
IRIS® HIPPI API
Programmer’s Guide

Document Number 007-2227-001

IRIS® HIPPI API Programmer’s Guide
Document Number 007-2227-001

Contributors
Written by Carlin Otto and Thomas Skibo
Illustrated by Carlin Otto, Dan Young, and Cheri Brown
Edited by Christina Cary
Production by Derrald Vogt
Engineering contributions by Thomas Skibo

© Copyright 1993-1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

Restricted Rights Legend

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIX is a trademark of
Silicon Graphics, Inc.

iii

Contents

1. Description of IRIS HIPPI Implementation 1
Overview of IRIS HIPPI Implementation 1

Conformance with HIPPI Standards 1
Basic Architecture 1
Implementation Details 7

The HIPPI-PH Access Method 8
Description of HIPPI-PH 8
How HIPPI Protocol Items Are Handled With the
HIPPI-PH Access Method 11

The HIPPI-FP Access Method 14
Description of HIPPI-FP 14
How HIPPI Protocol Items Are Handled With the
HIPPI-FP Access Method 18

Mixing HIPPI-PH and HIPPI-FP 21

2. Programming Notes
for IRIS HIPPI API 23
Programming for the HIPPI-PH Access Method 23

Includes 23
Special Instructions 23
Opening and Binding to the Device 24
Transmitting 24
Receiving 28

iv

Contents

Programming for the HIPPI-FP Access Method 29
Includes 30
Special Instructions 30
Opening and Binding to the Device 30
Transmitting 31
Receiving 35

API Reference 36
HIPIOC_ACCEPT_FLAG 37
HIPIOC_BIND_ULP 38
HIPIOC_GET_STATS 39
HIPIOC_STIMEO 41
HIPIOCR_ERRS 42
HIPIOCR_PKT_OFFSET 43
HIPIOCW_CONNECT 44
HIPIOCW_D1_SIZE 46
HIPIOCW_I 47
HIPIOCW_DISCONN 48
HIPIOCW_END_PKT 49
HIPIOCW_ERR 50
HIPIOCW_SHBURST 51
HIPIOCW_START_PKT 53
HIPPI_SETONOFF 54

A. Important HIPPI Concepts 55
I-Field 55
HIPPI-FP Packet 57

v

Figures

Figure 1-1 Interfaces for Controlling One Channel of the
HIPPI Subsystem 4

Figure 1-2 Block Diagram for Two Applications Using HIPPI-PH:
One Receive-Only and One Transmit-Only 9

Figure 1-3 Block Diagram for One Application Using HIPPI-PH:
Receive and Transmit 10

Figure 1-4 Creation of HIPPI-PH Packet 12
Figure 1-5 Creation of HIPPI-PH Packet With First Short Burst 12
Figure 1-6 Block Diagram for Using HIPPI-FP 14
Figure 1-7 Default FP Header for HIPPI-FP Transmission 17
Figure 1-8 Single-Write HIPPI-FP Packet With D1 Data 20
Figure 1-9 Multiple-Write HIPPI-FP Packet:

Contiguous D1 and D2 Data 20
Figure 1-10 Multiple-Write HIPPI-FP Packet:

Separate FP Header and D1 Data 21
Figure 1-11 Block Diagram for Mixing HIPPI-PH and HIPPI-FP 22
Figure A-1 I-Field Format 55
Figure A-2 Packet Format for HIPPI Framing Protocol 57
Figure A-3 FP Header Format 58

vii

Tables

Table 1-1 Functionality Scenarios for IRIS HIPPI Transmission 2
Table 2-1 HIPPI-PH API 36
Table 2-2 Errors for Failed read() Calls 42
Table 2-3 IRIS HIPPI Support for Fields in I-Field 45
Table 2-4 Errors for Failed write() Calls 50
Table 2-5 Actions Caused by HIPPI_SETONOFF 54
Table A-1 Fields of the HIPPI I-Field 55
Table A-2 Fields of FP Header 58

1

Chapter 1

1. Description of IRIS HIPPI Implementation

000

Overview of IRIS HIPPI Implementation

This document describes the Silicon Graphics implementation of the
High-Performance Parallel Interface (HIPPI) protocol.

Conformance with HIPPI Standards

The Silicon Graphics implementation of HIPPI provides the services and
conforms to the protocols described in the HIPPI standards for HIPPI-PH,
HIPPI-FP, the host portion of HIPPI-SC, and HIPPI-LE. Also see the section
“How HIPPI Protocol Items Are Handled With the HIPPI-PH Access
Method” on page 11, and the section “How HIPPI Protocol Items Are
Handled With the HIPPI-FP Access Method” on page 18.

Basic Architecture

IRIS HIPPI supports transmission and reception as separate channels.
Because of this design, it is possible for a system to have applications that
only receive, applications that only send, and/or applications that do both.
In addition, each channel can be accessed with a different access method.
(The access methods are described in “The Device File and Access Methods”
on page 6.)

For transmission, IRIS HIPPI supports four different functionality scenarios,
summarized in Table 1-1 and described in the text below the table. Each

2

Description of IRIS HIPPI Implementation

functionality scenario is a combination of one connection control method
(the rows of Table 1-1) and one packet control method (the columns of
Table 1-1).

A connection can be single-packet or many-packet. A single-packet
connection is when one packet is sent and then the HIPPI subsystem
automatically closes the connection. A many-packet connection is a
connection that is kept open for as long as the application wants. In the latter
case, the application must indicate when it wants the connection closed.

A packet can be single-write or multiple-write. A single-write packet is a
HIPPI packet that is created by the HIPPI subsystem from an application’s
single write() call. A multiple-write packet is created from two or more write()
calls. In the latter case, the application must indicate the start of each packet.

1. Single-packet connection, single-write packet:

• The application does one write(), which causes the connection to be
opened.

• One packet is sent. It consists of the data in the write() call.

• The HIPPI subsystem automatically closes the connection.

Table 1-1 Functionality Scenarios for IRIS HIPPI Transmission

Packet Control

single-write = 1 packet multiple-writes = 1 packet

single-packet
connection 1 2

many-packet
or long-term
connection

3 4

C
on

ne
ct

io
n

 C
on

tr
ol

Overview of IRIS HIPPI Implementation

3

2. Single-packet connection, multiple-write packet:

• The application indicates the length of a packet.

• The application does the first write() call, which causes the
connection to be opened.

• The application continues to do write() calls.

• A packet is sent. Data from the write() calls, up to the specified
packet length, are sent as one packet. The packet length can be
indeterminate.

• The HIPPI subsystem closes the connection.

3. Many-packet connection, single-write packets:

• The application asks for a long-term connection.

• The application does the first write() call and the connection is
opened.

• One packet is sent. It consists of the data in the write() call.

• The application does any number of write() calls.

• One packet is created and sent from each write().

• The connection remains open until the application closes it.

4. Many-packet connection, multiple-write packets:

• The application asks for a long-term connection.

• The application indicates the length of a packet. This length may be
indeterminate or a specified bytecount.

• The application does the first write() call and the connection is
opened.

• The application does any number of write() calls.

• A packet is sent. Data from the write() calls, up to the specified
packet length, are sent as one packet. The packet length can be
indeterminate.

• The application may indicate the end of the packet at any time.

• The application can send any number of packets by indicating a
length for each new packet.

• The connection remains open until the application closes it.

4

Description of IRIS HIPPI Implementation

Figure 1-1 Interfaces for Controlling One Channel of the HIPPI Subsystem

The IRIS HIPPI implementation consists of 4 main components:

• the device file (/dev/hippi#) and access methods for controlling the
HIPPI subsystem, illustrated in Figure 1-1

• transmission-related information objects (FDOs) for each open device
file descriptor

• reception-related information objects (ULPOs) for different upper-layer
protocol applications (ULPs)

• the application programming interface (API)

Each of these components is described in a section below.

HIPPI-PH

HIPPI-FP

FDO for
HIPPI-LE FDO 1 FDO 2 FDO 3 FDO 4

if_hip

IP

TCP UDP

sockets

/dev/hippi0
/dev/hippi0

/dev/hippi0
/dev/hippi0

/dev/hippi0

* Mutually exclusive

Transmit HIPPI Channel

(The same options are available

HIPPI-PH Access Method*HIPPI-FP Access Method*

for the receive channel.)

OR

FDO-PH

Overview of IRIS HIPPI Implementation

5

The Transmission Information Object for File Descriptors

A portion of the IRIS HIPPI subsystem, within the UNIX kernel, maintains
transmission information objects, referred to as file descriptor objects (FDOs).
An FDO is maintained for each open file descriptor. The HIPPI subsystem
uses this information for generating HIPPI packets on transmission.
Applications change the values through the IRIS HIPPI API. The values are
persistent, so they can be used on sequentially sent packets, without
resetting.

• the ULP’s identification number (that is, the ULP-id)

• access mode (read-only, write-only, read and write)

• the I-field used when establishing a connection

• the size of the first burst for each packet

• the setting for the B-bit in the FP header (used by HIPPI-FP only)

• the setting for the P-bit of the FP header (used by HIPPI-FP only)

• the size of the D1 area (used by HIPPI-FP only)

The Upper Layer Protocol Object

A portion of the IRIS HIPPI subsystem, within the UNIX kernel, maintains
reception information objects, called upper-layer protocol objects (ULPOs). A
ULPO is maintained for each ULP-id. Each ULPO consists of a set of
information that the HIPPI subsystem uses when receiving HIPPI packets.
Each application must have a ULPO associated with (bound to) it. With
HIPPI-FP, the information in one ULPO can be shared among a group of
applications. Applications use the HIPPI API (ioctl calls) to change their
ULPO values.

Note: HIPPI-LE (over which TCP/IP runs) is an example of a ULP.1 ULPs
that customers may develop include IPI-3 and “raw” protocols. ♦

1 Currently the information in the HIPPI-LE’s ULPO cannot be shared with other network-layer applications.

6

Description of IRIS HIPPI Implementation

Each ULPO maintains the following information:

• the ULP’s identification number (that is, the ULP-id), used only by
HIPPI-FP

• the number of applications using this ULP-id, used only by HIPPI-FP

• the received bytecount for the packet currently being read

The API

The IRIS HIPPI product includes an application programming interface
(API) that allows customer-developed applications to change the
information in their ULPO and FDO and to control the HIPPI subsystem.
The API is through a UNIX “character special” device file.

By invoking different IRIS HIPPI API commands, customer-developed
programs define their access method, data flow (packet) control, connection
control, and HIPPI protocol processing.

Further details on the API are provided in Chapter 2.

The Device File and Access Methods

The IRIS HIPPI implementation provides the /dev/hippi0 device file for
accessing and controlling the HIPPI subsystem. Two different access
methods (described below) are provided. Both use the /dev/hippi0 device file.
The access method is defined when the device file is bound.

IRIS HIPPI offers two mutually exclusive methods for accessing the HIPPI
subsystem: HIPPI-FP and HIPPI-PH. The HIPPI-FP access method requires
the use of FP headers and provides automatic processing of that header. The
HIPPI-PH method does not require use of the FP header, thus allowing an
application to bypass the HIPPI-FP layer.

Besides the difference (discussed above) in the point of access, the main
differences between the two access methods revolve around coexistence
with other ULPs (including HIPPI-LE and the TCP/IP stack), as listed
below:

• For HIPPI-FP, received packets are demultiplexed using ULP-ids. For
HIPPI-PH, all packets are placed on a single input queue.

Overview of IRIS HIPPI Implementation

7

• For HIPPI-FP, access to the HIPPI subsystem is blocked when a ULP is
accessing the device. With the HIPPI-PH access method, no blocking
occurs.

Further details are provided in the “The HIPPI-PH Access Method” on page
8, and “The HIPPI-FP Access Method” on page 14.

Implementation Details

The Silicon Graphics IRIS HIPPI Product (HIPPI board, device driver,
interface, and firmware) has been designed to meet the ANSI X3T9
Standards Committee’s working and preliminary draft standards for the
High-Performance Parallel Interface.2 The HIPPI board design includes the
following implementation details that are either not mentioned in the ANSI
documentation for the HIPPI standard, or are considered by the design team
to be ambiguously defined in the standards documentation:

• Once a receiving channel has been created and configured to accept
connections, all incoming connection requests are accepted by the
HIPPI board. The HIPPI subsystem does not wait for upper-layer input.
(That is, the HIPPI board does not generate the service primitive
PH_RING.Indicate and does not allow the application to respond with
a PH_ANSWER.Request for each connection). The upper layers may
discard data that has been received from undesirable connections.

• Each instance of a ULPO must be assigned a ULP-id that is unique
within the ULPOs for a specific HIPPI board. A valid ULP-id is a
number between 0 and 255 decimal (inclusive); 4 is reserved for and
used by the IRIX™ module implementing 8802.2 Link Encapsulation
(HIPPI-LE); 7 is reserved for IPI-3 implementations.

2 HIPPI-LE working draft dated June 30, 1992; HIPPI-FP preliminary draft dated June 24, 1991; HIPPI-PH
working draft dated December 16, 1992.

8

Description of IRIS HIPPI Implementation

The HIPPI-PH Access Method

The HIPPI-PH access method controls the HIPPI protocol stack at the
HIPPI-PH layer. With this access method, the HIPPI-FP protocol is bypassed;
the IRIS HIPPI subsystem does no checking for or processing of HIPPI-FP
protocol items. Accessing the HIPPI subsystem in this manner is well-suited
for applications requiring full or almost full use of the HIPPI device, and
situations where (for other reasons) the application does not wish to use the
HIPPI-FP protocol.

Description of HIPPI-PH

HIPPI-PH supports the following functions for reception:

• Accepts all incoming HIPPI packets. Does not reject any packet, and
does not demultiplex using the ULP-id.

• Enqueues the entire packet on the input queue for retrieval by the
application. Does not interpret anything in the packet (not an FP header
or D1 data).

• The HIPPI subsystem maintains a received bytecount value (offset) that
can be used by applications to identify packet boundaries

HIPPI-PH supports the following functions for transmission:

• Provides two choices for setting up the HIPPI connection: a
single-packet connection (where the HIPPI subsystem creates and tears
down a connection for each packet), and a long-term connection (where
the HIPPI subsystem keeps the connection up across one, many, or all
packets). In long-term connections, the application controls the timing
of the disconnect.

• Provides two methods for creating packets: “multiple-write” packets
(where the PACKET signal is asserted across multiple write() calls) and
single-write packets (where the PACKET signal is deasserted when the
data from one write() has been transmitted). The maximum bytecount
for any write() is 2 megabytes, so a single-write packet cannot be larger
than 2 megabytes.

• Allows an application to send an “infinite” sized packet.

The HIPPI-PH Access Method

9

• Allows an application to specify that the first burst of any packet be a
short burst.

• Allows an application to terminate a multiple-write packet before its
bytecount is transmitted.

• Allows an application to use the HIPPI subsystem as a “raw” data
pipeline. For example, the FP header is not required and the I-field can
be set to any value.

• HIPPI-PH supports the four different functionality scenarios for
transmission, summarized in Table 1-1.

Applications using the HIPPI-PH access method can open the device for
transmit only (illustrated in Figure 1-2), receive only (also illustrated in
Figure 1-2), or for both (illustrated in Figure 1-3). Once the device is open
and bound, any of the functionality scenarios in Table 1-1 can be used.

Figure 1-2 Block Diagram for Two Applications Using HIPPI-PH:
One Receive-Only and One Transmit-Only

O
pe

ra
tin

g
S

ys
te

m

FDO-PH

Tr
an

sm
it

R
ec

ei
ve

application that
only transmits

ULPO-PH

application that
only receives

H
ar

dw
ar

e

/dev/hippi0 (r)

HIPPI-PH

/dev/hippi0 (w)

HIPPI API

10

Description of IRIS HIPPI Implementation

Figure 1-3 Block Diagram for One Application Using HIPPI-PH:
Receive and Transmit

There are certain constraints associated with using the HIPPI-PH access
method, as listed below. However, with HIPPI-PH overall, there are fewer
constraints on what the application can do with the interface than with
HIPPI-FP.

• If more than one application operates a channel (transmit or receive) of
the HIPPI board, an arbitration and synchronization mechanism
between the applications must be developed to prevent race conditions.

• The HIPPI network interface cannot be ifconfig’ed up, which means that
the TCP/IP protocol stack cannot use the HIPPI board.

• For receiving, if a HIPPI-FP header exists in the packet, it is not
interpreted (and not demultiplexed) by the HIPPI subsystem.

• All read()s and write()s must specify buffers that are 8-byte
word-aligned. This is because direct memory access (DMA) occurs
directly to/from user application space and the HIPPI device only
handles word-aligned DMAs.

• The data lengths for all read()s and write()s must be multiples of 8 bytes.

O
pe

ra
tin

g
S

ys
te

m

ULPO-PH

Tr
an

sm
it

R
ec

ei
ve

application that transmits and receives

H
ar

dw
ar

e

HIPPI-PH

/dev/hippi0 (rw)

HIPPI API

FDO-PH

The HIPPI-PH Access Method

11

HIPPI-PH Output

When a device is opened for writing and bound with the HIPPI-PH access
method, the HIPPI subsystem transmits only data that the application
passes to it. No additional data, encapsulation, or HIPPI protocols are added
by the HIPPI subsystem. The only information used from the application’s
FDO is the I-field and the short burst setting.

The application can define the first burst as short within each packet.

HIPPI-PH Input

When a device is opened for reading and bound with the HIPPI-PH access
method, the HIPPI subsystem receives all inbound data; all packets are
enqueued on the reading queue. The HIPPI subsystem does not attempt to
interpret an FP header; therefore, if an FP/D1 header exists, these are passed
to the application as part of the data stream. No demultiplexing is performed
on the ULP-id. No special handling features are available.

The application can retrieve a packet bytecount (offset) value that simplifies
identification of packet boundaries.

How HIPPI Protocol Items Are Handled With the HIPPI-PH
Access Method

This section describes how the HIPPI-PH access method handles the HIPPI
I-field and the HIPPI Framing Protocol.

How I-Fields Are Handled on Transmission

The FDO maintains a value for the I-field. The HIPPI subsystem uses the
value each time it sets up a connection. Applications use an ioctl() call to set
the I-field value to a new one whenever desired. The HIPPI subsystem does
not interpret or alter the I-field in any way during transmission.

How I-Fields Are Handled on Reception

The HIPPI subsystem does not interpret or alter the I-field in any way for
reception.

12

Description of IRIS HIPPI Implementation

How the Framing Protocol and D1 Data Are Handled on Transmission

The HIPPI-PH access method does not generate an FP header or D1 data
area for packets on transmission. An application may utilize the HIPPI
Framing Protocol by generating its own FP header/D1 data and
transmitting these just as it does all other packet data (with write calls), as
illustrated in Figure 1-4. An application may invoke an ioctl() call to define
the bytecount for the first (short) burst; the data for that first burst is taken
from the first write() call, as illustrated in Figure 1-5.

Figure 1-4 Creation of HIPPI-PH Packet

Figure 1-5 Creation of HIPPI-PH Packet With First Short Burst

data from
write() call

data

HIPPI-PH Packet as Sent

(May include FP header
and D1 data, if appli-
cation creates them.)

data from
write() call

For a multiple-write packet:

other write()s

For a single-write packet:

data

(May include FP items.)

HIPPI-PH Packet as Sent

data from
write() call

For a single-write or
data

(may include FP items)

short burst burst

data

first burst bytecount

other write()s

multiple-write packet:

The HIPPI-PH Access Method

13

How the Framing Protocol and D1 Data Are Handled on Reception

On incoming packets, HIPPI-PH does not check for the presence of an FP
header nor does it interpret the FP header if one exists. If an FP header/D1
area are present in a packet, the HIPPI subsystem treats that packet just as it
does any other packet (enqueuing the contents of the packet on the receive
queue without any interpretation, separation, or special processing).

14

Description of IRIS HIPPI Implementation

The HIPPI-FP Access Method

Description of HIPPI-FP

• The HIPPI-FP access method controls the HIPPI protocol stack at the
HIPPI-FP layer and provides for sharing of the HIPPI receive and/or
transmit channels among applications, as illustrated in Figure 1-6. Up
to 32 different applications (open file descriptors) can use the IRIS
HIPPI subsystem simultaneously in any combination of
transmitting-only, receiving-only, and transmitting-and-receiving.

Figure 1-6 Block Diagram for Using HIPPI-FP

O
pe

ra
tin

g
S

ys
te

m

HIPPI-LE

FPO-2

Tr
an

sm
it

R
ec

ei
ve

3 applications that
only transmit

ULPO-3

2 applications that
only receive

applications

if_hip
ULPO-1

4 applications that
transmit & receive

Sockets

H
ar

dw
ar

e

/dev/hippi0 (r&w) /dev/hippi0 (r)

HIPPI-PH

HIPPI-FP

HIPPI -FP Packet

/dev/hippi0 (w)IP Stack

HIPPI API

FDO-1

The HIPPI-FP Access Method

15

HIPPI-FP supports the following functions for reception:

• Up to 32 different applications (open file descriptors) can receive HIPPI
packets simultaneously.

• Up to 8 different customer-developed ULPOs can be active
simultaneously. Each application must bind to one ULPO. HIPPI-IPI is
an example of a ULPO. (The HIPPI-LE module that is part of the HIPPI
product does not count as one of these ULPOs.)

• The HIPPI subsystem demultiplexes incoming packets using the
ULP-ids from the active ULPOs. It discards packets that do not match
any of the ULP-ids in active ULPOs.

• The HIPPI subsystem verifies the presence of a valid FP header and
discards packets that do not have a valid FP header.

• The HIPPI subsystem separates the FP header and D1 data from the D2
data so that the application’s first read() retrieves the FP header and D1
data, while its subsequent read()s retrieve the D2 data.

• The HIPPI subsystem maintains a packet offset value (bytecount) that
can be used by applications to identify packet boundaries.

• User-layer applications can use the IRIX default network stack, the
Internet Protocol (IP) suite. The HIPPI product ships with a
socket-based driver, if_hip, that supports the IP suite over HIPPI using
HIPPI-LE. Customer-developed programs can coexist with this
networking software. (This feature is not available in “mixed”
configurations, where one of the HIPPI channels is being used by
HIPPI-FP and the other by HIPPI-PH.)

Note: The IP software requires equal-access to its lower layer services.
If applications sharing the HIPPI subsystem with IP do not meet this
requirement, the performance of IP is seriously compromised. ♦

• Special “auto-bind” device files can be set up with more general
permissions in order to allow user access to specific ULPOs.

HIPPI-FP supports the following functions for transmission:

• Up to 32 different applications (open file descriptors) can transmit
HIPPI packets simultaneously.

• Up to 8 different customer-developed FDOs can be active
simultaneously. Each application must bind to one FDO. HIPPI-IPI is

16

Description of IRIS HIPPI Implementation

an example of an FDO. (The HIPPI-LE module that is part of the HIPPI
product does not count as one of these FDOs.)

• The HIPPI subsystem creates an FP header for each packet.

• Allows an application to specify that the first burst of any packet
contains only the FP header and, optionally, a D1 area. The word count
of this first burst can be short (1 to 255 words) or standard (256 words).
The B bit in the FP header is automatically set.

• Allows an application to specify the presence of D1 data and the size of
the D1 area. The P bit in the FP header is automatically set.

• HIPPI-FP supports the four different functionality scenarios for
transmission, summarized in Table 1-1.

With HIPPI-FP, there are certain constraints, as listed below:

• For transmitting, a HIPPI-FP header is attached to every outgoing
packet. If the application does not specify an FP header, the HIPPI
subsystem uses a default one.

• For receiving, each incoming packet must have a valid HIPPI-FP
header. The HIPPI subsystem demultiplexes incoming packets based
upon the ULP identifier in the FP header.

• Incoming connection requests cannot be selectively rejected by the
ULPO or application; each incoming connection request results in
acceptance of the packet. However, the HIPPI subsystem discards
packets with ULP-ids that do not match any of those that are currently
bound. All applications that have opened a HIPPI file descriptor for
receiving (reading) and have bound to a ULPO will receive all
incoming packets destined to the bound ULP-id.

• All read()s and write()s must specify buffers that are 8-byte
word-aligned. This is because direct memory access (DMA) occurs
directly to or from user application space and the HIPPI device only
handles word-aligned DMAs.

• The data lengths for all read()s and write()s must be multiples of 8 bytes.

The HIPPI-FP Access Method

17

HIPPI-FP Output

The destination endpoint is specified by an ioctl() call that sets the I-field for
all subsequent packets (until the value is changed). The I-field can be
changed at any time, and the ioctl() call is efficient enough that there is no
problem with setting the I-field just before each write() call for a series of
single-write packets.

HIPPI FP headers are automatically generated on output. The default FP
header (illustrated in Figure 1-7) has the ULP identifier (specified at bind
time), does not have any D1 area, and the P and B bits are off. If an
application defines a size for the D1 area or specifies a first burst containing
only FP header and D1 area, this information is included in the header. The
D2_Size field in the FP header is filled with the proper value.

Figure 1-7 Default FP Header for HIPPI-FP Transmission

HIPPI-FP Input

When a device is opened for reading and bound to a ULPO with the
HIPPI-FP access method, the associated application is able to retrieve all
HIPPI packets that arrive with the bound ULP-id. The demultiplexing on
ULP-ids is done on the HIPPI board so that DMA can occur directly to
user-space. If multiple applications share a ULPO, demultiplexing the
packets must be handled by an application-level program.

HIPPI-FP separates the FP header and D1_Data_Area from the D2 area. The
application’s first read() call returns the FPheader/D1data exactly. (The
return value tells how large these areas are). Subsequent read() calls return

bits
031 10

11 3
2

D2_Offset
D1__Size = 0Reserved = 0

23
22

21
24

0 0ULP-id from FDO

3263

D2_Size Calculated Correctly by IRIS HIPPI Subsystem

= 0

18

Description of IRIS HIPPI Implementation

the D2 area until the D2 data is completely read. By monitoring the HIPPI
subsystem’s packet offset value, the application can tell when the next read()
is going to return the FPheader/D1area for a new packet.

It is possible to receive packets that are very large because reception can be
broken up into multiple read()s. This also helps provide for some scattering
of data, but small read()s are inefficient.

An application can retrieve a packet bytecount (offset) value that simplifies
identification of packet boundaries.

How HIPPI Protocol Items Are Handled With the HIPPI-FP
Access Method

This section describes how the HIPPI-FP access method handles the HIPPI
I-field and the HIPPI Framing Protocol.

How I-Fields Are Handled on Transmission

Each FDO contains a value for the I-field that the HIPPI subsystem includes
each time it sets up a connection. Applications use an ioctl() call to set the
value to a new one whenever desired. The HIPPI subsystem does not
interpret nor alter the I-field in any way during transmission.

How I-Fields Are Handled on Reception

The HIPPI subsystem does not interpret nor alter the I-field in any way
during reception.

How the Framing Protocol Is Handled on Transmission

When accessed with the HIPPI-FP access method, the HIPPI subsystem uses
the HIPPI Framing Protocol on all connections for receiving and
transmitting, as explained below.

The HIPPI subsystem creates an FP header for each packet that it transmits.
The default value for the generated FP header is as follows:

The HIPPI-FP Access Method

19

• D2_Size (that is, bits 63:32 of the FP header) is set to the size of the
write() call for a single-write packet or, for a multiple-write packet, the
bytecount indicated by the ioctl() call that starts the packet.

• ULP-id (that is, bits 31:24) is set to the ULP-id that was provided by the
application when it bound to the ULPO.

• Control (P and B) and reserved bits are off (that is, bits 23:11 are set to
zero).

• D1_Area_Size and D1_Offset are set to zero.

To include D1 data in a packet, an application specifies the size of the D1
area, using an ioctl() call. This action sets the D1_Area_Size in the FDO and
causes the P bit in the FP header to be set ON. The application then does its
write (or first write for a multiple-write packet), pointing to contiguous D1
and D2 data.

To place only the FP header and D1 data (optional) in the first burst and to
set the B-bit, an application invokes an ioctl() call, specifiying the size of the
first burst. If the specified size is less than 256 words, the IRIS HIPPI
subsystem handles the burst as a short burst. The HIPPI subsystem creates a
first burst of the indicated size (short or standard length) that contains the
following data:

• The required, and automatically generated, FP header (8 bytes).

• An optional number of D1 data bytes, up to a maximum of 1016.

The D2 size for the FP header is calculated by the IRIS HIPPI subsystem, as
described immediately below.

• For a single-write packet, the D2 data size is the size of the write() call
minus the D1_Area_Size, as shown in Figure 1-8.

• For any multiple-write packet, the D2 data size is as specified by an
ioctl() command, as shown in Figure 1-9 (illustrating contiguous D1 and
D2 data) and Figure 1-10 (illustrating FP header and D1 data separated
into the first burst).

20

Description of IRIS HIPPI Implementation

Figure 1-8 Single-Write HIPPI-FP Packet With D1 Data

Figure 1-9 Multiple-Write HIPPI-FP Packet: Contiguous D1 and D2 Data

FDO

data from write()

HIPPI-FP Packet

FP Header D1 Data and D2 Data

D1 Area Size > 0
ULP-id

size from write() size - D1_Area_Size = D2_Size

D1 and D2
Data

P bit =1
B bit =0

first burst burst

D2 Data

FDO

data from write()

HIPPI-FP Packet

FP Header D1 Data and D2 Data

D1 Area Size > 0
ULP-id

D1 and D2 Data

P bit =1
B bit =0

data from write() D2 Data

first burst burst

D2 Data

(bytecount from START_PKT) - D1_Area_Size = D2_Size

Mixing HIPPI-PH and HIPPI-FP

21

Figure 1-10 Multiple-Write HIPPI-FP Packet: Separate FP Header and D1 Data

How the Framing Protocol Is Handled on Reception

With each reception of a packet, the HIPPI subsystem interprets the FP
header information, as required by the standard. The application’s first read()
retrieves the FPheader/D1data; subsequent read() calls retrieve D2 data. It is
the responsibility of the reading application(s) to keep track of which read()s
retrieve which kinds of data. The HIPPI subsystem demultiplexes incoming
packets, using the ULP-id field. Incoming packets for unrecognized ULP-ids
are discarded by the HIPPI subsystem.

Mixing HIPPI-PH and HIPPI-FP

HIPPI-PH and HIPPI-FP access methods can be used simultaneously so that
they share one HIPPI board. There are two restrictions for this configuration:

• Each HIPPI-channel (receive and transmit) must be used by either
HIPPI-PH or HIPPI-FP, but not both. For example, a number of
applications and ULPOs can use HIPPI-FP for receiving demultiplexed
data while a sending application uses HIPPI-PH, as illustrated in
Figure 1-11.

data from write()

HIPPI-FP Packet

FP Header D1 Data

D1 Area Size > 0
ULP-id

data from write()

D2 Data

P bit =1

D2 Data

B bit =1

first burst may be short burst

FDO

D1 and D2
Data

SHBurst size - 8 = bytes taken for first burst

(bytecount from START_PKT) - D1_Area_Size = D2_Size

22

Description of IRIS HIPPI Implementation

• The TCP/IP over HIPPI-LE protocol stack cannot be supported because
it requires HIPPI-FP access for both transmit and receive.

Figure 1-11 Block Diagram for Mixing HIPPI-PH and HIPPI-FP

O
pe

ra
tin

g
S

ys
te

m

Tr
an

sm
it

R
ec

ei
ve

ULPO-PH

1 “raw” application that
only transmits

H
ar

dw
ar

e

/dev/hippi0 (w)

HIPPI-PH

ULPO-1

4 applications that
only receive

4 /dev/hippi0 (r)

Note: In a mixed configuration, the

HIPPI API

HIPPI-LE and TCP/IP stack
cannot be used.

HIPPI-FP

23

Chapter 2

2. Programming Notes
for IRIS HIPPI API

000

This chapter describes how to interface an application to the IRIS HIPPI
subsystem. A reference section containing an alphabetical listing of all the
ioctl() calls in the HIPPI application programming interface (API) is
provided in “API Reference” on page 36.

Programming for the HIPPI-PH Access Method

This section describes how to program a module that accesses the HIPPI
subsystem at the physical layer (that is, it does not use the HIPPI Framing
Protocol).

Includes

The following file must be included in any program using the IRIS HIPPI
API:

#include <sys/hippi.h>

Special Instructions

For maximum throughput, DMA between the HIPPI board and the host
application occurs directly to or from user application space. Because of this,
and the fact that the DMA component (ASIC) has a 64-bit interface, all
application read()s and write()s must specify buffers that are 8-byte

24

Programming Notes for IRIS HIPPI API

word-aligned, and the data bytecount must be a multiple of 8. (See
memalign(3C) for a method of allocating 8-byte aligned memory).

Opening and Binding to the Device

An application can open a HIPPI device (for example, hippi0 or hippi1) for
read-only, write-only, or read-and-write access. The acronym fd_hippi0 , in
the examples below, refers to the file descriptor for the opened HIPPI device.

It is important that the application open the HIPPI device with only the
read/write flag settings that it needs. For example, if an application is not
going to be doing read()s, it should set only the WRITE flag. When the READ
flag is set, the HIPPI subsystem is told to expect HIPPI packets, so incoming
packets are always accepted by the HIPPI device. The HIPPI subsystem
holds each accepted packet until an application reads it. If no application
consumes the incoming packets, the HIPPI device stalls for lack of buffer
space.

To set up an application as a HIPPI-PH user, use one of the following sets of
calls at the “beginning of time”:

• For a transmit-only connection:

fd_hippi0=open (“/dev/hippi0”, O_WRONLY);
ioctl (fd_hippi0, HIPIOC_BIND_ULP, HIPPI_ULP_PH

• For a receive-only connection:

fd_hippi0=open (“/dev/hippi0”, O_RDONLY);
ioctl (fd_hippi0, HIPIOC_BIND_ULP, HIPPI_ULP_PH

• For a transmit and receive connection:

fd_hippi0=open (“/dev/hippi0”, O_RDWR);
ioctl (fd_hippi0, HIPIOC_BIND_ULP, HIPPI_ULP_PH

Transmitting

For an application to transmit over its HIPPI-PH connection, one of the
following sets (scenarios) of calls must be made. The order of the calls is
unimportant except for the initial write() call, which actually starts sending

Programming for the HIPPI-PH Access Method

25

the data. Four functionality scenarios are supported. (See Table 1-1 for
details on the four transmission functionality scenarios.)

Many of the ioctl() calls write or set a value for a stored ULPO or FDO
parameter. These values are not cleared when a transmission completes, so
prior settings can be reused with subsequent write() calls without resetting.
All the calls should be made for the first transmission (since the device was
opened) in order to initialize them to non-default values.

All application write()s must specify buffers that are 8-byte word-aligned,
and the data bytecount must be a multiple of 8. (See memalign(3C)).

Notice the following:

1. When the HIPIOCW_CONNECTcall is used, the HIPPI subsystem sets up
a “permanent” connection. In contrast, when the HIPIOCW_CONNECT

call is not used, the connection is disconnected as soon as the packet has
been sent.

2. When the HIPIOCW_START_PKT call is used, many write()s may make
up one packet. In contrast, when the HIPIOCW_START_PKT call is not
used, one write() is a single packet.

Functionality Scenario 1

This scenario describes transmissions of small packets (under 2 megabytes)
that use one write() for each packet. The connection disconnects when the
packet has been completely sent.

The application makes an ioctl() call to specify the I-field, then makes the
write() call. The maximum sized packet with this method is 2 megabytes. The
packet and connection are both terminated when the data from the single
write() call has completed.

ioctl (fd_hippi0, HIPIOCW_I, I-fieldValue);
/* I-field does not need to be reset for each pkt */

write (fd_hippi0, buffer, size);

/* PACKET line goes low (false) after one write */
/* connection is dropped after one write */

26

Programming Notes for IRIS HIPPI API

Functionality Scenario 3

This scenario describes transmission of small packets (under 2 megabytes)
that use only one write() for each packet. The connection is kept open.

The application makes an ioctl() call to specify the I-field for its “permanent”
connection, then makes a write() call to send the first packet. The
maximum-sized packet with this method is 2 megabytes. The PACKET signal
is dropped when the write() call completes. The connection, however, is not
terminated, so the next packet can be another single-write, or a
multiple-write (Functionality Scenario #4).

ioctl (fd_hippi0, HIPIOCW_CONNECT, I-fieldValue);
write (fd_hippi0, buffer, size); /* first packet*/
/* PKT line goes low after one write. Connection is not dropped */
write (fd_hippi0, buffer, size); /* second packet*/
/* PKT line goes low after one write. Connection is not dropped */

/* When application wants connection to be torn down, */
/* it tells the HIPPI subsystem to disconnect: */

ioctl (fd_hippi0, HIPIOCW_DISCONN);

Functionality Scenario 2

This scenario describes transmission of large packets that require many
write() calls and where the connection disconnects when the packet has been
completely sent.

The application makes an ioctl() call to specify the I-field, and one to define
the size (bytecount) of the packet. It then makes the first write() call;
subsequent write() calls are treated as part of the same packet until the
bytecount is reached. The PACKET and CONNECTION signals are
automatically dropped after the specified number of bytes have been sent.
This scheme allows an application to send very large packets. It also allows
some data gathering on output. (Note, however, that if packets are formed
using small-sized write() calls, performance degrades considerably.)

ioctl (fd_hippi0, HIPIOCW_I, I-fieldValue);
ioctl (fd_hippi0, HIPIOCW_SHBURST, firstburstsize); /* only if size is changing */
ioctl (fd_hippi0, HIPIOCW_START_PKT, bytecount);
write (fd_hippi0, buffer, size); /* buffer can point to FPheader + D1 data */

Programming for the HIPPI-PH Access Method

27

write (fd_hippi0, buffer, size); /* size=only a part of the complete pkt*/
write (fd_hippi0, buffer, size); /* max size for each write is 2MB*/
write (fd_hippi0, buffer, size);
etc.

/* connection is dropped when packet is completely sent */

Functionality Scenario 4

This scenario describes transmission of large packets that require many
write() calls and where the connection is kept open.

The application makes an ioctl() call to specify the I-field for its “permanent”
connection and one to specify the size (bytecount) of the packet. Each write()
is treated as part of the same packet, until the bytecount is satisfied, at which
time the packet is ended. When the application wants to terminate the
connection, it makes an ioctl() call to disconnect.

ioctl (fd_hippi0, HIPIOCW_CONNECT, I-fieldValue);
ioctl (fd_hippi0, HIPIOCW_SHBURST, firstburstsize); /* only if size is changing */
ioctl (fd_hippi0, HIPIOCW_START_PKT, bytecount);
write (fd_hippi0, buffer, size); /* buffer can point to FPheader + D1 data */
write (fd_hippi0, buffer, size); /* size=only a part of the complete pkt*/
write (fd_hippi0, buffer, size); /* max size for each write is 2MB */
etc.
/*when pkt’s bytecount is complete, PKT line goes low*/
/*connection is not dropped*/

/* Optional: if the application wishes to start another packet,
/* it does this: */
ioctl (fd_hippi0, HIPIOCW_SHBURST, firstburstsize); /* only if size is changing */
ioctl (fd_hippi0, HIPIOCW_START_PKT, bytecount);
...
/* When the application wants the connection to be torn down, */
/* it tells the HIPPI subsystem to disconnect */
ioctl (fd_hippi0, HIPIOCW_DISCONN);

28

Programming Notes for IRIS HIPPI API

Special Use of Functionality Scenario 4

For an infinite-sized packet on a long-term (“permanent”) connection.

The application makes an ioctl() call to specify the I-field for its “permanent”
connection and one to specify the bytecount of the packet. The bytecount is
specified as HIPPI_D2SIZE_INFINITY. All write() calls are then treated as
one “infinite-sized” packet (that is, the PACKET signal is not deasserted),
until the packet is specifically terminated by the application with a special
ioctl() call. The connection is not dropped until the application disconnects it.

ioctl (fd_hippi0, HIPIOCW_CONNECT, I-fieldValue);
ioctl (fd_hippi0, HIPIOCW_SHBURST, firstburstsize); /* only if size is changing */
ioctl (fd_hippi0, HIPIOCW_START_PKT, HIPPI_D2SIZE_INFINITY);
/*infinity=0xFFFFFFFF) */
write (fd_hippi0, buffer, size); /*max size for each write is 2MB*/
write (fd_hippi0, buffer, size);
etc.

/* Optional: if the application wishes to terminate this packet, it does this */
ioctl (fd_hippi0, HIPIOCW_END_PKT);

/* Optional: if the application wishes to start another packet,
/* it does one of these: */
ioctl (fd_hippi0, HIPIOCW_START_PKT, HIPPI_D2SIZE_INFINITY);
/* or */
ioctl (fd_hippi0, HIPIOCW_START_PKT, bytecount);

/* When the application wishes to tear down the connection, */
/* it does one of these: */
ioctl (fd_hippi0, HIPIOCW_END_PKT);
ioctl (fd_hippi0, HIPIOCW_DISCONN);
/* or */
ioctl (fd_hippi0, HIPIOCW_DISCONN);

Receiving

In HIPPI-PH mode, all incoming data is accepted when the device file is
opened for reading. The HIPPI subsystem does not reject any connection
requests.

Programming for the HIPPI-FP Access Method

29

To retrieve its data, the application uses the calls below. All read()s retrieve
sequentially received data. If a packet contained an FP header and D1 data,
the HIPPI subsystem does not interpret them and does not separate them
from the D2 data, so the first read() may contain FP header, D1 data, and/or
D2 data. To determine packet boundaries, the application can use an ioctl()
call to retrieve the current offset (received bytecount) for the packet. When
the returned value is 0, the next read() retrieves the first bytes from a new
packet.

All application read()s must specify buffers that are 8-byte word aligned and
the data bytecount must be a multiple of 8. (See memalign(3C)).

offset = ioctl (fd_hippi0, HIPIOCR_PKT_OFFSET); /*when 0, nxt read is new pkt*/
read (fd_hippi0, buffer, size);
offset = ioctl (fd_hippi0, HIPIOCR_PKT_OFFSET); /*when 0, nxt read is new pkt*/
read (fd_hippi0, buffer, size);
etc.

When the application wishes to stop receiving data, it closes the file
descriptor using the following call:

close (fd_hippi0);

Programming for the HIPPI-FP Access Method

This section describes how to program a module that conforms with the
HIPPI Framing Protocol and is capable of sharing the receive and/or
transmit channels through the HIPPI subsystem with other upper layer
protocols (ULPs).

When an application opens the HIPPI device (for example, /dev/hippi0), the
application gets a file descriptor for a “cloned” device. (The device is cloned
in order to allow sharing of the device. By this mechanism, the application
can do binds to the HIPPI file descriptor without affecting other applications
that have opened the same device.)

Using a HIPPI ioctl() call, the application “binds” itself to one ULPO and
FDO. This action associates the application with one set of HIPPI
information that is then used by the HIPPI subsystem whenever it services
that application’s read/write requests. The application specifies which
ULPO by specifying the ULPO’s 8-bit identifier.

30

Programming Notes for IRIS HIPPI API

It is important that the application open the HIPPI device with only the
read/write flag settings that it needs. For example, if an application is not
going to be doing read()s, it should set only the WRITE flag. When the READ
flag is set, the HIPPI device is told to accept HIPPI packets on that ULP-id.
All incoming packets for that ULP-id are accepted by the HIPPI device. The
HIPPI subsystem holds each accepted packet until an application reads it. If
no application consumes the incoming packets, the HIPPI device stalls for
lack of buffer space.

Includes

The following files must be included in any program using the HIPPI API:

#include <sys/hippi.h>

Special Instructions

For maximum throughput, DMA between the HIPPI board and the host
application occurs directly to/from user application space. Because of this,
and the fact that the DMA component (ASIC) has a 64-bit interface, all
application read()s and write()s must specify buffers that are 8-byte
word-aligned, and the data bytecount must be a multiple of 8. (See
memalign(3C)).

Opening and Binding to the Device

An application can open a HIPPI device (hippi0) for read-only, write-only, or
read-and-write access. The acronym fd_hippi0, in the examples below,
refers to the file descriptor for the opened HIPPI device.

To set up an application as a HIPPI-FP user, use one of the following sets of
calls at the “beginning of time.” Within the calls in these examples, the ULP-id
is a positive number in the range 0-255 decimal (inclusive), where 4 is
reserved for the IRIX 8802.2 Link Encapsulation (HIPPI-LE) ULP, and 6 and
7 are reserved for HIPPI-IPI3 implementations. Each ULP’s identification
must be unique among the ULPs that are bound to that HIPPI board.

• For a transmit-only connection:

Programming for the HIPPI-FP Access Method

31

fd_hippi0=open (“/dev/hippi0”, O_WRONLY);
ioctl (fd_hippi0, HIPIOC_BIND_ULP, ULP-id);

• For a receive-only connection:

fd_hippi0=open (“/dev/hippi0”, O_RDONLY);
ioctl (fd_hippi0, HIPIOC_BIND_ULP, ULP-id);

• For a transmit and receive connection:

fd_hippi0=open (“/dev/hippi0”, O_RDWR);
ioctl (fd_hippi0, HIPIOC_BIND_ULP, ULP-id);

Transmitting

For a HIPPI-FP application to transmit over its HIPPI connection, one of the
sets of calls documented below in the “Functionality Scenarios” must be
made. The order of the calls is unimportant except for the initial write() call,
which actually starts sending the data. Four functionality scenarios are
supported. (See Table 1-1 for details on the four transmission functionality
scenarios.)

Many of the ioctl() calls write or set a value for a storedULPO or FDO
parameter. These values are not cleared when a transmission completes, so
prior settings can be reused with subsequent write() calls without resetting.
All the calls should be made for the first transmission (since the device was
opened) in order to initialize them to non-default values.

All application write()s must specify buffers that are 8-byte word-aligned,
and the data bytecount must be a multiple of 8. (See memalign(3C)).

Notice the following:

1. When the HIPIOCW_CONNECTcall is used, the HIPPI subsystem sets up
a “permanent” connection. In contrast, when the HIPIOCW_CONNECT

call is not used, the connection is disconnected as soon as the packet has
been sent.

2. When the HIPIOCW_START_PKT call is used, many write()s may make
up one packet. In contrast, when the HIPIOCW_START_PKT call is not
used, one write() is a single packet.

32

Programming Notes for IRIS HIPPI API

Functionality Scenario 1

This scenario describes transmissions of small packets (under 2 megabytes)
that use one write() for each packet. The connection disconnects when the
packet has been completely sent.

The application makes an ioctl() call to specify the I-field, then makes the
write() call. The maximum sized packet with this method is 2 megabytes. The
packet and connection are both terminated when the data from the single
write() call has completed.

ioctl (fd_hippi0, HIPIOCW_I, I-fieldValue);
/* I-field does not need to be reset for each pkt */
ioctl (fd_hippi0, HIPIOCW_D1_SIZE, bytecount); /* only if size is changing*/
write (fd_hippi0, buffer, size);

/* PKT line goes low (false) after one write */
/* connection is dropped after one write */

Functionality Scenario 3

This scenario describes transmission of small packets (under 2 megabytes)
that use only one write() for each packet. The connection is kept open.

The application makes an ioctl() call to specify the I-field for its “permanent”
connection, then makes a write() call to send the first packet. The maximum
sized packet with this method is 2 megabytes. The PACKET signal is dropped
when the write() call completes. The connection, however, is not terminated,
so the next packet can be another single-write or a multiple-write one
(Functionality Scenario #4).

ioctl (fd_hippi0, HIPIOCW_CONNECT, I-fieldValue);
ioctl (fd_hippi0, HIPIOCW_D1_SIZE, bytecount); /* only if size is changing*/
write (fd_hippi0, buffer, size); /* first packet*/
/* PKT line goes low after one write. Connection is not dropped */
write (fd_hippi0, buffer, size); /* second packet*/
/* PKT line goes low after one write. Connection is not dropped */

/* When application wants connection to be torn down, */
/* it tells the HIPPI subsystem to disconnect: */

Programming for the HIPPI-FP Access Method

33

ioctl (fd_hippi0, HIPIOCW_DISCONN);

Functionality Scenario 2

This scenario describes the transmission of large packets that require many
write() calls and where the connection disconnects when the packet has been
completely sent.

The application makes an ioctl() call to specify the I-field, and another call to
define the size (bytecount) of the packet. It then makes the first write() call;
subsequent write() calls are treated as part of the same packet until the
bytecount is reached. The PACKET and CONNECTION signals are
automatically dropped after the specified number of bytes have been sent.
This scheme allows an application to send very large packets. It also allows
some data gathering on output. (Note, however, that if packets are formed
using small-sized write() calls, performance degrades considerably.)

ioctl (fd_hippi0, HIPIOCW_I, I-fieldValue);
ioctl (fd_hippi0, HIPIOCW_D1_SIZE, bytecount); /* only if size is changing*/
ioctl (fd_hippi0, HIPIOCW_SHBURST, firstburstsize); /*only if burst_1 is chnging*/
ioctl (fd_hippi0, HIPIOCW_START_PKT, bytecount);
write (fd_hippi0, buffer, size); /* buffer can include D1 data */
write (fd_hippi0, buffer, size); /* size=only a part of the complete pkt*/
write (fd_hippi0, buffer, size); /* max size for each write is 2MB*/
write (fd_hippi0, buffer, size);
etc.

/* connection is dropped when pkt is completely sent */

Functionality Scenario 4

This scenario describes transmission of large packets that require many
write() calls and where the connection is kept open.

The application makes an ioctl() call to specify the I-field for its “permanent”
connection, and another call to specify the size (bytecount) of the packet.
Each write() is treated as part of the same packet, until the bytecount is
satisfied, at which time the packet is ended. When the application wants to
terminate the connection, it makes an ioctl() call to disconnect.

ioctl (fd_hippi0, HIPIOCW_CONNECT, I-fieldValue);

34

Programming Notes for IRIS HIPPI API

ioctl (fd_hippi0, HIPIOCW_SHBURST, firstburstsize); /*only if burst_1 is chnging*/
ioctl (fd_hippi0, HIPIOCW_D1_SIZE, bytecount); /* only if size is changing*/
ioctl (fd_hippi0, HIPIOCW_START_PKT, bytecount);
write (fd_hippi0, buffer, size); /* buffer can include D1 data */
write (fd_hippi0, buffer, size); /* size=only a part of the complete pkt*/
write (fd_hippi0, buffer, size); /* max size for each write is 2MB */
etc.
/*when pkt completes, PKT line goes low*/
/*connection is not dropped*/

/* When the application wants the connection to be torn down, */
/* it tells the HIPPI subsystem to disconnect */

ioctl (fd_hippi0, HIPIOCW_DISCONN);

Special Use of Functionality Scenario 4

For an infinite-sized packet on a long-term (“permanent”) connection.

The application makes an ioctl() call to specify the I-field for its “permanent”
connection, and another call to specify the bytecount of the packet. The
bytecount is specified as HIPPI_D2SIZE_INFINITY. All write() calls are then
treated as one “infinite-sized” packet (that is, the PACKET signal is not
deasserted), until the connection is specifically disconnected by the
application.

ioctl (fd_hippi0, HIPIOCW_CONNECT, I-fieldValue);
ioctl (fd_hippi0, HIPIOCW_SHBURST, firstburstsize); /*only if burst_1 is chnging*/
ioctl (fd_hippi0, HIPIOCW_D1_SIZE, bytecount); /* only if size is changing*/
ioctl (fd_hippi0, HIPIOCW_START_PKT, HIPPI_D2SIZE_INFINITY);
/*infinity=0xFFFFFFFF) */
write (fd_hippi0, buffer, size); /*max size for each write is 2MB*/
write (fd_hippi0, buffer, size);
etc.

/* Optional: if the application wishes to terminate this packet
/* and start another without dropping the connection, it does this: */

ioctl (fd_hippi0, HIPIOCW_END_PKT);
ioctl (fd_hippi0, HIPIOCW_START_PKT, bytecount);
etc.

Programming for the HIPPI-FP Access Method

35

/* When the application wishes to tear down the connection */
ioctl (fd_hippi0, HIPIOCW_END_PKT);
ioctl (fd_hippi0, HIPIOCW_DISCONN);

Receiving

To receive data, the application uses the calls below. The first read() of a
ULP’s queue retrieves a packet’s FP header and D1 area. Subsequent read()
calls retrieve D2 data. When the HIPIOCR_PKT_OFFSET returns zero, the
next read() will retrieve a new packet’s header and D1 area.

All application read()s must specify buffers that are 8-byte word-aligned, and
the data bytecount must be a multiple of 8. (See memalign(3C)).

read (fd_hippi0, buffer, size); /* FPheader and D1 data */
read (fd_hippi0, buffer, size); /* D2 data */
read (fd_hippi0, buffer, size); /* D2 data */
offset = ioctl (fd_hippi0, HIPIOCR_PKT_OFFSET); /*when 0, nxt read is new pkt*/

When the application wishes to stop receiving data, it closes the file
descriptor using the following call:

close (fd_hippi0);

36

Programming Notes for IRIS HIPPI API

API Reference

This section describes the HIPPI ioctl calls that comprise the API to the IRIS
HIPPI subsystem. These calls are defined in the sys/hippi.h file. Each
application program that wants to use the services of the HIPPI connection
uses these calls to define its ULPO and FDO values, to set up its
connection(s), and to transmit or receive data.

The API calls are listed in Table 2-1.

Table 2-1 HIPPI-PH API

Purpose API Call Page

Device Management:

Obtain statistics HIPIOC_GET_STATS 39

Connection Management:

Start/stop accepting connections HIPIOC_ACCEPT_FLAG 37

Set timeout for source’s connection HIPIOC_STIMEO 41

Prepare to open a single-packet
connection

HIPIOCW_I 47

Prepare to open a long-term connection HIPIOCW_CONNECT 44

Terminate a long-term connection HIPIOCW_DISCONN 48

Packet Control:

Received packet’s bytecount HIPIOCR_PKT_OFFSET 43

Send a single-write packet After setting the I-field, no
additional call is necessary,
other than the write().

Send a multiple-write packet HIPIOCW_START_PKT 53

Define first burst of a multiple-write
packet

HIPIOCW_SHBURST 51

Terminate a packet HIPIOCW_END_PKT 49

Retrieve errors from failed read() and
write() calls

HIPIOCR_ERRS
HIPIOCW_ERR

42
50

Define HIPPI-FP Fields:

Define D1 Area Size and set P-bit HIPIOCW_D1_SIZE 46

API Reference

37

HIPIOC_ACCEPT_FLAG

HIPIOC_ACCEPT_FLAG configures the HIPPI board to accept or refuse
connection requests.

Note: After each execution of /usr/etc/hipcntl bringup, /etc/init.d/network, or
each restart of the system, the IRIS HIPPI software sets this flag ON
(accepting). ♦

Usage

HIPPI device control for HIPPI-FP and HIPPI-PH.

ioctl (fd_hippi0, HIPIOCW_ACCEPT_FLAG, value);

The arg

The value is 1 to accept connection requests, and 0 to reject connection
requests.

Failures and Errors

This call fails for the following reasons:

• The IRIS HIPPI board is shutdown (for example, hipcntl shutdown or
HIPPI_SETONOFF has been called).

38

Programming Notes for IRIS HIPPI API

HIPIOC_BIND_ULP

HIPIOC_BIND_ULP is used to bind an application’s open file descriptor
(/dev/hippi0, /dev/hippi1, etc.) to a ULPO and FDO. If an application wishes to
both transmit and receive, it can bind once to a read-and-write file
descriptor, or it can make this call twice (once to a write-only file descriptor
and once to a read-only one).

• When the HIPPI-FP access method is used, up to 32 different
applications can be bound simultaneously.

• When the HIPPI-FP access method is used, up to eight different ULPOs
can be bound to each HIPPI subsystem

• When the HIPPI-PH method is used, only one ULPO (that being,
HIPPI_ULP_PH) can be bound for each HIPPI channel.

Usage

Initialization of HIPPI-FP.

ioctl (fd_hippi0, HIPIOC_BIND_ULP, ULP-id);

Initialization of HIPPI-PH.

ioctl (fd_hippi0, HIPIOC_BIND_ULP, HIPPI_ULP_PH);

The arg

For HIPPI-FP, the arg is the identification for the ULPO that the application
uses (range 0-255 decimal inclusive), where 4 is reserved for the IRIX 8802.2
Link Encapsulation (HIPPI-LE), and 6 and 7 are reserved for HIPPI-IPI. Each
ULPO implementation must have an identification, and each identification
must be unique among the ULPO’s open (bound) for the particular HIPPI
board (device).

The HIPPI-PH, the arg is HIPPI_ULP_PH.

Failures and Errors

This call fails for the following reasons:

• The maximum number of ULPOs are already bound to the HIPPI
device.

• A HIPPI-PH ULPO is already bound for this file descriptor.

API Reference

39

HIPIOC_GET_STATS

HIPIOC_GET_STATS is used to obtain statistics about the HIPPI device. The
HIPPI product ships with a utility (hipcntl) for doing this kind of monitoring,
so this ioctl call is not usually needed by customer-developed applications.

Usage

Monitoring of HIPPI-PH and HIPPI-FP devices and connections.

Note: This ioctl is typically used by hipcntl, the HIPPI control and
configuration utility.

ioctl (fd_hippi0, HIPIOC_GET_STATS, &hippi_stats); ♦

The arg

The arg is a pointer to a hippi_stats structure.

The hippi_stats structure is provided below for reference.

typedef struct hippi_stats {
u_long hst_flags; /* status flags */

#define HST_FLAG_DSIC 0x0001 /* SRC sees IC */
#define HST_FLAG_SDIC 0x0002 /* DST sees IC */
#define HST_FLAG_DST_ACCEPT 0x0010 /* DST is accepting connections */
#define HST_FLAG_DST_PKTIN 0x0020 /* DST: PACKET input is high */
#define HST_FLAG_DST_REQIN 0x0040 /* DST: REQUEST input is high */
#define HST_FLAG_SRC_REQOUT 0x0100 /* SRC: REQUEST is asserted */
#define HST_FLAG_SRC_CONIN 0x0200 /* SRC: CONNECT input is high */

/* Source statistics */
u_long hst_s_conns; /* total connections attempted */
u_long hst_s_packets; /* total packets sent */
u_long hst_s_rejects; /* connection attempts rejected */
u_long hst_s_dm_seqerrs; /* data sm sequence error */
u_long hst_s_cd_seqerrs; /* conn sm sequence error, dst */
u_long hst_s_cs_seqerrs; /* conn sm sequence error, src */
u_long hst_s_dsic_lost;
u_long hst_s_timeo; /* timed out connection attempts*/
u_long hst_s_connls; /* connections dropped by other side*/
u_long hst_s_par_err; /* source parity error */
u_long hst_s_resvd[6]; /* reserved for future compatibility*/

40

Programming Notes for IRIS HIPPI API

/* Destination statistics */
u_long hst_d_conns; /* total connections accepted */
u_long hst_d_packets; /* total packets received */
u_long hst_d_badulps; /* pkts dropped due to unknown ULP*/
u_long hst_d_ledrop; /* HIPPI-LE packets dropped */
u_long hst_d_llrc; /* conns dropped due to llrc error */
u_long hst_d_par_err; /* conns dropped due to parity err */
u_long hst_d_seq_err; /*conns dropped due to sequence err*/
u_long hst_d_sync; /* sync errors */
u_long hst_d_illbrst; /* packets with illegal burst sizes */
u_long hst_d_sdic_lost; /* conns dropped due to sdic lost */
u_long hst_d_nullconn; /* connections with zero packets */
u_long hst_d_resvd[5]; /* reserved for future compatibility*/

} hippi_stats_t;

Failures and Errors

This call fails for the following reasons:

• The driver is unable to copy the statistics from the board.

• The IRIS HIPPI board is shutdown (for example, hipcntl shutdown or
HIPPI_SETONOFF has be called).

API Reference

41

HIPIOC_STIMEO

HIPIOC_STIMEO sets the period of time for which the IRIS HIPPI source
channel waits before aborting a connection that is not moving data. The
granularity for this timeout is 250 milliseconds.

Usage

Transmission for HIPPI-FP and HIPPI-PH.

ioctl (fd_hippi0, HIPIOC_STIMEO, milliseconds);

The arg

The range of valid values for milliseconds is 0 to FFFFFFFF inclusive
(hexadecimal notation), which IRIS HIPPI rounds to the nearest 250
millisecond iterval.

Failures and Errors

This call fails for the following reasons:

• IRIS HIPPI board is shutdown (for example, hipcntl shutdown or
HIPPI_SETONOFF has be called).

42

Programming Notes for IRIS HIPPI API

HIPIOCR_ERRS

HIPIOCR_ERRS returns the error status from the last read() call for the
indicated file descriptor.

Usage

Error monitoring for reception with HIPPI-FP and HIPPI-PH.

error = ioctl (fd_hippi0, HIPIOCR_ERRS);

The arg

There is no arg for this call.

Returned Value

The r eturned error is a 6-bit vector indicating the errors that occurred on the
last read(), as summarized in Table 2-2.

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• If error (see Usage) is a negative value, then an error occurred while
making the ioctl() call, and none of the bits should be interpreted.

a. Causes the SDIC lost error also.

Table 2-2 Errors for Failed read() Calls

Bit Position Hex Mask Error

0 0x01 Destination parity error.

1 0x02 Destination LLRC error.

2 0x04 Destination sequence error.a

3 0x08 Destination sync error.

4 0x10 Destnnation illegal burst error.

5 0x20 Destination SDIC lost error.

API Reference

43

HIPIOCR_PKT_OFFSET

HIPIOCR_PKT_OFFSET retrieves the offset for the packet being received.

Usage

Reception for HIPPI-FP and HIPPI-PH.

offset = ioctl (fd_hippi0, HIPIOCR_PKT_OFFSET);

The arg

There is no arg for this call.

Returned Value

The r eturned offset is an integer indicating the current offset (number of
bytes received so far) for the packet in the next read(). When the offset is 0, the
next read() starts a new packet.

When the returned offset reaches 0x7FFFFFFF, the counter sticks (that is, does
not count any higher and does not roll over to zero). However, the counter
will again return true count values when the next packet arrives.

Failures and Errors

This call fails for the following reasons:

• The file descriptor has not been opened for reading by this application.

44

Programming Notes for IRIS HIPPI API

HIPIOCW_CONNECT

HIPIOCW_CONNECTcauses a long-term (many-packet) connection to be
established with the next write(). The argument sets the value for the I-field
that will be used on the connection request. Once this call has been made, the
HIPPI-subsystem sets up a connection with the next write() call, and does not
tear the connection down until the HIPIOCW_DISCONN call is invoked.

Note: For single-packet connections, use HIPIOCW_I . ♦

Usage

Transmission for HIPPI-FP and HIPPI-PH.

ioctl (fd_hippi0, HIPIOCW_CONNECT, I-fieldValue);

The arg

The I-fieldValue is a 32-bit number used as the I-field. IRIS HIPPI does not
verify, alter, or interpret the I-field value.

For a HIPPI-SC compliant I-field, bit 31 of the I-field must be set to 0 and the
remaining bits (30:0) must be partitioned into fields, as summarized in
Table 2-3. (For more details about the I-field, see Figure A-2.)

“Locally-administered” schemes are legal and supported. For a
locally-administered scheme, bit 31 must be set to 1 and bits 30:0 can be set
to comply with any locally-defined protocol or can be set to zero (for
example, I-field value = 80000000 hex).

Note: Using a “locally-administered” I-field severely limits interoperability,
especially in the areas of routing and HIPPI switch control. ♦

API Reference

45

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• The application has not disconnected from a long-term connection that
was established with HIPIOCW_CONNECTprior to this request. (If no
data has ever been sent, the connection is not necessarily open at the
physical layer.)

Table 2-3 IRIS HIPPI Support for Fields in I-Field

Bits in
I-field

Valid Values for IRIS
HIPPI (binary)

Comments
Locally-
Defined

HIPPI-SC
Compliant

31 1 0 Both I-field formats (local and HIPPI-SC) are
supported.

30:29 anything anything

28 anything 0 IRIS HIPPI hardware currently supports only
800 Mbits/second. It is the application’s
responsibility to set this correctly.

27 anything 0 / 1 It is the application’s responsibility to set the
direction bit correctly.

26:25 anything 00 / 01/11 All addressing schemes are supported.

24 anything 0 / 1 It is the application’s responsibility to set the
campon bit correctly.

23:0 anything anything All addressing schemes are supported.

46

Programming Notes for IRIS HIPPI API

HIPIOCW_D1_SIZE

HIPIOCW_D1_SIZE is used to set the size of the D1_Area and set the P-bit in
a HIPPI-FP FDO. This call specifies a D1 area size that is placed in the FP
header of all subsequently transmitted packets.

This call has the following characteristics:

• The size must be zero or a multiple of 8.

• When the D1 area size is greater than 0, the P-bit in the FP header is set
to 1.

To send its D1 data, the application can concatenate the D2 data to the D1
data so that the first burst contains both kinds of data, or it can use
HIPIOCW_SHBURSTto place only the FP header and the D1 data in the first
burst. The HIPPI subsystem uses all of this information to correctly calculate
the values for the FP header, as explained in “How HIPPI Protocol Items Are
Handled With the HIPPI-FP Access Method” on page 18.

Usage

Transmission for HIPPI-FP.

ioctl (fd_hippi0, HIPIOCW_D1_SIZE, bytecount);

The arg

The bytecount is the size in bytes to be placed in the D1_Area_Size field of the
HIPPI-FP header of subsequent packets. Valid sizes fall within the range of
0-1016 (decimal), inclusive, and must be evenly divisible by 8.

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• The bound FDOO is HIPPI-PH.

• The bytecount is not valid.

API Reference

47

HIPIOCW_I

HIPIOCW_I prepares the HIPPI subsystem to set up a single-packet
connection. The command specifies a new value for the HIPPI I-field in the
application’s FDO. (The I-field is also known as CCI.) The HIPPI subsystem
uses this value as the I-field for all subsequent connection requests (that is,
at each write call), until HIPIOCW_I is called again. The HIPPI subsystem
does not alter or interpret the I-field contents. The HIPPI subsystem drops
each connection as soon as the data from the write() call is sent.

Note: For a long-term (many-packet) connection, use the HIPIOCW_CONNECT

call. ♦

Usage

Transmission for HIPPI-PH and HIPPI-FP.

ioctl (fd_hippi0, HIPIOCW_DEFAULT_I, I-fieldValue);

The arg

The I-fieldValue is a 32-bit number. IRIS HIPPI does not verify, alter, or
interpret the I-field value.

For a HIPPI-SC compliant I-field, bit 31 of the I-field must be set to 0 and the
remaining bits (30:0) must be partitioned into fields, as summarized in
Table 2-3. (For more details about the I-field, see Figure A-2.)

“Locally-administered” schemes are legal and supported. For a
locally-administered scheme, bit 31 must be set to 1 and bits 30:0 can be set
to comply with any locally-defined protocol or can be set to zero (for
example, I-field value = 80000000 hex).

Note: Using a “locally-administered” I-field severely limits interoperability,
especially in the areas of routing and HIPPI switch control. ♦

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

48

Programming Notes for IRIS HIPPI API

HIPIOCW_DISCONN

HIPIOCW_DISCONNis used for terminating a permanent connection that was
opened with the HIPIOCW_CONNECTcall. This call causes the HIPPI
subsystem to tear down the connection immediately.

Note: To terminate a packet without tearing down the connection, use
HIPIOCW_END_PKT. ♦

Usage

Transmission for HIPPI-FP and HIPPI-PH.

ioctl (fd_hippi0, HIPIOCW_DISCONN);

The arg

There is no arg for this call.

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• No long-term (permanent) connection has been set up; there is nothing
to disconnect.

API Reference

49

HIPIOCW_END_PKT

HIPIOCW_END_PKTterminates the current packet (that is, causes the HIPPI
subsystem to drive the PACKET signal false). This call is required only when
the packet length was specified as infinite.

Usage

Transmission for HIPPI-FP and HIPPI-PH.

ioctl (fd_hippi0, HIPIOCW_END_PKT);

The arg

There is no arg for this call.

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• There is no inprogress packet; that is, this call has not been preceded by
a HIPIOCW_START_PKT call.

50

Programming Notes for IRIS HIPPI API

HIPIOCW_ERR

HIPIOCW_ERR returns the error status from the last write() call for the
indicated file descriptor.

Usage

Error monitoring for transmission with HIPPI-FP and HIPPI-PH.

error = ioctl (fd_hippi0, HIPIOCW_ERR);

The arg

There is no arg for this call.

Returned Value

The r eturned error is an integer, as summarized in Table 2-4.

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

Table 2-4 Errors for Failed write() Calls

Hex Value Error

0 No error occurred on last write().

1 Source sequence error.

2 Source lost DSIC error.

3 Source timed out connection.

4 Source lost CONNECT signal during transmission.

5 Connection REQUEST was rejected.

6 Interface is shut down.

API Reference

51

HIPIOCW_SHBURST

HIPIOCW_SHBURSTdefines the size of the first burst for all subsequent
packets. The size may be shorter than a standard burst, or full-sized. The
IRIS HIPPI subsystem’s functionality is slightly different for HIPPI-PH and
HIPPI-FP applications, as explained below.

Note: If the first burst is short, it is the responsibility of the application to
pad out the D2 data to a multiple of 256 words, so that all the non-first bursts
are full-sized. The IRIS HIPPI software does not verify the data size nor pad
the final burst. ♦

For a HIPPI-PH application, the call causes the HIPPI subsystem to “break
off” the indicated number of bytes from the data provided by the first write()
call, and send these bytes as the first burst. When the desired first burst
consists of 256 words, it is not necessary to make this call. When
HIPIOCW_SHBURSTis called with a bytecount of 0, the IRIS HIPPI subsystem
creates standard-sized first bursts.

For a HIPPI-FP application, the call causes the IRIS HIPPI subsystem to
create a first burst that contains only the FP header and D1 data and to set
the B-bit in the FP header. When HIPIOCW_SHBURST is called with the
following bytecounts, the first burst is created as described:

• With a bytecount of 0, the first burst is standard-sized and contains the
FP header and 1016 bytes of data from the write() call. The B-bit is set to
0.

• With a bytecount of 8, the first burst is short and contains only the FP
header. The B-bit is set to 1.

• When the bytecount is larger than 8 but smaller than 1024, the first burst
is short; it contains 8 bytes of FP header and [bytecount minus 8] of D1
data. The HIPPI subsystem “breaks off” the D1 data bytes from the data
provided with the first write() call. The B-bit is set to 1.

Note: When D1 data is included, it is the application’s responsibility to
also call HIPIOCW_D1_SIZE to ensure a properly filled-out FP header. ♦

• When the bytecount is 1024, the first burst is standard-sized; it contains 8
bytes of FP header and 1016 bytes of D1 data. The HIPPI subsystem
“breaks off” the D1 data bytes from the data provided with the first
write() call. The B-bit is set to 1.

52

Programming Notes for IRIS HIPPI API

Usage

Transmission of multiple-write packets for HIPPI-FP and HIPPI-PH. Once
called, the setting applies to all packets, until called again..

ioctl (fd_hippi0, HIPIOCW_SHBURST, bytecount);

The arg

For HIPPI-PH, the bytecount can be any value from 0-1024 decimal
(inclusive) that is evenly divisible by 8.

For HIPPI-FP, the bytecount can be any value from 0-1024 decimal (inclusive)
that is evenly divisible by 8. The minimum bytecount for a short first burst is
8 (that is, large enough to include the FP header) and, if HIPIOCW_D1_SIZE

has been called, it must be [8 + D1_Area_Size].

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• The packet has not been setup as a multiple-write packet, using the
HIPIOCW_START_PKTcommand.

• The size of bytecount is not valid.

API Reference

53

HIPIOCW_START_PKT

HIPIOCW_START_PKTcontrols the HIPPI subsystem’s PACKET signal. The
signal is held high (PACKET = true) for the bytecount provided in the call’s
argument (or for HIPPI-FP, the bytecount plus 8, thus including the FP
header). The bytecount should be so large that a number of write() calls are
required to send it. This call must be made for each multiple-write packet.

Usage

Transmission for HIPPI-FP and HIPPI-PH.

ioctl (fd_hippi0, HIPIOCW_START_PKT, bytecount);

The arg

The bytecount is either the actual bytecount of the D1 and D2 areas of the
packet or a value indicating “infinite.” (Infinite packets are supported only
when the connection is permanent or long-term.)

• The range of valid values for an actual bytecount is multiples of 8
between 0 and 0xFFFFFFF8 hexadecimal, inclusive. The maximum
actual length for any packet is 4 gigabytes less 1 byte.

• An “infinite” or indeterminate packet is defined by a bytecount of
HIPPI_D2SIZE_INFINITY (which is 0xFFFFFFFF).

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• A packet is currently in progress. For example, for an infinite packet,
the HIPIOCW_END_PKT call has not terminated the current packet.

54

Programming Notes for IRIS HIPPI API

HIPPI_SETONOFF

HIPPI_SETONOFF does shutdown and bringup of the IRIS HIPPI board. ON
(bringup) initializes everything on the board, leaving the board in the UP
state. OFF (shutdown) completes inprogress work with errors, turns
everything off, resets the onboard CPU. and transitions to the DOWN state.
This command is intended for administration and maintenance purposes
only; hence, it is only available to superuser (root).

Usage

Board shutdown and bringup. Only available to superuser (root).

ioctl (fd_hippi0, HIPPI_SETONOFF, arg);

The arg

The arg is 1 for ON (bringup) and 0 for OFF (shutdown). Multiple, sequential
calls for OFF while the board is down result in multiple resets of the board’s
CPU, as described in Table 2-5.

Failures and Errors

This call fails for the following reasons:

• The application is not superuser (root).

• The file descriptor is bound. Closing the file descriptor will unbind it.

• For ON, there are other open (cloned) file descriptors that must be
closed before the board can be brought up.

Table 2-5 Actions Caused by HIPPI_SETONOFF

Board = DOWN Board = UP

Command = OFF (1) reset onboard CPU shutdown, which includes CPU reset

Command = ON (0) bringup error

55

Appendix A

A. Important HIPPI Concepts

I-Field

The format for the standard HIPPI I-field (also referred to as CCI) that
accompanies each connection request is shown in Figure A-1. The seven
fields are described in Table A-1.

Figure A-1 I-Field Format

Table A-1 Fields of the HIPPI I-Field

Field Bits Dexcription

L 31 Local or Standard Format:

0=bits 30:0 of I-field conform to the usage described in this table

1=bits 30:0 are implemented in conformance to a private
(locally-defined) protocol

VU 30:29 Vendor Unique Bits:

Vendors of end-system HIPPI equipment may use these bits for
any purpose. Switches do not alter or interpret these bits.

23
bits

031 15

L VU W D PS C Routing Control

56

Important HIPPI Concepts

W 28 Width:

0=the data bus of the transmitting (source) HIPPI is 32 bits wide
for 800 megabits/second

1=source’s data bus is 64 bits wide for 1600 megabits/second

D 27 Direction:

0=least significant bits of Routing Control field contain the next
address for switch to use

1=most significant bits of Routing Control field contain the next
address for switch to use

PS 26:25 Path Selection:

00=source routing

01=Routing Control field contains logical addresses. Switch
must select first route from a list of routes.

10=reserved

11=Routing Control field contains logical addresses. Switch
selects route.

C 24 Camp-on:

0=switch does not retry if connection is rejected

1=switch continues trying to establish a connection until the
source aborts the connection request

Routing
Control

23:0 Routing Address:

This field may contain source routing addresses or logical
addresses, as indicated by the PS field.

For source routing, the field contains a concatenated list of
switch addresses that, when followed, lead to the destination.

For logical addressing, the field contains two 12-bit addresses
(destination and source) that are used by the intermediate
switches to select a route from a table.

Table A-1 (continued) Fields of the HIPPI I-Field

Field Bits Dexcription

HIPPI-FP Packet

57

HIPPI-FP Packet

Each HIPPI packet using the HIPPI Framing Protocol (HIPPI-FP) has a
required 64-bit segment called the FP header, and two optional segments
called D1 Area and D2 Area, as illustrated in Figure A-2. The D1 area is
intended for communicating control (D1) information. It can also be used for
padding out the first burst in order to position the user (D2) data in the
second burst. The D2 area contains user/application data. The size of the D1
area is defined within the FP header. The size of the D2 area is not specifically
defined, but is implicit due to the protocol definition. The D2 area consists of
D2 data and possibly an offset and filler. The D2 offset and D2 data are
defined in the FP header. The size of the filler can be calculated by rounding
up to the next 64-bit word boundary, because the D2 area is required to be an
integral number of 64-bit words.

The format for the HIPPI-FP packet is as shown in Figure A-2. The FP header
consists of seven fields, shown in Figure A-3 and described in Table A-2.

Figure A-2 Packet Format for HIPPI Framing Protocol

bits
064

FP Header

D1 Data (optional)

Header Area

D1 Area

D2 Area

(optional)

(optional)

NOTE: The size of each included area must be an integral number of 64-bit words.
The first word of each area must be 8-byte aligned.

D2 Data

Fill (0-2047 bytes)

D2_Offset (0-7 bytes)

58

Important HIPPI Concepts

Figure A-3 FP Header Format

Table A-2 Fields of FP Header

Field Bits Range of
Values
(in hex)

Description

D2 Data
Size

63:32 0 -
FFFFFFFF

Number of bytes of D2 data in this packet not
counting the D2 offset nor the D2 fill. A size of
FFFFFFFF (hexadecimal) indicates a packet of
unknown, indeterminate, or “infinite” length.

Dest
ULP-id

31:24 0 - FF The upper layer identification number for the
destination.

P 23 0 / 1 Present:

0=there is no D1_Area in this packet

1=there is D1 data in the D1_Area of this packet

B 22 0 / 1 Burst Boundary:

0=D2 data starts before beginning of second
burst of this packet

1=D2 data starts at beginning of second burst of
this packet

Reserved 21:11 000 Must be zero.

bits
031 10

11 3
2

D2_OffsetD1__Area_SizeReserved

23
22

21
24

P BDestination ULP-id

3263

D2_Data_Size

HIPPI-FP Packet

59

D1 Area
Size

10:3 0 - 7F The number of 64-bit words in the D1 Area. The
area does not necessarily contain valid D1 data;
the area may be defined for padding purposes
only.

D2 Offset 2:0 0 - 7 The number of bytes between the last byte of
the D1 Area and the first byte of D2 data.

Table A-2 (continued) Fields of FP Header

Field Bits Range of
Values
(in hex)

Description

We'd Like to Hear From You

As a user of Silicon Graphics documentation, your comments are important
to us. They help us to better understand your needs and to improve the
quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested
topics to comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please include the title and part number of the document you are
commenting on. The part number for this document is
007-2227-001.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your
comments on the postage-paid card for your country, then detach and mail
it. If your country is not listed, either use the international card and apply the
necessary postage or use electronic mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail
message and mail it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of manual pages) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

