
IRIS® HIPPI API
Programmer’s Guide

Document Number 007-2227-004

IRIS® HIPPI API Programmer’s Guide
Document Number 007-2227-004

CONTRIBUTORS

Originally written by Carlin Otto and Thomas Skibo
Revised by Carlin Otto and Jim Pinkerton
Illustrated by Carlin Otto, Dan Young, and Cheri Brown
Production by Michael Dixon
Engineering contributions by Irene Kuffel, Jim Pinkerton and Thomas Skibo
St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© Copyright 1993-1997, Silicon Graphics, Inc.
Permission to use, copy, modify, and distribute the Silicon Graphics, Inc. (SGI) HIPPI
API and its documentation (the “Material”), only as provided herein, for any
purpose and without fee is hereby granted, provided that the above copyright notice
appears in all copies and that both the copyright notice and this permission notice
appear in supporting documentation, and that the name of SGI not be used in
advertising or publicity pertaining to distribution of the Material without specific,
written prior permission of SGI. SGI makes no representations about the suitability
of this Material for any purpose. It is provided “as is” without express or implied
warranty. Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA
94039-7311.

SGI DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS MATERIAL,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, AND NONINFRINGEMENT. IN NO EVENT SHALL SGI BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER, INCLUDING DAMAGES RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS MATERIAL.

Silicon Graphics, the Silicon Graphics logo, Onyx, and IRIS are registered
trademarks, and IRIX, InSight, Origin, Onyx2, Challenge, HIO, and XIO are
trademarks of Silicon Graphics, Inc.

Contents

v

Opening and Binding to the Device 32
Transmitting 32

Functionality Scenario 1 33
Functionality Scenario 2 34
Functionality Scenario 3 34
Functionality Scenario 4 35
Special Use of Functionality Scenario 4 36
About write() 36

Receiving 37
API Reference 37

HIPIOC_ACCEPT_FLAG 39
HIPIOC_BIND_ULP 40
HIPIOC_GET_BPSTATS 41
HIPIOC_GET_STATS 43
HIPIOC_STIMEO 52
HIPIOCR_ERRS 53
HIPIOCR_PKT_OFFSET 54
HIPIOCW_CONNECT 55
HIPIOCW_D1_SIZE 57
HIPIOCW_DISCONN 58
HIPIOCW_END_PKT 59
HIPIOCW_ERR 60
HIPIOCW_I 61
HIPIOCW_SHBURST 62
HIPIOCW_START_PKT 64
HIPPI_SETONOFF 65

A. Important HIPPI Concepts 67
I-Field 67
HIPPI-FP Packet 69

Index of API Calls 73

iv

Contents

The HIPPI-FP Access Method 14
Description of HIPPI-FP 14

HIPPI-FP Output 17
HIPPI-FP Input 17

How HIPPI Protocol Items Are Handled With the HIPPI-FP Access Method 18
How I-Fields Are Handled on Transmission 18
How I-Fields Are Handled on Reception 18
How the Framing Protocol Is Handled on Transmission 18
How the Framing Protocol Is Handled on Reception 21

Mixing HIPPI-PH and HIPPI-FP 21

2. Programming Notes for IRIS HIPPI API 23
Programming for the HIPPI-PH Access Method 23

Includes 23
Special Instructions 23
Opening and Binding to the Device 24
Transmitting 25

Functionality Scenario 1 26
Functionality Scenario 2 27
Functionality Scenario 3 27
Functionality Scenario 4 28
Special Use of Functionality Scenario 4 29
About write() 29

Receiving 30
Programming for the HIPPI-FP Access Method 31

Includes 31
Special Instructions 31

iii

Contents

List of Figures vii

List of Tables ix

About This Guide xi
Support for Upper Layer Applications xi
Style Conventions xi
Product Support xii
Obtaining Updated or Paper-copy Versions of This Document xii

1. Description of IRIS HIPPI Implementation 1
Overview of IRIS HIPPI Implementation 1

Conformance with HIPPI Standards 1
Basic Architecture 1

The Transmission Information Object for File Descriptors 5
The Reception Information Object for Upper Layer Protocols 5
The API 6
The Device File and Access Methods 6

Implementation Details 7
Coexistence With the IP Stack 7

The HIPPI-PH Access Method 8
Description of HIPPI-PH 9

HIPPI-PH Output 12
HIPPI-PH Input 12

How HIPPI Protocol Items Are Handled With the HIPPI-PH Access Method 12
How I-Fields Are Handled on Transmission 12
How I-Fields Are Handled on Reception 12
How the Framing Protocol and D1 Data Are Handled on Transmission 13
How the Framing Protocol and D1 Data Are Handled on Reception 14

vii

List of Figures

Figure 1-1 Interfaces for Controlling One Channel of the HIPPI Subsystem 4
Figure 1-2 Block Diagram for Two Applications Using HIPPI-PH:

One Receive-Only and One Transmit-Only 10
Figure 1-3 Block Diagram for One Application Using HIPPI-PH:

Receive and Transmit 11
Figure 1-4 Creation of HIPPI-PH Packet 13
Figure 1-5 Creation of HIPPI-PH Packet With First Short Burst 13
Figure 1-6 Block Diagram for Using HIPPI-FP 15
Figure 1-7 Default FP Header for HIPPI-FP Transmission 17
Figure 1-8 Single-Write HIPPI-FP Packet With D1 Data 19
Figure 1-9 Multiple-Write HIPPI-FP Packet: Contiguous D1 and D2 Data 20
Figure 1-10 Multiple-Write HIPPI-FP Packet: Separate FP Header and D1 Data 20
Figure 1-11 Block Diagram for Mixing HIPPI-PH and HIPPI-FP 22
Figure 2-1 The Four Transmission Scenarios 26
Figure A-1 I-Field Format 67
Figure A-2 Packet Format for HIPPI Framing Protocol 69
Figure A-3 FP Header Format 70

ix

List of Tables

Table 1-1 Transmission Functionality Scenarios for IRIS HIPPI 2
Table 2-1 IRIS HIPPI API Summary 37
Table 2-2 Information Retrieved by HIPIOC_GET_STATS 43
Table 2-3 Status Information Retrieved From HIPPI HIO Mezzanine Board 44
Table 2-4 Status Information Retrieved From HIPPI-Serial XIO Board 45
Table 2-5 Errors for Failed read() Calls 53
Table 2-6 IRIS HIPPI Support for Fields in I-Field 56
Table 2-7 Errors for Failed write() Calls 60
Table 2-8 Actions Caused by HIPPI_SETONOFF 65
Table A-1 Fields of the HIPPI I-Field 67
Table A-2 Fields of FP Header 70

xi

About This Guide

This document describes the programmatic interface to IRIS® HIPPI 3.1, the Silicon
Graphics® implementation of the High-Performance Parallel Interface (HIPPI) protocol.
This information is intended for use by developers of upper-layer applications that use
HIPPI as their communication medium.

Support for Upper Layer Applications

IRIS HIPPI supports the following upper layer applications:

• customer-developed applications:
The application programming interface (API), described in this document, enables
customers to develop or port their own upper-layer applications (ULPs).

• standard IRIX™ applications:
For Internet (IP) communication, IRIS HIPPI supports IP over HIPPI-LE in
conformance with RFC 1374 guidelines. All IP applications can use the
IP-over-HIPPI interface (hip#), much as they would IP over Ethernet or FDDI. See
the online InSight document IRIS HIPPI Administrator’s Guide (shipped with the
IRIS HIPPI software) for configuration details.

• IRIS HIPPI utilities:
IRIS HIPPI includes utilities for monitoring, maintaining, and testing the IRIS
HIPPI subsystem.

Style Conventions

This guide uses the following stylistic conventions:

code sample

Indicates the text for code, exactly as you must type it.

xii

About This Guide

variable
Indicates generic, place-holding variable names within the code, where you must replace
the variable with text that you select. For example, you might replace hexvalue with 0x3C

file name
Indicates file names and file name suffixes.

[]
Encloses optional arguments.

...
Denotes omitted material or indicates that the preceding optional items may appear
more than once in succession.

Product Support

Silicon Graphics, Inc., provides a comprehensive product support and maintenance
program for its products. If you are in North America and would like support for your
Silicon Graphics-supported products, contact the Technical Assistance Center at
1-800-800-4SGI. If you are outside North America, contact the Silicon Graphics
subsidiary or authorized distributor in your country.

Obtaining Updated or Paper-copy Versions of This Document

Silicon Graphics maintains a World Wide Web page from which you can retrieve the
latest versions of many of the company’s documents, and from which you can obtain
instructions for ordering printed (paper-copy) versions of online documents. Using your
Web browser, open the following URL:

http://techpubs.sgi.com/library

To locate the latest versions of IRIS HIPPI documents (including this one), make the
following selections:

1. Click on the “Library Search” option

2. Enter the name of this document, IRIS HIPPI API.

3. Select the “Order Printed Copy” option.

1

Chapter 1

1. Description of IRIS HIPPI Implementation

This chapter describes the design and architecture of IRIS HIPPI.

Overview of IRIS HIPPI Implementation

This section provides an overview of IRIS HIPPI.

Conformance with HIPPI Standards

The Silicon Graphics implementations of HIPPI provide the services and conform to the
protocols described in the HIPPI standards for HIPPI-PH, HIPPI-Serial (when
appropriate), HIPPI-FP, the host portion of HIPPI-SC, and HIPPI-LE. Also see sections,
“How HIPPI Protocol Items Are Handled With the HIPPI-PH Access Method” on
page 12, and “How HIPPI Protocol Items Are Handled With the HIPPI-FP Access
Method” on page 18.

Basic Architecture

IRIS HIPPI supports transmission and reception as separate channels. Because of this
design, it is possible for a system to have applications that only receive, applications that
only send, and/or applications that do both. In addition, each channel can be accessed
with a different access method. (The access methods are described in section, “The
Device File and Access Methods” on page 6.)

Note: Due to the nature of HIPPI-Serial, simultaneous use of the channels to different
endpoints requires the presence of a HIPPI switch between each source/destination pair.
For each HIPPI-PH connection over HIPPI-Serial, the switch demultiplexes the
backflowing control signals (for example, READYs).

For transmission, IRIS HIPPI supports four different functionality scenarios,
summarized in Table 1-1 and described in the text below the table. Each functionality

2

Chapter 1: Description of IRIS HIPPI Implementation

scenario is a combination of one connection control method (the rows of Table 1-1) and
one packet control method (the columns of Table 1-1). The bullets describe these two
control methods:

• Connection control: A connection can be single-packet or many-packet. A
single-packet connection is when one packet is sent and then the HIPPI subsystem
automatically closes the connection. A many-packet connection is a connection that
is kept open for as long as the application wants. In the latter case, the application
must indicate when it wants the connection closed.

• Packet control: A packet can be single-write or multiple-write. A single-write packet
is a HIPPI packet that is created by the HIPPI subsystem from an application’s
single write() call. A multiple-write packet is created from two or more write() calls.
In the latter case, the application must indicate the start of each packet.

1. Single-packet connection, single-write packet:

• The application does one write(), which causes the connection to be opened.

• One packet is sent. It consists of the data in the write() call.

• The HIPPI subsystem automatically closes the connection.

Table 1-1 Transmission Functionality Scenarios for IRIS HIPPI

Connection
Control

single-packet
connection

many-packet
or long-term
connection

Packet Control

single-write = 1 packet multiple-writes = 1 packet

scenario 1 scenario 3

scenario 2 scenario 4

Overview of IRIS HIPPI Implementation

3

2. Many-packet connection, single-write packets:

• The application asks for a long-term connection.

• The application does the first write() call and the connection is opened.

• One packet is sent. It consists of the data in the write() call.

• The application does any number of write() calls.

• One packet is created and sent from each write().

• The connection remains open until the application closes it.

3. Single-packet connection, multiple-write packet:

• The application indicates the length of a packet.

• The application does the first write() call, which causes the connection to be
opened.

• The application continues to do write() calls.

• A packet is sent. Data from the write() calls, up to the specified packet length, are
sent as one packet. The packet length can be indeterminate.

• The HIPPI subsystem closes the connection.

4. Many-packet connection, multiple-write packets:

• The application asks for a long-term connection.

• The application indicates the length of a packet. This length may be
indeterminate or a specified bytecount.

• The application does the first write() call and the connection is opened.

• The application does any number of write() calls.

• A packet is sent. Data from the write() calls, up to the specified packet length, are
sent as one packet. The packet length can be indeterminate.

• The application may indicate the end of the packet at any time.

• The application can send any number of packets by indicating a length for each
new packet.

• The connection remains open until the application closes it.

4

Chapter 1: Description of IRIS HIPPI Implementation

Figure 1-1 Interfaces for Controlling One Channel of the HIPPI Subsystem

The IRIS HIPPI implementation consists of 4 main components:

• the device file (/dev/hippi#) and access methods for controlling the HIPPI subsystem,
illustrated in Figure 1-1

• transmission-related information objects (FDOs) for each open device file descriptor

• reception-related information objects (ULPOs) for different upper-layer protocol
applications (ULPs)

• the application programming interface (API)

Each of these components is described in a section below.

HIPPI-PH

HIPPI-FP

FDO for
HIPPI-LE FDO 1 FDO 2 FDO 3 FDO 4

if_hip

IP

TCP UDP

sockets

/dev/hippi0
/dev/hippi0

/dev/hippi0
/dev/hippi0

/dev/hippi0

* Mutually exclusive

Transmit HIPPI Channel

(The same options are available

HIPPI-PH Access Method*HIPPI-FP Access Method*

for the receive channel.)

OR

FDO-PH

Overview of IRIS HIPPI Implementation

5

The Transmission Information Object for File Descriptors

A portion of the IRIS HIPPI subsystem, within the UNIX kernel, maintains transmission
information objects, referred to as file descriptor objects (FDOs). An FDO is maintained for
each open file descriptor. The HIPPI subsystem uses this information for generating
HIPPI packets on transmission. Applications change the FDO values through the IRIS
HIPPI API. The values are persistent, so they can be used on sequentially sent packets,
without resetting.

• the ULP’s identification number (that is, the ULP-id)

• access mode (read-only, write-only, read and write)

• the I-field used when establishing a connection

• the size of the first burst for each packet

• the setting for the B-bit in the FP header (used by HIPPI-FP only)

• the setting for the P-bit of the FP header (used by HIPPI-FP only)

• the size of the D1 area (used by HIPPI-FP only)

The Reception Information Object for Upper Layer Protocols

A portion of the IRIS HIPPI subsystem, within the UNIX kernel, maintains reception
information objects, called upper-layer protocol objects (ULPOs). A ULPO is maintained for
each ULP-id. Each ULPO consists of a set of information that the HIPPI subsystem uses
when receiving HIPPI packets. Each application must have a ULPO associated with
(bound to) it. With HIPPI-FP, the information in one ULPO can be shared among a group
of applications. Applications use the HIPPI API (ioctl calls) to change their ULPO values.

Note: HIPPI-LE (over which TCP/IP runs) is an example of a ULP.1 ULPs that customers
may develop include IPI-3 and “raw” protocols.

Each ULPO maintains the following information:

• the ULP’s identification number (that is, the ULP-id), used only by HIPPI-FP

• the number of applications using this ULP-id, used only by HIPPI-FP

• the received bytecount for the packet currently being read

1 Currently the information in the HIPPI-LE’s ULPO cannot be shared with other network-layer
applications.

6

Chapter 1: Description of IRIS HIPPI Implementation

The API

The IRIS HIPPI product includes an application programming interface (API) that allows
customer-developed applications to change the information in their ULPO and FDO and
to control the HIPPI subsystem. The API is through a UNIX “character special” device
file.

By invoking different IRIS HIPPI API commands, customer-developed programs define
their access method, data flow (packet) control, connection control, and HIPPI protocol
processing.

Further details on the API are provided in Chapter 2, “Programming Notes for IRIS
HIPPI API.”

The Device File and Access Methods

The IRIS HIPPI implementation provides the /dev/hippi# device file for accessing and
controlling the HIPPI subsystem. Two different access methods (described below) are
provided. Both use the /dev/hippi# device file. The access method is defined when the
device file is bound.

IRIS HIPPI offers two mutually exclusive methods for accessing the HIPPI subsystem:
HIPPI-FP and HIPPI-PH. The HIPPI-FP access method requires the use of FP headers
and provides automatic processing of that header. The HIPPI-PH method does not
require use of the FP header, thus allowing an application to bypass the HIPPI-FP layer.

Besides the difference (discussed above) in the point of access, the main differences
between the two access methods revolve around coexistence with other ULPs (including
HIPPI-LE and the TCP/IP stack), as listed below:

• For HIPPI-FP, received packets are demultiplexed using ULP-ids. For HIPPI-PH, all
packets are placed on a single input queue.

• For HIPPI-FP, access to the HIPPI subsystem is shared among two or more ULPs (of
which the IP protocol stack is one). With HIPPI-FP, the HIPPI device is blocked
when a ULP is accessing the device, thus giving each ULP exclusive access for the
duration of its access. With the HIPPI-PH access method, no blocking occurs
because only one ULP is allowed to be bound to the HIPPI device at any time.

Further details are provided in sections, “The HIPPI-PH Access Method” on page 8, and
“The HIPPI-FP Access Method” on page 14.

Overview of IRIS HIPPI Implementation

7

Implementation Details

The Silicon Graphics IRIS HIPPI Product (HIPPI board, device driver, interface, and
firmware) has been designed to meet the ANSI X3T11 Standards Committee’s standards
for the High-Performance Parallel Interface.1 The HIPPI board design includes the
following implementation details that are either not mentioned in the ANSI
documentation for the HIPPI standard, or are considered by the design team to be
ambiguously defined in the standards documentation:

• Once a receiving channel has been created and configured to accept connections, all
incoming connection requests are accepted by the HIPPI board. The HIPPI
subsystem does not wait for upper-layer input. (That is, the HIPPI board does not
generate the service primitive PH_RING.Indicate and does not allow the
application to respond with a PH_ANSWER.Request for each connection). The
upper layers may discard data that has been received from undesirable connections.

• Each instance of a ULPO must be assigned a ULP-id that is unique within the
ULPOs for a specific HIPPI board. A valid ULP-id is a number between 0 and 255
decimal (inclusive); 4 is reserved for and used by the IRIX™ module implementing
8802.2 Link Encapsulation (HIPPI-LE); 7 is reserved for IPI-3 implementations.

Coexistence With the IP Stack

IRIS HIPPI includes a ULP module (HIPPI-LE) for servicing the IP stack. This module
can coexist with customer-developed applications; however, the IP stack has 2
requirements that, in some situations, conflict with full usage of some features of the
HIPPI subsystem. These IP requirements are:

• IP applications need short but frequent access to the HIPPI subsystem.

• The IP stack requires bi-directional flow of data (for example, data packets in one
direction require acknowledgment packets in the other direction).

1 HIPPI-LE, HIPPI-FP, and HIPPI-PH.

8

Chapter 1: Description of IRIS HIPPI Implementation

Customer-developed applications can coexist well with IP applications if they follow
these guideline:

• They must not create (open) long-term connections. Since only one connection at a
time can use a HIPPI channel, if any one ULP monopolizes the channel, the IP
performance degrades significantly.

• They must limit their write()s to small-sizes (for example, 128kbytes).

• They must read() their input queue in a timely fashion so that host buffers are
always available to retrieve packets from the board. Arriving packets are enqueued
in the IRIS HIPPI board’s memory and are transferred from the board into host
memory on a first-arrived-first-transfered basis. As long as a packet in the queue is
not read, all subsequently arriving packets queue up behind it. IP performance
degrages when packet latencies become excessive. Additionally, the onboard
memory can fill up and arriving packets can be dropped.

• The physical connections for both channels must attach to the same node. For
example, with a copper-based product, both cables must be attached to the same
switch or HIPPI node.

Note: In addition to degrading the performance of local IP applications, failure to follow
these guidelines may cause wide performance variations or hangs at intermediate
switches or at the endpoints with which the station is exchanging data.

The HIPPI-PH Access Method

The HIPPI-PH access method controls the HIPPI protocol stack at the HIPPI-PH signal
layer. This access method is independent of the physical layer, so it works for both
copper-based and fiber optic-based hardware. With this access method, the HIPPI-FP
protocol is bypassed; the IRIS HIPPI subsystem does no checking for or processing of
HIPPI-FP protocol items. Accessing the HIPPI subsystem in this manner is well-suited
for applications requiring full or almost full use of the HIPPI device, and situations
where (for other reasons) the application does not wish to use the HIPPI-FP protocol.

The HIPPI-PH Access Method

9

Description of HIPPI-PH

HIPPI-PH supports the following functions for reception:

• Accepts all incoming HIPPI packets. Does not reject any packet, and does not
demultiplex using the ULP-id.

• Enqueues the entire packet on the input queue for retrieval by the application. Does
not interpret anything in the packet (not an FP header or D1 data).

• The HIPPI subsystem maintains a received bytecount value (offset) that can be used
by applications to identify packet boundaries

HIPPI-PH supports the following functions for transmission:

• Provides two choices for setting up the HIPPI connection: a single-packet
connection (where the HIPPI subsystem creates and tears down a connection for
each packet), and a long-term connection (where the HIPPI subsystem keeps the
connection up across one, many, or all packets). In long-term connections, the
application controls the timing of the disconnect.

• Provides two methods for creating packets: “multiple-write” packets (where the
PACKET signal is asserted across multiple write() calls) and single-write packets
(where the PACKET signal is deasserted when the data from one write() has been
transmitted). The maximum bytecount for any write() is 16 megabytes, so a
single-write packet cannot be larger than 16 megabytes.

• Allows an application to send an “infinite” sized packet.

• Allows an application to specify that the first burst of any packet be a short burst.

• Allows an application to terminate a multiple-write packet before its bytecount is
transmitted.

• Allows an application to use the HIPPI subsystem as a “raw” data pipeline. For
example, the FP header is not required and the I-field can be set to any value.

• HIPPI-PH supports the four different functionality scenarios for transmission,
summarized in Table 1-1.

Applications using the HIPPI-PH access method can open the device for transmit only
(illustrated in Figure 1-2), receive only (also illustrated in Figure 1-2), or for both
(illustrated in Figure 1-3). Once the device is open and bound, any of the functionality
scenarios in Table 1-1 can be used.

10

Chapter 1: Description of IRIS HIPPI Implementation

Figure 1-2 Block Diagram for Two Applications Using HIPPI-PH:
One Receive-Only and One Transmit-Only

O
pe

ra
tin

g
S

ys
te

m

FDO-PH

Tr
an

sm
it

R
ec

ei
ve

application that
only transmits

ULPO-PH

application that
only receives

H
ar

dw
ar

e

/dev/hippi0 (r)

HIPPI-PH

/dev/hippi0 (w)

HIPPI API

Note: With HIPPI-Serial hardware,
simultaneous connections require use of a
switch between each source and destination.

The HIPPI-PH Access Method

11

Figure 1-3 Block Diagram for One Application Using HIPPI-PH:
Receive and Transmit

There are certain constraints associated with using the HIPPI-PH access method, as listed
below. However, with HIPPI-PH overall, there are fewer constraints on what the
application can do with the interface than with HIPPI-FP.

• If more than one application operates a channel (transmit or receive) of the HIPPI
board, an arbitration and synchronization mechanism between the applications
must be developed to prevent race conditions.

• The HIPPI network interface cannot be ifconfig’ed up, which means that the TCP/IP
protocol stack cannot use the HIPPI board.

• For receiving, if a HIPPI-FP header exists in the packet, it is not interpreted (and not
demultiplexed) by the HIPPI subsystem.

• All read()s and write()s must specify buffers that are 8-byte word-aligned. This is
because direct memory access (DMA) occurs directly to/from user application
space and the HIPPI device only handles word-aligned DMAs.

• The data lengths for all read()s and write()s must be multiples of 8 bytes up to a
maximum of 16 megabytes.

O
pe

ra
tin

g
S

ys
te

m

ULPO-PH

Tr
an

sm
it

R
ec

ei
ve

application that transmits and receives
H

ar
dw

ar
e

HIPPI-PH

/dev/hippi0 (rw)

HIPPI API

FDO-PH

12

Chapter 1: Description of IRIS HIPPI Implementation

HIPPI-PH Output

When a device is opened for writing and bound with the HIPPI-PH access method, the
HIPPI subsystem transmits only data that the application passes to it. No additional data,
encapsulation, or HIPPI protocols are added by the HIPPI subsystem. The only
information used from the application’s FDO is the I-field and the short burst setting.

The application can define the first burst as short within each packet.

HIPPI-PH Input

When a device is opened for reading and bound with the HIPPI-PH access method, the
HIPPI subsystem receives all inbound data; all packets are enqueued on the reading
queue. The HIPPI subsystem does not attempt to interpret an FP header; therefore, if an
FP/D1 header exists, these are passed to the application as part of the data stream. No
demultiplexing is performed on the ULP-id. No special handling features are available.

The application can retrieve a packet bytecount (offset) value that simplifies
identification of packet boundaries.

How HIPPI Protocol Items Are Handled With the HIPPI-PH Access
Method

This section describes how the HIPPI-PH access method handles the HIPPI I-field and
the HIPPI Framing Protocol.

How I-Fields Are Handled on Transmission

The FDO maintains a value for the I-field. The HIPPI subsystem uses the value each time
it sets up a connection. Applications use an ioctl() call to set the I-field value to a new one
whenever desired. The HIPPI subsystem does not interpret or alter the I-field in any way
during transmission.

How I-Fields Are Handled on Reception

The HIPPI subsystem does not interpret or alter the I-field in any way for reception.

The HIPPI-PH Access Method

13

How the Framing Protocol and D1 Data Are Handled on Transmission

The HIPPI-PH access method does not generate an FP header or D1 data area for packets
on transmission. An application may utilize the HIPPI Framing Protocol by generating
its own FP header/D1 data and transmitting these just as it does all other packet data
(with write calls), as illustrated in Figure 1-4. An application may invoke an ioctl() call to
define the bytecount for the first (short) burst; the data for that first burst is taken from
the first write() call, as illustrated in Figure 1-5.

Figure 1-4 Creation of HIPPI-PH Packet

Figure 1-5 Creation of HIPPI-PH Packet With First Short Burst

data from
write() call

data

HIPPI-PH Packet as Sent

(May include FP header
and D1 data, if appli-
cation creates them.)

data from
write() call

For a multiple-write packet:

other write()s

For a single-write packet:

data

(May include FP items.)

HIPPI-PH Packet as Sent

data from
write() call

For a single-write or
data

(may include FP items)

short burst burst

data

first burst bytecount

other write()s

multiple-write packet:

14

Chapter 1: Description of IRIS HIPPI Implementation

How the Framing Protocol and D1 Data Are Handled on Reception

On incoming packets, HIPPI-PH does not check for the presence of an FP header nor
does it interpret the FP header if one exists. If an FP header/D1 area are present in a
packet, the HIPPI subsystem treats that packet just as it does any other packet
(enqueuing the contents of the packet on the receive queue without any interpretation,
separation, or special processing).

The HIPPI-FP Access Method

Description of HIPPI-FP

• The HIPPI-FP access method controls the HIPPI protocol stack at the HIPPI-FP
layer and provides for sharing of the HIPPI receive and/or transmit channels
among applications, as illustrated in Figure 1-6. Up to 32 different applications
(open file descriptors) can use the IRIS HIPPI subsystem simultaneously in any
combination of transmitting-only, receiving-only, and transmitting-and-receiving.

HIPPI-FP supports the following functions for reception:

• Up to 32 different applications can simultaneously have open file descriptors for
receiving HIPPI packets.

• Up to 8 different customer-developed ULPOs can be active simultaneously. Each
application must bind to one ULPO. HIPPI-IPI is an example of a ULPO. (The
HIPPI-LE module that is part of the HIPPI product does not count as one of these
ULPOs.)

• The HIPPI subsystem demultiplexes incoming packets using the ULP-ids from the
active ULPOs. It discards packets that do not match any of the ULP-ids in active
ULPOs.

• The HIPPI subsystem verifies the presence of a valid FP header and discards
packets that do not have a valid FP header.

• The HIPPI subsystem separates the FP header and D1 data from the D2 data so that
the application’s first read() retrieves the FP header and D1 data, while its
subsequent read()s retrieve the D2 data.

• The HIPPI subsystem maintains a packet offset value (bytecount) that can be used
by applications to identify packet boundaries.

The HIPPI-FP Access Method

15

Figure 1-6 Block Diagram for Using HIPPI-FP

• User-layer applications can use the IRIX default network stack, the Internet Protocol
(IP) suite. The HIPPI product ships with a socket-based driver, if_hip, that supports
the IP suite over HIPPI using HIPPI-LE. Customer-developed programs can coexist
with this networking software. (This feature is not available in “mixed”
configurations, where one of the HIPPI channels is being used by HIPPI-FP and the
other by HIPPI-PH.)

Note: The IP software requires equal-access to its lower layer services. If applications
sharing the HIPPI subsystem with IP do not meet this requirement, the performance
of IP is seriously compromised.

• Special “auto-bind” device files can be set up with more general permissions in
order to allow user access to specific ULPOs.

O
pe

ra
tin

g
S

ys
te

m

HIPPI-LE

FDO-2

Tr
an

sm
it

R
ec

ei
ve

3 applications that
only transmit

ULPO-3

2 applications that
only receive

applications

if_hip
ULPO-1

4 applications that
transmit & receive

Sockets

H
ar

dw
ar

e

/dev/hippi0 (r&w) /dev/hippi0 (r)

HIPPI-PH

HIPPI-FP

HIPPI -FP Packet

/dev/hippi0 (w)IP Stack

HIPPI API

FDO-1

Note: With HIPPI-Serial hardware,
simultaneous connections require use of a
switch between each source and destination.

16

Chapter 1: Description of IRIS HIPPI Implementation

HIPPI-FP supports the following functions for transmission:

• Up to 32 different applications can simultaneously have open file descriptors for
transmitting HIPPI packets.

• Up to 8 different customer-developed FDOs can be active simultaneously. Each
application must bind to one FDO. HIPPI-IPI is an example of an FDO. (The
HIPPI-LE module that is part of the HIPPI product does not count as one of these
FDOs.)

• The HIPPI subsystem creates an FP header for each packet.

• Allows an application to specify that the first burst of any packet contains only the
FP header and, optionally, a D1 area. The word count of this first burst can be short
(1 to 255 words) or standard (256 words). The B bit in the FP header is automatically
set.

• Allows an application to specify the presence of D1 data and the size of the D1 area.
The P bit in the FP header is automatically set.

• HIPPI-FP supports the four different functionality scenarios for transmission,
summarized in Table 1-1.

With HIPPI-FP, there are certain constraints, as listed below:

• For transmitting, a HIPPI-FP header is attached to every outgoing packet. If the
application does not specify an FP header, the HIPPI subsystem uses a default one
(illustrated in Figure 1-7).

• For receiving, each incoming packet must have a valid HIPPI-FP header. The HIPPI
subsystem demultiplexes incoming packets based upon the ULP identifier in the FP
header.

• Incoming connection requests cannot be selectively rejected by the ULPO or
application; each incoming connection request results in acceptance of the packet.
However, the HIPPI subsystem discards packets with ULP-ids that do not match
any of those that are currently bound. All applications that have opened a HIPPI file
descriptor for receiving (reading) and have bound to a ULPO will receive all
incoming packets destined to the bound ULP-id.

• All read()s and write()s must specify buffers that are 8-byte word-aligned. This is
because direct memory access (DMA) occurs directly to or from user application
space and the HIPPI device only handles word-aligned DMAs.

• The data lengths for all read()s and write()s must be multiples of 8 bytes up to a
maximum of 16 megabytes.

The HIPPI-FP Access Method

17

HIPPI-FP Output

The destination endpoint is specified by an ioctl() call that sets the I-field for all
subsequent packets (until the value is changed). The I-field can be changed at any time,
and the ioctl() call is efficient enough that there is no problem with setting the I-field just
before each write() call for a series of single-write packets.

HIPPI FP headers are automatically generated on output. The default FP header
(illustrated in Figure 1-7) has the ULP identifier (specified at bind time), does not have
any D1 area, and the P and B bits are off. If an application defines a size for the D1 area
or specifies a first burst containing only FP header and D1 area, this information is
included in the header. The D2_Size field in the FP header is filled with the proper value.

Figure 1-7 Default FP Header for HIPPI-FP Transmission

HIPPI-FP Input

When a device is opened for reading and bound to a ULPO with the HIPPI-FP access
method, the associated application is able to retrieve all HIPPI packets that arrive with
the bound ULP-id. The demultiplexing on ULP-ids is done on the HIPPI board so that
DMA can occur directly to user-space. If multiple applications share a ULPO,
demultiplexing the packets must be handled by an application-level program.

HIPPI-FP separates the FP header and D1_Data_Area from the D2 area. The application’s
first read() call returns the FPheader/D1data exactly. (The return value tells how large
these areas are). Subsequent read() calls return the D2 area until the D2 data is completely
read. By monitoring the HIPPI subsystem’s packet offset value, the application can tell
when the next read() is going to return the FPheader/D1area for a new packet.

bits
031 10

11 3
2

D2_Offset
D1__Size = 0Reserved = 0

23
22

21
24

0 0ULP-id from FDO

3263

D2_Size Calculated Correctly by IRIS HIPPI Subsystem

= 0

18

Chapter 1: Description of IRIS HIPPI Implementation

It is possible to receive packets that are very large because reception can be broken up
into multiple read()s. This also helps provide for some scattering of data, but small read()s
are inefficient.

An application can retrieve a packet bytecount (offset) value that simplifies identification
of packet boundaries.

How HIPPI Protocol Items Are Handled With the HIPPI-FP Access
Method

This section describes how the HIPPI-FP access method handles the HIPPI I-field and the
HIPPI Framing Protocol.

How I-Fields Are Handled on Transmission

Each FDO contains a value for the I-field that the HIPPI subsystem includes each time it
sets up a connection. Applications use an ioctl() call to set the value to a new one
whenever desired. The HIPPI subsystem does not interpret nor alter the I-field in any
way during transmission.

How I-Fields Are Handled on Reception

The HIPPI subsystem does not interpret nor alter the I-field in any way during reception.

How the Framing Protocol Is Handled on Transmission

When accessed with the HIPPI-FP access method, the HIPPI subsystem uses the HIPPI
Framing Protocol on all connections for receiving and transmitting, as explained below.

The HIPPI subsystem creates an FP header for each packet that it transmits. The default
value for the generated FP header is as follows:

• D2_Size (that is, bits 63:32 of the FP header) is set to the size of the write() call for a
single-write packet or, for a multiple-write packet, the bytecount indicated by the
ioctl() call that starts the packet.

• ULP-id (that is, bits 31:24) is set to the ULP-id that was provided by the application
when it bound to the ULPO.

• Control (P and B) and reserved bits are off (that is, bits 23:11 are set to zero).

• D1_Area_Size and D2_Offset are set to zero.

The HIPPI-FP Access Method

19

To include D1 data in a packet, an application specifies the size of the D1 area, using an
ioctl() call. This action sets the D1_Area_Size in the FDO and causes the P bit in the FP
header to be set ON. The application then does its write pointing to contiguous D1 and
D2 data, or for a multiple-write packet, it does the first write pointing to D1 data or
contiguous D1 and D2 data.

To place only the FP header and D1 data (optional) in the first burst and to set the B-bit,
an application invokes an ioctl() call, specifying the size of the first burst. If the specified
size is less than 256 words, the IRIS HIPPI subsystem handles the burst as a short burst.
The HIPPI subsystem creates a first burst of the indicated size (short or standard length)
that contains the following data:

• The required, and automatically generated, FP header (8 bytes).

• An optional number of D1 data bytes, up to a maximum of 1016.

The D2 size for the FP header is calculated by the IRIS HIPPI subsystem, as described
immediately below.

• For a single-write packet, the D2 data size is the size of the write() call minus the
D1_Area_Size, as shown in Figure 1-8.

• For any multiple-write packet, the D2 data size is as specified by an ioctl()
command, as shown in Figure 1-9 (illustrating contiguous D1 and D2 data) and
Figure 1-10 (illustrating FP header and D1 data separated into the first burst).

Figure 1-8 Single-Write HIPPI-FP Packet With D1 Data

FDO

data from write()

HIPPI-FP Packet

FP Header D1 Data and D2 Data

D1 Area Size > 0
ULP-id

size from write() size - D1_Area_Size = D2_Size

D1 and D2
Data

P bit =1
B bit =0

first burst burst

D2 Data

20

Chapter 1: Description of IRIS HIPPI Implementation

Figure 1-9 Multiple-Write HIPPI-FP Packet: Contiguous D1 and D2 Data

Figure 1-10 Multiple-Write HIPPI-FP Packet: Separate FP Header and D1 Data

FDO

data from write()

HIPPI-FP Packet

FP Header D1 Data and D2 Data

D1 Area Size > 0
ULP-id

D1 and D2 Data

P bit =1
B bit =0

data from write() D2 Data

first burst burst

D2 Data

(bytecount from START_PKT) - D1_Area_Size = D2_Size

data from write()

HIPPI-FP Packet

FP Header D1 Data

D1 Area Size > 0
ULP-id

data from write()

D2 Data

P bit =1

D2 Data

B bit =1

first burst may be short burst

FDO

D1 and D2
Data

SHBurst size - 8 = bytes taken for first burst

(bytecount from START_PKT) - D1_Area_Size = D2_Size

Mixing HIPPI-PH and HIPPI-FP

21

How the Framing Protocol Is Handled on Reception

With each reception of a packet, the HIPPI subsystem interprets the FP header
information, as required by the standard. The application’s first read() retrieves the
FPheader/D1data; subsequent read() calls retrieve D2 data. It is the responsibility of the
reading application(s) to keep track of which read()s retrieve which kinds of data. The
HIPPI subsystem demultiplexes incoming packets, using the ULP-id field. Incoming
packets for unrecognized ULP-ids are discarded by the HIPPI subsystem.

Mixing HIPPI-PH and HIPPI-FP

HIPPI-PH and HIPPI-FP access methods can be used simultaneously so that they share
one IRIS HIPPI board. There are some restrictions for this configuration:

• Each HIPPI-channel (receive or transmit) must be used by either HIPPI-PH or
HIPPI-FP, but not both. For example, a number of applications and ULPOs can use
HIPPI-FP for receiving demultiplexed data while a sending application uses
HIPPI-PH, as illustrated in Figure 1-11.

• The TCP/IP over HIPPI-LE protocol stack cannot be supported because it requires
HIPPI-FP access for both transmit and receive.

• A switch must be used between each the endpoints of each connection.

22

Chapter 1: Description of IRIS HIPPI Implementation

Figure 1-11 Block Diagram for Mixing HIPPI-PH and HIPPI-FP

O
pe

ra
tin

g
S

ys
te

m

Tr
an

sm
it

R
ec

ei
ve

FDO-PH

1 “raw” application that
only transmits

H
ar

dw
ar

e

/dev/hippi0 (w)

HIPPI-PH

ULPO-1

4 applications that
only receive

4 /dev/hippi0 (r)

Note: With this mixed usage, the

HIPPI API

HIPPI-LE and TCP/IP stack
cannot be used.

Note: With HIPPI-Serial hardware,
simultaneous connections require use of a
switch between each source and destination.

HIPPI-FP

23

Chapter 2

2. Programming Notes for IRIS HIPPI API

This chapter describes how to interface an application to the IRIS HIPPI subsystem. A
reference section containing an alphabetical listing of all the ioctl() calls in the HIPPI
application programming interface (API) is provided in section, “API Reference” on
page 37.

Programming for the HIPPI-PH Access Method

This section describes how to program a module that accesses the HIPPI subsystem at
the HIPPI-PH signalling layer (that is, it does not use the HIPPI Framing Protocol).

Note: The interface described in this section is applicable for use with any IRIS HIPPI
physical layer: copper-based or fiber optic-based (that is, HIPPI-Serial). The HIPPI-PH
references within this section refer only the signalling protocol that is common to all
HIPPI implementations.

Includes

The following file must be included in any program using the IRIS HIPPI API:

#include <sys/hippi.h>

Special Instructions

For maximum throughput, DMA between the HIPPI board and the host application
occurs directly to or from user application space. Because of this, and the fact that the
DMA component (ASIC) has a 64-bit interface, all application read()s and write()s must
specify buffers that are 8-byte word-aligned, and the data bytecount must be a multiple
of 8. (See memalign(3C) for a method of allocating 8-byte aligned memory).

24

Chapter 2: Programming Notes for IRIS HIPPI API

Opening and Binding to the Device

An application can open a HIPPI device (for example, /dev/hippi0 or /dev/hippi1) for
read-only, write-only, or read-and-write access. The acronym fd_hippi#, in the examples
below, refers to the file descriptor for the opened HIPPI device. Multiple applications can
successfully open() a HIPPI device, although contention will occur if two or more try to
write() at the same time.

Note: With a HIPPI-Serial physical layer, simultaneous connections to separate
endpoints (for example, simultaneous use of a write-only file descriptor and a read-only
one) requires the use of a HIPPI switch.

It is important that the application open the HIPPI device with only the read/write flag
settings that it needs. For example, if an application is not going to be doing read()s, it
should set only the WRITE flag. When the READ flag is set, the HIPPI subsystem is told
to expect HIPPI packets, so incoming packets are always accepted by the HIPPI device.
The HIPPI subsystem holds each accepted packet until an application reads it. If no
application consumes the incoming packets, the HIPPI device stalls for lack of buffer
space.

To set up an application as a HIPPI-PH user, use one of the following sets of calls at the
“beginning of time”:

• For a transmit-only connection:

fd_hippi0=open (“/dev/hippi0”, O_WRONLY);
ioctl (fd_hippi#, HIPIOC_BIND_ULP, HIPPI_ULP_PH);

• For a receive-only connection:

fd_hippi0=open (“/dev/hippi0”, O_RDONLY);
ioctl (fd_hippi#, HIPIOC_BIND_ULP, HIPPI_ULP_PH);

• For a transmit and receive connection:

fd_hippi0=open (“/dev/hippi0”, O_RDWR);
ioctl (fd_hippi#, HIPIOC_BIND_ULP, HIPPI_ULP_PH);

Programming for the HIPPI-PH Access Method

25

Transmitting

For an application to transmit over its HIPPI-PH connection, a set (scenario) of calls must
be made. The four possible scenarios are explained in the paragraphs that follow, and are
illustrated in Figure 2-1. The order of the calls is unimportant except for the initial write()
call, which actually allocates the resources and starts sending the data. Four functionality
scenarios are supported. (See Table 1-1 for an overview of the four transmission
functionality scenarios.)

Many of the ioctl() calls used in these scenarios write or set a value for a stored FDO
parameter. These values are not cleared when a transmission completes, so prior settings
can be reused with subsequent write() calls without resetting. All the calls should be
made for the first transmission (since the device was opened) in order to initialize them
to non-default values.

All application write()s must specify buffers that are 8-byte word-aligned, with a
maximum size of 16 megabytes, and the data bytecount must be a multiple of 8. (See
memalign(3C)).

Notice the following:

1. When the HIPIOCW_CONNECTcall is used, the HIPPI subsystem sets up a
“permanent” connection. In contrast, when the HIPIOCW_CONNECTcall is not used,
the connection is disconnected as soon as the packet has been sent.

2. When the HIPIOCW_START_PKT call is used, many write()s may make up one
packet. In contrast, when the HIPIOCW_START_PKT call is not used, one write() is a
single packet.

26

Chapter 2: Programming Notes for IRIS HIPPI API

Figure 2-1 The Four Transmission Scenarios

Functionality Scenario 1

This scenario describes transmission of one small packet (under 16 megabytes) that uses
one write() for the packet. The connection disconnects automatically when the packet has
been completely sent.

The application makes an ioctl() call to specify the I-field, then makes the write() call. The
maximum sized packet with this method is 16 megabytes. The packet and connection are
both terminated when the data from the single write() call has completed.

ioctl (fd_hippi#, HIPIOCW_I, I-fieldValue);
/* I-field does not need to be reset for each pkt */

write (fd_hippi#, buffer, size);

/* PACKET line goes low (false) after one write */
/* connection is dropped after one write */

PKT
(auto)

Scenario 1 CONN
(auto)

EPKT
(auto)

DIS_CONN
(auto)

write()

Scenario 2 CONN
(ioctl)

DIS_CONN
(ioctl)

PKT
(auto)

EPKT
(auto)

write() PKT
(auto)

EPKT
(auto)

write()

auto = event occurs automatically
ioctl = event is controled by an ioctl() call

Scenario 3 CONN
(auto)

DIS_CONN
(auto)

PKT
(ioctl with len)

EPKT
(auto @ len)

write() write() write() write() write()

PKT
(ioctl with
infinite len)

Scenario 4 CONN
(ioctl)

EPKT
(ioctl)

DIS_CONN
(ioctl)

write() write() PKT
(ioctl with
infinite len)

EPKT
(ioctl)

write() write()

PKT
(ioctl with
infinite len)

Special Use
of Scenario 4

CONN
(ioctl)

EPKT
(ioctl)

DIS_CONN
(ioctl)

write() write() write() write() write() write()

Combination
of 2 and 4

CONN
(ioctl)

DIS_CONN
(ioctl)

PKT
(ioctl with
infinite len)

EPKT
(ioctl)

write() write() write()PKT
(auto)

EPKT
(auto)

write()

Programming for the HIPPI-PH Access Method

27

Functionality Scenario 2

This scenario describes transmission of many small packets (under 16 megabytes each)
that use only one write() for each packet. The connection is kept open between packets.

The application makes an ioctl() call to specify the I-field for its “permanent” connection,
then makes a write() call to send the first packet. The maximum-sized packet with this
method is 16 megabytes. The PACKET signal is dropped automatically when the write()
call completes. The connection, however, is not terminated, so the next packet can be
another single-write in which the packet is terminated automatically, or a multiple-write
(Functionality Scenario #4).

ioctl (fd_hippi#, HIPIOCW_CONNECT, I-fieldValue);
write (fd_hippi#, buffer, size); /* first packet*/
/* PKT line goes low after one write. Connection is not dropped */
write (fd_hippi#, buffer, size); /* second packet*/
/* PKT line goes low after one write. Connection is not dropped */

/* When application wants connection to be torn down, */
/* it tells the HIPPI subsystem to disconnect: */

ioctl (fd_hippi#, HIPIOCW_DISCONN);

Note: With HIPPI-Serial hardware, for the duration of this long-term connection, no
packets are received from any source other than the endpoint (destination) of this
long-term connection.

Functionality Scenario 3

This scenario describes transmission of a large packet that requires many write() calls and
where the connection disconnects automatically when the packet has been completely
sent.

The application makes an ioctl() call to specify the I-field, and one to define the size
(bytecount) of the packet. It then makes the first write() call; subsequent write() calls are
treated as part of the same packet until the bytecount is reached. The PACKET and
REQUEST signals are automatically dropped after the specified number of bytes have
been sent. This scheme allows an application to send very large packets. It also allows
some data gathering on output. (Note, however, that if packets are formed using
small-sized write() calls, performance degrades considerably.)

ioctl (fd_hippi#, HIPIOCW_I, I-fieldValue);
ioctl (fd_hippi#, HIPIOCW_SHBURST, firstburstsize); /* only if size is changing */
ioctl (fd_hippi#, HIPIOCW_START_PKT, bytecount);

28

Chapter 2: Programming Notes for IRIS HIPPI API

write (fd_hippi#, buffer, size); /* buffer can point to FPheader + D1 data */
write (fd_hippi#, buffer, size); /* size=only a part of the complete pkt*/
write (fd_hippi#, buffer, size); /* max size for each write is 16MB*/
write (fd_hippi#, buffer, size);
etc.

/* connection is dropped when packet is completely sent */

Functionality Scenario 4

This scenario describes transmission of many large packets that require many write() calls
for each packet and where the connection is kept open.

The application makes an ioctl() call to specify the I-field for its “permanent” connection
and one to specify the size (bytecount) of the packet. Each write() is treated as part of the
same packet, until the bytecount is satisfied, at which time the packet is ended. When the
application wants to terminate the connection, it makes an ioctl() call to disconnect.

ioctl (fd_hippi#, HIPIOCW_CONNECT, I-fieldValue);
ioctl (fd_hippi#, HIPIOCW_SHBURST, firstburstsize); /* only if size is changing */
ioctl (fd_hippi#, HIPIOCW_START_PKT, bytecount);
write (fd_hippi#, buffer, size); /* buffer can point to FPheader + D1 data */
write (fd_hippi#, buffer, size); /* size=only a part of the complete pkt*/
write (fd_hippi#, buffer, size); /* max size for each write is 16MB */
etc.

/*when pkt’s bytecount is complete, PKT line goes low*/
/*connection is not dropped*/

/* Optional: if the application wishes to start another packet,
/* it does this: */
ioctl (fd_hippi#, HIPIOCW_SHBURST, firstburstsize); /* only if size is changing */
ioctl (fd_hippi#, HIPIOCW_START_PKT, bytecount);
...

/* When the application wants the connection to be torn down, */
/* it tells the HIPPI subsystem to disconnect */
ioctl (fd_hippi#, HIPIOCW_DISCONN);

Note: With HIPPI-Serial hardware, for the duration of this “permanent” connection, no
packets are received from any source other than the endpoint (destination) of this
“permanent” connection.

Programming for the HIPPI-PH Access Method

29

Special Use of Functionality Scenario 4

Scenario 4 can be used to send one infinite-sized packet on a long-term (“permanent”)
connection.

The application makes an ioctl() call to specify the I-field for its “permanent” connection
and one to specify the bytecount of the packet. The bytecount is specified as
HIPPI_D2SIZE_INFINITY. All write() calls are then treated as one “infinite-sized” packet
(that is, the PACKET signal is not deasserted), until the packet is specifically terminated
by the application with a special ioctl() call. The connection is not dropped until the
application disconnects it.

ioctl (fd_hippi#, HIPIOCW_CONNECT, I-fieldValue);
ioctl (fd_hippi#, HIPIOCW_SHBURST, firstburstsize); /* only if size is changing */
ioctl (fd_hippi#, HIPIOCW_START_PKT, HIPPI_D2SIZE_INFINITY);
/*infinity=0xFFFFFFFF) */
write (fd_hippi#, buffer, size); /*max size for each write is 16MB*/
write (fd_hippi#, buffer, size);
etc.

/* Optional: if the application wishes to terminate this packet, it does this */
ioctl (fd_hippi#, HIPIOCW_END_PKT);

/* Optional: if the application wishes to start another packet,
/* it does one of these: */
ioctl (fd_hippi#, HIPIOCW_START_PKT, HIPPI_D2SIZE_INFINITY);
/* or */
ioctl (fd_hippi#, HIPIOCW_START_PKT, bytecount);

/* When the application wishes to tear down the connection, */
/* it does one of these: */
ioctl (fd_hippi#, HIPIOCW_END_PKT);
ioctl (fd_hippi#, HIPIOCW_DISCONN);
/* or */
ioctl (fd_hippi#, HIPIOCW_DISCONN);

Note: With HIPPI-Serial hardware, for the duration of this “permanent” connection, no
packets are received from any source other than the endpoint (destination) of this
“permanent” connection.

About write()

IRIS HIPPI uses the first write() on each connection as the trigger for allocating/obtaining
the hardware resources. For example, the REQUEST and PACKET signals are not asserted

30

Chapter 2: Programming Notes for IRIS HIPPI API

until the first write() call is made for a connection. This means that any number of open()s,
HIPIOCW_CONNECT, and HIPIOCW_START_PKT calls can successfully be made in rapid
succession for the same device; the HIPPI subsystem resources become unavailable (to
other users) only when the first write() call is made for one of these open file descriptors.
After the first successful write(), and as long as the connection for that write() remains
active (that is, the REQUEST signal is asserted), write()s from other connections block.
Once a connection is finished (that is, the REQUEST and CONNECT signals are
deasserted), blocked write()s are serviced.

Receiving

In HIPPI-PH mode, all incoming data is accepted when the device file is opened for
reading. The HIPPI subsystem does not reject any connection requests.

To retrieve its data, the application uses the calls below. All read()s retrieve sequentially
received data. If a packet contained an FP header and D1 data, the HIPPI subsystem does
not interpret them and does not separate them from the D2 data, so the first read() may
contain FP header, D1 data, and/or D2 data. To determine packet boundaries, the
application can use an ioctl() call to retrieve the current offset (received bytecount) for the
packet. When the returned value is 0, the next read() retrieves the first bytes from a new
packet.

All application read()s must specify buffers that are 8-byte word aligned with a maximum
size of 16 megabytes, and the data bytecount must be a multiple of 8. (See memalign(3C)).

offset = ioctl (fd_hippi#, HIPIOCR_PKT_OFFSET); /*when 0, nxt read is new pkt*/
read (fd_hippi#, buffer, size); /*max size is 16MB*/
offset = ioctl (fd_hippi#, HIPIOCR_PKT_OFFSET); /*when 0, nxt read is new pkt*/
read (fd_hippi#, buffer, size);
etc.

When the application wishes to stop receiving data, it closes the file descriptor using the
following call:

close (fd_hippi#);

Programming for the HIPPI-FP Access Method

31

Programming for the HIPPI-FP Access Method

This section describes how to program a module that conforms with the HIPPI Framing
Protocol and is capable of sharing the receive and/or transmit channels through the
HIPPI subsystem with other upper layer protocols (ULPs).

When an application opens the HIPPI device (for example, /dev/hippi0), the application
gets a file descriptor for a “cloned” device. (The device is cloned in order to allow sharing
of the device. By this mechanism, the application can do binds to the HIPPI file descriptor
without affecting other applications that have opened the same device.)

Using a HIPPI ioctl() call, the application “binds” itself to one ULPO and FDO. This
action associates the application with one set of HIPPI information that is then used by
the HIPPI subsystem whenever it services that application’s read/write requests. The
application specifies which ULPO by specifying the ULPO’s 8-bit identifier.

It is important that the application open the HIPPI device with only the read/write flag
settings that it needs. For example, if an application is not going to be doing read()s, it
should set only the WRITE flag. When the READ flag is set, the HIPPI device is told to
accept HIPPI packets on that ULP-id. All incoming packets for that ULP-id are accepted
by the HIPPI device. The HIPPI subsystem holds each accepted packet until an
application reads it. If no application consumes the incoming packets, the HIPPI device
stalls for lack of buffer space.

Includes

The following files must be included in any program using the HIPPI API:

#include <sys/hippi.h>

Special Instructions

For maximum throughput, DMA between the HIPPI board and the host application
occurs directly to/from user application space. Because of this, and the fact that the DMA
component (ASIC) has a 64-bit interface, all application read()s and write()s must specify
buffers that are 8-byte word-aligned, and the data bytecount must be a multiple of 8. (See
memalign(3C)).

32

Chapter 2: Programming Notes for IRIS HIPPI API

Opening and Binding to the Device

An application can open a HIPPI device (for example, /dev/hippi0 or /dev/hippi1) for
read-only, write-only, or read-and-write access. The acronym fd_hippi#, in the examples
below, refers to the file descriptor for the opened HIPPI device.

Note: When the physical layer is IRIS HIPPI-Serial, simultaneous use of read-only and
write-only devices to different endpoints requires the use of a HIPPI switch.

To set up an application as a HIPPI-FP user, use one of the following sets of calls at the
“beginning of time.” Within the calls in these examples, the ULP-id is a positive number
in the range 0-255 decimal (inclusive), where 4 is reserved for the IRIX 8802.2 Link
Encapsulation (HIPPI-LE) ULP, and 6 and 7 are reserved for HIPPI-IPI3
implementations. Each ULP’s identification must be unique among the ULPs that are
bound to that HIPPI board.

• For a transmit-only connection:

fd_hippi0=open (“/dev/hippi0”, O_WRONLY);
ioctl (fd_hippi#, HIPIOC_BIND_ULP, ULP-id);

• For a receive-only connection:

fd_hippi0=open (“/dev/hippi0”, O_RDONLY);
ioctl (fd_hippi#, HIPIOC_BIND_ULP, ULP-id);

• For a transmit and receive connection:

fd_hippi0=open (“/dev/hippi0”, O_RDWR);
ioctl (fd_hippi#, HIPIOC_BIND_ULP, ULP-id);

• For a monitoring connection to a HIPPI driver that has bypass functionality:

fd_hippibp0=open (“/dev/hippibp0”, O_RDONLY);
ioctl (fd_hippibp#, HIPIOC_BIND_ULP, ULP-id);
<only the HIPIOC_GET_BPSTATS is available>

Transmitting

For a HIPPI-FP application to transmit over its HIPPI connection, one of the sets of calls
documented below in the “Functionality Scenarios” must be made. The order of the calls
is unimportant except for the initial write() call, which actually starts sending the data.
Four functionality scenarios are supported. (See Table 1-1 for details on the four
transmission functionality scenarios.)

Programming for the HIPPI-FP Access Method

33

Many of the ioctl() calls write or set a value for a stored ULPO or FDO parameter. These
values are not cleared when a transmission completes, so prior settings can be reused
with subsequent write() calls without resetting. All the calls should be made for the first
transmission (since the device was opened) in order to initialize them to non-default
values.

All application write()s must specify buffers that are 8-byte word-aligned with a
maximum size of 16 megabytes, and the data bytecount must be a multiple of 8. (See
memalign(3C)).

Notice the following:

1. When the HIPIOCW_CONNECTcall is used, the HIPPI subsystem sets up a
“permanent” connection. In contrast, when the HIPIOCW_CONNECTcall is not used,
the connection is disconnected as soon as the packet has been sent.

2. When the HIPIOCW_START_PKT call is used, many write()s may make up one
packet. In contrast, when the HIPIOCW_START_PKT call is not used, one write() is a
single packet.

Functionality Scenario 1

This scenario describes transmission of one small packet (under 16 megabytes), using
one write() for the packet. The connection disconnects when the packet has been
completely sent.

The application makes an ioctl() call to specify the I-field, then makes the write() call. The
maximum sized packet with this method is 16 megabytes. The packet and connection are
both terminated when the data from the single write() call has completed.

ioctl (fd_hippi#, HIPIOCW_I, I-fieldValue);
/* I-field does not need to be reset for each pkt */
ioctl (fd_hippi#, HIPIOCW_D1_SIZE, bytecount); /* only if size is changing*/
write (fd_hippi#, buffer, size); /*max size for each write is 16MB*/

/* PKT line goes low (false) after one write */
/* connection is dropped after one write */

34

Chapter 2: Programming Notes for IRIS HIPPI API

Functionality Scenario 2

This scenario describes transmission of many small packets (under 16 megabytes each)
that use one write() for each packet. The connection is kept open between packets.

The application makes an ioctl() call to specify the I-field for its “permanent” connection,
then makes a write() call to send the first packet. The maximum sized packet with this
method is 16 megabytes. The PACKET signal is automatically dropped when the write()
call completes. The connection, however, is not terminated, so the next packet can be
another single-write or a multiple-write one (Functionality Scenario #4).

ioctl (fd_hippi#, HIPIOCW_CONNECT, I-fieldValue);
ioctl (fd_hippi#, HIPIOCW_D1_SIZE, bytecount); /* only if size is changing*/
write (fd_hippi#, buffer, size); /* first packet; max size = 16MB*/
/* PKT line goes low after one write. Connection is not dropped */
write (fd_hippi#, buffer, size); /* second packet; max size = 16MB*/
/* PKT line goes low after one write. Connection is not dropped */

/* When application wants connection to be torn down, */
/* it tells the HIPPI subsystem to disconnect: */

ioctl (fd_hippi#, HIPIOCW_DISCONN);

Note: With HIPPI-Serial hardware or with IRIS HIPPI configured to support the IP suite
of protocols, for the duration of this long-term connection, no packets are received from
a source other than the endpoint (destination) of this long-term connection.

Functionality Scenario 3

This scenario describes the transmission of one large packet that requires many write()
calls for the packet and where the connection disconnects when the packet has been
completely sent.

The application makes an ioctl() call to specify the I-field, and another call to define the
size (bytecount) of the packet. It then makes the first write() call; subsequent write() calls
are treated as part of the same packet until the bytecount is reached. The PACKET and
REQUEST signals are automatically dropped after the specified number of bytes have
been sent. This scheme allows an application to send very large packets. It also allows
some data gathering on output. (Note, however, that if packets are formed using
small-sized write() calls, performance degrades considerably.)

Programming for the HIPPI-FP Access Method

35

ioctl (fd_hippi#, HIPIOCW_I, I-fieldValue);
ioctl (fd_hippi#, HIPIOCW_D1_SIZE, bytecount); /* only if size is changing*/
ioctl (fd_hippi#, HIPIOCW_SHBURST, firstburstsize); /*only if burst_1 is chnging*/
ioctl (fd_hippi#, HIPIOCW_START_PKT, bytecount);
write (fd_hippi#, buffer, size); /* buffer can include D1 data */
write (fd_hippi#, buffer, size); /* size=only part of pkt; max write size = 16MB*/
write (fd_hippi#, buffer, size); /* max size for each write is 16MB*/
write (fd_hippi#, buffer, size);
etc.

/* connection is dropped when pkt is completely sent */

Functionality Scenario 4

This scenario describes transmission of many large packets that require many write() calls
for each packet and where the connection is kept open.

The application makes an ioctl() call to specify the I-field for its “permanent” connection,
and another call to specify the size (bytecount) of the packet. Each write() is treated as part
of the same packet, until the bytecount is satisfied, at which time the packet is ended.
When the application wants to terminate the connection, it makes an ioctl() call to
disconnect.

ioctl (fd_hippi#, HIPIOCW_CONNECT, I-fieldValue);
ioctl (fd_hippi#, HIPIOCW_SHBURST, firstburstsize); /*only if burst_1 is chnging*/
ioctl (fd_hippi#, HIPIOCW_D1_SIZE, bytecount); /* only if size is changing*/
ioctl (fd_hippi#, HIPIOCW_START_PKT, bytecount);
write (fd_hippi#, buffer, size); /* buffer can include D1 data */
write (fd_hippi#, buffer, size); /* size=only a part of the complete pkt*/
write (fd_hippi#, buffer, size); /* max size for each write is 16MB */
etc.
/*when pkt completes, PKT line goes low*/
/*connection is not dropped*/

/* When the application wants the connection to be torn down, */
/* it tells the HIPPI subsystem to disconnect */

ioctl (fd_hippi#, HIPIOCW_DISCONN);

36

Chapter 2: Programming Notes for IRIS HIPPI API

Special Use of Functionality Scenario 4

For an infinite-sized packet on a long-term (“permanent”) connection.

The application makes an ioctl() call to specify the I-field for its “permanent” connection,
and another call to specify the bytecount of the packet. The bytecount is specified as
HIPPI_D2SIZE_INFINITY. All write() calls are then treated as one “infinite-sized” packet
(that is, the PACKET signal is not deasserted), until the connection is specifically
disconnected by the application.

ioctl (fd_hippi#, HIPIOCW_CONNECT, I-fieldValue);
ioctl (fd_hippi#, HIPIOCW_SHBURST, firstburstsize); /*only if burst_1 is chnging*/
ioctl (fd_hippi#, HIPIOCW_D1_SIZE, bytecount); /* only if size is changing*/
ioctl (fd_hippi#, HIPIOCW_START_PKT, HIPPI_D2SIZE_INFINITY);
/*infinity=0xFFFFFFFF) */
write (fd_hippi#, buffer, size); /*max size for each write is 16MB*/
write (fd_hippi#, buffer, size);
etc.

/* Optional: if the application wishes to terminate this packet
/* and start another without dropping the connection, it does this: */

ioctl (fd_hippi#, HIPIOCW_END_PKT);
ioctl (fd_hippi#, HIPIOCW_START_PKT, bytecount);
etc.

/* When the application wishes to tear down the connection */
ioctl (fd_hippi#, HIPIOCW_END_PKT);
ioctl (fd_hippi#, HIPIOCW_DISCONN);

Note: With HIPPI-Serial hardware or with IRIS HIPPI configured to support the IP suite
of protocols, for the duration of this “permanent” connection, no packets are received
from any source other than the endpoint (destination) of this “permanent” connection.

About write()

IRIS HIPPI uses the first write() on each connection as the trigger for allocating/obtaining
the hardware resources. For example, the REQUEST and PACKET signals are not asserted
until the first write() call is made for a connection. This means that any number of open()s,
HIPIOCW_CONNECT, and HIPIOCW_START_PKT calls can successfully be made in rapid
succession for the same device; the HIPPI subsystem resources become unavailable (to
other users) only when the first write() call is made for one of these open file descriptors.
After the first successful write(), and as long as the connection for that write() remains
active (that is, the REQUEST signal is asserted), write()s from other connections block.
Once a connection is finished (that is, the REQUEST and CONNECT signals are
deasserted), blocked write()s are serviced.

API Reference

37

Receiving

To receive data, the application uses the calls below. The first read() of a ULP’s queue
retrieves a packet’s FP header and D1 area. Subsequent read() calls retrieve D2 data.
When the HIPIOCR_PKT_OFFSET returns zero, the next read() will retrieve a new packet’s
header and D1 area.

All application read()s must specify buffers that are 8-byte word-aligned with a
maximum size of 16 megabytes, and the data bytecount must be a multiple of 8. (See
memalign(3C)).

read (fd_hippi#, buffer, size); /* FPheader and D1 data */
read (fd_hippi#, buffer, size); /* D2 data */
read (fd_hippi#, buffer, size); /* D2 data */
offset = ioctl (fd_hippi#, HIPIOCR_PKT_OFFSET); /*when 0, nxt read is new pkt*/

When the application wishes to stop receiving data, it closes the file descriptor using the
following call:

close (fd_hippi#);

API Reference

This section describes the HIPPI ioctl calls that comprise the API to the IRIS HIPPI
subsystem. These calls are defined in the sys/hippi.h file. Each application program that
wants to use the services of the HIPPI connection uses these calls to define its ULPO and
FDO values, to set up its connection(s), and to transmit or receive data. The API calls are
listed in Table 2-1.

Table 2-1 IRIS HIPPI API Summary

Purpose API Call Page

Device Management:

 Bind an upper-layer application HIPIOC_BIND_ULP 40

 Enable/disable IRIS HIPPI board HIPPI_SETONOFF 65

Connection Management:

 Start/stop accepting connections HIPIOC_ACCEPT_FLAG 39

38

Chapter 2: Programming Notes for IRIS HIPPI API

 Set timeout for source’s connection HIPIOC_STIMEO 52

 Prepare to open a single-packet connection HIPIOCW_I 61

 Prepare to open a long-term connection HIPIOCW_CONNECT 55

 Terminate a long-term connection HIPIOCW_DISCONN 58

Packet Control:

 Received packet’s bytecount HIPIOCR_PKT_OFFSET 54

 Send a single-write packet After setting the
I-field (with
HIPIOCW_I), no
additional call is
necessary, other
than the write().

 Send a multiple-write packet HIPIOCW_START_PKT 64

 Define first burst of a multiple-write packet HIPIOCW_SHBURST 62

 Terminate a packet HIPIOCW_END_PKT 59

 Retrieve errors from failed read() and write() calls HIPIOCR_ERRS
HIPIOCW_ERR

53
60

Define HIPPI-FP Fields:

 Define D1 Area Size and set P-bit HIPIOCW_D1_SIZE 57

Collect Statistics or Monitor Connection:

 Obtain standard statistics HIPIOC_GET_STATS 43

Obtain bypass statistics HIPIOC_GET_BPSTATS 41

Table 2-1 (continued) IRIS HIPPI API Summary

Purpose API Call Page

API Reference

39

HIPIOC_ACCEPT_FLAG

HIPIOC_ACCEPT_FLAG configures the HIPPI board to accept or refuse connection
requests.

Note: After each execution of /usr/etc/hipcntl bringup, /etc/init.d/network, or each restart of
the system, the IRIS HIPPI software sets this flag ON (accepting).

Usage

HIPPI device control for HIPPI-FP and HIPPI-PH.

ioctl (fd_hippi#, HIPIOCW_ACCEPT_FLAG, value);

The arg

The value is any non-zero value (including negative values) to accept connection
requests, and 0 to reject connection requests.

Failures and Errors

This call fails for the following reasons:

• The IRIS HIPPI board is shutdown (for example, hipcntl shutdown or
HIPPI_SETONOFF has been called).

40

Chapter 2: Programming Notes for IRIS HIPPI API

HIPIOC_BIND_ULP

HIPIOC_BIND_ULP is used to bind an application’s open file descriptor (/dev/hippi0,
/dev/hippi1, etc.) to a ULPO or FDO. If an application wishes to both transmit and receive,
it can bind once to a read-and-write file descriptor, or it can make this call twice (once to
a write-only file descriptor and once to a read-only one). This call prepares for a
connection; it does not open the connection.

• When the HIPPI-FP access method is used, up to 32 different applications can be
bound simultaneously.

• When the HIPPI-FP access method is used, up to eight different ULPOs can be
bound to each HIPPI subsystem

• When the HIPPI-PH method is used, only one ULPO (that being, HIPPI_ULP_PH)
can be bound for the receive HIPPI channel and one FDO for the transmit channel.

Usage

Initialization of HIPPI-FP.

ioctl (fd_hippi#, HIPIOC_BIND_ULP, ULP-id);

Initialization of HIPPI-PH.

ioctl (fd_hippi#, HIPIOC_BIND_ULP, HIPPI_ULP_PH);

The arg

For HIPPI-FP, the arg is the identification for the ULPO or FDO that the application uses
(range 0-255 decimal inclusive), where 4 is reserved for the IRIX 8802.2 Link
Encapsulation (HIPPI-LE), and 6 and 7 are reserved for HIPPI-IPI. Each ULPO/FDO
implementation must have an identification, and each identification must be unique
among the ULPOs and FDOs that are open (bound) for the particular HIPPI board
(device).

For HIPPI-PH, the arg is HIPPI_ULP_PH.

Failures and Errors

This call fails for the following reasons:

• The maximum number of FDOs and ULPOs are already bound to the HIPPI device.

• A HIPPI-PH object (FDO or ULPO) is already bound for this type of access (read or
write) to this file descriptor.

API Reference

41

HIPIOC_GET_BPSTATS

HIPIOC_GET_BPSTATS is used to obtain statistics about the HIPPI bypass functionality.

Usage

Monitoring the HIPPI bypass functionality.

ioctl (fd_hippibp#, HIPIOC_GET_BPSTATS, &hippibp_stats);

The arg

The arg is a pointer to a hippibp_stats structure.

The hippibp_stats structure, from the hippi.h file, is provided below for reference:

typedef struct hippibp_stats {
/* BYPASS STATE */
 u_int hst_bp_job_vec; /* bypass job enable vector */
 /* job 0 is in bit 31, job 7 bit 24*/
 u_int hst_bp_ulp; /* ulp used by bypass */

/* SOURCE STATISTICS */
 u_int hst_s_bp_descs; /* total bypass desc processed */
 u_int hst_s_bp_packets; /* total bypass packets sent */
 _uint64_t hst_s_bp_byte_count; /* total bypass bytes sent */

/* SOURCE ERRORS */
 /* descriptor errors */
 u_int hst_s_bp_desc_hostx_err; /* hostx is out of bounds*/
 u_int hst_s_bp_desc_bufx_err; /* buffer index out of bounds*/
 u_int hst_s_bp_desc_opcode_err; /* invalid opcode */
 u_int hst_s_bp_desc_addr_err; /* packet length + offset */
 /* would cross a page boundary*/
 u_int hst_s_bp_resvd[6]; /* future expansion */

/* DESTINATION STATISTICS */
 u_int hst_d_bp_descs; /* total dest desc processed */
 u_int hst_d_bp_packets; /* total bypass packets received */
 __uint64_t hst_d_bp_byte_count; /* total bypass bytes received */

/* DESTINATION ERRORS */
 /* descriptor errors */
 u_int hst_d_bp_port_err; /* port not enabled or port */

42

Chapter 2: Programming Notes for IRIS HIPPI API

 /* or port too large */
 u_int hst_d_bp_job_err; /* job not enabled */
 u_int hst_d_bp_no_pgs_err; /* no longer used */
 u_int hst_d_bp_bufx_err; /* destination bufx not in bounds */
 u_int hst_d_bp_auth_err; /* received authentication did */
 /* not match job authentication
 /* for destination port */
 u_int hst_d_bp_off_err; /* offset plus packet length */
 /* would cross a page boundary
 /* or not aligned properly*/
 u_int hst_d_bp_opcode_err; /* received opcode was invalid */
 u_int hst_d_bp_vers_err; /* received version number invalid */
 u_int hst_d_bp_seq_err; /* sequence number for multi-pkt */
 /* opcode was out of sequence */
 u_int hst_d_bp_resvd[4];

} hippibp_stats_t;

Failures and Errors

This call fails for the following reasons:

• The driver is unable to copy the statistics from the board.

• The IRIS HIPPI board is shutdown (for example, hipcntl shutdown or
HIPPI_SETONOFF has be called).

API Reference

43

HIPIOC_GET_STATS

HIPIOC_GET_STATS is used to obtain statistics about the HIPPI board. The HIPPI
product ships with a utility (hipcntl) for doing this kind of monitoring, so this ioctl call is
not usually needed by customer-developed applications.

Usage

Monitoring of HIPPI-PH and HIPPI-FP devices and connections.

ioctl (fd_hippi#, HIPIOC_GET_STATS, &hippi_stats);

The arg

The arg is a pointer to a hippi_stats structure, described in Table 2-2. The structure
is the same across all IRIS HIPPI implementations; however, the specific information
varies from hardware to hardware. Refer to the table that is appropriate for your
hardware.

Table 2-2 Information Retrieved by HIPIOC_GET_STATS

Field Type Description

hst_flags; u_int The value of bits 31-28 indicates the type of hardware:
0x0 = IRIS HIPPI HIO Mezzanine,
0x1 = IRIS HIPPI-Serial XIO

Bits 27-0 contain flags that indicate the currently active states.
See Table 2-3 or Table 2-4 for the specific flags associated with
each hardware implementation.

Source statistics.

hst_s_conns; u_int Total connections attempted by local SRC.

hst_s_packets; u_int Total packets sent by local SRC.

sf.
data[14];

union
u_int

Array containing either a hip_p or hip_s structure (described in
Table 2-3 and Table 2-4), depending on the specific hardware.

Destination statistics.

hst_d_conns; u_int Total connections accepted.

hst_d_packets; u_int Total packets received.

df.
data[14];

union
u_int

Array containing either a hip_p or hip_s structure (described in
Table 2-3 and Table 2-4), depending on the specific hardware.

44

Chapter 2: Programming Notes for IRIS HIPPI API

Table 2-3 Status Information Retrieved From HIPPI HIO Mezzanine Board

Field Value or
Type

Description

Status flags:

HST_FLAG_DSIC 0x0001 Local SRC sees inbound INTERCONNECT signal

HST_FLAG_SDIC 0x0002 Local DST sees inbound INTERCONNECT signal

HST_FLAG_DST_ACCEPT 0x0010 Local DST is accepting connections

HST_FLAG_DST_PKTIN 0x0020 Local DST: PACKET input signal is asserted

HST_FLAG_DST_REQIN 0x0040 DST: inbound REQUEST signal is asserted

HST_FLAG_SRC_REQOUT 0x0100 Local SRC: outbound REQUEST signal is asserted

HST_FLAG_SRC_CONIN 0x0200 Local SRC: CONNECT input signal is asserted

hip_p struct Source error counts

rejects; u_int connection attempts rejected

dm_seqerrs; u_int count of sequence errors from SRC’s data state
machine

cd_seqerrs; u_int count of invalid sequencing of inbound control
signals at the SRC’s connection state machine

cs_seqerrs; u_int count of sequence errors detected within SRC’s
connection state machine

dsic_lost; u_int inbound INTERCONNECT signal was deasserted
before local SRC terminated connection

timeo; u_int timed out connection attempts

connls; u_int connections dropped by other side

par_err; u_int source parity error

resvd[6]; u_int reserved for future compatibility

hip_p struct Destination error counts

badulps; u_int packets dropped due to unknown ULP-id

API Reference

45

ledrop; u_int HIPPI-LE packets dropped

llrc; u_int connections dropped due to LLRC error

par_err; u_int connections dropped due to parity errors

seq_err; u_int connections dropped due to sequence errors

sync; u_int synchronization errors

illbrst; u_int packets with illegal burst sizes

sdic_lost; u_int connections dropped due to loss of inbound
INTERCONNECT signal

nullconn; u_int connections with zero packets

resvd[5]; u_int reserved for future compatibility

Table 2-4 Status Information Retrieved From HIPPI-Serial XIO Board

Field Value or
Type

Description

Status flags:

HST_FLAG_LOOPBACK 0x0004 Board’s internal loopback mode is enabled

HST_FLAG_DST_ACCEPT 0x0010 Local DST is accepting connections

HST_FLAG_DST_PKTIN 0x0020 Local DST: PACKET signal input is asserted

HST_FLAG_DST_REQIN 0x0040 Local DST: REQUEST signal input is asserted

HST_FLAG_SRC_REQOUT 0x0100 Local SRC: REQUEST signal is asserted

HST_FLAG_SRC_CONIN 0x0200 Local SRC: CONNECT input signal is asserted

Table 2-3 (continued) Status Information Retrieved From HIPPI HIO Mezzanine Board

Field Value or
Type

Description

46

Chapter 2: Programming Notes for IRIS HIPPI API

HST_FLAG_DST_LNK_RDY 0x00010000 Local SERIAL DST: the on-board HIPPI
processor is in its operational state (that is, it is
in state 2 of the “link reset state machine”).
This flag is absent (not set) only if the DST
state machine transitions to state 0 or 1, caused
by losing contact with the HIPPI-Serial
(G-link) chip on the board or the fiber
connection.

HST_FLAG_DST_FLAG_SYNC 0x00020000 Local SERIAL DST: the alternating flag within
the incoming data frame is correct (that is, it is
synchronized)

HST_FLAG_DST_OH8_SYNC 0x00040000 Local SERIAL DST: the OH8 (framing)
overhead bit from the incoming data stream is
correct

HST_FLAG_DST_SIG_DET 0x00080000 Local SERIAL DST: incoming signal on fiber is
detected

hip_s struct Source error counts

rejects; u_int Connection REQUESTs that were rejected

resvd0[2]; u_int reserved

glink_resets; u_int Times that the firmware reset both the
HIPPI-Serial (G-link) chips. A reset occurs
when the firmware believes one of the
HIPPI-Serial (G-link) chips is not responding.
However, a reset can be caused by faulty
cabling, ODLs, or connectors since the
firmware cannot identify the true cause for an
unresponsive HIPPI-Serial portion of the
board.

glink_err; u_int Count of times that the firmware fails to see
any one of the following flags for more than
half a second: DST_OH8_SYNC,
DST_FLAG_SYNC, DST_LNK_RDY, or
DST_SIG_DET. This event can be counted, at
maximum, 50 times per second (at 25MHz).

Table 2-4 (continued) Status Information Retrieved From HIPPI-Serial XIO Board

Field Value or
Type

Description

API Reference

47

timeo; u_int Count of connection attempts by SRC that
timed out.

connls; u_int Count of connections made by SRC that were
dropped by the other side.

par_err; u_int Count of SRC parity errors. This error
indicates that a local parity error (for example,
on the IRIS HIPPI board) resulted in the
transmission of invalid data.

resvd1[4]; u_int reserved

numbytes_hi; u_int Most significant digits for total count of bytes
sent.

numbytes_lo; u_int Least significant digits for total count of bytes
sent.

hip_s struct Destination error counts.

badulps; u_int Packets dropped due to unknown ULP-id.

ledrop; u_int HIPPI-LE packets dropped.

llrc; u_int Connections dropped due to LLRC errors.

par_err; u_int Connections dropped due to parity errors.

frame_state_err; u_int Count of framing (OH8 overhead bit) errors
that occurred while PACKET signal was
asserted or HIPPI state transition errors.
Examples of state transition errors include:

no_REQUEST —> PACKET
no_REQUEST —> BURST
REQUEST —> BURST
BURST —> REQUEST
BURST —> no_REQUEST

flag_err; u_int Count of data-frame alternating-flag-bit
synchronizations that were lost while PACKET
signal was asserted.

illbrst; u_int Packets with illegal burst sizes.

Table 2-4 (continued) Status Information Retrieved From HIPPI-Serial XIO Board

Field Value or
Type

Description

48

Chapter 2: Programming Notes for IRIS HIPPI API

The hippi_stats structure, from the hippi.h file, is provided below for reference.

typedef struct hippi_stats {
 u_int hst_flags;/* status flags */
/* Used by HIO™ board on Challenge™ or Onyx® systems only */
#define HST_FLAG_DSIC 0x0001 /* SRC sees IC */
#define HST_FLAG_SDIC 0x0002 /* DST sees IC */

/* Used only by HIPPI-Serial XIO™ board */
#define HST_FLAG_LOOPBACK 0x0004 /* internal loopback enabled */

/* HIPPI flags used by all types of hardwre */
#define HST_FLAG_DST_ACCEPT 0x0010 /* DST is accepting connections */
#define HST_FLAG_DST_PKTIN 0x0020 /* DST: PACKET input is high */
#define HST_FLAG_DST_REQIN 0x0040 /* DST: REQUEST input is high */
#define HST_FLAG_SRC_REQOUT 0x0100 /* SRC: REQUEST is asserted */
#define HST_FLAG_SRC_CONIN 0x0200 /* SRC: CONNECT input is high */

pkt_lnklost_err; u_int Count of packets that were aborted due to the
DST_FLAG_SYNC, DST_OH8_SYNC, or
DST_LNK_RDY flag becoming unset (not
true) when the PACKET signal was asserted.

nullconn; u_int Connections with zero packets.

rdy_err; u_int Count of bursts received for which no READYs
had been sent.

bad_pkt_st_err; u_int Number of packets that started improperly.
For example, a sequence of
PACKET-no_BURST- deasserted_PACKET (that
is, a null packet), or a faulty FP packet (BURST
followed by less than 12 bytes and a
deasserted PACKET signal).

resvd; u_int reserved

numbytes_hi; u_int Most significant digits for total count of bytes
received.

numbytes_lo; u_int Least significant digits for total count of bytes
received.

Table 2-4 (continued) Status Information Retrieved From HIPPI-Serial XIO Board

Field Value or
Type

Description

API Reference

49

/* HIPPI-Serial flags used only with HIPPI-Serial */
#define HST_FLAG_DST_LNK_RDY 0x00010000
#define HST_FLAG_DST_FLAG_SYNC 0x00020000 /* SERIAL DST: alternating flg sync’d*/
#define HST_FLAG_DST_OH8_SYNC 0x00040000
#define HST_FLAG_DST_SIG_DET 0x00080000 /* SERIAL DST: signal detect at DST */

/* Error statistics are different for Hippi Parallel (HP) vs. Hippi Serial (HS).
* In an effort to keep some binary compatibility, some fields
* defined originally for Hippi Parallel are re-used for Hippi Serial.
*/
/* Source statistics */

u_int hst_s_conns; /* total connections attempted */
u_int hst_s_packets; /* total packets sent */

union {
 u_int data[14];
 struct {

u_int rejects; /* connection attempts rejected */
u_int dm_seqerrs; /* data sm sequence error */
u_int cd_seqerrs; /* conn sm sequence error, dst */
u_int cs_seqerrs; /* conn sm sequence error, src */
u_int dsic_lost;
u_int timeo; /* timed out connection attempts*/
u_int connls; /* connections dropped by other side*/
u_int par_err; /* source parity error */
u_int resvd[6]; /* reserved for future compatibility */

 } hip_p; /* parrallel hippi */

 struct {
 u_int rejects; /* connection attempts rejected */
 u_int resvd0[2]; /* reserved for future compatibility */
 u_int glink_resets; /* times firmware reset glink */
 u_int glink_err; /* glink error count */
 u_int timeo; /* connection attempts timed out */
 u_int connls; /* connections dropped by other side */
 u_int par_err; /* source parity error */
 u_int resvd1[4]; /* reserved for future compatibility */
 u_int numbytes_hi; /* number of bytes sent */
 u_int numbytes_lo; /* number of bytes sent */
 } hip_s; /* serial hippi */

} sf; /* source format, system specific */

50

Chapter 2: Programming Notes for IRIS HIPPI API

/* Destination statistics */
u_int hst_d_conns; /* total connections accepted */
u_int hst_d_packets; /* total packets received */

 union {
 u_int data[14];
 struct {

u_int badulps; /* pkts dropped due to unknown ULP*/
u_int ledrop; /* HIPPI-LE packets dropped */
u_int llrc; /* conns dropped due to llrc error */
u_int par_err; /* conns dropped due to parity err */
u_int seq_err; /* conns dropped due to sequence err */
u_int sync; /* sync errors */
u_int illbrst; /* packets with illegal burst sizes */
u_int sdic_lost; /* conns dropped due to sdic lost */
u_int nullconn; /* connections with zero packets */
u_int resvd[5]; /* reserved for future compatibility*/

 } hip_p;

 struct {
 u_int badulps; /* packets dropped due to unknown ULP */
 u_int ledrop; /* HIPPI-LE packets dropped */
 u_int llrc; /* conns dropped due to llrc error */
 u_int par_err; /* conns dropped due to parity error */
 u_int frame_state_err; /* framing err or state transition err; eg: */

 * no request -> packet
 * no request -> burst
 * request -> burst
 * burst -> request
 * burst -> no request

 u_int flag_err; /* flag sync lost during packet */
 u_int illbrst; /* packets with illegal burst sizes */
 u_int pkt_lnklost_err; /* lost linkready when PACKET asserted */
 u_int nullconn; /* connections with zero packets */
 u_int rdy_err; /* data received when no readys sent */
 u_int bad_pkt_st_err; /* packet got off to a bad start */
 u_int resvd;
 u_int numbytes_hi; /* number bytes received */
 u_int numbytes_lo; /* number bytes received */
 } hip_s;

 } df; /* destination format, system specific */

} hippi_stats_t;

API Reference

51

Failures and Errors

This call fails for the following reasons:

• The driver is unable to copy the statistics from the board.

• The IRIS HIPPI board is shutdown (for example, hipcntl shutdown or
HIPPI_SETONOFF has be called).

52

Chapter 2: Programming Notes for IRIS HIPPI API

HIPIOC_STIMEO

HIPIOC_STIMEO sets the period of time for which the IRIS HIPPI source channel waits for
a CONNECT or READY signal before aborting the connection. With the Challenge/Onyx
HIO board, the granularity for this timeout is 250 milliseconds; IRIS HIPPI rounds the
user-specified value to the nearest 250 millisecond interval. With the Origin/Onyx2 XIO
board, the granularity is 1 millisecond.

Usage

Transmission for HIPPI-FP and HIPPI-PH.

ioctl (fd_hippi#, HIPIOC_STIMEO, milliseconds);

The arg

The range of valid values for milliseconds is 1 to FFFFFFFF inclusive (hexadecimal
notation).

Failures and Errors

This call fails for the following reasons:

• IRIS HIPPI board is shutdown (for example, hipcntl shutdown or HIPPI_SETONOFF

has be called).

• The value used for the milliseconds argument is out of range.

API Reference

53

HIPIOCR_ERRS

HIPIOCR_ERRS returns the error status from the last read() call for the indicated file
descriptor.

Usage

Error monitoring for reception with HIPPI-FP and HIPPI-PH.

error = ioctl (fd_hippi#, HIPIOCR_ERRS);

The arg

There is no arg for this call.

Returned Value

The returned error is a 6-bit vector indicating the errors that occurred on the last read(),
as summarized in Table 2-5.

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• If the returned error is a negative value, then an error occurred while making the
ioctl() call, and none of the bits should be interpreted.

Table 2-5 Errors for Failed read() Calls

Bit Position Hex Mask Error

0 0x01 HIP_DSTERR_PARITY: Destination parity error.

1 0x02 HIP_DSTERR_LLRC: Destination LLRC error.

2 0x04 HIP_DSTERR_SEQ: Destination sequence error. Causes the SDIC lost
error also.

3 0x08 HIP_DSTERR_SYNC: Destination synchronization error.

4 0x10 HIP_DSTERR_ILBURST: Destination illegal burst error.

5 0x20 HIP_DSTERR_SDIC: Destination SDIC lost error.

54

Chapter 2: Programming Notes for IRIS HIPPI API

HIPIOCR_PKT_OFFSET

HIPIOCR_PKT_OFFSET retrieves the offset for the packet being received.

Usage

Reception for HIPPI-FP and HIPPI-PH.

offset = ioctl (fd_hippi#, HIPIOCR_PKT_OFFSET);

The arg

There is no arg for this call.

Returned Value

The returned offset is an integer indicating the current offset (number of bytes received so
far) for the packet in the next read(). When the offset is 0, the next read() starts a new packet.

When the returned offset reaches 0x7FFFFFFF, the counter sticks (that is, does not count
any higher and does not roll over to zero). However, the counter will again return true
count values when the next packet arrives.

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• The file descriptor has not been opened for reading by this application.

API Reference

55

HIPIOCW_CONNECT

HIPIOCW_CONNECTcauses a long-term (many-packet) connection to be established with
the next write(). The argument sets the value for the I-field that will be used on the
connection request. Once this call has been made, the HIPPI-subsystem sets up a
connection with the next write() call, and does not tear the connection down until the
HIPIOCW_DISCONNcall is invoked. Multiple applications can call HIPIOCW_CONNECTfor
the same device successfully; however, once one application does a write(), the HIPPI
subsystem’s resources are unavailable for other applications’ write()s.

Note: For single-packet connections, use HIPIOCW_I .

Usage

Transmission for HIPPI-FP and HIPPI-PH.

ioctl (fd_hippi#, HIPIOCW_CONNECT, I-fieldValue);

The arg

The I-fieldValue is a 32-bit number used as the I-field. IRIS HIPPI does not verify, alter, or
interpret the I-field value.

For a HIPPI-SC compliant I-field, bit 31 of the I-field must be set to 0 and the remaining
bits (30:0) must be partitioned into fields, as summarized in Table 2-6. (For more details
about the I-field, see Figure A-2.)

“Locally-administered” schemes are legal and supported. For a locally-administered
scheme, bit 31 must be set to 1 and bits 30:0 can be set to comply with any locally-defined
protocol or can be set to zero (for example, I-field value = 80000000 hex).

Note: Using a “locally-administered” I-field severely limits interoperability, especially in
the areas of routing and HIPPI switch control.

56

Chapter 2: Programming Notes for IRIS HIPPI API

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• The application has not disconnected from a long-term connection that was
established with HIPIOCW_CONNECTprior to this request. (If no data has ever been
sent, the connection is not necessarily open at the physical layer.)

Table 2-6 IRIS HIPPI Support for Fields in I-Field

Valid Values for
IRIS HIPPI (binary)

Bits in
I-field Locally-Defined HIPPI-SC Compliant Comments

31 1 0 Both I-field formats (local and HIPPI-SC) are
supported.

30:29 anything anything

28 anything 0 IRIS HIPPI hardware currently supports
only 800 Mbits/second. It is the
application’s responsibility to set this
correctly.

27 anything 0 / 1 It is the application’s responsibility to set the
direction bit correctly.

26:25 anything 00 / 01/11 All addressing schemes are supported.

24 anything 0 / 1 It is the application’s responsibility to set the
camp-on bit correctly.

23:0 anything anything All addressing schemes are supported.

API Reference

57

HIPIOCW_D1_SIZE

HIPIOCW_D1_SIZE is used to set the size of the D1_Area and set the P-bit in a HIPPI-FP
FDO. This call specifies a D1 area size that is placed in the FP header of all subsequently
transmitted packets.

This call has the following characteristics:

• The size must be zero or a multiple of 8.

• When the D1 area size is greater than 0, the P-bit in the FP header is set to 1.

To send its D1 data, the application can concatenate the D2 data to the D1 data so that the
first burst contains both kinds of data, or it can use HIPIOCW_SHBURSTto place only the
FP header and the D1 data in the first burst. The HIPPI subsystem uses all of this
information to correctly calculate the values for the FP header, as explained in “How
HIPPI Protocol Items Are Handled With the HIPPI-FP Access Method” on page 18.

Usage

Transmission for HIPPI-FP.

ioctl (fd_hippi#, HIPIOCW_D1_SIZE, bytecount);

The arg

The bytecount is the size in bytes to be placed in the D1_Area_Size field of the HIPPI-FP
header of subsequent packets. Valid sizes fall within the range of 0-1016 (decimal),
inclusive, and must be evenly divisible by 8.

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• The bound FDO is HIPPI-PH.

• The bytecount is not valid.

58

Chapter 2: Programming Notes for IRIS HIPPI API

HIPIOCW_DISCONN

HIPIOCW_DISCONNis used for terminating a permanent connection that was opened with
the HIPIOCW_CONNECTcall. This call causes the HIPPI subsystem to tear down the
connection immediately.

Note: To terminate a packet without tearing down the connection, use
HIPIOCW_END_PKT.

Usage

Transmission for HIPPI-FP and HIPPI-PH.

ioctl (fd_hippi#, HIPIOCW_DISCONN);

The arg

There is no arg for this call.

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• No long-term (permanent) connection has been set up; there is nothing to
disconnect.

API Reference

59

HIPIOCW_END_PKT

HIPIOCW_END_PKTterminates the current packet (that is, causes the HIPPI subsystem to
drive the PACKET signal false). This call is required only when the packet length was
specified as infinite.

Usage

Transmission for HIPPI-FP and HIPPI-PH.

ioctl (fd_hippi#, HIPIOCW_END_PKT);

The arg

There is no arg for this call.

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• There is no inprogress packet; that is, this call has not been preceded by a
HIPIOCW_START_PKTcall.

60

Chapter 2: Programming Notes for IRIS HIPPI API

HIPIOCW_ERR

HIPIOCW_ERR returns the error status from the last write() call for the indicated file
descriptor.

Usage

Error monitoring for transmission with HIPPI-FP and HIPPI-PH.

error = ioctl (fd_hippi#, HIPIOCW_ERR);

The arg

There is no arg for this call.

Returned Value

The returned error is an integer, as summarized in Table 2-7.

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

Table 2-7 Errors for Failed write() Calls

Hex Value Error

0 HIP_SRCERR_NONE: No error occurred on last write().

1 HIP_SRCERR_SEQ: Source sequence error.

2 HIP_SRCERR_DSIC: Source lost DSIC error.

3 HIP_SRCERR_TIMEO: Source timed out connection.

4 HIP_SRCERR_CONNLS: Source lost inbound CONNECT signal during
transmission.

5 HIP_SRCERR_REJ: Source’s connection REQUEST was rejected.

6 HIP_SRCERR_SHUT: Interface is shut down.

API Reference

61

HIPIOCW_I

HIPIOCW_I prepares the HIPPI subsystem to set up a single-packet connection. The
command specifies a new value for the HIPPI I-field in the application’s FDO. (The I-field
is also known as CCI.) The HIPPI subsystem uses this value as the I-field for all
subsequent connection requests (that is, at each write call), until HIPIOCW_I is called
again. The HIPPI subsystem does not alter or interpret the I-field contents. The HIPPI
subsystem drops each connection as soon as the data from the write() call is sent.

Note: For a long-term (many-packet) connection, use the HIPIOCW_CONNECTcall.

Usage

Transmission for HIPPI-PH and HIPPI-FP.

ioctl (fd_hippi#, HIPIOCW_I, I_fieldValue);

The arg

The I-fieldValue is a 32-bit number. IRIS HIPPI does not verify, alter, or interpret the I-field
value.

For a HIPPI-SC compliant I-field, bit 31 of the I-field must be set to 0 and the remaining
bits (30:0) must be partitioned into fields, as summarized in Table 2-6. (For more details
about the I-field, see Figure A-2.)

“Locally-administered” schemes are legal and supported. For a locally-administered
scheme, bit 31 must be set to 1 and bits 30:0 can be set to comply with any locally-defined
protocol or can be set to zero (for example, I-field value = 80000000 hex).

Note: Using a “locally-administered” I-field severely limits interoperability, especially in
the areas of routing and HIPPI switch control.

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

62

Chapter 2: Programming Notes for IRIS HIPPI API

HIPIOCW_SHBURST

HIPIOCW_SHBURSTdefines the size of the first burst for all subsequent packets. The size
may be shorter than a standard burst, or full-sized. The IRIS HIPPI subsystem’s
functionality is slightly different for HIPPI-PH and HIPPI-FP applications, as explained
below.

Note: If the first burst is short, it is the responsibility of the application to pad out the D2
data to a multiple of 256 words, so that all the non-first bursts are full-sized. The IRIS
HIPPI software does not verify the data size nor pad the final burst.

For a HIPPI-PH application, the call causes the HIPPI subsystem to “break off” the
indicated number of bytes from the data provided by the first write() call, and send these
bytes as the first burst. When the desired first burst consists of 256 words, it is not
necessary to make this call. When HIPIOCW_SHBURSTis called with a bytecount of 0, the
IRIS HIPPI subsystem creates standard-sized first bursts.

For a HIPPI-FP application, the call causes the IRIS HIPPI subsystem to create a first burst
that contains only the FP header and D1 data and to set the B-bit in the FP header. When
HIPIOCW_SHBURSTis called with the following bytecounts, the first burst is created as
described:

• With a bytecount of 0, the first burst is standard-sized and contains the FP header
and 1016 bytes of data from the write() call. The B-bit is set to 0.

• With a bytecount of 8, the first burst is short and contains only the FP header. The
B-bit is set to 1.

• When the bytecount is larger than 8 but smaller than 1024, the first burst is short; it
contains 8 bytes of FP header and [bytecount minus 8] of D1 data. The HIPPI
subsystem “breaks off” the D1 data bytes from the data provided with the first
write() call. The B-bit is set to 1.

Note: When D1 data is included, it is the application’s responsibility to also call
HIPIOCW_D1_SIZE to ensure a properly filled-in FP header.

• When the bytecount is 1024, the first burst is standard-sized; it contains 8 bytes of FP
header and 1016 bytes of D1 data. The HIPPI subsystem “breaks off” the D1 data
bytes from the data provided with the first write() call. The B-bit is set to 1.

API Reference

63

Usage

Transmission of multiple-write packets for HIPPI-FP and HIPPI-PH. Once called, the
setting applies to all packets, until called again.

ioctl (fd_hippi#, HIPIOCW_SHBURST, bytecount);

The arg

For HIPPI-PH, the bytecount can be any value from 0-1024 decimal (inclusive) that is
evenly divisible by 8.

For HIPPI-FP, the bytecount can be any value from 0-1024 decimal (inclusive) that is
evenly divisible by 8. The minimum bytecount for a short first burst is 8 (that is, large
enough to include the FP header) and, if HIPIOCW_D1_SIZE has been called, it must be
[8 + D1_Area_Size].

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• The packet has not been setup as a multiple-write packet, using the
HIPIOCW_START_PKTcommand.

• The size of bytecount is not valid.

64

Chapter 2: Programming Notes for IRIS HIPPI API

HIPIOCW_START_PKT

HIPIOCW_START_PKTcontrols the HIPPI subsystem’s PACKET signal. The signal is held
high (PACKET = true) for the bytecount provided in the call’s argument (or for HIPPI-FP,
the bytecount plus 8, thus including the FP header). The bytecount should be so large
that a number of write() calls are required to send it. This call must be made for each
multiple-write packet.

Usage

Transmission for HIPPI-FP and HIPPI-PH.

ioctl (fd_hippi#, HIPIOCW_START_PKT, bytecount);

The arg

The bytecount is either the actual bytecount of the D1 and D2 areas of the packet or a value
indicating “infinite.” (Infinite packets are supported only when the connection is
permanent or long-term.)

• The range of valid values for an actual bytecount is multiples of 8 between 0 and
0xFFFFFFF8 hexadecimal, inclusive. The maximum actual length for any packet is
4 gigabytes less 8 bytes.

• An “infinite” or indeterminate packet is defined by a bytecount of
HIPPI_D2SIZE_INFINITY (which is 0xFFFFFFFF).

Failures and Errors

This call fails for the following reasons:

• The application is not bound.

• A packet is currently in progress. For example, for an infinite packet, the
HIPIOCW_END_PKTcall has not terminated the current packet.

API Reference

65

HIPPI_SETONOFF

HIPPI_SETONOFF does shutdown and bringup of the IRIS HIPPI board. ON (bringup)
initializes everything on the board, leaving the board in the UP state. OFF (shutdown)
completes inprogress work with errors, turns everything off, resets the onboard CPU,
and transitions to the DOWN state. This command is intended for administration and
maintenance purposes only; hence, it is only available to superuser (root).

Usage

Board shutdown and bringup. Only available to superuser (root).

ioctl (fd_hippi#, HIPPI_SETONOFF, arg);

The arg

The arg is 1 for ON (bringup) and 0 for OFF (shutdown). Multiple, sequential calls for
OFF while the board is down results in multiple resets of the board’s CPU, as described
in Table 2-8.

Failures and Errors

This call fails for the following reasons:

• The application is not superuser (root).

• The file descriptor is bound. Closing the file descriptor will unbind it.

• For ON, there are other open (cloned) file descriptors that must be closed before the
board can be brought up.

Table 2-8 Actions Caused by HIPPI_SETONOFF

Board = DOWN Board = UP

Command = OFF (0) reset onboard CPU shutdown, which includes CPU reset

Command = ON (1) bringup error

67

Appendix A

A. Important HIPPI Concepts

I-Field

The format for the standard HIPPI I-field (also referred to as CCI) that accompanies each
connection request is shown in Figure A-1. The seven fields are described in Table A-1.

Figure A-1 I-Field Format

Table A-1 Fields of the HIPPI I-Field

Field Bits Description

L 31 Local or Standard Format:

0=bits 30:0 of I-field conform to the usage described in this table

1=bits 30:0 are implemented in conformance to a private (locally-defined)
protocol

VU 30:29 Vendor Unique Bits:

Vendors of end-system HIPPI equipment may use these bits for any purpose.
Switches do not alter or interpret these bits.

W 28 Width:

0=the data bus of the transmitting (source) HIPPI is 32 bits wide for 800
megabits/second

1=source’s data bus is 64 bits wide for 1600 megabits/second

23
bits

031 15

L VU W D PS C Routing Control

68

Appendix A: Important HIPPI Concepts

D 27 Direction:

0=least significant bits of Routing Control field contain the next address for
switch to use

1=most significant bits of Routing Control field contain the next address for
switch to use

PS 26:25 Path Selection:

00=source routing

01=Routing Control field contains logical addresses. Switch must select first
route from a list of routes.

10=reserved

11=Routing Control field contains logical addresses. Switch selects route.

C 24 Camp-on:

0=switch does not retry if connection is rejected

1=switch continues trying to establish a connection until the source aborts the
connection request

Routing
Control

23:0 Routing Address:

This field may contain source routing addresses or logical addresses, as
indicated by the PS field.

For source routing, the field contains a concatenated list of switch addresses
that, when followed, lead to the destination.

For logical addressing, the field contains two 12-bit addresses (destination
and source) that are used by the intermediate switches to select a route from
a table.

Table A-1 (continued) Fields of the HIPPI I-Field

Field Bits Description

HIPPI-FP Packet

69

HIPPI-FP Packet

Each HIPPI packet using the HIPPI Framing Protocol (HIPPI-FP) has a required 64-bit
segment called the FP header, and two optional segments called D1 Area and D2 Area,
as illustrated in Figure A-2. The D1 area is intended for communicating control (D1)
information. It can also be used for padding out the first burst in order to position the
user (D2) data in the second burst. The D2 area contains user/application data. The size
of the D1 area is defined within the FP header. The size of the D2 area is not specifically
defined, but is implicit due to the protocol definition. The D2 area consists of D2 data and
possibly an offset and filler. The D2 offset and D2 data are defined in the FP header. The
size of the filler can be calculated by rounding up to the next 64-bit word boundary,
because the D2 area is required to be an integral number of 64-bit words.

The format for the HIPPI-FP packet is as shown in Figure A-2. The FP header consists of
seven fields, shown in Figure A-3 and described in Table A-2.

Figure A-2 Packet Format for HIPPI Framing Protocol

bits
064

FP Header

D1 Data (optional)

Header Area

D1 Area

D2 Area

(optional)

(optional)

NOTE: The size of each included area must be an integral number of 64-bit words.
The first word of each area must be 8-byte aligned.

D2 Data

Fill (0-2047 bytes)

D2_Offset (0-7 bytes)

70

Appendix A: Important HIPPI Concepts

Figure A-3 FP Header Format

Table A-2 Fields of FP Header

Field Bits Range of
Values
(in hex)

Description

D2 Data Size 63:32 0 - FFFFFFFF Number of bytes of D2 data in this packet not counting
the D2 offset nor the D2 fill. A size of FFFFFFFF
(hexadecimal) indicates a packet of unknown,
indeterminate, or “infinite” length.

Dest ULP-id 31:24 0 - FF The upper layer identification number for the
destination.

P 23 0 / 1 Present:

0=there is no D1_Area in this packet

1=there is D1 data in the D1_Area of this packet

B 22 0 / 1 Burst Boundary:

0=D2 data starts before beginning of second burst of
this packet

1=D2 data starts at beginning of second burst of this
packet

Reserved 21:11 000 Must be zero.

bits
031 10

11 3
2

D2_OffsetD1__Area_SizeReserved

23
22

21
24

P BDestination ULP-id

3263

D2_Data_Size

HIPPI-FP Packet

71

D1 Area Size 10:3 0 - 7F The number of 64-bit words in the D1 Area. The area
does not necessarily contain valid D1 data; the area
may be defined for padding purposes only.

D2 Offset 2:0 0 - 7 The number of bytes between the last byte of the D1
Area and the first byte of D2 data.

Table A-2 (continued) Fields of FP Header

Field Bits Range of
Values
(in hex)

Description

73

Index of API Calls

H

HIPIOC_ACCEPT_FLAG, 39
HIPIOC_BIND_ULP, 40
HIPIOC_GET_BPSTATS, 41
HIPIOC_GET_STATS, 43
HIPIOC_STIMEO, 52
HIPIOCR_ERRS, 53
HIPIOCR_PKT_OFFSET, 54
HIPIOCW_CONNECT, 55
HIPIOCW_D1_SIZE, 57
HIPIOCW_DISCONN, 58
HIPIOCW_END_PKT, 59
HIPIOCW_ERR, 60
HIPIOCW_I, 61
HIPIOCW_SHBURST, 62
HIPIOCW_START_PKT, 64
HIPPI_SETONOFF, 65

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2227-004.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

