
SX.25 NLI Programmer’s Guide

Document Number 007-2268-002

SX.25 NLI Programmer’s Guide
Document Number 007-2268-002

CONTRIBUTORS

Written by Susan Ellis
Edited by Christina Cary
Production by Gloria Ackley
Engineering contributions by Inna Liou, Bob Horen, Irene Kuffel, John Ng, Jay Lan,

Jay McCauley

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks of Silicon Graphics, Inc. UNIX is
a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd.

iii

Contents

About This Guide ix

1. Introduction to NLI 1
Include Files 2

2. Data Structures 5
Addresses 5
Quality of Service and X.25 Facilities 7

CONS Quality of Service Parameters 8
Non-OSI Facilities 11

3. Listens 21
Listening for Incoming Calls 21
Call User Data Matching 22
Address Matching 23
Priority 24

4. NLI Message Primitives 27
Connect Request/Indication 29
Connect Response/Confirmation 30
Data 31
Data Acknowledgment 31
Expedited Data 32
Expedited Data Acknowledgment 33
Reset Request/Indication 33
Reset Response/Confirmation 34
Disconnect Request/Indication 34
Disconnect Confirmation 36
Abort Indication 36
Listen Request/Response 37

iv

Contents

Listen Cancel Request/Response 38
PVC Attach 38
PVC Detach 40

5. Programming Examples 43
Using the NLI Conversion Module 44
Opening a Connection 46

CONS Calls 47
Non-CONS Calls 50

Data Transfer 51
Sending Data 52
Receiving Data 53
Expedited Data 54
Resets 56

Closing a Connection 58
Remote Disconnect 58
Local Disconnect 60

Listening 61
Listening for Incoming Connections 61
Constructing the Listen Message 62
Handling the Connect Indication 65

Acceptance 65
Rejection 65
Negotiation of QOS Parameters 66

Reusing the Listen Stream 67
PVC Operation 68

Attaching a PVC 68
PVC Data Transfer 70
Detaching a PVC 70

Remote Detach 71
Local Detach 71

Contents

v

A. NLI Messages 75

B. Error Codes 79

Glossary 83

Index 87

vii

Tables

Table 2-1 aflags Values 6
Table 2-2 protection_type Values 10
Table 2-3 pwoptions Values 13
Table A-1 Downstream Messages and Associated Outgoing X.25

Packets 75
Table A-2 Upstream Messages and Associated Incoming X.25 Packets

75
Table B-1 N_RI and N_DI Originator Codes 79
Table B-2 N_DI Reason Codes for Network Service Providers 79
Table B-3 N_DI Reason Codes for Network Users 80
Table B-4 N_RI Reason Codes for Network Service Providers 80
Table B-5 N_RI Reason Code For Network Service Users 81

ix

About This Guide

This guide describes IRIS® SX.25 for programmers. It describes the Network
Layer Interface (NLI), which the programmer can use to access the X.25
Packet Layer Protocol (PLP) driver. It is assumed that the programmer is
familiar with ISO (International Organization for Standardization) 8208,
X.25 Packet Level Protocol for Data Terminal Equipment.

This guide has the following chapters:

Chapter 1, “Introduction to NLI”
provides a brief overview of the Network Layer Interface
and a glossary of terms. This section also lists the include
files that a programmer needs.

Chapter 2, “Data Structures”
details the function and use of the data structures used
across the NLI for addressing, quality of service and facility
negotiation.

Chapter 3, “Listens”
shows how to set up an application to listen for incoming
calls.

Chapter 4, “NLI Message Primitives”
describes the interface message formats and parameters
that the X.25 driver supports.

Chapter 5, “Programming Examples”
provides programming examples using the NLI.

This guide should be used in conjunction with STREAMS Modules and
Drivers, UNIX® SVR4.2, UNIX Press, 1992.

x

About This Guide

Other manuals that cover IRIS SX.25 are the following:

• The SX.25 User Guide describes the packet assembler/disassembler user
interface. It is available for online viewing with insight(1).

• The SX.25 Administrator’s Guide describes the installation and operation
of the networking software. It is available for online viewing with
insight(1).

The IRIS SX.25 reference pages (manual pages) describe all the programs,
application utilities, and system files available to programmers, users, and
the system administrator.

This chapter presents a brief
introduction to NLI and the system
header files required to use it.

Introduction to NLI

Chapter 1

1

Chapter 1

1. Introduction to NLI

This chapter contains the following section:

• “Include Files” on page 2

IRIS SX.25 supports a Network Layer Interface (NLI) to the X.25 Packet
Layer Protocol (PLP) for use by applications. This NLI was developed by
Spider Systems, Ltd., and is widely available on many platforms. This
interface is not provided as a programming library, but by the standard
STREAMS mechanisms for communicating with a stream head. In this way,
application programs in user space interact with the in-kernel PLP Driver by
exchanging STREAMS messages, using the getmsg and putmsg system calls.
The NLI has been designed so that user level library software can be easily
constructed.

Messages passed in this way have both a control part and a data part.
Primitives and associated parameters are passed to the X.25 driver by using
the control part of messages. If data is to be passed with a primitive, it is
contained in the data part of the message.

This means that the application must always provide a control part in
messages when using the STREAMS routines getmsg and putmsg, and
whether data is present in the message or not.

Using this message type, the packet structure and parameters necessary for
a general X.25 driver can be mapped into the STREAMS environment very
easily.

2

Chapter 1: Introduction to NLI

Include Files

Applications using the IRIS SX.25 NLI need to include several system header
files:

• <errno.h> contains standard error codes.

• <sys/types.h> contains type definitions used by STREAMS.

• <sys/stropts.h> defines the message structures used in STREAMS
system calls.

• <sys/snet/uint.h> defines types used by the data structures passed across
the NLI.

• <sys/snet/x25_proto.h> defines the data structures that must be included.

Since only standard system calls are used, no special library needs to be
linked with applications using the NLI. There are, however, some potentially
useful service functions in the library libsx25.a.

This chapter describes the data
structures used by NLI primitives to
specify X.25 addresses and facilities.

Data Structures

Chapter 2

5

Chapter 2

2. Data Structures

This chapter contains the following sections:

• “Addresses” on page 5

• “Quality of Service and X.25 Facilities” on page 7

This chapter describes the data structures used by NLI primitives to specify
X.25 addresses and facilities. These data structures are defined in the file
<sys/snet/x25_proto.h>. (This file is included in the subsystem eoe2.sw.dlpi,
which is a prerequisite for IRIS SX.25.)

Addresses

In call requests and responses, it is usually necessary to specify the X.25
addresses associated with the connection—the called, calling and
responding addresses. A common structure is used for these addresses. The
addressing format used by this structure provides the following
information:

• the subnetwork on which outgoing Connect Requests are to be sent and
on which Connect Indications arrive

• NSAPs (Network Service Access Points) and SNPAs (Subnetwork Point
of Attachments), or DTE (Data Terminal Equipment) addresses and
LSAPs (Link Service Access Points)

• options in encoding of addresses (NSAPs)

6

Chapter 2: Data Structures

The addressing format is:

#define NSAPMAXSIZE 20

struct xaddrf {
 unsigned long sn_id;
 unsigned char aflags;
 struct lsapformat DTE_MAC;
 unsigned char nsap_len;
 unsigned char NSAP[NSAPMAXSIZE];
}

The fields in this structure are:

sn_id The subnetwork identifier, selected by the system
administrator. It identifies the subnetwork required for a
Connect Request, or on which a Connect Indication arrived.
The sn_id field holds a representation of the one byte string
subnetwork identifier as an unsigned long. The X.25 library
routine snidtox25 can be used to convert the character
subnetwork identifier to an unsigned long.

aflags Specifies the options required (or used) by the subnetwork
to encode and interpret addresses. When there is a value in
the NSAP field, aflags takes one of the three values listed in
Table 2-1. When the NSAP field is empty, aflags has the
value 0. See the x25addr(5), stox25(3N), x25tos(3N), and
getxhostent(3N) reference pages for details about the X.25
address format.

DTE_MAC Holds the DTE address, the MAC+SAP (medium access
control+service access point) address or the LCI. This is
binary. The lsapformat structure is described below.

Table 2-1 aflags Values

Value Meaning

0 NSAP field contains an OSI (Open Systems Interconnection) encoded NSAP
address

1 NSAP field contains a non-OSI encoded extended address

2 DTE_MAC field contains the logical channel identifier (LCI) of a permanent
virtual circuit (PVC)

Quality of Service and X.25 Facilities

7

nsap_len This indicates the length of the NSAP, if any (and where
appropriate), in semi-octets.

NSAP This carries the NSAP or address extension (see field aflags)
when present as indicated by nsap_len. This is binary.

The format of the lsapformat structure is as follows:

#define LSAPMAXSIZE 9

struct lsapformat {
 unsigned char lsap_len;
 unsigned char lsap_add[LSAPMAXSIZE];
};

The fields in this structure are defined as follows:

lsap_len This gives the length of the DTE address, the MAC+SAP
address, or the LCI in semi-octets. For example, for
Ethernet, the length is always 14 to indicate the MAC (12)
plus SAP (2). The SAP always follows the MAC address.
The DTE can be up to 15 decimal digits unless X.25(88) and
TOA/NPI (Type Of Address/Numbering Plan
Identification) addressing is being used, when it can be up
to 17 decimal digits. For an LCI the length is 3.

lsap_add This holds the DTE, MAC+SAP or LCI, when present, as
indicated by lsap_len. This is binary.

Quality of Service and X.25 Facilities

Negotiable X.25 facilities are supported by the PLP driver. This section
describes the request and negotiation of these facilities, and the data
structures used by the NLI primitives. Refer to the SX.25 Administrator’s
Guide for details on the options selected for a particular subnetwork. The
facility set can be broken down into two main groups—those required for
Connection-Oriented Network Service (CONS) support and those for
non-OSI procedures (X.29, for example).

Note: CONS can also use the non-OSI procedures.

8

Chapter 2: Data Structures

CONS Quality of Service Parameters

The CONS quality of service (QOS) parameters supported are the following:

• Throughput Class

• Minimum Throughput Class

• Target Transit Delay

• Maximum Acceptable Transit Delay

• Use of Expedited Data

• Protection

• Priority

• Receipt Acknowledgment

CONS-related quality of service parameters are defined in this structure:

#define MAX_PROT 32

struct qosformat {
 unsigned char reqtclass;
 unsigned char locthroughput, remthroughput;
 unsigned char reqminthruput;
 unsigned char locminthru, remminthru;
 unsigned char reqtransitdelay;
 unsigned short transitdelay;
 unsigned char reqmaxtransitdelay;
 unsigned short acceptable;
 unsigned char reqpriority;
 unsigned char reqprtygain;
 unsigned char reqprtykeep;
 unsigned char prtydata;
 unsigned char prtygain;
 unsigned char prtykeep;
 unsigned char reqlowprtydata;
 unsigned char reqlowprtygain;
 unsigned char reqlowprtykeep;
 unsigned char lowprtydata;
 unsigned char lowprtygain;
 unsigned char lowprtykeep;
 unsigned char protection_type;
 unsigned char prot_len;
 unsigned char lowprot_len;

Quality of Service and X.25 Facilities

9

 unsigned char protection[MAX_PROT];
 unsigned char lowprotection[MAX_PROT];
 unsigned char reqexpedited;
 unsigned char reqackservice;

 struct extraformat xtras;
};

The fields in this structure are defined as follows:

Throughput Class
reqtclass is nonzero if the throughput negotiation
parameter is selected. The fields locthroughput and
remthroughput contain the four-bit throughput encoding
for local-to-remote and remote-to-local, respectively.

Minimum Throughput Class
reqminthruput is nonzero if the minimum throughput
negotiation parameter is selected. In this case, the fields
locminthru and remminthru contain the four-bit
throughput encoding for the directions local-to-remote and
remote-to-local, respectively.

Target Transit Delay
In Connect Requests and Indications, reqtransitdelay is
nonzero if the transit delay parameter is selected. In this
case transitdelay contains the 16-bit value. In a Connect
Confirmation, the value of the selected transit delay is
placed in the transitdelay field and is nonzero.

Maximum Acceptable Transit Delay
If the calling NLI application specifies a maximum
acceptable value for the transit delay parameter (lowest
quality acceptable), the field reqmaxtransitdelay is nonzero
and acceptable contains the 16-bit value of the maximum
acceptable.

Note: Transit delay selection applies only to Connect
Requests. There is no transit delay QOS parameter in a
Connect Response. The correct response when the indicated
QOS is unattainable is to make a Disconnect Request. In a
Connect Confirmation, the value of the selected transit
delay is placed in the transitdelay field when such
negotiation takes place.

10

Chapter 2: Data Structures

Priority The reqpriority field is used to request/indicate priority on
a connection. The mandatory field prty_data contains the
8-bit value for the priority of data on the connection. The
reqprtygain and reqprtykeep fields can be optionally set to
indicate that the fields prty_gain and prty_keep contain,
respectively, the 8-bit values for the priority to gain and
keep a connection.

On N-CONNECT requests, the calling NS_user can also
specify a lowest acceptable value for priority. The fields
reqlowprtydata, reqlowprtygain, and reqlowprtykeep
can be set to indicate that the fields lowprtydata,
lowprtygain, and lowprtykeep contain, respectively, the
8-bit values for the lowest acceptable priority of data on
connection, to gain a connection, and to keep a connection.

Protection If the protection negotiation parameter is selected, the
protection_type is nonzero and indicates the type of
protection required. In this case the mandatory fields
prot_len and protection contain, respectively, the length
and value for the target protection. On N-CONNECT
requests, the calling NS_user can optionally specify a lowest
acceptable protection. In this case, the fields lowprot_len
and lowprotection contain, respectively, the length and
value for the lowest acceptable protection. Values for
protection_type are listed in Table 2-2.

Use of Expedited Data
If Expedited Data is required/selected, the field
reqexpedited is non- zero. For Connect Indications, a value
of 1 implies that the Expedited Data negotiation facility was
present in the incoming call packet, and that its use was
requested.

Table 2-2 protection_type Values

Value Name Meaning

1 PRT_SRC Source address specific

2 PRT_DST Destination address specific

3 PRT_GLB Globally unique

Quality of Service and X.25 Facilities

11

Note: Negotiation is a CONS procedure. When the facility
is present and indicates non-use, use cannot be negotiated
by Connect Responses. For a description of the use of the
CONS_call field in Connect Requests and Connect
Responses, see the sections “Connect Request/Indication”
and “Connect Response/Confirmation” in Chapter 4.

For incoming or outgoing non-CONS calls (denoted by the
CONS_call flag set to 0), Expedited Data negotiation is not
required—interrupt data is always available in X.25. This
means that this field is ignored on Connect Requests and
Responses for non-CONS calls.

Receipt Acknowledgment Service
If the receipt acknowledgment service is to be used, the field
reqackservice is nonzero. Setting reqackservice to 1
signifies receipt confirmation by the remote DTE. Setting
reqackservice to 2 signifies receipt confirmation by the
remote application.

In the case of receipt confirmation by the remote DTE, no
acknowledgments are expected or given over the X.25
interface. In the case of receipt confirmation by the remote
application, there is a one-to-one correspondence between
D-bit data and acknowledgments, with one data
acknowledgment being received or sent for each D-bit data
packet sent or received over the X.25 interface.

Non-OSI Facilities

Note: The non-OSI facilities are also negotiable by CONS.

For those NLI applications that require them, the non-OSI facilities
supported are as follows:

• Non-OSI extended addressing

• X.25 fast select request/indication with no restriction on response

• X.25 fast select request/indication with restriction on response

• X.25 reverse charging

• X.25 packet size negotiation

12

Chapter 2: Data Structures

• X.25 window size negotiation

• X.25 network user identification

• X.25 recognized private operating agency selection

• X.25 closed user groups

• X.25 call deflection

• X.25 programmable facilities

Facilities and QOS parameters are defined in the following structure:

#define MAX_NUI_LEN 64
#define MAX_RPOA_LEN 8
#define MAX_CUG_LEN 2
#define MAX_FAC_LEN 32
#define MAX_TARIFFS 4
#define MAX_CD_LEN MAX_TARIFFS * 4
#define MAX_SC_LEN MAX_TARIFFS * 8
#define MAX_MU_LEN 16

struct extraformat {
 unsigned char fastselreq;
 unsigned char restrictresponse, reversecharges;
 unsigned char pwoptions;
 unsigned char locpacket, rempacket;
 unsigned char locwsize, remwsize;
 int nsdulimit;
 unsigned char nui_len;
 unsigned char nui_field[MAX_NUI_LEN];
 unsigned char rpoa_len;
 unsigned char rpoa_field[MAX_RPOA_LEN];
 unsigned char cug_type;
 unsigned char cug_field[MAX_CUG_LEN];
 unsigned char reqcharging;
 unsigned char chg_cd_len;
 unsigned char chg_cd_field[MAX_CD_LEN];
 unsigned char chg_sc_len;
 unsigned char chg_sc_field[MAX_SC_LEN];
 unsigned char chg_mu_len;
 unsigned char chg_mu_field[MAX_MU_LEN];
 unsigned char called_add_mod;
 unsigned char call_redirect;
 struct lsapformat called;
 unsigned char call_deflect;

Quality of Service and X.25 Facilities

13

 unsigned char x_fac_len;
 unsigned char cg_fac_len;
 unsigned char cd_fac_len;
 unsigned char fac_field[MAX_FAC_LEN];
};

The fields in this structure are:

Fast Select For non-OSI services like X.29, if the X.25 facility fast select
is to be requested or indicated, the field fastselreq is
nonzero.

Note: For CONS, the use of fast select need not be
requested.

Fast Select with Restricted Response
If the response to a Connect Request or Indication is to be a
Disconnect Indication, the field restrictresponse is nonzero.

Reverse Charging
If reverse charging is requested or indicated for a
connection, the field reversecharges is non-zero.

Note: The configuration mode bit SUB_REVCHARGE—see
the SX.25 Administrator’s Guide—has an impact on whether
reverse charging is indicated, since it is possible to select a
“per subnetwork status” for receipt of reverse charging.

Packet Concatenation, Packet Size, and Window Size Negotiation
The pwoptions field is used to indicate per circuit options.
The field is a bit map interpreted as shown in Table 2-3.

Table 2-3 pwoptions Values

Bit Values Meaning

bit 0 0 Packet size negotiation NOT permitted

1 Packet size negotiation permitted

bit 1 0 Window size negotiation NOT permitted

1 Window size negotiation permitted

bit 2 0 No concatenation limit asserted

1 Assert concatenation limit

14

Chapter 2: Data Structures

The field is defined as follows:

#define NEGOT_PKT 0x01 /* packet size is
 negotiable */
#define NEGOT_WIN 0x02 /* window size is
 negotiable */
#define ASSERT_HWM 0x04 /* assert concatenation
 limit */

This field is used for two reasons:

1. The X.25 software always indicates the values of the
window and packet sizes operating on the virtual
circuit. The field pwoptions for an incoming call
indicates whether these values are negotiable.

2. In Connect Requests and Connect Responses, the NLI
user can set nsdulimit, the limit value for packet
concatenation by the X.25 level, to a value different
from the limit in the subnetwork configuration
database. It is not a negotiable option, so whatever the
user requests is used.

Packet Size If the fields locpacket and rempacket are nonzero,
locpacket contains indicated or negotiated encoded packet
sizes for the direction local-to-remote and rempacket
contains indicated or negotiated encoded packet sizes for
the direction remote-to-local.

Note: Actual packet size is 2 to the power of the value.

#define DEF_X25_PKT 7 /* the standard default
 X.25 packetsize */

Window Size If the fields locwsize and remwsize are nonzero, they
contain indicated or negotiated window sizes for the
directions local-to-remote and remote-to-local, respectively.

#define DEF_X25_WIN 2 /* the standard default
 X.25 windowsize */

Packet Concatenation
If the field nsdulimit is nonzero and the appropriate bit is
set in the pwoptions field described above, the nsdulimit
specified is used as the concatenation limit.

Quality of Service and X.25 Facilities

15

Network User Identification
The network user identification (NUI) is used in Connect
Requests and Responses. It is not available on X.25(80)
networks. If the field nui_len is nonzero, the network user
identification is supplied in nui_field and is of length
nui_len octets.

RPOA Selection
Recognized private operating agency (RPOA), used in
Connect Requests only. If the field rpoa_len is nonzero, the
RPOA DNIC information is supplied in rpoa_field and is of
length rpoa_len semi-octets.

For an X.25(80) network, this is restricted to one RPOA of
length 4 semi-octets. The basic format encoding is used for
the RPOA selected.

For an X.25(84) or X.25(88) network, one or more RPOAs
can be selected. The extended format encoding is used only
if the number of RPOAs selected is greater than 1. The
maximum number of RPOAs selected is restricted to 4.
Valid values for rpoa_len are 0, 4, 8, 12, and 16.

Closed User Groups
This field is used in Connect Requests and Indications only.
If the field cug_type is nonzero, the CUG information is
supplied right-justified in cug_field. Values for cug_type
are:

• CUG—closed user group, up to four semi-octets

• BCUG—bilateral CUG (two members only), four
semi-octets

Note: Incoming CUG facilities are assumed to have been
validated by the network. No further checking is
performed.

16

Chapter 2: Data Structures

Charging Information
If the field reqcharging is nonzero in a Connect Request or
Connect Indication, Call Charging is requested. In a
Disconnect Indication or Disconnect Confirmation, the
following three fields give the lengths of the charging
information:

• chg_cd_len is the length of chg_cd_field—call
duration

• chg_sc_len is the length of chg_sc_field—segment
count

• chg_mu_len is the length of chg_mu_field—monetary
unit

A zero length field means no charging information is
supplied for the relevant charging category.

Called Address Modification
A nonzero called_add_mod field holds the reason for any
address modification.

Call Redirection
A nonzero call_redirect field holds the reason for the call
redirection. The field called supplies the originally-called
DTE address.

Call Deflection
A nonzero call_deflection field holds the reason for the call
deflection. The deflected field in the Disconnect Request
contains the DTE address, and if required, the NSAP
address that the call is to be deflected to.

Programmable X.25 Facilities
This field is used in Connect Requests and Connect
Indications only. Provision is made for the passing of
explicit facility encoded strings for X.25 facilities, and
non-X.25 facilities for calling and called networks.

The fields x_fac_len, cg_fac_len, and cd_fac_len denote
the lengths of the facilities in the field fac_field relating to,
respectively, X.25 facilities, non-X.25 facilities for the calling
network, and non-X.25 facilities for the called network.

Quality of Service and X.25 Facilities

17

If a length field is zero, this denotes that no facilities are
supplied for the corresponding facility category.

Note: The contents of this field, if supplied, are not
validated or acted upon by the code. The X.25 facilities are
inserted at the end of any other X.25 facilities that are passed
in the Connect Request/Indication (for example,
packet/window sizes). If any non-X.25 facilities are
supplied, the appropriate marker is inserted before the
supplied facilities.

This chapter describes the features of
listening.

Listens

Chapter 3

21

Chapter 3

3. Listens

This chapter contains the following sections:

• “Listening for Incoming Calls” on page 21

• “Call User Data Matching” on page 22

• “Address Matching” on page 23

• “Priority” on page 24

The major features of listening are the following:

• Any number of processes can listen simultaneously, subject to resource
constraints imposed by the system administrator. Moreover, any
number of these processes can listen at the same (set of) called
addresses. Note that there are no means of listening for a particular
calling address.

• An application can elect to listen and handle one or more Connect
Indications at a time. The most likely use of this feature is when the
application wants to make use of the next facility.

• An incoming connection may be accepted on a stream other than the
one that received the Connect Indication (the listening stream).

Listening for Incoming Calls

When an application wishes to listen for incoming calls, it must specify the
(called) address(es) and Call User Data (CUD) field values for which it is
prepared to accept calls. The data that does this is passed as part of a Listen
Request.

22

Chapter 3: Listens

The control part of the message is accompanied by a data part containing the
addresses to be registered for incoming calls. The data portion is treated as a
byte stream of CUD and addresses conforming to the following definition:

unsigned char l_cumode;
unsigned char l_culength;
unsigned char l_cubytes [l_culength];
unsigned char l_mode;
unsigned char l_type;
unsigned char l_length;
unsigned char l_add[(l_length+1)>>1];

It is important to note that, depending on both the value of the “mode” bytes
and the lengths, not all fields need to be present. Refer to the individual field
descriptions below for more details.

Call User Data Matching

The fields l_cumode, l_culength, and l_cubytes are used to match the CUD
field of the incoming call, if any, against that specified in the Listen Request.

l_cumode This field defines the type of matching. Three cases are
possible:

• X25_DONTCARE

The listener ignores the CUD—l_culength and
l_cubytes are omitted.

• X25_IDENTITY

The listener match is made only if all bytes of the CUD
field are the same as the supplied l_cubytes.

• X25_STARTSWITH

The listener match is made only if the leading bytes of
the CUD field are the same as the supplied l_cubytes.

The last two are intended to distinguish X.29, for
example, from other higher level protocols.

Address Matching

23

l_culength This is the length of the CUD in octets for an
X25_IDENTITY or X25_STARTSWITH CUD field match. If
l_culength is zero, the l_cubytes are omitted. Currently, the
range for l_culength is zero to 16 inclusive. The application
still has to check the full CUD field.

l_cubytes This is the string of bytes sought in the CUD field when
l_cumode is X25_IDENTITY or X25_STARTSWITH.

Address Matching

The fields l_mode, l_type, l_length and l_add are used to match the address
field(s) of the incoming call against that specified in the Listen Request.

l_mode This field defines the type of matching to be done. Three
cases are possible:

• X25_DONTCARE

The listener ignores the address—l_type, l_length, and
l_add are omitted.

• X25_IDENTITY

The listener match is made only if all semi-octets of the
address are the same as the supplied l_add.

• X25_STARTSWITH

The listener match is made only if the leading
semi-octets of the address are the same as the supplied
l_add.

l_type This is the type of the address entry, and it can have two
values: X25_DTE or X25_NSAP. It denotes the important
addressing quantity. For X.25(84) and X.25(88), for example,
NSAPs (or extended addresses) are the important
addresses, while for X.25(80), where there is no NSAP, the
DTE is the important quantity. Various applications can be
distinguished by X.25 DTE subaddress where necessary.

24

Chapter 3: Listens

On many X.25(84) and X.25(88) networks, it is possible to
listen on either X25_DTE or X25_NSAP addresses. This is
not possible when running X.25(84) or X.25(88) over LLC-2
(Logical Link Control-Class II) on the LAN. In this case, the
DTE address field is NULL and the X25_NSAP field is
used.

l_length This is the length of the address l_add in semi-octets—the
common format for X.25 DTE addresses and NSAPs. If
l_length is zero, then l_add is omitted. The maximum
values for l_length are 15 for X25_DTE and 40 for
X25_NSAP.

l_add This contains the address. l_add is omitted when l_length
is zero.

Priority

The Listen Request queue is ordered in terms of the amount of listen data
supplied. The more a Listen Request asks for, the higher its place in the
queue. Connect Indications are sent to the listener whose listening criteria
are best matched.

Privileged users can ask for a Listen Request to be placed at the front of the
queue, regardless of the amount of listen data supplied. To do this, the Listen
Request should be sent as a M_PCPROTO message. This is achieved by
setting the RS_HIPRI flag in putmsg. Such requests are searched in the order
in which they arrive.

The system administrator controls whether or not listening for incoming
calls is a privileged operation. If listening is privileged, incoming calls will
be sent only on listen streams opened by a user with superuser privilege.
This prevents other users accepting calls that may contain private
information, passwords, and so on.

In systems where privileged and non-privileged listens are allowed:

• Privileged listens have priority.

• A matching but busy privileged listen prevents a search of any
non-privileged listens.

This chapter describes NLI message
primitives and their data structures.

NLI Message Primitives

Chapter 4

27

Chapter 4

4. NLI Message Primitives

This chapter contains the following sections:

• “Connect Request/Indication” on page 29

• “Connect Response/Confirmation” on page 30

• “Data” on page 31

• “Data Acknowledgment” on page 31

• “Expedited Data” on page 32

• “Expedited Data Acknowledgment” on page 33

• “Reset Request/Indication” on page 33

• “Reset Response/Confirmation” on page 34

• “Disconnect Request/Indication” on page 34

• “Disconnect Confirmation” on page 36

• “Abort Indication” on page 36

• “Listen Request/Response” on page 37

• “Listen Cancel Request/Response” on page 38

• “PVC Attach” on page 38

• “PVC Detach” on page 40

28

Chapter 4: NLI Message Primitives

The control part of the messages passed across the NLI has a format defined
by structures in the following C union:

union X25_primitives {
 struct xcallf xcall; /* Connect Request/Indication */
 struct xccnff xccnf; /* Connect Confirm/Response */
 struct xdataf xdata; /* Normal, Q-bit or D-bit data*/
 struct xdatacf xdatac; /* Data ack */
 struct xedataf xedata; /* Expedited data */
 struct xedatacf xedatac; /* Expedited data ack */
 struct xrstf xrst; /* Reset Request/Indication */
 struct xrscf xrscf; /* Reset Confirm/Response */
 struct xdiscf xdisc; /* Disconnect
 Request/Indication */
 struct xdcnff xdcnf; /* Disconnect Confirm */
 struct xabortf abort; /* Abort Indication */
 struct xlistenf xlisten; /* Listen Command/Response */
 struct xcanlisf xcanlis; /* Cancel Command/Response */
 struct pvcattf pvcatt; /* PVC Attach */
 struct pvcdetf pvcdet; /* PVC Detach */
};

The above messages have common fields, which can be accessed by the
following type:

typedef struct xhdrf {
 unsigned char xl_type; /* XL_CTL/XL_DAT */
 unsigned char xl_command; /* Command */
} S_X25_HDR;

The messages to and from the application are classified as control or data,
depending on the value of xl_type, which is either XL_CTL (control) or
XL_DAT (data). Within each classification, the exact message identity is
determined by the xl_command qualifier, and it is important to ensure that
the combination of xl_type and xl_command is consistent. Each of these
cases is described below.

Connect Request/Indication

29

Connect Request/Indication

The control part of a Connect Request or Indication message has a format
defined in the following structure:

struct xcallf {
 unsigned char xl_type; /* Always XL_CTL */
 unsigned char xl_command; /* Always N_CI */
 int conn_id; /* The connection id returned
 in Connect Response or
 Disconnect */
 unsigned char CONS_call; /* When set, indicates a CONS
 call */
 unsigned char negotiate_qos;
 /* When set, negotiate
 facilities etc. or else
 use defaults */
 struct xaddrf calledaddr; /* The called and */
 struct xaddrf callingaddr; /* calling addresses */
 struct qosformat qos; /* Facilities and CONS qos: if
 negotiate_qos is set */
};

This structure is used when calls are requested or indicated across the X.25
interface. The data part of the message contains the Call User Data (CUD), if
any. Other components are:

conn_id For incoming calls, an attempt is made to match the called
address and CUD with that of one of the listening
applications. If a match is found, then the indication is
passed to that application with a conn_id identifier, which
must be returned in the Connect Response or Disconnect
Request to accept or reject the connection.

CONS_call When this field is set in Connect Requests, it indicates that
CONS procedures should be used for the call.

negotiate_qos A nonzero value shows that facilities and quality of service
(QOS) are being negotiated. A zero value for the flag means
the initiator is requesting all default values.

qos This structure holds the facilities requested/indicated. See
the section “Opening a Connection” in Chapter 5 for more
information on QOS negotiation.

30

Chapter 4: NLI Message Primitives

calledaddr Holds the called address.

callingaddr Holds the calling address.

Connect Response/Confirmation

The control part of a Connect Response or Confirmation message is defined
in the following structure:

struct xccnff {
 unsigned char xl_type; /* Always XL_CTL */
 unsigned char xl_command; /* Always N_CC */
 int conn_id; /* The connection id quoted
 on the associated
 indication */
 unsigned char CONS_call; /* When set, indicates CONS
 call */
 unsigned char negotiate_qos;/* When set, negotiate
 facilities etc. else use
 indicated values */
 struct xaddrf responder; /* Responding address */
 struct qosformat rqos; /* Facilities and CONS qos */
 /* if negotiate_qos is set */
};

This structure is used when calls are being accepted. The data part of the
message contains the CUD, if any. The components are:

conn_id The connection identifier conn_id must be returned in the
Connect Response so that the procedures described in the
section “Listening” in Chapter 5 can be guaranteed to
operate properly.

CONS_call When this field is set in Connect Responses, it indicates that
CONS procedures should be used for the call.

negotiate_qos A nonzero value shows that facilities and quality of
service(QOS) are being negotiated. A zero value for the flag
means the initiator is requesting all default values.

responder Holds the responding address.

qos Holds selected facilities and CONS QOS parameters to be
passed to the initiator.

Data

31

Data

The control part of a Data message is defined in the following structure:

struct xdataf {
 unsigned char xl_type; /* Always XL_DAT */
 unsigned char xl_command; /* Always N_Data */
 unsigned char More, /* Set when more data is
 required to complete
 the nsdu */
 setDbit, /* Set when data carries
 X.25 D-bit */
 setQbit; /* Set when data carries
 X.25 Q-bit */
};

This structure is used when data crosses the X.25 interface.

More Shows whether there is more of this network service data
unit to be received or sent.

setQbit Used to request or indicate that the Q-bit is set when user
data is transmitted or received.

setDbit Used to request or indicate that the D-bit is set when user
data is transmitted or received.

The following M_DATA portion contains the user data.

Note: No acknowledgment for this data is given to, or expected from, the
application unless the D-bit is set and application to application receipt
confirmation is being used.

Data Acknowledgment

This following structure is associated with Data Acknowledgment
messages:

struct xdatacf {
 unsigned char xl_type; /* Always XL_DAT */
 unsigned char xl_command; /* Always N_DAck */
};

32

Chapter 4: NLI Message Primitives

This structure is used when an N-DATA-ACK request or an N-DATA-ACK
indication crosses the X.25 interface.

When receipt confirmation from the remote application is active on a virtual
circuit, this structure is used to acknowledge a previous N-DATA
request/indication which had the D-bit set. There is a one to one
correspondence between D-bit data and acknowledgments, with one Data
Acknowledgment being received/sent for each D-bit data packet
sent/received. It is always the oldest outstanding D-bit packet that is being
acknowledged.

For CONS calls, if receipt acknowledgment has been negotiated on the
connection, then the above procedures should apply for any D-bit data sent
or received. However to be compatible with previous releases of the NLI, the
value of the reqackservice field in the qos structure can be set to request that
the D-bit signifies receipt confirmation by the remote DTE only, thus
ensuring no acknowledgment is expected or given.

For non CONS calls, only if the reqackservice field in the qos structure has
been set to the appropriate value will the above procedures apply for any
D-bit data sent or received. Otherwise no acknowledgment is expected or
given.

Expedited Data

The control part of an Expedited Data message has a format defined in the
following structure:

struct xedataf {
 unsigned char xl_type; /* Always XL_DAT */
 unsigned char xl_command; /* Always N_EData */
};

This structure is used when Expedited Data, carried by an X.25 interrupt
packet, crosses the X.25 interface. No parameters are required.

The following M_DATA portion of the message contains the user data. The
Expedited Data is a confirmed primitive and must be acknowledged (see the
next section) before another Expedited Data unit can be requested or
indicated.

Expedited Data Acknowledgment

33

Expedited Data Acknowledgment

The control part of the Expedited Data Acknowledgment message has a
format defined in the following structure:

struct xedatacf {
 unsigned char xl_type; /* Always XL_DAT */
 unsigned char xl_command; /* Always N_EAck */
};

This structure is used when Expedited Data needs to be, or is being,
acknowledged.

No parameters or user data are required.

Reset Request/Indication

The control part of a Reset Request or an Indication message has a format
defined in the following structure:

struct xrstf {
 unsigned char xl_type; /* Always XL_CTL */
 unsigned char xl_command; /* Always N_RI */
 unsigned char originator, /* Originator and Reason
 mapped */
 reason, /* from X.25 cause/diag in
 indications */
 cause, /* X.25 cause byte */
 diag; /* X.25 diagnostic byte */
};

This structure is used when a Reset Request/Indication crosses the X.25
interface. Data is never associated with the primitive.

The X.25 cause and diagnostic bytes, cause and diag, are presented, as well
as the CONS originator and reason codes, which are mapped from these.
For a Reset Request on a non-CONS call, the user can specify a nonzero
cause code. This has no effect for a CONS call; the value is set to zero by the
system.

34

Chapter 4: NLI Message Primitives

Note: A Reset Request primitive is an acknowledged service (see the
associated structure xrscf). A collision between a Reset Indication and a
Reset Request is taken to acknowledge the Reset Request—no Reset
Confirmation is then required.

Reset Response/Confirmation

The control part of a Reset Response or Confirmation message has a format
defined in the following structure:

struct xrscf {
 unsigned char xl_type; /* Always XL_CTL */
 unsigned char xl_command; /* Always N_RC */
};

This structure is used when a Reset Response/Confirmation to a previous
Reset crosses the X.25 interface. There are no parameters or data associated
with the primitive. The comments above on Reset collision also apply here.

Disconnect Request/Indication

The control part of a Disconnect Request or Indication message has a format
defined in the following structure:

struct xdiscf {
 unsigned char xl_type; /* Always XL_CTL */
 unsigned char xl_command; /* Always N_DI */
 unsigned char originator, /* Originator and Reason
 mapped */
 reason, /* from X.25 cause/diag in
 /* indications */
 cause, /* X.25 cause byte */
 diag; /* X.25 diagnostic byte */
 int conn_id; /* The connection id (for
 reject only) */
 unsigned char indicated_qos;/* When set, facilities
 indicated */
 struct xaddrf responder; /* CONS responder address */
 struct xaddrf deflected; /* Deflected address */

Disconnect Request/Indication

35

 struct qosformat qos; /* If indicated_qos is set,
 holds facilities and CONS
 qos */
};

This structure is used when a Disconnect Request/Indication crosses the
X.25 interface. The data part of the message contains the clear user data, if
any.

The X.25 cause and diagnostic bytes, cause and diag, are presented, as well
as the CONS originator and reason codes mapped from these. For a
Disconnect Request on a non-CONS call, the user can specify a nonzero
cause code. This has no effect for a CONS call; the value is set to zero by the
system.

Other parameters are:

indicated_qos A nonzero value shows that facilities and QOS are being
indicated.

responder This field contains the responding address.

deflected This field is used in conjunction with the call_deflect facility
in the qos structure, to convey the address of the remote
DTE that the call is to be deflected to.

qos Contains the facilities indicated. Currently, this is used with
the charging information facility and the call deflection
facility.

The Disconnect Request from an application is confirmed unless it is a
rejection of a previous Connect Indication. When it is not a rejection, the X.25
driver sends a Disconnect Confirmation to the application when the
Disconnect Request is received. This guarantees that, once the Disconnect
Confirmation is observed by the application, no more messages are sent on
this stream. For this reason, after requesting disconnection, the application
should read and discard all messages from the stream until the Disconnect
Confirmation is received.

For call rejection, no “acknowledgment” is sent. However, the application
must supply the connection identifier presented in the Connect Indication so
that the appropriate circuit is cleared.

36

Chapter 4: NLI Message Primitives

In the case of a Disconnect Indication, all messages sent downstream except
connect messages are discarded silently.

Note: A disconnect collision can occur. If it does, the “acknowledgment” can
be taken to be complete.

Disconnect Confirmation

The control part of a Disconnect Confirmation message has a format defined
in the following structure:

struct xdcnff {
 unsigned char xl_type; /* Always XL_CTL */
 unsigned char xl_command; /* Always N_DC */
 unsigned char indicated_qos; /* When set, facilities
 indicated */
 struct qosformat rqos; /* If indicated_qos is set,
 holds facilities and
 CONS qos */
};

This structure is used when a Disconnect Confirmation crosses the X.25
interface. There is no data associated with this primitive. The components of
the structure are:

indicated_qos
A nonzero value shows that facilities and QOS are being
indicated.

rqos Contains the facilities indicated. Currently, this is used only
with the charging information facility.

Abort Indication

The control part of an Abort Indication message has a format defined in the
following structure:

struct xabortf {
 unsigned char xl_type; /* Always XL_CTL */
 unsigned char xl_command; /* Always N_Abort */
};

Listen Request/Response

37

This structure is used when the X.25 driver needs to send a Disconnect
Indication to the application, but there is no resource available in the system
to construct a full Disconnect Indication message. For this reason, this
message should rarely be received.

Note: This message is used only in the upstream direction—never
downstream.

Listen Request/Response

The control part of a Listen Request or Response message has a format
defined in the following structure:

struct xlistenf {
 unsigned char xl_type; /* Always XL_CTL */
 unsigned char xl_command; /* Always N_Xlisten */
 int lmax; /* Maximum number of CI’s at a
 time */
 int l_result; /* Result flag */
};

This structure is used when an NLI application wants to register interest in
incoming calls. The components are:

lmax This is the maximum number of Connect Indications that
the listener is willing to handle at one time. The data part of
the message carries the address(es) in which the listener is
interested (see also Chapter 3, “Listens”).

Note: Listen Requests are cumulative, but the lmax value
(number of simultaneously handled Connect Indications) is
not. This means that several Listen Requests can be made on
a single Stream, in which case the lmax value contained in
the last Listen Request message specifies the number of
simultaneously handled Connect Indications.

l_result The result of the Listen Request is acknowledged upstream
with the same message. An error in the parameters or a lack
of resources to set up the listen results in this flag being set
to a nonzero value.

For more information, see Chapter 3, “Listens.”

38

Chapter 4: NLI Message Primitives

Listen Cancel Request/Response

The control part of a Listen Cancel Request or Response message has a
format defined in the following structure:

struct xcanlisf {
 unsigned char xl_type; /* Always XL_CTL */
 unsigned char xl_command; /* Always N_Xcanlis */
 int c_result; /* Result flag */
};

This structure is used to cancel an interest in incoming calls. Like the Listen
Request message described above, this request is confirmed. In this case, a
nonzero value of the c_result flag indicates failure of the operation to cancel
a Listen Request. For example, the Listen Request was not present or some
connect event is outstanding. Naturally, the closure of a stream on which
there is a Listen Request also cancels the Listen Request, but in the case of the
Listen Cancel Request message, the stream remains open.

Note: The Listen Cancel Request removes all listen addresses from the
stream. There is no way of cancelling a Listen Request on a particular
address; this message is probably used when the use of the stream is about
to be changed by the application.

PVC Attach

The control part of a PVC Attach message has a format defined in the
following structure:

struct pvcattf {
 unsigned char xl_type; /* Always XL_CTL */
 unsigned char xl_command; /* Always N_PVC_ATTACH */
 unsigned short lci; /* Logical channel */
 unsigned long sn_id; /* Subnetwork identifier */
 unsigned char reqackservice; /* Receipt Acknowledgement
 0 for next parameter
 implies use of
 default */

PVC Attach

39

 unsigned char reqnsdulimit;
 int nsdulimit;
 int result_code; /* Nonzero - error */
};

This structure is used when a PVC Attach crosses the X.25 interface.

This message is used when a user wants to “attach” to a PVC. The
components are:

lci Contains the logical channel identifier (LCI) of the required
PVC.

sn_id Denotes the particular subnetwork for the PVC.

reqackservice If nonzero, denotes that the receipt acknowledgment
service is requested by use of the D-bit. Setting
reqackservice to 1 signifies receipt confirmation by the
remote DTE. Setting reqackservice to 2 signifies receipt
confirmation by the remote application.

In the case of receipt confirmation by the remote DTE, no
acknowledgments are expected or given over the X.25
interface. In the case of receipt confirmation by the remote
application, there is a one-to-one correspondence between
D-bit data and acknowledgments, with one data
acknowledgment being received or sent for each D-bit data
packet sent or received over the X.25 interface.

reqnsdulimit If this is non-zero, look at the field nsdulimit.

nsdulimit Specifies the packet concatenation limit for network service
data units (NSDU).

result_code In the attach message sent to the user as acknowledgment,
this field denotes whether or not the attach was successful.

40

Chapter 4: NLI Message Primitives

PVC Detach

The control part of a PVC Detach message has a format defined in the
following structure:

struct pvcdetf {
 unsigned char xl_type; /* Always XL_CTL */
 unsigned char xl_command; /* Always N_PVC_DETACH */
 int reason_code; /* Reports why */
};

This structure is used when a PVC Detach crosses the X.25 interface. This
message is used when a user wants to “detach” from the PVC. This allows
the use of the stream to be changed.

The PVC Detach message is acknowledged to the user by returning a PVC
Detach message, in which the field reason_code denotes whether or not the
PVC Detach was successful.

This message is also used by the X.25 driver to inform the user of some
failure of the PVC. These include link down, remote end not responding, and
so on. When the message is sent by the X.25 driver, the field reason_code
gives the reason for the PVC Detach.

This chapter provides examples of
various operations: opening a
connection, data transfer, closing a
connection, listening, and PVC
operations.

Programming Examples

Chapter 5

43

Chapter 5

5. Programming Examples

This chapter contains the following sections:

• “Using the NLI Conversion Module” on page 44

• “Opening a Connection” on page 46

• “Data Transfer” on page 51

• “Closing a Connection” on page 58

• “Listening” on page 61

• “PVC Operation” on page 68

To perform any of the operations described in this section, the application
must open a stream to the X.25 PLP driver. Once the stream has been
opened, it can be used for initiating, listening for, or accepting a connection.
There is a one-to-one mapping between X.25 virtual circuits and PLP driver
streams. Once a connection has been established on a stream, the stream
cannot be used other than for passing data and protocol messages for that
connection.

Such a stream is opened on /dev/x25, the major device, as follows:

if ((x25_fd = open("/dev/x25", O_RDWR)) < 0)
{
 perror("Opening Stream");
 exit(1);
}

44

Chapter 5: Programming Examples

Using the NLI Conversion Module

IRIS SX.25 provides an “NLI Conversion Module” which allows older NLI
applications to run, without modification, over a new version of the NLI.
This situation might arise in porting an application from another platform
that supports the older NLI version. The module ensures binary
compatibility between applications that utilize an older version of the NLI
than that supported by the current release of IRIS SX.25. Newly developed
applications for IRIS SX.25 have no need for the conversion module.

The IRIS SX.25 conversion module provided for this release, s_nli3, converts
version 3 applications to the future versions of the NLI. An ioctl command,
N_getnliversion, is used to get the current version of the NLI. If the NLI
applications are older than the current network, then the appropriate
conversion module can be directly pushed onto the protocol stack. An
example is given below.

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stream.h>
#include <stropts.h>
#include <sys/snet/uint.h>
#include <sys/snet/x25_proto.h>
#include <sys/snet/ll_proto.h>
#include <sys/snet/x25_control.h>

#define OPENFLAGS O_RDWR

int fd;
struct nliformat versioninfo;
struct strioctl nioctl;

/*
 Open a stream to the device using the flags
 passed to the open routine.
*/
if ((fd = open("/dev/x25", OPENFLAGS)) < 0)
{
 perror("failed to open stream");
 return(-1);
}

Using the NLI Conversion Module

45

/*
 Send an ioctl message requesting the current NLI
 version number.

 If the ioctl fails, then return -1 to fail the open.

 If the ioctl succeeds, then compare the returned version
 number with the library version number. There are 3
 possible cases:

 i) if a value less than the library NLI version
 number is returned then an attempt has been made
 to run an application over an X.25 driver which
 does not support multiple NLI versions.
 ii) if a value equal to the library NLI version number
 is returned then no further action is required.
 iii) otherwise a version conversion is required, so
 push on a module that converts between the
 library NLI version and the X.25 driver version.
*/

versioninfo.version = 0;

nioctl.ic_cmd = N_getnliversion;
nioctl.ic_timout = 0;
nioctl.ic_len = sizeof(struct nliformat);
nioctl.ic_dp = (char *)&versioninfo;

if (ioctl(fd, I_STR, &nioctl) < 0)
{
 perror("N_getnliversion ioctl failed");
 return(-1);
}

if (versioninfo.version < NLI_VERSION)
{
 fprintf(stderr,"X.25 driver is older than application\n”);
 return(-1);
}
else
if (versioninfo.version > NLI_VERSION)
{
 if (ioctl(fd, I_PUSH, "s_nli3") < 0)
 {
 perror("Failed to push conversion module");
 return(-1);
 }
}

46

Chapter 5: Programming Examples

/*
 If neither of the above cases is TRUE then there is no
 need to PUSH the module as the application has the same
 NLI version as the network
*/

return(fd);
}

Also provided is an NLI library, which allows application software to have
access to the X.25 PLP driver without having detailed knowledge of the
operation of the network providers services. The n_open routine ensures
that the correct conversion module is pushed onto the protocol stack.

The n_open routine is used as follows:

if ((x25_fd = n_open("/dev/x25", O_RDWR, NULL)) < 0)
{
 perror("Opening Stream");
 exit(1);
}

The first two parameters are the same as for any STREAMS open routine,
namely the device name and the open flags. The third is the service
argument, which is used to return the service characteristics of the network
provider. This argument should be of the type:

(struct n_info *)

This service facility is currently unsupported. Setting the parameter to
NULL means the parameter is ignored. If the conversion fails, –1 is returned.
Any application using the n_open routine should “link in” the appropriate
NLI library for the release of the NLI they are using.

Opening a Connection

To establish a connection on an open stream, an application must do the
following:

1. Allocate a Connect Request structure.

2. Supply the Connect Request with the quality of service and facilities
parameters.

Opening a Connection

47

3. Set the called (and optionally calling) addresses.

4. Pass the Connect Request down to the X.25 driver.

5. Wait for the connect confirmation or rejection.

The following sections describe the procedures for opening a connection for
a CONS call and for a non-CONS call, respectively.

CONS Calls

The following example opens a connection for a CONS call:

#define FALSE 0
#define TRUE 1

#include <memory.h>
#include <sys/snet/x25_proto.h>

struct xaddrf called =
 { 0, 0, {14, { 0x23, 0x42, 0x31, 0x56, 0x56, 0x56,
 0x56 }}, 0};
 /* Subnetwork "A" (filled in later), no flags,
 DTE = "23423156565656", null NSAP */

struct xcallf conreq;

/* Convert sn_id to internal format */
called.sn_id = snidtox25("A"); /* snidtox25 only fails
 if a NULL string is
 passed to it */
conreq.xl_type = XL_CTL;
conreq.xl_command = N_CI;
conreq.CONS_call = TRUE; /* This is a CONS call */
conreq.negotiate_qos = TRUE; /* Negotiate requested */

memset(&conreq.qos, 0, sizeof(struct qosformat));
conreq.qos.reqexpedited = TRUE; /* Expedited requested */
conreq.qos.xtras.locpacket = 8; /* 256 bytes */
conreq.qos.xtras.rempacket = 8; /* 256 bytes */
memcpy(&conreq.calledaddr, &called, sizeof(struct xaddrf));
memset(&conreq.callingaddr, 0, sizeof(struct xaddrf));

48

Chapter 5: Programming Examples

Note: When negotiate_qos is true (nonzero), setting the fields to zero means
that the connection uses defaults for QOS and facilities. If required, these can
be set to different values, but it is recommended that the whole QOS
structure be zeroed first as shown. This is preferable to setting each field
individually, as it allows for any future additions to this structure. Setting the
calling address to null leaves the network to fill in this value.

The message is then sent on the stream using the putmsg system call, with
any Call User Data (CUD) being passed in the data part of the message:

#define CUDFLEN 4

struct strbuf ctlblk, datblk;
char cudf[CUDFLEN] = { 1, 0, 0, 0 };

ctlblk.len = sizeof(struct xcallf);
ctlblk.buf = (char *) &conreq;
datblk.len = CUDFLEN;
datblk.buf = cudf;

if (putmsg(x25_fd, &ctlblk, &datblk, 0) < 0)
{
 perror("Call putmsg");
 exit(1);
}

At this stage, the application should wait for a response to the call request.
The response may be either a Connect Confirmation or a Disconnect
Indication (rejection) message. (The second #define below may be shown
wrapped; it must be on one line in the source file.)

#define DBUFSIZ 128
#define CBUFSIZ MAX(sizeof(struct xccnff),sizeof(struct
xdiscf))

int getflags = 0;
S_X25_HDR *ind_msg;
char ctlbuf[CBUFSIZ], datbuf[DBUFSIZ];

struct xccnff *ccnf;
struct qosformat qos;

Opening a Connection

49

ctlblk.maxlen = CBUFSIZ;
ctlblk.buf = ctlbuf;
datblk.maxlen = DBUFSIZ;
datblk.buf = datbuf;

for(;;)
{
 if (getmsg(x25_fd, &ctlblk, &datblk, &getflags) < 0)
 {
 perror("Getmsg fail");
 exit(1);
 }
 ind_msg = (S_X25_HDR *) ctlbuf;
 if (ind_msg->xl_type != XL_CTL)
 continue;
 switch (ind_msg->xl_command)
 {
 case N_CC:
 /* Process the Connect Confirmation */
 ccnf = ((struct xccnff *) ind_msg;
 if (ccnf -> negotiate_qos)
 {
 bcopy (&qos, ccuf->qos,
 sizeof (struct qosformat));
 if (qos->reqexpedited)
 printf("Request Expedited set\n");
 else
 printf("Request Expedited not set\n");
 }
 else
 {
 /* indicated values have been accepted */
 }
 return;
 case N_DI:
 perror("Connection rejected");
 exit(1);
 default:
 continue;
 }
}

50

Chapter 5: Programming Examples

In the example, getmsg is used to retrieve the next message from the stream
head. This is done in a loop, until the application receives either a Connect
Confirmation message, indicating successful completion, or a Disconnect
Indication, showing that the connect attempt was rejected.

Note: The facility and QOS values indicated in the Connect Confirmation
are those that are used for the duration of the connection.

It is possible to abort the connect request before a response is received. The
application can do this by sending a Disconnect Request message (see the
section “Closing a Connection” in this chapter). If this is done, the
application should read and discard all messages from the stream until it
receives the disconnect acknowledgment (described in the section
“Disconnect Request/Indication” in this chapter).

After a rejection or connect abort the stream remains open, and can be used,
for example, to make further connection attempts.

Non-CONS Calls

The following example opens a connection for a non-CONS call:

#define FALSE 0
#define TRUE 1

#include <memory.h>
#include <sys/snet/x25_proto.h>

struct xaddrf called =
 { 0, 0, { 14, { 0x23, 0x42, 0x31, 0x56, 0x56, 0x56,
 0x56 }}, 0 };
 /* Subnetwork "A" (filled in later), no flags,
 DTE = "23423156565656", null NSAP */
struct xcallf conreq;

/* Convert sn_id to internal format */
called.sn_id = snidtox25("A");
conreq.xl_type = XL_CTL;
conreq.xl_command = N_CI;
conreq.CONS_call = FALSE; /* This is not a CONS call */
conreq.negotiate_qos = FALSE; /* Just use default */

Data Transfer

51

memset(&conreq.qos, 0, sizeof(struct qosformat));
memcpy(&conreq.calledaddr, &called, sizeof(struct xaddrf));
memset(&conreq.callingaddr, 0, sizeof(struct xaddrf));

Note: When negotiate_qos is true (nonzero), setting the fields to zero means
that the connection uses defaults for QOS and Facilities. If required, these
can be set to different values (see the sections “Quality of Service and X.25
Facilities” in Chapter 2 and “Connect Request/Indication” in Chapter 4 for
more details). However, it is recommended that the whole QOS structure be
zeroed first, as shown. This is preferable to setting each field individually, as
it allows for any future additions to this structure. Setting the calling address
to null leaves the network to fill this value in.

The message is sent on the stream using the putmsg system call, with any
CUD being passed in the data part of the message:

#define CUDFLEN 4

struct strbuf ctlblk, datblk;
char cudf[CUDFLEN] = { 1, 0, 0, 0 };

ctlblk.len = sizeof(struct xcallf);
ctlblk.buf = (char *) &conreq;

datblk.len = CUDFLEN;
datblk.buf = cudf;

if (putmsg(x25_fd, &ctlblk, &datblk, 0) < 0)
{
 perror("Call putmsg");
 exit(1);
}

Data Transfer

In the data transfer phase, access is given to:

• The Q-bit—to support X.29-like services

• The M-bit—to signal packet fragmentation

• The D-bit—to request confirmation of data delivery

• Expedited Data—to support X.29 and CONS

52

Chapter 5: Programming Examples

Normal and Q-bit data is sent and received using the Data (N_Data)
message and may be acknowledged using the Data Acknowledgment
(N_DAck) message. Expedited Data uses the Expedited Data (N_EData)
message, and is acknowledged using the Expedited Data Acknowledgment
(N_EAck) message.

The following sections show examples of code for data transfer.

Sending Data

Once a connection has been successfully opened on a stream, sending a data
packet is straightforward:

#define DBUFSIZ 128

struct xdataf data;
char datbuf[DBUFSIZ];
int retval;

/* Copy data into datbuf[] here */
data.xl_type = XL_DAT;
data.xl_command = N_Data;
data.More = data.setQbit = data.setDbit = FALSE;

ctlblk.len = sizeof(struct xdataf);
ctlblk.buf = (char *) &data;
datblk.len = DBUFSIZ;
datblk.buf = datbuf;

retval = putmsg(x25_fd, &ctlblk, &datblk, 0);

Normally, the call to putmsg is blocked if there are flow control conditions in
the connection, which lead to either a full queue at the stream head, or a lack
of STREAMS resources. Blocking due to a full queue can be avoided if the
stream is opened with the option O_NDELAY flagged. In this case, putmsg
returns immediately, and the failure is signalled by a return value (retval) of
EAGAIN.

This procedure allows the application to carry out other processing (for
example, receiving data) before trying again. The best method to use
depends on the nature of the application.

Data Transfer

53

Receiving Data

In the same way, data reception is straightforward. When data is received
with the D-bit set, action may be required by the application. When the
initial Connect Request is sent, it may request that data confirmation be at
the application-to-application level. If application-to-application
confirmation is agreed upon, then on receiving a packet with the D-bit set,
the application must acknowledge the packet by sending a Data
Acknowledgment message.

This example prints out incoming data as a string, if the Q-bit is not set:

S_X25_HDR *hdrptr;
struct xdataf *dat_msg;
struct xdatacf *dack;

for (;;)
{
 if (getmsg(x25_fd, &ctlblk, &datblk, &getflags) < 0)
 {
 perror("Getmsg fail");
 exit(1);
 }
 hdrptr = (S_X25_HDR *) ctlbuf;
 if (hdrptr->xl_type == XL_CTL)
 {
 /* Deal with protocol message as required -
 see below */
 }
 if (hdrptr->xl_type == XL_DAT)
 {
 dat_msg = (struct xdataf *) ctlbuf;
 switch (dat_msg->xl_command)
 {
 case N_Data:
 if (dat_msg->More)
 printf("M-bit set\n");
 if (dat_msg->setQbit)
 printf("Q-bit set\n");
 else
 {
 if (dat_msg- >setDbit)
 printf("D-bit set\n");
 for (i = 1;i<datblk.len; i++)

54

Chapter 5: Programming Examples

 printf("%c", datbuf[i]);
 /* If application to application Dbit
 confirmation was negotiated
 at call setup time, send an N_DAck */
 if (app_to_app && dat_msg->setDbit)
 {
 dack = (struct xdatacf *)
 malloc(sizeof(struct xdatacf));
 bzero((char *)dack, sizeof(struct
 xdatacf));
 dack->xl_command = N_DAck;
 dack->xl_type = XL_DAT;
 ctlblk->len = sizeof(struct xdatacf);
 ctlblk->buf = (char *)dack;
 datblk->len = 0;
 datblk->buf = (char *)0;
 putmsg(x25_fd, &ctlblk, &datblk,
 &getflags);
 }
 }
 break;
 case N_EData:
 printf("***Expedited data received\n");
 /* Must deal with */
 break;
 case N_DAck:
 printf("***Data Acknowledgement received\n");
 break;
 default:
 break;
 }
 }
}

Expedited Data

The above example allows for the possibility of receiving Expedited Data
messages (which are carried in X.25 interrupt packets). These must be dealt
with appropriately. Since only one Expedited Data packet can be
outstanding in the connection at any time, its sender is prevented from
sending any further such messages until the receiver has acknowledged it. It
does this by sending an Expedited Data Acknowledgment message.

Data Transfer

55

This is sent in much the same way as an ordinary Data packet, but with no
data part. If the application does not need to use the Expedited Data
capability, then other appropriate responses to receiving an Expedited Data
message are to reset or to close the connection (see the sections “Resets” and
“Closing a Connection” in this chapter).

When sending Expedited Data, the application must wait for an
acknowledgment before requesting further expedited transmissions.

#include <sys/snet/x25_proto.h>
#define EXPLEN 4

struct xedataf exp;
char expdata[]= {1, 2, 3, 4};

exp.xl_type = XL_CTL;
exp.xl_command = N_Edata;
ctlblk.len = sizeof (struct xedataf);
ctlblk.buf = (char *) &exp;
datblk.len = EXPLEN;
datblk.buf = expdata;

if (putmsg(x25_fd, &ctlblk, &datblk, 0) < 0)
{
 error("Exp putmsg");
 exit(1);
}
for (;;)
{
 if (getmsg(x25_fd, &ctlblk, &datblk, &getflags) < 0)
 {
 perror("Getmsg fail");
 exit(1);
 }
 hdrptr = (S_X25_HDR *) ctlbuf;
 if (hdrptr->xl_type == XL_CTL)
 {
 /* Deal with protocol message as required */
 }
 if (hdrptr->xl_type == XL_DAT)
 {
 dat_msg = (struct xdataf *) ctlbuf;

56

Chapter 5: Programming Examples

 switch (dat_msg->xl_command)
 {
 case N_Data:
 /* process more data */
 break;
 case N_EData:
 printf("***Expedited data received \n");
 /* Must deal with */
 send N_EAck
 break;
 case N_EAck:
 /* Expedited data received */
 /* Further N_Edata can now be sent */
 break;
 default:
 break;
 }
 }
}

Resets

These can be dealt with in a way similar to the way interrupts are dealt with,
except that there is no data passed with a Reset Request. When a Reset
Request is issued, the application must wait for the acknowledgment, as for
an Expedited Data request. However, until this is received, the only action
that can be taken is to issue a Disconnect Request.

The diagnostic field in a Reset Request should be filled in with the reason for
issuing the reset. Standard values for this are defined in the include file
<sys/snet/x25_proto.h>, although the application can set any value. See
Appendix B, “Error Codes,” for more details.

When a Reset Indication is received, there are only two valid actions that
may be taken:

• Send a Reset Confirmation message to acknowledge the reset.

• Send a Disconnect Request. In this situation, pending data is flushed
from the queue.

Data Transfer

57

Reset Indications can be dealt with as part of the general processing of
incoming messages—see the Disconnect handling example below.

#include <sys/snet/x25_proto.h>

struct xrstf rst;
S_X25_HDR *hdrptr;

rst.xl_type = XL_CTL;
rst.xl_command = N_RI;
rst.cause = 0;
rst.diag = NU_RESYNC;
ctlblk.len = sizeof (struct rstf);
ctlblk.buf = (char *) &rst;

if (putmsg(x25_fd, &ctlblk, 0, 0) < 0)
{
 perror(" putnmsg");
 exit(1);
}
for (;;)
{
 if (getmsg(x25_fd, &ctlblk, &datblk, &getflags) < 0)
 {
 perror("Getmsg fail");
 exit(1);
 }
 hdrptr = (S_X25_HDR *) ctlbuf;
 if (hdrptr->xl_type == XL_CTL)
 {
 continue;
 }
 switch (hdrptr->xl_command)
 {
 case N_RC:
 /* Reset complete */
 /* Enter data transfer */
 break;
 default:
 break;
 }
}

58

Chapter 5: Programming Examples

Control messages like resets and interrupts take higher priority than normal
data messages, both internally in the PLP driver and across the network.

However, it is important to note that the NLI does not use the mechanism for
priority processing of STREAMS messages (by setting the RS_HIPRI flag in
putmsg). There are two reasons for this:

• The stream head can hold only one incoming priority message (the
first). This is inappropriate in certain situations where several of these
messages may follow each other in quick succession. For example, a
Reset may be followed immediately by a Disconnect.

• An outgoing priority message would overtake any data that is queued,
waiting to be sent. It is possible that data could then be sent after the
priority message (for example, a reset), which would lead to an NLI
protocol violation.

Closing a Connection

This section covers remote and local disconnects.

Remote Disconnect

If, during a connection, the remote end initiates a disconnect, then a
Disconnect Indication message is received at the NLI (or possibly an Abort
Indication message—see the section “Abort Indication” in Chapter 4). The
application need not acknowledge this message since, after sending a
Disconnect Indication, the X.25 driver silently discards all messages received
except for connect and accept messages. These are the only meaningful X.25
messages on the stream after disconnection.

The receiver of a Disconnect Indication should ensure that enough room is
available in the getmsg call to receive all parameters and, when present, up
to 128 bytes of clear user data.

Handling such a disconnect event would normally be part of the general
processing of incoming messages.

Closing a Connection

59

The example below could be combined with the code from the data transfer
example shown above.

struct xdiscf *dis_msg;

if (hdrptr->xl_type == XL_CTL)
{
 switch (hdrptr->xl_command)
 {
 /* Other events/indications dealt with
 here - e.g. Reset Indication (N_RI) */
 case N_DI:
 dis_msg = (struct xdiscf *) hdrptr;
 printf("Remote disconnect,
 cause = %x, diagnostic = %x \n",
 dis_msg->cause, dis_msg->diag);
 /* Any other processing needed here -
 e.g. change connection state */
 return;
 case N_Abort:
 printf("***Connection\n");
 /* etc. */
 return;
 default:
 break;
 }
}

Note: It is guaranteed that no X.25 interface messages are sent to the
application once a disconnect message has been passed up to it, wherever
the message came from. That is, it can be a Disconnect Indication or the
“response” described in the section “Local Disconnect” in this chapter).

Although at this stage the stream is idle, it is in an open state and remains so
until some user action. This could be to close the stream, or to initiate a new
Listen or Connect Request on it.

60

Chapter 5: Programming Examples

Local Disconnect

To initiate a disconnect on a connection, the application should send a
Disconnect Request message on the stream. Unless this is being used to reject
an incoming call (see the section “Handling the Connect Indication” in this
chapter), the X.25 driver signals that it has observed the message. It does this
by sending a Disconnect Confirmation upstream when it receives the
Disconnect Request. In this way, the upper components can be certain that
no messages will follow the Disconnect Request.

In the case of rejection, the connection identifier supplied on the Connect
Indication must be returned in the Disconnect Indication message. The
Disconnect Request (reject) is not acknowledged in this case.

As in the case of a remote disconnection, once the response has been received
the stream becomes idle, and remains in this state until the application sends
out another control message. This may be to close the stream, or to initiate a
new Listen or Connect Request on it. The application should, however, not
send any of these messages until it receives the Disconnect Indication.

As described in the section “Disconnect Request/Indication” in Chapter 4, a
disconnect collision may occur. If this happens, no Disconnect Confirmation
is sent.

/* Coded and sent disconnect request, process response */
struct xdiscf *dis_ind;
struct xdcnff *dis_cnf;
struct extraformat *xqos = (struct extraformat *)0;

if (hdrptr->xl_type == XL_CTL)
{
 switch (hdrptr->xl_command)
 {
 /* Disconnect Collision */
 case N_DI:
 dis_ind = (struct xdiscf*) hdrptr;
 xqos = &dis_ind->indicatedqos.xtras;
 break;

Listening

61

 /* Disconnect Confirmation */
 case N_DC:
 dis_cnf = (struct xdcnff*)hdrptr;
 xqos = &dis_cnf->indicatedqos.xtras;
 break;
 default:
 return;
 }
 if (xqos)
 {
 /* Print any charging information returned */
 if (xqos->chg_cd_len)
 {
 /* Print out Call Duration from chg_cd_field */
 }
 if (xqos->chg_mu_len)
 {
 /* Print out Monetary Unit from chg_mu_field */
 }
 if (xqos->chg_sc_len)
 {
 /* Print out Segment Count from chg_sc_field */
 }
 }
}

Listening

For more information on listening, see Chapter 3, “Listens.”

Listening for Incoming Connections

Before an incoming call can be received from the X.25 driver, there must be
at least one listener. Moreover, as mentioned in the section “Priority” in
Chapter 3, listening for incoming connections may be a privileged
operation—that is, the stream must have been opened by a process with
superuser privilege.

62

Chapter 5: Programming Examples

To listen for an incoming connection, the application does the following:

1. Sends a Listen Request message carrying the called address list that the
application is interested in to the X.25 driver (see Chapter 3, “Listens”).
After this, the application waits for the response to the Listen Request.

2. When the Listen Response is received (and the l_result flag indicates
success), wait for Connect Indication messages from the X.25 driver. If
the l_result flag indicates failure, the application can decide either to
close the stream or to try again later.

3. When a Connect Indication is passed up, the application can decide
whether to accept on this or a different stream.

4. At this point, the facilities and QOS are negotiated if required. A
Connect Confirmation message carrying the appropriate connection
identifier is passed down on the stream on which the connection is
being accepted.

Constructing the Listen Message

As described in Chapter 3, “Listens,” the listen message has two parts. The
construction of the control part of the message is straightforward:

struct xlistenf lisreq;

lisreq.xl_type = XL_CTL;
lisreq.xl_command = N_XListen;
lisreq.lmax = 1;

In this example, lmax has the value of 1, indicating that only one Connect
Indication is to be handled at a time.

The data part of the message should be filled with the sequence of bytes that
specifies the CUD string and address(es) which are to be listened for. The
simplest case for this would be to set “Don't Care” values for both the CUD
and address:

int lislen;
char lisbuf[MAXLIS];

lisbuf[0] = X25_DONTCARE; /* l_cumode */
lisbuf[1] = X25_DONTCARE; /* l_mode */
lislen = 2;

Listening

63

Alternatively, to set the CUD to match exactly the (X.29) value defined in the
array cudf[] earlier (0x01000000), and the NSAP to match any sequence
starting “0x80”, “0x00”, the following would be used:

lislen = 0;

lisbuf[lislen++] = X25_IDENTITY; /* l_cumode */
lisbuf[lislen++] = CUDFLEN; /* l_culength */
memcpy(&(lisbuf[lislen]), cudf, CUDFLEN); /* l_cubytes */
lislen += CUDFLEN;
lisbuf[lislen++] = X25_STARTSWITH; /* l_mode */
lisbuf[lislen++] = X25_NSAP; /* l_type */
lisbuf[lislen++] = 4; /* l_length */
lisbuf[lislen++] = 0x80; /* l_add */
lisbuf[lislen++] = 0x00;

Or, to accept any CUD field, with a DTE of “2342315656565”:

#define MY_DTE_LEN 13
#define MY_DTE_OCTETS 7

char my_dte[MY_DTE_OCTETS] =
 {0x23,0x42,0x31,0x56,0x56,0x56,0x50};

lislen = 0;
lisbuf[lislen++] = X25_DONTCARE; /* l_cumode */
lisbuf[lislen++] = X25_IDENTITY; /* l_mode */
lisbuf[lislen++] = X25_DTE; /* l_type */
lisbuf[lislen++] = MY_DTE_LEN; /* l_length */
memcpy(&(lisbuf[lislen]), my_dte, MY_DTE_OCTETS); /* l_add*/
lislen += MY_DTE_OCTETS;

Note: The l_add field uses packed hexadecimal digits and the l_length
value is actually the number of semi-octets, whereas the l_culength field
specifies the length of the l_cubytes field in octets.

Next, send the Listen Request down the open stream:

ctlblk.len = sizeof(struct xlistenf);
ctlblk.buf = (char *) &lisreq;
datblk.len = lislen;
datblk.buf = lisbuf;

64

Chapter 5: Programming Examples

if (putmsg(x25_fd, &ctlblk, &datblk, 0) < 0)
{
 perror("Listen putmsg failure");
 return -1;
}

Finally, wait for the Listen Response—the result flag indicates success or
failure (the second #define below may be shown wrapped; it must be on one
line in the source file):

#define DBUFSIZ 128
#define CBUFSIZ MAX(sizeof(struct
xccnff),sizeof(struct xdiscf))

struct xlistenf *lis_msg;

ctlblk.maxlen = CBUFSIZ; /* See 4.1 above for declarations */
ctlblk.buf = ctlbuf;
datblk.maxlen = DBUFSIZ;
datblk.buf = datbuf;

for (;;)
{
 if (getmsg(x25_fd, &ctlblk, &datblk, &getflags) < 0)
 {
 perror("Listen getmsg failure");
 return -1;
 }
 lis_msg = (struct xlistenf *) ctlbuf;
 if ((lis_msg->xl_type == XL_CTL) &&
 (lis_msg->xl_command == N_XListen))
 if (lis_msg->l_result != 0)
 {
 printf ("Listen command failed\n");
 return -1;
 }
 else
 {
 printf("Listen command succeeded\n");
 return 0;
 }
}

Listening

65

Cancelling a Listen Request can be done in the same way, except that no data
is passed with the request—it simply cancels all successful Listen Requests
that have been made on that stream.

Handling the Connect Indication

Once the listening application has received a Listen Response indicating
success, it should wait for incoming Connect Indications.

When a Connect Indication message arrives, the application should inspect
its parameters—address, CUD, facilities, quality of service, and so on, then
decide whether to accept or reject the connection.

Acceptance

If accepting, it can do so either on the stream the indication arrived on, or on
some other stream. This other stream can be one that is already open and
free, or it can be newly opened.

Whatever method is used for the accept, the identifier conn_id in the
Connect Indication message must be copied into the accept message for
matching by the X.25 driver. If this identifier in the accept message does not
match, a Disconnect Request is sent to the accepting application. This causes
the resource to hang on the stream on which the incoming call was sent,
since the connection is never accepted.

Rejection

The call can be rejected by sending a Disconnect Request message down the
stream on which the Connect Indication arrived. A Connect Indication
cannot be rejected on a different stream. Again, the connection identifier
must be quoted in the message for matching, since there may be several
Connect Indications passed to the listening application. If there is no match
for the rejection, the message is silently discarded.

The rejecting listener can request one of two actions in response to the
disconnect:

• Request immediate disconnect. Set the reason field to
NU_PERMANENT (0xF5).

66

Chapter 5: Programming Examples

• Search for further matching listeners. Set the reason field to any value
except 0xF5.

The following code example shows how to reject an incoming call:

struct xcallf *conind;
struct xdiscf disc_msg;

/* Use getmsg to receive the Connect Indication,
 use conind to point to it */
disc_msg.xl_type = XL_CTL;
disc_msg.xl_command = N_DI;
disc_msg.conind = conind->conind;
disc_msg.cause = cause; /* cause to be returned */
disc_msg.diag = diag; /* diagnostic to be returned */

if (disc_immed) /* no more searches */
 disc_msg.reason = NU_PERMANENT; /* 0xF5 */

/* Send Rejection down stream with putmsg */

Note: The application must not accept a connection on a listening stream
that is capable of handling more than one Connect Indication at one time if
there could subsequently be other Connect Indications to be handled on that
stream. For example, suppose the application issues a Listen Request to
handle three Connect Indications at one time. A Connect Indication is
received and sent to the application on the listen stream. The application
must not accept this connection on the listen stream because there could be
two more Connect Indications that could be sent subsequently.

Negotiation of QOS Parameters

The Connect Indication message passed contains X.25 facility values, and
CONS QOS parameters, if appropriate. The application may want to
negotiate these values. This is done by setting the negotiate_qos flag in the
Connect Response message. The values received should then be copied into
the response, and those facilities and/or parameters (and any related flags)
for which a different value is desired should then be altered (see the section
“Quality of Service and X.25 Facilities” in Chapter 2). It is recommended that
the whole QOS structure be copied from the indication to the response. This
is preferable to copying each field individually, as it allows for any future
additions to this structure.

Listening

67

An example of negotiation is shown below. Here all the values are copied as
indicated, except the packet size, which is negotiated down to 256 if it is
flagged as negotiable, and is greater than 256:

struct xcallf *conind;
struct xccnff conresp;

/* Do a getmsg etc to receive the Connect Indication,
 assign conind to point to it.*/
conresp.xl_type = XL_CTL;
conresp.xl_command = N_CC;
conresp.conn_id = conind->conn_id; /* Connection identifier*/
conresp.CONS_call = TRUE /* This is a CONS call */

memset(&conresp.responder, 0, sizeof(struct xaddrf));
 /* Let network fill in responding addr */
conresp.negotiate_qos = TRUE;
memcpy(&conresp.rqos, &conind->qos,sizeof(struct qosformat));
if (conind->qos.xtras.pwoptions & NEGOT_PKT)
{
 if (conind->qos.xtras.rempacket > 8)
 conresp.rqos.xtras.rempacket = 8; /* 256 = 28 */
 if (conind->qos.xtras.locpacket > 8)
 conresp.rqos.xtras.locpacket = 8; }

/* Set any other values to be negotiated here,
 then send the response down with a putmsg. */

Alternatively, the application may decide to accept (agree with) the
indicated values, in which case the negotiate_qos flag is set to zero.

Reusing the Listen Stream

If a connection is never established on a listening stream (using a matching
accept) then that stream remains listening on the address list supplied. On
the other hand, once an established connection has been disconnected, the
stream does not return to a listening state. Instead, it remains open in an idle
state. If the application needs to listen again, then the listen message must be
re-sent. Rejection does not alter the listening state of the stream.

68

Chapter 5: Programming Examples

PVC Operation

The following subsections describe the procedures necessary for an
application to operate a PVC on the X.25 PLP driver.

Attaching a PVC

To attach a PVC on an open stream, an application must:

1. Allocate a PVC Attach structure.

2. Supply the structure with the appropriate reqackservice and
reqnsdulimit parameters. These parameters are used for the duration
of the connection.

3. Set the appropriate subnetwork and Logical Channel Identifiers.

4. Pass the attach request down to the X.25 driver.

5. Wait for the attach accept or rejection.

For example:

#include <sys/stropts.h>
#include <sys/snet/x25_proto.h>

struct pvcattf attach = {XL_CTL, N_PVC_ATTACH,1,0,0,0,0};
 /* Subnetwork "A" (filled in later), Logical Channel 1
 No request for Receipt Ack or nsdulimit */
struct strbuf ctlblk;

/* Convert sn_id to internal format */
attach.sn_id = snidtox25("A");
ctlblk.len = sizeof(struct pvcattf);
ctlblk.buf = (char *) &attach;

The message is then sent on the stream using the putmsg system call:

if (putmsg(x25_fd, &ctlblk, 0, 0) < 0)
{
 perror("Attach putmsg");
 exit(1);
}

PVC Operation

69

At this stage, the application should wait for a response to the attach. The
response may indicate either a successful attachment or a rejection.

#define DBUFSIZ 128
#define CBUFSIZ sizeof(struct pvcattf)

int getflags;
struct pvcattf *ind_msg;
char ctlbuf[CBUFSIZ], datbuf[DBUFSIZ];

ctlblk.maxlen = CBUFSIZ;
ctlblk.buf = ctlbuf;
datblk.maxlen = DBUFSIZ;
datblk.buf = datbuf;

for (;;)
{
 if (getmsg(x25_fd, &ctlblk, &datblk, &getflags) < 0)
 {
 perror("Getmsg fail");
 exit(1);
 }
 ind_msg = (struct pvcattf *) ctlbuf;
 if (ind_msg->xl_type != XL_CTL)
 continue;
 switch (ind_msg->xl_command)
 {
 case N_PVC_ATTACH:
 switch (ind_msg->result_code)
 {
 case PVC_SUCCESS:
 /* Process the attach */
 return(1);
 case PVC_NOSUCHSUBNET:
 case PVC_CFGERROR:
 case PVC_PARERROR:
 case PVC_BUSY:
 /* Process the reject */
 return(0);
 default:
 printf("Unknown PVC message\n");
 exit(1);
 }
 }
}

70

Chapter 5: Programming Examples

In this example, getmsg is used to retrieve the next message from the stream
head. This is done in a loop, until the attach is either confirmed successful or
rejected. Although the processing of the attach is not shown here, it is
recommended that the application send a Reset Request (see the section
“Reset Request/Indication” in Chapter 4) and wait for the Reset
Confirmation (see the section “Reset Response/Confirmation” in Chapter 4)
before proceeding with the data transfer. The example given in the section
“Resets” in this chapter shows the code used to send a Reset Request and
handle the acknowledgment. This synchronizes the X.25 PLP drivers at each
end of the PVC. The example does not illustrate all possible result_code
cases.

It is possible to abort the Attach Request before a response is received. The
application can do this by sending a PVC Detach message (see the section
“Detaching a PVC” below). If this is done, the application should read and
discard all messages from the stream until it receives the detach
acknowledgment.

After a rejection or an attach abort the stream remains open and can be used,
for example, to make further attach attempts.

PVC Data Transfer

The transfer of data over a permanent virtual circuit is exactly the same, to
the application, as for virtual circuits. See the section “Data Transfer” in this
chapter for a description of the procedures involved.

Detaching a PVC

The procedure used to detach a PVC differs for the remote and local cases,
so these are described separately here.

PVC Operation

71

Remote Detach

If, during a connection, the remote end initiates a detach, then a Reset
Indication (see the section “Reset Request/Indication” in Chapter 4)
message is received at NLI. The application should acknowledge this with a
Reset Response (see the section “Reset Response/Confirmation” in
Chapter 4).

Handling such an event would normally be part of the general processing of
incoming messages.

After sending the Reset Response, the application is still attached to its PVC
and remains so until it initiates a local detach.

Local Detach

To initiate a detach on a connection, the application should send a PVC
Detach message on the stream. The X.25 driver signals that it has observed
the message by sending a PVC Detach upstream. In this way, the upper
component can be certain that no messages follow the PVC Detach.

For example:

struct pvcdetf detach = { XL_CTL, N_PVC_DETACH, 0 };

ctlblk.len = sizeof(struct pvcdetf);
ctlblk.buf = (char *) &detach;

if (putmsg(x25_fd, &ctlblk, 0, 0) < 0)
{
 perror("Detach putmsg");
 exit(1);
}

As is the case for a remote detach, the stream becomes idle once the response
has been received. It enters an open state, in which it remains until the
application commands otherwise. This could be to close the stream, or to
initiate a new PVC Attach on it. The application should, however, wait until
it receives the PVC Detach.

This appendix provides tables of the
NLI Messages and their associated
downstream and upstream X.25
packets.

NLI Messages

Appendix A

75

Appendix A

A. NLI Messages

Table A-1 lists the downstream messages and associated outgoing X.25
packets.

Table A-2 lists the upstream messages and associated incoming X.25 packets.

Table A-1 Downstream Messages and Associated Outgoing X.25 Packets

NLI Message X.25 Packet

N_CI Connect Request

N_CC Connect Response

N_Data Data

N_DAck Data Acknowledgment

N_EData Expedited Data

N_EAck Expedited Data Acknowledgment

N_RI Reset Request

N_RC Reset Response

N_DI Disconnect Request

Table A-2 Upstream Messages and Associated Incoming X.25 Packets

NLI Message X.25 Packet

N_CI Connect Indication

N_CC Connect Confirmation

N_Data Data

N_DAck Data Acknowledgment

76

Appendix A: NLI Messages

Note: The NLI PVC messages PVC Attach and PVC Detach do not have
corresponding X.25 packets.

N_EData Expedited Data

N_EAck Expedited Data Acknowledgment

N_RI Reset Indication

N_RC Reset Confirmation

N_DI Disconnect Indication

N_DC Disconnect Confirmation

Table A-2 (continued) Upstream Messages and Associated Incoming X.25

NLI Message X.25 Packet

This appendix lists the OSI error
codes that can be used by NLI
application programs.

Error Codes

Appendix B

79

Appendix B

B. Error Codes

This section lists the OSI codes defined in <sys/snet/x25_proto.h> that can be
used by NLI application programmers.

Table B-1 lists the originator codes in Disconnect Request/Indication and
Reset Request/Indication messages.

Table B-2 lists the reason codes when the originator is the Network Service
provider in Disconnect Request/Indication messages.

Table B-1 N_RI and N_DI Originator Codes

Originator Code Value

N_USER 1

N_PROVIDER 2

Table B-2 N_DI Reason Codes for Network Service Providers

Reason Code Value

NS_GENERIC 0xE0

NS_DTRANSIENT 0xE1

NS_DPERMANENT 0xE2

NS_TUNSPECIFIED 0xE3

NS_PUNSPECIFIED 0xE4

NS_QOSNATRANSIENT 0xE5

NS_QOSNAPERMANENT 0xE6

NS_NSAPTUNREACHABLE 0xE7

80

Appendix B: Error Codes

Table B-3 lists the reason codes when the originator is the Network Service
user in Disconnect Request/Indication messages.

Table B-4 lists the reason codes when the originator is the Network Service
provider in Reset Request/Indication messages.

NS_NSAPPUNREACHABLE 0xE8

NS_NSAPPUNKNOWN 0xEB

Table B-3 N_DI Reason Codes for Network Users

Reason Code Value

NU_GENERIC 0xF0

NU_DNORMAL 0xF1

NU_DABNORMAL 0xF2

NU_DINCOMPUSERDATA 0xF3

NU_TRANSIENT 0xF4

NU_PERMANENT 0xF5

NU_QOSNATRANSIENT 0xF6

NU_QOSNAPERMANENT 0xF7

NU_INCOMPUSERDATA 0xF8

NU_BADPROTID 0xF9

Table B-4 N_RI Reason Codes for Network Service Providers

Reason Code Value

NS_RUNSPECIFIED 0xE9

NS_RCONGESTION 0xEA

Table B-2 (continued) N_DI Reason Codes for Network Service Providers

Reason Code Value

81

Table B-5 lists the reason codes when the originator is the Network Service
user in Reset Request/Indication messages.

Note: These codes are found in ISO 8208 and are mapped from X.25 cause
and diagnostic codes, as described in ISO 8878.

Table B-5 N_RI Reason Code For Network Service Users

Reason Code Value

NU_RESYNC 0xFA

83

Glossary

CONS

Connection-Oriented Network Service.

CUD

Call User Data. Carried with a Connect Request.

DTE

Data Terminal Equipment. Used in this guide for the X.121 address of the
line connecting the equipment to a packet-switched network.

ISO

International Organization for Standardization.

ISO 8208

Standard for X.25 Packet Level Protocol for Data Terminal Equipment.

ISO 8878

Standard that defines the use of X.25 to provide the OSI connection-mode
network service.

LCI

Logical Channel Identifier.

LLC-2

Logical Link Control-Class II.

LSAP

Link Service Access Point.

84

Glossary

MAC

Medium Access Control. Used in this guide to refer to the physical Ethernet
address.

NLI

Network Layer Interface.

NSAP

Network Service Access Point. An ISO address, a string of 40 hexadecimal
digits or semi-octets.

NSDU

Network Service Data Unit—the unit of data passed across the interface to
the network layer.

NUI

Network User Identification.

Octet

Eight bits, a byte.

OSI

Open Systems Interconnection. The ISO definition of a communications
system providing reliable, data transparent, host-independent
communications service.

PVC

Permanent Virtual Circuit.

PLP

Packet Layer Protocol—X.25 Level III.

QOS

Quality of Service.

RPOA

Recognized Private Operating Agency.

85

Glossary

SAP

Service Access Point.

Semi-Octet

Four bits, one hexadecimal digit.

SNPA

Subnetwork Point of Attachment.

STREAMS

STREAMS is a set of system calls, kernel resources, and utility routines that
create, use and dismantle a stream.

Subnetwork

In this guide, this term refers to the network accessed via a single physical
link or a single Ethernet interface.

TOA/NPI

Type Of Address/Numbering Plan Identification. An address format that
provides increased addressing capacity suitable for communication with
ISDNs.

87

Call User Data. See CUD.
cause field, 33, 35
cd_fac_len field, 16
Charging Information facility, 16, 35, 36
chg_ fields, 16
Closed User Groups, 12, 15
closing a connection, 58
conn_id field, 29, 30, 65
Connect Confirmation

facilities and QOS negotiation, 62
messages, 30, 48, 75
target transit delay, 9

Connect Indication
and Expedited Data, 10
and listening, 21, 24, 62
handling, 65-67
maximum number, 37
messages, 29, 75
rejection, 35
subnetwork, 6

connection
addresses, 5
closing, 58-61
priority, 10

connections
identifiers, 29, 30, 35, 60, 65
listening for, 61-67
opening, 46-51

Connect Request
Call Charging, 16
limit for packet concatenation, 14

A

Abort Indication messages, 36
acceptable field, 9
addresses

called, 5, 16, 21, 30, 47
calling, 5, 21, 30, 47, 48, 51
DTE, 6, 7
format, 6
Logical Channel Identifier, 6, 7
MAC+SAP, 6, 7
matching, 23
modification, 16
options to encode and interpret, 6
responding, 5, 30, 35
type, 23
X.25, 5

aflags field, 6

C

c_result field, 38
call_deflection field, 16
call_redirect field, 16
Call Deflection facility, 12, 16, 35
called_add_mod field, 16
calledaddr field, 30
called field, 16
callingaddr field, 30
call redirection, 16

Index

88

Index

message, 29, 75
Network User Identification, 15
opening a connection, 46
subnetwork, 6
transit delay, 9

Connect Response
connection identifier, 29
messages, 30, 75
packet concatenation, 14
QOS parameters negotiation, 66
transit delay, 9

CONS
CONS_call, 11, 29, 30
Expedited Data, 51
facilities, 7
fast select, 13
negotiation, 11
opening a connection, 47-50
originator and reason codes, 33
quality of service. See quality of service.
reqackservice, 32

CONS_call field, 11, 29, 30
control messages, 28
conversion module, 44
CUD field

constructing the listen message, 62
listening for incoming calls, 21
matching Listen Request, 22

cug_field field, 15
cug_type field, 15
CUG. See Closed User Groups

D

Data Acknowledgment message, 31, 52, 53, 75
Data message, 31, 52, 75

data messages, 28
data structures, 5-17
data transfer phase, 51, 70
D-bit data and acknowledgments, 11, 31, 39, 51, 53
deflected field, 16, 35
diag field, 33, 35
diagnostic bytes, 33, 35, 56, 81
disconnect

collision, 36, 60
local, 60
rejecting calls, 65
remote, 58
See also Disconnect Confirmation, Disconnect

Indication, Disconnect Request.
Disconnect Confirmation

charging information, 16
messages, 36, 60, 76
rejection, 35

Disconnect Indication
closing a connection, 58
example, 48
messages, 16, 34, 76

Disconnect Indication messages, 79, 80
Disconnect Request, 79

and resets, 56
call deflection, 16
local disconnects, 60
messages, 34, 75
reason codes, 80
when QOS is unattainable, 9

DTE
addressing format, 5
address length, 7
call deflection, 16, 35
call redirection, 16
DTE_MAC field, 6
remote receipt confirmation, 11, 39
X25_DTE addresses, 23

89

Index

E

error codes, 79
Expedited Data

acknowledging, 33
data transfer, 54
field in qosformat structure, 10
message, 32, 52, 75, 76
negotiation, 10

Expedited Data Acknowledgment
data transfer, 52
example, 54
messages, 33, 75, 76

extended addresses, 6, 11, 23
extraformat structure, 12

F

fac_field field, 16
facilities

Call Deflection, 12, 16, 35
Closed User Groups, 12, 15
CONS, 7
extended addressing, 11
fast select, 11, 13
Network User Identification, 12, 15
non-OSI procedures, 7, 11
packet size negotiation, 11, 13, 67
programmable, 12, 16
Recognized Private Operating Agency, 12, 15
request and negotiation, 7-17
reverse charging, 11, 13
window size negotiation, 12, 13

fast select facility, 11, 13
fastselreq field, 13

G

getmsg system call, 1, 50, 58, 70

I

include files, 2
incoming calls

address matching, 23
Call User Data matching, 22
cancelling interest, 38
Expedited Data, 11
listening and privileged operation, 24
listening for, 21, 61
pwoptions field, 14
registering interest, 37
rejecting, 60, 66

indicated_qos field, 35, 36
interrupt

control messages, 58
data, 11
packets, 32, 54

IRIS SX.25
documentation, x
Network Layer Interface, 1
NLI Conversion Module, 44
reference (manual) pages, x

L

l_ address fields, 23, 63
l_cu fields, 22
l_result field, 37, 62
lci field, 39

90

Index

listen
accepting calls, 65
address matching, 23
called addresses, 21
Call User Data matching, 22
cancelling an interest, 38
constructing the listen message, 62
for incoming calls, 21
handling the connect indication, 65
listening for incoming calls, 61
major features, 21
maximum number of Connect Indications, 37
negotiating QOS parameters, 66
priority, 24
private information, 24
privileged users, 24
registering interest, 37
rejecting calls, 65
reusing the listen stream, 67
See also Listen Request, Listen Response messages,

Listen Cancel Request messages, Listen Cancel
Response messages.

Listen Cancel Request messages, 38
Listen Cancel Response messages, 38
Listen Request

address matching, 23
Call User Data matching, 22
cancelling, 38, 65
listening for an incoming connection, 62
messages, 37
queue priority, 24

Listen Response messages, 37, 62
lmax field, 37
locminthru field, 9
locpacket field, 14
locthroughput field, 9
locwsize field, 14
Logical Channel Identifier (LCI), 6, 39, 68

lowprot fields, 10
lowprty field, 10
lsap_add field, 7
lsap_len field, 7
lsapformat structure, 7

M

M_DATA portion, 31, 32
maximum acceptable transit delay, 9
M-bit data and acknowledgments, 51
message structure, 1
minimum thoughput class, 9
More field, 31

N

N_Abort. See Abort Indication messages.
N_CC. See Connect Confirmation messages, Connect

Response.
N_CI. See Connect Indication, Connect Request.
N_DAck. See Data Acknowledgment message.
N_Data. See Data message, 31
N_DC. See Disconnect Confirmation.
N_DI. See Disconnect Indication, Disconnect

Request.
N_EAck. See Expedited Data Acknowledgment.
N_EData. See Expedited Data.
N_getnliversion ioctl command, 44
N_PVC_ATTACH. See PVC Attach messages.
N_PVC_DETACH. See PVC Detach messages.
N_RI. See Reset Indication, Reset Request.
N_Xcanlis. See Listen Cancel Request message,

Listen Cancel Response messages.

91

Index

N_XListen. See Listen Request, Listen Response
message.

N-CONNECT requests, 10
negotiate_qos field, 29, 30, 48, 51, 66
Network User Identification facility, 12, 15
non-CONS calls

cause code, 33
negotiation, 11
opening a connection, 50

non-OSI facilities, 11
nsap_len field, 7
NSAP field, 7
nsdulimit field, 14, 39
nui_field field, 15
nui_len field, 15

O

opening a connection, 46
originator field, 33, 35
OSI codes, 79

P

packet size negotiation, 11, 13, 67
PLP driver

and STREAMS, 1
higher priority messages, 58
mapping to X.25 Virtual Circuits, 43
negotiable X.25, 7
NLI library, 46
opening a stream, 43
operating a PVC, 68

priority, 10, 24
privileged users and operations, 24, 61
programmable facilities, 12, 16

protection fields, 10
prty_ fields, 10
putmsg system call, 1, 24, 48, 51, 52, 58, 68
PVC Attach messages, 38, 68, 76
pvcattf structure, 38
PVC Detach messages, 40, 71, 76
pvcdetf structure, 40
pwoptions field, 13

Q

Q-bit data and acknowledgments, 31, 51, 53
qosformat structure, 8
QOS. See quality of service.
qos structure, 29, 30, 35
quality of service

indicated, 35, 36
negotiating, 48, 51, 66
negotiation, 29, 30
parameters, 8, 12
qosformat structure, 8

R

reason_code field, 40
reason field, 33, 35
receipt acknowledgment service, 11, 32, 39
receiving data, 53
Recognized Private Operating Agency, 12, 15
remminthru field, 9
rempacket field, 14
remthroughput field, 9
remwsize field, 14
reqackservice field, 11, 32, 39, 68
reqcharging field, 16

92

Index

reqexpedited field, 10
reqlowprty fields, 10
reqmaxtransitdelay field, 9
reqminthruput field, 9
reqnsdulimit field, 39, 68
reqpriority field, 10
reqprtygain field, 10
reqprtykeep field, 10
reqtclass field, 9
reqtransitdelay field, 9
Reset Confirmation messages, 34, 56, 76
Reset Indication

error codes, 79
example, 56
messages, 33, 76
PVC detach, 71

Reset Request
error codes, 79, 80
example, 70
messages, 33, 75
resets, 56

Reset Response messages, 34, 71, 75
responder field, 30, 35
restrictresponse field, 13
result_code field, 39, 70
reversecharges field, 13
reverse charging facility, 11, 13
rpoa_ fields, 15
RPOA. See Recognized Private Operating Agency
rqos field, 36

S

sending data, 52
setDbit field, 31
setQbit field, 31

sn_id field, 6, 39
Spider Systems, Ltd., 1
STREAMS messages, 1-2, 58
subnetwork identification, 6
system header files, 2

T

target transit delay, 9
throughput class, 9
transitdelay field, 9

U

user data, 29, 30, 31, 32, 35, 48

W

window size negotiation, 12, 13

X

x_fac_len field, 16
X.25

addresses, 5
D-bit data, 11
driver, 1
facilities. See facilities
interrupt data, 11
Packet Layer Protocol (PLP), 1

X25_primitives union, 28
X.29, 7, 13, 22, 51, 63
xabortf structure, 36
xaddrf structure, 6
xcallf structure, 29

93

Index

xcanlisf structure, 38
xccnff structure, 30
xdatacf structure, 31
xdataf structure, 31
xdcnff structure, 36
xdiscf structure, 34
xedatacf structure, 33
xedataf structure, 32
xhdrf typedef, 28
xl_command field, 28
XL_CTL value, 28
XL_DAT value, 28
xl_type field, 28
xlistenf structure, 37
xrscf structure, 34
xrstf structure, 33

We'd Like to Hear From You

As a user of Silicon Graphics documentation, your comments are important
to us. They help us to better understand your needs and to improve the
quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested
topics to comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please include the title and part number of the document you are
commenting on. The part number for this document is
007-2268-002.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your
comments on the postage-paid card for your country, then detach and mail
it. If your country is not listed, either use the international card and apply the
necessary postage or use electronic mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail
message and mail it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of manual pages) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

