
MIPSpro™ Fortran 77 Language
Reference Manual

Document Number 007-2362-003

MIPSpro™ Fortran 77 Language Reference Manual
Document Number 007-2362-003

CONTRIBUTORS

Written by David Graves and Chris Hogue
Production by Linda Rae Sande
Engineering Contributions by Bill Johnson and Calvin Vu

© 1994-1996, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be disclosed to third parties, copied, or
duplicated in any form, in whole or in part, without the prior written permission of
Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights are reserved under the Copyright Laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline
Blvd., Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks, and IRIS 4D, IRIX, and MIPSpro
are trademarks of Silicon Graphics, Inc. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open Company, Ltd.
VMS and VAX are trademarks of Digital Equipment Corporation.

iii

Contents

List of Figures xiii

List of Tables xv

Introduction xix
Intended Audience xix
Organization of Information xix
Additional Reading xx
Typographical Conventions xxi

1. Fortran Elements and Concepts 1
Fortran Character Set 2

Blank Characters 3
Escape Sequences 3

Data Types 4
Collating Sequence 5
Symbolic Names 6

Conventions 6
Data Types of Symbolic Names 7
Scope of Symbolic Names 8

Variables 8
Source Program Lines 8

Format 9
Types of Lines 10

Statements 12
Statement Labels 12
Executable Statements 12
Non-Executable Statements 13

iv

Contents

Program Units 14
Main Program 15
Subprograms 15

Program Organization 16
Executable Programs 16
Order of Statements 16
Execution Sequence 17

2. Constants and Data Structures 19
Constants 19

Arithmetic Constants 20
Logical Constants 28
Character Constants 28
Hollerith Constants 30
Bit Constants 32

Records and Structures 33
Overview of Records and Structures 33
Record and Field References 34
Aggregate Assignment Statement 35

Arrays 35
Array Names and Types 36
Array Declarators 36
Value of Dimension Bounds 37
Array Size 38
Storage and Element Ordering 39
Subscripts 39

Contents

v

3. Expressions 41
Arithmetic Expressions 41

Arithmetic Operators 42
Interpretation of Arithmetic Expressions 43
Arithmetic Operands 44
Arithmetic Constant Expressions 45
Integer Constant Expressions 46
Evaluating Arithmetic Expressions 46
Exponentiation 48
Integer Division 48

Character Expressions 48
Character Constant Expressions 49
Character Substrings 49
Concatenate Operator 51

Relational Expressions 52
Relational Operators 52
Relational Operands 52
Evaluating Relational Expressions 53
Arithmetic Relational Expressions 53
Character Relational Expressions 53

Logical Expressions 54
Logical Operators 55
Logical Operands 56
Interpretation of Logical Expressions 58

Evaluating Expressions in General 59
Precedence of Operators 59
Integrity of Parentheses and Interpretation Rules 59

4. Specification Statements 61
AUTOMATIC, STATIC 63
BLOCK DATA 64
COMMON 65
DATA 68

vi

Contents

Data Type Statements 72
Numeric Data Types 72
Character Data Types 75

DIMENSION 77
EQUIVALENCE 78
EXTERNAL 81
IMPLICIT 82
INTRINSIC 85
NAMELIST 86
PARAMETER 87
POINTER 90
PROGRAM 92
RECORD 93
SAVE 94
STRUCTURE / UNION 96
VOLATILE 99

5. Assignment and Data Statements 101
Arithmetic Assignment Statements 102
Logical Assignment Statements 104
Character Assignment 105
Aggregate Assignment 105
ASSIGN 106
Data Initialization 107
Implied-DO Lists 107

6. Control Statements 109
CALL 111
CONTINUE 113
DO 113
DO WHILE 117
ELSE 118
ELSE IF 119
END 121

Contents

vii

END DO 121
END IF 122
GO TO (Unconditional) 122
GO TO (Computed) 123
GO TO (Assigned) 124
IF (Arithmetic) 125
IF (Branch Logical) 126
IF (Test Conditional) 126
PAUSE 128
RETURN 129
STOP 130

7. Input/Output Processing 131
 Records 131

Formatted Records 132
Unformatted Records 132
Endfile Records 132

I/O Statements 133
Unformatted Statements 133
Formatted Statements 134
List-Directed Statements 134

Files 135
External Files 135
Internal Files 136

Methods of File Access 136
Sequential Access 137
Direct Access 137
Keyed Access 138

Units 138
Connection of a Unit 139
Disconnection of a Unit 139

viii

Contents

8. Input/Output Statements 141
Statement Summary 142
ACCEPT 143
BACKSPACE 144
CLOSE 145
DECODE 146
DEFINE FILE 147
DELETE 148
ENCODE 149
ENDFILE 150
FIND 152
INQUIRE 152
OPEN 158
PRINT or TYPE 164
READ (Direct Access) 165
READ (Indexed) 165
READ (Internal) 166
READ (Sequential) 167

Formatted READ (Sequential) 168
List-Directed READ (Sequential) 168
Unformatted READ (Sequential) 170
Namelist-Directed READ (Sequential) 170

REWIND 172
REWRITE 174
UNLOCK 175
WRITE (Direct Access) 175
WRITE (Indexed) 176
WRITE (Internal) 177

Contents

ix

WRITE (Sequential) 178
Formatted WRITE (Sequential) 179
Unformatted WRITE (Sequential) 180
List-Directed WRITE 180
Namelist-Directed WRITE 182
Examples for All Forms of Sequential WRITE 182

Control Information List - cilist 183
Unit Specifier - UNIT 184
Format Specifier - FMT 185
Namelist Specifier - NML 185
Record Specifier - REC 186
Key-Field-Value Specifier - KEY 186
Key-of-Reference Specifier - KEYID 187
Input/Output Status Specifier - ios 187
Error Specifier - ERR 188
End-of-File Specifier - END 188

Input/Output List - iolist 188
Input List 189
Output List 189
Implied-DO Lists 190

Data Transfer Rules 191
Unformatted Input/Output 191
Formatted Input/Output 192

9. Format Specification 193
Format Stored as a Character Entity 194
FORMAT Statement 194

Format Specification 194
Descriptors 195
Format Specifier Usage 196
Variable Format Expressions 198
General Rules for Using FORMAT 199
Input Rules Summary 200
Output Rules Summary 201

x

Contents

Field and Edit Descriptors 202
Field Descriptor Reference 202

Numeric Field Descriptors 202
Default Field Descriptor Parameters 203
I Field Descriptor 204
O Field Descriptor 206
Z Field Descriptor 208
F Field Descriptor 209
E Field Descriptor 211
D Field Descriptor 214
G Field Descriptor 215
P Edit Descriptor 218
L Edit Descriptor 220
A Edit Descriptor 221
Repeat Counts 224
H Field Descriptor 224
Character Edit Descriptor 225
Q Edit Descriptor 226

Edit Descriptor Reference 226
X Edit Descriptor 227
T Edit Descriptor 227
TL Edit Descriptor 227
TR Edit Descriptor 228
BN Edit Descriptor 228
BZ Edit Descriptor 228
SP Edit Descriptor 228
SS Edit Descriptor 229
S Edit Descriptor 229
Colon Descriptor 229
$ Edit Descriptor 229

Complex Data Editing 230
Carriage Control 231
Slash Editing 232

Contents

xi

Interaction Between I/O List and Format 232
List-Directed Formatting 233

List-Directed Input 234
List-Directed Output 236

10. Statement Functions and Subprograms 237
Overview 237
Statement Functions 238

Defining a Statement Function 238
Referencing a Statement Function 239
Operational Conventions and Restrictions 240

Parameter Passing 241
Arguments 241
Special Intrinsic Functions 242

Function and Subroutine Subprograms 243
Referencing Functions and Subroutines 243
Executing Functions and Subroutines 245

FUNCTION 246
SUBROUTINE 248
ENTRY 249
INCLUDE 251

11. Compiler Options 253
OPTIONS Statement 253
In-Line Options 254

$COL72 Option 254
$COL120 Option 255
$INT2 Option 255
$INT8 Option 255
$LOG2 Option 255
$LOG8 Option 256

$INCLUDE Statement 256

xii

Contents

A. Intrinsic Functions 257
Generic and Specific Names 258
Operational Conventions and Restrictions 258
Table of Functions 259

Index 275

xiii

List of Figures

Figure 2-1 Order of Array Elements 39
Figure 4-1 Storage Representation of an EQUIVALENCE Statement 80
Figure 4-2 Logical Representation of an EQUIVALENCE Statement 81
Figure 4-3 Logical Representation of a STRUCTURE Statement 98
Figure 8-1 Namelist Input Data Rules 171

xv

List of Tables

Table i Semantic Tagging Conventions xxi
Table ii Syntax Conventions xxii
Table 1-1 Special Characters 2
Table 1-2 C Escape Sequences 3
Table 1-3 Fortran Line Structure 9
Table 2-1 Notation Forms for Real Constants 23
Table 2-2 Invalid Real Constants 23
Table 2-3 Invalid Double-Precision Constants 24
Table 2-4 Invalid Quad-Precision Constants 26
Table 2-5 Valid Forms of Complex Data 26
Table 2-6 Invalid Forms of Complex Data 27
Table 2-7 Valid Forms of Double-Complex Data 27
Table 2-8 Invalid Forms of Double-Complex Data 28
Table 2-9 Logical Constant Values 28
Table 2-10 Valid Character Constants 29
Table 2-11 Invalid Character Constants 30
Table 2-12 Invalid Hollerith Constants 31
Table 2-13 Valid Substring Examples 32
Table 2-14 Determining Subscript Values 40
Table 3-1 Arithmetic Operators 42
Table 3-2 Interpretation of Arithmetic Expressions 43
Table 3-3 Data Type Ranks 47
Table 3-4 Valid Substring Examples 50
Table 3-5 Fortran Relational Operators 52
Table 3-6 Logical Operators 55
Table 3-7 Logical Expressions 58
Table 4-1 Static and Automatic Variables 63

xvi

List of Tables

Table 4-2 Keywords for Type Statements 73
Table 4-3 Double Complex Functions 74
Table 5-1 Type Conversion Rules 102
Table 5-2 Conversion Rules for Assignment Statements 103
Table 8-1 File Access Types 153
Table 8-2 Blank Control Specifiers 154
Table 8-3 Form Specifiers 155
Table 8-4 Keyed-Access Status Specifiers 155
Table 8-5 Carriage-Control Options 159
Table 8-6 Disposition Options 160
Table 8-7 Default Record Types 162
Table 8-8 Default Formats of List-Directed Output 181
Table 8-9 Control Information List Specifiers 183
Table 8-10 Forms of the Key-Field-Value Specifier 186
Table 9-1 Summary of Field and Edit Descriptors 197
Table 9-2 Default Field Descriptors 203
Table 9-3 I Field Input Examples 205
Table 9-4 I Field Output Examples 205
Table 9-5 O Field Input Examples 207
Table 9-6 O Field Output Examples 207
Table 9-7 Z Field Input Examples 209
Table 9-8 Z Field Output Examples 209
Table 9-9 F Field Input Examples 210
Table 9-10 F Field Output Examples 211
Table 9-11 E Field Output Examples 212
Table 9-12 E Field Output Examples 213
Table 9-13 D Field Input Examples 214
Table 9-14 D Field Output Examples 214
Table 9-15 Effect of Data Magnitude on G Format Conventions 216
Table 9-16 G Field Output Examples 217
Table 9-17 Field Comparison Examples 217
Table 9-18 Scale Factor Examples 219
Table 9-19 Scale Format Output Examples 219

List of Tables

xvii

Table 9-20 L Field Examples 221
Table 9-21 I/O List Element Sizes 222
Table 9-22 A Field Input Examples 223
Table 9-23 A Field Output Examples 223
Table 9-24 H Edit Description Output Examples 224
Table 9-25 Character Edit Description Examples 225
Table 9-26 Complex Data Editing Input Examples 230
Table 9-27 Complex Data Editing Output Examples 231
Table 9-28 Carriage-Control Characters 231
Table A-1 Intrinsic Functions 259

xix

Introduction

This manual describes the Fortran 77 language specifications as implemented using the
MIPSpro™ Fortran 77 compiler. This implementation of Fortran 77 contains full
American National Standard Institute (ANSI) Programming Language Fortran
(X3.9-1978). It has extensions that provide full VMS Fortran compatibility to the extent
possible without the VMS operating system or VAX data representation. It also contains
extensions that provide partial compatibility with programs written in SVS Fortran..

Intended Audience

This manual is intended as a reference manual, rather than a tutorial, and assumes
familiarity with an algebraic language or prior exposure to Fortran.

Organization of Information

This manual contains the following chapters and appendix:

• Chapter 1, “Fortran Elements and Concepts,” provides definitions for the various
elements of a Fortran program.

• Chapter 2, “Constants and Data Structures,”discusses the various types of Fortran
constants and explains a few ways data can be structured.

• Chapter 3, “Expressions,” describes the formation, interpretation, and evaluation
rules for each type of Fortran expression.

• Chapter 4, “Specification Statements,” summarizes the Fortran specification
statements.

• Chapter 5, “Assignment and Data Statements,” discusses the types of assignment
statements and explains how to use them. It also explains how to initialize variables
and array elements using DATA statements.

• Chapter 6, “Control Statements,” explains the various Fortran control statements.

xx

Introduction

• Chapter 7, “Input/Output Processing,” discusses the programmer-related aspects
of Fortran input/output processing.

• Chapter 8, “Input/Output Statements,” describes the statements that control the
transfer of data within internal storage and between internal storage and external
storage devices. It also provides an overview of the Fortran input/output
statements and lists the syntax, rules, and examples for each.

• Chapter 9, “Format Specification,” describes the FORMAT statement, field
descriptors, edit descriptors, and list-directed formatting.

• Chapter 10, “Statement Functions and Subprograms,” discusses user-written
subprograms and explains the syntax and rules for defining program units.

• Chapter 11, “Compiler Options,” describes the options that affect source programs
both during compilation and at run time.

• Appendix A, “Intrinsic Functions,” lists the intrinsic functions supported.

Additional Reading

Refer to the MIPSpro Fortran 77 Programmer's Guide for information on the following
topics:

• how to compile and link a Fortran program

• alignments, sizes, and variable ranges for the various data types

• the coding interface between Fortran programs and programs written in C

• file formats, run-time error handling, and other information related to the IRIX
operating system

• operating system functions and subroutines callable by Fortran programs

• scalar optimizations that can be controlled through command line options and
compiler directives

• Fortran directives for multiprocessing

• run-time error messages

Refer to the MIPS Compiling and Performance Tuning Guide for information on:

• an overview of the MIPSpro compiler system and general compiler system
command line options

Introduction

xxi

• optimizing program performance

• using the performance tools, prof and pixie, of the compiler system

• using dynamic shared objects (DSOs)

• the dump utilities, archiver, and other tools for maintaining Fortran programs

• writing and updating code that is portable to 64-bit systems

Refer to the MIPSpro Porting and Transition Guide for information on:

• an overview of the MIPSpro compiler system

• language implementation differences

• porting source code to the 64-bit system

• compilation and run-time issues

• performance tuning

For information on the interface to programs written in assembly language, refer to the
MIPSpro Assembly Language Programmer's Guide. For information on the dbx debugging
tool, see the dbx User's Guide.

Typographical Conventions

The following typographical conventions are used to indicate the meaning of special
kinds of terms:

Table i Semantic Tagging Conventions

Type of Information Example

file or pathname /usr/lib32/libf.so

manual or book title dbx User’s Guide

reference page and section number Refer to the f77(1) reference page.

command name, command arguments
(when embedded in discussion text)

Use elfdump-Dt to display symbols.

xxii

Introduction

The following symbolic conventions are used to indicate the syntax of Fortran
statements:

Non-italicized words and other punctuation is literal and must be written as shown.

DIMENSION a(d) [,a(d)] ...

The keyword DIMENSION and the parentheses must be written as shown. The
user-specified element a(d) is required. One or more additional a(d) elements can follow.

{STATIC | AUTOMATIC} v [,v] ...

Either the STATIC or AUTOMATIC keyword must be written as shown. The
user-specified element v is required. Optionally, one or more v elements can follow.

metavariable, value to be supplied CHARACTER*n (n>1)

example command or code; literal
program text (set off in separate lines)

f77 -g -64 -mips3

Table ii Syntax Conventions

Syntax Symbol

Symbolic element, user-specified, meaning
explained in the following text

identifier

Optional element or elements [element]

Delimiter between syntactic elements element | element

The preceding element can be repeated ...

A list of elements; exactly one must be chosen { element | element... }

Table i Semantic Tagging Conventions

Type of Information Example

1

Chapter 1

1. Fortran Elements and Concepts

This chapter contains the following subsections:

• “Fortran Character Set”

• “Data Types”

• “Collating Sequence”

• “Symbolic Names”

• “Variables”

• “Source Program Lines”

• “Statements”

• “Program Units”

• “Program Organization”

This chapter provides definitions for the various elements of a Fortran program. The
Fortran language is written using a specific set of characters that form the words,
numbers, names, and expressions that make up Fortran statements. These statements
form a Fortran program. The Fortran character set, the rules for writing Fortran
statements, the main structural elements of a program, and the proper order of
statements in a program are also discussed in this chapter.

2

Chapter 1: Fortran Elements and Concepts

Fortran Character Set

The Fortran character set consists of 26 uppercase and 26 lowercase letters (alphabetic
characters), the numbers 0 through 9 (digits), and special characters. This manual refers to
letters (uppercase and lowercase) together with the underscore (_) as extended alphabetic
characters. The extended alphabetic characters together with the digits are also referred to
as alphanumeric characters. The complete character set consists of the following letters
and digits and the special characters listed in Table 1-1:

Letters: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

Digits: 0 1 2 3 4 5 6 7 8 9

Table 1-1 Special Characters

Character Name

Blank

= Equal

+ Plus

- Minus

* Asterisk

/ Slash

(Left parenthesis

) Right parenthesis

, Comma

. Decimal point

$ Currency symbol

’ Apostrophe

: Colon

! Exclamation point

Fortran Character Set

3

Lowercase alphabetic characters, the exclamation point (!), the underscore (_), and the
double quote (") are extensions to Fortran 77. Digits are interpreted in base 10. A special
character can serve as an operator, a part of a character constant, a part of a numeric
constant, or some other function

Blank Characters

Use blank characters freely to improve the appearance and readability of Fortran
statements. They have no significance in Fortran statements, except

• in character constants

• for H and character editing in format specifications

• in Hollerith constants

• to signify an initial line when used in column 6 of source line

• when counting the total number of characters allowed in any one statement

These special considerations are discussed in detail in later sections.

Escape Sequences

Table 1-2 lists escape sequences for representing non-graphic characters and for
compatibility with the C programming language.

_ Underscore

" Double quote

Table 1-2 C Escape Sequences

Sequence Meaning

\n New line

\t Tab

Table 1-1 (continued) Special Characters

Character Name

4

Chapter 1: Fortran Elements and Concepts

The compiler treats the backslash character as the beginning of an escape sequence by
default. To use backslash as a normal character, compile the program with the
–backslash option.

Data Types

In general, there are three kinds of entities that have a data type: constants, data names,
and function names. The types of data allowed in Fortran are

• INTEGER—positive and negative integral numbers and zero

• REAL—positive and negative numbers with a fractional part and zero

• DOUBLE PRECISION—same as REAL but using twice the storage space and
possibly greater precision

• COMPLEX—ordered pair of REAL data: real and imaginary components

• LOGICAL—Boolean data representing true or false

• CHARACTER—character strings

• HOLLERITH—an historical data type for character definition

Together, INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and DOUBLE
COMPLEX constitute the class of arithmetic data types.

\b Backspace

\f Form feed

\0 Null

\' Apostrophe (does not terminate a string)

\" Quotation mark (does not terminate a string)

\\ \

\x x represents any character

Table 1-2 (continued) C Escape Sequences

Sequence Meaning

Collating Sequence

5

The type of data is established in one of two ways: implicitly, depending on the first letter
of its symbolic name (described in this chapter), or explicitly through a type statement
(described in Chapter 4). A data value can be a variable or a constant, that is, its value
either can or cannot change during the execution of a program. An array is a sequence of
data items occupying a set of consecutive bytes.

If not explicitly specified by a type statement or a FUNCTION statement, the data type
of a data item, data name, or function name is determined implicitly by the first character
of its symbolic name. By default, symbolic names beginning with I, J, K, L, M, or N
(uppercase or lowercase) imply an INTEGER data type; names beginning with all other
letters imply a REAL data type. You can change or confirm the default implicit data type
corresponding to each letter of the alphabet through an IMPLICIT statement (refer to
“EXTERNAL” on page 81 of Chapter 4 for details).

The data type of external functions and statement functions is implicitly determined in
the same manner as above. The type of an external function can also be explicitly
declared in a FUNCTION statement.

Collating Sequence

The Fortran collating sequence defines the relationship between letters and digits and is
used when comparing character strings. The collating sequence is determined by these
rules:

• A is less than Z, and a is less than z. The listing order of the alphabetic characters
specifies the collating sequence for alphabetic characters. The relationship between
lowercase and uppercase of the same letter is unspecified.

• 0 is less than 9. The order in which digits are listed above defines the collating
sequence for digits.

• Alphabetic characters and digits are not intermixed in the collating sequence.

• The blank character is less than the letter A (uppercase and lowercase) and less than
the digit 0.

• The special characters given as part of the character set are not listed in any specific
order. There is no specification as to where special characters occur in the collating
sequence.

6

Chapter 1: Fortran Elements and Concepts

Symbolic Names

A symbolic name is a sequence of characters that refer to a memory location by
describing its contents. Symbolic names identify the following user-defined local and
global entities:

Local variable

constant

array

statement function

intrinsic function

dummy procedure

Global common block

external function

subroutine

main program

block data subprogram

Conventions

A symbolic name can contain any alphanumeric character; digits and _ (underscore) are
allowed in addition to uppercase and lowercase alphabetic characters. However, the first
character must be a letter.

• Fortran symbolic names can contain any number of characters, but only the first 32
of these are significant in distinguishing one symbolic name from another (standard
Fortran 77 allows only 6 characters.) Symbolic names that are used externally
(program names, subroutine names, function names, common block names) are
limited to 32 significant characters.

• The inclusion of the special period (.), underscore (_), and dollar sign ($) characters
in symbolic names is an enhancement to Fortran 77.

• Except in Hollerith constants and character strings, lowercase alphabetic characters
are treated as if they were uppercase. Thus, the variable names my_var and My_Var
are identical.

Symbolic Names

7

Examples of valid symbolic names are

CASH C3P0 R2D2 LONG_NAME

Examples of invalid symbolic names are

X*4 (contains a special character, *)

3CASH (first character is a digit)

Data Types of Symbolic Names

A symbolic name has a definite data type in a program unit that can be any of the
following:

• BYTE

• INTEGER [*1 | *2 | *4 | *8]

• REAL [*4 | *8 | *16] or DOUBLE PRECISION

• COMPLEX [*8 | *16 | *32] or DOUBLE COMPLEX

• LOGICAL [*1 | *2 | *4 | *8]

• CHARACTER [*n]

The optional length specifier that follows the type name determines the number of bytes
of storage for the data type. If the length specifier is omitted, the compiler uses the
defaults listed in the MIPSpro Fortran 77 Programmer’s Guide.

In general, wherever the usage of a given data type is allowed, it can have any internal
length. One exception is the use of integer variables for assigned GOTO statements. In
this case the integer variable must be 4 bytes in length.

Data of a given type and different internal lengths can be intermixed in expressions, and
the resultant value will be the larger of the internal representations in the expression.

Note: The lengths of arguments in actual and formal parameter lists and COMMON
blocks must agree in order produce predictable results.

8

Chapter 1: Fortran Elements and Concepts

Scope of Symbolic Names

The following rules determine the scope of symbolic names:

• A symbolic name that identifies a global entity, such as a common block, external
function, subroutine, main program, or block data subprogram, has the scope of an
executable program. Do not use it to identify another global entity in the same
executable program.

• A symbolic name that identifies a local entity, such as an array, variable, constant,
statement function, intrinsic function, or dummy procedure, has the scope of a
single program unit. Do not use it to identify any other local entity in the same
program unit.

• Do not use a symbolic name assigned to a global entity in a program unit for a local
entity in the same unit. However, you can use the name for a common block name
or an external function name that appears in a FUNCTION or ENTRY statement.

Variables

A variable is an entity with a name, data type, and value. Its value is either defined or
undefined at any given time during program execution.

The variable name is a symbolic name of the data item and must conform to the rules
given for symbolic names. The type of a variable is explicitly defined in a type-statement
or implicitly by the first character of the name.

A variable cannot be used or referred to unless it has been defined through an
assignment statement, input statement, DATA statement, or through association with a
variable or array element that has been defined.

Source Program Lines

A source program line is a sequence of character positions, called columns, numbered
consecutively starting from column 1 on the left.

Source Program Lines

9

Format

The two formats for Fortran programs are

• Fixed format—based on columns

• TAB format—based on the tab character

Fixed Format

A Fortran line is divided into columns, with one character per column as indicated in
Table 1-3.

The –col72, –col120, –extend_source, and –noextend_source command line options are
provided to change this format. See Chapter 1 of the MIPSpro Fortran 77 Programmer’s
Guide for details. Several of these options can be specified in-line as described in
Chapter 11, “Compiler Options.”

TAB Character Formatting

Rather than aligning characters in specific columns, the TAB character can be used as an
alternative field delimiter, as follows:

1. Type the statement label and follow it with a TAB. If there is no statement label, start
the line with a TAB.

2. After the TAB, type either a statement initial line or a continuation line. A
continuation line must contain a digit (1 through 9) immediately following the TAB.
If any character other than a nonzero digit follows the TAB, the line will be
interpreted as an initial line.

Table 1-3 Fortran Line Structure

Field Column

Statement label 1 through 5

Continuation indicator 6

Statement 7 to the end of the line or to the start of the
comment field

Comment (optional) 73 through end of line

10

Chapter 1: Fortran Elements and Concepts

3. In a continuation line beginning with a TAB followed by a nonzero digit, characters
following the digit to the end of the line are a continuation of the current statement.

4. TAB-formatted lines do not have preassigned comment fields. All characters to the
end of the line are considered part of the statement. However, you can use an
exclamation point (!) to explicitly define a comment field. The comment field
extends from the exclamation point to the end of the line.

The rules for TAB formatting can be summarized as

• statement label TAB statement (initial line)

• TAB continuation field statement (continuation line)

• TAB statement (initial line)

Although many terminals and text editors advance the cursor to a certain position after
a TAB is entered, this action is not related to how the TAB will be ultimately interpreted
by the compiler. The compiler interprets TABs in the statement field as blanks.

Types of Lines

The four types of Fortran program lines are

• comment

• debugging (an extension to Fortran 77)

• initial

• continuation

Comments

A comment line is used solely for documentation purposes and does not affect program
execution. A comment line can appear anywhere in a program and has one of the
following characteristics:

• an uppercase or lowercase C or an asterisk (*) in column 1 and any sequence of
characters from column 2 through to the end of the line

• an exclamation point (!) at any position of the line and any text after it until the end
of the line

• a blank line

Source Program Lines

11

Debugging Lines

Specify a D (or d) in column 1 for debugging purposes; it conditionally compiles source
lines in conjunction with the –d_lines option described in Chapter 1 of the MIPSpro
Fortran 77 Programmer’s Guide. When you specify the option at compilation, the compiler
treats all lines with a D in column 1 as lines of source code and compiles them; when you
omit the option, the compiler treats all lines with a D in column 1 as comments.

Initial Lines

Initial lines contain the Fortran language statements that make up the source program;
these statements are described in detail in “Program Organization” on page 16. These
fields divide each Fortran line into

• statement label field

• continuation indicator field

• statement field

• comment field

The fields in a Fortran line can be entered either on a character-per-column basis or by
using the TAB character to delineate the fields, as described in the previous section.

Continuation Lines

A continuation line continues a Fortran statement and is identified as follows:

• Columns 1 through 5 must be blank.

• Column 6 contains any Fortran character other than a blank or the digit 0. Column 6
is frequently used to number the continuation lines.

As with initial lines, columns 7 through the end of the line contain the Fortran statement
or a continuation of the statement.

Alternatively, you can use an ampersand (&) in column 1 to identify a continuation line.
Using an & in column 1 implies that columns 2 through the end of the line are part of the
statement. In Fortran 77, any remaining columns (column 73 and on) of a continuation
line are not interpreted. The maximum number of consecutive continuation lines is 99 by
default, but this can be changed with a command line option.

12

Chapter 1: Fortran Elements and Concepts

Statements

Fortran statements are used to form program units. All Fortran statements, except
assignment and statement functions, begin with a keyword. A keyword is a sequence of
characters that identifies the type of Fortran statement.

A statement cannot begin on a line that contains any portion of a previous statement,
except as part of a logical IF statement.

The END statement signals the physical end of a Fortran program unit and begins in
column 7 or any later column of an initial line.

Statement Labels

A statement label allows you to refer to individual Fortran statements. A statement label
consists of one to five digits—one of which must be nonzero—placed anywhere in
columns 1 through 5 of an initial line. Blanks and leading zeros are not significant in
distinguishing between statement labels.

The following statement labels are equivalent:

 " 123 " "123 " "1 2 3" "00123"

Each statement label must be unique within a program unit.

Fortran statements do not require labels. However, only labeled statements can be
referenced by other Fortran statements. Do not label PROGRAM, SUBROUTINE,
FUNCTION, BLOCK DATA, or INCLUDE statements.

Executable Statements

An executable statement specifies an identifiable action and is part of the execution
sequence, (described in “Program Organization” on page 16) in an executable program.

The three classes of executable statements are

• assignment statements

– arithmetic

– logical

Statements

13

– statement label (ASSIGN)

– character assignment

• control statements

– unconditional, assigned, and computed GO TO

– arithmetic IF and logical IF

– block IF, ELSE IF, ELSE, and END IF

– CONTINUE

– STOP and PAUSE

– DO

– CALL and RETURN

– END

• I/O statements

– READ, WRITE, and PRINT

– REWIND, BACKSPACE, ENDFILE, OPEN, CLOSE, and INQUIRE

– ACCEPT, TYPE, ENCODE, DECODE, DEFINE FILE, FIND, REWRITE,
DELETE, and UNLOCK

Non-Executable Statements

A non-executable statement is not part of the execution sequence. You can specify a
statement label on most types of non-executable statements, but you cannot also specify
that label for an executable statement in the same program unit. A non-executable
statement can perform one of these functions:

• Specify the characteristics, storage arrangement, and initial values of data

• Define statement functions

• Specify entry points within subprograms

• Contain editing or formatting information

• Classify program units

• Specify inclusion of additional statements from another source

14

Chapter 1: Fortran Elements and Concepts

The following data type statements are classified as non-executable:

• CHARACTER

• COMPLEX

• DIMENSION

• DOUBLE COMPLEX

• DOUBLE PRECISION

• INTEGER

• LOGICAL

• REAL

• BYTE

Additional non-executable program statements are

Program Units

Fortran programs consist of one or more program units. A program unit consists of a
sequence of statements and optional comment lines. It can be a main program or a
subprogram. The program unit defines the scope for symbolic names and statement
labels.

The END statement must always be the last statement of a program unit.

BLOCK DATA INCLUDE

COMMON INTRINSIC

DATA PARAMETER

ENTRY POINTER

EQUIVALENCE PROGRAM

EXTERNAL SAVE

FORMAT SUBROUTINE

FUNCTION Statement function

IMPLICIT VIRTUAL

Program Units

15

Main Program

The main program is the program unit that initially receives control on execution. It can
have a PROGRAM statement as its first statement and contain any Fortran statement
except a FUNCTION, SUBROUTINE, BLOCK DATA, ENTRY, or RETURN statement.
A SAVE statement in a main program does not affect the status of variables or arrays. A
STOP or END statement in a main program terminates execution of the program.

The main program does not need to be a Fortran program. Refer to the MIPSpro Fortran
77 Programmer’s Guide for information on writing Fortran programs that interact with
programs written in other languages.

The main program cannot be referenced from a subprogram or from itself.

Subprograms

A subprogram is an independent section of code designed for a specialized purpose. It
receives control when referenced or called by a statement in the main program or another
subprogram.

A subprogram can be a

• function subprogram identified by a FUNCTION statement

• subroutine subprogram identified by a SUBROUTINE statement

• block data subprogram identified by a BLOCK DATA statement

• non-Fortran subprogram

Subroutines, external functions, statement functions, and intrinsic functions are
collectively called procedures. A procedure is a program unit that performs an operational
function.

An external procedure is a function or subroutine subprogram that is processed
independently of the calling or referencing program unit. It can be written as a
non-Fortran subprogram as described in the MIPSpro Fortran 77 Programmer’s Guide.

Intrinsic functions are supplied by the processor and are generated as in-line functions
or library functions. Refer to Appendix A, “Intrinsic Functions,” for a description of the
functions, the results given by each, and their operational conventions and restrictions.

16

Chapter 1: Fortran Elements and Concepts

Program Organization

This section explains the requirements for an executable Fortran program. It also
describes the rules for ordering statements and the statement execution sequence.

Executable Programs

An executable program consists of exactly one main program and zero or more of each
of the following entities

• function subprogram

• subroutine subprogram

• block data subprogram

• non-Fortran external procedure

The main program must not contain an ENTRY or RETURN statement. On encountering
a RETURN statement, the compiler issues a warning message; at execution time, a
RETURN statement stops the program. Execution normally ends when any program
unit executes a STOP statement or when the main program executes an END statement.

Order of Statements

The following rules determine the order of statements in a main program or subprogram:

• In the main program, a PROGRAM statement is optional; if used, it must be the
first statement. In other program units, a FUNCTION, SUBROUTINE, or BLOCK
DATA statement must be the first statement.

• Comment lines can be interspersed with any statement and can precede a
PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA statement.

• FORMAT and ENTRY statements can be placed anywhere within a program unit
after a PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA statement.

• ENTRY statements can appear anywhere in a program unit except

– between a block IF statement and its corresponding END IF statement

– within the range of a DO loop that is, between a DO statement and the terminal
statement of the DO loop

Program Organization

17

• The Fortran 77 standard requires that specification statements, including the
IMPLICIT statement, be placed before all DATA statements, statement function
statements, and executable statements.

However, this implementation of Fortran permits the interspersing of DATA
statements among specification statements.

Specification statements specifying the type of symbolic name of a constant must
appear before the PARAMETER statement that identifies the symbolic name with
that constant.

• The Fortran 77 standard allows PARAMETER statements to intersperse with
IMPLICIT statements or any other specification statements, but a PARAMETER
statement must precede a DATA statement.

This implementation extends the Fortran 77 standard to allow interspersing DATA
statements among PARAMETER statements.

PARAMETER statements that associate a symbolic name with a constant must
precede all other statements containing that symbolic name.

• All statement function statements must precede the first executable statement.

• IMPLICIT statements must precede all other specification statements except
PROGRAM and PARAMETER statements (see Chapter 4, “Specification
Statements,” for details).

• The last statement of a program unit must be an END statement.

Note: The above rules apply to the program statements after lines added by all
INCLUDE statements are merged. INCLUDE statements can appear anywhere in a
program unit.

Execution Sequence

The execution sequence in a Fortran program is the order in which statements are
executed. Fortran statements are normally executed in the order they appear in a
program unit. In general, the execution sequence is as follows:

18

Chapter 1: Fortran Elements and Concepts

1. Execution begins with the first executable statement in a main program and
continues from there.

2. When an external procedure is referenced in a main program or in an external
procedure, execution of the calling or referencing statement is suspended.
Execution continues with the first executable statement in the called procedure
immediately following the corresponding FUNCTION, SUBROUTINE, or ENTRY
statement.

3. An explicit or implicit return statement returns execution to the calling statement.

4. Normal execution proceeds from where it was suspended or from an alternate point
in the calling program.

5. The executable program is normally terminated when the processor executes a
STOP statement in any program unit or an END statement in the main program.
Execution is also automatically terminated when an operational condition prevents
further processing of the program.

The normal execution sequence can be altered by a Fortran statement that causes the
normal sequence to be discontinued or causes execution to resume at a different position
in the program unit. Statements that cause a transfer of control are

• GO TO

• arithmetic IF

• RETURN

• STOP

• an I/O statement containing an error specifier or end-of-file specifier

• CALL with an alternate return specifier

• a logical IF containing any of the above forms

• block IF and ELSE IF

• the last statement, if any, of an IF block or ELSE IF block

• DO

• terminal statement of a DO loop

• END

19

Chapter 2

2. Constants and Data Structures

This chapter contains the following subsections:

• “Constants”

• “Records and Structures”

• “Arrays”

This chapter discusses the various types of Fortran constants and provides examples of
each. It also explains a few of the ways data can be structured, including character
substrings, records, and arrays.

Constants

A constant is a data value that cannot change during the execution of a program. It can be
of the following types:

• arithmetic

• logical

• character

• Hollerith

• bit

The form in which a constant is written specifies both its value and its data type. A
symbolic name can be assigned for a constant using the PARAMETER statement. Blank
characters occurring within a constant are ignored by the processor unless the blanks are
part of a character constant.

The sections that follow describe the various types of constants in detail.

20

Chapter 2: Constants and Data Structures

Arithmetic Constants

The Fortran compiler supports the following types of arithmetic constants:

• integer

• real

• double precision

• quad precision

• complex

• double complex

• quad complex

An arithmetic constant can be signed or unsigned. A signed constant has a leading plus
or minus sign to denote a positive or negative number. A constant that can be either
signed or unsigned is called an optionally signed constant. Only arithmetic constants can
be optionally signed.

Note: The value zero is neither positive nor negative; a signed zero has the same value
as an unsigned zero.

Integer Constants

An integer constant is a whole number without decimal points; it can have a positive,
negative, or zero value. Hexadecimal and octal integer constants are extensions to the
standard integer constant.

The format for an integer constant is

sww

where

s is the sign of the number: – for negative, + (optional) for positive.

ww is a whole number.

Constants

21

In Fortran, integer constants must comply with the following rules:

• It must be a whole number, that is, without a fractional part.

• If negative, the special character minus (–) must be the leading character. The plus
sign (+) in front of positive integers is optional.

• It must not contain embedded commas.

Examples of valid integer constants are

0 +0 +176 –1352 06310 35

Examples of invalid integer constants are

2.03 Decimal point not allowed. This is a real constant (described later in this
chapter).

7,909 Embedded commas not allowed.

The Fortran compiler also supports Fortran-90-style integer constants, where _n is
appended to indicate the size. For example, 456_8 is an INTEGER*8 constant with the
value 456.

Hexadecimal Integer Constants

Use hexadecimal integer constants for a base 16 radix. Specify a dollar sign ($) as the first
character, followed by any digit (0 through 9) or the letters A through F (either uppercase
or lowercase). The following are valid examples of hexadecimal integer constants:

$0123456789
$ABCDEF
$A2B2C3D4

You can use hexadecimal integer constants wherever integer constants are allowed. Note
that in mixed-mode expressions, the compiler converts these constants from type integer
to the dominant type of expression in which they appear.

Octal Integer Constants

Use octal integer constants for a base 8 radix. The type of an octal integer constant is
INTEGER, in contrast to the octal constant described in “Bit Constants” on page 32. This
constant is supported to provide compatibility with PDP–11 Fortran.

22

Chapter 2: Constants and Data Structures

The format of an octal constant is as follows:

o"string"

where string is one or more digits in the range of 0 through 7.

Real Constants

A real constant is a number containing a decimal point, exponent, or both; it can have a
positive, negative, or zero value.

A real constant can have the following forms:

sww.ff Basic real constant

sww.ffEsee Basic real constant followed by a real exponent

swwEsee Integer constant followed by a real exponent

where

s is the sign of the number: – for negative, + (optional) for positive.

ww is a string of digits denoting the whole number part, if any.

ff is a string of digits denoting the fractional part, if any.

Esee denotes a real exponent, where see is an optionally signed integer.

A basic real constant is written as an optional sign followed by a string of decimal digits
containing an optional decimal point. There must be at least one digit.

A real exponent is a power of ten.

The value of a real constant is either the basic real constant or, for the forms sww.ffEsee
and swwEsee, the product of the basic real constant or integer constant and the power of
ten indicated by the exponent following the letter E.

All three forms can contain more digits than the precision used by the processor to
approximate the value of the real constant. See the MIPSpro Fortran 77 Programmer’s
Guide for information on the magnitude and precision of a real number.

Constants

23

Table 2-1 illustrates real constants written in common and scientific notation with their
corresponding E format.

The following real constants are equivalent:

5E4 5.E4 .5E5 5.0E+4 +5E04 50000.

Table 2-2 lists examples of invalid real constants and the reasons they are invalid.

Double-Precision Constants

A double-precision constant is similar to a real constant except that it can retain more
digits of the precision and has a greater range than a real constant. (The size and value
ranges of double-precision constants are given in the MIPSpro Fortran 77 Programmer’s
Guide.)

Table 2-1 Notation Forms for Real Constants

Common Notation Scientific Notation Real Exponent Form

5.0 0.5*10 .5E1 or 0.5E1

364.5 3.465*102 .3645E3

49,300 4.93*104 .493E5

–27,100 –2.71*104 –.271E5

–.0018 –1.8*10–3 –.18E–2

Table 2-2 Invalid Real Constants

Invalid Constant Reason Invalid

–18.3E No exponent following the E

E–5 Exponent part alone

6.01E2.5 Exponent part must be an integer

3.5E4E2 Only one exponent part allowed per constant

19,850 Embedded commas not allowed

24

Chapter 2: Constants and Data Structures

A double-precision constant assumes a positive, negative, or zero value in one of the
following forms:

swwDsee An integer constant followed by a double-precision exponent

sww.ffDsee A basic real constant followed by a double-precision exponent

where

s is an optional sign.

ww is a string of digits denoting the whole number part, if any.

ff is a string of digits denoting the fractional part, if any.

Dsee denotes a double-precision exponent where see is an optionally signed
exponent.

The value of a double-precision constant is the product of the basic real constant part or
integer constant part and the power of ten indicated by the integer following the letter D
in the exponent part. Both forms can contain more digits than those used by the processor
to approximate the value of a real constant. Refer to the MIPSpro Fortran 77 Programmer’s
Guide for information on the magnitude and precision of a double-precision constant.

Valid forms of double-precision constants are

1.23456D3
8.9743D0
–4.D–10
16.8D–6

For example, the following forms of the numeric value 500 are equivalent:

5D2 +5D02 5.D2 5.D+02 5D0002

Table 2-3 lists examples of invalid double-precision constants and the reasons they are
invalid.

Table 2-3 Invalid Double-Precision Constants

Invalid Constant Reason Invalid

2.395D No exponent following the D

–9.8736 Missing D exponent designator

1,010,203D0 Embedded commas not allowed

Constants

25

Quad-Precision Constants

A quad-precision constant is similar to a double-precision constant except that it can
retain more digits of the precision than a real constant. (The MIPSpro Fortran 77
Programmer’s Guide lists the size and value ranges of quad-precision constants.)

A quad-precision constant assumes a positive, negative, or zero value in one of the
following forms:

swwQsee An integer constant followed by a quad-precision exponent

sww.ffQsee A basic real constant followed by a quad-precision exponent

where

s is an optional sign.

ww is a string of digits denoting the whole number part, if any.

ff is a string of digits denoting the fractional part, if any.

Qsee denotes a quad-precision exponent where see is an optionally signed
exponent.

The value of a quad-precision constant is the product of the basic real constant part or
integer constant part and the power of ten indicated by the integer following the letter Q
in the exponent part. Both forms can contain more digits than those used by the processor
to approximate the value of the real constant. Refer to the MIPSpro Fortran 77
Programmer’s Guide for information on the magnitude and precision of a quad-precision
constant.

Valid forms of quad-precision constants are

1.23456Q3
7.7743Q0
-2.Q-10
1.8Q-2

For example, the following forms of the numeric value 500 are equivalent:

5Q2 +5Q02 5.Q2 5.Q+02 5Q0002

26

Chapter 2: Constants and Data Structures

Table 2-4 lists examples of invalid quad-precision constants and the reasons they are
invalid.

Complex Constants

A complex constant is a processor approximation of the value of a complex number. It is
represented as an ordered pair of REAL*4 data values. The first value represents the real
part of the complex number, and the second represents the imaginary part. Each part has
the same precision and range of allowed values as REAL*4 data.

A complex constant has the form (m, n) where m and n each have the form of a REAL*4,
representing the complex value m + ni, where i is the square root of –1. The form m
denotes the real part; n denotes the imaginary part. Both m and n can be positive,
negative, or zero. Refer to Table 2-5 for examples of valid forms of complex data.

Table 2-4 Invalid Quad-Precision Constants

Invalid Constant Reason Invalid

2.395Q No exponent following the Q

–9.8736 Missing Q exponent designator

1,010,203Q0 Embedded commas not allowed

Table 2-5 Valid Forms of Complex Data

Valid Complex Constant Equivalent Mathematical Expression

(3.5, –5) 3.5 –5i

(0, –1) – i

(0.0, 12) 0 + 12i or 12i

(2E3, 0) 2000 + 0i or 2000

Constants

27

Table 2-6 provides examples of invalid constants and lists the reasons they are invalid.

Double-Complex Constants

A double-complex constant is a processor approximation of the value of a complex
number. It is represented as an ordered pair of REAL*8 data values. The first value
represents the real part of the complex number, and the second represents the imaginary
part. Each part has the same precision and range of allowed values as REAL*8 data.

A double-complex constant has the form (m, n) where m and n each have the form of a
REAL*8, representing the complex value m + ni, where i is the square root of –1. The form
m denotes the real part; n denotes the imaginary part. Both m and n can be positive,
negative, or zero. Refer to Table 2-7 for examples of valid forms of double-complex data.

Table 2-6 Invalid Forms of Complex Data

Invalid Constant Reason Invalid

(1,) No imaginary part

(1, 2.2, 3) More than two parts

(1.15, 4E) Imaginary part has invalid form

Table 2-7 Valid Forms of Double-Complex Data

Valid Complex Constant Equivalent Mathematical Expression

(3.5, –5) 3.5 –5i

(0, –1) – i

(0.0, 12) 0 + 12i or 12i

(2D3, 0) 2000 + 0i or 2000

28

Chapter 2: Constants and Data Structures

Table 2-8 provides examples of invalid constants and lists the reasons they are invalid.

Quad-Complex Constants

A quad-complex constant is a processor approximation of the value of a complex
number. It is represented as an ordered pair of REAL*16 data values. The form is the
same as the double-complex constant, with a Q replacing the D. The following is an
example of a valid quad-complex representation of 2000 + 0i:

(2Q3,0)

Logical Constants

Logical constants represent only the values true or false, represented by one of the forms
in Table 2-9.

Character Constants

A character constant is a string of one or more characters that can be represented by the
processor. Each character in the string is numbered consecutively from left to right
beginning with 1.

Note: The quotation mark (") is an extension to Fortran 77.

Table 2-8 Invalid Forms of Double-Complex Data

Invalid Constant Reason Invalid

(1,) No imaginary part

(1, 2.2, 3) More than two parts

(1.15, 4E) Imaginary part has invalid form

Table 2-9 Logical Constant Values

Form Value

.TRUE. True

.FALSE. False

Constants

29

If the delimiter is ", then a quotation mark within the character string is represented by
two consecutive quotation marks with no intervening blanks.

If the delimiter is ', then an apostrophe within the character string is represented by two
consecutive apostrophes with no intervening blanks.

Blanks within the string of characters are significant.

The case of alphabetic characters is significant.

The length of a character constant is the number of characters, including blanks, between
the delimiters. The delimiters are not counted, and each pair of apostrophes or quotation
marks between the delimiters counts as a single character.

A character constant is normally associated with the CHARACTER data type. The
Fortran 77 standard is extended (except as noted below) to allow character constants to
appear in the same context as a numeric constant. A character constant in the context of
a numeric constant is treated the same as a Hollerith constant.

Note: Character constants cannot be used as actual arguments to numeric typed dummy
arguments.

Table 2-10 provides examples of valid character constants and shows how they are
stored.

Table 2-10 Valid Character Constants

Constant Stored as

'DON''T' DON'T

"I'M HERE!" I'M HERE!

'STRING' STRING

'LMN""OP' LMN""OP

30

Chapter 2: Constants and Data Structures

Table 2-11 lists examples of invalid character constants and the reasons they are invalid.

Hollerith Constants

Use Hollerith constants to manipulate packed character strings in the context of integer
data types. A Hollerith constant consists of a character count followed by the letter H
(either uppercase or lowercase) and a string of characters as specified in the character
count and has the following format:

nHxxx...x

where n is a nonzero, unsigned integer constant and where the x’s represent a string of
exactly n contiguous characters. The blank character is significant in a Hollerith constant.

Examples of valid Hollerith constants are

3H A
10H'VALUE = '
8H MANUAL

Table 2-11 Invalid Character Constants

Invalid Constant Reason Invalid

'ISN.T Terminating delimiter missing

.YES' Mismatched delimiters

CENTS Not enclosed in delimiters

'' Zero length not allowed

"" Zero length not allowed

Constants

31

Table 2-12 provides some examples of invalid Hollerith constants and the reasons they
are invalid.

The following rules apply to Hollerith constants:

• Hollerith constants are stored as byte strings; each byte is the ASCII representation
of one character.

• Hollerith constants have no type; they assume a numeric data type and size
depending on the context in which they are used.

• When used with a a binary operator, octal and hexadecimal constants assume the
data type of the other operand. For example,

INTEGER*2 HILO
HILO = ZHFFX

The constant is assumed to be of type INTEGER*2.

• In other cases, when used in statements that require a specific data type, the
constant is assumed to be the required type and length.

• A length of four bytes is assumed for hexadecimal and octal constants used as
arguments; no data type is assumed.

• In other cases, the constant is assumed to be of type INTEGER*4.

• When a Hollerith constant is used in an actual parameter list of a subprogram
reference, the formal parameter declaration within that subprogram must specify a
numeric type, not a character type.

• A variable can be defined with a Hollerith value through a DATA statement, an
assignment statement, or a READ statement.

Table 2-12 Invalid Hollerith Constants

Invalid Constant Reason Invalid

2H YZ Blanks are significant; should be 3H YZ

–4HBEST Negative length not allowed

0H Zero length not allowed

32

Chapter 2: Constants and Data Structures

• The number of characters (n) in the Hollerith constant must be less than or equal to
g, the maximum number of characters that can be stored in a variable of the given
type, where g is the size of the variable expressed in bytes. If n < g, the Hollerith
constant is stored and extended on the right with (g–n) blank characters. (Refer to
the MIPSpro Fortran 77 Programmer’s Guide for the sizes of arithmetic and logical
data types.)

• The case of alphabetic characters is significant.

Bit Constants

You can use bit constants anywhere numeric constants are allowed. Table 2-13 shows the
allowable bit constants and their format.

The following are examples of bit constants used in a DATA statement.

integer a(4)
data a/b'1010',o'12',z'a',x'b'/

The above statement initializes the first elements of a four-element array to binary, the
second element to an octal value, and the last two elements to hexadecimal values.

The following rules apply to bit constants:

• Bit constants have no type; they assume a numeric data type and size depending on
the context in which they are used.

• When used with a binary operator, octal, and hexadecimal constants assume the
data type of the other operand. For example,

a. b, o, x, and z can be lower- or uppercase (B, O, X, Z)

Table 2-13 Valid Substring Examples

Format Meaning
Valid substring
Characters Maximum

b' string' or 'string'ba Binary 0, 1 64

O' string' or 'string'oa Octal 0 – 7 22

x' string' or 'string'xa Hexadecimal 0 – 9; a – f 16

z' string' or 'string'za Hexadecimal 0 – 9; a – f 16

Records and Structures

33

INTEGER*2 HILO
HILO = 'FF'X

The constant is assumed to be of type INTEGER*2.

• In other cases, when used in statements that require a specific data type, the
constant is assumed to be the required type and length.

• A length of four bytes is assumed for hexadecimal and octal constants used as
arguments; no data type is assumed.

• In other cases, the constant is assumed to be of type INTEGER*4.

• A hexadecimal or octal constant can specify up to 16 bytes of data.

• Constants are padded with zeros to the left when the assumed length of the
constant is more than the digits specified by the constant. Constants are truncated to
the left when the assumed length is less than that of the digits specified.

Records and Structures

The record-handling extension enables you to declare and operate on multifield records
in Fortran programs. Avoid confusing the term record as it is used here with the term
record that describes input and output data records.

Overview of Records and Structures

A record is a composite or aggregate entity containing one or more record elements or
fields. Each element of a record is usually named. References to a record element consist
of the name of the record and the name of the desired element. Records allow you to
organize heterogeneous data elements within one structure and to operate on them
either individually or collectively. Because they can be composed of heterogeneous data
elements, records are not typed like arrays are.

Define the form of a record with a group of statements called a structure definition block.
Establish a structure declaration in memory by specifying the name of the structure in a
RECORD statement. A structure declaration block can include one or more of the
following items:

• typed data declarations (variables or arrays)

• substructure declarations

34

Chapter 2: Constants and Data Structures

• mapped field declarations

• unnamed fields

The following sections describe these items. Refer to the RECORD and STRUCTURE
declarations block sections in Chapter 4, “Specification Statements,” for details on
specifying a structure in a source program.

Typed Data Declarations (Variables or Arrays)

Typed data declarations in structure declarations have the form of normal Fortran typed
data declarations. You can freely intermix different types of data items within a structure
declaration.

Substructure Declarations

Establish substructures within a structure by using either a nested structure declaration
or a RECORD statement.

Mapped Field Declarations

Mapped field declarations are made up of one or more typed data declarations,
substructure declarations (structure declarations and RECORD statements), or other
mapped field declarations. A block of statements, called a union declaration, defines
mapped field declarations. Unlike typed data declarations, all mapped field declarations
that are made within a single union declaration share a common location within the
containing structure.

Unnamed Fields

Declare unnamed fields in a structure by specifying the pseudo-name %FILL in place of
an actual field name. %FILL generates empty space in a record for purposes such as
alignment.

Record and Field References

The generic term scalar reference refers to all references that resolve to single typed data
items. A scalar field reference of an aggregate falls into this category. The generic term

Arrays

35

aggregate reference is used to refer to all references that resolve to references of structured
data items defined by a RECORD statement.

Scalar field references can appear wherever normal variables or array elements can
appear, with the exception of COMMON, SAVE, NAMELIST, and EQUIVALENCE
statements. Aggregate references can only appear in aggregate assignment statements, in
unformatted I/O statements, and as parameters to subprograms.

Aggregate Assignment Statement

Aggregates can be assigned as whole entities. This special form of the assignment
statement is indicated by an aggregate reference on the left-hand side of an assignment
statement and requires an identical aggregate to appear on the right-hand side of the
assignment.

Arrays

An array is a non-empty sequence of data of the same type occupying consecutive bytes
in storage. A member of this sequence of data is referred to as an array element.

Each array has the following characteristics:

• array name

• data type

• array elements

• array declarator specifying:

– number of dimensions

– size and bounds of each dimension

Define an array using a DIMENSION, COMMON, or type statement (described in
Chapter 4, “Specification Statements”); it can have a maximum of seven dimensions.

Note: For information on array handling when interacting with programs written in
another language, see the MIPSpro Fortran 77 Programmer’s Guide.

36

Chapter 2: Constants and Data Structures

Array Names and Types

An array name is the symbolic name given to the array and must conform to the rules
given in Chapter 1, “Fortran Elements and Concepts,” for symbolic names. When
referencing the array as a whole, specify only the array name. An array name is local to
a program unit.

An array element is specified by the array name and a subscript. The form of an array
element name is

a (s [,s]...)

where

a is an array name.

(s [,s]...) is a subscript.

s is a subscript expression.

For example, DATE(1,5) accesses the element in the first row, fifth column, of the DATE
array.

The number of subscript expressions must be equal to the number of dimensions in the
array declarator for the array name.

An array element can be any of the valid Fortran data types. All array elements must be
the same data type. Specify the data type explicitly using a type statement or implicitly
using the first character of the array name. Refer to Chapter 1, “Fortran Elements and
Concepts,” for details about data types.

Reference a different array element by changing the subscript value of the array element
name.

Array Declarators

An array declarator specifies a symbolic name for the array, the number of dimensions
in the array, and the size and bounds of each dimension. Only one array declarator for an
array name is allowed in a program unit. The array declarator can appear in a
DIMENSION statement, a type statement, or a COMMON statement but not in more
than one of these.

Arrays

37

An array declarator has the form

a (d [,d]...)

where

a is a symbolic name of the array.

d is a dimension declarator of the following form:

[d1:] d2

where:

d1 is a lower-dimension bound that must be a numeric expression.

d2 is an upper-dimension bound that must be a numeric expression or an
asterisk (*). Specify an asterisk only if d2 is part of the last dimension
declarator (see below).

If d1 or d2 is not of type integer, it is converted to integer values; any fractional part is
truncated.

An array declarator can have a dummy argument as an array name and, therefore, be a
dummy array declarator. An array declarator can be one of three types: a constant array
declarator, an adjustable array declarator, or an assumed-size array declarator.

Each of the dimension bounds in a constant array declarator is a numeric constant
expression. An adjustable array declarator is a dummy array declarator that contains one
or more dimension bounds that are integer expressions but not constant integer
expressions. An assumed-size array declarator is a dummy array declarator that has integer
expressions for all dimension bounds, except that the upper dimension bound, d2, of the
last dimension is an asterisk (*).

A dimension-bound expression cannot contain a function or array element name
reference.

Value of Dimension Bounds

The lower-dimension bound, d1, and the upper-dimension bound, d2, can have positive,
negative, or zero values. The value of the upper-dimension bound, d2, must be greater
than or equal to that of the lower-dimension bound, d1.

38

Chapter 2: Constants and Data Structures

If a lower-dimension bound is not specified, its value is assumed to be one (1). The
upper-dimension bound of an asterisk (*) is always greater than or equal to the lower
dimension bound.

The size of a dimension that does not have an asterisk (*) as its upper bound has the
value (d1 - d2) +1.

The size of a dimension that has an asterisk (*) as its upper bound is not specified.

Array Size

The size of an array is exactly equal to the number of elements contained by the array.
Therefore, the size of an array equals the product of the dimensions of the array. For
constant and adjustable arrays, the size is straightforward. For assumed-size dummy
arrays, however, the size depends on the actual argument corresponding to the dummy
array. There are three cases:

• If the actual argument is a non-character array name, the size of the assumed-size
array equals the size of the actual argument array.

• If the actual argument is a non-character array element name with a subscript value
of j in an array of size x, the size of the assumed-size array equals x – j + 1.

• If the actual argument is either a character array name, a character array element
name, or a character array element substring name, the array begins at character
storage unit t of an array containing a total of c character storage units; the size of
the assumed-size array equals:

INT((c – t + 1)/ln)

where ln is the length of an element of the dummy array.

Note: Given an assumed-size dummy array with n dimensions, the product of the sizes
of the first n – 1 dimensions must not be greater than the size of the array (the size of the
array is determined as described above).

Arrays

39

Storage and Element Ordering

Storage for an array is allocated in the program unit in which it is declared, except in
subprograms where the array name is specified as a dummy argument. The former
declaration is called an actual array declaration. The declaration of an array in a
subprogram where the array name is a dummy argument is called a dummy array
declaration.

The elements of an array are ordered in sequence and stored in column order. This means
that the left most subscript varies first, as compared to row order, in which the right most
subscript varies first. The first element of the array has a subscript value of one; the second
element has a subscript value of two; and so on. The last element has a subscript value equal
to the size of the array.

Consider the following statement that declares an array with an INTEGER type
statement:

INTEGER t(2,3)

Figure 2-1 shows the ordering of elements of this array.

Figure 2-1 Order of Array Elements

Subscripts

The subscript describes the position of the element in an array and allows that array
element to be defined or referenced. The form of a subscript is

(s [,s]...)

where s is a subscript expression. The term subscript includes the parentheses that delimit
the list of subscript expressions.

t (1,1) t (2,1) t (1,2) t (2,2) t (1,3) t (2,3)

40

Chapter 2: Constants and Data Structures

A subscript expression must be a numeric expression and can contain array element
references and function references. However, it cannot contain any function references
that affect other subscript expressions in the same subscript.

A non-integer character can be specified for subscript expression. If specified, the
non-integer character is converted to an integer before use; fractional portions remaining
after conversion are truncated.

If a subscript expression is not of type integer, it is converted to integer values; any
fractional part is truncated.

Because an array is stored as a sequence in memory, the values of the subscript
expressions must be combined into a single value that is used as the offset into the
sequence in memory. That single value is called the subscript value.

The subscript value determines which element of the array is accessed. The subscript
value is calculated from the values of all the subscript expressions and the declared
dimensions of the array (see Table 2-14).

The subscript value and the subscript expression value are not necessarily the same, even
for a one-dimensional array. For example,

DIMENSION X(10,10),Y(–1:8)
Y(2) = X(1,2)

Y(2) identifies the fourth element of array Y, the subscript is (2) with a subscript value of
four, and the subscript expression is 2 with a value of two. X(1,2) identifies the eleventh
element of X, the subscript is (1,2) with a subscript value of eleven, and the subscript
expressions are 1 and 2 with the values of one and two, respectively.

Table 2-14 Determining Subscript Values

n Dimension
Declarator

Subscript Subscript Value

1 (j1:k1) (s1) 1 + (s1 – j1)

2 (j1:k1, j2:k2) (s1, s2) 1 + (s1 – j1) + (s2 – j2)*d1

3 (j1:k1, j2:k2, j3:k3) (s1, s2, s3) 1 + (s1–j1) + (s2–j2) * d1 + (s3–j3) * d2 * d1

n (j1:k1,jn:kn) (s1, ...sn) 1 + (s1 – j1) + (s2 – j2)*d1 + (s3–j3)*d1*d2 +

... + (sn – jn) * dn–1*dn–2*d1

41

Chapter 3

3. Expressions

This chapter contains the following subsections:

• “Arithmetic Expressions”

• “Character Expressions”

• “Relational Expressions”

• “Logical Expressions”

• “Evaluating Expressions in General”

An expression performs a specified type of computation. It is composed of a sequence of
operands, operators, and parentheses. The types of Fortran expressions are

• arithmetic

• character

• relational

• logical

This chapter describes formation, interpretation, and evaluation rules for each type of
expression. This chapter also discusses mixed-mode expressions.

Arithmetic Expressions

An arithmetic expression specifies a numeric computation that yields a numeric value on
evaluation. The simplest form of an arithmetic expression can be

• an unsigned arithmetic constant

• a symbolic name of an arithmetic constant

• an arithmetic variable reference

• an arithmetic array element reference

42

Chapter 3: Expressions

• an arithmetic function reference

You can form more complicated arithmetic expressions from one or more operands
together with arithmetic operators and parentheses.

An arithmetic element can include logical entities because logical data is treated as
integer data when used in an arithmetic context. When both arithmetic and logical
operands exist for a given operator, the logical operand is promoted to type INTEGER
of the same byte length as the original logical length. For example, a LOGICAL*2 will be
promoted to INTEGER*2 and a LOGICAL*4 will be promoted to INTEGER*4.

Arithmetic Operators

Table 3-1 shows the arithmetic operators.

Use the exponentiation, division, and multiplication operators between exactly two
operands. You can use the addition and subtraction operators with one or two operands;
in the latter case, specify the operator before the operand; for example, –TOTAL.

Do not specify two operators in succession. (Note that the exponentiation operator
consists of the two characters (**), but is a single operator.) Implied operators, as in
implied multiplication, are not allowed.

Table 3-1 Arithmetic Operators

Operator Function

** Exponentiation

* Multiplication

/ Division

+ Addition or identity

– Subtraction or negation

Arithmetic Expressions

43

Interpretation of Arithmetic Expressions

Table 3-2 interprets sample arithmetic expressions.

An arithmetic expression containing two or more operators is interpreted based on a
precedence relation among the arithmetic operators. This precedence, from highest to
lowest, is

• ()

• **

• * and /

• + and –

Use parentheses to override the order of precedence.

The following is an example of an arithmetic expression:

A/B-C**D

The operators are executed in the following sequence:

1. C**D is evaluated first.

2. A/B is evaluated next.

3. The result of C**D is subtracted from the result of A/B to give the final result.

Table 3-2 Interpretation of Arithmetic Expressions

Operator Use Interpretation

** x1 ** x2 Exponentiate x1 to the power of x2

* x1 * x2 Multiply x1 and x2

/ x1 / x2 Divide x1 by x2

+ x1 + x2 Add x1 and x2

+ x x (identity)

– x1 – x2 Subtract x1 from x2

–x Negate x

44

Chapter 3: Expressions

A unary operator (–) can follow another operator. Specifying the unary operator after the
exponentiation operator produces a variation on the standard order of operations. The
unary operator is evaluated first in that case, resulting in exponentiation taking a lower
precedence in the expression.

For example, the following expression

A ** - B * C

is interpreted as

A ** (- B * C)

Arithmetic Operands

Arithmetic operands must specify values with integer, real, double-precision, complex,
or double-complex data types. You can combine specific operands in an arithmetic
expression. The arithmetic operands, in order of increasing complexity, are

• primary

• factor

• term

• arithmetic expression

A primary is the basic component in an arithmetic expression. The forms of a primary are

• an unsigned arithmetic constant

• a symbolic name of an arithmetic constant

• an arithmetic variable reference

• an arithmetic array element reference

• an arithmetic function reference

• an arithmetic expression enclosed in parentheses

A factor consists of one or more primaries separated by the exponentiation operator. The
forms of a factor are

• primary

• primary ** factor

Arithmetic Expressions

45

Factors with more than one exponentiation operator are interpreted from right to left. For
example, I**J**K is interpreted as I**(J**K), and I**J**K**L is interpreted as
I**(J**(K**L)).

The term incorporates multiplicative operators into arithmetic expressions. Its forms are

• factor

• term/factor

• term * factor

The above definition indicates that factors are combined from left to right in a term
containing two or more multiplication or division operators.

Finally, at the highest level of the hierarchy, are the arithmetic expressions. The forms of an
arithmetic expression are

• term

• + term

• – term

• arithmetic expression + term

• arithmetic expression – term

An arithmetic expression consists of one or more terms separated by an addition
operator or a subtraction operator. The terms are combined from left to right. For
example, A+B–C has the same interpretation as the expression (A+B)–C. Expressions
such as A*–B and A+-B are not allowed. The correct forms are A*(–B) and A+(–B).

An arithmetic expression can begin with a plus or minus sign.

Arithmetic Constant Expressions

An arithmetic constant expression is an arithmetic expression containing no variables.
Thus, each primary in an arithmetic constant expression must be one of the following:

• arithmetic constant

• symbolic name of an arithmetic constant

• arithmetic constant expression enclosed in parentheses

46

Chapter 3: Expressions

In an arithmetic constant expression, do not specify the exponentiation operator unless
the exponent is of type integer. Variable, array element, and function references are not
allowed. Examples of integer constant expressions are

 7
–7
–7+5
3**2
x+3 (where x is the symbolic name of a constant)

Integer Constant Expressions

An integer constant expression is an arithmetic constant expression containing only
integers. It can contain constants or symbolic names of constants, provided they are of
type integer. As with all constant expressions, no variables, array elements, or function
references are allowed.

Evaluating Arithmetic Expressions

The data type of an expression is determined by the data types of the operands and
functions that are referenced. Thus, integer expressions, real expressions,
double-precision expressions, complex expressions, and double expressions have values
of type integer, real, double-precision, complex, and double-complex, respectively.

Single-Mode Expressions

Single-mode expressions are arithmetic expressions in which all operands have the same
data type. The data type of the value of a single-mode expression is thus the same as the
data type of the operands. When the addition operator or the subtraction operator is used
with a single operand, the data type of the resulting expression is the same as the data
type of the operand.

Mixed-Mode Expressions

Mixed-mode expressions contain operands with two or more data types. If every element
in an arithmetic expression is of the same type, the value produced by the expression is
also of that same type. If elements of different data types are combined in an expression,
the evaluation of that expression and the data type of the resulting value depend on the
ranking associated with each data type.

Arithmetic Expressions

47

Table 3-3 shows the ranking assigned to each data type, where the lowest ranking is 1.

The data type of the value produced by an operation on two arithmetic elements of
different data types is the data type of the highest-ranking element of the operation. For
example, the data type of the value resulting from an operation on an INTEGER and a
REAL element is REAL. However, an operation involving a COMPLEX*8 data type and
a REAL*8 data type produces a COMPLEX*16 data result. Similarly, an operation
involving either a COMPLEX*8 data type or a COMPLEX*16 data type and a REAL*16
data type produces a COMPLEX*32 data result.

LOGICAL items in an INTEGER context are treated as type INTEGER. Thus, a
LOGICAL*8 combined with an INTEGER*1 produce the same result type as an
INTEGER*8 combined with an INTEGER*1 or an INTEGER*8.

Table 3-3 Data Type Ranks

Data Type Rank

BYTE 1

LOGICAL*1 1

LOGICAL*2 2

LOGICAL*4 3

LOGICAL*8 4

INTEGER*1 5

INTEGER*2 6

INTEGER*4 7

INTEGER*8 8

REAL*4 9

REAL*8 10

REAL*16 11

COMPLEX*8 12

COMPLEX*16 13

COMPLEX*32 14

48

Chapter 3: Expressions

Exponentiation

Exponentiation is an exception to the above rules for mixed-mode expressions. When
raising a value to an integer power, the integer is not converted. The result is assigned
the type of the left operand.

When a complex value is raised to a complex power, the value of the expression is
defined as follows:

xy = EXP (y * LOG(x))

Integer Division

One operand of type INTEGER can be divided by another operand of type INTEGER.
The result of an integer division operation is a value of type integer, referred to as an
integer quotient. The integer quotient is obtained as follows:

• If the magnitude of the mathematical quotient is less than one, then the integer
quotient is zero. For example, the value of the expression (18/30) is zero.

• If the magnitude of the mathematical quotient is greater than or equal to one, then
the integer quotient is the largest integer that does not exceed the magnitude of the
mathematical quotient and whose sign is the same as that of the mathematical
quotient. For example, the value of the expression (–9/2) is –4.

Character Expressions

A character expression yields a character string value on evaluation. Character expressions
are built up from the following simple elements:

• character constant or symbolic name of a character constant

• character function reference

• character variable reference

• character array element reference

• character substring reference

Construct complicated character expressions from one or more of these elements using
the concatenate operator and parentheses.

Character Expressions

49

Character Constant Expressions

A character constant expression is made up of operands that cannot vary. Each primary in
a character constant expression must be a

• character constant

• symbolic name of a character constant

• character constant expression enclosed in parentheses

For the details of character constant syntax see “Character Constants” on page 28 and
“Hollerith Constants” on page 30. A character constant expression cannot contain
variable, array element, substring, or function references.

Character Substrings

A character substring is a contiguous sequence of characters that is part of a character
data item. A character substring cannot be empty; that is, it must contain at least one byte
of data.

Substring Names

A substring name defines the corresponding substring and allows it to be referenced in
a character expression. A substring name has one of the following forms:

var([e1]:[e2])

arra(sub[,sub]...) ([e1]:[e2])

where

var is a character variable name.

arra is a character array name.

sub is a subscript expression.

e1 and e2 are integer expressions.

You can specify a non-integer expression for e1 and e2, but a
non-integer value is truncated to an integer before use.

50

Chapter 3: Expressions

The value e1 specifies the leftmost character of the substring relative to the beginning of
the variable or array element, while e2 specifies the rightmost character. Characters are
numbered left to right beginning with 1. For example, the following denotes the third
through the fifth characters in the character variable EX:

EX(3:5)

The following specifies the first through the fifth characters the character array element
NAME(2,4):

NAME(2,4)(1:5)

A character substring has the length e2–e1+1.

Substring Values e1, e2

The value of the expressions e1 and e2 in a substring name must fall (after truncation to
integer) within the range

1 ≤ e1 ≤ e2 ≤ len

where len is the length of the character variable or array element.

When e1 is omitted, a value of 1 is assumed. When e2 is omitted, a value of len is assumed.
When both e1 and e2 are omitted, the result is to take all of the characters. Thus var(:) is
equivalent to var and arra(s [,s]...)(:) is equivalent to arra(s [,s]...).

The expressions e1 and e2 can be any integer expression, including array element
references and function references. Consider the character variable

XCHAR = 'QRSTUVWXYZ'

Table 3-4 lists examples of valid substrings taken from this variable.

Table 3-4 Valid Substring Examples

Expression Substring Value Substring
Length

EX1 = XCHAR (3:8) STUVWX 6

EX2 = XCHAR (:8) QRSTUVWX 8

EX3 = XCHAR (5:) UVWXYZ 6

Character Expressions

51

Concatenate Operator

The concatenate operator (//) is the only character operator defined in Fortran. A
character expression formed from the concatenation of two character operands x1 and x2
is specified as

x1 // x2

The result of this operation is a character string with a value of x1 extended on the right
with the value of x2. The length of the result is the sum of the lengths of the character
operands. For example,

'HEL' // 'LO2'

The result of the above expression is the string HELLO2 of length six.

Except in a character assignment statement, concatenation of an operand with an asterisk
(*) as its length specification is not allowed unless the operand is the symbolic name of a
constant.

Parenthesized Character Expressions

In a character expression build from two or more concatenation operators, the elements
are combined from left to right. Thus, the character expression

'A' // 'BCD' // 'EF'

is interpreted the same as

('A' // 'BCD') // 'EF'

The value of the above character expression is ABCDEF.

EX4 = XCHAR(:) QRSTUVWXYZ 10

EX5 = XCHAR(IA:IA+7) depends on IA 8

EX6 = XCHAR(INDEX(XCHAR,’VW’):) VWXYZ 5

Table 3-4 (continued) Valid Substring Examples

Expression Substring Value Substring
Length

52

Chapter 3: Expressions

Relational Expressions

A relational expression yields a logical value of either .TRUE. or .FALSE. on evaluation
and comparison of two arithmetic expressions or two character expressions. A relational
expression can appear only within a logical expression. Refer to “Logical Expressions”
on page 54 for details about logical expressions.

Relational Operators

Table 3-5 lists the Fortran relational operators. Arithmetic and character operators are
evaluated before relational operators.

Relational Operands

The operands of a relational operator can be arithmetic or character expressions. The
relational expression requires exactly two operands and is written in the following form:

e1 relop e2

where

e1 and e2 are arithmetic or character expressions.

relop is the relational operator.

Note: Both e1 and e2 must be the same type of expression, either arithmetic or character.

Table 3-5 Fortran Relational Operators

Relational Operator Meaning

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

.LT. Less than

.LE. Less than or equal to

Relational Expressions

53

Evaluating Relational Expressions

The result of a relational expression is of type logical, with a value of .TRUE. or .FALSE..
The manner in which the expression is evaluated depends on the data type of the
operands.

Arithmetic Relational Expressions

In an arithmetic relational expression, e1 and e2 must each be an integer, real, double
precision, complex, or double complex expression. relop must be a relational operator.

The following are examples of arithmetic relational expressions:

(a + b) .EQ. (c + 1)

HOURS .LE. 40

You can use complex type operands only when specifying either the .EQ. or .NE.
relational operator.

An arithmetic relational expression has the logical value .TRUE. only if the values of the
operands satisfy the relation specified by the operator. Otherwise, the value is .FALSE..

If the two arithmetic expressions e1 and e2 differ in type, the expression is evaluated as
follows:

((e1) - (e2)) relop 0

where the value 0 (zero) is of the same type as the expression ((e1)- (e2)) and the type
conversion rules apply to the expression. Do not compare a double precision value with
a complex value.

Character Relational Expressions

In a character relational expression, e1 and e2 are character expressions and relop is a
relational operator.

The following is an example of a character relational expression:

NAME .EQ. 'HOMER'

54

Chapter 3: Expressions

A character relational expression has the logical value .TRUE. only if the values of the
operands satisfy the relation specified by the operator. Otherwise, the value is .FALSE..
The result of a character relational expression depends on the collating sequence as
follows:

• If e1 and e2 are single characters, their relationship in the collating sequence
determines the value of the operator. e1 is less than or greater than e2 if e1 is before
or after e2, respectively, in the collating sequence.

• If either e1 or e2 are character strings with lengths greater than 1, corresponding
individual characters are compared from left to right until a relationship other than
.EQ. can be determined.

• If the operands are of unequal length, the shorter operand is extended on the right
with blanks to the length of the longer operand for the comparison.

• If no other relationship can be determined after the strings are exhausted, the
strings are equal.

The collating sequence depends partially on the processor; however, equality tests .EQ.
and .NE. do not depend on the processor collating sequence and can be used on any
processor.

Logical Expressions

A logical expression specifies a logical computation that yields a logical value. The
simplest form of a logical expression is one of the following:

• logical constant

• logical variable reference

• logical array element reference

• logical function reference

• relational expression

Construct complicated logical expressions from one or more logical operands together
with logical operators and parentheses.

Logical Expressions

55

Logical Operators

Table 3-6 defines the Fortran logical operators.

All logical operators require at least two operands, except the logical negation operator
.NOT. , which requires only one.

A logical expression containing two or more logical operators is evaluated based on
precedence of the logical operators. This precedence, from highest to lowest, is

• .NOT.

• .AND.

• .OR.

• .EQV. and .NEQV.

• .XOR.

For example, in the following expression:

W .NEQV. X .OR. Y .AND. Z

the operators are executed in the following sequence:

1. Y .AND. Z is evaluated first (A represents the result).

2. X .OR. A is evaluated second (B represents the result).

3. W .NEQV. B is evaluated to produce the final result.

Table 3-6 Logical Operators

Logical Operator Meaning

.NOT. Logical negation

.AND. Logical conjunt

.OR. Logical disjunct

.EQV. Logical equivalence

.NEQV. Logical exclusive or

.XOR. Same as .NEQV.

56

Chapter 3: Expressions

You can use parentheses to override the precedence of the operators.

Logical Operands

Logical operands specify values with a logical data type. The forms of a logical operands
are

• logical primary

• logical factor

• logical term

• logical disjunct

• logical expression

Logical Primary

The logical primary is the basic component of a logical expression. The forms of a logical
primary are

• logical constant

• symbolic name of a logical constant

• integer or logical variable reference

• logical array element reference

• integer or logical function reference

• relational expression

• integer or logical expression in parentheses

When an integer appears as an operand to a logical operator, the other operand is
promoted to type integer if necessary and the operation is performed on a bit-by-bit basis
producing an integer result. Whenever an arithmetic datum appears in a logical
expression, the result of that expression will be of type integer because of type promotion
rules. If necessary, the result can be converted back to LOGICAL.

Do not specify two logical operators consecutively and do not use implied logical
operators.

Logical Expressions

57

Logical Factor

The logical factor uses the logical negation operator .NOT. to reverse the logical value to
which it is applied. For example, applying .NOT. to a false relational expression makes
the expression true. Therefore, if UP is true, .NOT. UP is false. The logical factor has the
following forms:

• logical primary

• .NOT. logical primary

Logical Term

The logical term uses the logical conjunct operator .AND. to combine logical factors. It
takes the forms

• logical factor

• logical term .AND. logical factor

In evaluating a logical term with two or more .AND. operators, the logical factors are
combined from left to right. For example, X .AND. Y .AND. Z has the same
interpretation as (X .AND. Y) .AND. Z.

Logical Disjunct

The logical disjunct is a sequence of logical terms separated by the .OR. operator and has
the following two forms:

• logical term

• logical disjunct .OR. logical term

In an expression containing two or more .OR. operators, the logical terms are combined
from left to right in succession. For example, the compiler interprets the expression X
.OR. Y .OR. Z the same as (X .OR. Y) .OR. Z.

58

Chapter 3: Expressions

Logical Expression

At the highest level of complexity is the logical expression. A logical expression is a
sequence of logical disjuncts separated by the .EQV., .NEQV., or .XOR. operators. Its
forms are

• logical disjunct

• logical expression .EQV. logical disjunct

• logical expression .NEQV. logical disjunct

• logical expression .XOR. logical disjunct

The logical disjuncts are combined from left to right when a logical expression contains
two or more .EQV., .NEVQ., or .XOR. operators.

A logical constant expression is a logical expression in which each primary is a logical
constant, the symbolic name of a logical constant, a relational expression in which each
primary is a constant, or a logical constant expression enclosed in parentheses. A logical
constant expression can contain arithmetic and character constant expressions but not
variables, array elements, or function references.

Interpretation of Logical Expressions

In general, logical expressions containing two or more logical operators are executed
according to the hierarchy of operators described previously, unless the order has been
overridden by the use of parentheses. Table 3-7 defines the form and interpretation of the
logical expressions.

Table 3-7 Logical Expressions

A B .NOT. B A .AND. B A .OR. B A .EQV. B
A .XOR. B
A .NEQV. B

F F T F F T F

F T F F T F T

T F T F T F T

T T F T T T F

Evaluating Expressions in General

59

Evaluating Expressions in General

Several rules are applied to the general evaluation of Fortran expressions. This section
covers the priority of the different Fortran operators, the use of parentheses in specifying
the order of evaluation, and the rules for combining operators with operands.

Note: Any variable, array element, function, or character substring in an expression
must be defined with a value of the correct type at the time it is referenced.

Precedence of Operators

Certain Fortran operators have precedence over others when combined in an expression.
The previous sections have listed the precedence among the arithmetic, logical, and
expression operators. No precedence exists between the relational operators and the
single character operator (//). On the highest level, the precedence among the types of
expression operators, from highest to lowest, is

• arithmetic

• character

• relational

• logical

Integrity of Parentheses and Interpretation Rules

Use parentheses to specify the order in which operators are evaluated within an
expression. Expressions within parentheses are treated as an entity.

In an expression containing more than one operation, the processor first evaluates any
expressions within parentheses. Subexpressions within parentheses are evaluated
beginning with the innermost subexpression and proceeding sequentially to the
outermost. The processor then scans the expression from left to right and performs the
operations according to the operator precedence described previously.

61

Chapter 4

4. Specification Statements

This chapter contains the following subsections:

• “AUTOMATIC, STATIC”

• “BLOCK DATA”

• “COMMON”

• “DATA”

• “Data Type Statements”

• “DIMENSION”

• “EQUIVALENCE”

• “EXTERNAL”

• “IMPLICIT”

• “INTRINSIC”

• “NAMELIST”

• “PARAMETER”

• “POINTER”

• “PROGRAM”

• “RECORD”

• “SAVE”

• “STRUCTURE / UNION”

• “VOLATILE”

Specification statements are non-executable Fortran statements that provide the
processor with information about the nature of specific data and the allocation of storage
space for this data.

The specification statements are summarized below.

62

Chapter 4: Specification Statements

AUTOMATIC, STATIC
Controls the allocation of storage to variables and the initial value of
variables within called subprograms.

BLOCK DATA First statement in a block data subprogram used to assign initial values
to variables and array elements in named common blocks.

COMMON Declares variables and arrays to be put in a storage area that is accessible
to multiple program units, thus allowing program units to share data
without using arguments.

DATA Supplies initial values of variables, array elements, arrays, or substrings.

Data type Explicitly defines the type of a constant, variable, array, external
function, statement function, or dummy procedure name. Also, can
specify dimensions of arrays and the length of the character data.

DIMENSION Specifies the symbolic names and dimension specifications of arrays.

EQUIVALENCE
Specifies the sharing of storage units by two or more entities in a
program unit, thus associating those entities.

EXTERNAL Identifies external or dummy procedure.

IMPLICIT Changes or defines default implicit type of names.

INTRINSIC Identifies intrinsic function or system subroutine.

NAMELIST Associates a group of variables or array names with a unique group
name.

PARAMETER Gives a constant a symbolic name.

POINTER Establishes pairs of variables and pointers.

PROGRAM Defines a symbolic name for the main program.

RECORD Creates a record in the format specified by a previously declared
STRUCTURE statement.

SAVE Retains the values of variables and arrays after execution of a RETURN
or END statement in a subprogram.

STRUCTURE Defines a record structure that can be referenced by one or more
RECORD statement.

VOLATILE Prevents the compiler from optimizing specified variables, arrays, and
common blocks of data.

AUTOMATIC, STATIC

63

Detailed descriptions of these statements follow in alphabetical order.

AUTOMATIC, STATIC

STATIC and AUTOMATIC statements control, within a called subprogram, the
allocation of storage to variables and the initial value of variables.

Syntax

{STATIC | AUTOMATIC} v [,v] …

where v is the name of a previously declared variable, array, array declarator, symbolic
constant, function, or dummy procedure.

Method of Operation

Table 4-1 summarizes the differences between static and automatic variables on entry and
exit from a subprogram.

AUTOMATIC variables have two advantages:

• The program executes more efficiently by taking less space and reducing execution
time.

• They permit recursion; a subprogram can call itself either directly or indirectly, and
the expected values are available on either a subsequent call or a return to the
subprogram.

Table 4-1 Static and Automatic Variables

AUTOMATIC STATIC

Entry Variables are unassigned.
They do not reflect any
changes caused by the
previous execution of the
subprogram.

Values of the variables in the
subprogram are unchanged
since the last execution of the
subprogram.

Exit The storage area associated
with the variable is deleted.

The current value of the
variable is retained in the
static storage area.

64

Chapter 4: Specification Statements

Rules for Use

• By default, unless you specify the –static command line option (described in the
f77(1) manual page and Chapter 1 of the MIPSpro Fortran 77 Programmer’s Guide), all
variables are AUTOMATIC except

– initialized variables

– common blocks

– variables used in EQUIVALENCE statements

• Override the command line option in effect for specific variables by specifying as
applicable the AUTOMATIC or STATIC keywords in the variable type statements,
as well as in the IMPLICIT statement.

• Any variable in EQUIVALENCE, DATA, or SAVE statements is STATIC regardless
of any previous AUTOMATIC specification.

Example

REAL length, anet, total(50)
STATIC length, anet, total
COMPLEX i, B(20), J(2,3,5)
STATIC i
IMPLICIT INTEGER(f,m-p)
IMPLICIT STATIC (f,m-p)

BLOCK DATA

BLOCK DATA is the first statement in a block data subprogram. It assigns initial values
to variables and array elements in named common blocks.

Syntax

BLOCK DATA [sub]

where sub is the symbolic name of the block data subprogram in which the BLOCK
DATA statement appears.

COMMON

65

Method of Operation

A block data subprogram is a non-executable program unit with a DATA statement as its
first statement, followed by a body of specification statements and terminated by an
END statement. The types of specification statements include COMMON, DATA,
DIMENSION, EQUIVALENCE, IMPLICIT, PARAMETER, SAVE, STRUCTURE
declarations, and type statements. A block data subprogram can also contain comment
lines.

Only entities in named common blocks or entities associated with an entity in a common
block can be initially defined in a block data subprogram.

Rules for Use

• The optional name sub is a global name and must be unique. Thus, BLOCK DATA
subprograms cannot have the same external name.

• An executable program can contain more than one block data subprogram but
cannot contain more than one unnamed block data subprogram.

• A single block data subprogram can initialize the entities of more than one named
common block.

COMMON

The COMMON statement declares variables and arrays so that they are put in a storage
area that is accessible to multiple program units, thus allowing program units to share
data without using arguments.

Syntax

COMMON [/[cb]/] nlist [[,]/[cb]/ nlist]...

where

cb is a common block name.

nlist is a list of variable names, array names, array declarators, or records.

66

Chapter 4: Specification Statements

Method of Operation

A storage sequence, composed of a series of storage units that are shared between
program units, is referred to as common storage. For each common block, a common block
storage sequence is formed consisting of the storage sequences of all entities in the list of
variables and arrays for that common block. The order of the storage sequence is the
same as its order of appearance in the list. In each COMMON statement, the entities
specified in the common block list nlist following a block name cb are declared to be in
common block cb.

In an executable program, all common blocks with the same name have the same first
storage unit. This establishes the association of data values between program units.

The storage sequence formed above is extended to include all storage units of any
storage sequence associated with it by equivalence association.

Fortran has the following types of common storage:

• Blank common storage does not have an identifying name and can be accessed by
all program units in which it is declared. One blank common area exists for the
complete executable program.

• Named common storage has an identifying name and is accessible by all program
units in which common storage with the same name is declared.

You can initially define entities in a named common block by using the DATA
initialization statement in a BLOCK DATA subprogram. However, you cannot use the
DATA statement to initialize entities in blank common block.

The number of storage units needed to store a common block is referred to as its size. This
number includes any extensions of the sequence resulting from equivalence association.
The size of a named common block must be the same in all program units in which it is
declared. The size of blank common block need not be the same size in all program units.

Rules for Use

• A variable name, array name, array declarator, or record can appear only once in all
common block lists within a program unit.

• Specify a blank common block by omitting the common block name cb for each list.
Thus, omitting the first common block name places entities appearing in the first
nlist in a blank common block.

COMMON

67

• Omitting the first cb makes the first two slashes optional. Two slashes without a
block name between them declare the entities in the following list to be in a blank
common block.

• Any common block name cb or an omitted cb for a blank common block can occur
more than once in one or more COMMON statements in a program unit. The list
following each appearance of the same common block name is treated as a
continuation of the list for that common block name.

• As an extension to the standard, a named common block can be declared as having
different sizes in different program units. If the common block is not initially
defined with a DATA statement, its size will be that of the longest common block
declared. However, if it is defined in one of the program units with DATA
statements, then its size is the size of the defined common block. In other words, to
work correctly, the named common block must be declared with the longest size
when it is defined, even though it can be declared with shorter sizes somewhere
else. Defining a common block multiple times produces incorrect results.

• The compiler aligns entities in a common block on 32-bit boundaries. You can
change this alignment using the compiler options –align8 and –align16. However,
these changes can degrade performance. The –align64 option might improve
performance. See the MIPSpro Fortran 77 Programmer’s Guide for more information.

Restrictions

• Names of dummy arguments of an external procedure in a subprogram must not
appear in a common block list.

• A variable name that is also a function name must not appear in the list.

Examples

The following equivalent statements define a blank common block. (Note that these two
COMMON statements cannot appear in the same program unit).

COMMON //F,X,B(5)

COMMON F,X,B(5)

This declaration

COMMON /LABEL/NAME,AGE,DRUG,DOSE//Y(33),

 Z,/RECORD/,DOC, 4 TIME(5), TYPE(8)

makes the following COMMON storage assignments:

68

Chapter 4: Specification Statements

• NAME, AGE, DRUG, and DOSE are placed in common block LABEL.

• Y and Z are placed in a blank common block.

• DOC, TIME, and TYPE are placed in a common block RECORD.

The following program contains two COMMON statements: one in the calling program
and one in the subroutine. Both define the same four entities in the COMMON even
though each common statement uses a unique set of names. The calling program can
access COMMON storage through the entities TOT, A, K, and XMEAN. Subroutine
ADD has access to the same common storage through the use of the entities PLUS, SUM,
M, and AVG.

c THIS PROGRAM READS VALUES AND PRINTS THE
c SUM AND AVERAGE
c
 COMMON TOT, A(20), K, XMEAN
 READ (5,10) K, (A(I), I = 1, K)
 CALL ADD
 WRITE (6,20) TOT, XMEAN
10 FORMAT (I5/F(10.0))
20 FORMAT (5X,5HSUM =,2X,F10.4/5X,
 + 12HMEAN VALUE =,2X,F10.4)
 STOP
c
c THIS SUBROUTINE CALCULATES THE SUM AND AVERAGE
c
 COMMON PLUS, SUM(20), M, AVG
 PLUS = SUM (1)
 DO 5 I = 2, M
5 PLUS = SUM (I) + PLUS
 AVG = PLUS / FLOAT (M)
 END

DATA

The DATA statement supplies initial values of variables, array elements, arrays, or
substrings.

DATA

69

Syntax

DATA nlist/clist/ [[,] nlist/clist/] …

where

nlist is a list of variable names, array names, array element names, substring
names or implied DO lists (described later in this chapter) separated by
commas.

clist clist is composed of one or more elements, separated by commas, of
either of the following forms:

c

r*c

where c is a constant or the symbolic name of a constant. r is a nonzero,
unsigned integer constant or the symbolic name of a positive integer
constant. The second form implies r successive appearances of the
constant c.

Method of Operation

In data initialization, the first value in clist is assigned to the first entity in nlist, the second
value in clist to the second entity in nlist, and so on. There is a one-to-one correspondence
between the items specified by nlist and the constants supplied in clist. Hence, each nlist
and its corresponding clist must contain the same number of items and must agree in
data type. If necessary, the clist constant is converted to the type or length of the nlist
entity exactly as for assignment statements.

If the length of the character entity in nlist is greater than the length of its corresponding
character constant in clist, then blank characters are added to the right of the character
constant. But if the length of the character entity in nlist is less than that of its
corresponding constant in clist, the extra right most characters in the constant are
ignored; only the left most characters are stored. Each character constant initializes only
one variable, array element, or substring.

As an enhancement to Fortran 77, you can define an arithmetic or logical entity initially
using a Hollerith constant for c in a clist, using the form

70

Chapter 4: Specification Statements

nHx1 x2 x3 … xn

where

n is the number of characters xn.

xi is the actual characters of the entity.

The value of n must be > g, where g is the number of character storage units for the
corresponding entity. If n < g, the entity is initially defined with the n Hollerith characters
extended on the right with g – n blank characters. The compiler generates a warning
message for data initializations of this type.

Rules for Use

• Each nlist and its corresponding clist must have the same number of items and must
correspond in type when either is LOGICAL or CHARACTER. If either is of
arithmetic type, then the other must be of arithmetic type.

• If an unsubscripted array name is specified in nlist, the corresponding clist must
contain one constant for each element of the array.

• If two entities are associated in common storage, only one can be initialized in a
DATA statement.

• Each subscript expression in nlist must be an integer constant expression, except for
implied-DO variables.

• Each substring expression in nlist must be an integer constant expression.

• A numeric value can be used to initialize a character variable or element. The length
of that character variable or array element must be one, and the value of the
numeric initializer must be in the range 0 through 255.

• An untyped hexadecimal, octal, or binary constant can be used to initialize a
variable or array element. If the number of bits defined by the constant is less than
the storage allocation for that variable or array element, then leading zeros are
assumed. If the number of bits exceed the number of bits of storage available for the
variable or array element, then the leading bits of the constant are truncated
accordingly.

• A Hollerith constant can be used to initialize a numeric variable or array element.
The rules for Hollerith assignment apply.

DATA

71

Restrictions

• The list nlist cannot contain names of dummy arguments, functions, and entities in
blank common, or those associated with entities in blank common.

• Do not initialize a variable, array element, or substring more than once in an
executable program. If you do, the subsequent initializations will override the
previous ones.

• If a common block is initialized by a DATA statement in a program unit, it cannot
be initialized in other program units.

Example

Given the following declarations,

 REAL A (4), b
 LOGICAL T
 COMPLEX C
 INTEGER P, K(3), R
 CHARACTER*5 TEST(4)
 PARAMETER (P=3)
 DATA A,B/0.,12,5.12E5,0.,6/, T/.TRUE./,
 + C/(7.2, 1.234)/,K/P*0/,
 + TEST/3*'MAYBE','DONE?'/

the DATA statement above defines the variables declared immediately preceding it as
follows:

A(1) = .0E+00 A(2) = .12E+02
A(3) = .512E+06 A(4) = .0E+00
B = 6
T = .TRUE.
C = (.72E+01, .1234+01)
K(1) = 0 K(2) = 0 K(3) = 0
TEST(1) = 'MAYBE' TEST(2) = 'MAYBE'
TEST(3) = 'MAYBE' TEST(4) = 'DONE?'

The following statements are examples of implied DO statements using DATA
statements:

DATA LIMIT /1000/, (A(I), I= 1,25)/25*0/
DATA ((A(I,J), J = 1,5), I = 1,10)/50*1.1/
DATA (X(I,I), I = 1,100) /100 * 1.1/
DATA ((A(I,J), J = 1,I), I =1,3)/11,21,22,31,32,33/

72

Chapter 4: Specification Statements

Data Type Statements

The data type statement explicitly defines the type of a constant, variable, array, external
function, statement function, or dummy procedure name. It can also specify dimensions
of arrays and the length of character data. The two kinds of data type statements are
numeric and character.

Numeric Data Types

Use numeric data types to

• override implicit typing

• explicitly define the type of a constant, variable, array, external function, statement
function, or dummy procedure name

• specify dimensions of arrays

Syntax
type v [*len] [/clist/] [, v[*len]/clist/]]

where

type is one of the keywords listed in Table 4-2.

v is a variable name, array name, array declarator, symbolic name of a
constant, function name, or dummy procedure name.

len is one of the acceptable lengths for the data type being declared; len is
one of the following: an unsigned, nonzero integer constant; a
positive-value integer constant expression enclosed in parentheses; or
an asterisk enclosed in parentheses (*). If the type being declared is an
array, len follows immediately after the array name.

clist is a list of values bounded by slashes; the value becomes the initial value
of the type being declared.

Data Type Statements

73

The following pairs of keywords are synonymous by default:

• BYTE and INTEGER*1

• INTEGER and INTEGER*4

• REAL and REAL*4

• DOUBLE PRECISION and REAL*8

• COMPLEX and COMPLEX*8

• DOUBLE COMPLEX and COMPLEX*16

• LOGICAL and LOGICAL*4

The –i2, –i8, –r8, and –d16 options can affect the previous list. Refer to the f77(1) manual
page for details. See Chapter 2 of the MIPSpro Fortran 77 Programmer’s Guide for
information on the alignment, size, and value ranges of these data types.

Table 4-2 Keywords for Type Statements

INTEGER DOUBLE PRECISION

INTEGER*1 COMPLEX

BYTE DOUBLE COMPLEX

INTEGER*2 COMPLEX*8

INTEGER*4 COMPLEX*16

INTEGER*8 COMPLEX*32

LOGICAL REAL

LOGICAL*1 REAL*4

LOGICAL*2 REAL*8

LOGICAL*4 REAL*16

LOGICAL*8

74

Chapter 4: Specification Statements

Method of Operation

The symbolic name of an entity in a type statement establishes the data type for that
name for all its subsequent appearances in the program unit in which it is declared.

The type specifies the data type of the corresponding entities. That is, the INTEGER
statement explicitly declares entities of type integer and overrides implicit typing of the
listed names. The REAL statement specifies real entities, the COMPLEX statement
specifies complex entities, and so on.

Rules for Use

• Type statements are optional and must appear in the beginning of a program unit.
However, type statements can be preceded by an IMPLICIT statement.

• Symbolic names, including those declared in type statements, have the scope of the
program unit in which they are included.

• A program unit can contain type statements that begin with identical keywords.

• Do not explicitly specify the type of a symbolic name more than once within a
program unit.

• Do not use the name of a main program, subroutine, or block data subprogram in a
type statement.

• The compiler provides a DOUBLE COMPLEX version of many functions,
including those in Table 4-3.

Table 4-3 Double Complex Functions

Name Purpose

DCMPLX Explicit type conversion

DCONJG Complex conjugate

DIMAG Imaginary part of complex argument

ZABS Complex absolute value

Data Type Statements

75

• The –i2 compiler option (see the f77(1) manual page or Chapter 2 of the MIPSpro
Fortran 77 Programmer’s Guide) causes the following:

– converts integer constants whose values are within the range allowed for the
INTEGER*2 data types to INTEGER*2

– converts the data type of variable returned by a function to INTEGER*2, where
possible

– ensures that variables of type LOGICAL occupy the same amount of storage as
INTEGER*2 variables

• The –i8 option is the same as –i2, except it converts variables to INTEGER*8 and
LOGICAL*8 as appropriate.

Examples

REAL length, anet, TOTAL(50)

INTEGER hour, sum(5:15), first, uvr(4,8,3)

LOGICAL bx(1:15,10), flag, stat

COMPLEX I, B(20), J(2,3,5)

The code above declares that

• length and anet are names of type real. The specification of anet confirms implicit
typing using the first letter of the name and could have been omitted in the REAL
statement.

• TOTAL is a real array.

• hour and first are integer names. uvr and sum are integer arrays and illustrate the
use of the type statement to specify the dimensions of an array. Note that when an
array is dimensioned in a type statement, a separate DIMENSION statement to
declare the array is not permitted.

• flag and stat are logical variables; bx is a logical array.

• I is a complex variable; B and J are complex arrays.

Character Data Types

Character data type statements declare the symbolic name of a constant, variable, array,
external function, statement function, or dummy procedure name and specify the length
of the character data.

76

Chapter 4: Specification Statements

Syntax

CHARACTER [*len [,]] nam [,nam] . . .

where

len is a length specification that gives the length, in number of characters, of
a character variable, character array element, character constant, or
character function. len is one of the following:

• an unsigned, nonzero integer constant

• a positive-value integer constant expression enclosed in
parentheses

• an asterisk enclosed in parentheses (*)

nam is one of the following:

v [*len] where v is a variable name, symbolic name of a constant,
function name, or dummy procedure name

a [(d)] [*len] where a(d) is an array declarator

Rules for Use

• The length specification len that follows the keyword CHARACTER denotes the
length of each entity in the statement without its own length specification.

• A length specification immediately following an entity applies only to that entity.
The length specified when an array is declared applies to each array element.

• If no length specification is given, a length of one is assumed.

• The length specifier of (*) can be used only for names of external functions, dummy
arguments of an external procedure, and character constants.

– For a character constant, the (*) denotes that the length of the constant is
determined by the length of the character expression given in the
PARAMETER statement.

– For a dummy argument of an external procedure, the (*) denotes that the length
of the dummy argument is the length of the actual argument when the
procedure is invoked. If the associated actual argument is an array name, the
length of the dummy argument is the length of an element of the actual array.

DIMENSION

77

– For an external function name, the (*) denotes that the length of the function
result value and the local variable with the same name as the function entry
name is the length that is specified in the program unit in which it is referenced.
Note that the function name must be the name of an entry to the function
subprogram containing this TYPE statement.

• If an actual len is declared for an external function in the referencing program unit
and in the function definition, len must agree with the length specified in the
subprogram that specifies the function. If not, then the function definition must use
the asterisk (*) as covered previously, but the actual len in the referencing unit must
not be (*).

• The length specified for a character statement function or statement function
dummy argument of type character must be an integer constant expression.

Example

CHARACTER name*40, gender*1, pay(12)*10

The above declaration defines

• name as a character variable with a length of 40

• gender as a character variable with a length of one

• pay as a character array with 12 elements, each of which is 10 characters in length

DIMENSION

The DIMENSION statement specifies the symbolic names and dimension specifications
of arrays.

Syntax

DIMENSION a(d) [,a(d)] ...

where a(d) is an array declarator.

To be compatible with PDP-11 Fortran, the VIRTUAL statement is synonymous with the
DIMENSION statement and carries the identical meaning.

78

Chapter 4: Specification Statements

Method of Operation

A symbolic name x appears in a DIMENSION statement causing an array x to be
declared in that program unit.

Rules for Use

• The dimension specification of an array can appear only once in a program unit.

• The name of an array declared in a DIMENSION statement can appear in a type
statement or a COMMON statement without dimensioning information.

Examples

The following DIMENSION statement declares z as an array of 25 elements, a as an
array of 36 elements (6 x 6), and ams as an array of 50 elements (2 x 5 x 5).

DIMENSION z(25), a(6,6), ams(2,5,5)

EQUIVALENCE

The EQUIVALENCE statement allows two or more entities in a program unit to share
storage units, thus associating those entities. This statement allows the same information
to be referenced by different names in the same program unit.

Syntax

EQUIVALENCE (nlist) [,(nlist)] ...

where nlist is a list of variable names, array element names, array names, and character
substring names.

Method of Operation

The storage sequences of the entities in the list must have the same first storage unit. This
requirement associates the entities in the list or other elements as well. The
EQUIVALENCE statement only associates storage units and does not cause type
conversion or imply mathematical equivalence. Thus, if a variable and an array are
equivalenced, the variable does not assume array properties and vice versa.

EQUIVALENCE

79

Character entities can be associated by equivalence only with other character entities.
Specify the character entities, character variables, character array names, character array
element names, or character substring names. Association is made between the first
storage units occupied by the entities appearing in the equivalence list of an
EQUIVALENCE statement. This statement can associate entities of other character
elements as well. The lengths of the equivalenced character entities are not required to be
equal.

Variables and arrays can be associated with entities in common storage to lengthen the
common block. However, association through the use of the EQUIVALENCE statement
must not cause common storage to be lengthened by adding storage units before the first
storage unit in the common block.

Rules for Use

• Each subscript expression or substring expression in an equivalence list must be an
integer constant expression.

• If an array element name is specified in an EQUIVALENCE statement, the number
of subscript expressions must be the same as the number of dimensions declared for
that array.

• An array name without a subscript is treated as an array element name that
identifies the first element of the array.

• Multidimensional array elements can be referred to in an EQUIVALENCE
statement with only one subscript. The compiler considers the array to be
one-dimensional according to the array element ordering of Fortran. Consider the
following example:

DIMENSION a(2,3), b(4:5,2:4)

The following shows a valid EQUIVALENCE statement using the arrays a and b:

EQUIVALENCE (a(1,1), b(4,2))

The following example achieves the same effect:

EQUIVALENCE (a(1), b(4))

The lower-bound values in the array declaration are always assumed for missing
subscripts (in the above example, 1 through 3 for array a and 2 through 4 for array
b).

80

Chapter 4: Specification Statements

Restrictions

• Names of dummy arguments of an external procedure in a subprogram cannot
appear in an equivalence list.

• A variable name that is also a function name cannot appear in the list.

• A storage unit can appear in no more than one EQUIVALENCE storage sequence.

• An EQUIVALENCE statement cannot specify non-consecutive storage positions for
consecutive storage units.

• An EQUIVALENCE statement cannot associate a storage unit in one common block
with any storage unit in a different common block.

Example 1

The two statements below are represented in storage as shown in Figure 4-1.

DIMENSION M(3,2),P(6)
EQUIVALENCE (M(2,1),P(1))

Figure 4-1 Storage Representation of an EQUIVALENCE Statement

M (3,2)M (2,2)M (1,2)M (3,1)M (2,1)M (1,1)

P (6)P (5)P (4)P (3)P (2)P (1)

EXTERNAL

81

Example 2

The two statements below cause the logical representation in storage shown in
Figure 4-2.

CHARACTER ABT*6, BYT(2)*4, CDT*3
EQUIVALENCE (ABT, BYT(1)),(CDT, BYT(2))

Figure 4-2 Logical Representation of an EQUIVALENCE Statement

Example 3

The following statements are invalid because they specify non-consecutive storage
positions for consecutive storage units.

REAL A(2)
DOUBLE PRECISION S(2)
EQUIVALENCE (A(1), S(1)), (A(2), S(2))

Note that a double-precision variable occupies two consecutive numeric storage units in
a storage sequence.

EXTERNAL

The EXTERNAL statement specifies a symbolic name to represent an external procedure
or a dummy procedure. The symbolic name can then be used as an actual argument in a
program unit.

Syntax

EXTERNAL proc [,proc] ...

where proc is the name of an external procedure or dummy procedure.

01 02 03 04 05 06

BYT(1) BYT(2)

ABT

CDT

07 08

82

Chapter 4: Specification Statements

Rules for Use

• An external procedure name or a dummy procedure name must appear in an
EXTERNAL statement in the program unit if the name is to be used as an actual
argument in that program unit.

• If an intrinsic function name appears in an EXTERNAL statement, indicating the
existence of an external procedure having that name, the intrinsic function is not
available for use in the same program unit in which the EXTERNAL statement
appears.

• A symbolic name can appear only once in all the EXTERNAL statements of a
program unit.

Restriction

Do not specify a statement function name in an EXTERNAL statement.

Example

Consider the following statements:

EXTERNAL G
CALL SUB1 (X,Y,G)

and the corresponding subprogram:

SUBROUTINE SUB1 (RES, ARG, F)
RES = F(ARG)
END

The dummy argument F in subroutine SUB1 is the name of another subprogram; in this
case, the external function G.

IMPLICIT

The IMPLICIT statement changes or defines default-implicit types of names. This
section explains the three syntactic forms of the IMPLICIT statement.

IMPLICIT

83

Syntax 1

IMPLICIT typ (a[,a]...) [,typ(a[,a]...)]...

where

typ is a valid data type.

a is either a single alphabetic character or a range of letters in alphabetical
order. A range of letters is specified as l1 – l2, where l1 and l2 are the first
and last letters of the range, respectively.

An IMPLICIT statement specifies a type for all variables, arrays, external functions, and
statement functions for which no type is explicitly specified by a type statement. If a
name has not appeared in a type statement, then its type is implicitly determined by the
first character of its name. The IMPLICIT statement establishes which data type (and
length) will be used for the indicated characters.

By default, names beginning with the alphabetic characters A through H or O through Z
are implicitly typed REAL; names beginning with I, J, K, L, M, or N are implicitly typed
INTEGER. Use the IMPLICIT statement to change the type associated with any
individual letter or range of letters.

An IMPLICIT statement applies only to the program unit that contains it and is
overridden by a type statement or a FUNCTION statement in the same subprogram.

Syntax 2

IMPLICIT {AUTOMATIC | STATIC} (a[,a]...)
 [,typ (a[,a]...)]

An AUTOMATIC or STATIC keyword in an IMPLICIT statement causes all associated
variables to be assigned automatic or static storage characteristics. See the description of
the AUTOMATIC and STATIC statements earlier in this chapter for information on their
function. An example using these keywords is also given.

Syntax 3

IMPLICIT {UNDEFINED | NONE}

Note: UNDEFINED and NONE are synonymous and, therefore, perform the same
function.

84

Chapter 4: Specification Statements

When a type is not declared explicitly for a variable, the implicit data typing rules cause
a default type of INTEGER to apply if the first letter of the variable is i, j, k, l, m, or n or
REAL if the first letter is any other alphabetic character.

Use the IMPLICIT UNDEFINED statement, IMPLICIT NONE statement, or the –u
command line option to turn off the implicit data typing.

Using Syntax 3 of the IMPLICIT statement within a program allows you to override the
default assignments given to individual characters; the –u command line option (see
Chapter 1 of the MIPSpro Fortran 77 Programmer’s Guide) overrides the default
assignments for all alphabetic characters.

The following declaration

IMPLICIT UNDEFINED

turns off the implicit data typing rules for all variables. The example has the same effect
as specifying the –u command line option.

Rules for Use

The following rules are for all three syntactic forms of the IMPLICIT statement.

• IMPLICIT statements must precede all other specification statements except
PARAMETER statements.

• Multiple IMPLICIT statements are allowed in a program unit.

• IMPLICIT statements cannot be used to change the type of a letter more than once
inside a program unit. Because letters can be part of a range of letters as well as
stand alone, ranges of letters cannot overlap.

• Lowercase and uppercase alphabetic characters are not distinguished. Implicit type
is established for both the lower- and uppercase alphabetic characters or range of
alphabetic characters regardless of the case of l1 and l2.

• The –u command line option turns off all default data typing and any data typing
explicitly specified by an IMPLICIT statement.

INTRINSIC

85

Examples

Consider the following example:

IMPLICIT NONE
IMPLICIT INTEGER (F,M-P)
IMPLICIT STATIC (F,M-P)
IMPLICIT REAL (B,D)
INTEGER bin, dale

The previous statements declare that

• All variables with names beginning with the letters F(f), M(m), N(n), O(o), or P(p)
are of type INTEGER and are assigned the STATIC attribute.

• All variables with names beginning with the letter B(b) or D(d) are of type REAL,
except for variables bin and dale, which are explicitly defined as type INTEGER.

The following four IMPLICIT statements are equivalent:

IMPLICIT CHARACTER (g - k)
IMPLICIT CHARACTER (g - K)
IMPLICIT CHARACTER (G - k)
IMPLICIT CHARACTER (G - K)

INTRINSIC

INTRINSIC statements associate symbolic names with intrinsic functions and system
subroutines. The name of an intrinsic function can be used as an actual argument.

Syntax

INTRINSIC func [,func] ...

where func is a name of intrinsic functions.

86

Chapter 4: Specification Statements

Rules for Use

• The name of every intrinsic function or system subroutine used as an actual
argument must appear in an INTRINSIC statement in that program unit (see
“Generic and Specific Names” on page 258).

• A symbolic name can appear only once in all of the INTRINSIC statements of a
program unit.

Restrictions

• The same name cannot appear in both an INTRINSIC and an EXTERNAL
statement in the same program unit.

• The same name can appear only once in all the INTRINSIC statements of a
program unit.

• The names of intrinsic functions that perform type conversion, test lexical
relationship, or choose smallest/largest value cannot be passed as actual
arguments. These functions include the conversion, maximum-value, and
minimum-value functions listed in Appendix A, “Intrinsic Functions.”

Examples

Consider the following statements:

INTRINSIC ABS
CALL ORD (ABS, ASQ, BSQ)

and the corresponding subprogram:

SUBROUTINE ORD(FN,A,B)
A = FN (B)
RETURN
END

In the above example, the INTRINSIC statement allows the name of the intrinsic
function ABS (for obtaining the absolute value) to be passed to subprogram ORD.

NAMELIST

The NAMELIST statement associates a group of variables or array names with a unique
group-name in a namelist-directed I/O statement.

PARAMETER

87

Syntax

NAMELIST /group-name/namelist[,] /group-name/ namelist...

where group-name is the name to be associated with the variables or array names defined
in namelist. Each item in namelist must be separated by a comma.

Rules for Use

• The items in namelist are read or written in the order they are specified in the list.

• The items can be of any data type, which can be specified either explicitly or
implicitly.

• The following items are not permitted in namelist:

– dummy arguments

– array elements

– character substrings

– records

– record fields

See also the description of the READ and WRITE statements in Chapter 8,
“Input/Output Statements,” for more information on namelist-directed I/O.

Examples

In the following statement, input, when specified to a namelist-directed I/O statement,
refers to item and quantity; likewise, output refers to item and total:

NAMELIST /input/ item, quantity /output/ item, total

PARAMETER

The PARAMETER statement assigns a symbolic name to a constant.

Syntax

Format 1

PARAMETER (p=e [,p=e] ...)

88

Chapter 4: Specification Statements

Format 2

PARAMETER p=e [,p=e] ...

where

p is a symbolic name.

e is a constant, constant expression, or the symbolic name of a constant.

Method of Operation

The value of the constant expression e is given the symbolic name p. The statement
defines p as the symbolic name of the constant. The value of the constant is the value of
the expression e after conversion to the type name p. The conversion, if any, follows the
rules for assignment statements.

Format 1, which has bounding parentheses, causes the symbolic name to be typed either
of the following ways:

• According to a previous explicit type statement.

• If no explicit type statement exists, the name is typed according to its initial letter
and the implicit rules in effect. See the description of the IMPLICIT statement in
“IMPLICIT” on page 82 for details.

Format 2, which has no bounding parentheses, causes the symbolic name to be typed by
the form of the actual constant that it represents. The initial letter of the name and the
implicit rules do not affect the data type.

A symbolic name in a PARAMETER statement has the scope of the program unit in
which it was declared.

Rules for Use

• If the type of p is arithmetic, including INTEGER, REAL, DOUBLE PRECISION,
or COMPLEX, e must be an arithmetic constant expression.

• If p is of type CHARACTER or LOGICAL, e must be a character constant
expression or a logical constant expression, respectively.

• If a named constant is used in the constant expression e, it must be previously
defined in the same PARAMETER or a preceding PARAMETER statement in the
same program unit.

PARAMETER

89

• A symbolic name of a constant must be defined only once in a PARAMETER
statement within a program unit.

• The data type of a named constant must be specified by a type statement or
IMPLICIT statement before its first appearance in a PARAMETER statement if a
default implied type is not to be assumed for that symbolic name.

• Character symbolic named constants must be specified as type character in a
CHARACTER statement, or the first letter of the name must appear in an
IMPLICIT statement with the type CHARACTER. Specification must be made
before the definition of the name in the PARAMETER statement.

• Once a symbolic name is defined, it can be used as a primary in any subsequent
expressions or DATA statements in that program unit.

• The functions IAND, IOR, NOT, IEOR, ISHFT, LGE, LGT, LLE, and LLT with
constant operands can be specified in a logical expression.

• The function CHAR with a constant operand can be specified in a character
expression.

• All predefined numeric functions with constant operands can be specified in
arithmetic expressions.

• Symbolic names cannot specify the character count for Hollerith constants.

• Symbolic constants can appear in a FORMAT statement only within the context of a
general expression bounded by angle brackets (<>).

• Symbolic constants cannot appear as part of another constant except when forming
the real or imaginary part of a complex constant.

Restrictions

A constant and a symbolic name for a constant are generally not interchangeable. For
example, a symbolic name of an integer constant cannot be used as a length specification
in a CHARACTER type statement without enclosing parentheses. For instance,
CHARACTER*(I) is valid, but CHARACTER*I is not.

However, a symbolic name of a constant can be used to form part of another constant,
such as a complex constant, by using an intrinsic function as shown below:

COMPLEX c
REAL r
PARAMETER (r = 2.0)
PARAMETER (c = cmplx(1.0,r))

90

Chapter 4: Specification Statements

Examples

The following statements declare that 1 is converted to 1E0, making X the name of a
REAL constant:

REAL X
PARAMETER (X = 1)

The following example converts 3.14 to 3, making I the name of an INTEGER constant:

INTEGER I
PARAMETER (I = 3.14)

The following example assigns the constant value of .087769 to interest_rate:

REAL*4 interest_rate
PARAMETER (interest_rate = .087769)

The same result could be achieved using Format 2 as follows:

PARAMETER interest_rate = .087769

The following example assigns the constant value of the square root of 2 to VAL:

PARAMETER VAL = SQRT(2.0)

POINTER

The POINTER statement establishes pairs of variables and pointers where each pointer
contains the address of its paired variable.

Syntax

POINTER (p1,v1) [,(p2,v2) ...]

where

v1 and v2 are pointer-based variables.

p1 and p2 are the corresponding pointers. The pointer integers are automatically
typed that way by the compiler. The pointer-based variables can be of
any type, including structures. Even if there is a size specification in the
type statement, no storage is allocated when such a pointer-based
variable is defined.

POINTER

91

Rules for Use

• Once you have defined a variable as based on a pointer, you must assign an address
to that pointer. Reference the pointer-based variable with standard Fortran, and the
compiler does the referencing by the pointer. (Whenever your program references a
pointer-based variable, that variable’s address is taken from the associated pointer.)
Provide an address of a variable of the appropriate type and size.

• You must provide a memory area of the right size, and assign the address to a
pointer, usually with the normal assignment statement or data statement, because
no storage is allocated when a pointer-based variable is defined.

Restrictions

• A pointer-based variable cannot be used as a dummy argument or in COMMON,
EQUIVALENCE, DATA, or NAMELIST statements. (However, a pointer can be
named as a dummy argument or in a COMMON or EQUIVALENCE statement.)

• A pointer-based variable cannot itself be a pointer.

• The dimension expressions for pointer-based variables must be constant
expressions in main programs. In subroutines and functions, the same rules apply
for pointer-based variables as for dummy arguments. The expression can contain
dummy arguments and variables in COMMON statements. Any variable in the
expressions must be defined with an integer value at the time the subroutine or
function is called.

Example

pointer (ptr,v), (ptr2, v2)
character a*12, v*12, z*1, v2*12
data a/'abcdefghijkl'/
common /ptrs2/ptr,ptr2

c establish a(1:12) as the contents of v
ptr = %loc (a)

c establish a(4:15) as the contents of v
ptr = ptr +3

c allocate and initialize space for v2
ptr2 = malloc (12)
v2 = a

c use v via common
call sub1()

c use v2 via dummy argument
call sub2(ptr2)

c release alocated v2 space

92

Chapter 4: Specification Statements

call free (ptr2)
end

c access a pointer variable via common
subroutine sub1()
character v*12,v2*12
pointer (ptr,v), (ptr2, v2)
common /ptrs2/ptr,ptr2
print *,'v:',v
return
end

c access a pointer variable via an argument
subroutine sub2(p)
pointer(p,str)
char str*12
print *,'based:',str
return
end

PROGRAM

The PROGRAM statement defines a symbolic name for the main program.

Syntax

PROGRAM pgm

where pgm is a symbolic name of the main program, which cannot be the name of an
external procedure, block data subprogram, or common block or a local name in the same
program unit.

Rules for Use

• The PROGRAM statement is optional. However, it must be the first statement in
the main program when used.

• The symbolic name must be unique for that executable program. It must not be the
name of any entity within the main program or any subprogram, entry, or common
block.

RECORD

93

RECORD

The RECORD statement creates a record in the format specified by a previously declared
STRUCTURE statement. The effect of a RECORD statement is comparable to that of an
ordinary type declaration.

Syntax

RECORD /structure-name/record-name[,record-name]

 [,record-name]…[/structure-name/

record-name[,record-name][,record-name]…] …

where

structure-name is the name of a previously declared structure (see the description of the
STRUCTURE statement in “STRUCTURE / UNION” on page 96).

record-name is a variable, an array, or an array declarator.

Method of Operation

The record-name can be used in COMMON and DIMENSION statements but not in
DATA, EQUIVALENCE, NAMELIST, or SAVE statements. Records created by the
RECORD statement are initially undefined unless the values are defined in the related
structure declaration.

Examples

In the following statements, the record latest has the format specified by the structure
weather; past is an array of 1,000 records, each record having the format of the structure
weather.

STRUCTURE /weather/
 INTEGER month, day, year
 CHARACTER*40 clouds
 REAL rainfall
END STRUCTURE
RECORD /weather/ latest, past (1000)

94

Chapter 4: Specification Statements

Individual items in the structure can be referenced using record-name and the name of the
structure item. For example

past(n).rainfall = latest.rainfall

where n represents a number from 1 to 1,000 specifying the target array element. See the
description of the STRUCTURE statement in this chapter for an example of how to
declare a structure format.

SAVE

The SAVE statement retains the values of variables and arrays after execution of a
RETURN or END statement in a subprogram. Therefore, those entities remain defined
for subsequent invocations of the subprogram.

Syntax

SAVE [a[,a]…]

where a is one of the following:

• a variable or array name

• a common block name, preceded and followed by slashes

Method of Operation

The SAVE statement prevents named variables, arrays, and common blocks from
becoming undefined after the execution of a RETURN or END statement in a
subprogram. Normally, all variables and arrays become undefined on exit from a
subprogram, except when they are

• specified by a SAVE statement

• defined in a DATA statement

• used in an EQUIVALENCE statement

• contained in a blank common

• contained in a named common that is declared in the subprogram and in a calling
program unit in SAVE statements

SAVE

95

All variables and arrays declared in the main program maintain their definition status
throughout the execution of the program. If a local variable or array is not in a common
block and is specified in a SAVE statement, it has the same value when the next reference
is made to the subprogram.

All common blocks are treated as if they had been named in a SAVE statement. All data
in any common block is retained on exit from a subprogram.

Note: Default SAVE status for common blocks is an enhancement to Fortran 77. In
Fortran 77, a common block named without a corresponding SAVE statement causes the
variables and arrays in the named common block to lose their definition status on exit
from the subprogram.

Rules for Use

• A SAVE statement without a list is treated as though all allowable entities from that
program unit were specified on the list.

• The main program can contain a SAVE statement, but it has no effect.

• A given symbolic name can appear in only one SAVE statement in a program unit.

Restrictions

Procedure names and dummy arguments cannot appear in a SAVE statement. The
names of individual entries in a common block are not permitted in a SAVE statement.

Examples

The following statements are examples of SAVE statements:

SAVE L, V
SAVE /DBASE/

96

Chapter 4: Specification Statements

STRUCTURE / UNION

The STRUCTURE statement defines a record structure that can be referenced by one or
more RECORD statement.

Syntax (General)

STRUCTURE [/structure-name/] [field-names]
 [field-definition]
 [field-definition] ...
END STRUCTURE

where

structure-name identifies the structure in a subsequent RECORD statement.
Substructures can be established within a structure by means of either a
nested STRUCTURE declaration or a RECORD statement.

field-names (for substructure declarations only) one or more names having the
structure of the substructure being defined.

field-definition can be one or more of the following:

• Typed data declarations, which can optionally include one or more
data initialization values.

• Substructure declarations (defined by either RECORD statements
or subsequent STRUCTURE statements).

• UNION declarations, which are mapped fields defined by a block
of statements. The UNION declaration syntax is described below.

• PARAMETER statements, which do not affect the form of the
structure.

UNION Declaration Syntax

A UNION declaration is enclosed between UNION and END UNION statements,
which contain two more map declarations. Each map declaration is enclosed between
MAP and END MAP statements.

STRUCTURE / UNION

97

UNION
 MAP
 [field-definition] [field-definition] ...
 END MAP
 MAP
 [field-definition] [field-definition] ...
 END MAP
 [MAP
 [field-definition] [field-definition] ...
 END MAP] …
 END UNION

Method of Operation

• Typed data declarations (variables or arrays) in structure declarations have the form
of normal Fortran typed data declarations. Data items with different types can be
freely intermixed within a structure declaration.

• Unnamed fields can be declared in a structure by specifying the pseudo name
%FILL in place of an actual field name. You can use this mechanism to generate
empty space in a record for purposes such as alignment.

• All mapped field declarations that are made within a UNION declaration share a
common location within the containing structure. When initializing the fields
within a UNION, the final initialization value assigned overlays any value
previously assigned to a field definition that shares that field.

Examples (General)

STRUCTURE /weather/
 INTEGER month, day, year
 CHARACTER*20 clouds
 REAL rainfall
END STRUCTURE
RECORD /weather/ latest

In the preceding example, the STRUCTURE statement produces the storage mapping,
shown in Figure 4-3, for the latest specification in the RECORD statement.

98

Chapter 4: Specification Statements

Figure 4-3 Logical Representation of a STRUCTURE Statement

The following gives an example of initializing the fields within a structure definition
block:

 program weather
 structure /weather/
 integer*1 month /08/, day /10/, year /89/
 character*20 clouds /' overcast'/
 real rainfall /3.12/
 end structure
 record /weather/ latest
 print *, latest.month, latest.day, latest.year,
 + latest.clouds, latest.rainfall

The above example prints the following:

8 10 89 overcast 3.120000

month

day

year

clouds

rainfall

0

4

8

12

32

VOLATILE

99

Examples (UNION)

 program writedate
 structure /start/
 union
 map
 character*2 month
 character*2 day
 character*2 year
 end map
 map
 character*6 date
 end map
 end union
 end structure
 record /start/ sdate
 sdate.month = '08'
 sdate.day = '10'
 sdate.year = '89'
 write (*, 10) sdate.date
10 format (a)
 stop
 end

In the above example, text is written to the standard I/O device as follows:

081089

VOLATILE

The VOLATILE statement prevents the compiler from optimizing specified variables,
arrays, and common blocks of data.

Syntax

VOLATILE volatile-items

where volatile-items is one or more names of variables, common blocks, or arrays, each
separated by a comma.

For more information on optimization, refer to the MIPSpro Compiling, Debugging, and
Performance Tuning Guide and the f77(1) manual page.

101

Chapter 5

5. Assignment and Data Statements

This chapter contains the following subsections:

• “Arithmetic Assignment Statements”

• “Logical Assignment Statements”

• “Character Assignment”

• “Aggregate Assignment”

• “ASSIGN”

• “Data Initialization”

• “Implied-DO Lists”

Assignment statements assign values to variables and array elements. Data statements
and implied-DO lists in data statements are used to initialize variables and array
elements.

The five types of Fortran assignment statements are

• arithmetic

• logical

• character

• aggregate

• statement label

This chapter explains how to use each of these statements. Each type is discussed in
detail in the following sections.

102

Chapter 5: Assignment and Data Statements

Arithmetic Assignment Statements

An arithmetic assignment statement assigns the value of an arithmetic expression to a
variable or array element of type INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
or DOUBLE COMPLEX. The form of an arithmetic statement is

v = e

where

v is the name of an INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, or DOUBLE COMPLEX type variable or array element.

e is an arithmetic expression.

When an arithmetic assignment statement is executed, the expression e is evaluated and
the value obtained replaces the value of the entity to the left of the equal sign.

The values v and e need not be of the same type; the value of the expression is converted
to the type of the variable or array element specified. Table 5-1 lists the type conversion
rules.

The following are examples of arithmetic assignment statements:

I = 4 Assign the value 4 to I.

J = 7 Assign the value 7 to J.

A = I*J+1 Assign the value 29 to A.

Table 5-1 Type Conversion Rules

Declaration Function Equivalent

INTEGER INT(e)

REAL REAL(e)

DOUBLE PRECISION DBLE(e)

COMPLEX CMPLX(e)

DOUBLE COMPLEX DCMPLX(e)

Arithmetic Assignment Statements

103

Table 5-2 gives the detailed conversion rules for arithmetic assignment statements. The
functions in the table’s second column are intrinsic functions described in Chapter 10,
“Statement Functions and Subprograms” and Appendix A, “Intrinsic Functions.”

Table 5-2 Conversion Rules for Assignment Statements

Variable or
Array
Element (v)

INTEGER or
LOGICAL
Expression (e)

REAL
Expression (e)

REAL *8
Expression (e)

REAL *16
Expression (e)

COMPLEX
Expression (e)

COMPLEX *16
Expression (e)

INTEGER or
LOGICAL

Assign e to v Truncate e to
integer and
assign to v

Truncate e to
integer and assign
to v

Truncate e to
integer and assign
to v

Truncate real
part of e to
integer and
assign to v

Truncate real
part of e to
integer and
assign to v

REAL Append
fraction (.0) to
e and assign to
v

Assign e to v Assign high-order
portion of e to v;
low-order portion
of e is rounded

Assign high-order
part of e to v;
low-order part is
rounded

Assign real part
of e to v;
imaginary part
of e not used

Assign
high-order part
of real part of e to
v; low-order
portion of real
part e is rounded

REAL *8 Append
fraction (.0) to
e and assign to
v

Assign e to
high-order
portion of v;
low-order
portion of v is
0

Assign e to v As above Assign e to
high-order
portion of v;
low-order
portion of v is 0

Assign real part
of e to v

REAL *16 As above As above As above As above As above As above

COMPLEX Append
fraction to e
and assign to
real part of v;
imaginary part
of v is 0.0

Assign e to
real part of v;
imaginary
part of v is 0.0

Assign high-order
portion of e to real
part of v; low-order
portion of e is
rounded;
imaginary part of v
is 0.0

Assign high-order
portion of e to real
part of v; low-order
part is rounded;
imaginary part of v
is 0.0

Assign e to v High-order
parts of real and
imaginary
components of e
are assigned to v;
low-order parts
are rounded

104

Chapter 5: Assignment and Data Statements

Logical Assignment Statements

The logical assignment statement assigns the value of a logical expression to a logical
variable or array element. It takes the form

v = e

where

v is the name of a logical variable or logical array element.

e is a logical expression.

When a logical assignment statement is executed, the value of the logical expression e is
evaluated and replaces the value of the logical entity to the left of the equal sign. The
value of the logical expression is either true or false.

COMPLEX
*16

Append
fraction to e
and assign to
v; imaginary
part of v is 0.0

Assign e to
high-order
portion of real
part of v;
imaginary
part of v is 0.0

Assign e to real
part of v;
imaginary part is
0.0

As above Assign e to
high-order parts
of v; low-order
parts of v are 0

Assign e to v

COMPLEX
*32

Append
fraction to e
and assign to
v; imaginary
part of v is 0.0

Assign e to
high-order
portion of real
part of v;
imaginary
part of v is 0.0

Assign e to real
part of v;
imaginary part is
0.0

As above Assign e to
high-order parts
of v; low-order
parts of v are 0

Assign e to v

Table 5-2 (continued) Conversion Rules for Assignment Statements

Variable or
Array
Element (v)

INTEGER or
LOGICAL
Expression (e)

REAL
Expression (e)

REAL *8
Expression (e)

REAL *16
Expression (e)

COMPLEX
Expression (e)

COMPLEX *16
Expression (e)

Character Assignment

105

Character Assignment

The character assignment statement assigns the value of a character expression to a
character variable, array element, or substring. The form of a character assignment
statement is

v = e

where

v is the name of a character variable, array element, or substring.

e is a character expression.

During the execution of a character string assignment statement, the character
expression is evaluated and the resultant value replaces the value of the character entity
to the left of the equal sign. None of the character positions being defined in v can be
referenced in the evaluation of the expression e.

The entity v and character expression e can have different lengths. If the length of v is
greater than the length of e, then the value of e is extended on the right with blank
characters to the length of v. If the length of e is greater than the length of v, then the value
of e is truncated on the right to the length of v.

The following is an example of character assignment:

CHARACTER U*5, V*5, W*7

U = 'HELLO'

V = 'THERE'

W(6:7) = V(4:5)

If an assignment is made to a character substring, only the specified character positions
are defined. The definition status of character positions not specified by the substring
remain unchanged.

Aggregate Assignment

An aggregate assignment statement assigns the value of each field of one aggregate to
the corresponding field of another aggregate. The aggregates must be declared with the
same structure. The form of an aggregate assignment statement is

106

Chapter 5: Assignment and Data Statements

v = e

where v and e are aggregate references declared with the same structure.

See the “Records” section and “Record and Field References” subsections in Chapter 2,
“Constants and Data Structures,” for more information.

ASSIGN

The ASSIGN statement assigns a statement label to an integer variable and is used in
conjunction with an assigned GOTO statement or an I/O statement. The form of a
statement label assignment statement is

ASSIGN s TO e

where

s is a statement label of an executable statement or a FORMAT statement
that appears in the same program unit as the ASSIGN statement.

e is an integer variable name.

A statement label assignment by the ASSIGN statement is the only way of defining a
variable with a statement label value. A variable defined with a statement label value
may be used only in an assigned GOTO statement or as a format identifier in an I/O
statement. The variable thus defined must not be referenced in any other way until it has
been reassigned with an arithmetic value.

An integer variable that has been assigned a statement label value can be redefined with
the same statement label, a different statement label, or an arithmetic integer variable.

Examples using the ASSIGN statement are shown below:

Example 1

ASSIGN 100 TO kbranch
 .
 .
 .
GO TO kbranch

Data Initialization

107

Example 2

ASSIGN 999 TO ifmt
999 FORMAT(f10.5)
 .
 .
 .
READ (*, ifmt) x
 .
 .
 .
WRITE (*, fmt = ifmt) z

Data Initialization

Variables, arrays, array elements, and substrings can be initially defined using the DATA
statement or an implied-DO list in a DATA statement. The BLOCK DATA subprogram
is a means of initializing variables and arrays in named common blocks and is discussed
in Chapter 4, “Specification Statements.”

Entities not initially defined or associated with an initialized entity are undefined at the
beginning of the execution of a program. Uninitialized entities must be defined before
they can be referenced in the program.

Implied-DO Lists

The implied-DO list initializes or assigns initial values to elements of an array.

Syntax

(dlist, i = e1, e2 [,e3])

where

dlist is a list of array element names and implied-DO lists.

i is a name of an integer variable, referred to as the implied-DO variable. It
is used as a control variable for the iteration count.

e1 is an integer constant expression specifying an initial value.

e2 is an integer constant expression specifying a limit value.

108

Chapter 5: Assignment and Data Statements

e3 is an integer constant expression specifying an increment value.

e1, e2, and e3 are as defined in DO statements.

Method of Operation

An iteration count and the values of the implied-DO variable are established from e1, e2,
and e3 exactly as for a DO loop, except that the iteration count must be positive.

When an implied-DO list appears in a DATA statement, the dlist items are specified once
for each iteration of the implied-DO list with the appropriate substitution of values for
any occurrence of the implied-DO variable. The appearance of an implied-DO variable
in an implied-DO has no effect on the definition status of that variable name elsewhere
in the program unit. For an example of an implied-DO list, see “DATA” on page 68 in
Chapter 4.

The range of an implied-DO list is dlist.

Rules

• The integer constant expressions used for e1, e2, and e3 can contain implied-DO
variables of other implied-DO lists.

• Any subscript expression in the list dlist must be an integer constant expression. The
integer constant expression can contain implied-DO variables of implied-DO lists
that have the subscript expression within their range.

109

Chapter 6

6. Control Statements

This chapter contains the following subsections:

• “CALL”

• “CONTINUE”

• “DO”

• “DO WHILE”

• “ELSE”

• “ELSE IF”

• “END”

• “END DO”

• “END IF”

• “GO TO (Unconditional)”

• “GO TO (Computed)”

• “GO TO (Assigned)”

• “IF (Arithmetic)”

• “IF (Branch Logical)”

• “IF (Test Conditional)”

• “PAUSE”

• “RETURN”

• “STOP”

110

Chapter 6: Control Statements

Control statements affect the normal sequence of execution in a program unit. They are
described in alphabetic order in this chapter and summarized below.

CALL References a subroutine program in a calling program unit.

CONTINUE Has no operational function; usually serves as the terminal statement of
a DO loop.

DO Specifies a controlled loop, called a DO loop, and establishes the control
variable, indexing parameters, and range of the loop.

DO WHILE Specifies a DO loop based on a test for true of a logical expression.

ELSE Used in conjunction with the block IF or ELSE IF statements.

ELSE IF Used optionally with the block IF statement.

END Indicates the end of a program unit.

END DO Defines the end of an indexed DO loop or a DO WHILE loop.

END IF Has no operational function; serves as a point of reference like a
CONTINUE statement in a DO loop.

GO TO (Unconditional)
 Transfers program control to the statement identified by the statement
label.

GO TO (Computed)
Transfers control to one of several statements specified, depending on
the value of an integer expression.

GO TO (Assigned)
Used in conjunction with an ASSIGN statement to transfer control to
the statement whose label was last assigned to a variable by an assign
statement.

IF (Arithmetic) Allows conditional branching.

IF (Branch logical)
Allows conditional statement execution.

IF (Test Conditional)
Allows conditional execution of blocks of code. The block IF can contain
ELSE IF statements for further conditional execution control. The block
IF ends with the END IF.

PAUSE Suspends an executing program.

CALL

111

RETURN Returns control to the referencing program unit. It can appear only in a
function or subroutine program.

STOP Terminates an executing program.

CALL

The CALL statement references a subroutine subprogram in a calling program unit.

Syntax

CALL sub[([a[,a]...])]

where

sub is the symbolic name of the subroutine.

a is an actual argument, an expression, array name, array elements, record
elements, record arrays, record array elements, Hollerith constants, or
an alternate return specifier of the form *s, where s is a statement label,
or &s, where s is a statement label.

Method of Operation

A CALL statement evaluates the actual arguments, association of the actual arguments
with the corresponding dummy arguments, and execution of the statements in the
subroutine. Return of control from the referenced subroutine completes the execution of
the CALL statement.

Rules for Use

• The actual arguments a form an argument list and must agree in order, number, and
type with the corresponding dummy arguments in the referenced subroutine.

• A subroutine that has been defined without an argument can be referenced by a
CALL statement of the following forms:

CALL sub

CALL sub()

• If a dummy procedure name is specified as a dummy argument in the referenced
subroutine, then the actual argument must be an external procedure name, a

112

Chapter 6: Control Statements

dummy procedure name, or one of the allowed specific intrinsic names. An intrinsic
name or an external procedure name used as an actual argument must appear in an
INTRINSIC or EXTERNAL statement, respectively.

• If an asterisk is specified as a dummy argument, an alternate return specifier must
be supplied in the corresponding position in the argument list of the CALL
statement.

• If a Hollerith constant is used as an actual argument in a CALL statement, the
corresponding dummy argument must not be a dummy array and must be of
arithmetic or logical data type. This rule is an exception to the first rule above.

• A subroutine can call itself directly or indirectly (recursion).

Note: Recursion is an extension to Fortran 77. Standard Fortran 77 does not allow a
subroutine to reference itself.

Example

In the following example, the main routine calls PAGEREAD, passing the parameters
LWORDCOUNT, PAGE, and NSWITCH. After execution of PAGEREAD, control
returns to the main program, which stops.

program MakeIndex
 character*50 page
 dimension page (100)
 nswitch = 0
111 lwordcount = inwords1*2
*
 call pageread (lwordcount,page,nswitch)
 stop
*
 subroutine pageread (lwordcount,page,nswitch)
 character*50 page
 dimension page (100)
 icount = 100
 .
 .
 .
 end
*

CONTINUE

113

CONTINUE

The CONTINUE statement has no operational function. It usually serves as the terminal
statement of a DO loop.

Syntax

CONTINUE

Method of Operation

When a CONTINUE statement that closes a DO loop is reached, control transfer
depends on the control variable in the DO loop. In this case, control will either go back
to the start of the DO loop, or flow through to the statement following the CONTINUE
statement. (See Item 3, “Loop Control Processing,” in “DO” on page 113 for full
information about control of DO loops.)

Example

In the following example, the DO loop is executed 100 times, and then the program
branches to statement 50 (not shown).

 iwordcount = 100
 do 25, i= 1,lwordcount
 read (2, 20, end=45) word
 20 format (A50)
 25 continue
 *
 goto 50

DO

The DO statement specifies a controlled loop, called a DO loop, and establishes the
control variable, indexing parameters, and range of the loop.

114

Chapter 6: Control Statements

Syntax

DO [s] [,]i = e1, e2 [, e3]

where

s is a statement label of the last executable statement in the range of the
DO loop. This statement is called the terminal statement of the DO loop.

s can be omitted. If s is omitted, the loop must be terminated with an
END DO statement. On completion of the loop, execution resumes
with the first statement following the END DO statement.

i is a name of an integer, real, or double-precision variable, called the DO
variable.

e1 is an integer, real, or double-precision expression that represents the
initial value given to the DO variable.

e2 is an integer, real, or double-precision expression that represents the
limit value for the DO variable.

e3 is an integer, real, or double-precision expression that represents the
increment value for the DO variable.

Method of Operation

The range of a DO loop consists of all executable statements following the statement, up
to and including the terminal statement of the DO loop. In a DO loop, the executable
statements that appear in the DO loop range are executed a number of times as
determined by the control parameters specified in the DO statement.

The execution of a DO loop involves the following steps:

1. Activating the DO loop. The DO loop is activated when the DO statement is
executed. The initial parameter m1, the terminal parameter m2, and the incremental
parameter m3 are established by evaluating the expressions e1, e2, and e3,
respectively. The expressions are converted to the type of the DO variable when the
data types are not the same. The DO variable becomes defined with the value of the
initial parameter m1. The increment m3 cannot have a value of zero and defaults to
the value 1 if e3 is omitted.

2. Computing the iteration count. The iteration count is established from the
following expression:

MAX(INT((m2 - m1 + m3)/m3), 0)

DO

115

The iteration count is zero in the following cases:

m1 > m2 and m3 > 0

m1 << m2 and m3 = 0

If the initial value (m1) of the DO exceeds the limit value (m2), as in

DO 10 I = 2,1

the DO loop will not be executed unless the –onetrip compiler option is in effect.
This option causes the body of a loop thus initialized to be executed once.

Ordinarily, the compiler-generated code skips any DO loops whose upper or lower
limit has already been reached. This action conforms with Fortran standards.

To make Fortran 77 compatible with Fortran 66, the compiler allows you to generate
code that performs a loop at least once, regardless of whether the upper or lower
limit has already been reached. This is accomplished by specifying the –onetrip
option as described in Chapter 1 of the MIPSpro Fortran 77 Programmer’s Guide. This
option is included for older programs written under the assumption that all loops
would be performed at least once.

3. Loop control processing. This step determines if further execution of the range of
the DO loop is required. Loop processing begins by testing the iteration count. If the
iteration count is positive, the first statement in the range of the DO loop is
executed. Normal execution proceeds until the terminal statement is processed.
This constitutes one iteration of the loop. Incrementing is then required, unless
execution of the terminal statement results in a transfer of control.

If the iteration count is zero, the DO loop becomes inactive. Execution continues
with the first executable statement following the terminal statement of the DO loop.
If several DO loops share the same terminal statement, incremental processing is
continued for the immediately containing DO loop.

4. Incremental processing. The value of the DO variable is incremented by the value
of the incremental parameter m3. The iteration count is then decreased by one, and
execution continues with loop control processing as described above.

A DO loop is either active or inactive. A DO loop is initially activated when its DO
statement is executed. Once active, a DO loop becomes inactive when one of the
following occurs:

• The iteration count is zero.

• A RETURN statement within the DO loop range is executed.

116

Chapter 6: Control Statements

• Control is transferred to a statement outside the range of the DO loop but in the
same program unit as the DO loop.

• A STOP statement is executed or the program is abnormally terminated.

Reference to a subprogram from within the range of the DO loop does not make the
DO loop inactive except when control is returned to a statement outside the range
of the DO loop.

When a DO loop becomes inactive, the DO variable of the DO loop retains its last
defined value.

Rules for Use

• You can nest DO loops but do not overlap them.

• If a DO statement appears within an IF block, ELSE IF block, or ELSE block, the
range of the DO loop must be contained within that block.

• If a block IF statement appears within the range of a DO loop, the corresponding
END IF statement must appear within the range of the DO loop.

• The same statement can serve as the terminal statement in two or more nested DO
loops.

Restrictions

• Do not use the following statements for the statement labeled s in the DO loop:

Unconditional GO TO END IF

Assigned GO TO RETURN

Arithmetic IF STOP

Block IF END

ELSE IF Another DO statement

ELSE

DO WHILE

117

• If the statement labeled s is a logical IF statement, it can contain any executable
statement in its statement body, except the following:

• Except by the incremental process covered above, the DO variable must not be
redefined during the execution of the range of the DO loop.

• A program must not transfer control into the range of a DO loop from outside the
DO loop. When this happens, the result is indeterminate.

• When the DO variable is a floating-point variable, especially if the loop increment
value e3 cannot be represented exactly in floating-point form, the number of times
the loop executes could be off by one due to floating-point arithmetic error.

Example

 DO 10, i = 1, 10
 D
 D
 D
 10 CONTINUE
 E

In the above example, the statements noted with a D following the DO statement are
executed sequentially ten times, then execution resumes at the statement E following
CONTINUE.

DO WHILE

The DO WHILE statement specifies a controlled loop, called a DO loop, based on a test
for true of a logical expression.

DO statement END IF

Block IF END

ELSE IF Another logical IF statement

ELSE

118

Chapter 6: Control Statements

Syntax

DO [s[,]] WHILE (e)

where

s is a statement label of the last executable statement in the range of the
DO loop. This statement is called the terminal statement of the DO loop.

e is a logical expression.

If s is omitted, the loop must be terminated with an END DO statement.

Method of Operation

The DO WHILE statement tests the specified expression prior to each iteration
(including the first iteration) of the statements within the loop. When the logical
expression e is found to be true, the body of the loop is executed. If the expression is false,
control is transferred to the statement following the loop.

If the label s does not exist, the DO WHILE loop must be terminated with an END DO
statement.

ELSE

Use the ELSE statement in conjunction with the block IF or ELSE IF statements.

Syntax

ELSE

Method of Operation

An ELSE block is the code that is executed when an ELSE statement is reached. An ELSE
block begins after the ELSE statement and ends before the END IF statement at the same
IF level as the ELSE statement. (For details about the term IF level, refer to “IF (Test
Conditional)” on page 126.) As well as containing simple, executable statements, an
ELSE block can be empty (contain no statements) or can contain embedded block IF
statements. Do not confuse the ELSE block with the ELSE statement.

ELSE IF

119

An ELSE statement is executed when the logical expressions in the corresponding block
IF and ELSE IF statements evaluate to false. An ELSE statement does not evaluate a
logical expression; the ELSE block is always executed if the ELSE statement is reached.
After the last statement in the ELSE block is executed (and provided it does not transfer
control), control flows to the END IF statement that closes that whole IF level.

Rules for Use

• Do not specify ELSE IF or ELSE statements inside an ELSE block at the same IF
level.

• The IF level of the ELSE statement must be greater than zero; that is, there must be a
preceding corresponding block IF statement.

Restrictions

• Enter an ELSE block only by executing the ELSE statement. Do not transfer control
into the ELSE block from the outside.

• If an ELSE statement has a statement label, the label cannot be referenced by any
statement.

Example

The following example shows an ELSE block.

 IF (R) THEN
 A = 0
 ELSE IF (Q) THEN
 A = 1
 ELSE
 A = -1
 END IF

ELSE IF

The ELSE IF statement is used optionally with the IF block statement.

120

Chapter 6: Control Statements

Syntax

ELSE IF (e) THEN

where e is a logical expression.

Method of Operation

Two terms need to be defined to explain the ELSE IF statement: ELSE IF block (defined
below) and IF level (defined in “IF (Branch Logical)” on page 126).

An ELSE IF block is the code that is executed when the logical expression of an ELSE IF
statement is true. An ELSE IF block begins after the ELSE IF statement and ends before
the next ELSE IF, ELSE, or END IF statement at the same IF level as the ELSE IF
statement. As well as containing simple, executable statements, an ELSE IF block can be
empty (contain no statements) or can contain embedded block IF statements. Do not
confuse the ELSE IF block with the ELSE IF statement.

When an ELSE IF statement is reached, the logical expression e is evaluated. If e is true,
execution continues with the first statement in the ELSE IF block. If the ELSE IF block is
empty, control is passed to the next END IF statement that has the same IF level as the
ELSE IF statement. If e is false, program control is transferred to the next ELSE IF, ELSE,
or END IF statement that has the same IF level as the ELSE IF statement.

After the last statement of the ELSE IF block is executed (and provided it does not
transfer control), control is automatically transferred to the next END IF statement at the
same IF level as the ELSE IF statement.

Rule for Use

The IF level of the ELSE IF statement must be greater than zero (there must be a
preceding corresponding block IF statement).

Restrictions

• Do not transfer control into an ELSE I block from outside the ELSE IF block.

• No statement can reference the statement label (if any) of an ELSE IF statement. The
only way to reach an ELSE IF statement is through its IF block statement.

END

121

Example

The following example shows an ELSE IF block.

 IF(R) THEN
 A = 0
 ELSE IF (Q) THEN
 A = 1
 END IF

END

The END statement designates the end of a program unit.

Syntax

END

Method of Operation

An END statement in a main program has the same effect as a STOP statement: it
terminates an executing program.

An END statement in a function or subroutine subprogram has the effect of a RETURN
statement: it returns control to the referencing program unit.

Rules for Use

• An END statement cannot be the last statement in every program unit.

• Do not continue an END statement.

END DO

The END DO statement defines the end of a indexed DO loop or a DO WHILE loop.

Syntax

END DO

122

Chapter 6: Control Statements

END IF

The END IF statement has no operational function. It serves as a point of reference like
a CONTINUE statement in a DO loop.

Syntax

END IF

Rules for Use

• Every block IF statement requires an END IF statement to close that IF level. (IF
level is described in “IF (Test Conditional)” on page 126).

• The IF level of an END IF statement must be greater than zero (there must be a
preceding corresponding IF block statement).

Example

See the example given with the description of the ELSE statement in “ELSE” on page 118.

GO TO (Unconditional)

The unconditional GO TO statement transfers program control to the statement
identified by the statement label.

Syntax

GO TO s

where s is a statement label of an executable statement appearing in the same program
unit as the unconditional GO TO.

Example

The following statement transfers program control to statement 358 and normal
sequential execution continues from there.

GO TO 358

GO TO (Computed)

123

GO TO (Computed)

The computed GO TO statement transfers control to one of several statements specified,
depending on the value of an integer expression.

Syntax

GO TO (s[,s]...)[,]i

where

s is a statement number of an executable statement appearing in the same
program unit as the computed GO TO.

i is an integer.

A noninteger expression can also be used for i. Non-integer expressions are converted to
integers (fractional portions are discarded) before being used to index the list of
statement labels.

Method of Operation

A computed GO TO statement evaluates the integer expression and then transfers
program control to the specified statement

In the computed GO TO statement with the following form

GO TO (s1, s2, ... ,sn),i

if i<1 or i>n, the program control continues with the next statement following the
computed GO TO statement; otherwise, program control is passed to the statement
labeled si. Thus, if the value of the integer expression is 1, control of the program is
transferred to the statement numbered s1 in the list; if the value of the expression is 2,
control is passed to the statement numbered s2 in the list, and so on.

Rule for Use

The same statement label can appear more than once in the same computed GO TO
statement.

124

Chapter 6: Control Statements

Example

In the following example, the fifth list item is chosen because KVAL + 1 = 5. Program
control is transferred to the statement labeled 350.

KVAL = 4

GO TO(100,200,300,300,350,9000)KVAL + 1

GO TO (Assigned)

Use the symbolic GO TO statement in conjunction with an ASSIGN statement to
transfer control to the statement whose label was last assigned to a variable by an
ASSIGN statement.

Syntax

GO TO i [[,] (s [,s]...)]

where i is an integer variable name and s is a statement label of an executable statement
appearing in the same program unit as the assigned GO TO statement.

Method of Operation

The variable i is defined with a statement label using the ASSIGN statement in the same
program unit as the assigned GO TO statement. When an assigned GO TO is executed,
control is passed to the statement identified by that statement label. Normal execution
then proceeds from that point.

Rules for Use

• The same statement label can appear more than once in the same assigned GO TO
statement.

• If a list in parentheses is present, the statement label assigned to i must be one of
those in the list.

Example

GO TO KJUMP,(100,500,72530)

The value of KJUMP must be one of the statement label values: 100, 500, or 72530.

IF (Arithmetic)

125

IF (Arithmetic)

The arithmetic IF statement allows conditional branching.

Syntax

IF (e) s1, s2, s3

where

e is an arithmetic expression of type integer, real, or double-precision but
not complex.

s1, s2, s3 are numbers of executable statements in the same program unit as the
arithmetic IF statement.

Method of Operation

In the execution of an arithmetic IF statement, the value of the arithmetic expression e is
evaluated. Control is then transferred to the statement numbered s1, s2, or s3 if the value
of the expression is less than zero, equal to zero, or greater than zero, respectively.
Normal program execution proceeds from that point.

Rules for Use

You can use the same statement number more than once in an arithmetic IF statement.

Example

Consider the following statement:

IF (A + B*(.5))500,1000,1500

If the expression A + B*(.5) is

• less than zero, control jumps to statement 500

• equal to zero, control jumps to statement 1000

• greater than zero, control jumps to statement 1500

126

Chapter 6: Control Statements

IF (Branch Logical)

The branch logical IF statement allows conditional statement execution.

Syntax

IF (e) st

where

e is a logical expression.

st is any executable statement except DO, block IF, ELSE IF, ELSE, END
IF, END, or another logical IF statement.

Method of Operation

A logical IF statement causes a Boolean evaluation of the logical expression. If the value
of the logical expression is true, statement st is executed. If the value of the expression is
false, execution continues with the next sequential statement following the logical IF
statement.

Note that a function reference in the expression is allowed but might affect entities in the
statement st.

Example

The following examples show branch logical IF statements.

IF(A .LE. B) A = 0.0

IF (M .LT. TOC) GOTO 1000

IF (J) CALL OUTSIDE(B,Z,F)

IF (Test Conditional)

The test conditional IF statement allows the conditional execution of blocks of code. The
block IF can contain ELSE and ELSE IF statements for further conditional execution
control. The block IF ends with the END IF statement.

IF (Test Conditional)

127

Syntax

IF (e) THEN

where e is a logical expression.

Method of Operation

An IF block is the code that is executed when the logical expression of a block IF
statement evaluates to true. An IF block begins after the block IF statement and ends
before the ELSE IF, ELSE, or END IF statement that corresponds to the block IF
statement. As well as containing simple, executable statements, an IF block can be empty
(contain no statements) or can contain embedded block IF statements. Do not confuse the
term IF-block with block IF.

Block IF statements and ELSE IF statements can be embedded, which can make figuring
out which statements are in which conditional blocks confusing. The IF level of a
statement determines which statements belong to which IF-THEN-ELSE block.
Fortunately, the IF level of a statement can be found systematically. The IF level of a
statement is

(n1 - n2)

where (starting the count at the beginning of the program unit): n1 is the number of block
IF statements up to and including s, and n2 is the number of END IF statements up to
but not including s.

The IF level of every block IF, ELSE IF, ELSE, and END IF statement must be positive
because those statements must be part of a block IF statement. The IF level of the END
statement of the program unit must be zero because all block IF statements must be
properly closed. The IF level of all other statements must either be zero (if they are
outside all IF blocks) or positive (if they are inside an I -block).

When a block IF statement is reached, the logical expression e is evaluated. If e is true,
execution continues with the first statement in the IF block. If the IF block is empty,
control is passed to the next END IF statement that has the same IF level as the block IF
statement. If e is false, program control is transferred to the next ELSE IF, ELSE, or END
IF statement that has the same IF level as the block IF statement.

After the last statement of the IF block is executed (and provided it does not transfer
control), control is automatically transferred to the next END IF statement at the same IF
level as the block IF statement.

128

Chapter 6: Control Statements

Restriction

Control cannot be transferred into an IF block from outside the IF block.

Example

The following example shows a test conditional IF block.

 IF(Q .LE. R) THEN
 PRINT ('Q IS LESS THAN OR EQUAL TO R')
 ELSE
 PRINT ('Q IS GREATER THAN R')
 END IF

PAUSE

The PAUSE statement suspends an executing program.

Syntax

PAUSE [n]

where n is a string of not more than five digits or a character constant.

Method of Operation

A PAUSE statement without an n specification suspends execution of a program and
issues the following message:

PAUSE statement executed
To resume execution, type go. Any other input
will terminate job.

A PAUSE statement with an n specification displays the specified character constant or
digits and issues the pause message. For example, the following statement:

PAUSE "Console Check"

results in the following message being displayed:

PAUSE Console Check statement executed
To resume execution, type go. Any other input
will terminate job.

RETURN

129

If execution is resumed, the execution proceeds as though a CONTINUE statement were
in effect.

At the time of program suspension, the optional digit string or character constant
becomes accessible to the system as program suspension status information.

RETURN

The RETURN statement returns control to the referencing program unit. It can appear
only in a function or subroutine subprogram.

Syntax

In a function subprogram

RETURN

In a subroutine subprogram

RETURN [e]

where e is an integer expression specifying an alternate return.

A noninteger expression can be used for e. Noninteger expressions are converted to
integer, and the fractional portions discarded, before control is returned to the alternate
return argument.

Method of Operation

A RETURN statement terminates the reference of a function or subroutine and transfers
control back to the currently referenced program unit. In a function subprogram, the
value of the function then becomes available to the referencing unit. In a subroutine,
return of control to the referencing program unit completes execution of the CALL
statement.

A RETURN statement terminates the association between the dummy arguments of the
external procedure and the current actual arguments.

In a subroutine subprogram, if e is not specified in a RETURN statement or if the value
of e is less than or greater than the number of asterisks in the SUBROUTINE or ENTRY

130

Chapter 6: Control Statements

statement specifying the currently referenced name, then control returns to the CALL
statement that initiated the subprogram. Otherwise, the value of e identifies the eth
asterisk in the dummy argument list of the currently referenced name. Control returns to
the statement identified by the alternate return specifier in the CALL statement that is
associated with the eth asterisk in the dummy argument list.

The execution of a RETURN statement causes all entities in an external procedure to
become undefined except for entities that are

• specified in a SAVE statement

• blank

• specified in a named common

• initialized in a DATA statement that has neither been redefined nor become
undefined

STOP

The STOP statement terminates an executing program.

Syntax

STOP [n]

where n is a string of not more than five digits or a character constant.

Method of Operation

The STOP statement terminates an executing program. If n is specified, the digit string
or character constant becomes accessible to the system as program termination status
information.

131

Chapter 7

7. Input/Output Processing

This chapter contains the following subsections:

• “Records”

• “I/O Statements”

• “Files”

• “Methods of File Access”

• “Units”

Input statements copy data from external media or from an internal file to internal
storage. This process is called reading. Output statements copy data from internal storage
to external media or to an internal file. This process is called writing.

The Fortran input/output (I/O) facilities give you control over the I/O system. This
section deals primarily with the programmer-related aspects of I/O processing, rather
than with the implementation of the processor-dependent I/O specifications.

See Chapter 1 of the MIPSpro Fortran 77 Programmer’s Guide for information on extensions
to Fortran 77 that affect I/O processing.

 Records

A record is simply a sequence of values or characters. Fortran has three kinds of records:

• formatted

• unformatted

• endfile

A record is a logical concept; it does not have to correspond to a particular physical
storage form. However, external media limitations can also limit the allowable length of
records.

132

Chapter 7: Input/Output Processing

Formatted Records

A formatted record contains only ASCII characters and is terminated by a carriage-return
or line-feed character. Formatted records are required only when the data must be read
from the screen or a printer copy.

A formatted record can be read from or written to only by formatted I/O statements.
Formatted records are measured in characters. The length is primarily a function of the
number of characters that were written into the record when it was created, but it may
be limited by the storage media or the CPU. A formatted record may be zero length.

Unformatted Records

Unformatted records contain sequences of values; both character and noncharacter are not
terminated by any special character and cannot be accurately comprehended in their
printed or displayed format. Generally, unformatted records use less space than
formatted records and thus conserve storage space.

An unformatted record can be read from or written to only by unformatted I/O
statements. Unformatted records are measured in bytes. That length is primarily a
function of the output list used to write the record but may be limited by the external
storage media or the CPU. An unformatted record can be empty.

Endfile Records

An endfile record marks the logical end of a data file. Thus, it can only be the last record of
a file. An endfile record does not contain data and has no length. An endfile record is
written by an ENDFILE statement.

When a program is compiled with –vms_endfile, an endfile record consists of a single
character, Control D. In this case, several endfile records can exist in the same file and can
be anywhere in the file. Reading an endfile record will result in an end-of-file condition
being returned, but rereading the same file will read the next record, if any.

I/O Statements

133

I/O Statements

The I/O statements that Fortran uses to transfer data can be categorized by how the data
translated during the transfer, namely, as formatted, list-directed, and unformatted I/O.

Unformatted Statements

An unformatted I/O statement transfers data in the noncharacter format during an I/O
operation. Unformatted I/O operations are usually faster than formatted operations,
which translate data into character format.

In processing formatted statements, the system interprets some characters, for example,
the line-feed character, as special controls and eliminates them from input records.
Therefore, unformatted statements must be used when all characters in a record are
required.

The absence of a format specifier denotes an unformatted data transfer statement, as
shown by the WRITE statement in the following example:

 program MakeIndex
 character*12 word

 open (2, file='v',form='formatted')
 open (unit=10, status='new', file='newv.out",
 + form='unformatted')
116 read (2,666, end=45) word
 write (10) word
 go to 116
45 close (10)
end

In the above example, formatted records are read into the variable word from the input
file attached to unit 2 and then written unformatted to the output file attached to unit 10.

134

Chapter 7: Input/Output Processing

Formatted Statements

A formatted I/O statement translates all data to character format during a record transfer.
The statement contains a format specifier that references a FORMAT statement; the
FORMAT statement contains descriptors that determine data translation and perform
other editing functions. Here is an example of two formatted WRITE statements:

 program makeindex
 character*18 message
 message = 'Hello world'
 write (6,100) message
 write (6,100) 'hello world'
100 format (a)
end

Note that both statements contain the format specifier 100, which references a format
statement with an A character descriptor. (Chapter 9, “Format Specification,” describes
the descriptors in detail.) Both statements perform the same function, namely, writing the
following message to the unit 6 device:

HELLO WORLD

List-Directed Statements

An I/O statement is list directed when an asterisk is used in place of a format specifier. A
list-directed I/O statement performs the same function as a formatted statement.
However, in translating data, a list-directed statement uses the declared data type rather
than format descriptors in determining the format.

The following two list-directed WRITE statements perform the same function as the
formatted WRITE statements in the example for formatted output above.

program makeindex
character*18 message
message = 'hello world'
write (6,*) message
write (6,*) 'hello world'
end

In this example, the variable message in the first WRITE statement determines that output
is in character format; the character constant Hello World in the second statement makes
this determination.

Files

135

Files

A file is a sequence of records. The processor determines the set of files that exists for each
executable program. The set of existing files can vary while the program executes. Files
that are known to the operating system do not necessarily exist for an executable
program at a given time. A file can exist and contain no records (all files are empty when
they are created). I/O statements can be applied only to files that exist.

Files that have names are called named files. Names are simply character strings.

Every data file has a position. The position is used by I/O statements to tell which record
to access and is changed when I/O statements are executed.

The terms used to describe the position of a file are

Initial point The point immediately before the first record.

Terminal point The point immediately after the last record.

Current record The record containing the point where the file is positioned. There is no
current record if the file is positioned at the initial point (before all
records) or at the terminal point (after all records) or between two
records.

Preceding record
The record immediately before the current record. If the file is positioned
between two records (so there is no current record), the preceding record
is the record before the file position. The preceding record is undefined
if the file is positioned in the first record or at the initial point.

Next record The record immediately after the current record. If the file is positioned
between two records (so there is no current record), the next record is the
record after the file position. The next record is undefined if the file
position is positioned in the last record or at the terminal point.

This section discusses the two kinds of files: internal files and external files.

External Files

An external file is a set of records on an external storage medium (for example, a disk or
a tape drive). A file can be empty, which means it can contain zero records.

136

Chapter 7: Input/Output Processing

Internal Files

An internal file is a means of transferring data within internal storage between character
variables, character arrays, character array elements, or substrings.

An internal file is always positioned at the beginning of the first record before data
transfer. Records are read from and written to by sequential access of formatted I/O
statements only.

The following simple example shows how to use an internal file transfer to convert
character and integer data.

program conversion
character*4 CharRep
integer NumericalRep
NumericalRep = 10

C example 1
C
 write (CharRep, 900) NumericalRep
900 format (i2)
 CharRep = '222'

C example 2
C
 read (CharRep, 999) NumericalRep
999 format (i3)
 end

In the first example, the contents of NumericalRep are converted to character format and
placed in CharRep. In the second example, the contents of CharRep are converted to
integer format and placed in NumericalRep.

Methods of File Access

The compiler supports the following methods of file acces:

• sequential

• direct

• keyed

Methods of File Access

137

External files can be accessed using any of the above methods. The access method is
determined when the file is opened or defined. Fortran 77 requires that internal files
must be accessed sequentially.

As an extension, the use of internal files in both formatted and unformatted I/O
operations is permitted.

Sequential Access

A file connected for sequential access has the following properties:

• For files that allow only sequential access, the order of the records is simply the
order in which they were written.

• For files that also allow direct access, the order of files depends on the record
number. If a file is written sequentially, the first record written is record number 1
for direct access, the second written is record number 2, and so on.

• Formatted and unformatted records cannot be mixed within a file.

• The last record of the file can be an endfile record.

• The records of a pure sequential file must not be read or written by direct-access
I/O statements.

Direct Access

A file connected for direct access has the following properties:

• A unique record number is associated with each record in a direct-access file. Record
numbers are positive integers that are attached when the record is written. Records
are ordered by their record numbers.

• Formatted and unformatted records cannot be mixed in a file.

• The file must not contain an endfile record if it is direct access only. If the file also
allows sequential access, an endfile record is permitted but will be ignored while
the file is connected for direct access.

138

Chapter 7: Input/Output Processing

• All records of the file have the same length. When the record length of a
direct-formatted file is one byte, the system treats the files as ordinary system files,
that is, as byte strings in which each byte is addressable. A READ or WRITE
request on such files consumes/produces bytes until satisfied, rather than
restricting itself to a single record. Note that to produce a record length of one byte,
the program must be compiled with the –old_rl option.

• Only direct-access I/O statements can be used for reading and writing records. An
exception is made when sequential I/O statements are used on a
direct-unformatted file, in which case the next record is assumed. List-directed
formatting is not permitted on direct-access files.

• Records can be read or written in any order.

• The record number cannot be changed once it is specified. A record can be
rewritten, but it cannot be deleted.

Keyed Access

A file connected for keyed access has the following properties:

• Only files having an indexed organization can be processed using the keyed-access
method.

• A unique character or integer value called a key is associated with one or more fields
in each record of the indexed access file. The fields are defined when the file is
created with an OPEN statement. Each READ statement contains a key to locate the
desired record in the indexed file.

• You can intermix keyed access and sequential access on the same opened file.

Units

Files are accessed through units. A unit is simply the logical means for accessing a file.
The file-unit relationship is strictly one to one: files cannot be connected to more than one
unit and vice versa. Each program has a processor-dependent set of existing units. A unit
has two states: connected and disconnected.

Units

139

Connection of a Unit

A connected unit refers to a data file. A unit can be connected implicitly by the processor
or explicitly by an OPEN statement. If a unit is connected to a file, the file is connected to
the unit. However, a file can be connected and not exist. Consider, for example, a unit
preconnected to a new file. A preconnected unit is already connected at the time the
program execution begins. See the section on preconnected files in Chapter 1 of the
MIPSpro Fortran 77 Programmer’s Guide for these default connections.

Disconnection of a Unit

A unit can be disconnected from a file by a CLOSE statement specifying that particular
unit.

141

Chapter 8

8. Input/Output Statements

This chapter contains the following subsections:

• “Statement Summary”

• “ACCEPT”

• “BACKSPACE”

• “CLOSE”

• “DECODE”

• “DEFINE FILE”

• “DELETE”

• “ENCODE”

• “ENDFILE”

• “FIND”

• “INQUIRE”

• “OPEN”

• “PRINT or TYPE”

• “READ (Direct Access)”

• “READ (Indexed)”

• “READ (Internal)”

• “READ (Sequential)”

• “REWIND”

• “REWRITE”

• “UNLOCK”

• “WRITE (Direct Access)”

• “WRITE (Indexed)”

142

Chapter 8: Input/Output Statements

• “WRITE (Internal)”

• “WRITE (Sequential)”

• “Control Information List - cilist”

• “Input/Output List - iolist”

• “Data Transfer Rules”

This chapter describes the statements that control the transfer of data within internal
storage and between internal and external storage devices. It provides an overview of the
Fortran I/O statements and gives syntax, rules, and examples for each.

This chapter also describes general rules that apply to data transfer statements.

Statement Summary

The I/O statements described in this chapter are grouped into the following classes:

• Data transfer statements, which transfer information between two areas of internal
storage or between internal storage and an external file. The seven types are

– READ

– DELETE

– UNLOCK

– ACCEPT

– WRITE

– REWRITE

– PRINT or TYPE

• Auxiliary statements, which explicitly open or close a file, provide current status
information about a file or unit or write an endfile record. The four types are

– OPEN

– CLOSE

– INQUIRE

– ENDFILE

ACCEPT

143

• File positioning statements, which position data files to the previous record or to the
initial point of a file. These statements apply only to external files. They are

– BACKSPACE

– REWIND

• Statements that provide compatibility with earlier versions of Fortran. They are
included to permit the older Fortran programs to be compiled and exist on the same
system as standard Fortran 77 programs. The statements include the following:

– ENCODE

– DECODE

– DEFINE FILE

– FIND

The following sections describe the statements in the above summary in detail.

ACCEPT

The ACCEPT statement transfers data from the standard input unit to the items specified
by the input list.

Syntax

ACCEPT f [,iolist]

where

 f is the format specifier

iolist is an optional output list specifying where the data is to be stored.

See “Control Information List - cilist” on page 183 and “Input/Output List - iolist” on
page 188 for a description of the f and iolist parameters.

Rules for Use

The ACCEPT statement specifies formatted input from the file associated with the
system input unit; it cannot be connected to a user-specified input unit.

144

Chapter 8: Input/Output Statements

See “Data Transfer Rules” on page 191 for additional rules.

Example

The following code transfers character data from the standard input unit into x.

 ACCEPT 3,x
 3 FORMAT (A)

BACKSPACE

The BACKSPACE statement positions a data file before the preceding record. It can be
used with both formatted and unformatted data files.

Syntax

BACKSPACE u

BACKSPACE (alist)

where

u is an external unit identifier.

alist is a list of the following specifiers:

Note: An error message is issued if this statement references a file opened with an
ACCESS="KEYED", ACCESS="APPEND", or a FORM="SYSTEM" specification.

[UNIT =] u is a required unit specifier. u must be an integer expression that
identifies the number of an external unit. If the keyword UNIT =
is omitted, then u must be the first specifier in alist.

IOSTAT = ios is an I/O status specifier that specifies the variable to be defined
with a status value by the BACKSPACE statement. A zero value
for ios denotes a no error condition, while a positive integer
value denotes an error condition.

ERR = s is an error specifier that identifies a statement number to which
control is transferred when an error condition occurs during the
execution of the BACKSPACE statement.

CLOSE

145

Method of Operation

The unit specifier is required and must appear exactly once. The other specifiers are
optional and can appear at most once each in the alist. Specifiers can appear in any order.
For information about exceptions refer to “Unit Specifier - UNIT” on page 184.

The BACKSPACE statement positions the file on the preceding record. If there is no
preceding record, the position of the file is unchanged. If the preceding record is an
endfile record, the file is positioned before the endfile record.

Examples

BACKSPACE M

BACKSPACE (6, IOSTAT=LP, ERR=998)

CLOSE

The CLOSE statement disconnects a particular file from a unit.

Syntax

CLOSE (cilist)

where cilist is a list of the following specifiers:

[UNIT =] u is a required unit specifier. u must be an integer expression that identifies
the number of an external unit. If the keyword UNIT= is omitted, then
u must be the first specifier in cilist.

IOSTAT=ios is an I/O status specifier that specifies the variable to be defined with a
status value by the CLOSE statement. A zero value for ios denotes a no
error condition while a positive integer value denotes an error
condition.

DISP[OSE]=disposition
Provides the same function as the like parameters in the OPEN
statement. The disposition parameters in the file’s CLOSE statement
override the disposition parameters in its OPEN statement.

ERR=s is an error specifier that identifies a statement number to which control
is to be transferred when an error condition occurs during execution of
the CLOSE statement.

146

Chapter 8: Input/Output Statements

STATUS='sta' is a file status specifier. sta is a character expression that, when any
trailing blanks are removed, has a value of KEEP or DELETE. The status
specifier determines the disposition of the file that is connected to the
specified unit.

KEEP specifies that the file is to be retained after the unit is closed.
DELETE specifies that the file is to be deleted after the unit is closed. If
a file has been opened for SCRATCH in an OPEN statement, then
KEEP must not be specified in the CLOSE statement. If iolist contains
no file status specifier, the default value is KEEP, except when the file
has been opened for SCRATCH, in which case the default is DELETE.

Method of Operation

At the normal termination of an executable program, all units that are connected are
closed. Each unit is closed with status KEEP unless the file has been opened for
SCRATCH in an OPEN statement. In the latter case, the unit is closed as if with file status
DELETE.

A CLOSE statement need not occur in the same program unit in which the file was
opened. A CLOSE statement that specifies a unit that does not exist or has no file
connected to it does not affect any file, and is permitted.

A unit that is disconnected by a CLOSE statement can be reconnected within the same
executable program, either to the same file or to a different file. A file that is disconnected
can be reconnected to the same unit or a different unit, provided that the file still exists.

Examples

CLOSE(UNIT=1,STATUS='KEEP')

CLOSE(UNIT=K,ERR=19,STATUS='DELETE')

DECODE

The DECODE statement transfers data between internal files, decoding the transferred
data from character format to internal format.

Note: This statement provides primarily the same function as the READ statement using
internal files, except that the input is read from a numeric scalar or array rather than a
character string. This release does not support the concept of multiple records, and you

DEFINE FILE

147

must specify the record length. Where possible, use a READ statement instead of
DECODE in new programs to make them compatible with different Fortran 77 operating
environments.

Syntax

DECODE (n,f,target[,ERR=s][,IOSTAT=rn]) [iolist]

where

n is an integer expression specifying the number of characters to be
translated to internal format.

f is a format specifier (as described in “Format Specifier - FMT” on
page 185 in this chapter).

target is a scalar reference or array indicating the destination of the characters
after translation to external form.

ERR=s See “Control Information List - cilist” on page 183 in this chapter for an
explanation of this parameter.

IOSTAT=rn See “Control Information List - cilist” on page 183 in this chapter for an
explanation of this parameter.

iolist is an optional list specifying the source data, as described in
“Input/Output List - iolist” on page 188 of this chapter.

Method of Operation

• The relationship between the I/O list and the format specifier is the same as for
formatted I/O.

• The maximum number of characters transmitted is the maximum number possible
for the target data type. If target is an array, the elements are processed in subscript
order.

DEFINE FILE

The DEFINE FILE statement defines the size and structure of a relative file and connects
it to a unit. It primarily provides the same function as the Fortran OPEN statement
specifying ACCESS='DIRECT'.

148

Chapter 8: Input/Output Statements

Syntax

DEFINE FILE u (reccount,reclen,U,asvar)[,u (reccount,reclen,U,asvar)] …

where

u is an integer expression that identifies the number of an external unit
that contains the file.

reccount is an integer expression defining the number of records in the file.

reclen is an integer expression specifying in word (two byte) units the length of
each record.

U specifies an unformatted (binary) file. U is always required and always
in the same position, as shown in the above syntax.

asvar is an associated integer variable indicating the next higher numbered
record to be read or written. It is updated after each direct-access I/O
operation.

Method of Operation

Only unformatted files can be opened with a DEFINE FILE statement. The file defined
by u is assumed to contain fixed-length records of recln (two byte) words each. The
records in the file are numbered 1 through reccount. The DEFINE FILE statement or
equivalent OPEN statement must be executed before executing a READ, WRITE, or
other direct-access statement. The first direct-access READ for the specified file opens an
existing file; if the file does not exist, an error condition occurs. The first direct-access
WRITE for the specified file opens the file and creates a new relative file.

DELETE

The DELETE statement removes a record from an indexed file. An error condition occurs
if the file is not indexed.

Syntax

DELETE [UNIT=]unum

or

DELETE ([UNIT=]unum[,IOSTAT=rn][,ERR=s]

ENCODE

149

where

[UNIT =] unum
is a required unit specifier or internal file to be acted on. unum must be
an integer expression that identifies the number of an external unit. If
the keyword UNIT= is omitted, then unum must be the first specifier.

IOSTAT=rn is the name of variable in which I/O completion status is posted.

ERR=s is a statement label to which control is transferred after an error.

See “Control Information List - cilist” on page 183 and “Input/Output List - iolist” on
page 188 for details on these parameters.

Method of Operation

The DELETE statement deletes the current record, which is the last record accessed on
unit unum.

Example

The following statement deletes the last record read in from the file connected to logical
unit 10.

DELETE (10)

ENCODE

The ENCODE statement transfers data between internal files, encoding the transferred
data from internal format to character format.

Note: This statement primarily provides the same function as the WRITE statement,
using internal files. Except that the input is read from a numeric scalar or array rather
than a character string, the concept of multiple records is not supported. The record
length is user specified. Where possible, use a WRITE statement instead of ENCODE in
new programs to make them compatible with different Fortran 77 operating
environments.

150

Chapter 8: Input/Output Statements

Syntax

ENCODE (n,f,target[,ERR=s][,IOSTAT=rn]) [iolist]

where

n is an integer expression specifying the number of characters to be
translated to character format.

f is a format specifier (as described in the “Format Specifier - FMT” on
page 185).

ERR=s See “Control Information List - cilist” on page 183 for an explanation of
this parameter.

IOSTAT=rn See “Control Information List - cilist” on page 183 for an explanation of
this parameter.

target is a scalar reference or array indicating the destination of the characters
after translation to external form.

iolist is an optional list specifying the source data, as described in
“Input/Output List - iolist” on page 188.

Method of Operation

The relationship between the I/O list and the format specifier is the same as for
formatted I/O. target is padded with blanks if fewer than n characters are transferred.
The maximum number of characters transmitted is the maximum number possible for
the target data type. If target is an array, the elements are processed in subscript order.

ENDFILE

The ENDFILE statement writes an endfile record as the next record of the file. It can be
used with both unformatted and formatted data files.

ENDFILE

151

Syntax

ENDFILE u

ENDFILE (alist)

where

u is an external unit identifier

alist is a list of the following specifiers:

[UNIT =]u is a required unit specifier. u must be an integer expression that identifies
the number of an external unit. If the keyword UNIT= is omitted, then
u must be the first specifier in alist.

IOSTAT=ios is an I/O status specifier that specifies the variable to be defined with a
status value by the ENDFILE statement. A zero value for ios denotes a
no error condition, while a positive integer value denotes an error
condition.

ERR=s is an error specifier that identifies a statement number to which control
is transferred when an error condition occurs during the execution of the
ENDFILE statement.

Note: An error message is issued if this statement references a keyed-access file.

Method of Operation

The unit specifier is required and must appear exactly once. The other specifiers are
optional and can appear at most once each in the alist. Specifiers can appear in any order
(for exceptions refer to “Unit Specifier - UNIT” on page 184).

An ENDFILE statement writes an endfile record. The specified file is then positioned
after the endfile record. If a file is connected for direct access, only those records before
the endfile record are considered to have been written and thus can be read in subsequent
direct-access connections to the file.

An ENDFILE statement for a file that is connected but does not exist creates the file.

After an ENDFILE statement, a BACKSPACE or REWIND statement must be used to
reposition the file before the execution of any data transfer I/O statement.

Note: If the program is compiled with the –vms_endfile option, the file can still be
written to after the endfile record.

152

Chapter 8: Input/Output Statements

Examples

The following statements are examples of ENDFILE statements.

ENDFILE 2

ENDFILE (2,IOSTAT=IE, ERR=1000)

FIND

The FIND statement positions a file to a specified record number and sets the associate
variable number (defined in an OPEN or DEFINE FILE statement) to reflect the new
position. It is functionally equivalent to a direct-access READ statement except that no
iolist is specified and no data transfer takes place. The statement opens the file if it is not
already open.

Syntax

FIND ([UNIT=]u,REC=rn[,ERR=s][,IOSTAT=rn])

where

u is an integer expression that identifies the number of an external unit
that contains the file. The number must refer to a relative file.

ERR=s, IOSTAT=rn, REC=rn
See “Control Information List - cilist” on page 183 for an explanation of
these parameters.

INQUIRE

The INQUIRE statement inquires about the properties of a particular named file or the
file connected to a particular unit. There are two forms: inquire by file and inquire by
unit.

INQUIRE

153

Syntax

INQUIRE (FILE=fname, [DEFAULTFILE=fname …,]inqlist)

INQUIRE ([UNIT=]u,inqlist)

where

FILE=fname is a file specifier. fname is a character expression that specifies the name
of the file being queried. The named file need not exist or be connected
to a unit.

DEFAULTFILE=fname
This parameter corresponds to the DEFAULTFILE parameter in an
OPEN statement and is used to inquire about a file assigned a default
name when it was opened. See “OPEN” on page 158 for details.

[UNIT=]u is a unit specifier. u must be an integer expression that identifies the
number of an external unit. The specified unit need not exist or be
connected to a file. If the keyword UNIT= is omitted, then u must be the
first specifier in inqlist.

inqlist is composed of one or more of the following specifiers, separated by
commas.

ACCESS=acc acc is a character variable or character array element to be assigned a
value by the INQUIRE statement. The value assigned describes the type
of file access as shown in Table 8-1.

Table 8-1 File Access Types

Value Assigned File Access

SEQUENTIAL Sequential

DIRECT Direct

KEYED Keyed

UNKNOWN No connection

154

Chapter 8: Input/Output Statements

BLANK=blnk blnk is a character variable or character array element to be assigned a
value by the INQUIRE statement. The value assigned describes the
blank specifier for the file as shown in Table 8-2.

CARRIAGECONTROL=ccspec
ccspec is assigned one of the following carriage control specifications
made in the OPEN statement for the file: FORTRAN, LIST, NONE, or
UNKNOWN.

DIRECT=dir dir is a character variable or character array element to be assigned a
value by the INQUIRE statement.

dir is assigned the value YES if DIRECT is a legal access method for the
file; it is assigned the value NO if DIRECT is not a legal access method.
If the processor is unable to determine the access type, dir is assigned
the value UNKNOWN.

ERR=s is an error specifier that identifies a statement number to which control
is transferred when an error condition occurs during the execution of the
INQUIRE statement.

EXIST=ex ex is a logical variable or logical array element to be assigned a value by
the INQUIRE statement. ex is assigned the value .TRUE. if the specified
unit or file exists; otherwise, ex is assigned the value .FALSE. . A unit
exists if it is a number in the range allowed by the processor.

Table 8-2 Blank Control Specifiers

Value of blnk Specifier

NULL Null blank control, connected for formatted I/O

ZERO Zero blank control

UNKNOWN Not connected or not connected for formatted I/O

INQUIRE

155

FORM=fm fm is a character variable or character array element to be assigned a
value by the INQUIRE statement. The value assigned is the form
specifier for the file as shown in Table 8-3.

FORMATTED=fmt
fmt is a character variable or character array element to be assigned a
value by the INQUIRE statement. fmt is assigned the value YES if
FORMATTED is a legal form for the file; fmt is assigned the value NO if
FORMATTED is not a legal form. If the processor is unable to determine
the legal forms of data transfer, fmt is assigned the value UNKNOWN.

IOSTAT=ios is an I/O status specifier that specifies the variable to be defined with a
status value by the INQUIRE statement. A zero value for ios denotes a
no error condition, while a positive integer value denotes an error
condition.

KEYED=keystat
keystat is a character scalar memory reference assigned a value as shown
in Table 8-4.

NAMED=nmd nmd is a logical variable or logical array element to be assigned a value
by the INQUIRE statement. nmd is assigned the value .TRUE. if the file
has a name. Otherwise, nmd is assigned the value .FALSE..

Table 8-3 Form Specifiers

Value for fm Specifier

FORMATTED Formatted I/O

UNFORMATTED Unformatted I/O

UNKNOWN Unit is not connected

Table 8-4 Keyed-Access Status Specifiers

keystat Meaning

YES Indexed file, keyed access allowed

NO Keyed access not allowed

UNKNOWN Access type undetermined

156

Chapter 8: Input/Output Statements

NAME=fn fn is a character variable or character array element to be assigned a
value by the INQUIRE statement. fn is assigned the name of the file if
the file has a name. Otherwise, fn is undefined. If the NAME specifier
appears in an INQUIRE by file statement, its value is not necessarily the
same as the name given in the file specifier.

NEXTREC=nr nr is an integer variable or integer array element to be assigned a value
by the INQUIRE statement. nr is assigned the value n + 1, where n is the
record number of the last record read or written for direct access on the
specified unit or file. If the file is connected but no records have been
read or written, nr is assigned the value 1. If the file is not connected for
direct access, nr is assigned the value 0.

NUMBER=num num is an integer variable or integer array element that is assigned a
value by the INQUIRE statement. num is assigned the external unit
identifier of the unit currently connected to the file. num is undefined if
there is no unit connected to the file. This specifier cannot be used with
an INQUIRE by unit statement (INQUIRE (iulist)).

OPENED=od od is a logical variable or logical array element to be assigned a value by
the INQUIRE statement. od is assigned the value .TRUE. if the file
specified is connected to a unit or if the specified unit is connected to a
file. Otherwise, od is assigned the value .FALSE..

ORGANIZATION=org
org is a character scalar memory reference assigned the value of the file
organization established when the file was opened; it has one of the
following values: SEQUENTIAL, RELATIVE, INDEXED, or
UNKNOWN (always assigned to unopened files).

RECL=rcl rcl is an integer variable or integer array element to be assigned a value
by the INQUIRE statement. rcl is assigned the value of the record length
in number of characters for formatted files and in words for unformatted
files. If there is no connection or if the connection is not for direct access,
rcl becomes undefined.

RECORDTYPE=rectype
rectype is a character scalar memory reference assigned the value of the
record type file established when the file was opened; it has one of the
following values: FIXED, VARIABLE, STREAM_LF, or UNKNOWN.

INQUIRE

157

SEQUENTIAL=seq
seq is a character variable or character array element to be assigned a
value by the INQUIRE statement. seq is assigned the value YES if
SEQUENTIAL is a legal access method for the file. seq is assigned the
value NO if SEQUENTIAL is not a legal access method. If the processor
is unable to determine the legal access methods, seq is assigned the value
UNKNOWN.

UNFORMATTED=unf
unf is a character variable or character array element to be assigned a
value by the INQUIRE statement. unf is assigned the value of YES if
UNFORMATTED is a legal format for the file; unf is assigned the value
NO if UNFORMATTED is not a legal format for the file. If the processor
is unable to determine the legal form, unf is assigned the value
UNKNOWN.

Method of Operation

Specifiers can be given in iflist or iulist in any order (“Unit Specifier - UNIT” on page 184
lists exceptions).

An INQUIRE statement assigns values to the specifier variables or array elements nmd,
fn, seq, dir, fmt, and unf only if the value of the file specifier fname is accepted by the
processor and if a file exists by that name. Otherwise, these specifier variables become
undefined. Each specifier can appear at most once in the iflist or iulist, and the list must
contain at least one specifier.

An INQUIRE statement assigns values to the specifier variables or array elements num,
nmd, fn, acc, seq, dir, fm, fmt, unf, rcl, nr, and blnk only if the specified unit exists and if a
file is connected to it. Otherwise, these specifier variables become undefined. However,
the specifier variables ex and od are always defined unless an error condition occurs. All
inquiry specifier variables except ios become undefined if an error condition occurs
during execution of an INQUIRE statement.

Examples

The following examples show INQUIRE statements.

INQUIRE (FILE='MYFILE.DATA',NUMBER=IU,RECL=IR)

INQUIRE (UNIT=6, NAME=FNAME)

158

Chapter 8: Input/Output Statements

OPEN

The OPEN statement creates files and connects them to units. It can create a
preconnected file, create and connect a file, connect an existing file, or reconnect an
already connected file. See “File Positions” in Chapter 1 of the MIPSpro Fortran 77
Programmer’s Guide for information on the relative record position in a file after an OPEN
is executed.

Syntax

OPEN (olist)

where olist is a list of the following specifiers, separated by commas:

[UNIT=] u is a required unit specifier. u must be an integer expression that identifies
the number of an external unit. If the keyword UNIT= is omitted, then
the u must be the first specifier in olist.

IOSTAT=ios is an I/O status specifier that identifies the variable to be defined with a
status value by the OPEN statement. A zero value for ios denotes a no
error condition, while a positive integer value denotes an error
condition.

ERR=s is an error specifier that identifies a statement number to which program
control is to be transferred when an error condition occurs during
execution of the OPEN statement.

FILE=fname is a file specifier. fname is a character expression specifying the name of
the external file to be connected. The file name must be a name allowed
by the processor. NAME= can be used in place of FILE=, but the latter
is the standard syntax.

fname can also be a numeric variable to which Hollerith data is
assigned. A null character terminates the filename. Three VMS
predefined system logical names-SYS$INPUT, SYS$OUTPUT, and
SYS$ERROR-are supported. These names allow an OPEN statement
to associate an arbitrary unit number to standard input, standard
output, and standard error, respectively, instead of the standard
predefined logical unit numbers 5, 6, and 0.

ACCESS=acc is an access specifier. acc is a character expression that, when trailing
blanks are removed, has one of the following values: SEQUENTIAL,
DIRECT, KEYED, or APPEND.

OPEN

159

SEQUENTIAL specifies that the file is to be accessed sequentially.

DIRECT specifies that the file is to be accessed by record number. If
DIRECT is specified, iolist must also contain a record length specifier. If
iolist does not contain an access specifier, the value SEQUENTIAL is
assumed.

KEYED specifies that the file is accessed by a key-field value.

APPEND specifies sequential access so that, after execution of an
OPEN statement, the file is positioned after the last record.

ASSOCIATEVARIABLE=asva
specifies direct access only. After each I/O operation, asvar contains an
integer variable giving the record number of the next sequential record
number in the file. This parameter is ignored for all access modes other
than direct access.

BLANK=blnk is a blank specifier. blnk is a character expression that, when all trailing
blanks are removed, has the value NULL (the default) or ZERO.

NULL ignores blank characters in numeric formatted input fields.

ZERO specifies that all blanks other than leading blanks are to be
treated as zeros. If iolist does not contain a blank specifier, the value
NULL is assumed.

CARRIAGECONTROL=type
type is a character expression that determines carriage-control
processing as shown in Table 8-5.

LIST is the default for formatted files, and NONE is the default for
unformatted files. When the –vms_cc option (refer to Chapter 1 of the
MIPSpro Fortran 77 Programmer’s Guide) is specified, FORTRAN
becomes the default for the standard output unit (unit 6).

Table 8-5 Carriage-Control Options

Value of type Meaning

FORTRAN Standard Fortran interpretation of the first character

LIST Single spacing between lines

NONE No implied carriage control

160

Chapter 8: Input/Output Statements

DEFAULTFILE=fname
fname is either a character expression specifying a path name or an
alternate prefix filename for the opened unit. When specified, the full
filename of the opened unit is obtained by concatenating the string
specified by fname with either the string in the FILE parameter (if
specified) or with the unit number (when FILE is absent).

fname can also be a numeric variable to which Hollerith data is
assigned. A null character terminates the filename.

DISP[OSE]=disposition
disposition is a character expression that designates how the opened file
is to be handled after it is closed. Table 8-6 lists the possible values for
disposition and the effect on the closed file.

FORM=fm is a form specifier. fm is a character expression that, when all trailing
blanks are removed has either the value FORMATTED or
UNFORMATTED. The file opened with FORMATTED is connected for
formatted I/O, and a file opened with UNFORMATTED is connected
for unformatted I/O.

 The extensions SYSTEM and BINARY can also be used to specify the
form of the file. A file opened with the SYSTEM specifier is
unformatted and has no record marks. Data is written/read as specified
by the I/O list with no record boundary, which is equivalent to opening
a file with the BINARY specifier on the IRIS 3000 series. A file opened
with BINARY allows unformatted binary records to be read and

Table 8-6 Disposition Options

Value for disposition File status after CLOSE

KEEP Retained (default)

SAVE Same as KEEP

PRINT Printed and retained.

PRINT/DELETE Printed and deleted.

SUBMIT Executed and retained

SUBMIT/DELETE Executed and deleted

OPEN

161

written using formatted READ and WRITE statements. This form is
only needed if the A edit descriptor is used to dump out numeric
binary data to the file.

If iolist contains no form specifier, the default value is FORMATTED
for sequential access files and UNFORMATTED for direct access files.

KEY=(key1start:key1end[: type] [, key2start:key2end[:type]]...)
defines the location and data type of one or more keys in an indexed
record. The following rules apply to KEY parameters:

• At least one key (the primary key) must be specified when creating
an indexed file.

• type is either INTEGER or CHARACTER (the default), defining
the data type of the key.

• INTEGER keys must be specified with a length of 4.

• The maximum length of a key is 512 bytes.

• key1start and key1end are integers defining the starting and ending
byte positions of the primary field, which is always required.
key2start and key2end and subsequent specifications define the
starting and ending positions of alternate fields, which are optional.
There is no limit to the number of keys that can be specified.

• The sequence of the key fields determines the value in a
key-of-reference specifier, KEYID, described in “Control
Information List - cilist” on page 183. KEYID=0 specifies the field
starting the key1start (primary) key; KEYID=1 specifies the field
starting at key2start, and so forth.

• The KEY field must be specified only when an indexed file is
created. The key specifications in the first OPEN remain in effect
permanently for subsequent file openings. If KEY is specified when
opening an existing file, the specifications must match those
specified when the file was created.

MAXREC=n where n is a numeric expression defining the maximum number of
records allowed in a direct-access file. If this parameter is omitted, no
maximum limit exists.

162

Chapter 8: Input/Output Statements

RECL=rl is a record length specifier. rl is a positive integer expression specifying
the length in characters or processor-dependent units for formatted and
unformatted files, respectively. This specifier is required for
direct-access files and keyed-access files; otherwise, it must be omitted.

READONLY specifies that the unit is to be opened for reading only. Other programs
may open the file and have read-only access to it concurrently. If you do
not specify this keyword, you can both read and write to the specified
file.

RECORDSIZE=rl
has same effect as RECL.

RECORDTYPE=rt
when creating a file rt defines the type of records that the file is to
contain; rt can be one of the following character expressions: FIXED,
VARIABLE, or STREAM_LF. If RECORDTYPE is omitted, the default
record type depends on the file type, as determined by the ACCESS
and/or FORM parameters. The default types are shown in Table 8-7.

The following rules apply:

• If RECORDTYPE is specified, rt must be the appropriate default
value shown in Table 8-7.

• When writing records to a fixed-length file, the record is padded
with spaces (for formatted files) or with zeros (for unformatted
files) when the output statement does not specify a full record.

SHARED ensures that the file is as up to date as possible by flushing each record
as it is written.

Table 8-7 Default Record Types

File Type Record Type (Default)

Relative or indexed FIXED

Direct-access sequential FIXED

Formatted sequential access STREAM_LF

Unformatted sequential access VARIABLE

OPEN

163

STATUS=sta is a file status specifier. sta is a character expression that, ignoring
trailing blanks, has one of the following values:

OLD requires the FILE=fname specifier, and it must exist.

NEW requires the FILE=fname specifier. The file is created by OPEN,
and the file status is automatically turned to OLD. A file with the same
name must not already exist.

SCRATCH creates an unnamed file that is connected to the unit from
UNIT= and will be deleted when that unit is closed by CLOSE.
DEFAULTFILE can be used to specify a temporary directory to be used
for opening the temporary file. Named files should not be used with
SCRATCH.

UNKNOWN meaning is processor dependent. See the MIPSpro Fortran
77 Programmer’s Guide for more information.

If the STATUS specifier is omitted, UNKNOWN is the default.

TYPE=sta is the same as STATUS.

Rules for Use

• Specifiers can be given in iolist in any order (for an exception, see the UNIT specifier
on “OPEN” on page 158).

• The unit specifier is required; all other specifiers are optional. The record-length
specifier is required for connecting to a direct-access file.

• The unit specified must exist.

• An OPEN statement for a unit that is connected to an existing file is allowed. If the
file specifier is not included, the file to be connected to the unit is the same as the file
to which the unit is connected.

• A file to be connected to a unit that is not the same as the file currently connected to
the unit has the same effect as a CLOSE statement without a file status specifier. The
old file is closed, and the new one is opened.

• If the file to be connected is the same as the file to which the unit is currently
connected, then all specifiers must have the same value as the current connection
except the value of the BLANK specifier.

• See “Data Transfer Rules” on page 191 for additional rules.

164

Chapter 8: Input/Output Statements

Examples

The following examples show the use of OPEN statements:

OPEN (1, STATUS='NEW')
OPEN (UNIT=1,STATUS='SCRATCH',ACCESS='DIRECT',RECL=64)
OPEN (1, FILE='MYSTUFF', STATUS='NEW',ERR=14,
 + ACCESS='DIRECT',RECL=1024)
OPEN (K,FILE='MAILLIST',ACCESS='INDEXED',FORM='FORMATTED',
+RECL=256,KEY=(1:20,21:30,31:35,200:256))

PRINT or TYPE

The PRINT (or TYPE) statement transfers data from the output list items to the file
associated with the system output unit.

Syntax

PRINT f [,iolist]

where f is the format specifier and iolist is an optional output list specifying the data to
be transferred as described in “Control Information List - cilist” on page 183 and
“Input/Output List - iolist” on page 188.

TYPE is a synonym for PRINT.

Rules for Use

Use the PRINT statement to transfer formatted output to the system output unit. See
“Data Transfer Rules” on page 191 for additional rules.

Examples

The following examples show the use of PRINT and TYPE statements.

PRINT 10, (FORM (L), L=1,K+1)

PRINT *, X,Y,Z

TYPE *, ' VOLUME IS ',V,' RADIUS IS ',R

READ (Direct Access)

165

READ (Direct Access)

The direct-access READ statement transfers data from an external file to the items
specified by the input list. Transfer occurs using the direct-access method. (See Chapter 7,
“Input/Output Processing,” for details about the direct access method.)

Syntax: Formatted

READ ([UNIT=]unum, REC=rn, f [,IOSTAT=ios] [,ERR=s]) [iolist]

Syntax: Unformatted

READ ([UNIT=]unum, REC=rn, [,IOSTAT=rn] [,ERR=s]) [iolist]

where

[UNIT=]unum is a unit or internal file to be acted on.

f is a format specifier.

REC=rn is a direct-access mode. rn is the number of the record to be accessed.

IOSTAT=rn is the name of variable in which I/O completion status is posted.

ERR=s is the statement label to which control is transferred after an error.

iolist specifies memory location where data is to be read.

See the “Control Information List - cilist” on page 183 and “Input/Output List - iolist”
on page 188 for details on these parameters.

See “Control Information List - cilist” on page 183, “Input/Output List - iolist” on
page 188, and Chapter 7, “Input/Output Processing,” for more information on
formatted and unformatted I/O.

READ (Indexed)

The indexed READ statement transfers data from an external indexed file to the items
specified by the input list. Transfer occurs using the keyed access method. (See Chapter 7,
“Input/Output Processing.”)

166

Chapter 8: Input/Output Statements

Syntax: Formatted

READ[UNIT=]unum,f,KEY=val[,KEYID=kn][,IOSTAT=rn][,ERR=s])[iolist]

Syntax: Unformatted

READ ([UNIT=]unum,key[,keyid][,IOSTAT=rn] [,ERR=s]) [iolist]

where

[UNIT=]unum is a unit or internal file to be acted upon.

f is a format specifier.

KEY=val is the value of the key field in the record to be accessed.

KEYID=kn is the key reference specifier.

IOSTAT=rn is the name of variable to which I/O completion status is posted.

ERR=s is the statement label to which control is transferred after an error.

iolist specifies memory location where data is read.

See “Control Information List - cilist” on page 183 and “Input/Output List - iolist” on
page 188 for details on these parameters.

See “Data Transfer Rules” on page 191 and Chapter 7, “Input/Output Processing,” for
more information on indexed I/O and the differences between formatted and
unformatted I/O.

READ (Internal)

The internal READ statement transfers data from an internal file to internal storage.

Syntax: Formatted

 READ ([UNIT=]unum,f[,IOSTAT=rn][,ERR=s][,END=eof]) [iolist]

READ (Sequential)

167

Syntax: List-Directed

READ ([UNIT=]unum,* [,IOSTAT=rn][,ERR=s][,END=eof]) [iolist]

where

[UNIT=]unum is a unit or internal file to be acted upon.

f is a format specifier

 * is a list-directed input specifier.

IOSTAT=rn is the name of variable in which I/O completion status is to be posted.

ERR=s is the statement label to which control is transferred after an error.

END=eof is the statement label to which control is transferred upon end-of-file.

iolist specifies memory location where data is to be read.

See “Control Information List - cilist” on page 183 and “Input/Output List - iolist” on
page 188 for details on these parameters.

See “Data Transfer Rules” on page 191 and Chapter 7, “Input/Output Processing,” for
more information on formatted and list-directed I/O. Chapter 7 also contains an example
of I/O using internal files.

Note: The DECODE statement can also be used to control internal input. See
“DECODE” on page 146 for more information.

READ (Sequential)

The sequential READ statement transfers data from an external record to the items
specified by the input list. Transfers occur using the sequential-access method or
keyed-access method. (See Chapter 7, “Input/Output Processing.”)

The four forms of the sequential READ statement are

• formatted

• list-directed

• unformatted

• namelist-directed

168

Chapter 8: Input/Output Statements

The following parameters apply to all four forms of the sequential READ statement:

[UNIT=]unum
is a unit or internal file to be acted upon.

f is a format specifier.

* is a list-directed input specifier.

NML=[group-name]
is a namelist specifier. If the keyword NML is omitted, group-name must
immediately follow unum.

IOSTAT=rn is the name of the variable in which I/O completion status is posted.

ERR=s is the statement label to which control is transferred after an error.

END=eof is the statement label to which control is transferred on end of file.

iolist specifies memory location where data is read.

See “Control Information List - cilist” on page 183 for details on these parameters.

Formatted READ (Sequential)

Syntax

READ ([UNIT=]unum,f[,IOSTAT=rn][,ERR=s] [,END=eof]) [iolist]

READ f[,iolist]

Method of Operation

A formatted READ statement transfers data from an external record to internal storage.
It translates the data from character to binary format using the f specifier to edit the data.

List-Directed READ (Sequential)

Syntax

READ ([UNIT=]unum,*[,IOSTAT=rn][,ERR=s][,END=eof])[iolist]

READ f*[iolist]

READ (Sequential)

169

Method of Operation

A list-directed READ statement transfers data from an external record to internal
storage. It translates the data from character to binary format using the data types of the
items in iolist to edit the data.

Rules for Use

• The external record can have one of the following values:

– A constant with a data type of integer, real, logical, complex, or character. The
rules given in Chapter 2, “Constants and Data Structures,” define the acceptable
formats for constants in the external record.

– A null value, represented by a leading comma, two consecutive constants
without intervening blanks, or a trailing comma.

– A repetitive format n*constant, where n is a nonzero, unsigned integer constant
indicating the number of occurrences of constant. n* represents repetition of a
null value.

• Hollerith, octal, and hexadecimal constants are not allowed.

• A value separator must delimit each item in the external record; a value separator
can be one of the following:

– one or more spaces or tabs

– a comma, optionally surrounded by spaces or tabs

• A space, tab, comma, or slash appearing within a character constant are processed
as part of the constant, not as delimiters.

• A slash delimits the end of the record and causes processing of an input statement
to halt; the slash can be optionally surrounded by spaces and/or tabs. Any
remaining items in iolist are unchanged after the READ.

• When the external record specified contains character constants, a slash must be
specified to terminate record processing. If the external record ends with a blank,
the first character of the next record processed follows immediately after the last
character of the previous record.

• Each READ statement reads as many records as is required by the specifications in
iolist. Any items in a record appearing after a slash are ignored.

170

Chapter 8: Input/Output Statements

Unformatted READ (Sequential)

Syntax

READ ([UNIT=]unum[,IOSTAT=rn][,ERR=s][,END=eof]) [iolist]

Method of Operation

An unformatted READ statement transfers data from an external record to internal
storage. The READ operation performs no translation on read-in data. The data is read
in directly to the items in iolist. The type of each data item in the input record must match
that declared for the corresponding item in iolist.

When a sequential-unformatted READ is performed on a direct-access file, the next
record in the direct-access file is assumed.

Rules for Use

• There must be at least as many items in the unformatted record as there are in iolist.
Additional items in the record are ignored, and a subsequent READ accesses the
next record in the file.

• The type of each data item in the i3nput record must match the corresponding data
item in iolist.

Namelist-Directed READ (Sequential)

Syntax

READ (unum,NML=group-name[,IOSTAT=rn][,ERR=s][,END=eof]) [iolist]

READ name

Method of Operation

A namelist-directed READ statement locates data in a file using the group name in a
NAMELIST statement (see Chapter 4, “Specification Statements.”)

It uses the data types of the items in the corresponding NAMELIST statement and the
forms of the data to edit the data.

READ (Sequential)

171

Figure 8-1 illustrates rules for namelist input data and shows its format.

Figure 8-1 Namelist Input Data Rules

Rules for Use

• Both group-name and item must be contained within a single record.

• Spaces and/or tabs are not allowed within group-name or item. However, item can
contain spaces or tabs within the parentheses of a subscript or substring specifier.

• The value item can be any of the values given under the first rule in the previous
section, “List-Directed READ (Sequential)” on page 168.

• A value separator must delimit each item in a list of constants. See the third and
fourth rules in “List-Directed READ (Sequential)” on page 168.

• A separator must delimit each list of value assignments. See the third rule in
“List-Directed READ (Sequential)” on page 168. Any number of spaces or tabs can
precede the equal sign.

• When value contains character constants, a dollar sign ($) or ampersand (&) must be
specified to terminate processing of the namelist input. If the namelist input ends
with a blank, the first character of the next record processed follows immediately
after the last character of the previous record.

• Entering a question mark (?) after a namelist-directed READ statement is executed
causes the group-name and current values of the namelist items for that group to be
displayed.

$ group-name item = value [, item = value, ...] $ [END]

Optional end delimiter

Required end delimeter; ampersand
(&) also acceptable

A constant as specified by the
rules for list-directed I/O

A namelist item as defined in a
previous NAMELIST

The name of the namelist as specified in
a previous NAMELIST statement

Required start delimeter in column 2;
ampersand (*&) also acceptable

172

Chapter 8: Input/Output Statements

• You can assign input values in any order in the format item=value. Multiple-line
assignment statements are allowed. Each new line must begin on or after column 2;
column 1 is assumed to contain a carriage-control character. Any other character in
column 1 is ignored.

• You can assign input values for the following data types: INTEGER, REAL,
LOGICAL, COMPLEX, and CHARACTER. Refer to Table 5-2 in Chapter 5 for the
conversion rules when the data type of the namelist item and the assigned constant
value do not match.

• Numeric-to-character and character-to-numeric conversions are not allowed.

• Constant values must be given for assigned values, array subscripts, and substring
specifiers. Symbolic constants defined by a PARAMETER statement are not
allowed.

Example

In the following example, the name of a file is read from the standard input into filename,
the file is opened, and the first record is read. A branch is taken to statement 45 (not
shown) when end of file is encountered.

 read (*,10) filename
10 format (a)
 open (2,file=filename)
 read (2, 20, end=45) word
20 format (A50)

See “Data Transfer Rules” on page 191 and Chapter 7, “Input/Output Processing,” for
more information on formatted, list-directed unformatted, and namelist-directed I/O.

REWIND

The REWIND statement positions a file at its initial point. It can be used with both
unformatted and formatted data files.

REWIND

173

Syntax

REWIND u
REWIND (alist)

where

u is an external unit identifier.

alist is a list of the following specifiers:

[UNIT =] u is a required unit specifier. u must be an integer expression that identifies
the number of an external unit. If the keyword UNIT= is omitted, then
u must be the first specifier in alist.

IOSTAT = ios is an I/O status specifier that specifies the variable to be defined with a
status value by the REWIND statement. A zero value for ios denotes a
no error condition, while a positive integer value denotes an error
condition.

ERR = s is an error specifier that identifies a statement number to which control
is transferred when an error condition occurs during the execution of the
REWIND statement.

Method of Operation

The unit specifier is required and must appear exactly once. The other specifiers are
optional and can appear at most once each in the alist. Specifiers can appear in any order
(refer to“Unit Specifier - UNIT” on page 184 for exceptions). The REWIND statement
positions the specified file at its initial point. If the file is already at its initial point, the
REWIND statement has no effect. It is legal to specify a REWIND statement for a file that
is connected but does not exist, but the statement has no effect.

Examples

The following statements show examples of the REWIND statement.

REWIND 8
REWIND (UNIT=NFILE,ERR=555)

174

Chapter 8: Input/Output Statements

REWRITE

The REWRITE statement transfers data to an external indexed file from the items
specified by the output list. The record transferred is the last record accessed from the
same file using an indexed READ statement.

Syntax: Formatted

REWRITE ([UNIT=]unum,f[,IOSTAT=rn][,ERR=s]) [iolist]

Syntax: Unformatted

REWRITE ([UNIT=]unum[,IOSTAT=rn][,ERR=s]) [iolist]

where

[UNIT=]unum is the unit or internal file to be acted on.

f is a format specifier.

IOSTAT=rn is the name of a variable in which I/O completion status is posted.

ERR=s is a statement label to which control is transferred after an error.

See “Control Information List - cilist” on page 183 and “Input/Output List - iolist” on
page 188 for details on these parameters.

Rules for Use

The REWRITE statement is supported for both formatted and unformatted indexed files.
The statement provides a means for changing existing records in the file.

See “Data Transfer Rules” on page 191 for additional rules.

Example

REWRITE (10), A,B,C

The previous statement rewrites the last record accessed to the indexed file connected to
logical unit 10.

UNLOCK

175

UNLOCK

The UNLOCK statement makes the last record read from an indexed file available for
access by other users.

Syntax

UNLOCK [UNIT=]unum

UNLOCK ([UNIT=]unum[,IOSTAT=rn][,ERR=s])

where

UNIT=unum is a unit or internal file to be acted on.

IOSTAT=rn is the name of variable in which I/O completion status is posted.

ERR=s is the statement label to which control is transferred after an error.

See “Control Information List - cilist” on page 183 for details on each of these parameters.

Method of Operation

After a record is read from an indexed file, it cannot be accessed by other users until an
UNLOCK statement is executed, the record is rewritten, or a new record is read.

Example

The following statement unlocks the last record read in from the file connected to logical
unit 10.

UNLOCK (10)

WRITE (Direct Access)

The direct-access WRITE statement transfers data from internal storage to an external
indexed file using the direct-access method.

Syntax: Formatted

WRITE ([UNIT=]unum,REC=rn,f[,IOSTAT=rn][,ERR=s]) [iolist]

176

Chapter 8: Input/Output Statements

Syntax: Unformatted

WRITE ([UNIT=]unum,REC=rn[,IOSTAT=ios][,ERR=s]) [iolist]

where

[UNIT=]unum is a unit or internal file to be acted upon.

REC=rn is a direct-access mode. rn is the number of the record to be accessed.

f is a format specifier.

IOSTAT=rn is the name of variable in which I/O completion status is posted.

ERR=s is the statement label to which control is transferred after an error.

iolist specifies memory location from which data is written.

See “Control Information List - cilist” on page 183 and “Input/Output List - iolist” on
page 188 for details on these parameters.

See “Data Transfer Rules” on page 191 and Chapter 7, “Input/Output Processing,” for
more information on formatted and unformatted I/O.

Rules for Use

Execution of a WRITE statement for a file that does not exist creates the file.

WRITE (Indexed)

The indexed WRITE statement transfers data from internal storage to external records
using the keyed-access method.

Syntax: Formatted

WRITE ([UNIT=]unum,f[,IOSTAT=rn][,ERR=s]) [iolist]

WRITE (Internal)

177

Syntax: Unformatted

WRITE ([UNIT=]unum[,IOSTAT=rn][,ERR=s]) [iolist]

where

[UNIT=]unum is a unit or internal file to be acted on.

f is a format specifier.

* is the list-directed output specifier.

IOSTAT=rn is the name of a variable in which I/O completion status is posted.

ERR=s is a statement label to which control is transferred after an error.

iolist specifies a memory location from which data is written.

See “Control Information List - cilist” on page 183 and “Input/Output List - iolist” on
page 188 for details on these parameters.

See “Data Transfer Rules” on page 191 and Chapter 7, “Input/Output Processing,” for
more information on formatted and unformatted I/O.

Rules for Use

Execution of a WRITE statement for a file that does not exist creates the file.

WRITE (Internal)

The internal WRITE statement transfers data to an external file or an internal file from
the items specified by the output list.

Syntax: Formatted

WRITE ([UNIT=]unum,f[,IOSTAT=ios][,ERR=s])[iolist]

178

Chapter 8: Input/Output Statements

Syntax: List-directed

WRITE ([UNIT=]unum, *[,IOSTAT=rn][,ERR=s])[iolist]

where

[UNIT=]unum is a unit or internal file to be acted on.

f is a format specifier.

* is the list-directed output specifier.

IOSTAT=rn is the name of a variable in which I/O completion status is posted.

ERR=s is the statement label to which control is transferred after an error.

iolist specifies a memory location from which data is written.

See “Control Information List - cilist” on page 183 and“Input/Output List - iolist” on
page 188 for details on these parameters.

See “Data Transfer Rules” on page 191 and Chapter 7, “Input/Output Processing,” for
more information on formatted and list-directed I/O. Chapter 7 also contains an example
of I/O using internal files.

Rules for Use

Execution of an internal WRITE statement for a file that does not exist creates the file.

Note: The ENCODE statement can also be used to control internal output. See the
ENCODE statement description on “ENCODE” on page 149 for more information.

WRITE (Sequential)

The sequential WRITE statement transfers data to an external file or an internal file from
the items specified by the output list.

WRITE (Sequential)

179

The four types of sequential WRITE statements are

• formatted

• unformatted

• list-directed

• namelist-directed

Each of these statements is discussed in the following sections.

Execution of a WRITE statement for a file that does not exist creates the file.

Parameter Explanations

UNIT=unum is a unit or internal file to be acted on.

NML= group-name
is a namelist specifier.

f is a format specifier.

* is the list-directed output specifier.

REC=rn is a direct-access mode. rn is the number of the record to be accessed.

IOSTAT=rn is the name of a variable in which I/O completion status is posted.

ERR=s is a statement label to which control is transferred after an error.

iolist specifies a memory location from which data is written.

See “Control Information List - cilist” on page 183 and “Input/Output List - iolist” on
page 188 for details on these parameters.

See “Data Transfer Rules” on page 191 and Chapter 7, “Input/Output Processing,” for
more information on formatted, list-directed, and unformatted I/O.

Formatted WRITE (Sequential)
WRITE ([UNIT=]unum,f[,IOSTAT=rn][,ERR=s]) [iolist]

180

Chapter 8: Input/Output Statements

Method of Operation

A formatted WRITE statement transfers data from internal storage to an external record
using sequential-access mode. The WRITE operation translates the data from binary to
character format using the f specifier to edit the data.

Unformatted WRITE (Sequential)
WRITE ([UNIT=]unum[,IOSTAT=rn][,ERR=s]) [iolist]

Method of Operation

An unformatted WRITE statement performs no translation on read-in data. The data is
read in directly to the items in iolist. The type of each data item in the input record must
match that declared for the corresponding item in iolist.

When sequential-formatted WRITE is performed on a direct-access file, the next record
in the file is assumed and the record is zero-padded to the end as if it were a direct,
unformatted WRITE.

List-Directed WRITE
WRITE ([UNIT=]unum,*[,IOSTAT=rn][,ERR=s]) [iolist]

Method of Operation

A list-directed WRITE statement transfers data from internal storage to an external
record using sequential-access mode. The WRITE operation translates the data from
binary to character format using the data types of the items in iolist to edit the data.

Rules

• The item to be transferred to an external record can be a constant with a data type of
integer, real, logical, complex, or character.

• The rules given in Chapter 2, “Constants and Data Structures,”define the acceptable
formats for constants in the external record, except character constant. A character
constant does not require delimiting apostrophes; an apostrophe within a character
string is represented by one apostrophes instead of two.

WRITE (Sequential)

181

Table 8-8 shows the data types and the defaults of their output format.

• List-directed character output data cannot be read as list-directed input because of
the use of apostrophes described above.

• A list-directed output statement can write one or more records. Position one of each
record must contain a space (blank), which Fortran uses for a carriage-control
character. Each value must be contained within a single record with the following
exceptions:

– A character constant longer than a record can be extended to a second record.

– A complex constant can be split onto a second record after the comma.

Table 8-8 Default Formats of List-Directed Output

Data Type Format Specification of Default Output

BYTE L2

LOGICAL*1 I5

LOGICAL*2 L2

LOGICAL*4 L2

LOGICAL*8 L2

INTEGER*1 I5

INTEGER*2 I7

INTEGER*4 I12

REAL*4 1pg15.7e2

REAL*8 1pg24.16e2

REAL*16 1pg40.31e2

COMPLEX '(',1pg15.7e2,',',1pg15.7e2,')'

COMPLEX*16 '(',1pg24.16e2,',',1pg24.16e2,')'

COMPLEX*32 '(',1pg40.31e2,',',1pg40.31e2,')'

CHARACTER*n An, where n is the length of the character expression

182

Chapter 8: Input/Output Statements

• The output of a complex value contains no embedded spaces.

• Octal values, null values, slash separators, or the output of a constant or null value
in the repetitive format n*constant or n*z cannot be generated by a list-directed
output statement.

Namelist-Directed WRITE

Syntax

WRITE([UNIT=]unum,NML=group-name[,IOSTAT=rn][,ERR=s][,END=eof])

Method of Operation

A namelist-directed WRITE statement transfers data from internal storage to external
records. It translates the data from internal to external format using the data type of the
items in the corresponding NAMELIST statement (see Chapter 4, “Specification
Statements.”) A namelist-directed READ or ACCEPT statement can read the output of a
namelist-directed WRITE statement.

Rules for Use

Namelist items are written in the order that referenced NAMELIST defines them.

Examples for All Forms of Sequential WRITE

The following statement writes the prompt enter a filename to standard output:

 write (*,105)
105 format (1x,'enter a filename')

The following statement opens the file %%temp and writes the record pair to the file.

 open (unit=10, status='unknown',file="%%temp")
 write (10,1910) pair
1910 format (A)

Control Information List - cilist

183

Control Information List - cilist

This section describes the components of the control information list (cilist) and the I/O
list (iolist), which can be specified as elements of the I/O statements described in this
chapter.

Table 8-9 summarizes the items that can be specified in a cilist. Each cilist specifier shown
in the table can appear no more than once in a cilist. Note that the keywords UNIT= and
FMT= are optional. Normally, the cilist items may be written in any order, but if UNIT=
or FMT= is omitted, the following restrictions apply:

• The keyword UNIT= can be omitted if and only if the unit specifier is the first item
on the list.

• The keyword FMT= can be omitted if and only if the format specifier is the second
item in the cilist and the first item is a unit specifier in which the keyword UNIT=
has been omitted.

A format specifier denotes a formatted I/O operation; default is an unformatted
I/O operation. If a record specifier is present, then direct access I/O is denoted;
default is sequential access.

Table 8-9 Control Information List Specifiers

Specifier Purpose

[UNIT=]u Unit or internal file to be acted on.

[NML= group-name] Identifies the group-name of a list of items for namelist-directed I/O.

[FMT=]f Formatted or unformatted I/O operations. If formatted, contains
format specifiers for data to be read or written.

REC= rn Number of a record accessed in direct-access mode.

KEY [c] =val Value of the key field in a record accessed in indexed access mode,
where c can be the optional match condition EQ, GT, or GE.

KEYID= kn Key-reference specifier, specifying either the primary key or one of
the alternate keys in a record referenced in indexed-access mode.

IOSTAT= ios Name of a variable in which I/O completion status is returned.

184

Chapter 8: Input/Output Statements

Unit Specifier - UNIT

The form of a unit specifier is

[UNIT=]u

where u is a unit identifier specified as follows:

• A nonnegative integer or noninteger expression specifying the unit. A noninteger
expression is converted to integer, and the fractional portion, if present, is discarded
before use.

• An asterisk specifying a unit that is connected for formatted sequential access
(external file identifier only). This denotes the system input unit in a READ
statement or the system output unit in a WRITE statement.

• A double asterisk (**) in a WRITE statement denotes the system error unit.

• An identifier that is the name of a character variable, character array, character array
element, or substring (internal file identifier only).

An external unit identifier can have the form described in the first or second rule above,
except that it cannot be an asterisk in an auxiliary output statement.

An internal file identifier must be specified in the third rule above.

The syntax shows that you can omit the UNIT= keyword. If UNIT= is omitted, the unit
identifier must be first in a control information list. For example, two equivalent READ
statements are

READ(UNIT=5)
READ(5)

ERR= s Label of a statement to which control is transferred if an error
occurs.

END= s Label of a statement to which control is transferred if an end-of-file
condition (READ only) occurs.

Table 8-9 (continued) Control Information List Specifiers

Specifier Purpose

Control Information List - cilist

185

Format Specifier - FMT

The syntax of a format specifier is

[FMT=]f

where

f is a format identifier. As shown in the syntax, the keyword FMT= can be
omitted from the format identifier. If so, the format identifier must be
second in a control information list, and the UNIT= keyword must also
have been omitted.

The legal kinds of format identifiers are

• the statement label of a FORMAT statement (the FORMAT statement and the
format identifier must be in the same program unit)

• an integer variable name assigned to the statement label of a FORMAT statement
(the FORMAT statement and the format identifier must be in the same program
unit)

• a character expression (provided it does not contain the concatenation of a dummy
argument that has its length specified by an asterisk)

• the name of a character array

• an asterisk that is used to indicate list-directed formatting

Namelist Specifier - NML

The namelist specifier indicates namelist-directed I/O within the READ or WRITE
statement where NML is specified. It has the format

[NML=]group-name

where group-name identifies the list in a previously defined NAMELIST statement (see
Chapter 4, “Specification Statements.”)

NML can be omitted when preceded by a unit specifier (unum) without the optional
UNIT keyword.

186

Chapter 8: Input/Output Statements

Record Specifier - REC

The form of a record specifier is

REC=rn

where rn is an expression that evaluates the record number of the record to be accessed
in a direct-access I/O operation. Record numbers must be integers greater than zero.

Key-Field-Value Specifier - KEY

The indexed-access method uses the key-field-value specified in a READ, REWRITE, or
other I/O statement. A key field in the record is used as criteria in selecting a record from
an indexed file. The key fields for the records in an indexed file are established by the
KEY specifier used in the OPEN statement that created the file.

The key-field-value specifier has the forms shown in Table 8-10.

The following rules apply to kval:

• kval can be a character or integer expression; if an integer expression, it cannot
contain any real or complex values. If the indexed file is formatted, kval should
always be a character expression.

• The character expression can be an ordinary character string or an array name of
type LOGICAL*1 or BYTE containing Hollerith data.

• The character or integer type specified for kval must match the type specified for the
key field in the record.

Table 8-10 Forms of the Key-Field-Value Specifier

Specifier Basis for Record Selection

KEY= kval Key-field value kval

KEYEQ= kval Key-field value kval and the key field are equal

KEYGT= kval Key-field value is greater than the key field

KEYGE= kval Key-field value is greater than or equal to the key field

Control Information List - cilist

187

Key-of-Reference Specifier - KEYID

The key-of-reference specifier designates, in a READ, REWRITE, or other I/O statement,
the key field in a record to which the key-field-value specifier applies.

The specifier has the following format:

KEYID=n

where n is a number from 0 to the maximum number of keys defined for the records in
the indexed file; 0 specifies the primary key, 1 specifies the first alternate key, 2 specifies
the second alternate key, and so on. The KEY parameter of the OPEN statement that
created the files creates and establishes the ordering of the primary and alternate keys.

If KEYID is not specified, the previous KEYID specification in an I/O statement to the
same I/O unit is used. The default for KEYID is zero (0) if it is not specified for the first
I/O statement.

Input/Output Status Specifier - ios

An I/O status specifier has the form

IOSTAT=ios

where ios is a status variable indicating an integer variable or an integer array element.
Execution of an I/O statement containing this specifier causes ios to become defined with
one of the following values:

• Zero if neither an error condition nor an end-of-file condition is encountered by the
processor, indicating a successful operation

• Positive integer if an error condition occurred

• Negative integer if an end-of-file condition is encountered without an error
condition

For details about IOSTAT, refer to the perror(3F) and intro(2) manual pages.

188

Chapter 8: Input/Output Statements

Error Specifier - ERR

An error specifier has the following form

ERR=s

where s is an error return label of an executable statement that appears in the same
program unit as the error specifier.

If an error condition occurs during execution of an I/O statement with an error specifier,
execution of the statement is terminated and the file position becomes indeterminate. If
the statement contains an I/O status specifier, the status variable ios becomes defined
with a processor-dependent positive integer. Execution then continues at the statement
labeled s.

End-of-File Specifier - END

The form of an end-of-file specifier is

END=s

where s is an end-of-file return label of an executable statement that appears in the same
program unit as the end-of-file specifier. An end-of-file specifier may only be used on the
cilist of a READ statement.

If an end-of-file condition is encountered during the execution of a READ statement
containing an end-of-file specifier and no error occurs, execution of the READ statement
terminates. If the READ statement contains an I/O status specifier, the I/O status
variable ios becomes defined with a processor-dependent negative integer. Execution
then continues at the statement labeled s.

Input/Output List - iolist

This section describes the components of I/O list (iolist), which can be specified as
elements of the I/O statements described in this chapter.

An input/output list specifies the memory locations of the data to be transferred by the
I/O statements READ, WRITE, and PRINT.

Input/Output List - iolist

189

If an array name is given as an I/O list item, the elements in the array are treated as
though each element were explicitly specified in the I/O list in storage order. Note that
the name of an assumed-size dummy array (that is, an array declared with an * for an
upper bound) must not appear as an I/O list item.

Input List

An input list item can be one of the following:

• Variable name.

• Array element name.

• Substring name.

• Array name.

• Implied-DO list containing any of the above and other implied-DO lists.

• An aggregate reference (a structured data item as defined by a RECORD and
STRUCTURE statement). An aggregate reference can be used only in unformatted
input statements. When an aggregate name appears in an iolist, only one record is
read regardless of how many aggregates or other list items are present.

Examples of input lists are

READ(5,3000,END=2000)X,Y(J,K+3),C(2:4)

READ(JFILE,REC=KNUM,ERR=1200)M,SLIST(M,3),cilist

Output List

An output list item can be one of the following:

• Variable name.

• Array element name.

• Substring name.

• Array name.

• Any expression, except a character expression involving concatenation of an
operand with a length specification of asterisk (*), unless the operand is the
symbolic name of a constant.

190

Chapter 8: Input/Output Statements

• Animplied-DO list containing any of the above and other implied-DO lists.

• An aggregate reference (a structured data item as defined by a RECORD and
STRUCTURE statement). An aggregate reference can be used only in unformatted
output statements. When an aggregate name appears in an iolist, only one record is
written regardless of how many aggregates or other list items are present.

Note that a constant, an expression involving operators or function references, or an
expression enclosed in parentheses may appear in an output list but not in an input list.

An example of an output list is

WRITE(5,200,ERR=10)'ANSWER IS',N,SQRT(X)+1.23

Implied-DO Lists

An implied-DO list is a specification that follows the I/O list (iolist) in an I/O statement.
The list permits the iteration of the statement as though it were contained within a DO
loop. An implied-DO list has the form:

(iolist,i=e1,e2[,e3])

where

iolist is one or more valid names of the data to be acted on.

i is an iteration count.

e1, e2, and e3 are control parameters. See the description of the DO statement in
Chapter 6, “Control Statements,” for a description of i, e1, e2, and e3.

The control variable i must not appear as an input list item in iolist. The list items in iolist
are specified once for each iteration of the implied-DO list with the appropriate
substitution of values for each occurrence of the control variable i. When an I/O error
occurs within the implied-DO loop, the value of the control variable i is undefined.

Example

The following statements write Hello World to standard output 100 times:

 write (*,111) ('Hello World',i=1,100)
 111 format (1x,A)
 end

Data Transfer Rules

191

Data Transfer Rules

Data are transferred between records and items specified by the I/O list. The list items
are processed in the order in which they appear in the list.

The following restrictions apply to data transfer operations:

• An input list item must not contain any portion of the established format
specification.

• If an internal file has been specified, an I/O list item must not be in the file or
associated with the file.

• Each output list item must be defined before the transfer of that item.

• All values needed to determine which entities are specified by an I/O list item are
determined at the beginning of the processing of that item.

The following sections discuss the rules specific to unformatted and formatted I/O.

Unformatted Input/Output

The execution of an unformatted I/O statement transfers data without editing between
the current record and the items specified in the I/O list. Exactly one record is either read
or written.

For an unformatted input statement, the record must contain at least as many values as
the number of values required by the input list. The data types of the values in the record
must agree with the types of the corresponding items in the input list. Character data
from an input record must have the same length attribute as the corresponding item in
the input list.

The following conventions apply to the execution of an unformatted output statement:

• For direct access, the output list must not specify more values than can fit into a
record. If the values specified by the output list do not fill the record, the remainder
of the record is filled with zeros.

• For sequential access, the output list defines the size of the output record.

Fortran 77 allows unformatted data transfer only for external files and prohibits it for
files connected for formatted I/O.

192

Chapter 8: Input/Output Statements

Formatted Input/Output

The execution of a formatted I/O statement transfers data with editing between the items
specified by the I/O list and the file. The current record and possibly additional records
are read or written.

Each execution of a READ statement causes at least one record to be read, and the input
list determines the amount of data to be transferred from the record. The position and
form of that data are established by the corresponding format specification.

In a formatted output operation, each execution of the WRITE or PRINT statement
causes at least one record to be written. The amount of data written to the specified unit
is determined both by the output list and the format specification.

When a repeatable edit descriptor in a format specification is encountered, a check is
made for the existence of a corresponding item in the I/O list. If there is such an item, it
transmits appropriately edited information between the item and the record, and then
format control proceeds. If there is no corresponding item, format control terminates.
Chapter 9, “Format Specification,” explains formatted I/O in detail.

193

Chapter 9

9. Format Specification

This chapter contains the following subsections:

• “FORMAT Statement”

• “Field and Edit Descriptors”

• “Field Descriptor Reference”

• “Edit Descriptor Reference”

• “Complex Data Editing”

• “Interaction Between I/O List and Format”

• “List-Directed Formatting”

A format specification provides explicit editing information to the processor on the
structure of a formatted data record. It is used with formatted I/O statements to allow
conversion and data editing under program control. An asterisk (*) used as a format
identifier in an I/O statement specifies list-directed formatting.

You can define a format specification in a FORMAT statement or through the use of
arrays, variables, or expressions of type character. During input, field descriptors specify
the external data fields and establish correspondence between a data field and an input
list item. During output, field descriptors are used to describe how internal data is to be
recorded on an external medium and to define a correspondence between an output list
item and an external data field.

This section describes the FORMAT statement, field descriptors, edit descriptors, and
list-directed formatting. It also contains a discussion of carriage-control characters for
vertical control in printing formatted records.

As extensions to Fortran 77, the compiler supports additional processor-dependent
capabilities, which are described in the MIPSpro Fortran 77 Programmer’s Guide.

Format specifications can be given in two ways: in FORMAT statements or as values of
character arrays, character variables, and other character expressions.

194

Chapter 9: Format Specification

Format Stored as a Character Entity

In a formatted input or output statement, the format identifier can be a character entity,
provided its value has the syntax of a format specification, as detailed below, on
execution. This capability allows a character format specification to be read in during
program execution.

When the format identifier is a character array name, the format specification is a
concatenation of all the elements in the array. When the format identifier is a character
array element name, the format specification is only that element of the array. Therefore,
format specifications read through a character array name can fill the whole array, while
those read through a character array element name must fit in a single element of that
array.

FORMAT Statement

The FORMAT statement is a non-executable statement that defines a format
specification. It has the following syntax:

xx FORMAT fs

where

xx is a statement number that is used as an identifier in a READ, WRITE,
PRINT, or ASSIGN(label) statement.

fs is a format specification (described in “Format Specification” on
page 194).

Format Specification

The syntax of a format specification fs is

([flist])

where flist is a comma-separated list of format specifiers in one of the following forms:

[r]fd

ed

[r]fs

FORMAT Statement

195

where

r is a positive integer specifying the repeat count for the field descriptor
or group of field descriptors. If r is omitted, the repeat count is assumed
to be 1.

fd is a repeatable edit descriptor or a field descriptor.

ed is a nonrepeatable edit descriptor.

fs is a format group and has the same form as a complete format
specification except the flist must be non-empty (it must contain at least
one format specifier).

The comma used to separate the format specifiers in flist can be omitted as follows:

• Between a P edit descriptor and immediately following an F, E, D, or G edit
descriptor (see “P Edit Descriptor” on page 218).

• Before or after a slash edit descriptor (see “Slash Editing” on page 232).

• Before or after a colon edit descriptor (see “Colon Descriptor” on page 229).

Descriptors

Some descriptors can be repeated, others cannot. The repeatable descriptors are

where

w and e are nonzero, unsigned integer constants.

d and m are unsigned integer constants.

These descriptors are described in the respective section.

Iw[.m] Zw[.m] Ew.d[Ee] Gw.d[Ee] A[w]

Ow[.m] Fw.d Dw.d Lw

196

Chapter 9: Format Specification

The nonrepeatable descriptors are

where

n and c are nonzero, unsigned integer constants.

k is an optionally signed integer constant.

h is one of the characters capable of representation by the processor.

Format Specifier Usage

Each field descriptor corresponds to a particular data type I/O list item:

• Integer field descriptors—Iw, Iw.m, Ow, Zw

• Real, double-precision, and complex field descriptors—Fw.d, Ew.d, Ew.dEe, Dw.d,
Gw. d, Gw.dEe

• Logical field descriptor— Lw

• Character and Hollerith field descriptors—A, Aw

Ow, and Zw are extensions to Fortran 77.

The terms r, c, n, d, m, e, and w must all be unsigned integer constants, and, additionally,
r, c, n, e, and w must be nonzero. k is an optionally signed integer constant. Descriptions
of these list items are given in the sections that describe the individual field descriptors.

The repeat specifier r can be used only with the I, O, Z, F, E, D, G, L, and A field
descriptors and with format groups.

The d is required in the F, E, D, and G field descriptors. Ee is optional in the E and G field
descriptors and invalid in the others.

Use of named constants anywhere in a format specification is not allowed.

/ kP TRc SS nHh… $

 : Tc S BN 'h… ' Q

 nX TLc SP BZ "h… "

FORMAT Statement

197

Table 9-1 contains an alphabetical summary of the field and edit descriptors.

Table 9-1 Summary of Field and Edit Descriptors

Form Effect

A[w] Transfers character or Hollerith values

BN Specifies that embedded and trailing blanks in a numeric input field are to be ignored

BZ Specifies that embedded and trailing blanks in a numeric input field are to be treated
as zeros

Dw.d Transfers real values (D exponent field indicator)

Ew.d[Ee] Transfers real values (E exponent field indicator)

Fw.d Transfers real values

Gw.d Transfers real values: on input, acts like F descriptor; on output, acts like E or F
descriptor, depending on the magnitude of the value

nHc…c Transfers values between H edit descriptor and an external 'h…' (output only)

Iw[.m] Transfers decimal integer values

Lw Transfers logical values

Ow[.m] Transfers octal integer values

kP Scale factor for F, E, D, and G descriptors

Q Returns number of characters remaining in input record.

S Restores the default specification for SP and SS

SP Writes plus characters (+) for positive values in numeric output fields

SS Suppresses plus characters (+) for positive values in numeric output fields

Tc Specifies positional tabulation

TLc Specifies relative tabulation (left)

TRc Specifies relative tabulation (right)

nX Specifies that n column positions are to be skipped

 Zw[.m] Transfers hexadecimal integer values

198

Chapter 9: Format Specification

The following sections describe each of the field descriptors in Table 9-1in detail.

Variable Format Expressions

Variable format expressions provide a means for substituting run-time expressions for
the field width and other parameters of the field and edit descriptors of the statement.
Any expression can be enclosed in angle brackets (<>) and used as an integer constant
would be used in the same situation. This facility is not available for anything other than
a compile-time FORMAT statement.

Here is an example that uses a variable format expression:

 program VariableExample
 character*12 greeting
 greeting = 'Good Morning!'
 do 110 I = 1, 12
 write (*,115) (greeting)
 115 format (A<I>)
 110 continue
 end

In the above example, the field descriptor for greeting has the format Aw where w is a
variable width specifier I (initially set to 1) for the iolist item greeting. In twelve
successive WRITE operations, I is incremented by 1 to produce the following output:

: Terminates format control if the I/O list is exhausted

/ Record terminator

$ Specifies suppression of line terminator on output (ignored on input)

Table 9-1 (continued) Summary of Field and Edit Descriptors

Form Effect

FORMAT Statement

199

G
Go
Goo
Good
Good
Good M
Good Mo
Good Mor
Good Morn
Good Morni
Good Mornin
Good Morning

The following rules apply to variable format expressions:

• Function calls, references to dummy, and any valid Fortran expression can be
specified.

• Non-integer data types are converted to integers before processing.

• The same restrictions on size that apply to any other format specifier also apply to
the value of a variable format expression.

• Run-time formats cannot use variable format descriptions.

• If the value of a variable changes during a READ or WRITE operation, the new
value is used the next time it is referenced in an I/O operation.

General Rules for Using FORMAT

Because FORMAT allows exact specification of input and output format, it is necessarily
complex. Some guidelines to its correct usage are outlined below.

• A FORMAT statement must always be labeled.

• In a field descriptor such as rIw[.m] or nX, the terms r, w, and n must be unsigned
integer constants greater than zero. The term m must be an unsigned integer
constant whose value is greater than or equal to zero; it cannot be a symbolic name
of a constant. The repeat count r can be omitted.

• In a field descriptor such as Fw.d, the term d must be an unsigned integer constant. d
must be specified with F, E, D, and G field descriptors, even if d is zero. The decimal
point is also required. Both w and d must be specified. In a field descriptor such as
Ew.dEe, the term e must also be an unsigned, nonzero integer constant.

200

Chapter 9: Format Specification

• In an H edit descriptor such as nHc1 c2.\ .\ .c sub n, exactly n characters must follow
the H. Any character in the processor character set can be used in this edit
descriptor.

• In a scale factor of the form kP, k must be an optionally-signed integer constant. The
scale factor affects the F, E, D, and G field descriptors only. Once a scale factor is
specified, it applies to all subsequent real field descriptors in that format
specification until another scale factor appears; k must be zero (0P) to reinstate a
scale factor of zero. A scale factor of 0P is initially in effect at the start of execution of
each I/O statement.

• No repeat count r is permitted in BN, BZ, S, SS, SP, H, X, T, TR, TL, :, /, $, '
descriptors unless these descriptors are enclosed in parentheses and treated as a
format group.

• If the associated I/O statement contains an I/O list, the format specification must
contain at least one I, O, Z, F, E, D, G, L, or A field descriptor.

• A format specification in a character variable, character substring reference,
character array element, character array, or character expression must be
constructed in the same way as a format specification in a FORMAT statement,
including the opening and closing parentheses. Leading blanks are permitted, and
any characters following the closing parenthesis are ignored.

• The first character in an output record generally contains carriage control
information. See “Output Rules Summary” on page 201 and “Carriage Control” on
page 231.

• A slash (/) is both a format specifier list separator and a record terminator. See
“Slash Editing” on page 232 for details.

• During data transfers, the format specification is scanned from left to right. A repeat
count, r, in front of a field descriptor or group of field descriptors enclosed in
parentheses causes that descriptor or group of descriptors to be repeated r* before
left to right scanning is continued.

Input Rules Summary

Guidelines that apply specifically to input are

• A minus sign (-) must precede a negative value in an external field; a plus sign (+) is
optional before a positive value.

FORMAT Statement

201

• An external field under I field descriptor control must be in the form of an
optionally signed integer constant, except that leading blanks are ignored and the
interpretation of embedded or trailing blanks is determined by a combination of
any BLANK = specifier and any BN or BZ blank control that is currently in effect
(see “BN Edit Descriptor” on page 228 and “BZ Edit Descriptor” on page 228).

• An external field under F, E, D, or G field descriptor control must be in the form of
an optionally signed integer constant or a real constant, except that leading blanks
are ignored and the interpretation of embedded or trailing blanks is determined by
a combination of any BLANK = specifier and any BN or BZ blank control that is
currently in effect (see “BN Edit Descriptor” on page 228 and “BZ Edit Descriptor”
on page 228).

• If an external field contains a decimal point, the actual size of the fractional part of
the field, as indicated by that decimal point, overrides the d specification of the
corresponding real field descriptor.

• If an external field contains an exponent, the current scale factor kP descriptor has
no effect for the conversion of that field.

• The format specification together with the input list must not attempt to read
beyond the end of a record.

Output Rules Summary

Guidelines that apply specifically to output are

• A format specification cannot specify more output characters than the value in the
record length specifier (see “OPEN” on page 158 of Chapter 8 for details). For
example, a line printer record might be limited to no more than 133 characters,
including the carriage-control character.

• The field-width specification, w, and exponent digits, e, must be large enough to
accommodate all characters that the data transfer can generate, including an
algebraic sign, decimal point, and exponent. For example, the field width
specification in an E field descriptor should be large enough to contain d + 6
characters or d + e + 4 characters. The first character of a record of a file intended to
be printed is typically used for carriage control; it is not printed. The first character
of such a record should be a space, 0, 1, or +. (See “Carriage Control” on page 231.)

202

Chapter 9: Format Specification

Field and Edit Descriptors

The format specifiers in a format specification consist of field, or repeatable, descriptors
and other nonrepeatable edit descriptors.

On input, the field descriptors specify what type of data items are to be expected in the
external field so that data item values can be properly transferred to their internal
(processor) representations.

On output, the field descriptors specify what type of data items should be written to the
external field.

On input and output, the other nonrepeatable edit descriptors position the processor
pointer in the external field so that data items will be transferred properly. For instance,
edit descriptors can specify that lines or positions in the external field be skipped or that
data items can be repeatedly read (on input) or written (on output).

Field Descriptor Reference

This section contains an overview of the numeric field descriptors I, O, Z, F, E, D, and G.
It also describes the P edit descriptor and the L, A, H, Q, and character edit descriptors.

Numeric Field Descriptors

The I, O, Z, F, E, D, and G field descriptors are used for numeric editing. This section also
describes the P edit descriptor, which is a scale factor, that alters the effect of F, E, D, and
G field descriptors.

Unless otherwise indicated, the following rules apply:

• On input, these numeric field descriptors ignore leading blanks in the external field.
If a BZ edit descriptor is in effect, embedded and trailing blanks are treated as zeros;
otherwise, a BN edit descriptor is in effect, and all embedded and trailing blanks are
ignored. Either BZ or BN is initially in effect at the beginning of the input statement
depending on the BLANK = specified (see “OPEN” on page 158). The default is BN.

Field Descriptor Reference

203

• A plus sign (+) is produced on output only if SP is in effect; however, a minus sign
(–) is produced where applicable. When computing the field width for numeric
descriptors, one character should be allowed for the sign, whether it is produced or
not.

• For input with F, E, D, and G descriptors, a decimal point in the input field
overrides the D specification, and an explicit exponent in the input field overrides
the current scale factor.

• For output, fields are right justified. If the field width is too small to represent all
required characters, asterisks are produced. This includes significant digits, sign,
decimal point, and exponent.

Default Field Descriptor Parameters

You can optionally specify a field-width value (w, d, and e) for the I, O, Z, L, F, E, D, G,
and A field descriptors. If you do not specify a value, the default values shown in
Table 9-2 apply. The length of the I/O variable determines the length n for the A field
descriptor.

Table 9-2 Default Field Descriptors

Descriptor Field Type w d e

I,O,Z BYTE 7

I,O,Z INTEGER*2, LOGICAL*2 7

I,O,Z INTEGER*4, LOGICAL*4 12

I,O,Z INTEGER*8, LOGICAL*8 21

O,Z REAL*4 12

O,Z REAL*8 23

O,Z REAL*16 44

L LOGICAL 2

F,E,G,D REAL, COMPLEX*8 15

F,E,G,D REAL*8, COMPLEX*16 25 16 2

F,E,G,D REAL*16, COMPLEX*32 42 33 3

204

Chapter 9: Format Specification

I Field Descriptor

The I field descriptor is used for conversion between an internal integer data item and an
external decimal integer. It has the form

Iw[.m]

where

w is a nonzero, unsigned integer constant denoting the size of the external
field, including blanks and a sign, if necessary. A minus sign (-) is always
printed on output if the number is negative. If the number is positive, a
plus sign (+) is printed only if SP is in effect.

m is an unsigned integer constant denoting the minimum number of digits
required on output. m is ignored on input. The value of m must not
exceed w; if m is omitted, a value of 1 is assumed.

In an input statement, the I field descriptor reads a field of w characters from the record,
interprets it as an integer constant, and assigns the integer value to the corresponding
I/O list item. The corresponding I/O list element must be of the INTEGER or LOGICAL
data type. The external data must have the form of an integer constant; it must not
contain a decimal point or exponent.

A LOGICAL data type is displayed as either the value 0 (false) or 1 (true).

A LOGICAL*1 1

A LOGICAL*2, INTEGER*2 2

A LOGICAL*4, INTEGER*4 4

A LOGICAL*8, INTEGER*8 8

A REAL*4, COMPLEX*8 4

A REAL*8, COMPLEX*16 8

A REAL*16, COMPLEX*32 16

A CHARACTER*n n

Table 9-2 (continued) Default Field Descriptors

Descriptor Field Type w d e

Field Descriptor Reference

205

If the first nonblank character of the external field is a minus sign, the field is treated as
a negative value. If the first nonblank character is a plus sign, or if no sign appears in the
field, the field is treated as a positive value. An all-blank field is treated as a value of zero.

Table 9-3 contains input examples.

In an output statement, the I field descriptor constructs an integer constant representing
the value of the corresponding I/O list item and writes it to the right-justified record in
an external field w characters long. If the value does not fill the field, leading blanks are
inserted; if the value exceeds the field width, the entire field is filled with asterisks. If the
value of the list item is negative, the field will have a minus sign as its left most, nonblank
character. The term w must therefore be large enough to provide for a minus sign, when
necessary. If m is present, the external field consists of at least m digits, with leading zeros,
if necessary.

If m is zero, and the internal representation is zero, the external field is filled with blanks.

Table 9-4 contains output examples.

Table 9-3 I Field Input Examples

Format External Field Internal Value

i4 3244 3244

i3 -15 -15

i9 213 213

Table 9-4 I Field Output Examples

Format Internal Value External Field

I3 311 311

i4 -311 -311

i5 417 417

i2 7782 **

i3 -213 ***

i4.2 1 01

206

Chapter 9: Format Specification

O Field Descriptor

The O field descriptor transfers data values and converts them to octal form. It has the
form

Ow[m]

where

w is a nonzero, unsigned integer constant denoting the size of the external
field, including blanks and a sign, if necessary. A minus sign (-) is always
printed on output if the number is negative. If the number is positive, a
plus sign (+) is printed only if SP is in effect.

m is an unsigned integer constant denoting the minimum number of digits
required on output. m is ignored on input. The value of m must not
exceed w; if m is omitted, a value of 1 is assumed.

This repeatable descriptor interprets and assigns data in the same way as the I field
descriptor, except that the external field represents an octal number constructed with the
digits 0 through 7. On input, if BZ is in effect, embedded and trailing blanks in the field
are treated as zeros; otherwise, blanks are ignored. On output, S, SP, and SS do not apply.

In an input statement, the field is terminated when a non-octal digit is encountered.
Fortran 77 treats embedded and trailing blanks as zeros.

In an input statement, the O field descriptor reads w characters from the record; the input
field must have:

• optional leading blanks

• an optional plus or minus sign

• a sequence of octal digits (0 through 7)

A field that is entirely blank is treated as the value zero.

i4.4 1 0001

i4.0 1

Table 9-4 (continued) I Field Output Examples

Format Internal Value External Field

Field Descriptor Reference

207

Table 9-5 contains examples of O field input values. BN is assumed in effect, and internal
values are expressed in decimal (base 10).

In an output statement, the O field descriptor constructs an octal number representing
the unsigned value of the corresponding I/O list element as follows:

• The number is right justified with leading zeros inserted (if necessary). Fortran 77
inserts leading blanks.

• If w is insufficient to contain all the digits necessary to represent the unsigned value
of the output list item, then the entire field is filled with asterisks.

Table 9-6 lists examples of O field output.

Table 9-5 O Field Input Examples

Format External Field
(INTEGER*4)

Internal Value

o20 -77 -63

o20 1234 668

o20 177777 65535

o20 100000 32768

Table 9-6 O Field Output Examples

Format Internal Value
(INTEGER*4)

External Field

o20.2 3 03

o20.2 -1 37777777777

o3 -1 ***

o20.2 63 77

O20.2 -2 37777777776

208

Chapter 9: Format Specification

Z Field Descriptor

The Z field descriptor transfers data values and converts them to hexadecimal form. It
has the form

Zw[.m]

where

w is a nonzero, unsigned integer constant denoting the size of the external
field.

m is an unsigned integer constant denoting the minimum number of digits
required on output. m is ignored on input. The value of m must not
exceed w; if m is omitted, a value of 1 is assumed.

This repeatable descriptor interprets and assigns data in the same way as the I field
descriptor, except that the external field represents a hexadecimal number constructed
with the digits 0 through 9 and the letters A through F. On output, the output list item is
interpreted as an unsigned integer value.

In an input statement, the O field descriptor reads w characters from the record. After
embedded and trailing blanks are converted to zeros or ignored, as applicable, the input
field must have

• optional leading blanks

• an optional plus or minus sign

• a sequence of hexadecimal digits (0 through 9, A through F)

A field that is entirely blank is given a value of zero.

Field Descriptor Reference

209

Table 9-7 lists examples of Z field input. BN is assumed in effect, and internal values are
expressed in decimal (base 10).

Table 9-8 lists examples of Z field output.

F Field Descriptor

The F field descriptor transfers real values. It has the form

Fw.d

where

w is a nonzero, unsigned integer constant denoting field width.

d is an unsigned integer constant denoting the number of digits in the
fractional part.

Table 9-7 Z Field Input Examples

Format External Field
(INTEGER*4)

Internal Value

Z10 -ff -255

z10 1234 4660

z10 ffff 65535

z10 8000 32768

Table 9-8 Z Field Output Examples

Format Internal Value
(INTEGER*4)

External Field

z10.2 3 03

z10.2 -1 ffffffff

z10.2 63 3f

z10.2 -2 fffffffe

210

Chapter 9: Format Specification

The corresponding I/O list element must be of type REAL, DOUBLE PRECISION, or
COMPLEX.

In an input statement, the F field descriptor reads a field of w characters from the record
and, after appropriate editing of leading, trailing, and embedded blanks, interprets it as
an integer or a real constant. It then assigns the real value to the corresponding I/O list
element. (Refer to Chapter 2, “Constants and Data Structures,” for more information.) If
the external field contains an exponent, the letter E can be omitted as long as the value of
the exponent is a signed integer. If the first nonblank character of the external field is a
minus sign, the field is treated as a negative value. If the first nonblank character is a plus
sign, or if no sign appears in the field, the field is treated as a positive value. An all-blank
field is given a value of zero.

If the field contains neither a decimal point nor an exponent, it is treated as a real number
in which the right most d digits are to the right of the decimal point, with leading zeros
assumed if necessary. If the field contains an explicit decimal point, the location of that
decimal point overrides the location specified by the value of d in the field descriptor. If
the field contains a real exponent, the effect of any associated scale factor kP (see Scale
Factor on page 218) is suppressed, and the real exponent is used to establish the
magnitude of the value in the input field before it is assigned to the list element.

Table 9-9 provides examples of F field input.

In an output statement, the F field descriptor constructs a basic real constant representing
the value of the corresponding I/O list element, rounded to d decimal positions, and
writes it to the record right-justified in an external field w characters long.

Table 9-9 F Field Input Examples

Format External Field Internal Value

f8.5 123456789 0.12345678E+03

f8.5 -1234.567 -0.123456E+04

f8.5 12.34e+2 0.1234E+02

F5.2 1234567.89 0.12345E+03

Field Descriptor Reference

211

The term w must be large enough to include:

• a minus sign for a negative value or a plus sign (when SP is in effect) for a positive
value

• the decimal point

• d digits to the right of the decimal

If w is insufficiently large, the entire field width is filled with asterisks. Therefore, w must
be > d + 2.

Table 9-10 provides examples of F field output.

E Field Descriptor

The E field descriptor transfers real values in exponential form. It has the form

Ew.d[Ee]

where

w is a nonzero, unsigned integer constant denoting field width.

d is an unsigned integer constant denoting the number of digits in the
fractional part.

e is a nonzero, unsigned integer constant denoting the number of digits in
the exponent part. The e has no effect on input.

Table 9-10 F Field Output Examples

Format Internal Value External Field

F8.5 .12345678E+01 1.23457

f9.3 .87654321E+04 8765.432

F2.1 .2531E+02 **

f10.4 .1234567E+02 12.3457

f5.2 .123456E+03 *****

F5.2 -.4E+00 -0.40

212

Chapter 9: Format Specification

The corresponding I/O list element must be of REAL, DOUBLE PRECISION, or
COMPLEX data type.

In an input statement, the E field descriptor interprets and assigns data in exactly the
same way as the F field descriptor.

Table 9-11 provides examples of E field input.

In Table 9-11, the E field descriptor treats the D exponent field indicator the same as an E
exponent indicator.

In an output statement, the E field descriptor constructs a real constant representing the
value of the corresponding I/O list element, rounded to d decimal digits, and writes it to
the right-justified record in an external field w characters long. If the value does not fill
the field, leading spaces are inserted; if the value exceeds the field width, the entire field
is filled with asterisks.

When an E field descriptor is used, data output is transferred in a standard form. This
form consists of

• minus sign for a negative value or a plus sign (when SP is in effect) for a positive
value

• digits to the left of the decimal point, if any, or an optional zero

• decimal point

• d digits to the right of the decimal point

• an e + 2-character exponent or a 4-character exponent

Table 9-11 E Field Output Examples

Format External Field Internal Value

e9.3 654321E3 .654321E+06

e12.4 1234.56E-6 .123456E-02

e15.3 12.3456789 .123456789E+02

e12.5 123.4567d+10 .1234567E+13

Field Descriptor Reference

213

The exponent has one of the following forms:

Ew.d E + nn or E –nn if the value of the exponent is in the range of –99 to +99

Ew.d +nnn or –nnn if the value of the exponent is <= –99 or <= +99

Ew.dEe E + n1 n2… n sub e or E – n1 n2… n sub e, where n1 n2… ne is the
magnitude of the exponent with leading zeros, if necessary.

The exponent field-width specification is optional; if it is omitted, the exponent part is as
shown above. If the exponent value is too large to be output with the given value e as
shown in the third form above, the entire field is filled with asterisks.

The term w must be large enough to include

• a minus sign when necessary (plus signs when SP is in effect)

• all significant digits to the left of the decimal point

• a decimal point

• d digits to the right of the decimal point

• the exponent

Given these limitations and assuming a P edit descriptor is in effect, w is greater than or
equal to d + 7, or greater than or equal to d + e + 5 if e is present.

Table 9-12 provides examples of E field output.

Table 9-12 E Field Output Examples

Format Internal Value External Field

E9.2 .987654321E+06 .99E+06

e12.5 .987654321E+06 .98765E+06

e12.3 .69E–5 .690E–05

e10.3 –.5555E+00 –.556E+00

e5.3 .7214E+02 *****

e14.5E4 –.1001E+01 –.10010E+0001

e14.3E6 .123e–06 .123E–000003

214

Chapter 9: Format Specification

D Field Descriptor

The D field descriptor transfers real values in exponential form. It has the form

Dw.d

where

w is a nonzero, unsigned integer constant denoting field width.

d is an unsigned integer constant denoting the number of digits in the
fractional part.

The corresponding I/O list element must be of REAL, DOUBLE PRECISION, or
COMPLEX data type.

In an input statement, the D field descriptor interprets and assigns data in exactly the
same way as the F field descriptor.

Table 9-13 provides examples of D field input.

In an output statement, the D field descriptor is the same as the E field descriptor, except
the D exponent field indicator replaces the E indicator.

Table 9-14 provides examples of D field output.

Table 9-13 D Field Input Examples

Format External Field Internal Value

d10.2 12345 .12345E+03

d10.2 123.45 .12345E+03

d15.3 123.4567891D+04 .1234567891E+07

Table 9-14 D Field Output Examples

Format Internal Value External Field

d14.3 123d - 04 .123D - 04

d23.12 123456789123d + 04 .123456789123D + 04

d9.5 14D + 01 *********

Field Descriptor Reference

215

G Field Descriptor

A G field descriptor is used for the conversion and editing of real data when the
magnitude of the data is unknown. On output, the G field descriptor produces a field as
do the F or E field descriptors, depending on the value. On input, the G field descriptor
interprets and assigns data in exactly the same way as the F field descriptor. It has the
form

Gw.d[Ee]

where

w is a nonzero, unsigned integer constant denoting field width.

d is an unsigned integer constant denoting the number of digits in the
basic value part.

e is a nonzero, unsigned integer constant denoting the number of digits in
the exponent part.

The corresponding I/O list element must be of REAL, DOUBLE PRECISION, or
COMPLEX data type.

In an input statement, the G field descriptor interprets and assigns data in exactly the
same way as the F field descriptor.

In an output statement, the G field descriptor constructs a real constant representing the
value of the corresponding I/O list element rounded to d decimal digits and writes it to
the right-justified record in an external field w characters long. The form in which the
value is written is a function of the magnitude of the value m, as described in Table 9-1.
In the table, n is 4 if Ee was omitted from the G field descriptor; otherwise n is e + 2.

216

Chapter 9: Format Specification

Table 9-15 illustrates the effect of data magnitude on G format conventions.

The term w must be large enough to include

• a minus sign for a negative value or a plus sign (when SP is in effect) for a positive
value

• a decimal point

• d digits in the basic value part

• either a 4-character or e + 2-character exponent part

Given these limitations, w must therefore be d + 7 or d + e + 5.

Table 9-15 Effect of Data Magnitude on G Format Conventions

Data Magnitude Effective Format

m < 0.1 Ew.d[Ee]

0.1 ≤ m < 1.0 F(w-n).d, n ('")

1.0 ≤ m < 10.0 F(w-n).(d-1) ('')

 .
 .
 .

 .
 .
 .

10 d-2 ≤ m < 10d-1 F(w-n).1, n ('')

10 d-1 ≤ m < 10d F(w-n).0n ('')

 m ≥ 10d Ew.d[Ee]

Field Descriptor Reference

217

Table 9-16 provides examples of G field output.

For comparison, the examples in Table 9-17 use the same values with an equivalent F
field descriptor.

Table 9-16 G Field Output Examples

Format Internal Value External Field

g13.6 .1234567E-01 .1234567E-01

g13.6 -.12345678E00 –.123457

g13.6 .123456789E+01 1.23457

g13.6 .1234567890E+02 12.3457

g13.6 .12345678901E+03 123.457

g13.6 -.123456789012E+04 –1234.57

g13.6 .1234567890123E+05 12345.7

g13.6 .12345678901234E+06 123457.

g13.6 -.123456789012345E+07 –.123457E+07

Table 9-17 Field Comparison Examples

Format Internal Value External Field

f13.6 .1234567E-01 .012346

f13.6 -.12345678E00 –.123457

f13.6 .123456789E+01 1.234568

f13.6 .1234567890E+02 12.345679

f13.6 .12345678901E+03 123.456789

f13.6 -.123456789012E+04 –1234.567890

f13.6 .1234567890123E+05 12345.678901

f13.6 .12345678901234E+06 123456.789012

F13.6 -.123456789012345E+07 *************

218

Chapter 9: Format Specification

P Edit Descriptor

The P edit descriptor specifies a scale factor and has the form

kP

where k is an optionally signed integer constant called the scale factor.

A P edit descriptor can appear anywhere in a format specification but must precede the
first field descriptor that is to be associated with it. For example

kPFw.d kPEw.d kPD w.d kPGw.d

The value of k must not be greater than d + 1, where d is the number of digits in the Ew.d,
Dw.d, or Gw.d output fields.

Scale Factor

The scale factor, k, determines the appropriate editing as follows:

• For input with F, E, D, and G editing (provided there is no exponent in the field)
and F output editing, the magnitude represented by the external field equals the
magnitude of the internal value multiplied by 10k.

• For input with F, E, D, and G editing containing a real exponent, the scale factor has
no effect.

• For output with E and D editing, the basic value part is multiplied by 10k and the
real exponent is reduced by k.

• For output with G editing, the scale factor has no effect unless the data to be edited
is outside the range that permits F editing. If the use of E editing is required, the
effect of the scale factor is the same as E output editing. (See Real Type in Chapter
2.)

On input, if no exponent is given, the scale factor in any of the above field descriptors
multiplies the data by 10-k and assigns it to the corresponding I/O list element. For
example, a 2P scale factor multiplies an input value by .01. A – 2P scale factor multiplies
an input value by 100. However, if the external field contains an explicit exponent, the
scale factor has no effect. Table 9-18 gives examples of scale factors.

Field Descriptor Reference

219

On output, the effect of the scale factor depends on the type of field descriptor associated
with it.

For the F field descriptor, the value of the I/O list element is multiplied by 10k before
transfer to the external record: a positive scale factor moves the decimal point to the right;
a negative scale factor moves the decimal point to the left. The value represented is 10k

multiplied by the internal value.

For output with the E or D field descriptor, the basic real constant part of the external
field is multiplied by 10k and the exponent is reduced by k. The value represented is
unchanged. A positive scale factor moves the decimal point to the right and decreases the
exponent; a negative scale factor moves the decimal point to the left and increases the
exponent. In summation,

k > 0 moves the decimal point k digits to the right.

k < 0 moves the decimal point k digits to the left.

k = 0 leaves the decimal point unchanged.

Table 9-19 provides scale format output examples.

Table 9-18 Scale Factor Examples

Format External Field Internal Value

3pe10.5 " 37.614" .37614E-01

3PE10.5 " 37.614E2" .37614E+04

-3pe10.5 " 37.614" .37614e+05

Table 9-19 Scale Format Output Examples

Format Internal Value External Field

1PE12.3 –.270139E+03 2.701E+0 2

1PE12.2 –270139E+03 2.70E+02

-1pe12.2 –.270139E+03 0.03E+04

220

Chapter 9: Format Specification

On output, the effect of the scale factor for the G field descriptor is suspended if the
magnitude of the output data is within the range permitting F editing because the G field
descriptor supplies its own scaling function. The G field descriptor functions as an E field
descriptor if the magnitude of the data value is outside its range. In this case, the scale
factor has the same effect as the E field descriptor.

On output under F field descriptor control, a scale factor actually alters the magnitude of
the value represented, multiplying or dividing it by ten. On output, a scale factor under
E, D, or G field descriptor control merely alters the form in which the value is
represented.

If you do not specify a scale factor with a field descriptor, a scale factor of zero is assumed
at the beginning of the execution of the statement. Once a scale factor is specified, it
applies to all subsequent F, E, D, and G field descriptors in the same format specification,
unless another scale factor appears. A scale factor of zero can be reinstated only with an
explicit P specification.

L Edit Descriptor

The L edit descriptor is used for logical data. The specified I/O list item must be of type
LOGICAL. It has the form

Lw

where w is a nonzero, unsigned integer constant denoting field width.

For input, the field must consist of optional blanks followed by an optional decimal point
followed by a T (for true) or F (for false). The T or F can be followed by additional
characters that have no effect. The logical constants .TRUE. and .FALSE. are acceptable
input forms.

For output, the field consists of w – 1 blanks followed by a T or an F, for true and false,
respectively, according to the value of the internal data. Table 9-20 shows L field
examples.

Field Descriptor Reference

221

The L edit descriptor can also be used to process integer data items. All nonzero values
are displayed as .TRUE. and all zero values as .FALSE..

A Edit Descriptor

The A edit descriptor is used for editing character or Hollerith data. It has the form

A[w]

where w is a nonzero, unsigned integer constant denoting the width, in number of
characters, of the external data field. If w is omitted, the size of the I/O list item
determines the length w.

The corresponding I/O list item can be any data type. If it is character data type,
character data is transmitted. If it is any other data type, Hollerith data is transmitted.

In an input statement, the A edit descriptor reads a field of w characters from the record
without interpretation and assigns it to the corresponding I/O list item. The maximum
number of characters that can be stored depends on the size of the I/O list item. For
character I/O list elements, the size is the length of the character variable, character
substring reference, or character array element. For numeric and logical I/O list
elements, the size depends on the data type, as shown in Table 9-21.

Table 9-20 L Field Examples

Format Internal Value External Field

L5 .TRUE. T

l1 .FALSE. F

222

Chapter 9: Format Specification

If w is greater than the maximum number of characters that can be stored in the
corresponding I/O list item, only the right most characters of the field are assigned to
that element. The left most excess characters are ignored. If w is less than the number of
characters that can be stored, w characters are assigned to the list item and left justified,
and trailing blanks are added to fill it to its maximum size.

Table 9-21 I/O List Element Sizes

I/O List Element Maximum Number of Characters

LOGICAL*1 1

LOGICAL*2 2

LOGICAL*4 4

LOGICAL*8 8

INTEGER*1 (BYTE) 1

INTEGER*2 2

INTEGER*4 4

INTEGER*8 8

REAL*4 (REAL) 4

REAL*8 (DOUBLE PRECISION) 8

REAL*16 16

COMPLEX*8 (COMPLEX) 8

COMPLEX*16 (DOUBLE COMPLEX) 16

COMPLEX*32 32

Field Descriptor Reference

223

Input Example

Table 9-22 lists A field input examples.

In an output statement, the A field descriptor writes the contents of the corresponding
I/O list item to the record as an external field w characters long. If w is greater than the
list item size, the data appears in the field, right justified, with leading blanks. If w is less
than the list element, only the left most w characters from the I/O list item are
transferred.

Table 9-23 lists A field output examples.

If you omit w in an A field descriptor, a default value is supplied based on the data type
of the I/O list item. If it is character type, the default value is the length of the I/O list

Table 9-22 A Field Input Examples

Format External Field Internal Value Representation

A6 FACE # "#" (CHARACTER*1)

A6 FACE # "E #" (CHARACTER*3)

A6 FACE # "FACE #" (CHARACTER*6)

A6 FACE # "FACE #" (CHARACTER*8)

A6 FACE # "#" (LOGICAL*1)

A6 FACE # "#" (INTEGER*2)

A6 FACE # "CE #" (REAL*4)

A6 FACE # "FACE #" (REAL*8)

Table 9-23 A Field Output Examples

Format Internal Value External Field

A6 "GREEK" GREEK

A6 "FRENCH" FRENCH

A6 "PORTUGUESE" PORTUG

224

Chapter 9: Format Specification

element. If it is numeric or logical data type, the default value is the maximum number
of characters that can be stored in a variable of that data type as described for input.

Repeat Counts

The I, O, Z, F, E, D, G, L, and A field descriptors can be applied to a number of successive
I/O list items by preceding the field descriptor with an unsigned integer constant, called
the repeat count. For example, 4F5.2 is equivalent to F5.2, F5.2, F5.2, F5.2.

Enclosing a group of field descriptors in parentheses, and preceding the enclosed group
with a repeat count, repeats the entire group. Thus, 2(I6,F8.4) is equivalent to
I6,F8.4,I6,F8.4.

H Field Descriptor

The H field descriptor is used for output of character literal data. It has the form:

nHxxx… x

where

n is an unsigned integer constant denoting the number of characters that
comprise the character literal.

x comprises the character literal and consists of n characters, including
blanks.

In an output statement, the H field descriptor writes the n characters following the letter
H from the field descriptor to the record as an external field n characters long. The H field
descriptor does not correspond to an output list item.

Table 9-24 lists examples of H edit description output.

Table 9-24 H Edit Description Output Examples

Specification External Field

6HAb CdE Ab CdE

1H9 9

4H'a2' 'a2'

Field Descriptor Reference

225

An H field descriptor must not be encountered by a READ statement.

Character Edit Descriptor

A character edit descriptor has one of the following forms:

'X1 X2 … Xn'

X1 X2 … Xn

where X1 X2 … Xn are members of the Fortran character set forming a valid character
literal. The width of the output field is the number of characters contained in the
character literal, excluding the enclosing apostrophes or quotation marks. The character
edit descriptor does not correspond to an output list item. Within a character edit
descriptor delimited by apostrophes, an apostrophe is represented by two successive
apostrophe characters. Within a character edit descriptor delimited by quotation marks,
a quotation mark is represented by two successive quotation mark characters.

Example

Table 9-25 lists character edit description examples.

A character edit descriptor must not be encountered by a READ statement.

Use of quotation marks as a character edit descriptor is an enhancement to Fortran 77.

Table 9-25 Character Edit Description Examples

Output Specification External Field

'sum =' sum =

.sum = sum =

.don't don't

'here''s the answer' here's the answer

'he said, "yes"' he said, "yes"

.he said, ""yes"" he said, "yes"

226

Chapter 9: Format Specification

Q Edit Descriptor

The Q edit descriptor is used to determine the number of characters remaining to be read
from the current input record. It has the form

Q

When a Q descriptor is encountered during the execution of an input statement, the
corresponding input list item must be type integer. Interpretation of the Q edit descriptor
causes the input list item to be defined with a value that represents the number of
character positions in the formatted record remaining to be read. Therefore, if c is the
character position within the current record of the next character to be read and the
record consists of len characters, then the item is defined with the value

n = max (len - c + 1, 0)

If no characters have yet been read, then n = len, the length of the record. If all the
characters of the record have been read (c > len), then n is zero.

The Q edit descriptor must not be encountered during the execution of an output
statement.

Input Example

The following is an example of Q edit description input:

 INTEGER N
 CHARACTER LINE * 80
 READ (5, 100) N, LINE (1:N)
100 FORMAT (Q, A)

Edit Descriptor Reference

After each I, O, Z, F, E, D, G, L, A, H, or character edit descriptor is processed, the file is
positioned after the last character read or written in the current record.

The X, T, TL, and TR descriptors specify the position at which the next character will be
transmitted to or from the record. They do not change any characters in the record
already written or by themselves affect the length of the record.

Edit Descriptor Reference

227

If characters are transmitted to positions at or after the position specified by a T, TL, TR,
or X edit descriptor, positions skipped and not previously filled are filled with blanks.

X Edit Descriptor

The X edit descriptor specifies a position forward (to the right) of the current position. It
is used to skip characters on the external medium for input and output. It has the form

nX

where n is a nonzero, unsigned integer constant denoting the number of characters to be
skipped.

T Edit Descriptor

The T edit descriptor specifies an absolute position in an input or output record. It has
the form:

Tn

where n indicates that the next character transferred to or from the record is the nth
character of the record.

TL Edit Descriptor

The TL edit descriptor specifies a position to the left of the current position. It has the
form

TLn

where n indicates that the next character to be transferred from or to the record is the nth
character to the left of the current character. The value of n must be greater than or equal
to one.

If n is the current character position, then the first character in the record is specified.

228

Chapter 9: Format Specification

TR Edit Descriptor

The TR edit descriptor specifies a position to the right of the current position. It has the
form

TRn

where n indicates that the next character to be transferred from or to a record is the nth
character to the right of the current character. The value of n must be greater than or equal
to one.

BN Edit Descriptor

The BN edit descriptor causes the processor to ignore blank characters in a numeric input
field and to right justify the remaining characters, as though the blanks that were ignored
were leading blanks. It has the form

BN

The BN descriptor affects only I, O, Z, F, E, D, and G editing and then only on input
fields.

BZ Edit Descriptor

The BZ edit descriptor causes the processor to treat all the embedded and trailing blank
characters it encounters within a numeric input field as zeros. It has the form:

BZ

The BZ descriptor affects only I, O, Z, F, E, D, and G editing and then only on input fields.

SP Edit Descriptor

The SP edit descriptor specifies that a plus sign be inserted in any character position that
normally contains an optional plus sign and whose actual value is 0. It has the form

SP

The SP descriptor affects only I, F, E, D, and G editing and then only on output fields.

Edit Descriptor Reference

229

SS Edit Descriptor

The SS edit descriptor specifies that a plus sign should not be inserted in any character
position that normally contains an optional plus sign. It has the form

SS

The SS descriptor affects only I, F, E, D, and G editing and then only on output fields.

S Edit Descriptor

The S edit descriptor resets the option of inserting plus characters (+) in numeric output
fields to the processor default. It has the form

S

The S descriptor counters the action of either the SP or the SS descriptor by restoring to
the processor the discretion of producing plus characters (+) on an optional basis. The
default is to SS processing; the optional plus sign is not inserted when S is in effect.

The S descriptor affects only I, F, E, D, and G editing and then only on output fields.

Colon Descriptor

The colon character (:) in a format specification terminates format control if no more
items are in the I/O list. The colon descriptor has no effect if I/O list items remain.

$ Edit Descriptor

The $ edit descriptor suppresses the terminal line-mark character at the end of the
current output record. It has the form

$

The $ descriptor is nonrepeatable and is ignored when encountered during input
operations.

230

Chapter 9: Format Specification

Output Example

 print 100, 'enter a number:'
100 format (1x, a, $)
 read *, x

Complex Data Editing

A complex value consists of an ordered pair of real values. If an F, E, D, or G field
descriptor is encountered, and the next I/O list item is complex, then the descriptor is
used to edit the real part of the complex item. The next field descriptor is used to edit the
imaginary part.

If an A field descriptor is encountered on input or output, and the next I/O list item is
complex, then the A field descriptor is used to translate Hollerith data to or from the
external field and the entire complex list item. The real and imaginary parts together are
treated as a single I/O list item.

In an input statement with F, E, D, or G field descriptors in effect, the two successive
fields are read and assigned to a complex I/O list element as its real and imaginary parts,
respectively.

Table 9-26 contains examples of complex data editing input.

In an output statement with F, E, D, or G field descriptors in effect, the two parts of a
complex value are transferred under the control of successive field descriptors. The two
parts are transferred consecutively, without punctuation or spacing, unless the format
specification states otherwise.

Table 9-26 Complex Data Editing Input Examples

Format External Field Internal Value

f8.5,f8.5 1234567812345.67 (.12345678E+03,.1234567E+05)

f9.1,f9.3 734.432E8123456789 (.734432E+11,.123456789E+06)

Complex Data Editing

231

Table 9-27 contains examples of complex data editing output.

Carriage Control

A formatted record can contain a prescribed carriage-control character as the first
character of the record. The carriage-control character determines vertical spacing in
printing when the CARRIAGECONTROL keyword of the OPEN statement is set to
FORTRAN (as described in “OPEN” on page 158 of Chapter 8, “Input/Output
Statements.”) Table 9-28 lists the carriage-control characters.

The carriage-control character is not printed, and the remaining characters, if any, are
printed on one line beginning at the left margin. If there are no characters in the record,
the vertical spacing is one line and no characters will be printed in that line.

Table 9-27 Complex Data Editing Output Examples

Format Internal Value External Field

2f8.5 (.23547188E+01,.3456732E+01) 2.35472 3.45673

e9.2,",",e5.3 (.47587222E+05,.56123E+02) 0.48E+06, *****

Table 9-28 Carriage-Control Characters

Character Effect on Spacing

Blank Single space

0 Double space

1 To first line of next page

+ No vertical spacing

$ Output starts at the beginning of the next line; carriage
return at the end of the line is suppressed

ASCII NUL Overprints with no advance; does not return to the left
margin after printing

232

Chapter 9: Format Specification

Slash Editing

A slash (/) placed in a format specification terminates input or output for the current
record and initiates a new record. For example

 WRITE (6,40) K,L,M,N,O,P
40 FORMAT (3I6.6/I6,2F8.4)

is equivalent to

 WRITE (6,40) K,L,M
40 FORMAT (3I6.6)
 WRITE (6,50) N,O,P
50 FORMAT (I6,2F8.4)

On input from a sequential-access file, the current portion of the remaining record is
skipped, a new record is read, and the current position is set to the first character of the
record. n slashes in succession cause n – 1 records to be skipped.

On output to a file connected for sequential access, a new record is created and becomes
the last and current record of the file. Also, n slashes in succession cause n – 1 blank lines
to be generated.

Through the use of two or more successive slashes in a format specification, entire
records can be skipped for input and records containing no characters can be generated
for output. If the file is an internal file, or a file connected for direct access, skipped
records are filled with blank characters on output.

n slashes at the beginning or end of a format specification result in n skipped or blank
records. On input and output from a direct-access file, the record number is increased by
one and the file is positioned at the beginning of the record that has that record number.
This record becomes the current record.

Interaction Between I/O List and Format

The beginning of formatted data transfer using a format specification initiates format
control. Each action of format control depends on information jointly provided by

• the next descriptor contained in the format specification

• the next item in the I/O list, if one exists

List-Directed Formatting

233

If an I/O list specifies at least one list item, at least one repeatable descriptor must exist
in the format specification. Note that an empty format specification of the form () can be
used only if no list items are specified; in this case, one input record is skipped or one
output record containing no characters is written.

Except for a field descriptor preceded by a repeat specification, r ed, or a format
specification preceded by a repeat specification, r (flist), a format specification is
interpreted from left to right (see “Repeat Counts” on page 224). Note that an omitted
repeat specification is treated the same as a repeat specification whose value is one.

To each repeatable field descriptor interpreted in a format specification, there
corresponds one item specified by the I/O list, except that a list item of type complex is
treated as two real items when an F, E, D, or G field descriptor is encountered. To each P,
X, T, TL, TR, S, SP, SS, H, BN, BZ, slash (/), colon (:), dollar sign ($), or character edit
descriptor, there is no corresponding item specified by the I/O list, and format control
communicates information directly to the record.

Whenever format control encounters a repeatable edit descriptor in a format
specification, it determines whether there is another item in the I/O list. If there is such
an item, it transmits appropriately edited information between the item and the record,
and then format control proceeds. If there is no other item, format control terminates.

If format control encounters the right most parenthesis of a complete format specification
and no items remain in the list, format control terminates. However, if there are more
items in the list, the file is positioned at the beginning of the next record, and format
control then reverts to the beginning of the format specification terminated by the last
preceding right parenthesis ()). If there is no such preceding right parenthesis ()), format
control reverts to the first left parenthesis (() of the format specification. If such a
reversion occurs, the reused portion of the format specification must contain at least one
repeatable edit descriptor. If format control reverts to a parenthesis that is preceded by a
repeat specification, the repeat specification is reused. Reversion of format control, of
itself, has no effect on the scale factor (see “D Field Descriptor” on page 214) the S, SP, or
SS edit descriptor sign control, or the BN or BZ edit descriptor blank control.

List-Directed Formatting

List-directed formatting allows formatted input and output without specifying a format
specification. An asterisk (*) is used as a format identifier to invoke a list-directed format.

234

Chapter 9: Format Specification

List-directed formatting can be applied to both internal and external files.

List-Directed Input

The characters in one or more list-directed records form a sequence of values and value
separators. Each value is either a constant, or a null value or has one of the following
forms:

r*c

r*

where

r is a nonzero, unsigned integer constant denoting the number of
successive appearances of c or null values.

c is a constant.

The r* form is equivalent to r successive null values. Neither form can contain embedded
blanks, except where permitted within the constant c.

Data values can be separated with one of the following value separators:

• A comma optionally preceded and followed by one or more contiguous blanks.

• A slash (/) optionally preceded and followed by one or more contiguous blanks. A
slash encountered by a list-directed input statement ends the execution of the input
statement after assignment of the previous value, if any; any remaining list items
are treated as if null values were supplied. A slash is not used as a separator on
output.

• One or more contiguous blanks between two constants or following the last
constant. Blanks used in the following manner are not treated as part of any value
separator in a list-directed input record:

– blanks within a character constant

– embedded blanks surrounding the real or imaginary part of a complex constant

– leading blanks in the first record read by each execution of a list-directed input
statement, unless immediately followed by a slash or comma

List-Directed Formatting

235

The end of a record has the effect of a blank, except when it appears within a character
constant. Two or more consecutive blanks are treated as a single blank, unless they occur
within a character constant.

There are three differences between the input forms acceptable to format specifiers for a
data type and those used for list-directed formatting. A data value must have the same
type as the list item to which it corresponds. Blanks are not interpreted as zeros.
Embedded blanks are only allowed in constants of character or complex type.

Rules governing input forms of list items for list-directed formatting are

• For data of type real or double precision, the input form is the same as a numeric
input field for F editing that has no fractional part, unless a decimal point appears
within the field.

• For data of type complex, the input form consists of an ordered pair of numeric
constants separated by a comma and enclosed in a pair of parentheses. The first
numeric constant is the real part of the complex value, while the second constant is
the imaginary part. Each of the constants representing the real and imaginary parts
may be preceded or followed by blanks. The end of a record may occur between the
real part and the comma or between the comma and the imaginary part.

• For data of type logical, the input form must not include either slashes or commas
among the optional characters allowed for L editing.

• For data of type character, the input form is a character constant: a non empty string
of characters enclosed in apostrophes or quotation marks. When apostrophes are
used as the character constant delimiter, each apostrophe within the apostrophes is
represented by a pair of apostrophes without an intervening blank or end of record.

When quotation marks are used as the character constant delimiter, each quotation
mark within the quotation marks is represented by a pair of quotation marks
without an intervening blank or end of record. Character constants can be
continued on as many records as needed. Constants are assigned to list items as in
character assignment statements.

• A null value is specified by two successive value separators, by the r* form, or by
not having any characters before the first value separator in the first record read by
the execution of the list-directed statement. A null value has no effect on the
corresponding list item. A single null value may represent an entire complex
constant but cannot be used as either the real or imaginary part alone.

236

Chapter 9: Format Specification

• You can specify commas as value separators in the input record when executing a
formatted read of noncharacter variables. The commas override the field lengths in
the input statement. For example, the following specification:

(i10, f20.10,i4)

reads the following record correctly:

-345,.05e-3,12

List-Directed Output

The form of the values produced is the same as that required for input, except as noted
below:

• Logical output constants are T for the value true and F for the value false.

• Integer output constants are produced as for an Iw edit descriptor, where w depends
on whether the list item is INTEGER*2, INTEGER*4, or INTEGER*8.

• For complex constants, the end of a record will occur between the comma and the
imaginary part only if the entire constant is as long as, or longer than, an entire
record.

• Produced character constants are not delimited by apostrophes or quotation marks,
are not preceded or followed by a value separator, and have each internal
apostrophe represented externally by one apostrophe and each internal quotation
mark represented by one quotation mark. A blank character for carriage control is
inserted at the beginning of a record containing the continuation of a character
constant.

• Slashes and null values are not produced, but each record begins with a blank
character to provide carriage control if the record is printed.

• Two noncharacter values in succession in the same record will be separated by a
value separator of one or more blanks. No value separator is produced before or
after a character value.

237

Chapter 10

10. Statement Functions and Subprograms

This chapter contains the following subsections:

• “Overview”

• “Statement Functions”

• “Parameter Passing”

• “Function and Subroutine Subprograms”

• “FUNCTION”

• “SUBROUTINE”

• “ENTRY”

• “INCLUDE”

Statement functions and subprograms are program units that receive control when
referenced or called by a statement in a main program or another subprogram. A
subprogram is either written by the user or supplied with the Fortran compiler. This
chapter discusses user-written subprograms; compiler-supplied functions and
subroutines are discussed in Appendix A, “Intrinsic Functions.”

Overview

This chapter explains the syntax and rules for defining three types of program units:

• Statement functions consist of a single arithmetic statement defined within the main
program unit or a subprogram.

• Function subprograms consist of one or more statements defined external to the main
program unit. They are invoked when referenced as a primary in an expression
contained in another program unit.

238

Chapter 10: Statement Functions and Subprograms

• Subroutine subprograms consist of one or more program statements defined as
external to the main program unit. It is invoked when referenced in a CALL
statement (see Chapter 6, “Control Statements”) in another program unit.

This chapter also explains the syntax and rules for the FUNCTION, SUBROUTINE,
ENTRY, and INCLUDE statements, that are used to specify function and subroutine
subprograms.

Statement Functions

A statement function definition is similar in form to an arithmetic, logical, or character
assignment statement. The name of a statement function is local to the program unit in
which it is defined. A statement function definition must appear only after the
specification statements and before the first executable statement of the program unit in
which it appears.

Defining a Statement Function

A statement function statement has the form

fun ([d [,d]...]) = e

where

fun is a symbolic name of the function.

d is a dummy argument.

e is an expression.

Each dummy argument d is a variable name called a statement function dummy
argument. The statement function dummy argument list indicates the order, number,
and type of arguments for the statement function. All arguments need not have the same
data type. A specific dummy argument may appear only once in the list. A variable name
that serves as a dummy argument can also be the name of a local variable or common
block in the same program unit.

Statement Functions

239

Each primary of the expression e can include

• constants

• symbolic names of constants

• variable references

• array element references

• library function references

• references to other statement functions

• function subprogram references

• dummy subprogram references

• an expression composed of the above forms and enclosed in parentheses

If a statement function dummy argument name is the same as the name of another entity,
the appearance of that name in the expression of a function is a reference to the statement
function dummy argument. A dummy argument that appears in a FUNCTION or
SUBROUTINE statement may be referenced in the expression of a function statement
with the subprogram.

A dummy argument that appears in an ENTRY statement may be referenced in the
expression of the statement function only if the dummy argument name appears in a
FUNCTION, SUBROUTINE, or ENTRY statement preceding the statement function
definition.

Referencing a Statement Function

A statement function is referenced by using its name with actual arguments, if any,
enclosed in parentheses. The form of a statement function reference is

fun([exp[,exp]...])

where

fun is a statement function name.

exp is an expression.

240

Chapter 10: Statement Functions and Subprograms

Operational Conventions and Restrictions

Expressions must agree in order, number, and type with the corresponding dummy
arguments. An expression can be any expression except a character expression involving
concatenation in which the length attribute of one of the operands is specified with an
asterisk.

Execution of a statement function reference results in

• Evaluation of actual arguments (exp) that are expressions.

• Association of actual arguments with their corresponding dummy arguments.

• Evaluation of the expression e in the statement function definition.

• Type conversion of the resulting value to the data type of the function, if necessary.
This value is returned as the value of the statement function reference.

• A statement function can be referenced only in the program unit that contains its
definition. A statement function can reference another statement function that has
been defined before the referencing function but not one that is defined after the
referencing function.

• A statement function name is local to the program unit and must not be used as the
name of any other entity in the program unit except the name of a common block.

• The symbolic name used to identify a statement function cannot appear as a
symbolic name in any specification statement except a type statement (to specify the
type of the function) or as the name of a common block in the same program unit.

• A dummy argument of a statement function must not be redefined or become
undefined through a function subprogram reference in the expression of a
statement function.

• The symbolic name of a statement function cannot be an actual argument and must
not appear in an EXTERNAL statement.

• A statement function in a function subprogram cannot contain a function reference
to the name of an entry to the function subprogram.

• The length specification of a statement function dummy argument of type character
must be an integer constant.

Parameter Passing

241

Parameter Passing

Parameter passing involves function and subroutine arguments. This section explains
the difference between actual and dummy arguments. It also describes the special
intrinsic functions %VAL, %REF and %LOC.

Arguments

Dummy arguments are used in function subprograms, subroutine programs, and
statement functions to indicate the types of actual arguments and whether each
argument is a single value, an array of values, a subprogram, or a statement label.
Dummy argument names must not appear in EQUIVALENCE, DATA, PARAMETER,
SAVE, INTRINSIC, or COMMON statements, except as common block names. Dummy
argument names must not be the same as the subprogram names in FUNCTION,
SUBROUTINE, ENTRY, or statement function statements in the same program unit.

Actual arguments are the items that are specified in the call to the function. Actual
arguments are bound to the corresponding dummy arguments when the subprogram
call is reached. Actual arguments can change with each call to the subprogram. Of course,
the types of the paired actual argument and the dummy argument must match. The types
do not have to match if the actual argument is a subroutine name or an alternate return
specifier.

When a function or a subroutine reference is executed, an association is established
between the corresponding dummy and actual arguments. The first dummy argument
becomes associated with the first actual argument, the second dummy argument
becomes associated with the second actual argument, and so on.

An array can be passed to a function or subroutine as an actual argument if the
corresponding dummy argument is also an array declared in a DIMENSION or type
statement but not in a COMMON statement. The size of the array in the calling program
unit must be smaller than or equal to the size of the corresponding dummy array in the
subprogram. The array in the function or subroutine can also have adjustable
dimensions.

242

Chapter 10: Statement Functions and Subprograms

Special Intrinsic Functions

Four special intrinsic functions provide communication with non-Fortran programs that
use different parameter-passing conventions than Fortran. (See Chapter 3 of the MIPSpro
Fortran 77 Programmer’s Guide for information about communicating with programs
written in other languages.)

Use the functions %VAL, %REF, and %DESCR to qualify arguments within an argument
list. The built-in function %LOC can be applied to any espression.

%VAL

The %VAL function causes an argument to be passed as a 64-bit value (normally
arguments are passed by address). The function extends arguments smaller than 64 bits
to 64-bit signed values. The function has the following syntax:

%VAL(a)

where a is an expression that is valid as an argument at this point in the parameter list.
%VAL can only be applied to arithmetic data types. It cannot be applied to
CHARACTER*n values (n>1) nor to RECORD names.

%REF

The %REF function passes an argument by reference. It has the syntax

%REF(a)

where a is an expression that is valid as an argument at this point in the parameter list.
Fortran normally passes arguments by reference (that is, passes the address of the
parameter). Hence, there is no difference in the generated code for a parameter %REF(a)
and the parameter a alone. However, %REF is useful as documentation, and may become
effective when code is ported to a different system with other parameter conventions.

%DESCR

The built-in %DESCR function has no functionality, but is included for compatibility
with VAX Fortran. It has the syntax

%DESCR(a)

where a is an expression that is valid as an argument at this point in the parameter list.

Function and Subroutine Subprograms

243

%LOC

The built-in %LOC function returns a 64-bit run-time address of its argument. It has the
syntax

%LOC(a)

where a is an expression. %LOC can be applied to any expression. Its result is the address
of the expression value, which is usually assigned to a POINTER variable, but which can
be assigned to any INTEGER*8, or which can be passed as a parameter.

Function and Subroutine Subprograms

A function subprogram consists of a FUNCTION statement followed by a program body
that terminates with an END statement. It has the following characteristics:

• defined external to the main program unit

• referenced as a primary in an expression contained in another program unit

• considered part of the calling program

A Fortran program can call a subroutine subprogram written in any language supported
by the RISCompiler System. (See Chapter 3 of the MIPSpro Fortran 77 Programmer’s Guide
for information on writing Fortran programs that interact with programs in other
languages.)

A subroutine subprogram consists of a SUBROUTINE statement, followed by a
program body that terminates with an END statement (see Chapter 6, “Control
Statements”) and is defined external to the main program.

Referencing Functions and Subroutines

A function subprogram is referenced as a primary in an expression, while a subroutine
subprogram is referenced with a CALL statement (see Chapter 6, “Control Statements”)
contained in another program. A reference to a function subprogram has the form

fun([a[,a]...])

where fun is a symbolic name of the function subprogram and a is an actual argument.

244

Chapter 10: Statement Functions and Subprograms

If fun is of type character, then its length must not have been specified with an asterisk (*)
in the calling subprogram.

You can write subroutines that call themselves either directly or through a chain of other
subprograms if the automatic storage of variables is in effect. The –automatic command
line option, by default, causes the automatic storage of variables. See the f77(1) manual
page for details.

The actual arguments comprise an argument list and must agree in order, number, and
type with the corresponding dummy arguments in the referenced function or
subroutine. An actual argument in a function reference must be one of the following:

• an expression, except a character expression, involving concatenation of an operand
whose length is specified by an asterisk

• an array name

• an intrinsic function name

• an external function or subroutine name

• a dummy function or subroutine name

• a Hollerith constant

An actual argument may be a dummy argument that appears in a dummy argument list
within the subprogram containing the reference.

The use of a dummy name allows actual names to be passed through several levels of
program units.

If a Hollerith constant is used as an actual argument in a CALL statement, the
corresponding dummy argument must not be a dummy array and must be of arithmetic
or logical data type.

The same rules apply to the actual arguments in a subroutine reference, except that in
addition to the forms described above, the actual dummy argument of a subroutine may
be an alternate return specifier. An alternate return specifier has the form *s, where s is
the statement label of an executable statement appearing in the same program unit as the
CALL statement.

For example,

SUBROUTINE MAXX(A,B,*,*,C)

Function and Subroutine Subprograms

245

The actual argument list passed in the CALL must include alternate return arguments in
the corresponding positions of the form *s. The value specified for s must be the label of
an executable statement in the program unit that issued the call.

An actual argument can also be omitted by specifying only the comma delimiters
without an argument in between. In this case, the omitted argument is treated as if it were
%VAL (0).

Note that the use of a subroutine name or an alternate return specifier as an actual
argument is an exception to the rule requiring agreement of type. If an external function
or subroutine or dummy name is used as an actual argument, the name must appear in
an EXTERNAL statement. If an intrinsic name is used as an actual argument, the name
must appear in an INTRINSIC statement and must be one of those listed in Appendix A,
“Intrinsic Functions,” as a specific name. It must not be one of the intrinsics for type
conversion, for choosing the largest or smallest value, or for lexical relationship.

Executing Functions and Subroutines

Execution of an reference to a function subprogram and subroutine subprogram results
in

• evaluation of expressions that constitute actual arguments

• association of actual arguments from the calling program unit with the
corresponding dummy arguments in the subprogram

• execution of the statements comprising the subprogram based on the execution
control sequence of the program unit

• return of program control to the calling program unit when either a RETURN
statement is encountered or the execution control flows into the END statement

The name of a function subprogram must appear as a variable at least once in the
subprogram and must be defined at least once during each subprogram execution. Once
the variable is defined, it may be referenced elsewhere in the subprogram and become
redefined. When program control is returned to the calling program, this value is
returned as the value of the function reference. If this variable is a character variable with
a length specified by an asterisk, it may not appear as an operand in a concatenation
operation but can be defined in an assignment statement.

246

Chapter 10: Statement Functions and Subprograms

A subroutine does not return an explicit value to the point of invocation in the calling
program unit. However, both the subroutine and the function can return values to the
calling program unit by defining their dummy arguments during execution.

FUNCTION

The FUNCTION statement is the first statement of a function subprogram. It specifies
the symbolic name of the function and its type.

Syntax

[typ] FUNCTION fun [*len] ([d[,d]…])

where

typ optionally specifies the data type of the function name, which
determines the value returned to the calling program. The following
forms for typ are allowed:

fun is a symbolic name of the function subprogram in which the
FUNCTION statement appears.

len specifies the length of the data type; fun must be a nonzero, unsigned
constant. Do not specify len when the function is type CHARACTER
with an explicit length following the keyword CHARACTER.

d is a dummy argument and can be a variable, array name, or dummy
subprogram name.

BYTE REAL*8 DOUBLE COMPLEX

INTEGER REAL*16 LOGICAL

INTEGER*1 DOUBLE PRECISION LOGICAL*1

INTEGER*2 COMPLEX LOGICAL*2

INTEGER*4 COMPLEX*8 LOGICAL*4

INTEGER*8 COMPLEX*16 LOGICAL*8

REAL COMPLEX*32 CHARACTER [*len]

REAL*4

FUNCTION

247

Rules for Use

• A FUNCTION statement must appear only as the first statement of a function
subprogram.

• The type specification may be omitted from the FUNCTION statement, and the
function name may be specified in a type statement in the same program unit. If
neither of these options is used, the function is implicitly typed.

• The symbolic name of a function is a global name and must not be the same as any
other global or local name, except a variable name, in the function subprogram.

• If the function type is specified in the FUNCTION statement, the function name
must not appear in a type statement.

• In the type specification CHARACTER, len can have any of the forms allowed in a
CHARACTER statement, except that an integer constant expression must not
include the symbolic name of a constant. If the name of the function is type
character, then each entry name in the function subprogram must be type character.
If the length is declared as an asterisk, all such entries must have a length declared
with an asterisk.

• A function specified as a subprogram may be referenced within any other
subprogram or in the main program of the executable program.

Restrictions

• A function subprogram cannot contain a BLOCK DATA, SUBROUTINE, or
PROGRAM statement.

• A function name cannot have its type explicitly specified more than once in a
program unit.

• In a function subprogram, a dummy argument name cannot appear in an
EQUIVALENCE, PARAMETER, SAVE, INTRINSIC, DATA, or COMMON
statement, except as a common block name.

• A character dummy argument with a length specified as an asterisk must not
appear as an operand for concatenation, except in a character assignment statement.

• The compiler system permits recursion if the automatic storage of variables is in
effect. By default, the –automatic command line option (described in Chapter 11,
“Compiler Options”) causes the automatic storage of variables.

248

Chapter 10: Statement Functions and Subprograms

SUBROUTINE

A SUBROUTINE statement must be the first statement of a subroutine subprogram.

Syntax

SUBROUTINE sub[([d [,d]...])]

where

sub is a symbolic name of the subroutine program unit.

d is a dummy argument and may be a variable name, array name, dummy
subprogram name, or asterisk. The asterisk denotes an alternate return.

Rules for Use

• A SUBROUTINE statement must be the first statement of a subroutine
subprogram.

• If there are no dummy arguments, use either of the following forms:

SUBROUTINE sub

SUBROUTINE sub()

• One or more dummy arguments can become defined or redefined to return results.

• The symbolic name of a subroutine is global and cannot be the same as any other
global or local name in the program unit.

• A CALL statement within the body of a subroutine may reference the subroutine
itself (recursion) if the automatic storage attribute is specified. See Chapter 4,
“Specification Statements,” for more information.

Restrictions

• A subroutine subprogram cannot contain a BLOCK DATA, FUNCTION, or
PROGRAM statement.

• In a subroutine, a dummy argument name is local to the program unit and cannot
appear in an EQUIVALENCE, SAVE, INTRINSIC, DATA, or COMMON
statement, except as a common block name.

• A character dummy argument whose length is specified as an asterisk cannot
appear as an operand for concatenation, except in a character assignment statement.

ENTRY

249

ENTRY

The ENTRY statement specifies a secondary entry point in a function or subroutine
subprogram. It allows a subprogram reference to begin with a particular executable
statement within the function or subroutine subprogram in which the ENTRY statement
appears.

Syntax

ENTRY en[([d[,d]...])]

where

en is a symbolic name of the entry point.

d is a dummy argument.

If there are no dummy arguments, use either of the following forms:

ENTRY en

ENTRY en()

Method of Operation

Each ENTRY statement in a function or subroutine provides an additional name you can
use to invoke that subprogram. When you invoke it with one of these names, it begins
execution at the first executable statement following the entry statement that provided
the name.

Within a function, each of its names (the one provided by the FUNCTION statement,
plus the ones provided by the ENTRY statements) acts like a variable. By the time the
function returns, you must have defined the function return value by assigning it to one
of these variables.

If any of these variables is of type character, all must be of type character; otherwise, the
variables need not all have the same data type. Such variables are in effect equivalenced,
and therefore

• You need not assign the return value to the name you used to invoke the function;
instead, you can assign it to any of the names of the same data type.

• If you assign the return value a name that does not have the same data type as the
one you used to invoke the function, then the return value becomes undefined.

250

Chapter 10: Statement Functions and Subprograms

Rules for Use

• The ENTRY statement may appear anywhere within a function subprogram after
the FUNCTION statement or within a subroutine after a SUBROUTINE statement.

• A subprogram can have one or more ENTRY statements.

• The entry name en in a function subprogram can appear in a type statement.

• In a function, a local variable with the same name as one of the entries can be
referenced.

• A subprogram can call itself directly if the automatic storage of variables is in effect.
By default, the –automatic command line option causes the automatic storage of
variables.

• The order, number, type, and names of the dummy arguments in an ENTRY
statement can be different from the dummy arguments in the FUNCTION,
SUBROUTINE, or other ENTRY statements in the same subprogram. However,
each reference to a function or subroutine must use an actual argument list that
agrees in order, number, and type with the dummy argument list in the
corresponding FUNCTION, SUBROUTINE, or ENTRY statement.

Restrictions

• An ENTRY statement must not appear between a block IF statement and its
corresponding END IF statement or between a DO statement and the terminal
statement of the DO loop.

• Within a subprogram, an entry name may not also serve as a dummy argument in a
FUNCTION, SUBROUTINE, or ENTRY statement or be in an EXTERNAL
statement.

• In a function subprogram, an entry name may also be a variable name provided the
variable name is not in any statement (except a type statement) preceding the
ENTRY statement of that name. After the ENTRY statement, the name can be used
as a variable name.

• In a function subprogram, if an entry name is of type character, each entry name
and the name of the function subprogram must also be of type character and must
have the same length declared. If any are of length (*), then all must be of length (*).

INCLUDE

251

• In a subprogram, a name that appears as a dummy argument in an ENTRY
statement is subject to the following restrictions:

– It must not appear in an executable statement preceding that ENTRY statement
unless it also appears in a FUNCTION, SUBROUTINE, or ENTRY statement
preceding the executable statement.

– It must not appear in the expression of a statement function unless the name is
also a dummy argument of the statement function. It can appear in a
FUNCTION or SUBROUTINE statement or in an ENTRY statement
preceding the statement function.

INCLUDE

The INCLUDE statement incorporates the contents of a designated file into the Fortran
compilation directly following this statement.

Syntax

INCLUDE "filename"

where filename is a character string constant that specifies the file to be included.

Rules for Use

• An INCLUDE statement can appear anywhere within a program unit.

• On encountering an INCLUDE statement, the compiler stops reading statements
from the current file and reads the statements in the included file. At the end of the
included file, the compiler resumes reading the current file with the statement
following the INCLUDE statement.

Search Path

On encountering an INCLUDE statement, the compiler searches:

1. for a file called filename in the same directory as the source file

2. the directories specified in any –I command line options (in the order specified)

3. in /usr/include

252

Chapter 10: Statement Functions and Subprograms

Restrictions

• An included file or module cannot begin with a continuation line. Each Fortran
statement must be completely contained within a single file.

• An INCLUDE statement cannot contain continuation lines. The first non comment
line following the INCLUDE statement cannot be a continuation line.

• An INCLUDE statement cannot be labeled. It must not have a statement number in
the statement number field.

253

Chapter 11

11. Compiler Options

This chapter contains the following subsections:

• “OPTIONS Statement”

• “In-Line Options”

• “$INCLUDE Statement”

This chapter describes options that affect source programs both during compilation and
at run time. Execute these options using

• OPTIONS statement—specified in the source code as the first statement of a
program unit

• In-line options—individual statements embedded in the source code

• $INCLUDE statement—includes Fortran source statements from an external
library into a program

The command line options, which are parameters specified as part of the f77 command
when the compiler is invoked, are explained in the MIPSpro Fortran 77 Programmer’s
Guide.

OPTIONS Statement

The OPTIONS statement has the following syntax:

OPTIONS option[option...]

where option can be any of the following:

/I4 /NOF77 /CHECK=BOUNDS

/NOI4 /EXTEND_SOURCE /CHECK=NOBOUNDS

/F77 /NOEXTEND_SOURCE

254

Chapter 11: Compiler Options

These options perform the same function as the like-named command line options. See
Chapter 1 of the MIPSpro Fortran 77 Programmer’s Guide for a description of these options.
Specifying option overrides a command line option when they are the same. option must
always be preceded by a slash (/).

Use the following rules when specifying an OPTIONS statement:

• The statement must be the first statement in a program unit and must precede the
PROGRAM, SUBROUTINE, FUNCTION, and BLOCK DATA statements.

• option remains in effect only for the duration of the program unit in which it is
defined.

In-Line Options

The syntax for in-line compiler options consists of a dollar sign ($) in column 1 of a source
record, followed by the name of the compiler option in either uppercase or lowercase,
with no intervening blanks or other separators.

When an in-line compiler option is encountered in a source file, that option is put into
effect beginning with the source statement following the in-line compiler option. The
sections that follow describe the in-line compiler options supported by the compiler.

The compiler does not support the following options, but, for compatibility with other
compilers, it does recognize them:

When it encounters one of these options, the compiler issues a warning message and
treats it as a comment line.

$COL72 Option

The $COL72 option instructs the compiler to process all subsequent Fortran source
statements according to the fixed-format 72-column mode described under “Source

ARGCHECK NOTBINARY

BINARY SEGMENT

CHAREQU SYSTEM

NOARGCHECK XREF

In-Line Options

255

Program Lines” in Chapter 1. The compiler command line option –col72 has an identical
effect on a global basis.

$COL120 Option

The $COL120 option instructs the compiler to process all subsequent Fortran source
statements according to the fixed-format 120-column mode. The compiler command line
option –col120 has an identical effect on a global basis.

$INT2 Option

The $INT2 option instructs the compiler to make INTEGER*2 the default integer type
and LOGICAL*1 the default logical type. This convention stays in effect for the
remainder of the program and involves any symbolic names that are assigned a data type
either by implicit typing rules or by using INTEGER or LOGICAL declaration
statements without a type length being specified. This option is similar to the –i2
command line option except for the effect on the default logical type.

$INT8 Option

The $INT8 option instructs the compiler to make INTEGER*8 the default integer type
and LOGICAL*1 the default logical type. This convention stays in effect for the
remainder of the program and involves any symbolic names that are assigned a data type
either by implicit typing rules or by using INTEGER or LOGICAL declaration
statements without a type length being specified. This option is similar to the –i8
command line option except for the effect on the default logical type.

$LOG2 Option

The $LOG2 option instructs the compiler to make LOGICAL*2 instead of LOGICAL*4
the default type for LOGICAL. This convention stays in effect for the remainder of the
program and involves any symbolic names that are assigned a data type either by
implicit typing rules or by using the LOGICAL declaration statement without a type
length being specified

256

Chapter 11: Compiler Options

$LOG8 Option

The $LOG8 option instructs the compiler to make LOGICAL*8 instead of LOGICAL*4
the default type for LOGICAL. This convention stays in effect for the remainder of the
program and involves any symbolic names that are assigned a data type either by
implicit typing rules or by using the LOGICAL declaration statement without a type
length being specified.

$INCLUDE Statement

The $INCLUDE statement includes source lines from secondary files in the current
primary source program. This feature is especially useful when two or more separately
compiled source programs require an identical sequence of source statements (for
example, data declaration statements).

The form of the $INCLUDE statement is

$INCLUDE filename

where filename is either an absolute or relative UNIX file name. If the filename is relative
and no file exists by that name relative to the current working directory, an error is given
and no attempt is made to search an alternative path. The material introduced into the
source program by the $INCLUDE statement will follow the $INCLUDE statement,
beginning on the next line. Nesting of $INCLUDE statements is permitted within the
constraints of the operating system.

Search Path

On encountering the $INCLUDE statement, the compiler searches:

1. for a file called filename in the same directory as the source file

2. the directories specified in any –I command line options (in the order specified)

3. in /usr/include

257

Appendix A

A. Intrinsic Functions

This appendix summarizes the intrinsic functions that can be called from a Fortran
program. Each function is also listed on a reference page; for example AINT is listed on
the aint(3f) reference page.

Besides the standard intrinsic functions discussed here, MIPSpro Fortran 77 also
supports extended intrinsic subroutines and a few extended intrinsic functions. Refer to
Chapter 4 of the MIPSpro Fortran 77 Programmer's Guide for documentation about these
extended features.

This appendix contains the following subsections:

• “Generic and Specific Names”

• “Operational Conventions and Restrictions”

• “Table of Functions”

258

Appendix A: Intrinsic Functions

Generic and Specific Names

A generic name is the name given to a class of objects. Intrinsic functions that perform the
same mathematical function, such as square root, are given a single name. For example,
the generic name of the square root function is SQRT; this function has six specific names
for different data types: SQRT, DSQRT, QSQRT, CSQRT, ZSQRT, and CQSQRT (see
Table A-1). However, you can use the generic name SQRT regardless of the data type of
the arguments.

An intrinsic function preceded by the letters CD is equivalent to the generic function
with the same base name, except that the arguments must be of type DOUBLE
COMPLEX.

Intrinsic functions starting with II are equivalent to generic functions with the same base
name, except that the arguments must of type INTEGER*2. Similarly, arguments to
intrinsic functions starting with JI must be type INTEGER*4: for example, IIAND,
IIQINT, IIQNNT, JIQINT, JIQNNT.

A function reference can be used as a primary in an expression. The following example
involves referencing an intrinsic function:

X = SQRT(B**2-4*A*C)

The result of a function becomes undefined when its arguments are not mathematically
defined or exceed the numeric range of the processor.

Operational Conventions and Restrictions

For most intrinsic functions, the data type of the result of the intrinsic function is the
same as the arguments. If two or more arguments are required or permitted, then all
arguments must be of the same type. An IMPLICIT statement does not change the data
type of a specific or generic name of an intrinsic function.

If an intrinsic function name is used as an actual argument in an external procedure
reference, the name must be one of the specific names and must appear in an
INTRINSIC statement. However, names of intrinsic functions for type conversion, for
lexical relationship, and for choosing the smallest or largest value cannot be used as
actual arguments.

Table of Functions

259

Table of Functions

Table A-1 lists the available intrinsic functions. Operational conventions and restrictions
(other than those already given) are listed at the end of the table.

Table A-1 Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

Conversion to
INTEGER

1 INTa —

—

—

—

—

—

—

—

IINT

JINT

KINT

IIDINT

JIDINT

KIDINT

INTEGER*1

INTEGER*1

INTEGER*1

INTEGER*2

INTEGER*2

INTEGER*4

INTEGER*4

INTEGER*8

REAL*4

REAL*4

REAL*4

REAL*8

REAL*8

REAL*8

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*4

INTEGER*8

INTEGER*4

INTEGER*8

INTEGER*8

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*2

INTEGER*4

INTEGER*8

IIQINT

JIQINT

REAL*16

REAL*16

INTEGER*2

INTEGER*4

—

—

—

—

—

—

—

—

—

COMPLEX*8

COMPLEX*8

COMPLEX*8

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*32

COMPLEX*32

COMPLEX*32

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*2

INTEGER*4

INTEGER*8

260

Appendix A: Intrinsic Functions

1 SHORT —

—

—

—

—

—

—

—

—

INTEGER*1

INTEGER*2

INTEGER*4

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*32

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

1 LONG —

—

—

—

—

—

—

—

—

INTEGER*1

INTEGER*2

INTEGER*4

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*32

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

1 IFIX IIFIX

JIFIX

KIFIX

REAL*4

REAL*4

REAL*4

INTEGER*2

INTEGER*4

INTEGER*8

1 IDINT IIDINT

JIDINT

KIDINT

REAL*8

REAL*8

REAL*8

INTEGER*2

INTEGER*4

INTEGER*8

1 IQINT IIQINT

JIQINT

REAL*16

REAL*16

INTEGER*2

INTEGER*4

Truncation 1 AINT AINT

DINT

QINT

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Table A-1 (continued) Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

Table of Functions

261

Conversion to
REAL

1 REAL —

FLOATI

FLOATJ

FLOATK

—

SNGL

SNGLQ

—

—

—

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*32

REAL*4

REAL*4

REAL*4

REAL*4

REAL*4

REAL*4

REAL*4

REAL*4

REAL*4

REAL*4

1 FLOAT —

FLOATI

FLOATJ

FLOATK

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*4

REAL*4

REAL*4

1 SNGL —

FLOATI

FLOATJ

FLOATK

REAL

—

SNGLQ

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

REAL*4

REAL*4

REAL*4

REAL*4

REAL*4

REAL*4

REAL*4

Conversion to
DOUBLE
PRECISION

1 DBLE —

—

—

—

DBLE

—

DBLEQ

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

REAL*8

REAL*8

REAL*8

REAL*8

REAL*8

REAL*8

REAL*8

Table A-1 (continued) Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

262

Appendix A: Intrinsic Functions

—

—

—

COMPLEX*8

COMPLEX*16

COMPLEX*32

REAL*8

REAL*8

REAL*8

1 DFLOAT —

DFLOTI

DFLOTJ

DFLOTK

DFLOATK

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*8

REAL*8

REAL*8

REAL*8

REAL*8

REAL*8

Conversion to
REAL*16

1 QEXT —

—

—

QEXT

QEXTD

—

—

—

—

INTEGER*1

INTEGER*2

INTEGER*4

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*32

REAL*16

REAL*16

REAL*16

REAL*16

REAL*16

REAL*16

REAL*16

REAL*16

REAL*16

Integer-to-
REAL*16
conversion

1 QFLOAT —

—

—

INTEGER*2

INTEGER*4

INTEGER*8

REAL*16

REAL*16

REAL*16

Conversion to
COMPLEX

1 or 2

1 or 2

1 or 2

1 or 2

1 or 2

1 or 2

1 or 2

1

1

1

CMPLX —

—

—

—

—

—

—

—

—

—

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*32

COMPLEX*8

COMPLEX*8

COMPLEX*8

COMPLEX*8

COMPLEX*8

COMPLEX*8

COMPLEX*8

COMPLEX*8

COMPLEX*8

COMPLEX*8

Table A-1 (continued) Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

Table of Functions

263

Complex
conjugate

1 CONJG CONJG

DCONJG

QCONJG

COMPLEX*8

COMPLEX*16

COMPLEX*32

COMPLEX*8

COMPLEX*16

COMPLEX*32

Conversion to
double
COMPLEX

1 or 2

1 or 2

1 or 2

1 or 2

1 or 2

1 or 2

1 or 2

1

1

1

DCMPLX —

—

—

—

—

—

—

—

—

—

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*32

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

Conversion to
quad
COMPLEX

1 or 2

1 or 2

1 or 2

1 or 2

1 or 2

1 or 2

1 or 2

1

1

1

QCMPLX —

—

—

—

—

—

—

—

—

—

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*32

COMPLEX*32

COMPLEX*32

COMPLEX*32

COMPLEX*32

COMPLEX*32

COMPLEX*32

COMPLEX*32

COMPLEX*32

COMPLEX*32

COMPLEX*32

Conversion to
character

1 CHAR —

—

—

—

—

LOGICAL*1

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

CHARACTER

CHARACTER

CHARACTER

CHARACTER

CHARACTER

Table A-1 (continued) Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

264

Appendix A: Intrinsic Functions

Maximum value 2 or more MAX —

IMAX0

JMAX0

KMAX0

AMAX1

DMAX1

QMAX1

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

MAX0 —

IMAX0

JMAX0

KMAX0

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

MAX1 IMAX1

JMAX1

KMAX1

REAL*4

REAL*4

REAL*4

INTEGER*2

INTEGER*4

INTEGER*8

AMAX0 —

AIMAX0

AJMAX0

AKMAX0

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*4

REAL*4

REAL*4

Minimum value 2 or more MIN —

IMIN0

JMIN0

KMIN0

AMIN1

DMIN1

QMIN1

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

MIN0 —

IMIN0

JMIN0

KMIN0

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

Table A-1 (continued) Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

Table of Functions

265

MIN1 IMIN1

JMIN1

KMIN1

REAL*4

REAL*4

REAL*4

INTEGER*2

INTEGER*4

INTEGER*8

AMIN0 —

AIMIN0

AJMIN0

AKMIN0

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*4

REAL*4

REAL*4

Nearest integer 1 NINTb ININT

JNINT

KNINT

IIDNNT

JIDNNT

KIDNNT

IIQNNT

JIQNNT

KIQNNT

REAL*4

REAL*4

REAL*4

REAL*8

REAL*8

REAL*8

REAL*16

REAL*16

REAL*16

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*2

INTEGER*4

INTEGER*8

ANINT ANINT

DNINT

QNINT

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

IDNINT IIDNNT

JIDNNT

KIDNNT

REAL*8

REAL*8

REAL*8

INTEGER*2

INTEGER*4

INTEGER*8

IQNINT IIQNNT

JIQNNT

KIQNNT

REAL*16

REAL*16

REAL*16

INTEGER*2

INTEGER*4

INTEGER*8

Table A-1 (continued) Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

266

Appendix A: Intrinsic Functions

Zero-Extend
functions

1 ZEXT IZEXT

—

—

—

JZEXT

—

—

—

—

—

KZEXT

—

—

—

—

—

—

—

LOGICAL*1

LOGICAL*2

INTEGER*1

INTEGER*2

LOGICAL*1

LOGICAL*2

LOGICAL*4

INTEGER*1

INTEGER*2

INTEGER*4

LOGICAL*1

LOGICAL*2

LOGICAL*4

LOGICAL*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*8

INTEGER*8

INTEGER*8

INTEGER*8

INTEGER*8

INTEGER*8

INTEGER*8

INTEGER*8

Absolute value 1 ABS —

IIABS

JIABS

KIABS

ABS

DABS

QABS

CABS

CDABS

ZABS

CQABS

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*16

COMPLEX*32

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*16

COMPLEX*32

Table A-1 (continued) Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

Table of Functions

267

1 IABSc —

IIABS

JIABS

KIABS

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

Remaindering 2 MODd —

IMOD

JMOD

KMOD

AMOD

DMOD

QMOD

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

Transfer of sign 2 SIGN —

IISIGN

JISIGN

KISIGN

SIGN

DSIGN

QSIGN

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

2 ISIGNe —

IISIGN

JISIGN

KISIGN

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

Positive
difference

2 DIM —

IIDIM

JIDIM

KIDIM

DIM

DDIM

QDIM

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

REAL*4

REAL*8

REAL*16

Table A-1 (continued) Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

268

Appendix A: Intrinsic Functions

2 IDIM —

IIDIM

JIDIM

KIDIM

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

DOUBLE
PRECISION
product of
REALs

2 DPROD REAL*4 REAL*8

REAL*16
product of two
REAL*8

2 QPROD REAL*8 REAL*16

Length of
character entry

1 LEN CHARACTER INTEGER*4

Index of a
substring

2 INDEXf CHARACTER INTEGER*4

Character
(ASCII value of
1-byte character
argument)

1 ICHAR —

—

—

CHARACTER

CHARACTER

CHARACTER

INTEGER*2

INTEGER*4

INTEGER*8

Logically
greater than or
equal

2 LGE CHARACTER LOGICAL*4

Logically
greater than

2 LGT CHARACTER LOGICAL*4

Logically less
than or equal

2 LLE CHARACTER LOGICAL*4

Logically less
than

2 LLTg CHARACTER LOGICAL*4

Imaginary part
of complex
number

1 IMAG AIMAG

DIMAG

QIMAG

COMPLEX*8

COMPLEX*16

COMPLEX*32

REAL*4

REAL*8

REAL*16

Table A-1 (continued) Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

Table of Functions

269

Real part of
complex
number

1 REAL REAL

DREAL

QREAL

COMPLEX*8

COMPLEX*16

COMPLEX*32

REAL*4

REAL*8

REAL*16

Square root 1 SQRT SQRTh

DSQRT

QSQRT

CSQRT

CDSQRT

ZSQRT

CQSQRT

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*16

COMPLEX*32

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*16

COMPLEX*32

Exponential 1 EXP EXP

DEXP

QEXP

CEXP

CDEXP

ZEXP

CQEXP

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*16

COMPLEX*32

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*16

COMPLEX*32

Natural
logarithm

1 LOG ALOGi

DLOG

QLOG

CLOG

CDLOG

ZLOG

CQLOG

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*16

COMPLEX*32

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*16

COMPLEX*32

Common
logarithm

1 LOG10 ALOG10

DLOG10

QLOG10

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Table A-1 (continued) Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

270

Appendix A: Intrinsic Functions

Sine 1 SIN SIN

DSIN

QSIN

CSIN

CDSIN

ZSIN

CQSIN

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*16

COMPLEX*32

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*16

COMPLEX*32

Sine (degree) 1 SINDj SIND

DSIND

QSIND

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Cosine 1 COS COS

DCOS

QCOS

CCOS

CDCOS

ZCOS

CQCOS

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*16

COMPLEX*32

REAL*4

REAL*8

REAL*16

COMPLEX*8

COMPLEX*16

COMPLEX*16

COMPLEX*32

Cosine (degree) 1 COSD COSD

DCOSD

QCOSD

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Tangent 1 TAN TAN

DTAN

QTAN

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Tangent
(degree)

1 TAND TAND

DTAND

QTAND

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Arcsine 1 ASINk,l,m ASIN

DASIN

QASIN

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Table A-1 (continued) Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

Table of Functions

271

Arcsine (degree) 1 ASINDn ASIND

DASIND

QASIND

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Arccosine 1 ACOS ACOS

DACOS

QACOS

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Arccocsine
(degree)

1 ACOSD ACOSD

DACOSD

QACOSD

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Arctangent 1 ATANo ATAN

DATAN

QATAN

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Arctangent
(degree)

1 ATANDp ATAND

DATAND

QATAND

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Arctangent 2 ATAN2q,r ATAN2

DATAN2

QATAN2

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Arctangent

(degree)

2 ATAN2D ATAN2D

DATAN2D

QATAN2D

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Hyperbolic

sine

1 SINH SINH

DSINH

QSINH

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Hyperbolic

cosine

1 COSH COSH

DCOSH

QCOSH

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Table A-1 (continued) Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

272

Appendix A: Intrinsic Functions

Hyperbolic
tangent

1 TANH TANH

DTANH

QTANH

REAL*4

REAL*8

REAL*16

REAL*4

REAL*8

REAL*16

Bitwise AND 2 IAND1 —

IIAND

JIAND

KIAND

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

Bitwise
inclusive OR

2 IOR1 —

IIOR

JIOR

KIOR

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

Bitwise
complement

1 NOT1 —

INOT

JNOT

KNOT

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

Bitwise
exclusive OR

2 IEOR1 —

IIEOR

JIEOR

KIEOR

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

Bitwise logical
shift

2 ISHFT —

IISHFT

JISHFT

KISHFT

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

Bitwise circular
shift

2 ISHFTC —

IISHFTC

JISHFTC

KISHFTC

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

Table A-1 (continued) Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

Table of Functions

273

a. INT, IFIX, IDINT and IQINT return the default INTEGER precision, which can then be assigned to any
integer type.

b. When NINT or IDNINT is specified as an argument in a subroutine call or function reference, the compiler
supplies either an INTEGER*2 or an INTEGER*4 function depending on the -i2 command line option
(see Chapter 1 of the Fortran 77 Programmer’s Guide).

c. The IABS, ISIGN, IDIM, and integer MOD intrinsics accept either INTEGER*2 arguments or INTEGER*4
arguments, and the result is the same type.

d. The result for MOD, AMOD, and DMOD is undefined when the value of the second argument is zero.

e. If the value of the first argument of ISIGN, SIGN, or DSIGN is zero, the result is zero.

f. The result of INDEX is an integer value indicating the position in the first argument of the first substring
which is identical to the second argument. The result of INDEX(’ABCDEF’, ’CD’), for example, would be
3. If no substring of the first argument matches the second argument, the result is zero. INDEX and ICHAR
return the result type INTEGER*2 if the -i2 compile option is in effect; otherwise, the result type is
INTEGER*4.

g. The character relational intrinsics (LLT, LGT, LEE, and LGE) return result type LOGICAL*2 if the $log2
(see Chapter 11) compile option is in effect; otherwise, the result type is LOGICAL*4.

Bit extraction 3 IBITS —

IIBITS

JIBITS

KIBITS

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

Bit set 2 IBSET —

IIBSET

JIBSET

KIBSET

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

Bit test 2 BTEST —

BITEST

BJTEST

BKTEST

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

LOGICAL*4

LOGICAL*2

LOGICAL*4

LOGICAL*8

Bit clear 2 IBCLR —

IIBCLR

JIBCLR

KIBCLR

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

INTEGER*1

INTEGER*2

INTEGER*4

INTEGER*8

Table A-1 (continued) Intrinsic Functions

Function Number of
Arguments

Generic
Name

Specific
Name

Type of Argument Type of Result

274

Appendix A: Intrinsic Functions

h. The value of the argument of SQRT and DSQRT must be greater than or equal to zero. The result of CSQRT
is the principal value with the real part greater than or equal to zero. When the real part is zero, the
imaginary part is greater than or equal to zero.

i. The argument of ALOG and DLOG must be greater than zero. The argument of CLOG must not be (0.,0.).
The range of the imaginary part of the result of CLOG is: -p <imaginary part <p.

j. The argument for SIND, COSD, or TAND must be in degrees and is treated as modulo 360.

k. The absolute value of the arguments of ASIN, DASIN, ASIND, DASIND, ACOS, DACOS, ACOSD, and
DACSOD must be less than or equal to 1.

l. The range of the result for ASIN and DASIN is –π/2 <result < π/2; the range of the result for DASIN is 0
< result <π ; and the range of the result of ACOS and DACOS is less than or equal to one.

m. The result of ASIN, DASIN, ACOS, and DACOS is in radians.

n. The result of ASIND, DASIND, ACOS, DACOSD is in degrees.

o. The result of ATAN, DATAN, ATAN2, and DTAN2 is in radians.

p. The result of ATAND, DATAND, ATAN2D, and DATAN2D is in degrees.

q. If the value of the first argument of ATAN2 or DATAN2 is positive, the result is positive. When the value
of the first argument is zero, the result is zero if the second argumemt is positive and P if the second
argument is negative. If the value of the first argument is negative, the result is negative. If the value of
the second argument is zero, the aboslute value of the result is P/2. Both arguments must not have the
value zero.

r. Note 3 on this page also applies to ATAN2 and DTAN2D, except for the range of the result, which is:
-180 degrees << result << 180 degrees.

275

arithmetic data types, 4
arithmetic expressions, 41

evaluation rules, 46
forms of, 45
relational, 53

arithmetic IF, 125
arithmetic operands, 44
arithmetic operators

list of, 42
precedence, 43

array declarators, 36
adjustable, 37
assumed-size, 37
constant, 37

array element name reference
in dimension bound expression, 37

arrays, 35
multidimensional, 79
subscript

values, 40
subscripts, 39

expressions, 40
assignment statements

aggregate, 35, 105
character, 105
conversion rules, 103
definition, 101
logical, 104
statement label, 106
types of, 12

ASSIGN statement, 106

Symbols

%DESCR function, 242
%LOC function, 242
%REF function, 242
%VAL function, 242
* multiplication operator, 42
+ addition operator, 42

A

ACCEPT statement, 143
access methods, 136
actual arguments, 241
adjustable array declarator, 37
A edit descriptor, 221
aggregate

assignment statements, 35, 105
reference

definition, 35
alphabetic characters, 2
alphanumeric characters, 2
ampersand

in continuation line, 11
.AND. logical operator, 55, 57
arguments

actual, 241
arithmetic assignment statements, 102
arithmetic constants, 20

Index

276

Index

ASSOCIATEVARIABLE specifier
and OPEN, 159

assumed-size array declarator, 37
asterisk

used as format identifier, 193
automatic compiler option, 244, 247
AUTOMATIC statement, 63
auxiliary I/O statements

list of, 142

B

–backslash compiler option, 4
BACKSPACE statement, 144
basic real constant, 22
bit constants, 32
blank characters, 3
blank common storage, 66
BLOCK DATA statement, 64
BN edit descriptor, 228
branch logical IF, 126
BYTE type statement, 72
BZ edit descriptor, 228

C

CALL statement, 111
carriage control, 231

and INQUIRE statement, 154
and OPEN statement, 159

" character, 28
character

assignment statements, 105
constants, 28
data type statements, 75
file format

decoding, 146
character edit descriptor, 225
character expressions, 48

relational, 53
characters

blank, 3
special, 2

character set, 2
character substrings, 49
cilist

definition, 183
CLOSE statement, 139, 145
–col120 compiler option, 9, 255
$COL120 in-line option, 255
–col72 compiler option, 9, 255
$COL72 in-line option, 254
collating sequence, 5, 54
colon descriptor, 229
comment lines, 10
COMMON blocks, 65
common storage, 66

blank, 66
named, 66

compiler options, 253
–backslash, 4
–col120, 9
–col72, 9
–extend_source, 9
–noextend_source, 9
–u, 84

complex
constants, 26
data editing, 230
type statements, 72

computed GO TO statement, 123
concatenation operator, 51
connected unit, 139

277

Index

constant
integer, 20
optionally signed, 20

constant array declarator, 37
constant expressions

arithmetic, 45
character, 49
integer, 46

constants, 19
arithmetic, 20
basic real, 22
character, 28
complex, 26
double complex, 27
Fortran 90 style integer, 21
hexadecimal integer, 21
logical, 28
octal integer, 21
optionally signed, 19
quad complex, 28
quad precision, 25
real, 22, 23
signed, 19

continuation lines, 11
CONTINUE statement, 113
control

transfer of, 18
control characters, 3
control information list

definition, 183
control statements, 13, 109

list of, 110
conversion rules

for assignment statements, 103
current record, 135

D

data initialization, 107
DATA statement, 68

and implied-DO, 108
data transfer rules, 191
data transfer statements

list of, 142
data type keywords

synonyms, 73
data types, 4, 7

arithmetic, 4
implicit, 5

data type statements, 72
data typing

implicit, 84
declarations

substructure, 34
typed data, 34

declarators
array, 36

DECODE statement, 146, 167
DEFAULTFILE specifier

and OPEN, 160
DEFINE FILE statement, 147
DELETE statement, 148
descriptor parameters

default, 203
descriptors

edit, 202
field, 202
list of, 197
non-repeatable, 196
repeatable, 195

D field descriptor, 214
dimension-bound expression, 37
dimension bounds, 37
DIMENSION statement, 77

278

Index

direct access
READ statement, 165
to files, 137
WRITE statement, 175

disconnecting a unit, 139
division

integer, 48
/ division operator, 42
DO loop

activating, 114
terminal statement, 118

DO statement, 113
effect of –onetrip option, 115
implied, 107

DOUBLE COMPLEX, 74
double-complex

constants, 27
DOUBLE PRECISION, 73
double-precision

constants, 23
DO WHILE statement, 117
dummy arguments, 241

E

$ edit descriptor, 229
edit descriptors, 202

$, 229
A, 221
BN, 228
BZ, 228
for characters, 225
L, 220
list of, 197
non-repeatable, 196
P, 218
Q, 226
S, 229

SP, 228
SS, 229
T, 227
TL, 227
TR, 228
X, 227

E field descriptor, 211
ELSE block, 118
ELSE IF block, 120
ELSE IF statement, 119
ELSE statement, 118
ENCODE statement, 149
END DO statement, 121
endfile record, 132
ENDFILE statement, 132, 150
END IF statement, 122
end-of-file specifier, 188
END statement, 14, 121, 188
ENTRY statement, 16, 249
.EQ. relational operator, 52
EQUIVALENCE statement, 78
.EQV. logical operator, 55, 58
error

return label, 188
specifier, 188

ERR specifier, 188
and CLOSE, 145
and DELETE, 149
and ENDFILE, 151
and INQUIRE, 154
and OPEN, 158

escape sequences, 3
evaluating arithmetic expressions, 46
executable program, 16
executable statement, 12
executing functions, 245
executing subroutines, 245

279

Index

execution sequence, 17
EXIST specifier

and INQUIRE, 154
exponent

real, 22
exponentiation, 48
expressions

arithmetic, 41
interpreting, 43

arithmetic constant, 45
arithmetic relational, 53
character, 48
character constant, 49
character relational, 53
evaluating

rules for, 59
integer constant, 46
logical, 54

interpreting, 58
parenthenses in

interpreting, 59
relational, 52

–extend_source compiler option, 9
extended alphabetic characters, 2
external files, 135
external procedure, 15
EXTERNAL statement, 81

F

factor
definition, 44

.FALSE. relational operator, 52
F field descriptor, 209
field descriptors, 202

D, 214
default parameters, 203
E, 211

F, 209
G, 215
H, 224
I, 204
list of, 197
numeric, 202
O, 206
Z, 208

file
access methods, 136
defining size and structure, 147
definition, 135
external, 135
internal, 136
specifying status, 146

file access
direct, 137
keyed, 138
sequential, 137

file positioning statements
list of, 143

FIND statement, 152
fixed format, 9
FMT specifier, 185
format

changing with options, 9
interaction with input/output list, 232
list-directed, 233
TAB character, 9

format control, 232
format expressions

variable, 198
format specification, 193
format specifier usage, 196
FORMAT statement, 193, 194

general usage, 199
formatted

I/O statements, 134, 192
records, 132

280

Index

FORMATTED specifier
and INQUIRE, 155

formatted WRITE statement, 179
form feed character, 3
FORM specifier

and INQUIRE, 155
Fortran 90

integer constants, 21
function

executing, 245
intrinsic

list of, 259
names, 258
referencing, 243

in dimension-bound expression, 37
statement, 238
subprogram, 243

FUNCTION statement, 246

G

generic function names, 258
.GE. relational operator, 52
G field descriptor, 215
GO TO statement

computed, 123
symbolic name, 124
unconditional, 122

.GT. relational operator, 52

H

hexadecimal constants, 21
H field descriptor, 224
Hollerith constants, 30

using in DATA statements, 69

I

–i2 compiler option, 75, 255
–i8 compiler option, 75, 255
IF block, 127
I field descriptor, 204
IF level, 127
IF statement

arithmetic, 125
branch logical, 126
test conditional, 126

implicit data typing, 5
disabling, 84

IMPLICIT statement, 5, 82
implied-DO lists, 190

in DATA statements, 108
syntax, 107

implied-DO variable, 107
$INCLUDE statement, 256

search path, 256
INCLUDE statement, 251

order of, 17
search path, 251

indexed access
file properties, 138
key-field value, 186

indexed READ statement, 165
with REWRITE statement, 174

indexed WRITE statement, 176
initialization

of data, 107
initial lines, 11
initial point, 135
in-line options, 254

$COL120, 255
$COL72, 254
$INT2, 255
$INT8, 255

281

Index

$LOG2, 255
$LOG8, 256

input
definition, 131
list-directed, 234

input list, 189
input/output

formatted, 192
unformatted, 191

input/output list, 188
interaction with format, 232

input/output statements, 13
list of, 142

input rules
summary of, 200

INQUIRE statement, 152
and CARRIAGECONTROL, 154

$INT2 in-line option, 255
$INT2 option, 255
$INT8 in-line option, 255
integer

constant, 20
constant expressions, 46
division, 48
type statements, 72

integer constants, 20
Fortran 90 style, 21
hexadecimal, 21
octal, 21

internal files, 136
internal READ statement, 166
internal WRITE statement, 177
intrinsic functions

list of, 259
result type, 258

INTRINSIC statement, 85
iolist, 188
ios specifier, 187

I/O statements, 13, 142
formatted, 134
list-directed, 134
unformatted, 133

IOSTAT specifier
and CLOSE, 145
and DELETE, 149
and ENDFILE, 151
and INQUIRE, 155
and OPEN, 158

I/O status specifier
definition, 187

K

keyed access
file, 138
with BACKSPACE statement, 144

KEYED specifier
and INQUIRE, 155

key-field-value specifier
definition, 186

KEYID specifier, 187
key-of-reference specifier, 187
KEY specifier

and OPEN, 161
definition, 186

key value
in OPEN and READ, 138

keyword
definition, 12
synonyms, 73

282

Index

L

label, 12
assignment, 106
rules, 12

L edit descriptor, 220
.LE. relational operator, 52
list-directed

formatting, 233
input, 234
I/O statements, 134
output, 236
READ statement, 168
WRITE statement, 180

$LOG2 in-line option, 255
$LOG8 in-line option, 256
logical

assignment statements, 104
constants, 28
data in arithmetic expressions, 42
expressions, 54
type statements, 72

logical operands, 56
logical factor, 57
logical primary, 56

logical operators
logical disjunct, 57
logical expression, 58
logical term, 57

.LT. relational operator, 52

M

main program, 15
mapped field declarations, 34
MAXREC specifier

and OPEN, 161

mixed-mode expressions
definition, 47

multidimensional arrays, 79

N

named common storage, 66
namelist-directed READ statement

sequential, 170
namelist-directed WRITE statement, 182
namelist specifier

definition, 185
NAMELIST statement, 87
names

array, 36
symbolic, 6

.NEQV. logical operator, 55, 58

.NE. relational operator, 52
new line character, 3
next record, 135
NML

definition, 185
–noextend_source compiler option, 9
nonexecutable statement, 13
non-repeatable edit descriptors, 202
.NOT. logical operator, 55, 57
null character, 3
numeric field decriptors, 202
numeric type statements, 72

O

octal
constants, 21

O field descriptor, 206
–old_rl compiler option, 138

283

Index

–onetrip compiler option, 115
in DO statement, 115

OPEN statement, 138, 158
and CARRIAGECONTROL, 159

operands
arithmetic, 44
logical, 56
relational, 52

operators
arithmetic, 43
concatenation, 51
relational, 52

optionally signed constant, 19
options, 253

in-line, 254
OPTIONS statement, 253
order of execution, 17
order of statements, 16
.OR. logical operator, 55, 57
output

list-directed, 236
output list, 189
output rules, 201

P

parameter passing, 241
PARAMETER statement, 19, 87
parentheses

interpreting in expressions, 59
PAUSE statement, 128
P edit descriptor, 218
POINTER statement, 90
preceding record, 135
primary

definition, 44
PRINT statement, 164

procedure
definition, 15
external, 15

program
executable, 16

program organization, 14
PROGRAM statement, 16, 92
program units, 14

Q

Q edit descriptor, 226
quad-complex

constants, 28
quad-precision

constants, 25
quotation mark, 28

R

reading
definition, 131

READONLY specifier
and OPEN, 162

READ statement, 138
advantages over DECODE statement, 147
direct access, 165
indexed, 165
internal, 166
namelist-directed

sequential, 170
relation to FIND statement, 152
sequential, 167

formatted, 168
list-directed, 168
unformatted, 170

with REWRITE statement, 174

284

Index

real
constant, 22
exponent, 22
type statements, 72

RECL specifier
and OPEN, 162

record number, 137
records, 33, 131

changing length with –old_rl, 138
definition, 33
endfile, 132
formatted, 132
unformatted, 132

RECORDSIZE specifier
and OPEN, 162

record specifier, 186
RECORD statement, 93
REC specifier, 186
recursion, 248
relational expressions, 52

arithmetic, 53
relational operands, 52
repeatable descriptors, 195
repeat counts, 224
result type

intrinsic functions, 258
RETURN statement, 129
REWIND statement, 172
REWRITE statement, 174

S

SAVE statement, 94
scalar reference, 34
scale factor, 218
scope, 8
search path for included files, 251, 256

S edit descriptor, 229
sequential file access, 137
sequential READ statement, 167

formatted, 168
list-directed, 168
namelist-directed, 170

sequential WRITE statement, 178
signed constant, 19
single mode expressions

definition, 46
size

array, 38
slash editing, 232
source program

syntax rules, 8
special characters, 2
specification statements, 61
specific function names, 258
SP edit descriptor, 228
SS edit descriptor, 229
statement

assignment, 12
control, 13
executable, 12

statement function
definition, 238

statement label, 12
statements

ACCEPT, 143
arithmetic IF, 125
as part of program, 12
ASSIGN, 106
AUTOMATIC, 63
BACKSPACE, 144
CALL, 111
CLOSE, 145
computed GO TO, 123
CONTINUE, 113

285

Index

data type, 72
DECODE, 146
DEFINE FILE, 147
DELETE, 148
DO, 113
DO WHILE, 117
ELSE, 118
ELSE IF, 119
ENCODE, 149
END, 121
END DO, 121
ENDFILE, 150
END IF, 122
ENTRY, 16, 249
EQUIVALENCE, 78
EXTERNAL, 81
FIND, 152
FORMAT, 194, 199
FUNCTION, 246
GO TO, 124
IMPLICIT, 82
INCLUDE, 17, 251
INQUIRE, 152
INTRINSIC, 85
I/O, 13, 142
NAMELIST, 86
nonexecutable, 13
OPEN, 158
OPTIONS, 253
order of, 16
PARAMETER, 87
PAUSE, 128
POINTER, 90
PRINT, 164
PROGRAM, 16, 92
RECORD, 93
RETURN, 129
REWIND, 172, 174
SAVE, 94
STATIC, 63
STOP, 130

STRUCTURE, 96
SUBROUTINE, 248
test conditional IF, 126
TYPE, 164
unconditional GO TO, 122
UNLOCK, 175
VIRTUAL, 77
VOLATILE, 99

STATIC statement, 63
and recursion, 248

STATUS specifier
and CLOSE, 146
and OPEN, 163

STOP statement, 130
storage

common, 66
named, 66
of arrays, 39

STRUCTURE statement, 96
subprogram, 15

function, 243
subroutine, 243

subroutine
executing, 245
referencing, 243
subprogram, 243

SUBROUTINE statement, 248
subscripts, 39

expression, 40
value, 40

substrings
character, 49
expressions, 49
names, 49
values, 50

substructure declarations, 34
– subtraction operator, 42
symbolic names, 6

GO TO statement, 124

286

Index

scope, 8
symbols

valid names, 6
syntax conventions, xxi

T

TAB character formatting, 9
T edit descriptor, 227
term

definition, 45
terminal point, 135
test conditional IF, 126
TL edit descriptor, 227
transfer of control, 18
TR edit descriptor, 228
.TRUE. relational operator, 52
typed data declarations, 34
TYPE statement, 164
type statements

character, 75
numeric, 72

typing
implicit, 5

U

–u command line option, 84
unary operators, 44
unconditional GO TO, 122
unformatted I/O statements, 133, 191
unformatted READ statement

sequential, 170
unformatted records, 132
unformatted WRITE statement, 180

UNION declaration, 34, 96, 98
units, 138
UNIT specifier, 184

and CLOSE, 145
and DELETE, 149
and ENDFILE, 151
and INQUIRE, 153
and OPEN, 158

UNLOCK statement, 175
unnamed fields, 34

V

value separator, 236
variable format expressions, 198
variables

definition, 8
VIRTUAL statement, 77
–vms_endfile compiler option, 132

effect on ENDFILE statement, 151
VOLATILE statement, 99

W

WRITE statement
advantages over ENCODE statement, 149
direct access, 175
formatted, 179
indexed, 176
internal, 177
list-directed, 180
namelist-directed, 182
sequential, 178
unformatted, 180

writing
definition, 131

287

Index

X

X edit descriptor, 227
.XOR. logical operator, 55, 58

Z

zero, sign of, 20
Z field descriptor, 208

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2362-003.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

