
MIPSproTM Compiling and
Performance Tuning Guide

007–2360–008

St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica.

Copyright © 1999 Silicon Graphics, Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form
unless permitted by contract or by written permission of Silicon Graphics, Inc.

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR
52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre
Pkwy., Mountain View, CA 94043-1351.

DynaText and DynaWeb are registered trademarks of Inso Corporation. Silicon Graphics, the Silicon Graphics logo, and IRIS are
registered trademarks and IRIX, CASEVision, IRIS IM, IRIS Showcase, Impressario, Indigo Magic, Inventor, IRIS-4D, POWER
Series, RealityEngine, CHALLENGE, Onyx, Origin2000, and WorkShop are trademarks of Silicon Graphics, Inc. MIPS, R4000, and
R8000 are registered trademarks and MIPSpro, R5000, R10000, and R12000 are trademarks of MIPS Technologies, Inc. OSF/Motif
is a trademark of Open Software Foundation, Inc. PostScript is a registered trademark and Display PostScript is a trademark of
Adobe Systems, Inc. UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited. X/Open is a trademark of X/Open Company Ltd. The X device is a trademark of the Open Group.

New Features

MIPSproTM Compiling and Performance Tuning Guide 007–2360–008

This rewrite supports the 7.3 release of the C, C++, Fortran 90, and Fortran 77 compilers.

Record of Revision

Version Description

August 1994
Original Printing.

7.3 April 1999
Adds a description of an optimization that reorders parts of an executable program.
Updates information on searching for DSOs.

007–2360–008 i

Contents

Page

About This Guide xi

What You Should Know Before Reading This Guide xi

Related Publications . xii

Conventions . xiv

Reader Comments . xiv

About the MIPSPro Compiler System [1] 1

Using the MIPSPro Compiler System [2] 5

Selecting Compilation Modes . 5

Using a Defaults Specification File 6

Setting an Environment Variable 7

When to Use -n32 or -64 . 7

Object File Format and Dynamic Linking 8

Executable and Linking Format 8

Dynamic Shared Objects . 9

Position-Independent Code . 9

Source File Considerations . 9

Source File Naming Conventions 10

Header and Include Files . 10

Specifying a Header File . 11

Creating a Header File for Multiple Languages 12

Using Precompiled Headers in C and C++ 12

About Precompiled Headers . 13

Automatic Precompiled Header Processing 13

007–2360–008 iii

MIPSproTM Compiling and Performance Tuning Guide

Page

Other Ways to Control Precompiled Headers 17

PCH Performance Issues . 17

Compiler Drivers . 19

Linking . 19

Invoking the Linker . 20

Linker Example . 20

Linking Assembly Language Programs 20

Linking Libraries . 21

Specifying Libraries and DSOs 21

Examples of Linking DSOs . 22

Linking to Previously Built Dynamic Shared Objects 23

Linking Multilanguage Programs 23

Finding an Unresolved Symbol with ld 26

Debugging . 26

Getting Information About Object Files 26

Disassembling Object Files with dis 27

Listing Parts of DWARF Object Files With dwarfdump 27

Listing Parts of ELF Object Files and Libraries with elfdump 27

Determining File Type with file 27

Listing Symbol Table Information: nm 28

Determining Section Sizes with size 29

Removing Symbol Table and Relocation Bits with strip 30

Using the Archiver to Create Libraries 30

ar Examples . 30

Using Dynamic Shared Objects [3] 33

Benefits of Using DSOs . 33

DSOs Minimize Overall Memory Use 34

iv 007–2360–008

Contents

Page

Executables Linked with DSOs Are Smaller 34

DSOs Are Easier To Use, Build, and Debug 34

Executables Using DSOs Don’t Have to Be Relinked 34

DSOs and Executables Are Mapped into Memory 35

Using DSOs . 35

DSOs vs. Archive Libraries . 36

Using QuickStart . 36

Guidelines for Using Shared Libraries 37

Choosing DSO Library Members 37

Tuning Shared Library Code 38

Taking Advantage of QuickStart . 40

Building DSOs . 43

Creating DSOs . 43

Making DSOs Self-Contained . 44

Controlling Symbols to Be Exported or Loaded 45

Building DSOs with C++ . 46

Run-Time Linking . 46

Searching for DSOs at Run Time 47

Searching for DSOs at Run Time Under the o32-Bit ABI 47

Searching for DSOs at Run Time Under the n32-Bit ABI 48

Searching for DSOs at Run Time Under the 64-Bit ABI 49

Run-Time Symbol Resolution . 49

Building a DSO with -Bsymbolic 50

Converting Archive Libraries to DSOs 51

Dynamic Loading Under Program Control 52

Versioning of DSOs . 55

The Versioning Mechanism . 55

What Is a Version? . 55

007–2360–008 v

MIPSproTM Compiling and Performance Tuning Guide

Page

Building a Shared Library Using Versioning 56

Example of Versioning . 57

Optimizing Program Performance [4] 59

Optimization Overview . 59

Benefits of Optimization . 59

Optimization and Debugging . 60

Performance Tuning with Interprocedural Analysis 60

Inlining . 63

Inlining Options for Routines 63

Common Block Padding . 65

Alias and Address Taken Analysis 66

The -IPA:alias=ON Option 67

The -IPA:addressing=ON Option 67

Controlling Loop Nest Optimizations 67

Running LNO . 68

LNO Optimizations . 70

Loop Interchange . 70

Blocking and Outer Loop Unrolling 71

Loop Fusion . 72

Loop Fission/Distribution . 73

Prefetching . 75

Gather-Scatter Optimization 76

Compiler Options for LNO . 76

Pragmas and Directives for LNO 77

Fission/Fusion . 78

Blocking and Permutation Transformations 79

Prefetch . 83

vi 007–2360–008

Contents

Page

Fill/Align Symbol . 84

Dependence Analysis . 86

Controlling Floating-Point Optimization 88

-OPT:roundoff=n . 89

-OPT:IEEE_arithmetic=n . 90

Other Options to Control Floating Point Behavior 92

Debugging Floating-Point Problems 94

Controlling Miscellaneous Optimizations with the -OPT Option 95

Using the -OPT:Olimit Option 95

Using the -OPT:alias Option 95

Simplifying Code with the -OPT Option 97

Controlling Execution Frequency 97

The Code Generator . 98

Overview of the Code Generator 98

Code Generator and Optimization Levels 99

An Example of Local Optimization for Fortran 99

Code Generator and Optimization Levels -O2 and -O3 100

if Conversion . 101

Cross-Iteration Optimizations 102

Read-Read Elimination . 102

Read-Write Elimination . 103

Write-Write Elimination . 103

Common Sub-Expression Elimination 103

Loop Unrolling . 103

Recurrence Breaking . 104

Software Pipelining . 105

Global Code Motion . 106

Benefits of Global Code Motion 107

Steps Performed by the Code Generator at Levels -O2 and -O3 108

007–2360–008 vii

MIPSproTM Compiling and Performance Tuning Guide

Page

Modifying Code Generator Defaults 109

Miscellaneous Code Generator Performance Topics 110

Prefetch and Load Latency . 110

Frequency and Feedback . 111

Reordering Code Regions . 111

Reordering with cord . 112

Reordering with ld . 112

Using prof or cvperf . 113

Programming Hints for Improving Optimization 114

Hints for Writing Programs . 114

Coding Hints for Improving Other Optimization 116

Use Tables Rather Than if-then-else or switch Statements 116

Declare Variables Most Frequently Manipulated 117

Use 32-Bit or 64-Bit Scalar Variables 117

Suggestions for C and C++ Programs 117

Suggestions for C++ Programs Only 119

const reference Parameter Optimization With -Lang:alias_const 119

Using SpeedShop . 121

Coding for 64-Bit Programs [5] 123

Coding Assumptions to Avoid . 123

sizeof(int) == sizeof(void *) 124

sizeof(int) == sizeof(long) 124

sizeof(long) == 4 . 124

sizeof(void *) == 4 . 124

Implicitly Declared Functions . 125

Constants With the High-Order Bit Set 125

Arithmetic with long Types . 125

viii 007–2360–008

Contents

Page

Solving Porting Problems . 126

Guidelines for Writing Code for 64-Bit Silicon Graphics Platforms 126

Porting Code to N32 and 64-Bit Silicon Graphics Systems [6] 129

Compatibility . 129

N32 Porting Guidelines . 131

Porting Environment . 132

Source Code Changes . 132

Build Procedure . 132

Runtime Issues . 133

Porting Code to 64-Bit Silicon Graphics Systems 133

Using Data Types . 134

Using Predefined Types . 134

Using Typedefs . 136

Maximum Memory Allocation 137

Arrays Larger Than 2 Gigabytes 137

Example of Arrays Larger Than 2 Gigabytes 137

Using Large Files with XFS . 139

Index 141

Figures
Figure 1. Compiler System Flowchart 4

Figure 2. Compilation Control Flow for Multilanguage Programs 25

Figure 3. An Application Linked with DSOs 41

Figure 4. Compilation Process Showing Interprocedural Analysis 62

Figure 5. Compilation Process Showing LNO Transformations 69

Figure 6. Application Support Under Different ABIs 130

007–2360–008 ix

MIPSproTM Compiling and Performance Tuning Guide

Page

Figure 7. Library Locations for Different ABIs 131

Tables
Table 1. Topics and Manuals . ???

Table 2. Compiler System Functional Components 2

Table 3. Compiler Mode and Default Library Search Path 3

Table 4. Compilers and Default Libraries 3

Table 5. Compilation Mode Environment Variable Specifications 7

Table 6. Driver Input File Suffixes 10

Table 7. Functions to Load and Unload DSOs 52

Table 8. Data Types and Sizes . 134

Table 9. Predefined Macros . 135

Table 10. Modifications for Applications on XFS 139

x 007–2360–008

About This Guide

This guide describes the components of MIPSPro compiler system, other
programming tools and interfaces, and dynamic shared objects. It also explains
ways to improve program performance.

The compiler system produces either new 32-bit (n32) object code, 64-bit object
code, or old 32-bit (o32) object code. This guide describes the MIPSPro
compilers that produce new 32-bit and 64-bit object code. For additional
information about n32 and 64-bit compilation, see the MIPSPro N32 ABI
Handbook and the MIPSPro Porting and Transition Guide, respectively. For
information about compilers that produce old 32-bit objects, refer to the MIPS
Compiling and Performance Tuning Guide.

What You Should Know Before Reading This Guide

This guide is for anyone who wants to program effectively using the MIPSPro
compilers. It is written for a reader who is familiar with the IRIX (or UNIX)
operating system and a programming language such as C or Fortran. This
guide does not explain how to write and compile programs.

This guide does not cover all of the differences between n32, 64, and o32
compilation modes. Refer to MIPSPro Application Porting and Transition Guide
and MIPSPro N32 ABI Handbook for information about the differences between
these modes, language implementation differences, source code porting,
compilation issues, and run-time execution.

Be sure to read the Release Notes for your compiler. They contain important
information about this release of the MIPSPro compiler system.

007–2360–008 xi

MIPSproTM Compiling and Performance Tuning Guide

Related Publications

The following documents contain additional information that may be helpful:

Table 1. Topics and Manuals

Topic Document

Compiler information Release Notes for your compiler

IRIX programming Topics in IRIX Programming

Automatic
parallelization

The apo(1) man page and documents referenced by
it.

Debugging a program dbx User’s Guide or Developer Magic: Debugger User’s
Guide

MIPSPro ABI See http://www.mipsabi.org/, the MIPSPro
N32 ABI Handbook, the MIPSPro 64-Bit Porting and
Transition Guide, and the mips_ext(5) man page.

Multiprocessing Appropriate language manual, for example,
MIPSPro Fortran 77 Programmer’s Guide or C
Language Reference Manual

prof, pixie, and
ssrun

SpeedShop User’s Guide

Performance analysis
using a GUI

Developer Magic: Performance Analyzer User’s Guide

Porting code MIPSPro Porting and Transition Guide

Assembly language MIPSPro Language Programmer’s Guide

C language C Language Reference Manual

C++ language C++ Programming Guide

Fortran language MIPSPro Fortran 77 Programmer’s Guide and MIPSPro
7 Fortran 90 Commands and Directives Reference

Parallel programming Appropriate language manual

Real-time programming REACT Real-Time Programmer’s Guide

xii 007–2360–008

About This Guide

Silicon Graphics also provides manuals online, on the Web or in IRIS InSight.
To read an online manual after installing it, type insight or double-click the
InSight icon. It is easy to print sections and chapters of the online manuals
from InSight. You can also order printed manuals from Silicon Graphics by
calling SGI Direct at 1-800-800-7441. Outside the U.S. and Canada, contact your
local sales office or distributor.

To read an online manual on the Web, use this URL:

http://techpubs.sgi.com/library/lib/display.cgi?4097

Silicon Graphics offers software options to assist in your software development.
The compiler options include languages such as Fortran 90, Fortran77, C, C++,
and the automatic parallelizer (APO). CASEVision/Workshop provides the
WorkShop toolset: the Debugger, Static Analyzer, and Performance Analyzer.

As a developer, you are eligible to become a member of the Silicon Graphics
Developer Program at SGI. Call 1-800 -770-3033 for details. If you are
developing a MIPSPro ABI-compliant application, you may want to consult the
MIPSPro ABI Frequently Asked Questions.

You may also want to learn more about standard UNIX and ANSI C topics. For
this information, consult a computer bookstore or manuals such as:

• AT&T. UNIX System V Release 4 Programmer’s Guide: ANSI C and
Programming Support Tools. Englewood Cliffs, NJ: Prentice Hall, 1990.

• Levine, Mason, and Brown. lex & yacc. Sebastopol. CA: O’Reilly &
Associates, Inc., 1992.

• Oram and Talbott. Managing Projects with make. Sebastopol. CA: O’Reilly &
Associates, Inc., 1991.

• American National Standards Institute, Inc. American National Standard,
Programming Language—C, ANSI C Standard. ANSI X3.159-1989.

• International Standard ISO/IEC. Programming languages—C, 9899. 1990(E).

007–2360–008 xiii

MIPSproTM Compiling and Performance Tuning Guide

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. Be sure to include the title and part number of
the document with your comments.

You can contact us in any of the following ways:

• Send electronic mail to the following address:

techpubs@sgi.com

• Send a facsimile to the attention of “Technical Publications” at fax number
+1 650 932 0801.

• Use the Suggestion Box form on the Technical Publications Library World
Wide Web page:

http://techpubs.sgi.com/library/

• Call the Technical Publications Group, through the Technical Assistance
Center, using one of the following numbers:

For Silicon Graphics IRIX based operating systems: 1 800 800 4SGI

xiv 007–2360–008

About This Guide

For UNICOS or UNICOS/mk based operating systems or CRAY Origin2000
systems: 1 800 950 2729 (toll free from the United States and Canada) or
+1 651 683 5600

• Send mail to the following address:

Technical Publications
Silicon Graphics, Inc.
1600 Amphitheatre Pkwy.
Mountain View, California 94043–1351

We value your comments and will respond to them promptly.

007–2360–008 xv

About the MIPSPro Compiler System [1]

The MIPSPro compiler system consists of a set of components that enable you
to create new 32-bit and 64-bit executable programs (as well as old 32-bit
executables) using languages such as C, C++, and Fortran.

A new 32-bit mode, n32, was introduced with the IRIX 6.1 operating system.
This new 32-bit mode has the following features:

• Full access to all features of the hardware

• MIPS III and MIPS IV instruction set architecture (ISA)

• Improved calling convention

• 32 64-bit floating-point registers

• 32 64-bit general purpose registers

• Dwarf debugging format

The new 32-bit mode (n32) provides better performance than the old 32-bit
mode available in IRIX releases prior to 6.1. When you compile -n32, the chip
executes in 64-bit mode and the software restricts addresses to 32 bits. For more
information about n32, refer to the MIPSpro N32 ABI Handbook.

In addition, the MIPSPro compiler system:

• Uses Executable and Linking Format (ELF) for object files. ELF is the format
specified by System V Release 4 Applications Binary Interface (SVR4 ABI).
Refer to Section 2.2.1, page 8, for additional information.

• Uses shared libraries, called Dynamic Shared Objects (DSOs). DSOs are
loaded at run time, instead of at link time, by the run-time linker, rld. The
code for DSOs is not included in executable files; thus, executables built
with DSOs are smaller than those built with non-shared libraries, and
multiple programs can use the same DSO at the same time. For more
information, see Chapter 3, page 33.

• Creates Position-Independent Code (PIC) by default to support dynamic
linking. See Section 2.2.3, page 9, for additional information.

Table 2, page 2, summarizes the compiler system components and the task each
performs.

007–2360–008 1

MIPSproTM Compiling and Performance Tuning Guide

Table 2. Compiler System Functional Components

Tool Task Examples

Text editor Write and edit programs vi, jot, emacs

Compiler driver Compile, link, and load
programs

cc, CC, f77, f90,
as

Object file analyzer Analyze object files dis,
dwarfdumpsize,
elfdump, file,
nm, size

Profiler Analyze program performance cvperf, prof,
pixie, ssrun

Archiver Produce object-file libraries ar

Linker Link object files ld

Runtime linker Link Dynamic Shared Objects at
runtime

rld

Debugger Debug programs cvd, dbx

A single program called a compiler driver (such as cc, CC, f77, or f90)
invokes the following major components of the compiler system (refer to Figure
1, page 4):

• Macro preprocessor (cpp)

• Parallel analyzer (pca, fef77p, fef90p)

• Scalar optimizer (copt)

• Compiler front end

• Compiler back end

• Linker (ld)

You can invoke a compiler driver with various options (described in the
relevant man page, such as cc(1)) and with one or more source files as
arguments. All specified source files are automatically sent to the macro
preprocessor. To prevent running the preprocessor, use the -nocpp option on
the driver command line.

2 007–2360–008

About the MIPSPro Compiler System [1]

Your program can take advantage of multiple CPUs (when present) to achieve
higher computation rates. The optional parallel analyzers produce parallelized
source code from standard source code. For more information about these
packages and how to obtain them, contact your dealer or sales representative.

The compiler front end translates the source code into an intermediate tree
representation. The compiler back end translates the intermediate code into
object code. The language compilers share the same back end, which combines
optimization and code generation in one phase. (For more information about
optimization, see Chapter 4, page 59).

The linker ld combines several object files into one, performs relocation, and
resolves external symbols. The driver automatically runs ld unless you specify
the -c option to skip the linking step.

When you compile or link programs, by default the compiler searches specific
libraries depending on the compilation mode (shown in Table 3). Certain
default libraries are automatically linked.

Table 3. Compiler Mode and Default Library Search Path

Mode Path

o32 /usr/lib, /lib, and /usr/local/lib

n32 /usr/lib32, /lib32, and /usr/local/lib

64 /usr/lib64, /lib64, and /usr/local/lib

Compiler drivers and their respective libraries are listed in Table 4.

Table 4. Compilers and Default Libraries

Compiler Default Libraries

cc libc.so

CC libC.so, libc.so, libCsup.so

f77, f90 libftn.so, libftn90.so, libc.so, libm.so

To see the various utilities a program passes through during compilation,
invoke the appropriate driver with the -show option.

007–2360–008 3

MIPSproTM Compiling and Performance Tuning Guide

Figure 1 shows compilation flow from source file to executable file (a.out).

Parallel Analyzers

(pca,pc,fef77p,fef90p)

Object

file
(.o)

Driver

(cc, CC, f77, f90, as)

Compiler Front End

includes macro preprocessor

(fec,fecc,fef77,fef90)

Compiler Back End

and Code Generator

Linker

(ld)

Library

(.a,.so)

a.out

Source Files

-pca, -pfa

Assembler

(as)

Macro Preprocessor

(cpp)

a12012

Figure 1. Compiler System Flowchart

4 007–2360–008

Using the MIPSPro Compiler System [2]

This chapter provides information about the MIPSPro compiler system and
describes the object file format and dynamic linking. Specifically, this chapter
covers the topics listed below:

• Section 2.1, page 5, explains how to specify n32, 64, or o32 compilation
mode and how to set up a compiler.defaults file.

• Section 2.2, page 8, discusses object files, including executable and linking
format, dynamic shared objects, and position-independent code.

• Section 2.3, page 9, explains source file naming conventions and the
procedure for including header files.

• Section 2.3.3, page 12, describes automatic and manual precompiled header
processing.

• Section 2.4, page 19, lists and explains general compiler-driver options.

• Section 2.5, page 19, explains how to link programs manually (using ld or a
compiler) and how to compile multilanguage programs. It also covers
Dynamic Shared Objects (DSOs) and how to link them into a program.

• Section 2.6, page 26, describes the compiler-driver options for debugging.

• Section 2.7, page 26, provides information on how to use the object file tools
to analyze object files.

• Section 2.8, page 30, explains how to use the archiver, ar.

For further information on DSOs, see Chapter 3, page 33. For information on
optimizing your program, see Chapter 4, page 59.

2.1 Selecting Compilation Modes

You can select compilation modes by explicitly specifying them on a compiler
command line, defining an environment variable, or specifying a file that
defines some of the defaults. This section covers the following topics:

• Using a Defaults Specification File

• Using Command-Line Options

• Setting an Environment Variable

007–2360–008 5

MIPSproTM Compiling and Performance Tuning Guide

• When to use -n32 or -64

2.1.1 Using a Defaults Specification File

You can set the following options without explicitly specifying them every time
you invoke a compiler.

• The Application Binary Interface (ABI)

• The instruction set architecture (ISA)

• The processor type

• The optimization level

• The IEEE arithmetic level
Just set the environment variable COMPILER_DEFAULTS_PATH to a
colon-separated list of paths designating where the compiler is to look for the
compiler.defaults file. If no compiler.defaults file is found, or if the
environment variable is not set, the compiler looks in
/etc/compiler.defaults. If this file is not found, the compiler resorts to
the built-in defaults.

The compiler.defaults file contains a -DEFAULT: option group specifier
that specifies the default ABI, ISA, and processor. The compiler issues a
warning if you specify anything other than -DEFAULT: option in the
compiler.defaults file.

The format of the -DEFAULT: option group is specified in each of the language
manuals.

Use the -show_defaults option to print the compiler.defaults being
used (if any) and their values. This option is for diagnostic purposes and does
not compile any code.

Explicit command-line options override all compiler default settings, and the
SGI_ABI environment variable overrides the ABI setting in the
compiler.defaults file. The following command overrides a
compiler.defaults file that sets
-DEFAULT:abi=n32:isa=mips4:proc=r10k and compiles -64 -mips4
-r10000:

% cc -64 foo.c

6 007–2360–008

Using the MIPSPro Compiler System [2]

The following command overrides the compiler.defaults file and sets the
ABI to -o32 and the ISA to -mips2. The -o32 ABI supports only -mips2 (the
default) and -mips1 compilations.

% cc -o32 foo.c

The processor type is ignored by -o32 compilations. Refer to the release notes
and man pages for your compiler for information about default settings. Refer
to the man pages for your command-line options.

2.1.2 Setting an Environment Variable

You can set an environment variable (shown in Table 5) to specify the
compilation mode to use.

Table 5. Compilation Mode Environment Variable Specifications

Environment Variable Description

setenv SGI_ABI -n32 Sets the environment for new 32-bit compilation.

setenv SGI_ABI -64 Sets the environment for 64-bit compilation.

setenv SGI_ABI -o32 Sets the environment for old 32-bit compilation.

2.1.3 When to Use -n32 or -64

How do you know when to use -n32 or -64 to compile your code? Compile
-n32 when you want:

• To generate smaller executables than -64.

• Executables to have fewer data cache misses and less memory paging than
-64.

• To access 64 bits: long long and INTEGER*8 are 64-bits long.

Compile -64 if your program:

• Requires more than 2 gigabytes of address space.

• Will overflow a 32-bit long integer.

007–2360–008 7

MIPSproTM Compiling and Performance Tuning Guide

2.2 Object File Format and Dynamic Linking

This section describes how the compiler system:

• Uses Executable and Linking Format (ELF) for object files.

• Uses shared libraries called Dynamic Shared Objects (DSOs).

• Creates Position–Independent Code (PIC) by default to support dynamic
linking.

2.2.1 Executable and Linking Format

The compiler system produces ELF object files. ELF is the format specified by
the System V Release 4 Applications Binary Interface (the SVR4 ABI). ELF
provides support for Dynamic Shared Objects, described in the following
section.

Types of ELF object files are as follows:

• Relocatable files, which contain code and data in a format suitable for
linking with other object files to make a shared object or executable.

• Dynamic Shared Objects, which contain code and data suitable for dynamic
linking. Relocatable files may be linked with DSOs to create a dynamic
executable. At run time, the run-time linker combines the executable and
DSOs to produce a process image.

• Executable files ready for execution. They may or may not be dynamically
linked.

Note: The current compiler system has no facility for creating or linking
COFF executables; therefore, you must recompile COFF executables.

You can use this version of the compiler system to construct ABI-compliant
executables that run on any operating system supporting the MIPS ABI. Be
careful to avoid referencing symbols that are not defined as part of the MIPS
ABI specification. For more information, see the following publications:

• System V Applications Binary Interface—Revised First Edition. Prentice Hall,
ISBN 0-13-880410-9

• System V Application Binary Interface MIPS Processor Supplement. Prentice
Hall, ISBN 0-13-880170-3.

8 007–2360–008

Using the MIPSPro Compiler System [2]

2.2.2 Dynamic Shared Objects

IRIX uses shared objects called Dynamic Shared Objects, or DSOs. The object
code of a DSO is position-independent code (PIC), which can be mapped into
the virtual address space of several different processes at once. DSOs are
loaded at run time instead of at linking time by the run-time loader, rld. As is
true of static shared libraries, the code for DSOs is not included in executable
files; thus, executables built with DSOs are smaller than those built with
non-shared libraries, and multiple programs may use the same DSO at the same
time. For more information on DSOs, see Chapter 3, page 33.

Note: COFF static shared libraries are not supported under this release. The
current compiler system has no facilities for generating static shared libraries.

2.2.3 Position-Independent Code

Dynamic linking requires that all object code used in the executable be
position-independent code. For source files in high-level languages, you just
need to recompile to produce PIC. Assembly language files must be modified to
produce PIC; see the MIPSpro Assembly Language Programmer’s Guide for details.

Position-independent code satisfies references indirectly by using a global offset
table (GOT), which allows code to be relocated simply by updating the GOT.
Each executable and each DSO has its own GOT. For more information on
DSOs, see Chapter 3, page 33.

The compiler system produces PIC by default when compiling higher-level
language files. All of the standard libraries are provided as DSOs and therefore
contain PIC code; if you compile a program into non-PIC, you will be unable to
use those DSOs. One of the few reasons to compile non-PIC is to build a device
driver, which does not rely on standard libraries. In this case, you should use
the -non_shared option to the compiler to negate the default option, -KPIC.
For convenience, the C library and math library are provided in non-shared
format as well as in DSO format (although the non-shared versions are not
installed by default). You can link these libraries -non_shared with other
non-PIC files.

2.3 Source File Considerations

This section describes conventions for naming source files and including header
files. Topics covered include:

• Source file naming conventions, see the following section.

007–2360–008 9

MIPSproTM Compiling and Performance Tuning Guide

• Header and include files, see Section 2.3.2, page 10.

• Using precompiled headers in C and C++, see Section 2.3.3, page 12.

2.3.1 Source File Naming Conventions

Each compiler driver recognizes the type of an input file by the suffix assigned
to the file name. Table 6 describes the possible file name suffixes.

Table 6. Driver Input File Suffixes

Suffix Description

.s Assembly source

.i Preprocessed source code in the language of the
processing driver

.c C source

.C, .c++, .CC,

.cc, .CPP, .cpp,

.CXX, .cxx

C++ source

.f.F.for.FOR

.f.f90.F90
Fortran 77 source
Fortran 90 source

.p Pascal source

.o Object file

.a Object library archive

.so Dynamic shared object library

The following example compiles preprocessed source code:

f77 -c tickle.i

The f77 compiler also assumes the file has already been preprocessed (because
the suffix is .i) and therefore does not invoke the preprocessor.

2.3.2 Header and Include Files

Header files, also called include files, contain code that is inserted into the
program.

10 007–2360–008

Using the MIPSPro Compiler System [2]

C header files contain information about the libraries with which they are
associated. They define such things as data types, data structures, symbolic
constants, and prototypes for functions exported by the library. To use those
definitions without having to type them into each of your source files, you can
use the #include directive to tell the macro preprocessor to include the
complete text of the given header file in the current source file. When you
include header files in your source files, you can specify definitions conveniently
and consistently in each source file that uses any of the library routines.

Fortran include files are specified by the INCLUDE line, which names a file
containing source text. That source text is substituted for the INCLUDE line
during compilation. The source text can be any Fortran code that is valid in the
context of its location in the program.

By convention, C header file names have a .h suffix. Each programming
language handles these files the same way, via the macro preprocessor. For
example, the stdio.h header file describes, among other things, the data types
of the parameters required by the C language printf() function.

For detailed information about standard header files and libraries, see the
International Standard ISO/IEC, Programming languages—C, 9899, 1990. Also see
Section 6.3.3, page 136, for information about the inttypes.h header file.

2.3.2.1 Specifying a Header File

The #include directive in C and C++ or the INCLUDE line in Fortran tells the
preprocessor to replace the directive or line with the text of the indicated header
file. The usual way to specify a header file in C is with the following line:

#include <filename>

The filename is the name of the header file to be included. The angle brackets (<
>) surrounding the filename tell the macro preprocessor to search for the
specified file only in directories specified by command-line options and in the
default header file directory (/usr/include and /usr/include/CC for C++).

In another specification format, filename is given between double quotation
marks (‘‘ ’’). In this case, the macro preprocessor searches for the specified
header file in the current directory first (that is, the directory containing the
main program file). If the preprocessor does not find the requested file, it
searches the other directories as in the angle-bracket specification.

In Fortran, included text is specified as follows:

INCLUDE ’filename’

007–2360–008 11

MIPSproTM Compiling and Performance Tuning Guide

In an f90(1) program, the directory containing filename can be specified on the
command line with the -I option. In an f77(1) program, filename must be in
the current directory.

2.3.2.2 Creating a Header File for Multiple Languages

A single header file can contain definitions for multiple languages; this setup
allows you to use the same header file for all programs that use a given library,
no matter what language those programs are in.

To set up a shareable header file, create a .h file and enter the definitions for
the various languages as follows:

#ifdef _LANGUAGE_C

C Definitions
#endif

#ifdef _LANGUAGE_C_PLUS_PLUS
C++ definitions

#endif

#ifdef _LANGUAGE_FORTRAN

Fortran definitions
#endif

Note: You must specify _LANGUAGE_ before the language name. To indicate
C++ definitions, you must use _LANGUAGE_C_PLUS_PLUS, not
_LANGUAGE_C++.

You can specify language definitions in any order.

2.3.3 Using Precompiled Headers in C and C++

This section describes the precompiled header mechanism that is available with
the n32 and 64-bit C and C++ compilers. This mechanism is also available for
C++ (but not C) in o32-bit mode.

This section contains the following topics:

• About precompiled headers, see the following section.

• Automatic precompiled header processing, see Section 2.3.5, page 13.

12 007–2360–008

Using the MIPSPro Compiler System [2]

• Other ways to control precompiled headers, see Section 2.3.6, page 17.

• PCH performance issues, see Section 2.3.7, page 17.

2.3.4 About Precompiled Headers

The precompiled header (PCH) file mechanism is available through the C and
C++ compilers front ends: fec and fecc. Use PCH to avoid recompiling a set
of header files. This is particularly useful when your header files introduce
many lines of code, and the primary source files that included them are
relatively small.

In effect, fec and fecc take a snapshot of the state of the compilation at a
particular point and write it to a file before completing the compilation. When
you recompile the same source file or another file with the same set of header
files, the PCH mechanism recognizes the snapshot point, verifies that the
corresponding PCH file is usable, and reads it back in.

The PCH mechanism can give you a dramatic improvement in compile-time
performance. The trade-off is that PCH files may take a lot of disk space.

2.3.5 Automatic Precompiled Header Processing

This section covers the following topics:

• PCH file requirements

• Reusing PCH files

• Obsolete file deletion mechanism

You can enable precompiled header processing by using the -pch option (-Wf,
-pch in 32-bit mode) on the command line. With the PCH mechanism enabled,
fec or fecc searches for a qualifying PCH file to read in or creates one for use
on a subsequent compilation.

The PCH file contains a snapshot of all the code preceding the header stop
point. The header stop point is typically the first token in the primary source
file that does not belong to a preprocessing directive. The header stop point can
also be specified directly by inserting a #pragma hdrstop. For example,
consider the following C++ code:

#include ‘‘xxx.h’’

#include ‘‘yyy.h’’

int i;

007–2360–008 13

MIPSproTM Compiling and Performance Tuning Guide

In this case, the header stop point is int i (the first non-preprocessor token),
and the PCH file will contain a snapshot reflecting the inclusion of xxx.h and
yyy.h. If the first non-preprocessor token or the #pragma hdrstop appears
within a #if block, the header stop point is the outermost enclosing #if. For
example, consider the following C++ code:

#include ‘‘xxx.h’’

#ifndef YYY_H

#define YYY_H 1

#include ‘‘yyy.h’’
#endif

#if TEST

int i;

#endif

In this case, the first token that does not belong to a preprocessing directive is
again int i, but the header stop point is the start of the #if block containing
the int. The PCH file reflects the inclusion of xxx.h and conditionally the
definition of YYY_H and inclusion of yyy.h. The file does not contain the state
produced by #if TEST.

PCH File Requirements

A PCH file is produced only if the header stop point and the code preceding it
(generally the header files themselves) meet the following requirements:

• The header stop point must appear at file scope; it may not be within an
unclosed scope established by a header file. For example, a PCH file is not
created in the following case:

// xxx.h
class A {

// xxx.C

#include "xxx.h"

int i; };

• The header stop point cannot be inside a declaration started within a header
file, and it cannot be part of a declaration list of a linkage specification. For
example, a PCH file is not created in the following case:

// yyy.h

static

// yyy.C

14 007–2360–008

Using the MIPSPro Compiler System [2]

#include "yyy.h"

int i;

In this case, the header stop point is int i, but since it is not the start of a
new declaration, a PCH file is not created

• The header stop point cannot be inside a #if block or a #define started
within a header file.

• The processing preceding the header stop must not have produced any
errors. (Note that warnings and other diagnostics are not reproduced when
the PCH file is reused.)

• References to predefined macros __DATE__ or __TIME__ cannot be
included.

• Use of the #line preprocessing directive cannot be included.

• #pragma no_pch cannot be included.

Reusing PCH Files

When a precompiled header file is produced, in addition to the snapshot of the
compiler state, it contains some information that can be checked to determine
under what circumstances it can be reused. This information includes the
following:

• The compiler version, including the date and time the compiler was built.

• The current directory (in other words, the directory in which the
compilation is occurring).

• The command–line options.

• The initial sequence of preprocessing directives from the primary source file,
including #include directives.

• The date and time of the header files specified in #include directives.

This information comprises the PCH prefix. The prefix information of a given
source file can be compared to the prefix information of a PCH file to determine
whether or not the latter is applicable to the current compilation.

For example, consider the following C++ code:

// a.C

#include "xxx.h"

007–2360–008 15

MIPSproTM Compiling and Performance Tuning Guide

... // Start of code

// b.C

#include "xxx.h"

... // Start of code

When you compiled a.C with the -pch option, the PCH file a.pch is created.
When you compile b.C (or recompile a.C), the prefix section of a.pch is read
in for comparison with the current source file. If the command line options are
identical and xxx.h has not been modified, fec or fecc reads in the rest of
a.pch rather than opening xxx.h and processing it line by line. This
establishes the state for the rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation. If
so, the largest (in other words, the one representing the most preprocessing
directives from the primary source file) is used. For instance, consider a
primary source file that begins with the following code:

#include "xxx.h"

#include "yyy.h"

#include "zzz.h"

If one PCH file exists for xxx.h and a second for xxx.h and yyy.h, the latter
will be selected (assuming both are applicable to the current compilation). After
the PCH file for the first two headers is read in and the third is compiled, a
new PCH file for all three headers may be created.

When a precompiled header file is created, it takes the name of the primary
source file, with the suffix replaced by pch. Unless -pch_dir is specified, the
PCH file is created in the directory of the primary source file.

When a precompiled header file is created or used, a message similar to the
following is issued:

"test.C": creating precompiled header file "test.pch"

Obsolete File Deletion Mechanism

In automatic mode (when -pch is used), the front end considers a PCH file
obsolete and deletes it under the following circumstances:

• The file is based on at least one out-of-date header file but is otherwise
applicable for the current compilation.

16 007–2360–008

Using the MIPSPro Compiler System [2]

• The file has the same base name as the source file being compiled (for
example, xxx.pch and xxx.C) but is not applicable for the current
compilation (for example, because of different command-line options).

You must manually clean up any other PCH file.

Support for PCH processing is not available when multiple source files are
specified in a single compilation. If the command line includes a request for
precompiled header processing and specifies more than one primary source file,
an error is issued and the compilation is aborted.

2.3.6 Other Ways to Control Precompiled Headers

You can use the following ways to control and tune how precompiled headers
are created and used:

• You can insert a #pragma hdrstop in the primary source file at a point
prior to the first token that does not belong to a preprocessing directive.
Thus you can specify where the set of header files subject to precompilation
ends, as in the following:

#include "xxx.h"

#include "yyy.h"

#pragma hdrstop
#include "zzz.h"

In this case, the precompiled header file includes the processing state for
xxx.h and yyy.h but not zzz.h. This is useful if you decide that the
information added by what follows the #pragma hdrstop does not justify
the creation of another PCH file.

• You can use a #pragma no_pch to suppress the precompiled header
processing for a given source file.

• You can use the command-line option -pch_dir directoryname to specify the
directory in which to search for and create a PCH file.

2.3.7 PCH Performance Issues

The relative overhead incurred in writing out and reading in a precompiled
header file is quite small for reasonably large header files.

In general, writing out a precompiled header file does not cost much, even if it
does not end up being used, and, if it is used, it almost always produces a
significant speedup in compilation. The problem is that the precompiled header

007–2360–008 17

MIPSproTM Compiling and Performance Tuning Guide

files can be quite large (from a minimum of about 250 Kbytes to several Mbytes
or more), and so you probably do not want many of them sitting around.

You can see that, despite the faster recompilations, precompiled header
processing is not likely to be justified for an arbitrary set of files with
nonuniform initial sequences of preprocessing directives. The greatest benefit
occurs when a number of source files can share the same PCH file. The more
sharing, the less disk space is consumed. With sharing, the disadvantage of
large precompiled header files can be minimized without giving up the
advantage of a significant speedup in compilation times.

To take full advantage of header file precompilation, you should reorder the
#include sections of your source files and group the #include directives
within a commonly used header file.

The fecc source provides an example of how this can be done. A common
idiom is the following:

#include "fe_common.h"

#pragma hdrstop

#include ...

In this example, fe_common.h pulls in, directly and indirectly, a few dozen
header files. The #pragma hdrstop is inserted to get better sharing with
fewer PCH files. The PCH file produced for fe_common.h is slightly over a
Mbyte in size. Another example, used by the source files involved in
declaration processing, is the following:

#include "fe_common.h"

#include "decl_hdrs.h"

#pragma hdrstop
#include ...

decl_hdrs.h pulls in another dozen header files, and a second, somewhat
larger, PCH file is created. In all, the fifty-odd source files of fecc share just six
precompiled header files. If disk space is at a premium, you can decide to make
fe_common.h pull in all the header files used. In that case, a single PCH file
can be used in building fecc.

Different environments and different projects have different needs. You should,
however, be aware that making the best use of the precompiled header support
will require some experimentation and probably some minor changes to your
source code.

18 007–2360–008

Using the MIPSPro Compiler System [2]

2.4 Compiler Drivers

The driver commands cc(1), CC(1), f90(1), and f77(1) call subsystems that
compile, optimize, assemble, and link your programs. This section describes the
default behavior for compiler drivers.

At compilation time, you can select one or more options that affect a variety of
program development functions, including debugging, profiling, and
optimizing. You can also specify the names assigned to output files. Note that
some options have default values that apply if you do not specify them.

When you invoke a compiler driver with source files as arguments, the driver
calls other commands that compile your source code into object code. It then
optimizes the object code (if requested to do so) and links together the object
files, the default libraries, and any other libraries you specify.

Given a source file foo.c, the default name for the object file is foo.o. The
default name for an executable file is a.out. The following example compiles
source files foo.c and bar.c with the default options:

% cc foo.c bar.c

This example produces two object files, foo.o and bar.o, and links them with
the default C library, libc, to produce an executable called a.out.

Note: If you compile a single source directly to an executable, the compiler
does not create an object file.

The command-line options for MIPSPro compiler drivers are listed and
explained in the man page for your compiler.

2.5 Linking

The linker, ld, combines one or more object files and libraries (in the order
specified) into one executable file, performing relocation, external symbol
resolutions, and all other required processing. Unless directed otherwise, the
linker names the executable file a.out. See the ld(1) man page for complete
information on the linker.

This section summarizes the functions of the linker. It also covers how to link a
program manually (without using a compiler driver) and how to compile
multilanguage programs. Specifically, this section describes:

• Invoking the linker, see the following section.

• Linking assembly language programs, see Section 2.5.2, page 20.

007–2360–008 19

MIPSproTM Compiling and Performance Tuning Guide

• Linking libraries, see Section 2.5.3, page 21.

• Linking to previously built dynamic shared objects, see Section 2.5.4, page 23.

• Linking multilanguage programs, see Section 2.5.5, page 23.

2.5.1 Invoking the Linker

Usually the compiler invokes the linker as the final step in compilation. If
object files produced by previous compilations exist and you want to link them,
invoke the linker by using a compiler driver instead of calling ld directly. Just
pass the object file names to the compiler driver in place of source file names. If
the original source files are in one language, invoke the associated driver and
specify the list of object files.

In some cases you may need to invoke ld directly, such as when you are
building a shared object or doing special linking not supported by compiler
drivers (such as building an embedded system).

For information on the options available to the linker, see the ld(1) man page.

2.5.1.1 Linker Example

The following command tells the linker to search for the DSO libcurses.so
in the directory /usr/lib. If it does not find that DSO, the linker then looks
for libcurses.a in /lib. The linker does not look for DSOs in
/usr/local/lib, so do not put shared objects there.

% ld foiled.o again.o -lcurses

If found in any of these places, the DSO or library is linked with the objects
foiled.o and again.o; if they are not found, an error is generated.

2.5.2 Linking Assembly Language Programs

The assembler driver, as(1), does not run the linker. To link a program written
in assembly language, use one of these procedures:

• Assemble and link using one of the other driver commands (cc, for
example). The .s suffix of the assembly language source file causes the
driver to invoke the assembler.

• Assemble the file using as. Then link the resulting object file with the ld
command.

20 007–2360–008

Using the MIPSPro Compiler System [2]

2.5.3 Linking Libraries

The linker processes its arguments from left to right as they appear on the
command line. Arguments to ld can be object files, DSOs, or libraries. Be sure
to list object files before DSOs.

When ld reads a DSO, it adds all the symbols from that DSO to a cumulative
symbol table. If it encounters a symbol that’s already in the symbol table, it
does not change the symbol table entry. If you define the same symbol in more
than one DSO, only the first definition is used.

When ld reads an archive, usually denoted by a file name ending in .a, it uses
only the object files from that archive that can resolve currently unresolved
symbol references. When a symbol is referred to but not defined in any of the
object files that have been loaded so far, it’s called unresolved.

Once a library has been searched in this way, it is never searched again.
Therefore, place libraries after object files on the command line in order to
resolve as many references as possible. If a symbol is already in the cumulative
symbol table from having been encountered in a DSO, its definition in any
subsequent archive or DSO is ignored.

2.5.3.1 Specifying Libraries and DSOs

You can specify libraries and DSOs either by explicitly stating a path name or
by using the library search rules. To specify a library or DSO by path (either
relative to the current directory or absolute), simply include that path on the
command line:

% ld myprog.o /usr/lib/libc.so.1 mylib.so

Note: libc.so.1 is the name of the standard C DSO, replacing the older
libc.a. Similarly, libX11.so.1 is the X11 DSO. Most other DSOs are
simply named name.so, without a .1 extension.

To use the linker’s library search rules, specify the library with the -lname
option:

% ld myprog.o -lmylib

When the -lmylib argument is processed, ld searches for a file called
libmylib.so. If it can’t find libmylib.so in a given directory, it tries to find
libmylib.a there; if it can’t find that either, it moves on to the next directory
in its search order.

007–2360–008 21

MIPSproTM Compiling and Performance Tuning Guide

The default search order uses the path appropriate to the compilation mode:

• For -n32, the default search order is /usr/lib32:/lib32.

• For -64, the default search order is /usr/lib64:/lib64.

• For -o32, the default search order is /usr/lib:/lib.

If ld is invoked from one of the compiler drivers, all -L and -nostdlib
options are moved up on the command line so that they appear before any
-lname options. For example, consider the command:

% cc file1.o -lm -L mydir

This command invokes, at the linking stage of compilation, the following:

ld -L mydir file1.o -lm

Note: There are three different kinds of files that contain object code files:
non-shared libraries, PIC archives, and DSOs. Non-shared libraries are the
old-style library, built using ar from .o files that were compiled with the
-non_shared option. These archives must also be linked -non_shared.
PIC archives are the default, built using ar from .o files compiled with
-KPIC (the default option). They can be linked with other PIC files. DSOs
are built from PIC .o files by using ld -shared; see Chapter 3, page 33, for
details.

If the linker tells you that a reference to a certain function is unresolved, check
that function’s man page to find out which library the function is in. If it is not
in one of the standard libraries that ld links in by default, you may need to
specify the appropriate library on the command line. For an alternative method
of finding out where a function is defined, see Section 2.5.6, page 26.

Note: Simply including the header file associated with a library routine is not
enough; you must also specify the library when linking (unless it is a
standard library). No automatic connection exists between header files and
libraries. Header files only give prototypes for library routines, not the
library code itself.

2.5.3.2 Examples of Linking DSOs

To link a sample program foo.c with the math DSO, libm.so, enter:

% cc foo.c -lm

22 007–2360–008

Using the MIPSPro Compiler System [2]

To specify the appropriate DSOs for a graphics program foogl.c, enter:

% cc foogl.c -lgl -lX11

Note: When linking, you must specify the source file name before the linker
options.

2.5.4 Linking to Previously Built Dynamic Shared Objects

This section describes how to link your source files with previously built DSOs;
for more information about how to build your own DSOs, see Chapter 3, page
33.

To build an executable that uses a DSO, call a compiler driver just as you
would for a non-shared library. For instance, the following command links the
resulting object file, needle.o, with the previously built DSO, libthread.so,
and the standard C DSO, libc.so.1, if available.

% cc needle.c -lthread

If no libthread.so exists, but a PIC archive named libthread.a exists, that
archive is used with libc.so.1. So you still get dynamic (run-time) linking.
Note that even .a libraries contain position-independent code by default,
though it is also possible to build non-shared .a libraries that do not contain
PIC.

2.5.5 Linking Multilanguage Programs

The source language of the main program may differ from that of a
subprogram. Follow the steps below to link multilanguage programs. For an
illustration of the process, see Figure 2, page 25.

1. Compile object files from the source files of each language separately by
using the -c option.

For example, if the source consists of a Fortran main program, main.f, and
two files of C functions, more.c and rest.c, use the commands:

% cc -c more.c rest.c

% f77 -c main.f

These commands produce the object files main.o, more.o, and rest.o.

007–2360–008 23

MIPSproTM Compiling and Performance Tuning Guide

2. Use the compiler associated with the language of the main program to link
the objects:

% f77 main.o more.o rest.o

The compiler drivers supply the default set of libraries necessary to produce
an executable from the source of the associated language. However, when
producing executables from source code in several languages, you may need
to specify the default libraries explicitly for one or more of the languages.
For instructions on specifying libraries, see Section 2.5.3, page 21.

24 007–2360–008

Using the MIPSPro Compiler System [2]

more.o

rest.o

a.out

main.o

Linker

(ld)

Code Generator

C Preprocessor

C Front End

Code Generator

C Front End

C Preprocessor

more.c

rest.c

main.f

a12013

Figure 2. Compilation Control Flow for Multilanguage Programs

007–2360–008 25

MIPSproTM Compiling and Performance Tuning Guide

Note: Use caution when passing pointers and longs between languages, since
some languages use different type sizes and structures for data types.

For specific details about compiling multilanguage programs, see the
programming guides for the appropriate languages.

2.5.6 Finding an Unresolved Symbol with ld

You can use ld to locate unresolved symbols. For example, suppose you are
compiling a program, and ld tells you that you are using an unresolved
symbol. You may not know where the unresolved symbol is referenced.

To find the unresolved symbol, enter:

% ld -ysymbol file1 ... filen

You can also enter:

% cc prog.o -Wl,-ysymbol

The output lists the source file that references symbol.

2.6 Debugging

The compiler system provides two debugging tools, dbx(1), which is described
in detail in the dbx User’s Guide, and cvd(1), which is part of the WorkShop. For
information about cvd, see the Developer Magic: Debugger User’s Guide.

Before using one of the debuggers, specify the -g driver option to produce
executables containing information that the debugger can use (see the dbx(1) or
cvd(1) man page).

2.7 Getting Information About Object Files

The following tools provide information on object files:

• dis disassembles an object file into machine instructions.

• dwarfdump lists headers, tables, and other selected parts of a
DWARF-format object file or archive file.

• elfdump lists the contents, including the symbol table and header
information, of an ELF-format object file.

26 007–2360–008

Using the MIPSPro Compiler System [2]

• file provides descriptive information on the properties of a file.

• nm lists symbol table information.

• size prints the size of each section of an object file. Some of these sections
are named text, data, and sbss.

• strip removes symbol table and relocation bits.

You can trace system call and scheduling activity by using the par command.
For more information, see the par(1) man page.

2.7.1 Disassembling Object Files with dis

The dis tool disassembles object files into machine instructions. You can
disassemble an object, archive library, or executable file.

See the dis(1) man page for descriptions of its options.

2.7.2 Listing Parts of DWARF Object Files With dwarfdump

The dwarfdump tool provides debugging information from selected parts of
DWARF symbolic information in an ELF object file. For more information on
DWARF, including option descriptions, see the dwarfdump(1) and dwarf(4)
man pages.

2.7.3 Listing Parts of ELF Object Files and Libraries with elfdump

The elfdump tool lists headers, tables, and other selected parts of an
ELF-format object file or archive file. See the elfdump(1) man page for option
descriptions and other information.

2.7.4 Determining File Type with file

The file tool lists the properties of program source, text, object, and other
files. This tool attempts to identify the contents of files using various heuristics.
It is not exact and often erroneously recognizes command files as C programs.
For more information, including option descriptions, see the file(1) man page.

007–2360–008 27

MIPSproTM Compiling and Performance Tuning Guide

2.7.5 Listing Symbol Table Information: nm

The nm tool lists symbol table information for object files and archive files. To
get XPG4 (X/Open Portability Group) format, set the environment variable,
_XPG in your environment.

For more information and option descriptions, see the nm(1) man page.

This example demonstrates how to obtain a symbol table listing. Consider the
following program, tnm.c:

#include <stdio.h>

#include <math.h>

#define LIMIT 12

int unused_item = 14;

double mydata[LIMIT];

main()

{

int i;

for(i = 0; i < LIMIT; i++) {
mydata[i] = sqrt((double)i);

}

return 0;

}

Compile the program into an object file by entering:

% cc -c tnm.c

To obtain symbol table information for the object file tnm.o in BSD format, use
the nm -B command:

0000000000 T main

0000000000 B mydata
0000000000 U sqrt

0000000000 D unused_item

0000000000 N _bufendtab

To obtain symbol table information for the object file tnm.o in SVR4 format,
use the nm command without any options:

28 007–2360–008

Using the MIPSPro Compiler System [2]

Symbols from tnm.o:

[Index] Value Size Class Type Section Name

[0] | 0| |File |ref=4 |Text | tnm.c

[1] | 0| |Proc |end=3 int |Text | main

[2] | 116| |End |ref=1 |Text | main

[3] | 0| |End |ref=0 |Text | tnm.c
[4] | 0| |File |ref=6 |Text | /usr/include/math.h

[5] | 0| |End |ref=4 |Text | /usr/include/math.h

[6] | 0| |Global | |Data | unused_item

[7] | 0| |Global | |Bss | mydata

[8] | 0| |Proc |ref=1 |Text | main
[9] | 0| |Proc | |Undefined| sqrt

[10] | 0| |Global | |Undefined| _gp_disp

2.7.6 Determining Section Sizes with size

The size tool prints information about the sections (such as text, rdata, and
sbss) of the specified object or archive files. The elf(4) man page describes
the format of these sections, and the size(1) man page describes the options
accepted by the size command.

An example of the size command and the listings produced follows:

% size a.out

Section Size Physical Virtual

Address Address

.interp 21 268435856 268435856

.MIPS.options 104 268435880 268435880

.dynamic 464 268435984 268435984

.liblist 20 268436448 268436448

.MIPS.symlib 30 268436468 268436468

.msym 240 268436500 268436500

.dynstr 312 268436744 268436744

.dynsym 720 268437056 268437056

.hash 256 268437776 268437776
.MIPS.stubs 56 268438032 268438032

.text 460 268438088 268438088

.init 24 268438548 268438548

.data 17 268505088 268505088

.sdata 8 268505108 268505108

007–2360–008 29

MIPSproTM Compiling and Performance Tuning Guide

.got 112 268505120 268505120

.bss 36 268505232 268505232

2.7.7 Removing Symbol Table and Relocation Bits with strip

The strip tool removes symbol table and relocation bits that are attached to
the assembler and loader. Use strip to save space after you debug a program.
The effect of strip is the same as that of using the -s option to ld.

See the strip(1) man page for descriptions of the options.

2.8 Using the Archiver to Create Libraries

An archive library is a file that includes the contents of one or more object (.o)
files. When the linker (ld) searches for a symbol in an archive library, it loads
only the code from the object file where that symbol was defined (not the entire
library) and links it with the calling program.

The archiver (ar) creates and maintains archive libraries and has these main
functions:

• Copying new objects into the library

• Replacing existing objects in the library

• Moving objects around within the library

• Extracting individual objects from the library

• Creating a symbol table for the linker to search symbols

The following section explains the syntax of the ar command and lists some
options and examples of how to use it. See the ar(1) man page for details.

Note: ar simply strings together whatever object files you tell it to archive.
Therefore you can use ar to build either non-shared or PIC libraries,
depending on how the included .o files were built in the first place. If you
do create a non-shared library with ar, remember to link it -non_shared
with your other code. For information about building DSOs and converting
libraries to DSOs, see Chapter 3, page 33.

2.8.1 ar Examples

To create a new library, libtest.a, and add object files to it, enter:

30 007–2360–008

Using the MIPSPro Compiler System [2]

% ar -cq libtest.a mcount.o mon1.o string.o

The -c option suppresses an archiver message during the creation process. The
-q option creates the library and puts mcount.o, mon1.o, and string.o into
it.

To replace an object file in an existing library, enter:

% ar -r libtest.a mon1.o

The -r option replaces mon1.o in the library libtest.a. If mon1.o does not
already exist in the library libtest.a, it is added.

Note: If you specify the same file twice in an argument list of files to be
added to an archive, that file appears twice in the archive.

007–2360–008 31

Using Dynamic Shared Objects [3]

A dynamic shared object (DSO) is an object file that’s meant to be used
simultaneously–or shared–by multiple applications (a.out files) while they’re
executing.

As you read this chapter, you will learn how to build and use DSOs. This
chapter covers the following topics:

• Section 3.1, page 33, explains the benefits of DSOs.

• Section 3.2, page 35, tells you how to obtain the most benefit from using
DSOs when creating your executable.

• Section 3.3, page 40, discusses an optimization you can use to make sure
that the DSOs you build load as quickly as possible.

• Section 3.4, page 43, describes how to build a DSO.

• Section 3.5, page 46, discusses the run-time linker, and how it locates DSOs
at run time.

• Section 3.6, page 52, explains the use of dlopen() and dlsym() to control
run-time linking.

• Section 3.7, page 55, discusses a versioning mechanism for DSOs that allows
binaries linked against different, incompatible versions of the same DSO to
run correctly.

You can use DSOs in place of archive libraries (they replace static shared
libraries provided with earlier releases of IRIX).

3.1 Benefits of Using DSOs

Since DSOs contain shared components, using them provides several
substantial benefits:

• DSOs Minimize Overall Memory Use

• Executables Linked with DSOs Are Smaller

• DSOs Are Easier to Use, Build, and Debug

007–2360–008 33

MIPSproTM Compiling and Performance Tuning Guide

• Executables Using DSOs Don’t Have to Be Relinked

• DSOs and Executables Are Mapped into Memory

3.1.1 DSOs Minimize Overall Memory Use

DSOs minimize overall memory usage because code is shared. Two executables
that use the same DSO and that run simultaneously have only one copy of the
instruction from the shared component loaded into memory. For example, if
executable A and executable B both link with the same DSO C, and if A and B
are both running at the same time, the total memory used is what’s required for
A, B, and C, plus some small overhead. If C is an unshared library, the memory
used is what’s required for A, B, and two copies of C.

3.1.2 Executables Linked with DSOs Are Smaller

Executables linked with DSOs are smaller than those linked with unshared
libraries because the shared objects aren’t part of the executable file image, so
disk usage is minimized.

3.1.3 DSOs Are Easier To Use, Build, and Debug

DSOs are much easier to use, build, and debug than the static shared libraries
(supplied in IRIX 4 and earlier). Most of the libraries supplied by Silicon
Graphics today are available as DSOs. In IRIX 4 and earlier, only a few static
shared libraries were available; most libraries were unshared.

3.1.4 Executables Using DSOs Don’t Have to Be Relinked

Executables that use a DSO don’t have to be relinked if the DSO changes; when
the new DSO is installed, the executable automatically starts using it. This
feature makes it easier to update end users with new software versions. It also
allows you to create hardware-independent software packages more easily.

Suppose, for example, you want to build both MipsIV and a MipsIII versions of
a shared object. You want your program to use the MipsIV version when it is
running on a Power Challenge (R8000) system, and also run correctly on
another 64-bit platform. Suppose you want to do the above with the routines in
a library named libchange.so. To do this, build one version of the routines
in libchange using the -mips4 option, and place it in /usr/lib64/mips4
on a Power Challenge system. Next, build another version using the -mips3
option, and place it in /usr/lib64. Then, when you build an executable that

34 007–2360–008

Using Dynamic Shared Objects [3]

uses libchange, use the -rpath option to tell the run-time linker to look first
for MipsIV versions of the libraries. For example:

% cc -mips3 -o prog prog.o -rpath /usr/lib64/mips4 -lchange

As a result, prog runs on any IRIX 6 (and later) system, and it automatically
takes advantage of any MipsIV libraries whenever it runs on a Power Challenge
system.

3.1.5 DSOs and Executables Are Mapped into Memory

DSOs and the executables that use them are mapped into memory by a
run-time loader, rld, which resolves external references between objects and
relocates objects at run time. (DSOs contain only position-independent code
[PIC], so they can be loaded at any virtual address at run time.) With rld, the
binding of symbols can be changed at run time at the request of the executing
program. You could use this feature to dynamically change the feature set
presented to a user of your application, for example, while minimizing start-up
time. The application could be started quickly, with a subset of the features
available and then, if the user needs other features, those can be loaded in
under programmatic control.

Costs that are involved with using DSOs are explained in Section 3.2, page 35.
The sections after that explain how to build and optimize DSOs and how rld
works. See the rld(1) man page for more information. The dso(5) man page
also contains more information about DSOs.

3.2 Using DSOs

Using DSOs is easy—the linker command-line syntax is the same as for an
archive (.a) library. This section explains how to use DSOs. Specific topics
include:

• Section 3.2.1, page 36, which describes differences between DSOs and
archive libraries.

• Section 3.2.2, page 36, which briefly explains how QuickStart minimizes
start-up times for executables.

• Section 3.2.3, page 37, which lists points to consider when you choose
library members and tune shared library code.

007–2360–008 35

MIPSproTM Compiling and Performance Tuning Guide

3.2.1 DSOs vs. Archive Libraries

The following compile line creates the executable yourApp by linking with the
DSOs libyours.so and with libc.so.1:

% cc yourApp.c -o yourApp -lyours

If libyours.so isn’t available, but the archive version libyours.a is
available, that archive version is used along with libc.so.1.

A significant difference exists between DSOs and archive libraries in terms of
what is mapped into the address space when an application is executing. With
an archive library, only the text portion of the library that the application
actually requires (and the data associated with that text) is mapped, not the
entire library. In contrast, the entire DSO that’s linked is mapped; in many
cases, however, the DSO is shared and already mapped into the address space.
Thus, to conserve address space and save time at startup, don’t link with DSOs
unless your application actually needs them.

Avoid listing any archive libraries on the compile line after you list shared
libraries; instead, list the archive libraries first and then the DSOs.

3.2.2 Using QuickStart

You may want to take advantage of the QuickStart optimization that minimizes
start-up times for executables. You can use QuickStart when using or building
DSOs. At link time, when an executable or a DSO is being created, the linker
ld assigns initial addresses to the object and attempts to resolve all references.
Since DSOs are relocatable, these initial address assignments are really only
guesses about where the object will be really loaded. At run time, rld verifies
that the DSO being used is the same one that was linked with and what the real
addresses are. If the DSOs are the same and if the addresses match the initial
assignments, rld doesn’t have to perform any relocation work, and the
application starts up very quickly (or QuickStarts). When an application
QuickStarts, memory use is less since rld doesn’t have to read in the
information necessary to perform relocations.

To determine whether your application (or DSO) is able to do a QuickStart, use
the -quickstart_info flag when building the executable (or DSO). If the
application or DSO can’t do a QuickStart, you’ll be given information about
what to do. The next section goes into more detail about why an executable
may not be able to use QuickStart.

36 007–2360–008

Using Dynamic Shared Objects [3]

In summary, when you use DSOs to build an executable, remember the
following:

• Link with only the DSOs that you need.

• Make sure that archive libraries precede DSOs on the compile line.

• Use the -quickstart_info flag.

3.2.3 Guidelines for Using Shared Libraries

When you’re working with DSOs, you can avoid some common pitfalls if you
adhere to the guidelines described in this section:

• Section 3.2.3.1, page 37, explains what routines to include and exclude when
you choose library members.

• Section 3.2.3.2, page 38, covers how to tune shared library code by
minimizing global data, improving locality, and aligning for paging.

3.2.3.1 Choosing DSO Library Members

This section covers some important considerations for choosing library
members. Specifically, it explains the following topics:

• Include large, frequently used routines.

• Exclude infrequently used routines.

• Exclude routines that use much static data.

• Make libraries self-contained.

Include Large, Frequently Used Routines. These routines are prime candidates
for sharing. Placing them in a shared library saves code space for individual
a.out files and saves memory, too, when several concurrent processes need the
same code. printf(3S) and related C library routines are good examples of
large, frequently used routines.

Exclude Infrequently Used Routines. Putting these routines in a shared library
can degrade performance, particularly on paging systems. Traditional a.out
files contain all code they need at run time. By definition, the code in an a.out
file is (at least distantly) related to the process. Therefore, if a process calls a
function, it may already be in memory because of its proximity to other text in
the process.

007–2360–008 37

MIPSproTM Compiling and Performance Tuning Guide

If the function is in the shared library, a page fault may be more likely to occur,
because the surrounding library code may be unrelated to the calling process.
Only rarely will any single a.out file use everything in the shared C library. If
a shared library has unrelated functions, and unrelated processes make random
calls to those functions, the locality of reference may be decreased. The
decreased locality may cause more paging activity and, thereby, decrease
performance.

Exclude Routines that Use Much Static Data. These modules increase the size of
processes. Every process that uses a shared library gets its own private copy of
the library’s data, regardless of how much of the data is needed.

Library data is static: it isn’t shared and can’t be loaded selectively with the
provision that unreferenced pages may be removed from the working set.

For example, getgrent(3C) is not used by many standard UNIX commands.
Some versions of the module define over 1400 bytes of unshared, static data.
So, do not include it in a shared library. You can import global data, if
necessary, but not local, static data.

Make Libraries Self-Contained. It’s best to make the library self-contained. You
can do this by including routines in the shared object. For example, printf(3S)
requires much of the standard I/O library. A shared library containing
printf(3S), should also contain the rest of the standard I/O routines. This is
done with libc.so.1.

If your shared object calls routines from a different shared object, it is best to
build in this dependency by naming the needed shared objects on the link line
in the usual way. For example:

% ld -shared -all mylib.a -o mylib.so -soname mylib.so -lfoo

This command line specifies that libfoo.so is needed by mylib.so. Thus,
when an application is linked against mylib.so, it is not necessary to specify
-lfoo.

This guideline should not take priority over the others in this section. If you
exclude some routine that the library itself needs based on a previous guideline,
consider leaving the symbol out of the library and importing it.

3.2.3.2 Tuning Shared Library Code

This section explains a few things to consider in tuning shared library code:

• Minimize global data.

38 007–2360–008

Using Dynamic Shared Objects [3]

• Organize to Improve locality.

• Align for paging.

Minimize Global Data. All external data symbols are, of course, visible to
applications. This can make maintenance difficult. Therefore, you should try to
reduce global data.

1. Try to use automatic (stack) variables. Don’t use permanent storage if
automatic variables work. Using automatic variables saves static data space
and reduces the number of symbols visible to application processes.

2. Determine whether variables really must be external and exported. Static
symbols and hidden symbols are not visible outside the library, so they may
change meanings between library versions. Only exported external
variables must retain the same meaning.

3. Allocate buffers at run time instead of defining them at compile time.
Allocating buffers at run time reduces the size of the library’s data region
for all processes and, thus, saves memory. Only processes that actually
need the buffers get them. It also allows the size of the buffer to change
from one release to the next without affecting compatibility. Statically
allocated buffers cannot change size without affecting the addresses of other
symbols and, perhaps, breaking compatibility.

Organize to Improve Locality. When a function is in a.out files, it typically
resides in a page with other code that is used more often (see “Exclude
Infrequently Used Routines”). Try to improve locality of reference by grouping
dynamically related functions. If every call of funcA generates calls to funcB
and funcC, try to put them in the same page.

The cord(1) command rearranges procedures to reduce paging and achieve
better instruction cache mapping. You can use cord to see the number of cycles
spent in a procedure and the number of times the procedure was executed. The
cflow(1) command generates static dependency information. You can combine
it with profiling to see what is actually called, as opposed to what may be called.

Align for Paging. The key is to arrange the shared library target’s object files so
that frequently used functions don’t unnecessarily cross page boundaries.
When arranging object files within the target library, be sure to keep the text
and data files separate. You can reorder text object files without breaking
compatibility; the same is not true for object files that define global data.

For example, the IRIX 5.x operating system uses 4Kbyte pages. Using name lists
and disassemblies of the shared library target file, the library developers
determined where the page boundaries fell.

007–2360–008 39

MIPSproTM Compiling and Performance Tuning Guide

After grouping related functions, they broke them into page-sized chunks.
Although some object files and functions are larger than a single page, most of
them are smaller. Then the developers used the infrequently called functions as
glue between the chunks. Because the glue between pages is referenced less
frequently than the page contents, the probability of a page fault decreased.

After determining the branch table, they rearranged the library’s object files
without breaking compatibility. The developers put frequently used, unrelated
functions together, because they would be called randomly enough to keep the
pages in memory. System calls went into another page as a group, and so on.
For example, the order of the library’s object files became:

Before After

#objects #objects

...

printf.o strcmp.o
fopen.o malloc.o

malloc.o printf.o

strcmp.o fopen.o

.... ...

3.3 Taking Advantage of QuickStart

QuickStart is an optimization designed to reduce start-up times for applications
that link with DSOs. Each time ld builds a DSO, it updates a registry of shared
objects. The registry contains the preassigned QuickStart addresses of a group
of DSOs that typically cooperate by having locations that do not overlap. If you
compile your application by linking with registered DSOs, your application
takes advantage of QuickStart: all the DSOs are mapped at their QuickStart
addresses, and rld won’t need to move any of them to an unused address and
perform a relocation pass to resolve all references.

Suppose you compile your application using the -quickstart_info flag, and
QuickStart fails. It may fail because:

• Your application has directly or indirectly linked with two different versions
of the same DSO, as shown in Figure 3, page 41. In this example, yourApp
links with libyours.so, libmotif.so, and libc.so.1 on the compile
line. When the DSO libyours.so was built, however, it linked with
libmalloc.so, which in turn linked with libc.so.1 when it was
created. If the two versions of libc.so.1 weren’t identical, yourApp
won’t be able to use QuickStart.

40 007–2360–008

Using Dynamic Shared Objects [3]

libmotif.s
o

Your App

libyours.so

libc.so.1

libmalloc.so

libc.so.1

a12014

Figure 3. An Application Linked with DSOs

• You link with a DSO that can’t use QuickStart. This may occur because the
DSO wasn’t registered and therefore was assigned a location that overlaps
with the location assigned to another DSO.

• Your application pulls in incompatible shared objects (in a manner similar to
the example shown in Figure 3).

007–2360–008 41

MIPSproTM Compiling and Performance Tuning Guide

• Your application contains an unresolved reference to a function (where it
takes the address of the function).

• The DSO links with another DSO that can’t use QuickStart.

Even if QuickStart officially succeeds, your application may have name space
collisions and therefore may not start up as fast as it should. This is because
rld has to bring in more information to resolve the conflicts. In general, you
should avoid having conflicts both because of the detrimental effect on start-up
time and because conflicts make it difficult to ensure the correctness of an
application over time.

In the example shown in Figure 3, page 41, you may have written your own
functions to allocate memory in libmalloc.so for libyours.so to use. If
you didn’t use unique names for those functions (instead of malloc(), for
example) the way this particular compile and link hierarchy is set up, the
standard malloc() function defined in libc.so.1 is used instead of the one
defined in libmalloc.so.

Note: Conflicts are resolved by proceeding through the hierarchy from left to
right and then moving to the next level (this is called breadth-first searching).
Section 3.5.1, page 47, explains how the run-time linker searches for DSOs.

For example, suppose the diagram in Figure 3 corresponds to the following
command:

% cc -lyours -lmotif -lc

Since shared objects mentioned on the command line always take precedence
over those that are not mentioned, the command above uses the standard
malloc() defined in libc.so.1.

To get your own version of malloc() defined in libmalloc.so for
libyours.so to use, enter:

% cc -lyours -lmotif -lmalloc -lc

However, in both of the above examples, if -lyours contains malloc(), you’ll
get that malloc(). (In the examples above, you do not need to specify -lc; it
was added for clarity).

Thus, it’s not a good idea to allow more than one DSO to define the same
function. Even if the DSOs are synchronized for their first release, one of them
may change the definition of the function in a subsequent release. Of course,
you can use conflicts to intentionally override function definitions; however,
make sure you control what is overriding what.

42 007–2360–008

Using Dynamic Shared Objects [3]

If you use the -quickstart_info option, ld tells you if conflicts arise. It
also tells you to run elfdump with the -Dc option to find the conflicts. See the
elfdump(1) man page for more information about how to read the output
produced by elfdump.

3.4 Building DSOs

In most cases, you can build DSOs as easily as archive libraries. If your library
is written in a high-level language, such as C or Fortran, you won’t have to
make any changes to the source code. If your code is written in assembly
language, you must modify it to produce PIC. This is described in
“Position-Independent Coding in Assembly Language” in the MIPSpro Assembly
Language Programmer’s Guide.

This section covers procedures to use when you build DSOs, and includes these
topics:

• Creating DSOs

• Making DSOs Self-Contained

• Controlling Symbols to Be Exported or Loaded

• Building DSOs with C++

3.4.1 Creating DSOs

To create a DSO from a set of object files, use ld with the -shared option:

% ld -shared stuff.o nonsense.o -soname libdada.so -o libdada.so

The above example creates a DSO, libdada.so, from two object files,
stuff.o and nonsense.o. Note that DSO names should begin with lib and
end with .so, for ease of use with the compiler driver’s -llib argument. If
you’re already building an archive library (.a file), you can create a DSO from
the library by using the -shared and -all arguments to ld:

ld -shared -all libdada.a -soname libdada.so -o libdada.so

The -all argument specifies that all of the object files from the library,
libdada.a, should be included in the DSO.

Note: It is best to use the -soname option. For example, if the -o name has
an explicit path such as -o ../a/libdada.so, typically you want the
-soname to be libdada.so.

007–2360–008 43

MIPSproTM Compiling and Performance Tuning Guide

Warning: It is essential that the soname of a DSO and its file name be
congruent according to the versioning rules. (Congruent means that if the file
name is, for example, xxxx.so.1, the soname must be optional-path/xxxx.so
or xxxx.so.1). Usuallyoptional-path should be empty. A full path soname is
used when a DSO must be accessed (at run time) from that specific location
in the file system. A partial-path is used when the DSO must be accessed at
that location from the current working directory. As such, a partial path is
almost always a mistake.

The consequences of having a DSO file name and soname that are not
congruent range from not being able to use the DSO at all to having all of
multiple dlopens load a fresh copy, even though only one will actually be
used.

3.4.2 Making DSOs Self-Contained

When building a DSO, be sure to include any archives required by the DSO on
the link line so that the DSO is self-contained (that is, it has no unresolved
symbols). If the DSO depends on libraries not explicitly named on the link line,
subsequent changes to any of those libraries may result in name space collisions
or other incompatibilities that can prevent any applications that use the DSO
from doing a QuickStart. Such incompatibilities can also lead to unpredictable
results over time as the libraries change asynchronously. Suppose you want to
make the archive libmine.a into a DSO, and libmine.a depends on routines
in another archive, libutil.a. In this case, include libutil.a on the link
line:

% ld -shared -all -no_unresolved libmine.a -soname libmine.so \

-o libmine.so -none libutil.a

This causes the modules in libutil.a that are referenced in libmine.a to be
included in the DSO, but these modules won’t be exported. (For more
information about exported symbols, see Section 3.4.3, page 45.) The
-no_unresolved option causes a list of unresolved symbols to be created;
generally, this list should be empty to enable using QuickStart.

Similarly, if a DSO relies on another DSO, be sure to include that DSO on the
link line. For example:

% ld -shared -all -no_unresolved libbtree.a -soname libtree.so \
-o libtree.so -lyours

This example places libyours.so in the liblist of the new DSO,
libtree.so. This ensures that libyours.so is loaded whenever an

44 007–2360–008

Using Dynamic Shared Objects [3]

executable that uses libtree.so is launched. Again, symbols from
libyours.so won’t be exported for use by other libraries. (You can use the
-exports flag to reverse this exporting behavior; the -hides flag specifies the
default exporting behavior.)

3.4.3 Controlling Symbols to Be Exported or Loaded

By default, to help avoid conflicts, symbols defined in an archive or a DSO that
is used to build another DSO are not externally visible. You can explicitly
export or hide symbols with the -exported_symbol (or -exports) and
-hidden_symbol (or -hides) options :

-exported_symbol name1, name2, name3

-hidden_symbol name4, name5

By default, if you explicitly export any symbols, all other symbols are hidden. If
you both explicitly export and explicitly hide the same symbol on the link line,
the first occurrence determines the behavior. You can also create a file of
symbol names (delimited by white space) that you want explicitly exported or
hidden, and then refer to the file on the link line with either the
-exports_file or -hiddens_file option:

-exports_file yourFile

-hiddens_file anotherFile

These files can be used in addition to explicitly naming symbols on the link line.

The -exports option specifies that symbols from the next DSO be exported by
the object being created. Similarly, -hides specifies that symbols from the next
DSO be hidden by the object being created. (This is the default behavior for
loading DSOs.)

Another useful option, -delay_load, prevents a library from being loaded
until it is actually referenced. Suppose, for example, that your DSO contains
several functions that are likely to be used in only a few instances.
Furthermore, those functions rely on another library (archive or DSO). If you
specify -delay_load for this other library when you build your DSO, the
run-time linker loads that library only when those few functions that require it
are used. Note that if you explicitly export any symbols defined in a library
that the run-time linker is supposed to delay loading, the export behavior takes
precedence and the library is automatically loaded at run time.

Delay-loaded shared objects are not delay-loaded if direct references to data
symbols exist in the delay-loaded object, or if the address of a function in the
delay-loaded object is taken. That is, -delay_load is only effective with

007–2360–008 45

MIPSproTM Compiling and Performance Tuning Guide

objects that have a purely functional interface (ld(1) will only set the
-delay-load flag in the library list if delay-load will work properly).

Delay-loaded shared objects do not function properly if direct references to data
symbols exist in the delay-loaded object, or if the address of the function in the
delay-loaded object is used. Therefore, only use -delay_load to load shared
objects that have a purely functional interface.

Note: You can build DSOs using cc. However, if you want to export
symbols/files or use -delay_load, use ld to build DSOs.

3.4.4 Building DSOs with C++

It is recommended that you use the CC command rather than the ld command
to build DSOs from C++ programs. The driver generates a lot of C++ specific
arguments to ld, without which the DSO does not work. If you use templates,
using CC to build your DSO also guarantees that templates get instantiated
properly. For example:

% CC -shared -o libmylib.so object file list

For example:

% CC -shared -o libmylib.so a.o b.o c.o

CC recognizes many of the ld options such as -l and -L; hence these options
to ld work. However, most ld options do not work. If you want to specify
other options, refer to the CC(1) and the ld(1) man pages. If the option is not
described in the CC page, you may need to use the -Wl,ld _option syntax to tell
the CC driver to pass ld_option to ld. See the CC(1) man page for details.

3.5 Run-Time Linking

This section explains the search path followed by the run-time linker and how
you can cause symbols to be resolved at run time rather than link time.
Specifically, this section describes:

• Searching for DSOs at Run Time

• Run-Time Symbol Resolution

46 007–2360–008

Using Dynamic Shared Objects [3]

3.5.1 Searching for DSOs at Run Time

When you run a dynamically linked executable, the run-time linker, rld(1),
identifies the DSOs required by the executable and loads the required DSOs. If
necessary the IRIX kernel relocates DSOs within the process’s virtual address
space, so that no two DSOs occupy the same location. The program header of a
dynamically linked executable contains a field, the liblist, which lists the
DSOs required by the executable.

When looking for a DSO, rld searches directories in a specific sequence. This
section covers run-time searching for the o32-bit, n32-bit, and 64-bit ABIs.

This section also describes environment variables that let you customize the
search on your system. Each ABI has its own environment variable set. The o32
set usually applies to the other ABIs unless the other ABI environment variable
is set. Only the _RLD_ARGS environment variable, which is not often used, is
shared by all three ABIs.

3.5.1.1 Searching for DSOs at Run Time Under the o32-Bit ABI

The (old) o32-bit ABI rules use the following sequence when searching for
DSOs at run time:

1. /usr/lib

2. /usr/lib/internal

3. /lib

4. /lib/cmplrs/cc

5. /usr/lib/cmplrs/cc

6. /opt/lib

RPATH is a colon-separated list of directories stored in the main executable. You
can set RPATH by using the -rpath argument to ld:

% ld -o myprog myprog.c -rpath /d/src/mylib -soname libmylib.so \

libmylib.so -lc

This example links the program against libmylib.so in the current directory
and configures the executable such that rld searches the directory
/d/src/mylib when searching for DSOs.

007–2360–008 47

MIPSproTM Compiling and Performance Tuning Guide

The LD_LIBRARY_PATH environment variable is a colon-separated list of
directories to search for DSOs. This can be very useful for testing new versions
of DSOs before installing them in their final location.

You can set the environment variable, _RLD_ROOT for the old 32-bit ABI, to a
colon-separated list of directories. The run-time linker prepends these to the
paths in RPATH and the paths in the default search path.

In all of the colon-separated directory lists, an empty field is interpreted as the
current directory. A leading or trailing colon counts as an empty field. Thus, if
an application using the old 32-bit ABI sets LD_LIBRARY_PATH to:

/d/src/lib1:/d/src/lib2:

the run-time linker searches the directory /d/src/lib1, then the directory
/d/src/lib2, and then the current directory.

Note: The security policy is implemented in the IRIX kernel in IRIX 6.5 and
later versions; for earlier versions of IRIX, it is implemented in rld. The
current policy for honoring rld environment variables is as follows:

Most rld environment variables are ignored for executables with no
capabilities set (see the capabilities(4) man page) if both of the following
are true:

• The real user ID is not 0 (root).

• One of the following is true:

– The real and effective (those active for the process) user IDs do not match.

– The real and effective group IDs do not match.

If the environment or an executable has capabilities set, that executable will
be treated as if it were a setuid(2) application. To check if your shell has
capabilities set, use id -P. Use su -C all= to get a shell with no
capabilities.

3.5.1.2 Searching for DSOs at Run Time Under the n32-Bit ABI

The (new) n32-bit ABI rules use the following sequence when searching for
DSOs at run time:

1. /usr/lib32

2. /usr/lib32/internal

48 007–2360–008

Using Dynamic Shared Objects [3]

3. /lib32

4. /opt/lib32

Setting the _RLD32_ROOT or the LD_LIBRARYN32_PATH environment variable
overrides the default settings.

If LD_LIBRARYN32_PATH is not specified, rld honors LD_LIBRARY_PATH, if
specified. As a result, if LD_LIBRARY_PATH is set for an old 32-bit program, it
is recommended that you also set LD_LIBRARYN32_PATH to something ("", for
example) to avoid having LD_LIBRARY_PATH apply accidentally to new 32-bit
applications in that environment.

3.5.1.3 Searching for DSOs at Run Time Under the 64-Bit ABI

The 64-bit ABI rules use the following sequence when searching for DSOs at
run time:

1. /usr/lib64

2. /usr/lib64/internal

3. /lib64

4. /opt/lib64

Setting the _RLD64_ROOT or the LD_LIBRARY64_PATH environment variable
overrides the default settings.

If LD_LIBRARY64_PATH is not specified, rld honors LD_LIBRARY_PATH, if
specified. As a result, if LD_LIBRARY_PATH is set for an old 32-bit program, it
is recommended that you also set LD_LIBRARY64_PATH to something ("", for
example) to avoid having LD_LIBRARY_PATH apply accidentally to 64-bit
applications in that environment.

3.5.2 Run-Time Symbol Resolution

Dynamically linked executables can contain symbol references that aren’t
resolved before run time. Any symbol references in your main program or in
an archive must be resolved at link time, unless you specify the
-ignore_unresolved argument to cc.

DSOs may contain references that aren’t resolved at link time. All data symbols
must be resolved at run time. If rld finds an unresolvable data symbol at run
time, the executable exits with an error. Text symbols are resolved only when

007–2360–008 49

MIPSproTM Compiling and Performance Tuning Guide

they’re used, so a program can run with unresolved text symbols, as long as the
unresolved symbols aren’t used.

You can force rld to resolve text symbols at run time by setting the
environment variable LD_BIND_NOW. If unresolvable text symbols exist in your
executable and you set LD_BIND_NOW, the executable exits with an error, as if
there were unresolvable data symbols.

3.5.2.1 Building a DSO with -Bsymbolic

When you build a DSO with -Bsymbolic, the dynamic linker resolves
referenced symbols from itself first. If the shared object fails to supply the
referenced symbol, then the dynamic linker searches the executable file and
other shared objects. For example:

main—defines x

x.so—defines and uses x

If you build x.so with -Bsymbolic on, the linker tries to resolve the use of x
by looking first for the definition in x.so and then by looking in main.

In FORTRAN programs, the linker allocates space for COMMON symbols and the
compiler allocates space for BLOCK DATA. The first kind of symbol (with
COMMON blocks present) appears in the symbol table as SHN_MIPS_ACOMMON
(uninitialized DATA) whereas the second kind of symbol (with BLOCK DATA
present) appears as SHN_DATA (initialized DATA). In general, initialized data
takes precedence when the dynamic linker tries to resolve a symbol. However,
with -Bsymbolic, whatever is defined in the current object takes precedence,
whether it is initialized or uninitialized.

Variables that are declared at file scope in C with -cckr are also treated this
way. For example:

int foo[100];

is COMMON if -cckr is used and DATA if -xansi or -ansi is used.

For example:

In main:

COMMON i, j /* definition of i, j with initial values */

DATA i/1/, j/1/

CALL junk
END

50 007–2360–008

Using Dynamic Shared Objects [3]

In x.so:

SUBROUTINE junk

COMMON i, j
/* definition of i, j with NO initial values */

/* initialized by kernel to all zeros */

PRINT *, i, j

END

When you build x.so using -Bsymbolic, this program prints 0 0. When you
build x.so without -Bsymbolic, the program prints 1 1.

3.5.2.2 Converting Archive Libraries to DSOs

When you link a program with a DSO, all of the symbols in the DSO become
associated with the executable. This can cause unexpected results if archives
that contain unresolved externals are converted to DSOs. When linking with a
PIC archive, the linker links in only those object files that satisfy unresolved
references.

If an object file in an archive contains an unresolved external reference, the
linker tries to resolve the reference only when that object file is linked in to
your program. In contrast, a DSO containing an external data reference that
cannot be resolved at run time causes the program to fail. Therefore, use
caution when converting archives with external data references to DSOs.

For example, suppose you have an archive, mylib.a, and one of the object files
in the archive, has_extern.o, references an external variable, foo. As long as
your program doesn’t reference any symbols in has_extern.o, the program
will link and run properly. If your program references a symbol in
has_extern.o and doesn’t define foo, then the link will fail. However, if you
convert mylib.a to a DSO, then any program that uses the DSO and doesn’t
define foo will fail at run time, regardless of whether the program references
any symbols from has_extern.o.

Two possible solutions exist for this problem.

• Add a “dummy” definition of the data to the DSO. A data definition
appearing in the main executable preempts one appearing in the DSO itself.
This may, however, be misleading for executables that use the portion of the
DSO that needs the data, but that failed to define it in the main program.

007–2360–008 51

MIPSproTM Compiling and Performance Tuning Guide

• Separate the routines that use the data definition into a second DSO, and
place dummy functions for them in the first DSO. The second DSO can then
be loaded dynamically the first time any of the dummy functions is accessed.
Each of the dummy functions must verify that the second DSO was loaded
before calling the real function (which must have a unique name). This way,
programs run whether or not they supply the missing external data, as long
as they don’t call any of the functions that require the data. The first time
one of the dummy functions is called, it tries to dynamically load the second
DSO. Programs that do not supply the missing data fail at this point.

For more information on dynamic loading, see Section 3.6, page 52.

3.6 Dynamic Loading Under Program Control

IRIX provides a library interface to the run-time linker that allows programs to
load and unload DSOs dynamically. The functions in this interface are part of
libc (see Table 7).

Table 7. Functions to Load and Unload DSOs

Function Action

dlopen() Loads a DSO

dlsym() Finds a symbol in a loaded DSO

dlclose() Unloads a DSO

dlerror() Reports errors

sgidlopen_version() Loads a DSO

sgidladd_version() Loads a DSO

You can dynamically load shared objects by using sgidladd(), which is
similar to dlopen(...,RTLD_LOCAL|...). However, unlike dlopen(), all
the names in the shared object become available to satisfy references in shared
objects during lazy text resolution. Furthermore, it is not necessary to use
dlsym() to gain access to the symbols in the shared object. sgidladd() is
available as part of libc. For more information, see the sgidladd(3) man
page.

52 007–2360–008

Using Dynamic Shared Objects [3]

To load a DSO, call dlopen():

include <dlfcn.h>

void *dlhandle;
..

dlhandle = dlopen("/usr/lib/mylib.so", RTLD_LAZY | RTLD_LOCAL);

if (dlhandle == NULL) {

/* couldn’t open DSO */

printf("Error: %s\n", dlerror());

}

The first argument to dlopen() is the pathname of the DSO to be loaded. This
may be either an absolute or a relative pathname. When you call this routine,
the run-time linker tries to load the specified DSO. If any unresolved references
exist in the executable that are defined in the DSO, the run-time linker resolves
these references on demand. You can also use dlsym() to access symbols in
the DSO, whether or not the symbols are referenced in your executable.

When a DSO is brought into the address space of a process, it may contain
references to symbols whose addresses are not known until the object is loaded.
These references must be relocated before the symbols can be accessed. The
second argument to dlopen() governs when these relocations take place.

This argument can have the following values:

RTLD_LAZY Under this mode, only references to data symbols
are relocated when the object is loaded.
References to functions are not relocated until a
given function is invoked for the first time. This
mode may result in better performance, since a
process may not reference all of the functions in
any given shared object.

RTLD_NOW Under this mode, all necessary relocations are
performed when the object is first loaded. This
may result in some wasted effort if relocations are
performed for functions that are never referenced.
However, this option is useful for applications
that need to know as soon as an object is loaded
that all symbols referenced during execution will
be available.

RTLD_GLOBAL This mode modifies the treatment of the symbols
in the DSO being opened to be identical to those
of sgidladd(). RTLD_GLOBAL may be ORed
with either RTLD_NOW or RTLD_LAZY

007–2360–008 53

MIPSproTM Compiling and Performance Tuning Guide

(RTLD_GLOBAL cannot be the mode value on its
own). See dlopen(3C) for details.

RTLD_LOCAL With this mode, the symbols in the dlopened
DSO can only be referenced by dlsym; they
cannot be accessed by symbol name. This is the
default.

To access symbols that are not referenced in your program, use dlsym():

#include <dlfcn.h>
void *dlhandle;

int (*funcptr)(int);

int i,j;

.. load DSO ...

funcptr = (int (*)(int)) dlsym(dlhandle, "factorial");

if (funcptr == NULL) {
/* couldn’t locate the symbol */

exit();

}

i = (*funcptr)(j);

Note: The cast to (int (*) (int)) may produce a compiler warning about
converting data pointers to function pointers. The warning is honoring the
ANSI/ISO C standard; the cast and subsequent call work fine.

This example looks up the address of the function factorial() and assigns it
to the function pointer funcptr.

If you encounter an error (dlopen() or dlsym() returns NULL), you can get
diagnostic information by calling dlerror(). The dlerror() function returns
a string describing the cause of the latest error. You should call dlerror()
only after an error has occurred; at other times, its return value is undefined.

An application with multiple threads that calls these functions must provide its
own locking because dlerror() is not thread specific.

To unload a DSO, call dlclose():

#include <dlfcn.h>
void *dlhandle;

... load DSO, use DSO symbols ...

dlclose(dlhandle);

The dlclose function frees up the virtual address space that has been mmaped
by the dlopen call of that file (similar to a munmap call). The difference,

54 007–2360–008

Using Dynamic Shared Objects [3]

however, is that a dlclose on a file that has been opened multiple times
(either through dlopen or program startup) does not cause the file to be
munmaped until the file is no longer needed by the process.

3.7 Versioning of DSOs

This section describes the DSO versioning mechanism of Silicon Graphics and
includes the following topics:

• The Versioning Mechanism

• What is a Version?

• Building a Shared Library Using Versioning

• Example of Versioning

3.7.1 The Versioning Mechanism

In the IRIX 5.0.1 release, a mechanism for the versioning of shared objects was
introduced for the Silicon Graphics shared objects and executables. Note that
this mechanism is outside the scope of the MIPS ABI, and, thus, must not be
relied on for code that must be MIPS ABI-compliant and run on other vendors’
platforms. Currently, all executables produced on Silicon Graphics systems are
marked SGI_ONLY to allow use of the versioning mechanism.

Versioning is of interest mainly to developers of shared objects. It may not be of
interest to you if you simply use shared objects. Versioning allows a developer
to update a shared object in a way that may be incompatible with executables
previously linked against the shared object. You can accomplish this by
renaming the original shared object and providing it along with the
(incompatible) new version.

3.7.2 What Is a Version?

A version is part or all of an identifying version_string that can be associated
with a shared object by using the -set_version version_string option to ld(1)
when the shared object is created.

A version_string consists of one or more versions separated by colons (:). A
single version has the form:

[comment#]sgimajor.minor

007–2360–008 55

MIPSproTM Compiling and Performance Tuning Guide

where:

comment Specifies a comment string, which is ignored by
the versioning mechanism. It consists of any
sequence of characters followed by a pound sign
(#). The comment is optional.

sgi Specifies the literal string sgi.

major Specifies the major version number, which is a
string of digits [0-9].

. Specifies a literal period.

minor Specifies the minor version number, which is a
string of digits [0-9].

3.7.3 Building a Shared Library Using Versioning

Follow these instructions when building your shared library:

When you first build your shared library, give it an initial version, for example,
sgi1.0. Add the option –set_version sgi1.0 to the command to build
your shared library (cc -shared, ld -shared).

Whenever you make a compatible change to the shared object, create another
version by changing the minor version number (for example, sgi1.1) and add
it to the end of the version_string. The command to set the version of the shared
library now looks like -set_version ‘‘sgi1.0:sgi1.1’’.

When you make an incompatible change to the shared object:

1. Change the filename of the old shared object by adding a dot followed by
the major number of one of the versions to the filename of the shared
object. Do not change the soname of the shared object or its contents.
Simply rename the file.

2. Update the major version number and set the version_string of the shared
object (when you create it) to this new version; for example,
-set_version sgi2.0.

This versioning mechanism affects executables in the following ways:

• When an executable is linked against a shared object, the last version in the
shared object’s version_string is recorded in the executable as part of the
liblist. You can examine this using elfdump -Dl.

56 007–2360–008

Using Dynamic Shared Objects [3]

• When you run an executable, rld looks for the proper filename in its usual
search routine.

• If a file is found with the correct name, the version specified in the executable
for this shared object is compared to each of the versions in the version_string
in the shared object. If one of the versions in the version_string matches the
executable’s version exactly (ignoring comments), then that library is used.

• If no proper match is found, a new filename for the shared object is built by
combining the soname specified in the executable for this shared object and
the major number found in the version specified in the executable for this
shared object (soname.major). Remember that you did not change the soname
of the object, only the filename. The new file is searched for using rld’s
usual search procedure.

3.7.4 Example of Versioning

For example, suppose you have a shared object foo.so with initial version
sgi10.0. Over time, you make two compatible changes for foo.so that result
in the following final version_string for foo.so:

initial_version#sgi10.0:upgrade#sgi10.1:new_devices#sgi10.2

You then link an executable that uses this shared object, useoldfoo. This
executable specifies version sgi10.2 for soname foo.so. (Remember that the
executable inherits the last version in the version_string of the shared object.)

The time comes to upgrade foo.so in an incompatible way. Note that the
major version of foo.so is 10, so you move the existing foo.so to the
filename foo.so.10 and create a new foo.so with the version_string:

efficient_interfaces#sgi11.0

New executables linked with foo.so use it directly. Older executables, like
useoldfoo, attempt to use foo.so, but find that its version (sgi11.0) is not
the version they need (sgi10.2). They then attempt to find a foo.so in the
file name foo.so.10 with version sgi10.2.

Note: When a needed DSO has its interface changed, then a new version is
created. If the interface change is not compatible with older versions, then a
consuming shared object needs incompatible versions in order to use the new
version, even if it doesn’t use that part of the interface that is changed.

007–2360–008 57

Optimizing Program Performance [4]

This chapter describes the compiler optimization facilities and their benefits,
and explains the major optimizing techniques. This chapter includes the
following topics:

• Section 4.1, page 59, provides an overview of optimization benefits and
debugging.

• Section 4.2, page 60, describes performance tuning with interprocedural
analysis.

• Section 4.3, page 67, discusses ways of controlling loop nest optimizations.

• Section 4.4, page 88, explains methods of controlling floating-point
optimization.

• Section 4.7, page 98, describes the code generator.

• Section 4.8, page 111, describes methods of optimizing the location of code
regions within your program

• Section 4.9, page 114, lists programming hints for improving optimization

Note: Please see the Release Notes and man pages for your compiler for a
complete list of options that you can use to optimize and tune your program.

See your compiler manual for information about the optional parallelizer, apo,
and the OpenMP directives and routines for a method of using a portable
method to code parallelization into your program. You can find additional
information about optimization in MIPSpro 64-Bit Porting and Transition Guide.
For information about writing code for 64-bit programs, see Chapter 5, page 123.
For information about porting code to -n32 and -64, see Chapter 6, page 129.

4.1 Optimization Overview

This section covers optimization benefits and debugging.

4.1.1 Benefits of Optimization

The primary benefits of optimization are faster running programs and often
smaller object code size. However, the optimizer can also speed up
development time. For example, you can reduce coding time by leaving it up to

007–2360–008 59

MIPSproTM Compiling and Performance Tuning Guide

the optimizer to relate programming details to execution time efficiency. You
can focus on the more crucial global structure of your program.

4.1.2 Optimization and Debugging

Optimize your program only when it is fully developed and debugged. To
debug a program, you can use the -g option. Note that you can also use
-DEBUG:options to debug run-time code and generate compile, link, and
run-time warning messages.

Debug a program before optimizing it, because the optimizer may move
operations around so that the object code does not correspond in an obvious
way to the source code. These changed sequences of code can create confusion
when using a debugger. For information on the debugger, see dbx User’s Guide.

The compiler optimization options -O0 through -O3 determine the
optimization level to be applied to your program. The -O0 option applies no
optimizations, and the -O3 option performs the most aggressive optimizations.
See your compiler manual and man page for more information.

4.2 Performance Tuning with Interprocedural Analysis

Interprocedural Analysis (IPA) performs program optimizations that can only
be done in the presence of the whole program. Some of the optimizations it
performs also allow downstream phases to perform better code transformations.

Note: If you are using the automatic parallelizer (-apo), run it after IPA. If
you apply parallelization to subroutines in separate modules, and then apply
inlining to those modules using -IPA, you inline parallelized code into a
main routine that is not compiled to initialize parallel execution. Therefore,
you must use the parallelizer when compiling the main module as well as
any submodules.

Currently IPA optimizes code by performing the following functions:

• Procedure inlining

• Interprocedural constant propagation

• Dead function elimination

• Identification of global constants

60 007–2360–008

Optimizing Program Performance [4]

• Dead variable elimination

• PIC optimization

• Automatic selection of candidates for the gp-relative area (autognum)

• Dead call elimination

• Automatic internal padding of COMMON arrays in Fortran

• Interprocedural alias analysis

Figure 4, page 62, shows interprocedural analysis and interprocedural
optimization phase of the compilation process.

007–2360–008 61

MIPSproTM Compiling and Performance Tuning Guide

Rest of th
e

back end phases

Intermediate

representation

Interprocedural Analysis and

Interprocedural Optim
ization phase

Intermediate

representation

Intermediate

representation

Interprocedural

local phase

Front

end

Front

end

Front

end

Source Files

a12015

Figure 4. Compilation Process Showing Interprocedural Analysis

Typically, you invoke IPA with the -IPA: option group to f77, f90, cc, CC,
and ld. Its inlining decisions are also controlled by the -INLINE: option
group. Up-to-date information on IPA and its options is in the ipa(5) man page.

62 007–2360–008

Optimizing Program Performance [4]

This section covers some IPA options including:

• Inlining

• Common Block Padding

• Alias and Address Taken Analysis

4.2.1 Inlining

IPA performs across and within file inlining. A default inlining heuristic
determines which calls to inline.

Your code may benefit from inlining for the following reasons:

• Inlining exposes a larger context to the scalar and loop-nest optimizers,
thereby allowing more optimizations to occur.

• Inlining eliminates overhead resulting from the call (for example, register
save and restore, the call and return instructions, and so forth). Instances
occur, however, when inlining may hurt run-time performance due to
increased demand for registers, or compile-time performance due to code
expansion. Hence extensive inlining is not always useful. You must select
callsites for inlining based on certain criteria such as frequency of execution
and size of the called procedure. Often it is not possible to get an accurate
determination of frequency information based on compile-time analysis. As
a result, inlining decisions may benefit from generating feedback and
providing the feedback file to IPA. The inlining heuristic will perform better
since it is able to take advantage of the available frequency information in
its inlining decision.

4.2.1.1 Inlining Options for Routines

You may wish to select certain procedures to be inlined or not to be inlined by
using the inlining options.

Note: You can use the inline keyword and pragmas in C++ or C to
specifically identify routines to callsites to inline. The inliner’s heuristics
decides whether or not to inline any cases not covered by the -INLINE
options in the preceding table.

In all cases, once a call is selected for inlining, a number of tests are applied to
verify its suitability. These tests may prevent its inlining regardless of user
specification: for instance if the callee is a C varargs routine, or parameter types
don’t match.

007–2360–008 63

MIPSproTM Compiling and Performance Tuning Guide

The -INLINE:none and -INLINE:all Options

Changes the default inlining heuristic.

The -INLINE:all option. Attempts to inline all routines that are not excluded
by a never option or a routine pragma suppressing inlining, either for the
routine or for a specific callsite.

The -INLINE:none option. Does not attempt to inline any routines that are
not specified by a must option or a pragma requesting inlining, either for the
routine or for a specific callsite.

If you specify both all and none, none is ignored with a warning.

The -INLINE:must and -INLINE:never Options

The -INLINE:must=routine_name<,routine_name>* option. Attempts to inline
the specified routines at call sites not marked by inlining pragmas, but does not
inline if varargs or similar complications prevent it. It observes site inlining
pragmas.

Equivalently, you can mark a routine definition with a pragma requesting
inlining.

The -INLINE:never=routine_name<,routine_name>* option. Does not inline the
specified routines at call sites not marked by inlining pragmas; it observes site
inlining pragmas.

Note: For C++, you must provide mangled routine names.

The -INLINE:file=<filename> Option

This option invokes the standalone inliner, which provides cross-file inlining.
The option -INLINE:file=<filename> searches for routines provided via the
-INLINE:must list option in the file specified by the -INLINE:file option.
The file provided in this option must be generated using the -IPA -c options.
The file generated contains information used to perform the cross-file inlining.

For example, suppose two files exist: foo.f and bar.f.

The file, foo.f, looks like this:

program main
...

call bar()

end

64 007–2360–008

Optimizing Program Performance [4]

The file, bar.f, looks like this:

subroutine bar()

...
end

To inline bar into main, using the standalone inliner, compile with -IPA and
-c options:

% f77 -n32 -IPA -c bar.f

This produces the file, bar.o. To inline bar into foo.f, enter:

% f77 -n32 foo.f -INLINE:must=bar:file=bar.o

4.2.2 Common Block Padding

Power of two arrays can lead to degenerate behavior on cache-based machines.
The IPA phases try, when possible, to pad the leading dimension of arrays to
avoid cache conflicts. Several restrictions exist that limit IPA padding of
common arrays. If the restrictions are not met, the arrays are not padded. The
current restrictions are as follows:

1. The shape of the common block to which the global array belongs must be
consistent across procedures. That is, the declaration of the common block
must be the same in every subroutine that declares it.

In the example below, IPA can not pad any of the arrays in the common
block because the shape is not consistent.

program main

common /a/ x(1024,1024), y(1024, 1024), z(1024,1024)
....

....

end

subroutine foo
common /a/ xx(100,100), yy(1000,1000), zz(1000,1000)

....

....

end

007–2360–008 65

MIPSproTM Compiling and Performance Tuning Guide

2. The common block variables must not initialize data associated with them.
In this example, IPA can not pad any of the arrays in common block /a/:

block data inidata
common /a/ x(1024,1024), y(1024,1024), z(1024,1024), b(2)

DATA b /0.0, 0.0/

end

program main

common /a/ x(1024,1024), y(1024,1024), z(1024,1024), b(2)
....

....

end

3. The array to be padded may be passed as a parameter to a routine only if it
declared as a one dimensional array, since passing multi-dimensional arrays
that may be padded can cause the array to be reshaped in the callee.

4. Restricted types of equivalences to arrays that may be padded are allowed.
Equivalences that do not intersect with any column of the array are
allowed. This implies an equivalencing that will not cause the equivalenced
array to access invalid locations. In the example below, the arrays in
common /a/ will not be padded since z is equivalenced to x(2,1), and
hence z(1024) is equivalenced to x(1,2).

program main

real z(1024)
common /a/ x(1024,1024), y(1024,1024) equivalence (z, x(2,1))

....

....

end

5. The common block symbol must have an INTERNAL or HIDDEN attribute,
which implies that the symbol may not be referenced within a DSO that has
been linked with this program.

6. The common block symbol can not be referenced by regular object files that
have been linked with the program.

4.2.3 Alias and Address Taken Analysis

The optimizations that are performed later in the compiler are often constrained
by the possibility that two variable references may be aliased, meaning they may
be aliased to the same address. This possibility is increased by calls to

66 007–2360–008

Optimizing Program Performance [4]

procedures that aren’t visible to the optimizer, and by taking the addresses of
variables and saving them for possible use later (for example, in pointers).

Furthermore, the compiler must normally assume that a global (extern) datum
may have its address taken in another file, or may be referenced or modified by
any procedure call. The IPA alias and address-taken analyses are designed to
identify the actual global variable addressing and reference behavior so that
such worst-case assumptions are not necessary.

4.2.3.1 The -IPA:alias=ON Option

This option performs IPA alias analysis. That is, it determines which global
variables and formal parameters are referenced or modified by each call, and
which global variables are passed to reference formal parameters. This analysis
is used for other IPA analyses, including constant propagation and
address-taken analysis. This option is ON by default.

4.2.3.2 The -IPA:addressing=ON Option

This option performs IPA address-taken analysis. That is, it determines which
global variables and formal parameters have their addresses taken in ways that
may produce aliases. This analysis is used for other IPA analyses, especially
constant propagation. Its effectiveness is very limited without
-IPA:alias=ON. This option is ON by default.

4.3 Controlling Loop Nest Optimizations

Numerical programs often spend most of their time executing loops. The loop
nest optimizer (LNO) performs high-level loop optimizations that can greatly
improve program performance by better exploiting caches and instruction-level
parallelism.

This section covers the following topics:

• Running LNO

• LNO Optimizations

• Compiler Options for LNO

• Pragmas and Directives for LNO

For information on options, see the lno(5) man page.

007–2360–008 67

MIPSproTM Compiling and Performance Tuning Guide

4.3.1 Running LNO

LNO is run by default when you use the -O3 option for all Fortran, C, and C++
programs. LNO is an integrated part of the compiler back end and is not a
preprocessor. Therefore, the same optimizations (with the same control options)
apply to Fortran, C, and C++ programs. Note that this does not imply that
LNO will optimize numeric C++ programs as well as Fortran programs. C and
C++ programs often include features that make them inherently harder to
optimize than Fortran programs.

After LNO performs high-level transformations, it may be desirable to view the
transformed code in the original source language. Two translators that are
integrated into the back end translate the compiler internal code representation
back into the original source language after the LNO transformation (and IPA
inlining). You can invoke either one of these translators by using the Fortran
option -FLIST:=on or the cc option -CLIST:=on. For example, f77 -O3
-FLIST:=on x.f creates an a.out as well as a Fortran file x.w2f.f. The
.w2f.f file is a readable file, and it is usually a compilable Silicon Graphics
Fortran representation of the original program after the LNO phase (see Figure
5, page 69). LNO is not a preprocessor, which means that recompiling the
.w2f.f file directly may result in an executable that is different from the
original compilation of the .f file.

Use the -CLIST:=on option to cc to translate compiler internal code to C. No
translator exists to translate compiler internal code to C++. When the original
source language is C++, the generated C code may not be compilable.

68 007–2360–008

Optimizing Program Performance [4]

-flis
t

.w2c.c

(code

after

 LNO

 phase)

.w2f.f

(code

after

 LNO

phase)

Main optim
ization

Code generator

LNO

Pre-optim
ization

-clist

Front

end
Intermediate

representation

Intermediate

representation

Intermediate

representation

Intermediate

representation

Source Files

Object

file
(.o)

a12016

Figure 5. Compilation Process Showing LNO Transformations

007–2360–008 69

MIPSproTM Compiling and Performance Tuning Guide

4.3.2 LNO Optimizations

This section describes some important optimizations performed by LNO. For a
complete listing, see your compiler’s man page. Optimizations include:

• Loop Interchange

• Blocking and Outer Loop Unrolling

• Loop Fusion

• Loop Fission/Distribution

• Prefetching

• Gather-Scatter Optimization

4.3.2.1 Loop Interchange

The order of loops in a nest can affect the number of cache misses, the number
of instructions in the inner loop, and the ability to schedule an inner loop.
Consider the following loop nest example.

do i

do j

do k

a(j,k) = a(j,k) + b(i,k)

As written, the loop suffers from several possible performance problems. First,
each iteration of the k loop requires two loads and one store. Second, if the loop
bounds are sufficiently large, every memory reference will result in a cache miss.

Interchanging the loops improves performance.

do k

do j

do i

a(j,k) = a(j,k) + b(i,k)

Since a(j,k) is loop invariant, only one load is needed in every iteration.
Also, b(i,k) is “stride-1,” successive loads of b(i,k) come from successive
memory locations. Since each cache miss brings in a contiguous cache line of
data, typically 4-16 elements, stride-1 references incur a cache miss every 4-16
iterations. In contrast, the references in the original loop are not in stride-1
order. Each iteration of the inner loop causes two cache misses; one for a(j,k)
and one for b(i,k).

70 007–2360–008

Optimizing Program Performance [4]

In a real loop, different factors may affect different loop ordering. For example,
choosing i for the inner loop may improve cache behavior while choosing j
may eliminate a recurrence. LNO uses a performance model that considers these
factors. It then orders the loops to minimize the overall execution time estimate.

4.3.2.2 Blocking and Outer Loop Unrolling

Cache blocking and outer loop unrolling are two closely related optimizations
used to improve cache reuse, register reuse, and minimize recurrences.
Consider matrix multiplication in the following example.

do i=1,10000
do j=1,10000

do k=1,10000

c(i,j) = c(i,j) + a(i,k)*b(k,j)

Given the original loop ordering, each iteration of the inner loop requires two
loads. The compiler uses loop unrolling, that is, register blocking, to minimize
the number of loads.

do i=1,10000

do j=1,10000,2
do k=1,10000

c(i,j) = c(i,j) + a(i,k)*b(k,j)

c(i,j+1) = c(i,j+1) + a(i,k)*b(k,j+1)

Storing the value of a(i,k) in a register avoids the second load of a(i,k).
Now the inner loop only requires three loads for two iterations. Unrolling the j
loop even further, or unrolling the i loop as well, further decrease the amount
of loads required. How much is the ideal amount to unroll? Unrolling more
decreases the amount of loads but not the amount of floating point operations.
At some point, the execution time of each iteration is limited by the floating
point operations. There is no point in unrolling further. LNO uses its
performance model to choose a set of unrolling factors that minimizes the
overall execution time estimate.

Given the original matrix multiply loop, each iteration of the i loop reuses the
entire b matrix. However, with sufficiently large loop limits, the matrix b will
not remain in the cache across iterations of the i loop. Thus in each iteration,
you have to bring the entire matrix into the cache. You can “cache block” the
loop to improve cache behavior.

do tilej=1,10000,Bj

do tilek=1,10000,Bk
do i=1,10000

007–2360–008 71

MIPSproTM Compiling and Performance Tuning Guide

do j=tilej,MIN(tilej+Bj-1,10000)

do k=tilek,MIN(tilek+Bk-1,10000)
c(i,j) = c(i,j) + a(i,k)*b(k,j)

By appropriately choosing Bi and Bk, b remains in the cache across iterations
of i, and the total number of cache misses is greatly reduced.

LNO automatically caches tile loops with block sizes appropriate for the target
machine. When compiling for a Silicon Graphics R8000, LNO uses a single level
of blocking. When compiling for a Silicon Graphics systems (such as R4000,
R5000, R10000, or R12000) that contain multi-level caches, LNO uses multiple
levels of blocking where appropriate.

4.3.2.3 Loop Fusion

LNO attempts to fuse multiple loop nests to improve cache behavior, to lower
the number of memory references, and to enable other optimizations. Consider
the following example.

do i=1,n

do j=1,n

a(i,j) = b(i,j) + b(i,j-1) + b(i,j+1)

do i=1,n

do j=1,n

b(i,j) = a(i,j) + a(i,j-1) + a(i,j+1)

In each loop, you need to do one store and one load in every iteration (the
remaining loads are eliminated by the software pipeliner). If n is sufficiently
large, in each loop you need to bring the entire a and b matrices into the cache.

LNO fuses the two nests and creates the following single nest:

do i=1,n

a(i,1) = b(i,0) + b(i,1) + b(i,2)

do j=2,n

a(i,j) = b(i,j) + b(i,j-1) + b(i,j+1)

b(i,j-1) = a(i,j-2) + a(i,j-1) + a(i,j)

end do
b(i,n) = a(i,n-1) + a(i,n) + a(i,n+1)

end do

72 007–2360–008

Optimizing Program Performance [4]

Fusing the loops eliminates half of the cache misses and half of the memory
references. Fusion can also enable other optimizations. Consider the following
example:

do i

do j1

S1

end do

do j2

S2
end do

end do

By fusing the two inner loops, other transformations are enabled such as loop
interchange and cache blocking.

do j

do i

S1
S2

end do

end do

As an enabling transformation, LNO always tries to use loop fusion (or fission,
discussed below) to create larger perfectly nested loops. In other cases, LNO
decides whether or not to fuse two loops by using a heuristic based on loop
sizes and the number of variables common to both loops.

To fuse aggressively, use -LNO:fusion=2.

4.3.2.4 Loop Fission/Distribution

The opposite of fusing loops is distributing loops into multiple pieces, or loop
fission. As with fusion, fission is useful as an enabling transformation.
Consider this example again:

do i

do j1

S1
end do

do j2

S2

end do

end do

007–2360–008 73

MIPSproTM Compiling and Performance Tuning Guide

Using loop fission, as shown below, also enables loop interchange and blocking.

do i1

do j1
S1

end do

end do

do i2

do j2

S2
end do

end do

Loop fission is also useful to reduce register pressure in large inner loops. LNO
uses a model to estimate whether or not an inner loop is suffering from register
pressure. If it decides that register pressure is a problem, fission is attempted.
LNO uses a heuristic to decide on how to divide the statements among the
resultant loops.

Loop fission can potentially lead to the introduction of temporary arrays.
Consider the following loop.

do i=1,n

s = ..

.. = s

end do

If you want to split the loop so that the two statements are in different loops,
you need to scalar expand s.

do i=1,n
tmp_s(i) = ..

end do

do i=1,n

.. = tmp_s(i)

end do

Space for tmp_s is allocated on the stack to minimize allocation time. If n is
very large, scalar expansion can lead to increased memory usage, so the
compiler blocks scalar expanded loops. Consider the following example:

do se_tile=1,n,b

do i=se_tile,MIN(se_tile+b-1,n)

tmp_s(i) = ..

end do

74 007–2360–008

Optimizing Program Performance [4]

do i=se_tile,MIN(se_tile+b-1,n)

.. = tmp_s(i)
end do

end do

Related to loop fission is vectorization of intrinsics. The Silicon Graphics math
libraries support vector versions of many intrinsic functions that are faster than
the regular versions. That is, it is faster, per element, to compute n cosines than
to compute a single cosine. LNO attempts to split vectorizable intrinsics into
their own loops. If successful, each such loop is collapsed into a single call to
the corresponding vector intrinsic.

4.3.2.5 Prefetching

The MIPS IV instruction set supports a data prefetch instruction that initiates a
fetch of the specified data item into the cache. By prefetching a likely cache
miss sufficiently ahead of the actual reference, you can increase the tolerance for
cache misses. In programs limited by memory latency, prefetching can change
the bottleneck from hardware latency time to the hardware bandwidth. By
default, prefetching is enabled at -O3 for the R10000.

LNO runs a pass that estimates which references will be cache misses and
inserts prefetches for those misses. Based on the miss latency, the code
generator later schedules the prefetches ahead of their corresponding references.

By default, for misses in the primary cache, the code generator moves loads
early in the schedule ahead of their use, exploiting the out-of-order execution
feature of the R10000 to hide the latency of the primary miss. For misses in the
secondary cache, explicit prefetch instructions are generated.

Prefetching is limited to array references in well behaved loops. As loop
bounds are frequently unknown at compile time, it is usually not possible to
know for certain whether a reference will miss. The algorithm therefore uses
heuristics to guess.

Prefetching can improve performance in compute-intensive operations where
data is too large to fit in the cache. Conversely, prefetching won’t help
performance in a memory-bound loop where data fits in the cache.

007–2360–008 75

MIPSproTM Compiling and Performance Tuning Guide

4.3.2.6 Gather-Scatter Optimization

Software pipelining attempts to improve performance by executing statements
from multiple iterations of a loop in parallel. This is difficult when loops
contain conditional statements. Consider the following example:

do i = 1,n

if (t(i) .gt. 0.0) then

a(i) = 2.0*b(i-1)

end do

end do

Ignoring the if statement, software pipelining may move up the load of
b(i-1), effectively executing it in parallel with earlier iterations of the
multiply. Given the conditional, this is not strictly possible. The code generator
will often if convert such loops, essentially executing the body of the if on
every iteration. The if conversion does not work well when the if is
frequently not taken. An alternative is to gather-scatter the loop, so the loop is
divided as follows:

inc = 0 do i = 1,n
tmp(inc) = i

if (t(i) .gt. 0.0) then

inc = inc + 1

end do

end do

do i = 1,inc
a(tmp(i)) = 2.0*b((tmp(i)-1)

end do

The code generator will if convert the first loop; however, no need exists to if
convert the second one. The second loop can be effectively software pipelined
without having to execute unnecessary multiplies.

4.3.3 Compiler Options for LNO

The lno(5) man page describes the compiler options for LNO. Specifically,
topics include:

• Controlling LNO Optimization Levels (described below)

• Controlling Fission and Fusion (described below)

• Controlling Gather-Scatter

76 007–2360–008

Optimizing Program Performance [4]

• Controlling Cache Parameters

• Controlling Permutation Transformations and Cache Optimization

• Controlling Prefetch

All of the LNO optimizations are on by default when you use the -O3 compiler
option. To turn off LNO at -O3, use -LNO:opt=0. If you want direct control,
you can specify options and pragmas to turn on and off optimizations that you
require.

The options -r5000, -r8000, -r10000, and -r12000 set a series of default
cache characteristics. To override a default setting, use one or more of the
options below.

To define a cache entirely, you must specify all options immediately following
the -LNO:cache_size option. For example, if the processor is an R4000 (r4k),
which has no secondary cache, then specifying -LNO:cache_size2=4m is not
valid unless you supply the options necessary to specify the other
characteristics of the cache. (Setting -LNO:cache_size2=0 is adequate to turn
off the second level cache; you don’t have to specify other second-level
parameters.) Options are available for third and fourth level caches. Currently
none of the Silicon Graphics machines have such caches. However, you can also
use those options to block other levels of the memory hierarchy.

For example, on a machine with 128 Mbytes of main memory, you can block for
it by using the parameters below, for example, -LNO:cs3=128M:ls3=.... In
this case, assoc3 is ignored and doesn’t have to be specified. Instead, you
must specify is_mem3.., since virtual memory is fully associative.

4.3.4 Pragmas and Directives for LNO

Fortran directives and C and C++ pragmas enable, disable, or modify a feature
of the compiler. This section uses the term pragma when describing either a
pragma or a directive.

Pragmas within a procedure apply only to that particular procedure, and revert
to the default values upon the end of the procedure. Pragmas that occur
outside of a procedure alter the default value, and therefore apply to the rest of
the file from that point on, until overridden by a subsequent pragma.

By default, pragmas within a file override the command-line options. Use the
-LNO:ignore_pragmas option to allow command-line options to override the
pragmas in the file.

007–2360–008 77

MIPSproTM Compiling and Performance Tuning Guide

This section covers:

• Fission/Fusion

• Blocking and Permutation Transformations

• Prefetch

• Dependence Analysis

See the lno(5) man page, or your compiler manual, for more information on
these pragmas and directives.

4.3.4.1 Fission/Fusion

The following pragmas/directives control fission and fusion.

C*$* AGGRESSIVE INNER LOOP FISSION
#pragma aggressive inner loop fission

Fission inner loops into as many loops as possible. It can only
be followed by a inner loop and has no effect if that loop is not
inner any more after loop interchange.

C*$* FISSION
#pragma fission
C*$* FISSIONABLE
#pragma
fissionable

Fission the enclosing n level of loops after this
pragma. The default is 1. Performs validity test
unless a FISSIONABLE pragma is also specified.
Does not reorder statements.

C*$* FUSE
#pragma fuse
C*$* FUSABLE
#pragma fusable

Fuse the following loops, which must be
immediately adjacent. The default is 2,level.
Fusion is attempted on each pair of adjacent
loops and the level, by default, is the determined
by the maximal perfectly nested loop levels of the
fused loops although partial fusion is allowed.
Iterations may be peeled as needed during fusion

78 007–2360–008

Optimizing Program Performance [4]

and the limit of this peeling is 5 or the number
specified by the -LNO:fusion_peeling_limit
option. No fusion is done for non-adjacent outer
loops. When the FUSABLE pragma is present, no
validity test is done and the fusion is done up to
the maximal common levels.

C*$* NO FISSION
#pragma no fission

The loop following this pragma should not be
fissioned. Its innermost loops, however, are
allowed to be fissioned.

C*$* NO FUSION
#pragma no fusion

The loop following this pragma should not be
fused with other loops.

4.3.4.2 Blocking and Permutation Transformations

The following pragmas/directives control blocking and permutation
transformations.

C*$* INTERCHANGE
#pragma
interchange

Loops to be interchanged (in any order) must
directly follow this pragma and be perfectly
nested one inside the other. If they are not
perfectly nested, the compiler may choose to
perform loop distribution to make them so, or
may choose to ignore the annotation, or even
apply imperfect interchange. Attempts to reorder
loops so that I is outermost, then J, then K. The
compiler may choose to ignore this pragma.

007–2360–008 79

MIPSproTM Compiling and Performance Tuning Guide

C*$* NO
INTERCHANGE
#pragma no
interchange

Prevent the compiler from involving the loop
directly following this pragma in an interchange,
or any loop nested within this loop.

C*$* BLOCKING SIZE
[(n1,n2)]
#pragma blocking
size (n1,n2)

The loop specified, if it is involved in a blocking
for the primary (secondary) cache, will have a
block size of n1 {n2}. The compiler tries to
include this loop within such a block. If a 0
blocking size is specified, then the loop is not
stripped, but the entire loop is inside the block.

For example:

subroutine amat(x,y,z,n,m,mm)
real*8 x(100,100), y(100,100), z(100,100)

do k = 1, n

C*$* BLOCKING SIZE 20

do j = 1, m

C*$* BLOCKING SIZE 20
do i = 1, mm

z(i,k) = z(i,k) + x(i,j)*y(j,k)

enddo

enddo

enddo
end

In this example, the compiler makes 20x20 blocks when blocking. However, the
compiler can block the loop nest such that loop k is not included in the tile. If it
did not, add the following pragma just before the k loop.

C*$* BLOCKING SIZE (0)

This pragma suggests that the compiler generates a nest like:

subroutine amat(x,y,z,n,m,mm)

real*8 x(100,100), y(100,100), z(100,100)

80 007–2360–008

Optimizing Program Performance [4]

do jj = 1, m, 20

do ii = 1, mm, 20
do k = 1, n

do j = jj, MIN(m, jj+19)

do i = ii, MIN(mm, ii+19)

z(i,k) = z(i,k) + x(i,j)*y(j,k)

enddo

enddo
enddo

enddo

enddo

end

Finally, you can apply a INTERCHANGE pragma to the same nest as a
BLOCKING SIZE pragma. The BLOCKING SIZE applies to the loop it directly
precedes only, and moves with that loop when an interchange is applied.

C*$* NO BLOCKING
#pragma no
blocking

Prevent the compiler from involving this loop in
cache blocking.

C*$* UNROLL
#pragma unroll

This pragma suggests to the compiler that n-1
copies of the loop body be added to the loop. If
the loop that this pragma directly precedes is an
inner loop, then it indicates standard unrolling. If
the loop that this pragma directly precedes is not
innermost, then outer loop unrolling (unroll and
jam) is performed. The value of n must be at least
1. If it is exactly 1, then no unrolling is performed.

For example, the following code:

C*$* UNROLL (2)

DO i = 1, 10

DO j = 1, 10

a(i,j) = a(i,j) + b(i,j)
END DO

END DO

007–2360–008 81

MIPSproTM Compiling and Performance Tuning Guide

becomes:

DO i = 1, 10, 2

DO j = 1, 10
a(i,j) = a(i,j) + b(i,j)

a(i+1,j) = a(i+1,j) + b(i+1,j)

END DO

END DO

and not:

DO i = 1, 10, 2

DO j = 1, 10

a(i,j) = a(i,j) + b(i,j)
END DO

DO j = 1, 10

a(i+1,j) = a(i+1,j) + b(i+1,j)

END DO

END DO

The UNROLL pragma again is attached to the given loop, so that if an
INTERCHANGE is performed, the corresponding loop is still unrolled. That is,
the example above is equivalent to:

C*$* INTERCHANGE i,j

DO j = 1, 10

C*$* UNROLL 2

DO i = 1, 10

a(i,j) = a(i,j) + b(i,j)
END DO

END DO

C*$*
BLOCKABLE(I,J,K)
#pragma blockable
(i,j,k)

The loops I, J and K must be adjacent and nested
within each other, although not necessarily
perfectly nested. This pragma informs the
compiler that these loops may validly be involved
in a blocking with each other, even if the
compiler considers such a transformation invalid.
The loops are also interchangeable and unrollable.

82 007–2360–008

Optimizing Program Performance [4]

This pragma does not tell the compiler which of
these transformations to apply.

4.3.4.3 Prefetch

The following pragmas/directives control prefetch operations.

C*$* PREFETCH
#pragma prefetch

Specify prefetching for each level of the cache.
Scope: entire function containing the pragma.

0 prefetching off (default for all processors except
R10000 and R12000)

1 prefetching on, but conservative (default at -03
when prefetch is on)

2 prefetching on, and aggressive

C*$*
PREFETCH_MANUAL
#pragma
prefetch_manual

Specify whether manual prefetches (through
pragmas) should be respected or ignored. Scope:
entire function containing the pragma.

0 ignore manual prefetches (default for all
processors except R10000 and R12000)

1 respect manual prefetches (default at -03 for
R10000 and beyond)

C*$* PREFETCH_REF
#pragma
prefetch_ref

The object specified is the reference itself; for
example, an array element A(i, j). The object
can also be a scalar, for example, x, an integer.
Must be specified.

A specified stride prefetches every stride
iterations of this loop. Optional, the default is 1.

007–2360–008 83

MIPSproTM Compiling and Performance Tuning Guide

The specified level specifies the level in memory
hierarchy to prefetch. Optional, the default is 2.

lev=1: prefetch from L2 to L1 cache.

lev=2: prefetch from memory to L1 cache.

kind specifies read/write. Optional, the default
is write.

size specifies the size (in Kbytes) of this object
referenced in this loop. Must be a constant.
Optional.

The effect of this pragma is:

• Generate a prefetch and connect to the specified reference (if possible).

• Search for array references that match the supplied reference in the current
loop-nest. If such a reference is found, then that reference is connected to
this prefetch node with the specified latency. If no such reference is found,
then this prefetch node stays free-floating and is scheduled “loosely.”

• Ignore all references to this array in this loop-nest by the automatic
prefetcher (if enabled).

• If the size is specified, then the auto-prefetcher (if enabled) uses that number
in its volume analysis for this array.

• No scope, just generate a prefetch.

C*$*
PREFETCH_REF_DISABLE
#pragma
prefetch_ref_disable

This explicitly disables prefetching all references
to the specified array in the current loop nest.
The auto-prefetcher runs (if enabled) ignoring the
array.

4.3.4.4 Fill/Align Symbol

The following pragmas and/or directives control fill and/or alignment of
symbols. This section uses the term pragma when describing either a pragma
or a directive.

84 007–2360–008

Optimizing Program Performance [4]

The align_symbol pragma aligns the start of the named symbol at the
specified alignment. The fill_symbol pragma pads the named symbol.

C*$* FILL_SYMBOL
#pragma
fill_symbol
C*$* ALIGN_SYMBOL
#pragma
align_symbol

The fill_symbol/align_symbol pragmas
take a symbol, that is, a variable that is a Fortran
COMMON, a C/C++ global, or an automatic
variable (but not a formal and not an element of a
structured type like a struct or an array).

The second argument in the pragma may be one
of the keywords:

• L1cacheline (machine specific first-level cache
line size, typically 32 bytes)

• L2cacheline (machine specific second-level
cache line size, typically 128 bytes)

• page (machine specific page size, typically 16
Kbytes)

• a user-specified power-of-two value

The align_symbol pragma aligns the start of
the named symbol at the specified alignment, that
is, the symbol “s” will start at the specified
alignment boundary.

The fill_symbol pragma pads the named
symbol with additional storage so that the
symbol is assured not to overlap with any other
data item within the storage of the specified size.
The additional padding required is heuristically
divided between each end of the specified
variable. For instance, a fill_symbol pragma
for the L1cacheline guarantees that the specified
symbol does not suffer from false-sharing for the
L1 cache line.

007–2360–008 85

MIPSproTM Compiling and Performance Tuning Guide

For global variables, these pragmas must be
specified at the variable definition, and are
optional at the declarations of the variable.

For COMMON block variables, these pragmas are
required at each declaration of the COMMON block.
Since the pragmas modify the allocated storage
and its alignment for the named symbol,
inconsistent pragmas can lead to undefined
results.

The align_symbol pragma is ineffective for
local variables of fixed-size symbols, such as
simple scalars or arrays of known size. The
pragma continues to be effective for
stack-allocated arrays of dynamically-determined
size.

A variable cannot have both fill_symbol and
align_symbol pragmas applied to it.

Examples:

int x; /* x is a global or a common block variable */

#pragma align_symbol (x, 32)

/* x will start at a 32-byte boundary */

#pragma align_symbol (x, 2)
/* Error: cannot request alignment lower than the natural

* alignment of the symbol.

*/

double y; /* y is a global, common, or local */
#pragma fill_symbol (y, L2cacheline)

/* allocate extra storage both before and after ‘‘y’’ so

* that ‘‘y’’ is within an L2cacheline (128 bytes) all by

* itself. Can be useful to avoid false-sharing between

* multipleprocessors for cacheline containing ‘‘y’’.

*/

4.3.4.5 Dependence Analysis

The following pragmas/directives control dependence analysis.

86 007–2360–008

Optimizing Program Performance [4]

CDIR$ IVDEP
#pragma ivdep

Liberalize dependence analysis. This applies only
to inner loops. Given two memory references,
where at least one is loop variant, ignore any
loop-carried dependences between the two
references.

For example:

CDIR$ IVDEP

do i = 1,n

b(k) = b(k) + a(i)
enddo

ivdep does not break the dependence since b(k)
is not loop variant.

CDIR$ IVDEP

do i=1,n

a(i) = a(i-1) + 3.0

enddo

ivdep does break the dependence, but the
compiler warns the user that it’s breaking an
obvious dependence.

CDIR$ IVDEP

do i=1,n

a(b(i)) = a(b(i)) + 3.0

enddo

ivdep does break the dependence.

CDIR$ IVDEP

do i = 1,n
a(i) = b(i)

c(i) = a(i) + 3.0

enddo

ivdep does not break the dependence on a(i)
since it is within an iteration.

007–2360–008 87

MIPSproTM Compiling and Performance Tuning Guide

If -OPT:cray_ivdep=TRUE, use Cray semantics.
Break all lexically backwards dependences. For
example:

CDIR$ IVDEP

do i=1,n

a(i) = a(i-1) + 3.0

enddo

ivdep does break the dependence but the
compiler warns the user that it’s breaking an
obvious dependence.

CDIR$ IVDEP
do i=1,n

a(i) = a(i+1) + 3.0

enddo

ivdep does not break the dependence since the
dependence is from the load to the store, and the
load comes lexically before the store.

To break all dependencies, specify
-OPT:liberal_ivdep=TRUE.

-OPT:cray_ivdep and -OPT:liberal_ivdep
are OFF (FALSE) by default.

4.4 Controlling Floating-Point Optimization

Floating-point numbers (the Fortran REAL*n, DOUBLE PRECISION, and
COMPLEX*n, and the C float, double, and long double) are inexact
representations of ideal real numbers. The operations performed on them are
also necessarily inexact. However, the MIPS processors conform to the IEEE 754
floating-point standard, producing results as precise as possible given the
constraints of the IEEE 754 representations, and the MIPSPro compilers
generally preserve this conformance. Note, however, that 128-bit floating point
(that is, the Fortran REAL*16 and the C long double) is not precisely
IEEE-compliant. In addition, the source language standards imply rules about
how expressions are evaluated.

Most code that has not been written with careful attention to floating-point
behavior does not require precise conformance to either the source language
expression evaluation standards or to IEEE 754 arithmetic standards. Therefore,

88 007–2360–008

Optimizing Program Performance [4]

the MIPSPro compilers provide a number of options that trade off source
language expression evaluation rules and IEEE 754 conformance against better
performance of generated code. These options allow transformations of
calculations specified by the source code that may not produce precisely the
same floating point result, although they involve a mathematically equivalent
calculation.

Two of these options (described below) are the preferred controls:

• -OPT:roundoff=n deals with the extent to which language expression
evaluation rules are observed, generally affecting the transformation of
expressions involving multiple operations.

• -OPT:IEEE_arithmetic=n deals with the extent to which the generated
code conforms to IEEE 754 standards for discrete IEEE-specified operations
(for example, a divide or a square root).

4.4.1 -OPT:roundoff=n

The -OPT:roundoff option provides control over floating point accuracy and
overflow/underflow exception behavior relative to the source language rules.

The roundoff option specifies the extent to that optimizations are allowed to
affect floating point results, in terms of both accuracy and overflow/underflow
behavior. The roundoff value, n, has a value in the range 0...3. Roundoff values
are described below.

roundoff=0 Do no transformations that could affect
floating-point results. This is the default for
optimization levels -O0 to -O2.

roundoff=1 Allow transformations with limited effects on
floating point results. For roundoff, limited
means that only the last bit or two of the
mantissa is affected. For overflow (or underfow),
it means that intermediate results of the
transformed calculation may overflow within a
factor of two of where the original expression
may have overflowed (or underflowed). Note
that effects may be less limited when
compounded by multiple transformations.

roundoff=2 Allow transformations with more extensive
effects on floating point results. Allow associative
rearrangement, even across loop iterations, and

007–2360–008 89

MIPSproTM Compiling and Performance Tuning Guide

distribution of multiplication over addition or
subtraction. Disallow only transformations
known to cause cumulative roundoff errors, or
overflow or underflow, for operands in a large
range of valid floating-point values.

Reassociation can have a substantial effect on the
performance of software pipelined loops by
breaking recurrences. This is therefore the default
for optimization level -O3.

roundoff=3 Allow any mathematically valid transformation of
floating point expressions. This allows floating
point induction variables in loops, even when
they are known to cause cumulative roundoff
errors, and fast algorithms for complex absolute
value and divide, which overflow (underflow) for
operands beyond the square root of the
representable extremes.

4.4.2 -OPT:IEEE_arithmetic=n

The -OPT:IEEE_arithmetic option controls conformance to IEEE 754
arithmetic standards for discrete operators.

The -OPT:IEEE_arithmetic option specifies the extent to which
optimizations must preserve IEEE floating-point arithmetic. The value n must
be in the range of 1 through 3. Values are described below.

-OPT:IEEE_arithmetic=1

No degradation: do no transformations that degrade
floating-point accuracy from IEEE requirements. The generated
code may use instructions like madd, which provides greater
accuracy than required by IEEE 754. This is the default.

-OPT:IEEE_arithmetic=2

Minor degradation: allow transformations with limited effects
on floating point results, as long as exact results remain exact.
This option allows use of the mips4 recip and rsqrt
operations.

90 007–2360–008

Optimizing Program Performance [4]

-OPT:IEEE_arithmetic=3

Conformance not required: allow any mathematically valid
transformations. For instance, this allows implementation of
x/y as x*recip(y), or sqrt(x) as x*rsqrt(x).

As an example, consider optimizing the Fortran code fragment:

INTEGER i, n

REAL sum, divisor, a(n)

sum = 0.0
DO i = 1,n

sum = sum + a(i)/divisor

END DO

At roundoff=0 and IEEE_arithmetic=1, the generated code must do the n
loop iterations in order, with a divide and an add in each.

Using IEEE_arithmetic=3, the divide can be treated like
a(i)*(1.0/divisor). For example, on the MIPS R8000 and R10000, the
reciprocal can be done with a recip instruction. But more importantly, the
reciprocal can be calculated once before the loop is entered, reducing the loop
body to a much faster multiply and add per iteration, which can be a single
madd instruction on the R8000 and R10000.

Using roundoff=2, the loop may be reordered. For example, the original loop
takes at least 4 cycles per iteration on the R8000 (the latency of the add or madd
instruction). Reordering allows the calculation of several partial sums in
parallel, adding them together after loop exit. With software pipelining, a
throughput of nearly 2 iterations per cycle is possible on the R8000, a factor of 8
improvement.

Consider another example:

INTEGER i,n

COMPLEX c(n)

REAL r
DO i = 1,n

r = 0.1 * i

c(i) = CABS (CMPLX(r,r))

END DO

Mathematically, r can be calculated by initializing it to 0.0 before entering the
loop and adding 0.1 on each iteration. But doing so causes significant
cumulative errors because the representation of 0.1 is not exact. The complex
absolute value is mathematically equal to SQRT(r*r + r*r). However,

007–2360–008 91

MIPSproTM Compiling and Performance Tuning Guide

calculating it this way causes an overflow if 2*r*r is greater than the
maximum REAL value, even though a representable result can be calculated for
a much wider range of values of r (at greater cost). Both of these
transformations are forbidden for roundoff=2, but enabled for roundoff=3.

4.4.2.1 Other Options to Control Floating Point Behavior

Other options exist that allow finer control of floating point behavior than is
provided by -OPT:roundoff. The options may be used to obtain finer control,
but they may disappear or change in future compiler releases.

-OPT:div_split

Enable/disable the calculation of x/y as x*(1.0/y),
normally enabled by IEEE_arithmetic=3. Simplifies
expressions by determining if (A/B) should be turned into
(1/B)*A. This can be useful if B is a loop-invariant, as it
replaces the divide with a multiply. For example, X = A/B
becomes X = A*(1/B). See -OPT:recip.

-OPT:fast_complex

Enable/disable the fast algorithms for complex absolute value
and division, normally enabled by roundoff=3.

-OPT:fast_exp

Enable/disable the translation of exponentiation by integers or
halves to sequences of multiplies and square roots. This can
change roundoff, and can make these functions produce
minor discontinuities at the exponents where it applies.
Normally enabled by roundoff>0 for Fortran, or for C if the
function exp() is labelled intrinsic in <math.h> (the default in
-xansi and -cckr modes).

-OPT:fast_io

Enable/disable inlining of printf(), fprintf(),
sprintf(), scanf(), fscanf(), sscanf(), and printw()
for more specialized lower-level subroutines. This option
applies only if the candidates for inlining are marked as
intrinsic (-D__INLINE_INTRINSICS) in the respective header
files (<stdio.h> and <curses.h>); otherwise they are not
inlined. Programs that use functions such as printf() or
scanf() heavily generally have improved I/O performance

92 007–2360–008

Optimizing Program Performance [4]

when this switch is used. Since this option may cause
substantial code expansion, it is OFF by default.

-OPT:fast_sqrt

Enable/disable the calculation of square root as x*rsqrt(x)
for -mips4, normally enabled by IEEE_arithmetic=3. This
option is ignored for the R10000.

-OPT:fold_reassociate

Enable/disable transformations that reassociate or distribute
floating point expressions. This option is on at -O3, or if
roundoff >= 2. For example, X + 1. X can be turned into X
- X + 1.0, which will then simplify to 1. This can cause
problems is X is large compared to 1, so that X+1 is X due to
roundoff.

-OPT:IEEE_comparisons

Force comparisons to yield results conforming to the IEEE 754
standard for NaN and Inf operands, normally disabled. Setting
this option disables certain optimizations like assuming that a
comparison x==x is always TRUE (since it is FALSE if x is a
NaN). It also disables optimizations that reverse the sense of a
comparison, for example, turning ‘‘x < y’’ into ‘‘! (x
>= y)’’, since both ‘‘x<y’’ and ‘‘x>=y’’ may be FALSE if
one of the operands is a NaN.

-OPT:recip

Allow use of the mips4 reciprocal instruction for 1.0/y,
normally enabled by -O3 or IEEE_arithmetic>=2. See
-OPT:div_split. For example, X = 1./Y generates the
recip instruction instead of a divide instruction. This may
change the results slightly.

-OPT:rsqrt

Allow use of the mips4 reciprocal square root instruction for
1.0/sqrt(y), normally enabled by -O3 or
IEEE_arithmetic>=2. For example, X = 1./SQRT(Y)
generates the rsqrt instruction instead of a divide and a
square root. This may change the results slightly. This option is
ignored for the R10000.

007–2360–008 93

MIPSproTM Compiling and Performance Tuning Guide

-TARG:madd

The MIPS IV architecture supports fused multiply-add
instructions, which add the product of two operands to a third,
with a single roundoff step at the end. Because the product is
not separately rounded, this can produce slightly different (but
more accurate) results than a separate multiply and add pair of
instructions. This is normally enabled for -mips4.

4.4.2.2 Debugging Floating-Point Problems

The options above can change the results of floating point calculations, causing
less accuracy (especially -OPT:IEEE_arithmetic), different results due to
expression rearrangement (-OPT:roundoff), or NaN/Inf results in new cases.
Note that in some such cases, the new results may not be worse (that is, less
accurate) than the old, they just may be different. For instance, doing a sum
reduction by adding the terms in a different order is likely to produce a
different result. Typically, that result is not less accurate, unless the original
order was carefully chosen to minimize roundoff.

If you encounter such effects when using these options (including -O3, which
enables -OPT:roundoff=2 by default), first attempt to identify the cause by
forcing the safe levels of the options:
-OPT:IEEE_arithmetic=1:roundoff=0. When you do this, do not have
the following options explicitly enabled:

-OPT:div_split

-OPT:fast_complex

-OPT:fast_exp

-OPT:fast_sqrt

-OPT:fold_reassociate

-OPT:recip

-OPT:rsqrt

If using the safe levels works, you can either use the safe levels or, if you are
dealing with performance-critical code, you can use the more specific options
(for example, div_split, fast_complex, and so forth) to selectively disable
optimizations. Then you can identify the source code that is sensitive and
eliminate the problem. Or, you can avoid the problematic optimizations.

94 007–2360–008

Optimizing Program Performance [4]

4.5 Controlling Miscellaneous Optimizations with the -OPT Option

The following -OPT options allow control over a variety of optimizations.
These include:

• Using the -OPT:Olimit Option

• Using the-OPT:alias Option

• Simplifying Code with the -OPT Option

4.5.1 Using the -OPT:Olimit Option

-OPT:Olimit

This option controls the size of procedures to be optimized.
Procedures above the cutoff limit are not optimized. A value of
0 means “infinite Olimit,” and causes all procedures to be
optimized. If you compile at -O2 or above, and a routine is so
large that the compile speed may be slow, then the compiler
prints a message telling you the Olimit value needed to
optimize your program.

4.5.2 Using the -OPT:alias Option

-OPT:alias=name

The compilers must typically be very conservative in
optimization of memory references involving pointers
(especially in C), since aliases (that is, different ways of
accessing the same memory) may be very hard to detect. This
option may be used to specify that the program being compiled
avoids aliasing in various ways. The -OPT:alias options are
listed below.

-OPT:alias=any

The compiler assumes that any pair of memory references may
be aliased unless it can prove otherwise. This is the default.

007–2360–008 95

MIPSproTM Compiling and Performance Tuning Guide

-OPT:alias=typed

The compiler assumes that any pair of memory references that
reference distinct types in fact reference distinct data. For
example, consider the code:

void dbl (int *i, float *f) {

*i = *i + *i;

*f = *f + *f;

}

The compiler assumes that i and f point to different memory,
and produces an overlapped schedule for the two calculations.

-OPT:alias=unnamed

The compiler assumes that pointers never point to named
objects. For example, consider the code:

float g;

void dbl (float *f) {

g = g + g;

*f = *f + *f;
}

The compiler assumes that f cannot point to g, and produces
an overlapped schedule for the two calculations.

This option also implies the alias=typed assumption. Note
that this is the default assumption for the pointers implicit in
Fortran dummy arguments according to the ANSI standard.

-OPT:alias=restrict and -OPT:alias=disjoint

The compiler assumes a very restrictive (restrict) model of
aliasing: memory operations dereferencing different named
pointers in the program are assumed not to alias with each
other, nor with any named scalar in the program. For example,
if p and q are pointers, *p does not alias with *q; *p does not
alias with p; and *p does not alias with any named scalar
variable.

Use -OPT:alias=no_restrictwhen distinct pointer
variables may point to overlapping storage.

Use -OPT:alias=disjoint for memory operations
dereferencing different named pointers in the program that are

96 007–2360–008

Optimizing Program Performance [4]

assumed not to alias with each other, or with any named scalar
in the program. For example, if p and q are pointers, *p does
not alias with *q; *p does not alias with **p; and *p does not
alias with **q.

Use -OPT:alias=no_disjoint when distinct pointer
expressions may point to overlapping storage.

Although these options are very dangerous to use, they may
produce significantly better code when used for specific
well-controlled cases where they are known to be valid.

4.5.3 Simplifying Code with the -OPT Option

The following -OPT options perform algebraic simplifications of expressions,
such as turning x + 0 into x.

-OPT:fold_unsafe_relops

Controls folding of relational operators in the presence of
possible integer overflow. On by default. For example, X + Y
< 0 may turn into X < Y. If X + Y overflows, it is possible to
get different answers.

-OPT:fold_unsigned_relops

Determines if simplifications are performed of unsigned
relational operations that may result in wrong answers in the
event of integer overflow. Off by default. The example is the
same as above, only for unsigned integers.

4.6 Controlling Execution Frequency

The #pragma mips_frequency_hint provides information about execution
frequency for certain regions in the code. The format of the pragma is

#pragma mips_frequency_hint {NEVER|INIT} [function_name]

You can provide the following indications: NEVER or INIT.

NEVER: This region of code is never or rarely executed. The compiler may move
this region of the code away from the normal path. This movement may either
be to the end of the procedure or at some point to an entirely separate section.

007–2360–008 97

MIPSproTM Compiling and Performance Tuning Guide

INIT: This region of code is executed only during initialization or startup of the
program. The compiler may try to put all regions under INIT together to
provide better locality during the startup of a program.

You can specify this pragma in two ways:

• You can specify it with a function declaration. It then applies everywhere
the function is called. For example:

extern void Error_Routine ();

#pragma mips_frequency_hint NEVER Error_Routine

Note: The pragma must appear after the function declaration.

• You can place the pragma anywhere in the body of a procedure. It then
applies to the next statement that follows the pragma. For example:

if (some_condition) {

#pragma mips_frequency_hint NEVER

Error_Routine ();
}

4.7 The Code Generator

This section describes the part of the compiler that generates code. It covers the
following topics:

• Overview of the Code Generator

• Code Generator and Optimization Levels -O2 and -O3

• Modifying Code Generator Defaults

• Miscellaneous Code Generator Performance Topics

4.7.1 Overview of the Code Generator

The code generator processes an input program unit (PU) in intermediate
representation form to produce an output object file (.o) or assembly file (.s).

Program units are partitioned into basic blocks. A new basic block is started at
each branch target. Basic blocks are also ended by CALLs or branches. Large
basic blocks are arbitrarily ended after a certain number of operations, because
some algorithms in the code generator work on one basic block at a time

98 007–2360–008

Optimizing Program Performance [4]

(“local” algorithms) and have a complexity that is nonlinear in the number of
operations in the basic block.

This section covers the following topics:

• Code Generator and Optimization Levels

• An Example of Local Optimization for Fortran

4.7.1.1 Code Generator and Optimization Levels

At optimization levels -O0 and -O1, the code generator only uses local
algorithms that operate individually on each basic block. At -O0, no code
generator optimization is done. References to global objects are spilled and
restored from memory at basic block boundaries. At -O1, the code generator
performs standard local optimizations on each basic block (for example, copy
propagation, dead code elimination) as well as some elimination of useless
memory operations.

At optimization levels -O2 and -O3, the code generator includes global register
allocation and a large number of special optimizations for innermost loops,
including software pipelining at -O3.

4.7.1.2 An Example of Local Optimization for Fortran

Consider the Fortran statement, a(i) = b(i). At -O0, the value of i is kept
in memory and is loaded before each use. This statement uses two loads of i.
The code generator local optimizer replaces the second load of i with a copy of
the first load, and then it uses copy-propagation and dead code removal to
eliminate the copy. Comparing .s files for the -O0 and -O1 versions shows:

The .s file for -O0:

lw $3,20($sp) # load address of i

lw $3,0($3) # load i

addiu $3,$3,-1 # i - 1
sll $3,$3,3 # 8 * (i-1)

lw $4,12($sp) # load base address for b

addu $3,$3,$4 # address for b(i)

ldc1 $f0,0($3) # load b

lw $1,20($sp) # load address of i
lw $1,0($1) # load i

addiu $1,$1,-1 # i - 1

sll $1,$1,3 # 8 * (i-1)

lw $2,4($sp) # load base address for a

007–2360–008 99

MIPSproTM Compiling and Performance Tuning Guide

addu $1,$1,$2 # address for a(i)

sdc1 $f0,0($1) # store a

The .s file for -O1:

lw $1,0($6) # load i
lw $4,12($sp) # load base address for b

addiu $3,$1,-1 # i - 1

sll $3,$3,3 # 8 * (i-1)

lw $2,4($sp) # load base address for a

addu $3,$3,$4 # address for b(i)

addiu $1,$1,-1 # i - 1
ldc1 $f0,0($3) # load b

sll $1,$1,3 # 8 * (i-1)

addu $1,$1,$2 # address for a(i)

sdc1 $f0,0($1) # store a

The .s file for -O2 (using OPT to perform scalar optimization) produces
optimized code:

lw $1,0($6) # load i
sll $1,$1,3 # 8 * i

addu $2,$1,$5 # address of b(i+1)

ldc1 $f0,-8($2) # load b(i)

addu $1,$1,$4 # address of a(i+1)

sdc1 $f0,-8($1) # store a(i)

4.7.2 Code Generator and Optimization Levels -O2 and -O3

This section provides additional information about the -O2 and -O3
optimization levels. Topics include:

• if Conversion

• Cross-Iteration Optimizations

• Loop Unrolling

• Recurrence Breaking

• Software Pipelining

• Global Code Motion

• Steps Performed by the Code Generator at Levels -O2 and -O3

100 007–2360–008

Optimizing Program Performance [4]

4.7.2.1 if Conversion

The if conversion transformation converts control-flow into conditional
assignments. For example, consider the following code before if conversion.
Note that expr1 and expr2 are arbitrary expressions without calls or possible
side effects. For example, if expr1 is i++, the following example would be
wrong since ‘i’ would not be updated.

if (cond)

a = expr1;

else

a = expr2;

After if conversion, the code looks like this:

tmp1 = expr1;
tmp2 = expr2;

a = (cond) ? tmp1 : tmp2;

Performing if conversion results in the following benefits:

• It exposes more instruction-level parallelism. This is almost always valuable
on hardware platforms such as R10000.

• It eliminates branches. Some platforms (for example, the R10000) have a
penalty for taken branches. There can be substantial costs associated with
branches that are not correctly predicted by branch prediction hardware. For
example, a mispredicted branch on R10000 has an average cost of about 8
cycles.

• It enables other compiler optimizations. Currently, cross-iteration
optimizations and software pipelining both require single basic block loops.
The if conversion changes multiple basic block innermost loops into single
basic block innermost loops.

In the code above that was if converted, the expressions, expr1 and expr2,
are unconditionally evaluated. This can conceivably result in the generation of
exceptions that do not occur without if conversion. An operation that is
conditionalized in the source, but is unconditionally executed in the object, is
called a speculated operation. Even if the -TENV:X level prohibits speculating
an operation, it may be possible to if convert. For information about the
-TENV option, see the appropriate compiler man page.

For example, suppose expr1 = x + y; is a floating point add, and X=1.
Speculating flops is not allowed (to avoid false overflow exceptions). Define
x_safe and y_safe by x_safe = (cond)? x : 1.0; y_safe =

007–2360–008 101

MIPSproTM Compiling and Performance Tuning Guide

(cond) ? y : 1.0;. Then unconditionally evaluating tmp1 = x_safe +
y_safe; cannot generate any spurious exception. Similarly, if X < 4, and
expr1 contains a load (for example, expr1 = *p), it is illegal to speculate the
dereference of p. But, defining p_safe = (cond) ? p :
known_safe_address; and then tmp1 = *p_safe; cannot generate a
spurious memory exception.

Notice that with -TENV:X=2, it is legal to speculate flops, but not legal to
speculate memory references. So expr1 = *p + y; can be speculated to
tmp1 = *p_safe + y;. If *known_safe_address is uninitialized, there can
be spurious floating point exceptions associated with this code. In particular, on
some MIPS platforms (for example, R10000) if the input to a flop is a
denormalized number, then a trap will occur. Therefore, by default, the code
generator initializes *known_safe_address to 1.0.

4.7.2.2 Cross-Iteration Optimizations

Four main types of cross-iteration optimizations include:

• Read-Read Elimination

• Read-Write Elimination

• Write-Write Elimination

• Common Sub-Expression Elimination

4.7.2.3 Read-Read Elimination

Consider the example below:

DO i = 1,n

B(i) = A(i+1) - A(i)

END DO

The load of A(i+1) in iteration i can be reused (in the role of A(i)) in
iteration i+1. This reduces the memory requirements of the loop from 3
references per iteration to 2 references per iteration.

102 007–2360–008

Optimizing Program Performance [4]

4.7.2.4 Read-Write Elimination

Sometimes a value written in one iteration is read in a later iteration. For
example:

DO i = 1,n
B(i+1) = A(i+1) - A(i)

C(i) = B(i)

END DO

In this example, the load of B(i) can be eliminated by reusing the value that
was stored to B in the previous iteration.

4.7.2.5 Write-Write Elimination

Consider the example below:

DO i = 1,n
B(i+1) = A(i+1) - A(i)

B(i) = C(i) - B(i)

END DO

Each element of B is written twice. Only the second write is required, assuming
read-write elimination is done.

4.7.2.6 Common Sub-Expression Elimination

Consider the example below:

DO i = 1,n
B(i) = A(i+1) - A(i)

C(i) = A(i+2) - A(i+1)

END DO

The value computed for C in iteration i may be used for B in iteration i+1.
Thus only one subtract per iteration is required.

4.7.2.7 Loop Unrolling

In this example, unrolling 4 times converts this code:

for(i = 0; i < n; i++) {
a[i] = b[i];

}

007–2360–008 103

MIPSproTM Compiling and Performance Tuning Guide

to this code:

for (i = 0; i < (n % 4); i++) {

a[i] = b[i];
}

for (j = 0; j < (n / 4); j++) {

a[i+0] = b[i+0];

a[i+1] = b[i+1];

a[i+2] = b[i+2];

a[i+3] = b[i+3];
i += 4;

}

Loop unrolling:

• Exposes more instruction-level parallelism. This may be valuable even on
execution platforms such as R10000 or R12000 systems.

• Eliminates branches.

• Amortizes loop overhead. For example, unrolling replaces four increments
i+=1 with one increment i+=4.

• Enables some cross-iteration optimizations such as read/write elimination
over the unrolled iterations.

4.7.2.8 Recurrence Breaking

Recurrence breaking offers multiple benefits. Before the recurrences are broken
(see both examples below), the compiler waits for the prior iteration’s add to
complete (four cycles on the R8000) before starting the next one, so four cycles
per iteration occur.

When the compiler interleaves the reduction, each add must still wait for the
prior iteration’s add to complete, but four of these are done at one time, then
partial sums are combined on exiting the loop. The four iterations are done in
four cycles, or one cycle per iteration, quadruple the speed!

With back substitution, each iteration depends on the result from two iterations
back (not the prior iteration), so four cycles per two iterations occur, or two
cycles per iteration (double the speed).

Note: The compiler actually interleaves and back-substitutes these examples
even more than shown below, for even greater benefit (3 cycles/4 iterations
for the R8000 in both cases). These examples are simple for purposes of
exposition.

104 007–2360–008

Optimizing Program Performance [4]

Two types of recurrence breaking are reduction interleaving and back
substitution:

• Reduction interleaving. For example, interleaving by 4 transforms this code:

sum = 0
DO i = 1,n

sum = sum + A(i)

END DO

After reduction interleaving, the code looks like this (omitting the cleanup
code):

sum1 = 0

sum2 = 0

sum3 = 0
sum4 = 0

DO i = 1,n,4

sum1 = sum1 + A(i+0)

sum2 = sum2 + A(i+1)

sum3 = sum3 + A(i+2)
sum4 = sum4 + A(i+3)

END DO

sum = sum1 + sum2 + sum3 + sum4

• Back substitution. For example:

DO i = 1,n

B(i+1) = B(i) + k

END DO

The code is converted to:

k2 = k + k

B(2) = B(1) + k
DO i = 2,n

B(i+1) = B(i-1) + k2

END DO

4.7.2.9 Software Pipelining

Software pipelining schedules innermost loops to keep the hardware pipeline
full. For information about software pipelining, see MIPSpro 64-Bit Porting and
Transition Guide, Chapter 6, “Performance Tuning.” Also, for a general
discussion of instruction level parallelism, refer to B.R.Rau and J.A.Fisher,

007–2360–008 105

MIPSproTM Compiling and Performance Tuning Guide

“Instruction Level Parallelism,” Kluwer Academic Publishers, 1993 (reprinted
from the Journal of Supercomputing, Volume 7, Number 1/2).

4.7.2.10 Global Code Motion

The global code motion phase performs various code motion transformations in
order to reduce the overall execution time of a program. The global code
motion phase is useful because it does the following:

• It moves instructions in nonloop code. In the code example below, assume
expr1 and expr2 are arbitrary expressions that cannot be if-converted.
The cond is a boolean expression that evaluates to either true or false and
has no side effects with either expr1 or expr2.

if (cond)

a = expr1;

else

a = expr2;

After global code motion, the code looks like this:

a = expr1;

if (!cond)

a = expr2;

Note, that expr1 is arbitrarily chosen to speculate above the branch. The
decision to select candidates for code movement are based on several
factors, including resource availability, critical length, basic block
characteristics, and so forth.

• It moves instructions in loops with control-flow. In the code example below,
assume that p is a pointer and expr1 and expr2 are arbitrary expressions
involving p. Also, assume that cond is a boolean expression that uses p and
has no side effects with expr2 and expr1.

while (p != NULL) {

if (cond)

sum += expr1(p);

else

sum += expr2(p);

p = p->next;
}

106 007–2360–008

Optimizing Program Performance [4]

After global code motion, the code looks like this:

while (p != NULL) {

t1 = expr1(p);
t2 = expr2(p);

if (cond)

sum += t1;

else

sum += t2;

p = p->next;
}

Note, that t1 and t2 temporaries are created to evaluate the respective
expressions and conditionally executed. The increment of the pointer,
p=p->next, cannot move above the branch because of side effects with the
condition.

• It moves instructions across procedure calls. In the code example below,
assume that expr1 has no side effects with the procedure call to foo (that
is, procedure foo does not use and/or modify the expression expr1).

...

foo();

expr1;

...

After global code motion, the code looks like this:

...

expr1;

foo();
...

4.7.2.11 Benefits of Global Code Motion

The benefits of global code motion include the following:

• It exposes more instruction-level parallelism. Global code motion identifies
regions and/or blocks that have excessive and/or insufficient parallelism
than that provided by the target architecture. Global code motion effectively
redistributes (or load balances) the regions/blocks by selectively performing
code movements between them. This can effectively reduce their respective
schedule lengths and the overall execution time of the program.

007–2360–008 107

MIPSproTM Compiling and Performance Tuning Guide

• It provides branch delay slot filling. Global code motion fills branch delay
slots and converts most frequently executed branches to branch-likely form
(for example, beql, rs, rt, L1).

• It enables other compiler optimizations. As a result of performing global
code motion, some branches are either removed or transformed to a more
effective form.

4.7.2.12 Steps Performed by the Code Generator at Levels -O2 and -O3

The steps performed by the code generator at -O2 and -O3 include:

1. Nonloop if conversion. This also works in loops by performing any
if-conversion that produces faster code.

2. Find innermost loop candidates for further optimization. Loops are rejected
for any of the following reasons:

• Marked UNIMPORTANT (for example, LNO cleanup loop)

• Strange control flow (for example, branch into the middle)

3. if convert (-O3 only). This transforms a multi-basic block loop into a
single basic block containing operations with “guards.” Theif conversion
of loop bodies containing branches can fail for any of the following reasons:

• Cross-iteration read/write (read/read, and write/write) elimination

• Cross-iteration CSE (common subexpression elimination)

• Recurrence fixing

• Software pipelining

4. Perform cross-iteration optimizations (except write/write elimination on
loops without trip counts; for example, most “while” loops).

5. Unroll loops.

6. Fix recurrences.

7. If still a loop, and there is a trip count, and -O3, invoke software pipelining.

8. If not software pipelined, reverse if convert.

9. Reorder basic blocks to minimize (dynamically) the number of taken
branches. Also eliminate branches to branches when possible, and remove
unreachable basic blocks. This step also happens at -O1.

108 007–2360–008

Optimizing Program Performance [4]

10. Invoke global code motion phase.

At several points in this process local optimizations are performed, since many
of the transformations performed can expose additional opportunities. It is also
important to note that many transformations require legality checks that
depend on alias information. There are three sources of alias information:

• At -O3, the loop nest optimizer, LNO, provides a dependence graph for
each innermost loop.

• The scalar optimizer provides information on aliasing at the level of
symbols. That is, it can tell whether arrays A and B are independent, but it
does not have information about the relationship of different references to a
single array.

• The code generator can sometimes tell that two memory references are
identical or distinct. For example, if two references use the same register,
and there are no definitions of that register between the two references, then
the two references are identical.

4.7.3 Modifying Code Generator Defaults

The code generator makes many choices, for example, what conditional
constructs to if convert, or how much to unroll a loop. In most cases, the
compiler makes reasonable decisions. Occasionally, however, you can improve
performance by modifying the default behavior.

You can control the code generator by:

• Increasing or decreasing the unroll amount.

A heuristic is controlled by -OPT:unroll_analysis (on by default),
which generally tries to minimize unrolling. Less unrolling leads to smaller
code size and faster compilation. You can change the upper bound for the
amount of unrolling with -OPT:unroll_times (default is 8) or
-OPT:unroll_size (the number of instructions in the unrolled body,
current default is 80).

You can look at the .s file for notes (starting with #<loop>) that indicate
how the decision to limit unrolling was made. For example, loops are not
unrolled with recurrences that can’t be broken (since unrolling can’t possibly
help in these cases), so the .s file now tells why unrolling was limited and
how to change it. For example:

007–2360–008 109

MIPSproTM Compiling and Performance Tuning Guide

#<loop> Loop body line 7, nesting depth:1, estimated iterations: 100

#<loop> Not unrolled: limited by recurrence of 4 cycles
#<loop> Not unrolled: disable analysis w/-CG:unroll_analysis=off

• Disabling software pipelining with -OPT:swp=off.

As far as the code generator is concerned, -O3 --OPT:swp=off is the
same as -O2. Since LNO does not run at -O2, however, the input to the
code generator can be very different, and the available aliasing information
can be very different. In particular, cross-iteration loop optimizations are
much more effective at -O3 even with -OPT:swp=off, due to the improved
alias information.

4.7.4 Miscellaneous Code Generator Performance Topics

This section explains a few miscellaneous topics including:

• Prefetch and Load Latency

• Frequency and Feedback

4.7.4.1 Prefetch and Load Latency

At the -O3 level of optimization, with -r10000, LNO generates prefetches for
memory references that are likely to miss either the L1 (primary) or the L2
(secondary) cache. The code generator generates prefetch operations for L2
prefetches, and implements L1 prefetches as follows: makes sure that loads that
had associated L1 prefetches are issued at least 8 cycles before their results are
used.

Typically several replications of a software pipelined loop that differ only in the
registers used for corresponding values. (This is necessary because values may
have to survive in registers across multiple iterations of the loop.)

It is often possible to reduce prefetch overhead by eliminating some of the
corresponding prefetches from different replications. For example, suppose a
prefetch is only required on every 4th iteration of a loop, because 4 consecutive
iterations will load from the same cache line. If the loop is replicated 4 times by
software pipelining, then there is no need for a prefetch in each replication, so 3
of the 4 corresponding prefetches are pruned away.

The original software pipelining schedule has room for a prefetch in each
replication, and the number of cycles for this schedule is what is described in
the software pipelining notes as “cycles per iteration.” The number of memory
references listed in the software pipelining notes (“mem refs”) is the number of

110 007–2360–008

Optimizing Program Performance [4]

memory references including prefetches in Replication 0. If some of the
prefetches have been pruned away from replication 0, the notes will overstate
the number of cycles per iteration while understating the number of memory
references per iteration.

4.7.4.2 Frequency and Feedback

Some choices that the code generator makes are decided based on information
about the frequency with which different basic blocks are executed. By default,
the code generator makes guesses about these frequencies based on the
program structure. This information is available in the .s file. The frequency
printed for each block is the predicted number of times that block will be
executed each time the PU is entered.

The frequency guesses are replaced with the measured frequencies. Currently
the information guides if-conversion, some loop unrolling decisions (unrelated
to the trip count estimate), global code motion, control flow optimizations,
global spill and restore placement, global register allocation, instruction
alignment, and delay slot filling. Average loop trip-counts can be derived from
feedback information. Trip count estimates are used to guide decisions about
how much to unroll and whether or not to software pipeline.

4.8 Reordering Code Regions

Cording is an optimization technique for reordering parts of your program to
achieve better locality of reference and reduce instruction fetch overhead based
on dynamically collected data. The following areas are influenced by code
region reordering:

• Page faults and translation lookaside buffer (TLB) misses

• Instruction cache misses

Both of these events contribute to instruction fetch overhead, which can be
alleviated with better locality of reference. Retrieving an instruction from cache
is always faster than retrieving it from memory; so the idea is to keep
instructions in cache as much as possible. The frequencies and costs associated
with each of those events differ significantly. The size of the program in
memory and text-resident set sizes can also be reduced as a result of cording.

Programs can be reordered using either the cord(1) command (see the
following section) or the ld(1) linker command (see Section 4.8.2, page 112).
The SpeedShop prof(1) command and the WorkShop cvperf(1) user interface

007–2360–008 111

MIPSproTM Compiling and Performance Tuning Guide

are alternative methods of provided feedback files to cord and ld (see Section
4.8.3, page 113).

4.8.1 Reordering with cord

Use the following procedure to optimize your application by reordering its text
areas with the cord(1) command:

1. Run one or more SpeedShop ideal experiments to collect performance
data, setting caliper points to better identify phases of execution.

% ssrun -ideal a.out

2. Use sswsextr to extract working set files related to the interval between
each pair of calipers in the experiment file.

% sswsextr a.out a.out.ideal.m20683

A working set list file (in this case,
a.out.a.out.ideal.m20683.wslist) is also generated. It assigns a
number to the working set files and the weight for each one (the default
weight is 1).

3. Use ssorder(1) or sscord(1) to generate a cord feedback file combining
the working set files for the binary.

% ssorder -wsl a.out.a.out.ideal.m20683.wslist -gray -o a.out.fb a.out

% sscord -wsl a.out.a.out.ideal.m20683.wslist a.out

4. Use the cord(1) command to reorder the procedures in the binary.

% cord a.out a.out.fb

4.8.2 Reordering with ld

The following procedure uses the ld(1) linker to reorder routines in a source
file. The procedure shows how to reorder routines in an executable file
(a.out), but you can also reorder a DSO.

1. Compile the application as follows:

% f90 -OPT:procedure_reorder verge.f

You can turn reordering on or off for a given compilation by setting the
procedure_reorder argument to an optional Boolean value. Doing so is

112 007–2360–008

Optimizing Program Performance [4]

convenient if you are compiling the application in a makefile. Setting a
Boolean value of 1 enables reordering, while a value of 0 disables
reordering.

% f90 -OPT:procedure_reorder=1 verge.f

2. Run a SpeedShop ideal experiment to collect performance data, setting
caliper points to better identify phases of execution.

% ssrun -ideal a.out

3. Use sswsextr to extract working set files for the binary.

% sswsextr a.out a.out.ideal.m20683

4. Use ssorder(1) or sscord(1) to generate a cord feedback file, combining
multiple working set files for the binary.

% ssorder -wsl a.out.a.out.ideal.m20683.wslist -gray -o a.out.fb a.out

% sscord -wsl a.out.a.out.ideal.m20683.wslist a.out

5. Use ld to reorder the procedures in the binary as follows:

% ld -LD_LAYOUT:reorder_file=a.out.fb

4.8.3 Using prof or cvperf

Once the experiment file is generated, you can generate a cord feedback file
using either the SpeedShop prof(1) command or the WorkShop cvperf(1)
user interface.

Enter the prof command as follows:

% prof -cordfb a.out.ideal.m20683

The -cordfb option generates cord feedback for the executable and all DSOs.
Along with its usual output, this command writes a cord feedback file named
a.out.fb.

While using prof will give you what you want, using either the ssorder or
sscord method described in the previous subsections or the cvperf method
described in the following paragraphs produces more efficient results.

If you are using the WorkShop performance analyzer, first enter the cvperf(1)
command with the experiment file as an argument:

007–2360–008 113

MIPSproTM Compiling and Performance Tuning Guide

% cvperf a.out.ideal.m20683

Select the Working Set View from the Views menu. Once the new window
appears, choose Save Cord Map File from the Admin menu. By default, the
name of the cord feedback file will be a.out.fb.

Specify the cord feedback file on the cord or ld commands to reorder the
procedures in the binary:

% cord a.out a.out.fb

% ld -LD_LAYOUT:reorder_file=a.out.fb

4.9 Programming Hints for Improving Optimization

The global (scalar) optimizer is part of the compiler back end. It improves the
performance of object programs by transforming existing code into more
efficient coding sequences. The optimizer distinguishes between C, C++, and
Fortran programs to take advantage of the various language semantics.

This section describes the global optimizer and contains coding hints.
Specifically this section includes:

• Hints for Writing Programs

• Coding Hints for Improving Other Optimization

4.9.1 Hints for Writing Programs

Use the following hints when writing your programs:

• Do not use indirect calls (that is, calls via function pointers, including those
passed as subprogram arguments). Indirect calls may cause unknown side
effects (for instance, changing global variables) that reduce the amount of
optimization possible.

• Use functions that return values instead of pointer parameters.

• Avoid unions that cause overlap between integer and floating point data
types. The optimizer can not assign such fields to registers.

• Use local variables and avoid global variables. In C and C++ programs,
declare any variable outside of a function as static, unless that variable is
referenced by another source file. Minimizing the use of global variables
increases optimization opportunities for the compiler.

114 007–2360–008

Optimizing Program Performance [4]

• Declare pointer parameters as const in prototypes whenever possible, that
is, when there is no path through the routine that modifies the pointee. This
allows the compiler to avoid some of the negative assumptions normally
required for pointer and reference parameters (see below).

• Pass parameters by value instead of passing by reference (pointers) or using
global variables. Reference parameters have the same
performance-degrading effects as the use of pointers (see below).

• Aliases occur when there are multiple ways to reference the same data
object. For instance, when the address of a global variable is passed as a
subprogram argument, it may be referenced either using its global name, or
via the pointer. The compiler must be conservative when dealing with
objects that may be aliased, for instance keeping them in memory instead of
in registers, and carefully retaining the original source program order for
possibly aliased references.

Pointers in particular tend to cause aliasing problems, since it is often
impossible for the compiler to identify their target objects. Therefore, you
can help the compiler avoid possible aliases by introducing local variables to
store the values obtained from dereferenced pointers. Indirect operations
and calls affect dereferenced values, but do not affect local variables.
Therefore, local variables can be kept in registers. The following example
shows how the proper placement of pointers and the elimination of aliasing
produces better code.

In the example below, the optimizer does not know if *p++ = 0 will
eventually modify len. Therefore, the compiler cannot place len in a
register for optimal performance. Instead, the compiler must load it from
memory on each pass through the loop.

int len = 10;

void

zero(char *p)
{

int i;

for (i= 0; i!= len; i++) *p++ = 0;

}

Increase the efficiency of this example by not using global or common
variables to store unchanging values.

• Use local variables. Using local (automatic) variables or formal arguments
instead of static or global prevents aliasing and allows the compiler to
allocated them in registers.

007–2360–008 115

MIPSproTM Compiling and Performance Tuning Guide

For example, in the following code fragment, the variables loc and form
are likely to be more efficient than ext* and stat*.

extern int ext1;
static int stat1;

void p (int form)

{

extern int ext2;

static int stat2;
int loc;

...

}

• Write straightforward code. For example, do not use ++ and - - operators
within an expression. Using these operators produces side-effects (requires
the use of extra temporaries, which increases register pressure).

• Avoid taking and passing addresses (and values). Using addresses creates
aliases, makes the optimizer store variables from registers to their home
storage locations, and significantly reduces optimization opportunities that
would otherwise be performed by the compiler.

• Avoid functions that take a variable number of arguments. The optimizer
saves all parameter registers on entry to VARARG or STDARG functions. If
you must use these functions, use the ANSI standard facilities of stdarg.h.
These produce simpler code than the older version of varargs.h

4.9.2 Coding Hints for Improving Other Optimization

The global optimizer processes programs only when you specify the -O2 or
-O3 option at compilation. The code generator phase of the compiler performs
certain optimizations. This section has coding hints that increase optimization
for other passes of the compiler.

4.9.2.1 Use Tables Rather Than if-then-else or switch Statements

In your programs, use tables rather than if-then-else or switch
statements. For example, consider this code:

typedef enum { BLUE, GREEN, RED, NCOLORS } COLOR;

116 007–2360–008

Optimizing Program Performance [4]

Instead of:

switch (c) {

case CASE0: x = 5; break;
case CASE1: x = 10; break;

case CASE2: x = 1; break;

}

Use:

static int Mapping[NCOLORS] = { 5, 10, 1 };

...

x = Mapping[c];

4.9.2.2 Declare Variables Most Frequently Manipulated

As an optimizing technique, the compiler puts the first eight parameters of a
parameter list into registers where they may remain during execution of the
called routine. Therefore, always declare, as the first eight parameters, those
variables that are most frequently manipulated in the called routine.

4.9.2.3 Use 32-Bit or 64-Bit Scalar Variables

Use 32-bit or 64-bit scalar variables instead of smaller ones. This practice can
take more data space. However, it produces more efficient code because the
MIPS instruction set is optimized for 32-bit and 64-bit data.

4.9.2.4 Suggestions for C and C++ Programs

The following suggestions apply to C and C++ programs:

• Rely on libc.so functions (for example, strcpy, strlen, strcmp,
bcopy, bzero, memset, and memcpy). These functions are carefully coded
for efficiency.

• Use a signed data type, or cast to a signed data type, for any variable that
does not require the full unsigned range and must be converted to
floating-point. For example:

double d;

unsigned int u;

int i;

/* fast */ d = i;
/* fast */ d = (int)u;

007–2360–008 117

MIPSproTM Compiling and Performance Tuning Guide

/* slow */ d = u;

Converting an unsigned type to floating-point takes significantly longer than
converting signed types to floating-point; additional software support must
be generated in the instruction stream for the former case.

• Use signed ints in 64-bit code if they may appear in mixed type expressions
with long ints (or with long long ints in either 32-bit or 64-bit code).
Since the hardware automatically sign-extends the results of most 32-bit
operations, this may avoid explicit zero-extension code. For example:

unsigned int ui;

signed int i;

long int li;
/* fast */ li += i;

/* fast */ li += (int)ui;

/* slow */ li += ui;

• Use const and restrict qualifiers. The __restrict keyword tells the
compiler to assume that dereferencing the qualified pointer is the only way
the program can access the memory pointed to by that pointer. Hence loads
and stores through such a pointer are assumed not to alias with any other
loads and stores in the program, except other loads and stores through the
same pointer variable. For example:

float x[ARRAY_SIZE];

float *c = x;

void f4_opt(int n, float * __restrict a, float * __restrict b)
{

int i;

/* No data dependence across iterations because of __restrict */

for (i = 0; i < n; i++)

a[i] = b[i] + c[i];
}

118 007–2360–008

Optimizing Program Performance [4]

4.9.2.5 Suggestions for C++ Programs Only

The following suggestions apply to C++ programs:

• Use the inline keyword whenever possible. Functions calls in loops that are
not inlined prevent loop-nest optimizations and software pipelining.

• Use a direct calls rather than indiscriminate use of virtual function calls. The
penalty is in method lookup and the inability to inline them.

• If your code uses const ref, use -LANG:alias_const when compiling
(see Section 4.9.2.6, page 119, for more information).

• For scalars only, avoid the creation of unnecessary temporaries, that is, Aa =
1 is better than Aa = A(1).

• For structs and class, pass by const ref to avoid the overhead of
copying.

• If your code does not use exception handing, use -LANG:exceptions=off
when compiling.

4.9.2.6 const reference Parameter Optimization With -Lang:alias_const

Consider the following example:

extern void pass_by_const_ref(const int& i);

int test(){

//This requires -LANG:alias_const for performance enhancements

int i = 10

int j = 15

pass_by_const_ref(i);
pass_by_const_ref(j);

return i + j;

}

In the example above, the compiler determined that the function
pass_by_const_ref does not modify its formal parameter i. That is, the
parameter i passed by const reference does not get modified in the function.
Consequently the compiler can forward propagate the values of i and j to the
return statement, whereas it would otherwise have to reload the values of i
and j after the two calls to pass_by_const_ref.

Note: For this optimization to work correctly, both the caller and the callee
have to be compiled with -LANG:alias_const.).

007–2360–008 119

MIPSproTM Compiling and Performance Tuning Guide

You can legally cast away and modify the const parameter, in the callee which
is why the above option is not on by default. With this option, the compiler
makes an effort to flag warnings about such cases where the callee casts away
the const and modifies the parameter. For example:

void f(const int &x) {int *y = (int *) &x; *y = 99;}

int main() {

int z;

f(z); // call to f does modify z; Hence z needs to be reloaded after
the call

return z;

}

With the above example, and -LANG:alias_const, the compiler gives a
warning:

Compiling f__GRCi

‘‘ex9.C’’, line 2 (col. 28): warning(3334): cast to type ‘‘int *’’ may not
be safe in presence of -LANG:alias_const. Make sure you are not

casting away const to MODIFY the parameter

If you specify the mutable keyword, then this const optimization is disabled.
For example:

class C {

public:

mutable int p;

void f() const { p = 99;} //mutable data member can be modified
// by a const function

int getf() const { return p;}

};

int main() {
C c;

c.f(); // even with -LANG:alias_const, f() can modify c.p

return c.getf();

};

120 007–2360–008

Optimizing Program Performance [4]

4.9.3 Using SpeedShop

SpeedShop is an integrated package of performance tools that you can use to
gather performance data and generate reports. To record the experiments, use
the ssrun(1) command, which runs the experiment and captures data from an
executable (or instrumented version). You can examine the data either by using
prof(1) or by displaying it in the WorkShop graphical user interface with the
cvperf(1) command. Speedshop also lets you start a process and attach a
debugger to it.

For detailed information about SpeedShop, ssrun, prof, and pixie, see the
SpeedShop User’s Guide.

007–2360–008 121

Coding for 64-Bit Programs [5]

This chapter provides information about ways to write your code so that you
can take advantage of the Silicon Graphics implementation of the IRIX 64-bit
operating system. Specifically, this chapter describes the following:

• Section 5.1, page 123, describes coding assumptions to avoid.

• Section 5.2, page 126, lists guidelines for writing code for 64-bit Silicon
Graphics platforms.

Also, refer to Chapter 6, page 129, for information about compatibility, porting
guidelines, and details on data types, predefined types, typedefs, memory
allocation, and so forth. The MIPSpro N32 ABI Handbook and the MIPSpro 64–Bit
Porting and Transition Guide provide further information.

5.1 Coding Assumptions to Avoid

Most porting problems come from assumptions, implicit or explicit, about either
absolute or relative sizes of the int, long int, or pointer types in code.

To avoid porting problems, examine code that assumes any of the following:

• sizeof(int) == sizeof(void *)

• sizeof(int) == sizeof(long)

• sizeof(long) == 4

• sizeof(void *) == 4

• Implicitly Declared Functions

• Constants with the High-Order Bit Set

• Arithmetic with long Types (including shifts involving mixed types and
code that may overflow 32 bits)

Note: When compiling using -64-bit mode, avoid using unsigned 32-bit
integers. In the MIPS architecture, when a 32-bit integer (signed or unsigned)
is stored in 64-bit registers, the high order 32 bits are sign-extended.

007–2360–008 123

MIPSproTM Compiling and Performance Tuning Guide

5.1.1 sizeof(int) == sizeof(void *)

An assumption may arise from casting pointers to ints to do arithmetic, from
unions that implicitly identify ints and pointers, or from passing pointers
as actual arguments to functions where the corresponding formal arguments are
declared as ints. Any of these practices may result in inadvertently truncating
the high-order part of an address.

The compilers generally detect the first case and provide warnings. Also given
ANSI C function prototypes, the compilers generally detect the last case. No
diagnostic messages are provided for unions that implicitly identify ints and
pointers.

You can declare an integer variable that is required to be the size of a pointer
with the type ptrdiff_t in the standard header file stddef.h, or with the
types _psint_t and _psunsigned_t in the header file inttypes.h.

Also note that a cast of an int to a pointer may result in sign-extension, if
the sign bit of the int is set when a --64 compilation occurs.

5.1.2 sizeof(int) == sizeof(long)

Data that fits in an int or long on 32-bit systems will fit in an int on 64-bit
systems. Expansion, in this case, has no visible effect. Problems may occur,
however, where an unsigned int actual parameter is passed to a long (signed
or unsigned) formal parameter without benefit of an ANSI prototype. In this
case, the unsigned value is implicitly sign-extended in the register, and
therefore is misinterpreted in the callee if the sign bit was set.

5.1.3 sizeof(long) == 4

A problem may occur in cases where long ints are used to map fields in data
structures defined externally to be 32 bits, or where unions attempt to identify
a long with four chars.

5.1.4 sizeof(void *) == 4

Problems with this code are similar to those encountered with
sizeof(long)==4. However, mappings to external data structures are seldom
a problem, since the external definition also assumes 64-bit pointers.

124 007–2360–008

Coding for 64-Bit Programs [5]

5.1.5 Implicitly Declared Functions

It is always risky to call a function without an explicit declaration in scope.
Furthermore, be sure to declare with a compatible prototype any function
defined with a prototype. Problems arise when mixing prototype and
nonprototype declarations for the same function. For example, suppose you call
a function (defined with a prototype to take a variable number of arguments) in
a scope without a prototyped declaration. You may get unexpected results if a
floating point argument is passed to it. This is a typical problem with calls to
printf and after stdio.h routines. Therefore, always include stdio.h in
any context where you use stdio.h facilities.

5.1.6 Constants With the High-Order Bit Set

A change in type sizes may yield some problems related to constants. Be
careful about using constants with the high-order (sign) bit set. For instance,
the hex constant 0xffffffff yields different results in the expression:

long x;
... ((long) (x + 0xffffffff)) ...

In both modes, the constant is interpreted as a 32-bit unsigned int, with value
4,294,967,295. In 32-bit mode, the addition results in a 32-bit unsigned long,
which is cast to type long and has value x-1 because of the truncation to 32
bits. In 64-bit mode, the addition results in a 64-bit long with value
x+4,294,967,295, and the cast is redundant.

5.1.7 Arithmetic with long Types

Code that does arithmetic (including shifting), and code that may overflow 32
bits and assumes particular treatment of the overflow (for example, truncation),
can exhibit different behavior, depending on the mix of types involved
(including how it is signed).

Similarly, implicit casting in expressions that mix int and long values may
produce unexpected results due to sign/zero extension. An int constant is
sign- or zero-extended when it occurs in an expression with long values.

007–2360–008 125

MIPSproTM Compiling and Performance Tuning Guide

5.1.8 Solving Porting Problems

Once you identify porting problems, solve them by:

• Changing the relevant declaration to one that has the desired characteristics
in both target environments

• Adding explicit type casts to force the correct conversions

• Using function prototypes or using type suffixes (such as l or u) on
constants to force the correct type

5.2 Guidelines for Writing Code for 64-Bit Silicon Graphics Platforms

The key to revising existing code and writing new code that is compatible with
all of the major C data models is to avoid the assumptions described above in
Section 5.1, page 123. Since all of the assumptions described sometimes
represent legitimate attributes of data objects, you need to tailor declarations to
the target machines’ data models.

The following guidelines help you to produce portable code. Use these
guidelines when you are developing new code or as you identify portability
problems in existing code.

1. In a header file that you include in each of the program’s source files,
define (typedef) a type for each scalar integer type:

• For each specific integer data size required, that is, where exactly the
same number of bits is required on each target, define a signed and
unsigned type. For example:

typedef signed char int8_t

typedef unsigned char uint8_t
...

typedef unsigned long long uint64_t

• If you require a large scaling integer type, that is, one that is as large as
possible while remaining efficiently supported by the target, define
another pair of types. For example:

typedef signed long intscaled_t

typedef unsigned long uintscaled_t

• If you require integer types of at least a particular size, but chosen for
maximally efficient implementation on the target, define another set of
types, similar to the first but defined as larger standard types where

126 007–2360–008

Coding for 64-Bit Programs [5]

appropriate for efficiency. The typedefs referred to above exist in the file
inttypes.h (see Section 6.3.3, page 136).

After you construct the above header file, use the new typedef types
instead of the standard C type names. You may need a distinct copy of this
header file (or conditional code) for each target platform supported.

If you provide libraries or interfaces to be used by others, be careful to use
these types (or similar application-specific types) chosen to match the
specific requirements of the interface. Also, carefully choose the actual
names used to avoid name space conflicts with other libraries. Thus, your
clients should be able to use a single set of header files on all targets.
However, you will always need to provide distinct libraries (binaries) for
the 32-bit compatibility mode and the 64-bit native mode on 64-bit Silicon
Graphics platforms, although the sources can be identical.

2. Be sure to specify constants with an appropriate type specifier so that they
will have the size required by the context with the values expected. Bit
masks can be particularly troublesome in this regard: avoid using constants
for negative values. For example, 0xffffffff may be equivalent to a -1
on 32-bit systems, but may be interpreted as 4,294,967,295 (signed or
unsigned, depending on the mode and context) on most 64-bit systems. The
inttypes.h header file provides cpp macros to facilitate this conversion.
Defining constants that are sensitive to type sizes in a central header file
may help in modifying them when a new port is done.

3. Where printf/scanf are used for objects whose types are typedefed
differently among the targets you must support, you may need to define
constant format strings for each of the types defined in step 1. For example:

#define _fmt32 ‘‘%d’’

#define _fmt32u ‘‘%u’’

#define _fmt64 ‘‘%lld’’

#define _fmt64u ‘‘%llu’’

The inttypes.h header file also defines printf/scanf format
extensions to standardize these practices.

007–2360–008 127

MIPSproTM Compiling and Performance Tuning Guide

4. Code that has a variable number of floating point arguments or doubles
should be prototyped. printf is used to print a variable floating point in
this example:

#include <stdio.h>

main()

{

float d,e;

d = 3.14;

printf(‘‘%e\n’’,d);

}

128 007–2360–008

Porting Code to N32 and 64-Bit Silicon
Graphics Systems [6]

This section explains the levels of compatibility between the new 32-bit
compilation mode (n32), the old 32-bit mode, and 64-bit programs. It also
describes the porting procedure to follow and the changes you must make to
port your application from old 32-bit mode to n32-bit mode.

Specifically, this chapter discusses the following topics:

• Section 6.1, page 129, describes compatibility between 32, n32, and 64-bit
programs.

• Section 6.2, page 131, explains guidelines for porting high-level languages.

• Section 6.3, page 133, describes data types, typedefs, maximum memory
allocation, and use of large files on XFS.

This chapter uses the following terminology:

o32 The old 32-bit ABI generated by the ucode compiler; that is, 32-bit
compilers prior to IRIX 6.1 operating system.

n32 The new 32-bit ABI generated by the MIPSPro 64-bit compiler
(for a list of n32 features, see Chapter 1, page 1).For information
about the n32 ABI, see MIPSPro N32 ABI Handbook.

6.1 Compatibility

In order to execute different ABIs, support must exist at three levels:

• The operating system must support the ABI

• The libraries must support the ABI

• The application must be recompiled with a compiler that supports the ABI

Figure 6, page 130, shows how applications rely on library support to use the
operating system resources that they need.

Note: Each o32, n32, and n64 application must be linked against unique
libraries that conform to its respective ABI. As a result, you CANNOT mix
and match object files or libraries from any of the different ABIs.

007–2360–008 129

MIPSproTM Compiling and Performance Tuning Guide

Applications

Libraries

Operating
System

n32 o32

n64

n32

n64

o32

a12017

Figure 6. Application Support Under Different ABIs

Figure 7, page 131, illustrates the library locations for different ABIs.

130 007–2360–008

Porting Code to N32 and 64-Bit Silicon Graphics Systems [6]

/usr

lib32 (n32) l ib64 (64)l ib (o32)

a12018

Figure 7. Library Locations for Different ABIs

An operating system that supports all three ABIs is also needed for running the
application. Consequently, all applications that want to use the features of n32
must be ported. The next section covers the steps in porting an application to
the N32 ABI.

6.2 N32 Porting Guidelines

This section describes the guidelines/steps necessary to port IRIX 5.x 32-bit
applications to n32. Typically, any porting project can be divided into the
following tasks:

• Identifying and creating the necessary porting environment (see Section
6.2.1, page 132)

• Identifying and making the necessary source code changes (see Section 6.2.2,
page 132)

• Rebuilding the application for the target machine (see Section 6.2.3, page 132)

• Analyzing and debugging runtime issues (see Section 6.2.4, page 133)

007–2360–008 131

MIPSproTM Compiling and Performance Tuning Guide

Each of these tasks is described below. You can also find additional information
about n32 in the MIPSpro N32 ABI Handbook.

6.2.1 Porting Environment

The porting environment consists of a compiler and associated tools, include
files, libraries, and makefiles, all of which are necessary to compile and build
your application. To generate n32 code, you must:

• Check all libraries needed by your application to make sure they are
recompiled n32. The default root location for n32 libraries is /usr/lib32. If
the n32 library needed by your application does not exist, recompile the
library for n32.

• Modify existing Makefiles (or set environment variables) to reflect the
locations of these n32 libraries.

6.2.2 Source Code Changes

Since no differences exist in the sizes of fundamental types between the old
32-bit mode and n32, porting to n32 requires no source code changes for
applications written in high-level languages such as C, C++, and Fortran. The
only exception to this is that C functions that accept variable numbers of
floating point arguments must be prototyped.

Assembly language code, however, must be modified to reflect the new
subprogram interface. Guidelines for following this interface are described in
Chapter 3 of the MIPSpro N32 ABI Handbook in the section titled “Assembly
Language Programming Guidelines.”

6.2.3 Build Procedure

Recompiling for n32 involves either setting the -n32 argument in the compiler
invocation or running the compiler with the environment variable SGI_ABI set
to -n32. That’s all you must do after you set up a native n32 compilation
environment (that is, all necessary libraries and include files reside on the
host system).

132 007–2360–008

Porting Code to N32 and 64-Bit Silicon Graphics Systems [6]

6.2.4 Runtime Issues

Applications that are ported to n32 may get different results than their o32
counterparts. Reasons for this include:

• Differences in algorithms used by n32 libraries and o32 libraries.

• Operand reassociation or reduction performed by the optimizer for n32.

• Hardware differences of the R8000, R1000 (madd instructions round slightly
differently than a multiply instruction followed by an add instruction).

For more information refer to Chapter 5 of the MIPSPro 64-bit Porting and
Transition Guide.

6.3 Porting Code to 64-Bit Silicon Graphics Systems

This section covers porting code to 64-bit Silicon Graphics systems, including:

• Using Data Types

• Using Predefined Types

• Using Typedefs

• Maximum Memory Allocation

• Using Large Files with XFS

You can find additional information about porting to 64-bit Silicon Graphics
systems in the MIPSPro Application Porting and Transition Guide.

007–2360–008 133

MIPSproTM Compiling and Performance Tuning Guide

6.3.1 Using Data Types

Data types and sizes are listed in Table 8.

Table 8. Data Types and Sizes

Data Type (old) 32 Bit n32 Bit 64 Bit

char 8 8 8

short 16 16 16

int 32 32 32

long 32 32 64

long
long

64 (emulated with
32-bit integer
operations)

64 (native 64-bit
integer operations)

64

pointer 32 32 64

float 32 32 32

double 64 64 64

long
double

64 128 128

void 32 32 64

Note that in 64-bit mode, types long and int have different sizes and ranges;
a long always has the same size as a pointer. A pointer (or address) has
64-bit representation in 64-bit mode and 32-bit representation in 32-bit mode.
An int has a smaller range than a pointer in 64-bit mode. On 32-bit
compiles, the long double generates a warning message indicating that the
long qualifier is not supported.

Characteristics of integral types and floating point types are defined in the
standard files limits.h and float.h.

6.3.2 Using Predefined Types

The cc, CC, and as compiler drivers produce predefined macros listed in Table
9. These macros are used in sys/asm.h, sys/regdef.h, and
sys/fpregdef.h.

134 007–2360–008

Porting Code to N32 and 64-Bit Silicon Graphics Systems [6]

Table 9. Predefined Macros

32-Bit Executables 64-Bit Executables

-D_MIPS_FPSET=16 -D_MIPS_FPSET=32

-D_MIPS_ISA=_MIPS_ISA_MIPS1 -D_MIPS_ISA=_MIPS_ISA_MIPS3

-D_MIPS_SIM=_MIPS_SIM_ABI32 -D_MIPS_SIM=_MIPS_SIM_ABI64

-D_MIPS_SZINT=32 -D_MIPS_SZINT=32

-D_MIPS_SZLONG=32 -D_MIPS_SZLONG=64

-D_MIPS_SZPTR=32 -D_MIPS_SZPTR=64

_MIPS_FPSET describes the number of floating point registers. The 64-bit
compilation mode makes use of the extended floating point registers.

MIPS_ISA determines the MIPS Instruction Set Architecture. MIPS_ISA_MIPS1
and MIPS_ISA_MIPS3 are the defaults for 32 bits and 64 bits, respectively. For
example:

/* Define a parameter for the integer register size: */

#if (_MIPS_ISA == _MIPS_ISA_MIPS1 || _MIPS_ISA == _MIPS_ISA_MIPS2)

#define SZREG 4
#else

#define SZREG 8

#endif

MIPS_SIM determines the MIPS Subprogram Interface Model, which describes
the subroutine linkage convention and register naming/usage convention.

_MIPS_SZINT, _MIPS_SZLONG, and _MIPS_SZPTR define the size of types
int, long, and pointer, respectively.

The 64-bit MIPSPro compiler drivers generate 64-bit pointers and longs and
32-bit ints. Therefore, assembler code that uses either pointer or long types
must be converted to use double-word instructions for MIPS III code (-64),
and must continue to use word instructions for MIPS I and MIPS II code (-32).

Also, new subroutine linkage conventions and register naming conventions
exist. The compiler predefined macro _MIPS_SIM enables macros in
sys/asm.h and sys/regdef.h.

Eight argument registers exist: $4 through $11. Four additional argument
registers replace the temp registers in sys/regdef.h. These temp registers are

007–2360–008 135

MIPSproTM Compiling and Performance Tuning Guide

not lost, however, as the argument registers can serve also as scratch registers,
with certain constraints.

In the _MIPS_SIM_ABI64 model, registers t4 through t7 are not available, so
any code using these registers does not compile. Similarly, registers a4 through
a7 are not available under the _MIPS_SIM_ABI32 model.

If you are converting assembler code, the new registers ta0, ta1, ta2, and ta3
are available under both _MIPS_SIM models. These alias with registers t4
through t7 in 32-bit mode, and with registers a4 through a7 in 64-bit mode.

Note that the caller no longer has to reserve space for a called function in which
to store its arguments. The called routine allocates space for storing its
arguments on its own stack, if desired. The NARGSAVE macro in sys/asm.h
facilitates this.

6.3.3 Using Typedefs

This section describes typedefs that you can use to write portable code for a
range of target environments, including 32- and 64-bit workstations as well as
16- and 32-bit PCs. These typedefs are enabled by compiler-predefined macros
(listed in Table 9, page 135), and are in the file inttypes.h. (This discussion
applies to C, although the same macros are predefined by the C++ compiler.)

Portability problems exist because an int (32 bits) is no longer the same size as
a pointer (64 bits) and a long (64 bits) in 64-bit programs. Typedefs free
you from having to know the underlying compilation model or worry about
type sizes. In the future, if that model changes, the code should still work.

Typically, you want source code that you can compile either in 32- or 64-bit
mode. (In this discussion, 32-bit mode implies -mips1/2; 64-bit mode implies
-mips3/4.)

The following typedefs are defined in inttypes.h:

typedef signed char int8_t;

typedef unsigned char uint8_t;

typedef signed short int16_t;

typedef unsigned short uint16_t;

typedef signed int int32_t;

typedef unsigned int uint32_t;
typedef signed long long int int64_t;

typedef unsigned long long int uint64_t;

typedef signed long long int intmax_t;

typedef unsigned long long int uintmax_t;

136 007–2360–008

Porting Code to N32 and 64-Bit Silicon Graphics Systems [6]

typedef signed long int intptr_t;

typedef unsigned long int uintptr_t;

intmax_t and uintmax_t are guaranteed to be the largest integer type
supported by this implementation. Use them in code that must be able to deal
with any integer value. intptr_t and uintptr_t are guaranteed to be
exactly the size of a pointer.

6.3.4 Maximum Memory Allocation

The total memory allocation for a program, and individual arrays, can exceed 2
gigabytes (2 Gbytes, or 2,048 Mbytes).

Previous implementations of Fortran, C, and C++ limited the total program
size, as well as the size of any single array, to 2 GBytes. The current release
allows the total memory in use by the program to exceed 2 gigabytes.

6.3.4.1 Arrays Larger Than 2 Gigabytes

The IRIX 6.2 (MIPSPro 7.1) compilers (and above) support arrays that are larger
than 2 gigabytes for programs compiled under the -64 ABI. The arrays can be
local, global, and dynamically created as the following example demonstrates.
(Initializers are not provided for these arrays.) Large array support is limited to
Fortran, C, and C++.

6.3.4.2 Example of Arrays Larger Than 2 Gigabytes

The following code shows an example of arrays larger than 2 gigabytes.

#include <stdlib.h>

int i[0x100000008];

void foo()

{

int k[0x100000008];

k[0x100000007] = 9;
printf(‘‘%d \n’’, k[0x100000007]);

}

main()

{
char *j;

007–2360–008 137

MIPSproTM Compiling and Performance Tuning Guide

j = malloc(0x100000008);

i[0x100000007] = 7;
j[0x100000007] = 8;

printf(‘‘%d \n’’, i[0x100000007]);

printf(‘‘%d \n’’, j[0x100000007]);

foo();

}

You must run this program on a 64-bit operating system with IRIX version 6.2
(or higher). You can verify the system you have by typing uname -a. You
must have enough swap space to support the working set size and you must
have your shell limit datasize, stacksize, and vmemoryuse variables set to
values large enough to support the sizes of the arrays (see sh(1) man page).

The following example compiles and runs the above code after setting the
stacksize to a correct value:

% uname -a
IRIX64 cydrome 6.2 03131016 IP19

$cc -64 -mips3 a2.c

$limit

cputime unlimited

filesize unlimited

datasize unlimited
stacksize 65536 kbytes

coredumpsize unlimited

memoryuse 754544 kbytes

descriptors 200

vmemoryuse unlimited
$limit stacksize unlimited

$limit

cputime unlimited

filesize unlimited

datasize unlimited
stacksize unlimited

coredumpsize unlimited

memoryuse 754544 kbytes

descriptors 200

vmemoryuse unlimited

$a.out
7

8

9

138 007–2360–008

Porting Code to N32 and 64-Bit Silicon Graphics Systems [6]

6.3.5 Using Large Files with XFS

An application may create or encounter files greater than 2 gigabytes with the
XFS file system. If a program is doing sequential I/O and does not maintain
internal byte counters, files greater than 2 Gbytes will not encounter problems.

However, if an application uses internal byte counters, then modifications are
required. Table 10, page 139, lists potential problems and modifications
required to enable files greater than 2 Gbytes to run on XFS.

Table 10. Modifications for Applications on XFS

Application Modification

Uses an internal byte counter while
reading

Change to type long long

Uses certain system calls such as
lseek() and stat() that use 32-bit
off_t

Use lseek64(), stat64(), and so
forth

Relies on internal features of EFS
(such as reads the raw disk)

Rewrite the application (so it doesn’t
read the raw disk)

For more information about XFS, see Getting Started with XFS Filesystems.

007–2360–008 139

Index

32-bit mode
Also see n32, 129

64-bit mode
data types, 134

A

a.out files, 19
ABI specification, 6
address aliases, 67
address space, 54
addresses, optimization, 116
alias analysis, 67
aliasing

and pointer placement, 115
memory, 95
optimization, 115

align/fill pragmas, 84
analysis, dependence, 87
analyzer, parallel, 2, 3
ar command , 30
archive libraries, 33
archiver. See ar command, 30
argument registers, 135
arguments

store, 136
arrays

2 gigabyte, 137
as assembler, 20
assembly language programs

porting to n32, 132
assembly language programs, linking, 20

B

back substitution, 105
bit masks, 127

BLOCK data, 50
block padding, 65

restrictions, 65
blocking and permutation transformations, 79
branch elimination, 101
build procedure

n32, 132
byte counters

and file size, 139

C

C language
floating point, 88
precompiled headers, 12

C programs
optimization, 114

C++
language definitions, 12
precompiled headers, 12

C++ programs
optimization, 114

cache
conflicts and padding, 65
improving instruction performance, 111
misses, 75

cache parameters
controlling with lno, 77

CC compiler. See drivers, 2
char, 134
code

arithmetic, 125
assumptions, 123
conversion, 101
executed at startup, 97
hints, 123
overflow 32 bits, 125

007–2360–008 141

MIPSproTM Compiling and Performance Tuning Guide

portable, 126
porting to 64-bit system, 133
porting to n32-bit systems, 129
rarely executed, 97
shifts, 125
signed ints, 118
sizeof(int)==sizeof(long), 124
sizeof(int)==sizeof(void*), 124
sizeof(long)==4, 124
sizeof(void*)==4, 124
transformation, 101
typedefs, 136
view transformations, 68
writing for 64-bit applications, 123
zero-extension, 118

code generator, 98
Also see optimizing programs, 98
and optimization levels, 99, 100
back substitution, 105
branch elimination, 101
cross-iteration optimization, 102

read-read elimination, 102
read-write elimination, 103
sub-expression elimination, 103
write-write elimination, 103

–O0 option, 99
–O1 option, 99
–O2 option, 100
–O3 option, 100
feedback, 111
frequency of execution, 111
if conversion, 101
if conversion and floating points, 101
instruction-level parallelism, 101
latency, 110
loop unrolling, 103, 109
memory exceptions, 101
modify default, 109
prefetch, 110
R10000 optimization, 101
recurrence breaking, 105
software pipelining, 105, 109
steps at –O2 and –O3, 108

COFF, 8
common block padding, 65

restrictions, 65
Common object file format, 8
COMMON symbols, 50
compiler back end, 2
compiler drivers. See drivers<$nopa, 2
compiler front end, 2
compiler options. See drivers, 19
compiler system

components, 1
macros, 134
overview, 1
predefined types, 134

compiler.defaults file, 6
COMPILER_DEFAULTS_PATH environment

variable, 6
compiling with –Bsymbolic, 50
constant format strings, 127
constants, 125

negative values, 127
conversion of code, 101
copt optimizer, 2
cord command, 112
cording, 111
counters, internal byte, 139
cpp preprocessor, 2
cross-file inlining, 64
cross-iteration optimization, 102

read-read elimination, 102
read-write elimination, 103
sub-expression elimination, 103
write-write elimination, 103

D

data
prefetching, 75

data type
signed, 117

data types

142 007–2360–008

Index

sizes, 134
debugging

driver options, 26
floating points, 94

defaults
compilation modes, 5
specification file, 6

definition, 111
dependence analysis, 86
directives

LNO, 77
dis command, 26, 27
disassemble object file, 26
dlclose(), 54
dlerror(), 54
dlopen(), 53
dlsym(), 54
double, 134
drivers

as assembler, 20
bypassing, 2
CC compiler, 2
cc compiler, 2
defaults, 6, 19
–c option, 3
f77/90 compiler, 2
fec preprocessor, 3
file name suffixes, 10
input file suffixes, 10
-KPIC, 9
linking, 3
-non_shared, 9
omit linking, 3
optimizing programs, 89
options, 19, 26
-show option, 3
stages of compilation, 3

DSOs, 1, 8, 9, 33
building new dsos, , 43
converting libraries, 51
creating dsos, , 43
dlclose(), 54
dlerror(), 54

dlopen(), 53
dlsym(), 54
dynamic loading diagnostics, 54
exporting symbols, 45
guidelines, 37
hiding symbols, 45
libraries, shared, 37
linking, , 23
loading dynamically, 53
mmap() system call, 54
munmap() system call, 54
naming conventions, 43
QuickStart, 40
search path, 47
sgidladd(), 52
shared libraries, 37
starting quickly, 40
unloading dynamically, 54
versioning, 55

dump command. See elfdump, 27
DWARF symbolic information, 27
dwarfdump command, 26, 27
dynamic linking, 1, 8, 52
Dynamic shared objects. See DSOs, , 23

E

Elf object file, 27
ELF. See executable and linking format, 8
elfdump command, 26, 27

command syntax, 27
elimination

branches, 101
read-read, 102
read-write, 103
sub-expression, 103
write-write, 103

–Bsymbolic, compiling, 50
–c option, 3
–clist option, 68
–D_MIPS_FPSET, 135

007–2360–008 143

MIPSproTM Compiling and Performance Tuning Guide

–D_MIPS_ISA, 135
–D_MIPS_SIM, 135
–D_MIPS_SZINT, 135
–D_MIPS_SZLONG, 135
–D_MIPS_SZPTR, 135
–flist option, 68
–INLINE, 63

all option, 64
file option, 64
must option, 64
never option, 64
none option, 64

–IPA
addressing=ON option, 67
alias=ON option, 67

–OPT option
div_split option, 92
fold_reassociate option, 93
fold_unsafe_relops, 97
fold_unsigned_relops option, 97

environment variable
COMPILER_DEFAULTS_PATH, 6

environment variables
32-bit compilation, 7
64-bit compilation, 7
n32-bit compilation, 7

executable and linking format, 1, 8
executable files, 8
execution

controlling, 97
exporting symbols, 45
expressions

optimizing, 92
extension

sign, 125
zero, 125

F

f77/90 compiler, 2
fec preprocessor, 2

bypassing, 2

fecc preprocessor, 2
feedback

and code generator, 111
fef77/90 preprocessor, 2
fef77/90p analyzer, 3
fef77/90panalyzer, 2
file command, 27

command syntax, 28
options, 27

file inlining, 60
file type, determining, 27
files

2 gigabyte size, 139
compilation specification, 6
executable, 8
header, 10
include, 10
internal byte counters, 139
listing properties, 27
naming conventions, 10
precompiled header, 12
relocatable, 8
size, 139

fill/align pragmas, 84
fission

LNO, 78
loops, 73

float, 134
float.h include file, 134
floating points

debugging, 94
if conversion, 101
optimization, 88
optimizing, 93
reassociation, 93

format
object file, 1, 8

Fortran
floating point, 88
padding global arrays, 65
program optimization, 99

Fortran programs

144 007–2360–008

Index

optimization, 114
functions

implicitly declared, 125
fusion

LNO, 78
loop, 72

G

-g option, 26
gather-scatter, 76
global arrays

padding, 65
global offset table, 9
global optimizer, 114
GOT, 9
guidelines

porting, 131

H

header files, 10
multiple languages, , 12
portable, 126
precompiled, 12
specification, 11

high-order bit, 125

I

IEEE
floating points, 90
optimization, 90

if conversion, 101
if-then-else statements

optimization, 116
implicitly declared function, 125
include files, 10

float.h, 134
inttypes.h, 136

limits.h, 134
multiple languages, , 12
n32, 132
specification, 11

indirect
calls, using, 114

inliner
standalone, 64

inlining, 60
benefits, 63

input file names, 10
instruction

mips4 rsqrt, 93
prefetching, 75

instruction cache access
improving, 111

instruction-level parallelism, 101
int, 124, 134, 136
integer

overflow, 97
scaling, 126

integers
64-bit registers, 124

interleaving
reduction, 105

internal byte counters
and file size, 139

inttypes.h include file, 136
ISA specification, 6

K

-KPIC option, 9

L

latency
and code generator, 110

ld
and assembly language programs, 20

007–2360–008 145

MIPSproTM Compiling and Performance Tuning Guide

dynamic linking, 1, 8
–shared option, 43
example, 20
libraries, default search path, 21
libraries, specifying, 21
link editor, 2
multilanguage programs, 23

ld command
to reorder code, 112

LD_BIND_NOW, 50
lib.so functions

optimization, 117
libc, 52
libraries

archive, 33
global data, 38
header files, 10
libc, 52
locality, 38
non-shared, converting to dsos, 51
paging, 38
routines to exclude, 37
routines to include, 37
self-contained, 37
shared, 1, 8
shared, static, 9, 33
specifying, , 21
static data, 37
tuning, 38

limits.h include file, 134
linking

dynamic. See ld, 1, 8
omit, 3

linking. See ld, 23
LNO. See optimizing programs, –LNO option, 67
loader

runtime. See rld, 35
loading

symbols, 45
local variables

optimization, 114
long, 134, 136
long double, 134

long long, 134
loop interchange, 70
loop unrolling

code generator, 103
loop-nest optimization. See optimizing

programs, –LNO option, 67
loops

fission, 73
fusion, 72
interchanging, 70
parallel, 76

M

machine instructions, 26
macro preprocessors, 2
macros

NARGSAVE, 136
predefined, 134
typedefs, 136

makefiles, 132
maximum integer type, 137
memory

2 gigabyte arrays, 137
referencing, 95

memory allocation
arrays, 137

memory exceptions
if conversion, 101

MIPS instruction set architecture, 135
mips4 rsqrt instruction, 93
mmap() system call, 54
mode

32-bit, 5
64-bit, 5
n32-bit, 5

multilanguage programs
and ld, 23
header files, , 12

munmap() system call, 54

146 007–2360–008

Index

N

n32, 132
assembly language programs, 132
build procedure, 132
include files, 132
libraries, 132, 129
porting environment, 132
porting guidelines, 131
runtime issues, 133
source code changes, 132

n32-bit mode, 5
naming source files, 10
NARGSAVE macro, 136
negative values

problems, 127
nm command, 27, 28

command syntax, 28
example, 28
example of undefined symbol, 26
undefined symbol, 26

O

object file information
disassemble, 26
format, 1, 8
listing file properties, 27
listing section sizes, , 27, 29
symbol table information, , 27, 28
tools, 26
using, 26
using dwarfdump, 26
using elfdump, 27

operating system
64 bit, 123

operations
relational, 97
unsigned relational, 97

optimization, 59
addresses, 116
Also see optimizing programs, 67

C programs, 114
C++ programs, 114
Fortran, 114
function return values, 114
global, 114
if-then-else statements, 116
libc.so functions, 117
pointer placement, 115
signed data types, 117
STDARG, 116
stdarg.h, 116
switch statements, 116
tables, 116
tips for improving, 114
unions, 114
value parameters, 115
VARARG, 116
varargs.h, 116
variables, global vs. local, 114

optimizer, 2
copt optimizer, 2

optimizing programs
alias analysis, 67
Also see code generator, , 98
benefits, 60
cache, 75
code generator, 98

overview, , 98
common block padding, 65

restrictions, 65
debugging, 60
dependence analysis, 86
–INLINE, 63
–LNO option, 67

blocking, 71
code transformation, 68
controlling cache parameters, 77
directives, 77
fission, 78
fusion, 78
gather-scatter, 76
loop fission, 73

007–2360–008 147

MIPSproTM Compiling and Performance Tuning Guide

loop fusion, 72
loop interchange, 70
outer loop unrolling, 71
pragmas, 77
prefetching, 75
running LNO, 68

–OPT option, 89
alias=any option, 96
alias=disjoint option, 96
alias=name option, 95
alias=restrict option, 96
alias=typed option, 96
alias=unnamed option, 96
div_split option, 92
fast_complex option, 92
fast_exp option, 92
fast_io option, 92
fast_sqrt option, 93
fold_reassociate option, 93
fold_unsafe_relops, 97
fold_unsigned_relops, 97
IEEE option, 89
IEEE_arithmetic option, 90
recip option, 93
roundoff option, 89
rsqrt option, 93

–TARG option
madd option, 94

execution frequency, 97
fill/align pragmas, 84
floating points, 88
Fortran optimization, 99
IEEE floating points, 90
inlining benefits, 63
interprocedural analysis, 60
pragmas, mips_frequency_hint, 97
prefetch pragmas, 83
reordering code, 111
transformation pragmas, 79
transformations, 89

overflow
integer, 97
integers, 97

overflow of code, 125

P

padding, blocks, 65
restrictions, 65

page faults
improving performance, 111

page size, 38
paging

alignment, 38
parallel analyzer, 2, 3
parallel loops, 76
parameters

optimization, 115
pc compiler. See drivers, 2
pca analyzer, 2, 3
PIC. See position-independent code, 1, 8, 43
pixie

and SpeedShop, 121
pointer, 124, 134, 136
pointer placement

and aliasing, 115
example, 115

pointers
referencing memory, 95

porting code, 133
porting guidelines, 131
position-independent code, 1, 8, 9, 43
pragmas

LNO, 77
mips_frequency_hint, 97

precompiled header files, 12
automatic, 13
controlling, 17
deletion, 16
performance, 17
requirements, 14
reuse, 15

prefetch
and code generator, 110

148 007–2360–008

Index

prefetch pragmas, 83
prefetching instructions, 75
preprocessing, 2
preprocessors

macro, 2
printf command, 127
problems, 124

constants, 125
floating points, 94
implicitly declared functions, 125
negative values, 127
porting code, 123
printf, 127
scanf, 127
sizeof(int)==sizeof(long), 124
sizeof(int)==sizeof(void*), 124
sizeof(long)==4, 124
solving, 126
types, 123

processor specification, 6
prof

and SpeedShop, 121

Q

QuickStart DSOs. See DSOs, QuickStart, 40, 43

R

read-read elimination, 102
read-write elimination, 103
recurrence breaking

back substitution, 105
code generator, 105
reduction interleaving, 105

reduction interleaving, 105
registers

64-bit, 123
argument, 135
blocking, 71
temp, 135

relational operations
unsigned, 97

relational operators
integer overflow, 97

relocatable files, 8
relocation bits, removing, 27
remove

relocation bits, 27
symbol table, 27

reordering code, 111
with sswsextr, 112

resolve text symbols, 50
return values, optimization, 114
rld, 35

dynamic linking, 52
libc, 52
search path, 47

roundoff
floating points, 89
optimization, 89

rsqrt instruction, 93
RTLD_GLOBAL, 53
RTLD_LAZY, 53
RTLD_LOCAL, 53
RTLD_NOW, 53
runtime issues

n32, 133
runtime linker. See rld, 35

S

scalar optimizer, copt, 2
scalar variables

word size, 117
scanf function, 127
search path

rld, 47
selecting

compilation mode, 5
instruction set, 5
ISA, 5

007–2360–008 149

MIPSproTM Compiling and Performance Tuning Guide

processor, 5
sgidladd(), 52
shared libraries, static, 33
shared library, 1, 8
shared objects, dynamic, 33
short, 134
-show_defaults option, 6
-showoption, 3
sign bit set, 125
sign extension, 124, 125
signed data type

optimization, 117
signed ints

64-bit code, 118
64-bit registers, 123

size command, , 27, 29
command syntax, 29
example, 29

size of object file, 27
sizeof(int)==sizeof(long), 124
sizeof(int)==sizeof(void*), 124
sizeof(long)==4, 124
sizeof(void*)==4, 124
software pipelining

and code generator, 105
source code

n32, 132
source file names, 10
specifying compilation mode, 6
SpeedShop, 121

pixie command, 121
prof command, 121
ssrun command, 121

sscord command
to reorder code, 112, 113

ssorder command
to reorder code, 112, 113

ssrun command
to reorder code, 112, 113

sswsextr command
to reorder code, 112, 113

standalone inliner, 64
STDARG. See optimization , 116

stdarg.h, 116
stdio.h header file, 11
storing arguments, 136
strings

printf, 127
scanf, 127

strip command, 27, 30
sub-expression elimination, 103
suffixes

input files, 10
switch statements

optimization, 116
symbol resolution, 50
symbol table

data, 27
get listing, 28
removing, 27

symbols
exporting, 45
fill, align, 84
loading, 45

T

temp registers, 135
TLB misses

improving performance, 111
transformation

of code, 101
transformation pragmas, 79
transformations

view code, 68
troubleshooting

constants, 125
implicitly declared functions, 125
negative values, 127
printf, 127
scanf, 127
sizeof(int)==sizeof(long), 124
sizeof(int)==sizeof(void*), 124
sizeof(long)==4, 124

150 007–2360–008

Index

sizeof(void*)==4, 125
solving problems, 126

truncation of code, 125
type, determining for files, 27
typedefs, 127, 136
types

assumptions, 123
change in size, 125
char, 134
constants, 125
double, 134
float, 134
int, 124, 134, 136
largest integer type, 137
long, 134, 136
long double, 134
long long, 134
pointer, 124, 134, 136
problems, 123
scaling integer, 126
short, 134
sizes, 134

U

unions
optimization, 114

unrolling loops, 71, 81, 103, 109
unsigned ints

32-bit, 123

unsigned relational operations, 97

V

VARARG. See optimization, 116
varargs.h, 116
variables

scalar, 117
virtual address space, 54

W

word-size scalar variables, 117
working set

list file, 112
write-write elimination, 103

X

XFS
file size, 139

Z

zero extension, 125
zero-extension code, 118

007–2360–008 151

