only lowercase letters. Don’t use numbers,
spaces, or special characters such as underlines or periods. Don’t use an abbreviation
of the product name.

Make sure that a link to your executable (preferred method) or the executable itself
resides in a directory in the user’s default search path. Ideally, place a link to your
executable in the /usr/sbin directory. This helps ensure that users can quickly find
your application icon using the Find an Icon tool.

33

Chapter 3

Windows in the IRIX Interactive Desktop Environment

When users run your application on the IRIX Interactive Desktop, they interact with its
windows through 4Dwm, the IRIS Extended Motif Window Manager. This chapter
describes the look, interactions, and behaviors that your application’s windows should
support. (For information on individual window components, see Chapter 6,
“Application Windows,” and Chapter 9, “Controls.”) This chapter covers the following
topics:

“The IRIX Interactive Desktop Look: Graphic Features and Schemes” discusses
general characteristics of windows, including the IRIX Interactive Desktop
enhanced look provided by the IRIS IM toolkit and its advantages, and color and
font schemes.

“Application Window Categories and Characteristics” defines the categories of
windows in the IRIX Interactive Desktop environment and presents several models
of applications using the various window types. It also lists the required window
decorations and Window menu for each window category, prescribes how to
choose labels for title bars, and discusses window size and placement issues.

“Keyboard Focus Across Windows” establishes the 4Dwm default keyboard focus
policy across windows as implicit, and describes the behavior for applications that
need to maintain control of the pointer while it’s outside of the application’s
windows.

“Minimized Windows” provides ideas for designing minimized window images,
describes how to choose labels for minimized windows, and discusses application
behavior while minimized.

“Desks” describes the tool that provides users with multiple virtual screens or desks.
It covers the design implications for your application windows, which can be
distributed over these multiple desks.

“Session Management” describes the 4Dwm session manager and the implications
of allowing users to log out while your application is running and return
automatically to the same state upon subsequent login.

35

Chapter 3: Windows in the IRIX Interactive Desktop Environment

The IRIX Interactive Desktop Look: Graphic Features and Schemes

36

When using the IRIS IM user interface toolkit, you can choose one of two different
appearances for your application:

¢ the IRIX Interactive Desktop look (preferred by Silicon Graphics)
¢ the basic OSF/Motif look

The IRIX Interactive Desktop look provides an attractive, 3D look for your application
and the default colors and fonts used by the IRIX Interactive Desktop. The two
components to the IRIX Interactive Desktop look are described below:

¢ “Enhanced Graphics in the IRIX Interactive Desktop Look”

e “Schemes for Colors and Fonts”

Enhanced Graphics in the IRIX Interactive Desktop Look

The IRIX Interactive Desktop look contains a number of graphic modifications made to
the standard IRIS IM interface. These modifications improve the appearance and ease of
use of applications. They have no impact on the component layout and require minimal
work on the part of the developer. Some of the differences between the IRIX Interactive
Desktop look and the standard IRIS IM look appear in Figure 3-1. In comparison, the
IRIX Interactive Desktop look:

* Uses smooth shading with a rounded dimensional look to create a high-quality
visual appearance. Numerous sharp bevels, such as those found in standard Motif
components, detract from rather than add to the visual presentation of an
application. (See Figure 3-1A.)

* Adds locate highlight (the object brightens as the pointer passes over it) so that
users can tell which components are live functional objects and which are passive
graphics or are disabled. Locate highlight also gives users feedback as to whether or
not the application is listening.

* Adds additional visual feedback for selected checkboxes and radio buttons. A
distinct red arrow and a blue triangle clearly indicate a selected checkbox and radio
button, respectively (see Figure 3-1A).

The IRIX Interactive Desktop Look: Graphic Features and Schemes

¢ Enhances scrollbars by providing a grip on the slider used in scrollbars and a
temporarily indented impression to indicate the original location of the slider
during the scrolling process (see Figure 3-1C). The grip makes it easier for users to
recognize the slider as something to be dragged rather than a button to be pressed.

¢ Uses a stroked underline to indicate mnemonics in menus simply to give the look of
an application some pizazz (see Figure 3-1D).

* Provides a more consolidated treatment for composite objects. For example, the
IRIX Interactive Desktop look visually integrates the arrow stepper buttons in
scrollbars with the scrollbars themselves to give a less cluttered look. In addition,
the scrollbars are visually integrated with the client pane as much as possible to
make the whole assembly appear as a single, integrated unit (see Figure 3-1C).

e Uses decals instead of stacked, 3D elements to make it easier for users to see the
components (see Figure 3-1B). There is no gratuitous use of 3D such as the raised
arrows and rectangular option buttons in standard Motif.

¢ Renders black outlines around stand-alone widgets to improve the readability and
perception of adjoining color areas (see Figure 3-1B and C). For example, the black
outline around buttons and scrollbars make them stand out from a window’s
background.

® Uses closely grouped dialog buttons that are right justified. This style makes the
buttons easier to read, and the close grouping may reduce mouse motion.

For details on how to obtain the graphic enhancements of the IRIX Interactive Desktop
look, see Chapter 2, “Getting the IRIX Interactive Desktop Look,” in the IRIX Interactive
Desktop Integration Guide. For guidance on designing other aspects of your application
windows, such as general layout principles and use of controls, see Chapter 6,
“Application Windows” and Chapter 9, “Controls.”

37

Chapter 3: Windows in the IRIX Interactive Desktop Environment

IRIX Interactive Desktop Look Standard IRIS IM Look
Rounded radio Rounded check sh bevel
(A) Toggles buttons boxes arp bevels
L1<> Radiol [¥] Checkbox1 Convex indicates
woff
—<¥ Radio? Checkhox?
<> Radio3 Checkbox3
Concave
Blue triangle Red check mark indicates "on"
indicates "on" indicates "on"
(B) Arrow buttons
Outlining -
‘ of buttons No outlining

Raised 3D arrow

' Arrow decal

(C) Scroll bars

ScrolledList

Integrated
scroll bar

Scroll bar slider
—— Slider grip

|
= B
el

(D) Menu accelerators

Hle Edit View

Menu strokes Menu underlines

Figure 3-1 Examples of Graphic Modifications in the IRIX Interactive Desktop Look

38

The IRIX Interactive Desktop Look: Graphic Features and Schemes

Schemes for Colors and Fonts

In addition to the graphic modifications described in the previous section, “Enhanced
Graphics in the IRIX Interactive Desktop Look,” the IRIX Interactive Desktop look
includes schemes. A scheme is a pre-packaged collection of colors and fonts that users can
apply to application windows.

Schemes deliver several benefits to users. When all applications on a workstation use
schemes, users can conveniently customize their environment. The schemes are
designed with an eye to effective use of color, taking into account both usability and
aesthetic considerations. Multiple schemes are provided to address such problems as
red/green color-blindness, monochrome X-terminals, and user preference for light or
dark text. A user changes the scheme for the desktop by selecting the new scheme from
the control panel shown in Figure 3-2. (This control panel is accessed from the
Desktop->Customize cascading menu in the Toolchest.)

Application Sample Image Help

Color Schemes

Auallabia ltems

T

Figure 3-2 Scheme Setting Control Panel

39

Chapter 3: Windows in the IRIX Interactive Desktop Environment

40

Using schemes also benefits you as a developer by leveraging the work that has already
been done on appropriate color and font choices. Using schemes eliminates worrying
about different display resolutions, gamma values, user preferences, or most style guide
color and font issues.

The model for using schemes as a developer is to specify color and font choices as
abstract names from the predefined scheme color and font palettes instead of
hard-coding specific color and font values. Then, when the user specifies a scheme, the
palette entries are mapped to specific RGB color and font values.

By default, the IRIX Interactive Desktop comes up in the IRIX Interactive Desktop
scheme. This scheme is organized around a neutral gray palette with the typographically
neutral Helvetica font. Using neutral colors for standard user interface elements
preserves the use of color for the application’s content areas.

Schemes are meant to apply to any region of an application window built with the
standard toolkit components. Don’t use schemes for application client areas which are
content specific—for example, a rendering window, a movie player, or a molecular
modeler. The colors in such client areas will be application-specific and not subject to
change when a user selects a new scheme.

For information on supplying schemes in your application, see Chapter 3, “Using
Schemes,” in the IRIX Interactive Desktop Integration Guide.

IRIX Interactive Desktop Look Guidelines

When designing the look for your application . ..
[] Use the IRIX Interactive Desktop look rather than the standard IRIS IM look.

[] Use the pre-packaged color and font schemes supplied by Silicon Graphics rather
than designing your own colors and fonts.

Application Window Categories and Characteristics

Application Window Categories and Characteristics

This section defines the four categories of windows in the IRIX Interactive Desktop
environment; presents four models of applications using these window types; and lists
the decorations, Window menus, and behavior required for each window type.
Specifically, this section covers:

e “Application Window Categories”

e “Application Models”

¢ “Window Decorations and the Window Menu”
e “Window Title Bar”

e “Window Size”

e “Window Placement”

Application Window Categories

The OSE/Motif Style Guide refers to two categories of windows: primary windows and
secondary windows. The IRIX Interactive Desktop environment subdivides each of these
categories to yield two additional categories useful in many applications. There are two
types of primary windows:

* A main primary window serves as the application’s main controlling window. It’s
used to view or manipulate data, get access to other windows within the
application, and kill the process when users quit. There’s only one main primary
window per application (and sometimes it isn’t visible to users).

* A co-primary window is used for major data manipulation or viewing of data outside
of the main window.
There are two types of secondary windows:

* A support window is a persistent special-purpose window. It typically contains a
control panel or tool palette that operates directly on data in a primary window. It is
used repeatedly.

* Adialog is a transient window, typically used for short, quick, user input, such as an
action confirmation, or system output, as in a warning message. It may be
user-requested or application-generated.

41

Chapter 3: Windows in the IRIX Interactive Desktop Environment

42

Application Models

Although there can be many combinations in an application of the four window types
discussed in the previous section (main, co-primary, support, and dialog windows), most
applications can be classified as fitting one of four basic models. The distinguishing
factors between the models are:

¢ whether they can have one or multiple documents (files) open at a time

e their use of primary windows

Note: The term document means a grouping of data and shouldn’t be thought of as
simply a text-oriented file. It covers such data types as film clips, audio segments, and
Inventor scenes.

These models are illustrated and discussed in more detail in “Application Models” in
Chapter 6. For information about how to implement the various models, see
“Implementing an Application Model” in Chapter 5 in the IRIX Interactive Desktop
Integration Guide.

“Single Document, One Primary” Application Model

“Single document, one primary” is the most basic model—it accomplishes all of its tasks
within the main window and uses as many support windows and dialogs as needed.
Users can work on only one document at a time. Thus, when a user has one document
open and opens a second document, the second document replaces the first. IRIS
Showcase operates in this manner.

“Single Document, Multiple Primaries” Application Model

The “single document, multiple primaries” model uses both main and co-primary
windows to accomplish major tasks. In this model, the co-primary windows perform
different functions. MediaMail is an example of this model. Its main window lets users
select electronic mail messages from a folder and perform actions on them such as
viewing, printing, deleting, and sorting. Its Compose and Message windows are typical
of co-primary windows with different functions designed to support the functionality of
the main window. In this model, each primary window has its own menu bar tailored
specifically to the functions in that window.

Application Window Categories and Characteristics

“Multiple Document, Visible Main” Application Model

The “multiple document, visible main” model has a main window that is mostly used to
launch co-primary windows. These co-primary windows are identical to each other and
perform the same functions on different files or documents. Each co-primary window
has its own menu bar. IRIS InSight is an example of this model. Its main window lets
users launch co-primary viewing windows, browse available files, and conduct global
searches through these files. The co-primary windows are used for viewing online books.

“Multiple Document, No Visible Main” Application Model

The “multiple document, no visible main” model is identical to the “multiple document,
visible main” model except that the main window is invisible to the user and new
co-primary windows are launched from co-primary windows that are already open.
Users open one document and leave it open while opening others. When the last open
document is closed, the process is killed.

Window Decorations and the Window Menu

Users primarily interact with windows on the IRIX Interactive Desktop through the
window decorations and Window menu, which 4Dwm, the IRIS window manager,
places on each window. The decorations and Window menu entries vary according to the
category of the window (see “Application Window Categories” earlier in this chapter)
and whether any of the components in the window are resizable. Figure 3-3 shows the
decorations for a typical main window. For complete details of the behavior of each of
the window decorations, see Section 7.3, “Window Decorations,” in the OSF/Motif Style
Guide.

43

Chapter 3: Windows in the IRIX Interactive Desktop Environment

Window menu Title bar Minimize Maximize
button button button

File Edit level FEffects View Options _Hefpg

‘0 Record H Stop HO Play ||jRepeat

- [N BRI

Play Time: Bs 32,888 KHz 2-ch 16-hit
Selection: Bs
Bs |185

' ' ' . Resize
border

N

Figure 3-3 Features of a Typical Main Primary Window

The recommended decorations and Window menu entries for each category of window
are shown in Table 3-1. To meet these requirements, you may have to modify both the
default window decorations and Window menu entries for at least some of your
application windows. For information on modifying the default window decorations
and Window menu entries, see Chapter 5, “Window, Session, and Desk Management,”
in the IRIX Interactive Desktop Integration Guide. Table 3-1 also lists the keyboard
accelerators and mnemonics provided by 4Dwm for each Window menu item. These
keyboard accelerators are reserved; do not assign them to other functions in your
application.

44

Application Window Categories and Characteristics

The behavior of the window decorations and Window menu entries is consistent with
the definitions in Section 7.3 of the OSE/Motif Style Guide, with two notable differences:

e 4Dwm Window menus include the entry “Raise.” “Raise” allows the user to move
the window to the top of the window hierarchy, making it completely visible (in
contrast to “Lower”).

e “Exit” lets users quit the application completely from a primary window. Your
application must do all the appropriate cleanup work for an exit from the Window
menu, such as prompting the user whether to save changes to a file. The behavior of
“Exit” in the Window menu is the same as that of “Exit” in the File menu. See “File
Menu” in Chapter 8 for information on the File menu. (Note that the “Close” entry
on a co-primary window closes that window and any associated support windows
and dialogs. It doesn’t quit the application.)

The Window menu entries are based on the functionality available for that type of
window. For example, users can’t exit the application from support or dialog windows,
so these window types don’t include an “Exit” entry. If a window can’t be resized, it
doesn’t need the “Size” entry or the “Maximize” entry in its Window menu. (To eliminate
the ability of a window to be resized, set the maximum and minimum window sizes
equal to the default window size. See “Window Size” later in this chapter.) Dialogs can’t
be minimized independently of their parent windows and thus don’t have a “Minimize”

entry.

Table 3-1 Window Decorations and Window Menu Entries by Window Category
Window Decorations and Main Windows Co-Primary Windows Support Windows Dialogs
Window Menu Entries
Window menu button Required Required Required Required
“Restore Alt+F5" Required Required Required® Required®
“Move Alt+F7” Required Required Required Required
“Size Alt+F8” / Optional; use if user Optional; use if user Optional; use if user Optional; use if user

Resize handles

may need to expand
work area or other
components. If

may need to expand
work area or other
components. If

resizable, set minimum resizable, set minimum
and maximum size and maximum size
limits. limits.

may need to expand
any components, such
as text input fields or
scrolling lists. If

resizable, set minimum

and maximum size
limits.

may need to expand
any components, such
as text input fields or
scrolling lists. If
resizable, set minimum
and maximum size
limits.

45

Chapter 3: Windows in the IRIX Interactive Desktop Environment

Table 3-1 (continued) Window Decorations and Window Menu Entries by Window

Window Decorations and Main Windows Co-Primary Windows Support Windows Dialogs
Window Menu Entries

“Minimize Alt+F9” / Required Required Don’t use Don’t use
Minimize button

“Maximize Alt+F10” / Use only if there’s a Use only if there’s a Use only if there’s a Use only if there’s a

Maximize button “Size” entry. “Size” entry. “Size” entry. “Size” entry.

“Raise Alt+F2” Required Required Required Required

“Lower Alt+F3” Required Required Required Required

“Close Alt+F4” Don’t use; not relevant Required Required Required
for main windows.

“Exit Alt+F12” Required; closes all Optional; use if users ~ Don’t use Don’t use
windows for this can quit application

application and quits. from this window.

a. This entry always appears in the Window menu, and it’s automatically disabled if there’s no “Maximize” entry; this default behavior can’t be
changed.

Window Title Bar

By default, all windows on the IRIX Interactive Desktop have a title bar that contains a
label for the window. The default label used in the title bar (the application name) rarely
provides enough information for users to be able to distinguish one window from
another. Label your title bars according to the rules shown below to help your users
distinguish among windows belonging to the same application as well as instances of the
same application. (For information on how to set the label in the title bar, see “Interacting
With the Window and Session Manager” in Chapter 5 of the IRIX Interactive Desktop
Integration Guide.)

46

Application Window Categories and Characteristics

In general, use the title bar label to identify the window; don’t use it to display general
status (such as current page number or viewing mode) or application-critical
information. Using the title bar to display information can cause problems. For example:

® The title bar may be covered by another window or off the screen.

® Users aren’t accustomed to looking for status information in the title bar, so they‘re
likely to overlook it if your application displays it there.

e It’s expensive for the application to update the title bar continuously.

For more information on where to place status information or application-critical
information in your application window’s title bars, see “Status Areas in Primary
Windows” in Chapter 6.

The label you put in the title bar is also used in the Desks Overview window (see “Desks”
later in this chapter). By default, as a user moves the pointer over the thumbnail window
sketches in the Desks Overview, the thumbnail window’s title bar label displays as
shown in Figure 3-4. (Note that users can specify that the minimized window label be
shown in the thumbnail sketches instead of the title bar label.) This further emphasizes
the need for users to be able to distinguish windows using only the title bar information.

Overview Desk Window Help

[I Global

Pointer

Title bar label

Figure 3-4 Title Bar Label Appearing in Desks Overview

47

Chapter 3: Windows in the IRIX Interactive Desktop Environment

48

Rules for Labeling the Title Bar in Main Primary Windows

The rules for labeling title bars in main windows are illustrated in Figure 3-5.

e First determine if your application accesses document files. If not, use just the
application name.

e If your application is document-based, use the application name followed by a
colon (:) and the filename (or “Untitled” if it’s a new file) as the label in the title bar.
Unless you have a real need and enough room, don’t include the full pathname in
the title bar. Note that if you do include a filename in the label, you need to update
the label whenever the file changes.

¢ If your application is displaying remotely, use the host name followed by a colon as
a prefix to the title bar label determined above. Be sure to leave spaces between
strings and colons in the label.

e Don’t use the version number in the title bar; make that information available from
the “Product Information” entry in the Help menu (see “Types of Online Help” in
Chapter 4 for more information).

(a) For applications that are not document-based

(d) For any application running remotely

Figure 3-5 Labels for Main Window Title Bars

Application Window Categories and Characteristics

Rules for Labeling the Title Bar in Windows Other Than Main

For those co-primary windows that are used to supplement the main window’s
functionality as in the “single document, multiple primaries” application model, use the
application name and function in the format AppName : Function.

Make sure that the function closely matches the entry in the menu or the label on the
button that invokes it. If the co-primary window follows a multiple document model
such as the “multiple document, visible main” application model or the “multiple
document, no visible main” application model, use the format AppName : Filename (or
AppName : Untitled if it’s a new file). Unless you have a real need and enough room, don’t
include the full pathname in the title bar.

Support windows use the application name and the function in the format AppName :
Function. Make sure that the function closely matches the entry in the menu or the label
on the button that invokes it.

For dialog windows, use the application name, followed by the type of dialog in the
format AppName : DialogType, where DialogType can be “Prompt,” “Error,” “Warning,”
“Question,” “Information,” “Working,” or “File Selection.” (For information on dialogs,
see Chapter 10, “Dialogs.”)

Window Size

The 4Dwm window manager provides users with complete control over the size of
application windows unless the application sets limits. Without a minimum window
limit, users can shrink your windows to the point where they’re unusable. With no
maximum limit, users can expand a window to cover the full screen, potentially wasting
valuable screen real estate. These extreme cases, along with a window at its default size,
are illustrated in Figure 3-6. Set appropriate maximum and minimum window sizes for
all of your application windows. See “Interacting With the Window and Session
Manager” in Chapter 5 of the IRIX Interactive Desktop Integration Guide.

In general, windows should be resizable only if they contain areas or components that a
user might wish to resize, for example, a primary window with a resizable work area or
a support window with a scrolling list or text input field. If a window does not contain
resizable areas or components, then it shouldn’t be resizable and you should set both the
maximum and minimum size equal to the default size. Remember also to remove the
Size and Maximize entries from the Window menu as described in “Window
Decorations and the Window Menu” earlier in this chapter. For more information on
specific window components, see Chapter 9, “Controls.”

49

Chapter 3: Windows in the IRIX Interactive Desktop Environment

Window at default maximum size

Uitilities

Sweep area
Grahimage

Reset

B

Uitilities

Sweep area

Grahimage

Reset

Qi

D Grah Selection Focus
[_] wanish While Saving

D Grah Selection Focus
[] anish While Saving _{E{r
I

Window at default minimum size

|
Window at default size

Figure 3-6 Default Maximum and Minimum Window Size Examples

50

Application Window Categories and Characteristics

Window Placement

Users expect the placement of all primary windows to respond to the value of the Auto
Window Placement option in the Window Settings control panel, as shown in Figure 3-7.
(Users access this control panel from the Desktop->Customize cascading menu in the
Toolchest.) Support windows and dialogs are always placed automatically.

Window Settings

Toolchest Orientation: > Hgrizontal
Vertical
Display Windows Overview: [_|
: Opaque Window Move: [_]
—— Auto Window Placement: [+
Save Windows & Desks: Continuously
< Explicitly

| Close || Reset .. || Help I

Auto Window Placement button

Figure 3-7 Setting Auto Window Placement

When auto window placement is on (the default), 4Dwm automatically places an
application’s primary windows. If a primary window does not supply any position
information, 4Dwm by default places it in the upper left corner of the screen. When auto
window placement is off, users expect to be able to interactively place all primary
windows. In this case, a window displays initially as a red outline attached to the pointer
at its upper left corner, allowing the user to place the window manually. The user places
the window by moving the outline to the desired location on the screen and clicking the
left mouse button.

51

Chapter 3: Windows in the IRIX Interactive Desktop Environment

52

To take advantage of the Auto Window Placement setting, you must supply 4Dwm with
a preferred window position for each primary window rather than a required window
position. With a preferred window position, when Auto Window Placement is on, 4Dwm
places the window at its preferred position. When Auto Window Placement is off, 4Dwm
ignores the preferred position, allowing the user to place the window interactively. If the
window has a required position, however, 4Dwm always tries to place the window at this
preferred position even when users want to place windows themselves.

Furthermore, users expect complete control when moving windows and should be able
to move any of your application’s windows anywhere on the desktop. Some applications
try to “help” the user by repositioning the window programmatically; this strategy is
never successful and instead ends up frustrating the user.

For details on how to set a preferred window placement, see “Interacting With the
Window and Session Manager” in Chapter 5 of the IRIX Interactive Desktop Integration
Guide.

Application Window Characteristic Guidelines

In general, when deciding on the characteristics for your application windows. ..

[] Determine which category (main, co-primary, support, or dialog) each application
window belongs to and assign characteristics appropriately.

When setting up your window decorations . ..

[] Include a Window menu button for all windows.

[] Include resize handles only if the window contains resizable components such as
work areas, scrolling lists, and text input fields.

[Include a Minimize button for all primary windows. Do not include this button on
support windows or dialogs.

[] Include a Maximize button only if the window contains resizable components.

(To see the above window decoration requirements arranged according to window type,
see Table 3-1.)

Application Window Categories and Characteristics

When designing the Window menus for your application windows . . .

Do O O oo o

Include “Restore Alt+F5” for all primary windows. Include it for support windows
and dialogs only if the menu contains a “Maximize” entry.

Include “Move Alt+F7” for all windows.

Include “Size Alt+F8” and resize handles for windows that contain resizable
components such as works areas, scrolling lists, and text input fields.

Include “Minimize Alt+F9” and the Minimize button for all primary windows. Do
not include the Minimize entry for support windows or dialogs.

Include “Maximize Alt+F10” for windows that are resizable, that is, they have a
“Size Alt+F8” entry.

Include “Raise Alt+F2” for all windows.
Include “Lower Alt+F3” for all windows.
Include “Close Alt+F4” for all windows except the main primary window.

Include “Exit Alt+F12” for the main primary window. Include “Exit Alt+F12” for
those co-primary windows from which users can quit the application. “Exit” always
has the same behavior, that is, it quits the application, no matter how it’s activated.
Don’t include “Exit” for support windows or dialogs.

(To see the above Window menu requirements arranged according to window type, see
Table 3-1.)

[

Always use the default behaviors for the Window menu entries except for “Exit.”
Don’t add functionality to these commands. When users choose “Exit,” your
application must perform any necessary clean up, such as prompting the user to save
unsaved changes before quitting.

Don’t add application-specific entries to this menu. Users don’t expect
application-specific entries in the Window menu.

Don’t add a title to the Window menu.

Don’t use the keyboard accelerators <Alt-F2>, <Alt-F3>, <Alt-F4>, <Alt-F5>,
<Alt-F7>, <Alt-F8>, <Alt-F9>, <Alt-F10>, or <Alt-F12> for other functions in your
application. They are reserved for the 4Dwm Window menu entries.

53

Chapter 3: Windows in the IRIX Interactive Desktop Environment

54

When specifying the label in the title bar. ..

[]
[]
[]

[

For all categories of windows, limit the length of each title bar label such that the
entire label displays when the window is viewed at its default size.

Don’t include application-critical information or general status information in the
title bar such as the current page number or whether a file is in view-only mode.

For main windows, first determine if your application uses document files. If it is not
document-based, use the application name only. If it is document-based, use the
application name followed by a colon and the filename (or Untitled if new file) in the
format AppName : filename and update the label whenever the filename changes.
Don’t use the full pathname unless that information is required for users to
distinguish one window from another. If your application is displaying remotely,
add the host name followed by a colon at the beginning of the title bar label in the
format Host : AppName

Don’t include full pathnames unless that information is required by users to
distinguish one window from another. For remote applications, don’t include
domain information.

Don’t use the version number in the title bar; make that information available from
the “Product Information” entry in the Help menu.

For co-primary windows used in multiple document models, use the format
AppName : Filename (or AppName : Untitled if a new file). For co-primary windows
used in the “single document, multiple primaries” model, use the format AppName :
Function. Make sure that the function matches the menu entry or the label on the
button that invokes it. Don’t use the full pathname unless that information is
required for users to distinguish one window from another.

For support windows, use the application name and function in the format:
AppName : Function. Make sure that the function closely matches the menu entry or
the label on the button that invokes it.

For dialog windows, use the application name, followed by the type of dialog in the
format: AppName : DialogType, where DialogType is “Prompt,” “Error,” “Warning,”
“Question,” “Information,” “Working,” or “File Selection.”

Leave spaces between strings and colons in a label.

Keyboard Focus Across Windows

For windows without title bars . ..
N Display the “Exit” option with the right mouse button.

D Allow users to resize the window with the left mouse button.

When determining the default, minimum, and maximum sizes for your windows.. . .
N Specify a default size for each window.

L] 1f the window is resizable, specify a minimum size at which all controls and work
areas will be visible and large enough to be usable. If the window is not resizable, set
the minimum size equal to the default size.

[] 1f the window is resizable, specify a maximum size such that your application
window doesn’t expand to fill screen space unnecessarily. If the window is not
resizable, set the maximum size equal to the default size.

When considering window placement. ..

[] Seta preferred window position for all primary windows. Don’t set a required
window position for primary windows.

[Try to anticipate other application windows that may be displayed with your
application and set your preferred default position appropriately.

Keyboard Focus Across Windows

As defined in the OSF/Motif Style Guide, the two types of keyboard focus (also referred to
as input focus) include:

e implicit, in which the keyboard focus tracks the pointer

e explicit, which requires the user to explicitly select (by clicking with the left mouse
button) which window or component receives the keyboard focus

The IRIX Interactive Desktop uses implicit focus when moving the keyboard focus across
windows. Your application should work well under implicit focus and shouldn’t require
users to change the default keyboard focus policy to explicit. (Note that within windows,
applications should use explicit focus to move the keyboard focus between components
in the window. Guidelines for using explicit focus within windows are discussed in
“Keyboard Focus and Navigation” in Chapter 7.)

55

Chapter 3: Windows in the IRIX Interactive Desktop Environment

56

Certain applications need to grab the keyboard focus, that is, use the pointer while it is
outside of the application window—for example, applications performing screen
captures. This is called pointer grab mode.

There are two recommended interaction models for pointer grab mode:

* single-action, which permits the user only one action to capture the data before
returning to implicit focus

* multiple-action, which lets the user perform multiple actions while in pointer grab
mode

In the multiple-action model, the user turns on a toggle to maintain keyboard focus while
specifying the data to capture. In both the single- and multiple-action models, the
application should change the pointer shape to indicate that the pointer belongs to a
specific window and no longer adheres to implicit focus. (For a list of standard pointers,
see “Pointer Shapes and Colors” in Chapter 11.)

Single-Action Pointer Grab Model

The InPerson desktop conferencing application is a good example of the single-action
pointer grab model. The sequence in Figure 3-8 illustrates the single-action pointer grab
where the action is to sweep out an area of the screen to be captured as an image. The
user chooses the “Snap Screen Area” entry from the screen capture menu in the
whiteboard’s tool bar. The pointer changes to a sighting pointer (a camera with a cross
hair) and the user can then drag a rectangle around the area of the screen that the user
wants to capture as an image. When the user completes the single action of dragging,
InPerson releases the pointer and it is no longer in pointer grab mode. Note that in
pointer grab mode, the active window is the window that has grabbed the keyboard
focus, regardless of where the pointer is positioned on the screen.

Keyboard Focus Across Windows

Step 1 - User chooses Snap "Screen Area"
from screen capture menu in InPerson
window.

Snap Screen Area Crii+R
Snap Window Cirfr D)
Snap Video Cinfr £

%ib Eggbert Johnson

screen capture menu

DPesktop 3
Selected 3

Step 2 - Pointer transforms to sighting
pointer and user sweeps capture area.

Svstem O

capture rectangle

sighting pointer

Step 3 - User finishes drag action, which
releases the pointer from pointer grab mode.
DPesktop 3

Selected 3

Svstem O

standard pointer

Figure 3-8 Single-Action Pointer Grab Example: Capture by Sweeping

57

Chapter 3: Windows in the IRIX Interactive Desktop Environment

58

Multiple-Action Pointer Grab Model

The IRIS Showcase Image Gizmo, used for doing screen captures, is an example of the
multiple-action pointer grab model. The IRIS Showcase Image Gizmo lets users capture
an area of the screen as an image, then place that image in a IRIS Showcase document.
The major difference between the Image Gizmo screen capture and the InPerson screen
capture described in the previous section (“Single-Action Pointer Grab Model”) is that
the Image Gizmo allows a user to perform multiple actions when defining the screen
capture region and not just a single action like InPerson. This allows users to grab the
pointer, sweep out an area to capture, and make any adjustments to the capture area
before releasing the pointer and returning to implicit focus mode.

The IRIS Showcase Image Gizmo provides an example of entering pointer grab mode.
Here’s the process:

1. The user clicks the Sweep Area button in the Image Gizmo. This changes the pointer
to a camera with a cross hair, which is used as the sighting pointer. At this point, the
sighting pointer is limited to the Image Gizmo window, that is, the user hasn’t
initiated pointer grab mode yet.

2. The user enters pointer grab mode by clicking the Grab Selection Focus button. Once
in pointer grab mode, the sighting pointer is no longer limited to the Image Gizmo
window. Now when the user moves the pointer out of the Image Gizmo window,
the Image Gizmo retains the keyboard focus and the sighting pointer continues to
display.

Note: A better design would be to eliminate the step of requiring the user to click the
Grab Selection Focus button and to instead have the Image Gizmo grab the keyboard
focus when the user clicks the Sweep Area button.

3. The user drags a rectangle around the area of interest on the screen. At this point,
the user is still in pointer grab mode and can redefine the area by dragging the
boundaries of the current rectangle or sweeping out a completely new area.

4. The user clicks the Grab Image button, which releases the pointer, completes the
screen capture, and returns the user to implicit focus mode.

Figure 3-9 shows this example during pointer grab mode.

Keyboard Focus Across Windows

Rectangle defining
swept area

{itilities

Sighting pointer

Resulting image
in application window

Ii'Grab =election Focus
Vanish While Saving

Figure 3-9 Multiple-Action Pointer Grab Example

Guidelines for Keyboard Focus Across Windows

When designing your application windows . ..

[] Make sure that your application works well under implicit focus across windows.

[] Don’t have your application move the pointer to another location on the screen.
Always allow the user to control the position of the pointer on the screen.

When incorporating a “pointer grab” function into your application . ..

[] 1f the user is always going to specify the data to capture with a single action such as
a single mouse click or a single mouse drag, use the single-action pointer grab model;
otherwise use the multiple-action pointer grab model.

[Display a standard or modified sighting pointer whenever your application window
grabs keyboard focus. This indicates that the keyboard focus belongs to your
application’s window and that the pointer isn’t currently following implicit focus
across windows.

59

Chapter 3: Windows in the IRIX Interactive Desktop Environment

Minimized Windows

60

Minimizing windows frees up screen area for other uses. On the IRIX Interactive
Desktop, users minimize windows by clicking the Minimize button in the window’s title
bar or choosing the “Minimize” entry from the Window menu. When a window is
minimized, it’s replaced by an 85x67-pixel representation with an identifying label of
twelve characters or fewer. The 4Dwm window manager determines the placement of all
minimized windows. This section describes:

* “Choosing an Image for Your Minimized Window”

“Labeling a Minimized Window”

* “Processing While Minimized”

“Using the Minimized Window to Show Status”

Note that primary windows can be minimized independently of each other. Note also
that dialogs and support windows become unmapped when their associated primary
windows are minimized.

Choosing an Image for Your Minimized Window

It’s important for users to be able to identify application windows readily when
minimized. You need to define a specific image for your main window and any
co-primary windows in your application. A good example in which users can easily
associate the minimized window with the application appears in Figure 3-10. In the
example, the IRIS InSight viewer window uses an open book as its minimized window
image with the name of the book as the label.

IR1= Essential:

Figure 3-10 Minimized Window Example: Good User Association With Application

Minimized Windows

If your application fits either of the single document application models discussed in
“Application Models” earlier in this chapter, provide separate images for all primary
windows. If your application fits one of the multiple document models, then provide one
image for the main window and a second image for the co-primary windows.

When choosing a minimized window image, use:

* Marketing theme—If your application has a symbol used in packaging or
marketing your product, you can use some or all of it to create an image. The IRIS
Showcase minimized window is an example of this approach.

* Window snapshots—If your application’s main primary window layout is
distinctive, you can use a snapshot of a recognizable portion of it, as in the Icon
Catalog and Directory View window examples.

* Symbolic theme—You can use a symbol that reflects the nature of your application.
For example, the text editor Jot uses an image of a writing hand. The IRIS Insight
online book viewer uses an image of a stack of books to represent the main library
window.

Evocative image—You can use an image that’s evocative of the function your
application performs. For example, the minimized window image for the mouse
control panel is an image of a mouse. The minimized window image for the
background control panel is an image that uses a combination of the various
background patterns available for users via this tool.

Examples of minimized windows appear in Figure 3-11.

Marketing theme Window snapshot examples

Symbolic theme examples Evocative image examples

Figure 3-11 Minimized Window Examples

61

Chapter 3: Windows in the IRIX Interactive Desktop Environment

62

Execution¥ie'

Although it is desirable to keep some family resemblance between the minimized
window and other elements of an application, it’s a bad idea to use a snapshot of a
desktop icon as an image for a minimized window. The problem is that users can mistake
the minimized window for the real desktop icon. Figure 3-12 demonstrates this problem.
The minimized window at the left (faked for this example) uses a snapshot of the
application icon in its open state as its image. Users can confuse the minimized window
with the application icon itself. The actual minimized window appears at the right of the
figure, demonstrating good design. It reuses the magician’s hat theme, showing the
family resemblance, but uses a different rendition of the hat to avoid confusion.

Poor minimized Icon in open state Good minimized
window design window design
Resemblance
too close
showcase

Figure 3-12 Minimized Window Example: Incorrect Design

Whichever theme you choose, make sure that the significance of your image will be
grasped in foreign countries and will not offend international users. Images that are too
literal will not be understood by an international audience. For example, the minimized
window in Figure 3-13 is for a debugging application and uses an image, with an English
acronym “RIP,” that represents dead bugs. This may not be readily apparent to some
non-English speaking users.

Figure 3-13 Minimized Window Example: Design That’s Too Literal

For information on creating and implementing minimized window images, see
Chapter 6, “Customizing Your Application’s Minimized Windows,” in the IRIX
Interactive Desktop Integration Guide

Minimized Windows

Labeling a Minimized Window

By default, the 4Dwm window manager reuses the title bar label for the minimized
window label. (The guidelines for specifying title bar labels are discussed in “Window
Title Bar” earlier in this chapter.) This doesn’t usually work due to the space limit
(approximately twelve characters) on the minimized window label. Thus, you will need
to specify a label for each of your minimized windows.

Those applications that aren’t document-based should use the application name as the
minimized window label for the main window. Any minimized co-primary windows for
these applications should use the label Function, where Function is the same function as
in the co-primary window’s title bar.

Applications that are document-based and follow the single-document models (see
“Application Models” earlier in this chapter) should use Filename (or “Untitled” for new
files) for the minimized main window label. Any co-primary windows for these
applications should use Function for the minimized window label, where Function is the
same function as in the co-primary window’s title bar.

Applications that are document-based and follow the multiple-document models (see
“Application Models” earlier in this chapter), should use the application name as the
label for the main window (if this main window is visible). The co-primary windows in
these models represent the multiple documents and should have the minimized window
label Filename (or “Untitled” for new files).

The minimized window label is also used in the Desks Overview window (see “Desks”
later in this chapter). The user can customize the Desks Overview so that moving the
pointer over the thumbnail window sketches in the Desks Overview displays the
minimized window labels for those windows. This further emphasizes the need for users
to be able to distinguish windows using only the minimized window label.

For more information on specifying a label for a minimized window image, see

Chapter 6, “Customizing Your Application’s Minimized Windows,” in the IRIX
Interactive Desktop Integration Guide.

63

Chapter 3: Windows in the IRIX Interactive Desktop Environment

64

Processing While Minimized

Users generally expect an application to continue processing while its windows are
minimized; when re-opened, the window’s contents should have changed appropriately.
Of course, it doesn’t make sense for all types of functions to continue processing while
the window is minimized. For example, you needn’t keep moving a clock application’s
hands while it is minimized. It’s up to you to determine which functions are appropriate
for continued processing and which are inappropriate. Be sure to stop those functions
that don’t need to process as they can be a drain on CPU resources.

Using the Minimized Window to Show Status

If it is typical for users to minimize your application’s windows while processing
continues, you may wish to use your minimized application window to indicate status.
Figure 3-14 shows how to use the minimized window label to indicate status in an
electronic mail application by showing the number of messages in a mail folder.

Figure 3-14 Minimized Window Example: Indicating Status With the Label

It is also possible to change the minimized window image to show status, however this
is quite difficult. For more information on changing minimized window labels and
images to show status, see Chapter 6, “Customizing Your Application’s Minimized
Windows,” in the IRIX Interactive Desktop Integration Guide.

Minimized Window Guidelines

When designing images for your minimized primary windows.. ..
[] Usea color image rather than the standard two-color Motif bitmap.
N Design your images to look best at the default size of 85x67 pixels.

[1f your application is based on a single document model, create separate images for
each of the primary windows. If your application is based on a multiple document
model, create one image for the main window and a second image to use for all
co-primary windows.

Minimized Windows

[]
[]
[]

Choose images that clearly identify the window that is minimized. If you have
multiple images, make sure that the separate images work well together.

Make sure that the images you use for minimized windows will be understood by
an international audience.

Don’t use a snapshot of the desktop icon for the image. This could be confused with
the real icon.

When choosing labels for your minimized primary windows . . .

[

[

Limit the label to approximately twelve characters. If you need a few more characters
than this, check that your label will fit with the default size and font for minimized
windows (the label may be truncated).

If your application is not document-based, use the application name as the
minimized window label for the minimized main window. Use the label Function for
minimized co-primary windows where Function is the same function as in the
co-primary window’s title bar.

If your application is document-based and follows one of the single-document
models, use Filename (or “Untitled” for new files) for the minimized main window
label. Use Function for minimized co-primary window labels where Function is the
same function as in the co-primary window’s title bar.

If your application is document-based and follows one of the multiple-document
models, use the application name as the label for the main window (if it is visible).
The co-primary windows in these models represent the multiple documents and
should have the minimized window label Filename (or “Untitled” for new files).

When determining the behavior for a window that the user has chosen to minimize...

[]
[]
[]

Decide which operations should and should not continue to be processed while the
window is minimized.

Indicate status with the minimized window label if your application is typically
minimized during long processes.

Use the default screen locations supplied by 4Dwm for the minimized window. Don’t
specify your own screen location.

65

Chapter 3: Windows in the IRIX Interactive Desktop Environment

Desks

66

The IRIX Interactive Desktop provides users with a handy tool called Desks Overview
for organizing their work (see Figure 3-15). The Desks Overview application allows users
to create multiple virtual screens (desks). The user can place any primary window (main
or co-primary) on any desk. The window appears in the thumbnail sketch in the Desks
Overview window. Support windows and dialogs don’t appear in these thumbnail
sketches.

Overview Desk Window

[T Coding [T nail £ ews [1 Global
| — |7

Figure 3-15 Desks Overview Window

There are several things you need to know about desks and the corresponding effects on
the design of your application.

4Dwm treats application windows on desks other than the current one as if they are
minimized. The windows are no longer mapped to the screen display and the
application is informed that it’s unmapped. This emphasizes how important it is for
you to decide which operations continue processing when the application is in an
unmapped (minimized) state. (See “Processing While Minimized” earlier in this
chapter.)

As users move the pointer over the miniaturized window representations in the
thumbnail sketches, the title bar labels display by default. If the user prefers, the
minimized window labels can be displayed instead. This further emphasizes the
need to pick title bar labels and minimized window labels so that a user can
distinguish windows using only this information. (For information on defining
these labels, see “Window Title Bar” and “Labeling a Minimized Window” earlier in
this chapter.)

Session Management

® Support windows and dialogs will appear on all desks if their associated parent
window is not mapped to the screen. Since support windows and dialogs should
only appear on the desk where their parent appears, make sure that all parent
windows are visible and mapped to the screen.

* Your application should not create a screen background. Screen backgrounds are
managed by 4Dwm by default or by the user through the Background control panel.
Users typically employ different screen backgrounds on different desks as an aid in
orienting themselves.

Desks Guidelines

When designing your application . ..

[] Make sure that all windows with associated support or dialogs are visible and
mapped to the screen so that the support windows and dialogs appear only on the
desk where their parent window displays.

[Don't design your application to manage the screen background.

Session Management

Session management allows users to log out of their accounts and have any running
applications automatically restart when they log back in, thus eliminating the need for
users to restart applications manually when they log back in. In 4Dwm, users have the
option of turning session management on (the default) or off by using the Window
Settings control panel (which is available from the Desktop->Customize cascading menu
in the Toolchest), as shown in Figure 3-16.

67

Chapter 3: Windows in the IRIX Interactive Desktop Environment

68

Window Settings

Toolchest Orientation: > Hgrizontal
Vertical
Display Windows Overview: [_|
Opaque Window Move: [_]
| Auto Window Placement: [¥]
— Save Windows & Desks: Continuously
< Explicitly

(s

Session management setting

Figure 3-16 Setting Session Management

For your application to be restarted via the 4Dwm session manager, your application
needs to create a command line that will launch the application and restore its current
state. Your application needs to update this command line as the application state
changes. For details of specifying this command line and keeping it up to date, see
“Interacting With the Window and Session Manager” in Chapter 5 of the IRIX Interactive
Desktop Integration Guide. The following scenario outlines the process.

Session Management

Window Settings

Toolchest Orientation: > Hgrizontal
Vertical
Display Windows Overview: [_|
Opaque Window Move: [_]
— Auto Window Placement: [+
Save Windows & Desks: Continuously
< Explicitly

Auto Window Placement button

Figure 3-17 Setting Auto Window Placement

When a user launches an application, that application registers itself with the 4Dwm
session manager by creating a command line that will launch the application and restore
its current state. For example, if your application is used to edit a specific file, the
command line should contain the information necessary to launch your application and
open this specific file. There is only one command line per application.

As the state changes over time, your application needs to update this command line. So,
to continue the example, suppose the user opens a different file to edit under your
application. In such a case, your application needs to create a new command line that will
launch the application and open this new file.

69

Chapter 3: Windows in the IRIX Interactive Desktop Environment

70

If the user opens co-primary windows or support windows (see “Application Window
Categories and Characteristics” earlier in this chapter for window definitions), these
windows should also redisplay when the user logs out and back in again. (Dialogs
typically don’t redisplay.) One method for obtaining this behavior is to allow your
application to take command line arguments to redisplay these windows so that you can
include these arguments on the stored command line when appropriate.

When the user logs out, 4Dwm saves the command lines for all applications that are
currently running on the user’s desktop. When the user logs back in, 4Dwm attempts to
execute the commands that it saved and restore the user’s desktop to what it was when
the user logged out.

Applications can also request to have 4Dwm inform them when a user chooses “Log
Out.” When applications receive this notification, they should not post any dialogs such
as “Save unsaved changes before quitting?” Instead, if 4Dwm notifies your application
that the user is logging out and there are unsaved changes for the current file, your
application should use one of the following strategies:

* Save these changes into another file and name it something logical such as
original_file_name.save. When the application is restarted at login, post a dialog that
tells the user that this file with unsaved changes exists and query the user whether
to open the original file or the file with the unsaved changes. This is the preferred
strategy.

* Ignore the user’s unsaved changes, and simply restart the application using the
most recent saved version of the file. This strategy is okay, but it is not preferred.

Don’t automatically save the user’s changes by default. This may cause the user to lose
as much data as throwing away all unsaved changes. Let the user control when changes
are saved.

For details on how to request log-out notification from 4Dwm, see “Interacting With the
Window and Session Manager” in Chapter 5 of the IRIX Interactive Desktop Integration
Guide.

Session Management

Session Management Guidelines

When designing your application ...

[] Have your application create a command line that will launch the application and
restore its current state. This current state should minimally include reopening any
files that are currently open under the application and opening any primary or
support windows that are currently open.

[Update this command line as the state of the application changes.

O] 1t your application allows users to create and edit data files, have 4Dwm notify your
application when the user chooses “Log Out.”

If your application is running when the user chooses “Log Out” and there are unsaved

changes for a specificfile . . .

[] save these changes into another file and name it something logical such as
original_file_name.save. When the application is restarted at login, post a dialog that
tells the user that this file with unsaved changes exists and query the user to
determine whether to open the original file or the file with the unsaved changes.

] 1t you cannot implement the preferred strategy described above, ignore the user’s
unsaved changes. Do not automatically save the user’s changes by default.

71

Chapter 4

IRIX Interactive Desktop Services

IRIX Interactive Desktop provides desktop services you can take advantage of in your
applications. These services save you time by providing common functionality that you
don’t have to develop on your own. Using the services can also help ensure that your
application is consistent with other applications in the IRIX Interactive Desktop
environment. This chapter covers the following topics:

* “Software Installation” describes how users install, remove, and upgrade
applications using Software Manager, an IRIX Interactive Desktop utility.

* “Online Help” describes SGIHelp, the standard online help system on all Silicon
Graphics platforms.

¢ “Online Documentation” discusses IRIS InSight, an online documentation delivery
system available on all Silicon Graphics platforms.

* “Desktop Variables” describes certain customization settings that users can choose
and their implications for your application.

e “File Alteration Monitor (FAM)” describes the FAM service, which informs your
application about ongoing changes to the file system, eliminating the need for your
application to do its own polling.

73

Chapter 4: IRIX Interactive Desktop Services

Software Installation

Users install software on Silicon Graphics workstations using the Software Manager, a
graphical tool for installing, removing, and tracking software (see Figure 4-1). For your
application to work with the Software Manager, you must package your files into
software images that it will understand. This packaging process is simplified by the
Software Packager tool, which is described in the Software Packager User’s Guide.

Figure 4-1 The IRIX Interactive Desktop Software Manager

74

Software Installation

Although you can create installation and removal scripts independently of the Software
Manager, it’s strongly recommended that you package your application to use the
Software Manager format. The advantages of the Software Manager are:

It gives users a single, graphical tool to install all of their applications, upgrades,
and maintenance releases. Users won’t have to learn how to use additional tools,
read lengthy installation instructions, or enter commands in a UNIX shell.

It allows users to remove their applications cleanly. Users can remove your
application and all supporting directories and files using Software Manager. They
don’t have to rely on specialized removal instructions or guess which directories
and files to remove.

It helps users upgrade applications cleanly. When the user installs an upgrade, the
Software Manager automatically removes previous versions of that application.

It provides installation status information. Users can query the Software Manager
database to quickly obtain information such as whether the application is installed,
when it was installed, how much disk space it uses, and whether any upgrades or
maintenance releases have been installed. The Software Manager can’t track this
information for applications that were installed using specialized scripts.

Software Installation Guideline

[] Make sure that users can install and remove your application through the Software

Manager, an IRIX Interactive Desktop utility.

75

Chapter 4: IRIX Interactive Desktop Services

Online Help

76

Your application should provide online help. In the IRIX Interactive Desktop
environment, users are accustomed to specific kinds of online help information,
including context-sensitive help (letting users click on window areas and components to
get specific help) and task-oriented help (presenting help information for specific tasks
that can be performed using the application). This section covers the following topics:

“Providing Help Using SGIHelp”

“Types of Online Help”

“Providing Help through a Help Menu”
“Providing Help Through a Help Button”
“Writing Online Help Content for SGIHelp”

Providing Help Using SGIHelp

SGIHelp is the online help system available on all Silicon Graphics platforms. It provides
an easy method for delivering help information to users. Although you can supply your
own help system, it’s strongly recommended that you use SGIHelp. The advantages of
supplying SGIHelp with your application are:

Users like it—it’s easy to use and convenient. SGIHelp provides context-sensitive
help and task-oriented help. It also allows users to get help information by
browsing and searching an index of available help topics and by following
cross-references (links) to related topics.

Silicon Graphics users are familiar with it. They may get frustrated if they have to
learn a different help system for your application, particularly when they’re looking
for help.

You don’t have to create and maintain your own help system. All of the help
capabilities that your application supports (which are discussed in the next section,
“Types of Online Help”) are provided automatically when you use SGIHelp.

Online Help

SGIHelp is a full-featured system that provides users with: fast, direct access to any help
topic, the ability to navigate forward and backward through cross-referenced help topics,
an index of help topics, search capabilities, and convenient printing of help information.
SGIHelp is also a multimedia tool—you can include inline images, 3D objects, and audio
clips, and you can launch applications from it. For details on how to include SGIHelp in
your application, see Chapter 9, “Providing Online Help With SGIHelp,” in the IRIX
Interactive Desktop Integration Guide.

Types of Online Help

The keys to supplying useful online help are to anticipate users’ questions and to provide
them with easy access to the answers to those questions. Each window in your
application should include a Help menu if the window has a menu bar or a Help button
if the window doesn’t have a menu bar.

Figure 4-2 demonstrates how users access online help from a Help menu. A typical Help
menu showing the various types of information appears in the upper left of the figure.
The SGIHelp windows available from the “Overview,” “Index,” and “Keys & Shortcuts”
menu entries are shown in clockwise order around the Help menu.

Online help consists of six general categories:

* context-sensitive information

* overview information

¢ task-oriented information

e index of help topics

e keyboard shortcut information

e product information

These categories are defined and discussed in the following paragraphs.

77

Chapter 4: IRIX Interactive Desktop Services

Help "Overview"

Help menu ——————| Heip I|
Context-sensitive Click for Help Shift+Fi
Overview Qverview Hie Options Help
] Creating a Directory 3]
Opening a Directory
Opening a Remote Directory Th e Dil’ e CtOI’y Vi ew
Renaming Files and Directories W. .
indow: An Overview
List of task Meving leons
IStOr tasks Copying lcons Directory View windows appear when you
. . open a folder icon. They display the files and
Making a Linked Copy directories that a particular directory
Removing Files eontaing. By default, the contents are
Printing Files dizplayed ag icons. You can change the view so
i _ the icons are arranged ag a list or in columns.
Changing Permissions

Viewing & Arranging lcons

Index

»

Keyboard shortcuts
Product

Index
Keys & m

L
[eooe [lsime] dbo |

Active Viewer

information

Product Information

File Options

rines [s [Fciar |

Keyboard Shortcuts for Directory View
Windows

Many commands in a Directory View window have both a
keyboard and a mnemenic shorteut. Standard keyboard
ghorteuts are listed on the right side of the menu;
mnemenic shorteuts are indieated by an underlined letter.
The following table ligts the keyboard and mnemeonie

ghorteuts.
Command Keyboard Shortcut Inemonic
"Open Icon" <Ctrl=—0 <Alt=—5;0
"Make Copy" <Ctrl>-c <Alt>-5;¢
"I ake Linked Cony* Alt—s: |
5 Acive Viewer _GoBack | NewTopic| _ciose |

Double—click on an entry to view Help.

overview -

J

Actve e | FRETOSNIREN) |GG

Help "Keys & Shortcuts"

Figure 4-2

78

Navigation buttons

Help "Index"

Typical Help Menu and Related Windows

Online Help

Context-sensitive
help pointer

Context-Sensitive Information

Context-sensitive information answers the question “What is the purpose of this area or
component in this window?” It should be available for all primary and support
windows. Context-sensitive help mode should be enabled when the user either chooses
the “Click for Help” entry in a Help menu (if the window has a menu bar) or presses
<Shift>-<F1> (whether or not the window has a menu bar).

Once the user has enabled context-sensitive help mode for a particular window, the
pointer should change to a question mark and the user should be able to click in any area
of the window to get specific help information (see Figure 4-3). At a minimum, your
application should provide separate context-sensitive help for each control area, work
area, status area, and menu in the window. This help should describe the purpose of the
corresponding area and include cross-references to task-oriented help topics which
describe tasks which use this area.

Application window Resulting help window

Selected Arrange View Hle Options Help
The Shelf B

The zhelf iz a place for you to put icons that

yolu need to use frequently while working in

a particular directory. For example, if the

directory containg many files, you might
want to place the files you use most

/ frequently on the ghelf. Or, if the directory
eontaing many eolor Showease glides, you

might want to place the icon for a eolor

printer onto the ghelf. See "Placing
Frequently Used Ieons on a Shelf” for
ingtructions.

a
Aaoweviewer | CoBat || et Topie| [ciose|

Figure 4-3 Context-Sensitive Help Example

79

Chapter 4: IRIX Interactive Desktop Services

80

Overview Information

Overview information answers the question “What does this application or window do?”
Provide overview help information in all main windows regardless of whether help is
provided from a menu or a button. Co-primary and support windows with menu bars
should also provide this information. If the window has a menu bar, the overview
information should be accessible from an “Overview” entry in the Help menu. For main
windows that don’t have a menu bar, this overview information should be contained in
the help that’s displayed when the user clicks on the Help button in the window.

For main windows, the overview information should briefly describe the functionality of
the entire application. For co-primary and support windows, the overview should
describe the functionality of the current window:. It can also provide cross-references to
task-oriented information. An example Overview help topic is shown in Figure 4-2.

Task-Oriented Information

Task-oriented information answers the question “How do I accomplish a specific task?” It
also serves to give users a quick overview of your application; users often scan a new
application’s menus—especially the Help menu—to get an idea of the application’s
functionality.

Provide task-oriented help in all windows. Windows with a menu bar should provide
Help menu entries for each of the most important tasks that users can accomplish in that
particular window. When a user chooses any of these entries, the resulting help topic
should present task-oriented information that describes step-by-step instructions for
accomplishing the given task. A typical list of tasks is shown in the Help menu for
Figure 4-2. For windows without a menu bar, the task-oriented information should be
displayed when the user clicks on the Help button in that window. This help information
should include step-by-step instructions for accomplishing all of the tasks in that specific
window.

Index of Help Topics

The index of help topics answers the question “What help topics are available for this
application?” This index should be available from all windows with a menu bar and
appear when the user chooses the “Index” entry from the Help menu. It should list all
available help topics for the application, including those that are generated using the
context-sensitive help mode and those that are available directly from the Help menu.
Users should be able to browse the index and select individual help topics as an
alternative to the other methods of accessing help. See Figure 4-2 for an example index.

Online Help

Keyboard Shortcut Information

Keyboard shortcut information answers the question “How can I use the keyboard as a
shortcut for performing specific actions?” This information should include all
mnemonics, keyboard accelerators, and function keys available for the entire application
(not just those for a specific window). An example keyboard shortcuts help topic is
shown in Figure 4-2.

All main windows should provide information on keyboard shortcuts. Co-primary and
support windows with menu bars should also provide access to this information. If the
window has a menu bar, the keyboard shortcut information should be accessible from a
“Keys & Shortcuts” entry in the Help menu. For main windows that don’t have a menu
bar, this shortcut information should be contained in the help that’s displayed when the
user clicks on the Help button in the window.

Product Information

Product information answers generic questions about the application. At a minimum, it
identifies the application and version number, but it can also include general product
information such as copyright and trademarking, licensing, and customer support
access. Provide access to this information from all main windows. Co-primary and
support windows with menu bars should also provide access to this information.

If the window has a menu bar, the product information should be accessible from a
“Product Information” entry in the Help menu. For main windows that don’t have a
menu bar, this product information should be contained in the help that is displayed
when the user clicks on the Help button in the window.

Always provide product information using an Information dialog rather than using the
SGIHelp system. Some users don’t install online help to save disk space, so using a dialog
for this information allows more users to access the application’s version number and
customer support contact information. See “Other Situations for Invoking Dialogs” in
Chapter 10 for information about how to design an appropriate product information
dialog.

81

Chapter 4: IRIX Interactive Desktop Services

82

Providing Help through a Help Menu

All windows that have a menu bar should provide a Help menu. (See “Standard Menus”
in Chapter 8 for more information on standard menus.) Help menus have the general
layout, mnemonics, and keyboard accelerators shown in Figure 4-4. The entries are
divided into four groups. The list of tasks appears between the “Overview” and “Index”
entries and is specific to the application.

Click for Help Shift+Fl
Overview

B Creating a Directory

Opening a Directory

Opening a Remote Directory

Renaming Files and Directories

Moving leons

List of tasks — Copving lcons

Making a Linked Copy I— Separators

Removing Files

Printing Files

Changing Permissions

Viewing & Arranging lcons "

Index
Kevs & Shortcuts

Product Information

Figure 4-4 Typical Help Menu

Help menus should contain these elements, in the order presented:

e “Click for Help” provides context-sensitive information for the current window. It
uses <Shift+F1> as the keyboard accelerator. (Note that this differs from the
OSF/Motif Style Guide which recommends using the label “Context-Sensitive Help”
for this entry.)

e “Qverview” provides an overview of the entire application when it appears in the
Help menu for the main window. Otherwise, it provides an overview of the
functionality of the current window and should be labeled “Overview for <window
name>".

Online Help

¢ The list of tasks provides menu entries for those tasks that can be performed in the
current window. This task-oriented information should include step-by-step
instructions for how to accomplish the specific task. If you have more than ten or
twelve or task entries, consider using a cascading menu such as the “Arranging
Icons” entry in Figure 4-4. Cascading menus are described in “Using Cascading
Menus” in Chapter 8. Don’t use mnemonics or keyboard accelerators in these
entries.

¢ “Index” displays a list of all help topics available for the application and allows
users to choose topics from this list for viewing.

e “Keys & Shortcuts” displays all mnemonics, keyboard accelerators, and function
keys available for the entire application and not just those for a specific window.
(Note that this differs from the OSF/Motif Style Guide which recommends using the
label “Keyboard” for this entry.)

* “Product Information” identifies the application and version number. Additionally,
this entry can provide general product information such as copyright and
trademarking, licensing, and customer support access.

Providing Help Through a Help Button

If an application window doesn’t have a menu bar, provide a Help button for accessing
online help. When users click this button on a main window, they should get information
that includes an overview of the functionality of the application (overview), step-by-step
instructions for how to perform all of the tasks in this main window (task-oriented), a list
of all keyboard shortcuts for the application, and the version number, copyright,
licensing, and customer support access information for the application (product
information).

When users activate the Help button in a co-primary or support window, they should get
information that describes the function of the specific window (overview), and
step-by-step instructions for how to perform all of the tasks in this window
(task-oriented). For dialogs, activating the Help button should provide help that focuses
on the main purpose of the dialog, describes how to use the dialog, and might also
provide pointers to additional information, especially in the case of error dialogs.

83

Chapter 4: IRIX Interactive Desktop Services

Both primary and support windows with Help buttons should also provide
context-sensitive help when the user presses <Shift>-<F1>. Dialogs typically don’t
support context-sensitive help mode.

A typical window with a Help button appears in Figure 4-5. For specific information on
laying out pushbuttons in windows, see “Control Areas in Primary Windows” in
Chapter 6 and “Decorations, Initial State, and Layout of Dialogs” in Chapter 10.

Application window

fd2{dougom

Qverview information

Read Resulting help card

™

Write Search

g% || &%

M O M

Others:

Understanding |Permissions

Every time yvou create a new file, the system automatically

[L1 Apply to all enclosed Directories and Files.

identifies you as the file’s owner, and assumes that you don’t

Directory Permissions / want other users to change the file but you do want others to be

able to read its contents. In this way, the system sets ownership
and permission settings for the file.

For details, click an item on the list below.

* 'Changing Permissions"

* '"Owmer, Group, and Others: A Definition"

Help button

Links to task information (in blue) * '"Permissions Settings: A Definition"

"Determining Who Owns a File or Directory”

Figure 4-5 Help Button Example

84

Online Help

Guidelines for Designing Online Help

When designing access to online help for your application ...

[]
[

Provide access in each window of your application from either a Help menu if the
window has a menu bar or a Help button if the window doesn’t have a menu bar.

Use SGIHelp. This provides users with a familiar viewer and familiar navigation
techniques when reading the online help for your application.

When defining the types of online help for your application ...

[

[]
[]

Provide context-sensitive help, overview information, task-oriented help, a list of
keyboard shortcuts, product information, and an index of help topics.

Provide context-sensitive help for all primary and support windows.

Enable context-sensitive help mode when the user either chooses the “Click for
Help” entry in a Help menu (if the window has a menu bar) or presses <Shift>-<F1>
(whether or not the window has a menu bar). Change the pointer to a question mark
when context-sensitive help mode is enabled.

At a minimum, provide separate context-sensitive help for each control area, work
area, status area, and menu in the window. This help should describe the purpose of
the corresponding area and should include cross-references to task-oriented help
topics which describe tasks which use this area.

Provide overview information for all main windows whether help is provided from
a menu or a button. This overview should briefly describe the functionality of the
entire application.

For co-primary and support windows that include a menu bar, provide overview
information that describes the functionality of that specific window.

Provide task-oriented information for all windows. This information should include
step-by-step instructions for how to accomplish all of the tasks available in the
current window.

For windows with a menu bar, provide access to an index of help topics. This index
should list all available help topics for the application including those that are
generated using the context-sensitive help mode and those that are available directly
from the Help menu. In addition, users should be able to browse the index and select
topics for reading.

Provide keyboard shortcut information for all main windows (whether help is
provided from a menu or a button) and for co-primary and support windows that
include a menu bar. This information should include the mnemonics, accelerators,
and function keys available for the entire application and not just for the current
window.

85

Chapter 4: IRIX Interactive Desktop Services

86

[

Provide product information for all main windows (whether help is provided from
a menu or a button) and for co-primary and support windows that include a menu
bar. This information should minimally include the product name and version
number. It might also include other general product information such as copyright
and trademarking, licensing, and customer support access.

Display product information using an Information dialog so that users who don’t
install an application’s online help can still access version number and customer
support information.

When providing a Help menu in an application window . ..

[]
[]

[]
[]

Include a “Click for Help” entry to enable context-sensitive help mode with the
keyboard accelerator <Shift>-<F1>.

Include an “Overview” entry for main windows. For co-primary and support
windows, include an entry labeled “Overview for <window name>".

Include entries that represent a list of tasks that users can accomplish in the current
window. If this list of tasks is more than ten or twelve entries, use cascading menus.
These entries shouldn’t have mnemonics or keyboard accelerators.

Include an “Index” entry that allows the user to access the help index.

Include a “Keys & Shortcuts” entry to display all keyboard shortcuts for the
application.

Include a “Product Information” entry.

When providing a Help button in an application window . ..

O O O O

Provide a Help button for all windows that don’t have a menu bar.

For main windows, provide overview, task-oriented, keyboard shortcuts, and
product information when the user clicks this button.

For co-primary and support windows, provide overview and task-oriented
information when the user clicks this button.

For dialogs, provide help that focuses on the main purpose of the dialog and
describes how to use the dialog.

For primary and support windows that include a Help button, also provide access to
context-sensitive help when the user presses <Shift>-<F1>. Dialogs typically don’t
support context-sensitive help mode.

Online Help

Writing Online Help Content for SGIHelp

This section discusses the actual writing of the online help content. It might be of interest
to both application designers and online help documentation writers.

Learning About SGIHelp

The basic unit of help information in SGIHelp is the help card (see Figure 4-2, Figure 4-3,
and Figure 4-5). Help cards typically cover one topic although they may be divided into
subtopics. They can have cross-references (links) to other help cards for the application.
These links appear as blue text in the help card viewer window.

Before writing online help content for SGIHelp, read through the help information for
some IRIX Interactive Desktop applications to get a feel for content, functionality, and
presentation. Some good examples of help in applications with a Help menu are the
Directory View windows and the Icon Catalog application. Take a look at the User
Manager (accessed from the System menu in the Toolchest) as an example of a utility that
provides help through a Help button. Also try out the Help button in dialogs in the
desktop applications.

As you experiment with SGIHelp, follow some (blue) hypertext links to other help topics.
Trace these cross-reference links both forward and backward. Look at the presentation of
inline figures. Print some of the help information. Bring up the help index and search this
index for specific keywords and phrases. Be sure to try out the “Click for Help” facility

to get a feel for how specific the information is when you click on an area of the window.

Creating Help Cards

Online help is designed to be presented in short pieces (chunks) of information that
answer specific questions. (See “Types of Online Help” earlier in this chapter for a list of
the types of questions users ask and the types of information that should be available in
your online help to answer these questions.) Each help topic consists of one card of
information that answers a specific question. The SGIHelp viewer is designed to take up
no more than one quarter of the screen. If a help card has more information than will fit
in the viewer window at one time, the user can use the scroll bar to scroll through the
information. Each help card should span no more than three viewer windows of
information to minimize scrolling. The content shouldn’t assume that users have read
other help topics. Sometimes a help card may depend on another help card. It’s better to
provide a link to the supplementary card than to repeat the information.

87

Chapter 4: IRIX Interactive Desktop Services

88

All help cards have titles. Make each title as descriptive as possible to tell the reader
what’s contained in the specific help card. The titles should also appear in an index of
help topics. Users can display the list of help topics in the index by choosing “Index”
from the Help menu. Note that the topics listed in the index should match the titles of the
help cards as closely as possible.

As in any form of documentation, use familiar terminology and natural, friendly,
real-world language. Remember that when users access online help, they’re often
searching for a quick answer to a specific question. This isn’t the time to teach them new
technical terms.

Writing Context-Sensitive Help

Before the writing process begins for context-sensitive help, list all appropriate window
components that users might need help on. Describe components in terms of the user
tasks they support. That is, don’t just say what the component is—tell users when they
would find this component useful. Be careful not to mix specific step-by-step instructions
with the context-sensitive information; instead, you might include links to the
appropriate task-oriented information. Figure 4-3 shows the help card for
context-sensitive help on the shelf area in a Directory View window.

Writing Overview Information

Overview information should be a one or two paragraph overview of either the
application’s functionality (main windows) or the functionality of a specific application
window (co-primary and support windows). It should answer the question, “What does
this application (or application window) do?” Figure 4-2 shows the overview card for
Directory View windows. Notice how it provides an overview of the entire application
and limits the information to the application’s functionality.

Writing Task Information

Start by compiling a list of major tasks that users will want to perform using the
application. For each task, supply the step-by-step instructions necessary to accomplish
that task. If the instructions span more than three or four viewer windows of
information, try to divide this topic into several smaller help topics. In addition to the
step-by-step information, provide a brief summary paragraph at the beginning of the
help card. Some readers take the time to read only the first few sentences of a help card.

Online Help

Figure 4-6 is an example of a task-oriented help card taken from a Directory View
window. Note that it displays the summary paragraph and the initial steps in the in the
first viewer window of information. Remember that when displayed in a Help menu, the
list of tasks gives users a quick overview of what the application can do, before they’ve
even had to look at a help card. Make sure that you have descriptive titles for your
task-oriented help cards and review them as a group. See Figure 4-2.

=.| SGi Help Viewer — Deskiop Manager | a | [l
File Options Help
Iy

Renaming Files and Directories

Many applications let you rename a file using a "Save
Ag." command. If you are not running an application,
Summary Paragraph you can rename a file from the desktop. Select the icon,
edit the name, and then press the <Enter> key.
Detailed instruetions follow.

The icon turns yellow and a white rectangle appears
around the name. If you do not have permission to

’7 1. Select the icon you want to rename.
Procedural Steps
L change the name, the white rectangle does not
2

appear.

. Edit the name. For advice on choosing a v

E >

|| Mext Topic || Close

I [+ Active Viewer

Figure 4-6 Task-Oriented Help Example

Writing Index Information

Users access the help index to browse or to search for specific topics, so it’s important to
have descriptive titles for your help cards. The help index presents topics roughly in the
order in which they appear in the Help menu: overview, list of tasks, context-sensitive
topics, and keyboard shortcuts. If the application has more than one window with a Help
menu, the help topics are grouped by windows. See Figure 4-2.

89

Chapter 4: IRIX Interactive Desktop Services

90

Writing Keyboard Shortcut Information

Every Help menu should have a “Keys & Shortcuts” entry containing all the mnemonics,
keyboard accelerators, and function keys for the entire application. Typically, this help

card contains an introductory description and a three-column table containing columns
for the menu entry label, keyboard accelerator, and mnemonic. Also include information
on function keys and other shortcuts that can be used in your application. See Figure 4-2.

Writing for Windows With Help Buttons

If your main application window has a Help button rather than a Help menu, the initial
help card should contain an overview of your application, task-oriented information, a
list of all keyboard shortcuts, and product information. To make it easier for users to
navigate through this amount of information, after the overview information at the
beginning of the help card, place links which take users directly to the other chunks of
help information contained in the card. This strategy greatly reduces the amount of
scrolling and searching necessary. See Figure 4-5 for an example help card with links to
additional information.

On other windows with a Help button, present only the help information for the specific
window. If this information is longer than three or four viewer windows of information,
use the above strategy of presenting brief overview or summary information followed by
a list of links to the individual chunks for the task-oriented information.

Guidelines for Creating SGIHelp Content

When writing any online help for your product. ..

Create separate help “cards” for each help topic.

Limit each help card to no more than three viewer windows full of information.
Write a descriptive heading for each help card.

If a particular help topic needs supplemental information, provide links to that
information rather than repeating it in the current card.

Use language your users will understand.

O Ooood

Use figures when appropriate. SGIHelp allows users to view graphics inline with the
help text.

Online Help

When writing “Click for Help” context-sensitive information for your application. ..

[

[]
[]
[]

Begin by listing the individual controls and areas of your application windows that
you need to describe.

At a minimum, provide separate help cards for each group of controls and areas in
that window.

Provide descriptions in terms of the user tasks the components support.

Don’t include procedural, task-oriented information with the context-sensitive
information—include links to the appropriate task-oriented topics instead.

When writing the overview help cards for your application.. ..

[]
[]
[]

Restrict the content to information about what the product does, not how to use it.
Limit the text to one or two viewer windows of information.

Use the heading “Overview” for the main window’s overview help card and
“Overview of <window name>" for co-primary and support windows with overview
help cards.

When writing the task-oriented information for your application . ..

[]
[]

[

Begin by listing the tasks that users will want to accomplish with your application.

For each task, list the step-by-step instructions users will need to accomplish that
task. If these instructions span more than three or four viewer windows, try to divide
this topic into several smaller help topics.

Provide a brief summary paragraph at the beginning of the help card, followed by
the step-by-step information.

When writing the keyboard shortcuts information for your application . ..

[

Include all shortcuts for your application in a single card—mnemonics, keyboard
accelerators, and function keys.

When creating the index for your help topics . ..

[]
[]

Match the titles in the index as closely as possible to the titles of the help cards.

Place the topics in the index in the following order—overview, list of tasks,
context-sensitive topics, and keyboard shortcuts.

91

Chapter 4: IRIX Interactive Desktop Services

When writing help information that will be available from a Help button rather than
from a Help menu. ..

[

[

For the main application window, the help card should contain an overview of your
application, task-oriented information, a list of all keyboard shortcuts, and product
information.

For Help buttons not on the main application window of your application, present
only the help information for the specific window.

If the amount of information on this one help card spans more than three or four
viewer windows of information, after the overview or summary information at the
beginning of the help card, place links which take users directly to the other chunks
of help information contained in that card.

After writing your online help . ..

[

[]
[]

Online Documentation

Have reviewers examine your help content online rather than reviewing a printed
copy. Help topics will “read” differently depending on which paths readers
(reviewers) traveled to get there.

Have reviewers check the titles of the help topics to make sure they are descriptive
and appropriate.

Have reviewers test out all links to make sure they are appropriate.

Silicon Graphics now ships many manuals in online form using IRIS InSight. IRIS InSight
is an online documentation delivery system based on SGML (Standard Generalized
Markup Language), a portable, platform-independent document description language.

InSight offers users a convenient means of viewing manuals. It can save money for
organizations that ship a high volume of manuals, that have frequent releases, and
whose users can get by without hardcopy versions of the manual. If your organization
fits this description and uses a process based on a standardized approach to document
management, consider using IRIS InSight (contact Silicon Graphics for more
information).

92

Desktop Variables

Desktop Variables

The IRIX Interactive Desktop allows users to set a variety of variables that can affect the
way an application behaves on the desktop. These variables are set using the graphical
control panels selected from the Desktop->Customize cascading menu in the Toolchest.
Users expect all applications to adhere to the values set in these graphical control panels.
Your application should support this expectation by using the values that users have set
for these variables.

Desktop settings described in this section include:

® “Scheme Setting”

¢ “Auto Window Placement Setting”

¢ “Language Setting”

¢ “Mouse Double-Click Speed Setting”

¢ “Editor Preference Setting”

Your application needs to be concerned only with those variables listed in this section.
For details on having your application respond to the settings of these variables, see
Chapter 3, “Using Schemes,” and Chapter 5, “Window, Session, and Desk
Management,” in the IRIX Interactive Desktop Integration Guide. Other variables that users
can set using the graphical control panels either don’t affect your application or

automatically apply to your application. These variables define the mouse settings for
right-handed or left-handed users and the default permissions for new files.

Scheme Setting

The Scheme variable allows users to change the color and font scheme used by
applications that are currently running on the desktop. This variable is discussed in the
section “Schemes for Colors and Fonts” in Chapter 3.

Auto Window Placement Setting

The Auto Window Placement setting allows users to specify whether newly opened
windows should be placed automatically by the 4Dwm window manager or be placed

interactively by the user. This variable is discussed in the section “Window Placement”
in Chapter 3.

93

Chapter 4: IRIX Interactive Desktop Services

Language Setting

When users launch an application, they expect the application to appear in the language
set in the Language Control panel (see Figure 4-7). The default setting is U.S. English. For
guidelines on designing an internationalized application, see the online manual Topics in

IRIX Programming.

Language Controls

Locations Keyboards

i

Figure 4-7 Language Control Panel

94

Desktop Variables

Mouse Double-Click Speed Setting

Users expect applications to respond to the mouse double-click speed set in the Mouse
Settings control panel (see Figure 4-8). Don't reset the speed in your application.

Mouse click
speed settings

Figure 4-8 Mouse Settings Control Panel

95

Chapter 4: IRIX Interactive Desktop Services

96

Editor Preference Setting

When users open ASCII text files on the IRIX Interactive Desktop, the default editor is jot,
a point-and-click graphical editor. Users can change the default editor using the Desktop
control panel (see Figure 4-9). Applications that let users modify ASCII text files should
default to the text editor specified in the Desktop control panel.

| Desktop Settings

Desktop lcon Size: i

Auto-Display Mew Home Dir. Files: [

Default editor .
setting Default Editor:
Desktop Sounds: [_]
Launch Effect: [+
Remove to Dumpster: Il
Warn On File Overwrite: [+
Display Application Errors: [_]

Figure 4-9 Desktop Settings Control Panel

For example, the Compose window in the MediaMail application, shown in Figure 4-10,
gives users a simple editor for composing electronic mail messages. In addition, users
can also elect to use their preferred editor by selecting the “Editor” entry in the Edit menu
for this window. This launches the editor set in the Desktop control panel, which in this
example is jot.

Desktop Variables

Main MediaMail
window

MediaMail Compose
window

"Editor" entry
in Edit menu

Preferred editor - jot

Folder Message View Find Sort Compose QOptions Lavout Help
older:
Messages:| | Message |Edit| [nclude Aftach Address Options Layout Help
Folder: Ma| £ut CiritX
lMessages: il e
Paste Cirfr i/
poe ' YRS LTSI]
Delete
Format
fo: =
Select Alf File Edit View Select Options Help
SearchiBe, [A
Editor ...
Subject:
hd

Figure 4-10 Selecting Preferred Editor in MediaMail

97

Chapter 4: IRIX Interactive Desktop Services

98

Desktop Variables Guidelines

In general ...

[Always honor the user’s desktop customization settings. Never override or ignore
them.

When considering color and font schemes for your application . ..

D Use the pre-packaged color and font schemes supplied by Silicon Graphics rather
than designing your own.

When considering window placement. ..

[] Seta preferred window position for all primary windows. Don’t set a required
window position for primary windows.

ry to anticipate other application and tool windows that may be displayed wit

[Try icipate other application and tool windows that may be displayed with
your application and set your preferred default position appropriately.

To allow users to control the language for your application ...

eck the value of the default language each time your application is launched.

[] Check the val f the default languag h time y pplication is 1 hed
Don’t reset this value while the application is running.

To allow users to control the mouse double-click speed for your application. . ..

[] Check the value of the double-click speed each time your application is launched.
Don’t reset this value while the application is running.

If users will be editing and/or browsing ASCII text files in your application . ..

[] Make their preferred editor (specified in the Desktop control panel) available for use
on text files.

[] Check the value for the preferred editor each time your application is launched, but
don’t reset this value while your application is running.

[] 1f users can only browse the ASCII text files, launch the editor in read-only mode.

File Alteration Monitor (FAM)

File Alteration Monitor (FAM)

The File Alteration Monitor (FAM) is a service that monitors changes to files and
directories in the file system and notifies interested applications of these changes. If your
application needs to stay in sync with the state of any part of the file system, you should
use FAM. This process is considerably more efficient than having an application poll the
file system itself to detect changes. (See Chapter 8, “Monitoring Changes to Files and
Directories,” in the IRIX Interactive Desktop Integration Guide for details on using FAM in
your application.)

Here are two examples of IRIX Interactive Desktop applications that use FAM:

* The File Manager relies on FAM to track any changes to directories and/or files that
are visible on the user’s desktop or in any open Directory View windows. When
FAM notifies the File Manager of any changes, the File Manager updates the views.
This guarantees that the user always sees an accurate view of the file system, both
on the desktop and in the Directory View windows.

* MediaMail uses FAM to monitor the arrival of new mail by tracking changes to the
/ust/mail directory. If a user is running MediaMail and new mail arrives, the user is
immediately notified.

File Monitoring Guideline

(] 1 your application needs to stay in sync with the state of any part of the file system,
use FAM. Don’t have your application directly poll the file system to detect changes.

99

Chapter 5

Data Exchange on the IRIX Interactive Desktop

The IRIX Interactive Desktop enables users to transfer data between applications. There
are two types of transfers from the user’s point of view. Copy takes data specified in the
source application and creates a duplicate in the destination application. Move removes
the data specified in the source application and places it in the destination application.
The source and destination applications can be the same application.

This chapter covers the following topics:

* “Supporting the Clipboard Transfer Model” explains what users expect when

performing operations using theusing “Cut,” “Copy,” and “Paste” entries in the
Edit menu.

® “Supporting the Primary Transfer Model” describes the expected behavior when
users select data and copy it using the left and middle mouse buttons.

e “Data Types Supported for Inter-Application Transfer” lists those data types that
users can transfer between applications.

101

Chapter 5: Data Exchange on the IRIX Interactive Desktop

Supporting the Clipboard Transfer Model

102

In the clipboard transfer model, users move or copy a selection using the “Cut,” “Copy,”
and “Paste” entries from the Edit menu. If your application contains data that users will
want to transfer to other applications or across separate instantiations of your
application, your application should support the clipboard transfer model described in
this section. Note that this model is a subset of the clipboard transfer model described in
Section 4.3 of the OSF/Motif Style Guide. For information on implementing clipboard
transfer, see "Implementing the Clipboard Transfer Model" in Chapter 7,
“Interapplication Data Exchange,” of the IRIX Interactive Desktop Integration Guide. For
more information on the layout of the Edit menu, the behaviors of each entry, and
keyboard accelerators, see “Edit Menu” in Chapter 8.

In a typical clipboard transfer, the user selects data in an application window and
initiates a move or copy transfer operation by choosing “Cut” or “Copy” from the
window’s Edit menu. The source application then takes ownership of the clipboard atom
replacing the prior owner (if there was one). The user completes the transfer by choosing
“Paste” from the Edit menu in the destination application. The destination application
then moves or copies the data associated with the clipboard to this destination. When the
transfer is complete, the newly pasted data is not selected or highlighted. For more
information on selection techniques, see “Selection” in Chapter 7.

Note that clipboard data is nonpersistent. If a user quits the application that currently
owns the clipboard, the data associated with the clipboard atom is lost. Only one
application can own the clipboard atom at any given time. For persistent media storage
use the IRIX Interactive Desktop MediaWarehouse. For more information, see the IRIX
Interactive Desktop MediaWarehouse User’s Guide.

Figure 5-1 illustrates clipboard transfer using the SoundEditor application. In the figure,
there are two instantiations of the application; the window on the left is the source and
the one on the right is the destination. Note that the clipboard atom in the figure is only
a representation and doesn’t actually appear. In this example, the user selects a region of
sound in the source window and chooses “Copy” from the Edit menu in that window.
The source instantiation of SoundEditor takes ownership of the clipboard atom. When
the user chooses “Paste” from the Edit menu in the destination window, the data
associated with the clipboard is inserted into the destination sound file at the insertion
cursor (the vertical black line). Note that after the “Paste” operation, the SoundEditor
application doesn’t select or highlight the newly pasted data.

Supporting the Clipboard Transfer Model

STEP 1 - User selects
sound data to copy

STEP 2 - User chooses "Copy"

Source window

Fil level Effects View Options Help
‘ e Undo paste Cirfrs I‘ Repeat
Cut Cirf+X
Zoom|_£oPY CirieC -
Faste fdrie
;;T i Py Rate: 44,186 kHz
e | Clear e T T
Delete BkSpe
F" Jrim
Fmpty Cfiphoard
Sefect Aff

T T B |

Figure 5-1

STEP 3 - SoundEditor
asserts ownership
of clipboard atom

STEP 4 - User chooses "Paste"

Destination window

File level Effects View Options Help
Uindeo paste Cirfrs
& R= o y | Repeat
Cut Cirf+X
Zoom:| =~
Paste CirfrV
;1’? Mix Ctrieid Rate: 44,188 kHz
=)
|—B|;|_|'C’f£ar ||||3|S||||||||||||||||||
Delete BkSpe 1
M Jrim r i
Emply Cliphoard
w Sefect Aff / > *‘

Clipboard Transfer Example

L Insertion cursor
position

STEP 5 - Sound data from
clipboard atom is pasted
but not selected

The clipboard operates independently of the primary selection described in the next
section, “Supporting the Primary Transfer Model.” When a user chooses “Cut” or
“Copy” from an Edit menu, that application takes ownership of the clipboard but the
primary selection remains unchanged.

103

Chapter 5: Data Exchange on the IRIX Interactive Desktop

Supporting the Primary Transfer Model

104

In the primary transfer model, users select the data for transfer using the left mouse
button and copy the data to the destination application using the middle mouse button.
If your application contains data that users will want to transfer to other applications or
across separate instantiations of your application, your application should support the
primary transfer model described in this section. Note that this model is a subset of the
primary transfer model described in Section 4.3 of the OSF/Motif Style Guide. For
information on implementing primary transfer, see "Implementing the Primary Transfer
Model" in Chapter 7, “Interapplication Data Exchange,” of the IRIX Interactive Desktop
Integration Guide.

In the primary transfer model, when a user begins a selection in an application, that
application takes ownership of the primary selection atom, replacing the previous owner
if there was one. This selection is referred to as the primary selection. The user can then
copy the primary selection to a destination application by moving the pointer to the
destination window (making it the active window) and clicking the middle mouse
button. At this point, the destination application copies the primary selection data to this
destination. Note that the data is pasted at the position of the pointer, not at the insertion
cursor. Also note that when the copy is complete, the newly pasted data isn’t selected or
highlighted. For more information on selection techniques, see “Selection” in Chapter 7.

Figure 5-2 through Figure 5-3 illustrate primary selection and transfer using the
SoundEditor application. Figure 5-2 illustrates making a primary selection. The user
creates a selection by dragging with the left mouse button across a range of sound data.
As soon as the user begins this selection, SoundEditor takes ownership of the primary
selection atom. This selection is then referred to as the primary selection.

Supporting the Primary Transfer Model

Selected sound

File Edit level FEffects View Options Help

<& Record ||‘$ Stop & Play | [L] Repeat
zoom: | n || Ou || seleston [[s=] [[selecia |

Time: Bs Rate: 44,188 kHz
Selection: A.B23s - 1.245% Position: 1.233s

AR BTV LR AR AL RARAS AR AR UL EER

|BS |28 45

data assigned
to primary selection

Figure 5-2

L

= =

Primary Selection Example

Pointer position when
left mouse button
is released

Figure 5-3 shows the source and destination windows just prior to a primary transfer.
Figure 5-4 shows the source and destination windows after the transfer. Note that when
the user clicks the middle mouse button, the primary selection is inserted at the pointer
location rather than at the insertion cursor. Also note that after the transfer operation, the
SoundEditor application doesn’t select or highlight the newly pasted data and the
primary selection doesn’t change.

105

Chapter 5: Data Exchange on

the IRIX Interactive Desktop

File Edit leve!

Source window

Effects Wiew Options Help File Edit level FEffects View Options Help

Destination window

<& Record ||0 St

op & Play | Repeat < Record ||‘$

zoom: | [| [ou| [eeaton | [S5] [[seleatai || | zoom: [fout] [Secion| [T [Sekesan])

Stop & Play | Repeat

Time: @s Rate: 44.188 kHz Time: 1.486s Rate: 44.188 kHz
L SETBELION. L ,45ds Position: 1.451s
AR | T | | T | T R R A A S N REL AR PAARN RS

Pt

W

) I
Primary selection

File Edit leve!

Insertion cursor position J
just before transfer

|_ Pointer position
just before transfer

Figure 5-3 Primary Transfer Example: Before Transfer

Source window

Effects Wiew Options Help File Edit level FEffects View Options Help

Destination window

<& Record ||0 St

op & Play | Repeat < Record ||‘$

zoom: | [| [ou| [eeaton | [S5] [[seleatai || | zoom: [fout] [Secion| [T [Sekesan])

Stop & Play | Repeat

1 Time: B.859s

Time: Bs
Selection: Hs -
los fs s T s T T las T

Select i0mT 595 Position: 1.474s

Rate: 44,168 kHz

|BS |15

Pt

-

\Nu 2|S||| |||||3|S|||||||||4|S||||||||

Primary seJection

106

I
Insertion cursor positionJ Transferred data PointerI position

at time of transfer

at time of transfer

Figure 5-4 Primary Transfer Example: After Transfer

Supporting the Primary Transfer Model

In general, when your application loses the primary selection, it should keep its current
selection highlighted. When a user has selections highlighted in more than one window
at a time, the most recent selection is always the primary selection. This is consistent with
the persistent always selection model discussed in Section 4.2 in the OSF/Motif Style Guide.
Exceptions to this guideline are those applications that use selection only for primary
transfer—for example, the winterm Unix shell window. The only reason for users to select
text in a shell window is to transfer that text using the primary transfer mechanism. In
this case, when the winterm window loses the primary selection, the highlighting is
removed. This is referred to as nonpersistent selection in Section 4.2 in the OSF/Motif Style
Guide. For guidelines on selection in general, see “Selection” in Chapter 7.

If the user returns the keyboard focus to a window with a highlighted, superseded
primary selection, the application should allow the user to reinstate the highlighted
selection as the primary selection by pressing <Alt-Insert>. In addition to supporting this
key combination, you can also add the entry “Promote” to the Edit menu for the
application window. Make the “Promote” menu entry active only when your application
has a selection which is not the primary selection. (For details of placing this item in the
Edit menu, see “Edit Menu” in Chapter 8.)

Note that when a user begins to modify a selection, such as adding elements to it, it’s
considered to be a new selection. In this case, your application needs to reassert
ownership of the primary selection if your application doesn’t currently own it.

The primary selection operates independently of the clipboard, as described in the
previous section, “Supporting the Clipboard Transfer Model.” When the user makes a
selection, that selection becomes the primary selection—there’s no effect on the contents
of the clipboard.

107

Chapter 5: Data Exchange on the IRIX Interactive Desktop

Data Types Supported for Inter-Application Transfer

108

Applications can use the atom names for both clipboard and primary transfer of the
corresponding types of data. A few atom names are listed in Table 5-1; the tables in
Chapter 7, “Interapplication Data Exchange,” in the IRIX Interactive Desktop Integration
Guide provide a complete list. If you want users to be able to transfer data from your
application to other applications, you need to be able to export the data. If your
application is to receive data from other applications, it must be able to import the data.
For complete details of implementing both clipboard and primary data transfer, see
Chapter 7, “Interapplication Data Exchange,” in the IRIX Interactive Desktop Integration

Guide.

Table 5-1

Data Types Supported for Inter-Application Transfer

Target Format Atom Name

Nature of Data

What Target Receives

Receiving Application
Requirements

INVENTOR

_SGI_RGB_IMAGE_FILENAME

_SGI_RGB_IMAGE

_SGI_AUDIO_FILENAME

_SGI_AUDIO

_SGI_MOVIE_FILENAME
_SGI_MOVIE
STRING

COMPOUND_TEXT

3D, generated by
Inventor

color image in rgb
format

color image in rgb
format

sound data

sound data

movie data
movie data

text encoded as ISO
Latin 1

compound text

Inventor data (Scene
Graph)

rgb file name

stream of rgb data
audio file name

stream of audio data

movie file name
stream of movie data

textual data

textual data formatted as
compound text

Ability to read Inventor data

Ability to use rgb files

Ability to use rgb files

SGI audio file library
libaudiofile

SGI audio file library
libaudiofile

SGI Movie library libmovie
SGI Movie library libmovie

Ability to read text encoded as
ISO Latin 1

Ability to read compound text

Data Exchange Guidelines

Data Exchange Guidelines

If your application contains data that users may wish to transfer to other applications
or across separate instantiations of your application. ..

[Support the Clipboard Transfer Model using the “Cut,” “Copy,” and “Paste” entries
in the Edit menu. In this model, the clipboard is a global entity that’s shared by all
applications. Your application shouldn’t use these entries to refer to a clipboard
that’s private to your application.

[] When supporting the Clipboard Transfer Model, don’t select or highlight newly
pasted data after a “Paste” operation.

[Support the Primary Transfer Model. Assert ownership of the primary selection
when the user begins to make a selection. Insert data at the location of the pointer
when the user clicks the middle mouse button (which isn’t necessarily at the
insertion cursor).

[] When supporting the Primary Transfer Model, don’t select or highlight newly
transferred data after a transfer operation.

(] Use persistent always selection highlighting (keep the current selection highlighted
even when your application loses the primary selection), unless the only action that
can be performed on the selection is to copy the data using primary data transfer. In
this case, use nonpersistent selection highlighting—that is, remove the selection
highlight when the selection is no longer the primary selection.

[] When supporting the Primary Transfer Model, if the current active window has a
selection that isn’t the primary selection, reinstate this selection as the primary
selection if the user presses <Alt-Insert>. Additionally, you can include a “Promote”
entry in the Edit menu to perform the same function.

[] When supporting the Primary Transfer Model, when the user begins to modify a
selection, such as adding elements to it, reassert ownership of the primary selection
if your application does not currently own it.

[] When supporting both Clipboard Transfer and Primary Transfer, keep the primary
selection independent from the clipboard. When the user begins to make a selection
in your application, assert ownership of the primary selection but do not change the
ownership of the clipboard. When the user chooses “Cut” or “Copy” from an Edit
menu in your application, assert ownership of the clipboard but do not change the
ownership of the primary selection.

109

PART TWO

Interface Components

Chapter 6
Application Windows
Chapter 7

Focus, Selection, and Drag and Drop
Chapter 8

Menus

Chapter 9

Controls

Chapter 10

Dialogs

Chapter 11

User Feedback

Chapter 6

Application Windows

This chapter discusses the role of different types of windows in the IRIX Interactive
Desktop environment. It includes information on how your application should combine
the different types of windows, as well as guidelines on what elements are appropriate
for primary and support windows, and how these elements should be arranged. (Dialog
windows are discussed in detail in Chapter 10, “Dialogs.”)

This chapter covers the following topics:

e “Application Models” discusses different models for applications. Which model is
appropriate for your application depends upon whether your application needs
multiple primary windows, and whether it can have multiple documents open at
the same time.

¢ “Main and Co-Primary Windows” describes the design of primary windows.
* “Support Windows” explains the design of support windows.

* “Pointer Behavior in a Window” discusses the limits of what your application
should do with the mouse pointer.

Note that by default, 4Dwm, the window manager for the IRIX Interactive Desktop,
provides window decorations and a Window menu for all application windows. The
specific window decorations and contents of the Window menu depend on the type of
window and whether any of the components in the window are resizable. For guidelines
on window decorations, Window menu entries, and related issues, see “Application
Window Categories and Characteristics” in Chapter 3.

113

Chapter 6: Application Windows

Application Models

114

This section describes how the different types of windows used in the IRIX Interactive
Desktop environment can be used together in applications. Topics include:

¢ “Window Types”
¢ “Standard Application Models”

Window Types

As discussed in “Application Window Categories” in Chapter 3, windows in the IRIX
Interactive Desktop environment are divided into four types, which are subdivisions of
Motif’s two types: primary and secondary. Primary windows are divided into main
primary windows and co-primary windows, and secondary windows are divided into
support windows and dialogs. The definitions are repeated here for your convenience:

* A main primary window serves as the application’s main controlling window. It’s
used to view or manipulate data, get access to other windows within the
application, and kill the process when users quit. There’s only one main primary
window per application (and sometimes it isn’t visible to users).

* A co-primary window is used for major data manipulation or viewing of data outside
of the main window

* A support window is a persistent special-purpose window. It typically contains a
control panel or tool palette that operates directly on data in a primary window. A
support window can be used repeatedly.

¢ Adialog is a transient window, typically used for short, quick user input, such as an
action confirmation, or system output, as in a warning message. A dialog may be
user-requested or application-generated. It is usually dismissed as soon as it has
served its purpose. Dialogs are discussed in detail in Chapter 10, “Dialogs.”

The next section (“Standard Application Models”) describes several standard models for
combining these types of windows in a real application. When choosing a model, try to
keep the window hierarchy shallow so users can form a relatively simple conceptual
model of how your application’s windows are related. Figure 6-1 shows the allowable
parent and child relationships within an application’s window hierarchy. For example,
all co-primary windows should be children of the main window, so primary windows
should never be more than two levels deep; dialogs can be children of any type of
window.

Application Models

Main window

I 0|
File Edit.. .. Help

Co-primary window

I 0|
Graph . .. Help

Support window
=p=y—mn Dialog

o s s

WARNING! Etc.

(nooooo
(nooooo
(nooooo

/
Support window \
Dialog Dialog Dialog

s Y e |
e [s [e |
=a 0 WARNING! Et¢ WARNING! Et WARNING! Et¢
=—==] ! Etc. ! Etc. | Etc.
s [s [e |

Figure 6-1 Allowable Parent-Child Window Relationships

Standard Application Models

Applications can combine the basic window types in many ways, but most applications
fall into one of four basic models. These models differ with respect to whether they can
have one or multiple documents (files) open at a time and their use of primary windows.
(For information about how to implement the various models, see Chapter 5, “Window,
Session, and Desk Management,” in the IRIX Interactive Desktop Integration Guide.)

Note: The term document means a grouping of data and shouldn’t be thought of as

referring exclusively to text-oriented files. A document can include such data types as
film clips, audio segments, and 3D scenes.

115

Chapter 6: Application Windows

116

“Single Document, One Primary” Application Model

“Single Document, One Primary” (see Figure 6-2) is the most basic model. It
accomplishes all of its tasks within the main window and uses as many support windows
and dialogs as needed. Users can work on only one document at a time. Thus, when a
user has one document open and opens a second document, the second document
replaces the first. IRIS Showcase operates in this manner.

Main window
T - 0| Support windows
File Edit.. .. Help
ooo
ooo
==
_|o E
O
o|
[
Dialogs
Save changes? 00O

WARNING! Etc.

Doyouwant... 100

Figure 6-2 ”Single Document, One Primary” Application Model

“Single Document, Multiple Primaries” Application Model

The “Single Document, Multiple Primaries” model (see Figure 6-3) uses both main and
co-primary windows to accomplish major tasks. In this model, each co-primary window
performs a different function; these functions supplement the functionality of the main
window. MediaMail is an example of this model. Its main window lets users select
electronic mail messages from a folder and perform actions on them such as viewing,
printing, deleting, and sorting. Its Compose and Message windows are typical of
co-primary windows with different functions designed to support the functionality of
the main window.

Also in this model, each primary window has its own menu bar tailored specifically to
the functions in that window. Each co-primary window is opened from the main
window. Each support and dialog window is associated with a specific primary window.

Application Models

Main window

Dialogs L - I= Support windows
T File Edit ... Help
Save changes? (] 0 | —— E E E
ooo
—|ooo
ooo
ooo
ooo
Co-primary window Co-primary window
| Tl I I= Etc
List ... Help Graph . .. Help '
— ;irslitznj
D e_coq item
| Ddien
{—
| — o o s [e o |
o s I |
Dialogs / \ Support windows Dialogs / \ Support windows
s Y s | :I.

|
WARNING! Etc. OOoood =l
 E— OoooonO Do youwant . . 21 O O

Figure 6-3 ”Single Document, Multiple Primaries” Application Model

(nooooo
(nooooo
(nooooo

The single-document application with multiple primary windows is useful for dealing
with data that the user needs to view in a number of different ways at the same time. For
example, the WorkShop debugger operates on a single executable at a time. However, at
a given time WorkShop might have several primary windows displaying source code,
with other primary windows displaying call graphs and output from running the
executable. In the case of WorkShop, the nature of the application demands
multiple-primary windows.

“Multiple Document, Visible Main” Application Model

The “Multiple Document, Visible Main” model (see Figure 6-4) has a main window that’s
used primarily to launch co-primary windows. These co-primary windows are identical
to each other and perform the same functions on different files or documents. All
co-primary windows have identical entries in the menu bar and identical sets of dialogs
and support windows. Each set of dialogs and support windows acts on a single
document, the one represented by the co-primary window from which the dialog or
support window was invoked.

117

Chapter 6: Application Windows

Co-primary windows are opened either from the main window or from a co-primary
window that’s already open. IRIS InSight is an example of this model. Its main window
lets users launch co-primary viewing windows, browse available files, and conduct

global searches through these files. The co-primary windows are used for viewing online
books.

A multi-document application should have a visible main window only if the main
window offers functionality that can’t be provided from the co-primary windows. For
example, the IRIS InSight main window allows users to browse a list of books and to
search a collection of books for specific words or phrases. A multi-document application
should not have a visible main window if the only thing in the main window would be a
menu bar. In this case, use the “multiple documents, no visible main” model; make the
menu entries from the main window available from the pull-down menus in each of the
co-primary windows, as described in the next section.

Main window
Dialogs T - T=] Support windows
File Edit ... Help -

WARNING! Etc. - __ |OOoOooc

1 | o o
Co-primary window Co-primary window Etc.
] 0|] I=
File Edit ... Help File Edit ... Help

Dialogs / \ Support windows Dialogs / \\ Support windows

|
Save changes? (1 [0 0O

Save changes? (] 00O

ooooooo
ooooooo
ooooooo
ooooooo
ooooooo
ooooooo

Figure 6-4 “Multiple Document, Visible Main” Application Model

118

Application Models

“Multiple Document, No Visible Main” Application Model

The “Multiple Document, No Visible Main” model (see Figure 6-5) is identical to the
“Multiple Document, Visible Main” model described in the previous section except that
the main window is invisible to the user (that is, unmapped) and new co-primary
windows are launched from co-primary windows that are already open. Users open one
document and leave it open while opening others. When the user has closed all of the
documents, the process is killed.

Co-primary window Co-primary window Co-primary window
] 0|] 0| | =
File Edit ... Help File Edit ... Help File Edit ... Help
Dialogs / \ Support windows Dialogs / \ Support windows Dialogs / \ Support windows
oo] oo] oo SE=
=l | E [e= = =]
- | ol =204
Doyouwant... 7100 Do youwant... 710 Doyouwant... P10 =] E E E
O oo=
O oo 43
| s Y s [e

Figure 6-5 “Multiple Document, No Visible Main” Application Model

Application Model Guidelines

For all applications . ..

[Choose an appropriate application model for combining the different types of
windows in your application.

[Use only the allowable parent-child window relationships and keep your
application window hierarchy shallow.

119

Chapter 6: Application Windows

Main and Co-Primary Windows

120

Every application has at least one primary window that serves as the application’s main
controlling window. In fact, the majority of a user’s interactions should occur in the main
and co-primary windows (these window types are defined in “Window Types” earlier in
this chapter).

This section discusses main and co-primary windows:

“Menu Bars in Primary Windows”
“Scrollable Work Areas in Primary Windows”
“Control Areas in Primary Windows”

“Status Areas in Primary Windows”
“Splitting Primary Windows Into Panes”

“Popup Menus in Primary Windows”

Several typical layouts for primary windows are shown in Figures 6-6 through 6-8. These
layouts are discussed in the following sections.

Menu bar File Edit Help

Scrollable work area

Control area

Status message area

[ol tiited .0

s

L[>}

Figure 6-6 Basic Primary Window

Main and Co-Primary Windows

| surise || stom || Artal || Deparure || Catssrophe || st || Party || Funeral r

e

Figure 6-7 Primary Windows With Tool Palettes

121

Chapter 6: Application Windows

122

Figure 6-8 Primary Window With Two Panes

Menu Bars in Primary Windows

Primary windows typically have a menu bar, which is part of the window as shown in
Figures 6-6 through 6-8. Don’t create a detached menu bar contained in a separate
window. For details on designing the menu bar and its contents for a primary window,
see “The Menu Bar and Pull-Down Menus” in Chapter 8.

If the primary window doesn’t have a menu bar and all of its functionality is available
using buttons, the window should still respond to the keyboard accelerators for Close
(Ctrl+W) and Exit (Ctrl+Q) when appropriate. That is, the window should respond to
these accelerators according to the guidelines for when to use just Exit, when to use just
Close, and when to use both Close and Exit for a window, as described in the section “File
Menu” in Chapter 8.

Main and Co-Primary Windows

Scrollable Work Areas in Primary Windows

The most prominent area of the window is typically a scrollable work area, as shown in
Figures 6-6 through 6-8. Use scrollbars for the work area of a window when the window
can be resized such that some of the available data may be hidden in the work area. Note
that the scrollbars scroll only the work area and don’t scroll the menu bar, buttons in a
command area, or the status message area.

Each scrollbar should span the entire width or height of the scrollable region. Don’t put
controls or status information in the areas reserved for the scroll bars. Put controls in the
control area, as described later in “Control Areas in Primary Windows.” Put status

information in the status area, as described later in “Status Areas in Primary Windows.”

Use a vertical scrollbar on the right of the work area if the window or pane that contains
the work area can be resized such that the data being displayed in the work area won’t
fitin a vertical direction. Similarly, use a horizontal scrollbar directly below the work area
if the window or pane can be resized such that the data being displayed in the work area
won't fit in a horizontal direction. Disable (rather than remove) the appropriate scrollbar
when all of the data is being displayed in a given direction. For more information on
using scrollbars, see “Scrollbars” in Chapter 9.

Control Areas in Primary Windows

Controls in primary windows, which are typically pushbuttons, are generally placed
directly beneath the horizontal scrollbar and on the left side of the window (see Figures
6-6 through 6-8). (Note that this is different than the OSE/Motif Style Guide, which states
that controls can be arranged along the top, bottom, or side of the work area.) As stated
in the previous section, don’t place controls directly below or on the right side of the
work area in the scroll bar area—scrollbars should span the entire width and height of
the work area. (See Chapter 9, “Controls,” for more information about how to use
controls in your application.)

Control areas sometimes contain pushbuttons that are grouped into tool palettes. Figures
6-6 through 6-8 show primary windows with pushbuttons in the control areas, and
Figure 6-7 shows primary windows with both tool palettes and pushbuttons that aren’t
part of a palette. Buttons that are part of a tool palette don’t need to have corresponding
menu entries. These “tools” typically allow a user to launch support and co-primary
windows, or put the work area in a different mode (for example, edit mode or draw
mode).

123

Chapter 6: Application Windows

124

In contrast, pushbuttons used in control areas that do not represent tool palettes should
represent the most frequently accessed application-specific menu entries which provide
users a more convenient way of accessing these actions. There are two advantages to
having these buttons repeat functionality from the menus:

* Having the functions in a menu allows you to assign keyboard accelerators to those
common functions and allows users to choose between using point-and-click on the
button or using a keyboard accelerator to access the functionality.

¢ Having the functions in a menu means that users can skim one place (the menu
entries) to get an idea of the overall functionality of the product, and can skim
another place (the control area) to see the frequently used functionality.

These non-palette buttons generally don’t include actions from the standard File, Edit, or
Help menus because these entries typically aren’t the most frequently accessed when
compared to the functionality that’s specific to your application. For example, these
buttons don’t include the actions “Exit” or “Close” because these functions are used only
once each time the window is opened, and they don’t include “Help” because help is
easily accessible from the Help menu. (For more information on buttons, see
“Pushbuttons” in Chapter 9; also see “Standard Menus” in Chapter 8.)

The control area can also include an area to enter command line input. This command
line area should be in addition to the buttons. Note that this differs from the OSF/Motif
Style Guide, which states that the command area can contain only command line input.
For an example window with an command line input area, see Section 6.2.1 in the
OSF/Motif Style Guide.

Status Areas in Primary Windows

Primary windows can also include a single status message area at the bottom of the
window if the application needs to post frequent messages to the user about the status of
the application or the status of specific user actions (see Figures 6-6 through 6-8). For
example, messages in this area might confirm that a file has been saved or that an option
has been turned on or off. Provide vertical scrollbars for this area so that users can view
previously displayed messages.

Don’t use this area for warnings, errors, or other kinds of messages requiring the user to
respond. Instead, use dialogs to display these types of messages. (See Chapter 10,
“Dialogs,” for guidelines on designing dialogs.) Also, don’t use it to display help
information.

Main and Co-Primary Windows

Splitting Primary Windows Into Panes

Windows can be split into various panes of information (see Figure 6-8). Panes are
separated from each other by separator lines. Each separator line may or may not include
a sash control, which allows users to resize the panes. (See the Sash reference page in
Chapter 9 of the OSF/Motif Style Guide.) Windows can include panes that are stacked
vertically (Figure 6-8) or that are next to each other in a side-by-side horizontal layout
(Figure 6-7). Note that control areas can be associated either with a specific pane or with
the entire window.

Don’t overuse panes—each application window typically should have no more than four
separate panes and no more than three sash controls. If certain panes are optional to
performing the task, provide menu entries that show or hide specific panes of
information (see “View Menu” in Chapter 8).

Popup Menus in Primary Windows

Popup menus (which aren’t shown in the figures in this chapter) can provide quick
access to frequently used functions in primary windows. For information on when and
how to use popup menus, see “Popup Menus” in Chapter 8.

Primary Window Guidelines

When designing a primary window ...

D Use a menu bar unless all of the window’s functionality is available through
pushbuttons. Don’t use a “floating” menu bar in a separate window.

[Support keyboard accelerators for Close (Ctrl-W) and Exit (Ctrl-Q) as appropriate,
even if the window doesn’t have a menu bar.

When designing a scrollable work area in a primary window . . .

[] Use a vertical scrollbar on the right side of the work area when the data being
displayed in the work area may not fit in a vertical direction. Use a horizontal
scrollbar directly below the work area when the data may not fit in a horizontal
direction. Don’t use scrollbars if you're certain the data will fit.

[] Disable the appropriate scrollbar when all the data is visible in a given direction.
Don’t remove the scrollbar.

[] Make each scrollbar span the entire height or width of the work area. Don’t include
controls or status information in the scrollbar region.

125

Chapter 6: Application Windows

When designing control areas in a primary window . . .
D Place controls below horizontal scrollbars or to the left of work areas.

[] Provide pushbuttons for the most frequently accessed application-specific functions
from the pull-down menus. Don’t use pushbuttons for standard menu entries such
as Open, Save, Close, Exit, Cut, Copy, Paste, and Help.

[Use pushbuttons only for functions that appear in menus, unless the pushbuttons
are part of a tool palette.

[] Provide an area for command-line input, if appropriate, in addition to (not in place
of) pushbuttons.
To display status information . ..

[] Useastatusarea along the bottom of a primary window if your application needs to
post frequent messages about its status. Provide vertical scrollbars for this area so
that users can view previously displayed messages.

[] Usea status area to display messages that the user doesn’t have to respond to rather
than posting this noncritical information in dialogs. However, don’t put critical
warning or error messages in the status area (use a dialog instead).

[] Don't use the status area to display help information.

When dividing a primary window into panes...

[Divide panes using separator lines. If users might need to resize the pane, also
include a sash control.

N Try to limit the number of panes in a single window to four with no more than three
sash controls.

[] 1f certain panes are optional, allow users to hide or show these individual panes
using entries in the “View” menu.

126

Support Windows

Support Windows

As defined in “Window Types” earlier in this chapter, support windows are persistent
secondary windows that allow users convenient, constant access to sets of important
controls that directly manipulate data in the associated primary window. The next two
sections discuss:

* “General Support Window Design”

® “A Specific Standard Support Window: The IRIX Interactive Desktop Color
Chooser”

General Support Window Design

Each support window should be associated with a specific primary window (its parent),
which should be visible and mapped to the screen. (Support windows with invisible,
unmapped parents don’t work properly with desks, as described in “Desks” in
Chapter 3.) Support windows shouldn’t have other support windows or dialogs as
parent windows. Note that this differs from the OSF/Motif Style Guide, which states that
secondary windows can have other secondary windows as parents.

Support windows typically don’t have menu bars like primary windows, but they
should still respond to the keyboard accelerator for closing a window (“Ctrl+W”).
Launch support windows from items in the Tools menu of the associated primary
window’s menu bar (see “Tools menu” in Chapter 8) or from a tool palette in the primary
window (see “Control Areas in Primary Windows”). Users can show or hide support
windows as they wish, and rearrange where they’re displayed with respect to the
primary window. This makes support windows more versatile than control areas in a
primary window. When bringing up support windows, don’t overlap the work area of
the associated primary window if you can avoid it. Note that 4Dwm constrains support
windows to always appear on top of the parent window in the window hierarchy.

A support window should be smaller and less complex than its associated primary
window, so that you don’t need to split the support window’s contents into separate
panes. Support windows typically include a related set of controls that are associated
with the parent primary window. Each related set of functions or input fields should be
given its own support window. The controls (which can include buttons, text fields, and
scrolling lists) typically either operate directly on selected data or change the mode of the
primary window. For example, they might allow the user to choose a texture that will be
applied to the selected objects in the primary window, or they might allow the user to

127

Chapter 6: Application Windows

128

choose a specific drawing tool that changes what’s drawn in the parent window. For
example, the IRIS Showcase Align Gizmo shown in Figure 6-9 aligns the objects that are
currently selected in IRIS Showcase’s main window. Don’t add or remove controls from
a support window depending on the current context—the layout and contents of a
support window should be static.

Aligning objects to each other...

D Tops
<> D Centers
= D Eottoms
[
A
D Lefts D Centers D Rights

@ Align objects to each ather

<> Align objects to page

<> Align objects to grid

<> Align objects sequentially | Applyl | Clear Settings I

Figure 6-9 The IRIS Showcase Align Gizmo

Support windows also typically contain a response area that includes standard actions
for the window: “Apply,” “Cancel/Close,” and “Help.” See “Standard Dialog Actions”
in Chapter 10 for more information about these actions. In addition, support windows
may contain secondary work areas for manipulating data that will eventually be
integrated into the work area of the associated primary window. Texture, pattern, icon,
and geometry editors are examples of support windows that might contain secondary
work areas. The Align Gizmo in Figure 6-9 contains a small display area showing a circle,
a square, and a triangle, which shows the effects of the user’s changes before they're
applied to the main window.

Support windows should be modeless—that is, they shouldn’t prevent the user from
interacting with any of the application’s other windows. If your application requires a
secondary window that the user must dismiss before interacting with the rest of the
application, use a modal dialog (see “Dialog Modes” in Chapter 10).

Support Windows

A Specific Standard Support Window: The IRIX Interactive Desktop
Color Chooser

The IRIX Interactive Desktop color chooser is a standard support window that allows
users to edit colors. Use the color chooser in your application whenever you want to offer
the user an unrestricted choice of colors. For a restricted choice of colors, you can offer
the user a palette of colors to choose from, a list, an option button, or a set of radio
buttons, depending on the number of choices available. Figure 6-10 shows the color
chooser in its default configuration.

Options Sliders

Current
Color: Color swatches

Hue and saturation selector

Color hexagon

Hue

Saturation | 1.888 Text fields
Value | 1.208 L) il Color slider

} Pushbutton area

Figure 6-10 The IRIX Interactive Desktop Color Chooser

You can allow users to access the IRIX Interactive Desktop color chooser from your
application in one of two ways: by having them click on a button that displays its
(editable) color, or having them click on an object for which the color should be changed.
The first method is used by the Background control panel (which is available from the
Desktop->Customize menu in the Toolchest). With this panel, the user clicks on one of
the color buttons to open the color chooser. If the color chooser is already open, clicking
on a color button selects that color for the color chooser to edit. The colors of the buttons
represent the current colors being used by the desktop background. With the second
method, the user selects an object and then chooses the “Color Editor” entry from the
Edit menu, as described in the section “Edit Menu” in Chapter 8. This menu entry opens

129

Chapter 6: Application Windows

130

the color chooser. For details on how to include the IRIX Interactive Desktop color
chooser in your application, see Chapter 4, “Using the Silicon Graphics Enhanced
Widgets,” of the IRIX Interactive Desktop Integration Guide.

As noted in Figure 6-10, the color chooser includes the following components:

¢ Two color swatches: one for showing the current selected color and one for enabling
the user to store a second color for reference.

¢ A color hexagon that provides visual selection of the hue and saturation
components of a color in an HSV color space. The user changes the hue and
saturation by moving the selector (which appears as a small circle) in the color
hexagon.

¢ Color sliders for controlling various color components.

o Text fields that show the exact values for hue, saturation, and value color
components and allow users to set these values numerically. (There are also text
fields indicating the values of the red, green and blue color components when the
red, green, and blue sliders are visible.)

* Menus for Options (which allows users to easily find the color white) and Sliders
(which provides various combinations of sliders for setting hue, saturation, value,
red, green, blue input values).

* Pushbuttons that allow users to apply the current values, cancel a pending change,
or get help on this window.

Note: Because of drawing-speed considerations, the color hexagon and color sliders are
available only if running under GL. For X-only configurations, the Color Chooser uses a
Scale widget instead of the color sliders, and there is no color hexagon.

The user can apply the new color to the selected object by pressing either the OK or Apply
buttons. If the user presses OK, the color chooser should be dismissed after the new color
is applied. If the user selects a new object in the parent primary window while the color
chooser is open, the color chooser should update its current color to the color of the
selected object. Thus, a single color chooser window can be used to change the color of a
number of different objects.

Support Windows

Support Window Guidelines

When designing support windows . ..
[] Use them to provide access to sets of related controls.

[] Allow users to access them either through entries in the Tools menu or through
pushbuttons in a tool palette in the parent primary window.

[] Be sure that each support window has a visible parent primary window that’s
mapped to the screen.

When designing the layout of a support window . ..

[] Make the layout simple and static. Don’t include multiple panes of information.

[] Includea response area for standard actions that’s similar to the one dialogs have.

[] Don’tinclude a menu bar in most cases, but do support the keyboard accelerator for
Close (Ctrl-W).

When opening support windows . ..

[Avoid overlapping the work area of the parent window.

[Bring them up as modeless secondary windows.

When allowing the user to make color choices . ..

[] Use the IRIX Interactive Desktop color chooser whenever you want to offer the user
an unrestricted choice of colors. For a restricted choice of colors, use a palette of
colors to choose from, a list, an option button, or a set of radio buttons, depending
on the number of choices available.

131

Chapter 6: Application Windows

Pointer Behavior in a Window

132

The user should retain control over the location of the pointer at all times. Your
application shouldn’t change the location of the pointer. (This is sometimes referred to as
“warping” the pointer.) Similarly, your application shouldn’t change the gain and
acceleration characteristics of mouse movement. Users set these on a global basis using
the Mouse Settings control panel available from the Desktop->Customize cascading
menu in the Toolchest. If your application requires finer motion control than what’s
provided by the default gain settings, provide a zoom feature in the View menu that
allows users to change the relative size of an area of your application. (See “View Menu”
in Chapter 8 for more information about this menu.)

Although users control the location of the pointer, your application needs to control the
shape of the pointer. This shape gives the user feedback about the current state of the
application (for example, whether it’s waiting for user input or whether it’s busy
processing). Pointer shapes are discussed in “Pointer Shapes and Colors” in Chapter 11.

Pointer Behavior Guidelines

When designing your application . ..

[Always allow the user to control the location of the pointer; your application
shouldn’t change the position of the pointer.

[Don't change the gain or acceleration characteristics of the pointer. If your
application requires fine manipulation, provide a zoom feature in the View menu.

Chapter 7

Focus, Selection, and Drag and Drop

Users can interact with your application through three general mechanisms, which are
discussed in the following sections:

e “Keyboard Focus and Navigation” discusses how your application should allow
users to direct keyboard input to specific components. It also discusses how certain
components should be controlled from the keyboard.

* “Selection” discusses various models for allowing users to select data in your
application.

* “Drag and Drop” discusses how users expect to directly manipulate text and other
objects in your application by dragging them with the mouse.

Keyboard Focus and Navigation

Keyboard input allows users to enter data into text fields and to control other
components in your application. The keyboard focus policy determines which
component in which window receives the keyboard input. Only one component in one
window receives input from the keyboard at any given time; this component has the
keyboard focus (also called input focus). For example, if a button has the keyboard focus
and the user presses the Space bar on the keyboard, the button is activated. The process
of moving the keyboard focus is called navigation. Keyboard navigation allows the user to
navigate among components in a window using only the keyboard rather than having to
manipulate the mouse (or other pointing device).

As described in “Keyboard Focus Across Windows” in Chapter 3, the IRIX Interactive
Desktop environment uses one policy for moving the keyboard focus among
components within a window and a different policy for moving the keyboard focus
between windows. When moving the keyboard focus among components within a
window, your application should use an explicit focus policy. In other words, the user
clicks a mouse button or presses a key to move the keyboard focus to a new component
in the active window. In contrast, 4Dwm, the window manager for the IRIX Interactive
Desktop, uses implicit focus across windows: the window directly underneath the
pointer receives keyboard input (that is, it’s the active window). Note that users can’t
navigate among windows using the keyboard when using 4Dwm in its default
configuration.

133

Chapter 7: Focus, Selection, and Drag and Drop

134

This section discusses keyboard focus and navigation among components in the active
window and includes:

e “Keyboard Focus Policy and Navigation Within a Window”

e “Keyboard Focus and Navigation Guidelines”

Keyboard Focus Policy and Navigation Within a Window

Only one component in the active window has the keyboard focus at any given time.
Your application should use explicit focus (as opposed to implicit focus) within a
window; in other words, the user must explicitly select the component that receives the
keyboard input. Your application should support the models described in this section for
navigating to specific components in a window and for using the keyboard to activate
these components.

Within the active window, the component with the keyboard focus is visually identified
by the location cursor. The location cursor isn’t necessarily a cursor in the traditional
sense of a text cursor. It gives the user visual feedback as to which component receives
the keyboard input. Each standard component described in Chapter 9, “Controls,” has
its own method for displaying a location cursor when the component has keyboard
focus. For example, the location cursor used to indicate that a specific radio button has
the keyboard focus is a simple box, as shown in Figure 7-1.

Connection: Serial |< SCSI | <0 Parallel

Location cursorJ

Figure 7-1 Location Cursor Example

Keyboard activation and keyboard navigation are strongly linked: if a user can activate
or control a component from the keyboard, the user should also be able to navigate to
that component from within the window using the keyboard. This enables the user to

perform the task without having to frequently switch between using the mouse and
keyboard.

Section 2.2 in the OSF/Motif Style Guide states that “all application functionality must be
available from the keyboard alone.” This includes navigating among windows,
navigating among components in a window, and activating components. By default,
users will be able to navigate to and control all components in a window except for those
that aren’t traversable or don’t accept input (for example, labels and separators).

Keyboard Focus and Navigation

Since all Silicon Graphics systems include a mouse, it’s not as critical to provide access to
all functionality from the keyboard alone when programming for Silicon Graphics
systems. Just keep in mind that some users use alternate input devices that rely on
having functions available from the keyboard. At a minimum, your application should
let users do the following from the keyboard:

* navigate between editable text fields in a window
¢ enter data into editable text fields

¢ select data in a text field (see “Selection” later in this chapter and “Text Fields” in
Chapter 9)

* navigate to a list component (see “Lists” in Chapter 9)
¢ select data in a list (see “Selection” later in this chapter and “Lists” in Chapter 9)

* navigate among all types of menus (pull-down, popup, and option menus) and
their entries (see “Menu Traversal and Activation” in Chapter 8)

* activate menu entries (see “Menu Traversal and Activation” in Chapter 8)
* scroll any scrollable component (see “Scrollbars” in Chapter 9)

® activate the default button in a dialog if there is one (see “Standard Dialog Actions”
in Chapter 10)

* use mnemonics for all menu titles and menu entries in the pull-down menus (see
“Choosing Mnemonics” in Chapter 8)

* use keyboard accelerators for frequently used entries in the pull-down menus, such
as “Cut,” “Copy,” and “Paste” in the Edit menu (see “Choosing Keyboard
Accelerators” in Chapter 8)

Keyboard Navigation

This section discusses guidelines for moving the focus to a different component in the
window using the keyboard. (The OSF/Motif Style Guide refers to this as component
navigation.) Each window is divided into fields, where a field can be an individual control
(for example, a text input field) or a group of controls (such as a group of radio buttons).
By default, the fields that can accept the keyboard focus are ordered, in general, from
upper left to lower right. If a window has multiple panes, the focus moves by default
through the fields in the topmost (or leftmost) pane, then the fields in the next pane, and
so on, until it wraps back to the beginning.

135

Chapter 7: Focus, Selection, and Drag and Drop

136

In some cases, you may have to modify the default order in which components are
navigated from the keyboard. For example, when a window first becomes active, the
component that should have the keyboard focus is the one that the user is most likely to
want to interact with using the keyboard. This isn’t necessarily the component in the upper
left-hand corner. Also, when a user returns the keyboard focus to a window that was
previously the active window, the keyboard focus should return to where it was when
the user moved the focus out of that window.

By default, users can cycle through the fields in order using the <Tab> key. They also can
use the arrow keys to move the keyboard focus among the individual components in the
current field. For example, in the Add Printer window, shown in Figure 7-2, a user can
use <Tab> to move keyboard focus from the first field (“New Printer Name”) to the
second field (“Connection Type”). Once in the second field, the user can move keyboard
focus between the radio buttons using the directional arrow keys.

Field 1 —E New Printer Mame: _

Field2 —_ Connection Type: ¥ Local < Network

— Printer Type:

Field 3

Field 4 —[Connection: < Serial <& 5051 < Parallel

Figure 7-2 Components and Fields

By default, the following keyboard commands are used for navigating within a window.
In addition, as discussed in “Menu Traversal and Activation” in Chapter 8§,
<Shift>-<F10> should move the location cursor to a popup menu if one is available for
the current context.

Keyboard Focus and Navigation

<Tab>

<Ctrl>-<Tab>

<Shift>-<Tab>

Moves the location cursor to the next field that can accept the keyboard
focus, unless the current field is a multi-line editable text field. In this
case it simply inserts a tab character.

Always moves the location cursor to the next field that can accept the
keyboard focus.

Moves the location cursor to the previous field that can accept the
keyboard focus.

<Ctrl>-<Shift>-<Tab>

<down arrow>

<up arrow>

<right arrow>

<left arrow>

<F10>

Always moves the location cursor to the previous field that can accept
the keyboard focus.

Moves the location cursor within a field forward (or down) to the next
component that can receive the keyboard focus, eventually wrapping
back to the first component. If the components are in a matrix, <down
arrow> moves down through a column and then proceeds to the top of
the next column to the right.

Moves the location cursor within a field opposite to the direction of the
<down arrow> to the next component that can receive the keyboard
focus. Eventually it wraps back to the last component.

Moves the location cursor within a field to the next component to the
right that can receive the keyboard focus, eventually wrapping back to
the first component. If the components are in a matrix, <right arrow>
moves across an entire row and then proceeds to the row below.

Moves the location cursor within a field opposite to the direction of the
<right arrow> to the next component that can receive the keyboard
focus. Eventually it wraps back to the last component.

Moves the location cursor to the leftmost menu in the menu bar if there
is one. If a menu is already displayed, <F10> closes the menu and
returns the location cursor to where it was previously. (See “Menu
Traversal and Activation” in Chapter 8.)

Because the keys listed above are used for navigating among components, don’t use
them for other purposes. However, there’s an exception to this rule: the arrow keys can
be used to control a component that’s the only component in its field. For this reason,
each editable text field, list, scrollbar or sash is by default placed in its own field.

137

Chapter 7: Focus, Selection, and Drag and Drop

138

Mouse Navigation

To move the keyboard focus in the current active window using the mouse, users put the
pointer over a specific component and click the left mouse button. The keyboard focus
moves to the selected component, if you've allowed that component to accept keyboard
focus, and typically performs some action or selects some data. For example, clicking the
left mouse button on a pushbutton activates the pushbutton, as well as moves keyboard
focus to the pushbutton. Clicking the left mouse button in an editable text field moves
keyboard focus to the text field and places the insertion point in the text field at the
pointer location. If users want to move the keyboard focus to a component using the
mouse without activating that component, they can position the pointer over the
component, then hold down the <Ctrl> key while clicking the left mouse button.

By default, certain components do not grab the keyboard focus when activated using the
mouse. These include scrollbars, sashes, any other component that’s used only to change
the size or location of other elements, and any components that you've designated as
being unable to accept keyboard focus. If the user uses the mouse to activate any of these
components, it’s activated and the keyboard focus stays where it was.

Keyboard Focus and Navigation Guidelines

When designing keyboard focus and navigation for your application windows. ..
[Use explicit focus for navigating among components within a window.

[Support at least the minimum required functionality from the keyboard, such as
navigating to and entering data into editable text fields, using mnemonics and
keyboard accelerators to access menu entries, and scrolling any scrollable
component. Keep in mind that some users use alternate input devices that rely on
having functions available from the keyboard.

[] When the window becomes active for the first time, give focus to the component that
the user is most likely to want to interact with using the keyboard. When a user
returns the keyboard focus to a window that was previously the active window,
return the keyboard focus to where it was when the user moved the focus out of that
window.

[] Puteach component that requires the use of arrow keys to control it in its own field.
The following components are by default put in fields of their own: editable text
fields, lists, scrollbars, and sashes.

[] Don’t use the default keyboard navigation keys for other purposes. These keys are
<Tab>, <Ctrl>-<Tab>, <Shift>-<Tab>, <Ctrl>-<Shift>-<Tab>, the arrow keys, <F10>,
<Shift>-<F10>, and <Ctrl> in combination with a left mouse button click.

Selection

Selection

IRIS IM is based on the object-action model of direct manipulation. This means that a
user must first select an object or group of objects, then choose an action to perform on
that data. Users typically select data by clicking the left mouse button (to select a single
object) or by dragging with the left mouse button (to select a range of objects). The
selection is completed when the mouse button is released. Making a selection shouldn’t
automatically perform any operation on that selection. When users select data in an
application window, that data should be highlighted in some way so that when they pick
an action, they’ll know which chunk of data that action is being applied to.

At any time, there’s one selection that’s the primary selection. This is the last selection
explicitly started by the user and is used to copy data between applications. For details
on supporting the primary transfer model in your application, see “Supporting the
Primary Transfer Model” in Chapter 5.

This section describes:

o “Selection Models—What Can Be Selected and How To Select It”
¢ “Highlighting a Selection”

e “Multiple Collections in One Application Window”

Selection Models—What Can Be Selected and How To Select It

The data in an application window is divided into collections. A collection is a group of
related elements that share a selection model. There are four basic selection models
described in the OSF/Motif Style Guide:

¢ In the single selection model, only one element in the collection can be selected at any
given time. For example, a color palette usually allows you to pick only one color at
a time.

¢ The browse selection model is essentially the same as the single selection model,
except that it allows users to browse through the available elements by dragging
with the left mouse button. The list of available schemes in the Schemes control
panel is an example of this model.

* In the range selection model, more than one element in the collection can be selected
at any given time, but these elements must be next to each other. Text is usually
selected in this fashion—a user can select any number of contiguous characters in a
piece of text.

e In the discontiguous selection model, more than one element in the collection can be
selected at any given time, and these elements don’t have to be next to each other.
An example of this model is a list of files that allows a user to select multiple files.

139

Chapter 7: Focus, Selection, and Drag and Drop

Note that the OSE/Motif Style Guide also describes a fifth selection model, multiple
selection. Your application shouldn’t use this model because it uses mouse actions for
adding and removing selected elements that are different from other mouse actions.
Eliminating these inconsistent mouse actions for selection makes it much easier for users
to learn how to select data.

Each collection of data in your application should support the mouse and keyboard
actions for selecting and deselecting data listed in Table 7-1, depending on which of the
above models it supports. By default, the IRIS IM list component supports the browse
selection model, and the IRIS IM text component supports the range selection model.

Table 7-1 Selection Actions and Results

Action

Model Result

Click on an element in the collection All The element is selected, and any elements in the collection that were

previously selected are deselected. The location cursor is moved to the
selected element.

Drag through a range of data in the Browse As the user moves the pointer over each element in the collection, that

collection

element becomes selected and all other elements in the collection are
deselected. When the user releases the left mouse button, the element
currently under the pointer remains the selected item, and the location
cursor is moved to this element.

Drag through a range of data in the Range and Any elements in the collection that were previously selected are

collection

discontiguous deselected, and an anchor is set on the element or at the location where
the left mouse button was pressed. While the user continues to drag the
mouse, all elements between the anchor and the current location of the
pointer are selected. When the user releases the mouse button, the
current selection is set to all the elements between the anchor and the
location of the pointer when the mouse button was released.

<Shift>-click on an element or Range or The anchor is left in place, and the current selection is modified using
<Shift>-drag through a range of discontiguous one of three models for extending a range described in Section 4.1.4 of

elements in a collection

the OSF/Motif Style Guide. The preferred model is the balance beam
model, which is also the default for the IRIS IM text component.

<Ctrl>-click on an element in the =~ Discontiguous The selection state of the element is toggled, and the anchor and

collection

location cursor are moved to that element.

<Ctrl> drag through arange of data Discontiguous The selection state of the range of elements is toggled based on the

in the collection

anchor toggle model described in the OSF/Motif Style Guide, section 4.1.5.
That is, you pick the element in the range that is closest to the anchor
and set all of the elements in the range to the inverse of the selection
state of this element.

140

Selection

Table 7-1 (continued)

Selection Actions and Results

Action Model Result

Click outside of the selection (but All All elements are deselected.

not on any element in a collection

that requires at least one element to

be selected at any given time)

When all of the dataina collectionis Range and All elements are deselected.

selected, click anywhere inside the discontiguous

collection

<Esc> while in the process of All The current selection action is cancelled, and all user input is ignored
making a selection in any collection until the user has released all keys and buttons. The selection state is
of data. returned to its previous state.

<Ctrl>-</> when the collection has Range and All elements in the collection are selected. The anchor is placed at the
keyboard focus discontiguous beginning of the collection. The location cursor remains unchanged.
<Ctrl>-<\> when the collection has Range and All elements in the collection are deselected. The location cursor
keyboard focus discontiguous remains at its current position, and the anchor is moved to where the

location cursor is.

When users select data in a component that can be scrolled, the component should
support automatic scrolling—that is, if the data being selected is in a scrollable
component and the user drags the pointer out of the data display region while still

holding down the mouse button, the data should scroll in the direction of the pointer and
should continue to be selected. Note that this behavior is automatically supported in the
IRIS IM list and text components.

The mouse and keyboard actions described above represent a subset of those defined in
the OSF/Motif Style Guide, which requires that all functionality be available from the
keyboard. The OSF/Motif Style Guide describes specific keyboard actions to select
individual elements, select a range of data, and modify the data selected. If you
determine that users will want to access any of this functionality in your application
using the keyboard, see Section 4.1.6 of the OSF/Motif Style Guide for details on
supporting keyboard selection. Note that keyboard selection is automatically supported
in IRIS IM list and text components.

141

Chapter 7: Focus, Selection, and Drag and Drop

142

Highlighting a Selection

When the user initiates and continues to add to a selection, your application should
visually highlight the currently selected data. In addition, while the data in the collection
is being adjusted, the currently selected data should always be highlighted to show users
what would be selected if they were to release the mouse button immediately. Selections
should remain highlighted, even when the window containing that selection is no longer
the active window. The OSF/Motif Style Guide refers to this as persistent always
highlighting. This is the best type of selection highlighting to use when implicit focus is
used for moving the keyboard focus across windows (implicit focus is the default for
4Dwm, as explained in “Keyboard Focus Across Windows” in Chapter 3).

Use persistent always highlighting except when the only reason a user can make a
selection is to transfer that data using the primary transfer model and the user cannot
perform any other actions on this data. (The primary transfer model is discussed in
“Supporting the Primary Transfer Model” in Chapter 5.) For this type of data, your
application should use nonpersistent highlighting, which means that the selection is
highlighted only when it’s the primary selection. When this data is no longer the primary
selection, the currently selected data is no longer highlighted and the current selection is
set to empty.

Multiple Collections in One Application Window

This section describes some common ways that multiple collections of data might
interact in a single application window. There are three basic scenarios for using multiple
collections in the same window:

¢ The user can select data in only one collection at a time.

* The user can select data in more than one collection at a time, and any given mouse,
keyboard, or menu command applies to only one of the collections.

e The user can select data in more than one collection at a time, and some mouse,
keyboard, or menu commands can be applied to more than one of the collections.

Selection

If the user can select data in only one collection at a time, deselect the previous selection
whenever the user makes a new selection in any of the collections. If the user can select
data in more than one collection at a time, and any given mouse, keyboard, or menu
command applies to only one of the collections, don’t do anything special. Since each
action can be applied only to one collection, it’s obvious which collection to apply it to.
For mouse, keyboard, or menu commands that can be applied to more than one of the
collections, apply the operation to the collection that most recently had a selection made
in it. (See “Keyboard Focus and Navigation” earlier in this chapter.)

Selection Guidelines

For each collection of data. ..

[] Use one of the four recommended selection models—single selection, browse
selection, range selection, or discontiguous selection. Don’t use the multiple
selection model.

[Automatically scroll the data as the user drags the pointer out of the scrollable data
display region.

[] Determine if your users will need to create or modify a selection using the keyboard.
If so, then support the keyboard actions defined in Section 4.1.6 of the OSF/Motif Style
Guide. (These actions are automatically supported if you use the IRIS IM list or text
components.)

When highlighting a selection ...

[Update the highlighting continuously as the user initiates and extends the selection.

[] use persistent always highlighting, unless the only reason a user can select this data
is to transfer it using the primary transfer model. In this case, use nonpersistent
highlighting.

When managing multiple collections of data in a single window . ..

[] Deselect the previous selection whenever the user makes a new selection in any of
the collections for cases where the user can select data in only one collection at a time.

[Apply the operation to the collection that most recently had a selection made in it
when the user can select data in more than one collection at a time and there are
mouse, keyboard, or menu commands that can be applied to more than one of the
collections.

143

Chapter 7: Focus, Selection, and Drag and Drop

Drag and Drop

144

Direct manipulation, or drag and drop, describes an interface in which the user moves
icons on the desktop or in application windows in order to perform various actions on
the objects represented by the icons. Some typical uses for drag and drop include the
following:

* Moving an object from one place to another by dragging the object with the mouse
and dropping it on a target. For example, to move a file from one directory to
another, the user drags the icon representing the file and drops it on the folder icon
representing the new directory location.

* Making a reference to the object in the new location. For example, to add an online
book to the personal bookshelf in IRIS Insight, the user drags an icon representing
an online book from the main bookshelf to the personal bookshelf. This creates a
reference to that book on the personal bookshelf in addition to the reference on the
main bookshelf.

* Performing some operation on the item being dragged. For example, a user can

print a file by dragging the icon that represents the file onto a printer icon.

If the user presses <Esc> during a drag and drop operation, the operation should be
cancelled, and both the object and the target should be left as they were before the
operation was initiated.

This section covers the following topics:

¢ “Two Models of Drag and Drop”

¢ “Pointers for Drag Operations”

Two Models of Drag and Drop

Two models for drag and drop exist, one recommended for use with text, and the other
recommended for use with other objects.

Drag and Drop

Drag and Drop for Non-Text Objects

The most common model for drag and drop found in applications requires the user to
select and drag the object using the left mouse button. This is the preferred model for
implementing drag and drop of non-text objects; it reinforces the direct manipulation
model of controlling objects directly using the left mouse button. The two most common
scenarios for this are the following:

* The user initiates dragging the object by positioning the cursor over the object,
pressing with the left mouse button and dragging the mouse. Pressing the left
mouse button in this case selects the object. Dragging the mouse drags the object.
(Note that if the pointer is over two different elements that can be dragged, the
topmost element should be the one selected and dragged.) Releasing the mouse
button drops the object on the target below the pointer location.

* The user selects one or more objects in a collection using the left mouse button. The
user then positions the pointer anywhere over the selection, presses the left mouse
button, and drags the mouse to drag the object(s). As with the above scenario, when
the user releases the mouse button, the object is dropped on the target below the
pointer location. Note that in this case, if users positions the pointer outside of the
selection and begins dragging with the left mouse button, they’re indicating that
they want to make a new selection. See “Selection” earlier in this chapter.

For either of the above scenarios, after a drop the target should determine both the format
of the data and whether the user meant to perform a move or a copy operation. In some
cases, dropping the object might simply mean that the object should be moved to a new
location in the same component. In the case where the drop is in the same component,
after the drop the data should remain selected. For example, the user can move files
around in a Directory View window using drag and drop. In other cases, dragging an
object onto a target means that the object should be copied to the target so that the target
can perform some operation on it. For example, when the user drags a file onto a printer
icon, the file is translated into an appropriate format and sent to the printer.

145

Chapter 7: Focus, Selection, and Drag and Drop

146

To make drag and drop of file objects easy to include in your application, IRIX Interactive
Desktop includes a file finder component, which provides a drop pocket (see Figure 7-3).
If the user drops a file icon in the drop pocket, the text field updates to show the
pathname of the file represented by the icon. If the user types in the field, the icon in the
drop pocket changes to show the new choice. For guidelines on when to use this type of
control in your application, see “File Finder” in Chapter 9.

| | | |
;@ Jusr/people/guest/

|
|— drop pocket |_ text field

Figure 7-3 File Finder Component

Drag and Drop for Text

Drag and drop can also be implemented using the middle mouse button. Use this model
of drag and drop for transferring text rather than the model described in the previous
section because the left mouse button is so heavily used for selection in text.

In this case, the user selects a region of text to be dragged using the selection techniques
described in “Selection,” earlier in this chapter. Then the user positions the pointer over
the selected text region and drags the text with the middle mouse button. When the user
releases the middle mouse button, the text is dropped on the target under the pointer. By
default, all text (including labels) can be dragged using the middle mouse button. You
may want to turn off drag and drop for some of the text in your application if users will
never need to drag it (for example, labels).

For additional details of implementing drag and drop of text, see Sections 4.3.4 and 6.2.5
in the OSE/Motif Style Guide.

Drag and Drop

Pointers for Drag Operations

When selecting and dragging are integrated into the left mouse button, use the standard
arrow cursor for simplicity. When drag and drop is implemented using the middle
mouse button (typically for dragging text), replace the standard pointer with a drag icon.
This reinforces to users that they’re using the middle mouse button to perform a drag
and drop operation. The design of drag icons is discussed in Section 6.2.5.1 of the
OSF/Motif Style Guide.

Drag and Drop Guidelines

When designing drag and drop for your application ...

[] cancela drag and drop operation if the user presses <Esc>, and leave both the object
and the target as they were before the operation was initiated.

[] Use the left mouse button for both selecting and dragging non-text objects. Use the
standard cursor in this case.

[] Use the middle mouse button for dragging text, and replace the cursor with a drag
icon when the text is being dragged.

147

Chapter 8

Types of Menus

Menus

Menus allow users to browse through options, settings, and commands available in your
application. A well-organized set of menus shows users what your application can do
and makes it easy to locate particular functions. This chapter describes the kinds of
menus your application should use and how menus and menu items should be
organized, in these sections:

¢ “Types of Menus” defines the three types of menus that your application can use:
pull-down, popup, and option menus.

* “Menu Traversal and Activation” describes the default IRIS IM model for accessing
menus with the mouse and the keyboard, with two additions that your application
should support.

e “The Menu Bar and Pull-Down Menus” discusses how to design pull-down menus
(which include cascading, or nested, menus).

e “Popup Menus” discusses how to design popup menus.

Option menus are discussed only briefly in this chapter; they’re covered in detail in
“Option Buttons” in Chapter 9.

IRIX Interactive Desktop supports three types of menus, all of which are defined in the
OSF/Motif Style Guide: pull-down menus, popup menus, and option menus. This section
discusses these menu types:

e “Pull Down Menus”
¢ “Popup Menus”

* “Option Menus”

149

Chapter 8: Menus

150

Pull Down Menus

Of the three types, pull-down menus are the most frequently used. Most applications
have a menu bar, which is a collection of pull-down menus. Figure 8-1 shows a typical
menu bar.

Hie fit gptions Hep |

Figure 8-1 Menu Bar

Each pull-down menu is represented in the menu bar by its title. A user can display a
menu by pressing the left mouse button on the menu title. Figure 8-2 shows a typical
pull-down menu.

| fie |

New Cirte i
Lper.. Cirfr o
Save Cirfe 8
Save As...

Frint Cirfe P
Ciose Cirfe W
Exit Cirfral

Figure 8-2 Pull-Down Menu

Pull-down menus can include submenus, or cascading menus. A menu entry for a
cascading menu is indicated by an arrowhead next to the entry, as shown in Figure 8-3.
Pull-down menus are discussed in detail in “The Menu Bar and Pull-Down Menus” later
in this chapter.

Types of Menus

Load Cirf+l foad Cirivl
Eire Cirf+F Hre CtrivF
Select Target... Select Target...
Frojectiles . Projectiles " & Stone
Entry for cascading menu Cascading menu ® Low
& Piano

Figure 8-3 Cascading Menu

Popup Menus

Unlike pull-down menus, popup menus are not represented by a title on the screen. A
user displays a popup menu by pressing the right mouse button. The contents of the
popup menu depend on where the mouse pointer is located when the button is pushed.
Figure 8-4 shows a popup menu. Popup menus are discussed in detail in “Popup
Menus” later in this chapter.

fexiBiender
Cuf Cirfe X

Copy Ol
Fasie Cif+V

Figure 8-4 Popup Menu

Option Menus

Option menus allow the user to select a single option from a list of options. An option
menu appears as a button marked with a horizontal bar, as shown in Figure 8-5.

Maitbox =

Figure 8-5 Option Menu Button

151

Chapter 8: Menus

The option button is labelled with the currently selected option. When a user presses the
left mouse button over the option button, the option menu is displayed, as shown in
Figure 8-6. If the user selects a different option from this menu, the label on the button
updates to reflect this new value.

Maitbox |=
Shile

COmpany

eritiques
difbert

S

Figure 8-6 An Open Option Menu

Entries in an option menu represent mutually exclusive values of a parameter. They
shouldn’t be used for actions. Guidelines for using option buttons and option menus are
discussed in “Option Buttons” in Chapter 9.

Menu Traversal and Activation

152

Pull-down, popup, and option menus should use the default IRIS IM model for menu
traversal and activation, with two additions. This model is defined in the OSF/Motif Style
Guide, Chapter 3, and summarized below. The two additional guidelines are also
described in the following paragraphs.

Pull-down menus use mnemonics and keyboard accelerators for traversal and
activation; these techniques are described in the next section, “The Menu Bar and
Pull-Down Menus.”

With the default model, users can use either the mouse or the keyboard to display,
traverse, activate, and close menus. This section describes:
e “Using the Mouse to Manipulate Menus”

e “Using the Keyboard to Manipulate Menus”

Menu Traversal and Activation

Using the Mouse to Manipulate Menus

With the mouse, users have the additional choice of manipulating menus in either a
spring-loaded or a posted manner.

Spring-Loaded Manner

To display a pull-down or option menu in a spring-loaded manner, the user positions the
pointer over the menu and presses the left mouse button. To display a popup menu in a
spring-loaded manner, the user positions the pointer in an area of the window that has a
popup menu associated with it and presses the right mouse button. The user traverses
any of these menus by moving the pointer over the menu entries while continuing to
hold the mouse button.

If the pointer is over a menu entry when the user releases the mouse button, that entry is
activated and the menu is removed.

Posted Manner

To display a menu in a posted manner, the user positions the mouse pointer over the
menu or over the appropriate area of the window and clicks the appropriate mouse
button (left for pull-down and option menus, right for popup). The menu is then
displayed with the location cursor on the first available menu entry (that is, the first
non-disabled entry). To activate one of the menu entries, the user positions the pointer
over the appropriate entry and clicks the left mouse button.

To remove the menu, the user clicks the left mouse button anywhere outside the menu.
For popup menus, the user can click either the left or right mouse buttons to select an
entry or remove the menu.

Mouse Click

In addition to supporting this default model for manipulating spring-loaded and posted
menus with the mouse, make sure your application handles the mouse click that closes
a posted menu as follows: Even though this click is passed on to the underlying
application window, your application should ignore this click so that users don’t lose
selections they’ve made in the window just because they display and close menus.

153

Chapter 8: Menus

154

Using the Keyboard to Manipulate Menus

By default, in IRIS IM, users can also display, traverse, activate, and close menus using
the keyboard:

1.

To display pull-down menus, users first press <F10> to move the keyboard focus to
the leftmost menu in the menu bar and then press the down arrow key. To display
an option menu, users first move keyboard focus to the option menu button and
then press the space bar.

Once a menu is displayed, the user can use the up arrow and down arrow keys to
traverse a menu. Similarly, the user can use the left arrow and right arrow keys to
move from menu to menu across the menu bar.

Once a menu is displayed, pressing <Enter> or the space bar activates the item
under the location cursor, closes the menu, and returns the keyboard focus to where
it was before the menu was displayed.

Pressing <Esc> while a menu is displayed closes the menu and returns the keyboard
focus to where it was before the menu was displayed. Pull-down menus can also be
closed by pressing <F10>.

In addition to supporting this default model for manipulating menus with the keyboard,
your application should allow <Shift><F10> to display a popup menu if one is available
and move the keyboard focus to the first available entry in the menu. Pressing
<Shift><F10> again should close the popup menu and return the keyboard focus to
where it was before <Shift><F10> was pressed originally. This behavior is recommended
in the OSE/Motif Style Guide (where <Shift><F10> is described as the substitute for the
<Menu> key), but it isn’t supported by default in IRIS IM.

Menu Traversal and Activation Guidelines

In general, when designing traversal and activation for your menus. ..

[]
[]

Allow users to activate and traverse the menus using the default IRIS IM behaviors
for mouse and keyboard actions.

If a user closes a menu by clicking somewhere outside of the menu, make sure the
application ignores this click so that users don’t lose selections they’ve made in the
window just because they display and close menus.

Allow users to display and close popup menus using the key combination
<Shift><F10>. When <Shift><F10> displays a popup menu, the location cursor
should be on the first available menu entry. When <Shift><F10> closes the menu, the
keyboard focus should be returned to where it was before the menu was displayed.

The Menu Bar and Pull-Down Menus

The Menu Bar and Pull-Down Menus

In most cases, each of an application’s primary windows has a menu bar as described in
“Menu Bars in Primary Windows” in Chapter 6. Users should be able to access most of
an application’s functions through its menu bars. This makes it easy for users to see what
functions are available to them. This section describes the menu bar and pull-down
menus:

e “Standard Menus”

e “What to Put in the Pull-Down Menus”

¢ “Choosing Mnemonics”

* “Choosing Keyboard Accelerators”

¢ “Disabling Menu Entries”

¢ “Dynamic Menu Entries”

Each menu bar contains several pull-down menus. Each pull-down menu is represented
in the menu bar by its title and contains entries that are either an action, a label for a
cascading menu, or a separator, as shown in Figure 8-7. Also as shown, the cascading

menus contain additional actions. See “What to Put in the Pull-Down Menus” for more
information about the content of pull-down menus.

Menu title ————— _Qatapuftl
Menu entty —M8M8MM Load Cirf+d Keyboard accelerator
Underlined mnemonic——-ﬁm Gt e —— Separator
Select Target... Ellipsis
Projectiles >
< Stone
& Cow —— cascading menu
& Piano

Figure 8-7 Elements of a Pull-Down Menu

Users interact with pull-down menus according to the model described in the previous
section, “Menu Traversal and Activation.” In addition, users can access menu entries
using mnemonics, which are the underlined characters in the menu titles and on menu
entries (see Figure 8-7).

155

Chapter 8: Menus

156

To access a menu using a mnemonic, a user moves the pointer into the application
window, then holds down the <Alt> key while pressing the character key that matches
the underlined character in the menu title. For example, to display the Catapult menu
shown in Figure 8-7, the user holds down the <Alt> key and presses the “c” key. Then,

o/

to select a projectile from the Projectiles cascading menu, the user presses the “p” key to
display the Projectiles cascading menu, and then presses “p” again to select “Piano.”
Note that mnemonics are always activated without the <Shift> key, even if the
underlined character happens to be uppercase. Choosing appropriate mnemonics is

discussed in more detail in “Choosing Mnemonics” later in this chapter.

Menu entries that represent frequently used actions can have keyboard accelerators, as
shown in Figure 8-7. These keyboard accelerators are displayed in the menu next to the
action and are typically a combination of the <Ctrl> key and one other key. To initiate a
menu action using a keyboard accelerator, a user moves the pointer over the window to
make it the active window and then presses the key combination shown in the menu
entry. For example, instead of selecting “Fire catapult” from the Catapult menu in
Figure 8-7, a user could fire the catapult by holding down the <Ctrl> key and pressing
the “f” key. When to use keyboard accelerators and how to choose ones which are
appropriate are discussed in more detail in the “Choosing Keyboard Accelerators”
section later in this chapter.

A menu entry that’s followed by an ellipsis (such as the “Select target...” entry shown in
Figure 8-7) brings up a dialog that requests more information from the user before any
action is performed. When to use an ellipsis in a menu entry is discussed in more detail
later in this chapter in “Naming Menu Entries in the Pull-Down Menus.” Menu entries
that aren’t currently available are disabled. This is usually shown by graying out the
menu entry, as discussed in “Disabling Menu Entries.”

When designing the menu bar and its pull-down menus for your application, start with
the standard menus described in the next section, “Standard Menus.” Then, modify these
standard menus to fit your specific application, using the guidelines in the section “What
to Put in the Pull-Down Menus.”

The Menu Bar and Pull-Down Menus

Standard Menus

Your application needs its own customized set of menus and menu entries; however, use
the standard set as the starting point for the overall menu structure. Standard menus
include:

e “File Menu”

e “Selected Menu”
e “Edit Menu”

e “View Menu”

e “Tools menu”

e “Options menu”

e “Help menu”

All of the menu entries discussed in this chapter are optional; many of them are
appropriate for most applications (but there are always exceptions), and some entries are
generally less common than others. For example, “Print” is a fairly common entry for the
“File” menu, but printing doesn’t generally make sense for audio applications. “Import”
is another entry for the “File” menu, but it’s less common than “Print.” Figure 8-8 shows
a menu bar with all of the standard menus (in the correct order) and their mnemonics.
This menu bar includes all of the menus defined in the MenuBar reference page of
Chapter 9 in the OSF/Motif Style Guide, plus an additional menu, Tools, which is defined
in the IRIX Interactive Desktop environment. The standard menus are described in the
following sections.

fle Selected Fdit Miew Jools Options Hep |

Figure 8-8 Standard Menus for Menu Bars

Note that for each of the standard menu entries described in the following sections,
mnemonics are represented by the underlined character in the entry label. This label also
includes an ellipsis if the entry should include them. The entries are listed in the order in
which they should appear in menus, and entries that are likely to be less common are
indicated. Keyboard accelerators, if they exist, are listed in the description of the specific
menu entry (Table 8-3 lists standard keyboard accelerators). Appropriate places for
separators are shown in the figures depicting the standard menus. Situations where a
menu entry should be disabled are included in the description of the menu entry if
applicable. Also, the keyboard shortcuts are shown as they should be displayed in the
menus (for example, <Ctrl>-s is shown as “Ctrl+S”).

157

Chapter 8: Menus

158

File Menu

The File menu contains entries for actions that are performed on files, such as “Open,”
“Save,” and “Print,” and on the application as a whole, such as “Exit.” Figure 8-9 shows
the standard File menu with the most common entries; note that its mnemonic is “E.”
These standard entries, as well as a few other less common ones (“Reopen,” “Import,”
and “Revert”), are described in Table 8-1 in the order in which they should appear in the
menu. All of these entries should behave as defined by the File Menu reference page in
the OSF/Motif Style Guide, Chapter 9, except as noted in the table. Note that “New,”
“Open,” “Close,” and “Exit” should display a dialog as described in “Invoking Dialogs”
in Chapter 10 if there are unsaved changes to the current document.

e I

Mew Cirf

Lpeir.. Cirfri2

Save Cirfe 8

Save As...

Frit Cirfr P

Liose Cirte W

Exit Cirfr 2

Figure 8-9 The Standard File Menu

The Menu Bar and Pull-Down Menus

Table 8-1 lists each File menu entry, its mnemonic, OSF/Motif behavior, IRIX Interactive
Desktop additions and exceptions, and keyboard accellator.

Table 8-1

File Menu Entries

Menu Entry
and Mnemonic

OSF/Motif Behavior

IRIX Interactive Desktop Additions and Exceptions

Keyboard
Accelerator

New

Open

Reopen?

Import?

Creates a new, empty
file.

Brings up a dialog,
allowing the user to
choose an existing file to
open.

Not defined.

Not defined.

If your application allows more than one document window to be open
ata time, it should create a new, empty document window; if the current
document window is already empty, the action should have no effect.
For more information on designing applications that support multiple
open documents, see “Standard Application Models” in Chapter 6. If
your application requires more information before creating a new
document (for example, the user must select a template), this action may
display a dialog to request the information. In this case, the entry label
should be followed by an ellipsis.

If your application allows more than one document window to be open
at a time, it should create a new document window to display the
specified file; however, if the current document window is already
empty, the file should be displayed in the current document window.
This new document window shouldn’t be a separate instantiation of the
application.

“Reopen” allows a user to return to a file that had been previously
opened by the application. Choosing “Reopen” should display a
cascading menu of previously opened files; you might choose to limit
the length of this list to a maximum of 10 entries. (You should disable
this entry if there are no previously opened files—for example, if this is
the first time the user has launched the application.) If there are unsaved
changes to the current file, your application should display a dialog that
asks the user whether to save or discard the changes (see “Invoking
Dialogs When Manipulating Files” in Chapter 10).

“Import” allows a user to read an existing data file into the current
application. This entry can display the IRIX Interactive Desktop file
selection dialog (in which case it should be displayed with an ellipsis),
and the application should automatically determine the type of the file
after it’s selected. (See “Types and Modes of Dialogs” in Chapter 10 for
details on the IRIX Interactive Desktop file selection dialog.)
Alternatively, this entry can use a cascading menu to display the types
of data that your application allows users to import. Each of these
entries should be followed by an ellipsis and display the file selection
dialog to allow the user to specify the specific file to import. Follow this
entry with a separator.

Ctrl+N

Ctrl+O

159

Chapter 8: Menus

Table 8-1 (continued)

File Menu Entries

Menu Entry
and Mnemonic

OSF/Motif Behavior

IRIX Interactive Desktop Additions and Exceptions

Keyboard
Accelerator

Save

Save As...

Revert?

Print

Close

Exit

Saves the current file.

Brings up a dialog and
saves the current file
with a new name. Also
closes the previous file
and opens the new one.

Not defined.

Prints the current file.

Closes a window and its
associated support
windows and dialogs,
without quitting the
current application.

Closes all windows for
the application and
quits the application.

Although some applications disable this entry when there are no
changes to be saved, your application should never disable this entry (as
described in “Disabling Menu Entries”).

If the current document already has a filename, that filename should be
the default value in the file selection dialog.

“Revert” allows a user to undo all changes made to the current file since
the last time the user saved it. (This entry should be disabled if there are
no unsaved changes.) Your application should display a warning dialog
before executing this action, as described in “Invoking Dialogs When
Manipulating Files” in Chapter 10.

If choosing “Print” brings up a dialog to allow the user to select from a
list of all available printers, it should be followed by an ellipsis. If the
keyboard accelerator is used to activate this entry, the print job should
be sent to the default printer.

“Close” should be provided on co-primary windows and on support
windows if they have menu bars. It shouldn’t be provided on the main
primary window. (See “Window Types” in Chapter 6 for definitions of
these window types and “Window Decorations and the Window Menu”
in Chapter 3 for details on the “Close” entry.) Applications that follow
the “Multiple Document, No Visible Main” model should exit the
application when the last co-primary window is closed. (See ““Multiple
Document, No Visible Main” Application Model” in Chapter 6.)

“Exit” should always be provided in the main primary window. If users
are likely to want to exit your application from a specific co-primary
window in the application, that window should include an “Exit” entry
in the leftmost menu, in addition to a “Close” entry. (See “Window
Decorations and the Window Menu” in Chapter 3 for details on when to
use “Exit” and “Close.”)

Ctrl+S

Ctrl+P

Ctrl+W

Ctrl+Q

a. These entries are probably less common than the others.

160

The Menu Bar and Pull-Down Menus

Selected Menu

The Selected menu contains application-specific actions that are performed on the
currently selected objects. For example, Directory View windows on the IRIX Interactive
Desktop display icons representing files. Each Directory View window has a Selected
menu that allows users to perform actions on the selected files, such as “Open,” “Print,”
and “Remove.” (Note that since actions in the Selected menu act on the selected data
while actions in the File menu act on the entire file of data, the same entry—"Print,” for
example—can mean something different in the two menus.) The Selected menu should
not contain editing actions such as “Cut” since these should be in the Edit menu. Use “S”
as the mnemonic for the Selected menu.

Edit Menu

The Edit menu contains actions that transfer data to or from the clipboard, actions that
modify the current selection, and “Undo.” It contains actions for both the clipboard data
exchange model (“Cut,” “Copy,” and “Paste”) and for the primary data exchange model
(“Promote”). Both of these data exchange models are described in Chapter 5, “Data
Exchange on the IRIX Interactive Desktop.” Figure 8-10 shows the most common entries
in the standard Edit menu; use “E” as its mnemonic.

The name of the action to be undone

Edit (for instance, "Cut")
Unda faction] Cirlvs

Cut CirfaX

Copy Ctrir C

Paste Clri+ V/

Deafete

Select Alf CirivA

Deselect Aff - Shitt+ Cirl+A

Figure 8-10 The Standard Edit Menu

These standard entries, as well as a few other less common ones (“Clear,” “Promote,” and
“Color Editor”), are described in Table 8-2 in the order in which they should appear in
the menu. Make sure that all of these entries behave as defined in the Edit Menu reference
page in Chapter 9 of the OSF/Motif Style Guide, except as noted in the table.

161

Chapter 8: Menus

Table 8-2 Standard Edit Menu Entries

Menu Entry and OSF/Motif Behavior IRIX Interactive Desktop Additions and Exceptions Keyboard
Mnemonic Accelerator

Undo [action] Reverses the effect of a previous action. At a minimum, your application should be able to undo Ctrl+Z

The “Undo” action may apply to all of the actions in the Edit menu. If an undo action will
actions that the user accomplishes change the data significantly and can’t be undone, you
without using the menus—typing text, should display a warning dialog explaining that the
for example. change can’t be undone and ask for confirmation. See

“Types and Modes of Dialogs” in Chapter 10 for
information on warning dialogs. The “Undo” entry
should be disabled if the last change cannot be undone
or if there are no changes.

If your application has only a single-level undo (that is,
it can undo only the most recent action), after the user
selects “Undo,” the “Undo” entry should be changed to
“Redo [action].” If the user selects “Redo” the
application should reverse the effects of the previous
“Undo,” and toggle the menu entry back to “Undo
[action].” If your application has multiple-level undo
(that is, it can undo a series of actions), you should
provide a separate “Redo” menu entry. Typically,
applications don’t allow users to undo beyond the saved
version of the file; if your application does, you should
display a warning dialog.

Redo [action] Not defined. “Redo” reverses the effect of a previous “Undo” action. Shift+Ctrl
It is useful to have a separate “Redo” entry if your +Z
application has multiple-level undo. Like “Undo,” the
“Redo” entry should indicate the action that will be
redone (for example, “Redo Cut,” “Redo Paste”). If you
provide a “Redo” command, place it after the Undo
entry and follow it with a separator.

Cut Removes the selected data from the The “Cut” entry should be disabled if there’s nothing Ctrl+X
application window to the clipboard. currently selected in the window.

Copy Copies the selected data to the The “Copy” entry should be disabled if there’s nothing Ctrl+C
clipboard without removing it from currently selected in the window.

the application window.

162

The Menu Bar and Pull-Down Menus

Table 8-2 (continued)

Standard Edit Menu Entries

Menu Entry and OSF/Motif Behavior

IRIX Interactive Desktop Additions and Exceptions Keyboard

Mnemonic Accelerator
Paste Copies the contents of the clipboard If there’s nothing currently on the clipboard available to Ctrl+V
into the application window. be pasted, display a dialog saying there’s nothing
available. See “Invoking Dialogs” in Chapter 10.
Delete Removes the selected data from the The “Delete” entry should be disabled if there’s nothing
application window. currently selected in the window.
Select All Selects all of the elements in a The mnemonic for “Select All” is “A.” Ctrl+A
component of the application window.
Deselect All Deselects all of the elements in a The “Deselect All” entry should be disabled if there’s Shift+Ctrl
component of the application window. nothing currently selected in the window. The +A
mnemonic for “Deselect All” is “1.”
Clear® Same as “Delete,” except that the If you provide a “Clear” command, place it before the
remaining data isn’t reorganized to fill “Delete” entry. The “Clear” entry should be disabled if
in the space left by the cleared data. there’s nothing currently selected in the window.
Promote? Promotes the current selection to the ~ “Promote” should be included if it can be difficult or Alt+ Insert

primary selection.

Color Editor...2 Not defined.

time-consuming to recreate a selection in your
application, and if your application supports the
primary transfer model described in “Supporting the
Primary Transfer Model” in Chapter 5. Disable this
entry when there’s no current selection or when the
current selection is already the primary selection; it
should be enabled only when the application window
has a selection that isn’t currently the primary selection.
See “Selection” in Chapter 7 for information on
selections. The mnemonic for “Promote” is “m.”

Choosing “Color Editor” invokes the IRIX Interactive
Desktop color chooser, which allows the user to select
colors. (See “A Specific Standard Support Window: The
IRIX Interactive Desktop Color Chooser” in Chapter 6.)

a. These entries are probably less common than the others.

163

Chapter 8: Menus

164

View Menu

The View menu contains entries for application-specific actions that change the user’s
view of the current data but that don’t change the actual data.

For example, if your application window has several panes of information, the View
menu could provide the user with a way to turn each individual pane on or off. Group
together the entries representing the individual panes, and provide a checkbox in front
of each one indicating whether the pane is currently being displayed or not. (See
“Splitting Primary Windows Into Panes” in Chapter 6 for information on multiple-pane
windows. You can find more information on menu checkboxes in “Using Radio Buttons
and Checkboxes in Pull-Down Menus.”)

Other entries in the View menu can adjust the scale of the view (zoom in and zoom out),
display support elements (such as rulers and grid lines), and hide or display certain parts
of the data. Use “V” as the mnemonic for the View menu.

Tools menu

The Tools menu contains application-specific entries that allow the user to open support
windows for manipulating the data in the parent primary window. For example, a
desktop publishing package might have separate support windows that provide special
controls for editing graphics, tables, and mathematical equations; access to these support
windows would be placed in the Tools menu. See “Support Windows” in Chapter 6 for
a discussion of support windows. Use “T” as the mnemonic for the Tools menu.

Options menu

The Options menu contains application-specific entries that allow the user to customize
the application. For example, a multi-window application might have entries in the
Options menu to allow the user to set preferences such as which windows should come
up by default when the application is started, and whether window sizes and positions
should be saved between sessions. Use “O” as the mnemonic for the Options menu.

Help menu

The Help menu contains entries for actions that provide several different kinds of help
information to the user. All application windows that have a menu bar should contain a
Help menu. Its mnemonic is “H.” The standard entries for the Help menu are discussed
in “Providing Help through a Help Menu” in Chapter 4.

The Menu Bar and Pull-Down Menus

What to Put in the Pull-Down Menus

Make sure your application’s pull-down menus include the standard menu entries that
are relevant to your application, plus the application-specific entries you need to
represent your application’s core functionality. The previous section, “Standard Menus,”
describes when and how to use the standard entries; this section presents guidelines for
application-specific modifications and additions to the standard menus.

As you decide which standard entries to include in your application, consider each of
these entries on a case-by-case basis. For example, you almost certainly need an “Exit”
entry, but it’s possible that none of the other standard File menu entries make sense for
your application, including the “File” menu title itself.

Users often learn the functionality of a new application by scanning the menus to see
what actions are available and by browsing the online help. Also, when users want to
perform some action, they usually look first for that action in the pull-down menus.
Thus, make all simple, frequent actions accessible from the pull-down menus.

Be sure to include actions for performing basic operations (such as “Cut,” “Paste,” or
“Save”), for setting the value of an attribute (for example, make selected text bold, or turn
grid lines on or off), for online help, and for “Undo” (particularly if users can perform
actions that destroy or significantly change their data). If this important functionality is
hidden in a dialog, users won't easily discover it. (See Chapter 10, “Dialogs” for details
on when to use dialogs.) Also, don’t include more than 10-12 entries in a menu or users
will have trouble scanning it; make sure that all of your entries fit on the screen at one
time because Motif doesn’t support scrolling menus.

Actions that are accomplished using buttons in primary windows should be repeated in
the pull-down menus because they’re probably the most frequently accessed actions.
Including them in the menus gives users one place to look for all actions and allows you
to assign keyboard accelerators and mnemonics that are clearly shown in the menu
entries.

Provide users with the option of using the keyboard for frequently used actions rather
than restricting them to pointing-and-clicking on buttons. In addition, all simple actions
should have an associated menu command even if there’s a direct manipulation method
or mouse double-click shortcut available for accomplishing the task. Providing menu
commands avoids hidden functionality, and helps those users who have difficulty
performing double-clicks.

165

Chapter 8: Menus

166

If you think that your users need constant access to a group of actions, make these actions
available in your application’s support window. As a second choice, you can use a
tear-off menu as described in the OSF/Motif Style Guide, section 6.2.3. Support windows
are designed to include groups of controls that the user might want to use continuously.
Support windows allow for a more flexible layout of controls than tear-off menus do, and
support windows can contain all kinds of components, such as labels and text input
fields, not just push buttons. (See “Support Windows” in Chapter 6 for information on
designing support windows.) Make sure that users can access such support windows as
well as co-primary windows from the menu bar of their parent window. Make sure that
these windows have an appropriate titlebar.

Naming Menus in the Menu Bar

Use one-word (capitalized) titles in all menus in the menu bar since users may interpret
a second word as a separate menu title. Use entire words for menu titles rather than
abbreviations. Don’t use bitmaps as menu titles. Use the standard titles for menus (for
example, File and Edit) if theyre applicable to your application, but don’t use a standard
title if you're changing the standard definition. (See “Standard Menus” for standard
menu titles and their definitions.)

The leftmost menu contains actions that operate on a logical unit of data for the
application; it's generally titled “File” because most applications read and write data
files. However, if your application doesn’t manipulate data files, the leftmost menu
should reflect the unit of data that the user expects to operate on. For example, the Search
tool’s leftmost menu is called Page because the application doesn’t manipulate data files,
but it does offer several different pages that define search categories.

If your application does read and write data files but the word “File” might be confusing
to users, choose a more appropriate title for the leftmost menu. For example, in
MediaMail, a group of documents (mail messages) are stored in a single file referred to
as a mail folder. The leftmost menu in the main window is named “Folder” to make it
clear that it contains actions that apply to the entire folder of messages rather than to
individual messages. If the menu were named “File,” it might not be clear whether the
“Open” entry opened a message or a mail folder. Similarly, you can change the names of
other standard menus to make them more meaningful. The second menu in the main
window of MediaMail is named “Message” because all operations in that menu are
performed on the selected messages. This menu could have been called the Selected
menu, but “Message” makes it clear what the menu entries act on.

The Menu Bar and Pull-Down Menus

Naming Menu Entries in the Pull-Down Menus

As with menu names in the menu bar, use the standard names for menu entries within
pull-down menus if they’re applicable to your application; don’t use a standard name if
you're changing the standard definition. (See “Standard Menus.”) Menu entries should
be capitalized using the same rules for capitalizing book titles: capitalize the first word
and other non-articles, but don’t capitalize articles unless they’re the first word.
Generally, a menu entry should be one of the following:

* A verb—such as “Cut,” “Copy,” or “Delete.”

* A value for a parameter, when the action is to set the parameter to that specific
value. For instance, IRIS Showcase has a “Grids” cascading menu with entries
corresponding to grid sizes such as “1/8 inch” and “1/4 inch.”

* An attribute name, when the action is to assign some entity that attribute—such as
whether shapes are drawn filled or unfilled.

* A window name, if the menu entry brings up a co-primary, support, or dialog
window. For example, a Directory View window has a menu entry for setting
permissions. This entry brings up a dialog named “Permissions,” so the menu entry
is also named “Permissions,” rather than “Set Permissions.”

® The name of a cascading menu (see “Using Cascading Menus” later in this chapter).

If none of these categories applies, choose a one- or two-word phrase that indicates
clearly what action will be taken. Include the name of the object that will be acted on if
it’s needed for clarity. For example, “New,” generally indicates that a new data file will
be created. If your application doesn’t create data files, the menu entry for creating a new
entity should be “New object” such as “New Folder” (Directory View windows) or “New
Page” (Icon Catalog). Don’t use abbreviations in menu entries.

You can use graphic labels for menus entries, but keep in mind that graphic labels are
often unclear. They work best when used along with a text label, and typically there’s not
enough room for both graphic and text labels in a menu entry. For those cases where
graphics are better descriptions than text (for example, when showing bitmaps or
textures), you should probably include these options in a tool palette either as individual
buttons or as entries in an option menu. See “Pushbuttons” and “Option Buttons” in
Chapter 9 for more information about these alternatives.

167

Chapter 8: Menus

168

If the entry is something that toggles its state, use one of the following alternatives:

* Toggle the menu entry name to indicate the action that will be taken if the user
selects this entry. For example, a menu entry “Show Grid” indicates that the grid
isn’t currently shown and that choosing this item will display it. If the user chooses
this item, the grid is displayed and the entry should toggle to “Hide Grid.”

¢ Choose a menu entry name that clearly indicates what action will be taken, place a
checkbox indicator next to the menu entry, and use the checkbox to indicate
whether or not the action has been taken. For example, the menu entry “Italics”
with a checkmark next to it indicates that the current font is an Italic one; the same
entry with no checkmark indicates that the current font isn’t Italic. (For more details
on the use of checkboxes in menus, see “Using Radio Buttons and Checkboxes in
Pull-Down Menus” later in this chapter.)

¢ If the entry belongs to a group of related entries, all of which toggle their states,
place checkbox indicators next to each of them. The entry names should be nouns or
attributes that clearly imply their actions (and these names should remain constant
rather than toggling). And separate the entire group from other menu items by
separator lines. (See “Using Radio Buttons and Checkboxes in Pull-Down Menus.”)

A menu entry should be followed by an ellipsis if it brings up a dialog for the purpose of
requesting more information from the user before performing the action. The ellipsis
does not simply mean that the menu entry displays a dialog. For example, the “Save
As...” menu entry brings up a dialog that asks the user to enter additional necessary
information before the action can be performed. “Help,” on the other hand, brings up a
dialog that contains the information that the user requested.

Ordering Menus and Menu Entries in the Pull-Down Menus

Use the order described in “Standard Menus” for standard menus in the menu bar and
their entries. If you need to create additional menus for your application, place them
between the View and Tools menus. If you need to change the name of one of the
standard menus (as discussed earlier in “Naming Menus in the Menu Bar”), leave this
menu in the same order as if it had the standard name. For example, in MediaMail the
File menu is renamed Folder and the Selected menu is renamed Message, but Folder is
still the leftmost menu and Message is still next to the Folder menu.

Within menus, organize entries into logical groups. If one of your application-specific
menu entries is logically related to one of the standard menu entries, place it near that
standard entry. If this isn’t a good fit, create new menus that group the entries according
to function. For example, the Directory View window has an Arrange menu that contains
different options for arranging the file icons displayed in the window. Within the logical

The Menu Bar and Pull-Down Menus

groups, first place entries in the order in which they need to be used. For example, in the
Edit menu, “Copy” is before “Paste” because the user must do a “Copy” operation before
doing a “Paste.” Secondarily, order them by frequency of use, placing the more
frequently used entries closer to the top of the menu. In any case, be sure that when you
use “Close” and “Exit,” they’re always at the end of the leftmost menu, whether or not
this menu is named File.

When creating logical groups of entries, use separators to define the groups, but avoid
overusing separators because they can make it difficult to scan the entries. Two situations
where separators are especially useful are:

* Groups where only one of the entries can be selected at any one time

¢ Groups whose entries represent multiple attributes that can be applied to a single
object

As described later in “Using Radio Buttons and Checkboxes in Pull-Down Menus,” also
use radio buttons in the first case and checkboxes in the second.

If the menu contains entries that can be determined only when the user launches the
application (for example, a menu listing plug-in modules), alphabetize the entries. If this
alphabetized group appears in a menu that contains other entries, place the group at the
end of a menu and use a separator between it and the preceding entries.

Using Cascading Menus

Asyou're organizing your menus, you can use cascading menus, but don’t use more than
a single level. If you think you need more than one level of cascading menus, try adding
a new menu instead, especially if you have numerous items in the cascading menus. If
you have only a few items, consider creating groups of items by using separators, rather
than putting them in separate cascading menus.

In general, try to limit your use of cascading menus since users tend to scan only the
top-level menus when they’re looking for a specific function or trying to learn the
functionality of the application. When naming a cascading menu, use a name that
suggests what it contains so that users know what functions they’re likely to find. For
example, in an early version of IRIS Showcase, the grid was under a cascading menu
named “Editing Options” in the Edit menu, and users often weren’t able to find it. Now,
the different grid sizes are under a cascading menu named “Grids” in the View menu.

169

Chapter 8: Menus

170

Using Radio Buttons and Checkboxes in Pull-Down Menus

If a user can select only one of a group of menu items at any one time, provide a radio
button next to each item in the group, and allow only one radio button to be active at any
given time. For example, the radio buttons in Figure 8-11 allow the user to choose exactly
one type of tea at a time, because if you ordered two cups of tea at a time the second one
would get cold before you could drink it. Use separator lines to separate a set of radio
buttons from other entries in the menu.

<> English breakfast
Darjeeling

<> Jasminge

Figure 8-11 Radio buttons

If a user can select several of a group of related menu items at any one time, provide a
checkbox next to each item in the group, and show the active entries with checkmarks.
These items typically represent attributes of an object, more than one of which can be
applied to the object. For example, the checkboxes in Figure 8-12 allow the user to select
milk or sugar, or both, or neither. Use separator lines to separate a set of checkboxes from
other entries in the menu.

& ik
¢ sugar

Figure 8-12 Checkboxes

The Menu Bar and Pull-Down Menus

Choosing Mnemonics

You need to choose single-character mnemonics for any menus or menu entries you
create. Each of the menus in the menu bar should have a unique mnemonic, as should
each of the entries within any specific menu. Use the standard mnemonics for standard
menu titles and entries, as described earlier in “Standard Menus.” You can use a standard
mnemonic for a different entry if you're not using that standard entry.

If possible, use the first character in the label for the mnemonic. If two menu titles—or
two entries in the same menu—have the same first character, use the first character for
the mnemonic of the menu title or entry that will be used most frequently. For example,
“Save” is used more frequently than “Save As...”, so “Save” has the mnemonic “S” and
“Save As...” has the mnemonic “A.”

When the first character can’t be used as the mnemonic, try to pick a consonant in the
name that’s strongly associated with the word (such as “x” for Maximize in the Window
menu). If no such consonant exists, choose the first available vowel (such as “a” for Raise
in the Window menu). Note that the mnemonic chosen can be an uppercase or lowercase
character in the label, but it must be case insensitive for activation (that is, users don’t
need to hold down the <Shift> key).

Choosing Keyboard Accelerators

Use the keyboard accelerators for the standard menu entries as described in “Standard
Menus”; don’t use any of the standard accelerators for application-specific entries, even
if you're not using those standard entries. For menu entries you create, provide keyboard
accelerators only for the most commonly used actions, not for every menu entry in every
pull-down menu.

In most cases, use the <Ctrl> key and a character for a keyboard accelerator. To avoid
conflicts with mnemonics, don’t use the <Alt> key rather than <Ctrl>. To make
accelerators easier to remember, choose a character that’s associated with the menu entry.
For example, the standard keyboard accelerators include <Ctrl-c> for “Copy” and

171

Chapter 8: Menus

<Ctrl-s> for “Save,” and the Directory View window uses <Ctrl-i> for “Get Info.”
Table 8-3 lists the standard keyboard accelerators.

Table 8-3 Keyboard Accelerators

Menu Entry and Mnemonic Keyboard Accelerator

New Ctrl+N
Open Ctrl+O

Save Ctrl+S

Print Ctrl+P

Get Info Ctrl+I

Close Ctrl+W

Exit Ctrl+Q
Undo [action] Ctrl+Z
Redo [action] Shift+Ctrl+Z
Cut Ctrl+X
Copy Ctrl+C

Paste Ctrl+V
Select All Ctrl+A
Deselect All Shift+Ctrl+A
Promote Alt+Insert
Click for Help Shift+F1

If a pair of menu entries that both require keyboard accelerators, and one entry reverses
the results of the other, their keyboard accelerators should be related. Choose a character
that’s associated with the more frequently used entry (so that its accelerator is
<Ctrl-character>), and add <Shift> to create the other accelerator (so that its accelerator is
<Shift-Ctrl-character>, where character is the same for both accelerators). For example, the
keyboard accelerator for Undo is <Ctrl-z>, and the keyboard accelerator for Redo is
<Shift-Ctrl-z>. In general, avoid using multiple modifier keys such as
<Shift-Ctrl-character>, except for this situation.

172

The Menu Bar and Pull-Down Menus

Note that any keyboard accelerator that involves a lowercase character should be shown
in the menu as “Ctrl+uppercase_character” (for example, <Ctrl-s> should be displayed as
“Ctrl+S”). This is because uppercase characters are easier to read in the menus. If the
accelerator involves an uppercase character, display it as
“Shift+Ctrl+uppercase_character” (for example, <Ctrl-5> should be displayed as
“Shift+Ctrl+S”).

Disabling Menu Entries

As discussed in “Standard Menus,” disable menu entries that aren’t currently available
(they become grayed out). See the next section, “Dynamic Menu Entries,” for discussion
of the rare cases in which menu entries can be removed from the menu when they’re
unavailable.

In general, disabling entries when selecting them would give the user an error message.
For example, if a menu entry works on a selection (such as “Cut” and “Copy”), disable
it if there’s no current selection. If selecting the menu entry would result in no action at
all (not even an error message), do not disable the menu entry. As an example, choosing
“Save” from the File menu saves the current document; if the document hasn’t been
edited, selecting “Save” has no real effect, but there’s no need to display an error
message, so never disable this menu entry.

Never disable menu entries that launch modeless dialogs. If the dialog isn’t applicable
when it’s launched, disable the OK and Apply buttons on the dialog rather than
disabling the menu entry that launches the dialog. Suppose the user launches the dialog
and the current context of the application is such that the dialog isn’t applicable. Because
the dialog is modeless, the user should be able to change the state of the application after
the dialog has been launched to put the application in a state where the dialog is now
applicable. In contrast, menu entries that launch modal dialogs should be disabled if the
dialog isn’t currently applicable because the user must dismiss the modal dialog before
changing the state of the application. So, if the modal dialog isn’t applicable when it’s
launched, the user has no way to change the state of the application to get it in a state
where the dialog would be applicable. See “Dialog Modes” in Chapter 10 for a discussion
of modal and modeless dialogs.

Don’t include always-disabled menu entries whose action isn’t available in the current
version of your application, so that users don’t waste time looking for a way to enable
the entry. For example, if your application doesn’t provide a tutorial, don’t include a
disabled menu entry for “Tutorial” in the Help menu. Instead, just leave this entry out of
the Help menu. If a feature requires certain hardware configurations, don’t disable its
menu entry; instead, have it display an information dialog stating why the feature isn’t
available.

173

Chapter 8: Menus

174

Dynamic Menu Entries

Dynamic menu entries are strongly discouraged, especially when less than four such
entries exist. If you have only a few entries that aren’t always available, put them in the
menu and disable them when they aren’t available. You can use dynamic menu entries
in those rare cases when almost everything in a menu can change. For example, the
grelnotes program has a Chapter menu that has entries for each chapter in the current set
of release notes. When the user loads a new set of release notes, the entries in the Chapter
menu are changed to reflect the new chapter titles. Unless a more obvious ordering is
suggested by the content of the entries (for example, the order of chapters), alphabetize
the entries in a dynamic menu.

Dynamic menu entries are discouraged because they make it hard for users to learn what
entries are in each of the menus since they’re visible only when the application is in a
specific state. Users are likely to assume that certain functions aren’t available when they
don’t see menu entries for them as they’re scanning your application’s menus for the first
time. Users might not realize that they must first get the application in a particular state
before they can even see the action. Even when users work with your application for a
while, they may not look for certain actions in the menus because they think they’ve
already seen the full contents of the menus, which never included the action that they
now want. Also, users become accustomed to the spatial positions of items in menus—
for example, “Cut” is always the second item in the Edit menu—and will be frustrated if
these positions change.

Pull-Down Menu Guidelines

In general, when designing pull-down menus in a menu bar. ..

[] Be sure that users can access most of your application’s functionality from the menu
entries. At a minimum, make sure that the core functionality can be accessed from
the menus.

D Don’t include more than a 10-12 entries in a menu and make sure that all of your
entries can fit on the screen at one time.

D Provide mnemonics for all menus and menu entries. In most cases, the mnemonic
should be either the first character of the name or, if there’s a conflict, a character
that’s strongly associated with and included in the name. Use standard mnemonics
for standard menus and entries.

[] Limit the use of tear-off menus. Instead, use support windows for groups of controls
that users might want to use continuously.

The Menu Bar and Pull-Down Menus

When selecting specific menus and entries for an application window . ..

[

O O O O 0o oo o

Use the standard menus and menu entries as the basis for the overall design of the
menu structure. Include all standard menus and entries that are applicable to your
application.

Include a Help menu as the rightmost menu.

Include an “Undo” menu entry, particularly if users can perform actions that destroy
or significantly change their data .

Include an “Exit” menu entry for all main windows and for co-primary windows if
users will want to completely exit the application from that co-primary window.

Include a “Close” menu entry for all co-primary windows and support windows that
have menu bars. Don’t provide a “Close” entry for main windows.

Include menu entries that repeat the functionality of any pushbuttons on the primary
window.

Include menu entries for actions that are accomplished using a direct manipulation
method or a mouse shortcut such as double-clicking.

Include menu entries for accessing all primary and support windows that are
children of the current window.

Don’t include entries for functions that aren’t available for the current version of
your application.

When naming menus. ..

[]
[]

[

Use entire one-word titles for menus rather than abbreviations.

Use the standard titles for menus (for example, File and Edit) if they’re applicable,
but change the standard title if this will make the function more clear.

Don’t use a standard menu title if you're changing the standard definition.

When naming menu entries . . .

[
[]

Use the standard names for standard menu entries, but don’t use a standard name
for a menu entry that doesn’t support the standard behavior.

Each entry name should be an action word, the value of a parameter, an attribute
name, the name of a cascading menu, or the name of a co-primary, support, or dialog
window. Don’t use more than two words (except for task-oriented Help menu
entries), and avoid using graphic labels for menus entries unless the graphics make
the functionality more clear.

175

Chapter 8: Menus

176

[]
[

[]
[
[]

Choose descriptive names that help users learn the functionality of the application.
For cascading menus, choose a name that clearly implies the contents of the menu.

Add a word if necessary to be sure the entry clearly indicates what entity will be
acted upon. For example, you might use “New object” such as “New Folder” or
“New Page” rather than just “New.”

If a menu entry toggles its state, use a checkbox and leave the menu entry name the
same for the different states (“Italics”). If this won’t be clear, toggle the name so that
it indicates what action will be taken if the menu entry is selected (“Show Grid,”
“Hide Grid”).

Capitalize the menu entry using the same rules as capitalizing book titles.
Use entire words rather than abbreviations.

Display an ellipsis (...) after menu entries that bring up a dialog that requests more
information from the user. Don’t use ellipses if the dialog simply brings up
information that the user requested (for example, a Help dialog).

When ordering menus and menu entries . ..

[

Place the standard menus in the standard order (File, Selected, Edit, View, Tools,
Options, Help), even if you have renamed any of these menus. Place any new menus
between the View and Tools menus.

Place standard menu entries in the standard order. “Close” and “Exit” are always at
the end of the leftmost menu whether or not this menu is named File.

Group menu entries logically. If a new menu entry is related to one of the standard
menu entries, place it near that standard menu entry.

Place items in the menu first according to the order they will be used, and second
according to their frequency of use (with more frequently used items closer to the top
of the menu).

Alphabetize entries that can be determined only when the user launches the
application. If this alphabetized group appears in a menu that contains other entries,
place the group at the end of a menu and use a separator between it and the
preceding entries.

Use radio buttons for mutually exclusive menu entries, and checkboxes for a group
of related menu entries, any number of which can be selected at any one time.

Use separators when necessary to group items—for example, to set off a group of
related entries that use radio buttons or checkboxes.

Limit the use of cascading menus. Never use more than one level of cascading
menus.

Popup Menus

Popup Menus

When selecting keyboard accelerators for menu entries . . .

[] Use standard keyboard accelerators for standard menu entries; don’t use any of the
standard accelerators for your own entries, even if you're not using those standard
entries.

[] Provide keyboard accelerators for the most frequently used menu entries. Don't
provide accelerators for all menu entries.

L] Use the key combination <Ctrl>character. Don’t use the key combination
<Alt>character because this conflicts with mnemonics.

[] For pairs of menu entries where one entry reverses the results of the other entry
(“Undo” and “Redo”), use <Ctrl>character for the most frequently used entry and
<Shift><Ctrl>character for the other entry where character is the same for both
accelerators.

[Display all characters in keyboard accelerators as uppercase (for example, display
<Ctrl>s as “Ctrl+S”). For keyboard accelerators that involve uppercase characters,
show the <Shift> key as part of the keyboard accelerator (for example, display
<Ctrl>S as “Shift+Ctrl+S”).

When deciding when to disable menu entries . ..

(] 1 selecting the menu entry in the current context would give the user an error
message, show the menu entry as disabled (dimmed).

[Avoid using dynamic entries. Rather than removing an entry when it’s temporarily
unavailable, include it and disable it as appropriate.

Use popup menus to provide a quick way for users to access the most commonly used
functions in the associated work are. This section covers:

e “What to Put in Popup Menus”
e “Disabling Popup Menu Entries”

For example, you might provide a popup menu containing “Cut,” “Copy,” “Paste,” and
“Delete” in a text application. Never allow popup menus to be the sole access to
functions because these menus are hidden. Instead, popup entries typically represent the
most commonly used actions from the application window’s pull-down menus. (See
“Menu Traversal and Activation” for a description of how users interact with popup
menus.)

177

Chapter 8: Menus

178

At most, provide a different popup menu for each main area of your application’s
window (that is, for each main field or pane). Note that this differs from the OSF/Motif
Style Guide, which allows the availability and content of popup menus to vary depending
on the element under the pointer or the selection state of the element.

Provide one set of entries in the popup menu, and enable and disable each of them as
appropriate, instead of following the OSF/Motif model. With one set of entries, users
will become familiar with the popup entries more quickly and won’t be confused when
entries are sometimes unavailable (see “Dynamic Menu Entries” for discussion of how
dynamic entries can be confusing to users).

What to Put in Popup Menus

For each popup menu, include a title followed by a separator and the individual menu
entries (see Figure 8-13). The title should be the name of the application or, if the
application has more than one popup menu, it should describe the purpose of the menu.
Since the entries typically repeat entries found in the pull-down menus, display titles
similarly: in the same order, and with the same or very similar names as in the pull-down
menu. Include ellipses and keyboard accelerators if they’re included in the
corresponding entry in the pull-down menu, but don’t show mnemonics in popup
menus.

fexiBlendor

Cat Cirfe X
Copy CireC
FPasfe Cirf+V

Figure 8-13 Popup Menu

Popup menus generally don’t have entries that require radio buttons or checkboxes since
these are rarely common enough actions to be included in a popup menu. If you do need
to include these kinds of entries in a popup menu, separate them from the rest of the
entries with separators and include the radio buttons or checkboxes. See “Using Radio
Buttons and Checkboxes in Pull-Down Menus” for more information. Popup menus
shouldn’t contain cascading menus, nor should they be tear-off menus.

Popup Menus

Disabling Popup Menu Entries

As with pull-down menu entries, if one of the entries in a popup menu is unavailable for
selection in the current context, disable that menu entry. Don’t, however, remove it from
the menu.

Popup Menu Guidelines

When choosing when a popup menu should appear...

[] At most, provide a different popup menu for each main area (that is main field or
main pane) of the window. Don’t change the availability of a popup menu based on
what graphical element the pointer is over or based on the selection state of any of
the graphical elements.

When deciding what to include in a popup menu...

[] Include entries for the most commonly used functions from the pull-down menus,
and use the same names in the same order as they’re displayed in the pull-down
menus.

[] Avoid entries that require checkboxes or radio buttons. These are typically not the
most commonly used menu functions.

D Don’t make menu entries the sole access to these functions.

[Don't change the content of the menu based on what graphical element the pointer
is over, or based on the selection state or contents of this element. Instead, put all
entries in the popup menu for the main area of the window, then enable and disable
entries as appropriate.

[] Don'tinclude cascading menus and don’t use tear-off menus.

When displaying the contents of the popup menu...

[Include a title that's either the name of the application, or if the application has more
than one popup menu, that describes the purpose of the menu.

[] Use only one separator, which goes between the title and the individual menu
entries.

[Show ellipses and keyboard accelerators if these are shown in the corresponding
pull-down menu entry, but don’t show mnemonics.

If selecting the menu entry in the current context would give the user an error message,
show the menu entry as disabled (dimmed). Don’t remove the menu entry when it’s
temporarily unavailable.

179

Chapter 9

Controls

Two types of controls are described in this chapter—those supported in the standard
OSF/Motif environment (such as pushbuttons, lists, and scrollbars), and those unique to
the IRIX Interactive Desktop environment (such as enhanced scales, thumbwheels, and
dials). These controls can be used in any window of an application. Each description
consists of a general description of the control and guidelines for when to use it, how to
label it, and how it should behave.

Note that some of the standard controls have been enhanced in the IRIX Interactive
Desktop environment as described in “Enhanced Graphics in the IRIX Interactive
Desktop Look” in Chapter 3. To use these enhanced controls in your application, see,
“Using the Silicon Graphics Enhanced Widgets,” of the IRIX Interactive Desktop
Integration Guide. The reference pages in Chapter 9 of the OSF/Motif Style Guide provide
details on the behavior of the OSF/Motif controls discussed in this chapter. This chapter
describes the following controls:

e “Pushbuttons”

* “Option Buttons”
® “Checkboxes”

e “Radio Buttons”
e “LED Indicators”
e “Lists”

e “Text Fields”

e “Scrollbars”

¢ “IRIX Interactive Desktop Scales”
e “Labels”

e “File Finder”

e “Thumbwheels”

e “Dials”

181

Chapter 9: Controls

Pushbuttons

182

A pushbutton is a button that invokes an operation. Pushbuttons are rectangular and can
be labeled with either text or icons, as shown in Figure 9-1. The basic operations for
pushbuttons are described in the section “Other Operations,” in the reference page for
PushButton in the OSF/Motif Style Guide, Chapter 9. See “Control Areas in Primary
Windows” in Chapter 6 for guidelines on using pushbuttons in control areas and tool
palettes, and see “Standard Dialog Actions” in Chapter 10 for guidelines on using
pushbuttons in dialogs.

Read

Compose

Figure 9-1 Pushbuttons

Pushbutton Guidelines

When using pushbuttons . . .

[] In windows with menu bars, use pushbuttons to provide easy access to the most
frequently used application-specific functions in the pulldown menus. For primary
windows, these pushbuttons appear in the control area of the window.

In windows without menu bars, use pushbuttons to access help and to close the
window.

Use pushbuttons to create tool palettes, either in support windows or in primary
windows.

Use pushbuttons in the response area of a dialog for the standard actions for that
dialog.

O O O o

Always have the pushbutton perform the same operation (although the input to that
operation may vary based on what data is currently selected). Don’t use the same
pushbutton to perform different tasks based on some mode of the application.

]

Use pushbuttons to perform an action; don’t use them merely to set state, such as a
parameter value in a dialog box. Use checkboxes, radio buttons, or option menus for
this purpose.

Pushbuttons

When labeling a pushbutton . . .

[

[]
[]

Use either a text or graphic label that describes the action associated with the button.
With text labels, use an active verb describing the operation the button performs.
Make each text label a single, capitalized word. Don’t use abbreviations in labels.

Center the label on the button.

If the pushbutton opens a dialog to collect more information from the user before the
action represented by the pushbutton can be completed, place an ellipsis after the
button label. Don’t use an ellipsis if the button opens a dialog simply to display some
information to the user as an end result of the operation. This use of ellipses is the
same as that described for menu entries in the section “Naming Menu Entries in the
Pull-Down Menus” in Chapter 8.

When displaying pushbuttons . ..

[

[]
[]

If the action associated with a button is temporarily unavailable, disable the button
rather than remove it.

Don’t resize pushbuttons when the window is resized.

Don’t use dynamic buttons whose labels change to indicate different functionality
depending on the current context. Instead, use multiple buttons and disable buttons
that represent functionality that’s currently unavailable. With multiple buttons, the
functionality is obvious even if some of the buttons aren’t currently active. With
dynamic buttons, the user has to put the application into the proper context to
discover some of the functionality. The one exception to this guideline is the

Cancel / Close button used in Dialogs with the Apply button. See “Standard Dialog
Actions” in Chapter 10 for information on this special case.

183

Chapter 9: Controls

Option Buttons

184

An option button is a button that displays an option menu. It allows the user to choose
one of the options listed in the menu, and its label changes to reflect the currently selected
menu entry. Entries in the option menu represent mutually exclusive values of a
parameter. Users interact with option menus according to the model described in “Menu
Traversal and Activation” in Chapter 8. Figure 9-2 shows an option button and its option
menu. Note that the button has a special graphic on it to distinguish it from regular
pushbuttons. The basic operations for option buttons are described in the section “Other
Operations,” in the reference page for OptionButton in the OSF/Motif Style Guide,
Chapter 9.

Maitvox_|= |

Styie — Option menu

Maithox = company

critiguies
Option buttonA . Y
ditbert

Sepf

Figure 9-2 Option Button and Option Menu

Option Button Guidelines

When using option buttons. ..

[] Usean option button when you want to offer the user about 5-12 mutually exclusive
options; use a list for more than 12 choices. If there’s enough space, use radio buttons
for fewer than 5 choices.

[Don't put radio buttons or checkboxes in an option menu.

[] Don't use an option button if the user can select several options at the same time—
use a list or a set of checkboxes instead.

Option Buttons

Don’t put actions (such as zoom or rotate) in the option menu—use pulldown menus
or pushbuttons instead.

Don’t add or delete the choices in the option menu. If the choices must change, use
a list.

Don’t use cascading menus in the option menu. If there are so many items that they
don’t fit conveniently into an option menu, use a scrolling list instead.

O O O o

Don’t use a tear-off entry in an option menu.

When labeling an option button . ..

[] Use the default label for the option button itself, which is the current value of the
parameter.

[] Useasecond label that describes the parameter that the option button controls. Place
this parameter label to the left of the option button and put a colon (:) and a space
after it (see Figure 9-2). This label is typically a noun and is not abbreviated.

When labeling the entries in an option menu...

[] Use nouns that indicate the possible values of the parameter being set.

D Use entire words for the entries rather than abbreviations.

When displaying option menus. ..

L] 1f one of the entries in an option menu is unavailable for selection in the current
context, disable the menu entry. Don’t remove the entry from the menu. Note that the
user should always be able to display the contents of an option menu even if all of
the menu entries are currently disabled.

[] Don’t include a title in option menus.

185

Chapter 9: Controls

Checkboxes

186

A checkbox is a button with two states—on and off. In a group of checkboxes, each can
be turned on or off independently. The on state is indicated in the IRIX Interactive
Desktop look by a red check mark, as shown in Figure 9-3. The basic operations for
checkboxes are described in the section “Other Operations,” in the reference page for
CheckButton in the OSF/Motif Style Guide, Chapter 9.

Type Style:

eold
& italic

|j Undetline

Figure 9-3 Checkboxes

Checkbox Guidelines

When using checkboxes. ..

[] Use checkboxes for single attributes or states that can be turned on and off, or for
groups of items where multiple items in the group can be selected independently.
(Also see “Using Radio Buttons and Checkboxes in Pull-Down Menus” in
Chapter 8.)

[] Use checkboxes for groups of less than about six items. When dealing with more than
a handful of items, use a list that allows multiple elements to be selected at the same
time.

[] Don’t use checkboxes for mutually exclusive options. If only one item in a group of
items can be selected at a time, use radio buttons instead.

[] Don’t use checkboxes for actions; use pushbuttons instead.

[] Dont change the choices in the group based on the current context. If you want to
offer a dynamic set of choices, use a list.

Radio Buttons

Radio Buttons

When labeling checkboxes.. ..
[] Give each checkbox a label that describes the attribute, state, or option it controls.

[Createa group label for each group of checkboxes, and indent the checkboxes below
the label. This group label should be a noun that describes the function of the group.

[] Don’t use abbreviations for either the checkbox labels or the group label.

When displaying checkboxes . . .

N Keep checkboxes updated to reflect the current state of the application and the
settings of the current selection (if the settings of the checkboxes relate to the current
selection). For example, if a checkbox exists for turning underlining on and off and
the user selects some text, update the checkbox to reflect whether or not the selection
is underlined.

[] Disable checkboxes representing choices that aren’t currently available. Don’t
remove the checkboxes.

A radio button is a button with two states—on and off. Unlike checkboxes, radio buttons
are always used in groups. Only one of a group of radio buttons can be turned on at any
given time. The on state is indicated in the IRIX Interactive Desktop look by a blue
triangle, as shown in Figure 9-4. The basic operations for radio buttons are described in
the section “Other Operations,” in the reference page for RadioButton in the OSF/Motif
Style Guide,

Chapter 9.

Output Image:
Caolor

<> Greyscale
<> Black & White

Figure 9-4 Radio Buttons

187

Chapter 9: Controls

188

Radio Button Guidelines

When using radio buttons . ..

[] Use radio buttons in groups, never as single buttons. If you need to use a single
button that shows an on/off state, use a checkbox instead. (Also see “Using Radio
Buttons and Checkboxes in Pull-Down Menus” in Chapter 8.)

[] Use radio buttons for mutually exclusive options. If more than one item in the group
can be selected at a time, use checkboxes or a list instead.

[] Useradiobuttons when you want to offer the user fewer than six options. If you have
more than six options, or if screen space is extremely limited, use an option button
instead. (See the section “Option Buttons” earlier in this chapter.) If you have more
than 12 options, consider using a list where only a single element can be selected at
a time. (See the section “Lists” later in this chapter.)

[] Don’t use radio buttons for actions; use pushbuttons instead.

[Don't change the choices in a group of radio buttons based on the current context. If
you want to offer a dynamic set of choices, use a list because users expect the
elements of a list to change occasionally, but they don’t expect radio buttons to
change.

When labeling radio buttons. ..

[Give each radio button a label that describes the attribute or option it controls.

[] Createa group label for each group of radio buttons, and indent the radio buttons
below the label. This group label should be a noun that describes the function of the

group.

[] Don’t use abbreviations for either the radio button labels or the group label.

When displaying radio buttons. ..

[Keep radio buttons updated. If the settings of the radio buttons depend on the
current selection, update them when the user makes a new selection so that they
reflect the settings of the new selection.

[] Disable radio buttons representing options that aren’t currently available. Don’t
remove the radio buttons.

LED Indicators

LED Indicators

The LED Button is a toggle button with an enhanced appearance. It appears in the form
of a push button, with an imbedded indicator lamp (LED) that provides state feedback.
The button has two states—on or off. When the button is toggled to the ON state, it
appears lighted; when OFF, it appears darkened.

You can use a LED button (as shown in Figure 9-5) instead of a radio button to indicate
that one of a range of options or modes is currently in effect. Alternatively, you can use a
toggle button instead of a checkbox, to indicate whether a given option or mode is
currently on or off.

In either case, an LED button is most appropriate in a context where other push buttons
are used as part of a control panel, since an LED button is the same size as a push button.

[toggle

Figure 9-5 LED Button

For LED example code, see “Example Programs for SGI Enhanced Widgets” in the IRIX
Interactive Desktop Integration Guide.

LED Button Guidelines

When using LED buttons . ..

[] Use LED buttons for single attributes or states that can be turned on and off, or for
groups of items where multiple items in the group can be selected independently.
(Also see “Using Radio Buttons and Checkboxes in Pull-Down Menus” in
Chapter 8.)

D Don’t use LED buttons for actions; use pushbuttons instead.

[] Don't change the choices in the group based on the current context. If you want to
offer a dynamic set of choices, use a list.

189

Chapter 9: Controls

Lists

190

When labeling LED buttons . ..

L] Label each LED button with a term that describes the attribute, state, or option it
controls.

L] Ifthereisa group of LED buttons, create a group label for the group, and indent the
LED buttons below the label. Use a noun that describes the function of the group.

[] Don't use abbreviations for either the LED button labels or the group label.

A list allows the user to choose from a series of elements. It can allow the user to choose
a single element at a time or choose multiple elements at once. Lists should have vertical
and horizontal scrollbars when necessary. (See “Scrollbars” later in this chapter.) When
allowing users to select elements in the list, follow the selection guidelines described in
“Selection” in Chapter 7. Figure 9-6 shows a list with vertical and horizontal scrollbars.
The basic operation of lists is described in the section “Other Operations,” in the
reference page for List in the OSF/Motif Style Guide, Chapter 9.

Files

Figure 9-6 List

Lists

List Guidelines

When using lists . . .

[] Usealist when you want to allow the user to choose a single option from a large list
(thatis, more than 15 options). If you have fewer than 15 options, use either an option
button (best for 5-15 options; see “Option Buttons” earlier in this chapter) or a set of
radio buttons (best for 2-5 options; see “Radio Buttons” earlier in this chapter).

[] Usealist when you want to allow the user to choose several options from a list of six
or more elements. If you have fewer options, use checkboxes (see “Checkboxes”
earlier in this chapter).

] 1t you want to allow the user to choose elements from a dynamic list of options, use
a list regardless of the number of options. (Option menus and groups of checkboxes
or radio buttons should represent static lists of options.)

When labeling a list . ..

D Label the list with a noun that indicates the function of the elements in the list. Don’t
use abbreviations in the label.

[] Place the label directly above and either left-aligned with or slightly to the left of the
first element of the list.

When labeling the list entries . ..

[] If the elements in the list represent operations to perform, use active verbs.
Otherwise, use nouns. In either case, use entire words rather than abbreviations.

When displaying lists . . .

[] When a window using a list is first opened, the currently selected list elements
should be highlighted and the list should be scrolled to display these. If multiple
elements are selected, scroll the list so that the first selected one appears at the top of
the viewing area. See “Selection” in Chapter 7.

[] Allow users to select elements in the list according to the selection guideline
discussed in “Selection” in Chapter 7.

[] Disable list elements that aren’t currently available.

[] Allow the list to autoscroll (the default behavior) if the user is making a selection and
the selection goes outside the range of the displayed elements. See “Selection” in
Chapter 7.

191

Chapter 9: Controls

Text Fields

192

Text fields can be single-line or multi-line. Single-line text fields don’t have scrollbars,
even if all of the text can’t be displayed horizontally in the field. Multi-line text fields
should have vertical and horizontal scrollbars when necessary. (See “Scrollbars” later in
this chapter.)

Text fields can be either editable or noneditable. Editable and noneditable text fields have
different colored backgrounds to indicate to the user whether the information can be
changed. These background colors vary depending on what scheme the user has selected
(see “Schemes for Colors and Fonts” in Chapter 3 for information on schemes).

IRIX Interactive Desktop offers an enhanced text field; it allows the application to select
a section of text and flag it with an error status. The error selection shows up with a
special background color to distinguish it from an ordinary text selection. For example,
a debugger might use the error selection to indicate to the user which section of code was
causing an error.

The enhanced text field control allows you to specify the following:

* Dboth the foreground and background colors of the selected text (See “Selection” in
Chapter 7 for information on selection.)

e the background color for text that's marked with an error status

¢ whether to show the text cursor only when the text component currently has
keyboard focus (See “Keyboard Focus and Navigation” in Chapter 7 for
information on keyboard focus.)

The basic operations for text fields are described in the section “Other Operations” in the
reference page for Text in the OSF/Motif Style Guide, Chapter 9.

Text Fields

Text Field Guidelines

When using text fields ...

[] Use single-line, editable text fields to display values of parameters that users can
edit.

[] Use single-line, noneditable text fields to display values of parameters that users
can’t edit, whenever these values either change over time or might need to be
selected by the user. If the value doesn’t change and the user doesn’t need to select
it, use a label.

[] Don't use a text field if you need to display and edit pathnames; use the IRIX
Interactive Desktop File Finder instead.

[Use text fields for values that change over time; don’t use labels.

When labeling text fields . ..

[] Label each editable or noneditable text field, unless the field represents the bulk of a
window and the field’s function is clear. Use entire words in labels rather than
abbreviations.

[For single-line text fields, place the label to the left of the text field, and follow the
label with a colon (:) and a space. Vertically center the label within the text field.

When displaying text fields . ..

[] Use the default selection and highlighting discussed in “Selection” in Chapter 7.

[] Allow the user to cancel a text edit in progress by pressing <Esc>. That is, once the
user has selected text and started to replace it with new text, <Esc> should cancel any
changes that the user has made.

[Keep text fields updated. When a window using a text field is first opened, show the
default or current setting (if either exists) for the text field.

[] Make the text automatically scroll if the user is making a selection and the selection
goes outside the range of the displayed elements.

[] When an editable text field can’t be edited in the current context but the information
is still useful to the user, change it to a noneditable text field. If the information isn’t
useful to the user (that is, the user doesn’t need to know the value and won’t need to
select it), disable the text field.

193

Chapter 9: Controls

Scrollbars

A scrollbar “scrolls” the data in a viewing region to change the portion of the data that’s
visible. Scrollbars can be either horizontal or vertical. (“Enhanced Graphics in the IRIX
Interactive Desktop Look” in Chapter 3 describes enhancements to the scrollbar’s
appearance.) Figure 9-7 shows a scrollbar.

Integrated scroll bar —|

ScrolledList |
T Arrow button
— Scroll region
¥

Slider grip
Figure 9-7 Scrollbar

A scrollbar includes the scroll region (shown as a trough), which represents the size of
the entire scrollable element with arrow buttons at each end. If there’s data that can be
scrolled, the scrollbar also includes a slider that indicates the relative position and
portion of the data currently being displayed. As the user moves the slider, a temporarily
indented impression of the slider indicates the position of the slider before the user began
moving it. This indented impression disappears when the user releases the mouse button
to complete the scroll action. The basic operations for scrollbars are described in the
section “Other Operations,” in the reference page for ScrollBar in the OSF/Motif Style
Guide, Chapter 9.

194

Scrollbars

Scrollbar Guidelines

When using scrollbars. . .

[] Use scrollbars to pan an associated view.

[] Use scrollbars with components that can be resized such that all of the available

information contained in the component can’t be displayed at one time. Typical
scrollable components include work areas in primary windows, lists, multiple line
text fields, and data display areas in primary or support windows.

Use scrollbars with a list when the number of elements in the list doesn’t fit in the
viewing region (vertical scrollbar), when the elements are too wide to fit in the
viewing region (horizontal scrollbar), or when the window containing the list can be
resized such that either of these situations can occur. See “Lists” earlier in this
chapter for information.

Use scrollbars with multi-line text regions when the data can’t all be displayed
vertically or horizontally or when the window can be resized such that this is true.
See “Text Fields” earlier in this chapter for information.

Don’t use scrollbars with single-line text fields. See “Text Fields” earlier in this
chapter for information.

Don’t use scrollbars for zooming or for rotation. Use an IRIX Interactive Desktop
thumbwheel instead. See “Thumbwheels” later in this chapter.

Don’t use scrollbars to choose a value in a range; use the IRIX Interactive Desktop
scale instead.

When displaying scrollbars . . .

[]
[]
[

Place vertical scrollbars along the right of the element being scrolled, and place
horizontal scrollbars along the bottom of the element being scrolled.

Keep scrollbars updated. When a window using a scrollbar is first opened, the
scrollbar should reflect the current area being displayed in the scrolled region.

Update the data in the scrolled area continuously as the user drags the slider along
the scroll region. This gives the feeling of direct, continuous control. Don’t wait until
the user has released the slider to update the data, because users often use the current
view of the data to determine when to stop dragging the slider.

When a component is being scrolled, don’t scroll it beyond the first or last elements.
That is, there should be no extra white space before the first element or after the last
element. The exception to this rule is scrolling text elements that represent physical
pages (for example, in a desktop publishing application).

195

Chapter 9: Controls

[] Makeall components that use scrollbars automatically scroll when the user makes a
selection that goes outside of the data currently being displayed. Also, make the
component automatically scroll if the user performs an operation that moves the
cursor outside of the current view (for example, if the user inserts or deletes text that
moves the cursor outside of the current view). In this case, the view should be
automatically scrolled so that the cursor is shown when the operation is finished.

[] When using the <Page Up>, <Page Down>, <Ctrl>-<Page Up>, or <Ctrl>-<Page
Down> key sequences to scroll a page at a time, leave one unit of overlap from the
previous page to make it easier for the user to preserve the current context. This unit
is application-specific; it might be a line of text, an item in a list, a row of icons, or a
specific number of pixels (for example, in a drawing region). By default, this
behavior is automatic for IRIS IM list and text components.

[] Remove the slider from the scrollbar when all of the data is currently being
displayed. Don’t remove the scrollbar or disable it in some other fashion.

[] Allow the user to cancel scroll actions by pressing <Esc>. By default, if the user
presses the <Esc> key while dragging the slider along the scroll region, the scroll
action is canceled, and both the data and the slider are returned to the position they
had before the user initiated the scroll action.

IRIX Interactive Desktop Scales

196

Scales can be used either to allow users to change a value in a given range or to display
a value in a range. The size of the control shows the size of the range. When the scale is
being used to allow users to specify or change a value, the slider indicates the current
value in the range and can be dragged by the user. When the scale is being used for
display only, there’s no slider for the user to control. Figure 9-8 shows the IRIX
Interactive Desktop scale in both modes. The basic operations for scales are described in
the section “Other Operations” in the reference page for Scale in the OSF/Motif Style
Guide, Chapter 9. For specific details on using the IRIX Interactive Desktop scale in your
application, see “The Scale (Percent Done Indicator) Widget” in Chapter 4, “Using the
Silicon Graphics Enhanced Widgets,” in the IRIX Interactive Desktop Integration Guide.

Slider 1
[1] |-]

Scale for changing the value Display-only scale

Figure 9-8 IRIX Interactive Desktop Scale

IRIX Interactive Desktop Scales

IRIX Interactive Desktop Scale Guidelines

When using the IRIX Interactive Desktop scale. ..

[] Use scales to allow users to change a value in a given range. Use scales in
display-only mode to display values that the user can’t control. For example, use a
display-only scale as a percent-done indicator to show progress in a Working dialog.
(See “Working Dialogs” in Chapter 10.)

[] Don't use scales for scrolling.

When labeling a scale . ..
D Label it with the current value for the scale.

[If the function of the scale isn’t immediately apparent, give the scale an additional
label that indicates its purpose. Don’t use abbreviations in this label.

When displaying scales ...

[Keep scales updated. When a window using a scale is first opened, the slider of the
scale should show the current setting for the scale control.

[For sliders where the user can change the value, update the value being manipulated
as the user moves the slider. Give the impression of direct, continuous manipulation.
For sliders that also manipulate an object, update the object continuously as well. For
sliders that are used only to display values, immediately update the slider to reflect
the new value as the value changes.

[] Allow the user to cancel a scale operation by pressing <Esc>. If the user presses the
<Esc> key while manipulating the scale, the action should be canceled, and the scale
should return to the position it had before the user initiated the action.

197

Chapter 9: Controls

Labels

198

Labels are noneditable text or graphical objects. They aren’t selectable.

Label Guidelines

When using labels . ..

[]
[]
[]

[

[

Use entire words in labels rather than abbreviations.
Use labels for displaying text information that the user won’t need to edit or select.

Use labels for labeling controls as described under the individual controls in this
chapter.

Use labels for labeling groups of controls. When used to label a group of controls, use
a colon (:) and a space after the label, and place it either to the left of the item in the
upper left corner of the group or above and slightly to the left of the item in the upper
left corner of the group.

Use labels for simple instructions when necessary. Before adding instructions to any
of your application windows, however, first try to design some alternatives that
might make the instructions unnecessary. For example, if these instructions are
necessary because the user interface works in a nonstandard way, redesigning the
interface to be more standard is likely to make the instructions unnecessary.

Place labels on the background of the window (that is, the part of the window that
isn’t recessed).

When displaying labels . ..

[]
[]

Don’t change the text or graphic on a label. If this information will change, consider
putting it in a noneditable text field instead; users don’t expect label text to change.

Disable labels when the controls they represent are disabled. Don’t disable group
labels.

File Finder

File Finder

The File Finder is an IRIX Interactive Desktop control. It allows users to navigate the file
hierarchy quickly and to specify directories and files easily, using drag and drop of
desktop icons. The File Finder is pictured in Figure 9-9.

T Drop pocket Path navigation bar

) | | | |
;@ fusr/people/guest/ ‘\i

Text field History button

Figure 9-9 The File Finder

The File Finder includes several pieces:
¢ text field—allows the user to enter the pathname for a file or directory.

* drop pocket—displays the desktop icon representing the current file or directory
whose name is displayed in the text field. A user can also drop a desktop icon into
this drop pocket and have the text field automatically update with the pathname of
the icon.

¢ path navigation bar—each button represents the directory being displayed below it
in the text field. A user can quickly navigate to ancestor directories by clicking on
any of these buttons.

* history button—similar to an option menu button; maintains a list of directories that
the user already visited while using this control. The user can select any of these
previously visited directories to return immediately to that directory.

For specific details on using the file finder in your application, see the SgFinder(3X)
reference page.

File Finder Guidelines

When using the File Finder . . .

[] Use the File Finder when the user needs to enter the pathname of a directory or file.
This allows the user to drag and drop desktop icons to specify the file and to navigate
the file hierarchy.

[] When a window using a file finder is first opened, the text field in the file finder
should show the default or current value of the pathname, if any. Also place this
value in the history list under the history button.

199

Chapter 9: Controls

Thumbwheels

200

The thumbwheel is an IRIX Interactive Desktop control that allows users to specify or
change a value, either in a given range (for instance, when zooming) or in an infinite
range (for instance, when rotating a 3D object). Users change the current value by direct
manipulation of the wheel (that is, by clicking and dragging). The thumbwheel can also
include a “home button” that returns the thumbwheel to a default value. Thumbwheels
can be oriented either horizontally or vertically. Figure 9-10 shows a thumbwheel. For
specific details on using the thumbwheel in your application, see the
SgThumbWheel(3X) reference page.

Thumbwheel

Home button

|81 | I

Figure 9-10 Thumbwheel

Thumbwheel Guidelines

When using thumbwheels . ..

[] Use thumbwheels to change the values of continuous variables (that is, variables that
don’t have discrete values). For discrete values, consider a scale or dial instead.

[] Use thumbwheels with finite ranges for zooming operations and thumbwheels with
infinite range for rotating objects.

D When a thumbwheel is used to change a value that has a clear default, provide a
home button. For example, a Directory View window has a thumbwheel that allows
the user to set the size of the desktop icons. Pressing the home button on this
thumbwheel sets the icons to their default size.

[] Use thumbwheels when screen real estate is extremely limited.

[] Don’t use a thumbwheel for panning; use a scrollbar instead. A scrollbar gives the
user much more information about the object being scrolled than a thumbwheel
could.

Dials

Dials

When displaying a thumbwheel ...

[Update the object or value being manipulated as the user moves the thumbwheel.
The thumbwheel should give the impression of direct, continuous manipulation.

The dial is an IRIX Interactive Desktop control that allows users to specify or change a
value in a given range. Users change the current value by direct manipulation of the
dial—by dragging or by clicking on the appropriate tic mark that represents the desired
value. The appearance and the behavior of the dial can be modified. For example, the
angular range in degrees through which the dial is allowed to rotate and the color of the
dial and tic marks can be changed. Figure 9-11 shows two dials with different appearance
options. For a complete list of options for dials, and other specific details on using dials
in your application, see the SgDial(3X) reference page.

+ 1y + 1y
* + * +
£ = £ =
- - - -
= - = -
+ * + *
LA + LA +

Figure 9-11 Dials

Dial Guidelines

When using dials . ..

[] Use dials as an alternative to scales for setting parameters. Dials are best for numeric
parameters where the range of allowable values is small and the values are discrete.

201

Chapter 9: Controls

202

When labeling dials . . .

[] Placealabel either directly below or directly above the dial, specifying the parameter
that the dial controls.

[] When you have a group of dials, place each dial label in the same position relative to
its dial (that is, either all the labels are below the dials or all the labels are above the
dials).

D Use entire words in the label rather than abbreviations.

When displaying dials . . .
[] When a window using a dial is first opened, the dial should show the current setting.

[] Asadialis rotated, update the value being manipulated to reflect the new value on
the dial. The dial should give the impression of direct, continuous manipulation.
Also, if the dial is controlling an object, continuously update the object as the dial is
manipulated.

Chapter 10

Dialogs

Dialogs are transient windows that your application uses either to communicate
something important to the user (for example, that a pending action could cause some
data to be lost), or to obtain a specific piece of information from the user (for example,
which file to open). Users interact quickly with dialogs and then dismiss them. This
chapter covers dialogs in the following sections:

e “Types and Modes of Dialogs” discusses the standard types of dialogs, when to use
them, and whether they should be modal or not (that is, whether they should
prevent the user from doing anything else until the dialog is dismissed).

* “Designing Dialogs” discusses general dialog design issues—such as the dialog
window decorations, the layout of dialog information, and what the standard
actions are (in the form of push buttons). It also covers specific design and content
issues for the various types of dialogs listed in the previous section.

¢ “Invoking Dialogs” describes the most common situations that require dialogs and
which types of dialogs to use in them.

Types and Modes of Dialogs

Dialogs are used to give information to the user or to get information from the user; once
they’ve served their purpose, they go away. Dialogs that give information to the user are
instigated by the application; these application-generated dialogs present important
messages for the user’s immediate attention. Dialogs whose purpose is to get
information from the user are displayed as the result of a user action (such as pushing a
button or selecting a menu entry). An example of such a user-requested dialog occurs
when the user selects “Open...” from the File menu; the application should display the
IRIX Interactive Desktop File Selection dialog so that the user can specify a file to open.

203

Chapter 10: Dialogs

The OSF/Motif Style Guide defines several types of application-generated and
user-requested dialogs. The most common of these are listed in Table 10-1, along with a
brief description of when each might be used in an application and whether they should
be modal or not. Figure 10-1 shows each of the standard OSF/Motif dialogs with the IRIX
Interactive Desktop look, and Figure 10-2 shows the IRIX Interactive Desktop File
Selection dialog. Each of these standard dialogs are discussed in more detail in the rest
of this chapter and in their reference pages in Chapter 9 of the OSF/Motif Style Guide.
Dialog modes are defined and discussed in the next section (“Dialog Modes”).

Table 10-1 Types of Dialogs, Their Modality, and When to Use Them

Type of Dialog When to Use It Modality

Prompt To ask users for specific information. Modeless or modal
Error To tell users about an error they’ve made in interacting with your application. Application-modal
Warning When there’s an action pending that will cause users to lose data. Application-modal
Question To ask users a specific question that they must respond to before continuing to interact Application-modal

with the application. Note that although Warning dialogs can also ask users a question,
that question relates to a pending action that’s destructive.

Working When an operation takes more than 5 seconds to complete. This dialog gives users the Modeless or modal
chance to cancel or stop the operation. Note that you might have to choose one of several
different platforms as your standard for estimating times of operations. Also note that
the pointer shape might need to change to the watch if the Working dialog is modal; see
“Standard Pointer Shapes and Colors” in Chapter 11.

Information To give users information that’s of immediate importance. Use this type of dialog Modeless
sparingly; use a status area in one of your primary application windows for the less
important messages (see “Status Areas in Primary Windows” in Chapter 6).

File Selection To allow users to navigate the file hierarchy and choose a file. Note that the IRTX Modeless
Interactive Desktop File Selection dialog, which is shown in Figure 10-2, is slightly
different from the standard OSF/Motif File Selection dialog.

204

Types and Modes of Dialogs

|F’rocessingJ please wait...‘

Cancel

. ‘Default Errar message

. |Defaultwarning message

|_on | Lcomer| _ren |

Figure 10-1 Sample Prompt, Error, Warning, Working, Question and Information Dialogs

205

Chapter 10: Dialogs

206

Contents of current
directory

Path navigation bar

Drop pocket History button

Current pathname

Filter button

Figure 10-2 The IRIX Interactive Desktop File Selection Dialog

Both the IRIX Interactive Desktop and IRIS IM File Selection dialogs provide lists of the
contents of the current directory and a text input field; the IRIX Interactive Desktop list
contains both the files and the subdirectories of the current directory, while the IRIS IM
list presents these in two separate lists. The IRIX Interactive Desktop File Selection dialog
also allows users to navigate through the file hierarchy using the drop pocket, path
navigation bar, and history button. As discussed in detail in “File Finder” in Chapter 9,
these components allow users to drop file or directory icons in the drop pocket, traverse
to ancestors of the current directory, or return to any directory visited previously. In
addition, the IRIX Interactive Desktop dialog presents a Filter button (rather than the
IRIS IM text input field), which brings up a dialog that allows the user to enter the filter
string.

Types and Modes of Dialogs

Dialog Modes

As listed in Table 10-1, dialogs can have different modes whereby the application can
require the user to respond to the dialog before continuing with other actions in the
application. The following are the most commonly used modes defined by OSF/Motif:

Modeless Modeless dialogs, such as the IRIX Interactive Desktop File Selection
dialog, don’t require the user to respond before continuing. The user can
interact with any other window associated with the application and
with any other application.

Primary-modal
Primary-modal dialogs require the user to respond to the dialog before
continuing to interact with the dialog’s parent window or any other
ancestor window. Note that these ancestor windows can’t receive mouse
or keyboard input until the user has responded to the dialog.

Application-modal
Application-modal dialogs require the user to respond to the dialog
before continuing to interact with the application. Note that none of the
application’s windows (except the dialog) can receive mouse or
keyboard input until the user has responded to the dialog. An example
of this type is a dialog that asks the user for a root password.

In addition to these modes, OSF/Motif defines a system-modal dialog that requires the
user to interact with the dialog before doing anything else on the system. You shouldn’t
use system-modal dialogs because your application should never need to restrict users’
activities to this degree.

Modal dialogs typically show static information, but modeless dialogs should display
dynamically updated information as the current state changes. Otherwise, the dialog
becomes useless. For example, the IRIX Interactive Desktop File Selection dialog
dynamically updates itself if a user changes the file hierarchy while it’s displayed; if it
didn’t, the user could select a file that no longer exists, for example.

207

Chapter 10: Dialogs

208

As listed in Table 10-1, File Selection and Information dialogs are modeless. Error,
Warning, and Question dialogs are application-modal. Working and Prompt dialogs can
be modeless or modal, depending on what they are being used for in the application. For
example, the desktop displays a Working dialog when you're copying a large directory
from a remote system using a directory view, but you can still do other things in the
Directory View while the copy is in progress. In other situations, you might not want to
allow user input until your application has completed a particular operation. For
example, when a user opens a large folder in MediaMail, no other actions can be
performed in that window until the folder has been read in completely. See “Working
Dialogs” on page 215 for details on the design of Working dialogs.

Guidelines for Using the Various Types and Modes of Dialogs
When choosing the type and mode of a dialog ...
Use a Prompt dialog to ask users for specific information. This dialog can be

modeless or modal.

Use an application-modal Error dialog to tell users about an error they’ve made in
interacting with your application.

Use an application-modal Warning dialog when there’s an action pending that will
cause users to lose data.

Use an application-modal Question dialog to ask users a specific question that they
must respond to before continuing to interact with the application.

Use a Working dialog when an operation takes more than 5 seconds to complete.
This dialog can be modeless or modal.

Use a modeless Information dialog to give users information that’s of immediate
importance. Use this type of dialog sparingly.

Use the modeless IRIX Interactive Desktop File Selection dialog to allow users to
navigate the file hierarchy and choose a file.

Don’t use system-modal dialogs.

o0 o 40O o 0o 4o o

Use modal dialogs to show static information, and update modeless dialogs
dynamically as the current state changes.

Designing Dialogs

Designing Dialogs

This section discusses general guidelines that apply to the design of all dialogs—for
example, dialog window decorations, size, information displayed when they first come
up, and the layout of information. It also describes the standard actions (in the form of
pushbuttons) that dialogs should contain. Finally, this section covers guidelines for the
content of the specific types of dialogs.

Keep in mind that as discussed in Chapter 6, “Application Windows,” every dialog is
associated with a specific primary or support window (its parent). The parent window
should be visible and mapped to the screen so that dialogs work properly across Desks,
as noted in “Desks” in Chapter 3.

This section covers:

® “Decorations, Initial State, and Layout of Dialogs”
e “Standard Dialog Actions”

¢ “Content of Specific Types of Dialogs”

Decorations, Initial State, and Layout of Dialogs

All dialogs should have the window decorations and Window menu entries listed in
Table 3-1 and described in “Window Decorations and the Window Menu” in Chapter 3.
These decorations and menu entries allow the user to:

¢ Move a dialog using the title bar. Since 4Dwm doesn’t guarantee that a dialog will
be placed in a specific location, a user may need to move the dialog to access
information in order to figure out the appropriate response to the dialog. Note that
a dialog’s title bar should follow the guidelines discussed in “Rules for Labeling the
Title Bar in Windows Other Than Main” in Chapter 3. A proper label allows users to
quickly identify the type of dialog and the application to which it belongs.

* Resize a dialog that contains resizable components such as text input fields and
scrolling lists. See “Window Decorations and the Window Menu” and “Window
Size” in Chapter 3 for specific guidelines on when a dialog should be resizable.

Note that these window decorations and menu entries don’t include operations either for

minimizing a dialog (since dialogs can’t be minimized independently of their parent
window) or for exiting an application from a dialog.

209

Chapter 10: Dialogs

210

When a dialog is opened, its size, placement, keyboard focus, and information displayed
should follow these guidelines:

* The default size should allow all of the components and information to be
displayed in their entirety. Users shouldn’t have to resize a dialog to see its contents.

¢ The dialog should be placed automatically on the screen—either near (but not
overlapping) any related information in the parent window, or in the center of the
parent window (if the contents of the dialog aren’t related to the contents of the
parent window). For more information on choosing a screen location, see “Window
Placement” in Chapter 3.

¢ The keyboard focus should be in the field with which the user is most likely to want
to interact. For example, if there are text input fields, the focus should probably be
in one of those fields. In general, dialogs should follow the keyboard focus and
keyboard navigation guidelines discussed in “Keyboard Focus Policy and
Navigation Within a Window” in Chapter 7.

¢ The information being displayed in the dialog should always match the current
state of the application. If the dialog is modeless, this information should be
dynamically updated, as described in “Dialog Modes” on page 207.

All dialogs you create should include a response area that contains standard dialog
actions (pushbuttons) tailored to the type and purpose of the dialog. The next section
(“Standard Dialog Actions”) discusses what the appropriate buttons are for this area. In
addition to the response area, Prompt dialogs should include an input area that consists
of whatever controls are necessary for selecting objects or setting application parameters.
Instead of this input area, Error, Warning, Question, Working, and Information dialogs
should include a message area, as shown in Figure 10-3. The message area consists of an
icon and text region that displays the dialog’s message.

Text region

Message area —[
Response area 4|: Cancel

Figure 10-3 ~ Warning Dialog Layout

- |Heax:tnr core ovetheated, please evacuate huilding.l E

Icon

Designing Dialogs

Don’t include menu bars in dialogs; they’re intended for short, quick user input rather
than for accessing lots of functionality. Also, dialogs don’t contain secondary work areas;
if you need additional work areas, use a support window instead. (See “Support
Windows” in Chapter 6 for information.) Also note that the pre-designed IRIX
Interactive Desktop File Selection dialog has a somewhat different set of elements and
layout than the other types of dialogs.

Standard Dialog Actions

All dialogs include a response area that contains a horizontal row of pushbuttons across
the bottom of the dialog. The standard dialog pushbuttons (or actions) are Yes, No, OK,
Close, Apply, Retry, Stop, Pause, Resume, Clear, Reset, Cancel, and Help, and they
should appear in that order. Your dialogs will typically contain some subset of these
buttons and possibly additional ones; the additional buttons should appear after the OK
and Apply buttons but before the Cancel and Help buttons.

All of these standard actions except Clear are defined in the reference page for DialogBox
in the OSE/Motif Style Guide. Clear, which is used in IRIX Interactive Desktop
applications, should clear all of the text input fields in the dialog. Note that this differs
from the “Reset” action, which resets all controls in a dialog (not just the text fields) to
default values.

Choosing Specific Actions for Your Dialogs

When choosing which of the standard actions to include in your specific dialog, use the
guidelines listed in the OSF/Motif Style Guide, Sections 6.2.1.7 and 6.2.4.2, with the
following additions and exceptions:

* Most dialogs should have a Help button. If the situation is stated clearly, you might
not need a Help button.

* Avoid using both OK and Apply on the same dialog because it often confuses users.
Consider using both when the number of users who will want to make one set of
changes, apply them, and close the dialog is equal to the number of users who will
want to make and apply multiple sets of changes before closing the dialog.

211

Chapter 10: Dialogs

To decide between OK and Apply, determine whether users are more likely to use
the dialog to make one set of changes at a time (if so, use OK) or whether they’re
more likely to want to make and apply changes repeatedly before closing the dialog
(in this case, use Apply).

If you can’t decide which of these scenarios best describes your users, use Apply
rather than OK. With Apply, users who want to make a single set of changes must
press an extra button (Apply, then Close, instead of just OK), which is at most a
minor annoyance. On the other hand, using OK by itself forces users who want to
make several sets of changes to re-launch the dialog for each set of changes, which
can be annoying.

Any dialog that has an Apply button should also include a Cancel/Close button.
When the dialog is opened, the button is labelled “Cancel.” After the user applies
some irreversible change, the label on the button changes to “Close” to inform users
that the action is irreversible. This button doesn’t indicate whether or not there are
pending changes to be applied.

Working dialogs should have a Cancel button that allows users to cancel an
operation and return the application to the state it was in before the operation
began. If you can’t return your application to the pre-operation state, you should
still allow users to stop the operation at the current point in the processing. It’s even
better to allow the user a choice of actions—for example, Pause (with the option of
later resuming) and Cancel.

By default, pressing the <Esc> key within a dialog is equivalent to clicking a Cancel
button. This is true even if the dialog doesn’t have an explicit Cancel button.

Choosing Default Actions

For many dialogs, you should choose one of the actions in the response area to be the
default action. By default, the default pushbutton is visually distinguished from the
other buttons (for example, the OK button in Figure 10-3), and it’s activated when the
user presses the <Enter> key while the dialog is the active window. If other buttons in
the response area can accept keyboard focus, they become the default button when they
have the focus—that is, they’re visually distinct from the other buttons, and pressing
<Enter> causes them to be activated. When none of these other buttons has the keyboard
focus, the default button status returns to the original default button.

212

Designing Dialogs

The following bullets describe common default actions for certain types of dialogs:

The default action for Information dialogs, which typically have buttons only for
OK and Help, is OK.

The default action for Question, Warning, Error, and any other dialogs that contain
buttons but no text fields is the response that users are most likely to select. For
example, a Warning dialog that asks, “Do you really want to do this destructive
action?” should have the affirmative response as the default action. Note that as
discussed in the next section, “Labeling Dialog Buttons,” make sure that each
button name clearly indicates the specific action that will occur if that button is
clicked.

The default action for dialogs that have only one text field and no other controls
than the buttons in the response area (such as the File Selection and Prompt dialogs)
is the action that the user is most likely to select after entering a text string.

Dialogs that contain multiple text fields should not have a default action since many
applications require users to press <Enter> after entering data in a text field. Users tend
to press <Enter> regardless of whether they have to, and they expect that action to ensure
that their data is entered; they don’t expect that action to invoke the dialog’s default
action.

Labeling Dialog Buttons

When labeling dialog buttons, use the OSF/Motif standard names except in the
following cases:

Replace the “Yes” and “No” labels in Warning and Question dialogs with button
names that clearly indicate the specific action that will occur if the button is clicked.
The buttons replacing Yes and No perform the action and close the dialog. As an
example, consider the Warning dialog shown in Figure 10-4.

=| StoryWriter : Warning

. |Save changes before closing?

Save Discard Cancel

Figure 10-4 Warning Dialog With Save, Discard, and Cancel Buttons

213

Chapter 10: Dialogs

214

¢ Replace the “OK” or “Apply” labels in Prompt or Warning dialogs with button
names that clearly indicate the specific action that will occur if the button is clicked
(for example, Open, Save, Print). Don’t replace these names when the button is used
for more than one purpose—for example, when the file browser is used to specify a
name for a new file, the OK button can be used to both name the file and display the
contents of a directory.

Also don’t replace either of these names on those rare instances when OK and
Apply are used together in a Prompt dialog.

Content of Specific Types of Dialogs

In addition to the general guidelines discussed in the two previous sections
(“Decorations, Initial State, and Layout of Dialogs” and “Standard Dialog Actions”),
follow the more specific guidelines for the different types of dialogs presented in this
section. (The dialog types are defined in Table 10-1.)

Prompt Dialogs

Prompt dialogs use a variety of controls to collect information from the user, including
text input fields, a list of all possible choices, radio buttons, checkboxes, and option
menus. Try to collect this information in related chunks—that is, avoid collecting
unrelated pieces of information in the same dialog, and don’t launch multiple dialog
boxes one right after the other to collect several pieces of information if these pieces are
frequently collected at the same time.

Error Dialogs

All Error dialogs should include a description of the error, step-by-step instructions for
how to recover from it (or a pointer to information on how to recover from it if the
instructions are long), and a pointer to more information about why the error might have
occurred. If the error involves a specific entity (for instance, a file, user, or host), name the
entity in the error message, as shown in Figure 10-5. Invoke Error dialogs only when
they're directly relevant to the user; for example, don't tell the user that the printer is out
of paper until the user has a job in the queue.

Designing Dialogs

. |Cou|d not connect to host: moxie. Check your cables.|

[o] Comer] oo |

Figure 10-5 Error Dialog With Specific Entity

Warning Dialogs

Warning dialogs should clearly state what data is likely to be lost and why, and give the
user a chance to cancel the action.

Question Dialogs

Limit your use of Question dialogs to those situations where the user couldn’t have
provided the information in advance. Also, don’t use Question dialogs for questions that
relate to a pending destructive action—for these cases, use Warning dialogs instead.

Working Dialogs

For Working dialogs, use the IRIX Interactive Desktop scale to dynamically indicate the
percentage of how much of the operation is complete. A Working dialog, also known as
Progress dialog or Percent Done indicator, is shown in Figure 10-6. See “IRIX Interactive
Desktop Scales” in Chapter 9 for more information about these indicators.

Figure 10-6 Working Dialog with IRIX Interactive Desktop Scale

215

Chapter 10: Dialogs

216

As described earlier in this chapter in “Choosing Specific Actions for Your Dialogs,”
Working dialogs should include at least one way to interrupt the task in progress. If the
dialog is modal, you should also switch from the general-purpose pointer to the watch
pointer in the dialog’s parent window. If for some reason you're unable to include any
buttons in the Working dialog (such as Cancel, Pause, Resume, or Help), switch to the
watch pointer in the Working dialog to indicate that user input will be ignored while the
operation is in progress. See “Standard Pointer Shapes and Colors” in Chapter 11 for
more information about the watch pointer.

Guidelines for Designing Dialogs

When choosing the window decorations, initial state, and layout of dialogs ...

[]
[]

Associate every dialog with a primary or support window (its parent) that’s mapped
to the screen.

Use the window decorations and Window menu entries listed in Table 3-1 and
described in “Window Decorations and the Window Menu” and “Rules for Labeling
the Title Bar in Windows Other Than Main” in Chapter 3.

Have the default size large enough to allow all of the components and information
to be displayed in their entirety.

Place the dialog on the screen either near (but not overlapping) any related
information in the parent window, or in the center of the parent window if the
contents of the dialog aren’t related to the contents of the parent window.

Locate the initial keyboard focus in the field with which the user is most likely to
want to interact.

Be sure the information being displayed in the dialog matches the current state of the
application. If the dialog is modeless, update this information dynamically.

Include a response area that contains standard dialog actions (pushbuttons) tailored
to the type and purpose of the dialog. Also include an input area that consists of
whatever controls are necessary for selecting objects or setting application
parameters in Prompt dialogs. Include a message area in Error, Warning, Question,
Working, and Information dialogs.

Don’t include secondary work areas; if you need additional work areas, use a
support window instead.

Don’t include menus. If the dialog includes so much functionality that menus are
necessary, use a support window.

Designing Dialogs

When choosing pushbutton actions for dialogs . . .

[

oo

[]
[]

Use a subset of the standard dialog actions (Yes, No, OK, Close, Apply, Retry, Stop,
Pause, Resume, Clear, Reset, Cancel, and Help), and have them appear in that order.
If you include additional buttons, put them after the OK and Apply buttons but
before the Cancel and Help buttons.

Include a Help button unless the situation is explained thoroughly in the dialog.
Avoid using both OK and Apply on the same dialog.

To decide between OK and Apply, determine whether users are more likely to use
the dialog to make one set of changes at a time (if so, use OK), or whether they’re
more likely to want to make and apply changes repeatedly before closing the dialog
(in this case, use Apply).

Include a Cancel/Close button on any dialog that has an Apply button.

Include a Cancel button on Working dialogs and, if possible, a Pause button (with the
option of later resuming).

When choosing and creating default actions . ..

[]
[

[

[

Whenever appropriate, choose one of the actions to be the default action.

Have OK be the default action for Information dialogs (which typically have buttons
only for OK and Help).

Have the response that users are most likely to select be the default action for
Question, Warning, Error, and any other dialogs that contain buttons but no text
fields.

Have the response that users are most likely to select after entering a text string be
the default action for dialogs that have only one text field. Use no other controls than
the buttons in the response area (such as the File Selection and Prompt dialogs).

Don’t have a default action for dialogs that contain multiple text fields.

When labeling dialog buttons ...

[]
[]

[

Replace the “Yes” and “No” labels in Warning and Question dialogs with button
names that clearly indicate the specific action that will occur if the button is clicked.

Replace the “OK” or “Apply” labels in Prompt or Warning dialogs with button
names that clearly indicate the specific action that will occur if the button is clicked,
unless the button is used for more than one purpose, or in the rare instance that “OK”
and “Apply” are used together in a Prompt dialog.

In all other cases, use the OSF/Motif standard names.

217

Chapter 10: Dialogs

Invoking Dialogs

218

When deciding what content to include in specific types of dialogs . ..

[Use Prompt dialogs to collect information in related chunks—thatis, avoid collecting
unrelated pieces of information in the same dialog, and don’t launch multiple dialog
boxes sequentially to collect several pieces of information if these pieces are
frequently collected at the same time.

[Include a description of the error, step-by-step instructions for how to recover from
it, and a pointer to more information in Error dialogs. If the error involves a specific
entity (for instance, a file, user, or host), name the entity in the error message.

Invoke Error dialogs only when they’re directly relevant to the user; for example,
don’t tell the user that the printer is out of paper until the user has a job in the queue.

State what data is likely to be lost and why, and give the user a chance to cancel the
action in Warning dialogs.

Limit your use of Question dialogs to those situations where the user couldn’t have
provided the information in advance.

Don’t use Question dialogs for questions that relate to a pending destructive
action—for these cases, use Warning dialogs instead.

Dynamically indicate how much of the operation is complete with the IRIX
Interactive Desktop scale used as a percent-done indicator in Working dialogs.

O O 0O oo o O

Switch from the general-purpose pointer to the watch pointer in the parent window
of a modal Working dialog.

Users expect to encounter dialogs in certain situations. This section describes the most
common situations and gives an example of the dialog your application should provide
if users can encounter this situation when interacting with your application. Topics
include:

¢ “Invoking Dialogs When Manipulating Files”
e “Other Situations for Invoking Dialogs”

For more information about the standard menu entries referred to in this section, see
“Standard Menus” in Chapter 8.

Since dialogs are designed to get the user’s attention, overuse of them will be distracting
to the user. Similarly, don’t use application-generated dialogs to provide general status
information; use a status area in the associated primary or support window instead (see
“Status Areas in Primary Windows” in Chapter 6).

Invoking Dialogs

Invoking Dialogs When Manipulating Files

Users expect to be prompted with a dialog whenever they choose a menu entry that
includes an ellipsis. These dialogs prompt the user for information that’s necessary
before the action can be completed, as described in the following common examples.

¢ “Open...” from the File (or leftmost) menu should display the IRIX Interactive
Desktop File Selection dialog shown in Figure 10-2. The first time this dialog is
opened for an application, it should show the current working directory and no
specific file. Subsequently, it should come up in the state it was last in when the user
dismissed it—that is, it shows the last directory the user traversed to, and the file
that the user opened the last time is selected. (See Table 10-1 and Figure 10-2 earlier
in this chapter for more information about the IRIX Interactive Desktop File
Selection dialog.)

* “Save As...” from the File (or leftmost) menu should display the IRIX Interactive
Desktop File Selection dialog. If the file being saved doesn’t exist yet, the dialog
should show the current working directory and no specific file. If the file exists, the
dialog should show that file’s directory, and the current name of the file should be
selected. If the user uses “Save As...” to change the name of an existing file, your
application should create a copy of the existing file with the new name, close the
previous file, and open the new file. (See “File Menu” in Chapter 8.)

When users open, close, or save changes to files, prompt them with the Warning dialog
shown in Figure 10-4 whenever these actions will cause data to be lost. The standard
situations in which this can arise include the following (see “Application Models” in
Chapter 6 for a discussion of the single- and multiple-document application models
described in the following paragraphs):

* Inanapplication that allows only one document to be open at a time, when the user
chooses to open another (new or existing) document and there are unsaved changes
in the currently opened document. The user can open another document by
selecting “New” from the File menu, by selecting “Open...” from the File menu and
using the File Selection dialog, or by choosing a file from the “Reopen” cascading
menu in the File menu.

¢ When the user chooses “Close” from the File menu in a co-primary window, and
the co-primary window contains data that will be lost if the window is closed. This
situation is especially common in applications that support multiple open
documents because for these applications, closing a co-primary window is
equivalent to closing a file.

¢ When the user chooses “Exit” from the File menu, and at least one open co-primary
window contains data that will be lost if the application is exited. For applications
that support multiple open documents, prompt the user with a separate dialog box
for each file that’s currently open and has unsaved changes.

219

Chapter 10: Dialogs

220

Other common file-related situations that require dialogs include:

e When the user chooses “Save” from the File menu, and the current file is untitled. In
this situation, prompt the user with the IRIX Interactive Desktop File Selection
dialog, as described above for “Save As....”

When the user is interacting with the File Selection dialog and chooses a filename
that already exists. In this situation, prompt the user with the Warning dialog
shown in Figure 10-7.

. |0venurite existing ﬁle?|

| [fowe] [Ceea|

Figure 10-7 Warning Dialog for Overwriting a File

* When the user chooses “Revert” from the File menu, and the file currently has
unsaved changes. In this situation, prompt the user with the Warning dialog shown
in Figure 10-8.

Revert to previous version and
discard current changes?

| oo | o |

Figure 10-8 = Warning Dialog for Reverting to Previous Version

Invoking Dialogs

Other Situations for Invoking Dialogs

When the user chooses “Product Information” from the Help menu, provide an
Information dialog like the one shown in Figure 10-9. (See “Product Information” in
Chapter 4 for some suggestions about what to include in Product Information dialogs.)

=.| movieplaver

IRIS Movie Player Version 2.1.
. Copyright (¢)1992-1994 Silicon Graphics, Inc.
ALL RIGHTS RESERVED.

| =

| =

Figure 10-9 Product Information Dialog

When users initiate an operation that takes more than five seconds to complete, your
application should display a Working dialog. In this situation, prompt the user with the
Working dialog shown in Figure 10-6. Note that you might have to choose one of several
different platforms as your standard for estimating times of operations. See “Working
Dialogs” earlier in this chapter for more information about the content of these dialogs.

When the user chooses “Paste” from the Edit menu and there’s nothing currently on the
clipboard to be pasted, bring up an Information dialog that says “The clipboard is
empty” and that contains the single button “OK.” (See “Edit Menu” in Chapter 8.)

Guidelines for Invoking Dialogs

When determining when to display a dialog and which dialog to display . ..

[] Limit the use of dialogs to those cases when they’re absolutely necessary. Don’t use
dialogs to provide general status information—use a status area in the associated
primary or support window instead.

[] mvokea dialog whenever users choose a menu entry that includes an ellipsis.

221

Chapter 10: Dialogs

222

[

]

O O O o

Display the IRIX Interactive Desktop File Selection dialog when the user chooses
“Open...” from the File menu. The first time this dialog is opened, it should show the
current working directory and no specific file. Subsequently, it should come up in the
state it was last in when the user dismissed it.

Display the IRIX Interactive Desktop File Selection dialog when the user chooses
“Save As...” from the File menu. If the file being saved doesn’t exist yet, the dialog
should show the current working directory and no specific file. If the file exists, the
dialog should show that file’s directory, and the current name of the file should be
selected.

When users open, close, or save changes to files, prompt them with a Warning dialog
whenever these actions will cause data to be lost:

In an application that allows only one document to be open at a time, when the user
chooses to open another (new or existing) document and there are unsaved changes
in the currently opened document. (For example, the user chooses “New,” “Open,”
or “Reopen” from the File menu.)

When the user chooses “Close” from the File menu in a co-primary window, and
the co-primary window contains data that will be lost if the window is closed.

When the user chooses “Exit” from the File menu, and at least one open co-primary
window contains data that will be lost if the application is exited. For applications
that support multiple open documents, prompt the user with a separate dialog box
for each file that’s currently open and has unsaved changes.

Prompt users with the File Selection dialog when they choose Save from the File
menu and the current file is untitled. The behavior is the same as the “Save As...”
entry in this situation.

Prompt users with a Warning dialog when they’re interacting with the File Selection
dialog and they choose a filename that already exists.

Prompt users with a Warning dialog when they choose “Revert” from the File menu
and the file currently has unsaved changes.

Display an Information dialog when a user chooses the “Product Information” entry
from the Help menu.

Display the Working dialog when users initiate an operation that takes more than
five seconds to complete. Note that you might have to choose one of several different
platforms as your standard for estimating times of operations.

Chapter 11

User Feedback

Your application should supply feedback to users so that they know it’s working and
what it’s doing. This chapter covers the following topics:

* “Types of Feedback” briefly describes various types of feedback users expect your
application to provide; it also tells you where to look in this guide for more
information about each type of feedback.

e “Pointer Shapes and Colors” discusses when to use each of the standard pointer
shapes and provides guidelines for designing your own pointer shapes.

Types of Feedback

Your application should provide feedback to users using the techniques described in this
section. Note that most of these techniques are covered in other chapters of this guide, as
indicated; these other chapters also include the explicit checklist guidelines to follow, so
they’re not repeated here. Topics include:

¢ “Providing Graphic Feedback”
¢ “Keeping Information Up to Date”

¢ “Providing Messages to the User”

223

Chapter 11: User Feedback

224

Providing Graphic Feedback

Appropriate desktop icons for your application’s executable and data files allow users to
readily identify your application, files that were created using your application, and the
current state of the application (that is, running or not running). Design executable and
data file icons to provide this sort of graphic feedback, as discussed in Chapter 2, “Icons.”

The IRIX Interactive Desktop look includes graphic modifications that were made to
standard IRIS IM in order to improve the level of user feedback. For instance, locate
highlight visually indicates which components are live functional objects and which are
passive graphics. In addition, scrollbars were redesigned to keep track of their initial
positions, and radio buttons and checkboxes show their state more emphatically. Your
application should use the IRIX Interactive Desktop look, which is discussed in “The
IRIX Interactive Desktop Look: Graphic Features and Schemes” in Chapter 3.

Users expect the pointer to change shape to reflect the current state of the window—for
example, when the application is busy processing and can’t accept keyboard or mouse
input, the pointer changes to a watch. Guidelines for pointer shapes are discussed later
in this chapter, in “Pointer Shapes and Colors.”

As users select data in a window, highlight that data to show what'’s included in the
current selection. The data should remain highlighted even when the window isn’t the
currently active window. See “Highlighting a Selection” in Chapter 7 for more
information about highlighting selections.

Keeping Information Up to Date

As users set particular values in components such as radio buttons, check boxes, lists,
and option menus, your application should always indicate the current values so that the
user knows what they are. For example, the Language control panel highlights the
current values for “Locations” and “Keyboards” in the two corresponding lists. Radio
buttons, checkboxes, lists, and option menus are discussed in more detail in Chapter 9,
“Controls.”

Types of Feedback

Even if users can change values or data without using an explicitly provided component,
your application should still endeavor to display the current information. For instance,
users can change the file hierarchy using the shell; if your application displays
information affected by such a change (such as a directory view), the display should
update dynamically as the user makes the change. If it’s impossible or if it would have a
significantly adverse effect on your application’s performance to make the display
dynamic, choose a design that looks static. For example, you might use label text, which
looks like it’s a permanent part of the background, rather than text fields, which look like
they should be updated constantly. The desktop uses this strategy for the “business
cards” that are displayed when a user double-clicks a person icon.

When component settings apply to a specific object, the displayed components should
reflect the values for the currently selected object (if there is one). For example, if you
select some text in an IRIS Showcase file, the “Font Family,” “Font Size,”
Bold/Italic/Underline, and color options in the Master Gizmo are updated to display the
characteristics of the selected text.

Providing Messages to the User

In addition to providing immediate graphic feedback through your application’s icons,
components, and pointers, provide textual messages that describe your application’s
status. Keep in mind that by default the window manager for the IRIX Interactive
Desktop, 4Dwm, sends stdout and stderr messages to the Console window, which users
typically keep minimized. (Users can choose to have stderr messages appear in a dialog
box by using the Desktop Settings control panel available from the Desktop->Customize
cascading menu in the Toolchest, and they can of course un-minimize the Console
window.) Because of these default settings, you can’t be sure that users will notice
messages sent to stdout and stderr; therefore, use dialogs or status areas in your
application instead.

In particular, use dialogs to provide warning messages, error messages, and
work-in-progress feedback, as discussed in Chapter 10, “Dialogs.” Also define an area on
primary windows for status messages in the cases discussed in “Status Areas in Primary
Windows” in Chapter 6. Finally, change the label (or possibly the image) of your
application’s minimized window when appropriate to provide feedback; “Minimized
Windows” in Chapter 3 discusses when to use this technique.

225

Chapter 11: User Feedback

General User Feedback Guidelines

[] Provide graphic feedback with appropriate desktop icon designs, by using the IRIX
Interactive Desktop look, by changing pointer shapes appropriately, and by
highlighting selected text.

[] Be sure your application displays up-to-date information—in controls and
components (display the settings that correspond to the currently selected object or
the current values), and in information displays (such as directory views). If the
information being displayed can’t be dynamically updated, choose a design that
looks static.

Provide textual message to the user throu ialogs, through status areas on your

[d 1 ge to th hrough dialogs, through y
primary windows, and by changing the label of your minimized window when
appropriate.

Pointer Shapes and Colors

226

Your application should use different pointer shapes to indicate when it’s busy or in a
particular mode, or when one of its windows isn’t accepting input. This section
describes:

e “Standard Pointer Shapes and Colors”

* “Designing New Pointer Shapes”

Standard Pointer Shapes and Colors

The OSF/Motif Style Guide defines several standard pointer shapes. Your application
should use these standard shapes for the purposes described in Table 11-1; the table also
notes any additions and exceptions to the OSF/Motif policies for using these pointers. If
your application requires functionality beyond what’s described below, design your own
new pointers, as described in “Designing New Pointer Shapes,” rather than extend the
functionality of these standard ones.

Pointer Shapes and Colors

Table 11-1 Standard Pointer Shapes and Colors

Pointer Name Purpose Additions and Exceptions to OSF/Motif Style
upper-left General-purpose pointer, used for In the IRIX Interactive Desktop environment, this pointer
h arrow selecting data, setting the values of should be red with a white outline (rather than black with a

controls, and initiating actions (for ~ white outline) so that it’s easier to see against most typical
example, by clicking on a button). user-customized background colors and patterns.

upper-right Indicates that a menu is being This is the default pointer when a menu is pulled down from a
/‘fl arrow displayed and that the applicationis menu bar, popped up from the right mouse button, or
waiting for the user to selectamenu displayed from an option menu button. (See Chapter 8,
item or remove the menu. “Menus,” for details on the various types of menus.)
watch Indicates that an operation is in Use this pointer instead of the hourglass because the watch is a
{E} progress in the area, and that all more universally recognized symbol for time. Also, use this
mouse-button and keyboard events pointer if you estimate that the operation generally takes more
are ignored in the area. than 3 seconds. (Note that you might have to choose one of

several different platforms as your standard for estimating
times of operations.) For less than 3 seconds, maintain the
current pointer shape to avoid distracting users. For more than
5 seconds, use a work-in-progress dialog in addition to the
watch pointer. (See Chapter 10, “Dialogs.”)

:[I-beam Indicates that your application is in OSF/Motif allows this pointer to be used for indicating that the
pointer text-editing mode. (Note that this ~ pointer is over an editable text component in a window that
I-beam pointer is different from the uses implicit focus. Since you should use explicit focus when
I-beam text insertion cursor.) moving within a window, you don’t need the I-beam pointer

for this purpose. However, you can use it to indicate that your
application is in text-editing mode; this might be useful if your
application can edit both text and graphics, for example.

3 question Indicates that the user is in none
mark context-sensitive help mode and
needs to click on an area of the
screen to specify the exact help
information requested.

| cross hair Used to make fine position none
selections; for example, to indicate a
pixel to fill in a drawing program, or
to select the endpoint of a line.

227

Chapter 11: User Feedback

Table 11-1 (continued) Standard Pointer Shapes and Colors

Pointer Name Purpose Additions and Exceptions to OSF/Motif Style
[T al resize Indicates positions whenresizingan none
[+ = area.
[4 3]
4-directional Indicates that either a move none

<

arrow

operation or a resize operation
(before the resize direction has been
determined) is in progress.

228

The OSF/Motif Style Guide defines a few pointers that you shouldn’t need to use:

¢ Hourglass—Use the watch instead of the hourglass because the watch is a more
universally recognized symbol for time.

* X—Reserved for use by the window manager.

OSF/Motif also defines a caution pointer to be used for indicating that all mouse and
keyboard events are ignored in the area until the user performs an expected action in a
primary modal or application modal dialog. You can use this pointer in your application
if you want; note that many IRIX Interactive Desktop applications don’t use it because at
this time there’s no automatic support for it in IRIS IM. (See “Dialog Modes” in
Chapter 10 for more information on primary and application modal dialogs.)

Designing New Pointer Shapes

You might find it necessary to design new pointer shapes that represent functionality
specific to your application, particularly if your application has modes. In these cases, the
pointer shape can be used to indicate the current mode. For example, a paint program
typically has different tools or modes that the user can select; the pointer shape might
resemble a specific brush style, spray paint can, eraser, or I-beam pointer, depending on
the tool selected. When you design new pointer shapes, follow the guidelines listed in
the reference page on Pointer Shapes in the OSF/Motif Style Guide: create a pointer shape
that gives a hint about its purpose and is easy to see, avoid shapes that create visual
clutter, and make its hotspot easy to locate. (The hotspot identifies where mouse actions
occur.)

Pointer Shapes and Colors

Pointer Shapes and Colors Guidelines

When deciding which pointers to use in your application. ..

O O O

oo oo o

Use the standard pointers when possible.

Use the upper-left pointing arrow as a general-purpose pointer; this pointer should
be red with a white outline.

Use the upper-right pointing arrow when a menu is pulled down from a menu bar,
popped up from the right mouse button, or displayed from an option menu button.

Use the watch pointer for operations that take more than 3 seconds. (For less than 3
seconds, maintain the current pointer; for more than 5 seconds, also use a
work-in-progress dialog.)

Use the I-beam pointer to indicate that your application is in a text-editing mode, but
don’t use it to indicate implicit focus over a text object within a window.

Use the question mark to indicate that the user is in context-sensitive help mode.
Use the sighting pointer (crosshair) to make fine position selections.
Use resize pointers to indicate positions when resizing an area.

Use the 4-directional arrow to indicate that either a move operation or a resize
operation is in progress.

Don’t use the hourglass pointer; use the watch pointer instead.
Don’t use the X pointer (it’s reserved for the window manager).

Don’t assign new functionality to the standard pointer shapes; instead, design your
own new pointer shape.

When designing new pointer shapes. ..

[]
[]
[]
[]

Create a pointer shape that gives a hint about its purpose.
Make the shape easy to see.
Make the hotspot easy to locate.

Avoid shapes that would create visual clutter.

229

PART THREE

3D Style Guidelines

Chapter 12

Introduction to 3D Style Guidelines
Chapter 13

Interactive Viewing of 3D Objects
Chapter 14

Selection in 3D Applications
Chapter 15

Manipulating 3D Objects

Chapter 12

Introduction to 3D Style Guidelines

A developer designing a user interface for a 3D application has to resolve some issues
that don’t arise in 2D user interface design. 3D applications have to provide easy and
intuitive interaction in three dimensions with a 2D pointing device. Also, because users
of 3D applications often need convenient access to all sides of the objects they view, many
applications need to offer more than one way to view or edit scenes or objects.

This chapter provides general information that’s useful for designing a 3D application
that is consistent and behaves in ways that users expect. It covers these topics:

¢ “Making 3D Functionality Available” provides general guidelines for mapping
functionality to the mouse buttons and for using modifier keys.

e “Pointer Shapes for 3D Functions” discusses the appropriate pointer shapes for
some common functionality in 3D applications.

e “Resizing the 3D Viewing Window” describes how the contents of the 3D viewing

window changes as the user resizes the window.

Because of their general nature, the guidelines discussed in this chapter are especially
relevant if you can’t find a guideline for a specific situation and therefore need to extend
existing guidelines.

233

Chapter 12: Introduction to 3D Style Guidelines

Making 3D Functionality Available

234

A 3D user interface designer typically has to make 3D functionality easily available
within the constraints of a 2D input device and standard keyboard. This section provides
an overview of two primary ways of doing this:

* “Designing Mouse Input for 3D Applications”
* “Using Modifier Keys in 3D Applications”

Guidelines for specific cases, for example, use of modifier keys during viewing, are
discussed in detail in later chapters, where applicable.

Designing Mouse Input for 3D Applications

The section “Mouse and Keyboard Hardware” in Chapter 1 discusses the rules for mouse
input that apply in 2D applications. They can be summarized as follows:

* The left mouse button provides basic functionality such as selecting and dragging
objects.

* The middle mouse button is reserved for primary copy and paste operations and for
advanced user shortcuts, which are also accessible through some more obvious
interface.

¢ The right mouse button is reserved for popup menus.

The same is true in a 3D application:

* The most important functionality is mapped to the left mouse button. For example,
if viewing is the user’s primary task, the left mouse button provides access to
viewing functionality such as navigating through a scene. If editing is the primary
task, the left mouse button provides access to editing functionality such as selecting
and manipulating objects.

Modifier keys used in conjunction with the left mouse button provide additional
functionality. For example, if the user is performing free translation (the default), no
modifier keys are required. For constrained translation along one axis, the user has
to hold down both the left mouse button and the <Shift> key. See “Free and
Constrained 3D Manipulation” in Chapter 15.

* The middle mouse button is reserved for primary copy and paste operations and for
advanced user shortcuts, which are also accessible through some more obvious
interface.

¢ The right mouse button is reserved for popup menus which provide access to
important functionality. See “Popup Menus” in Chapter 8.

Making 3D Functionality Available

Using Modifier Keys in 3D Applications

Using modifier keys allows you to map additional functionality to the left mouse button.
Each modifier key extends the available direct manipulation functionality in a consistent
way without compromising the functionality of the other mouse buttons. This
consistency helps users learn when to use each modifier key. Table 12-1 lists the “3D
definitions” for the <Shift>, <Ctrl>, <Alt>, and <Esc> keys.

Table 12-1 Use of Modifier Keys in a 3D Application

Key Description

Shift Constrains or unconstrains the default behavior for the left mouse button. For example,
shifts from the default unconstrained translation in two dimensions to constrained axial
translation in one dimension, or from the default constrained rotation in two dimensions
to unconstrained free rotation in three dimensions. (See Chapter 15, “Manipulating 3D
Objects,” for how the <Shift> key modifies the default translate, rotate, and scale
behaviors.)

Ctrl Provides an alternate behavior that isn’t thought of as constraining or unconstraining the
default behavior for the left mouse button. For example, if users drag a translation plane
using the left mouse button, the object moves along the plane (the default behavior). If
users hold down the <Ctrl> key while performing the same drag operation, the object
moves perpendicular to the plane. (See Chapter 15, “Manipulating 3D Objects,” for how
the <Ctrl> key modifies the default translate, rotate, and scale behaviors.)

Alt Provides access to a view overlay as long as the <Alt> key is pressed. Returns the user to
the previous mode when the <Alt> key is released. (See “View Overlay” in Chapter 13.)

Esc Performs mode switches, for example from view mode to edit mode. Note that this use of
the <Esc> key is consistent with the OSF/Motif Style Guide, which recommends using
<Esc> to cancel an operation. In effect, you are canceling (exiting) one mode and entering
another. (See “Separate View and Edit Modes” in Chapter 13.)

If your application uses the <Shift> key to constrain or unconstrain actions and uses the
<Ctrl> key for alternate behavior, make the combination of the two available where it
makes sense.

For example, the <Shift> key constrains scaling to enlarge or shrink the object in only one
dimension rather than the default uniform scaling operation (enlarging or shrinking the
object simultaneously in all three dimensions). The <Ctrl> key provides the alternate
behavior of scaling around the opposite scaling handle rather than the default behavior
of scaling around the center. Using the <Shift> and <Ctrl> keys in combination allows
the user to perform constrained scaling around the opposite plane. (See “Scaling 3D
Objects” in Chapter 15.)

235

Chapter 12: Introduction to 3D Style Guidelines

Basic 3D Interface Design Guidelines

To provide mouse functionality that matches user’s expectations in a 3D application...
[Assign primary functionality to the left mouse button.

[] Use modifier keys in conjunction with the left mouse button to make additional
functionality available.

[] Reserve the middle mouse button for primary copy and paste operations and to
provide access to advanced user shortcuts that are also accessible via a more obvious
user interface.

[] Reserve the right mouse button for popup menus.

When deciding on the use of modifier keys in a 3D application...

Use the <Shift> key to constrain or unconstrain the default behavior of the left mouse
button.

Use the <Ctrl> key to allow alternate behaviors that aren’t thought of as constraining
or unconstraining the default behavior assigned to the left mouse button.

Use <Shift> and <Ctrl> together where it makes sense to provide alternate behavior
that’s also constrained or unconstrained.

Reserve the <Alt> key for a view overlay (see “View Overlay” in Chapter 13).

oo o oo

Reserve the <Esc> key for mode switches, for example, switching from view mode
to edit mode.

Pointer Shapes for 3D Functions

236

General guidelines for pointer feedback for all applications in the IRIX Interactive
Desktop environment are discussed in “Pointer Shapes and Colors” in Chapter 11. This
section discusses additional pointer shapes specifically designed for 3D applications.

Using the correct pointer feedback is crucial in a 3D application because users typically
need to work with a great variety of functions, and these functions are often accessed
using the left mouse button in conjunction with modifier keys. To help users recognize
which function they are currently accessing and to help them learn the mapping between
modifier keys and available functions, display standard pointer shapes whenever the

Pointer Shapes for 3D Functions

user accesses common 3D functions. Table 12-2 provides an overview of the common 3D
functions and associated pointers; it includes references to the relevant sections in later
chapters. See Table 13-1 for an overview of 3D viewing functions and the associated user
interface.

Table 12-2 Pointers for 3D Functionality

Pointer Function Purpose

Tumbling User is rotating a scene in view mode. See “Tumbling” in Chapter 13.

Dollying User is moving a scene closer or farther away in view mode. See
& “Dollying” in Chapter 13.

Panning User is moving a scene up, down, left, or right without rotating it. User is
in view mode. See “Panning” in Chapter 13.

Roaming User is moving through a fixed scene as if walking or flying. User can
view objects but not edit them. See “Roaming” in Chapter 13.

Tilting User is tilting head up or down in a scene without moving through the
scene. User is in view mode. See “Tilting” in Chapter 13.

Qm) Sidling User is sidestepping to the right or left in the scene being viewed or is
moving up or down as if on an elevator. User is in view mode. See
“Sidling” in Chapter 13.

Seeking User selects an object or target in view mode, and is then automatically
moved closer to that object with each click. See “Seeking” in Chapter 13.

k Editing User can select and manipulate objects, for example, translate, rotate,
and/or scale them. See “Viewing and Editing in 3D Applications” in
Chapter 13. This is also the “default” pointer shape when no special
function is taking place.

237

Chapter 12: Introduction to 3D Style Guidelines

Pointer Feedback Guidelines for 3D Applications

To help users stay oriented while working in your 3D application...

[] Use the standard pointer shapes to indicate specific 3D functionality. Display these
pointers whenever the user accesses that functionality.

[] Use the standard pointers used in 2D applications as needed (for example, the watch
pointer to indicate an operation is in progress).

Resizing the 3D Viewing Window

238

When users resize the viewing window in a 3D application, its contents changes based
on whether or not the resize operation keeps the same aspect ratio:

e If the user keeps the same aspect ratio, the contents of the window stays the same
but the scene in the viewing area gets proportionally bigger or smaller depending
on whether the user made the window bigger or smaller.

e If the user changes the aspect ratio, the size of the objects in the scene stays the same
but more of the scene becomes visible when the user makes the window bigger and
less of the scene is visible when the user makes the window smaller.

Guidelines for Resizing Windows in 3D Applications

When designing the resizing operation for the viewing windows in your 3D
application...

(] 1f the user resizes the window and keeps its same aspect ratio, make the scene in the
viewing area of the window proportionally bigger or smaller based on the resize
action.

(] 1f the user resizes the window and changes its aspect ratio during the resize
operation, display more or less of the scene being displayed based on the resize
action, but don’t change the size of the objects in the scene.

Chapter 13

Interactive Viewing of 3D Objects

Interactive viewing must be supported in the user interface of all 3D applications, even
if those applications don’t support editing.

Viewing 3D content is more complex than viewing a 2D image because of the added
dimension. This added dimension means not only that there is more to look at, but also
that there are more ways of looking at things. For example, users may want to view the
sides, back, and top of a 3D model of a computer, walk through a virtual room, or fly
through a 3D landscape. Interface designers have to determine the appropriate viewing
functionality for their application and implement it in a consistent and intuitive way.

This chapter discusses interactive viewing of 3D objects in these sections:

® “Introduction to 3D Viewing” provides an introduction to the viewing paradigm
and discusses some terminology.

e “3D Viewing Functions” introduces inspection and navigation, which are two
different viewing modes, and describes the viewing functions an application needs
to support in each mode.

e “3D Viewing Interface Trade-Offs” discusses 3D application design issues that
developers typically must address and provides recommendations for resolving
these issues.

239

Chapter 13: Interactive Viewing of 3D Objects

Introduction to 3D Viewing

240

3D viewing can be thought of as using a camera to view the world. The following
concepts are used in this document to describe the user interface to viewing functions
(see Figure 13-1):

e Eyepoint. The eyepoint is the position of the user’s eye. The camera is always
positioned at the eyepoint. As the user moves the location of the camera, the
location of the eyepoint also changes.

* Viewing area. The viewing area is what the user can currently see while looking
through the camera. It’s what the user sees in the application’s viewport.

* Viewing direction. The viewing direction refers to how the camera is oriented in
space. As the user turns the camera to the left or right or tilts the camera up or
down, the viewing direction changes accordingly. As the user changes the viewing
direction, the contents of the viewing area also changes. In effect, the user is looking
through the camera at a different part of the scene.

* Look-at point. The look-at point is the current center of interest within the scene.
The camera’s viewing direction is always aimed so that the look-at point is in the
center of the viewing area.

Look-at point

Viewing area

Eyepoint

Figure 13-1 The Camera Analogy in 3D Viewing

3D Viewing Functions

3D Viewing Functions

In the context of this document, viewing refers to manipulating a camera to view the
contents of a 3D application (see “Introduction to 3D Viewing”). This document
distinguishes between the two basic viewing modes, inspection and navigation. Every
3D application needs to support at least one; if your application supports both, pick one
as the primary mode.

Although viewing refers to manipulating a camera in a 3D application, users may base
their interaction with the application on a different metaphor. These fundamental
metaphors are also discussed in the following sections. For example, during inspection
users interact with the scene (or object) they are viewing as if it were a single object that
they are holding in their hand. They expect to be able to move this scene (or object)
around in space (see “3D Viewing Trade-Offs and Related Guidelines”). Application
developers, on the other hand, find it useful to implement the inspection functions in
terms of a camera that moves around the scene being viewed. It's important that your
application allows users to work with viewing functions using the metaphors they
expect regardless of how the application implements them.

This section describes the different functions available in inspection and in navigation.
Table 13-1 provides an overview of each function, the mouse and key bindings used to
access it, and the pointer shape displayed when the user is accessing it. Each function is
discussed in detail in the following sections.

241

Chapter 13: Interactive Viewing of 3D Objects

Table 13-1 3D Viewing Functions and User Interface

Function View Mode Pointer Mouse and Keyboard Binding

Tumbling Inspection Dragging with the left mouse button.

(default)

Dragging while simultaneously pressing the left

Dollying Inspection
Jt'? and middle mouse buttons.

Panning Inspection @ Dragging with the middle mouse button.

Roaming Navigation Dragging with the left mouse button.

(default)
Tilting Navigation Dragging while simultaneously pressing the left
and middle mouse buttons.
Sidling Navigation Qm) Dragging with the middle mouse button.
Seeking Inspection and Clicking with the left mouse button.?
Navigation 'EB'

a. Many applications need to reserve clicking with the left mouse button for a more useful function (for example,
activating a link or initiating object behavior). In those applications, allow users to first activate a seek tool,
then click in the scene with the left mouse button to seek.

242

3D Viewing Functions

Inspection Functions for 3D Viewing

This section first gives an overview of inspection, then describes three viewing functions
that apply only to inspection (and not to navigation):

e “Tumbling”
e “Dollying”

e “Panning”

The section also discusses “Seeking,” which has the same effect in both inspection and
navigation.

Each function is first presented from the user’s point of view, then discussed in terms of
the implementation model.

Inspection Overview

Inspection is an approach to viewing where users can examine a scene as if it’s a single
object they are holding in their hand. For example, users may want to examine the model
of a coffee mug the same way they would examine a real mug by holding it and turning
it around.

The expected user model for inspection is that users are manipulating the scene, not the
camera. From the users’ perspective, all inspection controls appear to manipulate the
scene (or object) while the camera remains stationary. For example:

® Pressing the left mouse button and dragging the pointer down (tumbling) rotates
the object towards the user. To achieve this, the application actually moves the
camera up over the object (see Figure 13-2).

® Pressing the middle mouse button and dragging the pointer to the left (panning)
moves the scene toward the left of the viewing window. To achieve this, the
application moves the camera to the right (see Figure 13-5).

Note that in both examples, users move the control (and pointer) in the direction they

want the scene (or object) to move. To achieve this, the application moves the camera in
the opposite direction of the control (and pointer).

243

Chapter 13: Interactive Viewing of 3D Objects

244

Table 13-2 provides an overview of the different functions available in inspection.

Table 13-2 Overview of Inspection Viewing Functions

Function User Model Implementation Model

Tumbling User holds object and rotates it to Camera (eyepoint) moves around a fixed look-at

view it from all sides and angles. point on a spherical course. Camera moves
opposite to direction of user’s action.

Dollying User moves object closer or farther Camera (eyepoint) moves toward a fixed look-at

away. point to move object closer and moves away from
look-at point to move object farther away.
Viewing direction remains unchanged.

Panning User moves object up, down, left, Camera (eyepoint) moves in plane perpendicular

or right in viewing window. to viewing direction. Camera moves opposite to
movement of object. Viewing direction is
unchanged. Look-at point moves with camera.

Seeking User selects object (or part of Look-at point moves to where user clicked in the

object). Selected object is centered scene. Camera (eyepoint) turns so that look-at

in viewing window and moved point is centered in viewing window. Camera

closer to user with each click. moves closer by half the original distance
between camera and object.

Tumbling

Tumbling is the default viewing function for inspection. Users rotate a model of an object
or a scene as if they were holding it in their hand. Users expect to be able to tumble the
object in all three dimensions around the fixed look-at point. Tumbling doesn’t change
the location of the object in space.

The user controls tumbling by dragging with the left mouse button. The movement
follows a virtual trackball imposed on the viewing window. The initial position of the
pointer on this virtual trackball influences the tumbling behavior: If the user positions
the pointer in the center of the viewing window (trackball) and drags horizontally (or
vertically), the object tumbles around the y axis (or x axis). If the user positions the
pointer in the center of the viewing window and drags out in any direction, the object
tumbles around an axis perpendicular to the drag. If the user drags in a circle around the
center of the virtual trackball, the object tumbles around the z axis. If the user drags
beyond the limits of the trackball, the object continues to tumble until the user releases
the mouse button.

3D Viewing Functions

Figure 13-2 illustrates tumbling from the implementation perspective. The camera
(eyepoint) moves around the scene as though the camera were placed on the surface of a
sphere. The look-at point remains stationary at the center of the sphere. The camera
moves opposite to the direction of the rotation. Using the original camera position, the
user can look into the pot but can’t see much of the pot’s outside surface. After the user
has tumbled the bottom of the pot upwards, it’s possible to see the pot’s surface. To
accomplish this rotation, the eyepoint (camera) moves down along the surface of the
sphere and the look-at point remains stationary.

¢
| g *

Figure 13-2 Schematic Illustration of Tumbling (Implementation Perspective)

D

Dollying

Dollying allows users to move a model of an object or a scene closer or farther away.
Users move the object as if they were holding it in their hand. The user controls dollying
by dragging while simultaneously pressing the left and middle mouse buttons during
inspection. Dragging down in the viewing window moves the object closer; dragging up
moves it farther away.

Figure 13-3 illustrates dollying from the implementation perspective. The look-at point
and viewing direction are fixed. The camera (eyepoint) moves toward the look-at point
along the viewing direction to move the object closer to the user. If the user wants to
move the object further away, the camera would move away from the look-at point.

245

Chapter 13: Interactive Viewing of 3D Objects

246

Figure 13-3 Schematic Illustration of Dollying (Implementation Perspective)

Note: When users move closer to an object, they eventually reach the point where they
would touch the object. As they dolly even farther forward, the eyepoint moves past the
(fixed) look-at point as if the user just moved through the object. When the user passes
this point, the tumble controls are “reversed” because the user is now dragging along the
inside of the virtual trackball (see “Tumbling”) and along its backside.

Dollying is different from zooming. In both cases the objects change in size in the viewing
window. However, in contrast to dollying, zooming doesn’t move the object closer or
farther away from the user. Zooming instead allows users to change the viewing angle
of the camera, the same way they would use a zoom lens on an actual camera. That is, as
the user zooms out the viewing angle is increased so that the viewing area becomes
larger and more of the scene is visible. This new larger viewing area is then mapped to
the viewing window.

3D Viewing Functions

As shown in Figure 13-4, objects appear larger (or smaller) after zooming in (or out) even
though the location of the camera hasn’t changed. This is because the viewing angle
changes but the size of the viewing window hasn’t changed.

Figure 13-4 Schematic Illustration of Zooming (Implementation Perspective)

247

Chapter 13: Interactive Viewing of 3D Objects

248

Panning

Panning allows users to move a model of an object or a scene up, down, left, or right in
the viewing window. Users move the object as if they were holding it in their hand. The
user controls panning by dragging while pressing the middle mouse button. The object
moves in the direction of the drag; for example, dragging up in the viewing window
moves the object up and dragging left moves the object left.

Figure 13-5 illustrates panning from the implementation perspective. The camera
(eyepoint) moves in the plane perpendicular to the viewing direction. The camera moves
opposite to the movement of the object. As shown in the figure, the camera moves right,
which moves the scene to the left in the viewing window. The look-at point moves with
the camera. The viewing direction is unchanged.

A

Figure 13-5 Schematic Illustration of Panning (User Drags Right)

3D Viewing Functions

Seeking

Seeking allows users to move an object in the scene into the center of the viewing
window. In inspection, the user model is that the user is incrementally moving the object
closer (see “Inspection Overview”). In navigation, the user model is that the user is
incrementally moving closer to the object (see “Navigation Overview”).

For both inspection and navigation, the user controls seeking by clicking on the object
(or part of the object) of interest. Clicking on the object centers the object (or part) in the
viewing window and brings the object and user closer together. Each additional click on
the same object (or part) brings the object and user still closer. Figure 13-6 shows a simple
example of seeking to the door of a house. The first click on the door positions the door
in the center of the viewing window and halves the distance between the door and the
user. The second click halves the distance again.

Many applications need to reserve clicking with the left mouse button for a more critical
or useful function (for example, activating a link or initiating object behavior). In those
applications, allow users to first activate a seek tool, then click with the left mouse button
in the scene to actually seek.

249

Chapter 13: Interactive Viewing of 3D Objects

a - Initial position

II. P

ol

2

b - Position after seeking to door

A\ ot

c - Position after seeking to door again

L3

Figure 13-6 Simple Example of Seeking to Door

250

3D Viewing Functions

From the implementation perspective, seeking sets a new look-at point at the location of
the user’s click and moves the camera so that this new look-at point is at the center of the
viewing window. The camera is also moved forward half the original distance between
the camera and the object. Note that in the case of inspection, resetting the look-at point
by seeking means that the camera tumbles around this new point after the seeking action.

Navigation Functions for 3D Viewing

This section first gives an overview of navigation, then describes three viewing functions
that apply only to navigation (and not to inspection):

e “Roaming”
e “Tilting”
e “Sidling”

“Seeking,” which has the same effect in both inspection and navigation, is discussed in
the preceding section.

Each function is first presented from the user’s point of view, then discussed in terms of
the implementation model.

Navigation Overview

Navigation is useful when users want to move through a world, for example, walk
through a 3D model of a museum or an architectural model. In navigation, the user
maneuvers through a fixed, immovable world by walking, flying, or another navigation
mechanism.

The expected user model for navigation is that users are manipulating the camera. From
the users’ perspective, all navigation controls appear to manipulate the camera while the
scene remains stationary. For example:

* Pressing the left mouse button and dragging the pointer up while roaming moves
the user farther forward into the scene. To achieve this, the application also moves
the camera farther into the scene (see Figure 13-7).

® Pressing the middle mouse button and dragging the pointer to the left while sidling
sidesteps the user towards the left of the viewing window. To achieve this, the
application also moves the camera to the left (see Figure 13-9).

251

Chapter 13: Interactive Viewing of 3D Objects

252

Note that in both examples, users move the control (and pointer) in the direction they

want the camera to move.

Table 13-3 provides an overview of the different functions available in navigation.

Table 13-3 Overview of Navigation Viewing Functions

Function User Model

Implementation Model

Roaming User moves forward or backward
in the scene. Turning changes
direction of movement.

Tilting User looks up or down.

Sidling User sidesteps left or right in the
scene or “elevators” up or down
in the scene.

Seeking User selects object (or part of
object). Selected object is centered
in viewing window and moved
closer to user with each click.

Camera (eyepoint) moves forward or backward
along viewing direction in the same direction as
the user action. Viewing direction moves in the
direction that the user turns. Look-at point
changes as the viewing direction changes.

Viewing direction moves in the direction that the
user looks (up or down). Position of camera
(eyepoint) remains fixed. Look-at point changes
as the viewing direction changes.

Camera (eyepoint) moves in plane perpendicular
to viewing direction. Camera moves in the same
direction as user action. Viewing direction
remains unchanged. Look-at point moves with
camera.

Look-at point moves to where user clicked in the
scene. Camera (eyepoint) turns so that look-at
point is centered in viewing window. Camera
moves closer by half the original distance
between camera and object.

3D Viewing Functions

Roaming

Roaming (and turning) is the default viewing function for navigation. Users move
through a fixed scene as if walking through it. While users are moving they expect to be
able to turn to change the direction of the movement. Users control roaming by dragging
with the left mouse button while the application is in view mode. Since users may
sometimes want to turn without moving, dragging on the horizontal is interpreted
differently than dragging in other directions as follows:

¢ Dragging up in the viewing window moves the user forward into the scene;
dragging down moves the user backwards out of the scene.

¢ Dragging directly left on the horizontal in the viewing window turns the user left
without any forward or backward movement; dragging directly right turns the user
right without any movement.

¢ Dragging in any direction above the horizontal both turns the user in that direction
and moves the user forward in that direction; dragging in any direction below the
horizontal both turns the user and moves the user backward in that direction.

From the implementation perspective, the camera (eyepoint) moves forward or
backward along the viewing direction in the same direction as the user’s action; that is,
as the user moves forward, the camera moves forward (see Figure 13-7). The viewing
direction moves in the same direction that the user turns; that is, as the user turns left, the
viewing direction rotates left. If the user indicates a wish to turn but not move (by
dragging the pointer directly left or right on the horizontal), the viewing direction
changes appropriately but the camera doesn’t move forward or backward. The look-at
point changes as the viewing direction changes.

253

Chapter 13: Interactive Viewing of 3D Objects

* 5

Figure 13-7 Schematic illustration of Roaming (Implementation Perspective)

254

3D Viewing Functions

Tilting

Tilting allows users to look up and down to see an object higher or lower than their
current viewing direction in the scene. Tilting doesn’t move the user. To move toward an
object in the new view, the user has to use roaming (see “Roaming”). To control tilting,
the user simultaneously presses the left and middle mouse buttons and drags. Dragging
up in the viewing window tilts the user’s head up to look up in the scene; dragging down
allows the user to look down.

From the implementation perspective, tilting changes the viewing direction in the same
direction the user’s head is tilted (see Figure 13-8). As the user looks up, the viewing
direction moves up; looking down moves the viewing direction down. The location of
the camera (eyepoint) doesn’t change. The location of the look-at point changes as the
viewing direction changes.

y
@%/lp o
NV
P le

Figure 13-8 Schematic Illustration of Tilting (Implementation Perspective).

255

Chapter 13: Interactive Viewing of 3D Objects

256

Sidling

Sidling allows users to sidestep left and right in the scene or to “elevator” up and down
in the scene. Sidling moves the user left, right, up and down in the plane perpendicular
to the viewing direction; it doesn’t move the user forward or back in the scene. The user
controls sidling by dragging while pressing the middle mouse button. The user moves in
the direction of the drag; for example, the user drags left in the viewing window to
sidestep to the left. Dragging up moves the user up as if riding on an elevator.

Figure 13-9 illustrates sidling from the implementation perspective. The camera
(eyepoint) moves in the plane perpendicular to the viewing direction. The camera moves
in the same direction that the user wants to move. As the user sidesteps left, the camera
moves left. If the user moves up, the camera also moves up. The orientation of the camera
remains unchanged. The look-at point moves with the camera.

]

II. P

]

Figure 13-9 Schematic Illustration of Sidling (User Drags Left)

3D Viewing Functions

Guidelines for 3D Viewing Functions

When designing the user interface for a 3D application...

[

Provide a viewing interface regardless of other capabilities of the application (for
example, editing).

When designing the user interface for 3D viewing...

[

[

Decide whether your application will support inspection, navigation, or both, then
provide the appropriate viewing functions. If your application supports both
inspection and navigation, choose one as the primary mode for viewing.

Use standard pointer shapes to indicate the current 3D viewing function.

When designing the user interface for INSPECTION in a 3D application...

[

ooog gdooo o

Support the user model that users are manipulating a scene as though it were a single
object they are holding in their hand (not the user model that users are manipulating
a camera). From the user’s perspective, all controls appear to manipulate the object
or scene while the camera remains stationary.

Support tumbling as the default inspection function to allow users to view all sides
of the scene.

Assign tumbling to dragging with the left mouse button.
Display the tumble pointer while the user accesses the tumble function.
Support dollying to allow users to move the scene closer or farther away.

Assign dollying to dragging with the left and middle mouse buttons pressed
simultaneously.

Display the dolly pointer while the user accesses the dolly function.
Support panning to allow users to move the scene left, right, up, or down.
Assign panning to dragging with the middle mouse button.

Display the pan pointer while the user accesses the panning function.

Support seeking to allow users to change the look-at point and center the object of
interest and to bring the object incrementally closer.

257

Chapter 13: Interactive Viewing of 3D Objects

258

[

[

Support seeking as follows:

If your application needs to reserve clicking with the left mouse button for a more
critical or useful function, allow users to seek by first activating a seek tool, then
clicking with the left mouse button in the scene. Otherwise, support seeking
without the use of a tool.

In either case, the user seeks by clicking on a part of the scene with the left mouse
button. The application centers that part of the scene in the viewing window and
moves the scene closer by half the distance between the camera and the object.

With each subsequent click on the same part of the scene, the scene again moves
closer.

Display the seek pointer while the user accesses the seek function.

When designing the user interface for NAVIGATION in a 3D application...

[

OO0 OO O oo O

Support the user model that the scene is stationary and the user is moving through
this fixed, immovable world. From the user’s perspective, all navigation controls
appear to manipulate the camera (user’s view into the world) while the scene
remains stationary.

Support roaming as the default navigation function. In roaming, the user can move
forward and backward, turn left and right, and turn while moving.

Assign roaming to dragging with the left mouse button.
Display the roam pointer while the user accesses the roaming function.

Support tilting to allow users to change their view of the scene by tilting their head
up and down. Tilting doesn’t move the user forward or backward.

Assign tilting to dragging with the left and middle mouse buttons pressed
simultaneously.

Display the tilt pointer while the user accesses the tilting function.

Support sidling to allows users to sidestep left and right and to move up and down
as if on an elevator.

Assign sidling to dragging with the middle mouse button.
Display the sidle pointer while the user accesses the sidling function,

Support seeking to allow users to move closer to an object in the scene.

3D Viewing Interface Trade-Offs

N Support seeking as follows:

¢ If your application needs to reserve clicking with the left mouse button for a more
critical or useful function, allow users to seek by first activating a seek tool, then
clicking with the left mouse button in the scene. Otherwise, support seeking
without the use of a tool.

* Ineither case, the user seeks by clicking on a part of the scene with the left mouse
button. The application centers that part of the scene in the viewing window and
moves the scene closer by half the distance between the camera and the object.

* With each subsequent click on the same part of the scene, the scene again moves
closer.

N Display the seek pointer while the user accesses the seek function.

3D Viewing Interface Trade-Offs

When designing a user interface for viewing in a 3D application, developers often need
to address the design issues discussed in this section:

¢ “Viewing and Editing in 3D Applications”
* “Single-Viewport and Multi-Viewport Viewing in 3D Applications”

e “3D Viewing Performance and Scene Fidelity”

Viewing and Editing in 3D Applications

Only a limited number of mouse and keyboard key combinations is available for
interacting with an application. Users therefore can’t easily have access to all necessary
editing and viewing functions at the same time. Instead, they need to switch contexts
between editing and viewing so that they can use the same mouse and keyboard
combinations in the different contexts to access different functions.

This context switch is best done by splitting editing and viewing functionality into two
separate explicit modes. Using explicit modes avoids a potentially confusing interface
that may result if the user doesn’t know whether the next action will change the view of
the object or the object itself.

In general, when users work with an application that allows editing, they like to be
offered several ways to access the viewing functions, and they like to always have quick
access to these functions.

259

Chapter 13: Interactive Viewing of 3D Objects

260

The following sections discuss several techniques for providing both viewing and
editing capabilities to the user:

® “Separate View and Edit Modes”
e “View Overlay”
e “Viewing Controls”

e “Dedicated Viewing Peripheral Devices”

No matter how an application allows users access to viewing and editing, it’s important
to always display the correct pointer shape to let users know which function they are
currently performing. See “Pointer Shapes for 3D Functions” in Chapter 12.

Separate View and Edit Modes

If an application supports editing, separate and explicit view and edit modes are highly
recommended. This allows more flexibility in assigning functions to mouse and
keyboard key combinations. In edit mode, mouse and keyboard input perform editing
functions on selected objects and on the scene; in view mode, mouse and keyboard input
perform viewing functions.

Users expect an obvious mechanism to switch modes, for example an item in a
pull-down menu or a button on a tool palette that provides a variety of possible modes.
In addition, users also expect to be able to switch modes using the <Esc> key (see “Using
Modifier Keys in 3D Applications” in Chapter 12). Pressing this key takes the user to the
next mode.

View Overlay

When they are editing, users expect to always have quick access to viewing with a view
overlay. A view overlay is a temporary view mode that’s available while the user holds
down the <Alt> key (see “Using Modifier Keys in 3D Applications” in Chapter 12). As
long as the <Alt> key remains pressed, mouse and keyboard input is temporarily
interpreted as providing viewing input rather than editing input. Releasing the <Alt>
key returns the application to standard editing operations. If the application is already in
view mode when the user presses the <Alt> key, the <Alt> key is ignored.

A view overlay offers users quick access to temporary viewing but allows them to stay
focused on the editing tasks at hand. This avoids forcing the user to make a heavyweight
switch between edit and view modes. Although the view overlay is temporary, users still
need to see the correct pointer shape feedback while accessing the viewing functions (for
example, the roam pointer or tilt pointer). See “Pointer Shapes for 3D Functions” in
Chapter 12.

3D Viewing Interface Trade-Offs

Viewing Controls

Applications can optionally provide separate user interface controls to access viewing
functions. In this approach, all mouse input is interpreted as editing input unless the user
is using the mouse pointer to manipulate a viewing control.

Figure 13-10 shows an application window with viewing controls around the sides and
the bottom of the window. Manipulating the thumbwheels or sliders with the mouse
affects viewing: For example, dragging the thumbwheel in the lower right hand corner
of the window dollies the camera, which changes the view but doesn’t edit it. Using the
mouse in the viewing area of the window performs editing actions: for example, clicking
on the star selects that object for editing.

File Edit View Floor Markers Notes Appearance

Create Marker: Createdmport Mole:

Rarkey Mame:

Rotx Roty [T (T | Zoom [Eoimisi=i|45.8 | Dolly

+ Viewing Controls

Figure 13-10 Application With Viewing Controls

261

Chapter 13: Interactive Viewing of 3D Objects

262

Dedicated Viewing Peripheral Devices

Another optional method of addressing the conflict between viewing and editing input
is to assign all viewing actions to one dedicated input device, such as a spaceball. All
input from the dedicated input device performs viewing functions; input from other
devices performs editing functions. This approach provides more input bandwidth:
Context switching between viewing and editing is handled by the choice of input device.

Single-Viewport and Multi-Viewport Viewing in 3D Applications

When designing a viewing interface, you must decide whether to offer users only one
view of the scene (single-viewport) or multiple views simultaneously (multi-viewport).
Multiple views may be, for example, one close-up and one distance view or one view
from the top and one from each side. This section presents “Single-Viewport Viewing”
and “Multi-Viewport Viewing,” discussing their advantages and disadvantages.

Single-Viewport Viewing

In the single-viewport model, only one view of the scene can be projected to the single
viewport at any given time, even if there are multiple cameras in the scene. This is a
serially multiplexed approach; different views are presented one after another in the
same viewport and the user can switch among them.

By default, the viewport provides a perspective view of the scene. The view updates as
the user selects different cameras.

Single-viewport viewing has these advantages:

¢ Performance—Updating the contents of one view is less computationally expensive
than updating two or more views. Application performance deteriorates as the
number of views increases, so single-viewport viewing is faster than
multi-viewport viewing.

¢ Space—The view doesn’t need to share space with other views in the application
window. The total viewing area is dedicated to a single view; this allows the largest
possible representation of the 3D data.

¢ Simpler user model—Users have to deal only with one view and one window. In
contrast, a multi-viewport model requires that users determine the relationship
among the different views or decide how changes in one view influence the other
views.

3D Viewing Interface Trade-Offs

Multi-Viewport Viewing

In the multi-viewport model, two or more views of a scene are simultaneously available.
Typically, there are four views: front, top, one side (typically the right), and perspective.

A view isn’t necessarily bound to a particular camera. For each view, the user can choose
which camera to use and what each camera views. For example, to view an object from
the bottom that’s currently visible from the front, the user can either find a camera that
displays it from the bottom or tumble or roam to get that view.

Multi-viewport viewing has the advantage that it allows simultaneous views of different
representations of data. Users can examine and edit data from different perspectives
simultaneously and can edit and examine data across multiple views without having to
switch views. This is important for editing complex objects or during scene composition.
While performance can be worse with multiple views (because more windows must be
updated during viewing operations), experienced users find multiple views useful
because they can coordinate operations across multiple viewports to get more accurate
feedback on the actions they are performing.

3D Viewing Performance and Scene Fidelity

Viewing is critical to interacting with 3D environments and applications. The more
responsive the application is during viewing, the more realistic and compelling the
user’s experience.

To achieve realistic user interaction, an application has to maintain at least 8 fps while the
user interacts with the view. The frame rate—number of frames per second (fps)—is a
good gauge of acceptable viewing performance:

e If the frame rate drops below 8 fps, users typically find interacting with the
application cumbersome.

¢ In an editing context, 10-12 fps can be sufficient.

e 15 fpsis the minimum frame rate to give the user a fluid, in-control experience.
Action games or immersive experiences may require a greater frame rate to achieve
that goal.

263

Chapter 13: Interactive Viewing of 3D Objects

264

Some 3D scenes are so complex that just rotating the view becomes computationally
expensive. In that case, the 3D scene can’t be rendered at an acceptable frame rate. In such
situations, applications must provide automatic adaptive rendering, user-controlled
adaptive rendering, or both:

* In automatic adaptive rendering, the application always maintains viewing
responsiveness at the expense of scene fidelity.

* In user-controlled adaptive rendering, users explicitly choose between adaptive
rendering (that is, maintaining viewing responsiveness at the expense of scene
fidelity) and fully rendering the contents of the scene (but taking a performance hit
during viewing). This choice is important if users sometimes need fully rendered,
high-fidelity scenes and, therefore, need to turn off adaptive rendering.

Note: Itisn’t acceptable to let the frame rate drop below 8 fps without explicit user
confirmation.

Adaptive rendering maintains viewing performance by changing the rendering
characteristics of objects and elements during viewing operations. Typically, some detail
is omitted from the display to reduce the computational requirements. As a result, a
higher frame rate is achieved at a somewhat lower level of fidelity. Once viewing stops,
the scene is returned to its original fidelity. Most users are satisfied with such a trade-off.
Without adaptive rendering, users complain of poor performance or sluggishness.
Adaptive rendering maintains responsive behavior without reducing functionality or
impeding user tasks.

To implement adaptive rendering, an application can use techniques such as turning off
texturing when an object is being moved, or using wireframe models. If an application
has multiple views, adaptive rendering can be implemented by updating only one of the
views. Then, when the view is no longer changing, the other views can be updated.

Note that if an application uses only automatic adaptive rendering, it needs to provide
users easy access to fully rendered scenes. At a minimum, this should occur when the
user stops interacting with the view.

3D Viewing Interface Trade-Offs

3D Viewing Trade-Offs and Related Guidelines

To make viewing quickly and easily accessible in 3D applications...

[

Always provide ready access to viewing no matter what the user is doing (for
example editing).

When designing a viewing interface for a 3D application that also supports editing...

[

N I N O I ¢

]

Display the appropriate pointer depending on the task the user is performing:
While the user is accessing editing functions, display the edit pointer.

While the user is accessing viewing functions, display the appropriate view pointer
based on the user’s current viewing function (for example, the roaming pointer if
the user is currently navigating a scene).

Provide a modal interface to viewing and editing whenever possible.

Provide an obvious mechanism for changing between the view and edit modes, such
as buttons in a tool palette or entries in a pull-down menu.

Reserve the <Esc> key for switching between the view and edit modes.

Always provide a view overlay for quick access to viewing. That is, when the
primary task is editing, the user can at any time temporarily enter a view mode by
pressing and holding the <Alt> key. The user can release the <Alt> key to return the
application to edit mode.

Reserve the <Alt> key for providing access to a view overlay. If the user is already in
view mode, the <Alt> key has no effect.

Display the appropriate pointer for the current viewing function (for example, the
tumble pointer or the roaming pointer) while the user is accessing a view overlay.

Optionally provide additional ways to access viewing, for example, offer viewing
fixtures or split viewing and editing input across separate dedicated input devices.

265

Chapter 13: Interactive Viewing of 3D Objects

266

When deciding between a single viewport and multiple viewports...

[

[

Use a single viewport if the user doesn’t need to do much editing, performance or
screen real estate is critical, you need a simple user model, or if several of these
conditions are met.

Support multiple viewports if the user needs two or more views of the data
simultaneously (such as when editing complex objects or working on scene
composition) and performance isn’t a critical issue.

When designing a viewing interface for a single viewport...

[]
[]

Use the perspective view of the scene as the default view.

Update the single-viewport view with a new view as the user selects different
cameras.

When making viewing performance design decisions...

[]
[]

[

Support a minimum frame rate of 8 fps when the user is interacting with the view.

Ideally, support a minimum rate of 10-12 fps for editing and a minimum frame rate
of 15 fps for a realistic interactive experience.

If the frame rate drops below 8 fps, provide at least one of the following solutions:

Automatic adaptive rendering, where the application always maintains an
acceptable frame rate at the expense of scene fidelity.

User-controlled adaptive rendering, where the user explicitly chooses between
adaptive rendering (acceptable frame rate but loss of detail) and fully rendering the
contents of the scene (at a possibly unacceptably low frame rate).

If users sometimes need fully rendered, high-fidelity scenes and the frame rate is
likely to drop below 8 fps, provide user-controlled adaptive rendering.

If you application only provides automatic adaptive rendering, provide users ready
access to fully rendered scenes. At a minimum, this should happen when the user
stops interacting with the view.

Chapter 14

Selection in 3D Applications

Any 3D application that offers more than simple viewing requires a selection
mechanism. Just like 2D applications, 3D applications need to allow users to select one
or more objects. This chapter discusses object selection in 3D applications and extends
and complements the guidelines for selection in 2D applications (see “Selection” in
Chapter 7). It includes these topics:

¢ “3D Selection Concepts and Models” briefly summarizes the object-action
paradigm, explains two techniques for selecting objects (direct and indirect
selection), and discusses how the OSF/Motif selection models apply to 3D
applications.

* “Selection Feedback for 3D Objects” discusses user feedback to indicate an object
can be selected and to indicate an object is currently selected.

e “Lead Objects in 3D Applications” explains how to use the concept of a lead object
to determine how to apply specific actions when multiple objects are selected.

3D Selection Concepts and Models

This section first discusses the object-action paradigm and then contrasts two techniques
for selecting objects: direct selection and indirect selection. It then presents the selection
models and minimum selection actions users expect in a 3D application. These
techniques extend the 2D-oriented OSF/Motif guidelines for selection (see “Selection” in
Chapter 7).

267

Chapter 14: Selection in 3D Applications

268

The Object-Action Paradigm in 3D Applications

In the object-action paradigm, the user first selects an object or a group of objects and
then applies an action to the objects in the selection (see “Selection” in Chapter 7 for
details). Object selection is the prerequisite to other operations. As a shortcut, selecting
and manipulating the object can sometimes be combined (see “Drag and Drop for
Non-Text Objects” in Chapter 7, “Focus, Selection, and Drag and Drop”). For example,
users may move the pointer over an object, press and hold the mouse button, and thereby
select and drag the object at the same time.

Each 3D application must have a current selection to which the action is applied at any
time. The current selection may be empty (that is, no selection). Note that if your
application supports several viewports, each window can maintain a separate selection,
but there is only one current selection.

Some applications use an action-object paradigm instead: The user selects an action, then
chooses the object to which the action should apply, and exits by returning to the
selection rule (neutral state). This paradigm can be useful for tools that attach to the
pointing device. In most cases, however, a user interface using an action-object paradigm
tends to be excessively modal and cumbersome to use, and this paradigm isn’t
recommended.

Direct Selection in 3D Applications

Direct selection means that the user selects one or more objects by selecting the objects
themselves, not an indirect representation of them (for example, the name of an object in
a list). Because users of 2D applications are accustomed to direct selection, using direct
selection in 3D applications makes these applications easier to learn. Direct selection is
therefore the preferred primary selection mechanism.

Direct selection can be used to select one or more objects, as follows:

¢ To select a single object, the user moves the pointer over an object and presses the
left mouse button. As the user clicks, the application determines which object is
selected by following a ray projected into the scene. The first object the ray
intersects is selected.

¢ To add objects to the current selection (or remove them from the current selection),
the user holds the <Ctrl> key while clicking on individual objects. Objects which are
not currently selected become selected, while currently selected objects are
deselected.

3D Selection Concepts and Models

* To select several objects at the same time, the user presses the left mouse button and
drags around a group of objects. When the user releases the mouse button, all
objects inside the drag area are selected. This is referred to as sweep selection. There
are two variants of this technique:

— Rectangle-drag. The user drags the pointer to define the diagonal of a
rectangular area on the screen. All objects inside this rectangle are selected.

— Lasso-drag. The user draws out an irregularly shaped area with the pointer. All
objects inside this area are selected.

In both cases, the initial mouse-down action doesn’t make a selection but sets the
point of origin for the area to be selected. When the user releases the mouse button
to complete the drag operation, the selected region is defined by the boundaries of
the drag and extends from the user’s current z position back to the full length of the
viewing frustum. All objects, completely visible or partly obscured, that fall in this
region are considered to be in the selected region.

Note that some applications may need to provide sub-object selection methods to allow
users to select vertices, edges, and faces. This isn’t discussed in this document.

Indirect Selection in 3D Applications

In indirect selection, the user selects an object by selecting an indirect representation of
it. For example, assume that the names of all the objects in a 3D scene appear in a scrolling
list and the user can click on a name in the list to select the object. Other examples are
using a “Select All” menu command, which allows users to select all objects in a 3D
scene, and selecting up and down a text representation of the object hierarchy.

Indirect selection is a useful secondary selection mechanism. It can be especially useful
in 3D applications because:

e Users may have to choose among a large number of objects.

* An object may be obscured or too far away in the scene to be easily selected using

direct selection.

Don’t make indirect selection the only selection paradigm. Instead, use it to augment
direct selection.

269

Chapter 14: Selection in 3D Applications

3D Selection Models

The four OSF/Motif selection models recommended for 2D applications are listed in
Table 7-1. For 3D applications, users expect that one of the following two OSF/Motif
selection models is supported:

e The single selection model in applications that allow users to select only one object at a

time

e The discontiguous selection model in applications that allow users to select more than
one object at a time (these objects don’t have to be next to each other).

Table 14-1 describes the selection actions in the single selection and discontiguous
selection models. It also lists which of these actions users minimally expect in a 3D
application and which are optional but ideally supported.

Table 14-1 3D Selection Actions and Results
Action Model Required Result
Click an object. Single and Yes Object is selected. Any previously selected objects are deselected.
discontiguous
<Ctrl>-click an object. Discontiguous Yes Selection state of the object is toggled. That is, a previously selected
object is removed from the current selection and a previously
unselected object is added to the current selection.
<Shift>-click an object. Discontiguous No? Same as <Ctrl>-clicking an object.
Click outside the selectionin Single and Yes All objects are deselected.
an empty area.’ discontiguous
Sweep out a selection area.© Discontiguous No Only objects included in the sweep area are selected. All other
objects are deselected.
<Ctrl>-sweep an area. Discontiguous No Selection state of each object inside the sweep area is toggled.
Selection state of each object outside the sweep area is unchanged.
<Shift>-sweep an area.c Discontiguous No¢ Same as <Ctrl>-sweep area.

a. Recommended if users are accustomed to using the <Shift> key in their other applications to toggle the selection state of an object.

b. An application may additionally include a “Deselect All” menu item. This is especially useful for applications that support densely populated

scenes or objects that fill the entire background.

c. Can support sweep selection using either rectangle-drag or lasso-drag as described in “Direct Selection in 3D Applications.”

d. Recommended if your application supports the selection action <Ctrl>-sweep area and users are accustomed to using the <Shift> key to toggle

the selection state of an object.

270

3D Selection Concepts and Models

Selection in Hierarchies of Objects

Some applications support hierarchies of objects and allow users to select more than one
object in these hierarchies. If your application lets users select more than one object in a
hierarchy of objects, provide at a minimum a method for selecting the highest and lowest
object in the hierarchy and a method for adjusting the selection up and down the
hierarchy.

3D Selection Design Guidelines

When designing the selection user interface for your 3D application...

[]
[]
[]

Follow the object-action paradigm of direct manipulation: The user first selects an
object (or group of objects), then chooses an action to perform on it.

For actions that apply to objects, apply the action to all the objects in the current
selection and only to those objects.

Provide one current selection for each application at any time. The current selection
may be empty (that is, no selection). Note that each window of your application can
maintain a separate selection, but there is only one current selection.

Support direct selection as the primary selection mechanism. Using the left mouse
button, the user either clicks directly on an object to select it or sweeps out an area to
select multiple objects.

Support indirect selection if your users need it. For example, allow users to select an
indirect representation of an object such as an item in a list, or provide a “Select All”
menu item.

If your application lets users select more than one object in a hierarchy of objects,
provide at a minimum a method for selecting the highest and lowest object in the
hierarchy and a method for adjusting the selection up and down the hierarchy.

271

Chapter 14: Selection in 3D Applications

272

When deciding on a selection model...

(] 1 your application allows users to select only one object at a time, support the

OSF/Motif single selection model as follows:

Users directly select an object by moving the pointer over it and pressing the left
mouse button. Any previously selected object is deselected.

Users deselect an object by clicking outside the selection in an empty area.

If your application allows users to select more than one object at a time, support the
OSF/Motif discontiguous selection model as follows. Ideally, support the entire
OSF/Motif discontiguous selection model.

Users directly select an object by moving the pointer over it and pressing the left
mouse button. Any previously selected objects are deselected.

Users <Ctrl>-click an unselected object to add it to the current selection, and
<Ctrl>-click an already selected object to remove it from the current selection. That
is, <Ctrl>-click toggles the selection state of the object.

If users are accustomed to using the <Shift> key in other applications to toggle the
selection state of an object, allow them to add and remove objects by
<Shift>-clicking an object in addition to <Ctrl>-clicking an object. In that case,
<Shift>-clicking an object performs the same selection actions as <Ctrl>-clicking an
object.

Users deselect all objects by clicking outside the selection in an empty area. In
addition, a “Deselect All” menu item may be useful for some applications.

Optionally, allow users to use sweep selection to select multiple objects, allowing
either rectangle-drag or lasso-drag. At the end of a sweep action, the only objects
selected are those inside the sweep area.

Optionally allow users to <Ctrl>-sweep through a collection of objects to toggle the
selection state of all objects inside the sweep area. That is, objects inside the sweep
area that were previously selected are deselected, and objects inside the sweep area
that were previously deselected are selected. The selection state of objects outside
the sweep area doesn’t change.

If your application supports the optional <Ctrl>-sweep selection action and users
are accustomed to using the <Shift> key in their other applications to toggle the
selection state of an object, allow users to use <Shift>-sweep in addition to
<Ctrl>-sweep to toggle the selection state of all objects inside the sweep area.

Selection Feedback for 3D Objects

Selection Feedback for 3D Objects

When an object is selected, applications need to provide selection feedback on the object.
This section discusses three techniques for indicating that an object is selected—
bounding box, manipulator, and highlighting—and provides guidelines for when to use
each technique.

This section covers these topics:

¢ “Bounding Box Selection Feedback”

e “Manipulator Selection Feedback”

¢ “Highlight Selection Feedback”

Bounding Box Selection Feedback

Figure 14-1 shows two objects with bounding box feedback: A box is placed around the
object. The bounding box needs to be differently shaped or larger than the object itself so
that it’s readily visible. Using a distinct color for the box is also highly recommended.

Figure 14-1 Two Objects with Bounding Box Feedback

Note that for some applications a bounding box may not be the most intuitive or useful
shape. For example, some applications might use a bounding volume that’s a pyramid
or cone. Other applications might use a shape that uses planes that don’t form a closed
bounding volume. In most cases, however, users find the bounding box the most
intuitive shape. The term bounding box is used in this document to mean a bounding box
or a bounding volume.

273

Chapter 14: Selection in 3D Applications

274

Bounding box selection feedback is most appropriate for applications where users can
select objects but either don’t typically manipulate them (translate, rotate, scale) or can’t
manipulate them. This type of feedback is appropriate for both applications that support
the single selection model and applications that support the discontiguous selection
model (see “3D Selection Models”).

Manipulator Selection Feedback

Figure 14-2 shows an application that uses a manipulator to indicate that an object is
selected. A manipulator is a control that allows users to change the position, orientation,
or scale of objects. Specific manipulators are discussed in Chapter 15, “Manipulating 3D
Objects.”

Figure 14-2 Object With Manipulator

Manipulator selection feedback is most appropriate for applications where users
typically select objects to perform manipulations on them. For these applications, placing
the manipulator on an object as soon as the object is selected has two advantages:

e The manipulator feedback clearly indicates that the object is selected.

¢ The immediate display of the manipulator makes the manipulation functions
readily available.

If your application allows users to select more than one object at a time (see the
description of the discontiguous selection model in “3D Selection Models”), you need to
decide whether to use manipulators as selection feedback on all or just some of the

Selection Feedback for 3D Objects

selected objects. Displaying a manipulator on all selected objects may make it more
difficult for users to select and interact with a specific object’s manipulator and may
impede performance.

As an alternative, some applications support the concept of a lead object (see “Lead
Objects in 3D Applications”). The lead object has the manipulator as the selection
feedback and other selected objects have bounding boxes as the selection feedback (see
“Lead Object When Selecting Multiple Objects”).

Highlight Selection Feedback

In highlight selection feedback, selected objects are highlighted in some way to make
them stand out, for example, by brightening the colors of the selected objects or using the
same distinct color for all selected objects.

This technique is most appropriate for experiential consumer applications that allow
users, for example, to explore an architectural model or a museum. These types of
applications typically want to always present a realistic representation of objects in the
scene to make the experience immediate. Cluttering the scene with bounding boxes
would greatly reduce the realism.

3D Selection Feedback Design Guidelines

When designing selection feedback for your 3D application...
[] Provide clear feedback on each object as it is selected.

[] When using a bounding box for selection feedback, make sure that it’s differently
shaped or larger than the object itself so that it’s readily visible. Using a distinct color
for the bounding box is also highly recommended.

[] 1f users don’t typically select objects in your application to manipulate them
(translate, rotate, scale) or can’t manipulate the selected objects, use bounding boxes
to indicate the selected objects.

] 1f users typically select objects in your application to manipulate them, use the
manipulator as selection feedback. If your application allows more than one object
to be selected at a time, consider displaying the manipulator only on a lead object
and bounding boxes on the other selected objects.

L] 1 your application needs to always present a realistic “experience-oriented”
representation of objects in the scene, highlight selected objects in some way rather
than cluttering the scene with bounding boxes or manipulators.

275

Chapter 14: Selection in 3D Applications

Lead Objects in 3D Applications

276

If your application allows users to select more than one object at a time, consider
identifying one of those objects as the lead object (also sometimes called the master
object). The lead object is necessary for performing certain object manipulations if more
than one object is selected. For example, if you have several objects selected and rotate
the lead object, all selected objects rotate around the lead object’s center of rotation.

The lead object is clearly distinguished from other objects in the selection. For example
as shown in Figure 14-3, if users typically select objects to manipulate them, the

manipulator can be used to distinguish the lead object and bounding boxes can be used
as selection feedback on other selected objects (see “Manipulator Selection Feedback”).

The rest of this section discusses how to choose the lead object in specific situations.
* “Lead Object When Selecting Multiple Objects”
¢ “Lead Object During Grouping and Ungrouping”

For more detailed information on the role of the lead object during specific
manipulations, see “Object Manipulation for Multiple Selected 3D Objects” in
Chapter 15.

Lead Object When Selecting Multiple Objects

If the user clicks to define a selection or <Ctrl>-clicks to add to a selection (see “3D
Selection Models”), the object just added to the selection becomes the lead object. Having
the last object selected be the lead object differs from the standard OSF/Motif guidelines
of having the lead or “anchor” be the first object selected regardless of how many objects
are later added to the selection.

This difference between the 2D-oriented OSF/Motif guidelines and these 3D guidelines
is necessary because it allows users to quickly change the lead object in a 3D application.
For example, to change the lead object to one that’s currently not selected, a user can use
click or <Ctrl>-click to select that object. To change the lead object to one that’s already
selected, the user can click or <Ctrl>-click twice on the object: the first time to deselect it
and the second time to make it the most recently selected object.

Lead Objects in 3D Applications

Figure 14-3 Selection Feedback: Lead Object Has Manipulator.

In some situations, users may add multiple objects to the current selection without
actually clicking on the individual objects. For example, a user may select several objects
using sweep selection (see “3D Selection Models”) or choose a “Select All” menu
command to select all objects in a scene. Alternatively, a user may import a grouped
object, place it in the scene, then ungroup the collection, leading to the selection of all
objects that were previously grouped (see “Lead Object During Grouping and
Ungrouping”). In these situations, make the lead object the one that’s closest to the
camera and closest to the middle of the viewing window.

When the user deselects the lead object, move back through the previous lead objects
making the most recent lead object that’s still selected the new lead object.

Lead Object During Grouping and Ungrouping

If the user groups a collection of objects, the group becomes a single selected object. Since
the group is also considered to be the last selected object, it becomes the lead object. All
selection feedback is removed from the individual objects in the group and the selection
feedback is displayed only for the group.

277

Chapter 14: Selection in 3D Applications

Figure 14-4 Grouped Collection of Objects With Manipulator.

When the user ungroups a grouped collection of objects, for example, by selecting the
group and choosing an Ungroup command, each object in that group becomes selected.
The object from the group that’s closest to the camera and closest to the middle of the
viewing window becomes the lead object. Figure 14-4 shows a grouped collection of
objects and Figure 14-5 shows the same group ungrouped. After ungrouping, the knight
is the lead object because it’s closest to the camera and closest to the middle of the
viewing window. In this example, the lead object uses the manipulator to distinguish it
from other selected objects.

Figure 14-5 Ungrouped Collection of Objects (Knight Is Lead Object)

278

Lead Objects in 3D Applications

Lead Object Design Guidelines for 3D Applications

When designing the selection user interface for your 3D application...

[]
[]

If your application allows users to select more than one object at a time, consider
identifying one of those objects as the lead object.

Clearly distinguish the lead object from other selected objects:

If users typically select objects to manipulate them, consider making this distinction
by displaying the manipulator only on the lead object and a bounding box on all
other selected objects.

Otherwise, if there are manipulators or bounding boxes on all selected objects,
distinguish the lead object another way (color, full manipulator instead of partial,
and so on.).

If the user clicks to define a selection or <Ctrl>-clicks to add to a selection, make the
lead object the last object selected. This allows users to change the lead object using
click or <Ctrl>-click on an object that’s currently not selected, or using <Ctrl>-click
twice on a currently selected object.

If the user employs a single action such as a sweep selection to select multiple objects
at the same time, make the lead object the one that’s closest to the camera and closest
to the middle of the viewing window.

When the user deselects the lead object, move back through the previous lead objects
making the most recent lead object that’s still selected the new lead object.

If the user groups a collection of objects, make the group the new lead object.

When the user ungroups a grouped collection of objects, each object that was in the
group becomes selected, and the object from the group that’s closest to the camera
and closest to the middle of the viewing window becomes the new lead object.

279

Chapter 15

Manipulating 3D Objects

Users of 3D applications typically need to change the position, orientation, and scale of
objects. Users of 3D editing applications are especially in need of fine control and power
in manipulating objects. Applications such as games that don’t allow editing may need
less control.

This chapter provides guidelines for three basic manipulation techniques: translation,
rotation, and scaling, and their variations. It also discusses the special case of moving the
center of rotation and scaling, which applications can optionally add to the basic
techniques. It includes these topics:

* “Basic 3D Manipulation Techniques”

¢ “Rotating 3D Objects”

® “Scaling 3D Objects”

¢ “Changing the Center of Rotation and Scaling for 3D Objects”
* “Object Manipulation for Multiple Selected 3D Objects”

Note that the focus of this chapter is manipulating complete objects; it doesn’t address
manipulating vertices, faces, or edges.

281

Chapter 15: Manipulating 3D Objects

Basic 3D Manipulation Techniques

This section introduces the general paradigm for 3D object manipulation. It first
describes the different phases of each manipulation process (for example, approach
phase and drag phase) and then lists the decisions you have to make to provide a
consistent user interface. It discusses these topics:

* “Phases of 3D Manipulation”
¢ “Free and Constrained 3D Manipulation”
¢ “Basic 3D Manipulation Guidelines”

* “Manipulator Presentation and Selection”

Note that because users are accustomed to manipulating objects directly, direct
manipulation of 3D objects is usually preferable. In some cases, manipulating objects
with the help of an intermediary like a separate dialog box can be useful, either as a
secondary method or to make more precise manipulation possible. An example is a
dialog box that lets users type in percentages for scaling or precise degree values for
rotation.

Phases of 3D Manipulation

The general paradigm for 3D object manipulation consists of several phases:
manipulator display, approach, grab, drag, and release. In each of these phases, the
manipulator uses certain feedback styles—neutral, locate highlight, selected, choice, and
guide—to indicate the actions currently available to the user. These feedback styles are
discussed in detail in “3D Manipulation Feedback”.

The phases of 3D manipulation are used throughout the rest of this chapter to illustrate
how users perform the different manipulation operations. The phases can be
summarized as follows:

1. Manipulator Display Phase. The user performs an action and the manipulator is
displayed in its neutral state on the selected object. As discussed in “Selection
Feedback for 3D Objects” in Chapter 14, manipulators usually appear when users
select an object. Some applications may, however, require an additional step to have
the manipulators appear. Silicon Graphics provides standard manipulators for
translation, rotation, and scaling.

282

Basic 3D Manipulation Techniques

2. Approach phase. As the user moves the pointer over a control on the manipulator,
the control changes to locate highlight style (for example, by changing color) to
indicate that it’s an active control that can be selected.

3. Grab phase. The user selects the control on the manipulator by positioning the
pointer over it and pressing the left mouse button.

» If the selection can result in only one action, the application provides selected
feedback and, if necessary, guide feedback. For example, if the user selects a
scaling handle (see Figure 15-9), the handle is displayed in the selected style
and lines in the guide style appear to indicate the direction of dragging for the
drag phase.

« If more than one action is possible, the application provides selected feedback,
choice feedback and, if necessary, guide feedback. For example, if the user
selects a rotation handle (see Figure 15-6), the handle is displayed in the
selected style, and two arrows in choice style are displayed to indicate that the
user has to clarify the direction of the rotation. In addition, two rings appear in
the guide style to indicate the direction of dragging for the drag phase.

4. Drag phase. The user drags the selected control to manipulate the object. During the
drag, the object changes in response to the user’s actions. If choice feedback was
provided in the grab phase, the user has to first resolve the choice by dragging the
pointer in one of the choice directions. Once the choice is made, the application
replaces the choice style with the selected style to indicate the choice was made.

5. Release phase. The user releases the mouse button. The manipulator is returned to

its original displayed state.

For translation, rotation, and scaling, use the standard manipulators provided by Silicon
Graphics. If you design your own manipulator and controls for actions other than
translation, rotation, and scaling, be sure to include in your design:

* nonambiguous controls
® precise control

* nonambiguous gestures

283

Chapter 15: Manipulating 3D Objects

284

3D Manipulation Feedback

Provide immediate feedback about available functionality of the manipulator at all
times. Applications need to use consistent design schemes across manipulators and
controls to provide this feedback and indicate the current state of the manipulator.
Experience has shown that the following feedback styles, which use a design scheme
based on colors, are useful:

e Neutral. Indicates that the user isn’t interacting with the controls on the

manipulator. Manipulators in neutral style (often green or white) stand out from the

other elements in the scene.

¢ Locate highlight. Indicates that the pointer is over a control on the manipulator that

can be selected. The control brightens (often to an orange color) as the pointer
passes over it to indicate that it’s a live, functional control.

e Selected feedback. Indicates that the control has been selected. Controls in selected

style (often rendered in yellow) stand out strongly.

* Choice feedback. Indicates the user has selected a control but has to make an
additional selection. For example, if the user wants to constrain translation to just
one axis of a translation plane, the user first selects the plane for translation, then
two arrows prompt the user to choose which of the two axes to translate along.

Feedback in choice style (often rendered in orange) stands out but not as strongly as

the selected style.

* Guide feedback. Provides supplementary information to guide the user during

object manipulation. For example, when the user chooses to rotate an object, two (or

three) rings indicating the rotation sphere appear to guide the user. Feedback in the
guide style (often rendered in purple) recedes but is distinct from the object and the
manipulator.

In addition to the immediate feedback, continuous feedback on the state of the object is

important while the user is manipulating objects. For example, as the user translates an

object, the object moves in the scene in a smooth and continuous fashion so the user

always knows the location of the object and can decide exactly where to position it. If the
user manipulates objects in a complex scene, it may be difficult to maintain an acceptable

frame rate during the manipulation, so adaptive rendering may be necessary. (See “3D
Viewing Performance and Scene Fidelity” in Chapter 13 for recommended frame rates
and information on adaptive rendering.)

Basic 3D Manipulation Techniques

Free and Constrained 3D Manipulation

Depending on how complex a given operation is and how often it’s used, the default
manipulation is either free (in all three dimensions) or constrained. Users always
perform the default operations by directly interacting with the manipulator. Users
perform nondefault operations by holding down a modifier key while interacting with
the manipulator. Choice of a modifier key follows the guidelines outlined in Table 12-1,

“Use of Modifier Keys in a 3D Application,” on page 235.

Table 15-1 provides an overview of the available manipulations and their associated

modifier keys.

Table 15-1 Overview of Manipulation Techniques

Manipulation

Default? Modifier Key

Simple (Planar) 3D Translation Yes
Translation Constrained to One Axis of the Plane

Translation Constrained to the Normal of the Selected Plane

Constrained 3D Rotation (rotation around one axis) Yes
Free 3D Rotation (rotation around a point, by default center of object)
Uniform 3D Scaling Yes
Uniform Scaling Around a Corner

Axial 3D Scaling (Stretching)

Axial Scaling Around a Side

Changing the Center of Rotation and Scaling Along a Plane

Changing the Center of Rotation and Scaling Along an Axis

none
<Shift>

<Ctrl>

none

<Shift>

none

<Ctrl>

<Shift>
<Shift>-<Ctrl>
<Ctrl>

<Shift>-<Ctrl>

Manipulator Presentation and Selection

Your application needs to provide default manipulators that are appropriate for the
functional requirements of the users and for the tasks they most commonly perform. For
example, if users commonly move objects through a scene but rarely scale or rotate them,
only a translation manipulator is expected. If users commonly perform all three basic
manipulation techniques, display translation, rotation, and scaling manipulators by

default.

285

Chapter 15: Manipulating 3D Objects

286

Once you've defined default manipulators, consider allowing users to change the set of
manipulators that’s displayed. At a minimum, allow users to make this change by
choosing commands in the View menu. For example, if rotation is not a default
manipulation but rarely used, allow users to add the rotation manipulator when they
need it.

Basic 3D Manipulation Guidelines

When designing a user interface for object manipulation in a 3D application...

[]
[]

[

Let users manipulate objects directly whenever possible.

If an intermediary, such as a dialog box, yields more precise results for an action and
your users need precise manipulations, provide an intermediary method in addition
to direct manipulation.

Provide manipulators to allow users to use direct manipulation when editing
objects.

Use the standard manipulators provided by Silicon Graphics for translation,
rotation, and scaling.

Make sure users can readily identify a manipulator’s controls and how to interact
with those controls. Also, make sure the controls allow users to precisely manipulate
an object.

Provide immediate feedback on available actions during the different stages of
manipulation as follows:

Display phase—Display the manipulator in its neutral state.

Approach phase—As the pointer passes over a control on the manipulator, locate
highlight the control to show that it’s a live, functional control.

Grab phase—Provide selected feedback if there is no additional choice to make;
otherwise provide choice feedback. Provide guide feedback as appropriate to
facilitate user interaction.

Drag phase—If the user was presented with a choice in the grab phase, resolve it
when the user begins the drag, and replace the choice feedback with selected
feedback.

Release phase—Return the manipulator to its neutral state.

Translating 3D Objects

[Use clearly distinguishable feedback styles as follows:

* Provide neutral feedback using a style that stands out from the scene; for example,
use the color green or white.

* Provide locate highlight for manipulator controls. That is, the controls brighten
(often to an orange color) as the pointer passes over them.

* Provide selected feedback using a style that stands out strongly; for example, use
the color yellow.

* Provide choice feedback using a style that stands out, but not as strongly as
selection feedback; for example, use the color orange.

* Provide guide feedback using a style that recedes but is distinct from the other
styles; for example, use the color purple.

[] Provide continuous feedback on the status of an object while the user is
manipulating it. For example, as the user translates an object, the object should move
in the scene in a smooth and continuous fashion to keep the user updated on the
location of the object. Use adaptive rendering if necessary.

[] Make commonly used and critical manipulation techniques immediately available
on the manipulator via the left mouse button. Make less commonly used techniques
available on a secondary level, for example, through modifier keys used in
conjunction with the left mouse button.

When displaying manipulators in your 3D application...

[] Decide which manipulators to display by default based on the functional
requirements of your users and their most common tasks.

[] Consider allowing users to change which subset of manipulators are currently
displayed. At a minimum, allow users to specify this subset using entries in the View
menu.

Translating 3D Objects

Translating an object means moving it and positioning it at a desired location within the
scene. This section discusses and provides guidelines for the basic translation behavior
users expect in 3D applications. It includes the following topics:

e “3D Translation Basics”
e “Simple (Planar) 3D Translation”

e “Constrained 3D Translation”

287

Chapter 15: Manipulating 3D Objects

288

3D Translation Basics

In most cases, the intuitive manipulator for translation is a bounding volume (see
Figure 15-1), usually a bounding box. The bounding box defines a local coordinate space
for the object and lets the user perform translation in the object’s coordinate space, which
may or may not be aligned with world (scene) coordinate space. See “Bounding Box
Selection Feedback” for more detail on bounding boxes.

Figure 15-1 Object With Translation Manipulator (Bounding Box)

Provide access to both simple (planar) and constrained (axial) translation:

e Planar translation moves objects along a 2D plane. It’s discussed in detail in
“Simple (Planar) 3D Translation.”

* Constrained translation moves objects either:
— along only one of the axes that define the plane of translation or
— along the normal to these axes

Constrained translation techniques are discussed in detail in “Constrained 3D
Translation.”

Note that translation in all three dimensions isn’t a recommended technique and
therefore isn’t discussed in this guide. This is because even for experienced users, 3D
translation is difficult to perform.

In the process of translating, the user could push an object so far away from the camera
(along the z-axis) that it’s no longer visible. While users may intend to position the object
as far away as possible, they almost never want it to disappear from view. Your
application should check whether users move objects beyond the vanishing point and
either warn them or prevent them from doing so.

Translating 3D Objects

Simple (Planar) 3D Translation

Planar translation moves objects along a 2D plane. It's the most common type of
translation and is therefore the default translation behavior.

Table 15-2 illustrates user input and the resulting application behavior for planar
translation:

Table 15-2 Phases of Planar Translation

Phase? User Action Application Response®

Approac Usermovespointer Plane locate highlights when pointer is within its boundaries.
over plane of

interest.
Grab User presses and User interface controls on the object, including other
holds left mouse manipulators, are removed except for the bounding box
button while (translation planes). Selected plane is displayed in selected style.

pointer is over the Other planes of the bounding box are displayed in guide style.

plane of interest. gtandard translation feedback is displayed at the location of the

pointer. Feedback consists of a perpendicular set of arrows in the
selected style; the arrows represent the two main axes defining
the translation plane (see Figure 15-2). Pointer shape remains the
upper left pointing arrow.

Drag User drags plane of Object, bounding box (translation planes), and translation
interest to translate feedback (arrows) move along plane of interest based on user
object. input (see Figure 15-2).
All user input is interpreted to follow the plane of interest. As the
object is translated, it’s continuously displayed in its current
state, using adaptive rendering if necessary (see “3D Viewing
Performance and Scene Fidelity” in Chapter 13).

Release User releases Translation feedback (arrows) disappears. The user interface
mouse button to controls on the object that were removed in the grab phase are
stop translation redisplayed in their original state.
motion.

a. See “Phases of 3D Manipulation.”
b. See “3D Manipulation Feedback.”

289

Chapter 15: Manipulating 3D Objects

290

Figure 15-2 Simple Planar Translation Sequence

Dragging any side of the bounding box translates the object along that plane. Figure 15-2
shows translating an object to the right and down. The user has dragged the facing plane
of the bounding box, enabling translation in the xy plane. Therefore, the object can move
left and right as well as up and down. The object moves in the coordinate space defined
by the bounding box and is independent of the scene coordinate space.

Make sure it’s not possible to select through the translation planes. For example, in
Figure 15-2 the left side of the bounding box, which represents the xz plane, is behind the
front panel, which represents the xy plane. As the user moves the pointer over the front
panel, this front xy plane locate highlights indicating that the user can select it. As the
user moves the pointer over both the front xy plane and the side xz plane behind it, only
the front xy plane locate highlights because the side xz panel cannot be selected through
the front xy plane.

Constrained 3D Translation

Constrained translation gives users finer control over the position of an object. The two
recommended types, discussed in this section, are:

e “Translation Constrained to One Axis of the Plane”

e “Translation Constrained to the Normal of the Selected Plane”

Translating 3D Objects

The user indicates one of these nondefault translations by holding down a modifier key
while performing the standard translation action of dragging one of the translation
planes in the manipulator (see “Free and Constrained 3D Manipulation”). Users expect
to be able to switch from unconstrained translation to constrained translation and back
at any point in the translation by pressing the appropriate modifer key, and expect to
continue performing constrained translation until the modifier key is released.

Translation Constrained to One Axis of the Plane

Performing translation constrained to only one of the axes that define a translation plane
is similar to planar translation (see Table 15-2). However, as shown in Table 15-3, the grab
phase changes to allow selection of a single axis, and the drag phase has a single axis as
the feedback. The user presses the <Shift> modifier key to indicate constrained
translation along only one axis of the selected plane.

Table 15-3 Phases of Translation Along One Axis of the Selected Plane

Phase User Action Application Response

Approach Same as for planar translation Same as for planar translation.
(see Table 15-2).

Grab User presses and holds the Same as for planar translation with this exception:
<Shift> key and left mouse Translation feedback is displayed in the choice style
button while pointer is over (see Figure 15-3).
plane of interest.

Drag User continues to press the When the user has moved the pointer far enough to
<Shift> key and drags in the clearly indicate the axis for translation, the arrow
direction of one of the two representing that axis changes to selected style and
choice arrows to identify the the other arrow disappears (see Figure 15-3).
desired translation axis. Remainder of this phase is the same as for planar

translation with this exception: translation is along
the selected axis, not along the selected plane, so all
user input is interpreted to follow the selected axis.

Release Same as for planar translation. Same as for planar translation.

201

Chapter 15: Manipulating 3D Objects

292

Figure 15-3 illustrates this type of constrained translation. The user simultaneously
presses the <Shift> key and the left mouse button. In response, the application displays
the translation feedback arrows in choice style. The user then selects one of the two axes
indicated by these choice arrows. After the user has dragged slightly to the right, only
the arrow representing the user’s choice of the left-right axis (x) remains, and translation
is restricted to this axis until the user releases the <Shift> key.

Figure 15-3 Constrained Translation Along One Axis of the Selected Plane

Translation Constrained to the Normal of the Selected Plane

Users want to perform translation along a path perpendicular to a plane primarily for
these two reasons:

® Other planes of the bounding box that are orthogonal to the current plane aren’t
always visible or accessible.

* Some users need to rapidly translate objects along all three axes.

Performing translation constrained to the axis that’s normal to the selected translation
plane is similar to planar translation (see Table 15-2). However, as shown in Table 15-4,
the grab phase changes to show the axis that’s normal to the selected plane, and the drag
phase translates the object along this normal axis. The user presses the <Ctrl> modifier
key to indicate translation constrained along the normal.

Translating 3D Objects

Table 15-4 Phases of Translation Along the Normal to the Selected Plane

Phase User Action Application Response

Approa Same as for planar Same as for planar translation.

ch translation. (see
Table 15-2).

Grab User presses and holds Same as for planar translation with this exception:
<Ctrl> key and left Translation feedback consists of an arrow representing the
mouse button while normal to the selected plane and a small pair of axes
pointer is over plane of representing the main axes of the selected translation plane
interest. (see Figure 15-4). This feedback is displayed in selected style.

Drag User continues to press Same as for planar translation except that object, bounding
<Ctrl> key and drags box (translation planes), and translation feedback (axes and
plane of interest to arrow) move along the normal to plane of interest (see
translate object. Figure 15-4), so all user input is interpreted to follow this

normal.
Release Same as for planar Same as for planar translation.

translation.

Figure 15-4

Constrained Translation Along the Normal to the Selected Plane

Figure 15-4 shows this type of constrained translation. The user simultaneously presses
the <Ctrl> key and the left mouse button. In response, the application displays the
translation feedback arrow and axes in the selected style. As the user drags the frontmost
plane of the bounding box in this example (the xy plane), translation is restricted to the
axis normal to this selected plane (z) until the user releases the <Ctrl> key.

293

Chapter 15: Manipulating 3D Objects

3D Translation User Interface Guidelines

When designing a user interface for 3D translation...

[] Use the standard translation manipulator either alone or in combination with the
other standard manipulators. This manipulator is a set of translation planes
arranged to define a bounding box around the object.

Allow users to perform translation in the planes of the object’s bounding box. These
planes may or may not be aligned with the world (scene) coordinate space.

Don’t allow users to translate objects that are part of a scene into unusable locations,
such as behind the camera or so far back along the z axis that they vanish from view.

Provide planar translation as the default translation method (see Table 15-2 on page
289).

Provide access to constrained translation along only one axis of a plane (see
Table 15-3 on page 291).

Provide access to axial (constrained) translation along the normal to a plane (see
Table 15-4 on page 293).

O O 0O oo o O

Allow users to switch from planar translation to constrained translation and back at
any point in a translation. For example, if the user is performing planar translation
by dragging a translation plane and then presses the <Shift> key, switch to axial
translation along the plane until the <Shift> key is released.

D Display the appropriate translation feedback as the user switches between
unconstrained and constrained translation.

[] Don’t allow users to select objects or controls through the translation planes.

Rotating 3D Objects

Rotating an object means turning it around an axis or around a point. Rotating objects is
important in most 3D applications because users need access to all sides of the object.
This section discusses and provides guidelines for the basic rotation behavior users
expect in 3D applications. It discusses these topics:

e “3D Rotation Basics”
e “Constrained 3D Rotation”

e “Free 3D Rotation”

Some applications may also find it useful to allow users to change the center of rotation.
This is discussed in “Changing the Center of Rotation and Scaling for 3D Objects”.

294

Rotating 3D Objects

3D Rotation Basics

Provide access to both constrained rotation and free rotation in your application; both are
critical in providing users access to rotation functionality:

¢ (Constrained rotation is rotation around an axis. Because free rotation makes the
object difficult to control, constrained rotation is the appropriate default behavior.
It’s discussed in “Constrained 3D Rotation.”

e Free rotation is rotation around a point. It’s discussed in “Free 3D Rotation.”

When users rotate an object, the default center of rotation for free rotation is the center of
the object itself (the center of the object’s bounding box); for constrained rotation, it’s an
axis that runs through the center of the object. There are situations where users need to
change the center of rotation; see “Changing the Center of Rotation and Scaling for 3D
Objects” for a detailed discussion of this special case.

The standard rotation manipulator, shown in Figure 15-5, is a set of rotation handles, at
most one per side, that emanate from the object’s center of rotation. The length of each
handle is the length of the bounding box plus one-eighth of it on each side.

Figure 15-5 Object With Rotation Manipulator (Rotation Handles)

295

Chapter 15: Manipulating 3D Objects

296

Constrained 3D Rotation

Constrained rotation is rotation around an axis. Because it’s much easier to control than
free rotation, it’s the default rotation behavior. Table 15-5 illustrates user input and the
resulting application behavior for constrained rotation.

Table 15-5 Phases of Constrained Rotation

Phase? User Action

Application Response®

Approac User moves pointer over a
h rotation handle.

Grab User presses and holds left
mouse button while
pointer is over rotation
handle of interest.

Drag User drags rotation handle
to rotate object around the
selected axis.

Release User releases mouse button
to stop rotation motion.

Rotation handle of interest locate highlights.

User interface controls on the object, including other
manipulators, are removed except for rotation handles.
Rotation handle of interest is displayed in selected style,
and other handles are displayed in neutral style.

Standard rotation feedback is displayed at the location of
the selected handle. Feedback consists of a
perpendicular set of arrows in the choice style and two
rings in guide style to indicate available rotation
directions (see Figure 15-6). Pointer shape remains the
upper left pointing arrow.

When user has moved the pointer far enough to clearly
indicate direction and axis for rotation, the
corresponding arrow changes to selected style, and the
other arrow and its associated guide ring disappear (see
Figure 15-6).

Object, rotation handles, and rotation feedback (ring and
arrow) rotate around the selected axis based on user
input. All user input is interpreted to follow the ring. As
the object is rotated, it’s continuously displayed in its
current state, using adaptive rendering if necessary (see
“3D Viewing Performance and Scene Fidelity” in
Chapter 13).

Rotation feedback (arrow and ring) disappears. User
interface controls on object that were removed in grab
phase are redisplayed in their original state.

a. See “Phases of 3D Manipulation.”
b. See “3D Manipulation Feedback.”

Rotating 3D Objects

Figure 15-6 Constrained Rotation Sequence

Figure 15-6 shows the sequence of events for constrained rotation. When the user grabs
a rotation handle, the rotation feedback appears indicating that the user must choose one
of two axes for the rotation. The user chooses a direction and an axis for rotation by
dragging along one of the two arrows. Once the axis has been chosen, all user input is
interpreted to rotate the object around the selected axis in the given direction.

Free 3D Rotation

In free rotation, the object rotates around a point rather than an axis; that is, the object can
rotate around all three axes simultaneously. Typically, the default center of rotation is at
the center of the object’s bounding box. The user presses the <Shift> modifier key to
indicate free rotation.

Free rotation is similar to constrained rotation (see Table 15-5). However, as shown in

Table 15-6, the grab phase displays a virtual trackball as the rotation feedback, and the
drag phase rotates the object around the center of rotation.

297

Chapter 15: Manipulating 3D Objects

298

Table 15-6 Phases of Free Rotation

Phase User Action Application Response

Approach Same as for constrained rotation Same as for constrained rotation.
(see Table 15-5).

Grab User presses and holds <Shift> Same as for constrained rotation with this
key and left mouse button while exception: Rotation feedback consists of three
pointer is over rotation handle of rings representing a virtual trackball (see
interest. Figure 15-7). This feedback is displayed in guide
style. No choice arrows are provided.

Drag User continues to press <Shift> Same as for constrained rotation except that
key and drags rotation handle to object, rotation handles, and rotation feedback
rotate object simultaneouslyinall (three rings) rotate around the center of rotation

three dimensions around the (see Figure 15-7). All user input is interpreted to
center of rotation. follow the virtual trackball.
Release Same as for constrained rotation. Same as for constrained rotation.

Figure 15-7 Free Rotation Sequence

Figure 15-7 illustrates free rotation. The user simultaneously presses the <Shift> key and
the left mouse button. In response, the application displays the virtual trackball rotation
feedback. As the user drags the pointer, the object is rotated around the point at the center
of the virtual trackball.

Rotating 3D Objects

Users expect to be able to switch between free rotation and constrained rotation at any
time during a rotation operation:

If the user is performing constrained rotation, pressing the <Shift> key immediately
puts the object into free rotation. The pointer starts following a virtual trackball
path.

If the user is performing free rotation, releasing the <Shift> key immediately puts
the object into constrained rotation. The object rotates around the axis the pointer is
moving around.

Users can continually press and release the <Shift> key to switch to and from free
rotation as long as they continue to press the left mouse button while the pointer is
over a rotation handle.

3D Rotation User Interface Guidelines

When designing a user interface for 3D rotation...

[] Use the standard rotation manipulator either alone or in combination with the other

standard manipulators. This manipulator is a set of handles that emanate from the
center of rotation. Typically, the default center of rotation is the center of the object
(the center of the object’s bounding box).

Provide constrained rotation around an axis as the default rotation method (see
Table 15-5 on page 296).

Provide access to free rotation around a point (see Table 15-6 on page 298).

Allow users to switch between constrained and free rotation at any point in a
rotation. For example, if the user is performing constrained rotation by dragging
along a ring and then presses the <Shift> key, switch to free rotation and interpret
pointer movements as following the virtual trackball until the <Shift> key is
released.

As the user switches between constrained and free rotation, display the appropriate
rotation feedback. For example, if the user is performing free rotation and then
releases the <Shift> key, switch to constrained rotation and display the appropriate
rotation feedback. Determine the direction and axis for rotation based on the next
pointer movement. Once the direction and axis have been determined, display the

appropriate arrow and ring feedback for this direction and remove the virtual
trackball.

299

Chapter 15: Manipulating 3D Objects

Scaling 3D Objects

300

Scaling an object means enlarging or reducing it without changing its position or
orientation. This section discusses and provides guidelines for the basic scaling behavior
users expect in 3D applications. It includes these topics:

® “3D Scaling Basics”

¢ “Uniform 3D Scaling”

* “Axial 3D Scaling (Stretching)”

® “Scaling Around the Opposite Corner or Side”

Some applications may find it useful to allow users to change the center of scaling. This
is discussed in “Changing the Center of Rotation and Scaling for 3D Objects.”

3D Scaling Basics

There are two scaling operations, uniform scaling and axial scaling:

¢ Uniform scaling preserves proportions, and is the most common type of scaling so
it’s the default scaling behavior. Uniform scaling is discussed in detail in “Uniform
3D Scaling”.

* In axial scaling (also referred to as stretching), the object is scaled or stretched in
only one of the three dimensions at a time. Because axial scaling is less commonly
used than uniform scaling, it’s the non-default scaling operation. Axial scaling is
discussed in detail in “Axial 3D Scaling (Stretching).”

Objects are scaled with respect to a fixed anchor point, which is, by default, the center of
the object (the center of the object’s bounding box). Users also need to occasionally scale
an object around a corner or side of the object’s bounding box, as discussed in “Scaling
Around the Opposite Corner or Side.” Some applications may find it necessary to allow
users to change the center of scaling. This is discussed in “Changing the Center of
Rotation and Scaling for 3D Objects.”

Scaling 3D Objects

The standard scaling manipulator, shown in Figure 15-8, is a set of cube-shaped handles
located at the vertices of the object’s bounding box. To scale an object, the user drags one
of these cube-shaped handles. Dragging toward the center of scaling shrinks the object,
dragging away from the center of scaling enlarges the object.

Figure 15-8 Object With Scaling Manipulator (Scaling Handles)

Uniform 3D Scaling

Uniform scaling preserves proportions; that is, all axes of the object are uniformly
enlarged or reduced during the operation. It’s the most common type of scaling so it’s
the default scaling behavior. Typically, the default center of scaling is at the center of the
object (the center of the object’s bounding box). Table 15-7 illustrates user input and the
resulting application behavior for uniform scaling.

301

Chapter 15: Manipulating 3D Objects

302

Table 15-7 Phases of Uniform Scaling

Phase? User Action

Application Response®

Approac User moves pointer
over a scaling handle.

Grab User presses and holds
left mouse button while
pointer is over scaling
handle of interest.

Drag User drags scaling
handle to scale object in
all three dimensions
around center of
scaling.

Release User releases mouse
button to stop scaling.

Scaling handle of interest locate highlights.

User interface controls on the object, including other
manipulators, are removed except for the scaling handles.
Scaling handle of interest is displayed in selected style.
Other handles are displayed in neutral style.

Standard scaling feedback is displayed: a set of arrows in
guide style that emanate from the center of scaling and go
through each of the scaling handles and rotation handles
displayed in neutral style (see Figure 15-9). The rotation
handles provide feedback on the current location of the
center of rotation and scaling. Pointer shape remains the
upper left pointing arrow.

Object, scaling handles, and scaling feedback are uniformly
scaled in all three dimensions around the center of scaling
based on user input (see Figure 15-9). All user input is
interpreted to move either closer to or farther away from the
center of scaling. As the user drags closer to the center of
scaling, object, scaling handles, and scaling feedback shrink.
As the user drags farther away from the center of scaling, the
object, and so on, are enlarged.

As the object is scaled it’s continuously displayed in its
current state, using adaptive rendering if necessary (see “3D
Viewing Performance and Scene Fidelity”).

Scaling feedback consisting of guide arrows and rotation
handles disappears. User interface controls on the object that
were removed in the grab phase are redisplayed in their
original state.

a. See “Phases of 3D Manipulation.”
b. See “3D Manipulation Feedback.”

Scaling 3D Objects

Figure 15-9 Uniform Scaling Sequence

Figure 15-9 shows the sequence of events for uniform scaling. When the user grabs the
scaling handle, scaling feedback is displayed. It serves as a guide to the user in dragging
to make the object smaller or larger. As the user drags the pointer toward the center of
scaling, the object shrinks uniformly in all three dimensions.

Axial 3D Scaling (Stretching)

In addition to uniform scaling, users expect to be able to perform axial scaling
(stretching) where the object is scaled or stretched in only one of the three dimensions at
a time. Axial scaling is similar to uniform scaling (see Table 15-7). However, as shown in
Table 15-8, the grab phase changes to allow selection of a single dimension (axis) for
scaling, and the drag phase scales the object only along this single dimension. The user
presses the <Shift> modifier key to indicate axial scaling.

303

Chapter 15: Manipulating 3D Objects

304

Table 15-8 Phases of Axial Scaling (Stretching)

Phase User Action Application Response

Approach Same as for uniform scaling Same as for uniform scaling.
(see Table 15-7).

Grab User presses and holds Same as for uniform scaling with this exception:
<Shift> key and left mouse Scaling feedback consists of the object’s bounding
button while pointer is over ~ box displayed in guide style, and three arrows
the scaling handle of interest. emanating from the selected scaling handle that

represent the three possible axes (dimensions) for
stretching (see Figure 15-10). Arrows are displayed
in choice style at the location of the selected handle.
Feedback also includes rotation handles in neutral
style, which provide feedback on the current
location of the center of rotation and scaling.
(Rotation handles are also part of scaling feedback
for uniform scaling.)

Drag User continues to press When user has moved pointer far enough to clearly
<Shift> key and drags scaling indicate the axis (dimension) for scaling, the arrow
handle in the direction of one representing this axis changes to selected style and
of the three choice arrows to the other two arrows disappear (see Figure 15-10).

identify the desired scaling The remainder of this phase is the same as for
dimension. After the user uniform scaling with this exception: Scaling is
makes this choice, further along the selected dimension, not uniformly along
dragging scales the object all three dimensions. All user input is interpreted
along this single axis. to enlarge or shrink the object along the selected
dimension.
Release Same as for uniform scaling. ~ Same as for uniform scaling.

Figure 15-10 illustrates axial scaling. The user simultaneously presses the <Shift> key
and the left mouse button. In response, the application displays the bounding box and
choice arrows for axial scaling. As the user drags the pointer, the x axis is selected for
scaling. As the user drags the pointer farther away from the center of scaling, the object
is enlarged along this single dimension.

Scaling 3D Objects

Figure 15-10 Axial Scaling Sequence

Users expect to be able to switch between uniform scaling and axial scaling at any time
during a scaling operation:

e If the user is performing uniform scaling and presses the <Shift> key, the
application immediately prompts the user to choose a dimension for axial scaling.
Once the dimension (axis) has been selected, dragging scales the object only along
this single dimension.

e If the user is performing axial scaling and releases the <Shift> key, the application
immediately allows the user to uniformly scale the object. Dragging scales the
object uniformly along all three dimensions.

® Users can continually press and release the <Shift> key to switch between uniform
and axial scaling as long as they continue pressing the left mouse button while the
pointer is over a scaling handle.

305

Chapter 15: Manipulating 3D Objects

306

Scaling Around the Opposite Corner or Side

Users occasionally want to scale an object around a specific corner (scaling handle) for
uniform scaling and around a specific plane for axial scaling. To indicate this alternate
behavior for scaling, the user presses the <Ctrl> modifier key.

Table 15-9 illustrates user input and resulting application behavior for uniform scaling
around a corner. Note that it’s similar to uniform scaling around the center of scaling (see

Table 15-7).

Table 15-9 Phases of Uniform Scaling Around a Corner

Phase User Action Application Response

Approach Same as for uniform scaling ~ Same as for uniform scaling.
(see Table 15-7).

Grab User presses and holds <Ctrl> Same as for uniform scaling with these exceptions:
key and left mouse button The set of arrows in the guide style emanate from
while pointer is over scaling the scaling handle directly opposite the selected
handle of interest. handle (Figure 15-11). Rotation handles aren’t

shown because scaling isn’t around the center of
rotation and scaling.

Drag User continues to press <Ctrl> Same as for uniform scaling with this exception:
key and drags scaling handle Scaling is done around the handle opposite the
to scale object in all three selected handle, not around the center of scaling (see

dimensions around the corner Figure 15-11).
opposite the selected handle.

Release Same as for uniform scaling. ~ Same as for uniform scaling.

Scaling 3D Objects

Figure 15-11 Uniform Scaling Around a Corner

Table 15-10 illustrates the same information for axial scaling around a specific side of the
object’s bounding box. Note that this is similar to axial scaling around the center of

scaling (see Table 15-8).

Table 15-10 Phases of Axial Scaling Around a Side

Phase

User Action

Application Response

Approach
Grab

Drag

Release

Same as for axial scaling (see Table 15-8).

User presses and holds <Ctrl> and <Shift> keys and
left mouse button while pointer is over the scaling
handle of interest.

User continues to press <Ctrl> and <Shift> keys and
drags scaling handle to indicate the desired scaling
dimension. After the user makes this choice, further
dragging scales object in this dimension around the
plane normal to the selected axis and on the opposite
side of the bounding box from the selected handle.

Same as for axial scaling.

Same as for axial scaling.

Same as for axial scaling with this exception: Rotation
handles aren’t shown because scaling isn’t around the
center of rotation and scaling (see Figure 15-12).

Same as for axial scaling with this exception: Scaling occurs
around the side of the bounding box that’s normal to the
selected axis and on the opposite side of the bounding box
from the selected handle (see Figure 15-12).

Same as for axial scaling.

307

Chapter 15: Manipulating 3D Objects

308

Figure 15-12 Axial Scaling Around a Side

When performing uniform or axial scaling, users expect to be able to change the point of
scaling to the opposite corner or opposite side at any point during a scaling operation:

If the user is performing uniform scaling, pressing the <Ctrl> key immediately
starts uniformly scaling the object around the corner opposite to the selected
handle. Releasing the <Ctrl> key immediately returns to uniform scaling around
the center of scaling.

If the user is performing axial scaling, pressing the <Ctrl> key immediately starts
scaling the object around the plane normal to the selected axis and on the opposite
side of the bounding box from the selected handle. Releasing the <Ctrl> key
immediately returns to axial scaling around the center of scaling.

Users can continually press and release the <Ctrl> key to switch between scaling
around a corner or side and scaling around the center of scaling as long as they
continue pressing the left mouse button while the pointer is over a scaling handle.

Scaling 3D Objects

3D Scaling User Interface Guidelines

When designing a user interface for 3D scaling...

[

N I Oy A

]

Use the standard scaling manipulator either alone or in combination with the other
standard manipulators. The manipulator consists of cube-shaped handles at the
vertices of the bounding box.

Scale objects around the center of scaling. Typically this is the center of the object (the
center of the object’s bounding box).

Provide uniform scaling as the default scaling method (see Table 15-7 on page 302).
Provide access to axial scaling (stretching) as defined in Table 15-8 on page 304.

Allow the user to switch between uniform and axial scaling at any point in a scaling
operation. For example, if the user is performing axial scaling, then releases the
<Shift> key, switch to uniform scaling.

As the user switches between uniform and axial scaling, display the appropriate
scaling feedback. For example, if the user is performing uniform scaling, then presses
the <Shift> key, switch to axial scaling and display the appropriate scaling feedback.
Determine the single axis for stretching based on the next pointer movement. Once
this axis has been determined, remove the two axes that were not selected and
display the selected axis until the <Shift> key is released.

Allow users to perform uniform scaling around a specific corner as an alternative to
scaling around the center of scaling (see Table 15-9 on page 306).

Allow users to perform axial scaling around a specific side of the object’s bounding
box as an alternative to axial scaling around the center of scaling (see Table 15-10 on
page 307).

Allow the user to switch between scaling around a corner or side and scaling around
the center of scaling at any time during a scaling operation. For example, if the user
is performing uniform scaling around the center of scaling, then presses the <Ctrl>
key, switch to scaling around the corner opposite to the selected handle.

As the user switches between scaling around a corner or side and scaling around the
center of scaling, display the appropriate feedback. For example, if the user is
performing uniform scaling around a corner, then releases the <Ctrl> key, switch to
scaling around the center of scaling and display the appropriate guide feedback for
this type of scaling.

309

Chapter 15: Manipulating 3D Objects

Changing the Center of Rotation and Scaling for 3D Objects

At times, users may want to explicitly choose a center for rotation or scaling. For
example, you have a graphic object that’s a stick figure. An arm is part of the stick figure;
its natural centers of rotation are the elbow and the wrists, not the center of the arm.

Typically, the center of rotation and the center of scaling are defined to be the same point.
Table 15-11 illustrates user input and the resulting application behavior for changing the
center of rotation (along a plane). The user presses the <Ctrl> key while dragging on a
rotation handle to change this point. Note that for the standard manipulators
recommended by Silicon Graphics, a change in the center of rotation also changes the
center of scaling. If your users need to have separate centers of rotation and scaling, you
need to provide a separate mechanism for changing the center of scaling.

Table 15-11 Phases of Changing the Center of Rotation and Scaling Along a Plane

Phase? User Action Application Response®

Approach User moves pointer over a Rotation handle of interest locate highlights.
rotation handle.

Grab User presses and holds <Ctrl> User interface controls on the object, including other manipulators, are
key and left mouse button while removed except for rotation handles. Rotation handle of interest is displayed
pointer is over rotation handle. in selected style. Other handles are displayed in neutral style.

Feedback is displayed at the location of the selected handle. Feedback consists
of a perpendicular set of arrows in selected style representing the two axes of
the plane in which the user can move the point of rotation, and three rings in
guide style representing a virtual trackball around the center of rotation (see
Figure 15-13). In addition, the object’s bounding box is displayed in neutral
style to further guide the user in placing the center of rotation. Pointer shape
remains upper left pointing arrow.

Drag User continues to press <Ctrl> Feedback assembly (two arrows and three rings), rotation handles, and center
key and drags rotation handle to of rotation and scaling move along plane based on user input. All input is
move center of rotation and interpreted to follow the plane represented by the two arrows. Object and
scaling along selected plane. bounding box don’t move.

Release User releases mouse button to ~ Feedback consisting of the arrows, rings, and bounding box disappears, and

stop movement

of the center of the user interface controls on the object that were removed in the grab phase

rotation and scaling. are again displayed in their original state.

a. See “Phases of 3D Manipulation.”
b. See “3D Manipulation Feedback.”

310

Changing the Center of Rotation and Scaling for 3D Objects

Figure 15-13 Changing the Center of Rotation and Scaling

In addition to moving the center of rotation and scaling along a plane, users may want
to constrain the movement to a single axis. This is similar to moving the center along a
plane (see Table 15-11). However, as shown in Table 15-12, the grab phase changes to
indicate that the user must choose an axis for movement, and the drag phase changes to
restrict movement to the selected axis. The user presses the <Ctrl> key while dragging
on a rotation handle to change the center of rotation and scaling and also presses the
<Shift> key to constrain this movement to a single axis of the plane.

Table 15-12 Phases of Changing the Center of Rotation and Scaling Along an Axis

Phase User Action Application Response

Approach User moves pointer over a Same as for changing center of rotation and scaling
rotation handle. along a plane (see Table 15-11).

Grab User presses and holds <Shift> Same as for changing center of rotation and scaling
and <Ctrl> keys and left along a plane with this exception: The perpendicular
mouse button while pointer is arrows included in the feedback are displayed in
over rotation handle. choice style indicating that user must choose an axis

for movement (see Figure 15-14).

311

Chapter 15: Manipulating 3D Objects

Table 15-12 (continued) Phases of Changing the Center of Rotation and Scaling Along an

Phase User Action Application Response
Drag User continues to press <Shift> When user has moved the pointer far enough to
and <Ctrl> keys and drags clearly indicate the axis for movement, arrow

rotation handle to move center representing this axis changes to selected style and

of rotation and scaling along the other arrow disappears (see Figure 15-14). The

selected axis. remainder of this phase is the same as for changing
the center of rotation and scaling along a plane with
this exception: Movement is restricted to the selected
axis. All user input is interpreted to follow it.

Release User releases mouse button to Same as for changing the center of rotation and
stop movement of the center of scaling along a plane.
rotation and scaling.

When users are interacting with a rotation handle, they expect at any point to be able to
switch among constrained rotation, free rotation, changing the point of rotation along a
plane, and changing the point of rotation along an axis.

Figure 15-14 Changing the Center of Rotation and Scaling Along An Axis

312

Object Manipulation for Multiple Selected 3D Objects

Guidelines for Changing the Center of 3D Rotation

When designing a user interface for changing the center of rotation and scaling...

O] 1t necessary, allow users to change the center of rotation and scaling using the
standard rotation manipulator.

[] As users move the center of rotation and scaling, make sure that they can always
identify the current center.

Allow users to change the center of rotation and scaling along a plane (see
Table 15-11 on page 310).

[

[] Allow users to change the center of rotation and scaling along an axis (see Table 15-12
on page 311).

[

At any time while dragging a rotation handle, allow users to switch among
constrained rotation, free rotation, changing the center of rotation and scaling along
a plane, and changing the center of rotation and scaling along an axis. For example,
if the user is performing constrained rotation then presses the <Ctrl> and <Shift>
keys, switch to changing the center of rotation and scaling along an axis.

[As the user switches among constrained rotation, free rotation, changing the center
of rotation and scaling along a plane, and changing the center of rotation and scaling
along an axis, display the appropriate feedback. For example, if the user is moving
the center of rotation and scaling along a plane then presses the <Shift> key, switch
to moving this center along an axis and display the appropriate feedback. Determine
the single axis for movement based on the next pointer movement. Once this axis has
been determined, remove the axis that wasn’t selected and display the selected axis
until the <Shift> key is released.

Object Manipulation for Multiple Selected 3D Objects

When the current selection consists of more than one object, the standard manipulations
of translation, rotation, and scaling affect the selected objects somewhat differently than
if each object was manipulated by itself. To perform these manipulations, one of the
objects in the selection is assigned as the “key” object; manipulations on all of the objects
in the selection are done with respect to the manipulation controls of the key object. For
example, all selected objects are translated along the selected plane of the key object.

313

Chapter 15: Manipulating 3D Objects

314

If your application supports the concept of a lead object and uses the manipulator as the
selection feedback only on this object as described in “Manipulator Selection Feedback”
in Chapter 14, the lead object is always also the key object because it’s the only object
displaying the manipulators. Otherwise, the key object is the one that the user is
currently interacting with via its manipulators.

The remainder of this section discusses the specific manipulations as follows:
e “Translation of Multiple Selected 3D Objects”

* “Rotation of Multiple Selected 3D Objects”
® “Scaling of Multiple Selected 3D Objects”

Translation of Multiple Selected 3D Objects

When users perform translation on a selection consisting of several objects, all selected
objects move in the selected translation plane of the key object, regardless of their own
orientations. The relative positional relationships of the selected objects don’t change as
a result of translation. The same behavior applies to constrained translation and
translation along the normal. That is, translation is done with respect to the selected axis
of the key object.

Translation of a single object is discussed in detail in “Translating 3D Objects.”

Rotation of Multiple Selected 3D Objects

When the user selects more than one object and starts a rotation operation, all selected
objects rotate around the center of rotation for the key object.

Rotation of a single object is discussed in detail in “Rotating 3D Objects.”

Object Manipulation for Multiple Selected 3D Objects

Scaling of Multiple Selected 3D Objects

When the user selects more than one object and starts a uniform scaling operation, all
objects scale proportionally with the key object and scale about the same center of scaling
as the key object.

Axial scaling (stretching) is treated quite differently when the user selects more than one
object. In this case, only the key object is scaled; other selected objects don’t change.
While this may seem like an inconsistency in light of applying other manipulations to all
selected objects, it’s the safest default approach. Applying stretching to objects that are
not aligned with the master object can lead to shearing, which is an undesirable outcome.

Guidelines for Manipulating More Than One 3D Object

When users manipulate more than one object at a time...

[Assign one object as the key object for the manipulations. Typically, only the lead
object displays the manipulators so this object is by default the key object. If your
application instead displays manipulators on all selected objects, the object
associated with the manipulator the user is currently interacting with is the key
object.

[] For translation, translate all selected objects along the chosen translation plane for
the key object, regardless of the orientation of the other selected objects. Don’t
change the relative positional relationships of the selected objects.

[] For rotation, rotate all selected objects around the center of rotation for the key object.

D For uniform scaling, scale all selected objects the same amount as the key object and
about the same center of scaling as the key object.

[] Foraxial scaling (stretching), scale only the key object (the object being manipulated)
rather than all selected objects. This prevents shearing of objects that are not aligned
with the key object.

315

Appendix A

Summary of Guidelines

This appendix contains an all-inclusive list of the guidelines for designing applications
for the IRIX Interactive Desktop Environment. Its purpose is to serve as a master
checklist and summary; to understand the rationale for these guidelines, refer back to the
chapters of this manual where they are discussed in detail. The guidelines are grouped
as follows:

Integrating with the IRIX Interactive Desktop

“Icon Appearance Design Guidelines” on page 319

“Icon Behavior Guidelines” on page 321

“Application Icon Accessibility Guidelines” on page 322
“IRIX Interactive Desktop Look Guidelines” on page 322
“Application Window Characteristic Guidelines” on page 322
“Guidelines for Keyboard Focus Across Windows” on page 325
“Minimized Window Guidelines” on page 326

“Desks Guidelines” on page 327

“Session Management Guidelines” on page 327

“Software Installation Guideline” on page 328

“Guidelines for Designing Online Help” on page 328
“Guidelines for Creating SGIHelp Content” on page 330
“Desktop Variables Guidelines” on page 332

“File Monitoring Guideline” on page 333

“Data Exchange Guidelines” on page 333

317

Appendix A: Summary of Guidelines

318

Interface Components

“Application Model Guidelines” on page 334

“Primary Window Guidelines” on page 334

“Support Window Guidelines” on page 336

“Pointer Behavior Guidelines” on page 336

“Keyboard Focus and Navigation Guidelines” on page 337
“Selection Guidelines” on page 337

“Drag and Drop Guidelines” on page 338

“Menu Traversal and Activation Guidelines” on page 338
“Pull-Down Menu Guidelines” on page 339

“Popup Menu Guidelines” on page 342

“Tab Panel Guidelines” on page 343

“Pushbutton Guidelines” on page 343

“Option Button Guidelines” on page 345

“Checkbox Guidelines” on page 346

“Radio Button Guidelines” on page 347

“LED Button Guidelines” on page 348

“List Guidelines” on page 348

“Text Field Guidelines” on page 349

“Scrollbar Guidelines” on page 350

“IRIX Interactive Desktop Scale Guidelines” on page 352
“Label Guidelines” on page 352

“File Finder Guidelines” on page 353

“Thumbwheel Guidelines” on page 354

“Dial Guidelines” on page 354

“Guidelines for Using the Various Types and Modes of Dialogs” on page 355
“Guidelines for Designing Dialogs” on page 356
“Guidelines for Invoking Dialogs” on page 358

“General User Feedback Guidelines” on page 360
“Pointer Shapes and Colors Guidelines” on page 360

Guidelines for Integrating With the IRIX Interactive Desktop

3D Style Guidelines

“Basic 3D Interface Design Guidelines” on page 361

“Pointer Feedback Guidelines for 3D Applications” on page 362
“Guidelines for Resizing Windows in 3D Applications” on page 362
“Guidelines for 3D Viewing Functions” on page 363

“3D Viewing Trade-Offs and Related Guidelines” on page 365

“3D Selection Design Guidelines” on page 367

“3D Selection Feedback Design Guidelines” on page 368

“Basic 3D Manipulation Guidelines” on page 369

“3D Translation User Interface Guidelines” on page 371

“3D Rotation User Interface Guidelines” on page 372

“3D Scaling User Interface Guidelines” on page 372

“Guidelines for Changing the Center of 3D Rotation” on page 373
“Guidelines for Manipulating More Than One 3D Object” on page 374

Guidelines for Integrating With the IRIX Interactive Desktop

The following guidelines are extracted from Part I, “Integrating with the IRIX Interactive
Desktop,” of this guide:

Icon Appearance Design Guidelines

For any icon you create. . .

[

O

Provide a meaningful, distinctive symbol that gives your product an identity and
that allows users to readily identify your application and its corresponding custom
data files, if any.

Keep your design fairly simple because desktop icons can be displayed at very small
sizes.

Make sure that your icon can be identified across the range of viewing sizes.

Color most of your icon using the icon color predefined by IconSmith so that your
icon’s state is easy to detect.

319

Appendix A: Summary of Guidelines

320

[]
[]
[]

[

Use two or more areas of accent colors to help your icon stand out against
user-customized background colors.

Avoid small areas of color (2-4 pixels) because they’re difficult to see against
patterned backgrounds.

Include an outline around your custom symbol, and use the outline color supplied by
IconSmith.

Avoid or use sparingly intense, strongly saturated colors and the specific colors used
by the IRIX Interactive Desktop—bright yellow, dim yellow, royal blue, light
gray-green, cadet blue, and Navajo white. These colors make it difficult to
distinguish between certain icon states and to find your icon against the background
colors of many desktop tools.

Orient your icon so that it displays a three-quarter view that faces the lower right
corner of the screen.

When designing an application icon...

[]
[]

Include the magic carpet, the generic executable symbol, with your application’s
symbol.

Indicate the state of the application (not running vs. running) by moving the magic
carpet from a horizontal (not running) to vertical (running) position, or by providing
two different application symbols and moving the magic carpet from a horizontal to
vertical position. Remember that your application symbols should resemble a
progressive animation when viewed in succession.

Make sure that your application symbols do not obscure the magic carpet in either
its horizontal or vertical position.

Application icons that have two separate symbols for the not running and running
states should make sure that the main part of the symbol remains in the same
location during both states, so that the symbol appears stationary to the user.

If your application saves data in a custom file format . ..

[]
[]
[]

Design a unique data file format symbol that is readily associated with your
application icon design and also indicates how the data is used.

If your application is document-based, include the generic data file symbol (stack of
papers) in your design.

If your data file icon does not use the generic data file symbol, create an
appropriately shaped shadow for your file icon and use the predefined shadow color
supplied by IconSmith.

Guidelines for Integrating With the IRIX Interactive Desktop

Icon Behavior Guidelines

When creating an FTR to define your application icon’s behavior . . .

[] Provide a CMD OPEN rule that launches the application. This allows the user to
open your application either by selecting your application icon and then choosing
“Open” from the corresponding Selected menu, or by double-clicking your
application icon.

[] Provide a CMD ALTOPEN rule that opens the Launch dialog box shown in
Figure 2-12 with the path to your executable displayed in the text field of this
window. This allows the user to open the Launch dialog box by double-clicking your
application icon while holding down the Alt key.

[] Provide a CMD DROP rule that launches your application with the file specified by
the dropped icon. If your application doesn’t understand the type of file represented
by the icon dropped on it, your application should provide an appropriate error
message to the user rather than launching. This allows the user to launch your
application with a specific file by dragging the file icon and dropping it on your
application icon.

When creating an FTR for your file icon . . .

[] Provide a CMD OPEN rule that launches your application and automatically opens
the file represented by the file icon. This allows the user to open a file created by your
application either by selecting the file icon and then choosing “Open” from the
corresponding Selected menu, or by double-clicking the file icon.

[] Provide a CMD PRINT rule that sends the file represented by the file icon to the
specified printer. This allows the user to send your application’s data files to the
default printer by selecting the file icon and then choosing “Print” from the
corresponding Selected menu. It also allows the user to send your application’s data
files to any printer by dragging the file icon and dropping it on an icon that
represents the specific printer.

321

Appendix A: Summary of Guidelines

322

Application Icon Accessibility Guidelines

When making your application icons accessible to users . ..

[Place your application icon on the Applications page in the Icon Catalog. If you
y pPp PP pag g 1y
produce a suite of software applications, consider creating your own page.

[m your documentation, refer users to the appropriate page in the Icon Catalog after
they’ve installed your application.

[] When naming your executable, use the product name or choose a name that’s
strongly associated with the product.

[] When naming your executable, use only lowercase letters. Don’t use numbers,
spaces, or special characters such as underlines or periods. Don’t use an abbreviation
of the product name.

[] Make sure that a link to your executable (preferred method) or the executable itself
resides in a directory in the user’s default search path. Ideally, place a link to your
executable in the /usr/sbin directory. This helps ensure that users can quickly find
your application icon using the Find an Icon tool.

IRIX Interactive Desktop Look Guidelines

When designing the look for your application . ..
[] Use the IRIX Interactive Desktop look rather than the standard IRIS IM look.

[] Use the pre-packaged color and font schemes supplied by Silicon Graphics rather
than designing your own colors and fonts.

Application Window Characteristic Guidelines

In general, when deciding on the characteristics for your application windows. ..

[] Determine which category (main, co-primary, support, or dialog) each application
window belongs to and assign characteristics appropriately.

Guidelines for Integrating With the IRIX Interactive Desktop

When setting up your window decorations . ..

[]
[]

[]
[]

Include a Window menu button for all windows.

Include resize handles only if the window contains resizable components such as
work areas, scrolling lists, and text input fields.

Include a Minimize button for all primary windows. Do not include this button on
support windows or dialogs.

Include a Maximize button only if the window contains resizable components.

(To see the above window decoration requirements arranged according to window type,
see Table 3-1.)

When designing the Window menus for your application windows . . .

[

oo O o o

Include “Restore Alt+F5” for all primary windows. Include it for support windows
and dialogs only if the menu contains a “Maximize” entry.

Include “Move Alt+F7” for all windows.

Include “Size Alt+F8” and resize handles for windows that contain resizable
components such as works areas, scrolling lists, and text input fields.

Include “Minimize Alt+F9” and the Minimize button for all primary windows. Do
not include the Minimize entry for support windows or dialogs.

Include “Maximize Alt+F10” for windows that are resizable, that is, they have a
“Size Alt+F8” entry.

Include “Raise Alt+F2” for all windows.
Include “Lower Alt+F3” for all windows.
Include “Close Alt+F4” for all windows except the main primary window.

Include “Exit Alt+F12” for the main primary window. Include “Exit Alt+F12” for
those co-primary windows from which users can quit the application. “Exit” always
has the same behavior, that is, it quits the application, no matter how it’s activated.
Don’t include “Exit” for support windows or dialogs.

(To see the above Window menu requirements arranged according to window type,
see Table 3-1.)

Always use the default behaviors for the Window menu entries except for “Exit.”
Don’t add functionality to these commands. When users choose “Exit,” your
application must perform any necessary clean up, such as prompting the user to save
unsaved changes before quitting.

323

Appendix A: Summary of Guidelines

324

Don’t add application-specific entries to this menu. Users don’t expect
application-specific entries in the Window menu.

Don’t add a title to the Window menu.

Don’t use the keyboard accelerators <Alt-F2>, <Alt-F3>, <Alt-F4>,
<Alt-F5>, <Alt-F7>, <Alt-F8>, <Alt-F9>, <Alt-F10>, or <Alt-F12> for other functions
in your application. They are reserved for the 4Dwm Window menu entries.

When specifying the label in the title bar. ..

[]
[]
[]

[

For all categories of windows, limit the length of each title bar label such that the
entire label displays when the window is viewed at its default size.

Don’t include application-critical information or general status information in the
title bar such as the current page number or whether a file is in view-only mode.

For main windows, first determine if your application uses document files. If it is not
document-based, use the application name only. If it is document-based, use the
application name followed by a colon and the filename (or Untitled if new file) in the
format AppName : filename and update the label whenever the filename changes.
Don’t use the full pathname unless that information is required for users to
distinguish one window from another. If your application is displaying remotely,
add the host name followed by a colon at the beginning of the title bar label in the
format Host : AppName

Don’t include full pathnames unless that information is required by users to
distinguish one window from another. For remote applications, don’t include
domain information.

For co-primary windows used in multiple document models, use the format
AppName : Filename (or AppName : Untitled if a new file). For co-primary windows
used in the “single document, multiple primaries” model, use the format AppName :
Function. Make sure that the function matches the menu entry or the label on the
button that invokes it.

For support windows, use the application name and function in the format:
AppName : Function. Make sure that the function closely matches the menu entry or
the label on the button that invokes it.

For dialog windows, use the application name, followed by the type of dialog in the
format: AppName : DialogType, where DialogType is “Prompt,” “Error,” “Warning,”
“Question,” “Information,” “Working,” or “File Selection.”

Leave spaces between strings and colons in a label.

Guidelines for Integrating With the IRIX Interactive Desktop

For windows without title bars . ..
N Display the “Exit” option with the right mouse button.

D Allow users to resize the window with the left mouse button.

When determining the default, minimum, and maximum sizes for your windows.. . .
N Specify a default size for each window.

L] 1f the window is resizable, specify a minimum size at which all controls and work
areas will be visible and large enough to be usable. If the window is not resizable, set
the minimum size equal to the default size.

[] 1f the window is resizable, specify a maximum size such that your application
window doesn’t expand to fill screen space unnecessarily. If the window is not
resizable, set the maximum size equal to the default size.

When considering window placement. ..

[] Seta preferred window position for all primary windows. Don’t set a required
window position for primary windows.

[Try to anticipate other application windows that may be displayed with your
application and set your preferred default position appropriately.

Guidelines for Keyboard Focus Across Windows

When designing your application windows.. ..

[] Make sure that your application works well under implicit focus across windows.

[] Don’t have your application move the pointer to another location on the screen.
Always allow the user to control the position of the pointer on the screen.

When incorporating a “pointer grab” function into your application . ..

[] 1f the user is always going to specify the data to capture with a single action such as
a single mouse click or a single mouse drag, use the single-action pointer grab model;
otherwise use the multiple-action pointer grab model.

[Display a standard or modified sighting pointer whenever your application window
grabs keyboard focus. This indicates that the keyboard focus belongs to your
application’s window and that the pointer isn’t currently following implicit focus
across windows.

325

Appendix A: Summary of Guidelines

326

Minimized Window Guidelines

When designing images for your minimized primary windows. ..

[]
[]
[]

[

Use a color image rather than a two-color bitmap.
Design your images to look best at the default size of 85x67 pixels.

If your application is based on a single document model, create separate images for
each of the primary windows. If your application is based on a multiple document
model, create one image for the main window and a second image to use for all
co-primary windows.

Choose images that clearly identify the window that is minimized. If you have
multiple images, make sure that the separate images work well together.

Make sure that the images you use for minimized windows will be understood by
an international audience.

Don’t use a snapshot of the desktop icon for the image. This could be confused with
the real icon.

When choosing labels for your minimized primary windows. ..

[

[

Limit the label to approximately twelve characters. If you need a few more characters
than this, check that your label will fit with the default size and font for minimized
windows.

If your application is not document-based, use the application name as the
minimized window label for the minimized main window. Use the label Function for
minimized co-primary windows where Function is the same function as in the
co-primary window’s title bar.

If your application is document-based and follows one of the single-document
models, use Filename (or “Untitled” for new files) for the minimized main window
label. Use Function for minimized co-primary window labels where Function is the
same function as in the co-primary window’s title bar.

If your application is document-based and follows one of the multiple-document
models, use the application name as the label for the main window (if it is visible).
The co-primary windows in these models represent the multiple documents and
should have the minimized window label Filename (or “Untitled” for new files).

Guidelines for Integrating With the IRIX Interactive Desktop

When determining the behavior for a window that the user has chosen to minimize...

[] Decide which operations should and should not continue to be processed while the
window is minimized.

[] Indicate status with the minimized window label if your application is typically
minimized during long processes.

[] Use the default screen locations supplied by 4Dwm for the minimized window. Don’t
specify your own screen location.

Desks Guidelines

When designing your application . ..

[] Make sure that all windows with associated support or dialogs are visible and
mapped to the screen so that the support windows and dialogs appear only on the
desk where their parent window displays.

[Don't design your application to manage the screen background.

Session Management Guidelines

When designing your application ...

[] Have your application create a command line that will launch the application and
restore its current state. This current state should minimally include reopening any
files that are currently open under the application and opening any primary or
support windows that are currently open.

[Update this command line as the state of the application changes.

H; your application allows users to create and edit data files, have 4Dwm notify your
application when the user chooses “Log Out.”

If your application is running when the user chooses “Log Out” and there are unsaved

changes for a specific file . ..

[] save these changes into another file and name it something logical such as
original_file_name.save. When the application is restarted at login, post a dialog that
tells the user that this file with unsaved changes exists and query the user to
determine whether to open the original file or the file with the unsaved changes.

O] 1t you cannot implement the preferred strategy described above, ignore the user’s
unsaved changes. Do not automatically save the user’s changes by default.

327

Appendix A: Summary of Guidelines

328

Software Installation Guideline

[] Make sure that users can install and remove your application through the Software

Manager, an IRIX Interactive Desktop utility.

Guidelines for Designing Online Help

When designing access to online help for your application . ..

[]
[]

Provide access in each window of your application from either a Help menu if the
window has a menu bar or a Help button if the window doesn’t have a menu bar.

Use SGIHelp. This provides users with a familiar viewer and familiar navigation
techniques when reading the online help for your application.

When defining the types of online help for your application ...

[

[]
[]

Provide context-sensitive help, overview information, task-oriented help, a list of
keyboard shortcuts, product information, and an index of help topics.

Provide context-sensitive help for all primary and support windows.

Enable context-sensitive help mode when the user either chooses the “Click for
Help” entry in a Help menu (if the window has a menu bar) or presses <Shift>-<F1>
(whether or not the window has a menu bar). Change the pointer to a question mark
when context-sensitive help mode is enabled.

At a minimum, provide separate context-sensitive help for each control area, work
area, status area, and menu in the window. This help should describe the purpose of
the corresponding area and should include cross-references to task-oriented help
topics which describe tasks which use this area.

Provide overview information for all main windows whether help is provided from
a menu or a button. This overview should briefly describe the functionality of the
entire application.

For co-primary and support windows that include a menu bar, provide overview
information that describes the functionality of that specific window.

Provide task-oriented information for all windows. This information should include
step-by-step instructions for how to accomplish all of the tasks available in the
current window.

Guidelines for Integrating With the IRIX Interactive Desktop

[

For windows with a menu bar, provide access to an index of help topics. This index
should list all available help topics for the application including those that are
generated using the context-sensitive help mode and those that are available directly
from the Help menu. In addition, users should be able to browse the index and select
topics for reading.

Provide keyboard shortcut information for all main windows (whether help is
provided from a menu or a button) and for co-primary and support windows that
include a menu bar. This information should include the mnemonics, accelerators,
and function keys available for the entire application and not just for the current
window.

Provide product information for all main windows (whether help is provided from
a menu or a button) and for co-primary and support windows that include a menu
bar. This information should minimally include the product name and version
number. It might also include other general product information such as copyright
and trademarking, licensing, and customer support access.

Display product information using an Information dialog so that users who don’t
install an application’s online help can still access version number and customer
support information.

When providing a Help menu in an application window . ..

[]
[]

Include a “Click for Help” entry to enable context-sensitive help mode with the
keyboard accelerator <Shift>-<F1>.

Include an “Overview” entry for main windows. For co-primary and support
windows, include an entry labeled “Overview for <window name>".

Include entries that represent a list of tasks that users can accomplish in the current
window. If this list of tasks is more than ten or twelve entries, use cascading menus.
These entries shouldn’t have mnemonics or keyboard accelerators.

Include an “Index” entry that allows the user to access the help index.

Include a “Keys & Shortcuts” entry to display all keyboard shortcuts for the
application.

Include a “Product Information” entry.

329

Appendix A: Summary of Guidelines

330

When providing a Help button in an application window . ..

O O O O

Provide a Help button for all windows that don’t have a menu bar.

For main windows, provide overview, task-oriented, keyboard shortcuts, and
product information when the user clicks this button.

For co-primary and support windows, provide overview and task-oriented
information when the user clicks this button.

For dialogs, provide help that focuses on the main purpose of the dialog and
describes how to use the dialog.

For primary and support windows that include a Help button, also provide access to
context-sensitive help when the user presses <Shift>-<F1>. Dialogs typically don’t
support context-sensitive help mode.

Guidelines for Creating SGIHelp Content

When writing any online help for your product...

OO0 Ooood

Create separate help “cards” for each help topic.
Limit each help card to no more than three viewer windows full of information.
Write a descriptive heading for each help card.

If a particular help topic needs supplemental information, provide links to that
information rather than repeating it in the current card.

Use language your users will understand.

Use figures when appropriate. SGIHelp allows users to view graphics inline with the
help text.

When writing the “Click for Help” context-sensitive information for
your application ...

[

[
[
[

Begin by listing the individual controls and areas of your application windows that
you need to describe.

At a minimum, provide separate help cards for each group of controls and areas in
that window.

Provide descriptions in terms of the user tasks the components support.

Don’t include procedural, task-oriented information with the context-sensitive
information—include links to the appropriate task-oriented topics instead.

Guidelines for Integrating With the IRIX Interactive Desktop

When writing the overview help cards for your application....

[] Restrict the content to information about what the product does, not how to use it.

[] Limit the text to one or two viewer windows of information.

L] Use the heading “Overview” for the main window’s overview help card and
“Overview of <window name>" for co-primary and support windows with overview
help cards.

When writing the task-oriented information for your application . ..

[Begin by listing the tasks that users will want to accomplish with your application.

[] Foreach task, list the step-by-step instructions users will need to accomplish that
task. If these instructions span more than three or four viewer windows, try to divide
this topic into several smaller help topics.

[] Provide a brief summary paragraph at the beginning of the help card, followed by
the step-by-step information.

When writing the keyboard shortcuts information for your application . ..

[Include all shortcuts for your application in a single card—mnemonics, keyboard
accelerators, and function keys.

When creating the index for your help topics . ..

[] Match the titles in the index as closely as possible to the titles of the help cards.

[] Place the topics in the index in the following order—overview, list of tasks,
context-sensitive topics, and keyboard shortcuts.

When writing help information that will be available from a Help button rather than

from a Help menu. ..

[] For the main application window, the help card should contain an overview of your
application, task-oriented information, a list of all keyboard shortcuts, and product
information.

[] For Help buttons not on the main application window of your application, present
only the help information for the specific window.

[] 1f the amount of information on this one help card spans more than three or four
viewer windows of information, after the overview or summary information at the
beginning of the help card, place links which take users directly to the other chunks
of help information contained in that card.

331

Appendix A: Summary of Guidelines

332

After writing your online help . ..

[] Have reviewers examine your help content online rather than reviewing a printed
copy. Help topics will “read” differently depending on which paths readers
(reviewers) traveled to get there.

[] Have reviewers check the titles of the help topics to make sure they are descriptive
and appropriate.

[] Have reviewers test out all links to make sure they are appropriate.

Desktop Variables Guidelines

In general ...

[] Always honor the user’s desktop customization settings. Never override or ignore
them.

When considering color and font schemes for your application. . .

D Use the pre-packaged color and font schemes supplied by Silicon Graphics rather
than designing your own.

When considering window placement. ..

[] Seta preferred window position for all primary windows. Don’t set a required
window position for primary windows.

[Try to anticipate other application and tool windows that may be displayed with
your application and set your preferred default position appropriately.

To allow users to control the language for your application ...

[] Check the value of the default language each time your application is launched.
Don’t reset this value while the application is running.

To allow users to control the mouse double-click speed for your application. . ..

[] Check the value of the double-click speed each time your application is launched.
Don’t reset this value while the application is running.

Guidelines for Integrating With the IRIX Interactive Desktop

If users will be editing and/or browsing ASCII text files in your application . ..

[]
[]
[]

Make their preferred editor (specified in the Desktop control panel) available for use
on text files.

Check the value for the preferred editor each time your application is launched, but
don’t reset this value while your application is running.

If users can only browse the ASCII text files, launch the editor in read-only mode.

File Monitoring Guideline

[

If your application needs to stay in sync with the state of any part of the file system,
use FAM. Don’t have your application directly poll the file system to detect changes.

Data Exchange Guidelines

If your application contains data that users may wish to transfer to other applications
or across separate instantiations of your application. ..

[

Support the Clipboard Transfer Model using the “Cut,” “Copy,” and “Paste” entries
in the Edit menu. In this model, the clipboard is a global entity that’s shared by all
applications. Your application shouldn’t use these entries to refer to a clipboard
that’s private to your application.

When supporting the Clipboard Transfer Model, don't select or highlight newly
pasted data after a “Paste” operation.

Support the Primary Transfer Model. Assert ownership of the primary selection
when the user begins to make a selection. Insert data at the location of the pointer
when the user clicks the middle mouse button (which isn’t necessarily at the
insertion cursor).

When supporting the Primary Transfer Model, don't select or highlight newly
transferred data after a transfer operation.

Use persistent always selection highlighting (keep the current selection highlighted
even when your application loses the primary selection), unless the only action that
can be performed on the selection is to copy the data using primary data transfer. In
this case, use nonpersistent selection highlighting—that is, remove the selection
highlight when the selection is no longer the primary selection.

333

Appendix A: Summary of Guidelines

[] When supporting the Primary Transfer Model, if the current active window has a

selection that isn’t the primary selection, reinstate this selection as the primary
selection if the user presses <Alt-Insert>. Additionally, you can include a “Promote”
entry in the Edit menu to perform the same function.

When supporting the Primary Transfer Model, when the user begins to modify a
selection, such as adding elements to it, reassert ownership of the primary selection
if your application does not currently own it.

When supporting both Clipboard Transfer and Primary Transfer, keep the primary
selection independent from the clipboard. When the user begins to make a selection
in your application, assert ownership of the primary selection but do not change the
ownership of the clipboard. When the user chooses “Cut” or “Copy” from an Edit
menu in your application, assert ownership of the clipboard but do not change the
ownership of the primary selection.

Interface Component Guidelines

334

The following guidelines have been extracted from Part II, “Interface Components,” of
this guide.

Application Model Guidelines

For all applications ...

[
[

Choose an appropriate application model for combining the different types of
windows in your application.

Use only the allowable parent-child window relationships and keep your
application window hierarchy shallow.

Primary Window Guidelines

When designing a primary window ...

[]
[]

Use a menu bar unless all of the window’s functionality is available through
pushbuttons. Don’t use a “floating” menu bar in a separate window.

Support keyboard accelerators for Close (Ctrl-W) and Exit (Ctrl-Q) as appropriate,
even if the window doesn’t have a menu bar.

Interface Component Guidelines

When designing a scrollable work area in a primary window . . .

[] Use a vertical scrollbar on the right side of the work area when the data being
displayed in the work area may not fit in a vertical direction. Use a horizontal
scrollbar directly below the work area when the data may not fit in a horizontal
direction. Don’t use scrollbars if you're certain the data will fit.

Disable the appropriate scrollbar when all the data is visible in a given direction.
Don’t remove the scrollbar.

Make each scrollbar span the entire height or width of the work area. Don’t include
controls or status information in the scrollbar region.

When designing control areas in a primary window . ..

D Place controls below horizontal scrollbars or to the left of work areas.

[] Provide pushbuttons for the most frequently accessed application-specific functions
from the pull-down menus. Don’t use pushbuttons for standard menu entries such
as Open, Save, Close, Exit, Cut, Copy, Paste, and Help.

Use pushbuttons only for functions that appear in menus, unless the pushbuttons
are part of a tool palette.

Provide an area for command-line input, if appropriate, in addition to (not in place
of) pushbuttons.
To display status information . ..

[] Useastatus area along the bottom of a primary window if your application needs to
post frequent messages about its status. Provide vertical scrollbars for this area so
that users can view previously displayed messages.

[] Use a status area to display messages that the user doesn’t have to respond to rather
than posting this noncritical information in dialogs. However, don’t put critical
warning or error messages in the status area (use a dialog instead).

[] Don’t use the status area to display help information.

When dividing a primary window into panes...

[Divide panes using separator lines. If users might need to resize the pane, also
include a sash control.

N Try to limit the number of panes in a single window to four with no more than three
sash controls.

(] 1f certain panes are optional, allow users to hide or show these individual panes
using entries in the “View” menu.

335

Appendix A: Summary of Guidelines

336

Support Window Guidelines

When designing support windows . ..
[] Use them to provide access to sets of related controls.

[] Allow users to access them either through entries in the Tools menu or through
pushbuttons in a tool palette in the parent primary window.

[] Be sure that each support window has a visible parent primary window that’s
mapped to the screen.

When designing the layout of a support window . ..

[] Make the layout simple and static. Don’t include multiple panes of information.

[] Includea response area for standard actions that’s similar to the one dialogs have.

[] Don’tinclude a menu bar in most cases, but do support the keyboard accelerator for
Close (Ctrl-W).

When opening support windows . ..

[Avoid overlapping the work area of the parent window.

[Bring them up as modeless secondary windows.

When allowing the user to make color choices . ..

[] Use the IRIX Interactive Desktop color chooser whenever you want to offer the user
an unrestricted choice of colors. For a restricted choice of colors, use a palette of
colors to choose from, a list, an option button, or a set of radio buttons, depending
on the number of choices available.

Pointer Behavior Guidelines

When designing your application ...

[Always allow the user to control the location of the pointer; your application
shouldn’t change the position of the pointer.

[] Dont change the gain or acceleration characteristics of the pointer. If your
application requires fine manipulation, provide a zoom feature in the View menu.

Interface Component Guidelines

Keyboard Focus and Navigation Guidelines

When designing keyboard focus and navigation for your application windows. ..

[] Use explicit focus for navigating among components within a window.

[Support at least the minimum required functionality from the keyboard, such as

navigating to and entering data into editable text fields, using mnemonics and
keyboard accelerators to access menu entries, and scrolling any scrollable
component. Keep in mind that some users use alternate input devices that rely on
having functions available from the keyboard.

When the window becomes active for the first time, give focus to the component that
the user is most likely to want to interact with using the keyboard. When a user
returns the keyboard focus to a window that was previously the active window,
return the keyboard focus to where it was when the user moved the focus out of that
window.

Put each component that requires the use of arrow keys to control it in its own field.
The following components are by default put in fields of their own: editable text
fields, lists, scrollbars, and sashes.

Don’t use the default keyboard navigation keys for other purposes. These keys are
<Tab>, <Ctrl>-<Tab>, <Shift>-<Tab>, <Ctrl>-<Shift>-<Tab>, the arrow keys, <F10>,
<Shift>-<F10>, and <Ctrl> in combination with a left mouse button click.

Selection Guidelines

For each collection of data ...

[

[

Use one of the four recommended selection models—single selection, browse
selection, range selection, or discontiguous selection. Don’t use the multiple
selection model.

Automatically scroll the data as the user drags the pointer out of the scrollable data
display region.

Determine if your users will need to create or modify a selection using the keyboard.
If so, then support the keyboard actions defined in Section 4.1.6 of the OSF/Motif Style
Guide. (These actions are automatically supported if you use the IRIS IM list or text
components.)

337

Appendix A: Summary of Guidelines

338

When highlighting a selection . ..
N Update the highlighting continuously as the user initiates and extends the selection.

[] Use persistent always highlighting, unless the only reason a user can select this data
is to transfer it using the primary transfer model. In this case, use nonpersistent
highlighting.

When managing multiple collections of data in a single window . ..

[] Deselect the previous selection whenever the user makes a new selection in any of
the collections for cases where the user can select data in only one collection at a time.

[Apply the operation to the collection that most recently had a selection made in it
when the user can select data in more than one collection at a time and there are
mouse, keyboard, or menu commands that can be applied to more than one of the
collections.

Drag and Drop Guidelines

When designing drag and drop for your application . ..

[] Cancela drag and drop operation if the user presses <Esc>, and leave both the object
and the target as they were before the operation was initiated.

[] Use the left mouse button for both selecting and dragging non-text objects. Use the
standard cursor in this case.

[] Use the middle mouse button for dragging text, and replace the cursor with a drag
icon when the text is being dragged.

Menu Traversal and Activation Guidelines

In general, when designing traversal and activation for your menus. ..

[] Allow users to activate and traverse the menus using the default IRIS IM behaviors
for mouse and keyboard actions.

[] 1f a user closes a menu by clicking somewhere outside of the menu, the application
should ignore this click so that users don’t lose selections they’ve made in the
window just because they display and close menus.

[] Allow users to display and close popup menus using the key combination
<Shift><F10>. When <Shift><F10> displays a popup menu, the location cursor
should be on the first available menu entry. When <Shift><F10> closes the menu, the
keyboard focus should be returned to where it was before the menu was displayed.

Interface Component Guidelines

Pull-Down Menu Guidelines

In general, when designing pull-down menus in a menu bar. ..

[

[

[

Be sure that users can access most of your application’s functionality from the menu
entries. At a minimum, make sure that the core functionality can be accessed from
the menus.

Don’t include more than a 10-12 entries in a menu and make sure that all of your
entries can fit on the screen at one time.

Provide mnemonics for all menus and menu entries. In most cases, the mnemonic
should be either the first character of the name or, if there’s a conflict, a character
that’s strongly associated with and included in the name. Use standard mnemonics
for standard menus and entries.

Limit the use of tear-off menus. Instead, use support windows for groups of controls
that users might want to use continuously.

When selecting specific menus and entries for an application window . ..

[

O oo o 0o o o od

Use the standard menus and menu entries as the basis for the overall design of the
menu structure. Include all standard menus and entries that are applicable to your
application.

Include a Help menu as the rightmost menu.

Include an “Undo” menu entry, particularly if users can perform actions that destroy
or significantly change their data .

Include an “Exit” menu entry for all main windows and for co-primary windows if
users will want to completely exit the application from that co-primary window.

Include a “Close” menu entry for all co-primary windows and support windows that
have menu bars. Don’t provide a “Close” entry for main windows.

Include menu entries that repeat the functionality of any pushbuttons on the primary
window.

Include menu entries for actions that are accomplished using a direct manipulation
method or a mouse shortcut such as double-clicking.

Include menu entries for accessing all primary and support windows that are
children of the current window.

Don’t include entries for functions that aren’t available for the current version of
your application.

339

Appendix A: Summary of Guidelines

340

When naming menus. ..

[]
[]

[

Use entire one-word titles for menus rather than abbreviations.

Use the standard titles for menus (for example, File and Edit) if they’re applicable,
but change the standard title if this will make the function more clear.

Don’t use a standard menu title if you're changing the standard definition.

When naming menu entries . . .

[]
[]

OO

Use the standard names for standard menu entries, but don’t use a standard name
for a menu entry that doesn’t support the standard behavior.

Each entry name should be an action word, the value of a parameter, an attribute
name, the name of a cascading menu, or the name of a co-primary, support, or dialog
window. Don’t use more than two words (except for task-oriented Help menu
entries), and avoid using graphic labels for menus entries unless the graphics make
the functionality more clear.

Choose descriptive names that help users learn the functionality of the application.
For cascading menus, choose a name that clearly implies the contents of the menu.

Add a word if necessary to be sure the entry clearly indicates what entity will be
acted upon. For example, you might use “New object” such as “New Folder” or
“New Page” rather than just “New.”

If a menu entry toggles its state, use a checkbox and leave the menu entry name the
same for the different states (“Italics”). If this won’t be clear, toggle the name so that
it indicates what action will be taken if the menu entry is selected (“Show Grid,”
“Hide Grid”).

Capitalize the menu entry using the same rules as capitalizing book titles.
Use entire words rather than abbreviations.

Display an ellipsis (...) after menu entries that bring up a dialog that requests more
information from the user. Don’t use ellipses if the dialog simply brings up
information that the user requested (for example, a Help dialog).

Interface Component Guidelines

When ordering menus and menu entries . ..

[

[

[

Place the standard menus in the standard order (File, Selected, Edit, View, Tools,
Options, Help), even if you have renamed any of these menus. Place any new menus
between the View and Tools menus.

Place standard menu entries in the standard order. “Close” and “Exit” are always at
the end of the leftmost menu whether or not this menu is named File.

Group menu entries logically. If a new menu entry is related to one of the standard
menu entries, place it near that standard menu entry.

Place items in the menu first according to the order they will be used, and second
according to their frequency of use (with more frequently used items closer to the top
of the menu).

Alphabetize entries that can be determined only when the user launches the
application. If this alphabetized group appears in a menu that contains other entries,
place the group at the end of a menu and use a separator between it and the
preceding entries.

Use radio buttons for mutually exclusive menu entries, and checkboxes for a group
of related menu entries, any number of which can be selected at any one time.

Use separators when necessary to group items—for example, to set off a group of
related entries that use radio buttons or checkboxes.

Limit the use of cascading menus. Never use more than one level of cascading
menus.

When selecting keyboard accelerators for menu entries . . .

[

[]
[]

Use standard keyboard accelerators for standard menu entries; don’t use any of the
standard accelerators for your own entries, even if you're not using those standard
entries.

Provide keyboard accelerators for the most frequently used menu entries. Don’t
provide accelerators for all menu entries.

Use the key combination <Ctrl>character. Don’t use the key combination
<Alt>character because this conflicts with mnemonics.

341

Appendix A: Summary of Guidelines

342

[

For pairs of menu entries where one entry reverses the results of the other entry
(“Undo” and “Redo”), use <Ctrl>character for the most frequently used entry and
<Shift><Ctrl>character for the other entry where character is the same for both
accelerators.

Display all characters in keyboard accelerators as uppercase (for example, display
<Ctrl>s as “Ctrl+S”). For keyboard accelerators that involve uppercase characters,
show the <Shift> key as part of the keyboard accelerator (for example, display
<Ctrl>S as “Shift+Ctrl+S”).

When deciding when to disable menu entries . ..

[]
[]

If selecting the menu entry in the current context would give the user an error
message, show the menu entry as disabled (dimmed).

Avoid using dynamic entries. Rather than removing an entry when it’s temporarily
unavailable, include it and disable it as appropriate.

Popup Menu Guidelines

When choosing when a popup menu should appear...

[

At most, provide a different popup menu for each main area (that is main field or
main pane) of the window. Don’t change the availability of a popup menu based on
what graphical element the pointer is over or based on the selection state of any of
the graphical elements.

When deciding what to include in a popup menu. ..

[

[

[

Include entries for the most commonly used functions from the pull-down menus,
and use the same names in the same order as they’re displayed in the pull-down
menus.

Avoid entries that require checkboxes or radio buttons. These are typically not the
most commonly used menu functions.

Don’t make menu entries the sole access to these functions.

Don’t change the content of the menu based on what graphical element the pointer
is over, or based on the selection state or contents of this element. Instead, put all
entries in the popup menu for the main area of the window, then enable and disable
entries as appropriate.

Don’t include cascading menus and don’t use tear-off menus.

Interface Component Guidelines

When displaying the contents of the popup menu. ..

[]
[]
[]

Include a title that’s either the name of the application, or if the application has more
than one popup menu, that describes the purpose of the menu.

Use only one separator, which goes between the title and the individual menu
entries.

Show ellipses and keyboard accelerators if these are shown in the corresponding
pull-down menu entry, but don’t show mnemonics.

If selecting the menu entry in the current context would give the user an error
message, show the menu entry as disabled (dimmed). Don’t remove the menu entry
when it’s temporarily unavailable.

Tab Panel Guidelines

When binding Page Up and Page Down to tab panels...

[

If your application is based on presenting a page at a time and the user model is that
tabs are used to move through the pages, then bind Page Up and Page Down to the
tabs. In this case, <Ctrl><up arrow> and <Ctrl><down arrow> moves the vertical
scrollbar a window at a time, allowing the user to pan around the current page.

If the user model is that a tab moves to another “document,” and the scrollbar is used
to view various pages in the current document, then bind Page Up and Page Down
to the scrollbar. In this case, no keyboard accelerator exists for moving to the
next/previous tab.

Pushbutton Guidelines

When using pushbuttons . ..

[

[

In windows with menu bars, use pushbuttons to provide easy access to the most
frequently used application-specific functions in the pulldown menus. For primary
windows, these pushbuttons appear in the control area of the window.

In windows without menu bars, use pushbuttons to access help and to close the
window.

Use pushbuttons to create tool palettes, either in support windows or in primary
windows.

343

Appendix A: Summary of Guidelines

344

[]
[]

[

Use pushbuttons in the response area of a dialog for the standard actions for that
dialog.

Always have the pushbutton perform the same operation (although the input to that
operation may vary based on what data is currently selected). Don’t use the same
pushbutton to perform different tasks based on some mode of the application.

Use pushbuttons to perform an action; don’t use them merely to set state, such as a
parameter value in a dialog box. Use checkboxes, radio buttons, or option menus for
this purpose.

When labeling a pushbutton . . .

[

Use either a text or graphic label that describes the action associated with the button.
With text labels, use an active verb describing the operation the button performs.
Each text label should be a single, capitalized word. Don’t use abbreviations in
labels.

Center the label on the button.

If the pushbutton opens a dialog to collect more information from the user before the
action represented by the pushbutton can be completed, place an ellipsis after the
button label. Don’t use an ellipsis if the button opens a dialog simply to display some
information to the user as an end result of the operation. This use of ellipses is the
same as that described for menu entries in the section “Naming Menu Entries in the
Pull-Down Menus” in Chapter 8.

When displaying pushbuttons . ..

[

[]
[]

If the action associated with a button is temporarily unavailable, disable the button
rather than remove it.

Don’t resize pushbuttons when the window is resized.

Don’t use dynamic buttons whose labels change to indicate different functionality
depending on the current context. Instead, use multiple buttons and disable buttons
that represent functionality that’s currently unavailable. With multiple buttons, the
functionality is obvious even if some of the buttons aren’t currently active. With
dynamic buttons, the user has to put the application intothe proper context to
discover some of the functionality. The one exception to this guideline is the

Cancel / Close button used in Dialogs with the Apply button. See “Standard Dialog
Actions” in Chapter 10 for information on this special case.

Interface Component Guidelines

Option Button Guidelines

When using option buttons. ..

[] Usean option button when you want to offer the user about 5-12 mutually exclusive
options; use a list for more than 12 choices. If there’s enough space, use radio buttons
for fewer than 5 choices.

Don’t put radio buttons or checkboxes in an option menu.

Don’t use an option button if the user can select several options at the same time—
use a list or a set of checkboxes instead.

Don’t put actions (such as zoom or rotate) in the option menu—use pulldown menus
or pushbuttons instead.

Don’t add or delete the choices in the option menu. If the choices must change, use
a list.

Don’t use cascading menus in the option menu. If there are so many items that they
don’t fit conveniently into an option menu, use a scrolling list instead.

O O O O O

Don’t use a tear-off entry in an option menu.

When labeling an option button . ..

[] Use the default label for the option button itself, which is the current value of the
parameter.

[] Use a second label that describes the parameter that the option button controls. This
parameter label should be to the left of the option button and should be followed by
a colon (:) and a space (see Figure 9-2). This label is typically a noun and is not
abbreviated.

When labeling the entries in an option menu. ..

[] Use nouns that indicate the possible values of the parameter being set.

D Use entire words for the entries rather than abbreviations.

When displaying option menus. ..

[] 1f one of the entries in an option menu is unavailable for selection in the current
context, disable the menu entry. Don’t remove the entry from the menu. Note that the
user should always be able to display the contents of an option menu even if all of
the menu entries are currently disabled.

[] Don’tinclude a title in option menus.

345

Appendix A: Summary of Guidelines

346

Checkbox Guidelines

When using checkboxes. ..

[

[]
[]

Use checkboxes for single attributes or states that can be turned on and off, or for
groups of items where multiple items in the group can be selected independently.
(Also see “Using Radio Buttons and Checkboxes in Pull-Down Menus” in
Chapter 8.)

Use checkboxes for groups of less than about six items. When dealing with more than
a handful of items, use a list that allows multiple elements to be selected at the same
time.

Don’t use checkboxes for mutually exclusive options. If only one item in a group of
items can be selected at a time, use radio buttons instead.

Don’t use checkboxes for actions; use pushbuttons instead.

Don’t change the choices in the group based on the current context. If you want to
offer a dynamic set of choices, use a list.

When labeling checkboxes . ..

[]
[]

[

Give each checkbox a label that describes the attribute, state, or option it controls.

Create a group label for each group of checkboxes, and indent the checkboxes below
the label. This group label should be a noun that describes the function of the group.

Don’t use abbreviations for either the checkbox labels or the group label.

When displaying checkboxes. ..

[

Keep checkboxes updated to reflect the current state of the application and the
settings of the current selection (if the settings of the checkboxes relate to the current
selection). For example, if you have a checkbox for turning underlining on and off
and the user selects some text, the checkbox should be updated to reflect whether or
not the selection is underlined.

Disable checkboxes representing choices that aren’t currently available. Don’t
remove the checkboxes.

Interface Component Guidelines

Radio Button Guidelines

When using radio buttons . ..

[] Use radio buttons in groups, never as single buttons. If you need to use a single
button that shows an on/off state, use a checkbox instead. (Also see “Using Radio
Buttons and Checkboxes in Pull-Down Menus” in Chapter 8.)

[] Use radio buttons for mutually exclusive options. If more than one item in the group
can be selected at a time, use checkboxes or a list instead.

[] Useradiobuttons when you want to offer the user fewer than six options. If you have
more than six options, or if screen space is extremely limited, use an option button
instead. If you have more than 12 options, you should consider using a list where
only a single element can be selected at a time.

[] Don’t use radio buttons for actions; use pushbuttons instead.

[Don't change the choices in a group of radio buttons based on the current context. If
you want to offer a dynamic set of choices, use a list because users expect the
elements of a list to change occasionally, but they don’t expect radio buttons to
change.

When labeling radio buttons. ..

[] Give each radio button a label that describes the attribute or option it controls.

[] Createa group label for each group of radio buttons, and indent the radio buttons
below the label. This group label should be a noun that describes the function of the

group.

[] Don’t use abbreviations for either the radio button labels or the group label.

When displaying radio buttons. ..

[Keep radio buttons updated. If the settings of the radio buttons depend on the
current selection, they should be updated when the user makes a new selection so
that they reflect the settings of the new selection.

[] Disable radio buttons representing options that aren’t currently available. Don’t
remove the radio buttons.

347

Appendix A: Summary of Guidelines

348

LED Button Guidelines

When using LED buttons. ..

[] Use LED buttons for single attributes or states that can be turned on and off, or for
groups of items where multiple items in the group can be selected independently.
(Also see “Using Radio Buttons and Checkboxes in Pull-Down Menus” in
Chapter 8.)

[] Don’t use LED buttons for actions; use pushbuttons instead.

[Don't change the choices in the group based on the current context. If you want to
offer a dynamic set of choices, use a list.

When labeling LED buttons . ..

[Label each LED button with a term that describes the attribute, state, or option it
controls.

[] If there is a group of LED buttons, create a group label for the group, and indent the
LED buttons below the label. Use a noun that describes the function of the group.

[] Don't use abbreviations for either the LED button labels or the group label.

List Guidelines

When using lists . . .

[] Usealist when you want to allow the user to choose a single option from a large list
(thatis, more than 15 options). If you have fewer than 15 options, use either an option
button (best for 5-15 options; or a set of radio buttons (best for 2-5 options).

[] Usealist when you want to allow the user to choose several options from a list of six
or more elements. If you have fewer options, use checkboxes.

L] 1 you want to allow the user to choose elements from a dynamic list of options, use
a list regardless of the number of options. (Option menus and groups of checkboxes
or radio buttons should represent static lists of options.)

When labeling a list . ..

D Label the list with a noun that indicates the function of the elements in the list. Don’t
use abbreviations in the label.

[] Place the label directly above and either left-aligned with or slightly to the left of the
first element of the list.

Interface Component Guidelines

When labeling the list entries . . .

[] 1f the elements in the list represent operations to perform, they should be active
verbs. Otherwise, they should be nouns. In either case, use entire words rather than
abbreviations.

When displaying lists . . .

[] When a window using a list is first opened, the currently selected list elements
should be highlighted and the list should be scrolled to display these. If multiple
elements are selected, scroll the list so that the first selected one appears at the top of
the viewing area. See “Selection” in Chapter 7.

Allow users to select elements in the list according to the selection guideline
discussed in “Selection” in Chapter 7.

Disable list elements that aren’t currently available.

1

Allow the list to autoscroll (the default behavior) if the user is making a selection and
the selection goes outside the range of the displayed elements. See “Selection” in
Chapter 7.

Text Field Guidelines

When using text fields ...

[Use single-line, editable text fields to display values of parameters that users can
edit.

[Use single-line, noneditable text fields to display values of parameters that users
can’t edit, whenever these values either change over time or might need to be
selected by the user. If the value doesn’t change and the user doesn’t need to select
it, use a label.

[] Don't use a text field if you need to display and edit pathnames; use the IRIX
Interactive Desktop File Finder instead.

[] Use text fields for values that change over time; don’t use labels.

When labeling text fields . . .

[] Label each editable or noneditable text field, unless the field represents the bulk of a
window and the field’s function is clear. Use entire words in labels rather than
abbreviations.

[For single-line text fields, place the label to the left of the text field, and follow the
label with a colon () and a space. The label should be vertically centered within the
text field.

349

Appendix A: Summary of Guidelines

350

When displaying text fields . ..

[]
[]
[]
[]
[]

Use the default selection and highlighting discussed in “Selection” in Chapter 7.

Allow the user to cancel a text edit in progress by pressing <Esc>. That is, once the
user has selected text and started to replace it with new text, <Esc> should cancel any
changes that the user has made.

Keep text fields updated. When a window using a text field is first opened, the
default or current setting (if either exists) for the text field should be shown.

Make the text automatically scroll if the user is making a selection and the selection
goes outside the range of the displayed elements.

When an editable text field can’t be edited in the current context but the information
is still useful to the user, change it to a noneditable text field. If the information isn’t
useful to the user (that is, the user doesn’t need to know the value and won’t need to
select it), disable the text field.

Scrollbar Guidelines

When using scrollbars. . .

[]
[]

O oo O

Use scrollbars to pan an associated view.

Use scrollbars with components that can be resized such that all of the available
information contained in the component can’t be displayed at one time. Typical
scrollable components include work areas in primary windows, lists, multiple line
text fields, and data display areas in primary or support windows.

Use scrollbars with a list when the number of elements in the list doesn't fit in the
viewing region (vertical scrollbar), when the elements are too wide to fit in the
viewing region (horizontal scrollbar), or when the window containing the list can be
resized such that either of these situations can occur.

Use scrollbars with multi-line text regions when the data can’t all be displayed
vertically or horizontally or when the window can be resized such that this is true.

Don’t use scrollbars with single-line text fields.

Don’t use scrollbars for zooming or for rotation. Use an IRIX Interactive Desktop
thumbwheel instead.

Don’t use scrollbars to choose a value in a range; use the IRIX Interactive Desktop
scale instead.

Interface Component Guidelines

When displaying scrollbars . . .

[]
[]
[]

Place vertical scrollbars along the right of the element being scrolled, and place
horizontal scrollbars along the bottom of the element being scrolled.

Keep scrollbars updated. When a window using a scrollbar is first opened, the
scrollbar should reflect the current area being displayed in the scrolled region.

Update the data in the scrolled area continuously as the user drags the slider along
the scroll region. This gives the feeling of direct, continuous control. Don’t wait until
the user has released the slider to update the data, because users often use the current
view of the data to determine when to stop dragging the slider.

When a component is being scrolled, don’t scroll it beyond the first or last elements.
That is, there should be no extra white space before the first element or after the last
element. The exception to this rule is scrolling text elements that represent physical
pages (for example, in a desktop publishing application).

Make all components that use scrollbars automatically scroll when the user makes a
selection that goes outside of the data currently being displayed. Also, make the
component automatically scroll if the user performs an operation that moves the
cursor outside of the current view (for example, if the user inserts or deletes text that
moves the cursor outside of the current view). In this case, the view should be
automatically scrolled so that the cursor is shown when the operation is finished.

When using the <Page Up>, <Page Down>, <Ctrl>-<Page Up>, or <Ctrl>-<Page
Down> key sequences to scroll a page at a time, leave one unit of overlap from the
previous page to make it easier for the user to preserve the current context. This unit
is application-specific; it might be a line of text, an item in a list, a row of icons, or a
specfic number of pixels (for example, in a drawing region). By default, this behavior
is automatic for IRIS IM list and text components.

Remove the slider from the scrollbar when all of the data is currently being
displayed. Don’t remove the scrollbar or disable it in some other fashion.

Allow the user to cancel scroll actions by pressing <Esc>. By default, if the user
presses the <Esc> key while dragging the slider along the scroll region, the scroll
action is canceled, and both the data and the slider are returned to the position they
had before the user initiated the scroll action.

351

Appendix A: Summary of Guidelines

352

IRIX Interactive Desktop Scale Guidelines

When using the IRIX Interactive Desktop scale. ..

[Use scales to allow users to change a value in a given range. Use scales in
display-only mode to display values that the user can’t control. For example, use a
display-only scale as a percent-done indicator to show progress in a Working dialog.
(See “Working Dialogs” in Chapter 10.)

[] Don’t use scales for scrolling.

When labeling a scale . ..

[] Label it with the current value for the scale.

[If the function of the scale isn’t immediately apparent, give the scale an additional
label that indicates its purpose. Don’t use abbreviations in this label.

When displaying scales ...

[Keep scales updated. When a window using a scale is first opened, the slider of the
scale should show the current setting for the scale control.

[For sliders where the user can change the value, update the value being manipulated
as the user moves the slider. It should give the impression of direct, continuous
manipulation. For sliders that also manipulate an object, update the object
continuously as well. For sliders that are used only to display values, the slider
should be immediately updated to reflect the new value as the value changes.

[] Allow the user to cancel a scale operation by pressing <Esc>. If the user presses the
<Esc> key while manipulating the scale, the action should be canceled, and the scale
should return to the position it had before the user initiated the action.

Label Guidelines

When using labels . ..
[] Use entire words in labels rather than abbreviations.
[] Use labels for displaying text information that the user won’t need to edit or select.

[] Use labels for labeling controls as described under the individual controls in this
chapter.

Interface Component Guidelines

[

[

Use labels for labeling groups of controls. When used to label a group of controls, the
label should be followed by a colon (:) and a space, and should be placed either to
the left of the item in the upper left corner of the group or above and slightly to the
left of the item in the upper left corner of the group.

Use labels for simple instructions when necessary. Before adding instructions to any
of your application windows, however, first try to design some alternatives that
might make the instructions unnecessary. For example, if these instructions are
necessary because the user interface works in a nonstandard way, redesigning the
interface to be more standard is likely to make the instructions unnecessary.

Place labels on the background of the window (that is, the part of the window that
isn’t recessed).

When displaying labels . . .

[]
[]

Don’t change the text or graphic on a label. If this information will change, consider
putting it in a noneditable text field instead; users don’t expect label text to change.

Disable labels when the controls they represent are disabled. Don’t disable group
labels.

File Finder Guidelines

When using the File Finder ...

[

[

Use the File Finder when the user needs to enter the pathname of a directory or file.
This allows the user to drag and drop desktop icons to specify the file and to navigate
the file hierarchy.

When a window using a file finder is first opened, the text field in the file finder
should show the default or current value of the pathname, if any. This value should
also be placed in the history list under the history button.

353

Appendix A: Summary of Guidelines

354

Thumbwheel Guidelines

When using thumbwheels ...

[]
[]
[]

Use thumbwheels to change the values of continuous variables (that is, variables that
don’t have discrete values). For discrete values, consider a scale or dial instead.

Use thumbwheels with finite ranges for zooming operations and thumbwheels with
infinite range for rotating objects.

When a thumbwheel is used to change a value that has a clear default, provide a
home button. For example, a Directory View window has a thumbwheel that allows
the user to set the size of the desktop icons. Pressing the home button on this
thumbwheel sets the icons to their default size.

Use thumbwheels when screen real estate is extremely limited.

Don’t use a thumbwheel for panning; use a scrollbar instead. A scrollbar gives the
user much more information about the object being scrolled than a thumbwheel
could.

When displaying a thumbwheel . ..

[

Update the object or value being manipulated as the user moves the thumbwheel.
The thumbwheel should give the impression of direct, continuous manipulation.

Dial Guidelines

When using dials. ..

[

Use dials as an alternative to scales for setting parameters. Dials are best for numeric
parameters where the range of allowable values is small and the values are discrete.

When labeling dials . ..

[]
[]

Place a label either directly below or directly above the dial, specifying the parameter
that the dial controls.

When you have a group of dials, place each dial label in the same position relative to
its dial (that is, either all the labels should be below the dials or all the labels should
be above the dials).

Use entire words in the label rather than abbreviations.

Interface Component Guidelines

When displaying dials . . .

[]
[]

When a window using a dial is first opened, the dial should show the current setting.

As a dial is rotated, update the value being manipulated to reflect the new value on
the dial. The dial should give the impression of direct, continuous manipulation.
Also, if the dial is controlling an object, continuously update the object as the dial is
manipulated.

Guidelines for Using the Various Types and Modes of Dialogs

When choosing the type and mode of a dialog ...

o0 o 40O o 0o 4o o

Use a Prompt dialog to ask users for specific information. This dialog can be
modeless or modal.

Use an application-modal Error dialog to tell users about an error they’ve made in
interacting with your application.

Use an application-modal Warning dialog when there’s an action pending that will
cause users to lose data.

Use an application-modal Question dialog to ask users a specific question that they
must respond to before continuing to interact with the application.

Use a Working dialog when an operation takes more than 5 seconds to complete.
This dialog can be modeless or modal.

Use a modeless Information dialog to give users information that’s of immediate
importance. Use this type of dialog sparingly.

Use the modeless IRIX Interactive Desktop File Selection dialog to allow users to
navigate the file hierarchy and choose a file.

Don’t use system-modal dialogs.

Use modal dialogs to show static information, and update modeless dialogs
dynamically as the current state changes.

355

Appendix A: Summary of Guidelines

356

Guidelines for Designing Dialogs

When choosing the window decorations, initial state, and layout of dialogs ...

[]
[]

[

Associate every dialog with a primary or support window (its parent) that’s mapped
to the screen.

Use the window decorations and Window menu entries listed in Table 3-1 and
described in “Window Decorations and the Window Menu” and “Rules for Labeling
the Title Bar in Windows Other Than Main” in Chapter 3.

Have the default size large enough to allow all of the components and information
to be displayed in their entirety.

Place the dialog on the screen either near (but not overlapping) any related
information in the parent window, or in the center of the parent window if the
contents of the dialog aren’t related to the contents of the parent window.

Locate the initial keyboard focus in the field with which the user is most likely to
want to interact.

Be sure the information being displayed in the dialog matches the current state of the
application. If the dialog is modeless, update this information dynamically.

Include a response area that contains standard dialog actions (pushbuttons) tailored
to the type and purpose of the dialog. Also include an input area that consists of
whatever controls are necessary for selecting objects or setting application
parameters in Prompt dialogs. Include a message area in Error, Warning, Question,
Working, and Information dialogs.

Don’t include secondary work areas; if you need additional work areas, use a
support window instead.

Don’t include menus. If the dialog includes so much functionality that menus are
necessary, you should probably use a support window.

When choosing pushbutton actions for dialogs . ..

[

[

Use a subset of the standard dialog actions (Yes, No, OK, Close, Apply, Retry, Stop,
Pause, Resume, Clear, Reset, Cancel, and Help), and have them appear in that order.
If you include additional buttons, they should appear after the OK and Apply
buttons but before the Cancel and Help buttons.

Include a Help button unless the situation is explained thoroughly in the dialog.

Interface Component Guidelines

[]
[]

Avoid using both OK and Apply on the same dialog.

To decide between OK and Apply, determine whether users are more likely to use
the dialog to make one set of changes at a time (if so, use OK), or whether they’re
more likely to want to make and apply changes repeatedly before closing the dialog
(in this case, use Apply).

Include a Cancel/Close button on any dialog that has an Apply button.

Include a Cancel button on Working dialogs and, if possible, a Pause button (with the
option of later resuming).

When choosing and creating default actions . ..

[]
[]

[

Whenever appropriate, choose one of the actions to be the default action.

Have OK be the default action for Information dialogs (which typically have buttons
only for OK and Help).

Have the response that users are most likely to select be the default action for
Question, Warning, Error, and any other dialogs that contain buttons but no text
fields.

Have the response that users are most likely to select after entering a text string be
the default action for dialogs that have only one text field. Use no other controls than
the buttons in the response area (such as the File Selection and Prompt dialogs).

Don’t have a default action for dialogs that contain multiple text fields.

When labeling dialog buttons . . .

[]
[]

[

Replace the “Yes” and “No” labels in Warning and Question dialogs with button
names that clearly indicate the specific action that will occur if the button is clicked.

Replace the “OK” or “Apply” labels in Prompt or Warning dialogs with button
names that clearly indicate the specific action that will occur if the button is clicked,
unless the button is used for more than one purpose, or in the rare instance that “OK”
and “Apply” are used together in a Prompt dialog.

In all other cases, use the OSF/Motif standard names.

357

Appendix A: Summary of Guidelines

358

When deciding what content to include in specific types of dialogs . ..

[

]

O O O O o O

Use Prompt dialogs to collect information in related chunks—that is, avoid collecting
unrelated pieces of information in the same dialog, and don’t launch multiple dialog
boxes sequentially to collect several pieces of information if these pieces are
frequently collected at the same time.

Include a description of the error, step-by-step instructions for how to recover from
it, and a pointer to more information in Error dialogs. If the error involves a specific
entity (for instance, a file, user, or host), name the entity in the error message.

Invoke Error dialogs only when they’re directly relevant to the user; for example,
don’t tell the user that the printer is out of paper until the user has a job in the queue.

State what data is likely to be lost and why, and give the user a chance to cancel the
action in Warning dialogs.

Limit your use of Question dialogs to those situations where the user couldn’t have
provided the information in advance.

Don’t use Question dialogs for questions that relate to a pending destructive
action—for these cases, use Warning dialogs instead.

Dynamically indicate how much of the operation is complete with the IRIX
Interactive Desktop scale used as a percent-done indicator in Working dialogs.

Switch from the general-purpose pointer to the watch pointer in the parent window
of a modal Working dialog.

Guidelines for Invoking Dialogs

When determining when to display a dialog and which dialog to display ...

[

[

Limit the use of dialogs to those cases when they’re absolutely necessary. Don’t use
dialogs to provide general status information—use a status area in the associated
primary or support window instead.

Invoke a dialog whenever users choose a menu entry that includes an ellipsis.

Interface Component Guidelines

[

]

O O O o

Display the IRIX Interactive Desktop File Selection dialog when the user chooses
“Open...” from the File menu. The first time this dialog is opened, it should show the
current working directory and no specific file. Subsequently, it should come up in the
state it was last in when the user dismissed it.

Display the IRIX Interactive Desktop File Selection dialog when the user chooses
“Save As...” from the File menu. If the file being saved doesn’t exist yet, the dialog
should show the current working directory and no specific file. If the file exists, the
dialog should show that file’s directory, and the current name of the file should be
selected.

When users open, close, or save changes to files, prompt them with a Warning dialog
whenever these actions will cause data to be lost:

In an application that allows only one document to be open at a time, when the user
chooses to open another (new or existing) document and there are unsaved changes
in the currently opened document. (For example, the user chooses “New,” “Open,”
or “Reopen” from the File menu.)

When the user chooses “Close” from the File menu in a co-primary window, and
the co-primary window contains data that will be lost if the window is closed.

When the user chooses “Exit” from the File menu, and at least one open co-primary
window contains data that will be lost if the application is exited. For applications
that support multiple open documents, prompt the user with a separate dialog box
for each file that’s currently open and has unsaved changes.

Prompt users with the File Selection dialog when they choose Save from the File
menu and the current file is untitled. The behavior is the same as the “Save As...”
entry in this situation.

Prompt users with a Warning dialog when they’re interacting with the File Selection
dialog and they choose a filename that already exists.

Prompt users with a Warning dialog when they choose “Revert” from the File menu
and the file currently has unsaved changes.

Display an Information dialog when a user chooses the “Product Information” entry
from the Help menu.

Display the Working dialog when users initiate an operation that takes more than
five seconds to complete. Note that you might have to choose one of several different
platforms as your standard for estimating times of operations.

359

Appendix A: Summary of Guidelines

360

General User Feedback Guidelines

[

[

Provide graphic feedback with appropriate desktop icon designs, by using the IRIX
Interactive Desktop look, by changing pointer shapes appropriately, and by
highlighting selected text.

Be sure your application displays up-to-date information—in controls and
components (display the settings that correspond to the currently selected object or
the current values), and in information displays (such as directory views). If the
information being displayed can’t be dynamically updated, choose a design that
looks static.

Provide textual message to the user through dialogs, through status areas on your
primary windows, and by changing the label of your minimized window when
appropriate.

Pointer Shapes and Colors Guidelines

When deciding which pointers to use in your application . ..

N N R I I

N Iy B

Use the standard pointers when possible.

Use the upper-left pointing arrow as a general-purpose pointer; this pointer should
be red with a white outline.

Use the upper-right pointing arrow when a menu is pulled down from a menu bar,
popped up from the right mouse button, or displayed from an option menu button.

Use the watch pointer for operations that take more than 3 seconds. (For less than 3
seconds, maintain the current pointer; for more than 5 seconds, also use a
work-in-progress dialog.)

Use the I-beam pointer to indicate that your application is in a text-editing mode, but
don’t use it to indicate implicit focus over a text object within a window.

Use the question mark to indicate that the user is in context-sensitive help mode.
Use the sighting pointer (crosshair) to make fine position selections.

Use resize pointers to indicate positions when resizing an area.

3D Style Guidelines

3D Style Guidelines

Ny

Use the 4-directional arrow to indicate that either a move operation or a resize
operation is in progress.

Don’t use the hourglass pointer; use the watch pointer instead.
Don’t use the X pointer (it’s reserved for the window manager).

Don’t assign new functionality to the standard pointer shapes; instead, design your
own new pointer shape.

When designing new pointer shapes. ..

[]
[]
[]
[]

Create a pointer shape that gives a hint about its purpose.
Make the shape easy to see.
Make the hotspot easy to locate.

Avoid shapes that would create visual clutter.

The following guidelines have been extracted from Part III, “3D Style Guidelines,” of this
guide.

Basic 3D Interface Design Guidelines

To provide mouse functionality that matches user’s expectations in a 3D application...

[
[

Assign primary functionality to the left mouse button.

Use modifier keys in conjunction with the left mouse button to make additional
functionality available.

Reserve the middle mouse button for primary copy and paste operations and to
provide access to advanced user shortcuts that are also accessible via a more obvious
user interface.

Reserve the right mouse button for popup menus.

361

Appendix A: Summary of Guidelines

362

When deciding on the use of modifier keys in a 3D application...

Use the <Shift> key to constrain or unconstrain the default behavior of the left mouse
button.

Use the <Ctrl> key to allow alternate behaviors that aren’t thought of as constraining
or unconstraining the default behavior assigned to the left mouse button.

Use <Shift> and <Ctrl> together where it makes sense to provide alternate behavior
that’s also constrained or unconstrained.

Reserve the <Alt> key for a view overlay (see “View Overlay” in Chapter 13).

o O o O

Reserve the <Esc> key for mode switches, for example, switching from view mode
to edit mode.

Pointer Feedback Guidelines for 3D Applications

To help users stay oriented while working in your 3D application...

[] Use the standard pointer shapes to indicate specific 3D functionality. Display these
pointers whenever the user accesses that functionality.

[] Use the standard pointers used in 2D applications as needed (for example, the watch
pointer to indicate an operation is in progress).

Guidelines for Resizing Windows in 3D Applications

When designing the resizing operation for the viewports in your 3D application...

(] 1f the user resizes the window and keeps its same aspect ratio, make the scene in the
viewing area of the window proportionally bigger or smaller based on the resize
action.

(] 1f the user resizes the window and changes its aspect ratio during the resize
operation, display more or less of the scene being displayed based on the resize
action, but don’t change the size of the objects in the scene.

3D Style Guidelines

Guidelines for 3D Viewing Functions

When designing the user interface for a 3D application...

[

Provide a viewing interface regardless of other capabilities of the application (for
example, editing).

When designing the user interface for 3D viewing...

[

[

Decide whether your application will support inspection, navigation, or both, then
provide the appropriate viewing functions. If your application supports both
inspection and navigation, choose one as the primary mode for viewing.

Use standard pointer shapes to indicate the current 3D viewing function.

When designing the user interface for inspection in a 3D application...

[

oo oooo o

Support the user model that users are manipulating a scene as though it were a single
object they are holding in their hand (not the user model that users are manipulating
a camera). From the user’s perspective, all controls appear to manipulate the object
or scene while the camera remains stationary.

Support tumbling as the default inspection function to allow users to view all sides
of the scene.

Assign tumbling to dragging with the left mouse button.
Display the tumble pointer while the user accesses the tumble function.
Support dollying to allow users to move the scene closer or farther away.

Assign dollying to dragging with the left and middle mouse buttons pressed
simultaneously.

Display the dolly pointer while the user accesses the dolly function.
Support panning to allow users to move the scene left, right, up, or down.
Assign panning to dragging with the middle mouse button.

Display the pan pointer while the user accesses the panning function.

Support seeking to allow users to change the look-at point and center the object of
interest and to bring the object incrementally closer.

363

Appendix A: Summary of Guidelines

364

[

[

Support seeking as follows:

If your application needs to reserve clicking with the left mouse button for a more
critical or useful function, allow users to seek by first activating a seek tool, then
clicking with the left mouse button in the scene. Otherwise, support seeking
without the use of a tool.

In either case, the user seeks by clicking on a part of the scene with the left mouse
button. The application centers that part of the scene in the viewing window and
moves the scene closer by half the distance between the camera and the object.

With each subsequent click on the same part of the scene, the scene again moves
closer.

If your application needs to reserve clicking with the left mouse button for a more
critical function, allow users to seek by first activating a seek tool, then clicking with
the left mouse button in the scene.

Display the seek pointer while the user accesses the seek function.

When designing the user interface for navigation in a 3D application...

[

OO0 oo o oo o

Support the user model that the scene is stationary and the user is moving through
this fixed, immovable world. From the user’s perspective, all navigation controls
appear to manipulate the camera (user’s view into the world) while the scene
remains stationary.

Support roaming as the default navigation function. In roaming, the user can move
forward and backward, turn left and right, and turn to move in a new direction.

Assign roaming to dragging with the left mouse button.
Display the roam pointer while the user accesses the roaming function.

Support tilting to allow users to change their view of the scene by tilting their head
up and down. Tilting doesn’t move the user forward or backward.

Assign tilting to dragging with the left and middle mouse buttons pressed
simultaneously.

Display the tilt pointer while the user accesses the tilting function.

Support sidling to allows users to sidestep left and right and to move up and down
as if on an elevator.

Assign sidling to dragging with the middle mouse button.
While the user accesses the sidling function, display the sidle pointer.

Support seeking to allow users to move closer to an object in the scene by clicking
instead of dragging.

3D Style Guidelines

[

Support seeking as follows:

The user clicks on an object in the scene with the left mouse button when the
application is in view mode. The application automatically moves the user through
the scene and closer to that object.

With each subsequent click on the same object in the scene, the user moves closer to
that object.

Display the seek pointer while the user accesses the seek function.

3D Viewing Trade-Offs and Related Guidelines

To make viewing quickly and easily accessible in 3D applications...

[

Always provide ready access to viewing no matter what the user is doing (for
example editing).

When designing a viewing interface for a 3D application that also supports editing...

[

OO O ¢

]

Display the appropriate pointer depending on the task the user is performing:
While the user is accessing editing functions, display the edit pointer.

While the user is accessing viewing functions, display the appropriate view pointer
based on the user’s current viewing function (for example, the roaming pointer if
the user is currently navigating a scene).

Provide a modal interface to viewing and editing whenever possible.

Provide an obvious mechanism for changing between the view and edit modes, such
as buttons in a tool palette or entries in a pull-down menu.

Reserve the <Esc> key for switching between the view and edit modes.

Always provide a view overlay for quick access to viewing. That is, when the
primary task is editing, the user can at any time temporarily enter a view mode by
pressing and holding the <Alt> key. The user can release the <Alt> key to return the
application to edit mode.

Reserve the <Alt> key for providing access to a view overlay. If the user is already in
view mode, the <Alt> key has no effect.

Display the appropriate pointer for the current viewing function (for example, the
tumble pointer or the roaming pointer) while the user is accessing a view overlay.

Optionally provide additional ways to access viewing, for example, offer viewing
fixtures or split viewing and editing input across separate dedicated input devices.

365

Appendix A: Summary of Guidelines

366

When deciding between a single viewport and multiple viewports...

[

[

Use a single viewport if the user doesn’t need to do much editing, performance or
screen real estate is critical, you need a simple user model, or if several of these
conditions are met.

Support multiple viewports if the user needs two or more views of the data
simultaneously (such as when editing complex objects or working on scene
composition) and performance isn’t a critical issue.

When designing a viewing interface for a single viewport...

[]
[]

Use the perspective view of the scene as the default view.

Update the single-viewport view with a new view as the user selects different
cameras.

When making viewing performance design decisions...

[]
[]

[

Support a minimum frame rate of 8 fps when the user is interacting with the view.

Ideally, support a minimum rate of 10-12 fps for editing and a minimum frame rate
of 15 fps for a realistic interactive experience.

If the frame rate drops below 8 fps, provide at least one of the following solutions:

Automatic adaptive rendering, where the application always maintains an
acceptable frame rate at the expense of scene fidelity.

User-controlled adaptive rendering, where the user explicitly chooses between
adaptive rendering (acceptable frame rate but loss of detail) and fully rendering the
contents of the scene (at a possibly unacceptably low frame rate).

If users sometimes need fully rendered, high-fidelity scenes and the frame rate is
likely to drop below 8 fps, provide user-controlled adaptive rendering.

If you application only provides automatic adaptive rendering, provide users ready
access to fully rendered scenes. At a minimum, this should happen when the user
stops interacting with the view.

3D Style Guidelines

3D Selection Design Guidelines

When designing the selection user interface for your 3D application...

[]
[]
[]

Follow the object-action paradigm of direct manipulation: The user first selects an
object (or group of objects), then chooses an action to perform on it.

For actions that apply to objects, apply the action to all the objects in the current
selection and only to those objects.

Provide one current selection for each application at any time. The current selection
may be empty (that is, no selection). Note that each window of your application can
maintain a separate selection, but there is only one current selection.

Support direct selection as the primary selection mechanism. Using the left mouse
button, the user either clicks directly on an object to select it or sweeps out an area to
select multiple objects.

Support indirect selection if your users need it. For example, allow users to select an
indirect representation of an object such as an item in a list, or provide a “Select All”
menu item.

If your application lets users select more than one object in a hierarchy of objects,
provide at a minimum a method for selecting the highest and lowest object in the
hierarchy and a method for adjusting the selection up and down the hierarchy.

When deciding on a selection model...

[

If your application allows users to select only one object at a time, support the
OSF/Motif single selection model as follows:

Users directly select an object by moving the pointer over it and pressing the left
mouse button. Any previously selected object is deselected.

Users deselect an object by clicking outside the selection in an empty area.

If your application allows users to select more than one object at a time, support the
OSF/Motif discontiguous selection model as follows. Ideally, support the entire
OSF/Motif discontiguous selection model.

Users directly select an object by moving the pointer over it and pressing the left
mouse button. Any previously selected objects are deselected.

Users <Ctrl>-click an unselected object to add it to the current selection, and
<Ctrl>-click an already selected object to remove it from the current selection. That
is, <Ctrl>-click toggles the selection state of the object.

367

Appendix A: Summary of Guidelines

368

If users are accustomed to using the <Shift> key in other applications to toggle the
selection state of an object, allow them to add and remove objects by
<Shift>-clicking an object in addition to <Ctrl>-clicking an object. In that case,
<Shift>-clicking an object performs the same selection actions as <Ctrl>-clicking an
object.

Users deselect all objects by clicking outside the selection in an empty area. In
addition, a “Deselect All” menu item may be useful for some applications.

Optionally, allow users to use sweep selection to select multiple objects, allowing
either rectangle-drag or lasso-drag. At the end of a sweep action, the only objects
selected are those inside the sweep area.

Optionally allow users to <Ctrl>-sweep through a collection of objects to toggle the
selection state of all objects inside the sweep area. That is, objects inside the sweep
area that were previously selected are deselected, and objects inside the sweep area
that were previously deselected are selected. The selection state of objects outside
the sweep area doesn’t change.

If your application supports the optional <Ctrl>-sweep selection action and users
are accustomed to using the <Shift> key in their other applications to toggle the
selection state of an object, allow users to use <Shift>-sweep in addition to
<Ctrl>-sweep to toggle the selection state of all objects inside the sweep area.

3D Selection Feedback Design Guidelines

When designing selection feedback for your 3D application...

[]
[]

[

Provide clear feedback on each object as it is selected.

When using a bounding box for selection feedback, make sure that it is differently
shaped or larger than the object itself so that it is readily visible. Using a distinct color
for the bounding box is also highly recommended.

If users don’t typically select objects in your application to manipulate them
(translate, rotate, scale) or can’t manipulate the selected objects, use bounding boxes
to indicate the selected objects.

If users typically select objects in your application to manipulate them, use the
manipulator as selection feedback. If your application allows more than one object
to be selected at a time, consider displaying the manipulator only on a lead object
and bounding boxes on the other selected objects.

If your application needs to always present a realistic “experience-oriented”
representation of objects in the scene, highlight selected objects in some way rather
than cluttering the scene with bounding boxes or manipulators.

3D Style Guidelines

Lead Object Design Guidelines for 3D Applications

When designing the selection user interface for your 3D application...

[]
[]

If your application allows users to select more than one object at a time, consider
identifying one of those objects as the lead object.

Clearly distinguish the lead object from other selected objects:

If users typically select objects to manipulate them, consider making this distinction
by displaying the manipulator only on the lead object and a bounding box on all
other selected objects.

Otherwise, if there are manipulators or bounding boxes on all selected objects,
distinguish the lead object another way (color, full manipulator instead of partial,
and so on.).

If the user clicks to define a selection or <Ctrl>-clicks to add to a selection, make the
lead object the last object selected. This allows users to change the lead object using
click or <Ctrl>-click on an object that’s currently not selected, or using <Ctrl>-click
twice on a currently selected object.

If the user employs a single action such as a sweep selection to select multiple objects
at the same time, make the lead object the one that is closest to the camera and closest
to the middle of the viewport.

When the user deselects the lead object, move back through the previous lead objects
making the most recent lead object that is still selected the new lead object.

If the user groups a collection of objects, make the group the new lead object.

When the user ungroups a grouped collection of objects, each object that was in the
group becomes selected, and the object from the group that is closest to the camera
and closest to the middle of the viewport becomes the new lead object.

Basic 3D Manipulation Guidelines

When designing a user interface for object manipulation in a 3D application...

[]
[]

Let users manipulate objects directly whenever possible.

If an intermediary, such as a dialog box, yields more precise results for an action and
your users need precise manipulations, provide an intermediary method in addition
to direct manipulation.

Provide manipulators to allow users to use direct manipulation when editing
objects.

369

Appendix A: Summary of Guidelines

370

[]
[

Use the standard manipulators provided by Silicon Graphics for translation,
rotation, and scaling.

Make sure users can readily identify a manipulator’s controls and how to interact
with those controls. Also, make sure the controls allow users to precisely manipulate
an object.

Provide immediate feedback on available actions during the different stages of
manipulation as follows:

Display phase—Display the manipulator in its neutral state.

Approach phase—As the pointer passes over a control on the manipulator, locate
highlight the control to show that it’s a live, functional control.

Grab phase—Provide selected feedback if there is no additional choice to make;
otherwise provide choice feedback. Provide guide feedback as appropriate to
facilitate user interaction.

Drag phase—If the user was presented with a choice in the grab phase, resolve it
when the user begins the drag, and replace the choice feedback with selected
feedback.

Release phase—Return the manipulator to its neutral state.
Use clearly distinguishable feedback styles as follows:

Provide neutral feedback using a style that stands out from the scene; for example,
use the color green or white.

Provide locate highlight for manipulator controls. That is, the controls brighten
(often to an orange color) as the pointer passes over them.

Provide selected feedback using a style that stands out strongly; for example, use
the color yellow.

Provide choice feedback using a style that stands out, but not as strongly as
selection feedback; for example, use the color orange.

Provide guide feedback using a style that recedes but is distinct from the other
styles; for example, use the color purple.

Provide continuous feedback on the status of an object while the user is
manipulating it. For example, as the user translates an object, the object should move
in the scene in a smooth and continuous fashion to keep the user updated on the
location of the object. Use adaptive rendering if necessary.

Make commonly used and critical manipulation techniques immediately available
on the manipulator via the left mouse button. Make less commonly used techniques
available on a secondary level, for example, though modifier keys used in
conjunction with the left mouse button.

3D Style Guidelines

When displaying manipulators in your 3D application...

[] Decide which manipulators to display by default based on the functional

requirements of your users and their most common tasks.

[] Allow users to change which subset of manipulators are currently displayed. At a

minimum, allow users to specify this subset using entries in the Edit menu.

3D Translation User Interface Guidelines

When designing a user interface for 3D translation...

[

O oo o o o o

[]
[]

Use the standard translation manipulator either alone or in combination with the
other standard manipulators. This manipulator is a set of translation planes
arranged to define a bounding box around the object.

Allow users to perform translation in the planes of the object’s bounding box. These
planes may or may not be aligned with the world (scene) coordinate space.

Don’t allow users to translate objects that are part of a scene into unusable locations,
such as behind the camera or so far back along the z axis that they vanish from view.

Provide planar translation as the default translation method (see Table 15-2 on page
289).

Provide access to constrained translation along only one axis of a plane (see
Table 15-3 on page 291).

Provide access to axial (constrained) translation along the normal to a plane (see
Table 15-4 on page 293).

Allow users to switch from planar translation to constrained translation and back at
any point in a translation. For example, if the user is performing planar translation
by dragging a translation plane and then presses the <Shift> key, switch to axial
translation along the plane until the <Shift> key is released.

Display the appropriate translation feedback as the user switches between
unconstrained and constrained translation.

Don’t allow users to select objects or controls through the translation planes.

371

Appendix A: Summary of Guidelines

372

3D Rotation User Interface Guidelines

When designing a user interface for 3D rotation...

[

N

Use the standard rotation manipulator either alone or in combination with the other
standard manipulators. This manipulator is a set of handles that emanate from the
center of rotation. Typically, the default center of rotation is the center of the object
(the center of the object’s bounding box).

Provide constrained rotation around an axis as the default rotation method (see
Table 15-5 on page 296).

Provide access to free rotation around a point (see Table 15-6 on page 298).

Allow users to switch between constrained and free rotation at any point in a
rotation. For example, if the user is performing constrained rotation by dragging
along a ring and then presses the <Shift> key, switch to free rotation and interpret
pointer movements as following the virtual trackball until the <Shift> key is
released.

As the user switches between constrained and free rotation, display the appropriate
rotation feedback. For example, if the user is performing free rotation and then
releases the <Shift> key, switch to constrained rotation and display the appropriate
rotation feedback. Determine the direction and axis for rotation based on the next
pointer movement. Once the direction and axis have been determined, display the
appropriate arrow and ring feedback for this direction and remove the virtual
trackball.

3D Scaling User Interface Guidelines

When designing a user interface for 3D scaling...

[

Use the standard scaling manipulator either alone or in combination with the other
standard manipulators. The manipulator consists of cube-shaped handles at the
vertices of the bounding box.

Scale objects around the center of scaling, by default the center of the object (the
center of the object’s bounding box).

Provide uniform scaling as the default scaling method (see Table 15-7 on page 302).

Provide access to axial scaling (stretching) as defined in Table 15-8 on page 304.

3D Style Guidelines

[

[

Allow the user to switch between uniform and axial scaling at any point in a scaling
operation. For example, if the user is performing axial scaling then releases the
<Shift> key, switch to uniform scaling.

As the user switches between uniform and axial scaling, display the appropriate
scaling feedback. For example, if the user is performing uniform scaling then presses
the <Shift> key, switch to axial scaling and display the appropriate scaling feedback.
Determine the single axis for stretching based on the next pointer movement. Once
this axis has been determined, remove the two axes that were not selected and
display the selected axis until the <Shift> key is released.

Allow users to perform uniform scaling around a specific corner as an alternative to
scaling around the center of scaling (see Table 15-9 on page 306).

Allow users to perform axial scaling around a specific side of the object’s bounding
box as an alternative to axial scaling around the center of scaling (see Table 15-10 on
page 307).

Allow the user to switch between scaling around a corner or side and scaling around
the center of scaling at any time during a scaling operation. For example, if the user
is performing uniform scaling around the center of scaling then presses the <Ctrl>
key, switch to scaling around the corner opposite to the selected handle.

As the user switches between scaling around a corner or side and scaling around the
center of scaling, display the appropriate feedback. For example, if the user is
performing uniform scaling around a corner then releases the <Ctrl> key, switch to
scaling around the center of scaling and display the appropriate guide feedback for
this type of scaling.

Guidelines for Changing the Center of 3D Rotation

When designing a user interface for changing the center of rotation and scaling...

[]
[]

If necessary, allow users to change the center of rotation and scaling using the
standard rotation manipulator.

As users move the center of rotation and scaling, make sure that they can always
identify the current center.

Allow users to change the center of rotation and scaling along a plane (see
Table 15-11 on page 310).

373

Appendix A: Summary of Guidelines

374

[]
[]

Allow users to change the center of rotation and scaling along an axis (see Table 15-12
on page 311).

At any time while dragging a rotation handle, allow users to switch among
constrained rotation, free rotation, changing the center of rotation and scaling along
a plane, and changing the center of rotation and scaling along an axis. For example,
if the user is performing constrained rotation then presses the <Ctrl> and <Shift>
keys, switch to changing the center of rotation and scaling along an axis.

As the user switches among constrained rotation, free rotation, changing the center
of rotation and scaling along a plane, and changing the center of rotation and scaling
along an axis, display the appropriate feedback. For example, if the user is moving
the center of rotation and scaling along a plane then presses the <Shift> key, switch
to moving this center along an axis and display the appropriate feedback. Determine
the single axis for movement based on the next pointer movement. Once this axis has
been determined, remove the axis that was not selected and display the selected axis
until the <Shift> key is released.

Guidelines for Manipulating More Than One 3D Object

When users manipulate more than one object at a time...

[

Assign one object as the key object for the manipulations. Typically, only the lead
object displays the manipulators so this object is by default the key object. If your
application instead displays manipulators on all selected objects, the object
associated with the manipulator the user is currently interacting with is the key
object.

For translation, translate all selected objects along the chosen translation plane for
the key object, regardless of the orientation of the other selected objects. Don’t
change the relative positional relationships of the selected objects.

For rotation, rotate all selected objects around the center of rotation for the key object.

For uniform scaling, scale all selected objects the same amount as the key object and
about the same center of scaling as the key object.

For axial scaling (stretching), scale only the key object (the object being manipulated)
rather than all selected objects. This prevents shearing of objects that are not aligned
with the key object.

Index

Numbers

3D applications
frame rate, 263
manipulation phases, 282
modifier keys, 235
mouse input, 234
selection, 267
viewing techniques, 241
3D object hierarchy, 269, 271
3D user interface design, 234
3D viewing
performance, 263
trade-offs, 259

4-directional arrow pointer, 228

4Dwm window manager
default setting, 113
See also window managers

A

activation
menus, 152-154

adaptive rendering, 264
AIFF sound file icon, 25
<Alt>-<Insert> keys, 107

<Alt> key, 155
3D applications, 235
for view overlay, 260

appearance, Indigo Magic. See Indigo Magic look

application icons
guidelines, 33

application icons (Desktop icons), 22-23
application-modal dialogs, 207
application models, 42-43, 115-119

applications
3D, 233
appearance, 36
data exchange, 101-109
data exchange guidelines, 109
editing text, 96-97
locations, 32
naming, 31-32
processing while minimized, 64, 66
session management, and, 68-70
windows, 35-71
approach phase
rotation, 296, 298, 304, 306, 307
scaling, 302
translation, 289, 291, 293
approach phase (3D manipulation), 283
archive file icon, 25
ASCII file icon, 25
Auto Window Placement, 51-52, 93

axial scaling, 300
phases, 304, 306, 307

375

Index

B choice feedback (3D), 284

“Clear” option (in Edit menu), 163
backgrounds “Click for Help” option (in Help menu), 79, 82
baj‘rsld desks, 67 clipboard data, nonpersistent, 102

clipboard transfer model, 102-103
example, 103
primary transfer model, independence, 103, 107

path navigation, 199
scrollbars, 194

<Begin> key, 10

e “Close” option (in File menu), 160, 219
binding keys, 179

“Close” option (in window menu), 45, 46

BMeng, ? collections, 139-141
bounding box, 288 multiple, 142-143
bounding volume, 273 color chooser, 129-130
browse selection model, 139 “Color Editor” option (in Edit menu), 129, 163
BSelect, 9 colors
BTransfer, 9 Desktop icons, 17-20
buttons, 182-183 text fields, 192
dialogs, and, 182 color schemes, 39-40

dynamic, 183

option buttons, 151-152, 184-185
pull-down menus, and, 165
right justification, 37

command line input
windows, 124

command script file icon, 25

constrained translation
illustration, 292

C phases, 291, 293

to normal of plane, 292

<Cancel> key, 10 context-sensitive help, 79, 82
Cancel/Close button, 183 writing help content, 83
cards. 179 “Context-Sensitive Help” option (in Help menu), 82

control areas
co-primary windows, 123-124
main windows, 123-124

cascading menus, 150-151, 169
categories

windows, 41,114
center of rotation

changing, 310

control panels
Desktop, 96-97, 225
. . Language, 94
changing center of rotation, 310 Mouse Settings, 95, 132
checkboxes, 186-187 Window Settings, 51, 67
Indigo Magic look, 36, 224
in menus, 168, 170

376

Index

controls, 181-202
buttons, 182-183
checkboxes, 186-187
dials, 201-202
File Finder, 146, 199
labels, 198
LED buttons, 189-190
lists, 190-191
option buttons, 184-185
radio buttons, 187-189
scales, 196-197
scrollbars, 194-196
text fields, 192-193
thumbwheels, 200-201

co-primary windows, 41, 114, 120-126
See also windows
command line input, 124
control areas, 123-124
decorations, 43
Help button, 83-84
keyboard shortcuts, 122
menu (in title bar), 43
menu bars, 122
panes, 125
popup menus, 125
status areas, 124
title bar labels, 49
work areas, scrollable, 123

copying data, 102-103, 104-107

“Copy” option (in Edit menu), 102-103, 162
C program file icon, 25

cross hair pointer, 227

<Ctrl> key, 156,171-173
3D applications, 235

<Ctrl><Page Down> keys, 196
<Ctrl><Page Up> keys, 196
<Ctrl><Shift><Tab> keys, 137
<Ctrl><Tab> keys, 137

cursors
location, 134

customize
control panels, 4
desktop, 93
cut and paste. See data exchange
“Cut” option (in Edit menu), 102-103, 162
cutting data, 102-103

D

data, selecting, 140-141

data exchange, 101-109
<Alt>-<Insert> keys, 107
application guidelines, 109
clipboard data, nonpersistent, 102
clipboard transfer

example, 103

clipboard transfer model, 102-103

primary transfer model, independence, 103, 107

copying data, 102-103, 104-107

cutting data, 102-103

data types supported, 108

drag and drop, 144-147

highlighting selected data, 104-107, 224

nonpersistent selection model, 107

pasting data, 102-103, 104-107

persistent always selection model, 107

primary selection, 104-107
reinstating, 107

primary selection example, 105

primary transfer example, 106

primary transfer model, 104-107

clipboard transfer model, independence, 103,

107

selections, 139-143
data types

data exchange, supported, 108
decorations

dialogs, 43,209

windows, 43
“Delete” option (in Edit menu), 163

377

Index

“Deselect All” option (in Edit menu), 163
deselecting data, 140-141
Desks, 66-67

Desks Overview, 4, 66
example, 66
window titles, and, 47

Desktop
icons. See Desktop icons
overview, 3-10
windows. See windows

Desktop control panel, 96-97
stderr messages, 225

Desktop icons, 4, 11-33, 224
See also minimized windows
accessibility guidelines, 33
appearance, 12-33
appearance design guidelines, 26
application icons, 22-23
behavior, programming, 27-29
behavior guidelines, 29
colors, 17-20, 25
components, 14-15
creating with IconSmith, 15
data icons, 12
design guidelines, 26
designing appearance, 12-27
examples, 23
file icons, 24-25
Find an Icon tool, 31-32
generic data file symbol, 25
generic executable symbol (magic carpet), 14, 22
icon accessibility guidelines, 33
icon behavior guidelines, 29
Icon Catalog, 4, 30-31
icon color, 17-19
implementation hints, 28
launching applications, 6, 28-29
orientation, 20
outline color, 19
predefined templates, 15

378

printing files, 28

shadow color, 25

size, 17

states, 6-8,17-18, 22-23, 224
templates, 15

user interaction, 6-8

Desktop services, 73-99
Auto Window Placement, 93
customize, 93
desktop variables, 93
desktop variables guideline, 98
editor, preferred, 96-97
File Alteration Monitor (FAM), 99
Language control panel, 94
mouse
double-click speed, 95
online documentation, 92
online help, 76-92
context-sensitive, 79, 82
design guidelines, 85
Help button, 80, 83-84
Help button guidelines, 86
help card guidelines, 90
Help menu, 82-83
index, 80, 83
index guidelines, 91
keyboard shortcuts, 81, 83
keyboard shortcuts guidelines, 91
overview, 80, 82
product information, 81, 83
task-oriented, 80, 83
types of, guidelines, 85
writing help content, 87-92
schemes, 93
software installation, 74-75
user control, 93
dialogs, 41, 114, 203-222
actions, 211-214
choosing, 211-212
default, 212-213
standard, 211

Index

button labels, 213-214
buttons, and, 182
decorations, 43,209
designing, 209-218
desks, and, 67
error, 204,214
file selection, 204, 219-220
Help button, 83-84
information, 204
invoking, 218-222
justification of buttons, 37
menu (in title bar), 43, 209
modes, 207-208
placement, 210
prompt, 204, 214
pull-down menus, and, 165, 168
question, 204, 215
size, 210
title bar labels, 49
types, 203-206
user feedback, 225
warning, 204, 215
working, 204, 215-216, 221
See also windows

dials, 201-202

directories
monitoring changes, 99

Directory Views, 4
direct selection, 268
disabling menu entries, 173,179

discontiguous selection model, 139
in 3D applications, 270

displays, updating, 224-225
documentation, online, 92
dollying, 245

moving through object, 246
dolly pointer, 237
double-click speed, mouse, 95

<down arrow> key, 137, 154
drag and drop, 144-147
non-text objects, 145-146
pointers, 147
text, 146
drag icons, 147
drag phase
free rotation, 298
rotation, 296
scaling, 302
stretching, 304, 306, 307
translation, 289
drag phase (3D manipulation), 283
drag state, Desktop icons, 7

drop-accepting state, Desktop icons, 7

drop pocket, 199
dynamic buttons, 183
dynamic menu entries, 174

E

editing and viewing (3D), 259
Edit menu, 161-163
edit mode, 260
editor, preferred, 96-97
edit pointer, 237
ellipsis
in menus, 156
in pull-down menus, 168
in pushbuttons, 183

enabling menu entries, 173,179
<Enter> key, 10, 154
error dialogs, 204, 214

<Esc> key, 235
for view mode, 260

<Escape> key, 10, 154, 193, 196, 197

379

Index

“Exit” option (in File menu), 160, 219 G
“Exit” option (in window menu), 45, 46
explicit focus, 55, 133-134 generic data file symbol (Desktop icons), 25
eyepoint during tumbling, 245 generic executable symbol (Desktop Icons), 14, 22
grab phase
axial translation, 291
F free rotation, 298
rotation, 296
<F1> key, 10 scaling, 302
<F10> key, 137, 154 stretching, 304, 306, 307
FAM (File Alteration Monitor), 99 grab phase (3D manipulation), 283
feedback,3D manipulation, 284 grab phase (translation), 289
feedback. See user feedback graphic feedback, 224
feedback styles grouping,and lead objects, 277

choice feedback, 284
path feedback, 284
selection feedback, 284 H

File Alteration Monitor (FAM), 99
File Finder, 146, 199
file icons (Desktop icons), 24-25 Help button, 80, 83-84

File menu, 158-160 writing help content, 90
filgs _ help cards, 87-88
glrz)(i:ir’zg;ii?changes 99 Help menu, 82-83, 164
’ “Click for Help” option, 79

printing, 28 examples, 78
file selection dialogs, 204, 219-220 “Index” option, 80

hardware description, 9-10
<Help> key, 10

File Typing Rules (FTRs), 27-29 “Keys & Shortcuts” option, 81
Find an Icon tool, 4, 31-32 “Overview” option, 80
focus, keyboard. See keyboard focus “Product Information” option, 81
font schemes, 39-40 task options, 80
frame rate help. See online help
3D applications, 263 highlighting selected data, 104-107, 142, 224
free rotation, 297 history button, 199
illustration, 298 <Home> key, 10
phases, 298 home button, 200
FTRs (File Typing Rules), 27-29 hourglass pointer, 228

380

Index

I-beam pointer, 227

Icon Catalog, 4, 30-31
Application page, 30
Collaboration page, 30
Control Panels page, 30
Demos page, 30
Desktop Tools page, 30
Media Tools page, 30
Web Tools page, 30

icon color, Desktop icons, 17-19

icons. See Desktop icons

images
examples of minimized windows, 61
minimized windows, 60-62

implicit focus, 55, 133
“Import” option (in File menu), 159
index, help topics, 80, 83

writing help content, 89
“Index” option (in Help menu), 80, 83
indicators

scales, 196
Indigo Magic look, 36-40

examples, 38
indirect selection, 269
information dialogs, 204
input focus. See keyboard focus
inspection

dollying, 245

overview, 243

panning, 248

tumbling, 244
inspection pointer, 237
installing software, 74-75
internationalization, 94
Inventor file icon, 25

J

justification
dialog buttons, 37

K

keyboard accelerators, 156, 171-173
keyboard binding, 179
keyboard description, 9-10
keyboard focus, 55-59, 133-138
dialogs, 210
guidelines, 59
keyboard navigation, 133-137

keyboard shortcuts
co-primary windows, 122
help, 81, 83
writing help content, 90
main windows, 122
support windows, 127
keys
special, 9-10, 79, 136-137, 154, 155, 156, 171-173,
196
substitutes to Motif-compliant keys, 10

“Keys & Shortcuts” option (in Help menu), 81, 83

L

labels, 198
buttons, 183
checkboxes, 187
dialog buttons, 213-214
dials, 202
ellipsis in button, 183
LED buttons, 189-190
lists, 191
minimized windows, 63, 66, 225

381

Index

option buttons, 185
radio buttons, 188
scales, 197
text fields, 193
Language control panel, 94
launching applications
Desktop icons, 6,28-29
lead object
when grouping and ungrouping, 277
when selecting multiple objects, 276
LED buttons, 189-190
<left arrow> key, 137, 154
left mouse button, 9
data exchange, 104
in 3D applications, 234
lists, 190-191
located state, Desktop icons, 6
locate highlight, 36, 224
location cursor, 134
locations
applications, 32
look, Indigo Magic. See Indigo Magic look
look-at point during tumbling, 245
“Lower” option (in window menu), 46

M

magic carpet, icon component, 14, 22
main windows, 41, 114, 120-126

See also windows

command line input, 124

control areas, 123-124

decorations, 43

example, 44

Help button, 83-84

keyboard shortcuts, 122

menu (in title bar), 43

382

menu bars, 122

panes, 125

popup menus, 125

status areas, 124

title bar labels, 48

work areas, scrollable, 123

manipulation of 3D objects
feedback, 284
overview of techniques, 285
phases, 282

manipulators
rotation, 295
scaling, 301
translation, 288
maximize button (in title bar), 46
“Maximize” option (in window menu), 46
maximum window size, 49-50
<Menu> key, 10
menu bars, 149-150, 155-177
co-primary windows, 122
main windows, 122
menus
naming, 166
ordering, 168-169
menus, 149-179
activation, 152-154
cascading menus, 150-151, 169
ellipsis, 156
entries
checkboxes, 168,170
disabling, 173, 179
dynamic, 174
enabling, 173,179
naming, 167-168
ordering, 168-169
radio buttons, 168, 170
toggles, 168
Indigo Magic look, 37
keyboard accelerators, 156, 171-173
menu bars, 122, 149-150, 155-177

Index

mnemonics, 155-156, 171

naming, in menu bars, 166

option menus, 151-152, 184-185
naming entries, 185

ordering, in menu bars, 168-169

popup, 125,136, 177-179
contents, 178

popup menus, 151

posted, 153

pull-down, 149-150, 155-177
buttons, and, 165
contents, 165-170
dialogs, and, 165, 168
naming, in menu bars, 166
naming entries, 167-168
ordering, in menu bars, 168-169
ordering entries, 168-169
support windows, and, 166

spring-loaded, 153

standard, 157-164

submenus, 150-151, 169

tear-off, 166

traversal, 152-154

types, 149-152

window (in title bar), 43, 209

messages, user, 225

middle mouse button, 9

data exchange, 104

in 3D applications, 234
minimize button (in title bar), 46

minimized windows, 60-65
See also Desktop icons
behavior guidelines, 65
images, 60-62

images examples, 61
images guidelines, 64
labels, 63, 66, 225

labels guidelines, 65
processing while minimized, 64, 66
showing status, 64
status example, 64

“Minimize” option (in window menu), 46
minimum window size, 49-50
mnemonics, menus, 155-156, 171
modeless dialogs, 207
modes

dialogs, 207-208

supports windows, and, 128
modifier keys, 235
monitoring, files and directories, 99

mouse
3D applications, 234
buttons, 9
data exchange, 104
description, 9
double-click speed, 95
movement, 132

mouse navigation, 138

Mouse Settings control panel, 95,132
“Move” option (in window menu), 45

movie file icon, 25

multiple-action pointer grab, example, 59
multiple-action pointer grab model, 56, 58-59
multiple collections, 142-143

“multiple document, no visible main” application
model, 43,119
“multiple document, visible main” application
model, 43,117-118
multiple objects
rotation, 314
scaling, 315
translation, 314
multiple selection model, 140
multi-viewport viewing, 262
adaptive rendering, 264
advantages, 263

383

Index

N

naming
applications, 31-32
navigation
overview, 251
sidling, 256
navigation. See keyboard navigation, mouse
navigation
neutral state, Desktop icons, 6
“New” option (in File menu), 159, 219
nonpersistent selection model, 107, 142

(0]

object-action paradigm, 268
object hierarchy
selecting up and down, 269, 271
online documentation, 92
online help, 76-92
context-sensitive, 79, 82
writing help content, 88
design guidelines, 85
Help button, 80, 83-84
writing help content, 90
Help button guidelines, 86
help card guidelines, 90
Help menu, 82-83
index, 80, 83
writing help content, 89
index guidelines, 91
keyboard shortcuts, 81, 83
writing help content, 90
keyboard shortcuts guidelines, 91
overview, 80, 82
writing help content, 88
product information, 81, 83

384

task-oriented, 80, 83

writing help content, 88-89
types of, guidelines, 85
writing help content, 87-92

“Open” option (in File menu), 159, 219
open state, Desktop icons, 7
option buttons, 151-152, 184-185

option menus, 151-152, 184-185
naming entries, 185

Options menu, 164
orange feedback, 284

orientation
Desktop icons, 20

outline color, Desktop icons, 19
overlay See view overlay, 260

overview help, 80, 82
writing help content, 88

“Overview” option (in Help menu), 80, 82

P

packaging software for installation, 74-75
<Page Down> key, 196

pages, 179

<Page Up> key, 196

palettes, 179

panes
co-primary windows, 125
main windows, 125

panning, 248
pan pointer, 237

“Paste” option (in Edit menu), 102-103, 163, 221

pasting data, 102-103, 104-107
path feedback (3D), 284
path navigation bar, 199

Index

percent-done indicator, 196
performance, 263

peripherals
3D input device, 262

persistent always selection model, 107, 142

phases
3D manipulation, 282
axial scaling, 304, 306, 307
changing center of rotation, 310, 311
constrained rotation, 296
constrained translation, 291, 293
free rotation, 298
planar translation, 289

placement
dialog, 210
windows, 51-52

planar translation
illustration, 290
phases, 289

planar translation (3D), 289

pointer, 132
designing, 228
drag and drop, 147
shapes, 3D applications, 236
shapes, state and, 132, 224, 226-228
pointer grab, 56-59
multiple-action, example, 59
multiple-action model, 56, 58-59
single-action, example, 57
single-action model, 56-57
popup menus, 136, 151, 177-179
contents, 178
co-primary windows, 125
disabling entries, 179
main windows, 125

posted menus, 153
PostScript file icon, 25

preferred editor, 96-97
primary-modal dialogs, 207

primary selection, 104-107, 139
reinstating, 107

primary transfer model, 104-107
clipboard transfer model, independence, 103, 107
primary windows, 114

primary windows. See main windows, co-primary
windows, windows

printing files

Desktop icons, 28
“Print” option (in File menu), 160
processing while minimized, 64, 66
product information, 81, 83, 221

“Product Information” option (in Help menu), 81,
83,221
“Promote” option (in Edit menu), 107, 163
prompt dialogs, 204, 214
pull-down menus, 149-150, 155-177
buttons, and, 165
contents, 165-170
dialogs, and, 165, 168
ellipsis, 168
entries
naming, 167-168
ordering, 168-169
naming, in menu bars, 166
ordering, in menu bars, 168-169
support windows, and, 166
pushbuttons. See buttons

Q

question dialogs, 204, 215
question mark pointer, 227

385

Index

R

radio buttons, 187-189
Indigo Magic look, 36, 224
in menus, 168, 170

“Raise” option (in window menuy), 45, 46
range selection model, 139
“Redo” option (in Edit menu), 162

release phase
rotation, 296, 298
scaling, 302
translation, 289, 291, 293

release phase (3D manipulation), 283
“Reopen” option (in File menu), 159, 219
resize handles (in title bar), 45

resize pointer, 228

restarting applications
session management, 68-70

“Restore” option (in window menu), 45
<Return> key, 10
“Revert” option (in File menu), 160, 220
rgb file icon, 25
<right arrow> key, 137, 154
right mouse button, 9
in 3D applications, 234
rotation
changing center, 310
free, 297
multiple objects, 314
phases, 296

rotation manipulator, 295

386

S

“Save As” option (in File menu), 160, 219
“Save” option (in File menu), 160, 220
scales, 196-197
scaling, 300
changing center, 310
multiple objects, 315
scaling manipulators, 301
schemes, 39-40, 93
screen backgrounds
and desks, 67
scrollable lists, 190-191
scrollable work areas
co-primary windows, 123
main windows, 123
scrollbars, 194-196
Indigo Magic look, 37, 224
Search tool, 4

secondary windows. See support windows, dialogs,

windows
seeking, 249
“Select All” option (in Edit menu), 163
Selected menu, 161
selected state, Desktop icons, 7
selecting data, 140-141
selection feedback (3D), 284
selections, 139-143
collections, 139-141
multiple, 142-143
direct selection (3D), 268
highlighting, 142
in 3D applications, 267
in 3D object hierarchy, 269, 271
indirect selection, 269
models, 139-141

Index

session management, 67-71

guidelines, 71

logging out, 70-71

logging out guidelines, 71
SGIHelp system. See online help
SGML, 92

shading
in Indigo Magic look, 36

shadow color, Desktop icons, 25
shared library file icon, 25
<Shift><F1> keys, 79, 82
<Shift><F10> key, 136
<Shift><F10> keys, 10, 154

<Shift> key, 235
for constrained (axial) translation, 292, 293
free rotation, 297

<Shift><Tab> keys, 137

sidle pointer, 237

sidling, 256

single-action pointer grab, example, 57

single-action pointer grab model, 56-57

“single document, multiple primaries” application
model, 42,116-117

“single document, one primary” application model,
42,116
single selection model, 139
in 3D applications, 270
single-viewport viewing, 262
advantages, 262
size
Desktop icons, 17
dialogs, 210
windows, 49-50
“Size” option (in window menu), 45
slider bars, 194

sliding scalebars
scale, 196

software installation, 74-75

Software Manager, 74-75
advantages, 75
example, 74

Software Packager, 74-75
spaceball, 262
spring-loaded menus, 153
standard menus, 157-164
states

applications and sessions management, 68-70
Desktop icons, 6-8,17-18, 22-23, 224
pointers, shapes and, 132, 224, 226-228

status areas, 225
co-primary windows, 124
main windows, 124

stderr, 225

stdout, 225

stretching See axial scaling, 300
submenus, 150-151, 169

support windows, 41, 114, 127-131

See also windows

color chooser, 129-130
decorations, 43

design, 127-128

desks, and, 67

Help button, 83-84
keyboard shortcuts, 127
menu (in title bar), 43
parent windows, 127
pull-down menus, and, 166
title bar labels, 49

Tools menu, and, 127

system-modal dialogs, 207

387

Index

T

<Tab> key, 137

task-oriented help, 80, 83
writing help content, 88-89

tear-off menus, 166

text fields, 192-193
enhanced, 192

thumbwheels, 200-201
tilt pointer, 237

title bar labels, 46-49, 66
Toolchest, 4

tool palettes, 123, 182

Tools menu, 164
support windows, and, 127

trackball path
rotation, 299

trade-offs in 3D viewing, 259

translation
constrained to normal of plane, 292
multiple objects, 314

translation manipulator, 288

traversal
menus, 152-154

tumbling, 244

U

“Undo” option (in Edit menu), 162
ungrouping,and lead objects, 277
uniform scaling, 300

<up arrow> key, 137,154
updating displays, 224-225

388

upper-left arrow pointer, 227
upper-right arrow pointer, 227

user feedback, 223-229
graphic, 224
messages, 225
updating displays, 224-225
user messages, 225

Vv

variables
desktop, 93

viewing
3D definition, 241
overview of techniques, 242

See Also inspection, navigation, 241
trade-offs in 3D, 259
viewing and editing (3D), 259
viewing controls
sliders, 261
thumbwheels, 261

viewing peripherals
3D input device, 262

View menu, 164
view mode, 260
view overlay, 260
views, 179

W

warning dialogs, 204, 215

watch pointer, 227

widgets
outlines in Indigo Magic look, 37
shading in Indigo Magic look, 36

Index

windows, 35-71, 113-132 X
categories, 41,114
characteristics guidelines, 52 X pointer, 228

co-primary windows, 114
decorations, 43

decorations guidelines, 52 Y
default setting, 113
dialogs, 114 yellow feedback, 284

Indigo Magic environment, 35
keyboard focus, 55-59

main windows, 114, 120-126 Z
menu (in title bar), 43
menu bars, 122 zooming, 246

menus guidelines, 53

minimized, 60-65

minimized, guidelines, 64

“multiple document, no visible main” application
model, 119

“multiple document, visible main” application
model, 117-118

no title bar, 55

placement, 51-52

placement guidelines, 55

primary windows, 114

resize, 49

scrollable work areas, 123

“single document, multiple primaries” application
model, 116-117

“single document, one primary” application
model, 116

size, 49-50

size guidelines, 55

support windows, 114

title bar label guidelines, 54

title bar labels, 46-49, 66

Window Settings control panel, 51, 67

work areas, scrollable
co-primary windows, 123
main windows, 123

working dialogs, 204, 215-216, 221

389

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

* General impression of the document

® Omission of material that you expected to find

® Technical errors

® Relevance of the material to the job you had to do

¢ Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2167-005.

Thank you!

Three Ways to Reach Us
* To send your comments by electronic mail, use either of these addresses:
— On the Internet: techpubs@sgi.com
— For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

¢ To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

* To send your comments by traditional mail, use this address:

Technical Publications

Silicon Graphics, Inc.

2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

