
IRIS® HIPPI Administrator’s Guide

Document Number 007-2229-002

IRIS® HIPPI Administrator’s Guide
Document Number 007-2229-002

CONTRIBUTORS

Written by Carlin Otto
Illustrated by Carlin Otto and Dan Young
Edited by Christina Cary
Production by Derrald Vogt
Engineering contributions by Thomas Skibo and Ken Powell

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics, the Silicon Graphics logo, and IRIS are registered trademarks and
IRIX, IRIS InSight, CHALLENGE, and Onyx are trademarks of Silicon Graphics, Inc.

iii

Contents

Introduction xi
Support for Upper Layer Applications xi
Style Conventions xii
Product Support xiii

1. What is HIPPI? 1
Introduction to the HIPPI Protocol 1

HIPPI Terminology 1
How HIPPI Works 1
Connection Control 3
Packet and Flow Control 5
Routing 7

Logical Addressing 7
Source Addressing 9

The Protocol 15
The I-field 15
The FP Header 17
The Signals 22

HIPPI Network Configurations 24
Basic HIPPI Configurations 24
HIPPI Local Area Network Configurations 26

The HIPPI Standards and Documentation 32
Implementation Details for IRIS HIPPI 34

Application Programming Interface 34
Handling of HIPPI Protocol for HIPPI-LE 34

On Transmission 34
On Reception 38

iv

Contents

2. Configuring IRIS HIPPI 43
Overview of Configuration Steps 43

IRIS HIPPI Without IP Support 43
IRIS HIPPI With IP Support 44

Checking If IRIS HIPPI Software Has Been Installed 45
Editing the hippi.sm File 45
Editing the if_hip File 46
Editing the hippi.imap File 46
Editing the IP Configuration Files 48

The /etc/hosts File 49
The /etc/config/netif.options File 49

Enabling IP Networking 50
Building a New Driver Into the Operating System 50
How HIPPI Boards Are Assigned to Interfaces 52

3. Maintaining and Monitoring IRIS HIPPI 55
Commands Available for IRIS HIPPI 55
Step-by-step Instructions for Common Procedures 56

Disable or Enable IRIS HIPPI Board 56
Configure Board to Reject or Accept Connection Requests 56
Check Status 56
Disable or Enable an IP Interface 58
Configure IP Network Interface Over IRIS HIPPI 59
Change the Lookup Table That Maps IP Hosts to I-fields 59
Display the Lookup Table That Is Currently in Memory 60
Set Timeout for Source Channel Connections 60

Verifying the HIPPI Subsystem 61
Install a Loopback Link 61
Verify the Interface to HIPPI-FP 63
Verify an IP Interface 65

Troubleshooting 68
Troubleshoot the Interface to HIPPI-FP 68
Troubleshoot an IP Interface 68

v

4. IRIS HIPPI Error Messages 71
Overview of the Error Message Listing 71
Alphabetical Error Message Listing 73

Index 83

vii

Figures

Figure 1-1 HIPPI Links and Connections 2
Figure 1-2 HIPPI Packets and Bursts 6
Figure 1-3 Routing Control Field With Logical Addressing 8
Figure 1-4 Routing With Logical Addressing 9
Figure 1-5 Routing Control Field With Source Addressing 10
Figure 1-6 Switches and Port Identifiers 10
Figure 1-7 Port Identifiers for Source Addressing 12
Figure 1-8 Routing With Source Addressing 13
Figure 1-9 How Switches Alter Source Addresses 14
Figure 1-10 I-field Format 15
Figure 1-11 HIPPI-FP Packet Format 18
Figure 1-12 FP Header Format 19
Figure 1-13 Sample HIPPI-FP Packet 20
Figure 1-14 Some Common HIPPI-FP Packets 21
Figure 1-15 HIPPI Signals Used on Each Point-to-Point Link 22
Figure 1-16 Basic HIPPI Configuration 25
Figure 1-17 Three Variations of the Basic Configuration 25
Figure 1-18 HIPPI LAN Configuration With One Switch 27
Figure 1-19 HIPPI LAN Configurations With Multiple Switches 28
Figure 1-20 Complex HIPPI LAN Configuration 29
Figure 1-21 HIPPI Packet Created by IRIS HIPPI-LE 35
Figure 1-22 HIPPI Packets that IRIS HIPPI Driver

Passes to HIPPI-LE 38
Figure 2-1 Template for Creating I-fields With

Recommended Values 48
Figure 3-1 Installing a Loopback Link Using a HIPPI Cable 61
Figure 3-2 Installing a Loopback Link Using a Loopback Cable 62
Figure 3-3 The /usr/etc/netstat -ina Display 66
Figure 4-1 Error Message Format in /usr/var/adm/SYSLOG File 72

ix

Tables

Table 1-1 Logical Addressing Formats 8
Table 1-2 Maximum Number of Port Identifiers in

Routing Control Field 15
Table 1-3 Fields of the HIPPI I-field 16
Table 1-4 Fields of the HIPPI-FP Header 19
Table 1-5 HIPPI Signals 23
Table 1-6 Maximum Number of Switches Along Any Single

Point-to-Point Path When Using
Source Addressing 31

Table 1-7 Maximum Number of Switches and Endpoints
on a LAN Built in Accordance With RFC 1374,
Appendix B Guidelines 31

Table 1-8 I-field Recommended for Use With IRIS HIPPI-LE 35
Table 1-9 FP Header Created by IRIS HIPPI-LE ULP 36
Table 1-10 D1 Data (HIPPI-LE Header) Created by IRIS HIPPI-LE 36
Table 1-11 IEEE 802.2 Header (First Bytes of D2) Created by

IRIS HIPPI-LE 37
Table 1-12 I-field Accepted by IRIS HIPPI Driver for

HIPPI-LE ULP 38
Table 1-13 FP Header Accepted by IRIS Driver for HIPPI-LE ULP 39
Table 1-14 D1 Data Accepted by IRIS HIPPI-LE ULP 40
Table 1-15 IEEE 802.2 Headers Accepted by HIPPI-LE ULP 41
Table 3-1 Utilities for Monitoring and Maintaining IRIS HIPPI 55
Table 3-2 IRIS HIPPI Status Information 57

xi

Introduction

The IRIS® HIPPI product is a network interface controller board (hardware)
and driver (software) providing data communication through the
High-Performance Parallel Interface (HIPPI). The product provides HIPPI
connectivity for CHALLENGE™ L and XL, and Onyx™ platforms.

The IRIS HIPPI hardware must be installed by a Silicon Graphics system
support engineer (SSE) or other person trained by Silicon Graphics. The IRIS
HIPPI Installation Instructions (shipped, in a sealed envelope, with each IRIS
HIPPI board) contains complete details for hardware installation. The seal
on the envelope must not be broken by anyone except the SSE.

Installation and configuration of the software can be done by customers
and/or SSEs. This document, IRIS HIPPI Administrator’s Guide (shipped
with each IRIS HIPPI board), provides software configuration details. The
online IRIS HIPPI Release Notes provide software installation instructions.

Support for Upper Layer Applications

IRIS HIPPI supports the following upper layer applications:

• standard UNIX applications:
For Internet (IP) networking, IRIS HIPPI supports IP over HIPPI-LE in
conformance with RFC 1374 guidelines. All IP applications can use the
IP over HIPPI interface, just as they would IP over Ethernet or FDDI.

• IRIS HIPPI utilities:
IRIS HIPPI includes utilities for monitoring, maintaining, and testing
the IRIS HIPPI subsystem.

• customer-developed applications:
IRIS HIPPI provides an application programming interface (API) that
customers can use to develop their own upper-layer applications

xii

Introduction

(ULPs). See the IRIS HIPPI API Programmer’s Guide (shipped with each
IRIS HIPPI board) for details.

Style Conventions

This guide uses the following stylistic conventions:

screen display

Indicates system output, such as responses to commands that you see on the
screen. Code samples, screen displays, and file contents also appear in this
font.

user input

Indicates exact text that you must enter at a command line, such as
commands, options, and arguments to commands.

variable
Indicates generic, place-holding variable names. Can indicate a user input
variable, where you must replace the variable with text that you select.

<xx>

Indicates keys on the keyboard that you press; for example, press <Enter>

means press only the key labeled Enter.

physical label
Indicates a label for a piece of hardware (for example, a pin, a wire, a port).
Can also indicate the signal on a wire or pin.

command
Designates command and utility names.

file name
Indicates file names and file name suffixes.

[]
Encloses optional command arguments.

Product Support

xiii

...
Denotes omitted material or indicates that the preceding optional items may
appear more than once in succession.

Product Support

Silicon Graphics, Inc., provides a comprehensive product support and
maintenance program for its products. If you are in North America and
would like support for your Silicon Graphics-supported products, contact
the Technical Assistance Center at 1-800-800-4SGI. If you are outside North
America, contact the Silicon Graphics subsidiary or authorized distributor in
your country.

1

Chapter 1

1. What is HIPPI?

This chapter is an introduction to the High-Performance Parallel Interface
(HIPPI) protocol. The chapter provides an brief introduction to HIPPI, a
description of the HIPPI protocol, some common configurations of HIPPI
equipment, and how to obtain official HIPPI documentation.

Introduction to the HIPPI Protocol

This section provides a brief introduction to HIPPI.

HIPPI Terminology

HIPPI uses source to refer to the transmitting endpoint, host, network
interface, or program.

It uses destination to refer to the receiving endpoint, host, network interface,
or program.

A word in the HIPPI environment can be either 4 bytes (32 bits) or 8 bytes (64
bits), depending on the HIPPI implementation. When not clarified, both
definitions apply. For example, “A burst consists of 256 words” means that
a burst can be either 1024 bytes (256 words times 4 bytes) or 2048 bytes (256
words times 8 bytes).

How HIPPI Works

HIPPI is an extremely fast, simplex point-to-point protocol. HIPPI provides
for transmission at 800 or 1600 megabits per second.1 Before data can be sent
from one HIPPI network interface (endpoint) to another, there must be both
a physical link and an open connection between them. The physical link is

2

What is HIPPI?

made up of one or more 25-meter sections of copper cable. Each section
connects two HIPPI nodes. The nodes can be endpoints or intermediate
HIPPI switches. The open connection is an agreement for data transfer from
one endpoint to another, and is arranged with an exchange of signals. Once
a connection is open, the entire physical link is dedicated to one-way
communication from the source to the destination.

Figure 1-1 illustrates a configuration of HIPPI equipment with nine
endpoint-to-endpoint links (listed below) of which three can be
simultaneously active (engaged in open connections):

• A-source transmitting to A-destination (itself), B-destination, or
C-destination

• B-source transmitting to A-destination, B-destination (itself), or
C-destination

• C-source transmitting to A-destination, B-destination, or C-destination
(itself)

Figure 1-1 HIPPI Links and Connections

1 IRIS HIPPI supports only 800 megabits per second.

Switch

Destination
Channel

Source
Channel

Source
Channel

Destination
Channel

link_1

link_2

Dst Src

Host A Host B

Host C

H
IP

P
I N

et
w

or
k

In
te

rf
ac

e
A

H
IP

P
I N

et
w

or
k

In
te

rf
ac

e
B

H
IP

P
I N

et
w

or
k

In
te

rf
ac

e
C

Introduction to the HIPPI Protocol

3

An open connection consists of an exchange of signals between a source and
a destination. During this exchange, the destination agrees to accept data
exclusively from the source. Each endpoint-to-endpoint link supports one
connection (that is, HIPPI is point to point). It is common for an interface’s
source and destination channels to have open connections with different
hosts (for example, A-source connected to B-destination while A-destination
is connected to C-source). To move data in both directions between two
hosts, two endpoint-to-endpoint links and two connections are needed
between the two hosts.

Unlike Ethernet, 802.5 Token Ring, or FDDI, HIPPI does not use a shared
medium. Once a connection is established, the cable between the two HIPPI
interfaces contains only packets transmitted by the source (that is, HIPPI
connections are simplex). HIPPI packets may be seen by intermediate
switches but not by other host interfaces. When one packet has been sent, the
connection may be closed or kept open so that additional packets can be
sent; however, each endpoint may not participate in another connection
until the current one has been closed.

HIPPI communication is controlled by three basic functions: connection
control, packet and flow control, and routing control (pertinent only when
one or more switches are involved). Each of these is discussed separately in
the subsections that follow.

Connection Control

One of the first things any HIPPI endpoint does upon startup is to assert its
two outgoing INTERCONNECT signals and to look for assertion of its two
incoming INTERCONNECT signals. Each channel (the source and the
destination) has both incoming and outgoing INTERCONNECT signals. When
both signals on a channel are asserted, the physical link between the local
system and the system at the other end is ready for use. When the other
system is a switch, the exchange of INTERCONNECT signals occurs between
the endpoint and the switch, not between endpoints.

Before a source (transmitting) HIPPI network interface can send a packet, it
must open a connection to one destination HIPPI endpoint. The source
interface is always the initiator for opening the connection. To open a
connection, the sender issues a connection request by asserting the
REQUEST signal on the link. Each connection request includes an I-field

4

What is HIPPI?

(described in the section “The I-field”). The I-field mainly contains routing
information, used by any switches encountered along the path to the
destination.

The destination endpoint accepts a connection by asserting its CONNECT
signal in response to the request. If the destination endpoint is unwilling to
accept the connection or if there is a problem with the connection request (for
example, bad parity on the I-field or incompatible word size), the connection
request is denied (that is, acknowledged, then rejected). The transmitter
must wait and try again later or forgo the communication. If the destination
is unreachable (for example, a broken physical link, a powered-down or
dysfunctional network interface), there is no response and the source
program times out.

When a switch exists between the source and destination, the source receives
its connection rejections from the switch, not directly from the destination.
The rejection can be caused by any of the following conditions, and it is not
possible to distinguish among them (except as explained below):

1. The destination is malfunctioning.

2. The destination refuses to accept the requested connection.

3. The connection request has an error.

4. Asection of the physical link to the destination is busy (currently
engaged in another connection).

A feature is available that allows the source to be informed of rejections that
are due to error conditions (items 1-3 above) but not to be bothered when the
rejection is due to a busy link (item 4). This feature is called camp-on. By
setting the camp-on bit in the I-field, the source can program the switches to
hold onto the connection request until the busy link to the destination
becomes available.

When the camp-on bit is set, the first switch enqueues the connection request
if it finds any link along the path to the destination busy. The switch
periodically checks to see if the link has become available. When the link
becomes available, it sends the connection request. A switch continues to
wait until it sends the REQUEST to the ultimate destination endpoint or until
the source aborts the connection request. If a number of sources are all trying
to send data through the same link, the camp-on feature ensures fair (first
come, first served) access to the link.

Introduction to the HIPPI Protocol

5

Once opened, a HIPPI connection may be kept open for as long as the two
endpoints maintain it. Either endpoint may terminate the connection at any
time; however, the source network interface is usually the initiator.

Packet and Flow Control

Once a connection is open, one or multiple packets may be sent. The
destination indicates it is ready to receive data by sending a READY signal to
the source endpoint. Each READY allows the source to transmit one HIPPI
burst (as explained below). All HIPPI source endpoints are required to be
capable of enqueuing a minimum of 63 READYs. There is no minimum
requirement for a destination’s ability to generate READYs.2 By sending
ahead and enqueuing READYs, the two endpoints can optimize the
throughput on their connection.

The source delineates its packets with the PACKET signal: at the beginning it
asserts the PACKET signal, and at the end it deasserts the signal. A HIPPI
packet consists of one or more bursts, as illustrated in Figure 1-2. Each burst
contains 256 words, except in the case where the burst is short (as described
below). The size of each word depends on the source’s data bus (32 or 64 bits,
as indicated by a bit in the I-field).3 At the end of each burst, the source
generates a checksum (LLRC) so that the destination can detect any errors in
the received data; in addition, each word has four bits of parity for error
checking.

2 The source channel on the IRIS HIPPI board can enqueue up to 65,535 READYs; the destination channel can
generate up to 255 outstanding READYs.

3 The IRIS HIPPI board supports 32-bit words only.

6

What is HIPPI?

Figure 1-2 HIPPI Packets and Bursts

The HIPPI protocol requires very small waiting periods between packets
and between bursts. These required periods are counted in nanoseconds and
are imperceptible to the user; however, in normal operation there may be
noticeable pauses between bursts (for example, when the source is waiting
to receive a READY).

As long as the source has READYs, it can transmit data as fast as it is capable
of transmitting (but no faster than the protocol allows: 25 million words per
second). When the sender has sent all the data for one packet, it indicates the
end of the packet, using the PACKET signal. Indicating the end of the packet
is necessary because HIPPI allows packet size to be undefined
(indeterminate) at the start of the packet. A sender could essentially send an
infinite-sized packet by keeping the PACKET signal asserted at all times.

A packet’s first burst often contains some kind of header (for example, a
HIPPI-FP header as described in “The FP Header”). The first burst can
contain header only, or header and user data. In other words, the first words
of user data can be in the first burst or the second. If the source program is
generating HIPPI-FP packets, it can indicate the location of the packet’s first
word of user data by setting the B bit in the HIPPI-FP header.

Either the first or the last burst of a packet (but not both) can be less than 256
words. This burst is referred to as a short burst. Usually, the last burst is the
short one. When the first burst is the short one, it contains only the header
and, optionally, control information. The first word of the packet’s user data
is, in this case, located in the second burst, and the final burst may be padded
to meet the 256-word length requirement. When the last burst is the short

Open
Packet Packet PacketwaitConnection wait

Burst waitBurst Burst . . .

LL
R

C

LL
R

C

LL
R

C

Up to Word 256

wait

Word 1

pa
rit

y

Word 2

pa
rit

y

. . .

pa
rit

y

Introduction to the HIPPI Protocol

7

one, the packet’s final burst never needs to be padded and the first word of
user data may be included in the first burst.

Once the end of the packet has been indicated, the source has the option of
keeping the connection open to transmit additional packets or of closing the
connection.

Routing

The I-field contains HIPPI routing information in its 24-bit Routing Control
field. This information is interpreted only by intermediate systems
(switches); the Routing Control information does not need to be interpreted
when the connection is directly between two endpoints.

The addresses in a Routing Control field can be in “logical addressing” or
“source addressing” format. The format is indicated by the Path Selection
bits of the I-field. The two formats cannot be used simultaneously in one
I-field; however, both formats can be used simultaneously in one HIPPI local
area network (LAN).

Note: The word source in “source addressing format” does not mean that the
address is the source’s address; it refers to the fact that the address, supplied
by the source endpoint, defines the complete path (route). ♦

Logical Addressing

With logical addressing, the Routing Control field contains two 12-bit
addresses: a destination (receiver’s) address and the source (sender’s)
address, as illustrated in Figure 1-3. The order in which the addresses are
placed within the field is defined by the I-field’s Direction bit, as illustrated
in Figure 1-3.

8

What is HIPPI?

Figure 1-3 Routing Control Field With Logical Addressing

When a HIPPI LAN uses logical addressing, each HIPPI network interface
(endpoint) within the LAN is assigned an address that is unique within that
LAN. One address can be used for both the source and destination channels
of a network interface, if desired. Assignment of these addresses is a local
matter; the addresses do not need to be unique outside the particular HIPPI
network. Logical addresses have the formats described in Table 1-1. Some of
the addresses are reserved for special purposes.

Each switch maintains a “map” of its LAN and uses a routing table to select
the path along which to open a connection for each request. For example,
Figure 1-4 illustrates a scenario where two paths are available between
endpoints A and B. When endpoint A requests a connection to endpoint B,
switch 1 can select either of these paths.

Table 1-1 Logical Addressing Formats

Logical Address
(binary)

Number of
Addresses

Usage

xxxx x0xx xxxx 4032 Endpoint addresses

1111 110x xxxx 32 Local assignment to network services

1111 111x xxxx 32 Reserved for global assignment

1111 1111 1111 1 Address is unknown

023 1112

Sending Endpoint’s Address Receiving Endpoint’s Address
(destination address)(source address)

D bit = 0

Sending Endpoint’s AddressReceiving Endpoint’s Address
(destination address) (source address)

D bit = 1

rest of I-field Routing Control Field

Introduction to the HIPPI Protocol

9

Figure 1-4 Routing With Logical Addressing

The 12 bits make it possible to create 4096 unique addresses. The HIPPI-SC
standard reserves 64 of these addresses, leaving 4032 addresses available for
local assignment to HIPPI end points. 4032 is the maximum number of
destination endpoints that can exist on one HIPPI LAN using logical
addressing.

Source Addressing

The addresses used for source addressing are of variable lengths, from 1 to
24 bits. When the Path Selection bits in the I-field indicate that source
addressing is being used, the Routing Control field contains a list of port
identifiers, as illustrated in Figure 1-5. The I-field’s Direction bit determines
the order in which the port identifiers are placed within the field and the
alignment of (placement for) the addresses, as illustrated in Figure 1-5.

Endpoint A Endpoint B

Switch 2

Switch 1

Switch 3

Routing Control field (when Direction bit is 0) =

address = 010 address = 022

010 022

Routing Control field (when Direction bit is 1) = 022 010

Possible I-field: 0x07010022

Possible I-field: 0x0F022010

10

What is HIPPI?

Figure 1-5 Routing Control Field (As Created by Sender) With Source Addressing

Each port identifier uniquely identifies one port within a switch. A port is a
pair of physical links: both a source and a destination. For example, a 4x4
switch has 8 physical links to 4 systems, and for this it uses 4 port identifiers,
as illustrated in Figure 1-6. Port identifiers are unique among all the ports on
the same switch, but not among all the ports within the LAN. For example,
a LAN with 5 switches might easily have 5 port identifiers of “1.” Figure 1-6
is an example of the port identifiers used in a LAN with 2 switches.

Figure 1-6 Switches and Port Identifiers

023

Last Port # First Port#
etc.D bit = 0

D bit = 1

rest of I-field Routing Control Field

to Dest to Dest

First Port # Last Port#
etc.to Dst to Dest

unused bits

unused bits

Switch 1

port id = 1

po
rt

 id
 =

 2

port id = 3

Source

Destination

po
rt

 id
 =

 4

Switch 2

port id = 1
po

rt
 id

 =
 2

port id = 3

po
rt

 id
 =

 4

S
rc

D
es

t

S
rc

D
es

t

S
rc

D
es

t

S
rc

D
es

t

Source

Destination

Introduction to the HIPPI Protocol

11

A Routing Control field in source address format is interpreted as a series of
“stepping stones” leading to the destination in the following manner:

1. The first switch (the one attached to the source endpoint) reads the first
port identifier, opens a connection at that outgoing port, and sends the
I-field (that is, the connection request).

2. If the system at the end of that physical link is another switch, it reads
the second port identifier, opens a connection at that outgoing port, and
sends the I-field.

3. And so on, until the receiving system is the destination endpoint.

When the port identifiers are followed sequentially, they create the path
between the two endpoints. Each path (address) consists of a list of all the
outgoing ports through which the connection request must pass in order to
reach the destination. For example, in the simplest configuration, where one
switch exists between two network interfaces, the address consists of one
port identifier: the one to which the receiving interface is connected, as
illustrated by Example 1 in Figure 1-7. When two switches exist between the
interfaces, the address consists of two port identifiers, as illustrated by
Example 2 of Figure 1-7.

12

What is HIPPI?

Figure 1-7 Port Identifiers for Source Addressing

The Direction bit in the I-field defines whether each port identifier should be
read from the most significant or least significant end of the Routing Control
field. For example, Figure 1-8 illustrates two addresses that endpoint A
might use to open a connection with B.

Endpoint A

Endpoint B

Switch 1

port 1

po
rt

 2
port 3

Switch 2

port 1

po
rt

 2

port 3

Address as Created by Sender A =

Sending

Endpoint A

Endpoint B

Switch 1

po
rt

 4

port 1

po
rt

 2

port 3

Address as Created by Sender A =

Sending

po
rt

 4

po
rt

 4

Example 1

Example 2

Port 3unused bits

Port 3unused bits Port 1

Read by Switch 1

Read by Switch 2

Possible I-field: 0x01000003

Possible I-field: 0x09130000
(using 4 bits of address per port)

Introduction to the HIPPI Protocol

13

Figure 1-8 Routing With Source Addressing

Each HIPPI host within the LAN maintains a table of paths (addresses in
source addressing format) for reaching each of the other endpoints. With
each of its connection requests, a source attaches one of these paths, thus
indicating how to reach the destination. The path is completely defined by
the sending endpoint.

Unlike logical addresses (which are not altered enroute to the destination),
addresses in source addressing format are changed by each switch that
handles the I-field. The source program creates a list of outgoing port
numbers that define a path from the sender to the receiver. By the time the
packet arrives at its destination, the address has been altered so that it
defines the return path (that is, the path from the receiver back to the sender).
This change is brought about by each switch removing the outgoing port
identifier that it reads, shifting the remaining bits into alignment, and
adding an incoming port identifier (that is, the port through which the I-field
just arrived), as illustrated in Figure 1-9.

Endpoint A

Endpoint BSwitch 2

Switch 1

Switch 3

Routing Control Field as created by sender (when D bit is 0) = 2 1

Routing Control Field as created by sender (when D bit is 1) = 1 2

po
rt

 4

po
rt

 2

po
rt

 4

port 1

unused

unused

Possible I-field: 0x01000021 (using 4 bits of address per port)

Possible I-field: 0x09120000 (using 4 bits of address per port)

14

What is HIPPI?

Figure 1-9 How Switches Alter Source Addresses

A destination program can copy a received Routing Control field into its
own I-field and simply change the setting of the Direction bit to open a
return connection, thus bypassing the table lookup procedure. Normally, the
source that first creates the Routing Control field sets the D bit to zero and
places the address bits in the least significant positions of the Routing
Control field. The receiver changes the setting for the D bit and uses the
received Routing Control field exactly as it is received. In this manner, the
port identifier labeled Last Incoming Port # in Figure 1-9 becomes the First
Outgoing Port # for the return connection.

Port identifiers can be one to six bits. The number of bits varies from switch
to switch. The size of the port identifier is the number of bits needed to
uniquely identify all the possible ports on a switch. For example, a 4x4
switch has four ports and requires at least two-bit port identifiers (binary
port identifiers 00, 01, 10, and 11). If a switch is capable of being enlarged, it
may use large-sized port identifiers (for example, five or six bits) to avoid a
reconfiguration of all the LAN’s routing tables when the switch is upgraded.

As Created by Sender

As Altered by First Switch

As Altered by Second Switch

As Received by Destination

Routing Control Field

First Outgoing Port #
etc. (to destination)

Second Outgoing Port #
(to destination)

First Incoming Port #
etc.(from source)

Second Outgoing Port #
(to destination)

First Incoming Port #
etc.(from source)

Second Incoming Port #
(from source)

First Incoming Port #
(from source)

Last Incoming Port #
(from source) etc.

The Protocol

15

The I-field’s 24-bit Routing Control field limits the number of port identifiers
that can be contained in an address, as summarized in Table 1-2.

The Protocol

This section describes the format for the HIPPI I-field and FP header.

The I-field

The I-field is defined by the HIPPI-SC standard. The format for the 32-bit
HIPPI I-field (also called CCI) is shown in Figure 1-10, and its fields are
explained in Table 1-3.

Figure 1-10 I-field Format

Table 1-2 Maximum Number of Port Identifiers in Routing Control Field

Number of Bits
Used in Port Identifier

Maximum Number of Port Identifiers Possible in
Routing Control Field

1 24

2 12

3 8

4 6

5 4

6 4

23
bits

031

L VU W D PS C Routing Control

16

What is HIPPI?

Table 1-3 Fields of the HIPPI I-field

Field Bits Description

L 31 Local or Standard Format:

0=Bits 30:0 of I-field conform to the usage described in this table.

1=Bits 30:0 are implemented in conformance to a private
(locally-defined) protocol.

VU 30:29 Vendor Unique Bits:

Vendors of end-system HIPPI equipment may use these bits for
any purpose. Switches do not alter or interpret these bits.

W 28 Width:

0=The data bus of the transmitting (source) HIPPI is 32 bits wide
for 800 megabits/second transmission.

1=Source’s data bus is 64 bits wide for 1600 megabits/second
transmission.

D 27 Direction:

0=Least significant bits of Routing Control field contain the
destination address for the current switch to use.

1=Most significant bits of Routing Control field contain the
destination address for the current switch to use.

PS 26:25 Path Selection:

00=Source routing.

01=Logical routing. Switch must select first route from a list of
routes.

10=Reserved.

11=Logical routing. Switch selects any (or best) route from its list.

The Protocol

17

The FP Header

The FP header is defined by the HIPPI-FP standard. When a HIPPI endpoint
is HIPPI-FP conformant, all the packets it transmits and/or receives
(without error) are HIPPI-FP packets. The first burst of each of its
transmitted packets contains an FP header, and it looks for an FP header in
the first burst of each received packet. A HIPPI-FP packet consists of three
segments, listed below and illustrated in Figure 1-11. Each segment is
eight-byte aligned (that is, contains an integral number of 64-bit words).

• Framing Protocol header:
This area contains the 64-bit HIPPI-FP header, described in more detail
in Table 1-4 on page 19.

• D1_Area:
This optional area, if present, must be completely contained in the first
burst. It may contain control information (the D1 data set), it may be
defined for padding purposes only, or it may serve both of these
functions. The D1 area can be 0 to 255 words in size; however,
regardless of the word size used by a HIPPI implementation, the D1
area must contain an integral number of 64-bit words. So, for a 64-bit

C 24 Camp-on:

0=Switch rejects connection request immediately if port to
destination is busy.

1=Switch holds connection request if port to destination is busy
and establishes connection when the port becomes free or when
source aborts the request.

Routing
Control

23:0 Address:

This field contains addressing/routing information. The
contents are in source routing or logical routing format, as
indicated by the PS field.

For source routing, the field contains a list of switch port
identifiers that, when followed, lead to the destination.

For logical addressing, the field contains two 12-bit addresses
(receiver’s and sender’s) that are used by the intermediate
switches to select a route from a table.

Table 1-3 (continued) Fields of the HIPPI I-field

Field Bits Description

18

What is HIPPI?

implementation, the D1 area can have up to 255 words. For a 32-bit
implementation, the D1 area can have up to 254 words.

The D1 data set (located within the D1 area) is optional. The maximum
size of any D1 data set is 1016 bytes (that is, 254 32-bit words), thus
allowing the FP header (8 bytes) and D1 data to fit in the first burst of
any HIPPI implementation (for example, a burst made of 32-bit words).
The content and format of the D1 data is locally defined and the data
must be self-defining. For example, each upper layer application (with
its own ULP-id) could use a different format and length for its D1 data.

• D2_Area:
The optional D2 area contains the user/application data. This area can
be 0 to 4-gigabytes minus 1-byte in size, or it can be defined as
indeterminate. The size of this area must be an integral number of
64-bit words. The area may contain padding (an offset and possibly
filler).

Figure 1-11 HIPPI-FP Packet Format

bits
064

Header Area

D1 Area

D2 Area

filler/padding (optional)

(optional)

(optional)
D2_Data

D1_Data (optional)

FP Header

offset (optional)

NOTE: The size of each included area must be an integral number of 64-bit words.
For IRIS HIPPI, the first word of each area must be 8-byte aligned.

The Protocol

19

The 64-bit FP header describes the HIPPI packet using six fields, illustrated
in Figure 1-12 and described in Table 1-4.

Figure 1-12 FP Header Format

Table 1-4 Fields of the HIPPI-FP Header

Field Bits Description

ULP-id 63:56 The 8-bit upper layer protocol identification field identifies a
system’s upper layer protocols. A transmitting application
uses this number to specify the upper layer protocol of the
intended recipient of the packet. A receiving HIPPI
subsystem can use this number to demultiplex incoming
packets among a number of upper layer protocols (or
applications) and to determine whether an intended
recipient is known or not.

P bit 55 The 1-bit present bit indicates whether or not the packet
contains D1 data. Note that the D1_Area may be present,
even when there is no D1 data.

B bit 54 The 1-bit burst boundary bit indicates which burst contains
the first byte of D2 data. D2 data can be included in the first
burst or it can start with the first word of the second burst.

23 bits
02

21

BPDestination ULP-id Reserved D1_Area_Size
D2

D2_Data_Size

3
10

11
2224

P = D1 data are included/not included in this packet
B = First word of D2 data is in first/second burst

Offset

31

20

What is HIPPI?

Figure 1-13 illustrates a HIPPI-FP packet with D1 data where the first burst
of the packet contains only the FP header and the D1 data. Figure 1-14
illustrates some of the HIPPI-FP packets that are commonly created.
Examples 2, 3, and 4 in Figure 1-14 illustrate how the D1 area can be used to
position the D2 data in the second burst.

Figure 1-13 Sample HIPPI-FP Packet

D1 Area Size 42:35 The 8-bit D1 area size field indicates the number of 64-bit
words in the D1_Area of this packet. The area does not
necessarily contain valid data; that is, the area may be
defined for padding purposes only. Note that the size is
always stated in 64-bit words, regardless of the
implementation’s word size.

D2 Offset 34:32 The 3-bit D2 offset field indicates the number of bytes
between the last byte of D1 data and the first byte of D2 data.

D2 Data Size 31:0 The 32-bit D2 data size field indicates the number of bytes of
D2 data included in this packet. Bytes of offset or fill are not
included in this count.

Table 1-4 (continued) Fields of the HIPPI-FP Header

Field Bits Description

FP Header

D2_Area

0&1 word

2

255
256

etc.

first

second

burst

burst

(B=1; P=1)

D1_Area

(shaded=D1 data)

0 bit31

. . .

The Protocol

21

Figure 1-14 Some Common HIPPI-FP Packets

FP Header

D2_Area

0&1 word

2

255
256

etc.

first

second

burst

burst

(B=1; P=1)

D1_Area

(shaded=D1 data)

FP Header

D1_Area

(no D1 data)

D2_Area

0&1 word

2

255
256

etc.

first

second

burst

burst

(B=1; P=0)
FP Header

D2_Area

0&1 word

2

255
256

etc.

first

second

burst

burst

(B=1; P=1)

D1_Area

(shaded=D1 data)

FP Header

D2_Area

0&1 word

2

255
256

etc.

first

second

burst

burst

(B=0; P=1)

D1_Area
(shaded=D1 data)

FP Header

D2_Area

0&1 word

2

255
256

etc.

first

second

burst

burst

(B=0; P=0)

0 bit31

0 bit31

0 bit31

0 bit31

0 bit31

EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

EXAMPLE 4

EXAMPLE 5

22

What is HIPPI?

The Signals

The signals at the HIPPI-PH layer of each physical link are used for
controlling the connection, packet boundaries, and data flow. These signals
are described in Table 1-5 and illustrated in Figure 1-15. Within the figure,
the signals are numbered to represent the order in which they are asserted
when power is first applied at the two endpoints. The two INTERCONNECT
signals are not dependent on any other signal; they are asserted as the HIPPI
hardware receives power and becomes active. Each of the other signals is
asserted only when all the signals before it have been observed.

Figure 1-15 HIPPI Signals Used on Each Point-to-Point Link

4

SRC to DST

REQUEST

CONNECT

READY

PACKET

BURST

INTERCONNECT

DST to SRC
INTERCONNECT

Data Stream

SOURCE DESTINATION
ENDPOINTENDPOINT

1

2

3

4

1

5

6

The Protocol

23

Table 1-5 HIPPI Signals

SIGNAL DESCRIPTION

Generated by the source
on this physical link

Source-to-Destination
INTERCONNECT

When asserted, indicates source is attached and ready
for action. This signal is sometimes referred to as
SDIC.

REQUEST When asserted, indicates source is requesting a
connection to be opened. This signal is accompanied
by an I-field.

When deasserted, indicates the source is closing the
connection (if one is open) or aborting the connection
request (if no connection is currently open).

PACKET When asserted, indicates a packet is in progress.

When deasserted, indicates the end of a packet.

This signal does not indicate that any data is being
sent; it only delineates the boundaries of a packet.

BURST When asserted, indicates data is being sent. This
signal is accompanied by one burst of data.

When deasserted, no data is being sent.

Generated by the
destination on this
physical link

Destination-to-Source
INTERCONNECT

When asserted, indicates destination is attached and
ready for action. This signal is sometimes referred to
as DSIC.

24

What is HIPPI?

HIPPI Network Configurations

This section describes some of the common configurations of HIPPI
equipment. Because HIPPI is a simplex point-to-point protocol, only one
source can transmit data onto the transport medium (cable) between two
endpoints. Two physical links (one cable for each source) are required for
bidirectional communication. This aspect of HIPPI makes it quite different
from protocols such as Ethernet, FDDI, or 802.5 Token Ring.

Basic HIPPI Configurations

A basic (non-networked) HIPPI configuration consists of two endpoints, one
sending and the other receiving, as shown in Figure 1-16.

CONNECT When asserted, indicates destination is accepting the
connection (opening a connection in response to a
REQUEST signal).

When deasserted, indicates destination is closing the
connection (if one is open) and is now available for a
new connection.

READY When pulsed, indicates destination can accept (has
buffer space available) one burst of data. Destination
can send any number of these to source; however, the
source is required by the HIPPI-PH standard to
queue only 63.

Table 1-5 (continued) HIPPI Signals

SIGNAL DESCRIPTION

HIPPI Network Configurations

25

Figure 1-16 Basic HIPPI Configuration

To exchange data in both directions, two physical links and two connections
are required between the two endpoints, as illustrated by the examples in
Figure 1-17. Each endpoint’s source channel must open a connection with
the destination of the other endpoint.

Figure 1-17 Three Variations of the Basic Configuration

Network

Network

RcvTx

Rcv Tx

co
nn

ec
tio

n

Interface B

Interface A

Host 1

Host 2

Network

Network

TxRcv

Rcv Tx

co
nn

ec
tio

n

co
nn

ec
tio

n

Network

TxRcv

Interface B

Interface A Interface C

Host 1

Host 2

Network

Network

TxRcv

Rcv Tx

co
nn

ec
tio

n

co
nn

ec
tio

n

Network

TxRcv

Interface B

Interface A Interface C

Host 1

Host 2

Host 3

Network

Network

RcvTx

Rcv Tx

co
nn

ec
tio

n

Interface B

Interface A

Host 1

Host 2

co
nn

ec
tio

n

Required for IP

26

What is HIPPI?

The IRIS HIPPI network interface board has two channels (visible at the I/O
panel). It treats each one as a separate entity, so each IRIS HIPPI network
interface supports two autonomous, simultaneous connections: one sending
and one receiving. The two connections can be to two different endpoints (as
shown by the examples on the right in Figure 1-17) or to the same endpoint
(as illustrated by the example on the left in Figure 1-17). IP communication
over HIPPI requires the latter configuration.

HIPPI Local Area Network Configurations

One or more HIPPI switches may be placed along the endpoint-to-endpoint
link, making it possible to configure a number of endpoints into a HIPPI
local area network (LAN, or fabric). Configuring the endpoints in this way
does not alter the fact that each communication is a point-to-point
connection. The switches are cross switches, not “routers.”

When a switch is included in a HIPPI configuration, each endpoint has a
number of hosts with which it can communicate (one at a time). Figure 1-18
illustrates a HIPPI LAN with one switch. The switch in this illustration is a
4 x 4, meaning that the switch can have four systems (8 HIPPI channels)
attached to it. The switch supports four simultaneous connections. For
example, in Figure 1-18, any one of the following connection scenarios could
be occurring at any single point in time:

• A and D could be exchanging TCP/IP traffic. There would be two
connections open between them. C and D could be doing the same.
This scenario opens all four possible connections.

• A could be transmitting to B, while B transmitted to C, C to D, and D to
A. This scenario also opens four connections.

• A and C could be exchanging bidirectional traffic. D could be
transmitting to B. Only three connections are open in this scenario.

HIPPI Network Configurations

27

Figure 1-18 HIPPI LAN Configuration With One Switch

Figure 1-19 illustrates a LAN with multiple switches, and Figure 1-20
illustrates a complex HIPPI LAN including a long-distance fiber optic link
and multiple ports between switches to improve connection setup time by
reducing the probability of encountering a busy link.

Switch
4 x 4

Host D Host B

N
et

w
or

k
In

te
rf

ac
e

D

N
et

w
or

k
In

te
rf

ac
e

B

Host A

Network
Interface A

Host C

Network
Interface C

4

1

2

3

28

What is HIPPI?

Figure 1-19 HIPPI LAN Configurations With Multiple Switches

Switch2

Network

N
et

w
or

k

N
et

w
or

k
4 x 4

Interface A

In
te

rf
ac

e
B

In
te

rf
ac

e
C

Switch5

Network

Network

N
et

w
or

k

4 x 4

3

Interface L

Interface J

In
te

rf
ac

e
K

Switch3

Network

N
et

w
or

k

Network

4 x 4

Interface D

Interface F

In
te

rf
ac

e
E

Switch4

N
et

w
or

k

Network

N
et

w
or

k

4 x 4

Interface H

In
te

rf
ac

e
G

In
te

rf
ac

e
I

Switch 1
4 x 4

1

2

3

4

Hub

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

HIPPI Network Configurations

29

Figure 1-20 Complex HIPPI LAN Configuration

Switch 2
32x 32

Switch 1
4 x 4

Switch 3
16 x 16

HIPPI Conversion Box
fiber optic cable,

HIPPI Conversion Box

Switch 4
8 x 8

3 destination endpoints

3 ports between these 2 switches,
to reduce the probability of blocking

28 destinations
 + 28 sources

7 destinations
 + 7 sources

+ 3 source endpoints

12 destinations
 + 12 sources

up to 10 kilometers

(switches and/or
endpoints)

(switches and/or
endpoints)

30

What is HIPPI?

The maximum number of switches and endpoints within a LAN is limited
by three factors:

• When logical routing is used, the 12-bit HIPPI address (half of the
Routing Control field) limits the number of unique endpoint addresses
to 4096. It is possible for a site to implement this number of networked
HIPPI endpoints; however, to be compliant with the HIPPI-SC
standard, 64 reserved addresses should not be assigned to local
endpoints (that is, hosts). This limits the number of endpoints to 4032
per LAN. There is no limit to the number of switches when logical
routing is used.

• When source routing is used, the I-field’s 24-bit Routing Control field
limits the number of port identifiers that can be included in the list. The
exact number depends on the sizes of the port identifiers used by the
switches along the specific endpoint-to-endpoint path, as explained in
“Source Addressing.” Each port identifier in the Routing Control field
represents one switch along the path. Table 1-6 summarizes the
maximum number of switches along any point-to-point path within a
HIPPI LAN, assuming that all switches along that path use port
identifiers of the same size. (This assumption does not reflect actual site
configuration practices, but is useful here for illustration of a point.)
When source routing is used, the number of switches and endpoints
that are possible is not limited; however, the number of switches
between any two endpoints within the LAN is limited. This limit affects
the configuration of the LAN.

• If a LAN is built according to the guidelines in Appendix B of RFC
1374, the recommended maximum number of hops (switches) between
any two endpoints is three. This limit has major implications for the
structure and size of a HIPPI LAN. The structure is limited to a single
hub switch with satellite switches attached to the hub’s ports, but no
switches attached to any satellite ports. Figure 1-19 shows an example
of an RFC 1374-compliant LAN. Table 1-7 summarizes the maximum
number of switches and endpoints possible for a LAN in which
switches of only one size are used throughout the LAN.

HIPPI Network Configurations

31

Table 1-6 Maximum Number of Switches Along Any Single Point-to-Point
Path When Using Source Addressing

Number of Bits Used for All Port IDs in
Routing Control Field

Max. Number of Switches Along Any
Single Point-to-Point Path

1 24

2 12

3 8

4 6

5 4

6 4

Table 1-7 Maximum Number of Switches and Endpoints on a LAN Built in
Accordance With RFC 1374, Appendix B Guidelines

Size of All Switches Within LAN

4 x 4 8x 8 16 x 16 32 x 32 64 x 64

5 switches /
12 endpoints

9 switches /
56 endpoints

17 switches /
240 endpoints

33 switches /
992 endpoints

65 switches /
4032 endpoints

32

What is HIPPI?

The HIPPI Standards and Documentation

The documents listed below provide the official definitions of what HIPPI is
and how it works.

• ANSI HIPPI-PH
The HIPPI Mechanical, Electrical, and Signalling document defines the
standard for the physical layer: electrical and mechanical aspects of
HIPPI cables, as well as the behavior of HIPPI physical interfaces
(including the HIPPI signals, like SDIC, DSIC, REQUEST, CONNECT,
READY, PACKET, and BURST).

• ANSI HIPPI-SC
The HIPPI Physical Switch Control document defines the standard for
switch behavior, routing methods, and connection management. The
HIPPI I-field is defined by this standard.

• ANSI HIPPI-FP
The HIPPI Framing Protocol document defines the standard for data
framing issues: how a packet is formed, how its data contents are
described and interpreted. The HIPPI-FP packet (FP header, D1_Data,
and D2_Data) is defined by this standard.

• ANSI HIPPI-LE
The HIPPI Encapsulation of ISO 8802-2 (IEEE 802.2) Logical Link Control
Protocol Data Units (HIPPI-LE) standard defines the method for
encapsulating (and thus interoperating with) 802.2 compliant data link
layers such as FDDI, 802.5 Token Ring, and CSMA/CD (Ethernet).

• ANSI HIPPI-IPI-3 for Disk
The HIPPI Intelligent Peripheral Interface—Device Generic Command Set for
Magnetic and Optical Disk Drives standard defines an upper-layer
protocol for interfacing disks to the HIPPI subsystem.

• ANSI HIPPI-IPI-3 for Tape
The HIPPI Intelligent Peripheral Interface—Device Generic Command Set for
Magnetic Tape Drives standard defines an upper-layer protocol for
interfacing tapes to the HIPPI subsystem.

• RFC 1374
IP and ARP on HIPPI, by J. Renwick and A. Nicholson (October 1992)
defines the protocol for using the IP suite of network and transport
layer protocols over HIPPI.

The HIPPI Standards and Documentation

33

The ANSI documentation for HIPPI standards is maintained by the
American National Standard of Accredited Standards Committee (ANSI
X3T9.3). Copies of the ANSI standards listed above can be obtained by
writing or calling the following address:

Don Tolmie, Chairperson
Los Alamos National Laboratory
C-5, MS-B255
Los Alamos, NM 87545
Telephone: 505-667-5502
Internet email: det@lanl.gov

34

What is HIPPI?

Implementation Details for IRIS HIPPI

This section describes some of the details of the Silicon Graphics
implementation of the HIPPI protocol.

Application Programming Interface

The IRIS HIPPI driver provides access and control of the HIPPI subsystem
to upper-layer applications. The upper layer-applications that are shipped
with the IRIS HIPPI product are the IRIS HIPPI-LE module serving the IP
network stack, and the IRIS HIPPI utilities. Upper-layer programs can also
be developed by customers, using the IRIS HIPPI application programming
interface.

Customer-developed applications can define their own upper-layer protocol
(ULP) and can program the IRIS HIPPI driver to implement HIPPI-FP, or
they can bypass the HIPPI-FP layer and access the HIPPI protocol directly at
the HIPPI-PH layer. Refer to the IRIS HIPPI API Programmer’s Guide for
complete details.

The rest of this section describes the IRIS HIPPI-LE upper-layer protocol
implementation.

Handling of HIPPI Protocol for HIPPI-LE

This section describes how the IRIS HIPPI driver and the HIPPI-LE module
handle HIPPI I-fields, HIPPI-FP headers, and 802.2 encapsulation items.
There are separate sections for transmission and reception.

On Transmission

The HIPPI-LE module obtains the I-field for each destination from a lookup
table that is initialized at startup time from the /usr/etc/hippi.imap file. It
obtains this I-field value before programming the IRIS HIPPI driver to make
a connection request. The hippi.imap file maps IP addresses (or host names)
to 32-bit values that are used as I-fields. The software uses each I-field value
exactly as read from the file, as summarized in Table 1-8. It is the

Implementation Details for IRIS HIPPI

35

responsibility of the system administrator to ensure that the values in the
lookup table are appropriate for the site’s configuration.

Once the connection has been opened, the HIPPI-LE module creates a HIPPI
packet in the format illustrated in Figure 1-21. This packet conforms with the
HIPPI-FP standard and the RFC 1374 guidelines.

Figure 1-21 HIPPI Packet Created by IRIS HIPPI-LE

Table 1-8 I-field Recommended for Use With IRIS HIPPI-LE

Field

Value
Recommended
for HIPPI-LE Comments

L 0 0=HIPPI-SC compliant; 1=local format for I-field.

A site may use any value.

VU 0 A site may use any value.

W 0 0=32 data bus.
No other setting is supported by the IRIS HIPPI
board.

D 0 0=Least significant bits contain address for next
hop; 1=address is placed in most significant bits.
A site may use any setting.

PS any setting A site may use any of the addressing formats.

C 1 1= camp-on; 0=do not camp-on.
This setting makes the HIPPI network more
efficient; however, a site may use any setting.

Routing
Control

any setting A site may use any settings.

FP header

HIPPI-LE 802.2 Encapsulation
User data

D1 data D2 data

header (LLC and SNAP)

HIPPI Packet

36

What is HIPPI?

The IRIS HIPPI-LE module creates the HIPPI-FP header with the values
summarized in Table 1-9.

The IRIS HIPPI-LE module creates the HIPPI-LE header with the values
summarized in Table 1-10. The HIPPI-LE header becomes the D1 data set for
the HIPPI packet.

Table 1-9 FP Header Created by IRIS HIPPI-LE ULP

Field Value Used Comments

ULP-id 4 = HIPPI-LE As defined by HIPPI-FP.

P bit 1 = D1 area is included in
this FP header

D1 area contains the HIPPI-LE header
as defined by HIPPI-LE.

B bit 0 = D2 data is included in
first burst

As specified by RFC 1374.

D1 Size 3 = three 64-bit words
(that is, 24 bytes)

As defined by HIPPI-LE.

D2 Offset 0

D2 Size Up to 64 kilobytes. Maximum IP packet as defined by the
Internet Protocol.

Table 1-10 D1 Data (HIPPI-LE Header) Created by IRIS HIPPI-LE

Field Size Value Used Comments

FC 3 bits 0 As defined by
HIPPI-LE and
restated in RFC 1374.

Double Wide 1 bit 0 = 32 bit data bus

Message Type 4 bits 0 = data

Destination Switch
Address

24 bits 0

Destination Address Type 4 bits 0

Source Address Type 4 bits 0

Source Switch Address 24 bits 0

Implementation Details for IRIS HIPPI

37

The IRIS HIPPI-LE module creates the 802.2 headers (LLC and SNAP) with
the values summarized in Table 1-11. This information occupies the initial
bytes of the D2 data within the HIPPI packet.

Reserved 16 bits 0

Destination IEEE Address 48 bits 0

LE Locally Administered 16 bits 0

Table 1-11 IEEE 802.2 Header (First Bytes of D2) Created by IRIS HIPPI-LE

Field Size
(bits)

Value Used Comments

SSAP 8 170 decimal As defined by IEEE 802.2 standard
for Logical Link Control and
restated in RFC 1374.

DSAP 8 170 decimal Same as above.

CTL 8 3 Same as above.

Organization
Code

24 0 Same as above.

EtherType 16 2048 decimal Same as above.

Table 1-10 (continued) D1 Data (HIPPI-LE Header) Created by IRIS HIPPI-LE

Field Size Value Used Comments

38

What is HIPPI?

On Reception

The IRIS HIPPI driver accepts all connection requests, and accepts all
packets containing FP headers with known ULP-ids, thus supporting
customer-developed, upper-layer applications. The I-field for the connection
request is not interpreted. This process is summarized in Table 1-12.

Once a connection has been opened, the IRIS HIPPI driver places each
incoming HIPPI packet on the input queue for the ULP-id indicated in the
FP header. Incoming HIPPI packets must have the format illustrated in
Figure 1-22. If the ULP-id is not known to the driver, the packet is dropped
(that is, accepted then discarded). Packets with a ULP-id of 4 are enqueued
for the HIPPI-LE module.

Figure 1-22 HIPPI Packets that IRIS HIPPI Driver Passes to HIPPI-LE

Table 1-12 I-field Accepted by IRIS HIPPI Driver for HIPPI-LE ULP

Field Recommended Values Comments

L 0 = HIPPI-SC compliant Content is ignored.

VU any value Content is ignored.

W 0 = 32 data bus Content is ignored.

D any value Content is ignored.

PS any value Content is ignored.

C any value Content is ignored.

Routing
Control

any value Content is ignored.

FP header

ULP-id = known by HIPPI driver

HIPPI Packet

Implementation Details for IRIS HIPPI

39

The HIPPI driver interprets only the FP header. All further processing of the
HIPPI packet (including the various protocol headers) is done by the reader
of the input queue (for example, HIPPI-LE).

On reception, the IRIS HIPPI driver handles HIPPI-FP headers as
summarized in Table 1-13.

Table 1-13 FP Header Accepted by IRIS Driver for HIPPI-LE ULP

Field Values Accepted Without
Generating an Error

Comments

ULP-id 4 = HIPPI-LE As defined by HIPPI-FP. For other
ULP-ids, see the IRIS HIPPI API
Programmer’s Guide for details.

P bit 1 If set to 1, the driver interprets the D1
area as a HIPPI-LE header.
If set to 0, the packet is discarded.

B bit any value For applications using the HIPPI-FP
access method, the IRIS HIPPI driver
passes the D1 data to the input queue
reader as a separate item from the D2
data.

D1 Size 3 = three 64-bit words /
 24 bytes

As defined by HIPPI-LE.
If the value is different, the packet is
discarded.

D2 Offset any value

D2 Size up to 64 kilobytes As defined by Internet Protocol.
If size is greater than 64 kBytes, the
packet is discarded.

40

What is HIPPI?

The IRIS HIPPI-LE upper layer program handles received D1 data (the
HIPPI-LE header) as summarized in Table 1-14.

Table 1-14 D1 Data Accepted by IRIS HIPPI-LE ULP

Field Values Accepted
Without Generating
an Error

Comments

FC 0 As defined by HIPPI-LE.
If the value is different, an error
is generated.

DW 0 = 32 bit data bus If set to 1, an error is generated.

MT 0 = data If not 0 (data), an error is
generated.

Dest_Sw_Addr any value

Dest_Addr_Type any value

Src_Addr_Type any value

Src_Sw_Addr any value

Dst_IEEE_Addr any value

LE_Locally_Adm any value

Src_IEEE_Addr any value

Implementation Details for IRIS HIPPI

41

The IRIS HIPPI-LE module also handles the 802.2 headers as summarized in
Table 1-15.

Table 1-15 IEEE 802.2 Headers Accepted by HIPPI-LE ULP

Field Size
(bits)

HIPPI-LE Default Comments

SSAP 8 170 decimal As defined by the IEEE 802.2
standard and restated by RFC 1374.
If the received value is different, an
error is generated.

DSAP 8 170 decimal Same as above.

CTL 8 3 Same as above.

Organization
Code

24 0 Same as above.

EtherType 16 2048 decimal Same as above.

43

Chapter 2

2. Configuring IRIS HIPPI

This chapter provides instructions and information about configuring the
IRIS HIPPI software. The configuration tasks are listed, then described in
detail, in the sections of this chapter.

Within this chapter, there is a section that describes how the physical HIPPI
boards (hippi0, hippi1, hippi2, and hippi3) are matched to HIPPI network
interfaces (hip0, hip1, hip2, and hip3).

Overview of Configuration Steps

Before configuring the IRIS HIPPI software, you need to decide whether or
not you want the driver to include support for the IP network stack. The
configuration steps are slightly different depending on this decision.

IRIS HIPPI Without IP Support

The following steps configure the IRIS HIPPI driver for use as a non-IP
network connection. Complete details for each step are provided in separate
sections of this chapter.

1. Use inst to install the IRIS HIPPI software from the CD-ROM, as
explained in the IRIS HIPPI Release Notes. The inst command is
documented in the IRIS Software Installation Guide that came with the
system.

2. Optional:
Edit the /usr/var/sysgen/system/hippi.sm file to EXCLUDE the IP
interface.

44

Configuring IRIS HIPPI

Note: If you exclude IP support from the driver, and later you want to
use IP, you must redo the configuration steps. If you configure the
software with IP, you only need to do the additional configuration steps
to add IP functionality later. When the driver is built to support IP, but
IP is not configured, some error messages are displayed each time the
system is started. ♦

3. The system is ready to have its IRIS HIPPI hardware installed. When
restarted (after the hardware installation), the system asks you to
authorize rebuilding of the operating system. Answer yes , to build an
operating system that includes the IRIS HIPPI driver. Then, reboot the
system to start using the new operating system.

Note: If the hardware is already installed, rebuild the operating system
as described in “Building a New Driver Into the Operating System” on
page 50. ♦

IRIS HIPPI With IP Support

The following steps configure the IRIS HIPPI driver with support for IP
networking. Complete details for each step are provided in separate sections
of this chapter.

1. Use inst to install the IRIS HIPPI software from the CD-ROM, as
explained in the IRIS HIPPI Release Notes. The inst command is
documented in the IRIS Software Installation Guide that came with the
system.

2. Edit the /usr/var/sysgen/master.d/if_hip file to configure IRIS HIPPI driver
parameters.

3. Verify that the /usr/var/sysgen/system/hippi.sm file has an INCLUDE
statement for the IP interface.

4. Edit the /usr/etc/hippi.imap file to include all the endpoint destination
I-fields.

5. Edit the IP configuration files (/etc/hosts and /etc/config/netif.options) to
include IP network connection names and addresses.

6. Enable IP (that is, write ON into the /etc/config/network file).

Checking If IRIS HIPPI Software Has Been Installed

45

7. The system is ready to have its IRIS HIPPI hardware installed. When
restarted (after the hardware installation), the system asks you to
authorize rebuilding of the operating system. Answer yes , to build an
operating system that includes the IRIS HIPPI driver. Then, reboot the
system to start using the new operating system.

Note: If the hardware is already installed, rebuild the operating system
as described in “Building a New Driver Into the Operating System” on
page 50. ♦

Checking If IRIS HIPPI Software Has Been Installed

Use the command below to check if the IRIS HIPPI software has been
installed or to verify the version.

% versions hippi
I HIPPI date IRIS HIPPI, version

Editing the hippi.sm File

The /usr/var/sysgen/system/hippi.sm file tells the system’s software which IRIS
HIPPI modules to include when it builds the IRIS HIPPI driver into the
operating system. One line in this file can be edited to build an IRIS HIPPI
driver that does not support IP networking.

• Original line that builds IP support into the driver:

INCLUDE: if_hip

• Changed line that builds an IRIS HIPPI driver without IP support:

EXCLUDE: if_hip

If you exclude IP functionality, then decide later that you want IP to function
over HIPPI, you must undo this edit, then, rebuild the operating system.

Note: When the driver is built with IP support, but the IP protocol stack is
not enabled, each time the system is started some error messages are
displayed; the HIPPI functionality is all right. ♦

46

Configuring IRIS HIPPI

Editing the if_hip File

The /usr/var/sysgen/master.d/if_hip file configures the IRIS HIPPI driver and
board. Driver and board configuration is optional, because all parameters
have default settings. The settings in this file affect all IRIS HIPPI boards
installed in the system.

The IRIS HIPPI driver and board have very few configurable parameters (for
example, the size for the maximum transmission unit and onboard IP
checksumming). The specific items vary from release to release, so they are
explained fully within the file.

Editing the hippi.imap File

The /usr/etc/hippi.imap file maps hostnames (or IP addresses) to HIPPI
I-fields. Optionally, a 6-byte universal IEEE address (called ULA, MAC or
Ethernet address) can also be mapped. The file can contain up to 2048 lines.

Each time the HIPPI-LE upper layer protocol (ULP) module is about to
program the HIPPI subsystem’s source channel to issue a connection
request, it obtains the I-field for its destination from a lookup table that has
been loaded into memory at startup time. The lookup table maps IP
addresses or hostnames to HIPPI I-fields. This table is generated (at startup
time) from the hippi.imap file and can be modified in real time with the
hipmap command.

Each I-field is a 32-bit value. Each line (entry) in the file can have any of the
formats illustrated below:

• hostname 0x XXXXXXXX

where hostname is the name of a system as listed in the /etc/hosts file and
0x XXXXXXXX is the 32-bit I-field, in hexadecimal notation. The
following line is an example of this format:

hippi-goofy 0x01000001 #source adddress format for port1

Editing the hippi.imap File

47

• x.x.x.x 0x XXXXXXXX

where x.x.x.x is the IP address in dotted decimal notation, and
0x XXXXXXXX is the 32-bit I-field in hexadecimal notation. The
following line is an example of this format:

223.9.1.18 0x07001002 #logical adddress format

• hostname 0x XXXXXXXX XX: XX: XX: XX: XX: XX

where hostname is the name of a system as listed in the /etc/hosts file,
0x XXXXXXXX is the 32-bit I-field in hexadecimal format, and
XX:XX:XX:XX:XX:XX is the 48-bit ULA in hexadecimal notation. The
following line is an example of this format:

hippi-goofy 0x01000001 05:A6:70:9B:FF:8E

• x.x.x.x 0x XXXXXXXX XX: XX: XX: XX: XX: XX

where x.x.x.x is the IP address in dotted decimal notation,
0x XXXXXXXX is the I-field (32-bits in hexadecimal format), and
XX:XX:XX:XX:XX:XX is the ULA (48-bits in hexadecimal notation). The
following line is an example of this format:

223.9.1.18 0x01000001 05:A6:70:9B:FF:8E

The IRIS HIPPI software does not check or verify these values. It is the
system administrator’s responsibility to ensure that each entry is both valid
and correct. The I-field value must be the exact I-field for use in the
connection request; for example, it must contain the desired settings for the
camp-on bit and the source’s address bits.

Figure 2-1 is a template that can be used for developing each 32-bit I-field.
The template shows the values that SGI recommends for use by the IRIS
HIPPI-LE upper layer protocol.

Note: If the IRIS HIPPI source is connected directly to another HIPPI
endpoint (no switch is involved), the single I-field value for the destination
host can be 0x00000000.

48

Configuring IRIS HIPPI

Figure 2-1 Template for Creating I-fields With Recommended Values

If IRIS HIPPI is already functioning, and you want to load a new hippi.imap
file into memory, the following command can be invoked:

/usr/etc/hipmap -f /usr/etc/hippi.imap

Editing the IP Configuration Files

To configure the IP networking interfaces, edit the /etc/hosts and
/etc/config/netif.options files, as explained below.

Each time the IP software starts, it uses information from these two files to
configure the IP interfaces.

__ __ __ __
D

ire
ct

io
n

W
id

th

Lo
ca

l

P
S

1st nibble = 1st nibble hex ___

V
en

do
r

__ __ __ __
2nd nibble = 2nd nibble hex ___ or ___

C
am

p-
on

__ __ __ __ __ __ __ __ __ __ __ __
3rd to 5th nibbles = 3rd to 5th nibbles hex ___ ___ ___

__ __ __ __ __ __ __ __ __ __ __ __
6th to 8th nibbles = 6th to 8th nibbles hex ___ ___ ___

0 0 0 0

0 1

0

00 =source addressing
11 =logical addressing

* *
1 7

 (binary)

(binary)

(binary)

(binary)

*

0I-field = 0x ___ ___ ___ ___ ___ ___ ___ ___

1st 2nd 3rd 4th 5th 6th 7th 8th

Editing the IP Configuration Files

49

Note: For additional details about enabling the IP networking software and
configuring network interfaces, refer to the IRIX Site Administrator’s Guide,
which is available online through IRIS Insight™ or in hardcopy. ♦

The /etc/hosts File

The /etc/hosts file maps hostnames to network-layer IP addresses. There must
be one entry for each IRIS HIPPI board. The entries should be similar to the
examples below, which illustrates four IRIS HIPPI interfaces for a system
whose hostname is goofy.:

223.9.1.2 hippi-goofy.toons.com hippi-goofy
223.9.2.4 hippi2-goofy.toons.com hippi2-goofy
223.9.3.16 hippi3-goofy.toons.com hippi3-goofy
223.9.4.32 hippi4-goofy.toons.com hippi4-goofy

The /etc/config/netif.options File

The /etc/config/netif.options file maps local hostnames (or IP addresses) to IRIS
HIPPI boards (for example, hip0, hip1, etc.). There must be a two-line entry
for each IRIS HIPPI board that services the IP network stack. The first entry
(if1addr and if1name) defines the primary interface; in most situations, the
primary interface should be Ethernet or FDDI. Each hostname or IP address
in this file must also be in the /etc/hosts file; the hostnames or IP addresses in
the two files must be identical.

Systems that function as a client or server for bootp should configure Ethernet
as their primary network interfaces. Any system that functions as a client or
server for NFS, NIS, or other client/server program should configure the
network interface over which the client/server functions occur as the
primary network interface.

The example below illustrates a system with three IRIS HIPPI interfaces, an
FDDI interface (that is, ipg0), and a primary Ethernet interface. If this
system’s hostname is goofy, these IRIS HIPPI entries interwork with the
examples of /etc/hosts file entries shown above.

if1name=et0
if1addr=$HOSTNAME

50

Configuring IRIS HIPPI

if2name=ipg0
if2addr=fddii-$HOSTNAME

if3name=hip0
if3addr=hippi-$HOSTNAME

if4name=hip1
if4addr=hippi2-$HOSTNAME

if5name=hip2
if5addr=hippi3-$HOSTNAME

Note: The use of the $HOSTNAME variable assumes that the system’s
hostname has been defined in the /etc/sys_id file. ♦

Enabling IP Networking

To automatically enable the IP network stack each time the system is started,
edit the /etc/config/network file so that it contains the single word ON or on . If
the file is missing, add the file.

Note: Enabling IP networking does not result in IP over HIPPI; it only
enables the IP software to operate over whatever drivers are available to
service it. (For example, the IP protocols may use Ethernet or FDDI
drivers.) ♦

Building a New Driver Into the Operating System

For the IRIS HIPPI subsystem to be functional, the IRIX operating system
(kernel) that is currently on the system must be built to include the IRIS
HIPPI driver. When changes are made to the hippi.sm or if_hip files, or when
new IRIS HIPPI software is installed, it is also necessary to rebuild the
operating system to include the changes. This section describes how to
rebuild the operating system. All the configuration steps listed in the
“Overview of Configuration Steps” must be performed before the operating
system is rebuilt.

When the IRIX operating system is rebuilt, it uses values from the
/usr/var/sysgen/system/hippi.sm file and the /usr/var/sysgen/master.d/if_hip file
to build various configurable parameters into the driver.

Building a New Driver Into the Operating System

51

The three sets of instructions below each build a new operating system and
start it running. It is not important which set of instructions are used.

Instruction Set 1

% su
Password: thepassword
/etc/init.d/autoconfig
Automatically reconfigure the operating system (y or n)? y
<log on>
% su
Password: thepassword
/etc/reboot
.....<various messages are displayed on console>...
configuring hip0 as hostname
configuring hip1 as hostname

Instruction Set 2

% su
Password: thepassword
/etc/shutdown

When the system shuts down, restart it. When this question is displayed,
answer with yes or y.

Automatically reconfigure the operating system (y or n)? y
<log on>
% su
Password: thepassword
/etc/shutdown

Instruction Set 3

Use the same sequence as Set 2; however, instead of the /etc/shutdown
command, use any of the following:

• /etc/init 0

• /etc/halt

• /etc/reboot

52

Configuring IRIS HIPPI

How HIPPI Boards Are Assigned to Interfaces

This section describes the manner in which IRIX assigns an IP network
interface (for example, hip0 and IP address 223.9.1.2) to a particular HIPPI
board.

With each restart (for example, after a reboot, shutdown, halt, or init command,
or a power off), the startup routine probes for hardware installed in the
mezzanine I/O adapter slots, and makes a list of all the boards located. The
slots are probed in the following order:

• main IO4 board: I/O adapter slot 5, then 6

• second IO4 board (if present): I/O adapter slot 2 (only when the FMezz
board is long), slot 5, slot 3 (only when the FMezz board is long), slot 6

• third IO4 board (if present): I/O adapter slot 2 (only when the FMezz
board is long), slot 5, slot 3 (only when the FMezz board is long), slot 6

• fourth IO4 board (if present): I/O adapter slot 2 (only when the FMezz
board is long), slot 5, slot 3 (only when the FMezz board is long), slot 6

The list and order of IRIS HIPPI boards that were located by this process can
be displayed with the /sbin/hinv command, as shown below. The text hippi#

indicates the order: hippi0 is the first board located and hippi1 is the
second. In this example, the startup routine located two IRIS HIPPI boards
attached to FMezz boards on two different IO4 boards.

%/sbin/hinv
...
HIPPI adapter: hippi0, slot 5 adap 6, firmware version ####
HIPPI adapter: hippi1, slot 3 adap 5, firmware version ####

As the startup routine begins to initialize HIPPI network interfaces, it does
the following:

• Searches the netif.options file for IP over HIPPI interface names (for
example, hip0, hip1, hip2, hip3). It orders the interfaces by the number in
the associated string if#name . For example, the entries if2name=hip0 ,
if3name=hip1 and if4name=hip2 would be ordered hip0 (first), hip1
(second), and hip2 (third).

• For each HIPPI network interface name, the startup routine tries to
assign a HIPPI board. The first HIPPI interface is assigned to the first
board found; the second interface is assigned to the second board; and

How HIPPI Boards Are Assigned to Interfaces

53

so on, until the routine runs out of interfaces or boards. For example,
using the ordering described above, board hippi0 is assigned interface
hip0 and board hippi1 is assigned hip1.

Note: If an installed board is not located due to a loose connection or
malfunction, or if hardware is installed or removed, the assignment of HIPPI
network interfaces to boards may change. For example, hip0 (from the
example above) could be assigned, at a later reboot of the machine, to the
second HIPPI board (hippi1) in the system instead of the first, if the first
board became loose or dysfunctional. ♦

55

Chapter 3

3. Maintaining and Monitoring IRIS HIPPI

This chapter describes how to maintain, monitor, and verify the IRIS HIPPI
subsystem.

Commands Available for IRIS HIPPI

IRIS HIPPI can be monitored and maintained with the commands
summarized in Table 3-1.

Table 3-1 Utilities for Monitoring and Maintaining IRIS HIPPI

Command Purpose

/usr/etc/hipmap Adds and deletes entries from the lookup table (in
memory) that maps HIPPI I-fields to IP addresses.

/usr/etc/hipcntl Provides a variety of control and status functions for the
IRIS HIPPI subsystem.

/usr/etc/hiptest Verifies IRIS HIPPI subsystem through the character
device interface, without going through the IP network
interface.

/usr/etc/ping Verifies IP network interfaces. Can be used to verify that a
hip# network interface is functioning.

/usr/etc/ifconfig All the normal IP configuration options work with IRIS
HIPPI IP network interfaces (that is, hip#), except
broadcast, arp, and the specification of a destination IP
address for setting up a point-to-point connection.

/usr/etc/netstat All the normal network status information is available for
IP interfaces to IRIS HIPPI. Non-IP interfaces are not
displayed; however, if the IRIS HIPPI driver has been built
with IP support, a disabled hip0 interface with no IP
address is shown.

56

Maintaining and Monitoring IRIS HIPPI

Step-by-Step Instructions for Common Procedures

This section describes some of procedures commonly used to monitor and
maintain the IRIS HIPPI subsystem. All of the IRIS HIPPI utilities (hipmap,
hipcntl, and hiptest) require the user to have superuser (root) privileges.

Disable or Enable IRIS HIPPI Board

To shut down or disable the IRIS HIPPI board, use the command below. This
resets the board; all data (incoming or outgoing) that is on the board is lost.

hipcntl [hippi #] shutdown

To start or enable the IRIS HIPPI board, use the command below. This
command verifies that the versions of the firmware on the board and the
driver in the operating system match. If they do not match, the driver loads
a compatible version of firmware onto the board.

hipcntl [hippi #] startup

Configure Board to Reject or Accept Connection Requests

To configure the IRIS HIPPI subsystem so that the transmit channel does not
generate any connection REQUEST signals and so that the receive channel
does not generate any CONNECT (accept) signals, use the command below:

hipcntl [hippi #] reject

To configure the IRIS HIPPI subsystem so that both the transmit and receive
channels open connections, use the command below. This command results
in the transmit channel generating connection REQUESTs when host
applications send data, and in the receive channel generating CONNECT
signals in response to connection REQUESTs.

hipcntl [hippi #] accept

Check Status

To display status information for an IRIS HIPPI board, use the command
below. Each counted item is initialized to zero upon reset of the board. The

Step-by-Step Instructions for Common Procedures

57

counters roll over to zero upon reaching 232. The displayed information is
described in Table 3-2.

hipcntl [hippi #] status

Table 3-2 IRIS HIPPI Status Information

Status Item Description

FLAGS:

DSIC SRC sees the INTERCONNECT input signal.

SDIC DST sees the INTERCONNECT input signal.

ACCEPTING DST is accepting connections. When this flag is not listed,
the DST is rejecting connections.

DST.PKT DST sees that the PACKET input signal is asserted

DST.REQ DST sees that the REQUEST input signal is asserted

SRC.REQ SRC channel’s REQUEST output signal is asserted

SRC.CON SRC sees that the CONNECT input signal is high

SRC connections: Count of total connection REQUEST signals issued by
source.

SRC packets: Count of total packets sent by source.

SRC rejects: Count of connection attempts that were rejected by the
destination.

SRC seq errors (dm): Count of data state machine’s sequence errors.

SRC seq errors (cd): Count of connection state machine’s sequence errors for
which the destination is believed to be at fault.

SRC seq errors (cs): Count of connection state machine’s sequence errors for
which the source is believed to be at fault.

SRC dsic lost: Count of connections dropped due to lost DSIC signal.

SRC time outs: Count of connection attempts that timed out so that the
source withdrew the request.

58

Maintaining and Monitoring IRIS HIPPI

Disable or Enable an IP Interface

To enable/disable the IP network interface to the IRIS HIPPI board, use the
standard /usr/etc/ifconfig command, as shown below.

ifconfig [hip #] down

ifconfig [hip #] up

SRC connects lost: Count of connections that were dropped by the
destination.

SRC parity errs: Count of source parity errors.

DST connections: Count of connections accepted.

DST packets: Count of total packets received

DST rcv on bad ulp: Count of packets discarded due to unknown ULP-id.

DST hippi-le drop: Count of HIPPI-LE packets discarded.

DST llrc: Count of connections dropped due to LLRC errors.

DST parity: Count of connections dropped due to parity errors.

DST sequence err: Count of connections dropped due to sequence errors.

DST sync err: Count of synchronization errors.

DST illegal burst: Count of packets with illegal burst sizes.

DST sdic lost: Count of connections dropped due to lost SDIC signal.

DST null connections Count of connections with zero packets.

Table 3-2 (continued) IRIS HIPPI Status Information

Status Item Description

Step-by-Step Instructions for Common Procedures

59

Configure IP Network Interface Over IRIS HIPPI

Dynamic configuration of the IP network interfaces is done with the
/usr/etc/ifconfig command, which is explained in detail in the man page. The
command lines listed below are available for use with IRIS HIPPI:

ifconfig [hip #] IPaddr

ifconfig [hip #] up

ifconfig [hip #] down

ifconfig [hip #] netmask

ifconfig [hip #] metric

Note: Some of the standard ifconfig arguments are not supported for IRIS
HIPPI. ♦

Change the Lookup Table That Maps IP Hosts to I-fields

The /usr/etc/hipmap command makes changes to the lookup table that is
currently in memory.

To add an entry to the look up table, use this command line:

hipmap hostname I-field_value [ULA_value]

To delete one entry from the lookup table, use this command line:

hipmap -d hostname

To delete all the entries from the lookup table, use this command line:

hipmap -D

To concatenate entries from a file onto the lookup table, use this command
line:

hipmap -f filename

To clear the lookup table, then add entries from a file, use this command line:

hipmap -D -f filename

60

Maintaining and Monitoring IRIS HIPPI

Display the Lookup Table That Is Currently in Memory

Use the command line below to display the table of IP addresses mapped to
I-fields that is currently loaded into memory:

hipmap -a

Set Timeout for Source Channel Connections

To dynamically change the timeout value used by the IRIS HIPPI source
channel, use the command line below. The source timeout is the amount of
time that the source channel waits for a CONNECT or READY signal from the
destination before it aborts the request.

In this command line, the timeout is expressed in milliseconds. The
granularity for this timeout is a quarter of a second (that is, 250
milliseconds). A timeout value that are not divisible by 250 is rounded up to
the next quarter-second.

hipcntl [hippi #] stimeo timeout_in_milliseconds

Verifying the HIPPI Subsystem

61

Verifying the HIPPI Subsystem

The most reliable method for verifying an IRIS HIPPI subsystem is to install
a loopback link between the destination and source on the same system, then
run the hiptest verification test described under the heading “Verify the
Interface to HIPPI-FP” in this section. After the HIPPI subsystem has been
verified, further upper-layer verification tests can be run (for example, the
test described under the heading “Verify an IP Interface” in this section).

Install a Loopback Link

To install a loopback link, use any of the procedures illustrated below:

• Use any standard HIPPI cable to connect the IRIS HIPPI DST and SRC
ports on the system’s I/O panel plate to each other, as illustrated in
Figure 3-1.

Figure 3-1 Installing a Loopback Link Using a HIPPI Cable

System to be testedOne HIPPI cable

62

Maintaining and Monitoring IRIS HIPPI

• Use a special loopback (female-to-female) cable to connect the other
end of the HIPPI destination and source cables as illustrated in
Figure 3-2.

Figure 3-2 Installing a Loopback Link Using a Loopback Cable

• At a switch, connect the cables coming from the IRIS HIPPI board to the
same port or to two different ports. For example, the cable from the IRIS
HIPPI destination could be attached to the OUT of port 1, while the
cable from the IRIS HIPPI source could be attached to the IN of port 1
(or of port 2).

Note: This loopback configuration requires you to use a valid I-field
during the test and assumes that the switch is functional. ♦

Loopback cable

Verifying the HIPPI Subsystem

63

Verify the Interface to HIPPI-FP

To verify the IRIS HIPPI-FP subsystem (without going through the IP stack),
use the /usr/etc/hiptest command. The test only works for an IRIS HIPPI
board that has a loopback link installed between its source and destination
channels. The command is available only to superuser (root).

This test sends randomly-sized HIPPI-FP packets that contain randomly
generated data as the D2 data set. The test then reads the received packets
and verifies that the received data matches the data that was sent. The
following items from the received packet are compared to those items from
the transmitted packet: length of the header (FP header and D1 data area),
length of the D2 area, and data integrity (word-by-word comparison) for the
D2 data set.

The command creates HIPPI-FP packets with the following
non-configurable characteristics:

FP header 8 bytes of FP header where all fields contain valid values for
the packet. The ULP-id used is 0x89 (hexadecimal).

D1 area size 24 bytes.

D1 data set Zero.

D2 area size Randomly generated size, up to the constraining bytecount
specified by maxsize. The first words of D2 area are included
in the first burst of the packet.

D2 data set Randomly generated data.

The command allows you to specify the following packet characteristics:

-I The I-field value (in hexadecimal format) to use for the
connection request. If not specified on the command line,
the command uses 0x00000001.

#/usr/etc/hiptest -I 0x07001002

-D The IRIS HIPPI board to test: /dev/hippi0, /dev/hippi1, etc.. If
not specified on the command line, the command uses
/dev/hippi0.

#/usr/etc/hiptest -D /dev/hippi3

64

Maintaining and Monitoring IRIS HIPPI

maxsize The maximum bytesize (in decimal format) for the packets.
The value specified is rounded down to a number that is
divisible by 8. The minimum is 32 (8 bytes of FP header and
24 bytes of D1 data). The maximum is 2 megabytes (that is,
2097152 bytes). When maxsize is specified, #packets must also
be specified. If maxsize is not specified on the command line,
the command uses 2 megabytes.

For an example, see the command line shown for #packets.

#packets The number of packets (in decimal format) to send before
dropping the connection and ending the test. The minimum
is 1. There is no maximum. When #packets is specified,
maxsize must also be specified.If #packets is not specified on
the command line, the command uses 100.

#/usr/etc/hiptest 1500 10

The command line usage for hiptest is summarized below. After the
command is invoked, each successfully sent packet is indicated with a dot.
To terminate the test at any point, press the <Ctrl > and <C> keys
simultaneously.

hiptest [-I 0x< Ifieldvalue>] [-D /dev/hippi[0-3]] [maxsize [#pckts]]

Examples:

To run the test using the default settings, use the commands below:

%cd /usr/etc
%su
Password: thepassword
#hiptest
/dev/hippi0 sending 100 packets of size [0..2097152] to I-field 0x00000001

...................... <up to 100 dots>

To send one minimum-sized packet, use the command line below:

#hiptest 32 1
/dev/hippi0 sending 1 packets of size [0..32] to I-field 0x00000001

.

Verifying the HIPPI Subsystem

65

To send 25 packets of up to 2 megabytes on a loopback test, use the
command line below:

#hiptest 2097152 25
/dev/hippi0 sending 25 packets of size [0..2097152] to I-field 0x00000001

.........................

To run the test when there is a switch located along the loopback link, specify
a valid I-field, as illustrated in the command below. You must replace the
I-field shown in the example with one that is appropriate; however, it is
recommended that the I-field (as shown in this example) have the camp-on
bit set to one, the PS bits set to zero for source addressing, and the rightmost
bits set to the port identification number for the IRIS HIPPI destination.

#hiptest -I 0x01000002
/dev/hippi0 sending 100 packets of size [0..2097152] to I-field 0x01000002

...................... <up to 100 dots>
#

To test four different IRIS HIPPI boards, invoke the command in four
separate shell windows or execute it four times in the background, as in the
example below:

#hiptest -D/dev/hippi0 &
#hiptest -D/dev/hippi1 &
#hiptest -D/dev/hippi2 &
#hiptest -D/dev/hippi3 &

If the hiptest utility fails with an error message, locate the error message in
the section “Alphabetical Error Message Listing” in Chapter 4 and follow
the instructions.

Verify an IP Interface

To verify that each HIPPI IP network interface is functional, follow the
instructions in this section. This test requires the local system to be attached
either to another HIPPI endpoint that supports IP or to a HIPPI LAN that has
functioning IP hosts. This test assumes that the HIPPI subsystem has passed
the hiptest verification, as described under the heading “Verify the Interface
to HIPPI-FP” in this section.

66

Maintaining and Monitoring IRIS HIPPI

To accomplish this verification, use /usr/etc/ping -r (lower case -r, not -R) to
make this station communicate with another HIPPI IP station over the HIPPI
subsystem.

1. Obtain the IP network addresses for all the local area networks attached
to IRIS HIPPI boards on this system. This information can be displayed
with the command shown below. The network address is listed in the
column labelled Network , as illustrated in Figure 3-3.

%/usr/etc/netstat -ina

Figure 3-3 The /usr/etc/netstat -ina Display

2. Obtain the name or IP address of at least one station on each of these
networks. Two methods for obtaining station names are described
below. The hip#_networkaddress variables used are the values in the
Network column of the netstat display (illustrated in Figure 3-3).

• For sites with NIS, use the commands below to create a file for each
network connection that contains the names and addresses of
stations located on that local area network:

%ypcat hosts | grep hip0_networkaddress > hip0.s
%ypcat hosts | grep hip1_networkaddress > hip1.s
<do this for each HIPPI IP network address>

Example:
%ypcat hosts | grep 253.5.28 > hip0.s

• For distributed (non-NIS) sites, use these commands to create a file
for each network connection that contains the names and addresses
of stations located on that local area network:

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
et0 1500 187.74.28 187.74.28.64 873404 1248 316177 0 1576
hip0 65280 253.5.88 253.5.88.1 2578 2 28679 0 2148
hip1 65280 none none 0 0 0 0 0
lo0 8304 127 127.0.0.1 3609810 0 3609810 0 0

Configuration for second IRIS HIPPI board

Ethernet

Confiruation for first IRIS HIPPI board

Verifying the HIPPI Subsystem

67

%grep hip0_networkaddress /etc/hosts > hip0.s
%grep hip1_networkaddress /etc/hosts > hip1.s
<do this for each HIPPI IP network address>

Example:
%grep 253.5.88 /etc/hosts > hip1.s

3. Communicate with one station on the LAN attached to the hip0
connection. For the variable hip0_station, you can use any of the names
or IP addresses from the hip0.s file, except the station’s own.

%ping -r hip0_station
PING stationname (IPaddress): 56 data bytes
64 bytes from . . . time= x ms
. . .
<Ctrl><c>
---- stationname PING Statistics----
packets trans, # pckts rcvd, x% packet loss

4. If netstat lists other IRIS HIPPI (hip#) network interfaces, communicate
with one station on each of those networks. For the variable
hip#_station, you can use any of the names from the hip#.s file, except
the station’s own.

%ping -r hip#_station
PING stationname (IPaddress): 56 data bytes
64 bytes from . . . time= x ms
. . .
<Ctrl><c>
---- stationname PING Statistics----
packets trans, # pckts rcvd, x% packet loss

5. If one ping on each network succeeds, you have completed the
verification procedure. All the network connections are functioning.
Use the commands below to remove the files with the lists of stations:

%rm hip0.s
%rm hip1.s
<do this command line for each .s file created>

If the ping on a network fails, follow the instructions in the section
“Troubleshoot an IP Interface.”

68

Maintaining and Monitoring IRIS HIPPI

Troubleshooting

Troubleshoot the Interface to HIPPI-FP

If the hiptest utility fails with an error message, locate the error message in
the section “Alphabetical Error Message Listing” in Chapter 4 and follow
the instructions.

Troubleshoot an IP Interface

If the ping verification tests fail for all the HIPPI network connections, your
system probably has been configured incorrectly. Verify the configure with
the commands below.

1. Verify that IP networking is enabled with the following command line:

%/sbin/chkconfig | grep network
network on

2. Verify that the /usr/etc/hippi.imap file has entries for the local system’s
network connection names (or IP addresses) and for the remote system
interface names or IP addresses that failed.

3. For each HIPPI I/O panel, verify that the HIPPI cables connect to a
LAN with a network address that matches the HIPPI network interface
address for that board. You can display the local network address with
the /usr/etc/netstat -ina command. The address shown for network
interface hip0 belongs to board hippi0; the address for hip1 belongs to
board hippi1. To verify the network address being used on the cable at
the I/O panel, you have to perform the equivalent action on other
systems on that LAN.

If the network address is correct, continue to the next step. If the
address is wrong, either change the local system’s address to match or
connect the correct the cables to the I/O panel.

4. Refer to the IRIX Advanced Site and Server Administration Guide for
information about configuring and troubleshooting IP.

If one of the ping verification tests succeeds, but one or more fails, the IP
stack is functioning, but the specific interface has a problem. Follow the

Troubleshooting

69

instructions in this section for each problematic network connection to
resolve the problem.

1. Verify that the /usr/etc/hippi.imap file has an entry for the problematic
local interface and for the remote hostnames or IP addresses that failed.

2. If the system is connected to a switch, verify that the switch is
operational.

3. Verify that the other system (endpoint host) is operational. If it is,
continue to the next step.

Or, as an alternate, select two different stations on the LAN for which
ping failed. Try to ping -r each station using the numerical address
(instead of the name). If a ping works, the network connection is
functional. If the pings fail, proceed to the next step.

4. Check that the HIPPI cables between the I/O panel and the other
system (switch or endpoint) are tightly connected at both ends.

5. Again try to ping a station on that network. If the ping still fails, proceed
to the next step.

6. Verify that the network portion (leftmost digits) of the addresses you
are attempting to ping match the network addresses displayed by the
/usr/etc/netstat -in command.

If the network addresses do not match, repeat the steps in “Verify an IP
Interface” to obtain and test a new selection of stations. Take extra
precautions to ensure that you use the correct network addresses. If the
network addresses match, continue.

7. Verify that the HIPPI cables at the I/O panel attach (at their other ends)
to a system using the same network address. For example, verify that
the network address for hip0 matches the network address for the
system at the other end of the cables attached to the hippi0 board. (If the
other system is a switch, verify the network addresses at the endpoints
attached to that switch.)

71

Chapter 4

4. IRIS HIPPI Error Messages

This chapter lists the error messages that the IRIS HIPPI utilities can display.

Overview of the Error Message Listing

This section is a reference section containing an alphabetical list of all the
error messages that can be displayed by IRIS HIPPI software.

With each error message is a discussion of the problems the message may
indicate. The list contains only messages that indicate an error or problem; it
does not contain informational messages that occur during normal
operation.

Messages are alphabetized according to the following rules:

• Each message is alphabetized by the numerals (0–9) and letters (a–z) of
the message’s text. Numerals precede letters. (Figure 4-1 illustrates the
text of an error message.)

• Nonletters (for example, - or %) and blank spaces are shown in the text
of the message, but are ignored in alphabetization. For example, the
message hip_open appears between hipnet and hippi .

• When an error message includes an item that the software specifies
differently (fills in) for each instance of the message, this item is
displayed in italic font and labeled with a generic name (for example,
filename). The generic names are skipped for alphabetization
purposes. For example, the error message goofy not responding is
located under hostname not responding among the “n” listings.
Common generic names used in this listing include hostname ,
interfacename , packet# , version# , userentry , reason , digit ,
filename , and hexnumeral .

72

IRIS HIPPI Error Messages

Note: If you cannot find an error message in the listing, identify
potential fill-in words, then look up the message without those words.♦

• Capitalization is not considered in alphabetization.

• The creator of each message is listed, in angled brackets, below the text
of the message: (<creator >).

IRIS HIPPI error messages are written into the file /usr/var/adm/SYSLOG or
displayed at the terminal; some messages appear in both places. Within the
SYSLOG file, each message is preceded by the date, time, host name, name
of the process that created the message, and process ID number, as
illustrated in Figure 4-1. Only the text of the error message (as illustrated in
Figure 4-1) is included in the alphabetic list that follows.

Figure 4-1 Error Message Format in /usr/var/adm/SYSLOG File

Note: The list of error messages in this chapter covers only those unique to
IRIS HIPPI. Standard system error messages, even when caused by the IRIS
HIPPI code, are not covered. ♦

May 10 05:12:03 goofy hip0[58]: Unknown ULP-id

date and time host creator
name

text of error message

Alphabetical Error Message Listing

73

Alphabetical Error Message Listing

This section lists the error messages displayed on the console by the IRIS
HIPPI utilities and driver. Many of these messages are also written to the
SYSLOG file.

#: bad HIPPI unit number

The entry used on the command line with hipcntl to identify the IRIS
HIPPI board (hippi#) contains an invalid unit number. Valid command
line entries are: hippi0 , hippi1 , hippi2 , and so on, for as many of the
installed boards as were located during the last restart.

harpioctl: unknown cmd: command

While attempting to resolve an address, the driver encountered the
indicated unknown ioctl command. This indicates that an upper layer
application (for example, the ifconfig utility) is passing the unknown
ARP command to the driver. Valid ARP commands include
SIOCSHARP, SIOCGHARP, SIOCDHARP, and SIOCGHARPTBL.

hip#: ifhip_output: Unsupported addr. family:0x hexnumeral

While processing a packet for transmission, the driver found that the
specified destination address does not belong to a supported address
family. The packet’s address family is indicated by hexnumeral. The
packet was not sent.

hipcntl: couldn’t get HIPPI statistics: reason

The ioctl call for the command HIPIOC_GET_STATS failed. The reason
is any of those described by the intro(2) man page.

hipcntl: couldn’t open HIPPI device /dev/hippi #

The open system call for the indicated IRIS HIPPI file device failed. This
may indicate that the IRIS HIPPI software has not been installed
properly or that it has been partially removed. Use inst to reinstall the
IRIS HIPPI software from the CD-ROM or distribution directory.

74

IRIS HIPPI Error Messages

hipcntl: couldn’t set HIPPI accept flag: reason

The ioctl call for the command HIPIOC_ACCEPT_FLAG failed to
changed the destination channel’s accept/reject setting. The reason is
any of those described by the intro(2) man page.

hipcntl: couldn’t set src timeout: reason

The ioctl call for the command HIPIOC_STIMEO failed to set a new
timeout for the source channel. The reason is any of those described by
the intro(2) man page.

hipcntl: Double Warning: may be firmware driver mismatch if
you force download.

As hipcntl prepared to download firmware (startup) and discovered
that the driver is a debug version, it also discovered that the driver and
the firmware that is about to be loaded do not match. This probably
indicates a mismatch between the hipcntl utility and the driver. Erase
this hipcntl utility and install a copy that matches the driver.

hipcntl: Error: board is already up.

When hipcntl attempted to start the board, it found the board already
started.

hipcntl: Error: couldn’t get version numbers.
Possible hipcntl/kernel-driver mismatch.
Please autoconfig your system and reboot.

As hipcntl prepared to download firmware (startup), it discovered that
it either could not retrieve a version number for the current driver or
for the firmware currently loaded into the PROM on the IRIS HIPPI
board. This indicates that the IRIS HIPPI driver has not been built into
the operating system.

Alphabetical Error Message Listing

75

hipcntl: Error: mismatch between kernel driver and hipcntl.
Cannot startup adapter.
You probably need to autoconfig and reboot your system
and/or remove any old copies of hipcntl(1m) on your system.

As hipcntl prepared to download firmware (startup), it discovered that
the driver and the firmware that is about to be loaded do not match.
This probably indicates a mismatch between the hipcntl utility and the
driver. Erase this hipcntl utility, reinstall the IRIS HIPPI software, and
build a new operating system.

hipcntl: HIPPI Board is down

The ioctl call for the command HIPIOC_GET_STATS failed because the
IRIS HIPPI board is not available (that is,it is shutdown or not
responding). To remedy this problem,use command hipcntl startup .
If it does not solve the problem, you may need to have the IRIS HIPPI
board checked.

hipcntl: problem programming flash: reason

The ioctl call for the command HIPPI_PGM_FLASH failed to download
new firmware into the IRIS HIPPI board’s PROM. The reason is any of
those described by the intro(2) man page. The new firmware has not
been loaded into the IRIS HIPPI board’s PROM. This message should
be preceeded by other error messages indicating problems with the
board’s FLASH EEPROM. Contact the Silicon Graphics Technical
Assistance Center.

hipcntl: trouble bringing up HIPPI: reason

The ioctl call for the command HIPPI_SETONOFF failed to start the
IRIS HIPPI board. The reason is any of those described by the intro(2)
man page. This message probably indicates that the board is
dysfunctional. Invoke hipcntl to shut down the board; then, try to start
the board. If this does not succeed, contact the Silicon Graphics
Technical Assistance Center.

76

IRIS HIPPI Error Messages

hipcntl: trouble shutting down HIPPI: reason

The ioctl call for the command HIPPI_SETONOFF failed to shutdown
the IRIS HIPPI board. The reason is any of those described by the intro(2)
man page.

hipmap: couldn’t bind socket: reason

The utility was unable to bind to the raw socket. This indicates a
problem with the operating system, not with the IRIS HIPPI software or
hardware. The reason is any of those described by the intro(2) man page.

hipmap: couldn’t get raw socket: reason

The utility was unable to obtain a raw socket. This indicates a problem
with the operating system, not with the IRIS HIPPI software or
hardware. The reason is any of those described by the intro(2) man page.

hipmap: couldn’t open input file: reason

The file supplied on the command line (for example, /usr/etc/hippi.imap)
could not be opened. This can indicate that the file does not exist, or
that the permissions are not set correctly. The reason is any of those
described by the intro(2) man page.

hipmap: couldn’t SIOCDHARP: reason

 The SIOCDHARP command within an ioctl system call failed. The
reason is any of those described by the intro(2) man page.

hipmap: couldn’t SIOCSHARP: reason

 The SIOCSHARP command within an ioctl system call failed. The
reason is any of those described by the intro(2) man page.

hipmap: malformed address name: IPaddress or hostname

The hostname or IPaddress indicated is not valid. The hostname or
IPaddress is a user entry from a file (for example, the /usr/etc/hippi.imap
file) or a command line entry.

Alphabetical Error Message Listing

77

hipmap: malformed I-field in line: line#

The second entry on the indicated line does not conform to a valid
I-field. To be valid, the I-field entry must be a 32-bit value in
hexadecimal format (for example, 0x00100003).

hipmap: malformed line: line#

The indicated line in the file being read (for example, /usr/etc/hippi.imap)
is not correctly formatted.

hipmap: malformed switch address.

The I-field entered on the command line is not valid. To be valid, the
I-field entry must be a 32-bit value in hexadecimal format (for example,
0x0100000C or 0100000C).

hipmap: malformed ULA in line: line#

On the indicated line, there is an optional third entry that does not
conform to a valid IEEE universal LAN MAC address (ULA) address.
To be valid, the ULA entry must be a 48-bit value in hexadecimal
format (for example, 0x7A385CF9028D).

hipmap: trouble flushing harp entry: reason

The SIOCDHARP command failed within an ioctl system call.The
reason is any of those described by the intro(2) man page.

hipmap: trouble reading harptable: reason

The SIOCGHARPTBL command failed within an ioctl system call. The
reason is any of those described by the intro(2) man page.

hipmap: warning: couldn’t resolve name: hostname

The system call, gethostbyname, failed for the indicated IPaddress or
hostname. This probably means that the indicated entry does not exist in
the host name database (the /etc/hosts file on the local filesystem or on
the NIS server).

78

IRIS HIPPI Error Messages

hippi #: board asleep at iofile: line# with cmd_addr not cmd_addr
after cmd_addr at line#

The indicated IRIS HIPPI board (hippi#) controled by the indicated iofile
is not responding to commands from the driver. The line# and cmd_addr
variables indicate the expected and actual locations in the command
queues. Use hipcntl to shut down then startup the IRIS HIPPI board. If
this does not resolve the problem, the board is probably dysfunctional.
Contact the Silicon Graphics Technical Assistance Center.

hippi #: EEPROM erase FAILED!

While attempting to erase the FLASH EEPROM on the IRIS HIPPI
board, the driver encountered an error. Contact the Silicon Graphics
Technical Assistance Center.

hippi #: erase FAILED while zeroing flash

While attempting to zero out the FLASH EEPROM on the IRIS HIPPI
board, the driver encountered an error. Contact the Silicon Graphics
Technical Assistance Center.

hippi #: flash write failed!

While attempting to download new firmware into the FLASH
EEPROM on the IRIS HIPPI board, the driver encountered an error.
Contact the Silicon Graphics Technical Assistance Center.

hippi #: no board signature!

While the startup software was attempting to initialize the
host-to-board interface, the board’s initialization firmware did not
respond. Contact the Silicon Graphics Technical Assistance Center.

hippi_b2h: unknown op: command

The driver received an unknown command from the IRIS HIPPI board.
This may indicate a mismatch between the driver and firmware
versions. Contact the Silicon Graphics Technical Assistance Center.

Alphabetical Error Message Listing

79

hiptest(DST): couldn’t bind fd_i to ULP: reason
hiptest(SRC): couldn’t bind fd_o to ULP: reason

The test’s HIPIOC_BIND_ULP ioctl() call failed. For the source (SRC), the
output (writing) call failed; for the destination (DST), the input
(reading) call failed. The reason is any of those described by the intro(2)
man page.

This indicates either a problem with the software or too many
applications trying to use the ULP-id. Perhaps the driver has not been
built into the operating system or the IRIS HIPPI software has not been
installed properly. This error message also appears if more than four
applications (for example, instances of hiptest) try to use ULP-id 0x89.

hiptest(DST): couldn’t open hippi device: reason
hiptest(SRC): couldn’t open hippi device: reason

The IRIS HIPPI board (for example, /dev/hippi#) was not found. The
reason is any of those described by the intro(2) man page.

For example, this message can indicate that the device file was not
found (perhaps the software was not installed properly) or that the
board was not located at startup time. To verify the latter, use the
/sbin/hinv command.

hiptest(DST): couldn’t open hippi device: Permission denied
hiptest(SRC): couldn’t open hippi device: Permission denied

You must be superuser to use hiptest.

hiptest(SRC): couldn’t set D1_SIZE hdr: reason

The test’s HIPIOC_D1_SIZE ioctl() call failed. The reason is any of those
described by the intro(2) man page.

This indicates a problem with the software. Perhaps the driver has not
been built into the operating system or the IRIS HIPPI software has not
been installed properly.

hiptest(SRC): couldn’t set I-field: reason

The test’s HIPIOC_I ioctl() call failed. The reason is any of those
described by the intro(2) man page.

80

IRIS HIPPI Error Messages

This indicates a problem with the software. Perhaps the driver has not
been built into the operating system or the IRIS HIPPI software has not
been installed properly.

hiptest(DST): data integrity error at offset byte_offset
hiptest(DST): packet#: expecting tx_data got rcv_data
hiptest(DST): virtual address = ptr_rcv_data

The D2 data in the received packet does not match the D2 data that
hiptest sent. The byte_offset variable indicates the word within the packet
where the error was detected. The tx_data variable indicates what was
sent as compared to rcv_data, which was received. The problematic
word of received data is located at ptr_rcv_data.

hiptest(DST): packet#: length error: retv= rcv_bytecount
len2= tx_bytecount

The D2 data set from the received packet is not the same size as that
sent. The two bytecounts are displayed: rcv_bytecount is for the received
packet and tx_bytecount is for the packet that was sent.

hiptest(DST): packet#: trouble reading header: reason

The read() call for the header of the packet specified by packet# failed.
The reason is any of those described by the intro(2) man page.

hiptest(DST): packet#: header is bytecount long!?

The header (that is, FP header and D1 data) for the packet specified by
packet# was longer than the header that hiptest sent. The length of the
received header is indicated by bytecount. The test always sends 32
bytes.

hiptest(DST): packet#: trouble reading body: reason

The read() call for the body of a packet failed. The reason is any of those
described by the intro(2) man page.

Alphabetical Error Message Listing

81

hiptest(SRC): packet#: write return value: returnvalue
hiptest(SRC): trouble writing: reason

The write() call for the packet failed, or the connection request that was
triggered by this write() failed to open a connection. For example, if
there is a switch between the source and destination endpoints, the
I-field may be invalid.

The packet# indicates which packet in the series failed, where 0 is the
first packet. The returnvalue indicates the number of bytes that were
successfully sent; when returnvalue is -1, the write() call failed to send
any data. The reason is any of those described by the intro(2) man page.

if_hip#: can’t output checksum proto headertype

While processing a packet for transmission, the driver found that the
header was not TCP nor UDP, and because of this could not calculate a
checksum for the packet. The packet was not sent.

Usage: hipcntl stimeo <value>

The hipcntl command line for setting the source’s connection timeout
did not contain a valid setting. Valid settings are milliseconds entered
in decimal format (for example, hipcntl stimeo 1000 sets the
timeout to 1 second).

83

CONNECT signal, 4, 24
connection

control, 3-5
open, 1, 3
rejections, 4

control information, 17
customer developed applications, 34
customer support, xiii
customer-developed applications, xi

D

D bit, see I-field, Direction bit
D1 data set

created by IRIS HIPPI-LE module, 36
definition, 17

D2 data, 18
data rate, 1, 6
destination

address, 7, 11
definition, 1

direction bit, see I-field
driver configuration file,

see /usr/var/sysgen/master.d/if_hip, 46

E

error checking, 5
error message alphabetization rules, 71

A

address, see routing
API, see application programming interface
application programming interface, xi, 34

B

B bit, see FP header, Burst bit
bi-directional communication, 25
burst

definition, 5
first, 6
location of first byte of user data, 6
short, 6

BURST signal, 23

C

cable, 1
camp-on, 4
Camp-on bit, see I-field
CCI, see I-field, 15
commands

summary of, 55
/usr/etc/hipcntl, 55
/usr/etc/hipmap, 55
/usr/etc/hiptest, 55

configuring the IRIS HIPPI board, 56

Index

84

Index

error message format, 72
error message log file, 72
error messages, 73
/etc/config/netif.options file, 44, 49
/etc/hosts file, 44, 49
Ethernet address, 46

F

files
driver configuration file,

see /usr/var/sysgen/master.d/if_hip, 44
error message file, 72
I-field to hostname map,

see /usr/var/sysgen/system/hippi.sm file, 45
I-field to IP address mapping file, see /usr/etc/

hippi.imap, 44
IP configuration files, see /etc/hosts, 44
IP configuration files, see /usr/etc/netif.options, 44
log messages, 72
/usr/adm/SYSLOG, 72

flow control, 5-7
FP header

as created for IRIS HIPPI-LE module, 36
Burst bit, 6, 19
description of, 19
format, 19
how it is processed on reception, 39
Present bit, 19

H

hipcntl command, see /usr/etc/hipcntl
hipmap command, see /usr/etc/hipmap
HIPPI

basic configuration, 24
compared to other network protocols, 3, 24

definition, 1
documentation, 32
IP support, 45
switch, 2

HIPPI LAN
configuration examples, 27, 28, 29
description of, 26-31
maximum number of endpoints, 9, 30
maximum number of switches, 9, 30

HIPPI signals
BURST, 23
CONNECT, 4, 24
description of, 22
INTERCONNECT, 3, 23
PACKET , 5, 23
protocol for use of, 32
READY, 5
REQUEST, 3, 23

HIPPI-FP packet
commonly used formats, 21
examples, 21
format, 17, 18
see also FP header
see also packet

HIPPI-FP standard, 32
HIPPI-IPI-3 standards, 32
HIPPI-LE standard, 32
HIPPI-PH standard, 32
HIPPI-SC standard, 32
hippi.imap file, see /usr/etc/hippi.imap, 46
hippi.sm file, see /usr/var/sysgen/system/hippi.sm, 45
hiptest command, see /usr/etc/hiptest
hostname to I-field mapping,

see /usr/etc/hippi.imap file, 46
hosts, see /etc/hosts file
how to

build a driver without IP support, 43-44
build driver with IP support, 44-45
change the I-field lookup table dynamically, 59

85

how to (continued)
configure board, 56
configure IP network interface dynamically, 59
configure MTU, 46
disable/enable board, 56
display current I-field lookup table, 60
display status information, 56
enable/disable the IP network interface, 58
install a loopback link, 61
load new firmware, 56
maintain IRIS HIPPI subsystem, 56-60
map hostnames to I-fields, 59
map IP addresses to I-fields, 59
map IP names or addresses to I-fields, 46
monitor IRIS HIPPI subsystem, 56-60
obtain HIPPI standards documentation, 33
set source timeout, 60
shutdown the board, 56
troubleshoot a non-IP interface, 68
troubleshoot an IP network interface, 68
troubleshoot the character device interface, 68
verify that IP is enabled, 68
verify the character device interface, 62-65
verify the IP network interface, 65-67
verify the IRIS HIPPI subsystem, 61-67

I

I-field
Camp-on bit, 4
description of, 16
Direction bit, 7, 9, 12, 14
format, 15
Path Selection bits, 7, 9
recommended values, 35, 47
Routing Control field, 7, 9
template for creating, 47

I-field to IP address mapping,
see /usr/etc/hippi.imap file, 46

IEEE 802.2 header, 37, 41

IEEE universal address, 46
if_hip file, see /usr/var/sysgen/master.d/if_hip, 46
ifconfig command, see /usr/etc/ifconfig
INTERCONNECT signal, 3, 23
IP address to I-field mapping,

see /usr/etc/hippi.imap file, 46
IP checksumming, 46
IP over HIPPI, 26, 32

L

LLC header, 37
log file, see files
logical addressing

assigned usages, 8
description of, 7-9
formats, 8
maximum number of addresses, 9
reserved addresses, 8
size of address, 7
use of, 7

lookup table, 46
loopback, 61

M

MAC address, 46
maintaining, 55
monitoring, 55
MTU configuration, 46

N

netif.options, see /etc/config/netif.options file
netstat command, see /usr/etc/netstat

86

Index

P

packet
control, 5-7
control information in, 17
D1 area, 17
D2 area, 18
definition, 5
format, 17, 18
indeterminate size, 6
infinite, 6
maximum size, 6
user data in, 18

PACKET signal, 5, 6, 23
physical link, 1
ping command, see /usr/etc/ping
port identifier, 10
product support, xiii
PS bits, see I-field, Path Selection bits

R

READY signal, 5
REQUEST signal, 3, 23
reserved addresses, 8
RFC 1374, 30, 32, 35
routing

description of, 7-15
see also logical addressing
see also source addressing

routing control field, see I-field

S

Silicon Graphics customer support, xiii
SNAP header, 37
software installation, xi

source
definition, 1

source addressing
description of, 9-15
how address is changed by switches, 13
size of address, 9
use of, 7

source channel timeout, 60
status information, 57
status reports, 56, 57
support for upper layer applications, xi
switch

description of, 2, 4, 26
maximum number in a LAN, 9

SYSLOG file, 72

T

TCP/IP over HIPPI, 26, 32
technical assistance center, xiii
testing procedures, 61
timeout for source connections, 60
troubleshooting, 68

U

ULA, 46
ULP, xi
universal IEEE address, 46
user data, 18
/usr/adm/SYSLOG file, 72
/usr/etc/hipcntl command, 55
/usr/etc/hipmap command, 55, 59
/usr/etc/hippi.imap file, 34, 46
/usr/etc/hiptest command, 55, 62
/usr/etc/ifconfig command, 55, 58, 59

87

/usr/etc/netstat command, 55
/usr/etc/ping command, 55, 65
/usr/var/adm/SYSLOG file, 72
/usr/var/sysgen/master.d/if_hip file, 46
/usr/var/sysgen/system/hippi.sm, 43, 44
/usr/var/sysgen/system/hippi.sm file, 45
utilities, 56

V

verifying the IRIS HIPPI subsystem, 61-69

W

word
definition, 1

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2229-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

