
MIPSpro™ Power Fortran 77
Programmer’s Guide

Document Number 007-2363-001



MIPSpro™ Power Fortran 77 Programmer’s Guide
Document Number 007-2363-001

CONTRIBUTORS

Written by Chris Hogue
Production by Gloria Ackley
Engineering contributions by Bron Nelson, Bill Johnson, and Marty Itzkowitz

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights are reserved under the Copyright Laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline
Blvd., Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks, and IRIX, MIPSpro, and
POWER Series are trademarks of Silicon Graphics, Inc. Cray is a trademark of Cray
Research. VAST is a trademark of Pacific Sierra Research, Inc. VMS is a trademark of
Digital Equipment Corporation.

Portions of this product and document are derived from material copyrighted by
Kuck and Associates, Inc.



iii

Contents

Introduction    xi
Organization of Information    xi
Additional Reading    xii
Typographical Conventions    xiv

1. Overview of Power Fortran    1
Overview    1
Strategy for Using Power Fortran    3
Command Line Options    3
Directives    4
Assertions    6
Summary    8

2. How to Use Power Fortran    9
Overview    9
Compiling Programs With Power Fortran    10

3. Utilizing Power Fortran Output    17
Overview    17
Formatting the Listing File    19

Paginating the Listing    19
Specifying Information to Include    19
Disabling Message Classes    20

Interpreting Default Listing Information    21
Viewing the Listing File    21
Field Descriptions    21



iv

Contents

Sample Listing Files    26
Indirect Indexing    26
Function Call    29
Reductions    31

4. Customizing Power Fortran Execution    35
Overview    35
Controlling Code Execution    36

Running Code in Parallel    36
Specifying a Work Threshold    36
Enabling Parallel I/O    37

Controlling Power Fortran Code Transformations    38
Specifying a Complexity Limit    38
Setting the Optimization Level    38
Controlling Variations in Round Off    39

Performing Inlining and Interprocedural Analysis    40

5. Fine-Tuning Power Fortran    41
Overview    41
Circumventing Power Fortran    42

C$ DOACROSS    42
C$&    43
C*$* NO SYNC    43

Running Code Serially    43
C*$* ASSERT DO (SERIAL)    43
CDIR$ NEXT SCALAR    44
C*$* ASSERT DO PREFER (SERIAL)    44

Running Code in Parallel    45
C*$*[NO]CONCURRENTIZE    45
CVD$ CONCUR    45
C*$* ASSERT DO PREFER (CONCURRENT)    45

Using Aliasing    46



v

Ignoring Data Dependencies    47
C*$* ASSERT DO (CONCURRENT)    47
CDIR$ IVDEP    48
C*$* ASSERT CONCURRENT CALL    48
CVD$ CNCALL    48
C*$* ASSERT NO RECURRENCE    48
C*$* ASSERT PERMUTATION    49

A. Power Fortran Command Line Options    51
Overview    51
Options Summary    53

Overview    53

B. Power Fortran Directives    59
Standard Directives    60
Cray Directives    63
VAST Directives    64

C. Power Fortran Assertions    65

Glossary    69

Index    73





vii

Figures

Figure 2-1 Compiling With Power Fortran    15





ix

Tables

Table 1-1 Power Fortran Assertions and Their Duration    7
Table 2-1 Power Fortran Command Line Options    12
Table 3-1 Listing File Include Options    19
Table 3-2 Listing File Message Disabling Options    20
Table 3-3 Listing File DO Loop Delimiters    22
Table 3-4 Power Fortran Action Abbreviations    24
Table 3-5 Power Fortran Reductions    34
Table A-1 Power Fortran Command Line Options    52
Table A-2 concurrentize Option    54
Table A-3 limit Option    54
Table A-4 lines Option    55
Table A-5 listoptions Option    55
Table A-6 minconcurrent Option    56
Table A-7 noconcurrentize Option    56
Table A-8 noparallelio Option    57
Table A-9 parallelio Option    57
Table A-10 suppress Option    58





xi

Introduction

This guide describes the features of MIPSpro™ Power Fortran 77. For details
about analyzing a program and converting the output for use on a
multiprocessor system, refer to Chapter 7, “Fortran Enhancements for
Multiprocessors,” of the MIPSpro Fortran 77 Programmer’s Guide.

Organization of Information

This guide contains the following chapters and appendixes:

Chapter 1, “Overview of Power Fortran,” explains the basic mechanism for
invoking Power Fortran and includes a description of Power Fortran’s
output files.

Chapter 2, “How to Use Power Fortran,” explains how to use Power Fortran.

Chapter 3, “Utilizing Power Fortran Output,” explains output produced by
Power Fortran: the transformed source file, listing file, and WorkShop Pro
MPF input file.

Chapter 4, “Customizing Power Fortran Execution,”describes how to use
command line options to optimize Power Fortran execution.

Chapter 5, “Fine-Tuning Power Fortran,” describes how to optimize code by
using Power Fortran directives and assertions.

Appendix A, “Power Fortran Command Line Options,” lists and describes
the command line options unique to Power Fortran.

Appendix B, “Power Fortran Directives,” lists the Power Fortran directives
you can use to modify the features of Power Fortran, that is, directives to
increase the optimization level, increase the size of the loop that Power



xii

Introduction

Fortran can analyze, or use more sophisticated (and time-consuming) ways
of resolving superficial data dependencies that prevent Power Fortran from
identifying a loop for parallel execution.

Appendix C, “Power Fortran Assertions,” lists the Power Fortran assertions
you can include in a program to provide information that Power Fortran
needs to identify loops that can run in parallel, despite apparent but
sometimes non-existent data dependencies.

The Glossary lists and defines terminology related to Power Fortran.

Additional Reading

Refer to the MIPspro Fortran 77 Programmer’s Guide for information on the
following topics:

• how to compile and link a Fortran program

• alignments, sizes, and variable ranges for the various data types

• the coding interface between Fortran programs and programs written
in C

• file formats, run-time error handling, and other information related to
the IRIX operating system

• operating system functions and subroutines callable by Fortran
programs

• scalar optimizations that can be controlled through command line
options and compiler directives

• Fortran directives for multiprocessing

• run-time error messages

Refer to the MIPSpro Fortran 77 Language Reference Manual for a description
of the Fortran language as implemented by the Silicon Graphics® IRIS 4D™
Series workstation.

Refer to the CASEVision™/WorkShop Pro MPF User’s Guide for information
about using WorkShop Pro MPF.



Additional Reading

xiii

Refer to the MIPSpro Compiling, Debugging, and Performance Tuning Guide for
information on:

• an overview of the MIPSpro compiler system and general compiler
system command line options

• optimizing program performance

• using the performance tools, prof and pixie, of the compiler system

• using dynamic shared objects (DSOs)

• using the debugger, dbx

• the dump utilities, archiver, and other tools for maintaining Fortran
programs

• writing and updating code that is portable to 64-bit systems

Refer to the MIPSpro Porting and Transition Guide for information on:

• an overview of the MIPSpro compiler system

• language implementation differences

• porting source code to the 64-bit system

• compilation and run-time issues

• performance tuning



xiv

Introduction

Typographical Conventions

This guide uses the following conventions and symbols:

Bold Indicates literal command line options, filenames,
keywords, function/subroutine names, pathnames, and
directory names.

Italics Represents user-defined values. Replace the item in italics
with a legal value. Italics are also used for command names,
manual page names, and manual titles.

Courier Indicates command syntax, program listings, computer
output, and error messages.

Courier bold

Indicates user input.

[ ] Enclose optional command arguments.

() Surround arguments or are empty if the function has no
arguments following function/subroutine names.
Surround manual page section in which the command is
described following IRIX commands.

{} Enclose two or more items from which you must specify
exactly one.

| Separates two or more optional items.

... Indicates that the preceding optional items can appear more
than once in succession.

# IRIX shell prompt for the superuser.

% IRIX shell prompt for users other than the superuser.



Typographical Conventions

xv

Here is an example illustrating the syntax conventions.

C*$*[NO]IPA [( name [, name...])]  {HERE|ROUTINE|GLOBAL}

The previous syntax statement indicates that:

• The keyword C*$* NOIPA or C*$*IPA must be written as shown.

• You can specify one or more name, each separated by a comma and all
between parentheses.

• You must specify one of the following: HERE, ROUTINE, or GLOBAL.

The following statements are valid examples of the described syntax:

C*$* IPA(ALPHA,BETA) HERE

C*$* NOIPA GLOBAL





1

Chapter 1

1. Overview of Power Fortran

This chapter contains the following sections:

• “Overview” describes how Power Fortran operates and suggests
procedures for using it.

• “Strategy for Using Power Fortran” explains when and how to use
Power Fortran.

• “Command Line Options” lists and describes the command line
options.

• “Directives” explains what a directive is and lists the supported
directives.

• “Assertions”explains what an assertion is and lists the supported
assertions.

• “Summary” is a short summary of the capabilities of Power Fortran.

Overview

MIPSpro Power Fortran 77 is a Fortran 77 compiler that enables you to run
existing Fortran 77 programs efficiently on the Silicon Graphics POWER
SeriesTM multiprocessor systems. Power Fortran analyzes a program,
identifies loops that are safe to execute in parallel (concurrently), and
generates a parallel version of the program.

The Silicon Graphics MIPSpro Fortran 77 compiler can generate code to split
loop processing across all the available multiple processors. You do not need
a multiprocessor system to develop under Power Fortran (although there is
a slight performance loss when running multiprocessed code on a
single-processor system). You can develop and test a Fortran 77 program
using Power Fortran on any IRIS 4D Series workstation (including
single-processor systems) and then execute the program on a multiprocessor



2

Chapter 1: Overview of Power Fortran

system. The executable code automatically adjusts itself to use all the
processors available on the workstation at run time. However, simply
passing code through Power Fortran rarely produces all the increased
performance available. There are often easily removed data dependencies
that prevent Power Fortran from running a loop in parallel. Using the listing
file, optionally generated by Power Fortran, you can find the real or potential
data dependencies that prevented Power Fortran from running a loop in
parallel. Refer to Chapter 3, “Utilizing Power Fortran Output,” for details
about the listing file.

If the data dependency is real, you can often remove the dependency by
making a small change to the code. If the data dependency was apparent but
not real, you can explicitly instruct Power Fortran to run the code in parallel
by inserting Power Fortran assertions. These assertions look like Fortran 77
comments.

With Power Fortran, you select the code to convert to run in parallel. Thus,
you can convert the whole program or key parts of it by adding Power
Fortran directives manually or by having Power Fortran convert only
selected files. Also, you can run Power Fortran on some, all, or none of a
program’s source files. The object files produced using Power Fortran are
fully compatible with other object files. You can freely combine them with
object files that you prepared manually for parallel execution and with
object files that run only serially.

You can also use Power Fortran with WorkShop Pro MPF, an optional
product available from Silicon Graphics. It provides a graphical interface to
the analysis performed by Power Fortran and allows you to understand and
control your program to be run in parallel. WorkShop Pro MPF also works
with the WorkShop/Performance Analyzer to help you concentrate on those
parts of the program that are taking the longest to execute.



Strategy for Using Power Fortran

3

Strategy for Using Power Fortran

Use Power Fortran to identify which loops of a Fortran 77 program can be
run safely in parallel. In some instances, Power Fortran alone makes a
significant amount of the code run in parallel. However, for many programs
simple code changes let Power Fortran automatically run more of the code
in parallel.

Knowing when and where to modify your code means understanding the
information in the Power Fortran listing. Understanding the Power Fortran
listing will make it easy to recognize where small changes to the code can
make big differences in how much code can run in parallel. Refer to
Chapter 3, “Utilizing Power Fortran Output,” for information. Alternatively,
you can use WorkShop Pro MPF to understand the code.

Power Fortran analyzes a program for data dependence. During this
analysis, Power Fortran looks for Fortran 77 DO loops in which each
iteration of the loop is independent of all other iterations. If each iteration of
the loop is self-contained, the system can execute the iterations in any order
(or even simultaneously on separate processors) and produce the same
result after running all iterations.

Power Fortran can safely run data-independent loops in parallel. When
Power Fortran finds a loop that contains iterations that are dependent on
other iterations, it cannot safely run the loop in parallel but can tell you what
is causing the problem. If Power Fortran cannot run a loop in parallel, the
listing file explains where Power Fortran encountered problems.

Command Line Options

To customize the way Power Fortran executes an entire program, you can
specify various command line options when you run Power Fortran
(explained in Chapter 2, “How to Use Power Fortran.”) The six functional
categories of command line options are

• parallelization

• general optimization

• inlining and interprocedural analysis



4

Chapter 1: Overview of Power Fortran

• directive control

• listing

• advanced optimization

Many of these options are also recognized by the MIPSpro Fortran 77
compiler. This book describes only the options that are unique to Power
Fortran. Chapter 4, “Customizing Power Fortran Execution,” explains when
and how to use the various Power Fortran options, and Appendix A,
“Power Fortran Command Line Options,” provides a complete summary.

Directives

Power Fortran directives enable, disable, or modify a feature of Power
Fortran. Essentially, directives are command line options specified within
the input file instead of on the command line. Unlike command line options,
directives have no default setting. To invoke a directive, you must either
toggle the directive on or set a desired value for its level.

Power Fortran directives allow you to specify Power Fortran options in
addition to, or instead of, command line options. Directives placed on the
first line of the input file are called global directives. Power Fortran interprets
them as if they appear at the top of each program unit in the file. Use global
directives to ensure that the program is compiled with the correct command
line options. Directives appearing anywhere else in the file apply only until
the end of the current program unit. Power Fortran resets the value of the
directive to the global value at the start of the next program unit. (Set the
global value using a command line option or a global directive.)

Some command line options act like global directives. Other command line
options override directives. Many Power Fortran directives have
corresponding command line options. If you specify conflicting settings in
the command line and a directive, Power Fortran chooses the most
restrictive setting. For Boolean options, if either the directive or the
command line has the option turned off, it is considered off. For options that
require a numeric value, Power Fortran uses the minimum of the command
line setting and the directive setting.



Directives

5

Power Fortran supports the following standard directives:

Note: The * denotes that the directive is also supported by the MIPSpro
Fortran 77 compiler and therefore, described in the MIPSpro Fortran 77
Programmer’s Guide.

In addition to the simple loop-level parallelism offered by the
C$DOACROSS directive, Power Fortran supports a more general model of
parallelism. This model is based on the work done by the Parallel
Computing Forum (PCF), which itself formed the basis for the proposed
ANSI-X3H5 standard. The compiler supports this model through compiler
directives, rather than extensions to the source language.

Power Fortran supports the following PCF directives, which are described
in the MIPSpro Fortran 77 Programmer’s Guide:

• C$PAR BARRIER

• C$PAR [END] CRITICAL SECTION

• C$PAR [END] PARALLEL

• C$PAR PARALLEL DO

• C$PAR [END] PDO

• C$PAR [END] PSECTION[S]

C*$*ARCLIMIT(n)* C*$*NOIPA*

C*$*[NO]ASSERTIONS* C*$*OPTIMIZE(n)*

C*$*CONCURRENTIZE C*$*ROUNDOFF(n)*

C*$* EACH_INVARIANT_IF_GROWTH(n)* C*$*SCALAR OPTIMIZE(n)*

C*$*INLINE* C*$*UNROLL(n[,m])*

C*$*IPA* C$*

C*$*LIMIT(n) C$DOACROSS

C*$*MAX_INVARIANT_IF_GROWTH(n)* C$&

C*$*MINCONCURRENT(n)* C$CHUNK*

C*$*NOCONCURRENTIZE C$COPYIN*

C*$*NOINLINE* C$MP_SCHEDTYPE*



6

Chapter 1: Overview of Power Fortran

• C$PAR SECTION

• C$PAR [END] SINGLE PROCESS

• C$PAR &

Power Fortran supports the CrayTM directives listed below, which it maps to
corresponding Power Fortran assertions. Refer to Chapter 5, “Fine-Tuning
Power Fortran,” for details.

• CDIR$ NEXT SCALAR

• CDIR$ NO RECURRENCE*

• CDIR$ IVDEP

Power Fortran supports the following VASTTM directives, which it maps to
corresponding Power Fortran assertions:

• CVD$ CNCALL

• CVD$ CONCUR

• CVD$ [NO]DEPCHK*

• CVD$ [NO]LSTVAL*

As with the command line options, many directives are also recognized by
the MIPSpro Fortran 77 compiler. This manual describes those directives
that are supported only by Power Fortran. Refer to Appendix B, “Power
Fortran Directives,” for a summary.

Assertions

Assertions provide Power Fortran with additional information about the
source program. Sometimes assertions can improve optimization results.
Use them only when speed is essential.

As with a directive, Power Fortran treats an assertion as a global assertion if
it comes before all comments and statements in the file. That is, Power
Fortran treats the assertion as if it were repeated at the top of each program
unit in the file. However, Power Fortran does not check the correctness of
assertions.



Assertions

7

Many assertions, like directives, are active until the end of the program unit
(or file) or until you reset them. Other assertions are valid only for the DO
loop before which they appear (such as C*$* ASSERT DO PREFER
(CONCURRENT)). This type of assertion applies to the next DO loop but
not to any loop nested inside it.

Table 1-1 lists the assertions Power Fortran accepts and their duration.

As with the command line options and directives, many assertions are also
recognized by the MIPSpro Fortran 77 compiler. This manual describes those
assertions that are supported only by Power Fortran.

a. The MIPSpro Fortran 77 Programmer’s Guide describes this assertion.

Table 1-1 Power Fortran Assertions and Their Duration

Assertion Duration

C*$* ASSERT [NO] ARGUMENT ALIASINGa Until reset

C*$* ASSERT [NO] BOUNDS VIOLATIONSa Until reset

C*$* ASSERT CONCURRENT CALL Next loop

C*$* ASSERT DO (CONCURRENT) Next loop

C*$* ASSERT DO  (SERIAL) Next loop

C*$* ASSERT DO PREFER (CONCURRENT) Next loop

C*$* ASSERT DO PREFER (SERIAL) Next loop

C*$* ASSERT [NO] EQUIVALENCE HAZARDa Until reset

C*$* ASSERT [NO] LAST VALUE NEEDED Until reset

C*$* ASSERT NO RECURRENCE Next loop

C*$* ASSERT NO SYNC Next loop

C*$* ASSERT RELATION (name.xx. name) Next loop

C*$* ASSERT PERMUTATION (name)a Next loop

C*$* ASSERT [NO] TEMPORARIES FOR CONSTANT
ARGUMENTSa

Next loop



8

Chapter 1: Overview of Power Fortran

Summary

Power Fortran provides information about the dependencies of loops in a
Fortran 77 program. Often, Power Fortran can use this information to
automatically run loops in parallel. But when Power Fortran is not able to
convert the code for parallel execution automatically, it can tell you where it
ran into problems. Often, you need only make a small change to remove the
dependencies that prevent the loop from running in parallel. The better you
understand the information Power Fortran gives you, the better equipped
you will be to transform the program into an efficient parallel version.

For more information about parallel processing in general, see Chapter 7 in
the MIPSpro Fortran 77 Programmer's Guide. Especially recommended are the
sections “Analyzing Data Dependencies for Multiprocessing” and
“Breaking Data Dependencies” for information about recognizing and
repairing data dependency problems.



9

Chapter 2

2. How to Use Power Fortran

This chapter contains the following sections:

• “Overview” describes how to prepare for using Power Fortran.

• “Compiling Programs With Power Fortran” explains how to run Power
Fortran.

Overview

Simply running a program through Power Fortran might improve the
performance of your program, but you can improve it far more if you
understand the Power Fortran listing. From the listing, you can often
identify small problems that prevent a loop from running safely in parallel.
With a relatively small amount of work, you can remove these data
dependencies and dramatically improve the program’s performance.

When trying to find loops to run in parallel, focus your efforts on the areas
of the code that use the bulk of the run time. Spending time trying to run a
routine in parallel that uses only 1 percent of the run time of the program
cannot significantly improve the performance of your program.

To determine where your code spends its time, take an execution profile of
the program. Use either pc sampling (through the –p option to f77(1)) or
basic block profiling (through pixie(1)). Refer to the MIPSpro Compiling,
Debugging, and Performance Tuning Guide for details about profiling.
Alternatively, you can use the WorkShop Pro MPF Parallel Analyzer View to
examine the performance of your program. Refer to the
CASEVision/WorkShop Pro MPF User’s Guide for details.



10

Chapter 2: How to Use Power Fortran

There are two schools of thought about profiling: conservative and
optimistic. The conservative approach takes a profile of the original
(nonparallel) job. You then run in parallel only the loops that account for
most of the run time. The more optimistic approach runs the entire program
through Power Fortran and then profiles the resulting multiprocessed job.
The conservative approach reduces the chances that something might go
wrong because it makes fewer changes to the code. It also focuses on the
smallest number of lines of code that have the greatest effect.

Use the optimistic approach when you think that Power Fortran will do a
good job with the existing program. You will save time by letting Power
Fortran do what it can. You can then focus on those routines where Power
Fortran had a problem. One situation in which Power Fortran frequently
does a good job is when you convert programs that already run well on
traditional vector architectures. Many such programs run in parallel without
additional effort.

Whichever approach you choose, use the profile to focus your efforts on the
most time-consuming routines. Once you find a time-consuming routine,
submit that routine alone to Power Fortran. If the routine is in the middle of
a large file, consider using fsplit(1) to isolate the individual routine. Compile
the routine with the –pfa keep option and examine the listing file. The Power
Fortran listing identifies the loops that Power Fortran can and cannot run in
parallel. For loops that cannot run in parallel, the listing also tells you why
Power Fortran could not convert the loop for parallel execution.

Compiling Programs With Power Fortran

This section describes the command line syntax for compiling a Fortran 77
program with Power Fortran. You can pass these options to Power Fortran
by adding the –WK option to the f77 command line. It invokes the various
processing phases that compile, optimize, assemble, and link the program.
For more information about the –WK option, see the f77(1) manual page.



Compiling Programs With Power Fortran

11

Syntax

f77 f77_options -pfa[{list|keep}] [-WK, option[= value]
[, option[= value]]...] filename

where

f77_options Specifies any f77 compiler options. Refer to the f77(1)
manual page and the MIPSpro Fortran 77 Programmer’s
Guide for details.

–pfa Requests automatic parallelization of loops. Enables any
multiprocessing directives.

list Specifies an annotated listing of the parts of the program
that can (and cannot) run in parallel on multiple processors.
The listing file has the suffix .l.

keep Generates the listing file (.l), saves the transformed
equivalent Fortran 77 program (.m), and creates an output
file for use with WorkShop Pro MPF (.anl).

–WK Passes the specified command line options to Power
Fortran. Do not enter spaces between –WK and any of the
hyphens, options, equal signs, and values that follow it.

option Specifies a Power Fortran command line option listed in
Table 2-1, for example, –concurrentize.

value Specifies a value for a command line option, for example, 1.

filename Specifies the Fortran 77 source program. The filename must
always use the .f, .F, .for, or .FOR suffix.

Table 2-1 lists the Power Fortran command line options. Although the table
lists the options in lowercase, you can specify them in uppercase as well.



12

Chapter 2: How to Use Power Fortran

Note: You can replace many of the Power Fortran command line options
listed in Table 2-1 with in-code directives. For information on these
directives, see Chapter 5, “Fine-Tuning Power Fortran,” and Appendix B,
“Power Fortran Directives.”

Table 2-1 Power Fortran Command Line Options

Reference Long Name Short Name Default Value

Parallelization –[no]concurrentize

–minconcurrent=n

–[no]parallelio

–[n]conc

–mc=n

–[no]pio

–concurrentize

–minconcurrent=500

(option off)

General
Optimizationa

–assume=list

–fuse

–optimize=n

–roundoff=n

–scalaropt=n

–as=list

–fuse

–o=n

–r=n

–so=n

–assume=el

–fuse

depends on –On

depends on –On

depends on –On

Inlining and
Interprocedural
Analysisa

–inline[=list]

–ipa[=list]

–inline_create=name

–ipa_create=name

–inline_from_files=list

–ipa_from_files=list

–inline_from_libraries=list

–ipa_from_libraries=list

–inline_loop_level=n

–ipa_loop_level=n

–inline_man

–ipa_man

–inline_depth

–in[=list]

–ipa[=list]

–incr=name

–ipacr=name

–inff=list

–ipaff=list

–infl=list

–ipafl=list

–inll=n

–ipall=n

–inm

–ipam

–ind

(option off)

(option off)

(option off)

(option off)

(option off)

(option off)

(option off)

(option off)

–inll=10

–ipall=10

(option off)

(option off)

–ind=10

Directive Controla –[no]directives=list –[n]dr=list –directives=ackpv



Compiling Programs With Power Fortran

13

The –pfa and –On options enable certain scalar optimizations that are
equivalent to various combinations of the –WK option with the –scalaropt
(or –so), –roundoff (or –r), and –optimize (or –o) options (described in detail
in the MIPSpro Fortran 77 Programmer’s Guide).

The –pfa option enables Power Fortran which performs automatic
parallelization plus –WK,–r=0,–so=3,–o=5. This option also enables the
multiprocessing directives that you can enable separately with the –mp
option.

If you specify the –On option along with –pfa, the compiler performs the
greater of the implied options. For example, specifying –O1 (which is the
same as –WK,–r=0, –so=2,–o=1) and –pfa (which is the same as
–WK,–r=0,–so=3,–o=5) has the same effect as –WK,–r=0, –so=3,–o=5.

a. Refer to the MIPSpro Fortran 77 Programmer’s Guide for details about this option.

Listing –lines=n

–listoptions=list

–suppress=list

–ln=n

–lo=list

–su=list

–lines=55

–listoptions=k

(option off)

Advanced
Optimization

–aggressive=lettera

–arclimit=na

–cacheline=na

–cachesize=na

–chunk=na

–dpregisters=na

–each_invariant_if_growth=na

–fpregisters=na

–limit=n

–max_invariant_if_growth=na

–[no]recursiona

–setassociativity=na

–unroll=na

–unroll2=na

–ag=letter

–arclm=n

–chl=n

–chs=n

–chk=n

–dpr=n

–eiifg=n

–fpr=n

–lm=n

–miifg=n

–[no]rc

sasc=n

–ur=n

–ur2=n

(option off)

–arclimit=5000

–cacheline=4

–cachesize=256

–chunk=1

–dpregisters=16

–each_invariant_if _growth=20

–fpregisters=16

–limit=20000

–max_invariant_if_growth=500

–recursion

–setassociativity=1

–unroll=4

–unroll2=100

Table 2-1 (continued) Power Fortran Command Line Options

Reference Long Name Short Name Default Value



14

Chapter 2: How to Use Power Fortran

Example

To compile the Fortran 77 program prog.f with Power Fortran and the
–minconcurrent=0 and –parallelio options, enter

% f77 -pfa -WK,-minconcurrent=0,-parallelio prog.f

Figure 2-1 shows what happens when you compile a Fortran 77 program
with –pfa. The first pass invokes the macro preprocessor cpp to handle cpp
directives. (For more information, see the cpp(1) manual page.) The Power
Fortran 77 compiler, fef77p, then takes the cpp output and inserts code that
runs data-independent loops in parallel. It also generates intermediate code.

Note: The MIPSpro Power Fortran 77 compiler, fef77p, is a separate compiler
from the regular MIPSpro Fortran 77 compiler, fef77.

In addition to the intermediate code, Power Fortran can generate the
following files:

• listing file (.l)

• equivalent transformed file (.m)

• file for use with WorkShop Pro MPF (.anl)

For details and an example of the listing file, refer to Chapter 3, “Utilizing
Power Fortran Output.”

Finally, the MIPSpro back end, be, processes the intermediate code to
produce an object file (.o).



Compiling Programs With Power Fortran

15

Figure 2-1 Compiling With Power Fortran

cpp

fef77p

be

Object File (.o)

Fortran 77 Source (.f)

Equivalent Transformed Fortran Source File (.m)

Intermediate Code

WorkShop Pro MPF Input File (.anl)

Listing File (.l)





17

Chapter 3

3. Utilizing Power Fortran Output

This chapter contains the following sections:

• “Overview” discusses the Power Fortran output files and provides
examples of them.

• “Formatting the Listing File” explains how to change the format of the
standard listing file.

• “Interpreting Default Listing Information” explains the contents of the
listing file.

• “Sample Listing Files” provides sample listing files along with an
interpretation of each.

Overview

Power Fortran can generate three types of output files:

• listing file (.l)

• transformed Fortran source file (.m) that contains the original source
program with the multiprocessing directives inserted by Power Fortran

•  an input file for use with WorkShop Pro MPF (.anl)

When you specify the list argument to –pfa, Power Fortran produces a
line-numbered listing file. If you specify the keep argument instead, Power
Fortran produces the numbered listing file, transformed Fortran source file,
and the WorkShop Pro MPF file. (For details about invoking Power Fortran,
refer to Chapter 2, “How to Use Power Fortran.”)



18

Chapter 3: Utilizing Power Fortran Output

For example, consider the following code segment, sample.f:

        subroutine sample (a,b,c)
        dimension a(1000),b(1000),c(1000)
        do 10 i = 1, 1000
 10       a(i) = b(i) + c(i)
        end

Compiling sample.f as follows

% f77 -pfa list -c sample.f

generates the following listing file, sample.l:

Footnotes Actions   Do Loops Line
          DIR                  1  # 1  "sample.f"
                               2       subroutine sample(a,b,c)
                               3       dimension  a(1000),b(1000),c(1000)
          SO C      +--------  4       do 10 i = 1,1000
          SO        *_______   5  10   a (i) = b(i) + c(i)
                               6       end
Abbreviations Used
   SO     scalar optimization
   DIR    directive
   C      concurrentized
Loop Summary
       From  To    Loop     Loop    at
Loop#  line  line  label    index   nest   Status
1      4     5     Do 10    I       1      concurrentized

Power Fortran placed a C before the first statement of the DO loop in the
listing file, sample.l. The Abbreviations Used table shows that C stands for
“concurrentized,” which means that Power Fortran determined that it can
safely run the loop in parallel. The Loop Summary table at the bottom of
sample.l shows that the status of the loop is concurrentized.

Note: The first line number directive appears in the listing because it was
actually added by cpp before Power Fortran ran.



Formatting the Listing File

19

Formatting the Listing File

You can customize a Power Fortran listing file by

• paginating the listing

• selecting the information to be printed

• disabling specific message classes

Paginating the Listing

The –lines=n option (or –ln=n) paginates the listing for printing. Use this
option to change the number of lines per page. Specifying –lines=0
paginates at subroutine boundaries.

If you do not specify the –lines option, Power Fortran prints 55 lines per
page.

Specifying Information to Include

The –listoptions=list option (or –lo=list) specifies the information to include
in the listing file (.l), where list is any combination of the options in Table 3-1.
The default is –listoptions=ol.

Table 3-1 Listing File Include Options

Value Produces

c Calling tree at the end of the program listing.

i Transformed program file annotated with line numbers in the
source program. Error messages and debugging information can
refer to the original source rather than the transformed source. This
argument is specified by default.

k List of the Power Fortran options used at the end of each program
unit.

l Loop-by-loop optimization table.

n Program unit names, as processed, to the standard error file. This
option is added automatically as part of an f77 –v compilation.



20

Chapter 3: Utilizing Power Fortran Output

The following command compiles the program source.f with Power Fortran
and includes an annotated listing of the original program and a summary of
the optimizations performed in the listing file:

% f77 -pfa -WK,-listoptions=ls source.f

Disabling Message Classes

Use the –suppress=list option (or –su=list) to disable individual classes of
Power Fortran messages that are normally included in the listing (.l) file.
These messages range from syntax warnings and error messages to
messages about the optimizations performed. list is any combination of the
options in Table 3-2.

o Annotated listing of the original program.

p Processing performance statistics.

s Summary of optimizations performed.

t Annotated listing of the transformed program.

Table 3-2 Listing File Message Disabling Options

Value Message Class Disabled

d Data dependence

e Syntax error

i Information

n Unable to run loop in parallel

q Questions

s Standard messages

w Warning of syntax error (Power Fortran adds the –suppress=w
option automatically if you use the –w option to f77)

Table 3-1 Listing File Include Options

Value Produces



Interpreting Default Listing Information

21

If you do not specify this option, Power Fortran prints messages of all
classes.

Interpreting Default Listing Information

Knowing when and where to modify your code means understanding the
information in the Power Fortran listing. This understanding allows you to
recognize where small changes to the source code will make a big difference
in how much code is run in parallel.The listing file generated by Power
Fortran lists the optimizations Power Fortran made to the code. For
example, a message could say that, although three loops could have run in
parallel, Power Fortran converted only the one it determined most
profitable.

This section explains how to view the listing file online and then lists and
describes the various fields.

Viewing the Listing File

The listing file is in 132-column format. To view the file, open a window with
132 columns and 40 rows by entering

% wsh -s132,40

Field Descriptions

This section explains the contents of the listing file when you use the default
values for the –listoptions command line option (that is, o and l).

A default Power Fortran listing file includes

• line numbers

• DO loop markings

• footnotes

• syntax errors/warning messages

• action summary



22

Chapter 3: Utilizing Power Fortran Output

Line Numbers

A statement in the listing transformed by Power Fortran labeled with a line
number, such as 21, is the same as line 21 from the original program or has
been derived from that line. These line numbers are useful when inspecting
the transformed program listing and when debugging. Power Fortran
sometimes generates several lines of code from a single line of the original
program; in this case, each new line of code is labeled with the same number
as the line of the original program from which it was generated.
Consequently, many lines of the transformed program listing carry the same
number because they are related to one line of the original program listing.

DO Loop Marking

The listing file displays DO loops graphically in a column headed DO
Loops. Power Fortran surrounds each DO loop (up to nest level 10) with a
loop delimiter character. The delimiters form brackets around each loop nest
level. Each character listed in Table 3-3, has a specific meaning.

A statement contained within n DO loops has n of these loop delimiters on
that line. For example, the following statements are contained within one
DO loop and therefore have only one |.

DO Loops  Line
+-------  173      DO 100 M=2,MAX(MFLD,2)
|         174      IADR = ISECT(M)
|         175      IADR1= ISECT(M-1)
|         176      PNM(IADR)=(ANM(IADR) *PNM(IADR1))
|_______  177 100  PPNM(IADR)= -(ANM(IADR) *PNM(IADR1))

Table 3-3 Listing File DO Loop Delimiters

Character Denotes

| Generic DO loop

* Power Fortran can run loop in parallel

! Syntax error



Interpreting Default Listing Information

23

Footnotes

Power Fortran uses the footnotes listing to give important details concerning
its actions. Power Fortran numbers and prints the footnotes at the bottom of
each program unit under the Footnote List heading. References to the
footnotes are displayed in the listing under the Footnotes column. For
example, this footnote

13     DD            1790     IF (B(I) .LE. 6) IB(J*I) = I+J

appears under Footnote List at the end of the program unit

13: data dependence    Data dependence involving this line due
                       to variable IB.

In this example, 13 is the footnote number, DD (data dependence) is the
explanation for Power Fortran’s action, and the IF statement on line 1790
refers to the original source line number.

Syntax Errors/Warning Messages

When a program has syntax errors, the listing file describes the error next to
the lines that start with the symbol ### in the Footnotes column. These
messages are also printed to stderr, which will usually be your terminal.

For example,

Footnotes Actions   DO Loops   Line
                                 1      SUBROUTINE Z(A,B,N)
                                 2      REAL A(N), B(N)
                    +-------     3      DO 20 I=1,N
                    !            4      X=A(I)
                    !            5      Y=B(I)
                    ! ______     6   20 C(I)=X+Y
### line (6)
### error    Array not declared or statement function declared
             after executable statements.
### error    A do loop ends on a non-executable statement.
                                 7      PRINT *,X
                                 8      END



24

Chapter 3: Utilizing Power Fortran Output

Action Summary

When Power Fortran translates or modifies a statement, it uses
abbreviations in the Actions column of the listing file to identify the
statements. Power Fortran lists an abbreviated explanation of its actions at
the bottom of the listing. For the DIR and V classes, the class itself serves as
the message without detailed messages. All other classes have associated
messages.

Table 3-4 lists and explains the values that can appear in the Actions column.

Table 3-4 Power Fortran Action Abbreviations

Value Meaning

DD (Data Dependence) Indicates that data dependence prevented Power
Fortran from running this statement in parallel.

DIR (Directive) Used in conjunction with the footnotes and concerns compiler
directives. If you code a compiler directive and that line does not have the
DIR abbreviation in the listing, Power Fortran will not recognize the
directive. Check the setting of the –directives command line option and
the syntax of the directive.

E (Error) Indicates syntax errors. These messages can refer to missing or
extra characters, illegal keywords, or text placed in the wrong column.
Power Fortran cannot do anything with such code. The equivalent
transformed source file (.m) contains a copy of this program unit that
Power Fortran has not modified.

EX (Extension) Shows where a construct in the original program is not
allowed in the language Power Fortran produces. In some cases, an
operation or type is allowed in the input language but not in the output
language.

INF (Information) Provides noncritical information.

I (Insertion) Indicates that Power Fortran added a statement.



Interpreting Default Listing Information

25

LR (Loop Reordering) Indicates that Power Fortran has modified a Fortran 77
statement in the process of interchanging loops. If during optimization
Power Fortran ascertains that an outer loop would be more efficient as an
inner loop, and it can legally reorder the loops, Power Fortran places the
outer loop inside. In the process of this reordering, Power Fortran might
have to change loop bounds (for triangular loops), distribute loops, or
float IF assignments. Only the statements modified for the exchange are
marked.

MIS (Miscellaneous) Indicates that some Power Fortran information has been
lost. This message does not always mean that something is wrong with the
program.

NX (Nonconcurrent Statement) Indicates that Power Fortran did not try or
was unable to run the statement in parallel. For example, when a
subroutine call is involved in a loop, Power Fortran generates this
message.

NO (Program Too Large—Not Optimized) Indicates that the program unit
being processed is too large for Power Fortran to optimize, because of
Power Fortran’s data structure size limitations. When Power Fortran
optimizes programs, it adds statements that might also overflow the
fixed-size tables. In either case, Power Fortran stops optimization and
passes the original program to the equivalent transformed source file (.m),
informing you of this action. For Power Fortran to process the unit, you
must split the program into smaller sections.

OE (Option Error) Indicates a syntax error in a Power Fortran option. This
error does not stop processing of a program unit.

OTF (Output Translation Failure) Marks statements that have constructs that
exist in the input language but that cannot be represented in the output
language.

Q (Question) Indicates that Power Fortran tried to optimize a loop nest but
discovered a data dependence it could not break at compile time without
further information. You can usually answer this question with an
appropriate assertion.

SO (Scalar Optimization) Marks places in the transformed listing where
Power Fortran has optimized a scalar loop.

Table 3-4 (continued) Power Fortran Action Abbreviations

Value Meaning



26

Chapter 3: Utilizing Power Fortran Output

Sample Listing Files

This section contains a few simple examples of Fortran code and the
corresponding Power Fortran output. An actual source program would be
much larger, and a single loop could contain several of the cases illustrated
here. However, even in a large loop, you can deal with each problem
individually.

Indirect Indexing

Power Fortran cannot determine if it can run a loop in parallel when the code
uses indirect indexing. A loop is indirectly indexed when it uses the value
from some auxiliary array as the index value rather than the DO loop
variable.

The Fortran 77 code

       subroutine foo2(a,b,index,n)
       real a(n), b(n)
       integer index(n)

       do i = 1, n
       a(index(i)) = a(index(i)) + b(i)

       enddo
       end

STD (Standardized) Marks where Power Fortran changed a program to
improve the chance of finding code that it can optimize. This is often a
conversion from an IF/GOTO into a block IF, loop rerolling, and
conversion of an IF loop to a DO loop.

TE (Translator Error) Indicates an internal Power Fortran error. Power Fortran
writes the notification to the standard error file and writes a trace back to
the output file. Notify Silicon Graphics if you see this sort of bug (so it can
be corrected) and, if possible, send Silicon Graphics the code that caused
the trace back as well as the trace back itself. If you can reproduce the error
in a small program unit, send that small program unit as well.

W (Warning) Contains syntax warnings.

Table 3-4 (continued) Power Fortran Action Abbreviations

Value Meaning



Sample Listing Files

27

when submitted to Power Fortran, produces the listing file

Footnotes  Actions     DO Loops   Line
           DIR                    1  # 1 "foo2.f"
                                  1    subroutine foo2(a,b,index,n)
                                  2    real a(n), b(n)
                                  3    integer index(n)
                                  4
1          Q SO        +-------   5    do i = 1, n
2          DD SO       !          6       a(index(i)) = a(index(i)) + b(i)
                       !_______   7    enddo
                                  8    end
Abbreviations Used
 DD       data dependence
 Q        question
 SO       scalar optimization
 DIR      directive
Footnote List
 1: question           Is “INDEX” a permutation vector?
 2: data dependence    Data dependence involving this line due
                       to variable A.
Loop Summary
       From   To     Loop     Loop    at
loop#  line   line   label    index   nest   Status
1      6      8      Do       I       1      scalar mode preferable

DD in the Actions column on line 6 of the listing warns that the variable a
might carry a dependency. A dependency exists when one iteration of the
loop writes to a location that is used by a different iteration of the loop. In
this example, if the values of index(i) are ever the same for different values
of i, then different iterations might use the same location in a. Therefore, this
code contains a possible data dependence.

If you can guarantee that the values of index(i) are always different for each
value of i, then there is no dependence (each iteration uses a different
location in a). Question one on the Footnote List asks if index(i) is different
for every value of i. A permutation vector is a list of numbers, each of which
is different from the others. If you know that index is a permutation vector,
then the loop is data-independent. An example of a permutation vector is a
list of objects in which each object appears exactly once.



28

Chapter 3: Utilizing Power Fortran Output

Explicitly state that index is a permutation vector by adding an assertion in
the source

       subroutine foo2(a,b,index,n)
       real a(n), b(n)
       integer index(n)
c*$*assert permutation (index)

    do i = 1, n
     a(index(i)) = a(index(i)) + b(i)

       enddo
       end

Now the listing file shows that Power Fortran finds the loop safe to run in
parallel (indicated by the * DO loop delimiter):

Footnotes  Actions     DO Loops   Line
           DIR                    1  # 1 "foo2.f"
                                  1    subroutine foo2(a,b,index,n)
                                  2    real a(n), b(n)
                                  3    integer index(n)
           DIR                    4  c*$*assert permutation (index)
                                  5
1          SO C        +-------   6    do i = 1, n
2          SO          *          7       a(index(i)) = a(index(i)) + b(i)
                       *_______   8    enddo
                                  9    end

Abbreviations Used
 SO    scalar optimization
 DIR   directive
 C     concurrentized

Loop Summary
       From   To     Loop     Loop    at
loop#  line   line   label    index   nest   Status
1      7      9      Do       I       1      concurrentized

Note: As with all assertions, Power Fortran does not verify the truth of this
assertion. When you make an assertion, be certain that it is always true for
all possible input data.



Sample Listing Files

29

Function Call

This example shows what happens when a loop contains a call to an external
routine. The Fortran 77 code

       subroutine foo3 (a,b,c,n)
       real a(n), b(n), c(n)
       external force

       do i = 1, n
      a(i) = force (b(i), c(i))

       enddo
       end

generates the listing

Footnotes  Actions     DO Loops   Line
           DIR                    1  # 1 "foo3.f"
                                  1    subroutine foo3(a,b,c,n)
                                  2    real a(n), b(n), c(n)
                                  3    external force
                                  4
1 2        NO SO NCS   +------    5    do i = 1,n
3          NO SO NCS   !          6       a(i) = force (b(i), c(i))
                       !______    7    enddo
                                  8    end

Abbreviations Used
 NO    not optimized
 SO    scalar optimization
 DIR   directive
 NCS   non-concurrent-stmt

Footnote List
  1: not optimized       No optimizable statements found.
  2: not optimized        This loop contains an unoptimizable call to “FORCE”.
  3: not optimized       This statement contains an unoptimizable call to
“FORCE”.

Loop Summary
        From   To     Loop    Loop    at
Loop#   line   line   label   index   nest     Status
1       6      8      Do      I       1        unoptimizable call (FORCE)



30

Chapter 3: Utilizing Power Fortran Output

Calling the function force prevents Power Fortran from automatically
running the loop in parallel. Power Fortran identifies the function call as a
non-concurrent-stmt. By its nature, a nonconcurrent statement prevents
Power Fortran from assuming the loop is safe to run in parallel because
Power Fortran cannot see into the routine to look for data dependencies.

If you know that force generates no data dependencies, then explicitly state
this fact for the nonconcurrent statement

        subroutine foo3(a,b,c,n)
        real a(n), b(n), c(n)
        external force
c*$*assert concurrent call

     do i = 1, n
       a(i) = force(b(i), c(i))

        enddo
        end

Now that Power Fortran knows that the nonconcurrent statement involves
no data dependency, Power Fortran will find the loop safe to run in parallel.

There is one subtlety in using the concurrent call assertion. When you use
this assertion, Power Fortran makes no attempt to examine the called
routine; it simply assumes that it is safe. However, Power Fortran is still left
with the problem of correctly declaring the variables in the loop to be either
SHARE or LOCAL. (Power Fortran does the best it can, but it can sometimes
be fooled.) For example,

        subroutine tricky (a,b,c,n,m)
        real a(*), b(*)
        external my_function

c*$*assert concurrent call

        do i = 1, n
          a(i) = my_function (b(i), m)

       b(i) = a(i) + m
        enddo
        m = 0
        end



Sample Listing Files

31

The question is whether the variable m should be SHARE or LOCAL. If the
routine my_function only reads the old value of m, then it should be
SHARE. If my_function writes a new value of m, then it should be LOCAL.
In the absence of any more clues, Power Fortran must go by what it can see;
and what it can see is that within the loop, there are no visible assignments
to m, and so Power Fortran will declare it to be SHARE. If in fact
my_function is writing the value of m, then this is incorrect. In this case, to
give Power Fortran the hint it needs, add a visible assignment to m at the top
of the loop.

For example, consider the following code:

do i = 1, n
m = 0
a(i) = my_function(b(i), m)
b(i) = a(i) + m

enddo

Here, Power Fortran can see an assignment to m and so declares it to be
LOCAL. Note that if my_function is both reading the old value and writing
a new value of m, then it was not legal to parallelize the loop.

Reductions

This example shows how Power Fortran produces a single value from a set
of values. Because the entire set of values is reduced to a single value, these
operations are called reductions.

Consider the Fortran 77 code

       subroutine foo4(a,b,n,sum)
       real a(n), b(n), sum

       sum = 0.0
       do i = 1, n

     sum = sum + a(i)*b(i)
       enddo
       end



32

Chapter 3: Utilizing Power Fortran Output

Using the previous code as input, Power Fortran produces the listing file

Footnotes  Actions     DO Loops   Line
           DIR                    1  # 1 "foo3.f"
                                  1      subroutine foo4(a,b,n,sum)
                                  2      real a(n), b(n), sum
                                  3
           SO                     4      sum = 0.0
           SO           +-----    5      do i = i, n
1          DD SO        !         6         sum = sum + a(i)*b(i)
                        !_____    7      enddo
                                  8      end

Abbreviations Used
 DD        data dependence
 SO        scalar optimization
 DIR       directive

Footnote List
1: data dependence       Data dependence involving this
                         line due to variable “SUM”.
Loop Summary
       From  To    Loop   Loop    at
Loop#  line  line  label  index   nest    Status
1      6     8     Do     I       1       scalar mode preferable

Because different iterations of the loop read and write the same location (the
variable sum), there is a dependence. However, this is a special case. Because
sum just accumulates a total, you can accumulate subtotals in parallel and
then combine the subtotals at the end.

Because the parallel version of the code adds the elements together in a
different order than the single-process version, the round-off errors
accumulate differently for the two versions of the code. Thus, the answer can
differ slightly as you vary the number of processes used to run the code. In
fact, if you use the dynamic scheduling option for the code, the answer
might vary slightly from one run of the program to the next, even if you use
the same number of processes on the same machine.



Sample Listing Files

33

Most applications can safely ignore this variation in round-off error. If you
do not care about this round-off error, you can tell Power Fortran to use
parallel subtotals. To tell Power Fortran not to worry about round-off error,
you can use either the C*$*ROUNDOFF(2) directive or the f77 command
line option –WK,–roundoff=2.

The resulting listing file is

Footnotes  Actions     DO Loops   Line
           DIR                    1  # 1 "foo3.f"
                                  1      subroutine foo4(a,b,n,sum)
                                  2      real a(n), b(n), sum
                                  3
           SO                     4      sum = 0.0
           SO C         +-----    5      do i = i, n
           SO           *         6         sum = sum + a(i)*b(i)
                        *_____    7      enddo
                                  8      end

Abbreviations Used
 SO        scalar optimization
 DIR       directive
 C         concurrentized

Footnote List
1: data dependence       Data dependence involving this
                         line due to variable “SUM”.
Loop Summary
       From  To    Loop   Loop    at
Loop#  line  line  label  index   nest    Status
1      6     8     Do     I       1       concurrentized

Be aware that the round-off error produced by the parallel reduction
operation is not necessarily any worse than the round-off error already
present in the original serial version. It will simply be different. If your
application did not worry about the round-off error in the original, there is
no reason to suppose that it should worry about it in the parallel version. If,
on the other hand, your application takes special steps to reduce round off
(for example, adding the numbers together in order from smallest absolute
value to largest), then you should not use parallel reductions.



34

Chapter 3: Utilizing Power Fortran Output

The previous example is called a sum reduction because the reduction
operator is +. Table 3-5 shows the types of reductions Power Fortran
supports.

All these reductions are under the control of the –roundoff command line
option, even though technically the min and max reductions do not involve
round-off problems.

Table 3-5 Power Fortran Reductions

Type Operator Example

Sum + sum = sum + expression

Product * p = p* expression

Min min( ) a = min(a, expression)

Max max( ) x = max(x, expression)



35

Chapter 4

4. Customizing Power Fortran Execution

This chapter contains the following sections:

• “Overview” explains when to optimize Power Fortran execution.

• “Controlling Code Execution” describes how to control whether Power
Fortran runs eligible loops in parallel.

• “Controlling Power Fortran Code Transformations” describes how to
control the various transformations performed by Power Fortran.

• “Performing Inlining and Interprocedural Analysis” describes inlining
and interprocedural analysis and explains how and when to perform
these procedures.

Overview

To customize how Power Fortran executes an entire program, you can
specify various command line options when you run Power Fortran as
described in Chapter 2, “How to Use Power Fortran.” For a complete
summary of the Power Fortran command line options, refer to Appendix A,
“Power Fortran Command Line Options.”

This chapter describes the options that are recognized only by Power
Fortran. For details about the options that control scalar optimizations, refer
to the MIPSpro Fortran 77 Programmer's Guide.



36

Chapter 4: Customizing Power Fortran Execution

Controlling Code Execution

When modifying most programs to allow loops to run in parallel, modify the
code so that Power Fortran can automatically run the loop in parallel. Avoid
forcing the loop to run in parallel by directly inserting a C$ DOACROSS
directive. If you force code to run in parallel, you (and not Power Fortran)
need to verify that no subsequent modification inserts data dependencies.
Forcing these data dependencies in code to run in parallel can produce
serious (and difficult-to-find) errors. Rewriting the loop so that Power
Fortran recognizes the loop as safe to run in parallel allows Power Fortran to
check future modifications for potential data dependencies.

This section describes how to control whether eligible loops are run in
parallel and how to specify a work threshold for loops.

Running Code in Parallel

The –concurrentize option (or –conc) converts eligible loops to run in
parallel. This is the default value for this option. The –noconcurrentize
option (or –nconc) prevents Power Fortran from converting loops to run in
parallel.

Loops requiring the addition of synchronization might run slower than the
scalar original when concurrentized. In this case, you can specify the
–noconcurrentize command line option or the C*$*NOCONCURRENTIZE
directive for a particular loop.

Specifying a Work Threshold

The –minconcurrent=n option (or –mc=n) specifies the minimum amount of
work needed inside the loop to make executing a loop in parallel profitable.
The positive integer n is a count of the number of operations (for example,
add, multiply, load, store) in the loop, multiplied by the number of times the
loop will be executed. The higher the value for n, the larger (more iterations,
more statements, or both) the loop body must be to be run in parallel.

If you do not specify this option, Power Fortran runs all loops containing 500
or more operations in parallel.



Controlling Code Execution

37

 If the DO loop bounds are known at compilation time (that is, if they are
constants), the compiler can compute the exact iteration count and decide
whether to run the loop in parallel. If the DO loop bounds are unknown at
compilation time, the compiler adds an IF clause to the C$ DOACROSS
directive to test at run-time if sufficient work exists. This is interpreted by the
compiler as a request to generate two loops, one concurrentized and one left
serial, and an IF-THEN-ELSE to make a run-time check to decide whether
to execute the loop in parallel. This case is called a two-version loop.

To disable the generation of two-version loops throughout the program,
specify –minconcurrent=0; or to disable this action only in a few DO loops,
specify the C*$* MINCONCURRENT(0) directive.

For example, given the original loop

      DO 2 I =1,N
         X(I) = Y(I) * Z(I)
2     CONTINUE

Power Fortran generates the following transformed loop:

C$DOACROSS IF (N .GT. 100), SHARE (N,X,Y,Z), LOCAL(I)
      DO 3 I=1,N
         X(I) = Y(I)*Z(I)
3     CONTINUE

The IF clause ensures that n is large enough to make running the loop in
parallel profitable (otherwise, Power Fortran will run the loop serially). If the
loop bound is a small constant (such as 10) instead of n, Power Fortran
would not generate a DOACROSS statement for the loop and the listing file
will state that the loop does not contain enough work. Conversely, if the
bound is a large constant (such as 101), Power Fortran generates the
DOACROSS statement without the IF clause.

Enabling Parallel I/O

The –parallelio option (or –pio) enables the parallelization of loops that
contain I/O statements. The no version, which is the default, disables this
optimization. Use this option only on systems with parallel I/O capabilities
or where I/O statements in loops are not executed.



38

Chapter 4: Customizing Power Fortran Execution

Controlling Power Fortran Code Transformations

This section discusses the various ways in which you can control the
standard transformations that Power Fortran performs.

Specifying a Complexity Limit

The –limit=n option (or –lm=n) controls the amount of time Power Fortran
can spend trying to determine whether a loop is safe to run in parallel.
Power Fortran estimates how much time is required to analyze each loop
nest construct. If an outer loop looks like it would take too much time to
analyze, Power Fortran ignores the outer loop and recursively visits the
inner loops.

Larger limits often allow Power Fortran to generate parallel code for deeply
nested loop structures that it might not otherwise be able to run safely in
parallel. However, with larger limits Power Fortran can also take more time
to analyze a program. (The limit does not correspond to the DO loop nest
level. It is an estimate of the number of loop orderings that Power Fortran
can generate from a loop nest.) This option has the same effect as the global
C*$* LIMIT(n) directive.

Note: You do not usually need to change these limits.

You can also change the thresholds for internal table size. Refer to the
MIPSpro Fortran 77 Programmer's Guide for details.

Setting the Optimization Level

The –optimize=n option (or –o=n) sets the optimization level. The higher
you set the optimization level, the more code is optimized and the longer
Power Fortran runs. Programs that are written for running in parallel often
do not need advanced transformation. With these programs, a lower
optimization level is enough. Valid values for n are

0 Avoids converting loops to run in parallel.

1 Converts loops to run in parallel without using advanced
data dependence tests. Enables loop interchanging.



Controlling Power Fortran Code Transformations

39

2 Determines when scalars need last-value assignment using
lifetime analysis. Also uses more powerful data
dependence tests to find loops that can run safely in
parallel. This level allows reductions in loops that execute
concurrently but only if the –roundoff option is set to 2.
(Refer to the following section for details about the
–roundoff option.)

3 Breaks data dependence cycles using special techniques
and additional loop interchanging methods, such as
interchanging triangular loops. This level also implements
special-case data dependence tests.

4 Generates two versions of a loop, if necessary, to break a
data-dependent arc. This level also implements more-exact
data dependence tests and allows special index sets (called
wraparound variables) to convert more code to run in
parallel.

5 Fuses two adjacent loops if it is legal to do so (that is, there
are no data dependencies) and if the loops have the same
control values. In certain limited cases, this level recognizes
arrays as local variables. This level is the default.

Refer to the MIPSpro Fortran 77 Programmer's Guide for examples.

This option has the same effect as the global C*$* OPTIMIZE(n) directive
described in Chapter 5, “Fine-Tuning Power Fortran.”

Controlling Variations in Round Off

The –roundoff=n option (or –r=n) controls the amount of variation in round
off that Power Fortran will allow. Valid values for n are the integers

0–1 Suppresses any round-off transformations. This is the
default.

2 Allows reductions to be performed in parallel. The valid
reduction operators are +, *, min, and max. This value is one
of the most commonly-specified user options.



40

Chapter 4: Customizing Power Fortran Execution

3 Recognizes REAL induction variables. Permits memory
management transformations (refer to the MIPSpro Fortran
77 Programmer's Guide for details.)

Refer to the MIPSpro Fortran 77 Programmer's Guide for examples.

When executing reductions in parallel, Power Fortran processes values in a
different order from the original serial code. Round-off errors accumulate
differently and produce a slightly different answer. Some algorithms are
sensitive to this variation, and so, by default, Power Fortran does not run
reductions in parallel. Usually, these tiny variations are irrelevant, and you
can allow Power Fortran to process a reduction in parallel allowing more
loops to be run in parallel.

Performing Inlining and Interprocedural Analysis

Function and subroutine calls create an obstacle to parallelization. Power
Fortran provides three ways of dealing with this obstacle:

• Assert that the external routine is safe for concurrent execution (see
“C*$* ASSERT CONCURRENT CALL” on page 48).

• Inline the routine by replacing the call to the external routine with the
actual code.

• Perform interprocedural analysis (IPA) by analyzing the external
routine ahead of time and using the results of that analysis when a
reference to the routine is encountered.

Inlining and IPA tend to be slow, memory-intensive operations. Attempting
to inline all routines everywhere they occur can take a lot of time and use a
lot of system resources. Inlining should usually be restricted to a few
time-critical places. For details about inlining and IPA, and the related
directives and command line options, refer to the MIPSpro Fortran 77
Programmer's Guide.



41

Chapter 5

5. Fine-Tuning Power Fortran

This chapter contains the following sections:

• “Overview” explains how to fine-tune program execution using
directives and assertions.

• “Circumventing Power Fortran” explains how to use directives to
bypass Power Fortran’s analysis and leave areas of code unchanged.

• “Running Code Serially” explains how to use directives and assertions
to stop Power Fortran from running specific code in parallel.

• “Running Code in Parallel” explains how to use directives and
assertions to tell Power Fortran that it is safe to run specific parts of
code in parallel.

• “Ignoring Data Dependencies” explains how to tell Power Fortran that
apparently data-dependent code is safe to run in parallel.

Overview

After you run a Fortran source program through Power Fortran once, you
can use directives and assertions to fine-tune program execution. The listing
file will show where and why Power Fortran did not parallelize the code.
You can also use WorkShop Pro MPF to review Power Fortran’s analysis of
your program.

You can use directives and assertions to force Power Fortran to execute
portions of code in various ways. Command line directives apply to the
program as a whole.

If you want finer control for parallelizing a critical loop or inlining a
particular occurrence of a routine, specify directives and assertions directly
in the code. You can also use directives and assertions to keep Power Fortran



42

Chapter 5: Fine-Tuning Power Fortran

from converting code to run in parallel. In other cases you might want to
explicitly force Power Fortran to run segments of code in parallel even
though it normally would not.

Because Power Fortran does not check the correctness of assertions, they can
be unsafe. If you specify an incorrect assertion, the code generated by Power
Fortran might give different answers from the scalar program. If you suspect
unsafe assertions are causing problems, use the –nodirectives command line
option or the C*$* NO ASSERTIONS directive to tell Power Fortran to
ignore all assertions (both described in the MIPSpro Fortran 77 Programmer’s
Guide).

Circumventing Power Fortran

Sometimes you might need to hand-tune a DO loop so that it will run in
parallel. Use the directives in this section to prevent Power Fortran from
analyzing your modified code.

C$ DOACROSS

The C$ DOACROSS directive tells the Fortran 77 compiler to generate
parallel code for the following loop. When Power Fortran encounters this
directive on input, it does not modify the accompanying loop and therefore
does not interfere with any hand-tuning.

C$ DOACROSS is the standard method for parallelism in Fortran. This
directive is the same directive that Power Fortran generates as a result of its
analysis. Refer to the MIPSpro Fortran 77 Programmer's Guide for more
information about the C$ DOACROSS directive and its optional clauses.

Power Fortran runs the following code as it appears:

C$ DOACROSS
       DO 10 I=1, 100
          A(I) = B(I)
 10    CONTINUE



Running Code Serially

43

C$&

The C$& directive continues the C$ DOACROSS directive onto multiple
lines, for example,

C$DOACROSS SHARE(ALPHA, BETA, GAMMA, DELTA,
C$&   EPSILON, OMEGA), LASTLOCAL (I, J, K, L, M, N),
C$&   LOCAL(XXX1, XXX2, XXX3, XXX4, XXX5, XXX6, XXX7,
C$&   XXX8, XXX9)

C*$* NO SYNC

Sometimes when Power Fortran concurrentizes a loop, it adds unnecessary
sychronization directives or other sychronization code. You can use the C*$*
ASSERT NO SYNC assertion to eliminate sychronization overhead.

Running Code Serially

Use the following assertions and directives to keep Power Fortran from
running specific code in parallel.

C*$* ASSERT DO (SERIAL)

The C*$* ASSERT DO (SERIAL) assertion tells Power Fortran to run the
loop immediately following it serially. Power Fortran also does not try to run
any enclosing loop in parallel. However, it can still convert any loops nested
inside the serial loop to run in parallel. For example, consider the following
code:

       DO 100 i = 1,n
         DO 100 j = 1, n
C*$*ASSERT DO (SERIAL)
         DO 200 k = 1, n
           X(i,j,k) = X(i,j,k) * Y(i,j)
 200     CONTINUE
         DO 300 k = 1, n
           X(i,j,k) = X(i,j,k) + Z(i,k)
 300     CONTINUE
 100    CONTINUE



44

Chapter 5: Fine-Tuning Power Fortran

The assertion forces the DO 100 I loop, the DO 100 J loop, and the DO 200
K loop to be serial. The compiler can still optimize the DO 300 K loop. In this
case, the compiler will not distribute the I or J loops to try to obtain an
optimizable loop.

See also “C*$* ASSERT DO PREFER (SERIAL)” on page 44.

CDIR$ NEXT SCALAR

Silicon Graphics Power Fortran supports the corresponding Cray directive,
CDIR$ NEXT SCALAR. Power Fortran interprets this directive as if it were
a C*$* ASSERT DO (SERIAL) assertion and generates scalar code for the
next DO loop.

C*$* ASSERT DO PREFER (SERIAL)

The C*$* ASSERT DO PREFER (SERIAL) assertion tells the compiler to
prefer any ordering in which the loop following the assertion remains serial.
Unlike C*$* ASSERT DO (SERIAL), this assertion does not inhibit
optimization of outer loops. This assertion directs Power Fortran to leave the
DO loop alone, regardless of the setting of the optimization level. You can
use this assertion to control which loop (in a nest of loops) Power Fortran
chooses to run in parallel. The following code segment is an example of how
to use the assertion:

          DO 100  I = 1,  N
C*$*ASSERT DO PREFER (SERIAL)
          DO 100  J = 1,  M
            A(I,J) = B(I,J)
100       CONTINUE

In the DO loop above, the assertion requests that the J loop be serial. In this
construction, Power Fortran tries to run the I loop in parallel but not the J
loop. This capability is useful when you know the value of M to be very
small or less than N. This assertion applies only to the DO loop that appears
directly after the assertion.



Running Code in Parallel

45

Running Code in Parallel

This section explains the directives and assertions that allow Power Fortran
to determine that specific areas of code are safe to run in parallel.

C*$*[NO]CONCURRENTIZE

The C*$*[NO]CONCURRENTIZE directive converts eligible loops to run in
parallel. The NO version prevents Power Fortran from converting loops to
run in parallel. These directives override the –[no]concurrentize command
line option. For example, if your program contains the
C*$*NOCONCURRENTIZE directive, parallelization is disabled even if
you compile with –concurrentize. When specified globally, these directives
have the same effect as the –concurrentize and –noconcurrentize options
(see “Running Code in Parallel” in Chapter 4 for details).

CVD$ CONCUR

Power Fortran supports the VAST directive CVD$CONCUR. This directive
runs a loop in parallel to optimize performance. Power Fortran interprets
this directive as if it were the C*$*CONCURRENTIZE directive.

C*$* ASSERT DO PREFER (CONCURRENT)

The C*$* ASSERT DO PREFER (CONCURRENT) assertion directs Power
Fortran to run a particular nested loop in parallel if possible. Power Fortran
runs another of the nested loops in parallel only if a condition prevents
running the selected loop in parallel.

This assertion applies only to the DO loop immediately after it.

Consider the following code:

C*$* ASSERT DO PREFER (CONCURRENT)
          DO 100 I = 1, N
          DO 100 J = 1, M
             A (I, J) = B (I, J)
100       CONTINUE



46

Chapter 5: Fine-Tuning Power Fortran

This code directs Power Fortran to prefer to run the I loop in parallel.
However, if a data dependence conflict prevents running the I loop in
parallel, Power Fortran might run the J loop in parallel.

The –noconcurrentize command line option and the C*$* NO
CONCURRENTIZE directive prevent Power Fortran from generating
concurrent code, even if you specify the C*$* ASSERT DO PREFER
(CONCURRENT) assertion.

Using Aliasing

The C*$* ASSERT RELATION(name.xx.name) assertion indicates the
relationship between two variables or between a variable and a constant.
name is the variable or constant, and xx is any of the following: GT, GE, EQ,
NE, LT, or LE. This assertion applies only to the next DO statement.

The C*$* ASSERT RELATION assertion includes variable names (name and
xx). When specified globally, this assertion will only be used when the
variable names appear in COMMON blocks or are dummy arguments to a
subprogram. You cannot use global assertions to make relational assertions
about variables that are local to a subprogram.

As an example of the use of the C*$* ASSERT RELATION assertion,
consider the following code:

          DO 100 I = 1, N
             A (I) = A (I+M) + B (I)
100       CONTINUE

If you know that M is greater than N, use the following assertion to give this
information to the compiler:

C*$* ASSERT RELATION (M .GT. N)
          DO 100 I = 1, N
             A (I) = A (I +M) + B (I)
100       CONTINUE

Knowing that M is greater than N, the compiler can generate parallel code
for this loop. If M is less than N at run time, the answers produced by the
code run in parallel could differ from the answers produced by the original
code run serially.



Ignoring Data Dependencies

47

Note: Many relationships of this type can be cheaply tested for at run time.
The compiler attempts to answer questions of this sort by generating an IF
statement that explicitly tests the relationship at run time. Occasionally, the
compiler needs assistance, or you might want to squeeze that last bit of
performance out of some critical loop by asserting some relationship rather
than repeatedly checking it at run time.

Ignoring Data Dependencies

Power Fortran avoids running code in parallel that it believes to be
data-dependent. Use the assertions described in the following sections to
override this behavior.

C*$* ASSERT DO (CONCURRENT)

The C*$* ASSERT DO (CONCURRENT) assertion tells Power Fortran to
ignore assumed data dependencies. Normally, Power Fortran is
conservative about converting loops to run in parallel.

When Power Fortran determines if it can run a loop in parallel, it categorizes
the loop into one of three groups:

• yes (loop is safe to run in parallel)

• no

• not sure

Normally, Power Fortran does not run the loops it is not sure about in
parallel. It assumes there are data dependencies. C*$* ASSERT DO
(CONCURRENT) tells Power Fortran to go ahead and run “not sure” loops
in parallel.

Note: If Power Fortran identifies a loop as containing definite data
dependencies (as opposed to dependencies it assumes, but is not sure of), it
does not run the loop in parallel even if you specify a C*$* ASSERT DO
(CONCURRENT) assertion.



48

Chapter 5: Fine-Tuning Power Fortran

CDIR$ IVDEP

Power Fortran interprets the Cray directive CDIR$ IVDEP as if it were a
C*$* ASSERT DO (CONCURRENT) assertion. Some dependencies that are
safe to run on Cray hardware are not safe to run on Silicon Graphics
hardware. Therefore, to avoid incorrect parallelization of loops recognition
of this assertion is turned off by default.

C*$* ASSERT CONCURRENT CALL

The C*$* ASSERT CONCURRENT CALL tells Power Fortran to ignore
assumed dependencies that are caused by a subroutine call or a function
reference. However, you must ensure that the subroutines and referenced
functions are safe for parallel execution. This assertion applies to all
subroutine and function references in the accompanying loop, which must
appear on the next line.

CVD$ CNCALL

Power Fortran interprets the VAST directive CDIR$ CNCALL as if it were a
C*$* ASSERT CONCURRENT CALL assertion. Some dependencies that
are safe to run on Cray hardware are not safe to run on Silicon Graphics
hardware. Therefore, recognition of this assertion is turned off by default.

C*$* ASSERT NO RECURRENCE

The C*$* ASSERT NO RECURRENCE(variable) assertion tells the compiler
to ignore all data dependence conflicts caused by variable in the DO loop that
follows it. For example, the following code tells the compiler to ignore all
dependence arcs caused by the variable X in the loop:

C*$* ASSERT NO RECURRENCE (X)
        DO 10 i= 1,m,5
  10    X(k) = X(k) + X(i)

Not only does the compiler ignore the assumed dependence, it also ignores
the real dependence caused by X(k) appearing on both sides of the
assignment.



Ignoring Data Dependencies

49

The C*$* ASSERT NO RECURRENCE assertion applies only to the next
DO loop. It cannot be specified as a global assertion.

C*$* ASSERT PERMUTATION

The C*$* ASSERT PERMUTATION(array) assertion tells Power Fortran
that array contains no repeated values. This assertion permits Power Fortran
to run in parallel certain kinds of loops that use indirect addressing, for
example,

       DO I = 1, N
          A(INDEX(I)) = A(INDEX(I)) + B(I)
       ENDDO

You can run this loop in parallel only if the array INDEX has no repeated
values (so that each INDEX (I) is unique). Power Fortran cannot determine
this, so it does not run such a loop in parallel. However, if you know that
every element of INDEX() is unique, you can insert the following line before
the loop to permit Power Fortran to run the loop in parallel:

C*$* ASSERT PERMUTATION (INDEX)





51

Appendix A

A. Power Fortran Command Line Options

This appendix contains the following sections:

• “Overview”

• “Options Summary”

Overview

This appendix lists and describes the options supported by Power Fortran.
The default settings are satisfactory for most programs. However, you can
alter the defaults to customize output.

Table A-1 summarizes the Power Fortran command line options.The
Reference column lists the functional categories of the following options:

• parallelization

• general optimization

• inlining and interprocedural analysis

• advanced optimization

• directive control

• listing

The next three columns list the long names, short names, and default values
of the options. Following the table is an explanation of each option,
including the option’s long and short names, its default, and, if applicable,
the long and short names for the NO version of the option. Although the
options are listed in uppercase letters, you can specify them in lowercase as
well.



52

Appendix A: Power Fortran Command Line Options

Note: You can replace many of the Power Fortran command line options
described in this chapter with in-code directives

Table A-1 Power Fortran Command Line Options

Reference Long Name Short Name Default Value

Parallelization –[no]concurrentize

–minconcurrent=n

–[no]parallelio

–[n]conc

–mc=n

–[no]pio

–concurrentize

–minconcurrent=500

(option off)

General
Optimization*

–assume=list

–fuse

–optimize=n

–roundoff=n

–scalaropt=n

–as=list

–fuse

–o=n

–r=n

–so=n

–assume=el

–fuse

depends on –On

depends on –On

depends on –On

Inlining and
Interprocedural
Analysisa

–inline[=list]

–ipa[=list]

–inline_create=name

–ipa_create=name

–inline_from_files=list

–ipa_from_files=list

–inline_from_libraries=list

–ipa_from_libraries=list

–inline_loop_level=n

–ipa_loop_level=n

–inline_man

–ipa_man

–inline_depth

–in[=list]

–ipa[=list]

–incr=name

–ipacr=name

–inff=list

–ipaff=list

–infl=list

–ipafl=list

–inll=n

–ipall=n

–inm

–ipam

–ind

(option off)

(option off)

(option off)

(option off)

(option off)

(option off)

(option off)

(option off)

–inll=10

–ipall=10

(option off)

(option off)

–ind=10

Directive Controla –[no]directives=list –[n]dr=list –directives=ackpv



Options Summary

53

Options Summary

Overview

This section alphabetically lists and defines the command line options that
are supported only by Power Fortran. Refer to the MIPSpro Fortran 77
Programmer’s Guide for information about the remaining command line
options.

*. Refer to the MIPSpro Fortran 77 Programmer’s Guide for details about this option.

Listing –lines=n

–listoptions=list

–suppress=list

–ln=n

–lo=list

–su=list

–lines=55

–listoptions=k

(option off)

Advanced
Optimization

–aggressive=lettera

–arclimit=na

–cacheline=na

–cachesize=na

–chunk=na

–dpregisters=na

–each_invariant_if_growth=na

–fpregisters=na

–limit=n

–max_invariant_if_growth=na

–[no]recursiona

–setassociativity=na

–unroll=na

–unroll2=na

–ag=letter

–arclm=n

–chl=n

–chs=n

–chk=n

–dpr=n

–eiifg=n

–fpr=n

–lm=n

–miifg=n

–[no]rc

sasc=n

–ur=n

–ur2=n

(option off)

–arclimit=5000

–cacheline=4

–cachesize=256

–chunk=1

–dpregisters=16

–each_invariant_if _growth=20

–fpregisters=16

–limit=20000

–max_invariant_if_growth=500

–recursion

–setassociativity=1

–unroll=4

–unroll2=100

Table A-1 (continued) Power Fortran Command Line Options

Reference Long Name Short Name Default Value



54

Appendix A: Power Fortran Command Line Options

concurrentize

The –concurrentize option, described in Table A-2, converts eligible loops to
run in parallel.

See also “noconcurrentize” on page 56.

limit

The –limit option, described in Table A-3, reduces Power Fortran processing
time by limiting the amount of time Power Fortran can spend trying to
determine whether a loop is safe to run in parallel.

Power Fortran estimates how much time is required to analyze each loop
nest construct. If an outer loop looks like it would take too much time to
analyze, Power Fortran ignores the outer loop and recursively visits the
inner loops.

Larger limits often allow Power Fortran to generate parallel code for deeply
nested loop structures that it might not otherwise be able to run safely in
parallel. However, with larger limits Power Fortran can also take more time
to analyze a program. (The limit does not correspond to the DO loop nest
level. It is an estimate of the number of loop orderings that Power Fortran
can generate from a loop nest.)

Table A-2 concurrentize Option

Long Option Name Short Option Name Default Value

–concurrentize –c –concurrentize

Table A-3 limit Option

Long Option Name Short Option Name Default Value

–limit=n –lm=n –limit=5000



Options Summary

55

lines

The –lines option, described in Table A-4, paginates the listing for printing.

Use this option to change the number of lines per page. Specifying –lines=0
paginates at subroutine boundaries.

listoptions

The –listoptions option, described in Table A-5, specifies the information to
include in the listing file (.l).

list consists of any combination of

c Calling tree at the end of the program listing.

i Transformed program file annotated with line numbers in
the source program. Error messages and debugging
information can refer to the original source rather than the
transformed source. This option is automatically specified.

k Power Fortran option used at the end of each program unit.

l Loop-by-loop optimization table.

n Program unit names, as processed, to the standard error file.
This option is added automatically as part of an f77 –v
compilation.

o Annotated listing of the original program.

p Processing performance statistics.

Table A-4 lines Option

Long Option Name Short Option Name Default Value

–lines=n –ln=n –lines=55

Table A-5 listoptions Option

Long Option Name Short Option Name Default Value

–listoptions=list –lo=list –listoptions=ol



56

Appendix A: Power Fortran Command Line Options

s Summary of optimization performed.

t Annotated listing of the transformed program.

minconcurrent

The –minconcurrent option, described in Table A-6, establishes the
minimum amount of work needed inside the loop to make executing a loop
in parallel profitable.

If the loop does not contain at least this much work, the loop will not be run
in parallel. If the loop bounds are not constants, an IF clause will be
automatically added to the Power-Fortran-generated DOACROSS directive
to test at run time whether sufficient work exists.

The value n is a count of the number of operations (for example, add,
multiply, load, store) in the loop, multiplied by the number of times the loop
will be executed.

noconcurrentize

The –noconcurrentize option, described in Table A-7, prevents Power
Fortran from converting loops to run in parallel.

See also “concurrentize” on page 54.

Table A-6 minconcurrent Option

Long Option Name Short Option Name Default Value

–minconcurrent=n –mc=n 500

Table A-7 noconcurrentize Option

Long Option Name Short Option Name Default Value

–noconcurrentize –nconc none



Options Summary

57

noparallelio

The –noparallelio option, described in Table A-9, disables the
parallelization of loops that contain I/O statements.

Use this option only on systems with parallel I/O capabilities or where I/O
statements in loops are not executed.

See also “parallelio” on page 57.

parallelio

The –parallelio option, described in Table A-9, enables the parallelization of
loops that contain I/O statements.

Use this option only on systems with parallel I/O capabilities or where I/O
statements in loops are not executed.

See also “noparallelio” on page 57.

Table A-8 noparallelio Option

Long Option Name Short Option Name Default Value

–noparallelio –nopio option off

Table A-9 parallelio Option

Long Option Name Short Option Name Default Value

–parallelio –pio option off



58

Appendix A: Power Fortran Command Line Options

suppress

The –suppress option, described in Table A-10, lets you disable individual
classes of Power Fortran messages that are normally included in the listing
(.l) file.

These messages range from syntax warnings and error messages to
messages about the optimizations performed. list is of any combination of
the following:

d data dependence

e syntax error

l information

n not able to run loop in parallel

q questions

s standard messages

w warning of syntax error (Power Fortran adds the
–suppress=w option automatically if you specify the –w
option to f77)

Table A-10 suppress Option

Long Option Name Short Option Name Default Value

–suppress=list –su=list option off



59

Appendix B

B. Power Fortran Directives

This appendix contains the following sections:

• “Standard Directives”

• “Cray Directives”

• “VAST Directives”

Chapter 1, “Overview of Power Fortran,” describes the purpose of
directives. For details about how to use directives, refer to Chapter 5,
“Fine-Tuning Power Fortran.”



60

Appendix B: Power Fortran Directives

Standard Directives

This section lists and describes the following standard Power Fortran
directives alphabetically:

• C*$*CONCURRENTIZE

• C*$*LIMIT

• C*$*MINCONCURRENT

• C*$*NOCONCURRENTIZE

• C*$*OPTIMIZE

• C*$*ROUNDOFF

• C$*DOACROSS

• C$&

For details about directives that do not relate specifically to multiprocessing,
refer to the MIPSpro Fortran 77 Programmer’s Guide.

C*$* CONCURRENTIZE

The C*$*CONCURRENTIZE directive converts eligible loops to run in
parallel. This directive, when specified globally, has the same effect as the
–concurrentize command line option. See also the section called
“C*$* NOCONCURRENTIZE” on page 61.

C*$* LIMIT

The C*$*LIMIT(n) directive reduces Power Fortran processing time by
limiting the amount of time Power Fortran can spend on trying to determine
whether a loop is safe to run in parallel. Power Fortran estimates how much
time is required to analyze each loop nest construct. If an outer loop looks
like it would take too much time to analyze, Power Fortran ignores the outer
loop and recursively visits the inner loops.



Standard Directives

61

Larger limits often allow Power Fortran to generate parallel code for deeply
nested loop structures that it might not otherwise be able to run safely in
parallel. However, with larger limits Power Fortran can also take more time
to analyze a program. (The limit does not correspond to the DO loop nest
level. It is an estimate of the number of loop orderings that Power Fortran
can generate from a loop nest.)

This directive, when specified globally, has the same effect as the –limit
command line option.

C*$* MINCONCURRENT

The C*$*MINCONCURRENT(n) option establishes the minimum amount
of work needed inside the loop to make executing a loop in parallel
profitable. n is a count of the number of operations (for example, add,
multiply, load, store) in the loop, multiplied by the number of times the loop
will be executed. If the loop does not contain at least this much work, the
loop will not be run in parallel. If the loop bounds are not constants, an IF
clause will be automatically added to the Power Fortran-generated C$
DOACROSS directive to test at run time if sufficient work exists.

C*$* NOCONCURRENTIZE

The C*$*NONCONCURRENTIZE option prevents Power Fortran from
converting loops to run in parallel. See also C*$*CONCURRENTIZE.

C*$*OPTIMIZE

The C*$*OPTIMIZE(n) directive sets the optimization level. The higher the
optimization level, the more code is optimized and longer Power Fortran
runs. Valid values for n are the integers

0 Avoids converting loops to run in parallel.

1 Converts loops to run in parallel without using advanced
data dependence tests. Enable loop interchanging.

2 Determines when scalars need last-value assignment using
lifetime analysis. Also uses more powerful data
dependences tests to find loops that can run safely in
parallel. This level allows reductions in loops that execute
concurrently but only if the round-off setting is at least 2.



62

Appendix B: Power Fortran Directives

3 Breaks data dependence cycles using special techniques
and additional loop interchanging methods, such as
interchanging triangular loops. This level also implements
special-case data dependence tests.

4 Generates two versions of a loop, if necessary, to break a
data dependent arc. This level also implements more exact
data dependence tests and allows special index sets (called
wraparound variables) to convert more code to run in
parallel.

5 Fuses two adjacent loops if it is legal to do so (no data
dependencies) and if the loops have the same control
values. In certain limited cases, this level recognizes arrays
as local variables. Level 5 also tells Power Fortran to try
harder to run the outermost loop possible (of a set of loops)
in parallel.

Note: If you want to use unrolling, set the optimize level to at least 4 (the
default optimization level is above this threshold).

C*$*ROUNDOFF

The C*$*ROUNDOFF(n) directive controls whether Power Fortran runs a
reduction operation in parallel. Valid values for n are

0–1 Suppresses any round-off changing transformations.

2 Allows reductions to be performed in parallel. The valid
reduction operators are addition, multiplication, min, and
max. –roundoff=2 is one of the most common user options.

3 Recognizes REAL induction variables. Permits the memory
management transformations.



Cray Directives

63

C$ DOACROSS

The C$ DOACROSS directive tells the Fortran 77 compiler to generate
parallel code for the loop that immediately follows the directive. Putting this
directive in the original source marks the loop to run in parallel and signals
Power Fortran not to modify the loop.

Note: Power Fortran generates the C$ DOACROSS directive and inserts it
into the code as the result of Power Fortran’s parallelism analysis.

C$&

The C$& directive continues the C$ DOACROSS directive onto multiple
lines.

Cray Directives

Power Fortran supports the following Cray directives:

• CDIR$ IVDEP

• CDIR$ NEXT SCALAR

CDIR$ IVDEP

Power Fortran interprets the CDIR$ IVDEP directive as if it were a C*$*
ASSERT DO (CONCURRENT) assertion. (Refer to Appendix C, “Power
Fortran Assertions,” for details.)

CDIR$ NEXT SCALAR

CDIR$ NEXT SCALAR is a Cray directive that generates scalar code for the
next DO loop. Power Fortran interprets this directive as if it were a C*$*
ASSERT DO(SERIAL) assertion. (Refer to Appendix C, “Power Fortran
Assertions,” for details.)



64

Appendix B: Power Fortran Directives

VAST Directives

Power Fortran supports the following VAST directives:

• CVD$ CNCALL

• CVD$ CONCUR

CVD$ CNCALL

Power Fortran interprets the CVD$ CNCALL directive as if it were the C*$*
ASSERT CONCURRENT CALL assertion (described in “C*$* ASSERT
CONCURRENT CALL” in Chapter 5). The CVD$ CNCALL directive tells
Power Fortran to ignore assumed dependencies caused by a subroutine call
or function reference.

CVD$ CONCUR

Power Fortran interprets this directive as if it were the
C*$*CONCURRENTIZE directive (described in “Standard Directives” on
page 60). The CVD$CONCUR directive runs a loop in parallel to optimize
performance.



65

Appendix C

C. Power Fortran Assertions

This appendix lists and describes the following Power Fortran assertions
alphabetically:

• C*$* ASSERT CONCURRENT CALL

• C*$* ASSERT DO (CONCURRENT)

• C*$* ASSERT DO (SERIAL)

• C*$* ASSERT DO PREFER (CONCURRENT)

• C*$* ASSERT DO PREFER (SERIAL)

• C*$* ASSERT [NO] LAST VALUE NEEDED

• C*$* ASSERT NO RECURRENCE

• C*$* ASSERT NO SYNC

• C*$* ASSERT PERMUTATION

• C*$* ASSERT RELATION

This chapter describes the assertions that are supported only by Power
Fortran. Chapter 1, “Overview of Power Fortran,” describes the purpose of
assertions and provides a comprehensive list of the assertions supported by
Power Fortran and the MIPSpro Fortran 77 compiler. For details about using
assertions, refer to Chapter 5, “Fine-Tuning Power Fortran.”



66

Appendix C: Power Fortran Assertions

C*$* ASSERT CONCURRENT CALL

C*$* ASSERT CONCURRENT CALL tells Power Fortran to ignore
assumed dependencies that are due to a subroutine call or a function
reference. However, you must ensure that the subroutines and referenced
functions are safe for parallel execution. This assertion applies to all
subroutine and function references in the immediately following loop.

C*$* ASSERT DO (CONCURRENT)

The C*$* ASSERT DO (CONCURRENT) assertion tells Power Fortran to
ignore assumed data dependencies. Normally, Power Fortran is
conservative about what loops it converts run in parallel. When Power
Fortran analyzes a loop to see if it is safe to run in parallel, it categorizes the
loop into one of three groups:

• yes (loop is safe to run in parallel)

• no

• not sure

Normally, Power Fortran does not run “not sure” loops in parallel. C*$*
ASSERT DO (CONCURRENT) tells Power Fortran to go ahead and run
“not sure” loops in parallel.

Note: If Power Fortran identifies a loop as containing definite (as opposed
to assumed) data dependencies, it does not run the loop in parallel even if a
C*$* ASSERT DO (CONCURRENT) assertion precedes the loop.

C*$* ASSERT DO (SERIAL)

The C*$* ASSERT DO (SERIAL) assertion tells Power Fortran to run the
specified loop serially. Power Fortran does not try to convert the specified
loop to run in parallel. Nor does it try to run any enclosing loop in parallel.
However, Power Fortran can still convert any loops nested inside the serial
loop to run in parallel.



67

C*$* ASSERT DO PREFER (CONCURRENT)

The C*$* ASSERT DO PREFER (CONCURRENT) assertion runs a
particular nested loop in parallel whenever possible. Power Fortran runs
other nested loops in parallel only if a condition prevents running the
selected loop in parallel.

The C*$* ASSERT DO PREFER (CONCURRENT) assertion applies only to
the DO loop that it precedes. Power Fortran does not generate parallel code
if you use the –noconcurrentize command line option or the C*$*
NOCONCURRENTIZE directive.

C*$* ASSERT DO PREFER (SERIAL)

The C*$* ASSERT DO PREFER (SERIAL) assertion indicates that you want
to execute a DO loop in serial mode. This assertion directs Power Fortran to
leave the DO loop alone, regardless of the setting of the optimization level.
You can use this assertion to control which loop (in a nest of loops) Power
Fortran chooses to run in parallel.

C*$* ASSERT [NO] LAST VALUE NEEDED

The compiler usually uses a temporary variable within an optimized loop
when it assigns a scalar in a loop that is concurrentized. It then assigns the
last value of the variable to the original scalar if it is possible that the scalar
might be reused before it is assigned again. The C*$* ASSERT NO LAST
VALUE NEEDED assertion lets the compiler assume that such last-value
assignments are unnecessary. This assertion is active until reset or until the
end of the program.

C*$* ASSERT NO RECURRENCE

The C*$* ASSERT NO RECURRENCE(variable) assertion tells Power
Fortran to ignore all data dependencies associated with variable. Power
Fortran ignores not just assumed dependencies (as with the C*$* ASSERT
DO (CONCURRENT) assertion) but also real dependencies. Use this
assertion to force Power Fortran to parallelize a loop when other, gentler
means have failed. Use this assertion with caution, as indiscriminate use can
result in illegal parallel code.



68

Appendix C: Power Fortran Assertions

C*$* ASSERT NO SYNC

Sometimes when Power Fortran concurrentizes a loop, it adds unnecessary
sychronization directives or other sychronization code. You can use the C*$*
ASSERT NO SYNC assertion to eliminate sychronization overhead.

C*$* ASSERT PERMUTATION

The C*$* ASSERT PERMUTATION(array) assertion tells Power Fortran
that array contains no repeated values. This assertion permits Power Fortran
to run in parallel certain kinds of loops that use indirect addressing.

C*$* ASSERT RELATION

The C*$* ASSERT RELATION(name.xx.name) assertion indicates the
relationship between two variables or between a variable and a constant.
name is the variable or constant, and xx is any of the following: GT, GE, EQ,
NE, LT, or LE. This assertion applies only to the next DO statement.



69

Glossary

action summary

The portion of the listing file that summarizes Power Fortran’s actions.

assertion

A Power Fortran directive that asserts something about the program. For
example, an assertion can assert that a particular array is a permutation
vector. Power Fortran does not verify the validity of assertions.

data independence

When no iteration of a loop writes to a memory location that is read or
written by any other iteration of that loop.

directive

A command, specified within the source file, that requests a particular action
from Power Fortran. For example, directives enable, disable, or modify a
feature of Power Fortran.

global assertion

An assertion that is placed on the first line of the input file. Power Fortran
interprets global assertions as if they appear at the top of each program unit
in the file. See also, assertion.

global directive

Directives that are placed on the first line of the input file. Power Fortran
interprets global directives as if they appear at the top of each program unit
in the file. See also, directive.

inlining

The process of replacing a call to an external routine with the actual code.



70

Glossary

equivalent transformed source file

A transformed version of a Fortran source program generated by Power
Fortran. The name of this file has the suffix .m, such as analysis.m.

interprocedural analysis (IPA)

The process of analyzing an external routine ahead of time and using the
results when the routine is referenced.

listing file

An annotated listing of the parts of a source program that can and cannot
run in parallel on multiple processor generated by Power Fortran. This file
has the suffix .1.

max reduction

A reduction that uses the max() intrinsic function. See also, reduction.

min reduction

A reduction that uses the min() intrinsic function. See also, reduction.

parallelize

Manipulating code so that it can be run in parallel.

permutation index

A permutation vector used to index into an array. Because all the numbers
in the permutation vector are different, when used as indexes they all refer
to different array elements.

permutation vector

Any list of numbers that are all different.

Power Fortran 77

A Fortran 77 compiler that analyzes a program, identifies loops that are safe
to run in parallel (that is, they do not contain data dependencies), and
generates a parallel version of the program.

product reduction

A reduction that uses the multiply operator *. See also, reduction.



71

profiling

A process that produces detailed information about program execution,
such as details about areas of code where most of the execution time is spent.
The prof(1) command produces profiling information.

reduction

An operation that reduces a set of values to one value.

round-off error

The inaccuracy resulting from rounding off values in a calculation.

sum reduction

A reduction that uses the add operator +. See also, reduction.

WorkShop Pro MPF

An optional product that provides a graphical interface to the analysis
performed by Power Fortran.





73

Index

A

action summary,  24, 69
aliasing,  46
.anl file,  11
ANSI-X3H5 standard,  5
assertions

C*$* ASSERT CONCURRENT CALL,  48, 66
C*$* ASSERT DO (CONCURRENT),  47, 66
C*$* ASSERT DO (SERIAL),  43, 66
C*$* ASSERT DO PREFER (CONCURRENT),  45,

67
C*$* ASSERT DO PREFER (SERIAL),  44, 67
C*$* ASSERT LAST VALUE NEEDED,  67
C*$* ASSERT NO RECURRENCE,  48, 67
C*$* ASSERT NO SYNC,  68
C*$* ASSERT PERMUTATION,  49, 68
C*$* ASSERT RELATION,  46, 68
definition,  69
duration of,  7
purpose of,  6

B

backend, be,  14
be backend process,  14

C

C$ DOACROSS,  42, 63
C$&,  43, 63
C*$* ASSERT CONCURRENT CALL,  48, 66
C*$* ASSERT DO (CONCURRENT),  47, 66
C*$* ASSERT DO (SERIAL),  43, 66
C*$* ASSERT DO PREFER (CONCURRENT),  45, 67
C*$* ASSERT DO PREFER (SERIAL),  44, 67
C*$* ASSERT LAST VALUE NEEDED,  67
C*$* ASSERT NO RECURRENCE,  48, 67
C*$* ASSERT NO SYNC,  68
C*$* ASSERT PERMUTATION,  49, 68
C*$* ASSERT RELATION,  46, 68
C*$* CONCURRENTIZE,  45, 60
C*$* LIMIT,  60
C*$* MINCONCURRENT,  61
C*$* NO SYNC,  43
C*$* NOCONCURRENTIZE,  45, 61
C*$* OPTIMIZE,  61
C*$* ROUNDOFF,  62
CDIR$ IVDEP,  48, 63
CDIR$ NEXT SCALAR,  44, 63
compiler options

–pfa,  13



74

Index

compiling programs with Power Fortran,  10
–concurrentize command line option,  36, 54
controlling code execution,  36

running code in parallel,  36
specifying a work threshold,  36

Cray directives,  63
CDIR$ IVDEP,  48, 63
CDIR$ NEXT SCALAR,  63
see also directives

customizing execution,  35
controlling code execution,  36
overview,  35

CVD$ CNCALL,  48, 64
CVD$ CONCUR,  45, 64

D

data dependencies
ignoring,  47

data independence,  69
default listing information interpretation

action summary,  24
DO loop marking,  22
field descriptions,  21
footnotes,  23
line numbers,  22
syntax error/warning messages,  23
viewing the listing file,  21

directives
C$ DOACROSS,  42, 63
C$&,  43, 63
C*$* CONCURRENTIZE,  45, 60
C*$* LIMIT,  60
C*$* MINCONCURRENT,  61
C*$* NO SYNC,  43
C*$* NOCONCURRENTIZE,  45, 61
C*$* OPTIMIZE,  61
C*$* ROUNDOFF,  62

CDIR$ IVDEP,  48, 63
CDIR$ NEXT SCALAR,  44, 63
CVD$ CNCALL,  48, 64
CVD$ CONCUR,  45, 64
definition,  69
purpose of,  4

DO loop
marking in listing file,  22

E

equivalent transformed source file,  70
error messages

in listing file,  23
example

Power Fortran command line,  14

F

fef77,  14
fef77p,  14
footnotes

in listing file,  23
formatting the listing file,  19
fsplit,  10
function call

generated by Power Fortran,  29

G

global assertion,  69
global directive,  69



75

I

indirect indexing,  26
inlining,  69

performing,  40
interprocedural analysis (IPA),  70

performing,  40

L

–limit command line option,  38, 54
–lines command line option,  19, 55
listing file,  11, 70

action summary,  24
error/warning messages,  23
field descriptions,  21
footnotes,  23
include options,  19
interpreting default information,  21
samples,  26-33
viewing,  21

listing file formatting,  19
disabling message classes,  20
paginating the listing,  19
specifying information to include,  19

–listoptions command line option,  19, 21, 55

M

.m file,  11, 70
max reduction,  70
messages

in listing file,  23
min reduction,  70
–minconcurrent command line option,  56

N

–noconcurrentize command line option,  36, 56
–noparallelio command line option,  57

O

optimization
setting levels,  38

–optimize command line option,  38
overview of Power Fortran,  1

P

paginating the listing file,  19
–parallelio command line option,  37, 57
parallelize,  70
permutation index,  70
permutation vector,  70
–pfa command line option,  11
–pfa compiler option,  13
Power Fortran,  1, 70

action summary,  24
assertions,  65-66

purpose of,  6
circumventing,  42
command line example,  14
command line options,  3-4, 51
command line syntax,  11
compiling with,  10
controlling code transformations,  38
customizing execution,  36
directives,  59-64

purpose of,  4
interpreting listing,  21
output files,  11
overview of operation,  1



76

Index

overview of usage,  9
running from f77,  13
strategy for using,  3
summary,  8
table of action abbreviations,  24
utilizing output,  17

Power Fortran command line option
–concurrentize,  36, 54
–limit,  38, 54
–lines,  19, 55
–listoptions,  19, 55
–minconcurrent,  56
–noconcurrentize,  36, 56
–noparallelio,  57
–optimize,  38
–parallelio,  37, 57
–pfa,  11
–roundoff,  39
–suppress,  20, 58
–WK,  11

product reduction,  70
profiling,  71

R

reductions
definition,  71
example of,  31
sum,  34
types of,  34

round off
controlling variations,  39
error,  71

–roundoff command line option,  34, 39
running code in parallel,  36, 45
running code serially,  43

S

sample listing files,  26
function call,  29
indirect indexing,  26
reductions,  31

setting optimization level,  38
specifying a complexity limit,  38
specifying a work threshold,  36
standard directives,  60-63

see also directives
strategy for using Power Fortran,  3
sum reduction,  34, 71
–suppress command line option,  20, 58
syntax conventions,  xiv

V

VAST directives,  64
CVD$ CNCALL,  48, 64
CVD$ CONCUR,  64
see also directives

viewing the listing file,  21

W

warning messages
in listing file,  23

–WK command line option,  11
work threshold

specifying,  36
WorkShop Pro MPF,  2, 71

producing input file,  11



We'd Like to Hear From You

As a user of Silicon Graphics documentation, your comments are important
to us. They help us to better understand your needs and to improve the
quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested
topics to comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please include the title and part number of the document you are
commenting on.  The part number for this document is
007-2363-001.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your
comments on the postage-paid card for your country, then detach and mail
it. If your country is not listed, either use the international card and apply the
necessary postage or use electronic mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail
message and mail it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of manual pages) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED 

IN THE 

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043


