
MIPSpro™ Fortran 77
Programmer’s Guide

Document Number 007-2361-002

MIPSpro™ Fortran 77 Programmer’s Guide
Document Number 007-2361-002

CONTRIBUTORS
Written by Chris Hogue
Edited by Christina Carey
Illustrated by Gloria Ackley
Production by Julia Lin
Engineering contributions by Bill Johnson, Bron Nelson, Calvin Vu, Marty Itzkowitz,

Dick Lee

© Copyright 1994 Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights are reserved under the Copyright Laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline
Blvd., Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks, and CASEVision,
CHALLENGE, Crimson, Indigo2, IRIS 4D, IRIX, MIPSpro, and POWER
CHALLENGE are trademarks of Silicon Graphics, Inc. UNIX is a registered
trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd. VMS and VAX are trademarks of Digital Equipment
Corporation.

Portions of this product and document are derived from material copyrighted by
Kuck and Associates, Inc.

iii

Contents

Examples ix
Figures xi
Tables xiii
Introduction xv
Organization xv
Additional Reading xvi
Typographical Conventions xvii

1. Compiling, Linking, and Running Programs 1
Compiling and Linking 2

Drivers 2
Compilation 2
Compiling Multilanguage Programs 4
Linking Objects 5
Specifying Link Libraries 7

Driver Options 7
Compiling Simple Programs 8
Specifying Source File Format 8
Specifying Compiler Input and Output Files 9
Specifying Target Machine Features 10
Specifying Memory Allocation and Alignment 10
Specifying Debugging and Profiling 11
Specifying Optimization Levels 11
Controlling Compiler Execution 14

Object File Tools 14
Archiver 15

iv

:

Run-Time Considerations 15
Invoking a Program 15
Maximum Memory Allocations 16
File Formats 17
Preconnected Files 18
File Positions 18
Unknown File Status 19
Quad-Precision Operations 19
Run-Time Error Handling 19
Floating Point Exceptions 20

2. Storage Mapping 21
Alignment, Size, and Value Ranges 22
Access of Misaligned Data 25

Accessing Small Amounts of Misaligned Data 26
Accessing Misaligned Data Without Modifying Source 26

3. Fortran Program Interfaces 27
How Fortran Treats Subprogram Names 28

Working with Mixed-Case Names 28
Preventing a Suffix Underscore with $ 29
Naming Fortran Subprograms from C 29
Naming C Functions from Fortran 29
Testing Name Spelling Using nm 30

Correspondence of Fortran and C Data Types 30
Corresponding Scalar Types 30
Corresponding Character Types 32
Corresponding Array Elements 32

How Fortran Passes Subprogram Parameters 33
Normal Treatment of Parameters 34

Calling Fortran from C 35
Calling Fortran Subroutines from C 35
Calling Fortran Functions from C 38

v

Calling C from Fortran 40
Normal Calls to C Functions 41
Using Fortran COMMON in C Code 43
Using Fortran Arrays in C Code 44
Calls to C Using LOC%, REF% and VAL% 45
Making C Wrappers with mkf2c 48
Using mkf2c and extcentry 52
Makefile Considerations 53

4. System Functions and Subroutines 55
Library Functions 55
Extended Intrinsic Subroutines 63

DATE 64
IDATE 64
ERRSNS 64
EXIT 65
TIME 65
MVBITS 66

Extended Intrinsic Functions 67
SECNDS 67
RAN 67

5. Scalar Optimizations 69
Overview 69
Performing General Optimizations 71

Enabling Loop Fusion 71
Controlling Global Assumptions 71
Setting Invariant IF Floating Limits 72
Setting the Optimization Level 74
Controlling Variations in Round Off 76
Controlling Scalar Optimizations 78
Using Vector Intrinsics 79

vi

:

Performing Advanced Optimizations 82
Using Aggressive Optimization 82
Controlling Internal Table Size 83
Performing Memory Management Transformations 84
Enabling Loop Unrolling 86
Recognizing Directives 88
Specifying Recursion 89

6. Inlining and Interprocedural Analysis 91
Overview 91
Using Command Line Options 92

Specifying Routines for Inlining or IPA 93
Specifying Occurrences for Inlining and IPA 94
Specifying Where to Search for Routines 97
Creating Libraries 98

Conditions That Prevent Inlining and IPA 100

7. Fortran Enhancements for Multiprocessors 103
Overview 104
Parallel Loops 104
Writing Parallel Fortran 105

C$DOACROSS 106
C$& 112
C$ 112
C$MP_SCHEDTYPE and C$CHUNK 113
Nesting C$DOACROSS 113

Analyzing Data Dependencies for Multiprocessing 114
Breaking Data Dependencies 120
Work Quantum 126
Cache Effects 128

Performing a Matrix Multiply 129
Understanding Trade-Offs 129
Load Balancing 131

vii

Advanced Features 133
mp_block and mp_unblock 133
mp_setup, mp_create, and mp_destroy 134
mp_blocktime 134
mp_numthreads, mp_set_numthreads 135
mp_my_threadnum 135
Environment Variables: MP_SET_NUMTHREADS, MP_BLOCKTIME,
MP_SETUP 136
Environment Variables: MP_SUGNUMTHD,
MP_SUGNUMTHD_VERBOSE, MP_SUGNUMTHD_MIN,
MP_SUGNUMTHD_MAX 137
Environment Variables: MP_SCHEDTYPE, CHUNK 138
mp_setlock, mp_unsetlock, mp_barrier 138
Local COMMON Blocks 138
Compatibility With sproc 139

DOACROSS Implementation 140
Loop Transformation 140
Executing Spooled Routines 142

PCF Directives 143
Parallel Region 145
PCF Constructs 146
Restrictions 157
A Few Words About Efficiency 158

8. Compiling and Debugging Parallel Fortran 159
Compiling and Running 159

Using the –static Option 160
Examples of Compiling 160

Profiling a Parallel Fortran Program 161
Debugging Parallel Fortran 162

General Debugging Hints 162

viii

:

9. Fine-Tuning Program Execution 165
Overview 166

Directives 166
Assertions 168

Fine-Tuning Scalar Optimizations 170
Controlling Internal Table Size 170
Setting Invariant IF Floating Limits 170
Optimization Level 172
Variations in Round Off 173
Controlling Scalar Optimizations 174
Enabling Loop Unrolling 174

Fine-Tuning Inlining and IPA 175
Using Equivalenced Variables 176
Using Assertions 176
Using Aliasing 177

C*$* ASSERT [NO] ARGUMENT ALIASING 177
C*$* ASSERT RELATION 178

Fine-Tuning Global Assumptions 179
C*$* ASSERT [NO]BOUNDS VIOLATIONS 179
C*$* ASSERT NO EQUIVALENCE HAZARD 180
C*$* ASSERT [NO] TEMPORARIES FOR CONSTANT
ARGUMENTS 181

Ignoring Data Dependencies 182

A. Run-Time Error Messages 183

Index 191

ix

Examples

Example 3-1 Example Subroutine Call 34
Example 3-2 Example Function Call 34
Example 3-3 Example Fortran Subroutine with COMPLEX

Parameters 36
Example 3-4 C Declaration and Call with COMPLEX Parameters 36
Example 3-5 Example Fortran Subroutine with String Parameters 36
Example 3-6 C Program that Passes String Parameters 37
Example 3-7 C Program that Passes Different String Lengths 37
Example 3-8 Fortran Function Returning COMPLEX*16 38
Example 3-9 C Program that Receives COMPLEX Return Value 39
Example 3-10 Fortran Function Returning CHARACTER*16 39
Example 3-11 C Program that Receives CHARACTER*16 Return 40
Example 3-12 C Function Written to be Called from Fortran 41
Example 3-13 Common Block Usage in Fortran and C 43
Example 3-14 Fortran Program Sharing an Array in Common with C 44
Example 3-15 C Subroutine to Modify a Common Array 44
Example 3-16 Fortran Function Calls Using %VAL 46
Example 3-17 Fortran Call to gmatch() Using %REF 47
Example 3-18 Fortran Call to gmatch() Using %VAL(%LOC()) 48
Example 3-19 C Function Using varargs 51
Example 3-20 C Code to Retrieve Hidden Parameters 51
Example 3-21 Source File for Use with extcentry 52

xi

Figures

Figure 1-1 Compilation Process 3
Figure 1-2 Compiling Multilanguage Programs 5
Figure 1-3 Linking 6
Figure 3-1 Correspondence Between Fortran and C Array

Subscripts 33

xiii

Tables

Table 1-1 Link Libraries 6
Table 1-2 Compile Options for Source File Format 8
Table 1-3 Compile Options that Select Files 9
Table 1-4 Compile Options for Target Machine Features 10
Table 1-5 Compile Options for Memory Allocation and

 Alignment 10
Table 1-6 Compile Options for Debugging and Profiling 11
Table 1-7 Compile Options for Optimization Control 12
Table 1-8 Power Fortran Defaults for Optimization Levels 13
Table 1-9 Compile Options for Compiler Phase Control 14
Table 1-10 Preconnected Files 18
Table 2-1 Size, Alignment, and Value Ranges of Data Types 22
Table 2-2 Valid Ranges for REAL*4 and REAL*8 Data Types 23
Table 2-3 Valid Ranges for REAL*16 Data Type 23
Table 3-1 Corresponding Fortran and C Data Types 31
Table 3-2 How mkf2c treats Function Arguments 49
Table 4-1 Summary of System Interface Library Routines 56
Table 4-2 Overview of System Subroutines 63
Table 4-3 Information Returned by ERRSNS 65
Table 4-4 Arguments to MVBITS 66
Table 4-5 Function Extensions 67
Table 5-1 Optimization Options 70
Table 5-2 Vector Intrinsic Function Names 82
Table 5-3 Recommended Cache Option Settings 85

xiv

Table 6-1 Inlining and IPA Options 92
Table 6-2 Inlining and IPA Search Command Line Options 97
Table 6-3 Filename Extensions 97
Table 7-1 Summary of PCF Directives 144
Table 9-1 Directives Summary 167
Table 9-2 Assertions and Their Duration 168
Table A-1 Run-Time Error Messages 184

xv

Introduction

This manual provides information on implementing Fortran 77 programs
using the MIPSpro™ Fortran 77 compiler on IRIX™ 6.0.1 Power
CHALLENGE, Power CHALLENGE Array, and Power Indigo systems. This
implementation of Fortran 77 contains full American National Standards
Institute (ANSI) Programming Language Fortran (X3.9–1978). Extensions
provide full VMS Fortran compatibility to the extent possible without the
VMS operating system or VAX data representation. This implementation of
Fortran 77 also contains extensions that provide partial compatibility with
programs written in SVS Fortran.

Organization

This manual contains the following chapters and appendix:

• Chapter 1, “Compiling, Linking, and Running Programs,” gives an
overview of components of the compiler system, and describes how to
compile, link, and execute a Fortran program. It also describes special
considerations for programs running on IRIX systems, such as file
format and error handling.

• Chapter 2, “Storage Mapping,” describes how the Fortran compiler
implements size and value ranges for various data types and how they
are mapped to storage. It also describes how to access misaligned data.

• Chapter 3, “Fortran Program Interfaces,” provides reference and guide
information on writing programs in Fortran and C that can
communicate with each other. It also describes the process of
generating wrappers for C routines called by Fortran.

• Chapter 4, “System Functions and Subroutines,” describes functions
and subroutines that can be used with a program to communicate with
the IRIX operating system.

xvi

Introduction

• Chapter 5, “Scalar Optimizations,” describes the scalar optimizations
you can enable from the command line.

• Chapter 6, “Inlining and Interprocedural Analysis,” explains how to
perform inlining and interprocedural analysis by specifying options to
the compiler.

• Chapter 7, “Fortran Enhancements for Multiprocessors,” describes
programming directives for running Fortran programs in a
multiprocessor mode.

• Chapter 8, “Compiling and Debugging Parallel Fortran,” describes and
illustrates compilation and debugging techniques for running Fortran
programs in a multiprocessor mode.

• Chapter 9, “Fine-Tuning Program Execution,” describes how to
fine-tune program exection by specifying assertions and directives in
your source program.

• Appendix A, “Run-Time Error Messages,” lists the error messages that
can be generated during program execution.

Additional Reading

Refer to the MIPSpro Fortran 77 Language Reference Manual for a description
of the Fortran 77 language as implemented on Silicon Graphics systems.

Refer to the MIPS Compiling and Performance Tuning Guide for information on
the following topics:

• an overview of the compiler system

• improving program performance by using the profiling and
optimization facilities of the compiler system

• general discussion of performance tuning

• the dump utilities, archiver, debugger, and other tools used to maintain
Fortran programs

Refer to the MIPSpro Porting and Transition Guide for information on:

• an overview of the 64-bit compiler system

• language implementation differences

Typographical Conventions

xvii

• porting source code to the 64-bit system

• compilation and run-time issues

For information on interfaces to programs written in assembly language,
refer to the MIPSpro Assembly Language Programmer's Guide.

Refer to the CASEVision™/WorkShop Pro MPF User’s Guide for information
about using WorkShop Pro MPF.

Typographical Conventions

The following conventions and symbols are used in the text to describe the
form of Fortran statements:

Bold Indicates literal command line options, filenames,
keywords, function/subroutine names, pathnames, and
directory names.

Italics Represents user-defined values. Replace the item in italics
with a legal value. Italics are also used for command names,
manual page names, and manual titles.

Courier Indicates command syntax, program listings, computer
output, and error messages.

Courier bold

Indicates user input.

[] Enclose optional command arguments.

() Surround arguments or are empty if the function has no
arguments following function/subroutine names.
Surround manual page section in which the command is
described following IRIX commands.

{} Enclose two or more items from which you must specify
exactly one.

| Separates two or more optional items.

... Indicates that the preceding optional items can appear more
than once in succession.

xviii

Introduction

IRIX shell prompt for the superuser.

% IRIX shell prompt for users other than the superuser.

Here are two examples illustrating the syntax conventions.

DIMENSION a(d) [, a(d)] …

indicates that the Fortran keyword DIMENSION must be written as shown,
that the user-defined entity a(d) is required, and that one or more of a(d) can
be optionally specified. Note that the pair of parentheses () enclosing d is
required.

{STATIC | AUTOMATIC} v [, v] …

indicates that either the STATIC or AUTOMATIC keyword must be written
as shown, that the user-defined entity v is required, and that one or more of
v items can be optionally specified.

 1

Chapter 1

1. Compiling, Linking, and Running Programs

This chapter contains the following major sections:

• “Compiling and Linking” describes the compilation environment and
how to compile and link Fortran programs. This section also contains
examples that show how to create separate linkable objects written in
Fortran, C, or other languages supported by the compiler system and
how to link them into an executable object program.

• “Driver Options” gives an overview of debugging, profiling,
optimizing, and other options provided with the Fortran f77 driver.

• “Object File Tools” briefly summarizes the capabilities of the dump, dis,
nm, file, size and strip programs that provide listing and other
information on object files.

• “Archiver” summarizes the functions of the ar program that maintains
archive libraries.

• “Run-Time Considerations” describes how to invoke a Fortran
program, how the operating system treats files, and how to handle
run-time errors.

Also refer to the Fortran Release Notes for a list of compiler enhancements,
possible compiler errors, and instructions on how to circumvent them.

2

Chapter 1: Compiling, Linking, and Running Programs

Compiling and Linking

Drivers

Programs called drivers invoke the major components of the compiler
system: the C preprocessor, the Fortran compiler, the optimizing code
generator, and the linker. The f77 command runs the driver that causes your
programs to be compiled, optimized, assembled, and linked.

The format of the f77 driver command is as follows:

f77 [option] … filename [option]

where

f77 invokes the various processing phases that compile,
optimize, assemble, and link the program.

option represents the driver options through which you provide
instructions to the processing phases. They can be
anywhere in the command line. These options are discussed
later in this chapter.

filename is the name of the file that contains the Fortran source
statements. The filename must always have the suffix .f, .F,
.for, .FOR, or .i. For example, myprog.f.

Compilation

The driver command f77 can both compile and link a source module.
Figure 1-1 shows the primary drivers phases. It also shows their principal
inputs and outputs for the source modules more.f.

Compiling and Linking

 3

Figure 1-1 Compilation Process

Note the following:

• The source file ends with the required suffixes .f, .F, .for, .FOR, or .i.

• The source file is passed through the C preprocessor, cpp, by default. cpp
does not recognize Hollerith strings and may interpret a character
sequence in a Holleritch string that looks like a C-style comment or a
macro as a C-style comment or macro. The –nocpp option prevents this
misinterpretation. (See the –nocpp option in “Driver Options” on page
7 for details.) In the example

% f77 myprog.f –nocpp

the file myprog.f will not be preprocessed by cpp.

• The driver produces a linkable object file when you specify the –c
driver option. This file has the same name as the source file, except with
the suffix .o. For example, the command line

% f77 more.f -c

produces the more.o file in the above example.

cpp

Fortran Front End

Optimizing

Linker

more.f

more.o

a.out

Code Generator

4

Chapter 1: Compiling, Linking, and Running Programs

• The default name of the executable object file is a.out. For example, the
command line

% f77 myprog.f

produces the executable object a.out.

• You can specify a name other than a.out for the executable object by
using the driver option –o name, where name is the name of the
executable object. For example, the command line

% f77 myprog.o -o myprog

links the object module myprog.o and produces an executable object
named myprog.

• The command line

% f77 myprog.f -o myprog

compiles and links the source module myprog.f and produces an
executable object named myprog.

Compiling Multilanguage Programs

The compiler system provides drivers for other languages, including C and
C++. If one of these drivers is installed in your system, you can compile and
link your Fortran programs to the language supported by the driver. (See the
MIPS Compiling and Performance Tuning Guide for a list of available drivers
and the commands that invoke them; refer to Chapter 3, “Fortran Program
Interfaces,” in this manual for conventions you must follow when writing
Fortran program interfaces to C programs.)

When your application has two or more source programs written in different
languages, you should compile each program module separately with the
appropriate driver and then link them in a separate step. Create objects
suitable for linking by specifying the –c option, which stops the driver
immediately after the assembler phase. For example,

% cc -c main.c

% f77 -c rest.f

The two command lines shown above produce linkable objects named
main.o and rest.o, as illustrated in Figure 1-2.

Compiling and Linking

 5

Figure 1-2 Compiling Multilanguage Programs

Linking Objects

You can use the f77 driver command to link separate objects into one
executable program when any one of the objects is compiled from a Fortran
source. The driver recognizes the .o suffix as the name of a file containing
object code suitable for linking and immediately invokes the linker. The
following command links the object created in the last example:

% f77 -o myprog main.o rest.o

You can also use the cc driver command, as shown below:

% cc -o myprog main.o rest.o -lftn -lm

C Preprocessor

main.c

main.o

rest.f

rest.o

Code Generator

Code Generator Fortran Front End

C Front End
C Preprocessor

6

Chapter 1: Compiling, Linking, and Running Programs

Figure 1-3 shows the flow of control for this link.

Figure 1-3 Linking

Both f77 and cc use the C link library by default. However, the cc driver
command does not know the names of the link libraries required by the
Fortran objects; therefore, you must specify them explicitly to the linker
using the –l option as shown in the example. The characters following –l are
shorthand for link library files, as shown in Table 1-1.

See the section called “FILES” in the f77(1) manual page for a complete list
of the files used by the Fortran driver. Also refer to the ld(1) manual page for
information on specifying the –l option.

Table 1-1 Link Libraries

–l Link Library Contents

ftn /usr/lib64/nonshared/libftn.a Intrinsic function, I/O, multiprocessing,
IRIX interface, and indexed sequential
access method library for nonshared
linking and compiling

ftn /usr/lib64/libftn.so Same as above, except for shared linking
and compiling (this is the default library)

m /usr/lib64/libm.so Mathematics library

All

main.o rest.o

C Fortran

Linker

Driver Options

 7

Specifying Link Libraries

You may need to specify libraries when you use IRIX system packages that
are not part of a particular language. Most of the manual pages for these
packages list the required libraries. For example, the getwd(3B) subroutine
requires the BSD compatibility library libbsd.a. Specify this library as follows:

% f77 main.o more.o rest.o -lbsd

To specify a library created with the archiver, type in the pathname of the
library as shown below.

% f77 main.o more.o rest.o libfft.a

Note: The linker searches libraries in the order you specify. Therefore, if you
have a library (for example, libfft.a) that uses data or procedures from –lm,
you must specify libfft.a first.

Driver Options

This section contains an overview of the Fortran–specific driver options.
The f77(1) reference page has a complete description of the compiler options.
This discussion only covers the relationships between some of the options,
so as to help you make sense of the many options in the reference page. For
for information you can review:

• The MIPS Compiling and Performance Tuning Guide for a discussion of the
compiler options that are common to all MIPSpro compilers.

• The fopt(1) reference page for options related to the scalar optimizer.

• The pfa(1) reference page for options related to the parallel optimizer.

• The ld(1) reference page for a description of the linker options.

Tip: The command f77 -help lists all compiler options for quick reference.
Use the -show option to have the compiler document each phase of
execution, showing the exact default and nondefault options passed to each.

8

Chapter 1: Compiling, Linking, and Running Programs

Compiling Simple Programs

You need only a very few compiler options when you are compiling a simple
program. Examples of simple programs include

• Test cases used to explore algorithms or Fortran language features

• Programs that are principally interactive

• Programs whose performance is limited by disk I/O

• Programs you will execute under a debugger

In these cases you need only specify -g for debugging, the target machine
architecture, and the word-length. For example, to compile a single source
file to execute under dbx on a Power Challenge XL, you could use the
following commands.

f77 -g -mips4 -64 -o testcase testcase.f
dbx testcase

However, a program compiled in this way will take little advantage of the
performance features of the machine. In particular, its speed when doing
heavy floating-point calculations will be far slower than the machine is
capable of. For simple programs, that is not important.

Specifying Source File Format

The options summarized in Table 1-2 tell the compiler how to treat the
program source file.

Table 1-2 Compile Options for Source File Format

Options Purpose

-ansi Report any nonstandard usages.

-backslash Treat \ in character literals as a character, not as
the first character of an escape sequence.

-col72, -col120, -extend_source,
-noextend_source

Specify margin columns of source lines.

Driver Options

 9

Specifying Compiler Input and Output Files

The options summarized in Table 1-3 tell the compiler what output files to
generate.

-d_lines Compile lines with D in column 1.

-Dname, -Dname=def, -Uname Define, undefine names to the C preprocessor.

Table 1-3 Compile Options that Select Files

Options Purpose

-c Generate a single object file for each input file; do not
link.

-E Run only the macro preprocessor and write its output to
standard output.

-I, -Idir, -nostdinc Specify location of include files.

-listing Request a listing file.

-MDupdate Request Makefile dependency output data.

-o Specify name of output file.

-S Specify only assembly-language source output.

Table 1-2 (continued) Compile Options for Source File Format

Options Purpose

10

Chapter 1: Compiling, Linking, and Running Programs

Specifying Target Machine Features

The options summarized in Table 1-4 are used to specify the characteristics
of the machine where the compiled program will be used.

Specifying Memory Allocation and Alignment

The options summarized in Table 1-5 tell the compiler how to allocate
memory and how to align variables in it. These options can have a strong
effect on both program size and program speed.

Table 1-4 Compile Options for Target Machine Features

Options Purpose

-32, -64 Whether target machine runs 64-bit mode (the usual) or
32-bit mode. The -64 option is allowed only with the -mips3
and -mips4 architecture options.

-mips3, -mips4 The instruction architure available in the target machine: use
-mips3 for MIPS R4x00 machines in 64-bit mode; use -mips4
for MIPS R8000 and R10000 machines.

-TARG:option,... Specify certain details of the target CPU. Most of these
options have correct default values based on the preceding
options.

-TENV:option,... Specify certain details of the software environment in which
the source module will execute. Most of these options have
correct default values based on other, more general values.

Table 1-5 Compile Options for Memory Allocation and Alignment

Options Purpose

-align8, -align16,
-align32, -align64

Align all variables size n on n-byte address boundaries.

-d8, -d16 Specify the size of DOUBLE and DOUBLE COMPLEX
variables.

-i2, -i4, -i8 Specify the size of INTEGER and LOGICAL variables.

-r4, -r8 Specify the size of REAL and COMPLEX variables.

Driver Options

 11

Specifying Debugging and Profiling

The options summarized in Table 1-6 direct the compiler to include more or
less extra information in the object file for debugging or profiling.

For more information on debugging and profiling, see the manuals listed in
the preface.

Specifying Optimization Levels

The MIPSpro Fortran 77 compiler contains three optimizer phases. One is
part of the compiler “back end”; that is, it operates on the generated code,
after all syntax analysis and source transformations are complete. The use of
this standard optimizer, which is common to all MIPSpro compilers, is
discussed in the MIPS Compiling and Performance Tuning Guide.

In addition, MIPSpro Fortran 77 contains two phases of accelerators, one for
scalar optimization and one for parallel array optimization. These operate
during the initial phases of the compilation, transforming the source
statements before they are compiled to machine language. The options of the
scalar optimizer are detailed in the fopt(1) reference page. The options of the
parallel optimizer are detailed in the pfa(1) reference page.

-static Allocate all local variables statically, not dynamically on
the stack.

-Gsize, -xgot Specify use of the global option table.

Table 1-6 Compile Options for Debugging and Profiling

Options Purpose

-g0, -g2, -g3, -g Leave more or less symbol-table information in the
object file for use with dbx or Workshop Pro cvd.

-p Cause profiling to be enabled when the program is
loaded.

Table 1-5 (continued) Compile Options for Memory Allocation and Alignment

Options Purpose

12

Chapter 1: Compiling, Linking, and Running Programs

Note: The reason these optimizer phases are documented in separate
reference pages is that, when compiling for 32-bit machines, these phases
use a separate product, the Power Fortran Accelerator, which has been
integrated into the MIPSpro Fortran 77 compiler.

The options summarized in Table 1-7 are used to communicate to the
different optimization phases.

Table 1-7 Compile Options for Optimization Control

Options Purpose

-O, -O0, -O1,
-O2, -O3

Select basic level of optimization, setting defaults for all
optimization phases.

-GCM:option,... Specify details of global code motion performed by the
back-end optimizer.

-OPT:option,... Specify miscellaneous details of optimization.

-SWP:option,... Specify details of pipelining done by back-end
optimizer.

-sopt[,option,...] Request execution of the scalar optimizer, and pass
options to it.

-pfa Request execution of the parallel source-to-source
optimizer.

-WK,option,... Pass options to either phase of Power Fortran.

Driver Options

 13

When you use -O to specify the optimization level, the compiler assumes
default options for the accelerator phases. These defaults are listed in
Table 1-8. Remember, to see all options that are passed to a compiler phase,
use the -show option.

In addition to optimizing options, the compiler system provides other
options that can improve the performance of your programs:

• Two linker options, –G and –bestG, control the size of the global data
area, which can produce significant performance improvements. See
Chapter 2 of the Compiling, Debugging, and Performance Tuning Guide
and the ld(1) reference page for more information.

• The –jmpopt option permits the linker to fill certain instruction delay
slots not filled by the compiler front end. This option can improve the
performance of smaller programs not requiring extremely large blocks
of virtual memory. See the ld(1) reference page for more information.

Table 1-8 Power Fortran Defaults for Optimization Levels

Optimization Level Power Fortran Defaults Passed

-O0 –WK,–roundoff=0,–scalaropt=0,–optimize=0

-O1 –WK,–roundoff=0,–scalaropt=0,–optimize=0

-O2 –WK,–roundoff=0,–scalaropt=0,–optimize=0

-O3 –WK,–roundoff=2,–scalaropt=3,–optimize=5

-sopt –WK,–roundoff=0,–scalaropt=3,–optimize=5

14

Chapter 1: Compiling, Linking, and Running Programs

Controlling Compiler Execution

The options summarized in Table 1-9 control the execution of the compiler
phases.

Object File Tools

The following tools provide information on object files as indicated:

elfdump Lists headers, tables, and other selected parts of an
ELF-format object or archive file.

dis Disassembles object files into machine instructions.

nm Prints symbol table information for object and archive files.

file Lists the properties of program source, text, object, and
other files. This tool often erroneously recognizes command
files as C programs. It does not recognize Pascal or LISP
programs.

size Prints information about the text, rdata, data, sdata, bss, and
sbss sections of the specified object or archive files. See the
a.out(4) manual page for a description of the contents and
format of section data.

strip Removes symbol table and relocation bits.

Table 1-9 Compile Options for Compiler Phase Control

Options Purpose

-E, -P Execute only the C preprocessor.

-fe Stop compilation immediately after the front-end
(syntax analysis) runs.

-M Run only the macro preprocessor.

-Yc,path Load the compiler phase specified by c from the
specified path.

-Wc,option,... Pass the specified list of options to the compiler phase
specified by c.

Archiver

 15

For more information on these tools, see the MIPS Compiling and Performance
Tuning Guide and the dis(1), elfdump(1), file(1), nm(1), size(1), and strip(1)
manual pages.

Archiver

An archive library is a file that contains one or more routines in object (.o) file
format. The term object as used in this chapter refers to an .o file that is part
of an archive library file. When a program calls an object not explicitly
included in the program, the link editor ld looks for that object in an archive
library. The link editor then loads only that object (not the whole library) and
links it with the calling program. The archiver (ar) creates and maintains
archive libraries and has the following main functions:

• copying new objects into the library

• replacing existing objects in the library

• moving objects about the library

• copying individual objects from the library into individual object files

See the Compiling, Debugging, and Performance Tuning Guide and the ar(1)
manual page for additional information on the archiver.

Run-Time Considerations

Invoking a Program

To run a Fortran program, invoke the executable object module produced by
the f77 command by entering the name of the module as a command. By
default, the name of the executable module is a.out. If you included the –o
filename option on the ld (or f77) command line, the executable object module
has the name that you specified.

16

Chapter 1: Compiling, Linking, and Running Programs

Maximum Memory Allocations

The total memory allocation for a program, and in some cases individual
arrays, can exceed 2 gigabytes (2 GB, or 2,048 MB).

Previous implementations of Fortran 77 limited the total program size, as
well as the size of any single array, to 2 GB. The current release allows the
total memory in use by the program to far exceed this. (For details on the
memory use of individual scalar values, see “Alignment, Size, and Value
Ranges” on page 22.)

Local Variable (Stack Frame) Sizes

Arrays that are allocated on the process stack must not exceed 2 GB, but the
total of all stack variables can exceed that limit. For example,

parameter (ndim = 16380)
integer*8 xmat(ndim,ndim), ymat(ndim,ndim), &

zmat(ndim,ndim)
integer k(1073741824)
integer l(33554432, 256)

However, when an array is passed as an argument, it is not limited in size.

subroutine abc(k)
integer k(8589934592_8)

Static and Common Sizes

When compiling with the -static flag, global data is allocated as part of the
compiled object (.o) file. The total size of any .o file may not exceed 2 GB.
However, the total size of a program linked from multiple .o files may exceed
2 GB.

An individual common block may not exceed 2 GB. However, you can
declare multiple common blocks each having that size.

Run-Time Considerations

 17

Pointer-based Memory

There is no limit on the size of a pointer-based array. For example,

integer *8 ndim
parameter (ndim = 20001)
pointer (xptr, xmat), (yptr, ymat), (zptr, zmat), &

(aptr, amat)
xptr = malloc(ndim*ndim*8)
yptr = malloc(ndim*ndim*8)
zptr = malloc(ndim*ndim*8)
aptr = malloc(ndim*ndim*8)

It is important to make sure that malloc is called with an INTEGER*8 value.
A count greater than 2 GB would be truncated if assigned to an INTEGER*4.

File Formats

Fortran supports five kinds of external files:

• sequential formatted

• sequential unformatted

• direct formatted

• direct unformatted

• key indexed file

The operating system implements other files as ordinary files and makes no
assumptions about their internal structure.

Fortran I/O is based on records. When a program opens a direct file or key
indexed file, the length of the records must be given. The Fortran I/O system
uses the length to make the file appear to be made up of records of the given
length. When the record length of a direct file is 1 byte, the system treats the
file as ordinary system files (as byte strings, in which each byte is
addressable). A READ or WRITE request on such files consumes bytes until
satisfied, rather than restricting itself to a single record.

Because of special requirements, sequential unformatted files will probably
be read or written only by Fortran I/O statements. Each record is preceded
and followed by an integer containing the length of the record in bytes.

18

Chapter 1: Compiling, Linking, and Running Programs

During a READ, Fortran I/O breaks sequential formatted files into records
by using each new line indicator as a record separator. The Fortran 77
standard does not define the required result after reading past the end of a
record; the I/O system treats the record as being extended by blanks. On
output, the I/O system writes a new line indicator at the end of each record.
If a user program also writes a new line indicator, the I/O system treats it as
a separate record.

Preconnected Files

Table 1-10 shows the standard preconnected files at program start.

All other units are also preconnected when execution begins. Unit n is
connected to a file named fort.n. These files need not exist, nor will they be
created unless their units are used without first executing an open. The
default connection is for sequentially formatted I/O.

File Positions

The Fortran 77 standard does not specify where OPEN should initially
position a file explicitly opened for sequential I/O. The I/O system positions
the file to start of file for both input and output. The execution of an OPEN
statement followed by a WRITE on an existing file causes the file to be
overwritten, erasing any data in the file. In a program called from a parent
process, units 0, 5, and 6 remain where they were positioned by the parent
process.

Table 1-10 Preconnected Files

Unit # Unit

5 Standard input

6 Standard output

0 Standard error

Run-Time Considerations

 19

Unknown File Status

When the parameter STATUS="UNKNOWN" is specified in an OPEN
statement, the following occurs:

• If the file does not exist, it is created and positioned at start of file.

• If the file exists, it is opened and positioned at the beginning of the file.

Quad-Precision Operations

When running programs that contain quad-precision operations, you must
run the compiler in round-to-nearest mode. Because this mode is the default,
you usually do not need to be concerned with setting it. You usually need to
set this mode when writing programs that call your own assembly routines.
Refer to the swapRM manual page for details.:

Run-Time Error Handling

When the Fortran run-time system detects an error, the following action
takes place:

• A message describing the error is written to the standard error unit
(unit 0). See Appendix A, “Run-Time Error Messages,” for a list of the
error messages.

• A core file is produced if the f77_dump_flag environment variable is
set, as described in Appendix A, “Run-Time Error Messages.” You can
use dbx to inspect this file and determine the state of the program at
termination. For more information, see the dbx Reference Manual.

To invoke dbx using the core file, enter the following:

% dbx binary-file core

where binary-file is the name of the object file output (the default is
a.out). For more information on dbx, see the dbx User's Guide.

20

Chapter 1: Compiling, Linking, and Running Programs

Floating Point Exceptions

The library libfpe provides two methods for handling floating point
exceptions.

Note: Owing to the different architecture of the MIPS R8000 and R10000
processors, library libfpe is not available with the current compiler. It will be
provided in a future release. When porting 32-bit programs that depend on
trapping exceptions using the facilities in libfpe, you will have to temporarily
change the programs to do without it.

The library provides the subroutine handle_sigfpes and the environment
variable TRAP_FPE. Both methods provide mechanisms for handling and
classifying floating point exceptions, and for substituting new values. They
also provide mechanisms to count, trace, exit, or abort on enabled
exceptions. See the handle_sigfpes(3F) manual page for more information.

 21

Chapter 2

2. Storage Mapping

This chapter contains two sections:

• “Alignment, Size, and Value Ranges” describes how the Fortran
compiler implements size and value ranges for various data types as
well as how data alignment occurs under normal conditions.

• “Access of Misaligned Data” describes two methods of accessing
misaligned data.

22

Chapter 2: Storage Mapping

Alignment, Size, and Value Ranges

Table 2-1 contains information about various Fortran scalar data types. (For
details on the maximum sizes of arrays, see “Maximum Memory
Allocations” on page 16.)

a. Byte boundary divisible by two.

b. When the –i2 option is used, type INTEGER is equivalent to INTEGER*2; when the –i8 option
is used, INTEGER is equivalent to INTEGER*8.

c. Byte boundary divisible by four.

Table 2-1 Size, Alignment, and Value Ranges of Data Types

Type Synonym Size Alignment Value Range

BYTE INTEGER*1 8 bits Byte –128…127

INTEGER*2 16 bits Half worda –32,768…32,767

INTEGER INTEGER*4b 32 bits Wordc –231…231 –1

INTEGER*8 64 bits Double word –263…263 –1

LOGICAL*1 8 bits Byte 0…1

LOGICAL*2 16 bits Half worda 0…1

LOGICAL LOGICAL*4d 32 bits Wordc 0…1

LOGICAL*8 64 bits Double word 0...1

REAL REAL*4e 32 bits Wordc See Table 2-2

DOUBLE
PRECISION

REAL*8f 64 bits Double wordg See Table 2-2

REAL*16 128 bits Double word See Table 2-3

COMPLEX COMPLEX*8h 64 bits Double wordc See the fourth
bullet item below

DOUBLE
COMPLEX

COMPLEX*16i 128 bits Double wordg See the fourth
bullet item below

COMPLEX*32 256 bits Double word See the fourth
bullet item below

CHARACTER 8 bits Byte –128…127

Alignment, Size, and Value Ranges

 23

The following notes provide details on some of the items in Table 2-1.

• Table 2-2 lists the approximate valid ranges for REAL*4 and REAL*8.

• REAL*16 constants have the same form as DOUBLE PRECISION
constants, except the exponent indicator is Q instead of D. Table 2-3
lists the approximate valid range for REAL*16. REAL*16 values have
an 11-bit exponent and a 107-bit mantissa; they are represented
internally as the sum or difference of two doubles. So, for REAL*16
“normal” means that both high and low parts are normals.

• Table 2-1 states that REAL*8 (that is, DOUBLE PRECISION) variables
always align on a double-word boundary. However, Fortran permits

d. When the –i2 option is used, type LOGICAL is equivalent to LOGICAL*2; when the –i8 op-
tion is used, type LOGICAL is equivalent to LOGICAL*8.

e. When the –r8 option is used, type REAL is equivalent to REAL*8.

f. When the –d16 option is used, type DOUBLE PRECISION is equivalent to REAL*16.

g. Byte boundary divisible by eight.

h. When the –r8 option is used, type COMPLEX is equivalent to COMPLEX*16.

i. When the –d16 option is used, type DOUBLE COMPLEX is equivalent to COMPLEX*32.

Table 2-2 Valid Ranges for REAL*4 and REAL*8 Data Types

Range REAL*4 REAL*8

Maximum 3.40282356 * 1038 1.7976931348623158 * 10308

Minimum normalized 1.17549424 * 10 -38 2.2250738585072012 * 10-308

Minimum denormalized 1.40129846 * 10-46 1.1125369292536006 * 10 -308

Table 2-3 Valid Ranges for REAL*16 Data Type

Range Precise Exception Mode w/FS Bit Clear Fast Mode or Precise Exception Mode w/FS Bit Set

Maximum 1.797693134862315807937289714053023* 10308 1.797693134862315807937289714053023* 10308

Minimum
normalized

2.0041683600089730005034939020703004* 10 -292 2.0041683600089730005034939020703004* 10 -292

Minimum
denormalized

4.940656458412465441765687928682214* 10 -324 2.225073858507201383090232717332404* 10-308

24

Chapter 2: Storage Mapping

these variables to align on a word boundary if a COMMON statement
or equivalencing requires it.

• Forcing INTEGER, LOGICAL, REAL, and COMPLEX variables to
align on a halfword boundary is not allowed, except as permitted by
the –align8, –align16, and –align32 command line options. See
Chapter 1, “Compiling, Linking, and Running Programs.”

• A COMPLEX data item is an ordered pair of REAL*4 numbers; a
DOUBLE COMPLEX data item is an ordered pair of REAL*8 numbers;
a COMPLEX*32 data item is an ordered pair of REAL*16 numbers. In
each case, the first number represents the real part and the second
represents the imaginary part. Therefore, refer to Table 2-2 and
Table 2-3 for valid ranges.

• LOGICAL data items denote only the logical values TRUE and FALSE
(written as .TRUE. or .FALSE.). However, to provide VMS
compatibility, LOGICAL variables can be assigned all integral values of
the same size.

• You must explicitly declare an array in a DIMENSION declaration or
in a data type declaration. To support DIMENSION, the compiler

– allows up to seven dimensions

– assigns a default of 1 to the lower bound if a lower bound is not
explicitly declared in the DIMENSION statement

– creates an array the size of its element type times the number of
elements

– stores arrays in column-major mode

• The following rules apply to shared blocks of data set up by the
COMMON statements:

– The compiler assigns data items in the same sequence as they
appear in the common statements defining the block. Data items
are padded according to the alignment compiler options or the
compiler defaults. See “Access of Misaligned Data” on page 25 for
more information.

– You can allocate both character and noncharacter data in the same
common block.

Access of Misaligned Data

 25

– When a common block appears in multiple program units, the
compiler allocates the same size for that block in each unit, even
though the size required may differ (due to varying element names,
types, and ordering sequences) from unit to unit. The size allocated
corresponds to the maximum size required by the block among all
the program units except when a common block is defined by using
DATA statements, which initialize one or more of the common
block variables. In this case the common block is allocated the same
size as when it is defined.

Access of Misaligned Data

The Fortran compiler allows misalignment of data if specified by the use of
special options.

As discussed in the previous section, the architecture of the IRIS-4D series
assumes a particular alignment of data. ANSI standard Fortran 77 cannot
violate the rules governing this alignment. Many opportunities for
misalignment can arise when using common extensions to the dialect. This
is particularly true for small integer types, which

• allow intermixing of character and non-character data in COMMON
and EQUIVALENCE statements

• allow mismatching the types of formal and actual parameters across a
subroutine interface

• provide many opportunities for misalignment to occur

Code using the extensions that compiled and executed correctly on other
systems with less stringent alignment requirements may fail during
compilation or execution on the IRIS-4D. This section describes a set of
options to the Fortran compilation system that allow the compilation and
execution of programs whose data may be misaligned. Be forewarned that
the execution of programs that use these options is significantly slower than
the execution of a program with aligned data.

This section describes the two methods that can be used to create an
executable object file that accesses misaligned data.

26

Chapter 2: Storage Mapping

Accessing Small Amounts of Misaligned Data

Use the first method if the number of instances of misaligned data access is
small or to provide information on the occurrence of such accesses so that
misalignment problems can be corrected at the source level.

This method catches and corrects bus errors due to misaligned accesses. This
ties the extent of program degradation to the frequency of these accesses.
This method also includes capabilities for producing a report of these
accesses to enable their correction.

To use this method, keep the Fortran front end from padding data to force
alignment by compiling your program with one of two options to f77.

• Use the –align8 option if your program expects no restrictions on
alignment.

• Use the –align16 option if your program expects to be run on a machine
that requires half-word alignment.

You must also use the misalignment trap handler. This requires minor source
code changes to initialize the handler and the addition of the handler binary
to the link step (see the fixade(3f) manual page).

Accessing Misaligned Data Without Modifying Source

Use the second method for programs with widespread misalignment or
whose source may not be modified.

In this method, a set of special instructions is substituted by the IRIS-4D
assembler for data accesses whose alignment cannot be guaranteed. The
generation of these more forgiving instructions may be opted for each source
file independently.

You can invoke this method by specifying of one of the alignment options
(–align8, –align16) to f77 when compiling any source file that references
misaligned data (see the f77(1) manual page). If your program passes
misaligned data to system libraries, you might also need to link it with the
trap handler. See the fixade(3f) manual page for more information.

 27

Chapter 3

3. Fortran Program Interfaces

Sometimes it is necessary to create a program that combines modules
written in Fortran and another language. For example,

• In a Fortran program, you need access to a facility that is only available
as a C function, such as a member of a graphics library.

• In a program in another language, you need access to a computation
that has been implemented as a Fortran subprogram, for example one
of the many well-tested, efficient routines in the BLAS library.

Tip: Fortran subroutines and functions that give access to the IRIX system
functions and other IRIX facilities already exist, and are documented in
Chapter 4 of this manual.

This chapter focusses on the interface between Fortran and the most
common other language, C. However other language can be called, for
example C++.

Note: You should be aware that all compilers for a given version of IRIX use
identical standard conventions for passing parameters in generated code.
These conventions are documented at the machine instruction level in the
MIPSpro Assembly Language Programmer's Guide, which also details the
differences in the conventions used in different releases.

28

Chapter 3: Fortran Program Interfaces

How Fortran Treats Subprogram Names

The Fortran compiler normally changes the names of subprograms and
named common blocks while it translates the source file. When these names
appear in the object file for reference by other modules, they are normally
changed in two ways:

• converted to all lowercase letters

• extended with a final underscore (_) character

Normally the following declarations

SUBROUTINE MATRIX
function MixedCase()
COMMON /CBLK/a,b,c

produce the identifiers matrix_, mixedcase_, and cblk_ (all lowercase with
appended underscore) in the generated object file.

Note: The Fortran intrinsic functions are not named according to these rules.
The external names of intrinsic functions as defined in the Fortran library are
not directly related to the intrinsic function names as they are written in a
program. The use of intrinsic function names is discussed in the MIPSpro
Fortran 77 Language Reference Manual.

Working with Mixed-Case Names

There is no way by which you can make the Fortran compiler generate an
external name containing uppercase letters. If you are porting a program
that depends on the ability to call such a name, you will have to write a C
function that takes the same arguments but which has a name composed of
lowercase letters only. This C function can then call the function whose name
contains mixed-case letters.

Note: Previous versions of the Fortran 77 compiler for 32-bit systems
supported the -U compiler option, telling the compiler to not force all
uppercase input to lowercase. As a result, uppercase letters could be
preserved in external names in the object file. As now implemented, this
option does not affect the case of external names in the object file.

How Fortran Treats Subprogram Names

 29

Preventing a Suffix Underscore with $

You can prevent the compiler from appending an underscore to a name by
writing the name with a terminal currency symbol ($). The ‘$’ is not
reproduced in the object file. It is dropped, but it prevents the compiler from
appending an underscore. The declaration

EXTERNAL NOUNDER$

produces the name nounder (lowercase, but no trailing underscore) in the
object file.

Note: This meaning of ‘$’ in names applies only to subprogram names. If
you end the name of a COMMON block with ‘$,’ the name in the object file
includes the ‘$’ and ends with an underscore regardless.

Naming Fortran Subprograms from C

In order to call a Fortran subprogram from a C module you must spell the
name the way the Fortran compiler spells it—normally, using all lowercase
letters and a trailing underscore. A Fortran subprogram declared as follows:

SUBROUTINE HYPOT()

would typically be declared in a C function as follows (lowercase with a
trailing underscore):

extern int hypot_()

You must find out if the subprogram is declared with a terminal ‘$’ to
suppress the underscore.

Naming C Functions from Fortran

The C compiler does not modify the names of C functions. C functions can
have uppercase or mixed-case names, and they have terminal underscores
only when the programmer writes them that way.

In order to call a C function from a Fortran program you must ensure that
the Fortran compiler spells the name correctly. When you control the name

30

Chapter 3: Fortran Program Interfaces

of the C function, the simplest solution is to give it a name that consists of
lowercase letters with a terminal underscore. For example, the following C
function:

int fromfort_() {...}

could be declared in a Fortran program as follows:

EXTERNAL FROMFORT

When you do not control the name of a C function, you must cause the
Fortran compiler to generate the correct name in the object file. Write the C
function’s name using a terminal ‘$’ character to suppress the terminal
underscore. (You cannot cause the compiler to generate an external name
with uppercase letters in it.)

Testing Name Spelling Using nm

You can verify the spelling of names in an object file using the nm command
(or with the elfdump command with the -t or -Dt options). To see the
subroutine and common names generated by the compiler, apply nm to the
generated .o (object) or executable file.

Correspondence of Fortran and C Data Types

When you exchange data values between Fortran and C, either as
parameters, as function results, or as elements of common blocks, you must
make sure that the two languages agree on the size, alignment, and subscript
of each data value.

Corresponding Scalar Types

The correspondence between Fortran and C scalar data types is shown in
Table 3-1. This table assumes the default precisions. Use of compiler options
such as -i2 or -r8 affects the meaning of the words LOGICAL, INTEGER, and
REAL.

Correspondence of Fortran and C Data Types

 31

The rules governing alignment of variables within common blocks are
covered under “Alignment, Size, and Value Ranges” on page 22.

a. Assuming default precision

Table 3-1 Corresponding Fortran and C Data Types

Fortran Data Type Corresponding C type

BYTE, INTEGER*1, LOGICAL*1 signed char

CHARACTER*1 unsigned char

INTEGER*2, LOGICAL*2 short

INTEGERa, INTEGER*4,
LOGICALa, LOGICAL*4

int or long

INTEGER*8, LOGICAL*8 long long

REALa, REAL*4 float

DOUBLE PRECISION, REAL*8 double

REAL*16 long double

COMPLEXa, COMPLEX*8 typedef struct{float real, imag; } cpx8;

DOUBLE COMPLEX,
COMPLEX*16

typedef struct{ double real, imag; } cpx16;

COMPLEX*32 typedef struct{long double real, imag;} cpx32;

CHARACTER*n (n>1) typedef char fstr_n[n];

32

Chapter 3: Fortran Program Interfaces

Corresponding Character Types

The Fortran CHARACTER*1 data type corresponds to the C type unsigned
char. However, the two languages differ in the treatment of strings of
characters.

A Fortran CHARACTER*n (n>1) variable contains exactly n characters at all
times. When a shorter character expression is assigned to it, it is padded on
the right with spaces to reach n characters.

A C vector of characters is normally sized 1 greater than the longest string
assigned to it. It may contain fewer meaningful characters than its size
allows, and the end of meaningful data is marked by a null byte. There is no
null byte at the end of a Fortran string. (The programmer can create a null
byte using the Hollerith constant '\0' but this is not normally done.)

Since there is no terminal null byte, most of the string library functions
familiar to C programmers (strcpy(), strcat(), strcmp(), and so on) cannot be
used with Fortran string values. The strncpy(), strncmp(), bcopy(), and bcmp()
functions can be used because they depend on a count rather than a
delimiter.

Corresponding Array Elements

Fortran and C use different arrangements for the elements of an array in
memory. Fortran uses column-major order (when iterating sequentially
through memory, the leftmost subscript varies fastest), whereas C uses
row-major order (the rightmost subscript varies fastest to generate
sequential storage locations). In addition, Fortran array indices are normally
origin-1, while C indices are origin-0.

To use a Fortran array in C,

• Reverse the order of dimension limits when declaring the array

• Reverse the sequence of subscript variables in a subscript expression

• Adjust the subscripts to origin-0 (usually, decrement by 1)

How Fortran Passes Subprogram Parameters

 33

The correspondence between Fortran and C subscript values is depicted in
Figure 3-1. You derive the C subscripts for a given element by decrementing
the Fortran subscripts and using them in reverse order; for example, Fortran
(99,9) corresponds to C [8][98].

Figure 3-1 Correspondence Between Fortran and C Array Subscripts

For a coding example, see “Using Fortran Arrays in C Code” on page 44.

Note: A Fortran array can be declared with some other lower bound than
the default of 1. If the Fortran subscript is origin-0, no adjustment is needed.
If the Fortran lower bound is greater than 1, the C subscript is adjusted by
that amount.

How Fortran Passes Subprogram Parameters

The Fortran compiler generates code to pass parameters according to
simple, uniform rules; and it generates subprogram code that expects
parameters to be passed according to these rules. When calling non-Fortran
functions, you must know how parameters will be passed; and when calling
Fortran subprograms from other languages you must cause the other
language to pass parameters correctly.

x,y

y+1,x+1

y−1,x−1

x,y

or

C

Fortran

34

Chapter 3: Fortran Program Interfaces

Normal Treatment of Parameters

Every parameter passed to a subprogram, regardless of its data type, is
passed as the address of the actual parameter value in memory. This simple
rule is extended for two special cases:

• The length of each CHARACTER*n parameter (when n>1) is passed as
an additional, INTEGER value, following the explicit parameters.

• When a function returns type CHARACTER*n parameter (n>1), the
address of the space to receive the result is passed as the first parameter
to the function and the length of the result space is passed as the second
parameter, preceding all explicit parameters.

Example 3-1 Example Subroutine Call

COMPLEX*8 cp8
CHARACTER*16 creal, cimag
CALL CPXASC(creal,cimag,cp8)

The code generated from the CALL in Example 3-1 prepares the following 5
argument values:

1. The address of creal

2. The address of cimag

3. The address of cp8

4. The length of creal, an integer value of 16

5. The length of cimag, an integer value of 16

Example 3-2 Example Function Call

CHARACTER*8 symbl,picksym
CHARACTER*100 sentence
INTEGER nsym
symbl = picksym(sentence,nsym)

Calling Fortran from C

 35

The code generated from the function call in Example 3-2 prepares the
following 5 argument values:

1. The address of variable symbl, the function result space

2. The length of symbl, an integer value of 8

3. The address of sentence, the first explicit parameter

4. The addrss of nsym, the second explicit parameter

5. The length of sentence, an integer value of 100

You can force changes in these conventions using %VAL and %LOC; this is
covered under “Calls to C Using LOC%, REF% and VAL%” on page 45.

Calling Fortran from C

There are two types of callable Fortran subprograms: subroutines and
functions (these units are documented in the MIPSpro Fortran 77 Language
Reference Manual). In C terminology, both types of subprogram are external
functions. The difference is the use of the function return value from each.

Calling Fortran Subroutines from C

From the standpoint of a C module, a Fortran subroutine is an external
function returning int. The integer return value is normally ignored by a C
caller (its meaning is discussed in “Alternate Subroutine Returns” on
page 38).

36

Chapter 3: Fortran Program Interfaces

The following two examples show a simple Fortran subroutine and a sketch
of a call to it.

Example 3-3 Example Fortran Subroutine with COMPLEX Parameters

SUBROUTINE ADDC32(Z,A,B,N)
COMPLEX*32 Z(1),A(1),B(1)
INTEGER N,I
DO 10 I = 1,N
 Z(I) = A(I) + B(I)
10 CONTINUE
RETURN
END

Example 3-4 C Declaration and Call with COMPLEX Parameters

typedef struct{long double real, imag;} cpx32;
extern int
 addc32_(cpx32*pz,cpx32*pa,cpx32*pb,int*pn);
cpx32 z[MAXARRAY], a[MAXARRAY], b[MAXARRAY];
...
 int n = MAXARRAY;
 (void)addc32_(&z, &a, &b, &n);

The Fortran subroutine in Example 3-3 is named in Example 3-4 using
lowercase letters and a terminal underscore. It is declared as returning an
integer. For clarity, the actual call is cast to (void) to show that the return
value is intentionally ignored.

The trivial subroutine in the following example takes adjustable-length
character parameters.

Example 3-5 Example Fortran Subroutine with String Parameters

SUBROUTINE PRT(BEF,VAL,AFT)
CHARACTER*(*)BEF,AFT
REAL VAL
PRINT *,BEF,VAL,AFT
RETURN
END

Calling Fortran from C

 37

Example 3-6 C Program that Passes String Parameters

typedef char fstr_16[16];
extern int
 prt_(fstr_16*pbef, float*pval, fstr_16*paft,
 int lbef, int laft);
main()
{
 float val = 2.1828e0;
 fstr_16 bef,aft;
 strncpy(bef,”Before..........”,sizeof(bef));
 strncpy(aft,”...........After”,sizeof(aft));
 (void)prt_(bef,&val,aft,sizeof(bef),sizeof(aft));
}

The C program in Example 3-6 prepares CHARACTER*16 values and passes
them to the subroutine in Example 3-5. Observe that the subroutine call
requires 5 parameters, including the lengths of the two string parameters. In
Example 3-6, the string length parameters are generated using sizeof(),
derived from the typedef fstr_16.

Example 3-7 C Program that Passes Different String Lengths

extern int
prt_(char*pbef, float*pval, char*paft, int lbef, int laft);
main()
{
 float val = 2.1828e0;
 char *bef = "Start:";
 char *aft = ":End";
 (void)prt_(bef,&val,aft,strlen(bef),strlen(aft));
}

When the Fortran code does not require a specific length of string, the C code
that calls it can pass an ordinary C character vector, as shown in
Example 3-7. In Example 3-7, the string length parameter length values are
calculated dynamically using strlen().

38

Chapter 3: Fortran Program Interfaces

Alternate Subroutine Returns

In Fortran, a subroutine can be defined with one or more asterisks (*) in the
position of dummy parameters. When such a subroutine is called, the places
of these parameters in the CALL statement are supposed to be filled with
statement numbers or statement labels. The subroutine returns an integer
which selects among the statement numbers, so that the subroutine call acts
as both a call and a computed go-to (for more details, see the discussions of
the CALL and RETURN statements in the MIPSpro Fortran 77 Language
Reference Manual).

Fortran does not generate code to pass statement numbers or labels to a
subroutine. No actual parameters are passed to correspond to dummy
parameters given as asterisks. When you code a C prototype for such a
subroutine, simply ignore these parameter positions. A CALL statement
such as

CALL NRET (*1,*2,*3)

is treated exactly as if it were the computed GOTO written as

GOTO (1,2,3), NRET()

The value returned by a Fortran subroutine is the value specified on the
RETURN statement, and will vary between 0 and the number of asterisk
dummy parameters in the subroutine definition.

Calling Fortran Functions from C

A Fortran function returns a scalar value as its explicit result. This
corresponds exactly to the C concept of a function with an explicit return
value. When the Fortran function returns any type shown in Table 3-1 other
than CHARACTER*n (n>1), you can call the function from C and handle its
return value exactly as if it were a C function returning that data type.

Example 3-8 Fortran Function Returning COMPLEX*16

COMPLEX*16 FUNCTION FSUB16(INP)
COMPLEX*16 INP
FSUB16 = INP
END

Calling Fortran from C

 39

The trivial function shown in Example 3-8 accepts and returns
COMPLEX*16 values. Although a COMPLEX value is declared as a
structure in C, it can be used as the return type of a function.

Example 3-9 C Program that Receives COMPLEX Return Value

typedef struct{ double real, imag; } cpx16;
extern cpx16 fsub16_(cpx16 * inp);
main()
{
 cpx16 inp = { -3.333, -5.555 };
 cpx16 oup = { 0.0, 0.0 };
 printf("testing fsub16...");
 oup = fsub16_(&inp);
 if (inp.real == oup.real && inp.imag == oup.imag)
 printf("Ok\n");
 else
 printf("Nope\n");
}

 The C program in Example 3-9 shows how the function in Example 3-8 is
declared and called. Observe that the parameters to a function, like the
parameters to a subroutine, are passed as pointers, but the value returned is
a value, not a pointer to a value.

Note: In IRIX 5.3 and earlier, you can not call a Fortran function that returns
COMPLEX (although you can call one that returns any other arithmetic
type). The register conventions used by compilers prior to IRIX 6.0 do not
permit returning a structure value from a Fortran function to a C caller.

Example 3-10 Fortran Function Returning CHARACTER*16

CHARACTER*16 FUNCTION FS16(J,K,S)
CHARACTER*16 S
INTEGER J,K
FS16 = S(J:K)
RETURN
END

The function in Example 3-10 has a CHARACTER*16 return value. When
the Fortran function returns a CHARACTER*n (n>1) value, the returned
value is not the explicit result of the function. Instead, you must pass the

40

Chapter 3: Fortran Program Interfaces

address and length of the result area as the first two parameters of the
function.

Example 3-11 C Program that Receives CHARACTER*16 Return

typedef char fstr_16[16];
extern void
fs16_ (fstr_16 *pz,int lz,int *pj,int *pk,fstr_16*ps,int ls);
main()
{
 char work[64];
 fstr_16 inp,oup;
 int j=7;
 int k=11;
 strncpy(inp,"0123456789abcdef",sizeof(inp));
 fs16_ (oup, sizeof(oup), &j, &k, inp, sizeof(inp));
 strncpy(work,oup,sizeof(oup));
 work[sizeof(oup)] = '\0';
 printf("FS16 returns <%s>\n",work);
}

The C program in Example 3-11 calls the function in Example 3-10. The
address and length of the function result are the first two parameters of the
function. (Since type fstr_16 is an array, its name, oup, evaluates to the
address of its first element.) The next three parameters are the addresses of
the three named parameters; and the final parameter is the length of the
string parameter.

Calling C from Fortran

In general, you can call units of C code from Fortran as if they were written
in Fortran, provided that the C modules follow the Fortran conventions for
passing parameters (see “How Fortran Passes Subprogram Parameters” on
page 33). When the C program expects parameters passed using other
conventions, you can either write special forms of CALL, or you can build a
“wrapper” for the C functions using the mkf2c command..

Calling C from Fortran

 41

Normal Calls to C Functions

The C function in this section is written to use the Fortran conventions for its
name (lowercase with final underscore) and for parameter passing.

Example 3-12 C Function Written to be Called from Fortran

/*
|| C functions to export the facilities of strtoll()
|| to Fortran 77 programs. Effective Fortran declaration:
||
|| INTEGER*8 FUNCTION ISCAN(S,J)
|| CHARACTER*(*) S
|| INTEGER J
||
|| String S(J:) is scanned for the next signed long value
|| as specified by strtoll(3c) for a "base" argument of 0
|| (meaning that octal and hex literals are accepted).
||
|| The converted long long is the function value, and J is
|| updated to the nonspace character following the last
|| converted character, or to 1+LEN(S).
||
|| Note: if this routine is called when S(J:J) is neither
|| whitespace nor the initial of a valid numeric literal,
|| it returns 0 and does not advance J.
*/
#include <ctype.h> /* for isspace() */
long long iscan_(char *ps, int *pj, int ls)
{
 int scanPos, scanLen;
 long long ret = 0;
 char wrk[1024];
 char *endpt;

42

Chapter 3: Fortran Program Interfaces

 /* when J>LEN(S), do nothing, return 0 */
 if (ls >= *pj)
 {
 /* convert J to origin-0, permit J=0 */
 scanPos = (0 < *pj)? *pj-1 : 0 ;

 /* calculate effective length of S(J:) */
 scanLen = ls - scanPos;

 /* copy S(J:) and append a null for strtoll() */
 strncpy(wrk,(ps+scanPos),scanLen);
 wrk[scanLen] = ‘\0’;

 /* scan for the integer */
 ret = strtoll(wrk, &endpt, 0);

 /*
 || Advance over any whitespace following the number.
 || Trailing spaces are common at the end of Fortran
 || fixed-length char vars.
 */
 while(isspace(*endpt)) { ++endpt; }
 *pj = (endpt - wrk)+scanPos+1;
 }
 return ret;
}

The following program in demonstrates a call to the function in
Example 3-12.

EXTERNAL ISCAN
INTEGER*8 ISCAN
INTEGER*8 RET
INTEGER J,K
CHARACTER*50 INP
INP = '1 -99 3141592 0xfff 033 '
J = 0
DO 10 WHILE (J .LT. LEN(INP))
 K = J
 RET = ISCAN(INP,J)
 PRINT *, K,': ',RET,' -->',J
10 CONTINUE
END

Calling C from Fortran

 43

Using Fortran COMMON in C Code

A C function can refer to the contents of a COMMON block defined in a
Fortran program. The name of the block as given in the COMMON
statement is altered as described in “How Fortran Treats Subprogram
Names” on page 28 (that is, forced to lowercase and extended with an
underscore). The name of the “blank common” is _BLNK__ (one leading,
two final, underscores).

In order to refer to the contents of a common block, take these steps:

• Declare a structure whose fields have the appropriate data types to
match the successive elements of the Fortran common block. (See
Table 3-1 for corresponding data types.)

• Declare the common block name as an external structure of that type.

An example is shown below.

Example 3-13 Common Block Usage in Fortran and C

 INTEGER STKTOP,STKLEN,STACK(100)
 COMMON /WITHC/STKTOP,STKLEN,STACK

struct fstack {
 int stktop, stklen;
 int stack[100];
}
extern fstack withc_;
int peektop_()
{
 if (withc_.stktop) /* stack not empty */
 return withc_.stack[withc_.stktop-1];
 else...
}

44

Chapter 3: Fortran Program Interfaces

Using Fortran Arrays in C Code

As described under “Corresponding Array Elements” on page 32, a C
program must take special steps to access arrays created in Fortran.

Example 3-14 Fortran Program Sharing an Array in Common with C

INTEGER IMAT(10,100),R,C
COMMON /WITHC/IMAT
R = 74
C = 6
CALL CSUB(C,R,746)
PRINT *,IMAT(6,74)
END

The Fortran fragment in Example 3-14 prepares a matrix in a common block,
then calls a C subroutine to modify the array.

Example 3-15 C Subroutine to Modify a Common Array

extern struct { int imat[100][10]; } withc_;
int csub_(int *pc, int *pr, int *pval)
{
 withc_.imat[*pr-1][*pc-1] = *pval;
 return 0; /* all Fortran subrtns return int */
}

The C function in Example 3-15 stores its third argument in the common
array using the subscripts passed in the first two arguments. In the C
function, the order of the dimensions of the array are reversed. The subscript
values are reversed to match, and decremented by 1 to match the C
assumption of 0-origin indexing.

Calling C from Fortran

 45

Calls to C Using LOC%, REF% and VAL%

Using the special intrinsic functions %VAL, %REF, and %LOC you can pass
parameters in ways other than the standard Fortran conventions described
under ‘“How Fortran Passes Subprogram Parameters” on page 33. These
intrinsic functions are documented in the MIPSpro Fortran 77 Language
Reference Manual.

Using %VAL

%VAL is used in parameter lists to cause parameters to be passed by value
rather than by reference. Examine the following function prototype (from
the random(3b) reference page).

char *initstate(unsigned int seed, char *state, int n);

This function takes an integer value as its first parameter. Fortran would
normally pass the address of an integer value, but %VAL can be used to
make it pass the integer itself. Example 3-16 demonstrates a call to function
initstate() and the other functions of the random() group.

46

Chapter 3: Fortran Program Interfaces

Example 3-16 Fortran Function Calls Using %VAL

C declare the external functions in random(3b)
C random() returns i*4, the others return char*
 EXTERNAL RANDOM$, INITSTATE$, SETSTATE$
 INTEGER*4 RANDOM$
 INTEGER*8 INITSTATE$,SETSTATE$
C We use "states" of 128 bytes, see random(3b)
C Note: An undocumented assumption of random() is that
C a "state" is dword-aligned! Hence, use a common.
 CHARACTER*128 STATE1, STATE2
 COMMON /RANSTATES/STATE1,STATE2
C working storage for state pointers
 INTEGER*8 PSTATE0, PSTATE1, PSTATE2
C initialize two states to the same value
 PSTATE0 = INITSTATE$(%VAL(8191),STATE1)
 PSTATE1 = INITSTATE$(%VAL(8191),STATE2)
 PSTATE2 = SETSTATE$(%VAL(PSTATE1))
C pull 8 numbers from state 1, print
 DO 10 I=1,8
 PRINT *,RANDOM$()
10 CONTINUE
C set the other state, pull 8 numbers & print
 PSTATE1 = SETSTATE$(%VAL(PSTATE2))
 DO 20 I=1,8
 PRINT *,RANDOM$()
20 CONTINUE
 END

The use of %VAL(8191) or %VAL(PSTATE1) causes that value to be passed,
rather than an address of that value.

Using %REF

%REF is used in parameter lists to cause parameters to be passed by
reference, that is, to pass the address of a value rather than the value itself.

Passing parameters by reference is the normal behavior of Silicon Graphics
Fortran 77 compilers, so there is no effective difference between writing
%REF(parm) and writing parm alone in a parameter list. However, this may
not be the case with Fortran compilers from other manufacturers. In other
compilers, %REF(parm) might be effective and different from parm alone.

Calling C from Fortran

 47

Hence when calling a C function that expects the address of a value rather
than the value itself, you can write %REF(parm) simply as documentation of
the kind of parameter. Examine this C prototype (see the gmatch(3G)
reference page).

int gmatch (const char *str, const char *pattern);

This function gmatch() could be declared and called from Fortran.

Example 3-17 Fortran Call to gmatch() Using %REF

LOGICAL GMATCH$
CHARACTER*8 FNAME,FPATTERN
FNAME = 'foo.f\0'
FPATTERN = '*.f\0'
IF (GMATCH$(%REF(FNAME),%REF(FPATTERN)))...

The use of %REF() in Example 3-17 simply documents the fact that gmatch()
expects addresses of character strings.

Note: The code in Example 3-17 passes two additional hidden parameters,
the lengths of the two string parameters. Probably, a C function such as
gmatch() would ignore these. However, they can be suppressed using %LOC,
as discussed in the following topic.

Using %LOC

%LOC returns the address of its argument. It can be used in any expression
(not only within parameter lists), and is often used to set POINTER
variables. However, it can be used with %VAL to prevent passing the lengths
of character values as hidden parameters.

Refer again to the prototype of gmatch(). This function expects the address of
two character strings in memory, but it is not written to expect the Fortran
convention of also passing the lengths of character parameters.

48

Chapter 3: Fortran Program Interfaces

Example 3-18 Fortran Call to gmatch() Using %VAL(%LOC())

LOGICAL GMATCH$
CHARACTER*8 FNAME,FPATTERN
FNAME = 'foo.f\0'
FPATTERN = '*.f\0'
IF (GMATCH$(%VAL(%LOC(FNAME)),%VAL(%LOC(FPATTERN))))...

The code fragment in Example 3-18 shows how to pass only the addresses.
Each parameter consists of an address (%LOC) passed by value (%VAL).
Since neither parameter is a character string, Fortran does not pass the
character string lengths as hidden parameters.

Making C Wrappers with mkf2c

The program mkf2c provides an alternate interface for C routines called by
Fortran. (Some details of mkf2c are covered in the mkf2c(1) reference page.)

The mkf2c program reads a file of C function prototype declarations and
generates an assembly language module. This module contains one callable
entry point for each C function. The entry point, or “wrapper,” accepts
parameters in the Fortran calling convention, and passes the same values to
the C function using the C conventions.

A simple case of using a function as input to mkf2c is

simplefunc (int a, double df)
{ /* function body ignored */ }

For this function, mkf2c (with no options) generates a wrapper function
named simple_ (truncated to 6 characters, made lowercase, with an
underscore appended). The wrapper function expects two parameters, an
integer and a REAL*8, passed according to Fortran conventions; that is, by
reference. The code of the wrapper loads the values of the parameters into
registers using C conventions for passing parameters by value, and calls
simplefunc().

Calling C from Fortran

 49

Parameter Assumptions by mkf2c

Since mkf2c processes only the C source, not the Fortran source, it treats the
Fortran parameters based on the data types specified in the C function
header. These treatments are summarized in Table 3-2.

Note: Through compiler release 6.0.2, mkf2c does not recognize the C data
types “long long” and “long double” (INTEGER*8 and REAL*16). It treats
arguments of this type as “long” and “double” respectively.

Table 3-2 How mkf2c treats Function Arguments

Data Type in C Prototype Treatment by Generated Wrapper Code

unsigned char Load CHARACTER*1 from memory to register,
no sign extension

char Load CHARACTER*1 from memory to register;
sign extension only when -signed is specified

unsigned short, unsigned int Load INTEGER*2 or INTEGER*4 from memory
to register, no sign extension

short Load INTEGER*2 from memory to register with
sign extension

int, long Load INTEGER*4 from memory to register with
sign extension

long long (Not supported through 6.0.2)

float Load REAL*4 from memory to register,
extending to double unless -f is specified

double Load REAL*8 from memory to register

long double (Not supported through 6.0.2)

char name[], name[n] Pass address of CHARACTER*n and pass length
as integer parameter as Fortran does

char * Copy CHARACTER*n value into allocated
space, append null byte, pass address of copy

50

Chapter 3: Fortran Program Interfaces

Character String Treatment by mkf2c

In Table 3-2, notice the different treatments for an argument declared as a
character array and one declared as a character address (even though these
two declarations are semantically the same in C).

When the C function expects a character address, mkf2c generates the code
to dynamically allocate memory and to copy the Fortran character value, for
its specified length, to memory. This creates a null-terminated string. In this
case,

• The address passed to C points to allocated memory

• The length of the value is not passed as an implicit argument

• There is a terminating null byte in the value

• Changes in the string are not reflected back to Fortran

A character array is passed by mkf2c as a Fortran CHARACTER*n value. In
this case,

• The address prepared by Fortran is passed to the C function

• The length of the value is passed as an implicit argument (see “Normal
Treatment of Parameters” on page 34)

• The character array contains no terminating null byte (unless the
Fortran programmer supplies one)

• Changes in the array by the C function will be visible to Fortran

Since the C function cannot declare the extra string-length parameter (if it
declared the parameter, mkf2c would process it as an explicit argument) the
C programmer has a choice of ways to access the string length. When the
Fortran program always passes character values of the same size, the length
parameter can simply be ignored. If its value is needed, the varargs macro
can be used to retrieve it.

For example, if the C function prototype is specified as follows

void func1 (char carr1[],int i, char *str, char carr2[]);

mkf2c passes a total of six parameters to C. The fifth parameter is the length
of the Fortran value corresponding to carr1. The sixth is the length of carr2.
The C function can use the varargs macros to retrieve these hidden

Calling C from Fortran

 51

parameters. mkf2c ignores the varargs macro va_alist appearing at the end of
the parameter name list.

When func1 is changed to use varargs, the C source file is as follows.

Example 3-19 C Function Using varargs

#include "varargs.h"
void
func1 (char carr1[],int i,char *str,char carr2[],va_alist);
{}

The C routine would retrieve the lengths of carr1 and carr2, placing them in
the local variables carr1_len and carr2_len using code like the following
fragment.

Example 3-20 C Code to Retrieve Hidden Parameters

va_list ap;
int carr1_len, carr2_len;
va_start(ap);
carr1_len = va_arg (ap, int)
carr2_len = va_arg (ap, int)

Restrictions of mkf2c

When it does not recognize the data type specified in the C function, mkf2c
issues a warning message and generates code to simply pass the pointer
passed by Fortran. It does this in the following cases:

• Any nonstandard data type name, for example a data type that might
be declared using typedef or a data type defined as a macro

• Any structure argument

• Any argument with multiple indirection (two or more asterisks, for
example char**)

Since mkf2c does not support structure-valued arguments, it does not
support passing COMPLEX*n values.

52

Chapter 3: Fortran Program Interfaces

Using mkf2c and extcentry

mkf2c understands only a limited subset of the C grammar. This subset
includes common C syntax for function entry point, C-style comments, and
function bodies. However, it does not include constructs such as typedefs,
external function declarations, or C preprocessor directives.

To ensure that only the constructs understood by mkf2c are included in
wrapper input, you need to place special comments around each function
for which Fortran-to-C wrappers are to be generated (see example below).

Once these special comments, /* CENTRY */ and /* ENDCENTRY */, are
placed around the code, use the program excentry(1) before mkf2c to generate
the input file for mkf2c.

Example 3-21 Source File for Use with extcentry

typedef unsigned short grunt [4];
struct {
 long 1,11;
 char *str;
} bar;
main ()
{
 int kappa =7;
 foo (kappa,bar.str);
}
/* CENTRY */
foo (integer, cstring)
int integer;
char *cstring;
{
 if (integer==1) printf("%s",cstring);
} /* ENDCENTRY */

Example 3-21 illustrates the use of extcentry. It shows the C file foo.c
containing the function foo, which is to be made Fortran callable.

Calling C from Fortran

 53

The special comments /* CENTRY */ and /* ENDCENTRY */ surround the
section that is to be made Fortran callable. To generate the assembly
language wrapper foowrp.s from the above file foo.c, use the following set of
commands:

% extcentry foo.c foowrp.fc

% mkf2c foowrp.fc foowrp.s

The programs mkf2c and extcentry are found in the directory /usr/bin.

Makefile Considerations

make(1) contains default rules to help automate the control of wrapper
generation. The following example of a makefile illustrates the use of these
rules. In the example, an executable object file is created from the files main.f
(a Fortran main program) and callc.c:

test: main.o callc.o
 f77 -o test main.o callc.o
callc.o: callc.fc
clean:
 rm -f *.o test *.fc

In this program, main calls a C routine in callc.c. The extension .fc has been
adopted for Fortran-to-call-C wrapper source files. The wrappers created
from callc.fc will be assembled and combined with the binary created from
callc.c. Also, the dependency of callc.o on callc.fc will cause callc.fc to be
recreated from callc.c whenever the C source file changes. (The programmer
is responsible for placing the special comments for extcentry in the C source
as required.)

Note: Options to mkf2c can be specified when make is invoked by setting the
make variable F2CFLAGS. Also, do not create a .fc file for the modules that
need wrappers created. These files are both created and removed by make in
response to the file.o:file.fc dependency.

54

Chapter 3: Fortran Program Interfaces

The makefile above controls the generation of wrappers and Fortran objects.
You can add modules to the executable object file in one of the following
ways:

• If the file is a native C file whose routines are not to be called from
Fortran using a wrapper interface, or if it is a native Fortran file, add the
.o specification of the final make target and dependencies.

• If the file is a C file containing routines to be called from Fortran using a
wrapper interface, the comments for extcentry must be placed in the C
source, and the .o file placed in the target list. In addition, the
dependency of the .o file on the .fc file must be placed in the makefile.
This dependency is illustrated in the example makefile above where
callf.o depends on callf.fc.

 55

Chapter 4

4. System Functions and Subroutines

This chapter describes extensions to Fortran 77 that are related to the IRIX
compiler and operating system.

• “Library Functions” summarizes the Fortran run-time library
functions.

• “Extended Intrinsic Subroutines” describes the extensions to the
Fortran intrinsic subroutines.

• “Extended Intrinsic Functions” describes the extensions to the Fortran
functions.

Library Functions

The Fortran library functions provide an interface from Fortran programs to
the IRIX system functions. System functions are facilities that are provided
by the IRIX system kernel directly, as opposed to functions that are supplied
by library code linked with your program. System functions are
documented in volume 2 of the reference pages, with an overview in the
intro(2) reference page.

Table 4-1 summarizes the functions in the Fortran run-time library. In
general, the name of the interface routine is the same as the name of the
system function as it would be called from a C program. For details on any
function use the command

man 2 name_of_function

Note: You must declare the time function as EXTERNAL; if you do not, the
compiler will assume you mean the VMS-compatible intrinsic time function
rather than the IRIX system function. (In general it is a good idea to declare
any library function in an EXTERNAL statement as documentation.)

56

Chapter 4: System Functions and Subroutines

Table 4-1 Summary of System Interface Library Routines

Function Purpose

abort abnormal termination

access determine accessibility of a file

acct enable/disable process accounting

alarm execute a subroutine after a specified time

barrier perform barrier operations

blockproc block processes

brk change data segment space allocation

chdir change default directory

chmod change mode of a file

chown change owner

chroot change root directory for a command

close close a file descriptor

creat create or rewrite a file

ctime return system time

dtime return elapsed execution time

dup duplicate an open file descriptor

etime return elapsed execution time

exit terminate process with status

fcntl file control

fdate return date and time in an ASCII string

fgetc get a character from a logical unit

fork create a copy of this process

fputc write a character to a Fortran logical unit

free_barrier free barrier

Library Functions

 57

fseek reposition a file on a logical unit

fseek64 reposition a file on a logical unit for 64-bit architecture

fstat get file status

ftell reposition a file on a logical unit

ftell64 reposition a file on a logical unit for 64-bit architecture

gerror get system error messages

getarg return command line arguments

getc get a character from a logical unit

getcwd get pathname of current working directory

getdents read directory entries

getegid get effective group ID

gethostid get unique identifier of current host

getenv get value of environment variables

geteuid get effective user ID

getgid get user or group ID of the caller

gethostname get current host ID

getlog get user’s login name

getpgrp get process group ID

getpid get process ID

getppid get parent process ID

getsockopt get options on sockets

getuid get user or group ID of caller

gmtime return system time

iargc return command line arguments

Table 4-1 (continued) Summary of System Interface Library Routines

Function Purpose

58

Chapter 4: System Functions and Subroutines

idate return date or time in numerical form

ierrno get system error messages

ioctl control device

isatty determine if unit is associated with tty

itime return date or time in numerical form

kill send a signal to a process

link make a link to an existing file

loc return the address of an object

lseek move read/write file pointer

lseek64 move read/write file pointer for 64-bit architecture

lstat get file status

ltime return system time

m_fork create parallel processes

m_get_myid get task ID

m_get_numprocs get number of subtasks

m_kill_procs kill process

m_lock set global lock

m_next return value of counter

m_park_procs suspend child processes

m_rcle_procs resume child processes

m_set_procs set number of subtasks

m_sync synchronize all threads

m_unlock unset a global lock

mkdir make a directory

Table 4-1 (continued) Summary of System Interface Library Routines

Function Purpose

Library Functions

 59

mknod make a directory/file

mount mount a filesystem

new_barrier initialize a barrier structure

nice lower priority of a process

open open a file

oserror get/set system error

pause suspend process until signal

perror get system error messages

pipe create an interprocess channel

plock lock process, test, or data in memory

prctl control processes

profil execution-time profile

ptrace process trace

putc write a character to a Fortran logical unit

putenv set environment variable

qsort quick sort

read read from a file descriptor

readlink read value of symbolic link

rename change the name of a file

rmdir remove a directory

sbrk change data segment space allocation

schedctl call to scheduler control

send send a message to a socket

setblockproccnt set semaphore count

Table 4-1 (continued) Summary of System Interface Library Routines

Function Purpose

60

Chapter 4: System Functions and Subroutines

setgid set group ID

sethostid set current host ID

setoserror set system error

setpgrp set process group ID

setsockopt set options on sockets

setuid set user ID

sginap put process to sleep

sginap64 put process to sleep in 64-bit environment

shmat attach shared memory

shmdt detach shared memory

sighold raise priority and hold signal

sigignore ignore signal

signal change the action for a signal

sigpause suspend until receive signal

sigrelse release signal and lower priority

sigset specify system signal handling

sleep suspend execution for an interval

socket create an endpoint for communication TCP

sproc create a new share group process

stat get file status

stime set time

symlink make symbolic link

sync update superblock

sysmp control multiprocessing

Table 4-1 (continued) Summary of System Interface Library Routines

Function Purpose

Library Functions

 61

sysmp64 control multiprocessing in 64-bit environment

system issue a shell command

taskblock block tasks

taskcreate create a new task

taskctl control task

taskdestroy kill task

tasksetblockcnt set task semaphore count

taskunblock unblock task

time return system time (must be declared EXTERNAL)

ttynam find name of terminal port

uadmin administrative control

ulimit get and set user limits

ulimit64 get and set user limits in 64-bit architecture

umask get and set file creation mask

umount dismount a file system

unblockproc unblock processes

unlink remove a directory entry

uscalloc shared memory allocator

uscalloc64 shared memory allocator in 64-bit environment

uscas compare and swap operator

usclosepollsema detach file descriptor from a pollable semaphore

usconfig semaphore and lock configuration operations

uscpsema acquire a semaphore

uscsetlock unconditionally set lock

Table 4-1 (continued) Summary of System Interface Library Routines

Function Purpose

62

Chapter 4: System Functions and Subroutines

usctlsema semaphore control operations

usdumplock dump lock information

usdumpsema dump semaphore information

usfree user shared memory allocation

usfreelock free a lock

usfreepollsema free a pollable semaphore

usfreesema free a semaphore

usgetinfo exchange information through an arena

usinit semaphore and lock initialize routine

usinitlock initialize a lock

usinitsema initialize a semaphore

usmalloc allocate shared memory

usmalloc64 allocate shared memory in 64-bit environment

usmallopt control allocation algorithm

usnewlock allocate and initialize a lock

usnewpollsema allocate and initialize a pollable semaphore

usnewsema allocate and initialize a semaphore

usopenpollsem attach a file descriptor to a pollable semaphore

uspsema acquire a semaphore

usputinfo exchange information through an arena

usrealloc user share memory allocation

usrealloc64 user share memory allocation in 64-bit environment

ussetlock set lock

ustest lock test lock

Table 4-1 (continued) Summary of System Interface Library Routines

Function Purpose

Extended Intrinsic Subroutines

 63

Extended Intrinsic Subroutines

This section describes the intrinsic subroutines that are extensions to Fortran
77 (the intrinsic functions that are standard to Fortran 77 are documented in
Appendix A of the MIPSpro Fortran 77 Language Reference Manual). The rules
for using the names of intrinsic subroutines are also discussed in that
appendix.

Table 4-2 gives an overview of the intrinsic subroutines and their function;
they are described in detail in the sections following the topics.

ustestsema return value of semaphore

ustrace trace

usunsetlock unset lock

usvsema free a resource to a semaphore

uswsetlock set lock

wait wait for a process to terminate

write write to a file

Table 4-2 Overview of System Subroutines

Subroutine Information Returned

DATE Current date as nine-byte string in ASCII representation

IDATE Current month, day, and year, each represented by a separate integer

ERRSNS Description of the most recent error

EXIT Terminates program execution

TIME Current time in hours, minutes, and seconds as an eight-byte string in
ASCII representation

MVBITS Moves a bit field to a different storage location

Table 4-1 (continued) Summary of System Interface Library Routines

Function Purpose

64

Chapter 4: System Functions and Subroutines

DATE

The DATE routine returns the current date as set by the system; the format
is as follows:

CALL DATE (buf)

where buf is a variable, array, array element, or character substring nine
bytes long. After the call, buf contains an ASCII variable in the format
dd-mmm-yy, where dd is the date in digits, mmm is the month in alphabetic
characters, and yy is the year in digits.

IDATE

The IDATE routine returns the current date as three integer values
representing the month, date, and year; the format is as follows:

CALL IDATE (m, d, y)

where m, d, and y are either INTEGER*4 or INTEGER*2 values representing
the current month, day and year. For example, the values of m, d, and y on
August 10, 1989, are

m = 8
d = 10
y = 89

ERRSNS

The ERRSNS routine returns information about the most recent program
error; the format is as follows:

CALL ERRSNS (arg1, arg2, arg3, arg4, arg5)

Extended Intrinsic Subroutines

 65

The arguments (arg1, arg2, and so on) can be either INTEGER*4 or
INTEGER*2 variables. On return from ERRSNS, the arguments contain the
information shown in Table 4-3.

Although only arg1 and arg4 return relevant information, arg2, arg3, and arg5
are always required.

EXIT

The EXIT routine causes normal program termination and optionally
returns an exit-status code; the format is as follows:

CALL EXIT (status)

where status is an INTEGER*4 or INTEGER*2 argument containing a status
code.

TIME

The TIME routine returns the current time in hours, minutes, and seconds;
the format is as follows:

CALL TIME (clock)

where clock is a variable, array, array element, or character substring; it must
be eight bytes long. After execution, clock contains the time in the format

Table 4-3 Information Returned by ERRSNS

Argument Contents

arg1 IRIX global variable errno, which is then reset to zero after the call

arg2 Zero

arg3 Zero

arg4 Logical unit number of the file that was being processed when the
error occurred

arg5 Zero

66

Chapter 4: System Functions and Subroutines

hh:mm:ss, where hh, mm, and ss are numerical values representing the hour,
the minute, and the second.

MVBITS

The MVBITS routine transfers a bit field from one storage location to
another; the format is as follows:

CALL MVBITS (source, sbit, length, destination, dbit)

Table 4-4 defines the arguments. Arguments can be declared as INTEGER*2,
INTEGER*4, or INTEGER*8.

Table 4-4 Arguments to MVBITS

Argument Type Contents

source Integer variable or array element Source location of bit field to be
transferred.

sbit Integer expression First bit position in the field to be
transferred from source.

length Integer expression Length of the field to be transferred
from source.

destination Integer variable or array element Destination location of the bit field

dbit Integer expression First bit in destination to which the
field is transferred.

Extended Intrinsic Functions

 67

Extended Intrinsic Functions

Table 4-5 gives an overview of the intrinsic functions added as extensions of
Fortran 77.

These functions are described in detail in the following sections.

SECNDS

SECNDS is an intrinsic routine that returns the number of seconds since
midnight, minus the value of the passed argument; the format is as follows:

s = SECNDS(n)

After execution, s contains the number of seconds past midnight less the
value specified by n. Both s and n are single-precision, floating point values.

RAN

RAN generates a pseudo-random number. The format is as follows:

v = RAN(s)

The argument s is an INTEGER*4 variable or array element. This variable
serves as a seed in determining the next random number. It should initially
be set to a large, odd integer value. You can compute multiple random
number series by supplying different variables or array elements as the seed
argument to different calls of RAN.

Table 4-5 Function Extensions

Function Information Returned

SECNDS Elapsed time as a floating point value in seconds. This is an
intrinsic routine.

RAN The next number from a sequence of pseudo-random numbers.
This is not an intrinsic routine.

68

Chapter 4: System Functions and Subroutines

Note: Because RAN modifies the argument s, calling the function with a
constant can cause a core dump.

The algorithm used in RAN is the linear congruential method. The code is
similar to the following fragment:

S = S * 1103515245L + 12345
RAN = FLOAT(IAND(RSHIFT(S,16),32767))/32768.0

RAN is supplied for compatibility with VMS. For demanding applications,
consider using the functions described in the random(3b) reference page.
These can all be called using techniques described under “Using %VAL” on
page 45.

 69

Chapter 5

5. Scalar Optimizations

This chapter contains the following sections:

• “Overview” provides an overview of the scalar optimization command
line options.

• “Performing General Optimizations” describes the general scalar
optimizations you can enable from the command line.

• “Performing Advanced Optimizations” describes the advanced scalar
optimizations you can enable from the command line.

Overview

You can use the compiler to perform various scalar optimizations by
specifying any of the options listed in Table 5-1 from the command line.
Specify the options in a comma-separated list following the –WK option
without any intervening blanks, as follows:

% f77 f77options -WK, option[, option] ... file

Note: These options specifically control optimizations performed by the
Fortran front end. The defaults are usually sufficient. You should use these
options when trying to improve the last bit of performance of your code.

70

Chapter 5: Scalar Optimizations

You can also initiate many of these optimizations with compiler directives
(see Chapter 9, “Fine-Tuning Program Execution.”)

The –On option directly initiates basic optimizations. Refer to Chapter 1,
“Compiling, Linking, and Running Programs” for details.

Table 5-1 Optimization Options

Long Name Short Name Default Value

–aggressive=letter –ag=letter option off

–arclimit=integer –arclm=integer 5000

–[no]assume=list –[n]as=list CEL

–cacheline=integer –chl=integer 4

–cachesize=integer –chs=integer 256

–[no]directives=list –[n]dr=list ackpv

–dpregisters=integer –dpr=integer 16

–each_invariant_if_growth=integer –eiifg=integer 20

–fpregisters=integer –fpr=integer 16

–fuse –fuse option on with –scalaropt=2
or –optimize=5

–max_invariant_if_growth=integer –miifg=integer 500

–optimize=integer –o=integer depends on –O option

–recursion –rc option on

–roundoff=integer –r=integer depends on –O option

–scalaropt=integer –so=integer depends on –O option

–setassociativity=integer –sasc=integer 1

–unroll=integer –ur=integer 4

–unroll2=weight –ur2=weight 100

Performing General Optimizations

 71

Performing General Optimizations

This section discusses the general optimizations that you can enable.

Enabling Loop Fusion

The –fuse option enables loop fusion, an optimization that transforms two
adjacent loops into a single loop. The use of data-dependence tests allows
fusion of more loops than is possible with standard techniques. You must
also specify –scalaropt=2 or –optimize=5 to enable loop fusion.

Controlling Global Assumptions

The –assume=list option (or –as=list) controls certain global assumptions of
a program. You can also control most of these assumptions with various
assertions (see “Controlling Global Assumptions” in Chapter 5). The default
is –assume=cel.

list can contain the following characters:

a Allows procedure argument aliasing, which is when
different subroutine or function parameters refer to the
same object. This practice is forbidden by the Fortran 77
standard. This option provides a method of dealing with
programs that use argument aliasing anyway.

b Allows array subscripts to go outside the declared bounds.

c Places constants used in subroutine or function calls in
temporary variables.

e Allows variables in EQUIVALENCE statements to refer to
the same memory location inside one DO loop nest.

l Uses temporary variables within an optimized loop and
assigns the last value to the original scalar, if the compiler
determines that the scalar can be reused before it is
assigned.

72

Chapter 5: Scalar Optimizations

By default, the compiler assumes that a program conforms to the Fortran 77
standard, that is, –assume=el, and includes –asssume=c to simplify some
analysis and inlining. You can disable the default values by specifying the
–noassume option.

Example

The following command compiles the Fortran program source.f, and
permits argument aliasing and subscripts out of bounds:

% f77 -WK,-assume=ab source.f

Setting Invariant IF Floating Limits

When a loop contains an IF statement whose condition does not change from
one iteration to another (loop-invariant), the compiler performs the same
test for every iteration. The code can often be made more efficient by floating
the IF statement out of the loop and putting the THEN and ELSE sections
into their own loops. This process is called invariant IF floating.

The –each_invariant_if_growth and the –max_invariant_if_growth options
control limits on invariant IF floating. This process generally involves
duplicating the body of the loop, which can increase the amount of code
considerably.

The –each_invariant_if_growth=integer option (or –eiifg=integer) controls
the rewriting of IF statements nested within loops. This option specifies a
limit on the number of executable statements in a nested IF statement. If the
number of statements in the loop exceeds this limit, the compiler does not
rewrite the code. If there are fewer statements, the compiler improves
execution speed by interchanging the loop and IF statements.

Valid values for integer are from 0 to 100; the default is 20.

This process becomes complicated when there is other code in the loop, since
a copy of the other code must be included in both the THEN and ELSE
loops.

Performing General Optimizations

 73

For example, the following code:

DO I = ...
 section-1
 IF () THEN
 section-2
 ELSE
 section-3
 ENDIF
 section-4
ENDDO

becomes

IF () THEN
 DO I = ...
 section-1
 section-2
 section-4
 ENDDO
ELSE
 DO I = ...
 section-1
 section-3
 section-4
 ENDDO
ENDIF

When sections 1 and 4 are large, the extra code generated can slow a
program down (through cache contention, extra paging, and so on) more
than the reduced number of IF tests speed it up. The
–each_invariant_if_growth option provides a maximum size (in number of
lines of executable code) of sections 1 and 4, below which the compiler will
try to float an invariant IF statement outside a loop.

This can be controlled on a loop-by-loop basis with the C*$*
EACH_INVARIANT_IF_GROWTH (integer) directive within the source
(see “Setting Invariant IF Floating Limits” in Chapter 9).

You can limit the total amount of additional code generated in a program
unit through invariant IF floating by specifying the
–max_invariant_if_growth option.

74

Chapter 5: Scalar Optimizations

The –max_invariant_if_growth=integer option (or –miifg=integer) specifies
an upperbound on the total number of additional lines of code the compiler
can generate in each program unit through invariant IF floating. This limit is
applied on a per subroutine basis. For example, if a subroutine is 400 lines
long and –miifg=500, the compiler can add at most 100 lines in the process
of invariant IF floating. The default for integer is 500.

Note: Other compiler optimizations can add or delete lines, so the final
number of lines might differ from the value specified with –miifg.

This can be controlled on a loop-by-loop basis with the C*$*
MAX_INVARIANT_IF_GROWTH (integer) directive within the source (see
“Setting Invariant IF Floating Limits” in Chapter 9).

Setting the Optimization Level

The –optimize=integer option (or –o=integer) sets the optimization level.
Each optimization level is cumulative (that is, level 5 performs everything
up to and including level 5). You can also modify the optimization level on
a loop-by-loop basis by using the C*$* OPTIMIZE(integer) directive within
the source (see “Optimization Level” in Chapter 9).

Valid values for integer are:

fe0 Disables optimization.

1 Performs only simple optimizations. Enables induction
variable recognition.

2 Performs lifetime analysis to determine when last-value
assignment of scalars is necessary.

3 Recognizes triangular loops and attempts loop
interchanging to improve memory referencing. Uses special
case data dependence tests. Also, recognizes special index
sets called wrap-around variables.

4 Generates two versions of a loop, if necessary, to break a
data dependence arc.

5 Enables array expansion and loop fusion.

Performing General Optimizations

 75

There is no default value for this option. If you do not specify it, this option
can still be in effect through the –O option.

Although higher optimization levels increase performance, they also
increase compilation time.

The output of following example is described for –optimize=1,
–optimize=2, and –optimize=5 to illustrate the range of this option. (This
example also uses –minconcurrent=0.)

 ASUM = 0.0
 DO 10 I = 1,M
 DO 10 J = 1,N
 ASUM = ASUM + A(I,J)
 C(I,J) = A(I,J) + 2.0
10 CONTINUE

At –optimize=1, the compiler sees the summation in ASUM as an
intractable data dependence between iterations and does not try to optimize
the loop. At –optimize=2 (perform lifetime analysis and do not interchange
around reduction):

 ASUM = 0.
C$DOACROSS SHARE(M,N,A,C),LOCAL(I,J),REDUCTION(ASUM)
 DO 3 I=1,M
 DO 2 J=1,N
 ASUM = ASUM + A(I,J)
 C(I,J) = 2. + A(I,J)
 2 CONTINUE
 3 CONTINUE

Specifying –optimize=5 (loop interchange around reduction to improve
memory referencing) produces the following:

 ASUM = 0.
C$DOACROSS SHARE(N,M,A,C),LOCAL(J,I),REDUCTION(ASUM)
 DO 3 J=1,N
 DO 2 I=1,M
 ASUM = ASUM + A(I,J)
 C(I,J) = 2. + A(I,J)
 2 CONTINUE
 3 CONTINUE

76

Chapter 5: Scalar Optimizations

Controlling Variations in Round Off

The –roundoff=integer option (or –r=integer) controls the amount of
variation in round-off error produced by optimization. If an arithmetic
reduction is accumulated in a different order than in the scalar program, the
round-off error is accumulated differently and the final result might differ
from the output of the original program. Although the difference is usually
insignificant, certain restructuring transformations performed by the
compiler must be disabled to obtain exactly the same answers as the scalar
program.

The values you can specify for integer are cumulative. For example,
–roundoff=3 performs what is described for level 3, in addition to what is
listed for the previous levels. Valid values for integer are

0 Suppresses any transformations that change round-off
error.

1 Performs expression simplification, which might generate
various overflow or underflow errors, for expressions with
operands between binary and unary operators, expressions
that are inside trigonometric intrinsic functions returning
integer values, and after forward substitution. Enables
strength reduction. Performs intrinsic function
simplification for max and min. Enables code floating if
–scalaropt is at least 1. Allows loop interchanging around
serial arithmetic reductions, if –optimize is at least 4.
Allows loop rerolling, if –scalaropt is at least 2.

2 Allows loop interchanging around arithmetic reductions if
–optimize is at least 4. For example, the floating point
expression A/B/C is computed as A/(B*C).

3 Recognizes REAL (float) induction variables if –scalaropt
greater than 2 or–optimize is at least 1. Enables sum
reductions. Enables memory management optimizations if
–scalaropt=3 (see “Performing Memory Management
Transformations” on page 84 for details about memory
management transformations).

There is no default value for this option. If you do not specify it, this option
can still be in effect through the –O option.

Performing General Optimizations

 77

Example

Consider the following code segment:

 ASUM = 0.0
 DO 10 I = 1,M
 DO 10 J = 1,N
 ASUM = ASUM + A(I,J)
 C(I,J) = A(I,J) + 2.0
 10 CONTINUE

When –roundoff=1, the compiler does not transform the summation
reduction. The compiler distributes the loop.

 ASUM = 0.
 DO 2 J=1,N
 DO 2 I=1,M
 ASUM = ASUM + A(I,J)
 2 CONTINUE
 DO 3 J=1,N
 DO 3 I=1,M
 C(I,J) = A(I,J) + 2.
 3 CONTINUE

When –roundoff=2 and –optimize=5, (reduction variable identification and
loop interchange around arithmetic reduction) the original code becomes:

 ASUM = 0.
 DO 10 J=1,N
 DO 2 I=1,M
 ASUM = ASUM + A(I,J)
 C(I,J) = A(I,J) + 2.
 2 CONTINUE
 10 CONTINUE

When –roundoff=3 and –optimize=5, the compiler recognizes REAL
induction variables. In this example, the compiler performs forward
substitution of the transformed induction variable X.

78

Chapter 5: Scalar Optimizations

The following code:

 ASUM = 0.0
 X = 0.0
 DO 10 I = 1,N
 ASUM = ASUM + A(I)*COS(X)
 X = X + 0.01
 10 CONTINUE

 becomes

 ASUM = 0.
 X = 0.
 DO 10 I=1,N
 ASUM = ASUM + A(I) * COS ((I - 1) * 0.01)
 10 CONTINUE

Controlling Scalar Optimizations

The –scalaropt=integer option (or –so=integer) controls the level of scalar
optimizations that the compiler performs. Valid values for integer are

0 Disables all scalar optimizations.

1 Enables simple scalar optimizations—dead code
elimination, global forward substitution of variables, and
conversion of IF-GOTO to IF-THEN-ELSE.

2 Enables the full range of scalar optimizations— floating
invariant IF statements out of loops, loop rerolling and
unrolling (if –roundoff is greater than zero), array
expansion, loop fusion, loop peeling, and induction
variable recognition.

3 Enables memory management transformations if
–roundoff=3 (see “Performing Memory Management
Transformations” on page 84 for details about memory
management transformations). Performs dead-code
elimination during output conversion.

There is no default value for this option. If you do not specify it, this option
can still be in effect through the –O option.

Performing General Optimizations

 79

Unlike the –scalaropt command line option, the C*$* SCALAR OPTIMIZE
directive sets the level of loop-based optimizations (for example, loop
fusion) only, and not straight-code optimizations (for example, dead-code
elimination). Refer to “Controlling Scalar Optimizations” in Chapter 9 for
details about the C*$* SCALAR OPTIMIZE directive.

Using Vector Intrinsics

The nine intrinsic functions ASIN, ACOS, ATAN, COS, EXP, LOG, SIN, TAN
and SQRT have a scalar (element by element) version and a special version
optimized for vectors. When you use -O3 optimization, the compiler uses
the vector versions if it can. On the MIPS R8000 and R10000 processors, the
vector function is significantly faster than the scalar version, but has a few
restrictions on use.

Finding Vector Intrinsics

To apply the vector intrinsics, the compiler searches for loops of the
following form:

real a(10000), b(10000)
do j = 1, 1000

b(2*j) = sin(a(3*j))
enddo

The compiler can recognize the eight functions ASIN, ACOS, ATAN, COS,
EXP, LOG, SIN, and TAN when they are applied between elements of named
variables in a loop (SQRT is not recognized automatically). The compiler
automatically replaces the loop with a single call to a special, vectorized
version of the function.

80

Chapter 5: Scalar Optimizations

The compiler cannot use the vector intrinsic when the input is based on a
temporary result or when the output replaces the input. In the following
example, only certain functions can be vectorized.

real a(400,400), b(400,400), c(400,400), d(400,400)
call xx(a,b,c,d)
do j = 100,300,2

do i = 100, 300,3
a(i,j) = 1.23*i + a(i,j)
b(i,j) = sin(a(i,j) + 1.0)
a(i,j) = log(a(i,j))
c(i,j) = sin(c(i,j)) / cos(d(i,j))
d(i+30,j-10) = tan(d(j,i))

enddo
enddo
call xx(a,b,c,d)
end

In the preceding function,

• The first SIN call is applied to a temporary value and cannot be
vectorized

• The LOG call can be vectorized

• Results from the second SIN call and first COS call are used in
temporary expressions and cannot be vectorized

• The TAN call can be vectorized

Limitations of the Vector Intrinsics

The vector intrinsics are limited in the following ways:

• The SQRT function is not used automatically in the current release (but
it can be called directly; see “Calling Vector Functions Directly” on
page 81).

• The single-precision COS, SIN, and TAN functions are valid only for
arguments whose absolute value is less than or equal to 2**28.

• The double-precision COS, SIN and TAN functions are valid only for
arguments whose absolute value is less than or equal to PI*219.

Performing General Optimizations

 81

The vector functions assume that the input and output arrays either coincide
completely, or do not overlap. They do not check for partial overlap, and will
produce unpredictable results if it occurs .

Disabling Vector Intrinsics

If you need to disable use of vector intrinsics while still compiling at -O3
level, you can do so. Specify the option -OPT:vector_intrinsics=OFF.

f77 -64 -mips4 -O3 -OPT:vector_intrinsics=OFF trig.f

Calling Vector Functions Directly

The vector intrinsic functions are C functions that can be called directly
using the techniques discussed under “Calls to C Using LOC%, REF% and
VAL%” on page 45. The prototype of one function is as follows:

__vsinf(void*from, void*dest, int count, int fromstride, int deststride)

Note the two leading underscore characters in the name. The arguments are

For example, the compiler converts a loop of this form:

real a(10000), b(10000)
do j = 1, 1000

b(2*j) = sin(a(3*j))
enddo

into nonlooping code of this form:

real a(10000), b(10000)
call __VSINF$(%REF(A(1)),%REF(A(2)),%VAL(1000),%VAL(3),%VAL(2))

from Address of the first element of the source array

dest Address of first element of destination array

count Number of elements to process

fromstride Number of elements to advance in the source array

deststride Number of elements to advance in the destination array

82

Chapter 5: Scalar Optimizations

All the vector intrinsic functions have the same prototype as the one shown
above for __vsinf. The names of the available vector functions are shown in
Table 5-2.

Performing Advanced Optimizations

This section describes advanced optimization techniques you can use to
obtain maximum performance.

Using Aggressive Optimization

The –aggressive=letter option (or –ag=letter) performs optimizations that are
normally forbidden. When using this option, your program must be a single
file, so that the compiler can analyze all of it simultaneously.

The only available value for letter is a, which instructs the compiler to add
padding to Fortran COMMON blocks. This optimization provides
favorable alignments of the virtual addresses. This option does not have a
default value.

% f77 -WK,-ag=a program.f

Table 5-2 Vector Intrinsic Function Names

Operation REAL*4 Function Name REAL*8 Function Name

acos __vacosf __vacos

asin __vasinf __vasin

atan __vatanf __vatan

cos __vcosf __vcos

exp __vexpf __vexp

log __vlogf __vlog

sin __vsinf __vsin

sqrt __vsqrtf __vsqrt

tan __vtanf __vtan

Performing Advanced Optimizations

 83

For example, on a machine with a 64-kilobyte direct-mapped cache, a
COMMON definition such as:

COMMON /alpha/ a(128,128),b(128,128),c(128,128)

can degrade performance if your program contains the following statement:

a(i,j) = b(i,j) * c(i,j)

All three of the arrays a, b, and c have the same starting virtual address
modulo the cache size, and so every access to the array elements causes a
cache miss. It would be much better to add some padding between each of
the arrays to force the virtual addresses to be different. The –aggressive=a
option does exactly this. Unfortunately, this transformation is not always
possible. Fortran allows different routines to have different definitions of
COMMON. If some other routine contained the definition

COMMON /alpha/ scratch(49152)

the compiler could not arbitrarily add padding. Therefore, when using this
option the entire program must be in a single source file, so the compiler can
check for this sort of occurrence.

Controlling Internal Table Size

The –arclimit=integer option (or –arclm=integer) sets the size of the internal
table that the compiler uses to store data dependence information. The
default value for integer is 5000.

The compiler dynamically allocates the dependence data structure on a
loop-nest-by-loop-nest basis. If a loop contains too many dependence
relationships and cannot be represented in the dependence data structure,
the compiler will stop analyzing the loop. Increasing the value of –arclimit
allows the compiler to analyze larger loops.

Note: The number of data dependencies (and the time required to do the
analysis) is potentially non-linear in the length of the loop. Very long loops
(several hundred lines) may be impossible to analyze regardless of the value
of –arclimit.

84

Chapter 5: Scalar Optimizations

You can use the –arclimit option to increase the size of the data structure to
enable the compiler to perform more optimizations. (Most users do not need
to change this value.)

Performing Memory Management Transformations

Memory management transformations are advanced optimizations you can
enable by specifying options along with the –WK option.

Memory Management Techniques

When both –roundoff and –scalaropt are set to 3, the compiler attempts to
perform outer loop unrolling (to improve register utilization) and automatic
loop blocking (to improve cache utilization).

Normal loop unrolling (enabled with the –unroll and –unroll2 options)
applies to the innermost loop in a nest of loops. In outer loop unrolling, one
of the other loops (typically the next innermost) is unrolled. In certain
situations, this technique (also called “unroll and jam”) can greatly improve
the register utilization.

Loop blocking is a transformation that can be applied when the loop nesting
depth is greater than the dimensions of the data arrays being manipulated.
For example, the simple matrix multiply uses a nest of three loops operating
on two-dimensional arrays. The simple approach repeatedly sweeps across
the entire arrays. A better approach is to break the arrays up into blocks, each
block being small enough to fit into the cache, and then make repeated
sweeps over each (in cache) block. (This technique is also sometimes called
“tiles” or “tiling.”) However, the code needed to implement a block style
algorithm is often very complex and messy. This automatic transformation
allows you to write the simpler method, and have the compiler transform it
into the more complex and efficient block method.

Memory Management Options

The compiler recognizes the following memory management command line
options when specified with the -WK option:

• –cacheline specifies the width of the memory channel between cache
and main memory.

Performing Advanced Optimizations

 85

• –cachesize specifies the data cache size.

• –fpregisters specifies an unrolling factor.

• –dpregisters ensures that registers do not overflow during loop
unrolling.

• –setassociativity specifies which memory management transformation
to use.

The –cacheline=integer option (or –chl=integer) specifies the width of the
memory channel, in bytes, between the cache and main memory. The default
value for integer is 4. Refer to Table 5-3 for the recommended setting for your
machine.

The –cachesize=integer option (or –chs=integer) specifies the size of the data
cache, in kilobytes, for which to optimize. The default value for integer is 256
kilobytes. Refer to Table 5-3 for the recommended setting for your machine.
You can obtain the cache size for a given machine with the hinv(1) command.
This option is generally useful only in conjunction with the other memory
management transformations.

The –setassociativity=integer option (or –sasc=integer) provides information
on the mapping of physical addresses in main memory to cache pages. The
default value for integer, 1, says a datum in main memory can be put in only
one place in the cache. If this cache page is already in use, its contents must
be rewritten or flushed so that the newly-accessed page can be copied into
the cache. SGI recommends you set this value to 1 for all machines, except
the POWER CHALLENGE series, where you should set it to 4.

Table 5-3 Recommended Cache Option Settings

Machine Cacheline Value Cache Size Value

POWER Series 4D/100 16 64

POWER Series 4D/200 64 64

R4000 (including Crimson™ and
Indigo2™)

16 8

CHALLENGE™ and POWER
CHALLENGE™ Series

128 16

86

Chapter 5: Scalar Optimizations

The –dpregisters=integer option (or –dpr=integer) specifies the number of
DOUBLE PRECISION registers each processor has. The –fpregisters option
(or –fpr=integer) specifies the number of single precision (that is, ordinary
floating point) registers each processor has.

Silicon Graphics recommends you specify the same value for both
–dpregisters and –fpregisters. The default values for integer are 16 for both
options. When compiled in 32-bit mode, SGI recommends that you do not
specify 16, although that is what the hardware supports. It is better to specify
a smaller value for integer, like 12, to provide extra registers in case the
compiler needs them. In 64-bit mode, where the hardware supports 32
registers, specify 28 for integer.

Enabling Loop Unrolling

The –unroll and the –unroll2 options control how the compiler unrolls
scalar loops. When loops cannot be optimized for concurrent execution, loop
execution is often more efficient when the loops are unrolled. (Fewer
iterations with more work per iteration require less overhead overall.) You
must also specify –scalaropt= 2 when using these options.

The –unroll=integer (or –ur=integer) option directs the compiler to unroll
inner loops. integer specifies the number of times to replicate the loop. The
default value is 4.

0 Uses default values to unroll.

1 Disables unrolling.

2-n Unrolls at most, this many iterations.

The –unroll2=weight (or –ur2=weight) option specifies an upper bound on
the number of operations in a loop when unrolling it with the –unroll
option. The default value for weight is 100. The compiler unrolls an inner
loop until the number of operations (the amount of work) in the unrolled
loop is close to this upper bound, or until the number of iterations specified
in the –unroll option is reached, whichever occurs first.

Performing Advanced Optimizations

 87

For the –unroll2 option the compiler analyzes a given loop by computing an
estimate of the computational work that is inside the loop for one iteration.
This rough estimate is obtained by adding the number of:

• assignments

• IF statements

• subscripts

• arithmetic operations

The following example uses the C*$* UNROLL directive (see “Enabling
Loop Unrolling” in Chapter 9) to specify 8 for the maximum number of
iterations to unroll and 100 for the maximum “work per unrolled iteration.”
(This is equivalent to specifying –WK,–unroll=8,–unroll2=100.)

C*$*UNROLL(8,100)
 DO 10 I = 2,N
 A(I) = B(I)/A(I-1)
 10 CONTINUE

 This example has:

1 assignment
0 IF statements
3 subscripts
2 arithmetic operators

6 is the weighted sum (the work for 1 iteration)

This weighted sum is then divided into 100 to give a potential unrolling
factor of 16. However, the example has also specified 8 for the maximum
number of unrolled iterations. The compiler takes the minimum of the two
values (8) and unrolls that many iterations. (The maximum number of
iterations the compiler unrolls is 100.)

88

Chapter 5: Scalar Optimizations

In this case (an unknown number of iterations), the compiler generates two
loops - the primary unrolled loop and a cleanup loop to ensure that the
number of iterations in the main loop is a multiple of the unrolling factor.
The result is the following:

 INTEGER I1
C*$*UNROLL(8,100)
 I1 = MOD (N - 1, 8)
 DO 2 I=2,I1+1
 A(I) = B(I) / A(I-1)
 2 CONTINUE
 DO 10 I=I1+2,N,8
 A(I) = B(I)/A(I-1)
 A(I+1) = B(I+1) / A(I)
 A(I+2) = B(I+2) / A(I+1)
 A(I+3) = B(I+3) / A(I+2)
 A(I+4) = B(I+4) / A(I+3)
 A(I+5) = B(I+5) / A(I+4)
 A(I+6) = B(I+6) / A(I+5)
 A(I+7) = B(I+7) / A(I+6)
 10 CONTINUE

Recognizing Directives

The –directives=list option (or –dr=list) specifies which type of directives to
accept. list can contain any combination of the following values:

a Accepts Silicon Graphics C*$* ASSERT assertions.

c Accepts Cray CDIR$ directives.

k Accepts Silicon Graphics C*$* and C$PAR directives.

p Accepts parallel programming directives.

s Accepts Sequent C$ directives.

v Accepts VAST CVD$ directives.

The default value for list is ackpv. For example, –WK,–directives=k enables
Silicon Graphics directives only, whereas –WK,–directives=kas enables
Silicon Graphics directives and assertions and Sequent directives. To disable
all of the above options, enter –nodirectives or –directives (without any
values for list) on the command line. Chapter 9, “Fine-Tuning Program

Performing Advanced Optimizations

 89

Execution,” describes the Silicon Graphics, Cray, Sequent, and VAST
directives the compiler accepts.

Assertions are similar in form to directives, but they assert program
characteristics that the compiler can use in its optimizations. In addition to
specifying a in list, you can control whether the compiler accepts assertions
using the C*$* ASSERTIONS and C*$* NOASSERTIONS directives (refer
to “Using Assertions” in Chapter 9).

Specifying Recursion

The –recursion option (or –rc) allows the compiler to call subroutines and
functions in the source program recursively (that is, a subroutine or function
calls itself, or it calls another routine which calls it). Recursion affects storage
allocation decisions.

This option is enabled by default. To disable it, specify –norecursion (or
–nrc).

Unsafe transformations can occur unless the –recursion option is enabled
for each recursive routine that the compiler processes.

 91

Chapter 6

6. Inlining and Interprocedural Analysis

This chapter contains the following sections:

• “Overview” describes inlining and interprocedural analysis.

• “Using Command Line Options” explains how to use command line
options to perform inlining and interprocedural analysis (IPA).

• “Conditions That Prevent Inlining and IPA” lists several conditions that
prevent inlining and interprocedural analysis.

Overview

Inlining is the process of replacing a function reference with the text of the
function. This process eliminates the overhead of the function call and can
assist other optimizations by making relationships between function
arguments, returned values, and the surrounding code easier to find.

Interprocedural analysis (IPA) is the process of inspecting called functions
for information on relationships between arguments, returned values, and
global data. This process can provide many of the benefits of inlining
without replacing the function reference.

You can perform inlining and IPA from the command line and using
directives in your source code.

92

Chapter 6: Inlining and Interprocedural Analysis

Using Command Line Options

The compiler performs inlining and IPA when you specify the options listed
in Table 6-1 along with the –WK option using the following syntax:

% f77 [f77option ...] -WK, option[, option]... file

f77_option is any option you can specify directly to the compiler and option is
any of the options listed in Table 6-1.

Table 6-1 Inlining and IPA Options

Long Option Name Short Option Name Default Value

–inline[=list] –inl[=list] option off

–ipa[=list] –ipa[=list] option off

–inline_and _copy –inlc option off

–inline_looplevel=integer –inll=integer 2

–ipa_looplevel=integer –ipall=integer 2

–inline_depth=integer –ind=integer 2

–inline_man –inm option off

–ipa_man –ipam option off

–inline_from_files=list –inff=list option off

–ipa_from_files=list –ipaff=list option off

–inline_from_libraries=list –infl=list option off

–ipa_from_libraries=list –ipa=list option off

–inline_create[=name] –incr=[=name] option off

–ipa_create=[=name] –ipacr=[=name] option off

Using Command Line Options

 93

Specifying Routines for Inlining or IPA

The –inline[=list] option (or –inl[=list]) provides a list of routines to be
expanded inline; the –ipa[=list] option provides a list of routines to be
analyzed. The routine names in list must be separated by colons. If you do
not specify a list of routines, the compiler expands all eligible routines. The
compiler looks for the routines in the current source file, unless you specify
an –inline_from or –ipa_from option. Refer to “Specifying Where to Search
for Routines” on page 97 for details.

Example

The following command performs inline expansion on the two routines
saxpy and daxpy from the file foo.f:

% f77 -WK,-inline=saxpy:daxpy foo.f

Refer to “Conditions That Prevent Inlining and IPA” on page 100 for
information about conditions that prevent inlining and IPA.

The –inline_and_copy (or –inlc) option functions like the –inline option,
except that the compiler copies the unoptimized text of a routine into the
transformed code file each time the routine is called or referenced. Use this
option when inlining routines that are called from the file in which they are
located. This option has no special effect when the routines being inlined are
being taken from a library or separate source file.

When a routine has been inlined everywhere it is used, leaving it
unoptimized saves compilation time. When a program involves multiple
source files, the unoptimized routine is still available in case another source
file contains a reference to it.

Note: The –inline_and_copy algorithm assumes that all CALLs and
references to the routine precede the routine itself in the source file. If the
routine is referenced after the text of the routine and the compiler cannot
inline that particular call site, it invokes the unoptimized version of the
routine.

94

Chapter 6: Inlining and Interprocedural Analysis

Specifying Occurrences for Inlining and IPA

The loop level, depth, and manual options allow you to specify specific
instances of the routines specified with the –inline or –ipa options to
process.

Loop Level

The –inline_looplevel=integer (or –inll=integer) and –ipa_looplevel=integer
(or –ipall=integer) options enable you to limit inlining and interprocedural
analysis to routines that are referenced in deeply nested loops, where the
reduced call overhead or enhanced optimization is multiplied.

integer is defined from the most deeply nested leaf of the call graph. To
determine which loops are most deeply nested, the compiler constructs a call
graph to account for nesting of loops farther up the call chain. For example,
if you specify 1 for integer, the compiler expands routines in only the most
deeply nested loop. If you specify 2 for integer, the compiler expand routines
in the deepest and second deepest nested loops, and so on. Specifying a large
number for integer enables inlining/IPA at any nesting level up to and
including the integer value. If you do not specify –inline/ipa_looplevel, the
loop level is 2.

Example

Consider the following code:

PROGRAM MAIN
 ..
 CALL A ------> SUBROUTINE A

 ..
 DO
 DO
 CALL B -----> SUBROUTINE B
 ENDDO DO
 ENDDO DO
 CALL C -------> SUBROUTINE C
 ENDDO
 ENDDO

Using Command Line Options

 95

The CALL B is inside a doubly-nested loop and therefore, is more profitable
for the compiler to expand than the CALL A. The CALL C is quadruply
nested, so inlining C yields the greatest gain of the three.

For –inline_looplevel=1, only the routines referenced in the most
deeply-nested call sites are inlined (subroutine C in the above example). (If
more than one routine is called at the same loop nest level, the compiler
selects all of them when that level is inlined/analyzed.)

–inline_looplevel=2 inlines only routines called at the most deeply-nested
level and one loop less deeply-nested. (–inline_looplevel=3 would be
required to inline subroutine B, because its call is two loops less nested than
the call to subroutine C. A value of 3 or greater causes the compiler to inline
C into B, then the new B to be inlined into the main program.)

The calling tree written to the listing file includes the nesting depth level of
each call in each program unit and the aggregate nesting depth (the sum of
the nesting depths for each call site, starting from the main program). You
can use this information to identify the best routines for inlining.

A routine that passes the –inline_looplevel test is inlined everywhere it is
used, even places that are not in deeply-nested loops. If some, but not all,
invocations of a routine are to be expanded, use the C*$* INLINE or C*$*
IPA directives just before each CALL/reference to be expanded (refer to
“Fine-Tuning Inlining and IPA” in Chapter 9).

Because inlining increases the size of the code, the extra paging and cache
contention can actually slow down a program. Restricting inlining to
routines used in DO loops multiplies the benefits of eliminating subroutine
and function call overhead for a given amount of code space expansion. (If
inlining appears to have slowed an application code, investigate using IPA,
which has little effect on code space and the number of temporary variables.)

96

Chapter 6: Inlining and Interprocedural Analysis

Depth

The –inline_depth=integer option (or –ind=integer) restricts the number of
times the compiler continues to attempt inlining already inlined routines.
Valid values for integer are

1-10 Specifies a depth to which inlining is limited. The default
is 2.

0 Uses the default value.

-1 Limits inline expansion to only those routines that do not
reference other routines (that is, only leaf routines are
inlined). The compiler does not support any other negative
values.

When a routine is expanded inline, it can contain references to other
routines. The compiler must decide whether to recursively expand these
references (which might themselves contain yet other references, and so on).
This option limits the number of times the compiler performs this recursive
expansion. Note that the default setting is quite low; if you know inlining is
useful for a particular program, increase this setting.

Note: There is no –ipa_depth option.

Recursive inlining can be quite expensive in compilation time. Exercise
discretion in its use.

Manual Control

The –inline_man (or –inm) option enables recognition of the C*$* INLINE
directive. This directive, described in “Fine-Tuning Inlining and IPA” in
Chapter 9, allows you to select individual instances of routines to be inlined.
The –ipa_man (or –ipam) option is the analogous option for the C*$* IPA
directive.

Using Command Line Options

 97

Specifying Where to Search for Routines

The options listed in Table 6-2 tell the compiler where to search for the
routines specified with the –inline or –ipa options. If you do not specify
either option, the compiler searches the current source file by default.

If one of the names in list is a directory, the compiler uses all appropriate files
in that directory. You can specify multiple files and directories
simultaneously using a colon-separated list.

For example

-WK,-inline_from_files=file1:file2:file3

The compiler recognizes the type of file from its extension, or lack of one, as
described in Table 6-3.

Table 6-2 Inlining and IPA Search Command Line Options

Long Option Name Short Option Name

–inline_from_files=list –inff=list

–ipa_from_files=list –ipaff=list

–inline_from_libraries=list –infl=list

–ipa_from_libraries=list –ipafl=list

Table 6-3 Filename Extensions

Extension Type of File

.f, .F, .for, .FOR Fortran source

.i Fortran source run through cpp

.klib Library created with –inline_create or –ipa_create option

Other Directory

98

Chapter 6: Inlining and Interprocedural Analysis

The compiler recognizes two special abbreviations when specified in list:

• “-” means current source file (as listed on the command line or
specified in an –input=file command line option)

• “.” means the current working directory

Example

The following command specifies inline expansion on the source file, calc.f:

% f77 -WK,-inline,-inline_from_files=-:input.f calc.f

When executed, the compiler searches the current source filecalc.f and
input.f for all eligible routines to expand.It also searches for all eligible
routines because the –inline option was specified without a list.

If you specify a non-existent file or directory, the compiler issues an error.

If you specify multiple –inline_from or –ipa_from options, the compiler
concatenates their lists to produce a bigger universe. The lists are searched
in the order that they appear on the command line.

The compiler resolves routine name references by a searching for them in the
order that they appear in –inline_from/–ipa_from options on the command
line. Libraries are searched in their original lexical order.

Note: These options by themselves do not initiate inlining or IPA. They only
specify where to look for the routines. Use them in conjunction with the
appropriate –inline or –ipa option.

Creating Libraries

When performing inlining and IPA, the compiler analyzes the routines in the
source program. Normally, inlining is done directly from a source file.
However, when inlining the same set of routines in many different
programs, it is more efficient to create a pre-analyzed library of the routines.
Use the –inline_create[=name] option (or –incr[=name]) to create a library of
prepared routines (for later use with the –inline_from_libraries option). The
compiler assigns name to the library file it creates; for maximum
compatibility, use the file name extension .klib. For example: samp.klib.

Using Command Line Options

 99

The –ipa_create[=name] option (or –ipacr[=name]) is the analogous option
for IPA.

You do not have to generate your inlining/IPA library from the same source
that will actually be linked into the running program. This capability can
cause errors, but it can also be quite useful. For example, you can write a
library of hand-optimized assembly language routines, then construct an
IPA library using Fortran routines that mimic the behavior of the assembly
code. Thus, you can do parallelism analysis with IPA correctly, but still
actually call the hand-optimized assembly routines.

The procedure for creating and using a library for inlining or IPA is given
below.

1. Create a library using the –inline_create option (or the –ipa_create
option for IPA). For example, the following command line creates a
library called prog.klib for the source program prog.f:

% f77 -WK,-inline_create=prog.klib prog.f

When you specify this option the compiler creates only the library; it
does not compile the source program or create a transformed version of
the file.

2. Compile the program with inlining enabled and specify the new
library:

% f77 -WK,-inl,-inlf=prog.klib samp.f

Note: Libraries created for inlining contain complete information and can be
used for both inlining and IPA. Libraries created for IPA contain only
summary information and can be used only for IPA.

When creating a library, you can specify only one –inline_create
(–ipa_create) option. Therefore, you can create only one library at a time. The
compiler overwrites any existing file with the same name as the library.

If you do not specify the –inline (–ipa) option along with the –inline_create
(–ipa_create) option, the compiler includes all routines from the inlining
universe in the library, if possible. If you specify –inline=list or –ipa=list, the
compiler includes only the named routines in the library.

100

Chapter 6: Inlining and Interprocedural Analysis

Conditions That Prevent Inlining and IPA

This section lists conditions that prevent the compiler from inlining and
analyzing subroutines and functions, whether from a library or source file.
Many constructs that prevent inlining will also stop or restrict
interprocedural analysis.

Conditions that inhibit inlining:

• Dummy and actual parameters are mismatched in type or class.

• Dummy parameters are missing.

• Actual parameters are missing and the corresponding dummy
parameters are arrays.

• An actual parameter is a non-scalar expression (for example, A+B,
where A and B are arrays).

• The number of actual parameters differs from the number of dummy
parameters.

• The size of an array actual parameter differs from the array dummy
parameter and the arrays cannot be made linear.

• The calling routine and called routine have mismatched COMMON
declarations.

• The called routine has EQUIVALENCE statements (some of these can
be handled).

• The called routine contains NAMELIST statements.

• The called routine has dynamic arrays.

• The CALL to be expanded has alternate return parameters.

Conditions That Prevent Inlining and IPA

 101

Inlining is also inhibited when the routine to be inlined

• is too long (he limit is about 600 lines)

• contains a SAVE statement

• contains variables that are live-on-entry, even if they are not in explicit
SAVE statements

• contains a DATA statement (DATA implies SAVE) and the variable is
live-on-entry

• contains a CALL with a subroutine or function name as an argument

• contains a C*$*INLINE directive

• contains unsubscripted array references in I/O statements

• contains POINTER statements

 103

Chapter 7

7. Fortran Enhancements for Multiprocessors

This chapter contains these sections:

• “Overview” provides an overview of this chapter.

• “Parallel Loops” discusses the concept of parallel DO loops.

• “Writing Parallel Fortran” explains how to use compiler directives to
generate code that can be run in parallel.

• “Analyzing Data Dependencies for Multiprocessing” describes how to
analyze DO loops to determine whether they can be parallelized.

• “Breaking Data Dependencies” explains how to rewrite DO loops that
contain data dependencies so that some or all of the loop can be run in
parallel.

• “Work Quantum” describes how to determine whether the work
performed in a loop is greater than the overhead associated with
multiprocessing the loop.

• “Cache Effects” explains how to write loops that account for the effect
of the cache.

• “Advanced Features” describes features that override multiprocessing
defaults and customize parallelism.

• “DOACROSS Implementation” discusses how multiprocessing is
implemented in a DOACROSS routine.

• “PCF Directives” describes how the PCF directives implement a
general model of parallelism.

104

Chapter 7: Fortran Enhancements for Multiprocessors

Overview

The Silicon Graphics Fortran compiler allows you to apply the capabilities
of a Silicon Graphics multiprocessor workstation to the execution of a single
job. By coding a few simple directives, the compiler splits the job into
concurrently executing pieces, thereby decreasing the wall-clock run time of
the job.

This chapter discusses techniques for analyzing your program and
converting it to multiprocessing operations. Chapter 8, “Compiling and
Debugging Parallel Fortran,” gives compilation and debugging instructions
for parallel processing.

Parallel Loops

The model of parallelism used focuses on the Fortran DO loop. The compiler
executes different iterations of the DO loop in parallel on multiple
processors. For example, suppose a DO loop consisting of 200 iterations will
run on a machine with four processors using the SIMPLE scheduling
method (described in“CHUNK, MP_SCHEDTYPE” on page 108). The first
50 iterations run on one processor, the next 50 on another, and so on. The
multiprocessing code adjusts itself at run time to the number of processors
actually present on the machine. Thus, if the above 200-iteration loop was
moved to a machine with only two processors, it would be divided into two
blocks of 100 iterations each, without any need to recompile or relink. In fact,
multiprocessing code can even be run on single-processor machines. The
above loop would be divided into one block of 200 iterations. This allows
code to be developed on a single-processor Silicon Graphics workstation,
and later run on an IRIS POWER Series multiprocessor.

The processes that participate in the parallel execution of a task are arranged
in a master/slave organization. The original process is the master. It creates
zero or more slaves to assist. When a parallel DO loop is encountered, the
master asks the slaves for help. When the loop is complete, the slaves wait
on the master, and the master resumes normal execution. The master process
and each of the slave processes are called a thread of execution or simply a
thread. By default, the number of threads is set equal to the number of
processors on the particular machine (this number cannot exceed four).

Writing Parallel Fortran

 105

If you want, you can override the default and explicitly control the number
of threads of execution used by a Fortran job.

For multiprocessing to work correctly, the iterations of the loop must not
depend on each other; each iteration must stand alone and produce the same
answer regardless of when any other iteration of the loop is executed. Not all
DO loops have this property, and loops without it cannot be correctly
executed in parallel. However, many of the loops encountered in practice fit
this model. Further, many loops that cannot be run in parallel in their
original form can be rewritten to run wholly or partially in parallel.

To provide compatibility for existing parallel programs, Silicon Graphics has
chosen to adopt the syntax for parallelism used by Sequent Computer
Corporation. This syntax takes the form of compiler directives embedded in
comments. These fairly high-level directives provide a convenient method
for you to describe a parallel loop, while leaving the details to the Fortran
compiler. For advanced users the proposed Parallel Computing Forum
(PCF) standard (ANSI-X3H5 91-0023-B Fortran language binding) is
available (refer to “PCF Directives” on page 143). Additionally, there are a
number of special routines that permit more direct control over the parallel
execution (refer to “Advanced Features” on page 133 for more information.)

Writing Parallel Fortran

The Fortran compiler accepts directives that cause it to generate code that
can be run in parallel. The compiler directives look like Fortran comments:
they begin with a C in column one. If multiprocessing is not turned on, these
statements are treated as comments. This allows the identical source to be
compiled with a single-processing compiler or by Fortran without the
multiprocessing option. The directives are distinguished by having a $ as the
second character. There are six directives that are supported:
C$DOACROSS, C$&, C$, C$MP_SCHEDTYPE, C$CHUNK, and
C$COPYIN. The C$COPYIN directive is described in “Local COMMON
Blocks” on page 138. This section describes the others.

106

Chapter 7: Fortran Enhancements for Multiprocessors

C$DOACROSS

The essential compiler directive for multiprocessing is C$DOACROSS. This
directive directs the compiler to generate special code to run iterations of a
DO loop in parallel. The C$DOACROSS directive applies only to the next
statement (which must be a DO loop).

The C$DOACROSS directive has the form

C$DOACROSS [clause [[,] clause ...]

where valid values for the optional clause are

[IF (logical_expression)]
[{LOCAL | PRIVATE} (item[, item ...])]
[{SHARED | SHARE} (item[, item ...])]
[{LASTLOCAL | LAST LOCAL} (item[, item ...])]
[REDUCTION (item[, item ...])]
[MP_SCHEDTYPE=mode]
[{CHUNK=integer_expression | BLOCKED(integer_expression)}]

The preferred form of the directive (as generated by WorkShop Pro MPF)
uses the optional commas between clauses. This section discusses the
meaning of each clause.

IF

The IF clause determines whether the loop is actually executed in parallel. If
the logical expression is TRUE, the loop is executed in parallel. If the
expression is FALSE, the loop is executed serially. Typically, the expression
tests the number of times the loop will execute to be sure that there is enough
work in the loop to amortize the overhead of parallel execution. Currently,
the break-even point is about 4000 CPU clocks of work, which normally
translates to about 1000 floating point operations.

LOCAL, SHARE, LASTLOCAL

The LOCAL, SHARE, and LASTLOCAL clauses specify lists of variables
used within parallel loops. A variable can appear in only one of these lists.
To make the task of writing these lists easier, there are several defaults. The
loop-iteration variable is LASTLOCAL by default. All other variables are
SHARE by default.

Writing Parallel Fortran

 107

LOCAL Specifies variables that are local to each process. If a variable
is declared as LOCAL, each iteration of the loop is given its
own uninitialized copy of the variable. You can declare a
variable as LOCAL if its value does not depend on any
other iteration of the loop and if its value is used only within
a single iteration. In effect the LOCAL variable is just
temporary; a new copy can be created in each loop iteration
without changing the final answer. The name LOCAL is
preferred over PRIVATE.

SHARE Specifies variables that are shared across all processes. If a
variable is declared as SHARE, all iterations of the loop use
the same copy of the variable. You can declare a variable as
SHARE if it is only read (not written) within the loop or if it
is an array where each iteration of the loop uses a different
element of the array. The name SHARE is preferred over
SHARED.

LASTLOCAL Specifies variables that are local to each process.Unlike with
the LOCAL clause, the compiler saves only the value of the
logically last iteration of the loop when it exits. The name
LASTLOCAL is preferred over LAST LOCAL.

LOCAL is a little faster than LASTLOCAL, so if you do not need the final
value, it is good practice to put the DO loop index variable into the LOCAL
list, although this is not required.

Only variables can appear in these lists. In particular, COMMON blocks
cannot appear in a LOCAL list (but see the discussion of local COMMON
blocks in “Advanced Features” on page 133). The SHARE, LOCAL, and
LASTLOCAL lists give only the names of the variables. If any member of the
list is an array, it is listed without any subscripts.

REDUCTION

The REDUCTION clause specifies variables involved in a reduction
operation. In a reduction operation, the compiler keeps local copies of the
variables and combines them when it exits the loop. For an example and
details see “Example 4: Sum Reduction” on page 123 of “Breaking Data
Dependencies.” An element of the REDUCTION list must be an individual
variable (also called a scalar variable) and cannot be an array. However, it

108

Chapter 7: Fortran Enhancements for Multiprocessors

can be an individual element of an array. In a REDUCTION clause, it would
appear in the list with the proper subscripts.

One element of an array can be used in a reduction operation, while other
elements of the array are used in other ways. To allow for this, if an element
of an array appears in the REDUCTION list, the entire array can also appear
in the SHARE list.

The four types of reductions supported are sum(+), product(*), min(), and
max(). Note that min(max) reductions must use the min(max) intrinsic
functions to be recognized correctly.

The compiler confirms that the reduction expression is legal by making some
simple checks. The compiler does not, however, check all statements in the
DO loop for illegal reductions. You must ensure that the reduction variable
is used correctly in a reduction operation.

CHUNK, MP_SCHEDTYPE

The CHUNK and MP_SCHEDTYPE clauses affect the way the compiler
schedules work among the participating tasks in a loop. These clauses do not
affect the correctness of the loop. They are useful for tuning the performance
of critical loops. See “Load Balancing” on page 131 for more details.

For the MP_SCHEDTYPE=mode clause, mode can be one of the following:

[SIMPLE | simple | STATIC | static]
[DYNAMIC | dynamic]
[INTERLEAVE | interleave | INTERLEAVED | interleaved]
[GUIDED | guided | GSS | gss]
[RUNTIME | runtime]

You can use any or all of these modes in a single program. The CHUNK
clause is valid only with the DYNAMIC and INTERLEAVE modes.
SIMPLE, DYNAMIC, INTERLEAVE, GSS, and RUNTIME are the
preferred names for each mode.

The simple method (MP_SCHEDTYPE=SIMPLE) divides the iterations
among processes by dividing them into contiguous pieces and assigning one
piece to each process.

Writing Parallel Fortran

 109

In dynamic scheduling (MP_SCHEDTYPE=DYNAMIC) the iterations are
broken into pieces the size of which is specified with the CHUNK clause. As
each process finishes a piece, it enters a critical section to grab the next
available piece. This gives good load balancing at the price of higher
overhead.

The interleave method (MP_SCHEDTYPE=INTERLEAVE) breaks the
iterations into pieces of the size specified by the CHUNK option, and
execution of those pieces is interleaved among the processes. Instead of the
CHUNK option, you can specify the –WK,–chunk command line option
(see “Memory Management Options” in Chapter 5 for details). For example,
if there are four processes and CHUNK=2, then the first process will execute
iterations 1–2, 9–10, 17–18, …; the second process will execute iterations 3–4,
11–12, 19–20,…; and so on. Although this is more complex than the simple
method, it is still a fixed schedule with only a single scheduling decision.

The fourth method is a variation of the guided self-scheduling algorithm
(MP_SCHEDTYPE=GSS). Here, the piece size is varied depending on the
number of iterations remaining. By parceling out relatively large pieces to
start with and relatively small pieces toward the end, the system can achieve
good load balancing while reducing the number of entries into the critical
section.

In addition to these four methods, you can specify the scheduling method at
run time (MP_SCHEDTYPE=RUNTIME). Here, the scheduling routine
examines values in your run-time environment and uses that information to
select one of the other four methods. See “Advanced Features” on page 133
for more details.

If both the MP_SCHEDTYPE and CHUNK clauses are omitted, SIMPLE
scheduling is assumed. If MP_SCHEDTYPE is set to INTERLEAVE or
DYNAMIC and the CHUNK clause are omitted, CHUNK=1 is assumed. If
MP_SCHEDTYPE is set to one of the other values, CHUNK is ignored. If the
MP_SCHEDTYPE clause is omitted, but CHUNK is set, then
MP_SCHEDTYPE=DYNAMIC is assumed.

110

Chapter 7: Fortran Enhancements for Multiprocessors

Example 1

The code fragment

 DO 10 I = 1, 100
 A(I) = B(I)
10 CONTINUE

could be multiprocessed with the directive

C$DOACROSS LOCAL(I), SHARE(A, B)
 DO 10 I = 1, 100
 A(I) = B(I)
10 CONTINUE

Here, the defaults are sufficient, provided A and B are mentioned in a
nonparallel region or in another SHARE list. The following then works:

C$DOACROSS
 DO 10 I = 1, 100
 A(I) = B(I)
10 CONTINUE

Example 2

Consider the following code fragment:

 DO 10 I = 1, N
 X = SQRT(A(I))
 B(I) = X*C(I) + X*D(I)
10 CONTINUE

You can be fully explicit, as shown below:

C$DOACROSS LOCAL(I, X), share(A, B, C, D, N)
 DO 10 I = 1, N
 X = SQRT(A(I))
 B(I) = X*C(I) + X*D(I)
10 CONTINUE

Writing Parallel Fortran

 111

You can also use the defaults:

C$DOACROSS LOCAL(X)
 DO 10 I = 1, N
 X = SQRT(A(I))
 B(I) = X*C(I) + X*D(I)
10 CONTINUE

See Example 5 in “Analyzing Data Dependencies for Multiprocessing” on
page 114 for more information on this example.

Example 3

Consider the following code fragment:

 DO 10 I = M, K, N
 X = D(I)**2
 Y = X + X
 DO 20 J = I, MAX
 A(I,J) = A(I,J) + B(I,J) * C(I,J) * X + Y
20 CONTINUE
10 CONTINUE

 PRINT*, I, X

Here, the final values of I and X are needed after the loop completes. A
correct directive is shown below:

C$DOACROSS LOCAL(Y,J), LASTLOCAL(I,X),
C$& SHARE(M,K,N,ITOP,A,B,C,D)
 DO 10 I = M, K, N
 X = D(I)**2
 Y = X + X
 DO 20 J = I, ITOP
 A(I,J) = A(I,J) + B(I,J) * C(I,J) *X + Y
20 CONTINUE
10 CONTINUE
 PRINT*, I, X

112

Chapter 7: Fortran Enhancements for Multiprocessors

You can also use the defaults:

C$DOACROSS LOCAL(Y,J), LASTLOCAL(X)
 DO 10 I = M, K, N
 X = D(I)**2
 Y = X + X
 DO 20 J = I, MAX
 A(I,J) = A(I,J) + B(I,J) * C(I,J) *X + Y
20 CONTINUE
10 CONTINUE
 PRINT*, I, X

I is a loop index variable for the C$DOACROSS loop, so it is LASTLOCAL
by default. However, even though J is a loop index variable, it is not the loop
index of the loop being multiprocessed and has no special status. If it is not
declared, it is assigned the default value of SHARE, which produces an
incorrect answer.

C$&

Occasionally, the clauses in the C$DOACROSS directive are longer than one
line. Use the C$& directive to continue the directive onto multiple lines. For
example:

C$DOACROSS share(ALPHA, BETA, GAMMA, DELTA,
C$& EPSILON, OMEGA), LASTLOCAL(I, J, K, L, M, N),
C$& LOCAL(XXX1, XXX2, XXX3, XXX4, XXX5, XXX6, XXX7,
C$& XXX8, XXX9)

C$

The C$ directive is considered a comment line except when multiprocessing.
A line beginning with C$ is treated as a conditionally compiled Fortran
statement. The rest of the line contains a standard Fortran statement. The
statement is compiled only if multiprocessing is turned on. In this case, the
C and $ are treated as if they are blanks. They can be used to insert
debugging statements, or an experienced user can use them to insert
arbitrary code into the multiprocessed version.

Writing Parallel Fortran

 113

The following code demonstrates the use of the C$ directive:

C$ PRINT 10
C$ 10 FORMAT('BEGIN MULTIPROCESSED LOOP')

C$DOACROSS LOCAL(I), SHARE(A,B)
 DO I = 1, 100
 CALL COMPUTE(A, B, I)
 END DO

C$MP_SCHEDTYPE and C$CHUNK

The C$MP_SCHEDTYPE=mode directive acts as an implicit
MP_SCHEDTYPE clause for all C$DOACROSS directives in scope. mode is
any of the modes listed in the section called “CHUNK, MP_SCHEDTYPE”
on page 108. A C$DOACROSS directive that does not have an explicit
MP_SCHEDTYPE clause is given the value specified in the last directive
prior to the look, rather than the normal default. If the C$DOACROSS does
have an explicit clause, then the explicit value is used.

The C$CHUNK=integer_expression directive affects the CHUNK clause of a
C$DOACROSS in the same way that the C$MP_SCHEDTYPE directive
affects the MP_SCHEDTYPE clause for all C$DOACROSS directives in
scope. Both directives are in effect from the place they occur in the source
until another corresponding directive is encountered or the end of the
procedure is reached.

You can also invoke this functionality from the command line during a
compile. The –mp_schedtype=schedule_type and –chunk= integer command
line options have the effect of implicitly putting the corresponding
directive(s) as the first lines in the file.

Nesting C$DOACROSS

The Fortran compiler does not support direct nesting of C$DOACROSS
loops.

114

Chapter 7: Fortran Enhancements for Multiprocessors

For example, the following is illegal and generates a compilation error:

C$DOACROSS LOCAL(I)
 DO I = 1, N
C$DOACROSS LOCAL(J)
 DO J = 1, N
 A(I,J) = B(I,J)
 END DO
 END DO

However, to simplify separate compilation, a different form of nesting is
allowed. A routine that uses C$DOACROSS can be called from within a
multiprocessed region. This can be useful if a single routine is called from
several different places: sometimes from within a multiprocessed region,
sometimes not. Nesting does not increase the parallelism. When the first
C$DOACROSS loop is encountered, that loop is run in parallel. If while in
the parallel loop a call is made to a routine that itself has a C$DOACROSS,
this subsequent loop is executed serially.

Analyzing Data Dependencies for Multiprocessing

The essential condition required to parallelize a loop correctly is that each
iteration of the loop must be independent of all other iterations. If a loop
meets this condition, then the order in which the iterations of the loop
execute is not important. They can be executed backward or even at the same
time, and the answer is still the same. This property is captured by the notion
of data independence. For a loop to be data-independent, no iterations of the
loop can write a value into a memory location that is read or written by any
other iteration of that loop. It is all right if the same iteration reads and/or
writes a memory location repeatedly as long as no others do; it is all right if
many iterations read the same location, as long as none of them write to it.
In a Fortran program, memory locations are represented by variable names.
So, to determine if a particular loop can be run in parallel, examine the way
variables are used in the loop. Because data dependence occurs only when
memory locations are modified, pay particular attention to variables that
appear on the left-hand side of assignment statements. If a variable is not
modified or if it is passed to a function or subroutine, there is no data
dependence associated with it.

Analyzing Data Dependencies for Multiprocessing

 115

The Fortran compiler supports four kinds of variable usage within a parallel
loop: SHARE, LOCAL, LASTLOCAL, and REDUCTION. If a variable is
declared as SHARE, all iterations of the loop use the same copy. If a variable
is declared as LOCAL, each iteration is given its own uninitialized copy. A
variable is declared SHARE if it is only read (not written) within the loop or
if it is an array where each iteration of the loop uses a different element of the
array. A variable can be LOCAL if its value does not depend on any other
iteration and if its value is used only within a single iteration. In effect the
LOCAL variable is just temporary; a new copy can be created in each loop
iteration without changing the final answer. As a special case, if only the
very last value of a variable computed on the very last iteration is used
outside the loop (but would otherwise qualify as a LOCAL variable), the
loop can be multiprocessed by declaring the variable to be LASTLOCAL.
“REDUCTION” on page 107 describes the use of REDUCTION variables.

It is often difficult to analyze loops for data dependence information. Each
use of each variable must be examined to see if it fulfills the criteria for
LOCAL, LASTLOCAL, SHARE, or REDUCTION. If all of the variables’
uses conform, the loop can be parallelized. If not, the loop cannot be
parallelized as it stands, but possibly can be rewritten into an equivalent
parallel form. (See “Breaking Data Dependencies” on page 120 for
information on rewriting code in parallel form.)

An alternative to analyzing variable usage by hand is to use Power Fortran.
This optional software package is a Fortran preprocessor that analyzes loops
for data dependence. If Power Fortran determines that a loop is
data-independent, it automatically inserts the required compiler directives
(see “Writing Parallel Fortran” on page 105). If Power Fortran cannot
determine whether the loop is independent, it produces a listing file
detailing where the problems lie. You can use Power Fortran in conjunction
with WorkShop Pro MPF to visualize these dependencies and make it easier
to understand the obstacles to parallelization.

The rest of this section is devoted to analyzing sample loops, some parallel
and some not parallel.

Example 1: Simple Independence

 DO 10 I = 1,N

 10 A(I) = X + B(I)*C(I)

116

Chapter 7: Fortran Enhancements for Multiprocessors

In this example, each iteration writes to a different location in A, and none
of the variables appearing on the right-hand side is ever written to, only read
from. This loop can be correctly run in parallel. All the variables are SHARE
except for I, which is either LOCAL or LASTLOCAL, depending on
whether the last value of I is used later in the code.

Example 2: Data Dependence

 DO 20 I = 2,N

 20 A(I) = B(I) - A(I-1)

This fragment contains A(I) on the left-hand side and A(I-1) on the right.
This means that one iteration of the loop writes to a location in A and the
next iteration reads from that same location. Because different iterations of
the loop read and write the same memory location, this loop cannot be run
in parallel.

Example 3: Stride Not 1

 DO 20 I = 2,N,2

 20 A(I) = B(I) - A(I-1)

This example looks like the previous example. The difference is that the
stride of the DO loop is now two rather than one. Now A(I) references every
other element of A, and A(I-1) references exactly those elements of A that are
not referenced by A(I). None of the data locations on the right-hand side is
ever the same as any of the data locations written to on the left-hand side.
The data are disjoint, so there is no dependence. The loop can be run in
parallel. Arrays A and B can be declared SHARE, while variable I should be
declared LOCAL or LASTLOCAL.

Example 4: Local Variable

DO I = 1, N
 X = A(I)*A(I) + B(I)
 B(I) = X + B(I)*X
END DO

In this loop, each iteration of the loop reads and writes the variable X.
However, no loop iteration ever needs the value of X from any other
iteration. X is used as a temporary variable; its value does not survive from

Analyzing Data Dependencies for Multiprocessing

 117

one iteration to the next. This loop can be parallelized by declaring X to be a
LOCAL variable within the loop. Note that B(I) is both read and written by
the loop. This is not a problem because each iteration has a different value
for I, so each iteration uses a different B(I). The same B(I) is allowed to be
read and written as long as it is done by the same iteration of the loop. The
loop can be run in parallel. Arrays A and B can be declared SHARE, while
variable I should be declared LOCAL or LASTLOCAL.

Example 5: Function Call

 DO 10 I = 1, N
 X = SQRT(A(I))
 B(I) = X*C(I) + X*D(I)
10 CONTINUE

The value of X in any iteration of the loop is independent of the value of X in
any other iteration, so X can be made a LOCAL variable. The loop can be run
in parallel. Arrays A, B, C, and D can be declared SHARE, while variable I
should be declared LOCAL or LASTLOCAL.

The interesting feature of this loop is that it invokes an external routine,
SQRT. It is possible to use functions and/or subroutines (intrinsic or user
defined) within a parallel loop. However, make sure that the various parallel
invocations of the routine do not interfere with one another. In particular,
SQRT returns a value that depends only on its input argument, does not
modify global data, and does not use static storage. We say that SQRT has
no side effects.

All the Fortran intrinsic functions listed in Appendix A of the MIPSpro
Fortran 77 Language Reference Manual have no side effects and can safely be
part of a parallel loop. For the most part, the Fortran library functions and
VMS intrinsic subroutine extensions (listed in Chapter 4, “System Functions
and Subroutines,”) cannot safely be included in a parallel loop. In particular,
rand is not safe for multiprocessing. For user-written routines, it is the
responsibility of the user to ensure that the routines can be correctly
multiprocessed.

Caution: Do not use the –static option when compiling routines called
within a parallel loop.

118

Chapter 7: Fortran Enhancements for Multiprocessors

Example 6: Rewritable Data Dependence

INDX = 0
DO I = 1, N
 INDX = INDX + I
 A(I) = B(I) + C(INDX)
END DO

Here, the value of INDX survives the loop iteration and is carried into the
next iteration. This loop cannot be parallelized as it is written. Making INDX
a LOCAL variable does not work; you need the value of INDX computed in
the previous iteration. It is possible to rewrite this loop to make it parallel
(see Example 1 in “Breaking Data Dependencies” on page 120).

Example 7: Exit Branch

 DO I = 1, N
 IF (A(I) .LT. EPSILON) GOTO 320
 A(I) = A(I) * B(I)
 END DO

 320 CONTINUE

This loop contains an exit branch; that is, under certain conditions the flow
of control suddenly exits the loop. The Fortran compiler cannot parallelize
loops containing exit branches.

Example 8: Complicated Independence

DO I = K+1, 2*K
 W(I) = W(I) + B(I,K) * W(I-K)
END DO

At first glance, this loop looks like it cannot be run in parallel because it uses
both W(I) and W(I-K). Closer inspection reveals that because the value of I
varies between K+1 and 2*K, then I-K goes from 1 to K. This means that the
W(I-K) term varies from W(1) up to W(K), while the W(I) term varies from
W(K+1) up to W(2*K). So W(I-K) in any iteration of the loop is never the
same memory location as W(I) in any other iterations. Because there is no
data overlap, there are no data dependencies. This loop can be run in
parallel. Elements W, B, and K can be declared SHARE, while variable I
should be declared LOCAL or LASTLOCAL.

Analyzing Data Dependencies for Multiprocessing

 119

This example points out a general rule: the more complex the expression
used to index an array, the harder it is to analyze. If the arrays in a loop are
indexed only by the loop index variable, the analysis is usually
straightforward though tedious. Fortunately, in practice most array indexing
expressions are simple.

Example 9: Inconsequential Data Dependence

INDEX = SELECT(N)
DO I = 1, N
 A(I) = A(INDEX)
END DO

There is a data dependence in this loop because it is possible that at some
point I will be the same as INDEX, so there will be a data location that is
being read and written by different iterations of the loop. In this special case,
you can simply ignore it. You know that when I and INDEX are equal, the
value written into A(I) is exactly the same as the value that is already there.
The fact that some iterations of the loop read the value before it is written
and some after it is written is not important because they all get the same
value. Therefore, this loop can be parallelized. Array A can be declared
SHARE, while variable I should be declared LOCAL or LASTLOCAL.

Example 10: Local Array

DO I = 1, N
 D(1) = A(I,1) - A(J,1)
 D(2) = A(I,2) - A(J,2)
 D(3) = A(I,3) - A(J,3)
 TOTAL_DISTANCE(I,J) = SQRT(D(1)**2 + D(2)**2 + D(3)**2)
END DO

In this fragment, each iteration of the loop uses the same locations in the D
array. However, closer inspection reveals that the entire D array is being
used as a temporary. This can be multiprocessed by declaring D to be
LOCAL. The Fortran compiler allows arrays (even multidimensional arrays)
to be LOCAL variables with one restriction: the size of the array must be
known at compile time. The dimension bounds must be constants; the
LOCAL array cannot have been declared using a variable or the asterisk
syntax.

120

Chapter 7: Fortran Enhancements for Multiprocessors

Therefore, this loop can be parallelized. Arrays TOTAL_DISTANCE and A
can be declared SHARE, while array D and variable I should be declared
LOCAL or LASTLOCAL.

Breaking Data Dependencies

Many loops that have data dependencies can be rewritten so that some or all
of the loop can be run in parallel. The essential idea is to locate the
statement(s) in the loop that cannot be made parallel and try to find another
way to express it that does not depend on any other iteration of the loop. If
this fails, try to pull the statements out of the loop and into a separate loop,
allowing the remainder of the original loop to be run in parallel.

The first step is to analyze the loop to discover the data dependencies (see
“Writing Parallel Fortran” on page 105). You can use WorkShop Pro MPF
with MIPSpro Power Fortran 77 to identify the problem areas. Once you
have identified these areas, you can use various techniques to rewrite the
code to break the dependence. Sometimes the dependencies in a loop cannot
be broken, and you must either accept the serial execution rate or try to
discover a new parallel method of solving the problem. The rest of this
section is devoted to a series of “cookbook” examples on how to deal with
commonly occurring situations. These are by no means exhaustive but cover
many situations that happen in practice.

Example 1: Loop Carried Value

INDX = 0
DO I = 1, N

INDX = INDX + I
A(I) = B(I) + C(INDX)

END DO

This code segment is the same as in “Example 6: Rewritable Data
Dependence” on page 118. INDX has its value carried from iteration to
iteration. However, you can compute the appropriate value for INDX
without making reference to any previous value.

Breaking Data Dependencies

 121

For example, consider the following code:

C$DOACROSS LOCAL (I, INDX)
 DO I = 1, N
 INDX = (I*(I+1))/2
 A(I) = B(I) + C(INDX)
 END DO

In this loop, the value of INDX is computed without using any values
computed on any other iteration. INDX can correctly be made a LOCAL
variable, and the loop can now be multiprocessed.

Example 2: Indirect Indexing

 DO 100 I = 1, N
 IX = INDEXX(I)
 IY = INDEXY(I)
 XFORCE(I) = XFORCE(I) + NEWXFORCE(IX)
 YFORCE(I) = YFORCE(I) + NEWYFORCE(IY)
 IXX = IXOFFSET(IX)
 IYY = IYOFFSET(IY)
 TOTAL(IXX, IYY) = TOTAL(IXX, IYY) + EPSILON
100 CONTINUE

It is the final statement that causes problems. The indexes IXX and IYY are
computed in a complex way and depend on the values from the IXOFFSET
and IYOFFSET arrays. We do not know if TOTAL (IXX,IYY) in one iteration
of the loop will always be different from TOTAL (IXX,IYY) in every other
iteration of the loop.

122

Chapter 7: Fortran Enhancements for Multiprocessors

We can pull the statement out into its own separate loop by expanding IXX
and IYY into arrays to hold intermediate values:

C$DOACROSS LOCAL(IX, IY, I)
 DO I = 1, N
 IX = INDEXX(I)
 IY = INDEXY(I)
 XFORCE(I) = XFORCE(I) + NEWXFORCE(IX)
 YFORCE(I) = YFORCE(I) + NEWYFORCE(IY)
 IXX(I) = IXOFFSET(IX)
 IYY(I) = IYOFFSET(IY)
 END DO

 DO 100 I = 1, N
 TOTAL(IXX(I),IYY(I)) = TOTAL(IXX(I), IYY(I)) + EPSILON
100 CONTINUE

Here, IXX and IYY have been turned into arrays to hold all the values
computed by the first loop. The first loop (containing most of the work) can
now be run in parallel. Only the second loop must still be run serially. This
will be true if IXOFFSET or IYOFFSET are permutation vectors.

Before we leave this example, note that if we were certain that the value for
IXX was always different in every iteration of the loop, then the original loop
could be run in parallel. It could also be run in parallel if IYY was always
different. If IXX (or IYY) is always different in every iteration, then
TOTAL(IXX,IYY) is never the same location in any iteration of the loop, and
so there is no data conflict.

This sort of knowledge is, of course, program-specific and should always be
used with great care. It may be true for a particular data set, but to run the
original code in parallel as it stands, you need to be sure it will always be true
for all possible input data sets.

Breaking Data Dependencies

 123

Example 3: Recurrence

DO I = 1,N
 X(I) = X(I-1) + Y(I)
END DO

This is an example of recurrence, which exists when a value computed in one
iteration is immediately used by another iteration. There is no good way of
running this loop in parallel. If this type of construct appears in a critical
loop, try pulling the statement(s) out of the loop as in the previous example.
Sometimes another loop encloses the recurrence; in that case, try to
parallelize the outer loop.

Example 4: Sum Reduction

SUM = 0.0
DO I = 1,N
 SUM = SUM + A(I)
END DO

This operation is known as a reduction. Reductions occur when an array of
values is combined and reduced into a single value. This example is a sum
reduction because the combining operation is addition. Here, the value of
SUM is carried from one loop iteration to the next, so this loop cannot be
multiprocessed. However, because this loop simply sums the elements of
A(I), we can rewrite the loop to accumulate multiple, independent subtotals.

124

Chapter 7: Fortran Enhancements for Multiprocessors

Then we can do much of the work in parallel:

 NUM_THREADS = MP_NUMTHREADS()
C
C IPIECE_SIZE = N/NUM_THREADS ROUNDED UP
C
 IPIECE_SIZE = (N + (NUM_THREADS -1)) / NUM_THREADS
 DO K = 1, NUM_THREADS
 PARTIAL_SUM(K) = 0.0
C
C THE FIRST THREAD DOES 1 THROUGH IPIECE_SIZE, THE
C SECOND DOES IPIECE_SIZE + 1 THROUGH 2*IPIECE_SIZE,
C ETC. IF N IS NOT EVENLY DIVISIBLE BY NUM_THREADS,
C THE LAST PIECE NEEDS TO TAKE THIS INTO ACCOUNT,
C HENCE THE "MIN" EXPRESSION.
C
 DO I =K*IPIECE_SIZE -IPIECE_SIZE +1, MIN(K*IPIECE_SIZE,N)
 PARTIAL_SUM(K) = PARTIAL_SUM(K) + A(I)
 END DO
 END DO
C
C NOW ADD UP THE PARTIAL SUMS
 SUM = 0.0
 DO I = 1, NUM_THREADS
 SUM = SUM + PARTIAL_SUM(I)
 END DO

The outer K loop can be run in parallel. In this method, the array pieces for
the partial sums are contiguous, resulting in good cache utilization and
performance.

This is an important and common transformation, and so automatic support
is provided by the REDUCTION clause:

 SUM = 0.0
C$DOACROSS LOCAL (I), REDUCTION (SUM)
 DO 10 I = 1, N
 SUM = SUM + A(I)
10 CONTINUE

The previous code has essentially the same meaning as the much longer and
more confusing code above. It is an important example to study because the
idea of adding an extra dimension to an array to permit parallel
computation, and then combining the partial results, is an important

Breaking Data Dependencies

 125

technique for trying to break data dependencies. This idea occurs over and
over in various contexts and disguises.

Note that reduction transformations such as this do not produce the same
results as the original code. Because computer arithmetic has limited
precision, when you sum the values together in a different order, as was
done here, the round-off errors accumulate slightly differently. It is likely
that the final answer will be slightly different from the original loop. Both
answers are equally “correct.” Most of the time the difference is irrelevant,
but sometimes it can be significant, so some caution is in order. If the
difference is significant, neither answer is really trustworthy.

This example is a sum reduction because the operator is plus (+). The Fortran
compiler supports three other types of reduction operations:

1. sum: p = p+a(i)

2. product: p = p*a(i)

3. min: m = min(m,a(i))

4. max: m = max(m,a(i))

For example,

C$DOACROSS LOCAL(I),REDUCTION(BG_SUM,BG_PROD,BG_MIN,BG_MAX)
 DO I = 1,N
 BG_SUM = BG_SUM + A(I)
 BG_PROD = BG_PROD * A(I)
 BG_MIN = MIN(BG_MIN, A(I))
 BG_MAX = MAX(BG_MAX, A(I)
 END DO

126

Chapter 7: Fortran Enhancements for Multiprocessors

One further example of a reduction transformation is noteworthy. Consider
the following code:

 DO I = 1, N
 TOTAL = 0.0
 DO J = 1, M
 TOTAL = TOTAL + A(J)
 END DO
 B(I) = C(I) * TOTAL
 END DO

Initially, it might look as if the inner loop should be parallelized with a
REDUCTION clause. However, look at the outer I loop. Although TOTAL
cannot be made a LOCAL variable in the inner loop, it fulfills the criteria for
a LOCAL variable in the outer loop: the value of TOTAL in each iteration of
the outer loop does not depend on the value of TOTAL in any other iteration
of the outer loop. Thus, you do not have to rewrite the loop; you can
parallelize this reduction on the outer I loop, making TOTAL and J local
variables.

Work Quantum

A certain amount of overhead is associated with multiprocessing a loop. If
the work occurring in the loop is small, the loop can actually run slower by
multiprocessing than by single processing. To avoid this, make the amount
of work inside the multiprocessed region as large as possible.

Example 1: Loop Interchange

DO K = 1, N
 DO I = 1, N
 DO J = 1, N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 END DO
 END DO
END DO

Here you have several choices: parallelize the J loop or the I loop. You cannot
parallelize the K loop because different iterations of the K loop will all try to
read and write the same values of A(I,J). Try to parallelize the outermost DO
loop possible, because it encloses the most work. In this example, that is the

Work Quantum

 127

I loop. For this example, use the technique called loop interchange. Although
the parallelizable loops are not the outermost ones, you can reorder the loops
to make one of them outermost.

Thus, loop interchange would produce

C$DOACROSS LOCAL(I, J, K)
 DO I = 1, N
 DO K = 1, N
 DO J = 1, N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 END DO
 END DO
 END DO

Now the parallelizable loop encloses more work and shows better
performance. In practice, relatively few loops can be reordered in this way.
However, it does occasionally happen that several loops in a nest of loops are
candidates for parallelization. In such a case, it is usually best to parallelize
the outermost one.

Occasionally, the only loop available to be parallelized has a fairly small
amount of work. It may be worthwhile to force certain loops to run without
parallelism or to select between a parallel version and a serial version, on the
basis of the length of the loop.

Example 2: Conditional Parallelism

 J = (N/4) * 4
 DO I = J+1, N
 A(I) = A(I) + X*B(I)
 END DO
 DO I = 1, J, 4
 A(I) = A(I) + X*B(I)
 A(I+1) = A(I+1) + X*B(I+1)
 A(I+2) = A(I+2) + X*B(I+2)
 A(I+3) = A(I+3) + X*B(I+3)
 END DO

Here you are using loop unrolling of order four to improve speed. For the
first loop, the number of iterations is always fewer than four, so this loop
does not do enough work to justify running it in parallel. The second loop is

128

Chapter 7: Fortran Enhancements for Multiprocessors

worthwhile to parallelize if N is big enough. To overcome the parallel loop
overhead, N needs to be around 500.

An optimized version would use the IF clause on the DOACROSS directive:

 J = (N/4) * 4
 DO I = J+1, N
 A(I) = A(I) + X*B(I)
 END DO

C$DOACROSS IF (J.GE.500), LOCAL(I)
 DO I = 1, J, 4
 A(I) = A(I) + X*B(I)
 A(I+1) = A(I+1) + X*B(I+1)
 A(I+2) = A(I+2) + X*B(I+2)
 A(I+3) = A(I+3) + X*B(I+3)
 END DO
 ENDIF

Cache Effects

It is good policy to write loops that take the effect of the cache into account,
with or without parallelism. The technique for the best cache performance is
also quite simple: make the loop step through the array in the same way that
the array is laid out in memory. For Fortran, this means stepping through the
array without any gaps and with the leftmost subscript varying the fastest.

Note that this optimization does not depend on multiprocessing, nor is it
required in order for multiprocessing to work correctly. However,
multiprocessing can affect how the cache is used, so it is worthwhile to
understand.

Cache Effects

 129

Performing a Matrix Multiply

Consider the following code segment:

DO I = 1, N
 DO K = 1, N
 DO J = 1, N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 END DO
 END DO
END DO

This is the same as Example 1 in “Work Quantum” on page 126 (after
interchange). To get the best cache performance, the I loop should be
innermost. At the same time, to get the best multiprocessing performance,
the outermost loop should be parallelized. For this example, you can
interchange the I and J loops, and get the best of both optimizations:

C$DOACROSS LOCAL(I, J, K)
 DO J = 1, N
 DO K = 1, N
 DO I = 1, N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 END DO
 END DO
 END DO

Understanding Trade-Offs

Sometimes you must choose between the possible optimizations and their
costs. Look at the following code segment:

DO J = 1, N
 DO I = 1, M
 A(I) = A(I) + B(J)*C(I,J)
 END DO
END DO

130

Chapter 7: Fortran Enhancements for Multiprocessors

This loop can be parallelized on I but not on J. You could interchange the
loops to put I on the outside, thus getting a bigger work quantum.

C$DOACROSS LOCAL(I,J)
 DO I = 1, M
 DO J = 1, N
 A(I) = A(I) + B(J)*C(I,J)
 END DO
 END DO

However, putting J on the inside means that you will step through the C
array in the wrong direction; the leftmost subscript should be the one that
varies the fastest. It is possible to parallelize the I loop where it stands:

 DO J = 1, N
C$DOACROSS LOCAL(I)
 DO I = 1, M
 A(I) = A(I) + B(J)*C(I,J)
 END DO
 END DO

However, M needs to be large for the work quantum to show any
improvement. In this example, A(I) is used to do a sum reduction, and it is
possible to use the reduction techniques shown in Example 4 of “Breaking
Data Dependencies” on page 120 to rewrite this in a parallel form. (Recall
that there is no support for an entire array as a member of the REDUCTION
clause on a DOACROSS.) However, that involves converting array A from
a one-dimensional array to a two-dimensional array to hold the partial
sums; this is analogous to the way we converted the scalar summation
variable into an array of partial sums.

Cache Effects

 131

If A is large, however, the conversion can take more memory than you can
spare. It can also take extra time to initialize the expanded array and increase
the memory bandwidth requirements.

 NUM = MP_NUMTHREADS()
 IPIECE = (N + (NUM-1)) / NUM

C$DOACROSS LOCAL(K,J,I)
 DO K = 1, NUM
 DO J = K*IPIECE - IPIECE + 1, MIN(N, K*IPIECE)
 DO I = 1, M
 PARTIAL_A(I,K) = PARTIAL_A(I,K) + B(J)*C(I,J)
 END DO
 END DO
 END DO

C$DOACROSS LOCAL (I,K)
 DO I = 1, M
 DO K = 1, NUM
 A(I) = A(I) + PARTIAL_A(I,K)
 END DO
 END DO

You must trade off the various possible optimizations to find the
combination that is right for the particular job.

Load Balancing

When the Fortran compiler divides a loop into pieces, by default it uses the
simple method of separating the iterations into contiguous blocks of equal
size for each process. It can happen that some iterations take significantly
longer to complete than other iterations. At the end of a parallel region, the
program waits for all processes to complete their tasks. If the work is not
divided evenly, time is wasted waiting for the slowest process to finish.

Example

DO I = 1, N
 DO J = 1, I
 A(J, I) = A(J, I) + B(J)*C(I)
 END DO
END DO

132

Chapter 7: Fortran Enhancements for Multiprocessors

The previous code segment can be parallelized on the I loop. Because the
inner loop goes from 1 to I, the first block of iterations of the outer loop will
end long before the last block of iterations of the outer loop.

In this example, this is easy to see and predictable, so you can change the
program:

 NUM_THREADS = MP_NUMTHREADS()
C$DOACROSS LOCAL(I, J, K)
 DO K = 1, NUM_THREADS
 DO I = K, N, NUM_THREADS
 DO J = 1, I
 A(J, I) = A(J, I) + B(J)*C(I)
 END DO
 END DO
 END DO

In this rewritten version, instead of breaking up the I loop into contiguous
blocks, break it into interleaved blocks. Thus, each execution thread receives
some small values of I and some large values of I, giving a better balance of
work between the threads. Interleaving usually, but not always, cures a load
balancing problem.

You can use the MP_SCHEDTYPE clause to automatically perform this
desirable transformation.

C$DOACROSS LOCAL (I,J), MP_SCHEDTYPE=INTERLEAVE
 DO 20 I = 1, N
 DO 10 J = 1, I
 A (J,I) = A(J,I) + B(J)*C(J)
 10 CONTINUE
 20 CONTINUE

The previous code has the same meaning as the rewritten form above.

Note that interleaving can cause poor cache performance because the array
is no longer stepped through at stride 1. You can improve performance
somewhat by adding a CHUNK=integer_expression clause. Usually 4 or 8 is
a good value for integer_expression. Each small chunk will have stride 1 to
improve cache performance, while the chunks are interleaved to improve
load balancing.

Advanced Features

 133

The way that iterations are assigned to processes is known as scheduling.
Interleaving is one possible schedule. Both interleaving and the “simple”
scheduling methods are examples of fixed schedules; the iterations are
assigned to processes by a single decision made when the loop is entered.
For more complex loops, it may be desirable to use DYNAMIC or GSS
schedules.

 Comparing the output from pixie or from pc sampling allows you to see how
well the load is being balanced so you can compare the different methods of
dividing the load. Refer to the discussion of the MP_SCHEDTYPE clause in
“C$DOACROSS” on page 106 for more information.

Even when the load is perfectly balanced, iterations may still take varying
amounts of time to finish because of random factors. One process may take
a page fault , another may be interrupted to let a different program run, and
so on. Because of these unpredictable events, the time spent waiting for all
processes to complete can be several hundred cycles, even with near perfect
balance.

Advanced Features

A number of features are provided so that sophisticated users can override
the multiprocessing defaults and customize the parallelism to their
particular applications. This section provides a brief explanation of these
features.

mp_block and mp_unblock

mp_block puts the slave threads into a blocked state using the system call
blockproc. The slave threads stay blocked until a call is made to
mp_unblock. These routines are useful if the job has bursts of parallelism
separated by long stretches of single processing, as with an interactive
program. You can block the slave processes so they consume CPU cycles
only as needed, thus freeing the machine for other users. The Fortran system
automatically unblocks the slaves on entering a parallel region should you
neglect to do so.

134

Chapter 7: Fortran Enhancements for Multiprocessors

mp_setup, mp_create, and mp_destroy

The mp_setup, mp_create, and mp_destroy subroutine calls create and
destroy threads of execution. This can be useful if the job has only one
parallel portion or if the parallel parts are widely scattered. When you
destroy the extra execution threads, they cannot consume system resources;
they must be re-created when needed. Use of these routines is discouraged
because they degrade performance; the mp_block and mp_unblock
routines should be used in almost all cases.

mp_setup takes no arguments. It creates the default number of processes as
defined by previous calls to mp_set_numthreads, by the environment
variable MP_SET_NUMTHREADS (described in “Environment Variables:
MP_SET_NUMTHREADS, MP_BLOCKTIME, MP_SETUP” on page 136), or
by the number of CPUs on the current hardware platform. mp_setup is
called automatically when the first parallel loop is entered to initialize the
slave threads.

mp_create takes a single integer argument, the total number of execution
threads desired. Note that the total number of threads includes the master
thread. Thus, mp_create(n) creates one thread less than the value of its
argument. mp_destroy takes no arguments; it destroys all the slave
execution threads, leaving the master untouched.

When the slave threads die, they generate a SIGCLD signal. If your program
has changed the signal handler to catch SIGCLD, it must be prepared to deal
with this signal when mp_destroy is executed. This signal also occurs when
the program exits; mp_destroy is called as part of normal cleanup when a
parallel Fortran job terminates.

mp_blocktime

The Fortran slave threads spin wait until there is work to do. This makes
them immediately available when a parallel region is reached. However, this
consumes CPU resources. After enough wait time has passed, the slaves
block themselves through blockproc. Once the slaves are blocked, it requires
a system call to unblockproc to activate the slaves again (refer to the
unblockproc(2) man page for details). This makes the response time much
longer when starting up a parallel region.

Advanced Features

 135

This trade-off between response time and CPU usage can be adjusted with
the mp_blocktime call. mp_blocktime takes a single integer argument that
specifies the number of times to spin before blocking. By default, it is set to
10,000,000; this takes roughly one second. If called with an argument of 0, the
slave threads will not block themselves no matter how much time has
passed. Explicit calls to mp_block, however, will still block the threads.

This automatic blocking is transparent to the user’s program; blocked
threads are automatically unblocked when a parallel region is reached.

mp_numthreads, mp_set_numthreads

Occasionally, you may want to know how many execution threads are
available. mp_numthreads is a zero-argument integer function that returns
the total number of execution threads for this job. The count includes the
master thread.

mp_set_numthreads takes a single-integer argument. It changes the default
number of threads to the specified value. A subsequent call to mp_setup will
use the specified value rather than the original defaults. If the slave threads
have already been created, this call will not change their number. It only has
an effect when mp_setup is called.

mp_my_threadnum

mp_my_threadnum is a zero-argument function that allows a thread to
differentiate itself while in a parallel region. If there are n execution threads,
the function call returns a value between zero and n – 1. The master thread
is always thread zero. This function can be useful when parallelizing certain
kinds of loops. Most of the time the loop index variable can be used for the
same purpose. Occasionally, the loop index may not be accessible, as, for
example, when an external routine is called from within the parallel loop.
This routine provides a mechanism for those cases.

136

Chapter 7: Fortran Enhancements for Multiprocessors

Environment Variables: MP_SET_NUMTHREADS,
MP_BLOCKTIME, MP_SETUP

The MP_SET_NUMTHREADS, MP_BLOCKTIME, and MP_SETUP
environment variables act as an implicit call to the corresponding routine(s)
of the same name at program start-up time.

For example, the csh command

% setenv MP_SET_NUMTHREADS 2

causes the program to create two threads regardless of the number of CPUs
actually on the machine, just like the source statement

CALL MP_SET_NUMTHREADS (2)

Similarly, the sh commands

% set MP_BLOCKTIME 0

% export MP_BLOCKTIME

prevent the slave threads from autoblocking, just like the source statement

call mp_blocktime (0)

For compatibility with older releases, the environment variable
NUM_THREADS is supported as a synonym for
MP_SET_NUMTHREADS.

To help support networks with several multiprocessors and several CPUs,
the environment variable MP_SET_NUMTHREADS also accepts an
expression involving integers +, –, min, max, and the special symbol all,
which stands for “the number of CPUs on the current machine.”

For example, the following command selects the number of threads to be
two fewer than the total number of CPUs (but always at least one):

% setenv MP_SET_NUMTHREADS max(1,all-2)

Advanced Features

 137

Environment Variables: MP_SUGNUMTHD,
MP_SUGNUMTHD_VERBOSE, MP_SUGNUMTHD_MIN,
MP_SUGNUMTHD_MAX

Prior to the current (6.02) compiler release, the number of threads utilized
during execution of a multiprocessor job was generally constant, set for
example using MP_SET_NUMTHREADS.

In an environment with long running jobs and varying workloads, it may be
preferable to vary the number of threads during execution of some jobs.

Setting MP_SUGNUMTHD causes the run-time library to create an
additional, asynchronous process that periodically wakes up and monitors
the system load. When idle processors exist, this process increases the
number of threads, up to a maximum of MP_SET_NUMTHREADS. When
the system load increases, it decreases the number of threads, possibly to as
few as 1. When MP_SUGNUMTHD has no value, this feature is disabled and
multithreading works as before.

The environment variables MP_SUGNUMTHD_MIN and
MP_SUGNUMTHD_MAX are used to limit this feature as desired. When
MP_SUGNUMTHD_MIN is set to an integer value between 1 and
MP_SET_NUMTHREADS, the process will not decrease the number of
threads below that value.

When MP_SUGNUMTHD_MAX is set to an integer value between the
minimum number of threads and MP_SET_NUMTHREADS, the process
will not increase the number of threads above that value.

If you set any value in the environment variable
MP_SUGNUMTHD_VERBOSE, informational messages are written to
stderr whenever the process changes the number of threads in use.

Calls to mp_numthreads and mp_set_numthreads are taken as a sign that the
application depends on the number of threads in use. The number in use is
frozen upon either of these calls; and if MP_SUGNUMTHD_VERBOSE is
set, a message to that effect is written to stderr.

138

Chapter 7: Fortran Enhancements for Multiprocessors

Environment Variables: MP_SCHEDTYPE, CHUNK

These environment variables specify the type of scheduling to use on
DOACROSS loops that have their scheduling type set to RUNTIME. For
example, the following csh commands cause loops with the RUNTIME
scheduling type to be executed as interleaved loops with a chunk size of 4:

% setenv MP_SCHEDTYPE INTERLEAVE
% setenv CHUNK 4

The defaults are the same as on the DOACROSS directive; if neither
variable is set, SIMPLE scheduling is assumed. If MP_SCHEDTYPE is set,
but CHUNK is not set, a CHUNK of 1 is assumed. If CHUNK is set, but
MP_SCHEDTYPE is not, DYNAMIC scheduling is assumed.

mp_setlock, mp_unsetlock, mp_barrier

mp_setlock, mp_unsetlock, and mp_barrier are zero-argument subroutines
that provide convenient (although limited) access to the locking and barrier
functions provided by ussetlock, usunsetlock, and barrier. These
subroutines are convenient because you do not need to initialize them; calls
such as usconfig and usinit are done automatically. The limitation is that
there is only one lock and one barrier. For most programs, this amount is
sufficient. If your program requires more complex or flexible locking
facilities, use the ussetlock family of subroutines directly.

Local COMMON Blocks

A special ld option allows named COMMON blocks to be local to a process.
Each process in the parallel job gets its own private copy of the common
block. This can be helpful in converting certain types of Fortran programs
into a parallel form.

The common block must be a named COMMON (blank COMMON may
not be made local), and it must not be initialized by DATA statements.

Advanced Features

 139

To create a local COMMON block, give the special loader directive
–Xlocal followed by a list of COMMON block names. Note that the external
name of a COMMON block known to the loader has a trailing underscore
and is not surrounded by slashes. For example, the command

% f77 –mp a.o –Xlocal foo_

makes the COMMON block /foo/ a local COMMON block in the resulting
a.out file. You can specify multiple –Xlocal options if necessary.

It is occasionally desirable to be able to copy values from the master thread’s
version of the COMMON block into the slave thread’s version. The special
directive C$COPYIN allows this. It has the form

C$COPYIN item [, item …]

Each item must be a member of a local COMMON block. It can be a variable,
an array, an individual element of an array, or the entire COMMON block.

For example,

C$COPYIN x,y, /foo/, a(i)

propagates the values for x and y, all the values in the COMMON block foo,
and the ith element of array a. All these items must be members of local
COMMON blocks. Note that this directive is translated into executable
code, so in this example i is evaluated at the time this statement is executed.

Compatibility With sproc

The parallelism used in Fortran is implemented using the standard system
call sproc. It is recommended that programs not attempt to use both
C$DOACROSS loops and sproc calls. It is possible, but there are several
restrictions:

• Any threads you create may not execute $DOACROSS loops; only the
original thread is allowed to do this.

• The calls to routines like mp_block and mp_destroy apply only to the
threads created by mp_create or to those automatically created when
the Fortran job starts; they have no effect on any user-defined threads.

140

Chapter 7: Fortran Enhancements for Multiprocessors

• Calls to routines such as m_get_numprocs do not apply to the threads
created by the Fortran routines. However, the Fortran threads are
ordinary subprocesses; using the routine kill with the arguments 0 and
sig (for example, kill(0,sig)) to signal all members of the process group
might kill the threads used to execute C$DOACROSS.

• If you choose to intercept the SIGCLD signal, you must be prepared to
receive this signal when the threads used for the C$DOACROSS loops
exit; this occurs when mp_destroy is called or at program termination.

• Note in particular that m_fork is implemented using sproc, so it is not
legal to m_fork a family of processes that each subsequently executes
C$DOACROSS loops. Only the original thread can execute
C$DOACROSS loops.

DOACROSS Implementation

This section discusses how multiprocessing is implemented in a
DOACROSS routine. This information is useful when you use a debugger
or interpret the results of an execution profile.

Loop Transformation

When the Fortran compiler encounters a C$DOACROSS directive, it spools
the body of the corresponding DO loop into a separate subroutine and
replaces the loop with a call to a special library routine __mp_parallel_do.

The newly created routine is named by appending .pregion to the name of
the original routine, followed by the number of the parallel loop in the
routine (where 0 is the first loop). For example, the first parallel loop in a
routine named foo is named foo.pregion0, the second parallel loop is
foo.pregion1, and so on.

If a loop occurs in the main routine and if that routine has not been given a
name by the PROGRAM statement, its name is assumed to be main. Any
variables declared to be LOCAL in the original C$DOACROSS statement
are declared as local variables in the spooled routine. References to SHARE
variables are resolved by referring back to the original routine.

DOACROSS Implementation

 141

Because the spooled routine is now just a DO loop, the routine uses
subroutine arguments to specify which part of the loop a particular process
is to execute. The spooled routine has three arguments: the starting value for
the index, the number of times to execute the loop, and a special flag word.

 As an example, the following routine that appears on line 1000:

 SUBROUTINE EXAMPLE(A, B, C, N)
 REAL A(*), B(*), C(*)
C$DOACROSS LOCAL(I,X)
 DO I = 1, N
 X = A(I)*B(I)
 C(I) = X + X**2
 END DO
 C(N) = A(1) + B(2)
 RETURN
 END

produces this spooled routine to represent the loop:

 SUBROUTINE EXAMPLE.pregion
X (_LOCAL_START, _LOCAL_NTRIP, _THREADINFO)
 INTEGER*4 _LOCAL_START
 INTEGER*4 _LOCAL_NTRIP
 INTEGER*4 _THREADINFO
 INTEGER*4 I
 REAL X
 INTEGER*4 _DUMMY

 I = _LOCAL_START
 DO _DUMMY = 1,_LOCAL_NTRIP
 X = A(I)*B(I)
 C(I) = X + X**2
 I = I + 1
 END DO

 END

142

Chapter 7: Fortran Enhancements for Multiprocessors

Executing Spooled Routines

The set of processes that cooperate to execute the parallel Fortran job are
members of a process share group created by the system call sproc. The
process share group is created by special Fortran start-up routines that are
used only when the executable is linked with the –mp option, which enables
multiprocessing.

The first process is the master process. It executes all the nonparallel portions
of the code. The other processes are slave processes; they are controlled by
the routine mp_slave_control. When they are inactive, they wait in the
special routine __mp_slave_wait_for_work.

The __mp_parallel_do routine divides the work and signals the slaves. The
master process then calls the spooled routine to do its share of the work.
When a slave is signaled, it wakes up from the wait loop, calculates which
iterations of the spooled DO loop it is to execute, and then calls the spooled
routine with the appropriate arguments. When a slave completes its
execution of the spooled routine, it reports that it has finished and returns to
__mp_slave_wait_for_work.

When the master completes its execution of its portion of the spooled
routine, it waits in the special routine mp_wait_for_loop_completion until
all the slaves have completed processing. The master then returns to the
main routine and continues execution.

PCF Directives

 143

PCF Directives

In addition to the simple loop-level parallelism offered by the
C$DOACROSS directive (described in “Parallel Loops” on page 104), the
compiler supports a more general model of parallelism. This model is based
on the work done by the Parallel Computing Forum (PCF), which itself
formed the basis for the proposed ANSI-X3H5 standard. The compiler
supports this model through compiler directives, rather than extensions to
the source language.

The main concept in this model is the parallel region, which can be any
arbitrary section of code (not just a DO loop). Within the parallel region,
there are special work-sharing constructs that can be used to divide the work
among separate processes or threads. The parallel region can also contain a
critical section construct, where exactly one process executes at a time.

The master thread executes the user program until it reaches a parallel
region. It then spawns one or more slave threads that begin executing code
at the beginning of a parallel region. Each thread executes all the code in the
region until a work sharing construct is encountered. Each thread then
executes some portion of the work sharing construct, and then resumes
executing the parallel region code. At the end of the parallel region, all the
threads synchronize, and the master thread continues execution of the user
program.

The PCF directives, summarized in Table 7-1, implement the general model
of parallelism. They look like Fortran comments, with a C in column one.
The compiler recognizes these directives when multiprocessing is enabled
with either the –mp option. (Multiprocessing is also enabled with the –pfa
option if you have purchased Power Fortran 77.) If multiprocessing is not
enabled, the compiler treats these statements as comments. Therefore, you
can compile identical source with a single-processing compiler or by Fortran
without the multiprocessing option. The PCF directives start with the
characters C$PAR.

144

Chapter 7: Fortran Enhancements for Multiprocessors

Table 7-1 Summary of PCF Directives

Directive Description

C$PAR BARRIER Ensures that each process waits until
all processes reach the barrier before
proceeding.

C$PAR [END] CRITICAL SECTION Ensures that the enclosed block of
code is executed by only one process
at a time by using a lock variable.

C$PAR [END] PARALLEL Encloses a parallel region, which
includes work-sharing constructs and
critical sections.

C$PAR PARALLEL DO Precedes a single DO loop for which
separate iterations are executed by
different processes. This directive is
equivalent to the C$ DOACROSS
directive.

C$PAR [END] PDO Separate iterations of the enclosed
loop are executed by different
processes. This directive must be
inside a parallel region.

C$PAR [END] PSECTION[S] Parcels out each block of code in turn
to a process.

C$PAR SECTION Signifies a starting line for an
individual section within a parallel
section.

C$PAR [END] SINGLE PROCESS Ensures that the enclosed block of
code is executed by exactly one
process.

C$PAR & Continues a PCF directive onto
multiple lines.

PCF Directives

 145

Parallel Region

A parallel region encloses any number of PCF constructs (described in “PCF
Constructs” on page 146). It signifies the boundary within which slave
threads execute. A user program can contain any number of parallel regions.
The syntax of the parallel region is

C$PAR PARALLEL [clause [[,] clause]...]
code

C$PAR END PARALLEL

where valid clauses are

[IF (logical_expression)]
[{LOCAL | PRIVATE}(item [, item ...])]
[{SHARED | SHARE}(item [, item ...])]

The IF, LOCAL, and SHARED clauses have the same meaning as in the C$
DOACROSS directive (refer to “Writing Parallel Fortran” on page 105).

The preferred form of the directive has no commas between the clauses. The
SHARED clause is preferred over SHARE and LOCAL is preferred over
PRIVATE.

In the following code, all threads enter the parallel region and call the
routine foo:

 subroutine ex1(index)
 integer i

C$PAR PARALLEL LOCAL(i)
 i = mp_my_threadnum()
 call foo(i)
C$PAR END PARALLEL

 end

146

Chapter 7: Fortran Enhancements for Multiprocessors

PCF Constructs

The three types of PCF constructs are work-sharing constructs, critical
sections, and barriers. All master and slave threads synchronize at the
bottom of a work-sharing construct. None of the threads continue past the
end of the construct until they all have completed execution within that
construct.

The four work-sharing constructs are

• parallel DO

• PDO

• parallel sections

• single process

If specified, the PDO, parallel section, and single process constructs must
appear inside of a parallel region; the parallel DO construct cannot.
Specifying a parallel DO construct inside of a parallel region produces a
syntax error.

The critical section construct protects a block of code with a lock so that it is
executed by only one thread at a time. Threads do not synchronize at the
bottom of a critical section.

The barrier construct ensures that each process that is executing waits until
all others reach the barrier before proceeding.

Parallel DO

The parallel DO construct is the same as the C$DOACROSS directive
(described in “C$DOACROSS” on page 106) and conceptually the same as a
parallel region containing exactly one PDO construct and no other code.
Each thread inside the enclosing parallel region executes separate iterations
of the loop within the parallel DO construct. The syntax of the parallel DO
construct is

C$PAR PARALLEL DO [clause [[,] clause]...]

PCF Directives

 147

“C$DOACROSS” on page 106 describes valid values for clause with the
exception of the MP_SCHEDTYPE=mode clause. For the C$PAR
PARALLEL DO directive, MP_SCHEDTYPE= is optional; you can just
specify mode.

PDO

Each thread inside the enclosing parallel region executes a separate iteration
of the loop within the PDO construct. The syntax of the PDO construct,
which can only be specified within a parallel region, is

C$PAR PDO [clause [[,] clause]...]
 code
[C$PAR END PDO [NOWAIT]]

where valid values for clause are

[{LOCAL | PRIVATE} (item[, item ...])]
[{LASTLOCAL | LAST LOCAL} (item[, item ...])]
[(ORDERED)]
[sched]
[chunk]

LOCAL , LASTLOCAL, sched, and chunk have the same meaning as in the
C$DOACROSS directive (refer to “Writing Parallel Fortran” on page 105).
Note in particular that it is legal to declare a data item as LOCAL in a PDO
even if it was declared as SHARED in the enclosing parallel region. The
(ORDERED) clause is equivalent to a sched clause of DYNAMIC and a chunk
clause of 1. The parenthesis are required.

LASTLOCAL is preferred over LAST LOCAL and LOCAL is preferred over
PRIVATE.

The END PDO directive is optional. If specified, this directive must appear
immediately after the end of the DO loop. The optional NOWAIT clause
specifies that each process should proceed directly to the code immediately
following the directive. If you do not specify NOWAIT, the processes will
wait until all have reached the directive before proceeding.

148

Chapter 7: Fortran Enhancements for Multiprocessors

As an example of the PDO construct, consider the following code:

 subroutine ex2(a,n)
 real a(n)

C$PAR PARALLEL local(i) shared(a)
C$PAR PDO
 do i = 1, n
 a(i) = a(i) + 1.0
 enddo
C$PAR END PARALLEL

 end

This sample code is the same as a C$ DOACROSS loop. In fact, the compiler
recognizes this as a special case and generates the same (more efficient) code
as for a C$ DOACROSS directive.

Parallel Sections

The parallel sections construct is a parallel version of the Fortran 90 SELECT
statement. Each block of code is parcelled out in turn to a separate thread.
The syntax of the parallel sections construct is

C$PAR PSECTION[S] [clause [[,] clause]...
code

[C$PAR SECTION
 code] ...
C$PAR END PSECTION[S] [NOWAIT]

where the only valid value for clause is

[{LOCAL | PRIVATE} (item [, item])]

LOCAL is preferred over PRIVATE and has the same meaning as for the C$
DOACROSS directive (refer to “C$DOACROSS” on page 106). Note in
particular that it is legal to declare a data item as LOCAL in a parallel
sections construct even if it was declared as SHARED in the enclosing
parallel region.

The optional NOWAIT clause specifies that each process should proceed
directly to the code immediately following the directive. If you do not
specify NOWAIT, the processes will wait until all have reached the END
PSECTION directive before proceeding.

PCF Directives

 149

Parallel sections must appear within a parallel region. They can contain
critical section contructs (described in “Critical Section” on page 154) but
cannot contain any of the following types of constructs:

• PDO

• parallel DO or C$ DOACROSS

• single process

Each code block is executed in parallel (depending on the number of
processes available). The code blocks are assigned to threads one at a time,
in the order specified. Each code block is executed by only one thread.

For example, consider the following code:

 subroutine ex3(a,n1,b,n2,c,n3)
 real a(n1), b(n2), c(n3)

C$PAR PARALLEL local(i) shared(a,b,c)

C$PAR PSECTIONS
C$PAR SECTION
 do i = 1, n1
 a(i) = 0.0
 enddo
C$PAR SECTION
 do i = 1, n2
 b(i) = 0.5
 enddo
C$PAR SECTION
 call normalize(c,n3)
 do i = 1, n3
 c(i) = c(i) + 1.0
 enddo
C$PAR END PSECTION

C$PAR END PARALLEL

 end

The first thread to enter the parallel sections construct executes the first
block, the second thread executes the second block, and so on. This example
has only three sections, so if more than three threads are in the parallel
region, the fourth and higher threads wait at the C$PAR END PSECTION

150

Chapter 7: Fortran Enhancements for Multiprocessors

directive until all threads are finished. If the parallel region is being executed
by only two threads, whichever thread finishes its block first continues and
executes the remaining block.

This example uses DO loops, but a parallel section can be any arbitrary block
of code. Be aware of the significant overhead of a parallel construct. Make
sure the amount of work performed is enough to outweigh the extra
overhead.

The sections within a parallel sections construct are assigned to threads one
at a time, from the top down. There is no other implied ordering to the
operations within the sections. In particular, a later section cannot depend on
the results of an earlier section, unless some form of explicit synchronization
is used. If there is such explicit synchronization, you must be sure that the
lexical ordering of the blocks is a legal order of execution.

Single Process

The single process construct, which can only be specified within a parallel
region, ensures that a block of code is executed by exactly one process. The
syntax of the single process construct is

C$PAR SINGLE PROCESS [clause [[,] clause]...]
code

C$PAR END SINGLE PROCESS [NOWAIT]

where the only valid value for clause is

[{LOCAL | PRIVATE} (item [, item])]

LOCAL is preferred over PRIVATE and has the same meaning as for the C$
DOACROSS directive (refer to “C$DOACROSS” on page 106). Note in
particular that it is legal to declare a data item as LOCAL in a single process
construct even if it was declared as SHARED in the enclosing parallel
region.

The optional NOWAIT clause specifies that each process should proceed
directly to the code immediately following the directive. If you do not
specify NOWAIT, the processes will wait until all have reached the directive
before proceeding.

PCF Directives

 151

This construct is semantically equivalent to a parallel sections construct with
only one section. The single process construct provides a more descriptive
syntax. For example, consider the following code:

 real function ex4(a,n, big_max, bmax_x, bmax_y)
 real a(n,n), big_max
 integer bmax_x, bmax_y

C$ volatile big_max, bmax_x, bmax_y
C$ volatile cur_max, index_x, index_y

 index_x = 0
 index_y = 0
 cur_max = 0.0

C$PAR PARALLEL local(i,j)
C$PAR& shared(a,n,index_x,index_y,cur_max,
C$PAR& big_max,bmax_x,bmax_y)

C$PAR PDO
 do j = 1, n
 do i = 1, n
 if (a(i,j) .gt. cur_max) then
C$PAR CRITICAL SECTION
 if (a(i,j) .gt. cur_max) then
 index_x = i
 index_y = j
 cur_max = a(i,j)
 endif
C$PAR END CRITICAL SECTION
 endif
 enddo
 enddo

C$PAR SINGLE PROCESS
 if (cur_max .gt. big_max) then
 big_max = (big_max + cur_max) / 2.0
 bmax_x = index_x
 bmax_y = index_y
 endif
C$PAR END SINGLE PROCESS

152

Chapter 7: Fortran Enhancements for Multiprocessors

C$PAR PDO
 do j = 1, n
 do i = 1, n
 a(i,j) = a(i,j)/big_max
 enddo
 enddo

C$PAR END PARALLEL

 ex4 = cur_max

 end

The first thread to reach the single process section executes the code in that
block. All other threads wait at the end of the block until the code has been
executed.

This example contains a number of interesting points to be examined. First,
note the use of the VOLATILE declaration. Any data item that might be
written by one thread and then read by a different thread must be marked as
VOLATILE. Making a variable VOLATILE can reduce opportunities for
optimization, so the declarations are prefixed by C$ to prevent the
single-processor version of the code from being penalized. Refer to the
MIPSpro Fortran 77 Language Reference Manual for more information about
the VOLATILE statement.

PCF Directives

 153

Second, note the use of the odd looking repetition of the IF test in the first
parallel loop:

 if (a(i,j) .gt. cur_max) then
C$PAR CRITICAL SECTION
 if (a(i,j) .gt. cur_max) then

This practice is usually called test&test&set. It is a multi-processing
optimization. Note that the following straight forward code segment is
incorrect:

 do i = 1, n
 if (a(i,j) .gt. cur_max) then
C$PAR CRITICAL SECTION
 index_x = i
 index_y = j
 cur_max = a(i,j)
C$PAR END CRITICAL SECTION
 endif
 enddo

Because many threads execute the loop in parallel, there is no guarantee that
once inside the critical section, cur_max still has the same value it did in the
IF test outside the critical section (some other thread may have updated it).
In particular, cur_max may now have a value that is larger than a(i,j).
Therefore, the critical section must be locked before testing the value of
cur_max. Changing the previous code into the equally straightforward

 do i = 1, n
C$PAR CRITICAL SECTION
 if (a(i,j) .gt. cur_max) then
 index_x = i
 index_y = j
 cur_max = a(i,j)
 endif
C$PAR END CRITICAL SECTION
 enddo

works correctly, but suffers from a serious performance penalty: the critical
section lock must be acquired and released (an expensive operation) for each
element of the array. Because the values are rarely updated, this process
involves a lot of wasted effort. It is almost certainly slower than just
executing the loop serially.

154

Chapter 7: Fortran Enhancements for Multiprocessors

Combining the two methods, as in the original example, produces code that
is both fast and correct. If the IF test outside of the critical section fails, you
can be certain that the values will not be updated, and can proceed. You can
expect that the outside IF test will account for the majority of cases. If the
outer IF test passes, then the values might be updated, but you cannot always
be certain. To ensure correctness, you must perform the test again after
acquiring the critical section lock.

You can prefix one of the two identical IF tests with C$ to reduce overhead
in the non-multiprocessed case.

Lastly, note the difference between the single process and critical section
constructs. If several processes arrive at a critical section construct, they
execute the code one at a time. However, they will all execute the code. If
several processes arrive at a single process construct, only one process
executes the code. The other processes bypass the code and wait at the end
of the construct for the chosen process to finish.

Critical Section

The critical section construct restricts execution of a block of code so that
only one process can execute it at a time. Another process attempting to gain
entry to the critical section must wait until the previous process has exited.

The critical section construct can appear anywhere in a program, including
inside and outside a parallel region and within a C$ DOACROSS loop. The
syntax of the critical section construct is

C$PAR CRITICAL SECTION [(lock_variable)]
 code

C$PAR END CRITICAL SECTION

The lock_variable is an optional integer variable that must be initialized to
zero. The parenthesis are required. If you do not specify lock_variable, the
compiler automatically supplies one.

Multiple critical section constructs inside the same parallel region are
considered to be independent of each other unless they use the same explicit
lock_variable.

PCF Directives

 155

Consider the following code:

 integer function num_exceptions(a,n,biggest_allowed)
 double precision a(n,n,n), biggest_allowed

 integer count
 integer lock_var

 volatile count

 count = 0
 lock_var = 0

C$PAR PARALLEL local(i,j,k) shared(count,lock_var)

C$PAR PDO
 do 10 k = 1,n
 do 10 j = 1,n
 do 10 i = 1,n
 if (a(i,j,k) .gt. biggest_allowed) then

C$PAR CRITICAL SECTION (lock_var)
 count = count + 1
C$PAR END CRITICAL SECTION (lock_var)

 else
 call transform(a(i,j,k))
 if (a(i,j,k) .gt. biggest_allowed) then

C$PAR CRITICAL SECTION (lock_var)
 count = count + 1
C$PAR END CRITICAL SECTION (lock_var)

 endif

 endif
 10 continue

C$PAR END PARALLEL

 num_exceptions = count

 return
 end

156

Chapter 7: Fortran Enhancements for Multiprocessors

This example demonstrates the use of the lock variable (lock_var). A C$PAR
CRITICAL SECTION directive ensures that no more than one process
executes the enclosed block of code at a time. However, if there are multiple
critical sections, different processes can be in different critical sections at the
same time. This example does not allow different processes to be in different
critical sections at the same time because both critical sections control access
to the same variable (count). Specifying the same lock variable for both
critical sections ensures that no more than one process is executing either of
the critical sections that use that lock variable. Note that the lock_var must
be SHARED (so that all processes use the same lock), and that count must
be volatile (because other processes might change its value).

Barrier Constructs

A barrier construct ensures that each process waits until all processes reach
the barrier before proceeding. The syntax of the barrier construct is

C$PAR BARRIER

C$PAR &

Occasionally, the clauses in PCF directives are longer than one line. You can
use the C$PAR & directive to continue a directive onto multiple lines. For
example,

C$PAR PARALLEL local(i,j)
C$PAR& shared(a,n,index_x,index_y,cur_max,
C$PAR& big_max,bmax_x,bmax_y)

PCF Directives

 157

Restrictions

The three work-sharing constructs, PDO, PSECTION, and SINGLE
PROCESS, must be executed by all the threads executing in the parallel
region (or none of the threads). The following is illegal:

 .
 .
 .
C$PAR PARALLEL
 if (mp_my_threadnum() .gt. 5) then
C$PAR SINGLE PROCESS
 many_processes = .true.
C$PAR END SINGLE PROCESS
 endif
 .
 .
 .

This code will hang forever when run with enough processes. One or more
process will be stuck at the C$PAR END SINGLE PROCESS directive
waiting for all the threads to arrive. Because some of the threads never took
the appropriate branch, they will never encounter the construct. However,
the following kind of simple looping is supported:

code
C$PAR PARALLEL local(i,j) shared(a)
 do i= 1,n
C$PAR PDO
 do j = 2,n

code

The distinction here is that all of the threads encounter the work-sharing
construct, they all complete it, and they all loop around and encounter it
again.

Note that this restriction does not apply to the critical section construct,
which operates on one thread at a time without regard to any other threads.

Parallel regions cannot be lexically nested inside of other parallel regions,
nor can work-sharing constructs be nested. However, as an aid to writing
library code, you can call an external routine that contains a parallel region
even from within a parallel region. In this case, only the first region is

158

Chapter 7: Fortran Enhancements for Multiprocessors

actually run in parallel. Therefore, you can create a parallelized routine
without accounting for whether it will be called from within an already
parallelized routine.

A Few Words About Efficiency

The more general PCF constructs are typically slower than the special case
parallelism offered by the C$DOACROSS directive. They are slower
because of the extra synchronization required. When a C$DOACROSS loop
executes, there is a synchronization point at entry and another at exit. When
a parallel region executes, there is a synchronization point at entry to the
region, another at each entry to a work-sharing construct, another at each
exit from a work-sharing construct, and one at exit from the region. Thus,
several separate C$DOACROSS loops typically execute faster than a single
parallel region with several PDO constructs. Limit your use of the parallel
region construct to those few cases that actually need it.

 159

Chapter 8

8. Compiling and Debugging Parallel Fortran

This chapter gives instructions on how to compile and debug a parallel
Fortran program and contains the following sections:

• “Compiling and Running” explains how to compile and run a parallel
Fortran program.

• “Profiling a Parallel Fortran Program” describes how to use the system
profiler, prof, to examine execution profiles.

• “Debugging Parallel Fortran” presents some standard techniques for
debugging a parallel Fortran program.

This chapter assumes you have read Chapter 7, “Fortran Enhancements for
Multiprocessors,” and have reviewed the techniques and vocabulary for
parallel processing in the IRIX environment.

Compiling and Running

After you have written a program for parallel processing, you should debug
your program in a single-processor environment by calling the Fortran
compiler with the f77 command. You can also debug your program using the
WorkShop Pro MPF debugger, which is sold as a separate product. After
your program has executed successfully on a single processor, you can
compile it for multiprocessing. Check the f77(1) manual page for
multiprocessing options.

To turn on multiprocessing, add –mp to the f77 command line. This option
causes the Fortran compiler to generate multiprocessing code for the
particular files being compiled. When linking, you can specify both object
files produced with the –mp option and object files produced without it. If
any or all of the files are compiled with –mp, the executable must be linked
with –mp so that the correct libraries are used.

160

Chapter 8: Compiling and Debugging Parallel Fortran

Using the –static Option

A few words of caution about the –static compiler option: The
multiprocessing implementation demands some use of the stack to allow
multiple threads of execution to execute the same code simultaneously.
Therefore, the parallel DO loops themselves are compiled with the
–automatic option, even if the routine enclosing them is compiled with
–static.

This means that SHARE variables in a parallel loop behave correctly
according to the –static semantics but that LOCAL variables in a parallel
loop do not (see “Debugging Parallel Fortran” on page 162 for a description
of SHARE and LOCAL variables).

Finally, if the parallel loop calls an external routine, that external routine
cannot be compiled with –static. You can mix static and multiprocessed
object files in the same executable; the restriction is that a static routine
cannot be called from within a parallel loop.

Examples of Compiling

This section steps you through a few examples of compiling code using –mp.
The following command line

% f77 –mp foo.f

compiles and links the Fortran program foo.f into a multiprocessor
executable.

In this example

% f77 –c –mp –O2 snark.f

the Fortran routines in the file snark.f are compiled with multiprocess code
generation enabled. The optimizer is also used. A standard snark.o binary is
produced, which must be linked:

% f77 –mp –o boojum snark.o bellman. o

Profiling a Parallel Fortran Program

 161

Here, the –mp option signals the linker to use the Fortran multiprocessing
library. The file bellman.o need not have been compiled with the –mp option
(although it could have been).

After linking, the resulting executable can be run like any standard
executable. Creating multiple execution threads, running and
synchronizing them, and task terminating are all handled automatically.

When an executable has been linked with –mp, the Fortran initialization
routines determine how many parallel threads of execution to create. This
determination occurs each time the task starts; the number of threads is not
compiled into the code. The default is to use whichever is less: 4 or the
number of processors that are on the machine (the value returned by the
system call sysmp(MP_NAPROCS); see the sysmp(2) man page). You can
override the default by setting the shell environment variable
MP_SET_NUMTHREADS. If it is set, Fortran tasks use the specified
number of execution threads regardless of the number of processors
physically present on the machine. MP_SET_NUMTHREADS can be from
1 to 64.

Profiling a Parallel Fortran Program

After converting a program, you need to examine execution profiles to judge
the effectiveness of the transformation. Good execution profiles of the
program are crucial to help you focus on the loops consuming the most time.

IRIX provides profiling tools that can be used on Fortran parallel programs.
Both pixie(1) and pc-sample profiling can be used. On jobs that use multiple
threads, both these methods will create multiple profile data files (one for
each thread). You can use the standard profile analyzer prof(1) to examine
this output. (Refer to the MIPS Compiling and Performance Tuning Guide for
details about using prof.)

The profile of a Fortran parallel job is different from a standard profile. As
mentioned in “Analyzing Data Dependencies for Multiprocessing” on page
114, to produce a parallel program, the compiler pulls the parallel DO loops
out into separate subroutines, one routine for each loop. Each of these loops
is shown as a separate procedure in the profile. Comparing the amount of

162

Chapter 8: Compiling and Debugging Parallel Fortran

time spent in each loop by the various threads shows how well the workload
is balanced.

In addition to the loops, the profile shows the special routines that actually
do the multiprocessing. The __mp_parallel_do routine is the synchronizer
and controller. Slave threads wait for work in the routine
__mp_slave_wait_for_work. The less time they wait, the more time they
work. This gives a rough estimate of how parallel the program is.

Debugging Parallel Fortran

This section presents some standard techniques to assist in debugging a
parallel program.

General Debugging Hints

• Debugging a multiprocessed program is much more difficult than
debugging a single-processor program. Therefore you should do as
much debugging as possible on the single-processor version.

• Try to isolate the problem as much as possible. Ideally, try to reduce the
problem to a single C$DOACROSS loop.

• Before debugging a multiprocessed program, change the order of the
iterations on the parallel DO loop on a single-processor version. If the
loop can be multiprocessed, then the iterations can execute in any order
and produce the same answer. If the loop cannot be multiprocessed,
changing the order frequently causes the single-processor version to
fail, and standard single-process debugging techniques can be used to
find the problem.

Debugging Parallel Fortran

 163

Example: Erroneous C$DOACROSS

In this example, the bug is that the two references to a have the indexes in
reverse order. If the indexes were in the same order (if both were a(i,j) or
both were a(j,i)), the loop could be multiprocessed. As written, there is a data
dependency, so the C$DOACROSS is a mistake.

c$doacross local(i,j)
 do i = 1, n
 do j = 1, n
 a(i,j) = a(j,i) + x*b(i)
 end do
 end do

Because a (correct) multiprocessed loop can execute its iterations in any
order, you could rewrite this as:

c$doacross local(i,j)
 do i = n, 1, –1
 do j = 1, n
 a(i,j) = a(j,i) + x*b(i)
 end do
 end do

This loop no longer gives the same answer as the original even when
compiled without the –mp option. This reduces the problem to a normal
debugging problem. When a multiprocessed loop is giving the wrong
answer, make the following checks:

• Check the LOCAL variables when the code runs correctly as a single
process but fails when multiprocessed. Carefully check any scalar
variables that appear in the left-hand side of an assignment statement
in the loop to be sure they are all declared LOCAL. Be sure to include
the index of any loop nested inside the parallel loop.

A related problem occurs when you need the final value of a variable
but the variable is declared LOCAL rather than LASTLOCAL. If the
use of the final value happens several hundred lines farther down, or if
the variable is in a COMMON block and the final value is used in a
completely separate routine, a variable can look as if it is LOCAL when
in fact it should be LASTLOCAL. To combat this problem, simply
declare all the LOCAL variables LASTLOCAL when debugging a loop.

164

Chapter 8: Compiling and Debugging Parallel Fortran

• Check for EQUIVALENCE problems. Two variables of different names
may in fact refer to the same storage location if they are associated
through an EQUIVALENCE.

• Check for the use of uninitialized variables. Some programs assume
uninitialized variables have the value 0. This works with the –static
option, but without it, uninitialized values assume the value left on the
stack. When compiling with –mp, the program executes differently and
the stack contents are different. You should suspect this type of problem
when a program compiled with –mp and run on a single processor
gives a different result when it is compiled without –mp. One way to
track down a problem of this type is to compile suspected routines with
–static. If an uninitialized variable is the problem, it should be fixed by
initializing the variable rather than by continuing to compile –static.

• Try compiling with the –C option for range checking on array
references. If arrays are indexed out of bounds, a memory location may
be referenced in unexpected ways. This is particularly true of adjacent
arrays in a COMMON block.

• If the analysis of the loop was incorrect, one or more arrays that are
SHARE may have data dependencies. This sort of error is seen only
when running multiprocessed code. When stepping through the code
in the debugger, the program executes correctly. In fact, this sort of error
often is seen only intermittently, with the program working correctly
most of the time.

• The most likely candidates for this error are arrays with complicated
subscripts. If the array subscripts are simply the index variables of a
DO loop, the analysis is probably correct. If the subscripts are more
involved, they are a good choice to examine first.

• If you suspect this type of error, as a final resort print out all the values
of all the subscripts on each iteration through the loop. Then use
uniq(1) to look for duplicates. If duplicates are found, then there is a
data dependency.

 165

Chapter 9

9. Fine-Tuning Program Execution

This chapter contains the following sections:

• “Overview” explains the concept of directives and assertions.

• “Fine-Tuning Scalar Optimizations” describes how you can use
directives to fine-tune scalar optimizations.

• “Fine-Tuning Inlining and IPA” explains how you can use directives to
fine tune inlining and IPA.

• “Using Equivalenced Variables” explains how you can inform the
compiler that your code uses or does not use equivalenced variables.

• “Using Assertions” explains how you can enable or disable compiler
recognition of assertions.

• “Using Aliasing” explains the assertions that enable or disable types of
aliasing.

• “Fine-Tuning Global Assumptions” describes how to use assertions to
fine-tune global assumptions.

• “Ignoring Data Dependencies” explains how to instruct the compiler to
ignore data dependencies.

166

Chapter 9: Fine-Tuning Program Execution

Overview

After running a Fortran source program through the compiler’s scalar
optimizations once, you can use directives and assertions to fine-tune
program execution by forcing the compiler to execute portions of code in
various ways.

By default, the compiler recognizes all Silicon Graphics directives and
assertions. You can use the –WK,–directives command line option to
selectively enable/disable certain directives and assertions. Refer to
“Recognizing Directives” in Chapter 5 for information about the –directives
option.

Directives

Directives enable, disable, or modify a feature of the compiler. Essentially,
directives are command line options specified within the input file instead
of on the command line. Unlike command line options, directives have no
default setting. To invoke a directive, you must either toggle it on or set a
desired value for its level.

Directives allow you to enable, disable, or modify a feature of the compiler
in addition to, or instead of, command line options. Directives placed on the
first line of the input file are called global directives. The compiler interprets
them as if they appeared at the top of each program unit in the file. Use
global directives to ensure that the program is compiled with the correct
command line options. Directives appearing anywhere else in the file apply
only until the end of the current program unit. The compiler resets the value
of the directive to the global value at the start of the next program unit. (Set
the global value using a command line option or a global directive.)

Some command line options act like global directives. Other command line
options override directives. Many directives have corresponding command
line options. If you specify conflicting settings in the command line and a
directive, the compiler chooses the most restrictive setting. For Boolean
options, if either the directive or the command line has the option turned off,
it is considered off. For options that require a numeric value, the compiler
uses the minimum of the command line setting and the directive setting.

Overview

 167

Table 9-1 lists the directives supported by the compiler. In addition to the
standard Silicon Graphics directives, the compiler supports the CrayTM and
VASTTM directives listed in the table. The compiler maps these directives to
corresponding Silicon Graphics assertions. Refer to “Assertions” on page
168 for details.

Table 9-1 Directives Summary

Directive Compatability

C*$*ARCLIMIT(n) Silicon Graphics

C*$*[NO]ASSERTIONS Silicon Graphics

C*$* EACH_INVARIANT_IF_GROWTH(n) Silicon Graphics

C*$* [NO]INLINE Silicon Graphics

C*$* [NO]IPA Silicon Graphics

C*$* MAX_INVARIANT_IF_GROWTH(n) Silicon Graphics

C*$* OPTIMIZE(n) Silicon Graphics

C*$* ROUNDOFF(n) Silicon Graphics

C*$* SCALAR OPTIMIZE(n) Silicon Graphics

C*$* UNROLL(integer[,weight]) Silicon Graphics

CDIR$ NO RECURRENCE Cray

CVD$ [NO] DEPCHK VAST

CVD$ [NO]LSTVAL VAST

168

Chapter 9: Fine-Tuning Program Execution

Assertions

Assertions provide the compiler with additional information about the
source program. Sometimes assertions can improve optimization results.
Use them only when speed is essential.

Assertions can be unsafe because the compiler cannot verify the accuracy of
the information provided. If you specify an incorrect assertion, the
compiler-generated code might produce different results than the original
serial program. If you suspect unsafe assertions are causing problems, use
the –WK,–nodirectives command line option or the C*$* NO
ASSERTIONS directive to tell the compiler to ignore all assertions.

Table 9-2 lists the supported assertions and their duration.

As with a directive, the compiler treats an assertion as a global assertion if it
comes before all comments and statements in the file. That is, the compiler
treats the assertion as if it were repeated at the top of each program unit in
the file.

Some assertions (such as C*$* ASSERT RELATION) include variable
names. If you specify them as global assertions, a program uses them only
when those variable names appear in COMMON blocks or are dummy
argument names to the subprogram. You cannot use global assertions to
make relational assertions about variables that are local to a subprogram.

Table 9-2 Assertions and Their Duration

Assertion Duration

C*$* ASSERT [NO] ARGUMENT ALIASING Until reset

C*$* ASSERT [NO] BOUNDS VIOLATIONS Until reset

C*$* ASSERT [NO] EQUIVALENCE HAZARD Until reset

C*$* ASSERT NO RECURRENCE Next loop

C*$* ASSERT RELATION (name.xx. name) Next loop

C*$* ASSERT [NO] TEMPORARIES FOR CONSTANT
ARGUMENTS

Next loop

Overview

 169

Many assertions, like directives, are active until the end of the program unit
(or file) or until you reset them. Other assertions are active within a program
unit, regardless of where they appear in that program unit.

Certain Cray and VAST directives function like Silicon Graphics assertions.
The compiler maps these directives to the corresponding Silicon Graphics
assertions. These directives are described along with the related assertions
later in this chapter.

There is no guarantee that a specified assertion will have an effect. The
compiler notes the information provided by the assertion and uses the
information if it will help.

To understand the process the compiler uses in interpreting assertions, you
must understand the concept of assumed dependences. The following loop
contains two types of dependences:

 DO 10 i=1,n
 10 X(i) = X(i-1) + X(m)

X is an array, n and m are scalars, and nothing is known about the
relationship between n and m. Between X(i) and X(i-1) there is a forward
dependence, and the distance is one. Between X(i) and X(m), the compiler
tries to find a relation, but cannot, because it does not know the value of m
in relation to n. The second dependence is called an assumed dependence,
because it is assumed but cannot be proven to exist.

170

Chapter 9: Fine-Tuning Program Execution

Fine-Tuning Scalar Optimizations

The compiler supports several directives that allow you to fine-tune the
scalar optimizations described in “Controlling Scalar Optimizations” in
Chapter 5.

Controlling Internal Table Size

The C*$* ARCLIMIT(integer) directive sets the minimum size of the internal
table that the compiler uses for data dependence analysis. The greater the
value for integer, the more information the compiler can keep on complex
loop nests. The maximum value and default value for integer is 5000.

When you specify this directive globally, it has the same effect as the
–arclimit command line option (refer to “Controlling Internal Table Size” in
Chapter 5 for details).

Setting Invariant IF Floating Limits

The C*$* EACH_INVARIANT_IF_GROWTH and the C*$*
MAX_INVARIANT_IF_GROWTH directives control limits on invariant IF
floating. This process generally involves duplicating the body of the loop,
which can increase the amount of code considerably. Refer to “Setting
Invariant IF Floating Limits” in Chapter 5 for details about invariant IF
floating.

The C*$* EACH_INVARIANT_IF_GROWTH(integer) directive limits the
total number of additional lines of code generated through invariant IF
floating in a loop. You can control this limit globally with the
–each_invariant_if_growth command line option (see “Setting Invariant IF
Floating Limits” in Chapter 5).

You can limit the maximum amount of additional code generated in a
program unit through invariant IF floating with the C*$*
MAX_INVARIANT_IF_GROWTH(integer) directive. Use the
–max_invariant_if_growth command line option to control this limit
globally (see “Setting Invariant IF Floating Limits” in Chapter 5).

Fine-Tuning Scalar Optimizations

 171

These directives are in effect until the end of the routine or until reset by a
succeeding directive of the same type.

Example

Consider the following code:

C*$*EACH_INVARIANT_IF_GROWTH(integer)
C*$*MAX_INVARIANT_IF_GROWTH(integer)
 DO I = ...
C*$*EACH_INVARIANT_IF_GROWTH(integer)
C*$*MAX_INVARIANT_IF_GROWTH(integer)
 DO J = ...
C*$*EACH_INVARIANT_IF_GROWTH(integer)
C*$*MAX_INVARIANT_IF_GROWTH(integer)
 DO K = ...

section-1
 IF () THEN

section-2
 ELSE

section-3
 ENDIF

section-4
 ENDDO
 ENDDO
 ENDDO

In floating the invariant IF out of the loop nest, the compiler honors the
constraints set by the innermost directives first. If those constraints are
satisfied, the invariant IF is floated from the inner loop. The middle pair of
directives is tested and the invariant IF is floated from the middle loop as
long as the restrictions established by these directives are not violated. The
process of floating continues as long as the directive constraints are satisfied.

172

Chapter 9: Fine-Tuning Program Execution

Optimization Level

The C*$* OPTIMIZE(integer) directive sets the optimization level in the
same way as the –optimize command line option. As you increase integer,
the compiler performs more optimizations, and therefore takes longer to
compile. Valid values for integer are:

0 Disables optimization.

1 Performs only simple optimizations. Enables induction
variable recognition.

2 Performs lifetime analysis to determine when last-value
assignment of scalars is necessary.

3 Recognizes triangular loops and attempts loop
interchanging to improve memory referencing. Uses special
case data dependence tests. Also, recognizes special index
sets called wrap-around variables.

4 Generates two versions of a loop, if necessary, to break a
data dependence arc.

5 Enables array expansion and loop fusion.

Refer to “Controlling Scalar Optimizations” in Chapter 5 for examples.

Fine-Tuning Scalar Optimizations

 173

Variations in Round Off

The C*$* ROUNDOFF(integer) directive controls the amount of variation in
round off error produced by optimization in the same way as the –roundoff
command line option. Valid values for integer are

0 Suppresses any transformations that change round-off
error.

1 Performs expression simplification, which might generate
various overflow or underflow errors, for expressions with
operands between binary and unary operators, for
expressions that are inside trigonometric intrinsic functions
returning integer values, and after forward substitution.
Enables strength reduction. Performs intrinsic function
simplification for max and min. Enables code floating if
–scalaropt is at least 1. Allows loop interchanging around
serial arithmetic reductions, if –optimize is at least 4.
Allows loop rerolling, if –scalaropt is at least 2.

2 Allows loop interchanging around arithmetic reductions if
–optimize is at least 4. For example, the floating point
expression A/B/C is computed as A/(B*C).

3 Recognizes REAL (float) induction variables if –scalaropt
greater than 2 or –optimize is at least 1. Enables sum
reductions. Enables memory management optimizations if
–scalaropt=3 (see “Performing Memory Management
Transformations” in Chapter 5 for details about memory
management transformations).

174

Chapter 9: Fine-Tuning Program Execution

Controlling Scalar Optimizations

The C*$* SCALAR OPTIMIZE(integer) directive controls the amount of
standard scalar optimizations that the compiler performs. Unlike the
–WK,–scalaropt command line option, the C*$* SCALAR OPTIMIZE
directive sets the level of loop-based optimizations (such as loop fusion)
only, and not straight-code optimizations (such as dead-code elimination).
Valid values for integer are

0 Disables all scalar optimizations.

1 Enables simple, loop-based, scalar optimization —changing
IF loops to DO loops, simple code floating out of loops, and
forward substitution of variables.

2 Enables the full range of loop-based scalar optimizations—
induction variable recognition, loop rerolling, loop
unrolling, loop fusion, and array expansion.

3 Enables memory management transformations if
–roundoff=3. Refer to “Performing Memory Management
Transformations” in Chapter 5 for details.

Enabling Loop Unrolling

The C*$* UNROLL(integer[,weight]) directive controls how the compiler
unrolls scalar loops. Loops that cannot be optimized for concurrent
execution usually execute more efficiently when they are unrolled. This
directive is recognized only when you specify –WK,–scalaropt=2.

The compiler unrolls the loop proceeding the C*$*UNROLL directive until
either the number of operations in the loop equals the weight parameter or
the number of iterations reaches the integer parameter, whichever occurs
first. The –unroll and –unroll2 command line options act like a global C*$*
UNROLL directive. See “Enabling Loop Unrolling” in Chapter 5 for detailed
examples.

The C*$* UNROLL directive is in effect only for the loop immediately
following it, unlike other directives.

Fine-Tuning Inlining and IPA

 175

Fine-Tuning Inlining and IPA

Chapter 6, “Inlining and Interprocedural Analysis,” explains how to use
inlining and IPA on an entire program. You can fine-tune inlining and IPA
using the C*$*[NO] INLINE and C*$*[NO] IPA directives.

The compiler ignores these directives by default. They are enabled when you
specify any inlining or IPA command line option, respectively, on the
command line. The –inline_manual and –ipa_manual command line
options enable these directives without activating the automatic
inlining/algorithms.

The C*$* [NO] INLINE directive behaves like the –inline command line
option, but allows you to specify which occurrences of a routine are actually
inlined. The format for this directive is

C*$*[NO]INLINE [(name[, name ...])] [HERE|ROUTINE|GLOBAL]

where

name Specifies the routines to be inlined. If you do not specify a
name, this directive will affect all routines in the program.

HERE Applies the INLINE directive only to the next line;
occurrences of the named routines on that next line are
inlined.

ROUTINE Inlines the named routines everywhere they appear in the
current routine.

GLOBAL Inlines the named routines throughout the source file.

If you do not specify HERE, ROUTINE, or GLOBAL, the directive applies
only to the next statement.

The C*$*NOINLINE form overrides the –inline command line option and
so allows you to selectively disable inlining of the named routines at specific
points.

176

Chapter 9: Fine-Tuning Program Execution

Example

In the following code fragment, the C*$*INLINE directive inlines the first
call to beta but not the second.

 do i =1,n
C*$*INLINE (beta) HERE
 call beta (i,1)
 enddo
 call beta (n, 2)

Using the specifier ROUTINE rather than HERE inlines both calls. This
routine must be compiled with the –inline_man command line option for
the compiler to recognize the C*$* INLINE directive.

The C*$* [NO] IPA directive is the analogous directive for interprocedural
analysis. The format for this directive is

C*$*[NO]IPA [(name [, name...])] [HERE|ROUTINE|GLOBAL]

Using Equivalenced Variables

The C*$* ASSERT [NO] EQUIVALENCE HAZARD assertion tells the
compiler that your code does not use equivalenced variables to refer to the
same memory location inside one loop nest. Normally, EQUIVALENCE
statements allow your code to use different variable names to refer to the
same storage location. The –WK,-assume=e command line option acts like
the global C*$* ASSERT EQUIVALENCE HAZARD assertion (see
“Controlling Global Assumptions” on page 71 in Chapter 4). The C*$*
ASSERT EQUIVALENCE HAZARD assertion is active until you reset it or
until the end of the program.

Using Assertions

The C*$*[NO]ASSERTIONS directive instructs the compiler to accept or
ignore assertions. The C*$* NO ASSERTIONS version is in effect until the
next C*$* ASSERTIONS directive or the end of the program unit.

Using Aliasing

 177

If you specify the –directives command line option without the assertions
parameter (that is, a), the compiler will ignore assertions regardless of
whether the file contains the C*$* ASSERTIONS directive. Refer to
“Recognizing Directives” in Chapter 5 for details on the –directives
command line option.

Using Aliasing

The compiler recognizes two assertions for use with aliasing.

C*$* ASSERT [NO] ARGUMENT ALIASING

The C*$* ASSERT [NO] ARGUMENT ALIASING assertion allows the
compiler to make assumptions about subprogram arguments in a program.
According to the Fortran 77 standard, you can alias a variable only if you do
not modify (that is, write to) the aliased variable.

The following subroutine violates the standard, because variable A is aliased
in the subroutine (through C and D) and variable X is aliased (through X and
E):

COMMON X,Y
REAL A,B
CALL SUB (A, A, X)
...
SUBROUTINE SUB(C,D,E)
COMMON X,Y
X = ...
C = ...
...

The command line option –assume=a acts like a global C*$* ASSERT
ARGUMENT ALIASING assertion (see “Controlling Global Assumptions”
in Chapter 5). A C*$* ARGUMENT ALIASING assertion is active until it is
reset or until the next routine begins.

178

Chapter 9: Fine-Tuning Program Execution

C*$* ASSERT RELATION

The C*$* ASSERT RELATION(name.xx.name) assertion indicates the
relationship between two variables or between a variable and a constant.
name is the variable or constant, and xx is any of the following: GT, GE, EQ,
NE, LT, or LE. This assertion applies only to the next DO statement.

The C*$* ASSERT RELATION assertion includes variable names (name and
xx). When specified globally, this assertion will only be used when the
variable names appear in COMMON blocks or are dummy arguments to a
subprogram. You cannot use global assertions to make relational assertions
about variables that are local to a subprogram.

As an example of the use of the C*$* ASSERT RELATION assertion,
consider the following code:

 DO 100 I = 1, N
 A (I) = A (I+M) + B (I)
100 CONTINUE

If you know that M is greater than N, use the following assertion to give this
information to the compiler:

C*$* ASSERT RELATION (M .GT. N)
 DO 100 I = 1, N
 A (I) = A (I +M) + B (I)
100 CONTINUE

Knowing that M is greater than N, the compiler can generate parallel code
for this loop. If M is less than N at run time, the answers produced by the
code run in parallel could differ from the answers produced by the original
code run serially.

Note: Many relationships of this type can be cheaply tested for at run time.
The compiler attempts to answer questions of this sort by generating an IF
statement that explicitly tests the relationship at run time. Occasionally, the
compiler needs assistance, or you might want to squeeze that last bit of
performance out of some critical loop by asserting some relationship rather
than repeatedly checking it at run time.

Fine-Tuning Global Assumptions

 179

Fine-Tuning Global Assumptions

You can use the assertions described in this section to fine-tune the global
assumptions discussed in “Controlling Global Assumptions” in Chapter 5.

C*$* ASSERT [NO]BOUNDS VIOLATIONS

The C*$* ASSERT [NO] BOUNDS VIOLATIONS assertion indicates that
array subscript bounds may be violated during execution. If your program
does not violate array subscript bounds, do not specify this assertion. When
specified, this assertion is active until reset or until the end of the program.
For formal parameters, the compiler treats a declared last dimension of (1)
the same as (*).

The –WK,–assert=b command line option acts like a global C*$* ASSERT
BOUNDS VIOLATIONS assertion.

In the following example, the compiler assumes the first loop nest is
standard-conforming, and therefore can optimize both loops. The loops can
be interchanged to improve memory referencing because no A(I,J) will
overwrite an A(I',J+1). In the second nest, the assertion warns the compiler
that the loop limit of the first array index (I) might violate the declared array
bounds. The compiler plays it safe and optimizes only the right array index.

Note: The compiler always assumes that array references will be within the
array itself, so the rightness index will be concurrentizable.

 DO 100 I = 1,M
 DO 100 J = 1,N
 A(I,J) = A(I,J) + B (I,J)
 100 CONTINUE
C
C*$*ASSERT BOUNDS VIOLATIONS
 DO 200 I = 1,M
 DO 200 J = 1,N
 A(I,J) = A(I,J) + B (I,J)
 200 CONTINUE

180

Chapter 9: Fine-Tuning Program Execution

 becomes

C$DOACROSS SHARE(N,M,A,B),LOCAL(J,I)
 DO 2 J=1,N
 DO 2 I=1,M
 A(I,J) = A(I,J) + B (I,J)

 2 CONTINUE
C
C*$*ASSERT BOUNDS VIOLATIONS
 DO 4 I=1,M
C$DOACROSS SHARE(N,I,A,B),LOCAL(J)
 DO 3 J=1,N
 A(I,J) = A(I,J) + B (I,J)
 3 CONTINUE
 4 CONTINUE

C*$* ASSERT NO EQUIVALENCE HAZARD

The C*$* ASSERT NO EQUIVALENCE HAZARD assertion tells the
compiler that equivalenced variables will not be used to refer to the same
memory location inside one DO loop nest. Normally, EQUIVALENCE
statements allow different variable names to refer to the same storage
location. The –WK,–assume=e command line option acts like a global C*$*
ASSERT NO EQUIVALENCE HAZARD assertion. This assertion is active
until reset or until the end of the program.

In the following example, if arrays E and F are equivalenced, but you know
that the overlapping sections will not be referenced in this loop, then using
C*$* ASSERT NO EQUIVALENCE HAZARD allows the compiler to
concurrentize the loop:

 EQUIVALENCE (E(1), F(101))
C*$* ASSERT NO EQUIVALENCE HAZARD
 DO 10 I = 1,N
 E(I+1) = B(I)
 C(I) = F(I)
 10 CONTINUE

Fine-Tuning Global Assumptions

 181

 becomes

 EQUIVALENCE (E(1), F(101))
C*$* ASSERT NO EQUIVALENCE HAZARD
C$DOACROSS SHARE(N,E,B,C,F),LOCAL(I)
 DO 10 I=1,N
 E(I+1) = B(I)
 C(I) = F(I)
 10 CONTINUE

C*$* ASSERT [NO] TEMPORARIES FOR CONSTANT
ARGUMENTS

Sometimes the compiler does not perform certain transformations when
their effects on the rest of the program are unclear. For example, usually the
IF-to-intrinsic transformation changes the following code:

 SUBROUTINE X(I,N)
 IF (I .LT. N) I = N
 END

into

 SUBROUTINE X(I,N)
 I = MAX(I,N)
 END

But if the actual parameter for I were a constant such as the following,

CALL X(1,N)

it would appear that the value of the constant 1 was being reassigned.
Without additional information, the compiler does not perform
transformations within the subroutine.

Most compilers automatically put constant actual arguments into temporary
variables to protect against this case. The C*$*ASSERT TEMPORARIES
FOR CONSTANT ARGUMENTS assertion or the –WK,–assume=c
command line option (the default) informs the compiler that constant
parameters are protected. The NO version directs the compiler to avoid
transformations that might change the values of constant parameters.

182

Chapter 9: Fine-Tuning Program Execution

Ignoring Data Dependencies

The C*$* ASSERT NO RECURRENCE(variable) assertion tells the compiler
to ignore all data dependence conflicts caused by variable in the DO loop
that follows it. For example, the following code tells the compiler to ignore
all dependence arcs caused by the variable X in the loop:

C*$* ASSERT NO RECURRENCE (X)
 DO 10 i=1,m,5
 10 X(k) = X(k) + X(i)

Not only does the compiler ignore the assumed dependence, it also ignores
the real dependence caused by X(k) appearing on both sides of the
assignment.

The C*$* ASSERT NO RECURRENCE assertion applies only to the next
DO loop. It cannot be specified as a global assertion.

In addition to the C*$* ASSERT NO RECURRENCE assertion, the compiler
supports the Cray CDIR$ NORECURRENCE assertion and the VAST
CVD$ NODEPCHK directive, which perform the same function.

183

Appendix A

A. Run-Time Error Messages

Table A-1 lists possible Fortran run-time I/O errors. Other errors given by
the operating system may also occur (refer to the intro(2) and perror(3F)
reference pages for details).

Each error is listed on the screen alone or with one of the following phrases
appended to it:

apparent state: unit num named user filename

last format: string

lately (reading, writing) (sequential, direct, indexed)

formatted, unformatted (external, internal) IO

When the Fortran run-time system detects an error, the following actions
take place:

• A message describing the error is written to the standard error unit
(Unit 0).

• A core file, which can be used with dbx (the debugger) to inspect the
state of the program at termination, is produced if the f77_dump_flag
environment variable is defined and set to y.

When a run-time error occurs, the program terminates with one of the error
messages shown in Table A-1. All of the errors in the table are output in the
format user filename : message.

184

Appendix A: Run-Time Error Messages

Table A-1 Run-Time Error Messages

Number Message/Cause

100 error in format

Illegal characters are encountered in FORMAT statement.

101 out of space for I/O unit table

Out of virtual space that can be allocated for the I/O unit table.

102 formatted io not allowed

Cannot do formatted I/O on logical units opened for unformatted I/O.

103 unformatted io not allowed

Cannot do unformatted I/O on logical units opened for formatted I/O.

104 direct io not allowed

Cannot do direct I/O on sequential file.

106 can’t backspace file

Cannot perform BACKSPACE/REWIND on file.

107 null file name

Filename specification in OPEN statement is null.

108 can’t stat file

The directory information for the file is not accessible.

109 file already connected

The specified filename has already been opened as a different logical
unit.

110 off end of record

Attempt to do I/O beyond the end of the record.

112 incomprehensible list input

Input data for list-directed read contains invalid character for its data
type.

113 out of free space

Cannot allocate virtual memory space on the system.

185

114 unit not connected

Attempt to do I/O on unit that has not been opened or cannot be
opened.

115 read unexpected character

Unexpected character encountered in formatted or directed read.

116 blank logical input field

Invalid character encountered for logical value.

117 bad variable type

Specified type for the namelist element is invalid. This error is most
likely caused by incompatible versions of the front end and the run-time
I/O library.

118 bad namelist name

The specified namelist name cannot be found in the input data file.

119 variable not in namelist

The namelist variable name in the input data file does not belong to the
specified namelist.

120 no end record

$END is not found at the end of the namelist input data file.

121 namelist subscript out of range

The array subscript of the character substring value in the input data file
exceeds the range for that array or character string.

122 negative repeat count

The repeat count in the input data file is less than or equal to zero.

123 illegal operation for unit

You cannot set your own buffer on direct unformatted files.

124 off beginning of record

Format edit descriptor causes positioning to go off the beginning of the
record.

125 no * after repeat count

An asterisk (*) is expected after an integer repeat count.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause

186

Appendix A: Run-Time Error Messages

126 'new' file exists

The file is opened as new but already exists.

127 can’t find 'old' file

The file is opened as old but does not exist.

128 unknown system error

An unexpected error was returned by IRIX.

129 requires seek ability

The file is on a device that cannot do direct access.

130 illegal argument

Invalid value in the I/O control list.

131 duplicate key value on write

Cannot write a key that already exists.

132 indexed file not open

Cannot perform indexed I/O on an unopened file.

133 bad isam argument

The indexed I/O library function receives a bad argument because of a
corrupted index file or bad run-time I/O libraries.

134 bad key description

The key description is invalid.

135 too many open indexed files

Cannot have more than 32 open indexed files.

136 corrupted isam file

The indexed file format is not recognizable. This error is usually caused
by a corrupted file.

137 isam file not opened for exclusive access

Cannot obtain lock on the indexed file.

138 record locked

The record has already been locked by another process.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause

187

138 key already exists

The key specification in the OPEN statement has already been specified.

140 cannot delete primary key

DELETE cannot be executed on a primary key.

141 beginning or end of file reached

The index for the specified key points beyond the length of the indexed
data file. This error is probably because of corrupted ISAM files or a bad
indexed I/O run-time library.

142 cannot find request record

The requested key for indexed READ does not exist.

143 current record not defined

Cannot execute REWRITE, UNLOCK, or DELETE before doing a READ
to define the current record.

144 isam file is exclusively locked

The indexed file has been exclusively locked by another process.

145 filename too long

The indexed filename exceeds 128 characters.

148 key structure does not match file structure

Mismatch between the key specifications in the OPEN statement and the
indexed file.

149 direct access on an indexed file not allowed

Cannot have direct-access I/O on an indexed file.

150 keyed access on a sequential file not allowed

Cannot specify keyed access together with sequential organization.

151 keyed access on a relative file not allowed

Cannot specify keyed access together with relative organization.

152 append access on an indexed file not allowed

Cannot specifiy append access together with indexed organization.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause

188

Appendix A: Run-Time Error Messages

153 must specify record length

A record length specification is required when opening a direct or keyed
access file.

154 key field value type does not match key type

The type of the given key value does not match the type specified in the
OPEN statement for that key.

155 character key field value length too long

The length of the character key value exceeds the length specification for
that key.

156 fixed record on sequential file not allowed

RECORDTYPE='fixed' cannot be used with a sequential file.

157 variable records allowed only on unformatted
sequential file

RECORDTYPE='variable' can only be used with an unformatted
sequential file.

158 stream records allowed only on formatted sequential
file

RECORDTYPE='stream_lf' can only be used with a formatted sequential
file.

159 maximum number of records in direct access file
exceeded

The specified record is bigger than the MAXREC= value used in the
OPEN statement.

160 attempt to create or write to a read-only file

User does not have write permission on the file.

161 must specify key descriptions

Must specify all the keys when opening an indexed file.

162 carriage control not allowed for unformatted units

CARRIAGECONTROL specifier can be used only on a formatted file.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause

189

163 indexed files only

Indexed I/O can be done only on logical units that have been opened for
indexed (keyed) access.

164 cannot use on indexed file

Illegal I/O operation on an indexed (keyed) file.

165 cannot use on indexed or append file

Illegal I/O operation on an indexed (keyed) or append file.

167 invalid code in format specification

Unknown code is encountered in format specification.

168 invalid record number in direct access file

The specified record number is less than 1.

169 cannot have endfile record on non-sequential file

Cannot have an endfile on a direct- or keyed-access file.

170 cannot position within current file

Cannot perform fseek() on a file opened for sequential unformatted I/O.

171 cannot have sequential records on direct access file

Cannot do sequential formatted I/O on a file opened for direct access.

173 cannot read from stdout

Attempt to read from stdout.

174 cannot write to stdin

Attempt to write to stdin.

175 stat call failed in f77inode

The directory information for the file is unreadable.

176 illegal specifier

The I/O control list contains an invalid value for one of the I/O
specifiers. For example, ACCESS='INDEXED'.

180 attempt to read from a writeonly file

User does not have read permission on the file.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause

190

Appendix A: Run-Time Error Messages

181 direct unformatted io not allowed

Direct unformatted file cannot be used with this I/O operation.

182 cannot open a directory

The name specified in FILE= must be the name of a file, not a directory.

183 subscript out of bounds

The exit status returned when a program compiled with the –C option
has an array subscript that is out of range.

184 function not declared as varargs

Variable argument routines called in subroutines that have not been
declared in a $VARARGS directive.

185 internal error

Internal run-time library error.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause

191

Index

A

–aggressive option, 82
–align16 compiler option, 26
–align8 compiler option, 26
alignment, 24, 25

of COMMON blocks, 82
ANSI Fortran

data alignment, 25
ANSI-X3H5 standard, 105, 143
archiver, ar, 15
–arclimit option, 83
argument aliasing, 71
arrays

declaring, 24
assembly language routines, 19
assertions

C*$* ASSERT ARGUMENT ALIASING, 177
C*$* ASSERT NO ARGUMENT ALIASING, 177
C*$* ASSERT NO RECURRENCE, 182
C*$* ASSERT RELATION, 178
C*$* ASSERT TEMPORARIES FOR CONSTANT

ARGUMENTS, 181
enabling recognition of, 88
overview, 168

–assume option, 71, 176
assumed dependences, 169
assumptions

controlling globally, 71
–automatic compiler option, 160

B

barrier construct, 146, 156
barrier function, 138
–bestG compiler option, 13
blocking slave threads, 133

C

C$, 112
–C compiler option, 164
–c compiler option, 4
C macro preprocessor, 3
C$&, 112
C*$* ARCLIMIT, 170
C*$* ASSERT ARGUMENT ALIASING, 177
C*$* ASSERT NO ARGUMENT ALIASING, 177
C*$* ASSERT NO RECURRENCE, 182
C*$* ASSERT RELATION, 178
C*$* ASSERT TEMPORARIES FOR CONSTANT

ARGUMENTS, 181
C*$* EACH_INVARIANT_IF_GROWTH, 170
C*$* INLINE, 175
C*$* MAX_INVARIANT_IF_GROWTH, 170
C*$* NOINLINE, 175
C*$* NOIPA, 176
C*$* OPTIMIZE, 172
C*$* ROUNDOFF, 173

192

Index

C*$* SCALAROPTIMIZE, 174
C-style comments

accepting in Hollerith strings, 3
cache, 128

setting up page mapping, 85
specifying size, 85
specifying width of memory channel, 85

–cacheline option, 85
–cachesize option, 85
C$CHUNK, 113
C$COPYIN, 139
CDIR$ NORECURRENCE, 182
C$DOACROSS, 106

and REDUCTION, 107
continuing with C$&, 112
IF clause, 106
LASTLOCAL clause, 107
loop naming convention, 140
nesting, 114

CHUNK, 109, 132, 138
–chunk compiler option, 113
C$MP_SCHEDTYPE, 113
comments, 3
COMMON blocks, 107, 164

aligning, 82
making local to a process, 138
shared, 24

compilation, 2
compiler options, 7

–align16, 24, 26
–align8, 24, 26
–automatic, 160
–bestG, 13
–C, 164
–c, 4
–chunk, 113
–G, 13
–jmopt, 13

–l, 6
–mp, 142, 143, 159, 164
–mp_schedtype, 113
–nocpp, 3
–pfa, 143
–static, 117, 160, 164
–WK, 69

COMPLEX, 24
COMPLEX*16, 24
COMPLEX*32, 24
constructs

work-sharing, 146
core files, 19

producing, 183
C$PAR & directive, 156
C$PAR BARRIER, 156
C$PAR CRITICAL SECTION, 154
C$PAR PARALLEL, 145
C$PAR PARALLEL DO, 146
C$PAR PDO, 147
C$PAR PSECTIONS, 148
C$PAR SINGLE PROCESS, 150
cpp, 3
Cray assertions

CDIR$ NORECURRENCE, 182
critical section, 146

and SHARED, 156
PCF construct, 154

critical section construct, 143
differences between single process, 154

CVD$ NODEPCHK, 182

D

data dependencies, 116
analyzing for multiprocessing, 114
breaking, 120

193

complicated, 118
inconsequential, 119
rewritable, 118

data independence, 114
data types

alignment, 24, 25
DATE, 64
dbx, 183
debugging

parallel Fortran programs, 162
dependences

assumed, 169
direct files, 17
directives

C$, 112
C$&, 112
C*$* ARCLIMIT, 170
C*$* EACH_INVARIANT_IF_GROWTH, 170
C*$* INLINE, 175
C*$* MAX_INVARIANT_IF_GROWTH, 170
C*$* NOINLINE, 175
C*$* NOIPA, 176
C*$* OPTIMIZE, 172
C*$* ROUNDOFF, 173
C*$* SCALAROPTIMIZE, 174
C$CHUNK, 113
C$DOACROSS, 106
C$MP_SCHEDTYPE, 113
enabling recognition of, 88
list of, 105
overview, 166
see also PCF directives

–directives option, 88
dis object file tool, 14
DO loops, 104, 115, 126, 164
DOACROSS, 113

and multiprocessing, 140
double precision registers, 86
–dpregisters option, 86

driver options, 7
drivers, 2
dump object file tool, 14
dynamic scheduling, 109

E

–each_invariant_if_growth option, 72
environment variables, 161

CHUNK, 138
f77_dump_flag, 19, 183
MP_BLOCKTIME, 136
MP_SCHEDTYPE, 138
MP_SET_NUMTHREADS, 136
MP_SETUP, 136

equivalence statements, 164
error handling, 19
error messages

run-time, 183
ERRSNS, 64
executable object, 4
EXIT, 65
external files, 17

F

f77
as driver, 2
supported file formats, 17
syntax, 2

f77_dump_flag, 19, 183
file, object file tool, 14
files

direct, 17
external, 17
position when opened, 18
preconnected, 18

194

Index

sequential unformatted, 17
supported formats, 17
UNKNOWN status, 19

fine-tuning inlining and IPA, 175
floating point registers, 86
formats

files, 17
Fortran

ANSI, 25
–fpregisters option, 86
functions

in parallel loops, 117
intrinsic, 67, 117

SECNDS, 67
library, 55, 117
RAN, 67
side effects, 117

–fuse option, 71

G

–G compiler option, 13
global assumptions

controlling, 71
global data area

reducing, 13
guided self-scheduling, 109

H

handle_sigfpes, 20
Hollerith strings

and C-style comments, 3

I

IDATE, 64
IF clause

and C$DOACROSS, 106
IGCLD signal

intercepting, 140
–inline_and_copy option, 93
–inline_create option, 98
–inline_from_files option, 97
–inline_from_libraries option, 97
inlining, 91

enabling with options, 92
fine-tuning, 175
specifying routines, 93

interleave scheduling, 109
interleaving, 132
internal table size

controlling, 83
interprocedural analysis

performing with options, 92
interprocedural analysis (IPA), 91

fine-tuning, 175
specifying routines, 93

intrinsic subroutines
DATE, 64
ERRSNS, 64
EXIT, 65
IDATE, 64
MVBITS, 66
TIME, 65

invariant IF floating, 72, 170
–ipa_create option, 99
–ipa_from_files option, 97
–ipa_from_libraries option, 97

195

J

–jmpopt compiler option, 13

L

–l compiler option, 6
LASTLOCAL, 106, 115
LASTLOCAL clause, 107
libfpe.a, 20
libraries

link, 6
specifying, 7

library functions, 55
link libraries, 6
linking, 5
load balancing, 131
LOCAL, 107, 115
LOGICAL, 24
loop blocking, 84
loop fusion, 71
loop interchange, 127
loop unrolling, 84

enabling, 86
loops, 104

data dependencies, 115
tranformation, 140

M

makefiles, 53
master processes, 105, 142
–max_invariant_if_growth option, 72
memory channel

specifying width, 85
memory management transformations, 84

options, 84
techniques, 84

m_fork
and multiprocessing, 140

misaligned data, 25
–mp compiler option, 142, 143, 159, 164
mp_barrier, 138
mp_block, 133
mp_blocktime, 135
MP_BLOCKTIME environment variable, 136
mp_create, 134
mp_destroy, 134
mp_my_threadnum, 135
mp_numthreads, 135
__mp_parallel_do, 162
MP_SCHEDTYPE, 108, 113, 138
–mp_schedtype compiler option, 113
mp_setlock, 138
MP_SET_NUMTHREADS, 136
mp_set_numthreads, 135

and MP_SET_NUMTHREADS, 136
MP_SETUP, 136
mp_setup, 134
mp_simple_sched

and loop transformations, 140
tasks executed, 142

mp_slave_control, 142
__mp_slave_wait_for_work, 162
mp_unblock, 133
mp_unsetlock, 138
multi-language programs, 4
multiprocessing

and DOACROSS, 140
and load balancing, 131
associated overhead, 126
enabling, 159
enabling directives, 142

196

Index

MVBITS, 66

N

nm, object file tool, 14
–noassume option, 72
–nocpp compiler option, 3
NOWAIT clause, 147, 148, 150
NUM_THREADS, 136

O

object files, 4
tools for interpreting, 14

object module, 4
objects

linking, 5
optimizations

aggressive, 82
changing levels, 172
controlling internal table size, 83
controlling levels, 74
invariant IF floating, 72
loop blocking, 84
loop fusion, 71
loop unrolling, 84, 86
memory management transformations, 84
recursion, 89
scalar, 174

–optimize option, 74
and –O compiler option, 75

optimizing
inlining and IPA, 91

P

parallel DO construct, 146
parallel Fortran

directives, 105
parallel region, 131, 143, 145

and SHARED, 145
efficiency of, 158
restrictions, 157

parallel sections construct, 148
assignment of processes, 150

PCF constructs
and efficiency, 158
barrier, 146, 156
critical section, 146, 154
differences between single process and critical

section, 154
NOWAIT, 147, 148, 150
parallel DO, 146
parallel regions, 145, 157
parallel sections, 148
PDO, 147
restrictions, 157
single process, 150
types of, 146

PCF directives
C$PAR &, 156
C$PAR BARRIER, 156
C$PAR CRITICAL SECTION, 154
C$PAR PARALLEL, 145
C$PAR PARALLEL DO, 146
C$PAR PDO, 147
C$PAR PSECTIONS, 148
C$PAR SINGLE PROCESS, 150
enabling, 143
overview, 143

PCF standard, 105
PDO construct, 147

197

performance
improving, 13

–pfa compiler option, 143
Power Fortran, 115
preconnected files, 18
preprocessor

cpp, 3
processes

master, 104, 105, 142
slave, 104, 105, 142

prof
and parallel Fortran, 161

profiling
parallel Fortran program, 161

programs
multi-language, 4

Q

quad-precision operations, 19

R

RAN, 67
rand

and multiprocessing, 117
REAL*16

range, 23
REAL*4

range, 23
REAL*8

alignment, 24
range, 23

records, 17

recurrence
and data dependency, 123

recursion
enabling, 89

–recursion option, 89
reduction

and data dependency, 123
listing associated variables, 107
sum, 125

REDUCTION clause
and C$DOACROSS, 107

registers
double precision, 86
floating point, 86

round off
controlling from command line, 76

round-to-nearest mode, 19
–roundoff option, 76

and –O compiler option, 76
run-time error handling, 19
run-time scheduling, 109

S

scalar optimizations
controlling levels, 78
controlling with directives, 174
fine tuning, 170

–scalaropt option, 78
and –O compiler option, 78

scheduling methods, 108, 133, 140
dynamic, 109
guided self-scheduling, 109
interleave, 109
run-time, 109
simple, 108

198

Index

SECNDS, 67
self-scheduling, 109
sequential unformatted files, 17
–setassociativity option, 85
SHARE, 106, 107, 115
SHARED

and critical section, 156
and parallel region, 145

SIGCLD, 134
simple scheduling, 108
single process

PCF construct, 150
single process construct, 150

differences between critical section, 154
size, object file tool, 14
slave threads, 105, 142

blocking, 133, 134
source files, 3
spooled routines, 140
sproc

and multiprocessing, 139
associated processes, 142

–static compiler option, 117, 160, 164
strip, object file tool, 14
subroutines

intrinsic, 117
system

DATE, 64
ERRSNS, 64
EXIT, 65
IDATE, 64
MVBITS, 66

sum reduction, example, 125
sychronizer, 162

symbol table information
producing, 14

syntax conventions, xvii
system interface, 55

T

test&test&set, 153
thread

master, 104
slave, 104

tiling, 84
TIME, 65
trap handling, 20

U

–unroll option, 86
–unroll2 option, 86
ussetlock, 138
usunsetlock, 138

V

variables
in parallel loops, 115
local, 117

VAST directives
CVD$ NODEPCHK, 182

VOLATILE
and critical section, 156
and multiple threads, 152

199

W

–WK option
–aggressive, 82
and scalar optimizations, 69
–arclimit, 83
–assume, 71, 176
–cacheline, 85
–cachesize, 85
–directives, 88
–dpregisters, 86
–each_invariant_if_growth, 72
–fpregisters, 86
–fuse, 71
–inline_create, 98
–inline_from_files, 97
–inline_from_libraries, 97
–ipa_create, 99
–ipa_from_files, 97
–ipa_from_libraries, 97
–max_invariant_if_growth, 72
–optimize, 74
–recursion, 89
–roundoff, 76
–scalaropt, 78
–setassociativity, 85
–unroll, 86
–unroll2, 86

work quantum, 126
work-sharing constructs, 143

restrictions, 157
types of, 146

X

–Xlocaldata loader directive, 138

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2361-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

