
IRIS® ATM API Programmer’s Guide

Document Number 007-2334-002

IRIS® ATM API Programmer’s Guide
Document Number 007-2334-002

CONTRIBUTORS

Written by Irene Kuffel, Carlin Otto, and Thomas Skibo
Illustrated by Carlin Otto
Production by Gloria Ackley
Engineering contributions by Irene Kuffel and Thomas Skibo

© Copyright 1994-1996, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics, the Silicon Graphics logo, CHALLENGE, and IRIS are registered
trademarks and IRIX, GIO Bus, and Onyx are trademarks of Silicon Graphics, Inc.
UNIX is a registered trademark in the United States of America and other countries,
licensed exclusively through X/Open Company, Ltd.

iii

Contents

About This Guide xiii
Acronyms Used in This Guide xiii
Style Conventions xiv
Product Support xv

1. API Specification 1
Features 2
Driver Architecture and Theory of Operations 3
Character Device Interface 6

Include Files 7
open() 7
close() 8
read() 8
write() 9
IRIS ATM API Command Format 13
Managing and Configuring the ATM-0C3c Subsystem 13

IP Support for PVCs 15
Address Resolution for IP-Over-PVCs 15
LLC/SNAP Encapsulation for PVCs 16
IRIS ATM Subsystem Management for IP-Over-PVCs 17

Characteristics of the ATM-OC3c Hardware 19
User-Level Commands 22

atmarp 22
atmconfig 23
ifatmconfig 23
atmstat 23
atmtest 24
sigtest 24

iv

Contents

2. IRIS ATM ioctl() Commands for Permanent VCs 25
Include Files for PVCs 27
Frequently Used Structures 27

The atm_laddr_t Structure 27
PVC Code Sample 29
PVC Commands 30

ATMIOC_CREATEPVC 31
ATMIOC_DELARP 38
ATMIOC_GETARP 40
ATMIOC_GETARPTAB 42
ATMIOC_GETVCTAB 45
ATMIOC_SETARP 48

3. IRIS ATM ioctl() Commands for Switched VCs 51
Include Files for SVCs 52
Overview 53
Frequently Used Structures 58

The atm_address_t Structure 58
The cellrate_t Structure 61
The reject_reason_t Structure 64
The QOS Variables 65
The BLLI Variable 65
The bearerClass Variable 67
The MaxCSDU Variables 67

SVC Code Sample 68
SVC Commands 68

ATMIOC_ACCEPT 69
ATMIOC_ADDPARTY 72
ATMIOC_DROPPARTY 75
ATMIOC_LISTEN 77
ATMIOC_MPSETUP 80
ATMIOC_REGISTER 85
ATMIOC_REJECT 89
ATMIOC_SETUP 91

Contents

v

4. IRIS ATM ioctl() Commands for Use by ILMI Modules 97
Include Files for ILMI Programs 98
ILMI Commands 98

ATMIOC_GETATMLAYERINFO 99
ATMIOC_GETMIBSTATS 102
ATMIOC_GETPORTINFO 104
ATMIOC_GETVCCTABLEINFO 107
ATMIOC_GETATMADDR 112
ATMIOC_SETATMADDR 116

5. IRIS ATM ioctl() Commands for Communicating With the Hardware 119
Include Files for Hardware Calls 120
Hardware Commands 120

ATMIOC_CONTROL 121
ATMIOC_GETCONF 124
ATMIOC_GETIOSTAT 127
ATMIOC_GETMACADDR 130
ATMIOC_GETOPT 131
ATMIOC_GETRATEQ 132
ATMIOC_GETSTAT 135
ATMIOC_SETCONF 147
ATMIOC_SETOPT 150
ATMIOC_SETRATEQ 153

A. Rate Queue Information 157

B. International Alphabet 5 189

C. Cause and Diagnostic Codes 195

Index 203

vii

Figures

Figure 1-1 IRIS ATM Driver Architecture 5
Figure 1-2 Relationship of VCs, File Descriptors, and ATM

Hardware 6
Figure 1-3 ATM Address Resolution Table Entry: the atm_laddr_t

Structure 16
Figure 3-1 Overview of IRIS ATM Software Modules 54
Figure 3-2 Successful Call Setup by Calling User 55
Figure 3-3 Successful Call Setup by Called User 56
Figure 3-4 Successful Call Setup for Multicast SVC 57
Figure 3-5 ATM NSAP Format 59
Figure 4-1 ATM Address: NSAP Format 114
Figure 5-1 Bit Descriptions for Status Fields Within atm_stat_t 142
Figure 5-2 Loopback Options for ATM-OC3c Board 152

ix

Tables

Table 1-1 Configuration Tasks That Must Be Done for Each
ATM-OC3c Board 14

Table 1-2 Configuration Tasks That Must Be Done for Each ATM
Network Interface Servicing IP if atmarp Is Not Running 18

Table 1-3 Default Transmission Rates on ATM-OC3c Queues 21
Table 2-1 Summary of ATM PVC ioctl() Calls 25
Table 2-2 IRIS ATM Local “Hardware” Address: atm_laddr_t 27
Table 2-3 Recommended Values for ATMIOC_CREATEPVC’s

Argument 32
Table 2-4 Supported Values for Traffic Parameters of

ATMIOC_CREATEPVC 33
Table 2-5 Recommended Values for ATMIOC_DELARP’s

Argument 38
Table 2-6 Recommended Values for ATMIOC_GETARP’s

Argument 40
Table 2-7 Recommended Values for ATMIOC_GETARPTAB’s

Argument 42
Table 2-8 Values Retrieved by ATMIOC_GETARPTAB 43
Table 2-9 Flags Retrieved by ATMIOC_GETARPTAB 43
Table 2-10 Recommended Values for ATMIOC_GETVCTAB’s

Argument 45
Table 2-11 Values Retrieved by ATMIOC_GETVCTAB 46
Table 2-12 Recommended Values for ATMIOC_SETARP’s

Argument 48
Table 3-1 Summary of SVC ioctl() Calls 51
Table 3-2 The atm_address_t Structure 58
Table 3-3 Contents for Fields of ATM NSAP 60
Table 3-4 Values for Cellrate Type 61
Table 3-5 The cellrate_t Structure 62

x

Tables

Table 3-6 The reject_reason_t Structure 64
Table 3-7 Values for Location Field In reject_reason_t 64
Table 3-8 Values for QOS Variables 65
Table 3-9 Values for BLLI Variable 66
Table 3-10 Values for bearerClass Variables 67
Table 3-11 Recommended Values for ATMIOC_ACCEPT’s

Argument 70
Table 3-12 Recommended Values for ATMIOC_ADDPARTY’s

Argument 72
Table 3-13 Recommended Values for ATMIOC_DROPPARTY’s

Argument 75
Table 3-14 Values Retrieved by ATMIOC_LISTEN 78
Table 3-15 Recommended Values for ATMIOC_MPSETUP’s

Argument 81
Table 3-16 Recommended Values for ATMIOC_REGISTER’s

Argument 86
Table 3-17 Recommended Values for ATMIOC_REJECT’s

Argument 90
Table 3-18 Recommended Values for ATMIOC_SETUP’s

Argument 92
Table 4-1 Summary of ILMI ioctl() Calls 98
Table 4-2 Values Retrieved by ATMIOC_GETATMLAYERINFO 100
Table 4-3 Values Retrieved by ATMIOC_GETMIBSTATS 103
Table 4-4 Values Retrieved by ATMIOC_GETPORTINFO 105
Table 4-5 Recommended Values for

ATMIOC_GETVCCTABLEINFO’s Argument 107
Table 4-6 Values Retrieved by ATMIOC_GETVCCTABLEINFO 108
Table 4-7 Cellrate Values 109
Table 4-8 Values Retrieved by ATMIOC_GETATMADDR 113
Table 4-9 Recommended Values for ATMIOC_SETATMADDR’s

Argument 116
Table 5-1 Summary of ATM-OC3c ioctl() Calls 119
Table 5-2 Values for ATMIOC_CONTROL’s Argument 122
Table 5-3 Values Retrieved by ATMIOC_GETCONF 124
Table 5-4 Capability Flags for atm_conf_t 126

xi

Table 5-5 Retrieved Values for ATMIOC_GETIOSTAT 128
Table 5-6 Recommended Values for ATMIOC_GETRATEQ’s

Argument 132
Table 5-7 Rate Queue Identification Values 133
Table 5-8 Values Retrieved by ATMIOC_GETSTAT 136
Table 5-9 Bits in as_SONET_status Field 138
Table 5-10 Bits in as_FF_status Field 139
Table 5-11 Bits in as_RF_status Field 140
Table 5-12 Recommended Values for ATMIOC_SETCONF’s

Argument 147
Table 5-13 Recommended Values for ATMIOC_SETOPT’s

Argument 150
Table 5-14 ATM-OC3c Board’s Options 151
Table 5-15 Recommended Values for ATMIOC_SETRATEQ’s

Argument 153
Table 5-16 Rate Queue Identification Numbers 154
Table A-1 Rates Available for Rate Queues on ATM-OC3c Board 157
Table B-1 Binary Values for IA5 Characters 189
Table C-1 ATM UNI Cause Codes 195
Table C-2 SGI Cause Codes 199
Table C-3 ATM UNI Diagnostics 200

xiii

About This Guide

This guide explains the design philosophy and usage for the application
programming interface to IRIS® ATM. The document assumes familiarity
with the UNIX® networking environment and basic programming in the C
language.

Acronyms Used in This Guide

The following acronyms are used throughout this guide:

AAL ATM Adaptation Layer

ARP Address Resolution Protocol

ATM Asynchronous Transfer Mode

BLLI Broadband Low Layer Information

CSPDU AAL Convergence Sublayer Protocol Data Unit

ILMI Interim Local Management Interface

PVC Permanent Virtual Channel

QoS Quality of Service

SVC Switched Virtual Channel

VC Virtual Channel

VCC Virtual Channel Connection

xiv

About This Guide

Style Conventions

This guide uses the following stylistic conventions:

screen display

Indicates system output, such as responses to commands that you see on the
screen. Code samples, screen displays, and file contents also appear in this
font.

user input

Indicates exact text that you must enter at a command line, such as
commands, options, and arguments to commands.

variable
Indicates generic, place-holding variable names. Can indicate a user input
variable, where you must replace the variable with text that you select.

<xx>

Indicates keys on the keyboard that you press; for example, press <Enter>

means press only the key labeled Enter.

physical label
Indicates a label for a piece of hardware (for example, a pin, a wire, a port).
Can also indicate the signal on a wire or pin.

command
Designates command and utility names.

filename
Indicates filenames and filename suffixes.

[]
Encloses optional command arguments.

...
Denotes omitted material or indicates that the preceding optional items may
appear more than once in succession.

Product Support

xv

Product Support

Silicon Graphics®, Inc., provides a comprehensive product support and
maintenance program for its products. If you are in the United States of
America or Canada and would like support for your Silicon
Graphics-supported products, contact the Technical Assistance Center at
1-800-800-4SGI. If you are outside these areas, contact the Silicon Graphics
subsidiary or authorized distributor in your country.

1

Chapter 1

1. API Specification

This document describes the Silicon Graphics® application programming
interface (API) for IRIS ATM boards. This first chapter provides a general
overview of the API and its use. Subsequent chapters contain detailed
descriptions of each API command. The product includes a C-language
coding example for an application that uses the switched virtual channel
API: /usr/lib/atm/examples/sigtest.c.

Each chapter contains the commands relevant for one of the following types
of implementations:

• permanent virtual channels, Chapter 2, “IRIS ATM ioctl() Commands
for Permanent VCs”

• switched virtual channels, Chapter 3, “IRIS ATM ioctl() Commands for
Switched VCs”

• providing information to non-IRIS interim local management interface
(ILMI) modules, Chapter 4, “IRIS ATM ioctl() Commands for Use by
ILMI Modules”

• configuring and controlling the IRIS ATM hardware, Chapter 5, “IRIS
ATM ioctl() Commands for Communicating With the Hardware”

2

Chapter 1: API Specification

Features

IRIS ATM supports the following basic features upon which the IRIS ATM
API is based:

• ATM adaptation layer 5 (AAL5) protocol mapping.

• ATM Signalling (ATM Forum UNI 3.0/3.1).

• Network and address management via ILMI and its ATM management
information database (MIB) for multiple ATM user-network interfaces
(UNIs).

• RFC 1577 compliant (“classical IP”) as well as non-compliant
configurations. Ability to function as address resolution (ATM ARP)
server or client for each IP subnetwork.

The IRIS ATM API supports the following ATM services:

• Permanent Virtual Channels (PVC) for point-to-point, bi-directional or
uni-directional connections with constant bit rate (CBR), variable bit
rate (VBR), or best-effort service. The traffic can be IP (with or without
LLC/SNAP encapsulation) or non-IP.

• Switched Virtual Channels (SVC) for bi-directional point-to-point and
uni-directional point-to-multipoint connections via ATM signalling
with constant bit rate (CBR), variable bit rate (VBR), or best-effort
service. Supports non-IP traffic only, with or without LLC/SNAP
encapsulation. (IP-over-SVC traffic is handled by the IRIS ATM driver
via the standard BSD socket interface.)

• Connections with symmetric or asymmetric bandwidth requirements.

• ATM quality of services (QoS) for classes Unspecified, A, B, and D.

• Strict VCI-based packet multiplexing.

Driver Architecture and Theory of Operations

3

Driver Architecture and Theory of Operations

The services of the IRIS ATM subsystem can be accessed using permanent
virtual channels (PVCs) or switched virtual channels (SVCs), for IP or non-IP
traffic. These four access scenarios are listed below, and are discussed in
more detail in the paragraphs that follow:

• Non-IP traffic over PVCs
The character device interface (IRIS ATM API) allows traffic to be sent
constant bit rate, variable bit rate, or best-effort, as requested.

• IP traffic over PVCs
The character device interface (IRIS ATM API) is used to establish PVCs
(using constant bit rate, variable bit rate, or best-effort, as requested)
and associate them with IP addresses. LLC/SNAP encapsulation is the
default, but can be disabled. The standard BSD socket interface is used
for transmit/receive once the PVC is established. IP-to-VC address
resolution is handled via a lookup table.

• Non-IP traffic over SVCs
The character device interface (IRIS ATM API) allows traffic to be sent
constant bit rate, variable bit rate, or best-effort, as requested.

• IP traffic over SVCs
The standard IRIX BSD socket interface to the IP protocol stack allows
traffic to be sent best-effort over SVCs. LLC/SNAP encapsulation is
done on all packets.1

Note: To use the standard IP socket interface, simply configure the IRIS
ATM software, as described in the IRIS ATM Configuraton Guide. Once
the software is configured, the services of the IRIS ATM subsystem are
available to upper-layer IP applications.

Access to the IRIS ATM subsystem is described below and illustrated in
Figure 1-1:

• Non-IP data through PVCs
Applications that use the character device interface for non-IP traffic
access the ATM subsystem through IRIS ATM ioctl() commands. For
each VC, this interface consists of opening a file descriptor (open()),
using the ATMIOC_CREATEPVC command to create the VC, and then
exchanging data (read(), write(), or writev()).

4

Chapter 1: API Specification

• IP-over-ATM traffic through PVCs
Applications that use the character device interface for IP traffic access
the ATM subsystem through IRIS ATM ioctl() commands. For each VC,
this interface consists of opening a file descriptor (open()), using the
ATMIOC_CREATEPVC command to create the VC with a tag for IP, and the
ATMIOC_SETARP command to create an address resolution mapping.
The atmarp PVC management program that is shipped with IRIS ATM
creates PVCs in this manner. (See “PVC Management by atmarp” on
page 17 for more detail.) When atmarp is running, customer
applications can simply use the BSD socket interface, as described in
the next paragraph.

Once the PVCs are established, the BSD socket interface is used
(socket(), connect(), bind(), accept(), read(), write(), or writev()) to exchange
data. Address resolution is provided by RFC 1577 software that
responds to InverseARP requests and ILMI software, as described in
“Address Resolution for IP-Over-PVCs” on page 15.

• Non-IP data through SVCs
Applications that use the character device interface for non-IP traffic
access the ATM subsystem through IRIS ATM ioctl() commands. For
each VC, this interface consists of opening a file descriptor (open()),
using IRIS ATM ioctl() commands to create the VC (for example,
ATMIOC_SETUP or ATMIOC_REGISTER, ATMIOC_LISTEN, and
ATMIOC_ACCEPT), and then exchanging data (read(), write(), or writev()).

• IP-over-ATM traffic over SVCs through the BSD socket interface
Applications that use the standard IRIX BSD socket interface for the IP
suite of protocols access the services of the IRIS ATM subsystem like
other IRIX network subsystems. This interface consists of standard
functions (for example, socket(), bind(), listen(), connect(), read(), write(),
writev(), and standard, non-ATM ioctl() calls). This interface is not
described in this document. Address resolution is provided by RFC
1577 software that communicates with the subnetwork’s ATM address
resolution server and ILMI software, both of which are included in the
IRIS ATM software.

Note: For more information on the socket interface, see the reference
(man) pages for accept(2), bind(2), connect(2), fcntl(2), getsockname(2),
getsockopt(2), ioctl(2), listen(2), read(2), recv(2), select(2), send(2), socket(2),
socketpair(2), write(2), and writev(2).

Driver Architecture and Theory of Operations

5

Figure 1-1 IRIS ATM Driver Architecture

socket()
bind()
connect()
listen()

read(), write(), writev()

open(/dev/atm#)
close(/dev/atm#)

IP SVCs IP PVCs non−IP SVCs non−IP PVCs

All IRIX IP Applications
(e.g., rcp, ftp, rlogin, telnet,
third−party apps)

Root privileged ATM
Management Applications
(e.g., atmtest, atmconfig,
customer−developed apps)

Customer−developed
IP Applications

Customer−developed
non−IP Applications

TCP UDP

IP & ARP

ICMP

IRIS ATM−OC3c Driver

IRIS IP−over−ATM Driver (Logical Network Interfaces)

BSD socket interface IRIS ATM API

PVC API Commands

SVC API Commands

PVC API Commands

S
V

C
 A

P
I C

om
m

an
ds

P
V

C
 A

P
I C

om
m

an
ds

IRIS ATM
Signalling

IRIS ATM
Signalling

ATM−OC3c Hardware and Firmware

at
m

ar
p

da
em

on
 u

si
ngSVC API Commands

P
V

C
 A

P
I C

om
m

an
ds

6

Chapter 1: API Specification

Character Device Interface

The character device interface for IRIS ATM supports applications (sending
IP or non-IP traffic) that require constant bit rates (CBR), variable bit rates
(VBR), or best-effort service, as well as applications that manage, configure,
or control the ATM subsystem. Through the character device interface,
applications can use any combination of PVCs and SVCs. Standard IP
applications that can tolerate best-effort service are encouraged to use the
IP-over-SVC support that is built into the IRIS ATM driver via IP logical
network interfaces (atm0, atm1, atm2, and so on) and the BSD socket
interface.

The ATM subsystem clones its devices, so there is no implicit binding
between a VC and a minor device (that is, an ATM port). Because of this
design, each hardware device (ATM port) simultaneously supports multiple
VCs. There is, however, a one-to-one binding between each file descriptor
(the cloned device) and its associated VC; that is, each open file descriptor
supports only one VC. These relationships are portrayed in Figure 1-2.

Figure 1-2 Relationship of VCs, File Descriptors, and ATM Hardware

/dev/atm0

VC #1

/dev/atm1

VC #2 Port 0

Port 1

VC #3

VC #5

VC #4

cloned FD #5

cloned FD #3

cloned FD #4

cloned FD #2

cloned FD #1

Character Device Interface

7

Include Files

The following files define structures and constants that must be used with
the ATM character device interface:

• “sys/atm.h”

• “sys/atm_user.h”

• “sys/if_atm.h” (required only for IP-over- PVCs)

open()

When open() is invoked on an IRIS ATM device file, the returned file
descriptor is a “cloned” instantiation (minor device number) for that ATM
board (or port on a multiport board). Each open() function establishes
kernel-level connections to the selected ATM board. There can be multiple
character device interfaces active for each installed ATM card. Each open
device services one virtual channel (VC).

Each ATM card has a set of jumpers that sets its unit number. By standard
convention, the unit number is reflected in the device file name. For
example, an ATM card with jumpers indicating unit 0 has a device file name
of /dev/atm0.

The example below illustrates proper usage where the ATM-OC3c board is
identified as unit 0 (/dev/atm0):

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int fd_atm;
if ((fd_atm = open(“/dev/atm0”, O_RDWR)) < 0) {

perror(“open”);
exit(-1); }

Note: At this point, no VC is created; no read() or write() calls can be made.
To create the desired VC, the ATMIOC_CREATEPVC, ATMIOC_REGISTER, or
ATMIOC_SETUPioctl() call must be used on the returned file descriptor. The
ioctl() calls are described in Chapter 2 and Chapter 3.

8

Chapter 1: API Specification

close()

The close() function tears down the bound VC after all the buffered data for
the VC has been transmitted. The close() results in closing the kernel-level
link (minor device) to the ATM-OC3c board, removing the associated VC
from the ATM subsystem, and freeing the board and driver resources. The
example below illustrates proper usage:

#include <unistd.h>
if (close(fd_atm) < 0) {
perror(“close”); }

read()

The default behavior for read()s on an ATM device is blocking; that is, read()
calls return only after data has been read/made available. However, after
opening an ATM file descriptor, non-blocking can be specified, using the
standard ioctl() FIONBIO. With the default blocking mode, read() calls wait
for data to become available.With the non-blocking mode, read() calls return
with an EAGAIN failure whenever no data is available.

For each ATM read-access interface, it is the responsibility of the application
to perform enough read() calls to consume the data. There is one receive
queue for each VC; each queue is 50 AAL convergence sublayer protocol
data units (CSPDUs) deep. If an application fails to consume incoming data
fast enough and the receive queue in the kernel overflows, PDUs are
dropped.

The examples below illustrate correct usage for large- and small-sized data
in the current implementation.

Character Device Interface

9

Small-Sized Data

For data that occupies less than one page of system memory, the usage
illustrated below is correct:

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include <sys/atm_user.h>
buf = (char*) malloc(size);
retvalue = read(fd_atm, buf, MAX_USER_BYTES_PDU);

Large-Sized Data

For data that is greater than or equal to an operating system page of memory,
it is recommended that page-aligned buffers be used in order to optimize
performance. This optimization is optional. If page-aligned buffers are not
provided, the driver retrieves the data by copying it..

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include <sys/atm_user.h>
buf = (char*) valloc(size);
retvalue = read(fd_atm, buf, MAX_USER_BYTES_PDU);

write()

The default behavior for write()s on an ATM device is blocking. However,
after opening the file descriptor, non-blocking can be specified (using the
standard ioctl() FIONBIO). In the default blocking mode, write()s wait for the
DMA to the board to complete before returning. In non-blocking mode,
write()s return immediately, before the DMA is complete; however, if the
previous DMA is not complete, a non-blocking write() fails and returns the
EAGAIN error.

10

Chapter 1: API Specification

The list below summarizes two methods for transmitting over the
ATM-OC3c subsystem with the ATM character device interface:

1. The write() call, using one buffer of any size and resulting in one or
more AAL convergence sublayer protocol data units (CSPDUs). The
ATM subsystem divides the data into fully filled CSPDUs, and when
necessary, pads the final CSPDU.

2. The writev() call, using 1 to IOV_MAX buffers (iovecs), and resulting in
one or more PDUs (that is, as many PDUs as necessary). The data is
concatenated and divided into PDUs. When necessary, incomplete
PDUs are padded.

The following rules apply to transmissions:

• All buffers must begin on 8-byte boundaries.

• All buffers must be pinned down.

• In the default blocking mode, calls block until the very last byte of data
for the call has DMA’d to the board.

• The buffer (or iovec) size can end at any byte position (odd or even). For
the writev() call, any buffer that is not a multiple of 8 causes the ATM
subsystem to pad out the current CSPDU and transmit it. The data from
the next iovec, if one is present, is placed into a new CSPDU.

• As long as buffers are multiples of 8 bytes, but not of
MAX_USER_BYTES_PDU in size, there is no correlation (none,
whatsoever) between the iovec boundaries and the CSPDU boundaries.
That is, the driver does not force new CSPDUs to start on iovec
boundaries.

Note: If a buffer is not pinned down, an EFAULT error may occur and it
is possible that garbage data will be sent.

Most audio/video applications have one very large buffer (multiple
megabytes) in user virtual address space. By starting the first write() on an
8-byte boundary, and making every write() be a multiple of 8 bytes, all
subsequent writes will automatically be properly aligned.

Character Device Interface

11

General write() Example

The example below demonstrates correct usage:

#include <unistd.h>
#include <stdlib.h>
#include <sys/lock.h>
while (needed) {
buf = (char*) memalign(8, size);/* any size */
mpin (buf, size);
retvalue = write(fd_atm, buf, size);
}

To Send Multiple Buffers of Data

To send a number of buffers of data, use a writev() call, as shown below. This
method can result in many CSPDUs. For best performance, the size of each
of the buffers, except the last one, should be a multiple of 8 bytes. As long as
each buffer size is a multiple of 8, the ATM subsystem concatenates the data,
divides it into chunks that completely fill CSPDUs, and transmits it. When
the ATM subsystem gathers data that is not a multiple of 8, it places that data
into the current CSPDU, pads out the CSPDU and transmits it; the next
buffer, if there is one, is contained in a new CSPDU.

struct iovec iov[IOV_MAX];
for (vec=0; vec<vec_count, vec++) {
iov.iov[vec].iov_base = (caddr_t) memalign(8, size);
iov.iov[vec].iov_len = size;
mpin(iov.iov[vec].iov_base, size);
}
retvalue = writev(fd_atm, iov, vec_count);

12

Chapter 1: API Specification

To Gather Data Into One Packet

A number of buffers can be gathered into a single CSPDU with the writev()
call. The size (length) of each buffer, except the last one, must be a multiple
of 8 bytes, and the total data for all the buffers must be less than or equal to
MAX_USER_BYTES_PDU.

struct iovec iov[IOV_MAX];

for (vec=0; vec < (vec_count), vec++) {
/* size = multiple of 8*/
iov.iov[vec].iov_base = (caddr_t) memalign(8, size);
iov.iov[vec].iov_len = size;
mpin(iov.iov[vec].iov_base, size);
}

/* total size ≤ MAX_USER_BYTES_PDU */
retvalue = writev(fd_atm, iov, vec_count);

To Send One Buffer of Data

To send a single buffer, use the write() call. The ATM subsystem divides the
data into chunks that completely fill CSPDUs, and transmits the CSPDUs. If
the final chunk of data does not completely fill a CSPDU, the ATM
subsystem pads it and transmits it. Amounts of data smaller than
MAX_USER_BYTES_PDU can be written, and the ATM subsystem does all
appropriate padding; however, throughput is adversely affected.

char *buf = memalign(8, size);
mpin (buf, size)
retvalue = write(fd_atm, buf, size);

Character Device Interface

13

IRIS ATM API Command Format

All the IRIS ATM API commands are available through the IRIS character
device interface in the following format:

ioctl(fd_atm, COMMAND, arg);

Managing and Configuring the ATM-0C3c Subsystem

Before an application can use the IRIS ATM API to utilize the services of an
ATM subsystem, one or more control (management) programs must take
care of the tasks listed in Table 1-1. The IRIS ATM driver performs these
tasks at startup, thus making available a default configuration of the
subsystem. For environments using this default configuration, no additional
control program is necessary. For environments requiring a non-default
configuration, a customer-developed control program must reconfigure the
subsystem after the IRIS ATM driver has completed its tasks.

Table 1-1 indicates which ATM ioctl() command is used to carry out each
task. It is not important if one or many programs are created to perform these
tasks; however, the following restrictions apply:

• For any single ATM-OC3c board, each specific task listed in the “Task”
column should be performed by only one control program. Chaos can
occur if a number of programs are doing the same task to the same
board.

• Each task can be performed by a separate control program, or a single
program can do all of them.

• The tasks must be performed in the order shown in the “Task” column.

• A program doing the tasks described in the table may (or may not) also
do user-data transfers.

14

Chapter 1: API Specification

• Each task assumes an open file descriptor (cloned minor device) to the
board it is configuring. The file descriptor can be closed whenever the
program has finished its task(s).

Each application that wants to transfer data through the ATM subsystem
must wait until the control program(s) has completed its tasks, then it must
obtain a file descriptor and create a VC before reading or writing data. When
the data transfer is finished, the application simply closes its file descriptor.
The ATM subsystem tears down the VC, cleans up, and releases resources.

Note: When IP applications are going to use the ATM subsystem, there are
additional management requirements, as described in the section “IP
Support for PVCs.”

a. See “Characteristics of the ATM-OC3c Hardware” for a description of how IRIS ATM configures and manages
transmission rates.

Table 1-1 Configuration Tasks That Must Be Done for Each ATM-OC3c Board

Task
(in order)

Calls Comment More Info

Configure operational modes ATMIOC_GETCONF

ATMIOC_SETCONF

Retrieve the current configuration.

If changes are needed, set new
configuration parameters.

page 124

page 147

Configure one or more rate
queues, if not correcta

ATMIOC_SETRATEQ
ATMIOC_SETRATEQ
ATMIOC_SETRATEQ
ATMIOC_SETRATEQ

rate queue ##
rate queue ##
rate queue ##
rate queue ##

page 153

Monitor status (optional) ATMIOC_GETSTAT

ATMIOC_GETIOSTAT

Retrieve board statistics.
Retrieve driver-internal statistics

page 135

page 127

IP Support for PVCs

15

IP Support for PVCs

This section describes IRIS ATM support for IP-over-ATM using permanent
virtual channels (PVCs).

Address Resolution for IP-Over-PVCs

IRIS ATM address resolution for IP-over-PVC traffic can be thought of as
divided into two parts: IP-to-ATM address resolution and IP-to-VC address
resolution, as described below:

• IP-to-ATM address resolution consists of obtaining (registering) an
ATM address from the adjacent switch or self-assigning this address,
and responding to InverseARP requests in order to verify or provide
the IP address that is mapped to the ATM address. The first process is
handled automatically by ILMI software modules on both the adjacent
switch and the local system, and InverseARP is handled automatically
by RFC 1577 software on both the local system and the other endpoint.

Note: On PVCs, IRIS ATM address resolution software responds to
received InverseARP requests when LLC/SNAP encapsulation is
enabled; however, it does not generate InverseARP requests.

• IP-to-VC address resolution consists of mapping an IP address to a PVC
that is identified by a local “hardware” address made from a VPI/VCI
value and an ATM port identification number. All the mappings are
stored in the kernel-resident ATM address resolution (AR) table. The
atmarp utility (or equivalently the ATMIOC_SETARP command) loads
PVC address resolution information into the AR table. The
ATMIOC_GETARPTAB command retrieves the contents of the table.

The VC address is defined by the atm_laddr_t structure, illustrated in
Figure 1-3. The atm_laddr_t structure fits conveniently into the standard
hardware address, arp_ha structure, of an arpreq .

16

Chapter 1: API Specification

Figure 1-3 ATM Address Resolution Table Entry: the atm_laddr_t Structure

The ATM-specific ioctl() calls that are available for address resolution are
listed below and described in Chapter 2.

• ATMIOC_SETARP (add an entry to the AR table)

• ATMIOC_GETARP (retrieve one entry from the table)

• ATMIOC_DELARP (delete an entry from the AR table)

• ATMIOC_GETARPTAB (retrieve the entire table)

Address resolution and internal routing of IP packets is handled in the
following manner: the ATMIOC_CREATEPVC command with the IP flag set to
ON and the ATMIOC_SETARP command create the links between the IP
interface (if_net) and the PVC that allow incoming and outgoing IP packets
to be routed correctly.

LLC/SNAP Encapsulation for PVCs

Each PVC can be configured to perform or not to perform subnetwork access
protocol encapsulation (802.2 LLC/SNAP) for packets on VCs associated
with an IP logical network interface. When LLC/SNAP encapsulation is
enabled for a VC, the LLC and SNAP headers are attached to every packet
on that VC, thus allowing ATM subsystems to differentiate among upper
layer protocol stacks (for example, IP and ARP). When LLC/SNAP is
enabled on a VC, the IRIS ATM subsystem responds to InverseARP requests.
When LLC/SNAP encapsulation is disabled, IP packets on that VC are not
encapsulated and InverseARP requests are not answered. The default
behavior is to do LLC/SNAP encapsulation.

flags port

vpivci aal

31

word 0

1

bit
0

IP Support for PVCs

17

Configuration of LLC/SNAP encapsulation for each PVC can be done by
either of the following methods:

• edit the IP-to-PVC address resolution table and let the VCs be opened
and configured by the IRIS ATM atmarp utility

• set the configuration for each PVC when it is created with the
ATMIOC_CREATEPVC command

IRIS ATM Subsystem Management for IP-Over-PVCs

Before any IP applications can utilize IP-over-PVC services, one or more
control (management) programs must take care of the tasks listed in
Table 1-2. For most implementations, the default control provided by the
IRIS ATM utility atmarp (which is invoked during startup) is sufficient.

PVC Management by atmarp

During system startup, the /etc/init.d/network.atm script starts the atmarp PVC
management application if the /var/atm/pvc.conf file exists. This
user-configurable file maps IP addresses to local ports and VPI/VCI
addresses. For each entry in the table, atmarp opens a file descriptor for the
indicated port, and makes an ATMIOC_CREATEPVC and an ATMIOC_SETARP

ioctl() call in order to establish a best-effort PVC and associate it with an IP
address. The atmarp utility then goes to sleep, leaving the VCs open and
ready for use. (If the file descriptors were to be closed, the PVCs would be
torn down.) At this point, an IP application that opens a socket to any of the
IP addresses in the table transmits/receives over the associated PVC. If
atmarp is interrupted with a SIGHUP signal (for example, killall -HUP
atmarp) it wakes up, reloads the lookup table from the pvc.conf file, makes
any changes necessary by closing file descriptors (for deleted entries) or
establishing new PVCs (for new entries), then goes back to sleep.

18

Chapter 1: API Specification

PVC Management by a Customer-Developed Application

For implementations that do not wish to use atmarp to manage their PVCs,
the following guidelines should be adhered to when designing the
management application. It is not important if one or many programs are
created to perform these tasks; however the following restrictions apply:

• The tasks must be performed in the order shown in the “Task” column
of Table 1-2.

• Before doing any of the tasks listed in Table 1-2, the tasks in Table 1-1
must be performed, either by another control program or by the same
program doing the tasks listed in Table 1-2.

• The management program doing these tasks may (or may not)
read/write over these VCs.

• The management program must keep the file descriptor open for the
entire duration of the PVC’s use.

Table 1-2 Configuration Tasks That Must Be Done for Each ATM Network
Interface Servicing IP if atmarp Is Not Running

Task
(in order)

Calls Comment More
Info

Open as many file
descriptors for the board
as there will be PVCs.

fd1=open(“/dev/atm0”)
fd2=open(“/dev/atm0”)
fd3=open(“/dev/atm0”)
fd4=open(“/dev/atm0”)
etc.

The control program must keep each file
descriptor open as long as the associated
PVC is being used.

page 7

Create one virtual channel
for each file descriptor.

ATMIOC_CREATEPVC

ATMIOC_CREATEPVC

etc.

Each ioctl() call creates one virtual channel
with a cellrate that is as close as possible to
the requested rate. Tag each VC for IP.

page 31

Manage ATM address
resolution.

ATMIOC_SETARP

ATMIOC_SETARP

etc.

Create an IP-to-VC mapping in the ATM
subsystem’s address resolution table for
each IP endpoint. Each SETARP ioctl() call
creates one entry.

page 48

Tear down a PVC. close(fd#) page 8

Monitor the AR table
(optional).

ATMIOC_GETARPTAB page 42

Characteristics of the ATM-OC3c Hardware

19

When the control program closes a file descriptor, the ATM subsystem
automatically tears down the associated VC, cleans up the address
resolution table, and releases the associated resources.

Each IP application that wants to transfer data through the ATM subsystem
simply does what all IP applications do (socket(), bind(), connect(), accept(),
and so on) before reading or writing data. When the data transfer is finished,
the application closes its socket. The ATM subsystem does not tear down the
VC; only closing the file descriptor tears down the VC.

Characteristics of the ATM-OC3c Hardware

The IRIS ATM-OC3c for CHALLENGE® and Onyx™ board manages
transmission rates with rate queues and divisors. The board has eight rate
queues organized as two banks: a0-a3 and b0-b3. Each queue can support
one peak rate and 63 different sustainable rates. The “a” bank consists of four
high-priority queues that are designed for constant bit rate traffic (CBR and
VBR channels). The other bank contains four low-priority queues and are
only used for best-effort traffic.

High-priority queues are serviced before low-priority ones. As long as there
is data awaiting transfer on any high-priority queue, low-priority data is not
transmitted. This means that, for applications with a constant flow of data,
only queues a0-a3 will ever operate.

During startup, the IRIS ATM driver configures each rate queue, as
explained below:

1. Queues that are mentioned in the /var/atm/atmhw.conf file are configured
to a fixed rate, as specified in the file. The IRIS ATM driver never
changes the rates for these queues; this ensures that site-specified rates
are always available, even when the queues are not actively being used.
Appendix A lists the supported rates, which range from 0 to
135,991,460 bits per second.

2. Queues that are not mentioned (or are commented out) in the file are
left unconfigured. The driver configures these during operation.

20

Chapter 1: API Specification

During operation, as VCs are created, the driver associates each newly
created VC with the queue whose transmission rate best matches the peak
rate requested for that VC. For each ATMIOC_CREATEPVC or ATMIOC_SETUP

command, the driver looks for a queue whose transmission rate best
matches the rate requested in the API call, following the guidelines
explained below:

1. For VCs carrying best-effort traffic, the driver uses the low-priority
queue whose rate is closest to, but slower than, the requested peak rate.

2. For VCs carrying CBR and VBR traffic, the driver uses the high-priority
queue whose configured rate exactly matches the requested peak rate.
If the requested rate does not exist, the driver searches for a
high-priority queue with the following characteristics and reconfigures
it to the requested peak rate:

• a queue that does not currently have a VC associated with it

• a queue that was not configured from the atmhw.conf file during
startup

Note: There can be dozens of CBR and VBR virtual channels active on a
board, but the peak rate for each one must be one of the four rates that
are configured on the high-priority queues.

To set the sustainable transmission rate for a particular VC, one of the
board’s configured rates is divided by a divisor (ranging between 1 and 64).
The IRIS ATM driver sets all divisors. Peak rates for CBR, VBR, or best-effort
traffic use divisors of 1. Sustainable (average) rates for VBR traffic use
divisors from 2 through 64 (inclusive).

To summarize, the IRIS ATM-OC3c board simultaneously makes available
for selection up to 8 different peak rates and up to 504 (8x63) sustainable
rates. Not all of these available selections can be actively used
simultaneously, since this exceeds the board’s bandwidth.

Characteristics of the ATM-OC3c Hardware

21

Table 1-3 summarizes the default settings configured for the IRIS ATM-OC3c
board’s rates.

A board is oversubscribed when the sum of all the open VCs multiplied by
their average transmission rates is greater than the board’s total payload
bandwidth.1 The IRIS ATM software contains a number of features that
prevent performance degradation due to oversubscription. Whenever there
is even one VC open for a CBR traffic contract, the IRIS ATM software refuses
to create new VCs once the board’s total payload bandwidth is allocated to
open VCs (including best-effort)2. If all the VCs on a board are best-effort
(regardless of which queues they are using), the IRIS ATM software allows
the board to become oversubscribed and handles the transmission in the best
manner possible.

a. CBR = constant bit rate; VBR = variable bit rate; BE = best-effort

1 When a VC does not specify a sustainable rate, the average rate that is used for this
calculation is the peak rate.

2 Total OC3 bandwidth is 155.52 megabits per second; however, of this, only 135,991,460
is available for user data, and is referred to as the payload bandwidth.

Table 1-3 Default Transmission Rates on ATM-OC3c Queues

Rate Queue Default Cellrate Default Bit Rate Priority / Use

Number
Id

String
Id

(in ATM cells per
second)

(in user payload
bits per second)

0 a0 unconfigured none High / CBR, VBRa

1 a1 unconfigured none High / CBR, VBR

2 a2 unconfigured none High / CBR, VBR

3 a3 unconfigured none High / CBR, VBR

4 b0 26041 10000000 Low / BE

5 b1 78125 30000000 Low / BE

6 b2 178571 68000000 Low / BE

7 b3 357142 135991460 Low / BE

22

Chapter 1: API Specification

Note: The default TCP/IP configuration uses the maximum bandwidth for
any connection. Therefore, a single TCP/IP connection can oversubscribe
the port it uses and prevent CBR traffic. To prevent this, there are two
options: (1) reduce the default TCP/IP bandwidth (for example, by editing
the /var/atm/ifatm.conf file) or (2) use ifconfig to disable the TCP/IP logical
network interfaces.

User-Level Commands

The IRIS ATM software includes utilities in the /usr/etc directory (atmarp,
atmconfig, ifatmconfig, atmstat, and atmtest) and the /usr/lib/atm/bin directory
(sigtest). Each utility is briefly described below. Complete details are
provided in the online reference (man) pages.

atmarp

The atmarp utility provides command-level support for displaying and
reloading the IP-to-ATM address resolution table. Also, it operates as an
IP-to-PVC address resolution daemon, managing the mappings between
VCs, ATM hardware, and ATM logical network interfaces.

Note: The /etc/init.d/network.atm IP startup script invokes this utility during
each system startup or each invocation of the script. The command loads the
contents of the /var/atm/pvc.conf IP-to-VC address mapping file into the
kernel-resident address resolution table, maintains the file, and responds to
address resolution requests.

User-Level Commands

23

atmconfig

The atmconfig utility provides command-level support for on-the-fly
configuring and controlling of the ATM hardware:

• configuring the state of ATM boards: UP/DOWN

• configuring transmission rates on rate queues

• configuring the size and the number of board transmit and receive
buffers: both large and small

• burning firmware into FLASH EEPROM

• resetting and reinitializing the board

ifatmconfig

The ifatmconfig utility provides command-level support for setting RFC 1577
Logical IP Subnetwork (LIS) parameters, such as the ATM address
resolution server, the time out for inactive VCs, the maximum cellrate to use
for the VCs, and the ATM physical port to use for each LIS. Each ATM LIS
appears as a logical network interface that can be given an IP address and
enabled/disabled with ifconfig just like other conventional network devices.

Note: The IRIS ATM startup script (/etc/init.d/atm) invokes this utility during
each system startup or each invocation of the script, telling it to read the
/var/atm/ifatm.conf LIS configuration file for settings of these parameters.

atmstat

The atmstat utility provides command-level support for monitoring the
status and operational statistics of ATM interfaces and ATM-OC3c boards.

24

Chapter 1: API Specification

atmtest

The atmtest utility provides command-level support for testing data
transmission over the ATM subsystem when it is physically looped back
(that is, an ATM-OC3c output is connected to an ATM-OC3c input).
Command line options allow you to control parameters such as the length of
the randomly generated data and the speed at which it is sent.

sigtest

The sigtest utility provides command-level support for testing data
transmission and reception for switched virtual channels. The program
allows you to create the following types of connections:

• A point-to-point loopback connection through the switch: a
transmitting VCC to the switch that feeds into a receiving VCC from the
switch. The transmitter and receiver are two instances of sigtest running
on the same system.

• A point-to-point connection between two different systems that are
both running sigtest.

• A point-to-multipoint connection in which the members of the party
(the receivers) can include any combination of the following: one
receiving sigtest session on the same system that is setting up the call
and one receiving sigtest session on each remote system.

25

Chapter 2

2. IRIS ATM ioctl() Commands for Permanent VCs

This chapter summarizes the IRIS ATM application interface calls that
support permanent virtual channels (PVCs). These commands are described
alphabetically in the subsections that follow, and are summarized in
Table 2-1.

Note: The IRIS ATM atmarp utility handles IP-to-VC address resolution for
PVCs that carry IP traffic. When atmarp is running, the commands in
Table 2-1 under the heading “Address Resolution for IP-over-ATM When
atmarp is Not Running” do not need to be used. These commands are
provided for management implementations that do not wish to utilize the
atmarp utility. See the atmarp reference (man) page for further details.

Table 2-1 Summary of ATM PVC ioctl() Calls

Type of Operation Command
(or function)

Brd
State

Description More Info

Getting a link to the

ATM-subsystem

open() all Opens a file descriptor for a cloned
device. Must be held open as long as the
bound VC is active.

page 7

Tearing down a VC close() all Closing the file descriptor causes the VC
to be torn down and all resources
released.

page 8

Managing transmission
rates on the OC3c board

ATMIOC_SETRATEQ up/dn Sets rate for one of the 8 rate queues. page 153

ATMIOC_GETRATEQ up Reads rate for the indicated rate queue. page 132

Managing PVCs

ATMIOC_CREATEPVCup Binds one pair of virtual path/ virtual
channel identifiers to a cloned file
descriptor.

page 31

26

Chapter 2: IRIS ATM ioctl() Commands for Permanent VCs

ATMIOC_GETVCTAB up Retrieves entire virtual channel table. page 45

Address resolution for
IP-over-ATM

ATMIOC_GETARPTABup/dn Retrieves the entire IP-to-ATM address
resolution table.

page 42

ATMIOC_GETARP up/dn Retrieves one entry from the ATM
address resolution table.

page 40

Address resolution for
IP-over-ATM when
atmarp is not running

ATMIOC_SETARP up/dn Sets a static entry in IP-to-ATM address
resolution table. AR table maps IP
addresses to atm_laddr_t structures.

page 48

ATMIOC_DELARP up/dn Deletes one entry from IP-to-ATM AR
table.

page 38

Managing data

write() up Pinned down, 8-byte aligned buffer of
any size. If necessary, ATM subsystem
divides data into different packets for
transmission.

page 9

writev() up Gathers data from a number of buffers
for transmission as one or more packets.

page 9

read() up Retrieves incoming data. page 8

Table 2-1 (continued) Summary of ATM PVC ioctl() Calls

Type of Operation Command
(or function)

Brd
State

Description More Info

Include Files for PVCs

27

Include Files for PVCs

The following files must be included in any program using the ATM-specific
ioctl() calls:

• “sys/atm.h”

• “sys/atm_user.h”

• “sys/if_atm.h” (only for applications doing IP-over-ATM)

Frequently Used Structures

Some structures are used as arguments for many of the ATM-specific ioctl()
calls. For reference, these frequently used structures are described below.

The atm_laddr_t Structure

The atm_laddr_t structure is the ATM subsystem’s local “hardware
address” used for IP-to-VC address resolution (that is, the IRIS ATM “ARP”
for PVCs) commands. For IP-over-PVCs, the structure is used within the
standard arpreq structure. Table 2-2 and the following paragraphs
describe the atm_laddr_t structure and its usage.

Table 2-2 IRIS ATM Local “Hardware” Address: atm_laddr_t

Field of
atm_laddr_t

Recommended
Value

Comments

port 0 - 11 Board’s unit number. The unit number can be
determined with the /sbin/hinv command. The
value must be less than ATM_MAXBD.

flags none Used internally by IRIS ATM software.

aal AALTYPE_5 Currently, only AAL5 is supported.

vpi 0 - 255 (decimal) Virtual path identifier.

vci 0 - 65535
(decimal)

Virtual channel identifier. The VPI/VCI
combination must be currently unused (available)
both locally and on the switch.

28

Chapter 2: IRIS ATM ioctl() Commands for Permanent VCs

From the if_arp.h file:

struct arpreq {
struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardware address */

/* for ATM = atm_laddr_t*/
int arp_flags;

};

From the socket.h file:

struct sockaddr {
u_short sa_family; /* address family */
char sa_data[14]; /* up to 14 bytes of direct address */

};

From the atm_user.h file:

typedef struct atm_laddr {
u_char port; /* local port number; brd’s unit nmbr*/
u_char flags; /* flags - local use only */
u_char aal; /* aal type - local use only */
u_char vpi; /* remote VPI */
u_short vci; /* remote VCI */

} atm_laddr_t;

From the atm_b2h.h file (included in the atm_user.h file), values for the aal
field of atm_laddr_t :

#define AALTYPE_34 0
#define AALTYPE_5 1
#define AALTYPE_CBR 6
#define AALTYPE_RAW 7

PVC Code Sample

29

PVC Code Sample

This section provides a simple code example showing creation, use and tear
down of one PVC.

/* open a file descriptor */
fd = open(“/dev/atm0”, rw);

if (fd < 0)
perror(“couldn’t open device”),exit(1);

/* define the VC’s parameters */
vpi = <your value>
vci = <your value>
xmitMaxCSDU = <your value>
recvMaxCSDU = <your value>
cellrate_type = <your value>
cellrate_peak_rate = <your bits-per-second/384>
cellrate_sustainable_rate = <your bits-per-second/384>
cellrate_maxburst_size = <your value>

/* prepare the argument for ATMIOC_CREATEPVC with VC’s */
/* parameters */
atm_createpvc_t pvcreq;
bzero(&pvcreq, sizeof(pvcreq));

pvcreq.vpi = vpi;
pvcreq.vci = vci;
pvcreq.xmitMaxCSDU = xmitMaxCSDU;
pvcreq.recvMaxCSDU = recvMaxCSDU;
pvcreq.xmitcellrate.cellrate_type = cellrate_type;

/* then one of these two sets, */
/* depending on which type was used */
/* this for CRT_PEAK_AGG or CRT_BEST_EFFORT */
pvcreq.xmitcellrate.rate.pcr_01.pcr01 = cellrate_peak_rate;

/* or this set for CRT_PSB_AGG */
pvcreq.xmitcellrate.rate.psb_01.pcr01 = cellrate_peak_rate;
pvcreq.xmitcellrate.rate.psb_01.scr01 = cellrate_sustainable.rate;
pvcreq.xmitcellrate.rate.psb_01.mbs01 = cellrate_maxburst_size;

30

Chapter 2: IRIS ATM ioctl() Commands for Permanent VCs

/* create the VC */
if (ioctl(fd, ATMIOC_CREATEPVC, &pvcreq) < 0)

perror(“couldn’t ATMIOC_CREATEPVC”),exit(

/* the VC can now be written and read
write(fd, obuf, length); #follow the guidelines in Chapter 1
read(fd, ibuf, length); #follow the guidelines in Chapter 1

/* to tear down the VC */
error = close(fd, rw);

if (error != 0)
perror(“couldn’t close device”),exit(1);

PVC Commands

This section describes each ATM PVC ioctl() command in detail. The
commands are organized alphabetically.

PVC Commands

31

ATMIOC_CREATEPVC

The ATMIOC_CREATEPVCioctl() command creates a permanent virtual
channel. A successful call binds an open (cloned) file descriptor to one (a
read-only or write-only) or two (a read and a write) virtual channel
connections (VCCs), creates entries in the appropriate VC tables, and
allocates board resources. Each VCC is identified by a VC address: virtual
path identifier (VPI) and virtual channel identifier (VCI). The call creates a
single VCC when the open file descriptor is read-only or write-only; it
creates two VCCs (one forward and one back, using the same VC address for
each) when the file descriptor is read and write. Only one
ATMIOC_CREATEPVC can be called for each open (cloned) file descriptor. Only
one PVC is allowed for each VPI/VCI pair. The software prevents creation
of a second VCC to the same VPI/VCI pair.

Creating a PVC for a readable file descriptor causes the ATM subsystem to
send all incoming PDUs (received on the incoming VCC) up to the
application. Received PDUs are buffered in the kernel in per-VC queues.
Cells received for a VPI/VCI address that has not been created are discarded
by the ATM subsystem.

The board must be in the UP state.

Note: To tear down the VC, simply close the file descriptor. The IRIS ATM
subsystem tears down the VC, releases resources, and cleans up.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_CREATEPVC, & createpvc);

wherecreatepvc is an atm_createpvc_t structure.

32

Chapter 2: IRIS ATM ioctl() Commands for Permanent VCs

Argument Values

The pointer to createpvc identifies an instance of an atm_createpvc_t

structure that is set up as shown in Table 2-3.

a. VPI/VCI values 0/0-32 are reserved by the ATM standards for use by ATM signalling and
ILMI modules.

Table 2-3 Recommended Values for ATMIOC_CREATEPVC’s Argument

Field of
atm_createpvc_t

Recommended
Value

Comments

vpi 0 - 0xFF Virtual path identifier. Value must match
the one used by the switch for this VC and,
if servicing IP traffic, the one used in any
local IP-to-VC address mapping file.

vci 0 - 0xFFFF Virtual channel identifier. Value must
match the one used by the switch for this
VC.a

xmitMaxCSDU up to 0x2FF8 Maximum size for user-level packets
(PDUs). Value cannot be 0 or larger than
MAX_CS_PDU, and must be divisible by 8.

recvMaxCSDU up to 0x2FF8 Maximum size for user-level packets
(PDUs). Value cannot be 0 or larger than
MAX_CS_PDU, and must be divisible by 8.

flags as desired 0 = no flags; default functionality, or one or
more of the following flags:

ATMPVCFL_IP = the VC is servicing an IP
logical network interface. If this flag is set,
the command ATMIOC_SETARP must be
used to bind this VPI/VCI to an IP address.

ATMPVCFL_NOSNAP = do not attach
802.2 LLC/SNAP encapsulation on the
packets on this VC.

xmitcellrate cellrate_t
Upon return =out value

Set up as described in Table 2-4.
Out value: actual value for the VC.

PVC Commands

33

The cellrate_t structure defines the traffic parameters for the PVC. The
supported values are described in Table 2-4 where CR stands for cellrate
expressed in cells per second. The specified peak cellrate must match one of
the rates on the board’s transmission rate queues. See “Characteristics of the
ATM-OC3c Hardware” in Chapter 1 for a description of the transmission
rate queues and how they are configured.

Table 2-4 Supported Values for Traffic Parameters of ATMIOC_CREATEPVC

Fields of cellrate_t
Structure

Possible Values Description

cellrate_type: CRT_NULL Zero bandwidth.

CRT_PEAK_AGG Aggregate peak CR for CLP0+1. CBR
traffic.

CRT_PSB_AGG Aggregate peak CR, sustainable CR,
and burst size for CLP 0+1. VBR
traffic.

CRT_BEST_EFFORT Peak CR for CLP0+1 with best-effort
indication.

CRT_PEAK Not supported in this release. Peak
CRsa for CLP0 and CLP0+1.

CRT_PEAK_TAG Not supported in this release. Same
as above with tagging requested.

CRT_PSB Not supported in this release. Peak
CR for CLP0+1, sustainable CR for
CLP0, burst size for CLP0.

CRT_PSB_TAG Not supported in this release. Same
as above with tagging requested.

rate:

for type
CRT_PEAK_AGG

struct pcr_01:

pcr01 Peak CR for CLP 0+1. If all
high-priority rate queues are in use,
this value must match one of the
configured rates.

34

Chapter 2: IRIS ATM ioctl() Commands for Permanent VCs

a. CR or cr = cellrate expressed in cells per second. For example, a CR of 100 means that 4800
bytes of user data (100 cells * 48 bytes of payload for each ATM cell) are transmitted each
second.

for type
CRT_PSB_AGG

struct psb_01:

pcr01

scr01

mbs01

Peak CR for CLP 0+1. If all
high-priority queues are in use, this
must match one of the configured
rates.

Sustainable CR for CLP 0+1. PCR
divided by SCR must be equal to or
less than 64.

Max burst size for CLP 0+1 in cells
per burst. Valid values are multiples
of 32 between 1 and 2048, inclusive.
Zero is invalid.

for type
CRT_BEST_EFFORT

struct pcr_01:

pcr01 Peak CR for CLP 0+1. IRIS ATM
subsystem assigns VC to a
low-priority rate queue that is equal
to or slower than the rate specified; if
necessary, driver divides one of the
configured rates to create a slower
rate. If specified rate is slower than
the slowest configured low-priority
rate queue divided by 64, then the
rate cannot be supported.

for types
CRT_PEAK
CRT_PEAK_TAG
CRT_PSB
CRT_PSB_TAG

not applicable Not supported in this release.

Table 2-4 (continued) Supported Values for Traffic Parameters of

Fields of cellrate_t
Structure

Possible Values Description

PVC Commands

35

Success or Failure

If successful, ATMIOC_CREATEPVC returns zero. The out values should be
read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Out Values

When the VC is successfully created, the actual values that were used to
create the VC are written to the call’s argument. The xmitcellrate value should
be read and verified since it may be different from the requested value.

When the ATMIOC_CREATEPVC fails, the values in the argument do not
change and are not meaningful.

Relevant Structures

Below is the atm_createpvc_t structure, as defined in the sys/atm_user.h
file:

typedef struct {
u_short vpi;
u_short vci;
u_short xmitMaxCSDU, recvMaxCSDU;
u_char flags;
cellrate_t xmitcellrate;

} atm_createpvc_t;

typedef struct {
char cellrate_type;
union {

/* for cellrate_type = CRT_PEAK, CRT_PEAK_TAG */
struct {
int pcr0;
int pcr01;
} pcr_0_01;

36

Chapter 2: IRIS ATM ioctl() Commands for Permanent VCs

/* for cellrate_type = CRT_PEAK_AGG, CRT_BEST_EFFORT */
struct {
int pcr01;
} pcr_01;

/* for cellrate_type = CRT_PSB, CRT_PSB_TAG */
struct {
int pcr01;
int scr0;
int mbs0;
} psb_0_01;

/* for cellrate_type = CRT_PSB_AGG */
struct {
int pcr01;
int scr01;
int mbs01;
} psb_01;

} rate;
} cellrate_t;

Errors

Possible errors include:

EADDRINUSE The VCI value is already in use by another VC.

EFAULT An error occurred as the driver was copying in the
command’s createpvc argument.

PVC Commands

37

EINVAL The specified type of cellrate is not supported.
Or, the specified cellrate is invalid for the type of cellrate.
(For example, for a best-effort type, the slowest configured
low-priority rate is still too fast, or for peak aggregate, all
the high-priority queues are in use or are configured at a
fixed value and none of their rates matches the value
specified for pcr01).
Or, the specified maximum CSDU size is larger than
MAX_CS_PDU (that is, 12kilobytes - 8bytes).
Or, there is no open file descriptor.

ENODEV The board is not UP.

ENOMEM The board was unable to allocate enough on-board memory
to complete this task.

ENOSPC The maximum number of supported open VCs
(MAX_FWD_VCS or MAX_RVS_VCS) are already created.
Or, the board is out of buffers for the PDU size specified in
the argument.
Or, the board is out of resources (all the bandwidth is
currently occupied by other open VCs).

38

Chapter 2: IRIS ATM ioctl() Commands for Permanent VCs

ATMIOC_DELARP

The ATMIOC_DELARPioctl() command deletes one static PVC entry from the
IP-to-ATM address resolution table.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_DELARP, & arp);

where arp is an instance of arpreq .

Argument Values

The pointer to arp identifies an instance of an arpreq structure that
indicates which entry in the ATM address resolution table is to be removed.
The arpreq structure must be set up as described in Table 2-5.

Success or Failure

If successful, ATMIOC_DELARP returns zero.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Table 2-5 Recommended Values for ATMIOC_DELARP’s Argument

Field of
arpreq_t

Recommended
Value

Comments

arp_pa IP address In sa_family field, set the protocol family to
AF_INET, and, in sa_data field, provide the IP
address of remote system.

arp_ha none This field is ignored.

arp_flags none

PVC Commands

39

Relevant Structures

The arpreq and atm_laddr_t structures are described for reference in
“Frequently Used Structures” on page 27.

Errors

Possible errors include:

EAFNOSUPPORT The address family specified in the protocol portion of
the arpreq structure is not AF_INET.

EFAULT When attempting to copy the data, an error occurred.

EINVAL An invalid entry occurred during processing of the
address resolution. It may be that the requested address
was not found in the AR table.

ENODEV The board was not in the UP or DOWN state.

40

Chapter 2: IRIS ATM ioctl() Commands for Permanent VCs

ATMIOC_GETARP

The ATMIOC_GETARPioctl() command retrieves the mapping for one static
PVC entry from the IP-to-ATM address resolution table.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_GETARP, & arp);

where arp is an arpreq structure.

Argument Values

The pointer to arp identifies an instance of a standard arpreq structure
defining the protocol address half of the IP-to-ATM address resolution entry
to be retrieved.

The arpreq structure should be set up as shown in Table 2-6.

Table 2-6 Recommended Values for ATMIOC_GETARP’s Argument

Field of
arpreq_t

Recommended Value Comments

arp_pa AF_INET and IP address In sa_family field, set the protocol family to
AF_INET, and, in sa_data field, provide the
IP address of remote system.

arp_ha none

Upon return =out value Out value: retrieved atm_laddr_t
structure. See Table 2-2 for description.

arp_flags none

PVC Commands

41

Success or Failure

If successful, ATMIOC_GETARP returns zero. The out values should be read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Out Values

The retrieved PVC “hardware” address is written as an atm_laddr_t

structure within the arp_ha field of the argument.

Relevant Structures

The arpreq and atm_laddr_t structures are described for reference in
“Frequently Used Structures” on page 27.

Errors

Possible errors include:

EAFNOSUPPORT The address family specified in arp_pa is not supported.

EFAULT When attempting to copy the data, an error occurred.

ENODEV The board was not in the UP or DOWN state.

ENXIO The arp_pa specified in the argument was not found in
the ATM address resolution table.

42

Chapter 2: IRIS ATM ioctl() Commands for Permanent VCs

ATMIOC_GETARPTAB

The ATMIOC_GETARPTABioctl() command retrieves the entire contents of the
IP-to-ATM address resolution table. The retrieved entries include all PVCs
that, at creation, were tagged with the ATMPVCFL_IP flag (even those that
do not have an IP address assigned).

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_GETARPTAB, & sioc);

wheresioc is an atmsioc_t structure.

Argument Values

The pointer to sioc identifies an instance of an atmsioc_t structure, set up
as shown in Table 2-7. Within sioc, the *ptr field must be a pointer to an array
of atm_arptab_t structures.

Table 2-7 Recommended Values for ATMIOC_GETARPTAB’s Argument

Field of
atmsioc_t

Recommended Value Comments

*ptr pointer to atm_arptab[]

Upon return =out value

Start address where retrieved
ATM address resolution table
is written.
Out value: array of
atm_arptab_t structures

len = sizeof(atm_arptab[ATMARP_TABLESZ*2])

Upon return =out value;

Maximum possible size of
table.

Out value: length of retrieved
table.

PVC Commands

43

Success or Failure

If successful, ATMIOC_GETARPTAB returns zero. The out values should be
read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Out Values

The len field in the argument (sioc) is updated to contain the actual length of
the retrieved data. The retrieved table is written to the atm_arptab[] . Each
table entry is one atm_arptab_t structure, described in Table 2-8.

Table 2-8 Values Retrieved by ATMIOC_GETARPTAB

Field in
atm_arptab_t

Type Description

iaddr struct in_addr
Upon return =out value Out value: IP address

atmaddr struct atm_address_t
Upon return =out value Out value: ATM address, if one

exists.

laddr struct atm_laddr_t
Upon return =out value Out value: local “hardware”

address: VPI, VCI, PT. See “The
atm_laddr_t Structure” on page 27.

flags u_char
Upon return =out value Out value: entries from Table 2-9.

Table 2-9 Flags Retrieved by ATMIOC_GETARPTAB

Flag Description

COMPL The ATM address for this IP address has been obtained.

CONN The connection has been established for the VC.

NAK The ATMARP server has responded that it does not recognize
this endpoint.

44

Chapter 2: IRIS ATM ioctl() Commands for Permanent VCs

Relevant Structures

The atmsioc_t is described below, for reference. The atm_arptab_t

structure is described in Table 2-8. The atm_laddr_t structure is described
on page 27.

The atmsioc_t , as defined in the sys/atm_user.h file:

typedef struct atmsioc {
void *ptr;/* where data is located */
u_int len;/* size of structure at *ptr */

} atmsioc_t;

The atm_arptab_t structure, as defined in the if_atm.h file:

typedef struct atm_arptab {
struct in_addr iaddr;
atm_address_t atmaddr;
atm_laddr_t laddr;
u_char flags;

} atm_arptab_t;

Errors

Possible errors include:

EFAULT When attempting to copy the data, an error occurred.

ENODEV The board was not in the UP or DOWN state.

NOSNAP The VC is not using LLC/SNAP encapsulation.

PEND The connection has not yet been established; it is pending
setup completion.

PVC The VC is a permanent virtual channel, not a switched one.

VALIDATE The IP address is in the process of being validated with
InverseARP.

Table 2-9 (continued) Flags Retrieved by ATMIOC_GETARPTAB

Flag Description

PVC Commands

45

ATMIOC_GETVCTAB

The ATMIOC_GETVCTABioctl() command retrieves the entire virtual channel
table (both transmit and receive VCs). The board must be in the UP state.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_GETVCTAB, & sioc);

where sioc is an atmsioc_t structure.

Argument Values

The pointer to sioc identifies an instance of an atmsioc_t structure. The sioc
should be set up as summarized in Table 2-10.

Success or Failure

If successful, ATMIOC_GETVCTAB returns zero. The out values should be read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Table 2-10 Recommended Values for ATMIOC_GETVCTAB’s Argument

Field of
atmsioc_t

Recommended Value Comments

*ptr =pointer to vct[]

Upon return =out value

Pointer to location for retrieved
information.
Out value: an array of
atm_vcte_t structures.

len =sizeof(vct[MAX_FWD_VCS+MAX_RVS_VCS]);

Upon return =out value

Maximum possible size of the
table.
Out value: length of retrieved
table.

46

Chapter 2: IRIS ATM ioctl() Commands for Permanent VCs

Out Values

The len field in the argument (sioc) is updated to contain the actual length of
the retrieved data, as described in Table 2-10. The retrieved data is written to
the array of atm_vcte_t structures. Each table entry is one structure, as
described in Table 2-11.

Table 2-11 Values Retrieved by ATMIOC_GETVCTAB

Field of atm_vcte_t Type Description

cell_hdr u_int VPI=bits 27:20; VCI=bits 19:4; PT=bits 3:0

max_cs_pdu_size u_int Maximum PDU size on this VC.

burst_size u_short Maximum burst allowed. A burst is the
maximum number of back-to-back cells
transmitted at peak cellrate (CQ). 32 modulo
bucket depth.

rate_queue_number u_char Rate queue ID. The configured rate on this
queue is the peak cellrate for this VC.

avg_rate_divisor u_char The peak cellrate is divided by this value to
give the average or sustainable cellrate for the
VC (TIQ).

read_write u_char VCC-type:
VCTE_RW = read+write;
VCTE_RO = read-only;
VCTE_WO = write-only.

aal_type u_char AAL-Type: AAL3/4, AAL5, Raw, CBR.

flags u_char Flags:
VCTE_IP = VC carries IP traffic;
VCTE_NOTRAILERS = no AAL5 trailers

 or CRCs are used;
VCTE_NOSNAP = packets are not

 encapsulated with 802.2 LLC/SNAP.

ifunit_in u_char Logical network interface number (if_net) that
is the endpoint. Only for VCs servicing IP
traffic.

vcte u_int Local index (number), which was provided by
the driver at the time the VC was created.

PVC Commands

47

Relevant Structures

The atmsioc_t structure, as defined in the sys/atm_user.h file and the
atm_vcte_t structure, as defined in the sys/atm_b2h.h file (which is included
in the sys/atm_user.h file), are shown below for reference.

typedef struct atmsioc {
void *ptr;
u_int len;

} atmsioc_t;

typedef struct atm_vcte {
u_int cell_hdr;
u_int max_cs_pdu_size;
u_short burst_size;
u_char rate_queue_number;
u_char avg_rate_divisor;
u_char read_write;
u_char aal_type;
u_char flags;
u_char ifunit_in;
u_int vcte;

} atm_vcte_t;

Errors

Possible errors include:

EFAULT An error occurred when the driver was copying the data.

EINVAL The len specified in the argument is too small to contain the
information being retrieved.

ENODEV The board was not in the UP state.

48

Chapter 2: IRIS ATM ioctl() Commands for Permanent VCs

ATMIOC_SETARP

The ATMIOC_SETARPioctl() command puts one static mapping for a PVC into
the IP-to-ATM address resolution table. This command is required for any
VC that had the ATMPVCFL_IP flag set when the VC was created (with
ATMIOC_CREATEPVC). The VC must already have been created with the
ATMIOC_CREATEPVC call.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_SETARP, & arp);

where the file descriptor used for fd_atm is relatively unimportant (either the
file descriptor from the ATMIOC_CREATEPVC or an IP socket descriptor can be
used), and arp is a struct arpreq .

Argument Values

The argument is a pointer to an arpreq structure, set up as explained in
Table 2-12.

Table 2-12 Recommended Values for ATMIOC_SETARP’s Argument

Field of
arpreq_t

Recommended Value Comments

arp_pa AF_INET and IP
address

Within sa_data field, set the protocol family
to AF_INET and provide the IP address of
remote system.

arp_ha atm_laddr_t
structure

The local “hardware” address for the PVC.
See Table 2-3 for complete details.

arp_flags none

PVC Commands

49

Success or Failure

If successful, ATMIOC_SETARP returns zero.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Relevant Structures

The arpreq and atm_laddr_t structures are described in “Frequently
Used Structures” on page 27.

Errors

Possible errors include:

EADDRINUSE The address resolution table is already full. The current
entry request was not added.

EAFNOSUPPORT One of the sa_family fields within the arpreq indicated
an address family that is not supported. Only
AF_UNSPEC is supported for the arp_ha information,
and only AF_INET is supported for the arp_pa area.

EFAULT An error occurred as the driver was trying to copy the
command’s argument.

EINVAL The port indicated in the atm_laddr_t is invalid, or the
vpi/vci pair indicated in the atm_laddr_t already
exists in the table, or the specified VC is not flagged for
IP use.

ENODEV The board was not in the UP or DOWN state.

51

Chapter 3

3. IRIS ATM ioctl() Commands for Switched VCs

This chapter summarizes the IRIS ATM Signalling application interface calls
that support switched virtual channels (SVCs). The product includes an
example of an application coded in C, /usr/lib/atm/examples/sigtest.c, that uses
this SVC API.

The services of the ATM subsystem are accessed through the IRIX character
device interface ioctl() calls that specify ATM Signalling requests
(commands). These calls are described alphabetically in the subsections that
follow and are summarized in Table 3-1.

Table 3-1 Summary of SVC ioctl() Calls

Type of Operation Command
(or function)

Brd
State

Description More Info

Getting a link to the
ATM-subsystem

open() all Opens a file descriptor for a cloned device.
Must be held open as long as the SVC or the
SVC request-queue is active.

page 7

Tearing down a VC close() all Closes the file descriptor and causes the VC
to be torn down and all resources released,
including graceful rejection of any setup
requests in the input queue.

page 8

Activating SVCs as
the called party

ATMIOC_REGISTER up/dn Creates a request queue for incoming setup
requests. Setup requests that match the
specified traffic contract are accepted.

page 85

ATMIOC_LISTEN up/dn Retrieves one setup request from the SVC’s
request queue.

page 77

ATMIOC_ACCEPT up/dn Accepts a setup request. This results in a new
SVC.

page 69

ATMIOC_REJECT up/dn Refuses to accept a setup request. page 89

52

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Include Files for SVCs

The following files must be included in any program using the ATM-specific
ioctl() calls:

• “sys/atm.h”

• “sys/atm_user.h”

• “sys/if_atm.h” (only for applications doing IP-over-ATM)

Activating SVCs as
the calling party

ATMIOC_SETUP up/dn Requests a point-to-point SVC. page 91

ATMIOC_MPSETUP up/dn Requests a point-to-multipoint SVC and
adds the first party.

page 80

Maintaining a
multipoint SVC

ATMIOC_ADDPARTY up/dn Adds one more destination address to a
point-to-multipoint SVC.

page 72

ATMIOC_DROPPARTYup/dn Drops one destination address from a
point-to-multipoint SVC.

page 75

Retrieving VC
Information

ATMIOC_GETVCTAB up Retrieve information about all the open VCs. page 45

Managing data

write() up Pinned down, 8-byte aligned buffer of any
size.
If necessary, ATM subsystem divides data
into different packets for transmission.

page 9

writev() up Gathers data from a number of buffers for
transmission as one or more packets.

page 9

read() up Retrieves incoming data. page 8

Table 3-1 (continued) Summary of SVC ioctl() Calls

Type of Operation Command
(or function)

Brd
State

Description More Info

Overview

53

Overview

The IRIS ATM Signalling software makes it possible for applications to
dynamically set up and tear down switched virtual channels (SVCs) in
accordance with the ATM User-Network Interface (ATM UNI) standard. The
software consists of the following components that work together to
transparently provide support for SVCs:

• driver for the IRIS ATM network controller hardware

• signalling daemon (atmsigd) that implements the ATM User-Network
Interface “signalling” standard for setting up and tearing down SVCs

• interim local management interface daemon (atmilmid) that implements
the ATM User-Network Interface “local management” standard for
exchange of status, configuration, and control information, including
obtaining ATM addressing information from an adjacent switch

The IRIS ATM driver is the access point for applications using IRIS ATM
services, as illustrated in Figure 3-1. Applications use the IRIS ATM
application programming interface (API) to place their requests for creating
and tearing down SVCs. The driver communicates these requests to the
atmsigd and atmilmid modules, as appropriate. The atmsigd and atmilmid
modules process requests in compliance with the ATM protocols as specified
in the ATM User-Network Interface Specification.

The atmsigd module interfaces with other modules that handle the ATM
signalling protocols and communication with the adjacent ATM switch. The
ATM Signalling protocol stack consists of three protocols: Q.2931, QSAAL,
and AAL5. The software can be configured so that multiple UNIs are
created, each with possibly a different configuration.

The atmilmid module uses the simple network management protocol (SNMP,
RFC 1157) to maintain a management information database (MIB) for each
physical ATM connection and to communicate with adjacent ILMI
programs. The objects within this MIB are those that are defined in the ILMI
section of the ATM User-Network Interface standard. See Chapter 4 for the
API calls that retrieve ILMI information.

54

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Figure 3-1 Overview of IRIS ATM Software Modules

Note: SVCs are created using ATMIOC_SETUP or ATMIOC_REGISTER,
ATMIOC_LISTEN, and ATMIOC_ACCEPT. PVCs are created using
ATMIOC_CREATEPVC.

Overall Control
(manages one "stack" per hardware port)

Q.2931

Q.SAAL

AAL5

atmsigd

atmilmid

User Space

Kernel Space

Hardware

SVC Application

PVC Application

Software part
of ATM driver

Hardware part
of ATM driver

/dev/atm0

Port (unit) 0

/dev/atm#

Port (unit) #

API

P
V

C
 to

 S
w

itc
h:

vp

i=
0,

 v
ci

=5
(s

ig
na

lli
ng

 tr
af

fic
)

P
V

C
 to

 S
w

itc
h:

 v
pi

=0
, v

ci
=1

6
(I

LM
I

tr
af

fic
)

one SVCS
V

C
 A

P
I

P
V

C
 A

P
I

one PVC

IL
M

I
A

P
I

Overview

55

Figure 3-2 Successful Call Setup by Calling User

opens a file descriptor (FD)

ioctl ATMIOC_SETUP

writes/reads FD

closes FD

setup

creates VC,
associates it with
user’s FD

returns success

release
Tears down VC and
returns user’s syscall

ATM UNI SETUP message

setup confirm
create VC

ATM UNI CONNECT
ACK message

ATM UNI RELEASE message

ATM UNI
CONNECT message

ATM UNI RELEASE
COMPLETE message

time elapses

replies to user

IRIS ATM API ATM UNI INTERFACE

User Application IRIS ATM Driver and Signalling Software Switch

bl
oc

ki
ng

56

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Figure 3-3 Successful Call Setup by Called User

opens a file descriptor (FD)

reads/writes RD

creates VC,
associates it with
user’s FD

incoming ATM UNI
SETUP message

create VC

ATM UNI CONNECT
ACK message

ATM UNI RELEASE
COMPLETE message

ATM UNI CONNECT
ACK. message

ATM UNI RELEASE
message

returns error

time elapses

ioctl ATMIOC_REGISTER

register

accept

closes FD

register accepted

IRIS ATM API ATM UNI INTERFACE

User Application IRIS ATM Driver and Signalling Software Switch

bl
oc

ki
ng

ioctl ATMIOC_LISTEN

opens new FD and
issues ioctl ATMIOC_ACCEPT

writes/reads RD

success

returns REGISTER
ioctl success

time elapses

returns LISTEN ioctl

success

returns ACCEPT ioctl

bl
oc

ki
ng

bl
oc

ki
ng

incoming ATM UNI
SETUP messages

requests
are queued

Overview

57

Figure 3-4 Successful Call Setup for Multicast SVC

opens a file descriptor (FD)

ioctl ATMIOC_MPSETUP

setup

wakes up/ responds to
user

ATM UNI SETUP message

ATM UNI
CONNECT message

ATM UNI DROP
PARTY ACK. message

adds more parties;
writes FD

time elapses

replies to and wakes
up user

creates VC,
associates it with
user’s FD

create VC

drop party

ATM UNI ADD
PARTY message

ATM UNI DROP
PARTY message

setup confirm

IRIS ATM API ATM UNI INTERFACE

User Application IRIS ATM Driver and Signalling Software Switch

bl
oc

ki
ng

ioctl ATMIOC_ADDPARTY

ioctl ATMIOC_DROPPARTY

bl
oc

ki
ng

drop confirm
success

replies to and wakes
up user

bl
oc

ki
ng

add party

ATM UNI DROP
PARTY ACK. messageadd confirmsuccess

58

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Frequently Used Structures

The data structures described in this section are used as arguments for many
of the ATM Signalling ioctl() calls.

The atm_address_t Structure

The atm_address_t structure contains an ATM subsystem’s network layer
address, used for identifying users (the two endpoints) of a VC. Separate
addresses are used for the called and the calling ATM subsystems. All fields
of this address, except the ESI and SEL fields of the ATM NSAP, are assigned
by an endpoint’s switch.

Table 3-2 describes the atm_address_t structure. The first byte (addrType
field) of the structure indicates the type of address: null, ATM NSAP, or
native-E.164. The remaining field, addr, contains either a 20-byte ATM NSAP
address (array of characters) or a variable-length E.164 address structure.

Table 3-2 The atm_address_t Structure

Field Type Values

addrType char NULLADDR_TYPE: no address is specified.

NSAP_TYPE

E164_TYPE

addr union One of the structures below:

nsap array of char atm_nsap_t[20]: an array of 20 numerals.
Table 3-3 and Figure 3-5 provide more details.

e164 struct atm_e164_t: variable length structure (as
described in next 2 rows).

len char Number of valid digits in addr[] array.

addr[15] array of char Up to 15 digits encoded in IA5 characters.
Appendix B describes the IA5 character set.

Frequently Used Structures

59

Figure 3-5 ATM NSAP Format

10 or 4 octets

47

2 or 8
octets

AFI IDI High−order DSP

1 octet

High−order DSPDCC39 ESI SEL

ICD

AFI = authority and format identifier (8 bits)
IDI = initial domain identifier (16 or 64 bits)
DSP = domain specific part (136 or 88 bits)

DCC = data country code (16 bits)
ICD = international code designator (16 bits)
ESI = end system identifier; can be a MAC address (48 bits)
 IRIS ATM registers port’s MAC addresss for this field.
SEL = end system selector; defined by local system, not by ATM standard (8 bits)
 IRIS ATM software makes this field match the logical network interface number,
 so atm1 uses SEL=0x01 and atm47 uses SEL=0x2F.

ESI SEL

an E.164 address/number45 ESI SEL

2 octets

2 octets

8 octets

10 octets

10 octets

4 octets

20 octets
total

High−order DSP

6 octets

Low−order DSP

6 octets

6 octets

High−order DSP

1 oct.

1 oct.

1 oct.

7 octets

Assigned at EndpointNetwork Prefix: assigned by switch

60

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

From the sys/atm_user.h file:

typedef struct atm_address {
#define NULLADDR_TYPE 0 /* No address specified */
#define NSAP_TYPE 0x02
#define E164_TYPE 0x11

char addrType; /* one of the above types */
union {

nsap_address_t nsap;
e164_address_t e164;

} addr;
} atm_address_t;

a. Encoded in binary-coded decimal (BCD) format, where each four bits encodes one decimal
numeral. For example, 0001 0010 (binary) represents 12 decimal. Binary values 0xA to 0xF
are invalid for BCD encoding.

Table 3-3 Contents for Fields of ATM NSAP

AFI Value a IDI Content 1

(data size, field length)
DSP
Length

Total Length of
NSAP When in
This Format

AFI_DCC 39 An ISO DCC value, which is a data
country code from ISO 3166
(3-digit code, represented by 2 octets
in which the unused least-significant 4
bits are set to ones).

17 octets 20 octets

AFI_E164 45 An E.164 address/number
(up to 15 digits, represented by 8
octets in which the least significant
four bits are ones, and any unused
most-significant bits are set to zeros)

11 octets 20 octets

AFI_ICD 47 An ISO ICD value, which is an
international code designator from
ISO 6523 (4-digit code, represented by
2 octets)

17 octets 20 octets

Frequently Used Structures

61

#define AFI_DCC 0x39
#define AFI_ICD 0x47
#define AFI_E164 0x45

typedef char nsap_address_t[20];

typedef struct e164_address {
unsigned char len;
char addr[15];

} e164_address_t;

The cellrate_t Structure

The cellrate_t structure is used to specify an SVC’s transmission rate and
other traffic contract parameters. The user selects one of the cellrate types
listed in Table 3-4, and specifies that selection in the first byte of the
cellrate_t structure, described in Table 3-5. The format for the remaining
portions of the cellrate_t structure depends on the content of the
cellrate_type field. The various formats are described in Table 3-5. The
specified peak cellrate must match one of the rates on the board’s
transmission rate queues. See “Characteristics of the ATM-OC3c Hardware”
in Chapter 1 for a description of the transmission rate queues and how they
are configured.

Table 3-4 Values for Cellrate Type

Value for cellrate_type
Field

Description

CRT_NULL Zero bandwidth.

CRT_PEAK_AGG Aggregate peak cellrate for CLP0+1.

CRT_PSB_AGG Aggregate peak cellrate, sustainable cellrate, and max
burst size for CLP 0+1.

CRT_BEST_EFFORT Peak cellrate for CLP0+1 with best-effort indication.

CRT_PEAK Not supported in this release. Peak cellrates for CLP0 and
CLP0+1.

CRT_PEAK_TAG Not supported in this release. Same as above with tagging
requested.

62

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

CRT_PSB Not supported in this release. Peak cellrate for CLP0+1,
sustainable cellrate for CLP0, maximum burst size for
CLP0.

CRT_PSB_TAG Not supported in this release. Same as above with tagging
requested.

Table 3-5 The cellrate_t Structure

Field Type Values

cellrate_type char From Table 3-4

rate union One of the formats (structures) below:

pcr_01 struct Use with CRT_PEAK_AGG and CRT_BEST_EFFORT

pcr01 int Peak cellrate for CLP 0+1, in cells per second. IRIS ATM
subsystem assigns VC to a low-priority rate queue that
is equal to or slower than the rate specified; if necessary,
driver divides one of the configured rates to create a
slower rate. If the specified rate is slower than the
slowest configured low-priority rate queue divided by
64, then the rate cannot be supported.

psb_01 struct Use with CRT_PSB_AGG.

pcr01 int Peak cellrate for CLP 0+1, in cells per second. If all
high-priority queues are used, this must match one of
the configured rates.

scr01 int Sustainable cellrate for CLP 0+1, in cells per second.
Sustainable CR for CLP 0+1. PCR divided by SCR must
be equal to or less than 64.

mbs01 int Maximum burst size for CLP 0+1, in cells per burst.
Valid values are multiples of 32 between 1 and 2048,
inclusive. Zero is invalid.

Table 3-4 (continued) Values for Cellrate Type

Value for cellrate_type
Field

Description

Frequently Used Structures

63

From the sys/atm_user.h file:

typedef struct {
char cellrate_type; /* a value from Table 3-4 */

union {
/* for cellrate_type = CRT_PEAK, CRT_PEAK_TAG */
struct {

int pcr0;
int pcr01;

} pcr_0_01;

/* for cellrate_type = CRT_PEAK_AGG, CRT_BEST_EFFORT */
struct {

int pcr01;
} pcr_01;

/* for cellrate_type = CRT_PSB, CRT_PSB_TAG */
struct {

int pcr01;
int scr0;
int mbs0;

 } psb_0_01;

/* for cellrate_type = CRT_PSB_AGG */
struct {

int pcr01;
int scr01;
int mbs01;

} psb_01;

} rate;
} cellrate_t;

64

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

The reject_reason_t Structure

Many of the ioctl() SVC commands provide causal information returned
from the ATM network when a signalling message fails or is rejected. The
structure used for this information is reject_reason_t , summarized in
Table 3-6.

Table 3-6 The reject_reason_t Structure

Field Type Values

location char Identifies where along the VCC the failure or rejection
occurred. Table 3-7 lists the values for this field.

cause char Describes the reason for the failure. Appendix C lists
the values for this field.

diags[4] array of char Reserved for future use. Does not contain valid data.

Table 3-7 Values for Location Field In reject_reason_t

Text Value for location Field

User 0x00

Private network serving the local user 0x01

Public network serving the local user 0x02

Transit network 0x03

Public network serving the remote user 0x04

Private network serving the remote user 0x05

International network 0x07

Network beyond interworking point 0x0A

Frequently Used Structures

65

From the sys/atm_user.h file:

typedef struct {
char cause;/* value from Table C-1 or Table C-2 */
char location;/* value from Table 3-7 */
char diags[4];/* reserved for future use */

} reject_reason_t;

The QOS Variables

The one-byte quality of service variables (fwdQOS and bwdQOS) are used in
a number of ATM Signalling commands to specify the forward and
backward ATM service classes. Table 3-8 summarizes the valid values.

The BLLI Variable

The blli variable is used in a number of ATM Signalling commands to specify
or communicate the ATM UNI broadband low layer information (BLLI) for
a VCC. Calling parties can specify one to three BLLI options in their setup
requests; after the request succeeds the single negotiated BLLI option is
returned in the first element of the array. Called parties register for one
option. Each BLLI value can be registered (with ATMIOC_REGISTER) by only
one process at a time. (This does not mean one VC, since by forking, the
registered process can support multiple VCs, as explained in the section
describing the ATMIOC_ACCEPT command.) Table 3-9 summarizes the
supported BLLI values.

Table 3-8 Values for QOS Variables

Text Value for QOS
Variable

Description

QOS_CLASS_0 0 Use with best-effort traffic.

QOS_CLASS_1 1 Use with constant bit rate (CBR).

QOS_CLASS_2 2 Use with variable bit rate (VBR).

QOS_CLASS_3 3 Use for connection-oriented data.

QOS_CLASS_4 4 Use for connectionless data.

66

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

When the BLLI_ANY value is specified in an ATMIOC_REGISTER call, any
incoming BLLI value from the other party is accepted (including null BLLI).
Use of all other values requires that the other party’s specified BLLI selection
match exactly; if there is no match, the IRIS ATM software rejects the
connection request and does not place it on reception queue.

Table 3-9 Values for BLLI Variable

Text Value for
blli Variable

Description

BLLI_NULL 0 Null low layers. When used with
ATMIOC_SETUP, always results in a negotiated
BLLI of null. When used with
ATMIOC_REGISTER, matches only to an
incoming null BLLI.

BLLI_ANY 1 Any BLLI. Not valid for ATMIOC_SETUP. With
ATMIOC_REGISTER, matches any BLLI,
including null, on incoming setup requests.

BLLI_LLC2 2 Level 2 LLI = LLC. Whenever IP-over-ATM is
enabled, this BLLI is registered (occupied) by
the IP stack (the input queues for logical IP
network interfaces), so other processes cannot
receive on it. Additional ATMIOC_REGISTERs
fail.

BLLI_LE_C 3 LAN Emulation control

BLLI_LE_ENET 4 LAN Emulation 802.3 data

BLLI_LE_ENET_MC 5 LAN Emulation 802.3 multicast

BLLI_LE_TR 6 LAN Emulation 802.5 data

BLLI_LE_TR_MC 7 LAN Emulation 802.5 multicast

Frequently Used Structures

67

The bearerClass Variable

The one-byte bearerClass variable is used in a number of ATM Signalling
commands to specify the broadband bearer (also called transport or
network) capability. Table 3-10 summarizes the valid values. See ATM UNI
3.1, Appendix F, for usage guidelines.

The MaxCSDU Variables

CSDU is a shortened version of CPCS-SDU, which stands for common-part
convergence sublayer service data unit. The two-byte MaxCSDU integer
value specifies the maximum size for the data units (packets) at the
convergence sublayer of the AAL layer. This variable is subject to
negotiation during connection setup, so the MaxCSDU sizes that are actually
used are not necessarily those requested with the SETUP, MPSETUP, or
REGISTER command.

Valid values range from 8 to 0x2FF8, and must be divisible by 8.

Table 3-10 Values for bearerClass Variables

Text Value for
bearerClass
Variable

Description

BCOB_A 1 For use with non-ATM endpoints.
Intermediate network nodes may map the
data to another format.

BCOB_C 2 For use with non-ATM endpoints.
Intermediate network nodes may map the
data to another format.

BCOB_X_UNSPEC 3 Use for best-effort ATM traffic.

BCOB_X_CBR 4 Use for constant bit rate (CBR) ATM traffic.

BCOB_X_VBR 5 Use for variable bit rate (VBR) ATM traffic.

68

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Separate MaxCSDU sizes are specified for the forward and the back channels
of a VC. The fwdMaxCSDU size specifies a maximum packet size for the
forward channel (that is, the channel on which the calling party transmits
and the called party receives). The bwdMaxCSDU size specifies a maximum
packet size for the back channel (that is, the channel on which the calling
party receives and the called party transmits).

Note: “Forward” and “back” are always labeled from the calling party’s
viewpoint.

SVC Code Sample

An extensive sample of ATM-over-SVC code is provided in the file
/usr/lib/atm/examples/sigtest.c.

SVC Commands

This section describes each ATM SVC ioctl() command in detail. The
commands are organized alphabetically.

Note: In these descriptions, forward refers to the channel carrying data from
the calling party to the called party, while backward refers to the channel
carrying data (in the opposite direction) from the called party to the calling
party.

SVC Commands

69

ATMIOC_ACCEPT

The ATMIOC_ACCEPTioctl() command accepts a connection setup request that
has already been retrieved by an ATMIOC_LISTEN. The file descriptor used in
this call must be a new file descriptor for the same device used in the
ATMIOC_REGISTER call. The application must block until the ATM software
replies, which it does when an ATM UNI CONNECT ACKNOWLEDGE
message returns from the calling party. The request is not removed from the
queue until the call setup has completed (either by creating the SVC or by
acknowledging a rejection). While waiting for the CONNECT
ACKNOWLEDGE, the program that made the ioctl() call is put to sleep.

Invoking this ioctl() causes the ATM Signalling software to generate an ATM
UNI CONNECT message. (An ATMIOC_LISTEN ioctl() must have completed
successfully before the ATMIOC_ACCEPT can be invoked.) If the application
wants to open multiple SVCs simultaneously for the associated traffic
contract, it forks the new file descriptor (new_fd_atm) as soon as the
ATMIOC_ACCEPT returns. At that point, the application can retrieve (do an
ATMIOC_LISTEN) and accept (ATMIOC_ACCEPT) the next item on the queue.
The application can receive (read()) data from all its open SVCs.

When the application wants to close a receiving SVC (accept no more
requests), it simply closes the file descriptor. If one or more child processes
have been forked, and they are still running, they must be killed or must also
close their file descriptors. When the original file descriptor is closed, the
ATM Signalling software generates an ATM UNI RELEASE message to the
calling party.

Usage

Use the following format:

open (new_fd_atm, O_RDWR);
ioctl (new_fd_atm, ATMIOC_ACCEPT, & accept);
<wait for return, proceed as described in the next paragraph>

where new_fd_atm is a new read-write file descriptor for the same ATM
device used in the ATMIOC_REGISTER call, and accept is an atm_accept_t

structure.

70

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Once the ATMIOC_ACCEPT returns, one of the following actions must be
taken:

• If it is desirable to continue accepting other calls on this SVC
(specifically its BLLI value), the process should fork, then the parent
process should close its copy of the new_fd_atm that was used in the
ATMIOC_ACCEPT. The parent process goes back to blocking on the
ATMIOC_LISTEN call and processing new connection requests as they
appear on the SVC’s queue. The child process should close its copy of
the ATMIOC_LISTEN’s file descriptor and use the open connection until
it is finished, at which time it simply closes its file descriptor.

• If this is the only call for this SVC, the process should close the file
descriptor from the ATMIOC_LISTEN so that no more incoming calls are
enqueued. This releases the BLLI value associated with that SVC for
registration by another process. The process can then proceed to read()
and write() the new_fd_atm.

Argument Values

The atm_accept_t structure should be prepared as described in
Table 3-11.

Success or Failure

If successful, ATMIOC_ACCEPT returns zero.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Table 3-11 Recommended Values for ATMIOC_ACCEPT’s Argument

Field in
atm_accept_t

Type Values

userHandle int The out value from the ATMIOC_LISTEN.

callHandle int The out value from the ATMIOC_LISTEN.

SVC Commands

71

Relevant Structures

From the sys/atm_user.h file:

typedef struct {
int userHandle;
int callHandle;

} atm_accept_t;

Errors

Possible errors include:

EINTR While waiting for the accept call to complete from over the
network, the ioctl() was interrupted unexpectedly.

EINVAL The file descriptor was already bound (for example, with
ATMIOC_CREATEPVC, ATMIOC_SETUP, ATMIOC_MPSETUP, or
ATMIOC_ACCEPT). Or, the userHandle or callHandle was
invalid or belonged to a different application. Or, the
supplied userHandle did not identify a registered queue. Or,
the ATM software discovered that the queue was empty.

ENOTCONN The connection request is no longer valid. It has timed out
or, has been released by the calling party.

EFAULT An error occurred when the ATM software attempted to
read the call’s argument.

ENOSPC The driver was not able to allocate a userHandle to the new
file descriptor for the SVC.

ENODEV The board was not in the UP or DOWN state. Or, the port
was not operational.

72

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

ATMIOC_ADDPARTY

The ATMIOC_ADDPARTYioctl() is invoked by a calling party to cause the ATM
Signalling software to add another party to an already existing
point-to-multipoint connection. The ATM Signalling software issues an
ATM UNI ADDPARTY message. No backward channel is created for this
SVC.

Usage

Use the following format:

ioctl (mp_fd_atm, ATMIOC_ADDPARTY, & addparty);

where mp_fd_atm is the same file descriptor used in the ATMIOC_MPSETUP call
and addparty is an atm_addparty_t structure.

Argument Values

The atm_addparty_t structure should be prepared as described in
Table 3-12.

Table 3-12 Recommended Values for ATMIOC_ADDPARTY’s Argument

Field in
atm_addparty_t

Type Values

addparams struct An addpartyparams_t structure as
described below:

calledNumber struct See “The atm_address_t Structure” on page 58.

SVC Commands

73

Success or Failure

If successful, ATMIOC_ADDPARTY returns zero.

When a failure occurs within the driver, the ioctl() returns -1 with an error
stored in errno . See the “Errors” heading for descriptions of individual
errors. When the error occurs within the driver, the reject field is zero. When
a failure is due to a negative response from the network, the ioctl() wakes the
sleeping program and returns -1 with an EIO error stored in errno . The reject
out value should be read.

Out Values

When the ioctl() fails to create a VCC for the party, the out value in the reject
field of the argument contains one of the causes described in Appendix C. A
reject field of zero indicates that the ioctl() failed within the driver (not due to
a negative response from the network).

int A locally unique tag, supplied by the program
making this call. The handle is for identifying
each party on an existing multipoint connection
or connection request. User is responsible for
ensuring that all its active tags are unique
within its own “world.” This value is not used
in any meaningful way by the ATM Signalling
software.

reject struct
Upon failure
=out value

See “The reject_reason_t Structure” on page 64.
Out value: if the add request fails to create an
SVC, this structure contains the reason. A zero
indicates that the failure occurred in the driver
(before contacting the ATM Signalling daemon).
A non-zero value indicates that the failure or
rejection occurred at the called endpoint or at an
intermediate system. The cause field identifies
the cause for the failure as described in
Appendix C.

Table 3-12 (continued) Recommended Values for ATMIOC_ADDPARTY’s

Field in
atm_addparty_t

Type Values

74

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Relevant Structures

The atm_address_t and reject_reason_t structures are described in
“Frequently Used Structures” on page 58.

From the sys/atm_user.h file:

typedef struct {
addpartyparams_t addparams;
reject_reason_t reject;

} atm_addparty_t;

typedef struct {
atm_address_t calledNumber;
int partyHandle;

} addpartyparams_t;

Errors

Possible errors include:

EFAULT An error occurred when the ATM software attempted to
read the call’s argument.

EINVAL The SVC associated with the file descriptor is not connected
or is not a multipoint connection (for example, the
ATMIOC_MPSETUP has not been called or did not succeed).

EIO The add party call was rejected by the network (an
intermediate system) or by the called party. The reasons
have been written into the reject field of the argument
(which is a reject_reason_t structure). See “The
reject_reason_t Structure” on page 64 and Appendix C.

ENODEV The board was not in the UP or DOWN state. Or, the port
was not operational.

SVC Commands

75

ATMIOC_DROPPARTY

The ATMIOC_DROPPARTYioctl() is invoked by a calling party to cause the ATM
Signalling software to drop a called party from an existing
point-to-multipoint connection. This ioctl() causes the ATM Signalling
software to issue an ATM UNI DROPPARTY message.

Usage

Use the following format:

ioctl (mp_fd_atm, ATMIOC_DROPPARTY, &dropparty);

where mp_fd_atm is the same file descriptor used in the ATMIOC_MPSETUP or
ATMIOC_ADDPARTY call that was used to add the party, and dropparty is an
atm_dropparty_t structure.

Argument Values

The atm_dropparty_t structure should be prepared as described in
Table 3-13.

Table 3-13 Recommended Values for ATMIOC_DROPPARTY’s Argument

Field in atm_dropparty_t Type Values

partyHandle int The tag that was supplied by the program
when it added this party to the SVC.

76

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Success or Failure

If successful, ATMIOC_DROPPARTY returns zero.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Relevant Structures

From the sys/atm_user.h file:

typedef struct {
int partyHandle;

} atm_dropparty_t;

Errors

Possible errors include:

EFAULT An error occurred when the ATM software attempted to
read the call’s argument.

EINVAL The SVC associated with the file descriptor is not connected
or is not a multipoint connection (for example, the
ATMIOC_MPSETUP has not been called or did not succeed).

ENODEV The board was not in the UP or DOWN state. Or, the port
was not operational.

SVC Commands

77

ATMIOC_LISTEN

The ATMIOC_LISTEN ioctl() command retrieves connection setup requests
from the input queue created by the ATMIOC_REGISTER call. The program
calling this ioctl() must block until the ATM software replies, which it does
whenever there is a request on the queue. If there are currently no requests
waiting, the caller of the ioctl() is put to sleep and awakened when a request
becomes available.

Each invocation of this ioctl() retrieves the topmost (longest awaiting) item
on the queue. Each retrieval provides identification tags (handles) and the
negotiated traffic contract for the SVC, which may be different from the
parameters specified in the ATMIOC_REGISTER call. The request is not
actually removed from the queue until the request has been completely
processed by an ATMIOC_ACCEPT or ATMCIO_REJECT.

Note: An ATMIOC_REGISTERioctl() must have completed successfully before
ATMIOC_LISTEN can be invoked.

Usage

Use the following format:

ioctl (reg_fd_atm, ATMIOC_LISTEN, & listen);

where reg_fd_atm is the file descriptor used in the ATMIOC_REGISTER call, and
listen is an atm_listen_t structure.

Argument Values

The argument is a pointer to an empty atm_listen_t structure (described
in Table 3-14.

Success or Failure

If successful, ATMIOC_LISTEN returns zero. The out values should be read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

78

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Out Values

When the ATMIOC_LISTEN ioctl() completes successfully, each field of the
call’s argument contains information about one connection setup request
from the input queue for the SVC associated with the file descriptor. The
retrieved information describes the traffic contract for the connection, as
described in Table 3-14.

Table 3-14 Values Retrieved by ATMIOC_LISTEN

Field in
atm_listen_t

Type Values

userHandle int Unique value provided by the ATM Signalling
software to identify the application that invoked the
ATMIOC_LISTEN. The value must be used in future
ioctl() calls for this SVC.

callHandle int Unique value provided by the ATM Signalling
software to identify this connection (SVC). The
value must be used in future ioctl() calls for this
SVC.

fwdMaxCSDU u_short The negotiated fwdMaxCSDU for the SVC. Value is
always equal to or smaller than the value specified
in the ATMIOC_REGISTER. See “The MaxCSDU
Variables” on page 67.

bwdMaxCSDU u_short The negotiated bwdMaxCSDU for the SVC. Value is
always equal to or smaller than the value specified
in the ATMIOC_REGISTER. See “The MaxCSDU
Variables” on page 67

blli char The blli value for the SVC. See “The BLLI Variable”
on page 65.

caller struct The ATM address of the calling party as taken from
the setup request. See “The atm_address_t
Structure” on page 58.

xmitcellrate struct The cellrate for the SVC. See “The cellrate_t
Structure” on page 61.

SVC Commands

79

Relevant Structures

The atm_listen_t structure is described in Table 3-14. The
atm_address_t and cellrate_t structures, and the MaxCSDU and blli

variables are described in “Frequently Used Structures” on page 58.

From the sys/atm_user.h file:

typedef struct {
int userHandle;
int callHandle;
u_short fwdMaxCSDU;
u_short bwdMaxCSDU;
char blli;
atm_address_t caller;
cellrate_t xmitcellrate;

} atm_listen_t;

Errors

Possible errors include:

EFAULT An error occurred when the ATM software was accessing
the call’s argument.

EINTR While waiting for a request to appear on the queue, the call
was interrupted unexpectedly.

ENODEV The board was not in the UP or DOWN state. Or, the port
was not operational.

80

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

ATMIOC_MPSETUP

The ATMIOC_MPSETUPioctl() is invoked by a calling party to cause the ATM
Signalling software to initiate an ATM UNI SETUP request message for the
first party on a point-to-multipoint channel. No backward channel is
created, so the device must be write-only. The application must block until
the ATM driver replies, which it does when the SVC is either ready to use or
has been refused. The driver puts the calling process to sleep until the call is
complete or has been rejected.

When the remote endpoint accepts the connection request, the driver wakes
the caller up and returns the negotiated traffic contract, which can be
different (smaller) than what was specified in the call. Once open, the SVC is
accessed by write()s to the specified file descriptor. The file descriptor opened
for the ATM device (fd_atm) should be writable only.

To add additional parties and drop individual parties on this SVC, use the
ATMIOC_ADDPARTY and ATMIOC_DROPPARTY commands.

To tear down (clear) this SVC, the application uses the ATMIOC_DROPPARTY

command for each party that has been added to the SVC. This causes the
ATM Signalling software to generate an ATM UNI DROPPARTY message
for each party, until only one party remains, at which point a RELEASE
message is generated. After the final party is dropped, the application can
close the file descriptor.

Note: If the application closes the file descriptor without calling
ATMIOC_DROPPARTY for each party, the software still gracefully releases and
tears down the SVC.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_MPSETUP, &mpsetup);

where fd_atm is a write-only file descriptor for the desired ATM hardware,
and mpsetup is an atm_mpsetup_t structure.

SVC Commands

81

Argument Values

The atm_mpsetup_t structure should be prepared as described in
Table 3-15.

Table 3-15 Recommended Values for ATMIOC_MPSETUP’s Argument

Field in
atm_mpsetup_t

Type Values

mpcallparams

calledNumber struct See “The atm_address_t Structure” on page 58.

callingNumber struct See “The atm_address_t Structure” on page 58.

fwdCSDU u_short
Upon return
=out value

See “The MaxCSDU Variables” on page 67
Out value: when the ioctl() returns successfully,
this field contains the negotiated value, which
may be smaller than the original value.

fwdCellRate struct See “The cellrate_t Structure” on page 61.

fwdQOS char See “The QOS Variables” on page 65.

blliCount char 0-3. Number of BLLI values in blli[] field.
When this count is set to zero, the software
specifies BLLI_NULL (which is the same as
setting blliCount=1 and blli[0]=BLLI_NULL).

blli[3] char
Upon return
=out value

See “The BLLI Variable” on page 65
Out value: blli[0] indicates the BLLI selected
for this VCC which may be any of the original
selections.

bearerClass char See “The bearerClass Variable” on page 67.

sscsType char Zero. Reserved for future use.

bhli char Zero. Reserved for future use.

82

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Success or Failure

If successful, ATMIOC_MPSETUP returns zero. The out values should be read.

When a failure occurs within the driver (before it has placed the request onto
the network), the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors. Under this condition,
the reject field is zero. When a failure is due to a negative response from the
network, the ioctl() wakes the sleeping program and returns -1 with an EIO
error stored in errno . The reject out value contains information about the
network’s reason for the failure, so it should be read.

partyHandle int A locally unique tag supplied by the program
making this call. The handle is for identifying
each party on an existing multipoint
connection or connection request. User is
responsible for ensuring that all its active tags
are unique within its own ”world.” This value
is not used in any meaningful way by the ATM
Signalling software.

reject struct

Upon failure
=out value

See “The reject_reason_t Structure” on
page 64.
Out value: if the setup request fails to create an
SVC, this structure contains the reason. A zero
indicates that the failure occurred in the driver
(before contacting the ATM Signalling
daemon). A non-zero value indicates that the
failure or rejection occurred at the called
endpoint or at an intermediate system. The
cause field identifies the cause for the failure as
described in Appendix C.

Table 3-15 (continued) Recommended Values for ATMIOC_MPSETUP’s

Field in
atm_mpsetup_t

Type Values

SVC Commands

83

Out Values

When the ioctl() is successful, the calling party should check the values in the
fwdMaxCSDU and blli[0] fields of the call’s argument to discover the
negotiated parameters. If the new values are acceptable, the calling party can
start using the SVC. If the traffic contract is unacceptable (which really
should not ever occur since the negotiated values are always lower), the
application should close the file descriptor to close the connection. This
action causes the IRIS ATM signalling subsystem to generate a RELEASE.

When the ioctl() fails to create an SVC, the out value in the reject field of the
argument contains one of the causes described in Appendix C. A reject field
of zero indicates that the ioctl() failed within the driver (not due to a negative
response from the network).

Relevant Structures

The atm_address_t, cellrate_t, and reject_reason_t structures,
and the MaxCSDU, QOS, bearerClass , and blli variables are described in
“Frequently Used Structures” on page 58.

From the sys/atm_user.h file:

typedef struct {
mpcallparams_t callparams;
reject_reason_t reject;

} atm_mpsetup_t;

typedef struct {
atm_address_t calledNumber;
atm_address_t callingNumber;
u_short fwdMaxCSDU;
cellrate_t fwdCellRate;
char fwdQOS;
char blliCount;
char blli[3];
char bearerClass;
char sscsType; /* reserved*/
char bhli; /* reserved*/
int partyHandle;

} mpcallparams_t;

84

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Errors

Possible errors include:

EFAULT An error occurred when the ATM software attempted to
read the call’s argument.

EINTR While waiting for a response from the switch, the driver
was interrupted. The setup request cannot be completed.
Try again.

EINVAL The file descriptor was already bound (for example, with
ATMIOC_CREATEPVC, ATMIOC_SETUP, ATMIOC_MPSETUP, or
ATMIOC_ACCEPT). Or the access mode (read/write) was
incorrect.

EIO The setup call was rejected by the network (an intermediate
system) or by the called party. The reasons have been
written into the reject field of the argument (which is a
reject_reason_t structure). See “The reject_reason_t
Structure” on page 64 and Appendix C.

ENODEV The board was not in the UP or DOWN state.
Or, the port was not operational.

ENOSPC The driver was not able to allocate a userHandle to the SVC.

SVC Commands

85

ATMIOC_REGISTER

The ATMIOC_REGISTERioctl() is invoked by an application to inform the IRIS
ATM Signalling software of its presence and readiness as a called party. The
file descriptor must be open for read-write access. The application must
block until the ATM driver replies, which it does when the SVC is either
ready to use or has been refused. The driver puts the calling process to sleep
until the software has completed the SVC registration. When the ATM
subsystem replies to this ioctl(), the application should immediately call
ATMIOC_LISTEN to retrieve the first queued connection request.

Each ATMIOC_REGISTER call defines a traffic contract. For each registered
traffic contract, the ATM subsystem maintains a queue of incoming
connection (SVC) setup requests. The ATM Signalling software compares
the registered traffic contracts to incoming connection setup request
parameters. When the incoming values are higher than the registered values,
the software negotiates down to the traffic contract. When the incoming
values are equal to or smaller than the traffic contract, the software accepts
the setup request and places it on the queue. This ioctl() fails if the specified
traffic contract is currently registered.

When this ioctl() returns successfully, the ATM Signalling software has
created a queue of the length specified by the application and has started
queuing incoming connection (ATM UNI SETUP) requests. As long as the
file descriptor remains open, the ATM Signalling software continues to
queue requests.

When the application no longer wants to accept connection requests for this
traffic contract, it simply closes the file descriptor. The ATM Signalling
software generates ATM UNI RELEASE messages for the unretrieved
requests remaining in the queue, and stops accepting requests for the
associated traffic contract. Once the file descriptor is closed, the application
cannot retrieve any more of the queued connection requests.

86

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_REGISTER, ®ister);

where fd_atm is a read-write file descriptor for the desired ATM hardware,
and register is an atm_register_t structure.

Argument Values

The atm_register_t structure should be prepared as described in
Table 3-16.

Table 3-16 Recommended Values for ATMIOC_REGISTER’s Argument

Field in
atm_register_t

Type Values

fwdMaxCSDU u_short Upper limit for size of CPCS-SDUs on calling
party’s forward channel. This value is compared to
the requested value on incoming setup requests. A
request is queued when the incoming value is equal
to or smaller than this value. See “The MaxCSDU
Variables” on page 67.

bwdMaxCSDU u_short Upper limit for size of CPCS-SDUs on calling
party’s backward channel. This value is compared
to the requested value on incoming setup requests.
A request is queued when the incoming value is
equal to or smaller than this value. See “The
MaxCSDU Variables” on page 67.

listenQlength short Maximum number of incoming setup requests that
can be queued for this traffic contract.

blli char BLLI that is acceptable for these SVCs. When
BLLI_ANY is specified, all incoming BLLI values
are acceptable. See “The BLLI Variable” on page 65.

SVC Commands

87

Success or Failure

If successful, ATMIOC_REGISTER returns zero.

When a failure occurs within the driver, the ioctl() returns -1 with an error
stored in errno . See the “Errors” heading for descriptions of individual
errors. When the error occurs within the driver, the cause field is zero. When
a failure is due to a negative response from the network, the ioctl() wakes the
sleeping program and returns -1 with an EIO error stored in errno . The cause
out value should be read.

Out Values

When the ioctl() fails to create a VCC for the party, the out value in the cause
field of the argument contains one of the causes described in Appendix C. A
cause field of zero indicates that the ioctl() failed within the driver (not due to
a negative response from the network).

sscsType char Zero. Reserved for future use.

cause int
Upon failure
=out value

Out value: if the register request fails to create an
VCC, this field contains the reason. A zero indicates
that the failure occurred in the driver (before
contacting the ATM Signalling daemon). A
non-zero value indicates that the failure or rejection
occurred at the network. The value identifies the
cause for the failure as described in Appendix C.

Table 3-16 (continued) Recommended Values for ATMIOC_REGISTER’s

Field in
atm_register_t

Type Values

88

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Relevant Structures

The MaxCSDU and blli variables are described in “Frequently Used
Structures” on page 58.

From the sys/atm_user.h file:

typedef struct {
u_short fwdMaxCSDU;
u_short bwdMaxCSDU;
short listenQlength; /* Nmbr of outstndng reqs to queue

*/
char blli;
char sscsType; /* reserved for future use */
int cause; /* if ioctl fails with EIO, cause contains */

/* a value from Appendix C*/
} atm_register_t;

Errors

Possible errors include:

EFAULT An error occurred when the ATM software attempted to
read the call’s argument.

EINVAL The file descriptor was already bound (for example, with
ATMIOC_CREATEPVC, ATMIOC_SETUP, ATMIOC_MPSETUP, or
ATMIOC_ACCEPT). Or, the access mode (read/write) was
incorrect. Or, the listenQlength value was invalid.

EIO The registration request was rejected, and the reason has
been written into the cause field of the argument. See
Appendix C for a complete list of the possible values
(causes).

ENOSPC The driver was not able to allocate a userHandle to the SVC.

ENODEV The board was not in the UP or DOWN state. Or, the port
was not operational.

SVC Commands

89

ATMIOC_REJECT

The ATMIOC_REJECTioctl() refuses a connection setup request (that has
already been retrieved by an ATMIOC_LISTEN) and to indicate the reason for
the rejection. (An ATMIOC_LISTEN ioctl() must have completed successfully
before ATMIOC_REJECT can be invoked.) ATMIOC_REJECT is invoked on the
same file descriptor as the ATMIOC_LISTEN call. This ioctl() causes the ATM
Signalling software to issue an ATM UNI RELEASE message.

The explanation for the rejection is given in the call’s argument and is any of
the ATM UNI cause codes, summarized in Appendix C.

The program calling this ioctl() can retrieve the next request from the queue
immediately.

Note: This ioctl() cannot be used to release an existing SVC or to stop
queuing SVC requests onto a registered queue. To stop accepting SVC setup
requests, an application must close the file descriptor associated with the
ATMIOC_REGISTER. To tear down (clear) an active SVC, the calling
application closes the file descriptor associated with ATMIOC_SETUP.

Usage

Use the following format:

ioctl (listen_fd_atm, ATMIOC_REJECT, &reject);

where listen_fd_atm is the same file descriptor used in the ATMIOC_LISTEN call,
and reject is an atm_reject_t structure.

90

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Argument Values

The atm_reject_t structure should be prepared as described in
Table 3-17.

Success or Failure

If successful, ATMIOC_REJECT returns zero.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Relevant Structures

From the sys/atm_user.h file:

typedef struct {
int callHandle;
int cause;

} atm_reject_t;

Errors

Possible errors include:

EFAULT An error occurred when the ATM software attempted to
read the call’s argument.

EINVAL The supplied callHandle did not identify a registered queue.
Or, the ATM software discovered that the queue was empty.

ENODEV The board was not in the UP or DOWN state. Or, the port
was not operational.

Table 3-17 Recommended Values for ATMIOC_REJECT’s Argument

Field in
atm_reject_t

Type Values

callHandle int This value must be the out value from the
ATMIOC_LISTEN for this SVC.

cause int The reason the application is rejecting the setup request.
Can be any of the ATM UNI causes listed in Table C-3.

SVC Commands

91

ATMIOC_SETUP

The ATMIOC_SETUP ioctl() is invoked by a calling party to set up a
point-to-point SVC with traffic contract parameters specified in the call’s
argument. The application must block until the ATM driver replies, which it
does when the SVC is either ready to use or has been refused. The driver
puts the calling process to sleep until the call is complete or has been
rejected.

This ioctl() causes the ATM Signalling software to initiate an ATM UNI
SETUP request message for creation of both a forward and a backward
channel. When the remote endpoint accepts the connection request, the
driver wakes the caller up and returns the negotiated traffic contract, which
can be different (smaller) than what was specified in the call. Once open, the
SVC is accessed by read()s from and write()s to the specified file descriptor.
The file descriptor opened for the ATM device (fd_atm) should be readable
and writable.1

To tear down (clear) this SVC, the application simply closes the file
descriptor. This causes the ATM Signalling software to generate an ATM
UNI RELEASE message.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_SETUP, & setup);

where fd_atm is a read-write file descriptor for the desired ATM hardware
and setup is an atm_setup_t structure.

1 It is not possible to create a unidirectional SVC.

92

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Argument Values

The atm_setup_t structure should be prepared as described in
Table 3-18.

Table 3-18 Recommended Values for ATMIOC_SETUP’s Argument

Field in atm_setup_t Recommended
Value

Values

callparams struct

calledNumber struct See “The atm_address_t Structure” on
page 58.

callingNumber struct See “The atm_address_t Structure” on
page 58.

fwdMaxCSDU u_short
Upon return
=out value

See “The MaxCSDU Variables” on page 67.
Out value: when the ioctl() returns
successfully, this field contains the
negotiated value, which may be smaller
than the original value.

bwdMaxCSDU u_short
Upon return
=out value

See “The MaxCSDU Variables” on page 67.
Out value: when the ioctl() returns
successfully, this field contains the
negotiated value, which may be smaller
than the original value.

fwdCellRate struct See “The cellrate_t Structure” on page 61.

bwdCellRate struct See “The cellrate_t Structure” on page 61.

fwdQOS char See “The QOS Variables” on page 65.

bwdQOS char See “The QOS Variables” on page 65.

blliCount char 0-3. Number of BLLI values in blli[] field.
When this count is set to zero, the software
specifies BLLI_NULL (which is the same as
setting blliCount=1 and blli[0]=BLLI_NULL).

SVC Commands

93

Success or Failure

If successful, ATMIOC_SETUP returns zero. The out values should be read.

When a failure occurs within the driver (before it has placed the request onto
the network), the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors. Under this condition,
the reject field is zero. When a failure is due to a negative response from the
network, the ioctl() wakes the sleeping program and returns -1 with an EIO
error stored in errno . The reject out value contains information about the
network’s reason for the failure, so it should be read.

blli[3] array of char
Upon return
=out value

See “The BLLI Variable” on page 65.
Out value: when the ioctl() returns
successfully, the first element (blli[0])
contains the negotiated value, which may be
any one of the original values.

bearerClass char See “The bearerClass Variable” on page 67.

sscsType char Zero. Reserved for future use.

reject struct

Upon failure =
out value.

See “The reject_reason_t Structure” on
page 64.
Out value: if the setup request fails to create
an SVC, this structure contains the reason. A
zero indicates that the failure occurred in the
driver (before contacting the ATM
Signalling daemon). A non-zero value
indicates that the failure or rejection
occurred at the called endpoint or at an
intermediate system. The cause field
identifies the cause for the failure as
described in Appendix C.

Table 3-18 (continued) Recommended Values for ATMIOC_SETUP’s

Field in atm_setup_t Recommended
Value

Values

94

Chapter 3: IRIS ATM ioctl() Commands for Switched VCs

Out Values

The calling party should check the values in the xxxMaxCSDU and blli[0]
fields of the call’s argument to discover the negotiated parameters. If the
new values are acceptable, the calling party can start using the SVC. If the
traffic contract is unacceptable (which really should not ever occur since the
negotiated values are always lower), the application should close the file
descriptor to close the connection. This action causes the IRIS ATM
signalling subsystem to generate a RELEASE.

When the ioctl() fails to create an SVC, the out value in the reject field of the
argument contains one of the causes described in Appendix C. A reject field of
zero indicates that the ioctl() failed within the driver (not due to a negative
response from the network).

Relevant Structures

The atm_address_t, cellrate_t, and reject_reason_t structures,
and the MaxCSDU, QOS, bearerClass , and blli variables are described in
“Frequently Used Structures” on page 58.

From the sys/atm_user.h file:

typedef struct {
ppcallparams_t callparams;
reject_reason_t reject;

} atm_setup_t;

typedef struct {
atm_address_t calledNumber;
atm_address_t callingNumber;
u_short fwdMaxCSDU, bwdMaxCSDU;
cellrate_t fwdCellRate,bwdCellRate;
char fwdQOS, bwdQOS;
char blliCount;
char blli[3];
char bearerClass;
char sscsType; /* reserved for future use */
char bhli; /* reserved for future use */

} ppcallparams_t;

SVC Commands

95

Errors

Possible errors include:

EFAULT An error occurred when the ATM software attempted to
read the call’s argument.

EINTR While waiting for a response from the switch, the driver
was interrupted. The setup request cannot be completed.
Try again.

EINVAL The file descriptor was already bound (for example, with
ATMIOC_CREATEPVC, ATMIOC_SETUP, ATMIOC_MPSETUP, or
ATMIOC_ACCEPT). Or, the access mode (read/write) was
incorrect.

EIO The setup call was rejected by the network (an intermediate
system) or by the called party. The reasons have been
written into the reject field of the argument (which is a
reject_reason_t structure). See “The reject_reason_t
Structure” on page 64 and Appendix C.

ENODEV The board was not in the UP or DOWN state.
Or, the port was not operational.

ENOSPC The driver was not able to allocate a userHandle to the SVC.

97

Chapter 4

4. IRIS ATM ioctl() Commands for Use by ILMI
Modules

This chapter summarizes the IRIS ATM application interface calls provided
for use by interim local management interface (ILMI) modules. The calls
allow an ILMI module to communicate with the IRIS ATM subsystem in
retrieving and configuring UNI and MIB information. In most situations,
these calls do not need to be used by customer-developed applications since
the IRIS ATM ILMI software (atmilmid) does the tasks described in this
chapter. However, these commands are provided for customers who want to
use their own ILMI software for ATM network management.

98

Chapter 4: IRIS ATM ioctl() Commands for Use by ILMI Modules

Include Files for ILMI Programs

The following files must be included in any program using these
ATM-specific ioctl() calls:

• ”sys/atm.h”

• ”sys/atm_user.h”

ILMI Commands

This section describes each ATM ILMI ioctl() command in detail. The
commands are organized alphabetically.

Table 4-1 Summary of ILMI ioctl() Calls

Command Brd
State

Description More Info

ATMIOC_GETMIBSTATS up/dn Retrieves data from an ATM
subsystem for the ATM UNI MIB.

page 102

ATMIOC_GETPORTINFO up/dn Retrieves status and hardware
specification information about the
device.

page 104

ATMIOC_GETATMLAYERINFO up/dn Retrieves configuration information
about the ATM layer of the device.

page 99

ATMIOC_GETVCCTABLEINFO up/dn Retrieves information about all the
VCCs currently open on the device.

page 107

ATMIOC_GETATMADDR up/dn Retrieves the device’s ATM address. page 112

ATMIOC_SETATMADDR up/dn Sets (configures) the ATM address
for the device.

page 116

ILMI Commands

99

ATMIOC_GETATMLAYERINFO

The ATMIOC_GETATMLAYERINFOioctl() command is invoked by an ILMI
application to retrieve information about the ATM layer for inclusion in an
ATM management information database (MIB).

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_GETATMLAYERINFO, &layerinfo);

wherelayerinfo is an atm_layerinfo_t structure.

Argument Values

The argument is a pointer to an empty atm_layerinfo_t structure.

Success or Failure

If successful, ATMIOC_GETATMLAYERINFO returns zero. The out values should
be read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

100

Chapter 4: IRIS ATM ioctl() Commands for Use by ILMI Modules

Out Values

The retrieved values are copied to the structure pointed to by the call’s
argument, described in Table 4-2.

Table 4-2 Values Retrieved by ATMIOC_GETATMLAYERINFO

Field in
atm_layerinfo_t

Type Values

maxVPCs int 0 to 0xFF (inclusive)

maxVCCs int 0 to 0xFFFFFF (inclusive)

configuredVPCs int 0 to 0xFF (inclusive)

configuredVCCs int 0 to 0xFFFFFF (inclusive)

maxVPIbits int 0 to 0x8 (inclusive)

maxVCIbits int 0 to 0x20 (inclusive)

uniType int The type of UNI maintained for the port:

1 = PUBLIC_UNI
2 = PRIVATE_UNI 2

ILMI Commands

101

Relevant Structures

The atm_layerinfo_t structure is described Table 4-2 and included below
as it is defined in the sys/atm_user.h file:

typedef struct {
int maxVPCs;
int maxVCCs;
int configuredVPCs;
int configuredVCCs;
int maxVPIbits;
int maxVCIbits;
int uniType;

} atm_layerinfo_t;

Errors

Possible errors include:

EFAULT An error occurred when the ATM software attempted to
write the call’s argument.

ENODEV The board was not in the UP or DOWN state.

102

Chapter 4: IRIS ATM ioctl() Commands for Use by ILMI Modules

ATMIOC_GETMIBSTATS

The ATMIOC_GETMIBSTATSioctl() command is invoked by an ILMI
application to retrieve information about overall performance on the UNI
for inclusion in an ATM management information database (MIB).

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_GETMIBSTATS, &mibstats);

wheremibstats is an atm_getmibstats_t structure.

Argument Values

The argument is a pointer to an empty atm_getmibstats_t structure.

Success or Failure

If successful, ATMIOC_GETMIBSTATS returns zero. The out values should be
read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

ILMI Commands

103

Out Values

The retrieved values are copied to the structure pointed to by the call’s
argument, described in Table 4-3.

Relevant Structures

The atm_getmibstats_t structure is described in Table 4-3 and included
below as defined in the sys/atm_user.h file:

typedef struct {
int receivedCells;
int droppedReceivedCells;
int cellsTransmitted;

} atm_getmibstats_t;

Errors

Possible errors include:

EFAULT An error occurred when the ATM software attempted to
write the call’s argument.

ENODEV The board was not in the UP or DOWN state.

Table 4-3 Values Retrieved by ATMIOC_GETMIBSTATS

Field in atm_getmibstats_t Type Description

receivedCells int Total number of ATM cells received.

droppedReceivedCells int Total number of ATM incoming cells that
were dropped due to errors or unknown
VPI/VCI addresses.

cellsTransmitted int Total number of ATM cells transmitted.

104

Chapter 4: IRIS ATM ioctl() Commands for Use by ILMI Modules

ATMIOC_GETPORTINFO

The ATMIOC_GETPORTINFOioctl() command is invoked by an ILMI
application to retrieve information about the hardware for inclusion in an
ATM management information database (MIB).

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_GETPORTINFO, &portinfo);

whereportinfo is an atm_portinfo_t structure.

Argument Values

The argument is a pointer to an empty atm_portinfo_t structure.

Success or Failure

If successful, ATMIOC_GETPORTINFO returns zero. The out values should be
read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

ILMI Commands

105

Out Values

The retrieved values are copied to the structure pointed to by the call’s
argument, described in Table 4-4.

Table 4-4 Values Retrieved by ATMIOC_GETPORTINFO

Field in atm_portinfo_t Type Values

portOperStatus int The status of the port:

1 = OPSTATUS_OTHER
2 = OPSTATUS_INSERVICE
3 = OPSTATUS_OUTOFSERVICE
4 = OPSTATUS_LOOPBACK

portXmitType int The physical layer protocol:

1 = XMITTYPE_UNKNOWN
2 = XMITTYPE_SONETSTS3C
3 = XMITTYPE_DS3
4 = XMITTYPE_4B5B
5 = XMITTYPE_8B10B

portMediaType int The type of transport medium used on the port:

1 = MEDIATYPE_UNKNOWN
2 = MEDIATYPE_COAX
3 = MEDIATYPE_SINGLEMODE
4 = MEDIATYPE_MULTIMODE
5 = MEDIATYPE_SHIELDEDTP
6 = MEDIATYPE_UNSHIELDEDTP

106

Chapter 4: IRIS ATM ioctl() Commands for Use by ILMI Modules

Relevant Structures

The atm_portinfo_t structure is described in Table 4-4 and included
below as it is defined in the sys/atm_user.h file:

typedef struct {
int portOperStatus;
int portXmitType;
int portMediaType;

} atm_portinfo_t;

Errors

Possible errors include:

EFAULT An error occurred when the ATM software attempted to
write the call’s argument.

ENODEV The board was not in the UP or DOWN state.

ILMI Commands

107

ATMIOC_GETVCCTABLEINFO

The ATMIOC_GETVCCTABLEINFOioctl() command is invoked by an ILMI
module to retrieve information about each open virtual channel (VC). The
retrieved listing includes permanent and switched VCs.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_GETVCCTABLEINFO, &sioc);

wheresioc is an atmsioc_t structure.

Argument Values

The pointer to sioc identifies an instance of an atmsioc_t structure. The sioc
should be set up as summarized in Table 4-5.

Table 4-5 Recommended Values for ATMIOC_GETVCCTABLEINFO’s
Argument

Field of
atmsioc_t

Recommended Value Comments

*ptr =pointer to atm_vcce_t[]

Upon return =out value

Pointer to location for retrieved
information.

Out value: an array of
atm_vcce_t structures

len =sizeof(atm_vcce_t [MAX_FWD_VCS+
MAX_RVS_VCS])

Upon return =out value

Maximum possible size of the
table.
Out value: length of retrieved
table

108

Chapter 4: IRIS ATM ioctl() Commands for Use by ILMI Modules

Success or Failure

If successful, ATMIOC_GETVCCTABLEINFO returns zero. The out values should
be read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Out Values

The len field in the argument (sioc) is updated to contain the actual length of
the retrieved data, as described in Table 4-5. The retrieved data are written
at the location indicated by the sioc pointer as an array of atm_vcce_t

structures. Each table entry is one structure, as described in Table 4-6.

Table 4-6 Values Retrieved by ATMIOC_GETVCCTABLEINFO

Field in
atm_vcce_t

Type Values

vpi int The VC’s virtual path identifier.

vci int The VC’s virtual channel identifier.

xmit_cellrate struct cellrate_t The VC’s transmit cellrate. See Table 4-7.

recv_cellrate struct cellrate_t The VC’s receive cellrate. See Table 4-7.

xmitQOS int The quality of service on the VC’s transmit
channel.

recvQOS int The quality of service on the VC’s receive
channel.

ILMI Commands

109

Table 4-7 Cellrate Values

Field Type Values

cellrate_type char From Table 3-4

rate union One of the structures below:

pcr_0_01 struct

pcr0 int Peak cellrate for CLP 0, in cells per second

pcr01 int Peak cellrate for CLP 0+1, in cells per second

pcr_01 struct

pcr01 int Peak cellrate for CLP 0+1, in cells per second

psb_0_01 struct

pcr01 int Peak cellrate for CLP 0+1, in cells per second

scr0 int Sustainable cellrate for CLP 0, in cells per second

mbs0 int Max Burst Size for CLP 0, in cells per burst

psb_01 struct

pcr01 int Peak cellrate for CLP 0+1, in cells per second

scr01 int Sustainable cellrate for CLP 0+1, in cells per second

mbs01 int Max Burst Size for CLP 0+1, in cells per burst

110

Chapter 4: IRIS ATM ioctl() Commands for Use by ILMI Modules

Relevant Structures

The atm_vcce_t structure is described Table 4-6 and included below as
defined in the sys/atm_user.h file. The cellrate_t structure is described in
Table 4-7 and is also included below as it is defined in the sys/atm_user.h file.

typedef struct {
int vpi;
int vci;
cellrate_t xmit_cellrate;
cellrate_t recv_cellrate;
int xmitQOS;
int recvQOS;

} atm_vcce_t;

typedef struct {
char cellrate_type;
union {

/* for cellrate_type = CRT_PEAK, CRT_PEAK_TAG */
struct {

int pcr0;
int pcr01;

} pcr_0_01;

/* for cellrate_type = CRT_PEAK_AGG, CRT_BEST_EFFORT */
struct {

int pcr01;
} pcr_01;

/* for cellrate_type = CRT_PSB, CRT_PSB_TAG */
struct {

int pcr01;
int scr0;
int mbs0;

} psb_0_01;

/* for cellrate_type = CRT_PSB_AGG */
struct {

int pcr01;
int scr01;
int mbs01;

} psb_01;

} rate;
} cellrate_t;

ILMI Commands

111

Errors

Possible errors include:

EFAULT An error occurred when the ATM software attempted to
write the call’s argument.

EINVAL The argument’s length is too small to accommodate the
table. No data has been copied out.

ENODEV The board was not in the UP or DOWN state.

112

Chapter 4: IRIS ATM ioctl() Commands for Use by ILMI Modules

ATMIOC_GETATMADDR

The ATMIOC_GETATMADDRioctl() command is invoked by an ILMI module to
retrieve the ATM address that is currently being used on the device (port).

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_GETATMADDR, &address);

where address is an atm_address_t structure.

Argument Values

The argument is a pointer to an empty atm_address_t structure (described
in Table 4-8).

Success or Failure

If successful, ATMIOC_GETATMADDR returns zero. The out values should be
read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

ILMI Commands

113

Out Values

The retrieved ATM address, described in Table 4-8 and Figure 4-1, is copied
into the call’s argument. The address can be either the ATM NSAP or
native-E.164 format.

Table 4-8 Values Retrieved by ATMIOC_GETATMADDR

Field in
atm_address_t

Type Values

addrType char The type of ATM address:

0 = NULLADDR_TYPE
0x02 = NSAP_TYPE
0x11 = E164_TYPE

addr union

 nsap char nsap_address_t[20] See Figure 4-1.

 e164 e164_address_t Up to 15 bytes. See definition in
“Relevant Structures.”

114

Chapter 4: IRIS ATM ioctl() Commands for Use by ILMI Modules

Figure 4-1 ATM Address: NSAP Format

10 or 4 octets

47

2 or 8
octets

AFI IDI High−order DSP

1 octet

High−order DSPDCC39 ESI SEL

ICD

AFI = authority and format identifier (8 bits)
IDI = initial domain identifier (16 or 64 bits)
DSP = domain specific part (136 or 88 bits)

DCC = data country code (16 bits)
ICD = international code designator (16 bits)
ESI = end system identifier; can be a MAC address (48 bits)
 IRIS ATM registers port’s MAC addresss for this field.
SEL = end system selector; defined by local system, not by ATM standard (8 bits)
 IRIS ATM software makes this field match the logical network interface number,
 so atm1 uses SEL=0x01 and atm47 uses SEL=0x2F.

ESI SEL

an E.164 address/number45 ESI SEL

2 octets

2 octets

8 octets

10 octets

10 octets

4 octets

20 octets
total

High−order DSP

6 octets

Low−order DSP

6 octets

6 octets

High−order DSP

1 oct.

1 oct.

1 oct.

7 octets

Assigned at EndpointNetwork Prefix: assigned by switch

ILMI Commands

115

Relevant Structures

The atm_address_t structure is described below, as it is defined in the
sys/atm_user.h file:

typedef struct atm_address {
char addrType;
union {

nsap_address_t nsap;
e164_address_t e164;

 } addr;
} atm_address_t;

typedef char nsap_address_t[20];

typedef struct e164_address {
unsigned char len;
char addr[15];

} e164_address_t;

Errors

Possible errors include:

EFAULT An error occurred when the ATM software attempted to
write the call’s argument.

ENODEV The board was not in the UP or DOWN state. Or, the port
was not operational.

116

Chapter 4: IRIS ATM ioctl() Commands for Use by ILMI Modules

ATMIOC_SETATMADDR

The ATMIOC_SETATMADDRioctl() command is invoked by an ILMI module to
set the ATM address for the port. The program making this call must have
superuser (root) access privileges.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_SETATMADDR, &address);

where address is an atm_address_t structure.

Argument Values

The atm_address_t structure should be prepared as described in
Table 4-9.

Table 4-9 Recommended Values for ATMIOC_SETATMADDR’s Argument

Field in
atm_address_t

Type Values

addrType char The type of ATM address:

0 = NULLADDR_TYPE
0x02 = NSAP_TYPE
0x11 = E164_TYPE

addr union

nsap char nsap_address_t[20] 20 bytes as illustrated in Figure 4-1.

e164 struct e164_address_t

len u_char Number of digits in addr array.

addr char addr[15] Up to 15 digits.

ILMI Commands

117

Success or Failure

If successful, ATMIOC_SETATMADDR returns zero.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Relevant Structures

The atm_address_t structure is described below, as it is defined in the
sys/atm_user.h file:

typedef struct atm_address {
char addrType;
union {

nsap_address_t nsap;
e164_address_t e164;

 } addr;
} atm_address_t;

typedef char nsap_address_t[20];

typedef struct e164_address {
unsigned char len;
char addr[15];

} e164_address_t;

Errors

Possible errors include:

EFAULT An error occurred when the ATM software attempted to
read the call’s argument.

ENODEV The board was not in the UP or DOWN state. Or, the port
was not operational.

EPERM The program does not have superuser (root) access
privileges.

119

Chapter 5

5. IRIS ATM ioctl() Commands for
Communicating With the Hardware

This chapter summarizes the IRIS ATM application interface calls that
communicate with IRIS ATM boards.

Table 5-1 Summary of ATM-OC3c ioctl() Calls

Type of Operation Command
(or function)

Usage Brd
State

Description More Info

Retrieving board status
and information

ATMIOC_GETSTAT all Retrieves current status
information from ATM-OC3c
board.

page 135

ATMIOC_GETIOSTAT up/dn Retrieves driver-internal
statistics.

page 127

ATMIOC_GETCONF up/dn Reads configuration information
from ATM-OC3c board.

page 124

ATMIOC_GETOPT root
only

up/dn Retrieves settings for board’s
operating modes/options.

page 131

ATMIOC_GETRATEQ up Retrieves setting for one of the
board’s eight transmission rates.

page 132

ATMIOC_GETMACADDR up/dn Retrieves the medium access
control (MAC) address from
ATM-OC3c board.

page 130

Configuring ATM-OC3c
board

ATMIOC_SETCONF root
only

up/dn Configures ATM-OC3c board. page 147

120

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

Include Files for Hardware Calls

The following file must be included in any program using the ATM-specific
ioctl() calls for controlling the hardware:

• ”sys/atm_user.h”

Hardware Commands

This section describes each ATM hardware control ioctl() command in detail.
The commands are organized alphabetically.

ATMIOC_SETOPT root
only

up/dn Sets (configures) the board’s
operating modes/options:
loopback and clock recovery.

page 150

ATMIOC_SETRATEQ root
only

up Sets the transmission rate on one
of the eight queues

page 153

Controlling the
ATM-OC3c board

ATMIOC_CONTROL root
only

all Transitions board to different
state:

UP: to UP state
INIT : to DOWN state
RESET: to pre-init state

page 121

Table 5-1 (continued) Summary of ATM-OC3c ioctl() Calls

Type of Operation Command
(or function)

Usage Brd
State

Description More Info

Hardware Commands

121

ATMIOC_CONTROL

The ATMIOC_CONTROLioctl() command changes the state of the ATM-OC3
board. This command is available only to the superuser.

Once powered on, the ATM-OC3 board has three states, as described below:

• Pre-initialized:
The board is ready to be initialized. This state exists after each reset of
the board. The only commands available in this state are
ATMIOC_CONTROL with the INIT argument and ATMIOC_GETSTAT.

• Down:
The board is initialized, alive, and ready to respond to the driver;
however, the board is not receiving or transmitting over its network
connection. In this state the board’s memory can be configured and
written.

• Up:
The board is receiving and transmitting over its network connection.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_CONTROL, int);

where int is one of the values from Table 5-2.

122

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

Argument Values

The int argument’s values are described in Table 5-2.

Success or Failure

If successful, ATMIOC_CONTROL returns zero.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Table 5-2 Values for ATMIOC_CONTROL’s Argument

int Required
State of
Board

Description

ATM_CONTROL_RESET Any Allowed under all conditions. Shuts down
board, throws away all in-progress data and
host-to-board commands, and puts board
into pre-initialized state. Wakes up processes
that are awaiting completion of host-to-board
commands and returns ENODEV.

ATM_CONTROL_INIT Pre-init Initializes board and brings it to DOWN
state. Not allowed when there are open file
descriptors for the device.

ATM_CONTROL_UP Down Brings board to UP state.

Hardware Commands

123

Errors

Possible errors include:

EBUSY When trying to INIT (initialize, bring to DOWN state) the
board, the driver found that there are file descriptors open
for this device. These must be closed before initializing the
board.

EINVAL When trying to INIT (initialize) or bring the board to the UP
state, the driver found that the board was not in the
required state.

EIO When trying to INIT (initialize) the board, the driver could
not successfully bring the board into the DOWN state.

EPERM The calling application does not have superuser access
privileges.

ETIME When trying to bring the board to the UP state, the driver’s
call to the board timed out.

124

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

ATMIOC_GETCONF

The ATMIOC_GETCONFioctl() command retrieves the ATM-OC3c board’s
current configuration.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_GETCONF, & conf);

where conf is an atm_conf_t structure.

Argument Values

The argument is a pointer to an atm_conf_t structure, described in
Table 5-3.

Success or Failure

If successful, ATMIOC_GETCONF returns zero. The out values should be read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Out Values

The retrieved configuration values are written into the argument as
described in Table 5-3.

Table 5-3 Values Retrieved by ATMIOC_GETCONF

Field Default Value Comments

sign ATM_MAGIC ATM-OC3c board’s signature.

vers varies ATM-OC3c board’s / FLASH EPROMs version

flags 0x0608 Hardware and firmware capabilities. See Table 5-4.

Hardware Commands

125

xtype 2 Transmission type:

1 =XT_UNKNOWN

2 =XT_STS3C, SONET STS-3c PHY at 155.52 Mbps

3 =XT_DS3=3, DS3 PHY at 44.736 Mbps

4 =XT_4B5B=4, 4B/5B encoding PHY at 100 Mbps

5 =XT_8B10B, 8B/10B encoding PHY at 155.52 Mbps

mtype 4 Media type:

1 =MT_UNKNOWN

2 =MT_COAX, coax cable

3 =MT_SMF, single mode fiber

4 =MT_MMF, multi-mode fiber

5 =MT_STP, shielded twisted pair

6 =MT_UTP, unshielded twisted pair

maxvpibits 8 Maximum number of bits that can be used for a VPI.
Range of possible values is 0 to 8.

maxvcibits 16 Maximum number of bits that can be used by a VCI.
Range of possible values is 0 to 16.

hi_pri_qs 4 Number of transmission rate queues that are treated
as high-priority queues.

lo_pri_qs 4 Number of transmission rate queues that are treated
as low-priority queues.

xmt_large_size 12K Size (in bytes) of large-sized transmit buffers.

xmt_large_bufs 78 Number of large-sized transmit buffers.

xmt_small_size 2K Size (in bytes) of small-sized transmit buffers.

xmt_small_bufs 78 Number of small-sized transmit buffers.

rcv_large_size 12K Size (in bytes) of large-sized receive buffers.

rcv_large_bufs 69 Number of large-sized receive buffers.

rcv_small_size 0 Size (in bytes) of small-sized receive buffers.

rcv_small_bufs 0 Number of small-sized receive buffers. This size
buffer is only used for AAL3/4.

reserved 0

Table 5-3 (continued) Values Retrieved by ATMIOC_GETCONF

Field Default Value Comments

126

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

Relevant Structures

Table 5-3 and Table 5-4 describe the atm_conf_t structure, as defined in the
atm_b2h.h file (which is automatically included in the atm_user.h file).

Errors

Possible errors include:

EFAULT An error occurred when the driver was copying the
retrieved data to the area specified by the pointer.

ENODEV The board was not in the UP or DOWN state.

ETIME The driver’s command to the board timed out.

Table 5-4 Capability Flags for atm_conf_t

Flag Mask Description

ATM_CAP_AAL_1 0x0001 AAL1 supported

ATM_CAP_AAL_2 0x0002 AAL2 supported

ATM_CAP_AAL_34 0x0004 AAL3/4 supported

ATM_CAP_AAL_5 0x0008 AAL5 supported

ATM_CAP_AAL_0 0x0010 AAL0 (raw) supported

ATM_CAP_AAL_5_NOTRAILER 0x0020 AAL5 without trailer supported

ATM_CAP_AAL_MASK 0x003f AAL mask

ATM_CAP_BARANGE 0x0100 Firmware supports variable size
buffers (malloc).

ATM_CAP_IN_CKSUM 0x0200 Board’s ffirmware does IP
checksums.

ATM_CAP_LOOP_TIMING 0x0400 Board does loop timing. Set with
ATMIOC_SETOPT.

ATM_CAP_DIAG_LOOPBACK 0x0800 Board receives what it sends. Set
with ATMIOC_SETOPT.

ATM_CAP_LINE_LOOPBACK 0x1000 Board sends what it receives. Set
with ATMIOC_SETOPT.

Hardware Commands

127

ATMIOC_GETIOSTAT

The ATMIOC_GETIOSTATioctl() command retrieves driver-internal I/O
statistics.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_GETIOSTAT, & iostat);

where iostat is an atm_iostat_t structure.

Argument Values

The argument is a pointer to an atm_iostat_t structure.

Success or Failure

If successful, ATMIOC_GETIOSTAT returns zero. The out values should be
read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Out Values

The retrieved values are written to the argument, summarized in Table 5-5.

128

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

Relevant Structures

The atm_iostat_t structure, from the atm_user.hfile, is described in
Table 5-5.

Table 5-5 Retrieved Values for ATMIOC_GETIOSTAT

Field Description

ipkts Count of total incoming packets over CDEV interfaces

ibytes Count of total incoming bytes over CDEV interfaces

ierrs Count of total incoming errors over CDEV interfaces

opkts Count of total outgoing packets over CDEV interfaces

obytes Count of total outgoing bytes over CDEV interfaces

oerrs Count of total outgoing errors over CDEV interfaces

xcmd_dly Count of commands that were delayed (not immediately placed
on the command queue) due to heavy use of the command
interface

xmit_dly Count of transmit commands that were delayed (not
immediately placed on the command queue) due to heavy use
of the command interface

intrs Count of host-to-board interrupts

b2hs Count of board-to-host interrupts

xmit_reqs Count of transmit requests

h2b_kicks Number of times host has reset the board

xmit_intrs Count of transmit interrupts

odone_intrs Count of transmit done messages sent by board to host. When
this count equals the xmit_reqs count, all data on the transmit
queues has been processed

recv_intrs Count of receive interrupts

fet_stat Number of times host has retrieved board status (that is,
number of times XCMD_FET_STAT has been called)

Hardware Commands

129

Errors

Possible errors include:

EFAULT An error occurred when the driver was copying the
retrieved data to the area specified by the pointer.

ENODEV The board was not in the UP or DOWN state.

130

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

ATMIOC_GETMACADDR

The ATMIOC_ GETMACADDRioctl() command reads the media access control
(MAC) address from the ATM-OC3c board.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_GETMACADDR, &addr);

where addr is an array of atm_macaddr_t structures.

Argument Values

The argument is a pointer to an atm_macaddr_t[6] , an array of 6 unsigned
chars.

Success or Failure

If successful, ATMIOC_GETMACADDR returns zero. The out values should be
read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Out Values

The retrieved MAC address is written to the call’s argument.

Errors

Possible errors include:

EADDRNOTAVAILThe checksum on the retrieved address is not correct.

EFAULT An error occurred when the driver was copying the
retrieved data to the area specified by the pointer.

ENODEV The board was not in the UP or DOWN state.

ETIME The driver’s command to the board timed out.

Hardware Commands

131

ATMIOC_GETOPT

The ATMIOC_GETOPTioctl() command retrieves the current settings for the
ATM-OC3c board’s loopback and clock recover options. Requires superuser
access.

Usage

Use the following format:

ioctl (fd_atm , ATMIOC_GETOPT, & int);

Argument Values

The argument is a pointer to an unsigned integer.

Success or Failure

If successful, ATMIOC_GETOPT returns zero. The out values should be read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Out Values

The retrieved option setting (mask) is written to the location provided in the
argument. Table 5-13 summarizes the values and masks that are available.
The options are described in Table 5-14. The value for normal operation,
which is also the default, is ATM_OPT_LOOP_TIMING (that is, 0x1).

Errors

Possible errors include:

EPERM The invoker does not have superuser access privileges.

EFAULT An error occurred when the driver was copying the
retrieved data to the area specified by the pointer.

ENODEV The board was not in the UP or DOWN state.

ETIME The driver’s command to the board timed out.

132

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

ATMIOC_GETRATEQ

The ATMIOC_GETRATEQioctl() command retrieves information about one rate
queue from the ATM-OC3c board. The board must be in the UP state.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_GETRATEQ, & rateq);

where rateq is an atm_rate_q_t structure.

Argument Values

The argument is a pointer to an atm_rate_q_t structure, set up as
described in Table 5-6. The rate_queue_number field of the argument must be
set to one of the values described in Table 5-7.

Table 5-6 Recommended Values for ATMIOC_GETRATEQ’s Argument

Fields Value Description

rate_queue_number From Table 5-7 The queue whose rate is to be retrieved.

rate_value Zero

Upon return =
out value

Out value: 11-bit code from Table A-1

Hardware Commands

133

Success or Failure

If successful, ATMIOC_GETRATEQ returns zero. The out value should be read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Out Values

The retrieved value is written to the least significant word (the rate_value
field) of the atm_rate_q_t structure that is identified by the argument. The
rate_value is one of the rate codes summarized in the table in the
Appendix A.

Table 5-7 Rate Queue Identification Values

Name int Description

RQ_A0 0 High priority Bank A, queue 0

RQ_A1 1 High priority Bank A, queue 1

RQ_A2 2 High priority Bank A, queue 2

RQ_A3 3 High priority Bank A, queue 3

RQ_B0 4 Low priority Bank B, queue 0

RQ_B1 5 Low priority Bank B, queue 1

RQ_B2 6 Low priority Bank B, queue 2

RQ_B3 7 Low priority Bank B, queue 3

134

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

Relevant Structures

Table 5-6 describes the atm_rate_q_t structure, and its definition is
included below, as it is in the atm_b2h.h file (included in the atm_user.h file):

typedef struct atm_rate_q {
u_int rate_queue_number;
u_int rate_value;

} atm_rate_q_t;

Errors

Possible errors include:

EFAULT An error occurred when the driver was copying the
retrieved data to the area specified by the pointer.

EINVAL The specified rate queue identification number is invalid.

ENODEV The board is not in the UP state.

Hardware Commands

135

ATMIOC_GETSTAT

The ATMIOC_GETSTATioctl() command reads and returns the ATM-OC3c
board’s operational status.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_GETSTAT, & stat);

where stat is an atm_stat_t structure.

Argument Values

The argument is a pointer to an empty atm_stat_t structure (described in
Table 5-8).

Success or Failure

If successful, ATMIOC_GETSTAT returns zero. The out values should be read.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

136

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

Out Values

The retrieved statistical data are written to the argument, described in
Table 5-8. Figure 5-1 illustrates individual bits within the status fields of the
atm_stat_t structure.

Table 5-8 Values Retrieved by ATMIOC_GETSTAT

Field Description

hwstate The current state of the board:

0 = ATM_HWSTATE_PREINIT
1 = ATM_HWSTATE_DEAD
2 = ATM_HWSTATE_DOWN
3 = ATM_HWSTATE_UP

These states are described on page 121.

as_rx_packets_ok Total packets received OK

as_rx_cell_if_parity Cell error: parity error on cell interface

as_rx_cell_crc_error Cell error: CRC-10 error

as_rx_cell_seq_err Cell error: received out of sequence

as_rx_cell_size_err Cell error: size violates AAL 3 4

as_rx_cell_pkt_term Cell error: short cell terminated packet

as_rx_pkt_timeout Received packet error: reassembly never
completed

as_rx_pkt_bfr_oflo Received packet error: reassembly exceeded
buffer size

as_rx_pkt_crc_err Received packet error: packet CRC-32 was bad

as_rx_pkt_new_pkt Received packet error: new packet arrived, old
not done

as_rx_unknown_err Received packet error: none of the above

as_rx_cbr_cells CBR cells received

as_rx_raw_cells Raw cells received

as_rx_bytes_received Total bytes received without error

Hardware Commands

137

as_carrier_losses SUNI statistics

as_carrier_restorations SUNI statistics

as_carrier_transitions SUNI statistics

as_FF_pkt_ok FFRED completion count: packet sent without
error

as_FF_pkt_flush FFRED completion count packet flushed,
flush command

as_FF_pkt_pm_parity FFRED completion count packet flushed, PM
parity error

as_RF_exc_oos_com RFRED exception: out of sequence COM cell
received

as_RF_exc_oos_eom RFRED exception: out of sequence EOM cell
received

as_RF_exc_smlbuf RFRED exception: no small RX buffer
available, packet drop

as_RF_exc_lrgbuf RFRED exception: no large RX buffer
available, packet drop

as_RF_exc_invvci RFRED exception: cell received with invalid
VCI

as_RF_exc_invvpi RFRED exception: cell received with invalid
VPI

as_SONET_sbe SONET Section BIP-8 errors

as_SONET_lbe SONET Line BIP-24 errors

as_SONET_lfe SONET Line FEBEs

as_SONET_pbe SONET Path BIP-8 errors

as_SONET_pfe SONET Path FEBEs

as_SONET_chcs SONET correctable ATM HEC errors

as_SONET_uhcs SONET non-correctable ATM HEC errors

Table 5-8 (continued) Values Retrieved by ATMIOC_GETSTAT

Field Description

138

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

The meanings for the bits in the three status fields (defined in the atm_b2h.h
file) are described in Table 5-9 through Table 5-11, and Figure 5-1.

as_SONET_status See Table 5-9

as_FF_cells_sent FFRED’s total cells transferred

as_FF_status See Table 5-11

as_RF_status See Table 5-11

as_RF_cells_rcvd RFRED: total non-error cells received

as_RF_dropped_pkt RFRED: dropped because no free receive
buffers

as_RF_err_count RFRED: cells with CRC errors

as_RF_dropped_cbr RFRED: lack of space in the CBR queue

Table 5-9 Bits in as_SONET_status Field

Status Item Mask Comments

SONET_junk 0x8cd3001c Ignore these bits

SONET_losv 0x40000000 Loss-of-signal state (Reg 0x11)

SONET_lofv 0x20000000 Loss-of-frame state (Reg 0x11)

SONET_oofv 0x10000000 Out-of-frame state (Reg 0x11)

SONET_ferf 0x02000000 Far-end-receive-failure (Reg 0x18)

SONET_lais 0x01000000 Line Alarm Indication Signal (Reg 0x18)

SONET_plop 0x00200000 Loss of Path (Reg 0x30)

SONET_pais 0x00080000 Path Alarm Indication Signal (Reg 0x30)

SONET_pyel 0x00040000 Path Yellow Condition (Reg 0x30)

SONET_psl 0x0000ff00 Path Signal Label (C2) (Reg 0x37)

SONET_oocd 0x00000080 Out-of-cell-delineation (Reg 0x50)

Table 5-8 (continued) Values Retrieved by ATMIOC_GETSTAT

Field Description

Hardware Commands

139

SONET_tsoci 0x00000040 Xmit start-of-cell error (Reg 0x60)

SONET_tfovr 0x00000020 Xmit FIFO Overrun (Reg 0x60)

SONET_rfovr 0x00000002 Recv FIFO Overrun (Reg 0x51)

SONET_rfudr 0x00000001 Recv FIFO Underrun (Reg 0x51)

Table 5-10 Bits in as_FF_status Field

Status Item Mask Comments

FS_JUNK 0x003f00ff Ignore these bits. See the
F-FRED/SARA-T specification for
these bits.

FS_CM_PARERR 0x80000000

FS_NORM_PM_PARER 0x40000000

FS_CBR_PM_PARERR 0x20000000

FS_TCQ_NOT_EMPTY 0x10000000

FS_TCQ_FULL 0x08000000

FS_CELL_CTR_OF 0x04000000

FS_XMIT_DONE 0x02000000

FS_CBR_DONE 0x01000000

FS_RQ_BANKA_MIS 0x00800000

FS_RQ_BANKB_MIS 0x00400000

FS_OFF_LINE 0x00008000

FS_PRQ_FULL 0x00004000

FS_PRQ_EMPTY 0x00002000

FS_TCQ_EMPTY 0x00001000

Table 5-9 (continued) Bits in as_SONET_status Field

Status Item Mask Comments

140

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

FS_CM_ERROR 0x00000800

FS_VERSION 0x00000700

Table 5-11 Bits in as_RF_status Field

Status Item Mask Comments

RS_JUNK 0x08007000 Ignore these bits. See
R-FRED/SARA-R specification for
the details.

RS_PKT_CTR_OF 0x80000000

RS_ERR_CTR_OF 0x40000000

RS_CBR_CTR_OF 0x20000000

RS_CELL_CTR_OF 0x10000000

RS_CM_PARERR 0x04000000

RS_SML_FREEQ_MT 0x02000000

RS_LRG_FREEQ_MT 0x01000000

RS_EXCPQ_FL_I 0x00800000

RS_PCQ_FL_I 0x00400000

RS_CBRQ_FL_I 0x00200000

RS_RAWQ_FL_I 0x00100000

RS_EXCP_RCVD 0x00080000

RS_PKT_RCVD 0x00040000

RS_CBR_RCVD 0x00020000

RS_RAW_RCVD 0x00010000

RS_OFF_LINE 0x00008000

Table 5-10 (continued) Bits in as_FF_status Field

Status Item Mask Comments

Hardware Commands

141

RS_RAWQ_FULL 0x00000800

RS_RAWQ_EMPTY 0x00000400

RS_CBRQ_FULL 0x00000200

RS_CBRQ_EMPTY 0x00000100

RS_EXCPQ_FULL 0x00000080

RS_EXCPQ_EMPTY 0x00000040

RS_PCQ_FULL 0x00000020

RS_PCQ_EMPTY 0x00000010

RS_LRGQ_FULL 0x00000008

RS_LRGQ_EMPTY 0x00000004

RS_SMLQ_FULL 0x00000002

RS_SMLQ_EMPTY 0x00000001

Table 5-11 (continued) Bits in as_RF_status Field

Status Item Mask Comments

142

C
hapter

5: IR
IS A

T
M

 ioctl() C
om

m
and

s for C
om

m
unicating W

ith the H
ard

w
are

F
igure

5-1
B

it D
escriptions for Status Field

s W
ithin

atm
_stat_t

0
9

17
31RS_PKT_CTR_OF

RS_ERR_CTR_OF

RS_CBR_CTR_OF

RS_CELL_CTR_OF

RS_CM_PARERR

RS_SML_FREEQ_MT

RS_LRG_FREEQ_MT

RS_EXCPQ_FL_I

RS_PCQ_FL_I

RS_CBRQ_FL_I

RS_RAWQ_FL_I

RS_EXCP_RCVD

RS_PKT_RCVD

RS_CBR_RCVD

RS_RAW_RCVD

RS_OFF_LINE

RS_RAWQ_FULL

RS_RAWQ_EMPTY

RS_CBRQ_FULL

RS_CBRQ_EMPTY

RS_EXCPQ_FULL

RS_EXCPQ_EMPTY

RS_PCQ_FULL

RS_PCQ_EMPTY

RS_LRGQ_FULL

RS_LRGQ_EMPTY

RS_SMLQ_FULL

RS_SMLQ_EMPTY

x

x

x

x

FS_CM_PARERR

FS_NORM_PM_PARER

FS_CBR_PM_PARERR

FS_TCQ_NOT_EMPTY

FS_TCQ_FULL

FS_CELL_CTR_OF

FS_XMIT_DONE

FS_CBR_DONE

FS_RQ_BANKA_MIS

FS_RQ_BANKB_MIS

FS_OFF_LINE

FS_PRQ_FULL

FS_PRQ_EMPTY

FS_TCQ_EMPTY

FS_CM_ERROR

FS_VERSION

FS_VERSION

FS_VERSION

x

x

x

x

x

x

x

x

x

x

x

x

x

x

SONET_losv

SONET_lofv

SONET_oofv

SONET_ferf

SONET_lais

SONET_plop

SONET_pais

SONET_pyel

SONET_oocd

SONET_tsoci

SONET_tfovr

SONET_rfovr

SONET_rfudr

x

x

x

x

x

x

x

x

x

x

x

S
O

N
E

T
_psl

SONET_psl

0
15

22
31

8

as_S
O

N
E

T
_status

as_F
F

_status

as_ R
F

_status

0
31

Hardware Commands

143

Relevant Structures

The atm_stat_t structure is described in Table 5-8, and included below as
it is defined in the atm_user.h file and its included atm_b2h.h file:

typedef struct atm_stat {
u_int hwstate;
u_int as_rx_packets_ok;
u_int as_rx_cell_if_parity;
u_int as_rx_cell_crc_error;
u_int as_rx_cell_seq_err;
u_int as_rx_cell_size_err;
u_int as_rx_cell_pkt_term;

u_int as_rx_pkt_timeout;
u_int as_rx_pkt_bfr_oflo;
u_int as_rx_pkt_crc_err;
u_int as_rx_pkt_new_pkt;
u_int as_rx_unknown_err;

u_int as_rx_cbr_cells;
u_int as_rx_raw_cells;
u_int as_rx_bytes_received;

u_int as_carrier_losses;
u_int as_carrier_restorations;
u_int as_carrier_transitions;

u_int as_FF_pkt_ok;
u_int as_FF_pkt_flush;
u_int as_FF_pkt_pm_parity;

u_int as_RF_exc_oos_com;
u_int as_RF_exc_oos_eom;
u_int as_RF_exc_smlbuf;
u_int as_RF_exc_lrgbuf;
u_int as_RF_exc_invvci;
u_int as_RF_exc_invvpi;

144

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

u_int as_SONET_sbe;
u_int as_SONET_lbe;
u_int as_SONET_lfe;
u_int as_SONET_pbe;
u_int as_SONET_pfe;
u_int as_SONET_chcs;
u_int as_SONET_uhcs;
u_int as_SONET_status;

u_int as_FF_cells_sent;
u_int as_FF_status;
u_int as_RF_status;
u_int as_RF_cells_rcvd;
u_int as_RF_dropped_pkt;
u_int as_RF_dropped_cbr;

} atm_stat_t;

/* bit fields in SONET_status */
#define SONET_junk 0x8cd3001c
#define SONET_losv 0x40000000
#define SONET_lofv 0x20000000
#define SONET_oofv 0x10000000
#define SONET_ferf 0x02000000
#define SONET_lais 0x01000000
#define SONET_plop 0x00200000
#define SONET_pais 0x00080000
#define SONET_pyel 0x00040000
#define SONET_psl 0x0000ff00
#define SONET_oocd 0x00000080
#define SONET_tsoci 0x00000040
#define SONET_tfovr 0x00000020
#define SONET_rfovr 0x00000002
#define SONET_rfudr 0x00000001

/* bits in FF_status */
#define FS_JUNK 0x003f00ff
#define FS_CM_PARERR 0x80000000
#define FS_NORM_PM_PARER 0x40000000
#define FS_CBR_PM_PARERR 0x20000000
#define FS_TCQ_NOT_EMPTY 0x10000000
#define FS_TCQ_FULL 0x08000000
#define FS_CELL_CTR_OF 0x04000000
#define FS_XMIT_DONE 0x02000000
#define FS_CBR_DONE 0x01000000
#define FS_RQ_BANKA_MIS 0x00800000

Hardware Commands

145

#define FS_RQ_BANKB_MIS 0x00400000
#define FS_OFF_LINE 0x00008000
#define FS_PRQ_FULL 0x00004000
#define FS_PRQ_EMPTY 0x00002000
#define FS_TCQ_EMPTY 0x00001000
#define FS_CM_ERROR 0x00000800
#define FS_VERSION 0x00000700

/* bits in RF_status */
#define RS_JUNK 0x08007000
#define RS_PKT_CTR_OF 0x80000000
#define RS_ERR_CTR_OF 0x40000000
#define RS_CBR_CTR_OF 0x20000000
#define RS_CELL_CTR_OF 0x10000000
#define RS_CM_PARERR 0x04000000
#define RS_SML_FREEQ_MT 0x02000000
#define RS_LRG_FREEQ_MT 0x01000000
#define RS_EXCPQ_FL_I 0x00800000
#define RS_PCQ_FL_I 0x00400000
#define RS_CBRQ_FL_I 0x00200000
#define RS_RAWQ_FL_I 0x00100000
#define RS_EXCP_RCVD 0x00080000
#define RS_PKT_RCVD 0x00040000
#define RS_CBR_RCVD 0x00020000
#define RS_RAW_RCVD 0x00010000
#define RS_OFF_LINE 0x00008000
#define RS_RAWQ_FULL 0x00000800
#define RS_RAWQ_EMPTY 0x00000400
#define RS_CBRQ_FULL 0x00000200
#define RS_CBRQ_EMPTY 0x00000100
#define RS_EXCPQ_FULL 0x00000080
#define RS_EXCPQ_EMPTY 0x00000040
#define RS_PCQ_FULL 0x00000020
#define RS_PCQ_EMPTY 0x00000010
#define RS_LRGQ_FULL 0x00000008
#define RS_LRGQ_EMPTY 0x00000004
#define RS_SMLQ_FULL 0x00000002
#define RS_SMLQ_EMPTY 0x00000001

146

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

Errors

Possible errors include:

EFAULT An error occurred when the driver was copying the
retrieved data to the area specified by the pointer.

ENOMEM The driver was unable to place a command on the
host-to-board command queue due to lack of memory.

Hardware Commands

147

ATMIOC_SETCONF

The ATMIOC_SETCONFioctl() command configures the ATM-OC3c board. The
new configuration takes effect when the board is next brought into the UP
state. This command is available only to the superuser.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_SETCONF, & conf);

where conf is an atm_conf_t structure.

Argument Values

The pointer to conf identifies an instance of an atm_conf_t structure. The
desired configuration values must be in the atm_conf_t structure, as
described in Table 5-12.

Table 5-12 Recommended Values for ATMIOC_SETCONF’s Argument

Field Recommended
Setting

Comments

sign ATM_MAGIC ATM-OC3c board’s signature.

vers varies ATM_MIN_VERS, ATM_VERS_MASK,
ATM_CKSUM_VERS as defined in sys/atm_b2h.h.

ATM-OC3c board’s / FLASH EPROMs version.

flags 0x1E28 Flags indicating various functions for which the
ATM-OC3c board and its firmware’s are capable. For
example:

0x0008 = ATM_CAP_AAL_5, board uses AAL5

0x0200 =ATM_CAP_IN_CKSUM, board does IP checksum

(the full set of values are in sys/atm_b2h.h)

148

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

xtype 2 Transmission type:

1 =XT_UNKNOWN

2 =XT_STS3C, SONET STS-3c PHY at 155.52 Mbps

3 =XT_DS3=3, DS3 PHY at 44.736 Mbps

4 =XT_4B5B=4, 4B/5B encoding PHY at 100 Mbps

5 =XT_8B10B, 8B/10B encoding PHY at 155.52 Mbps

mtype 4 Media type:

1 =MT_UNKNOWN

2 =MT_COAX, coax cable

3 =MT_SMF, single-mode fiber

4 =MT_MMF, multi-mode fiber

5 =MT_STP, Shielded twisted pair

6 =MT_UTP, Unshielded twisted pair

maxvpibits 8 Maximum number of bits that can be used for a VPI. Range
of possible values is 0 to 8.

maxvcibits 16 Maximum number of bits that can be used by a VCI. Range
of possible values is 0 to 16.

hi_pri_qs 4 Number of high priority rate queues supported by the
board.

lo_pri_qs 4 Number of low priority rate queues supported by the
board.

xmt_large_size 12K Size (in bytes) of large-sized transmit buffers.

xmt_large_bufs 78 Number of large-sized transmit buffers.

xmt_small_size 2K Size (in bytes) of small-sized transmit buffers.

xmt_small_bufs 78 Number of small-sized transmit buffers.

rcv_large_size 12K Size (in bytes) of large-sized receive buffers.

rcv_large_bufs 69 Number of large-sized receive buffers (for AAL5).

rcv_small_size 0 Size (in bytes) of small-sized receive buffers (for AAL3/4).

rcv_small_bufs 0 Number of small-sized receive buffers (for AAL3/4).

reserved not valid Reserved for future use.

Table 5-12 (continued) Recommended Values for ATMIOC_SETCONF’s

Field Recommended
Setting

Comments

Hardware Commands

149

Success or Failure

If successful, ATMIOC_SETCONF returns zero.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Relevant Structures

The atm_conf_t structure is explained in Table 5-12.

Errors

Possible errors include:

EFAULT An error occurred during a copy of the data.

ENODEV The board was not in the UP or DOWN state.

EPERM The invoker does not have root (superuser) access
privileges.

ETIME The driver’s call to the board timed out.

150

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

ATMIOC_SETOPT

The ATMIOC_SETOPTioctl() command configures the ATM-OC3c board’s
loopback and clock recover options. The board starts functioning with the
new options almost immediately. These options are useful only for testing
purposes. This command is available only to the superuser.

Caution: This command is intended for testing purposes. Altering the
options to anything other than the default (ATM_OPT_LOOP_TIMING)
makes the board dysfunctional for normal operation.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_SETOPT, opt);

where opt is a u_int .

Argument Values

The opt is an unsigned integer that sets (enables) the bit or bits controlling
the board options. The normal and default setting is
ATM_OPT_LOOP_TIMING. Table 5-13 summarizes other values and the
masks that are available. The options are described in Table 5-14.

Table 5-13 Recommended Values for ATMIOC_SETOPT’s Argument

Possible Values Can Be Combined With Do Not Combine With

ATM_OPT_LOOP_TIMING
(This is the default.)

Normal operation or
ATM_OPT_LINE_LOOPBACK

ATM_OPT_DIAG_LOOPBACK

ATM_OPT_DIAG_LOOPBACK nothing ATM_OPT_LOOP_TIMING or
ATM_OPT_LINE_LOOPBACK

ATM_OPT_LINE_LOOPBACK ATM_OPT_LOOP_TIMING Normal operation or
ATM_OPT_DIAG_LOOPBACK

Hardware Commands

151

Table 5-14 ATM-OC3c Board’s Options

Mask Option Description

0x1 Loop Timing

(ATM_OPT_LOOP_TIMING)

When Loop Timing is enabled (bit 0 is set to 1), the board’s logic
obtains its SONET transmission clock from the clock signal
recovered from the incoming ODL. Typically, this option is
enabled for situations when the port is attached to an ATM
switch, such as normal operation or Line Loopback testing.

When Loop Timing is disabled (bit 0 is set to 0), the board uses
its own clock (from the on-board crystal). This option must be
disabled for Diagnostic Loopback testing. It is also appropriate
to disable this option when the port’s output line is attached to
its own input line or when the port is attached to another ATM
system that is not a switch.

0x2 Diagnostic Loopback
(1 in Figure 5-2)

(ATM_OPT_DIAG_LOOPBACK)

When Diagnostic Loopback is enabled (bit 1 is set to 1), the
SUNI chip’s internal loopback path is enabled, so that the
R-FRED receives from the F-FRED. This option must be
disabled for normal operation and when Line Loopback is
enabled. Refer to Figure 5-2.

0x4 Line Loopback
(2 in Figure 5-2)

(ATM_OPT_LINE_LOOPBACK)

When Line Loopback is enabled (bit 2 is set to 1), the SUNI
chip’s external loopback path is enabled, so that the SUNI
transmits to the outgoing ODL exactly what it receives from the
incoming ODL. This option must be disabled for normal
operation and when Diagnostic Loopback is enabled. Refer to
Figure 5-2.

152

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

Figure 5-2 Loopback Options for ATM-OC3c Board

Success or Failure

If successful, ATMIOC_SETOPT returns zero.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Errors

Possible errors include:

ENODEV The board was not in the UP or DOWN state.

EPERM The invoker does not have root (superuser) access
privileges.

ETIME The driver’s call to the board timed out.

SUNI

Line LoopbackDiag. Loopback

R−FRED

F−FRED

ODL

ODL

21

Hardware Commands

153

ATMIOC_SETRATEQ

The ATMIOC_SETRATEQioctl() command sets the transmission rate for an
individual rate queue. The new setting starts operating immediately. The
board must be in the UP or DOWN state and the rate queue must be free
(that is, not currently associated with any open VC).

See “Characteristics of the ATM-OC3c Hardware” in Chapter 1 for a
description of the transmission rate queues and how they are managed by
the IRIS ATM driver.

Usage

Use the following format:

ioctl (fd_atm, ATMIOC_SETRATEQ, & rateq);

where rateq is an atm_rate_q_t structure.

Argument Values

The pointer identifies an atm_rate_q_t structure that should be set up as
shown in Table 5-15. The Rate Code (rate_value) must be one of the codes
from the table in Appendix A.

Table 5-15 Recommended Values for ATMIOC_SETRATEQ’s Argument

Field of
atm_rate_q_t

Recommended
Value

Comment

rate_queue_number From Table 5-16 The rate queue identification number.

rate_value 0 or a code from
Table A-1.

A code from Table A-1. To unlock the rate
queue, thus making it available to the
driver for dynamic resetting, set the field to
zero.

154

Chapter 5: IRIS ATM ioctl() Commands for Communicating With the Hardware

Success or Failure

If successful, ATMIOC_SETRATEQ returns zero.

On failure, the ioctl() returns -1 with an error stored in errno . See the
“Errors” heading for descriptions of individual errors.

Table 5-16 Rate Queue Identification Numbers

rate_queue_number int Description

RQ_A0 0 High priority Bank A, queue 0

RQ_A1 1 High priority Bank A, queue 1

RQ_A2 2 High priority Bank A, queue 2

RQ_A3 3 High priority Bank A, queue 3

RQ_B0 4 Low priority Bank B, queue 0

 RQ_B1 5 Low priority Bank B, queue 1

RQ_B2 6 Low priority Bank B, queue 2

RQ_B3 7 Low priority Bank B, queue 3

Hardware Commands

155

Errors

Possible errors include:

EBUSY The specified rate queue currently is servicing one or more
VCs. The queue must be freed (that is, torn down) before it
can be reconfigured.

EFAULT An error occurred when the driver was copying the data.

EINVAL The specified rate queue identification number is invalid.

ENODEV The board is not in the UP state.

ENOMEM The driver was unable to place the command on the
host-to-board command queue due to lack of memory.

EPERM The invoker does not have root (superuser) access
privileges.

157

Appendix A

A. Rate Queue Information

To configure the transmission rate queues on the IRIS ATM-OC3c board, use
the codes from the left (Code) column of Table A-1. The right (Cells per
Second) column of the table summarizes the rate (in number of ATM cells
per second) that each code configures.

One ATM cell consists of 53 bytes: 48 bytes of user payload and 5 bytes of
ATM overhead. If you are interested in a different rate metric than cells per
second, the formulas below can be used to make the conversion. The
cells-per-second value in each formula is a value from the “Cells per Second”
column in Table A-1.

• To calculate payload-bits per second, use: cells-per-second * 384

• To calculate payload-bytes per second, use: cells-per-second * 48

• To calculate VCC-bits per second, use: cells-per-second * 424

• To calculate VCC-bytes per second, use: cells-per-second * 53

Table A-1 Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

0x701 306

0x702 308

0x703 309

0x704 310

0x705 311

0x706 313

0x707 314

0x708 315

158

Appendix A: Rate Queue Information

0x709 316

0x70A 318

0x70B 319

0x70C 320

0x70D 322

0x70E 323

0x70F 324

0x710 326

0x711 327

0x712 328

0x713 330

0x714 331

0x715 332

0x716 334

0x717 335

0x718 337

0x719 338

0x71A 340

0x71B 341

0x71C 343

0x71D 344

0x71E 346

0x71F 347

0x720 349

0x721 350

0x722 352

0x723 354

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

159

0x724 355

0x725 357

0x726 358

0x727 360

0x728 362

0x729 363

0x72A 365

0x72B 367

0x72C 369

0x72D 370

0x72E 372

0x72F 374

0x730 376

0x731 377

0x732 379

0x733 381

0x734 383

0x735 385

0x736 387

0x737 389

0x738 391

0x739 393

0x73A 395

0x73B 397

0x73C 399

0x73D 401

0x73E 403

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

160

Appendix A: Rate Queue Information

0x73F 405

0x740 407

0x741 409

0x742 411

0x743 413

0x744 416

0x745 418

0x746 420

0x747 422

0x748 425

0x749 427

0x74A 429

0x74B 432

0x74C 434

0x74D 436

0x74E 439

0x74F 441

0x750 444

0x751 446

0x752 449

0x753 452

0x754 454

0x755 457

0x756 460

0x757 462

0x758 465

0x759 468

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

161

0x75A 471

0x75B 473

0x75C 476

0x75D 479

0x75E 482

0x75F 485

0x760 488

0x761 491

0x762 494

0x763 498

0x764 501

0x765 504

0x766 507

0x767 511

0x768 514

0x769 517

0x76A 521

0x76B 524

0x76C 528

0x76D 531

0x76E 535

0x76F 539

0x770 543

0x771 546

0x772 550

0x773 554

0x774 558

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

162

Appendix A: Rate Queue Information

0x775 562

0x776 566

0x777 570

0x778 574

0x779 579

0x77A 583

0x77B 587

0x77C 592

0x77D 596

0x77E 601

0x77F 606

0x780 610

0x781 615

0x782 620

0x783 625

0x784 630

0x785 635

0x786 640

0x787 646

0x788 651

0x789 657

0x78A 662

0x78B 668

0x78C 673

0x78D 679

0x78E 685

0x78F 691

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

163

0x790 698

0x791 704

0x792 710

0x793 717

0x794 723

0x795 730

0x796 737

0x797 744

0x798 751

0x799 758

0x79A 766

0x79B 774

0x79C 781

0x79D 789

0x79E 797

0x79F 805

0x7A0 814

0x7A1 822

0x7A2 831

0x7A3 840

0x7A4 849

0x7A5 859

0x7A6 868

0x7A7 878

0x7A8 888

0x7A9 898

0x7AA 908

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

164

Appendix A: Rate Queue Information

0x7AB 919

0x7AC 930

0x7AD 941

0x7AE 953

0x7AF 965

0x7B0 977

0x7B1 989

0x7B2 1002

0x7B3 1015

0x7B4 1028

0x7B5 1042

0x7B6 1056

0x7B7 1070

0x7B8 1085

0x7B9 1100

0x7BA 1116

0x7BB 1132

0x7BC 1149

0x7BD 1166

0x7BE 1184

0x7BF 1202

0x7C0 1221

0x601 1225

0x602 1230

0x603 1235

0x7C1 1240

0x605 1245

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

165

0x606 1250

0x607 1255

0x7C2 1260

0x609 1265

0x60A 1270

0x60B 1276

0x7C3 1281

0x60D 1286

0x60E 1291

0x60F 1297

0x7C4 1302

0x611 1308

0x612 1313

0x613 1319

0x7C5 1324

0x615 1330

0x616 1335

0x617 1341

0x7C6 1347

0x619 1353

0x61A 1359

0x61B 1365

0x7C7 1371

0x61D 1377

0x61E 1383

0x61F 1389

0x7C8 1395

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

166

Appendix A: Rate Queue Information

0x621 1401

0x622 1408

0x623 1414

0x7C9 1420

0x625 1427

0x626 1433

0x627 1440

0x7CA 1447

0x629 1453

0x62A 1460

0x62B 1467

0x7CB 1474

0x62D 1481

0x62E 1488

0x62F 1495

0x7CC 1502

0x631 1510

0x632 1517

0x633 1524

0x7CD 1532

0x635 1539

0x636 1547

0x637 1555

0x7CE 1563

0x639 1570

0x63A 1578

0x63B 1586

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

167

0x7CF 1594

0x63D 1603

0x63E 1611

0x63F 1619

0x7D0 1628

0x641 1636

0x642 1645

0x643 1653

0x7D1 1662

0x645 1671

0x646 1680

0x647 1689

0x7D2 1698

0x649 1708

0x64A 1717

0x64B 1727

0x7D3 1736

0x64D 1746

0x64E 1756

0x64F 1766

0x7D4 1776

0x651 1786

0x652 1796

0x653 1806

0x7D5 1817

0x655 1827

0x656 1838

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

168

Appendix A: Rate Queue Information

0x657 1849

0x7D6 1860

0x659 1871

0x65A 1883

0x65B 1894

0x7D7 1905

0x65D 1917

0x65E 1929

0x65F 1941

0x7D8 1953

0x661 1965

0x662 1978

0x663 1990

0x664 2003

0x665 2016

0x666 2029

0x667 2042

0x7DA 2056

0x669 2070

0x66A 2083

0x66B 2097

0x7DB 2111

0x66D 2126

0x66E 2140

0x66F 2155

0x7DC 2170

0x671 2185

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

169

0x672 2201

0x673 2216

0x7DD 2232

0x675 2248

0x676 2264

0x677 2281

0x7DE 2298

0x679 2315

0x67A 2332

0x67B 2350

0x7DF 2367

0x67D 2385

0x67E 2404

0x67F 2422

0x7E0 2441

0x681 2461

0x682 2480

0x683 2500

0x7E1 2520

0x685 2541

0x686 2561

0x687 2583

0x7E2 2604

0x689 2626

0x68A 2648

0x68B 2671

0x7E3 2694

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

170

Appendix A: Rate Queue Information

0x68D 2717

0x68E 2741

0x68F 2765

0x7E4 2790

0x691 2815

0x692 2841

0x693 2867

0x7E5 2894

0x695 2921

0x696 2948

0x697 2976

0x7E6 3005

0x699 3034

0x69A 3064

0x69B 3094

0x7E7 3125

0x69D 3157

0x69E 3189

0x69F 3222

0x7E8 3255

0x6A1 3289

0x6A2 3324

0x6A3 3360

0x7E9 3397

0x6A5 3434

0x6A6 3472

0x6A7 3511

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

171

0x7EA 3551

0x6A9 3592

0x6AA 3634

0x6AB 3676

0x7EB 3720

0x6AD 3765

0x6AE 3811

0x6AF 3858

0x7EC 3906

0x6B1 3956

0x6B2 4006

0x6B3 4058

0x7ED 4112

0x6B5 4167

0x6B6 4223

0x6B7 4281

0x7EE 4340

0x6B9 4401

0x6BA 4464

0x6BB 4529

0x7EF 4596

0x6BD 4664

0x6BE 4735

0x6BF 4808

0x7F0 4883

0x501 4902

0x502 4921

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

172

Appendix A: Rate Queue Information

0x503 4941

0x6C1 4960

0x505 4980

0x506 5000

0x507 5020

0x6C2 5040

0x509 5061

0x50A 5081

0x50B 5102

0x6C3 5123

0x50D 5144

0x50E 5165

0x50F 5187

0x7F1 5208

0x511 5230

0x512 5252

0x513 5274

0x6C5 5297

0x515 5319

0x516 5342

0x517 5365

0x6C6 5388

0x519 5411

0x51A 5435

0x51B 5459

0x6C7 5482

0x51D 5507

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

173

0x51E 5531

0x51F 5556

0x520 5580

0x7F2 5580

0x521 5605

0x522 5631

0x523 5656

0x6C9 5682

0x525 5708

0x526 5734

0x527 5760

0x6CA 5787

0x529 5814

0x52A 5841

0x52B 5869

0x6CB 5896

0x52D 5924

0x52E 5952

0x52F 5981

0x7F3 6010

0x531 6039

0x532 6068

0x533 6098

0x6CD 6127

0x535 6158

0x536 6188

0x537 6219

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

174

Appendix A: Rate Queue Information

0x6CE 6250

0x539 6281

0x53A 6313

0x53B 6345

0x6CF 6378

0x53D 6410

0x53E 6443

0x53F 6477

0x7F4 6510

0x541 6545

0x542 6579

0x543 6614

0x6D1 6649

0x545 6684

0x546 6720

0x547 6757

0x6D2 6793

0x549 6831

0x54A 6868

0x54B 6906

0x6D3 6944

0x54D 6983

0x54E 7022

0x54F 7062

0x7F5 7102

0x551 7143

0x552 7184

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

175

0x553 7225

0x6D5 7267

0x555 7310

0x556 7353

0x557 7396

0x6D6 7440

0x559 7485

0x55A 7530

0x55B 7576

0x6D7 7622

0x55D 7669

0x55E 7716

0x55F 7764

0x7F6 7813

0x561 7862

0x562 7911

0x563 7962

0x6D9 8013

0x565 8065

0x566 8117

0x567 8170

0x6DA 8224

0x569 8278

0x56A 8333

0x56B 8389

0x6DB 8446

0x56D 8503

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

176

Appendix A: Rate Queue Information

0x56E 8562

0x56F 8621

0x7F7 8681

0x571 8741

0x572 8803

0x573 8865

0x6DD 8929

0x575 8993

0x576 9058

0x577 9124

0x6DE 9191

0x579 9259

0x57A 9328

0x57B 9398

0x6DF 9470

0x57D 9542

0x57E 9615

0x57F 9690

0x7F8 9766

0x581 9843

0x582 9921

0x583 10000

0x6E1 10081

0x585 10163

0x586 10246

0x587 10331

0x6E2 10417

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

177

0x589 10504

0x58A 10593

0x58B 10684

0x6E3 10776

0x58D 10870

0x58E 10965

0x58F 11062

0x7F9 11161

0x591 11261

0x592 11364

0x593 11468

0x6E5 11574

0x595 11682

0x596 11792

0x597 11905

0x598 12019

0x6E6 12019

0x599 12136

0x59A 12255

0x59B 12376

0x6E7 12500

0x59D 12626

0x59E 12755

0x59F 12887

0x7FA 13021

0x5A1 13158

0x5A2 13298

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

178

Appendix A: Rate Queue Information

0x5A3 13441

0x6E9 13587

0x5A5 13736

0x5A6 13889

0x5A7 14045

0x6EA 14205

0x5A9 14368

0x5AA 14535

0x5AB 14706

0x6EB 14881

0x5AD 15060

0x5AE 15244

0x5AF 15432

0x7FB 15625

0x5B1 15823

0x5B2 16026

0x5B3 16234

0x6ED 16447

0x5B5 16667

0x5B6 16892

0x5B7 17123

0x6EE 17361

0x5B9 17606

0x5BA 17857

0x5BB 18116

0x6EF 18382

0x5BD 18657

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

179

0x5BE 18939

0x5BF 19231

0x7FC 19531

0x401 19608

0x402 19685

0x403 19763

0x5C1 19841

0x405 19920

0x406 20000

0x407 20080

0x5C2 20161

0x409 20243

0x40A 20325

0x40B 20408

0x5C3 20492

0x40D 20576

0x40E 20661

0x40F 20747

0x6F1 20833

0x411 20921

0x412 21008

0x413 21097

0x5C5 21186

0x415 21277

0x416 21368

0x417 21459

0x5C6 21552

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

180

Appendix A: Rate Queue Information

0x419 21645

0x41A 21739

0x41B 21834

0x5C7 21930

0x41D 22026

0x41E 22124

0x41F 22222

0x6F2 22321

0x421 22422

0x422 22523

0x423 22624

0x5C9 22727

0x425 22831

0x426 22936

0x427 23041

0x5CA 23148

0x429 23256

0x42A 23364

0x42B 23474

0x5CB 23585

0x42D 23697

0x42E 23810

0x42F 23923

0x6F3 24038

0x431 24155

0x432 24272

0x433 24390

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

181

0x5CD 24510

0x435 24631

0x436 24752

0x437 24876

0x5CE 25000

0x439 25126

0x43A 25253

0x43B 25381

0x5CF 25510

0x43D 25641

0x43E 25773

0x43F 25907

0x7FD 26042

0x441 26178

0x442 26316

0x443 26455

0x5D1 26596

0x445 26738

0x446 26882

0x447 27027

0x5D2 27174

0x449 27322

0x44A 27473

0x44B 27624

0x5D3 27778

0x44D 27933

0x44E 28090

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

182

Appendix A: Rate Queue Information

0x44F 28249

0x6F5 28409

0x451 28571

0x452 28736

0x453 28902

0x5D5 29070

0x455 29240

0x456 29412

0x457 29586

0x5D6 29762

0x459 29940

0x45A 30120

0x45B 30303

0x5D7 30488

0x45D 30675

0x45E 30864

0x45F 31056

0x6F6 31250

0x461 31447

0x462 31646

0x463 31847

0x5D9 32051

0x465 32258

0x466 32468

0x467 32680

0x5DA 32895

0x469 33113

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

183

0x46A 33333

0x46B 33557

0x5DB 33784

0x46D 34014

0x46E 34247

0x46F 34483

0x6F7 34722

0x471 34965

0x472 35211

0x473 35461

0x5DD 35714

0x475 35971

0x476 36232

0x477 36496

0x5DE 36765

0x479 37037

0x47A 37313

0x47B 37594

0x5DF 37879

0x47D 38168

0x47E 38462

0x47F 38760

0x7FE 39063

0x481 39370

0x482 39683

0x483 40000

0x5E1 40323

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

184

Appendix A: Rate Queue Information

0x485 40650

0x486 40984

0x487 41322

0x5E2 41667

0x489 42017

0x48A 42373

0x48B 42735

0x5E3 43103

0x48D 43478

0x48E 43860

0x48F 44248

0x6F9 44643

0x491 45045

0x492 45455

0x493 45872

0x5E5 46296

0x495 46729

0x496 47170

0x497 47619

0x5E6 48077

0x499 48544

0x49A 49020

0x49B 49505

0x5E7 50000

0x49D 50505

0x49E 51020

0x49F 51546

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

185

0x6FA 52083

0x4A1 52632

0x4A2 53191

0x4A3 53763

0x5E9 54348

0x4A5 54945

0x4A6 55556

0x4A8 56818

0x5EA 56818

0x4A9 57471

0x4AA 58140

0x4AB 58824

0x5EB 59524

0x4AD 60241

0x4AE 60976

0x4AF 61728

0x6FB 62500

0x4B1 63291

0x4B2 64103

0x4B3 64935

0x5ED 65789

0x4B5 66667

0x4B6 67568

0x4B7 68493

0x5EE 69444

0x4B9 70423

0x4BA 71429

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

186

Appendix A: Rate Queue Information

0x4BB 72464

0x5EF 73529

0x4BD 74627

0x4BE 75758

0x4BF 76923

0x7FF 78125

0x4C1 79365

0x4C2 80645

0x4C3 81967

0x5F1 83333

0x4C5 84746

0x4C6 86207

0x4C7 87719

0x5F2 89286

0x4C9 90909

0x4CA 92593

0x4CB 94340

0x5F3 96154

0x4CD 98039

0x4CE 100000

0x4CF 102041

0x6FD 104167

0x4D1 106383

0x4D2 108696

0x4D3 111111

0x5F5 113636

0x4D5 116279

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

187

0x4D6 119048

0x4D7 121951

0x5F6 125000

0x4D9 128205

0x4DA 131579

0x4DB 135135

0x5F7 138889

0x4DD 142857

0x4DE 147059

0x4DF 151515

0x6FE 156250

0x4E1 161290

0x4E2 166667

0x4E3 172414

0x5F9 178571

0x4E5 185185

0x4E6 192308

0x4E7 200000

0x4E8 208333

0x5FA 208333

0x4E9 217391

0x4EA 227273

0x4EB 238095

0x5FB 250000

0x4ED 263158

Do not count on exceeding the rate (in
aggregate) listed the cell above this line.

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

188

Appendix A: Rate Queue Information

0x4EE 277778

0x4EF 294118

0x6FF 312500

0x4F1 333333

0x5FF 353207

Table A-1 (continued) Rates Available for Rate Queues on ATM-OC3c Board

Code ATM Cells per Second

189

Appendix B

B. International Alphabet 5

This appendix contains the International Alphabet 5 (IA5) character set.

Table B-1 Binary Values for IA5 Characters

Character Binary Value
(hexadecimal notation)

Control @, NULL 0x00

Control A, SOH 0x01

Control B, STX 0x02

Control C, ETX 0x03

Control D, EOT 0x04

Control E, ENQ 0x05

Control F, ACK 0x06

Control G, BELL 0x07

Control H, Backspace 0x08

Control I, HTAB 0x09

Control J, Line feed 0x0A

Control K, VT 0x0B

Control L, Form feed 0x0C

Control M, Carriage return 0x0D

Control N, SO 0x0E

Control O, SI 0x0F

Control P, DLE 0x10

Control Q, DC1 0x11

190

Appendix B: International Alphabet 5

Control R, DC2 0x12

Control S, DC3 0x13

Control T, DC4 0x14

Control U, NAK 0x15

Control V, SYN 0x16

Control W, ETB 0x17

Control X, Cancel 0x18

Control Y, EM 0x19

Control Z, SUB 0x1A

Control [, Escape 0x1B

Control \, FS 0x1C

Control J. GS 0x1D

Control Control, RS 0x1E

Control _, US 0x1F

Space 0x20

! (exclamation mark) 0x21

" (neutral double quotation
mark)

0x22

(number or pound sign) 0x23

$ (dollar sign) 0x24

% (percent sign) 0x25

& (ampersand) 0x26

’ (apostrophe) 0x27

((left parenthesis) 0x28

) (right parenthesis) 0x29

* (asterisk) 0x2A

+ (plus, add) 0x2B

Table B-1 (continued) Binary Values for IA5 Characters

Character Binary Value
(hexadecimal notation)

191

, (comma) 0x2C

– (hyphen, minus) 0x2D

. (period) 0x2E

/ (slash, solidus) 0x2F

0 (zero) 0x30

1 0x31

2 0x32

3 0x33

4 0x34

5 0x35

6 0x36

7 0x37

8 0x38

9 0x39

: (colon) 0x3A

; (semicolon) 0x3B

< (less than) 0x3C

= (equal) 0x3D

> (greater than) 0x3E

? (question mark) 0x3F

@ (commercial at sign) 0x40

A 0x41

B 0x42

C 0x43

D 0x44

E 0x45

Table B-1 (continued) Binary Values for IA5 Characters

Character Binary Value
(hexadecimal notation)

192

Appendix B: International Alphabet 5

F 0x46

G 0x47

H 0x48

I 0x49

J 0x4A

K 0x4B

L 0x4C

M 0x4D

N 0x4E

O 0x4F

P 0x50

Q 0x51

R 0x52

S 0x53

T 0x54

U 0x55

V 0x56

W 0x57

X 0x58

Y 0x59

Z 0x5A

[(left bracket) 0x5B

\ (back slash) 0x5C

] (right bracket) 0x5D

^ (up arrow) 0x5E

_ (under score) 0x5F

Table B-1 (continued) Binary Values for IA5 Characters

Character Binary Value
(hexadecimal notation)

193

‘ (accent grave) 0x60

a 0x61

b 0x62

c 0x63

d 0x64

e 0x65

f 0x66

g 0x67

h 0x68

i 0x69

j 0x6A

k 0x6B

l 0x6C

m 0x6D

n 0x6E

o 0x6F

p 0x70

q 0x71

r 0x72

s 0x73

t 0x74

u 0x75

v 0x76

w 0x77

x 0x78

y 0x79

Table B-1 (continued) Binary Values for IA5 Characters

Character Binary Value
(hexadecimal notation)

194

Appendix B: International Alphabet 5

z 0x7A

{ (left curly bracket) 0x7B

| (vertical bar) 0x7C

} (right curly bracket) 0x7D

~ (tilde) 0x7E

Delete 0x7F

Table B-1 (continued) Binary Values for IA5 Characters

Character Binary Value
(hexadecimal notation)

195

Appendix C

C. Cause and Diagnostic Codes

This appendix describes the information that is returned with ATM
signalling requests. The cause codes that are described are provided as out
values (in the reject_reason_t data structure or in the cause field of other
data structures) for many of the ATM Signalling commands. The value in the
cause field matches the numbers assigned by the ATM UNI standard to the
message texts.

Table C-1 lists the cause codes (content of cause field) that are used by
implementations that conform to the ATM User-Network Interface
Specification (ATM UNI) standard. The “Comments” column points out
codes that are specific to particular versions of the ATM UNI (for example,
3.0 and 3.1). Table C-2 lists implementation-specific (local) cause codes used
by the IRIS ATM Signalling software. Table C-3 summarizes the diagnostic
information that accompanies some of the cause codes. IRIS ATM does not
currently pass these up to the higher-layer applications.

Table C-1 ATM UNI Cause Codes

Text for ATM UNI Cause Value for
cause
Field

Comments

Unallocated / Unassigned Number 1 Additional information
may be supplied. See
Table C-3.

No Route to Specified Transit Network 2

No Route to Destination 3 Additional information
may be supplied. See
Table C-3.

Unacceptable VPCI_VCI 10

Normal_3.1 16 Not used with UNI 3.0.
Used only with UNI 3.1

196

Appendix C: Cause and Diagnostic Codes

User Busy 17

No User Responding 18

Call Rejected 21 Additional information
may be supplied. See
Table C-3.

Number Changed 22 Additional information
may be supplied. See
Table C-3.

User Rejects Calls With Calling Line
Identification Restriction (CLIR)

23

Destination Out of Order 27

Invalid Number Format 28

Response to STATUS ENQUIRY 30

Normal_3.0 31 Used only with UNI 3.0.
Not used with UNI 3.1

Requested VPCI/VCI Unavailable 35

VPCI Assignment Failure 36

User Cell Rate Unavailable 37 Not used with UNI 3.0.
Used only with UNI 3.1

Network Out of Order 38

Temporary Failure 41

Access Information Discarded 43 Additional information
may be supplied. See
Table C-3.

No VPCI/VCI Available 45

Resource Unavailable, Unspecified 47

Table C-1 (continued) ATM UNI Cause Codes

Text for ATM UNI Cause Value for
cause
Field

Comments

197

QOS Unavailable 49 Additional information
may be supplied. See
Table C-3.

User Cellrate Unavailable 51 Used only with UNI 3.0
Not used with UNI 3.1

Additional information
may be supplied. See
Table C-3.

Bearer Capability Not Authorized 57

Bearer Capability Not Presently Available 58

Service or Option Unavailable, Unspecified 63

Bearer Capability Not Implemented 65

Unsupported Combination of Traffic
Parameters

73

AAL Parameters Cannot Be Supported 78 Not used with UNI 3.0.
Used only with UNI 3.1

Invalid Call Reference 81

Identified Channel Does Not Exist 82 Additional information
may be supplied. See
Table C-3.

Incompatible Destination 88 Additional information
may be supplied. See
Table C-3.

Invalid Endpoint Reference 89

Invalid Transit Network Selection 91

Too Many Pending Add Party Requests 92

AAL Parameters Cannot Be Supported 93 Used only with UNI 3.0.
Not used with UNI 3.1

Table C-1 (continued) ATM UNI Cause Codes

Text for ATM UNI Cause Value for
cause
Field

Comments

198

Appendix C: Cause and Diagnostic Codes

Mandatory Information Element Missing 96 Additional information
may be supplied. See
Table C-3.

Message Type Nonexistent or Not
Implemented

97 Additional information
may be supplied. See
Table C-3.

Information Element Nonexistent or Not
Implemented

99 Additional information
may be supplied. See
Table C-3.

Invalid Information Element Contents 100 Additional information
may be supplied. See
Table C-3.

Message Not Compatible With Call State 101 Additional information
may be supplied. See
Table C-3.

Recovery On Timer Expiry 102 Additional information
may be supplied. See
Table C-3.

Incorrect Message Length 104

Protocol Error, Unspecified 111

Table C-1 (continued) ATM UNI Cause Codes

Text for ATM UNI Cause Value for
cause
Field

Comments

199

Table C-2 SGI Cause Codes

Text for SGI Cause Value for
cause
Field

Comments

CAUSE_LOCALERROR 128 Local Error: unknown driver or signalling-daemon error

CAUSE_ALREADY 129 Registration denied: BLLI already taken, or application
already registered

CAUSE_INVALBESTEFFORT 130 Best Effort requires that both directions be Best Effort &
QOS_0

CAUSE_INVALCELLRATE 131 Invalid cellrate field

CAUSE_INVALBLLI 132 Invalid broadband low layer information (blli) code specified

CAUSE_INVALBEARERCLASS 133 Invalid bearer class

CAUSE_INVALADDRESSFMT 134 Invalid address format

CAUSE_NOTMULTI 135 Add or drop party on a point-to-point call

CAUSE_PARTYHANDLEINUSE 136 Trying to add a party using a party handle that has already
been used

CAUSE_INVALPARTYHANDLE 137 Request was dropped because the party handle was not
found

200

Appendix C: Cause and Diagnostic Codes

Table C-3 ATM UNI Diagnostics

Accompanying ATM UNI
Cause

ATM UNI
Diagnostic
Provided

Diagnostic Values

Unallocated / Unassigned
Number

One octet The diagnosticsa provide the following
information: a description of the
condition, whether the condition is
normal or abnormal, and who supplied the
diagnostic:

condition n/a who

0x80 Unknown normal provider
0x81 Permanent normal provider
0x82 Transient normal provider
0x84 Unknown abnormal provider
0x85 Permanent abnormal provider
0x86 Transient abnormal provider
0x88 Unknown normal user
0x89 Permanent normal user
0x8A Transient normal user
0x8C Unknown abnormal user
0x8D Permanent abnormal user
0x8E Transient abnormal user

Call Rejected Two octets The diagnostics provide the following
information: the first octet contains the
reason, and a description of the
condition.The second octet contains
either user-specific values or the
identifier for the ATM UNI information
element (IE), whichever is appropriate.

reason condition

0x80 user-specific unknown
0x81 user-specific permanent
0x82 user-specific transient
0x84 IE missing unknown
0x85 IE missing permanent
0x86 IE missing transient
0x88 IE missing unknown
0x89 IE missing permanent
0x8A IE missing transient

201

No Route to Destination One octet Same as “Unallocated Number.”

Number Changed 6 to 25 octets The new destination address formatted
with a Called Party Number information
element.

Access Information
Discarded

One or more
octets

Each octet specifies one ATM UNI
information element identifier.

QOS Unavailable One octet Same as “Unallocated Number.”

User Cell Rate
Unavailable

One or more
octets

Each octet specifies one subfield
identifier from the ATM UNI User Cell
Rate information element.

Identified Channel Does
Not Exist

4 octets Most significant two octets specify VPCI
value. Least significant two octets
specify VCI value.

Incompatible Destination 1 octet The ATM UNI information element
identifier.

Mandatory Information
Element Missing

1 or more
octets

Each octet is one ATM UNI information
element identifier.

Message Type
Nonexistent or Not
Implemented

One octet Specifies one ATM UNI message type:
for example, SETUP, RELEASE,
CONNECT.

Information Element
Nonexistent or Not
Implemented

1 or more
octets

Each octet is one ATM UNI information
element identifier.

Invalid Information
Element Contents

1 or more
octets

Each octet is one ATM UNI information
element identifier.

Table C-3 (continued) ATM UNI Diagnostics

Accompanying ATM UNI
Cause

ATM UNI
Diagnostic
Provided

Diagnostic Values

202

Appendix C: Cause and Diagnostic Codes

a. IRIS ATM does not currently pass these diagnostics up to higher-layer applications.

Message Not Compatible
With Call State

One octet Specifies one ATM UNI message type:
for example, SETUP, RELEASE,
CONNECT.

Recovery On Timer Expiry Three octets Each octet specifies one IA5 character to
indicate one numeral identifying an
ATM UNI timer. For example, for the
timer called “T308,” the first octet
specifies “3,” the second “0,” and the
third “8.”

Table C-3 (continued) ATM UNI Diagnostics

Accompanying ATM UNI
Cause

ATM UNI
Diagnostic
Provided

Diagnostic Values

203

ATMIOC_GETOPT, 131
ATMIOC_GETPORTINFO, 104
ATMIOC_GETRATEQ, 132
ATMIOC_GETSTAT, 135
ATMIOC_GETVCCTABLEINFO, 107
ATMIOC_GETVCTAB, 45
ATMIOC_LISTEN, 77
ATMIOC_MPSETUP, 80
ATMIOC_REGISTER, 85
ATMIOC_REJECT, 89
ATMIOC_SETARP, 48
ATMIOC_SETATMADDR, 116
ATMIOC_SETCONF, 147
ATMIOC_SETOPT, 150
ATMIOC_SETRATEQ, 153
ATMIOC_SETUP, 91

A

ATMIOC_ACCEPT, 69
ATMIOC_ADDPARTY, 72
ATMIOC_CONTROL, 121
ATMIOC_CREATEPVC, 31
ATMIOC_DELARP, 38
ATMIOC_DROPPARTY, 75
ATMIOC_GETARP, 40
ATMIOC_GETARPTAB, 42
ATMIOC_GETATMADDR, 112
ATMIOC_GETATMLAYERINFO, 99
ATMIOC_GETCONF, 124
ATMIOC_GETIOSTAT, 127
ATMIOC_GETMACADDR, 130
ATMIOC_GETMIBSTATS, 102

Index

Tell Us About This Manual

As a user of Silicon Graphics documentation, your comments are important
to us. They help us to better understand your needs and to improve the
quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested
topics to comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please include the title and part number of the document you are
commenting on. The part number for this document is
007-2334-002.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your
comments on the postage-paid card for your country, then detach and mail
it. If your country is not listed, either use the international card and apply the
necessary postage or use electronic mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail
message and mail it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of manual pages) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

