
CASEVision™/ClearCase
User’s Guide

Document Number 007-2369-001

CASEVision™/ClearCase User’s Guide
Document Number 007-2369-001

CONTRIBUTORS

Written by John Posner
Illustrated by John Posner
Production by Gloria Ackley
Engineering contributions by Atria Software, Inc.
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
© Copyright 1994, Atria Software, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIX is a trademark of
Silicon Graphics, Inc. ClearCase and Atria are registered trademarks of Atria
Software, Inc. OPEN LOOK is a trademark of AT&T. UNIX is a trademark of AT&T
Bell Laboratories. Sun, SunOS, Solaris, SunSoft, SunPro, SPARCworks, NFS, and
ToolTalk are trademarks or registered trademarks of Sun Microsystems, Inc. OSF and
Motif are trademarks of the The Open Software Foundation, Inc.FrameMaker is a
registered trademark of Frame Technology Corporation. Hewlett-Packard, HP,
Apollo, Domain/OS, DSEE, and HP-UX are trademarks or registered trademarks of
Hewlett-Packard Company. PostScript is a trademark of Adobe Systems, Inc. X
Window System is a trademark of the Massachusetts Institute of Technology.

iii

Contents

1. Overview of ClearCase Usage 1
Finding Your Niche 1

Finding Your ClearCase Host 1
Locating Your Main Tools 2
Locating Your Network’s ClearCase Data Structures 3
Getting Yourself a View 5
Going to a Development Directory 7

The View as Virtual Workspace 8
Standard and Extended Pathnames 10

View-Extended Pathnames 10
VOB-Extended Pathnames 11

Pathname Examples 13
Modifying Elements - the Checkout/Checkin Model 14

Reserved and Unreserved Checkouts 16
Tracking Checked-Out Versions 17
Checked-Out Versions - Ownership and Accessibility 18
Checkout and Checkin as Events 19

Building and Testing Software 20
Using Build Management Structures 21
Debugging and Testing Software 22

Working in a Parallel Development Environment 22
Comparing Versions of Elements 23
Examining an Element’s Version Tree 25
Merging Versions of Elements 26

Working with Meta-Data 29

iv

Contents

2. Using the ClearCase
Command Line Interface 31
Using cleartool 31

cleartool Subcommands 31
Getting Help 37
cleartool Usage Overview 37
Command Abbreviations and Aliases 38
Command Options 38
Pathnames in cleartool Commands 39
Command-Line Processing 41
Event Records and Comments 41

Examining Event Records 42
Customizing Comment Handling 42

Permissions Checking and Locks 42
Exit Status 43
Error Logs 43

Using clearmake 43
Invoking clearmake 44
A Simple clearmake Build Scenario 44
More on Building with clearmake 47

3. Using the ClearCase Graphical User Interface 49
Starting xclearcase 49
File Browser 50

File Browser Toolbar 51
Basic Usage Model 53

Menu Command Nesting 54
Basic Pointer Actions and Keystrokes 54

Keyboard Input 56
The File Menu 57

Transcript Menu 58

v

Browsers 58
Browser Basics 59
Browsers and Data Types 59
File Browsers 60
Type Object Browsers 60
List Browsers 62

Text Output and Terminal Emulation Windows 62
Pool Browsers 63
String Browsers 64
Username Browsers 64
VOB-tag Browsers 64
View-tag Browsers 65
Vtree Browsers 65

4. Setting Up a View 69
Planning the View 69

Adjust Your ‘umask’ 70
Choose a Location 71
Choose a Name 72

Creating the View 72
GUI: Use the View Browser to Create a New View 72
CLI: Enter a ‘mkview’ Command 73
Verify the View’s Registry-Level Information 73

Configuring the View 74
Composing Your Own Config Spec 75

What versions should the project start with? 76
How can this set of versions be described in terms of ClearCase
meta-data? 76
Will the project be modifying any source versions? 77
On what branch will the project be working? 78
Should branches be created automatically? 79
Will you be creating new elements? 79

Modify the View’s Config Spec 80

vi

Contents

Starting to Use the View 80
Setting a View 80

GUI: Select the View from the View Browser 81
CLI: Enter a setview Command 81

Working Directory View 81
Using a Working Directory View without a Set View 82

View Contexts: Summary 83

5. Defining View Configurations 85
Dynamic ‘Mainline’ View 87

The Standard Configuration Rules 87
Omitting the Standard Configuration Rules 88

Frozen View, Defined by Version Labels 89
Frozen View, Defined by Time 90
View That Allows an ‘Old’ Configuration to be Modified 90

Where Is the ‘/main/LATEST’ Rule? 92
Variations on the Theme 93

View for New Development on a Branch 93
Variations on the Theme 94

View That Implements Multiple-Level Branching 95
View That Selects Versions Using ‘External Criteria’ 96

Can This Configuration Be Used for Development? 98
View That Shows Only One Developer’s Changes 100
View That Restricts Changes to a Single Directory 100
View That Uses Results of a Nightly Build 101

Variations on the Theme 102
Playing Mix-and-Match with Application Subsystems 103
Selecting Versions That Built a Particular Program 103

Configuring the Makefile 104
Making a Fix in the Program 104
Selecting Versions That Built a Set of Programs 105

vii

6. Working in a Parallel Development Environment 107
Parallel Development Using Branches 107

‘Working on a Subbranch’ 108
Setting Up a View for Parallel Development 108

Automatic Creation of Branches 110
Working in a Multiple-View Environment 110

Using a File in Another View 111
Comparing Your Version of an Element to Another View’s 111
Resolving Namespace Differences between Views 111

Merging Versions of an Element 112
Scenario: Merging All the Changes Made on a Subbranch 115
Scenario: Selective Merge from a Subbranch 116
Scenario: Removing the Contributions of Some Versions 117
Scenario: Merging an Unreserved Checkout 118
Scenario: Merging All of a Project’s Work 119

All of Project’s Work Isolated “On a Branch” 119
All of Project’s Work Isolated “In a View” 120

Scenario: Merging a New Release of an Entire Source Tree 120
Scenario: Merging Directory Versions 123

Using Your Own Merge Tools 124

7. Comparing and Merging Files Graphically with xcleardiff 127
Summary 127
Invoking xcleardiff 128

Setting Your Color Scheme 129
Comparing Files 129

Example 1: Compare with Predecessor 130
Base Contributor File 132
Text Line Annotations 132
The Options Menu 132
The View Menu 133
Display Lock Icon 133
Example 2: Comparing Arbitrary Versions of an Element 133

viii

Contents

Comparing Directories 134
Merging Files 135

Example: Merging from a Branch to a Checked-out Version 135
The Graphical Merge Display Window 140

Merged Output Pane (Editable) 140
Calculated Base Contributor File 141
Merge-Related Menu Options 141
Merge Processing Buttons 142

Example Revisited 143
Edit the Merged Output 143
Complete the Merge 143
Check the Results of the Merge 143

8. Using the ClearCase/SoftBench Integration 145
Architecture 146
Configuring the Development Manager for ClearCase 146
Configuring HP VUE 147
Using SoftBench 147

Using the SoftBench Development Manager 147
Using Views 150
Setting the Build Program 151
One-Way Messaging 151
Error Conditions 151

ClearCase Encapsulation Summary 152
Customization 152

9. Using the ClearCase/ToolTalk Integration 153
Architecture 153

Using Views 154
Standalone Notice Forwarding 154
ClearCase Encapsulation Summary 154

ix

10. Building with clearmake;
Some Basic Pointers 155
Accommodating clearmake’s Build Avoidance 155

Increasing clearmake’s Verbosity Level 155
Handling Temporary Changes in the Build Procedure 156

Using a Build Options Specification (BOS) File 156
Handling Targets Built in Multiple Ways 157
Using a Recursive Invocation of clearmake 158
Optimizing Wink-In by Avoiding Pseudo-Targets 159
Accommodating clearmake’s Different Name 159

Continuing to Work During a Build / Reference Time 160
Using Config Spec ‘Time Rules’ to Increase Your View’s Isolation 161

Overprecise Use of Time Rules 162
Inappropriate Use of Time Rules 162

Problems with ‘Forced Builds’ 163
Wink-in, Permissions on Derived Objects, and clearcase_bld_umask 163

11. Derived Objects and Configuration Records 165
Extended Naming Scheme for Derived Objects 165
More on CRs and Configuration Lookup 168

Listing CRs 168
Comparing CRs 170
CR Hierarchies 171
Why is Configuration Lookup Necessary? 173
Wink-In without Configuration Lookup / The ‘winkin’ Command 174

Management of DOs and CRs 175
Storage of DOs and CRs 175

Promotion of DOs 176
DO Reference Counts 177

Decrementing the Reference Count 177
Zero Reference Counts 178

Explicit Removal of DOs 179
Derived Object Scrubbing 179

x

Contents

12. Makefile Optimization 181
Pathnames in Build Scripts 181
Declaring Source Dependencies in Makefiles 181

Explicitly-Declared Source Dependencies 182
Explicit Dependencies on ‘Searched-For’ Sources 183

Build-Order Dependencies 185
Build Sessions, Subsessions, and Hierarchical Builds 185

Subsessions 186
Versions of Elements Created During a Build Session 186
Coordinating Reference Times of Several Builds 186
Objects Written at More than One Level 187
No Automatic Creation of Configuration Record Hierarchy 187

Incremental Updating of Derived Objects 188
Example: Building an Archive 188
Remedies for the Incremental-Update Problem 189
Additional Incremental-Update Situations 190

Build Auditing and Background Processes 191

13. Setting Up a Distributed Build 193
Overview of Distributed Building 193

The Audited Build Executor (abe) 194
Client-Side Setup 196
Server-Side Setup 197

Handling of the Idleness Threshold 198
Starting a Distributed Build 198

Setting clearcase_bld_conc in a Shell Startup Script 199

14. Building Software for Multiple Architectures 201
Issues in Multiple-Architecture Development 201
Handling Source Code Differences 202
Handling Build Procedure Differences 203

Alternative Approach, Using ‘imake’ 204

xi

Segregating the Derived Objects of Different Variants 205
Approach 1: Use Architecture-Specific Subdirectories 205
Approach 2: Use Different Views 206

Multiple-Architecture Example, Using ‘imake’ 207
Scenario 207
Defining Architecture-Specific CPP Macros 208
Creating Makefiles in the Source and Build Directories 209

15. Setting Up a Build on a
Non-ClearCase Host 211
Scenario 211
Setting Up an Export View 211
Mounting the VOB through the Export View 213
Revising the Build Script 213
Performing an Audited Build in the Export View 215

16. Adding a Timestamp to an Executable 217
Creating a ‘what’ String 218
Implementing a ‘-Ver’ Option 219

17. Compatibility between clearmake and Other make Variants 221
‘clearmake’ Compatibility With Standard ‘make’ 221

Standard ‘make’ Description File Features Not Supported 222
Standard ‘make’ Command Line Options Not Supported 222

‘clearmake’ Compatibility Modes 222
Supported SGI ‘smake’ Features 223
Supported SGI ‘pmake’ Features 224
Supported Sun ‘make’ Features 225

VPATH: Searches for Both Targets and Dependencies 226
VPATH Substitutions in Build Scripts 227

Supported ‘Gnu make’ Features 227
BOS Files and ‘Gnu Make’ Compatibility 228

Compatibility Limitations 229

xii

Contents

18. Customizing the Graphical Interface 231
Introduction 231

Group Files and Item Definitions 231
Editing the Predefined Group Files 232
How xclearcase Processes Group Files at Startup Time 232

Group File Syntax 233
Syntax Summary 234
Scope 237

Popup and Toolbar Scopes 239
Fast Menu Scope 239

RootMenu Name 241
Item Labels 242
Bitmaps 242
Menu Mnemonics 243
Preselect Clauses 243
Background or Foreground Processing 245
F-dot Functions 245

f.alias 246
f.call 247
f.exec 250
f.separator 251
f.menu 251
f.help 254

Group File Processing and Macro Expansion 254
Pass 1: Scan Group Files 255

%quote% 255
xclearcase Line Continuation 255
The xclearcase Escape Character — % 255

Pass 2: Macro Expansion. 256
Pass 3: Script Execution 256

xiii

xclearcase Macros 258
Input Macros 262
Input Macros as Preselect Clauses 262

Input Macros and clearprompt 262
Input Macros and Keyboard Input 263
Input Macros and Browsers 263
Input Macros and Brackets 264
Input Macros and Restrictions 264
%ATTYPE 265
%HYPERLINK 266
%LIST 267
%PNAME 268
%POOL 269
%STRING 270
%USERNAME 270
%VIEWTAG 271
%VOBTAG 272

Modifier Macros 273
%ELEMENT 273
%ELEMSUFFIX 274
%MOUNT 274
%RELATIVE 275
%SETVIEW 275
%SORT 276
%WHICH 278
%WILD 279

Output Macros 280
%LISTOUT 280
%TEXTOUT 282
Text Output and Terminal Emulation Windows 282

Memory Macros 284
%SAVE 284
%REMOVE 285

xiv

Contents

%RESTORE 286
Miscellaneous Macros 287

%SELECTION 287
%DIR 287
%NAME 288
%TMPFILE 288

Customization Procedures 289
Adding a New Menu 289
Replacing an Existing Menu 290
Complex Execution Scripts 290

Resource Schemes 291
Icon Display in the File Browser 292

Enabling a Customized Icon 293

19. Type Managers and Customized Processing of File Elements 295
Scenario 295
File Typing 296
Element Types and Type Managers 297

Other Applications of Element Types 300
Using Element Types to Configure a View 300
Processing Files by Element Type 300

Predefined and User-Defined Element Types 300
Predefined and User-Defined Type Managers 301
Type Manager for Manual Page Source Files 302

Creating the Type Manager Directory 302
Inheriting Methods from Another Type Manager 302

The ‘create_version’ Method 303
The ‘construct_version’ Method 305

Implementing a New ‘compare’ Method 307
Testing the Type Manager 308
Installing and Using the Type Manager 309

Icon Usage by GUI Browsers 311

xv

20. Using Triggers, Attributes, and Locks to Implement Development Policies
313
Scenario: Requiring Good Documentation of Changes 313
Scenario: Tracking State Transitions 314
Scenario: Recording a Released Configuration 315
Scenario: Isolating Work on a Bugfix 317
Scenario: Isolating All Users from Each Other 317
Scenario: Freezing Certain Data 318
Scenario: Customized Change Notification 319
Scenario: Enforcing Quality Standards 320
Scenario: Associating Changes with Change Orders 321

Alternative Implementation, Using Branches 321
Scenario: Requirements Tracing 322
Scenario: Change Sets 323

21. Using ClearCase to Organize and Implement Parallel Development 325
Project Overview 325
Development Strategy 327

Project Leader and ClearCase Administrator 327
Use of Branches 328
Work Environment Planning — Views 330

Creating Branch Types 331
Creating Project-Standard Config Specs 331
Creating, Configuring, and Registering Views 332
Development Begins 332

Techniques for Maintaining Privacy 333
Creating Baselevel 1 333

Merging of Data on Two Branches 334
Integration and Test 334
Labeling Sources 335
Deleting the Integration View 336

xvi

Contents

Synchronizing Ongoing Development 336
Preparing to Merge 337
Performing Merges 338

Creating Baselevel 2 340
Merging from the r1_fix Branch 340
Preparing to Merge from the major Branch 340
Performing the Merges from the ‘major’ Branch 342
Decommissioning the ‘major’ Branch 343
Integration and Test 344

Final Validation — Creating Release 2.0 344
Labeling Sources 345
Further Restricting Use of the main Branch 345
Setting Up the Test View 346
Setting Up the Trigger to Monitor Bugfixing 346
Implementing a Final Bugfix 347
Rebuilding from Labels 348
Wrapping Up 348

Index 349

xvii

Examples

Example 5-1 Spec #1 87
Example 5-2 Spec #2 89
Example 5-3 Spec #3 90
Example 5-4 Spec #4 90
Example 5-5 Spec #5 93
Example 5-6 Spec #6 93
Example 5-7 Spec #7 94
Example 5-8 Spec #8 94
Example 5-9 Spec #9 95
Example 5-10 Spec #10 96
Example 5-11 Spec #11 98
Example 5-12 Spec #12 99
Example 5-13 Spec #13 100
Example 5-14 Spec #14 100
Example 5-15 Spec #15 101
Example 5-16 Spec #16 102
Example 5-17 Spec #17 102
Example 5-18 Spec #18 103
Example 5-19 Spec #19 103
Example 5-20 Spec #20 104
Example 5-21 Spec #21 105
Example 5-22 Spec #22 105
Example 6-1 Directory -level Merge Activity 124
Example 15-1 Build Script for Non-ClearCase Build 214
Example 18-1 ATTYPE 265
Example 18-2 HYPERLINK 266
Example 18-3 LIST 267

xviii

Examples

Example 18-4 PNAME 268
Example 18-5 POOL 269
Example 18-6 STRING 270
Example 18-7 USERNAME 271
Example 18-8 VIEWTAG 271
Example 18-9 VOBTAG 272
Example 18-10 ELEMENT 273
Example 18-11 ELEMSUFFIX 274
Example 18-12 MOUNT 274
Example 18-13 RELATIVE 275
Example 18-14 SETVIEW 276
Example 18-15 SORT 277
Example 18-16 VERMOD 277
Example 18-17 WHICH 278
Example 18-18 WILD 279
Example 18-19 LISTOUT 280
Example 18-20 TEXTOUT 282
Example 18-21 SAVE 284
Example 18-22 REMOVE 285
Example 18-23 RESTORE 286
Example 18-24 SELECTION 287
Example 18-25 DIR 287
Example 18-26 NAME 288
Example 18-27 TMPFILE 288

xix

Figures

Figure 1-1 xclearcase Main Panel 3
Figure 1-2 ”List VOB” command 4
Figure 1-3 “List Views” Commands 5
Figure 1-4 VOB as seen through view 6
Figure 1-5 View as a Virtual Workspace 9
Figure 1-6 Viewroot Directory as Super-Root 11
Figure 1-7 VOB-Extended Pathnames 12
Figure 1-8 Resolution of Reserved and Unreserved Checkouts 17
Figure 1-9 Determining the Changes in a Checked-Out Version 24
Figure 1-10 Annotated File Listing 25
Figure 1-11 Graphical Version Tree Display 26
Figure 1-12 Merge of Subbranch Version into Main Branch 27
Figure 1-13 Graphical Merge Tool 28
Figure 2-1 ‘clearmake’ Build Scenario 46
Figure 3-1 View-tag Browser at xclearcase Startup 50
Figure 3-2 The xclearcase File Browser 50
Figure 3-3 Toggle Graphic Mode 51
Figure 3-4 Toggle Keyboard Input Mode 51
Figure 3-5 Checkin Versions 52
Figure 3-6 Checkout Versions 52
Figure 3-7 Uncheckout Versions 52
Figure 3-8 Describe Selected Object 52
Figure 3-9 Vtree (Version Tree) 52
Figure 3-10 Diff Versions 53
Figure 3-11 Merge Versions 53
Figure 3-12 clearmake Default 53
Figure 3-13 Shell Process 53

xx

Figures

Figure 3-14 List directory history button 55
Figure 3-15 Keyboard Input Box 56
Figure 3-16 The Transcript Pad 57
Figure 3-17 A Type Object Browser 60
Figure 3-18 Toggle Keyboard Input 61
Figure 3-19 Toggle Unlocked Object 61
Figure 3-20 Toggle Locked Object 61
Figure 3-21 Toggle Obsolete Object 61
Figure 3-22 Describe Selected Object 61
Figure 3-23 A List Browser 62
Figure 3-24 A Text Output Window 63
Figure 3-25 A Terminal Emulation Window 63
Figure 3-26 A Text String Browser 64
Figure 3-27 Toggle Checked-out Version 65
Figure 3-28 Toggle All Versions 66
Figure 3-29 Toggle Merge Arrow 66
Figure 3-30 Toggle All Version Labels 66
Figure 3-31 The Vtree Browser 67
Figure 4-1 “Layers” in a Source Configuration 77
Figure 4-2 “Reach Into” Another View from Set View 81
Figure 4-3 “Reach Back” to Set View from Another View 82
Figure 5-1 Making a Change to an Old Version 92
Figure 5-2 Multiple-Level Auto-Make-Branch 96
Figure 5-3 Development Config Spec vs. QA Config Spec 98
Figure 5-4 Checking Out a Branch of an Element 99
Figure 6-1 ClearCase Merger Algorithm 113
Figure 6-2 xcleardiff Graphical Merge Utility 114
Figure 6-3 Version Tree of an Element Requiring a Merge 115
Figure 6-4 Selective Merge of a Version from a Subbranch 116
Figure 6-5 Subtractive Merge 117
Figure 6-6 Merge of an Unreserved Checkout 118
Figure 6-7 Merge a New Release of an Entire Source Tree 121
Figure 7-1 Diff Button 128

xxi

Figure 7-2 Merge Button 128
Figure 7-3 File Browser with File Element util.c Selected 130
Figure 7-4 Graphical File Comparison 131
Figure 7-5 Vtree Browser Prompting for a Version to Compare 134
Figure 7-6 Comparing Directory Versions 135
Figure 7-7 Sample Version Tree for util2.c 136
Figure 7-8 Automatic Merge Output 137
Figure 7-9 Graphical Merge Display 138
Figure 7-10 Reply Prompt “No” 139
Figure 7-11 Reply Prompt “Yes” 140
Figure 7-12 Verifying Merged Output 144
Figure 10-1 Recursive Invocation of clearmake 158
Figure 10-2 Build Script Example 159
Figure 10-3 Build Reference Time Report 161
Figure 11-1 Using an Extended Pathname of Derived Object 167
Figure 11-2 Kinds of Information in a Configuration Record 168
Figure 11-3 Configuration Record Hierarchy 172
Figure 11-4 Derived Object and its Configuration Record 175
Figure 12-1 Explicitly-Declared Source Dependencies 183
Figure 13-1 ClearCase Distributed Build Architecture 195
Figure 14-1 Defining Architecture-Specific CPP Macros 208
Figure 18-1 A File Browser and Some Menus 233
Figure 18-2 A Sample Group File, basic.grp 234
Figure 18-3 Group File Syntax 236
Figure 18-4 browserClass Listing 238
Figure 18-5 Basic Menu Scoped to File:pulldown 240
Figure 18-6 Basic Menu Scoped to File:toolbar 240
Figure 18-7 View Menu Scoped to File:popup 241
Figure 18-8 View Menu Scoped to Fast:pulldown 241
Figure 18-9 f.alias Example 246
Figure 18-10 Two-state Toggle Buttons (Iconic and Textual) 247
Figure 18-11 A Cascading Menu 252
Figure 18-12 Group File with Cascading Menus 253

xxii

Figures

Figure 18-13 How an Item Definition’s f.exec String is Processed 257
Figure 18-14 Character String Examples 258
Figure 18-15 A Text Output Window 283
Figure 18-16 A Terminal Emulation Window 283
Figure 18-17 User-Defined Icon Display 293
Figure 19-1 Sample ‘Magic’ File 297
Figure 19-2 Data Handling: File Type, Element Type, Type

Manager 298
Figure 19-3 ’create_version’ Method 304
Figure 19-4 ’construct_version’ Method 306
Figure 19-5 Script for ‘compare’ Method 308
Figure 19-6 User-Defined Icon Displayed by xclearcase 312
Figure 20-1 Requirements Tracing 322
Figure 20-2 Hyperlink Inheritance 323
Figure 21-1 Project Plan for Release 2.0 Development 326
Figure 21-2 Source Tree for monet Project 327
Figure 21-3 Development Milestones: Evolution of a Typical

Element 329
Figure 21-4 Creating Baselevel 1 334
Figure 21-5 Updating Major Enhancements Development 337
Figure 21-6 Merging Baselevel 1 Changes into the ‘major’ Branch 339
Figure 21-7 Baselevel 2 340
Figure 21-8 Element Structure after the Pre-Baselevel-2 Merge 343
Figure 21-9 Final Test and Release 344

xxiii

Tables

Table 2-1 cleartool Subcommands 32
Table 3-1 File Browser Pointer Actions and Keystrokes 54
Table 3-2 File Menu Options 57
Table 3-3 Transcript Menu Options 58
Table 3-4 Browsers and Data Types 59
Table 18-1 Group Item Functions 245
Table 18-2 Built-in Calls 248
Table 18-3 xclearcase Macros 260
Table 18-4 Data Types, Browsers, and Input Macros 263
Table 18-5 %ATTYPE Input Macro 265
Table 18-6 %HYPERLINK Input Macro 266
Table 18-7 %LIST Input Macro 267
Table 18-8 %PNAME Input Macro 268
Table 18-9 %POOL Input Macro 269
Table 18-10 %STRING Input Macro 270
Table 18-11 %USERNAME Input Macro 271
Table 18-12 %VIEWTAG Input Macro 271
Table 18-13 %VOBTAG Input Macro 272
Table 18-14 %ELEMENT Modifier Macro 273
Table 18-15 %ELEMSUFFIX Modifier Macro 274
Table 18-16 %MOUNT Modifier Macro 274
Table 18-17 %RELATIVE Modifier Macro 275
Table 18-18 %SETVIEW Modifier Macro 276
Table 18-19 %SORT Modifier Macro 277
Table 18-20 %VERMOD Modifier Macro 277
Table 18-21 %WHICH Modifier Macro 278
Table 18-22 %WILD Modifier Macro 279

xxiv

Tables

Table 18-23 %LISTOUT Output Macro 280
Table 18-24 %TEXTOUT Output Macro 282
Table 18-25 %SAVE Memory Macro 284
Table 18-26 %REMOVE Memory Macro 285
Table 18-27 %RESTORE Memory Macro 286
Table 19-1 Files Used in ‘monet’ Project 296

1

Chapter 1

1. Overview of ClearCase Usage

This chapter presents an overview of day-to-day CASEVision™/ClearCase
usage, from the perspective of an individual user. (We do not deal with
administrative issues.)

Before reading this chapter, be sure to set up your user environment
according to the instructions in the” Preparing to Use ClearCase” chapter in
the CASEVision™/ClearCase Tutorial manual. For additional orientation,
work through the ClearCase Tutorial manual and read (at least) the first
chapter in the CASEVision™/ClearCase Concepts Guide.

Finding Your Niche

The following sections present a “minimalist” procedure for getting up and
running in your organization’s ClearCase environment.

Finding Your ClearCase Host

ClearCase must be installed on a host before you can use it there. (Simply
accessing ClearCase executables with network pathnames does not work.
Your own host must have certain data structures, including the ClearCase
multiversion file system — the MVFS.) There is no single command that will
tell you which hosts in your network have already been installed — check
with your system administrator.

2

Chapter 1: Overview of ClearCase Usage

If ClearCase is already installed on your workstation, then the
administrative directory /usr/adm/atria (or /var/adm/atria) will exist. In
addition, you should be able to execute the clearlicense utility program:

% ls -d /usr/adm/atria
/usr/adm/atria
% clearlicense

License server on host "newton".
Running since Thursday 01/27/94 21:15:54.

LICENSES:
 Max-Users Expires Password [status]
 20 none aaa.bbb.ccc [Valid]

 Maximum active users allowed: 20
 .
 .

If the administrative directory exists, but your shell cannot find this
program, there is a problem with your shell’s startup script. Consult the
“Preparing to Use ClearCase” chapter in the CASEVision™/ClearCase Tutorial
manual.

If you find a host where you would like to run ClearCase, but it’s not
currently installed there, see your system administrator and/or consult the
CASEVision™/ClearCase Release Notes for installation instructions.

Locating Your Main Tools

The tools in the ClearCase command line interface (CLI) and graphical user
interface (GUI) are described in Chapter 2, “Using the ClearCase Command
Line Interface,” and Chapter 3, “Using the ClearCase Graphical User
Interface.”. For now, make sure that you can access the main CLI tool,
cleartool, or the main GUI tool, xclearcase:

• Start a cleartool session, then enter a quit command to end the session.

% cleartool
 cleartool> quit (cleartool’s interactive prompt)

%

Finding Your Niche

3

• Start an xclearcase session — the main panel appears, as in Figure 1-1:

% xclearcase
<prompt appears: Select view-tag — click the “Cancel”
button>

Figure 1-1 xclearcase Main Panel

Locating Your Network’s ClearCase Data Structures

All ClearCase data is stored in VOBs (versioned object bases, the “public”
storage areas) and views (the “private” storage areas). They are all centrally
registered, making it easy for you to determine their names. For example, the
cleartool subcommand lsvob (“list VOB”) shows the names of all of your
networks VOBs (See Figure 1-2).

4

Chapter 1: Overview of ClearCase Usage

Figure 1-2 ”List VOB” command

Note: xclearcase has a “VOB Browser” for listing existing VOBs.

The asterisk (*) at the beginning of the line shown in Figure 1-2 indicates that
the VOB is active on your host. The two pathnames for each VOB reflect that
fact that it is activated by being mounted as a file system of type MVFS: the
VOB-tag is the full pathname of the mount point on your host; the other
pathname specifies the VOB’s actual location.

Figure 1-2 is typical: all VOBs are activated at (mounted on) locations in a
single directory — here, /vobs. This makes data structures that are actually
distributed throughout the local area network all appear to be gathered
together. Moreover, it is typical for some or all the VOBs to be linked
together, effectively forming a single directory tree structure.

ClearCase has its own versions of the mount and umount commands, which
allow non-root users to activate and deactivate public VOBs. For example, the
lsvob listing in Figure 1-2 shows VOB-tag /vobs/design to be public, but
currently inactive. Any user can activate the VOB as follows:

% cleartool mount /vobs/design

pathname of VOB storage directoryVOB-tag

% cleartool lsvob
* /vobs/gui2 /net/ccsvr01/usr1/vobstorage/gui2.vbs public
 /vobs/design /net/ccsvr02/usr1/vobstorage/design.vbs public
* /vobs/docaux /net/ccsvr02/usr1/vobstorage/doc_auxvob public
 /vobs/stage /net/ccsvr03/nbu4/vobstorage/hp300_stage public
 .
 .

Finding Your Niche

5

Getting Yourself a View

Even if a VOB is active, you cannot access it directly. All user-level access to
a VOB must go through a ClearCase view. (Certain administrative
commands can process a VOB at its storage directory pathname.) Without a
view, a VOB’s mount point just appears to be an empty directory; but as seen
through a view, a VOB appears to be an entire directory tree. Each file and
directory in this tree in an element, which has a version tree containing all of
its historical versions (Figure 1-4).

Just as you can list all of your network’s VOBs, you can list all views: (See
Figure 1-3.)

Figure 1-3 “List Views” Commands

Note: xclearcase has a “View Browser” for working with existing views and
creating new ones.

pathname of VOB storage directoryVOB-tag

 mainline
 bill
 v1.1.4_rls
 v1.1_port
 garyf_mainline
 gordons_view
 gui_test_phobos

/net/ccsvr02/nbu2/public_views/mainline
/net/einstein/usr/people/bill/view.bill
/net/ccsvr03/usr2/public_views/v1.1.4_rls
/net/ccsvr03/usr3/public_views/v1.1_port.vws
/net/blink/usr/people/garyf/v/garyf_main.vws
/net/uranium/home/hydrogen/gordon/my_view
/net/phobos/usr/tmp/gui_test_view.vws

% cleartool lsview

*

*

*

6

Chapter 1: Overview of ClearCase Usage

Figure 1-4 VOB as seen through view

Like a VOB, a view has a storage directory (its real location), but is accessed
through a convenient view-tag. (A VOB-tag is a full pathname, because it is a
mount point; but a view-tag is a simple name, because you can access it like
a directory.) And like a VOB, a view must be explicitly activated; an active
view is indicated by an asterisk in the lsview listing.

When a view is active on a host, it appears as a directory at a special location
in the host’s file system. In the ClearCase viewroot directory (usually /view),
the view-tags of all active views appear as subdirectories:

all versions of all source
objects in a directory subtree

VOB

View 1
View 2

selected versions of
source files and

directories

selected versions of
source files and

directories

1

2

3

0

1

0

1

2

0

1

0

3

main

r1_bugs

bug404

each element
appears to be a

single file or
directory in a view
— but it actually

has an entire

Finding Your Niche

7

% ls -F /view
garyf_mainline/ gordons_view/ mainline/

We defer details on creating new views until Chapter 4, “Setting Up a View,”
for now, let’s suppose that the existing view gordons_view is available for
your use. The easiest way to use a view is to “set the view”. Setting a view
creates a new shell process that you can use to work with any active VOB.

Going to a Development Directory

After setting a view, you can work with any VOB, much as if it were a
standard directory tree:

• navigate with cd, ls, and so on

• view and edit files with cat, more, vi, emacs, and so on

• analyze files with grep, sed, awk, and so on

For example:

% cd /vobs/design (go to the VOB-tag of any VOB
 —its mount point)
% ls -F (what’s there?..)
% <no output> ..it appears to be empty)

% cleartool setview gordons_view (set a view)

% ls -F (try again ..)
bin/ include/ lost+found/ (..the VOB’s contents appear)
src/ test/
 .
%

8

Chapter 1: Overview of ClearCase Usage

The View as Virtual Workspace

The reason you must use a view to work with VOBs stems from the two
essential services provided by a view:

• Version selection — All of an element’s versions are potentially
accessible through the element’s standard pathname. The view uses the
rules in its config spec to select one of the versions. This is ClearCase’s
transparency feature — a view makes a VOB appears to be a standard
directory tree to system software and third-party applications.

• Private storage — Each view has its own data storage area, enabling
you (and other users of the same view) to perform development work
without interfering with users working in other views — even those
working with the same source elements and building the same libraries
and executables.

For each VOB, a view presents a coherent virtual workspace — a directory tree
in which you see both VOB-resident objects (the selected versions of
elements) and view-resident objects (typically, the source files you’re
revising and the derived objects produced by your builds in that view). In
general, the VOB-resident objects are read-only; the view-resident objects
are writable and removable. Figure 1-5 illustrates the virtual workspace.

The View as Virtual Workspace

9

Figure 1-5 View as a Virtual Workspace

When you (or your compiler) read a source file, you do not need to know
whether you are accessing a version selected from VOB storage or a
view-private file. Similarly, when you (or your linker) read an object module,
you do not need to know whether you are accessing a shared (winked-in)
binary from VOB storage or an unshared binary that was built in your view,
and appears only in your view.

% cleartool ls -long
version Makefile@@/main/3
derived object hello@@04-Jun.14:42.379
version hello.c@@/main/4
version hello.h@@/main/2
derived object hello.o@@03-Jun.13:49.356
version msg.c@@/main/CHECKEDOUT from /main/1
view private object msg.c~
derived object msg.o@@04-Jun.14:42.377
version util.c@@/main/3
derived object util.o@@03-Jun.13:49.358
view private object zmail.4jun.1%

• versions of elements, selected by the
view’s config spec

• derived objects shared by two or more
views

VOB storageView storage

• checked-out versions of file elements
• derived objects built in view
• view-private files

(editor backup files, personal files)

10

Chapter 1: Overview of ClearCase Usage

Standard and Extended Pathnames

Transparency enables you (and your makefiles, scripts, and other tools) to use
standard pathnames to access ClearCase data. But you can also use extended
pathnames — ClearCase extends the standard operating system file
namespace both “upward” and “downward”.

View-Extended Pathnames

Typically most of your work involves just one view — you work in one or
more processes that are “set” to that view. But you can also use other views
that are active on your host, without having to “set” them. Instead, you can
use a view-extended pathname. For example:

/vobs/design/src/msg.c
specifies the version of an element selected by your view

/view/bill/vobs/design/src/msg.c
specifies the version of the same element selected by view
bill

/view/v1.1_port/vobs/design/src/msg.c
specifies the version of the same element selected by view
v1.1_port

Conceptually, the viewroot directory is a “super-root” for your host’s file
system. Through the super-root, you can access any active view; and
through a view, you can access any active VOB (Figure 1-6). Thus, the
view-extended pathname extended the file namespace upward.

The View as Virtual Workspace

11

Figure 1-6 Viewroot Directory as Super-Root

VOB-Extended Pathnames

Each view selects only one object at a given pathname. Through your view,
you will see a particular version of a source file — say msg.c. But the VOB
also contains all other historical versions of the element, all of them
potentially accessible through the file name msg.c. Similarly, your view sees
a single derived object msg.o — the one produced when you compile msg.c
using clearmake. But there may be other derived objects named msg.o in
other views, built from different versions of msg.c, built using different
header files, built using different command-line options, and so on.

ClearCase has a VOB-extended pathname scheme, which enables you to:

• access any version of an element, no matter which version is selected by
your view. You can also reference other components of an element’s
version tree: its branches, and the element itself (Figure 1-7a).

• access any derived object, even if it is not the one produced by
clearmake in your view (Figure 1-7b).

viewroot directory
(super-root)

view-tags appear in
extended namespace

as subdirectories
of the viewroot

entire file system
appears under each

/view-tag-1

/view

/view-tag-3/view-tag-2

12

Chapter 1: Overview of ClearCase Usage

Figure 1-7 VOB-Extended Pathnames

An element’s version tree has the same hierarchical structure as a directory
tree. This makes it natural to “embed” the entire version tree in the file
system under the element’s pathname:

msg.c standard name of an element (your view accesses a
particular version through ClearCase’s transparency
feature)

msg.c@@ extended pathname to the element object

msg.c@@/main
extended pathname to the element’s main branch

Extended Pathname to Derived Object

util.c@@/main/r1_bugs/bug404/1

1

2

3

0

1

0

1

2

0

1

0

3

main

r1_bugs

bug404

util.o
util.o@@14-Jan.11:34.8781
util.o@@14-Jan.12:19.8884
util.o@@17-Jan.21:45.9989

derived
object in
your view any derived object,

irrespective of view

Extended Pathname to Version(a)

(b)

The View as Virtual Workspace

13

msg.c@@/main/alpha_port
extended pathname to a subbranch of the main branch

msg.c@@/main/alpha_port/5
extended pathname to a version on the subbranch

Note: These are also called version-extended pathnames, because they indicate
locations within an element’s version tree.

The VOB catalogs all derived objects built at a given pathname. They have
unique IDs, which incorporate timestamps:

msg.o@@24-Nov.21:11.8718
derived object built as msg.o on Nov 24 at 9:11 pm

msg.o@@25-Nov.07:31.8834
derived object built as msg.o on Nov 25 at 7:31 am

msg.o@@12-Jan.21:59.9501
derived object built as msg.o on Jan 12 at 9:59 pm

In both kinds of VOB-extended naming, think of the extended naming
symbol (@@) as “turning off” transparency, allowing you to specify a
particular object in the VOB database.

For a complete discussion of ClearCase’s file-naming extensions, see the
pathnames_ccase manual page.

Pathname Examples

This example in this section demonstrate how (and how well) ClearCase fits
into a standard UNIX development environment. The examples involve
both standard pathnames and extended pathnames, all processed by
standard UNIX programs and by ClearCase commands:

• Display the version of file msg.c selected by your view:

% cat msg.c

• Display the 5th version on the main branch of file msg.c:

% cat msg.c@@/main/5

14

Chapter 1: Overview of ClearCase Usage

• Display the most recent version on the main branch of file msg.c:

% cat msg.c@@/main/LATEST

• Compare your version of file msg.c with the version in a colleague’s
view:

% diff msg.c /view/jjkim/vobs/design/src/msg.c

• Compare your version of file msg.c with a particular historical version:

% diff msg.c msg.c@@/main/5

• Search for the string tmpbfr_sz in all the versions on the main branch of
file msg.c:

% grep 'tmpbfr_sz' msg.c@@/main/*

• Repeat the preceding search in another way — by going to the main
branch of msg.c, then entering the grep command:

% cd msg.c@@/main

% grep 'tmpbfr_sz' *

• Search through an element’s entire version tree for that same string:

% find msg.c@@ -print -exec grep 'tmpbfr_sz' {} \;

The last two examples demonstrate that the embedding of version trees in
the file namespace is “complete” — you can navigate elements, their
branches, and their versions with standard operating system commands,
just as if they were regular directories and files.

Modifying Elements - the Checkout/Checkin Model

This section describes the ways in which you “evolve” an element by adding
new versions and branches to its version tree. Like many version-control
systems, ClearCase uses a “checkout/checkin” model:

1. Before you begin — In the “steady state”, an element is read-only —
you can neither edit it nor remove it with standard operating system
commands:

% ls -l hello.c
-r--r--r-- 1 akp user 168 May 13 19:30 hello.c

Modifying Elements - the Checkout/Checkin Model

15

What you are seeing is one version of the file element — the version
selected by your view, according to the rules in its config spec.
Typically, it is the most recent version on some branch of the element’s
version tree.

2. Checkout — You issue a checkout command, naming the file. This
produces an editable copy of the selected version

% cleartool checkout -nc hello.c
Checked out "hello.c" from version "/main/2".

% ls -l hello.c
-rw-rw-r-- 1 sakai user 168 May 19 19:31 hello.c

The editable copy appears “in place”, at the same pathname as the
element — there is no need to copy the file to another location in order
to work on it. In Step #1, your view selected an “old” version of the file,
located in VOB storage; now it selects your checked-out version, located
in view-private storage.

Note: The listings above hint at this: the element was created by another
user, akp, who owns all its “old” versions. But the checked-out version
belongs to the user who performs the checkout — in this example, sakai.

3. Edit — You revise the contents of the file with any text editor.

% vi hello.c

ClearCase is integrated with the popular development-tool messaging
systems, SoftBench and ToolTalk. You can use a text editor that works
with either of these systems to work with your checked-out version.

4. Checkin — When the file is correct (or, at least, worth preserving), you
issue a checkin command. This adds a new version to the version tree
(the successor to the version that was checked out), and removes the
editable copy of the file. You can specify a comment during the checkin
process, to help document the changes you made.

% cleartool checkin hello.c
Comment for all listed objects:
replaced message
.
Checked in "hello.c" version "/main/3".

Canceling a Checkout Instead of Performing a Checkin — If you decide that
you don’t want to modify the file after all, you can cancel the checkout
with an uncheckout command.

16

Chapter 1: Overview of ClearCase Usage

5. After you end — After you checkin a new version, the file reverts to its
“steady-state” read-only status:

% ls -l hello.c
-r--r--r-- 1 akp user 233 May 19 19:44 hello.c

The checked-in version is placed in VOB storage, and immediately
becomes shared data, available to all users. In particular, your view now
selects this newly-created version. (Since you no longer have the file
checked out, your view reverts to selecting a VOB-resident version.)

Reserved and Unreserved Checkouts

In some version-control systems (for example, SCCS), only one user at a time
can reserve the right to create the next version on a branch. In other systems,
many users can compete to create the same new version. ClearCase supports
both models by allowing two kinds of checkouts, reserved and unreserved:

• Only one view at a time can have a reserved checkout of a particular
branch. A view with a reserved checkout has the exclusive, guaranteed
right to extend the branch with a new version.

After you perform the checkin, you no longer have any exclusive rights
on that branch. Another user can now perform a reserved checkout to
“grab” the right to create the next version on the branch.

• Many views can have unreserved checkouts of the same branch. Each
view gets its own private copy of the most recent version on the branch;
each copy can be edited independently of all the others.

An unreserved checkout does not guarantee the right to create a
successor version. If several views have unreserved checkouts of the
same branch in different views, the first user to perform a checkin
“wins” — other users must merge the checked-in changes into their own
work before they can perform a checkin. (See “Scenario: Merging an
Unreserved Checkout” on page 118.)

By default, the checkout command performs a reserved checkout; use
checkout –unreserved to perform an unreserved checkout. The reserve and
unreserve commands change the state of a checkout. Figure 1-8 illustrates
checked-out versions created by reserved and unreserved checkouts, along
with the effect of subsequent checkins.

Modifying Elements - the Checkout/Checkin Model

17

Figure 1-8 Resolution of Reserved and Unreserved Checkouts

Tracking Checked-Out Versions

In a multiuser environment, it is very likely that a given element will have
several checkouts at the same time:

• Several branches of the element may be under development; checkouts
on different branches are mutually independent.

• As described in “Reserved and Unreserved Checkouts” on page 16
above, there can be multiple concurrent checkouts of a single version.

Resolution of Unreserved Checkouts

3 3

3 3

4 4

this checked-out version
cannot be checked in as

version 5 until it is merged
with contents of version 4

Resolution of Reserved Checkout

checkout

checkin

checkoutcheckout

checkin

18

Chapter 1: Overview of ClearCase Usage

The lscheckout (“list checkouts”) command lists all the current checkouts of
one or more elements:

% cleartool lscheckout -long sort.9

04-Mar-94.12:12:33 Allison K. Pak (akp.user@neon)
 checkout version "sort.9" from /main/37 (reserved)
 by view: "neon:/net/neon/home/akp/views/930825.vws"

26-Feb-94.08:59:02 Derek R. Philips (drp.user@saturn)
 checkout version "sort.9" from /main/gopher_port/8 (reserved)
 by view: saturn:/net/saturn/home/drp/mainvu.vws
 "incorporate david’s comments"

Note: In the example for cleartool lscheckout the same element is checked out
on different branches in diferent views.

Checked-Out Versions - Ownership and Accessibility

As the lscheckout listing above indicates, your checked-out version belongs
both to you and to your view:

• As the user who performed the checkout, you are the one who has
permission to perform a corresponding checkin or uncheckout. (The root
user also has permission, as does the owner of the element and the
owner of the entire VOB.)

• You are the owner of the standard UNIX file in view-private storage that
is the checked-out version. This file is created according to your current
umask(1) setting, in the standard UNIX manner. Standard mechanisms
also control whether other users, working in the same view, can read or
write the checked-out version.

• A view can see only one object at a given pathname. Thus, ClearCase
allows each view to have at most one checkout of a given element. If an
element is to be checked out twice, on two different branches, then the
checkouts must be performed in different views.

Users in other views do not see the checked-out version — they continue to
see the version selected by their views’ config specs. They can use the
lscheckout command to determine that a checkout has been performed and,
if permissions allow, they can use a view-extended pathname to access the
checked-out version.

Modifying Elements - the Checkout/Checkin Model

19

Checkout and Checkin as Events

The lscheckout command determines all of an element’s checkouts by
examining event records, which are stored in the VOB database of that
element. Each checkout command creates a checkout version event record;
lscheckout lists some or all such event records.

Similarly, the checkin command writes a create version event record to the
appropriate VOB database. In general, every ClearCase operation that
modifies a VOB creates an event record in the VOB’s database, capturing the
“who, what, when, where, why” of the operation: login name of the user
who entered the command, kind of operation, date-time stamp, hostname,
user-supplied comment.

You can use the lshistory command to display some or all of the event records
for one or more elements:

% cleartool lshistory util.c
25-May-92.15:45:19 Allison K. Pak (akp.user@neptune)
 create version "util.c@@/main/3" (REL3)
 "special form of username message for root user
 merge in fix to time string bugfix branch"
25-May-92.15:44:05 Derek R. Philips (drp.user@saturn)
 create version "util.c@@/main/rel2_bugfix/1"
 "fix bug: extra NL in time string"
25-May-92.15:43:03 Derek R. Philips (drp.user@saturn)
 create version "util.c@@/main/rel2_bugfix/0"
25-May-92.15:43:03 Derek R. Philips (drp.user@saturn)
 create branch "util.c@@/main/rel2_bugfix"
25-May-92.14:46:21 Allison K. Pak (akp.user@neptune)
 create version "util.c@@/main/2"
 "shorten HOME string"

The chevent command can modify the comment string stored in an event
record:

% cleartool chevent -replace util.c@@/main/2
Comments for "util.c":
shorten HOME string, to comply with
AMOK guidelines
.
Modified event of version "util.c".

20

Chapter 1: Overview of ClearCase Usage

Building and Testing Software

One of ClearCase’s principal design points is compatibility with your
existing software-build procedures. If you use makefiles to organize your
build procedures, you can use the clearmake build utility, either directly or
using the xclearcase front-end. If your build procedures are implemented as
shell scripts or other programs, you can use the clearaudit build utility.

In many cases, you may find that adapting your day-to-day build habits to
ClearCase involves little more than switching from ...

% make target-name
... to ...

% clearmake target-name

Behind the scenes, ClearCase manages the results of builds:

• Newly-built files are cataloged as derived objects (DOs) in the
appropriate VOB databases.

• Configuration records (CRs) are also stored in VOB databases, to record
exactly how each derived object was built. Like an event record, a CR
contains “who, what, when, where” information. It also contains a “bill
of materials” that shows how the file was built: versions of source
elements used in the build, build options, makefile macros, build script,
and more.

• Based on a configuration-record analysis, clearmake may decide to
wink-in an existing derived object (essentially, create a link to it) rather
than executing a build script to create a new derived object.

All of this occurs automatically, though you can suppress features
individually, using clearmake command-line options.

Building and Testing Software

21

Using Build Management Structures

In some situations, you may find it useful to examine the structures
ClearCase uses for build management. For example, you can use the lsdo
command or the ClearCase variant of the ls command to see the unique
identifiers with which derived objects are cataloged:

% cleartool ls hello.o
hello.o@@08-Mar.12:48.7261

% cleartool lsdo hello.o
08-Mar.12:48 akp "hello.o@@08-Mar.12:48.7261"
07-Jan.11:40 sakai "hello.o@@07-Jan.11:40.2143"

Note: cleartool ls is done in your view and cleartool lsdo is all DO’s built at that
pathname in any view.

The catcr command displays the contents of the configuration record that
documents the building of one or more derived objects:

% cleartool catcr hello.o
Target hello.o built on host "neptune" by akp.user
Reference Time 19-May-92.19:30:12, this audit started
19-May-92.19:30:13
View was neptune:/home/akp/akp.vws
Initial working directory was neptune:/usr/hw/src

MFS objects:

/usr/hw/src/hello.c@@/main/4 <19-May-92.19:30:05>
/usr/hw/src/hello.h@@/main/2 <19-May-92.19:30:07>
/usr/hw/src/hello.o@@19-May.19:30.364

Build Script:

 cc -c hello.c

There is also a diffcr command, which you can use to compare two builds of
the same target — that is, to compare the CRs of two derived objects built at
the same pathname.

22

Chapter 1: Overview of ClearCase Usage

You can “grab” any existing derived object for use in your view, even if does
not match your current configuration of source versions. That is, you can
explicitly wink-in a derived object, even if clearmake wouldn’t.

The Chapter 10, “Building with clearmake; Some Basic Pointers,” section of
this manual discusses build-related issues in greater detail.

Debugging and Testing Software

The best environment for debugging and testing a software build is the view
in which you performed it. All source versions that went into a build are
visible in the view; likewise, all object modules (.o files) are visible.

ClearCase does not include any specific debugging tools. However,
integrations with a third-party tools, such as Centerline’s CodeCenter™,
may be available for your platform.

Working in a Parallel Development Environment

ClearCase is designed for parallel development, wherein two or more projects
can modify the same source files at the same time. The “standard” strategy
for organizing the environment uses a baselevel-plus-changes model.
Launching and pursuing a new development project involves the steps
listed below. (You’ll notice that most of the work is administrative.)

1. An administrator defines a baselevel — a consistent set of source
versions — by attaching the same version label to all the source
versions — for example, RLS_2.1. The baselevel might be the set of
versions that went into some product release; or it might just be a set of
versions that yields a functional build of the software system.

2. The administrator designates a particular branch for use by the
development project — for example, branch eco78 for performing the
fixes required for ECO #78 to Release 2.1

3. The administrator publishes a config spec for use by all developers
working on the project. This config spec represents the project’s
organization in terms of the chosen version label and branch (RLS_2.1
and eco78).

Working in a Parallel Development Environment

23

4. You, the developer, create a view and configure it with the published
config spec. (Alternatives: all developers share a single view with the
proper configuration; the administrator creates the view(s), then tells
developers to use them.)

5. Working in the properly-configured view, you start modifying an
element simply by entering a checkout command; the checkout
automatically takes place on the designated branch, eco78; if the branch
does not already exist, it is created at the version labeled RLS_2.1. After
you build and test with your changes, your checkin command creates a
new version on the designated branch.

Thus, after some initial setup, “working on a branch” involves nothing
special; you just work according to the basic checkout-edit-checkin scheme
described in “Modifying Elements - the Checkout/Checkin Model” on
page 14. Your view takes care of organizing your work according to the
administrator-mandated structure.

Comparing Versions of Elements

As you modify source files, you’ll often want to perform comparisons:

• What are all the changes I’ve made in my checked-out version?

• How does my checked-out version differ from a particular historical
version, or from the version being used by one of my colleagues?

ClearCase includes powerful tools for comparing two or more versions of an
element. For example, Figure 1-9 shows how you might display the changes
you’ve made in a source file.

24

Chapter 1: Overview of ClearCase Usage

Figure 1-9 Determining the Changes in a Checked-Out Version

To produce a similar display comparing your version of a file with a
colleague’s (say, the version that appears in view gordons_view), you might
enter this command:

% cleartool xdiff base.h \
 /view/gordons_view/vobs/proj/include/base.h

In addition to simply comparing versions, ClearCase can produce a
line-by-line analysis of a version. The annotate command indicates when
each line of a file was added, and by whom ().

Working in a Parallel Development Environment

25

Figure 1-10 Annotated File Listing

Examining an Element’s Version Tree

ClearCase includes both character-oriented and graphical tools for
examining the version tree of an element. A graphical display, like that
shown in , is “live” — for example, you can select one or more versions with
the mouse, then click an icon to bring up a window that compares those
versions.

/vobs/atria/bin/clearapropos

11-Apr-94 jjp /main/5 (MS_V1.BL5_BASE, MS_V1.BL5, V2.BL7, ...)
implement -glos-sary option
 .
 .

30-Mar-94 jjp /main/4 |
. | ### clearapropos
. |
. |
. | # This script implements the cleartool apropos command ...
23-Feb-94 leblang /main/1 | # the cleartool MAN page title lines for help topics.
. |
29-Mar-94 jjp /main/2 | #---
30-Mar-94 jjp /main/4 | # setup
. |
29-Mar-94 jjp /main/2 |
. | if ["$ATRIA_DEBUG_SCRIPT"] ; then set -x ; fi
. |
. | ARCH=`uname -s`-`uname -r`
. | case $ARCH in
. | HP-UX-A.09.*) NAWK=/usr/bin/awk ;;
. | IRIX-5.*) NAWK=/usr/bin/nawk ;;
. | SunOS-4.*) NAWK=/bin/nawk ;;

26

Chapter 1: Overview of ClearCase Usage

Figure 1-11 Graphical Version Tree Display

Merging Versions of Elements

Typically, an element’s subbranches are thought of as “temporary”. One
branch — usually the main branch — is conceived as holding the element’s
“official” or “permanent” contents. In this scheme, work performed on each
subbranch must eventually be merged back into the main branch. You may
wish to wait until a project is finished before merging its branches back into
the main branch. Or you may wish to perform frequent merges, in order to
keep the contents of the branches from diverging too much.

Working in a Parallel Development Environment

27

A typical merge combines the most recent version on a subbranch with the
most recent version on the main branch (Figure 1-12). In a real-world
environment, an element is also likely to be involved in other projects, taking
place on one or more additional branches.

Figure 1-12 Merge of Subbranch Version into Main Branch

ClearCase makes merging as automatic as possible. A single findmerge
command (“find, and then merge”) might merge all of a project’s changes,
made on a subbranch, back into the main branch:

% cd /vobs/proj (go to project top-level source directory)
 (merge all work on subbranch back into ’main’ branch)

% cleartool findmerge . -ftag eco_work_view -merge

For each merge it performs, ClearCase determines how each of the
contributor versions have changed from the base version (in Figure 1-12, how
contributor versions /main/5 and /main/eco78/2 have changed from the base
version /main/3). Often, all such changes are mutually distinct, and a merged
version is created completely automatically. If there are any conflicts
between the changes, you can resolve them using the graphical merge tool
(Figure 1-13) or a character-oriented tool.

5

2

3

4

0

1

2

eco78

main

5

2

3

4

0

1

2

eco78

main

5

2

3

4

0

1

2

eco78

main

6

merge

checkin

checkout

version 5 on main branch
(the most recent version)

checkout
version 2 on eco78 branch
into checked-out version

merge
merged version, creating
version 6 on main branch

checkin

merge
arrow

28

Chapter 1: Overview of ClearCase Usage

Whenever you merge two versions of an element, ClearCase annotates the
element’s version tree with a merge arrow. (Figure 1-13 shows a merge arrow
connecting version /main/eco78/2 to version /main/6.) These annotations
make it possible to merge a project’s changes a few files at a time, and to
determine whether or not all required merges have been performed. Merge
operations take into account any existing merge arrows involving the same
branches; this makes frequent incremental merging both fast and simple.

Figure 1-13 Graphical Merge Tool

Working with Meta-Data

29

Working with Meta-Data

In addition to storing file system data (source files, shared derived objects) in
its storage pools, a VOB stores associated meta-data in its database. As you
perform your development tasks, ClearCase automatically creates and
stores a variety of meta-data. For example, preceding sections of this chapter
have described how:

• ClearCase commands that modify a VOB (checkout, checkin, and others)
write event records to document the change.

• The clearmake build utility creates configuration records to document
software builds.

• Merge operations are documented by the creation of merge arrows.

In addition, meta-data annotations can be placed on objects explicitly. The
most important example was discussed in “Working in a Parallel
Development Environment” on page 22 — an administrator attaches
version label annotations to a set of source file versions, in order to define a
baselevel.

In many organizations, defining and attaching meta-data annotations is an
administrator’s or project leader’s task; as an individual developer, you
most often use existing meta-data annotations, rather than explicitly creating
them.

31

Chapter 2

2. Using the ClearCase
Command Line Interface

This chapter presents an overview of the principal programs in ClearCase’s
command-line interface: cleartool and clearmake.

Using cleartool

Note: Much of the information in this section is available on-line, in the
cleartool manual page.

cleartool is the main CLI tool for interacting with your organization’s data
repository. cleartool has a rich set of subcommands, which create, modify, and
manage the information in VOBs and views.

cleartool Subcommands

Table 2-1 lists all the cleartool subcommands, organized by function. The
complete list can be quite daunting, because much of ClearCase’s extensive
feature set has been incorporated into this single tool. On a day-to-day basis,
however, you’ll probably use fewer than a dozen commands.

32

Chapter 2: Using the ClearCase Command Line Interface

Table 2-1 cleartool Subcommands

cleartool Subcommands

Working with Views

catcs display configuration specification

edcs edit configuration specification

ls list VOB objects and view-private objects in a directory

lsprivate list view-private objects

lsview list view registry entries

mktag create view-tag or VOB-tag

mkview create and register a view

pwv print working view

recoverview recover a view database

reformatview update the format of a view database

rmtag remove a view-tag and unregister a view on the local host

rmview remove a view storage area or remove view-related records from a
VOB

setcs set the configuration specification

setview create a process that is set to a view

startview start or connect to a view_server process

Working with Version Tree Structures

checkin create permanent new version of an element

checkout create view-private, modifiable copy of a version

chtype change the type of an element / rename a branch

describe describe VOB object

Using cleartool

33

find select objects from a directory hierarchy

ln create VOB hard link or VOB symbolic link

lsvtree list version tree of an element

mkbranch create a new branch in the version tree of an element

mkbrtype create a branch type object

mkdir create a directory element

mkelem create an element

mkeltype create an element type object

mv move or rename an element or VOB link

reserve convert a checkout to reserved status

rmbranch remove a branch from the version tree of an element

rmelem remove an element from a VOB

rmname remove the name of an element or VOB symbolic link from a directory

rmver remove a version from the version tree of an element

uncheckout cancel a checkout of an element

unreserve change a checkout to unreserved status

xlsvtree list version tree of an element graphically

Working with Derived Objects and
Configuration Records

catcr display configuration record

diffcr compare configuration records

lsdo list derived objects

rmdo remove a derived object from a VOB

winkin wink-in a derived object

Table 2-1 (continued) cleartool Subcommands

34

Chapter 2: Using the ClearCase Command Line Interface

Working with Meta-Data and
Annotations and Type Objects

lstype list type objects

mkattr attach attributes to VOB objects

mkattype create an attribute type object

mkhlink attach a hyperlink to a VOB object

mkhltype create a hyperlink type object

mklabel attach version labels to versions

mklbtype create a version label type object

rmattr remove an attribute from a VOB object

rmhlink remove a hyperlink from a VOB object

rmlabel remove a version label from a version

rmmerge remove a merge arrow from versions

rmtype remove a type object from a VOB

rntype rename a type object

Working with Event Records

chevent modify comment string in existing event record(s)

lscheckout list checkouts of an element

lshistory list history

Working with the Contents of
Versions

annotate annotate lines of text file with timestamps

diff compare files or versions of an element

findmerge determine what files require a merge

Table 2-1 (continued) cleartool Subcommands

Using cleartool

35

merge merge files or versions of an element

xdiff compare files or versions of an element graphically

xmerge merge files or versions of an element graphically

Administrative Commands

chpool change the storage pool to which an element is assigned

lock lock a VOB object

lslock list locks

lspool list storage pools

lsview list view registry entries

lsvob list VOB registry entries

mkpool create a VOB storage pool or modify its scrubbing parameters

mktrigger attach a trigger to an element

mktrtype create a trigger type object

mkvob create and register a versioned object base

mount activate a VOB

protect change permissions or ownership of a VOB object

protectvob change owner or groups of a VOB

reformatvob update the format of a VOB database

register create an entry in the VOB storage registry or view storage registry

rmpool remove a storage pool from a VOB

rmtrigger remove trigger from an element

rmvob remove a VOB storage directory

rnpool rename a VOB storage pool

space report on VOB disk space usage

Table 2-1 (continued) cleartool Subcommands

36

Chapter 2: Using the ClearCase Command Line Interface

For example, the following set of cleartool subcommands fulfills a typical
developer’s day-to-day needs:

mkview, edcs to create a new view, and then adjust its configuration

setview to start working in a view

checkout, checkin, uncheckout
to create new versions of source files (or change your mind)

mkelem to create new version-controlled elements

lscheckout, lshistory, lsvtree
to determine what other work is currently taking place, and
to determine what work has taken place in the past

diff, merge, findmerge
to work efficiently in a parallel development environment

umount deactivate a VOB

unlock unlock a VOB object

unregister remove a VOB or view from the storage registry

Miscellaneous Commands

cd change current working directory

pwd print working directory

help help on cleartool command usage

man display a ClearCase manual page

apropos summary information on cleartool subcommands

quit quit interactive cleartool session

shell create a subprocess to run a shell or other specified program

Table 2-1 (continued) cleartool Subcommands

Using cleartool

37

Getting Help

When you do need to use a cleartool subcommand with which you’re not
familiar, you can take advantage of several on-line help facilities:

• Syntax summary — To display a syntax summary for an individual
subcommand, use the help subcommand or the -help option:

% cleartool help (syntax of all subcommands)
% cleartool help mklabel (syntax of one subcommand)
% cleartool mklabel -help (syntax of one subcommand)

• Manual pages — cleartool has its own interface to the UNIX man(1)
command. Enter cleartool man command_name to display the manual
page for a subcommand.

• Permuted index — The file /usr/atria/doc/man/permuted_index contains
the same information as the permuted index printed in the
CASEVision™/ClearCase Reference Pages.

• Whatis’ file — File /usr/atria/doc/man/whatis contains summary
information from the manual pages. Use the apropos subcommand to
extract information from this file.

cleartool Usage Overview

You can use cleartool in either single-command mode or interactive mode. To
invoke a single cleartool subcommand from the shell, use this syntax:

% cleartool subcommand [options-and-args]

When entering a series of subcommands, you may find it more convenient
to type “cleartool” without any arguments. This places you at the
interactive-mode prompt:

cleartool>

You can then issue any number of subcommands (simply called
“commands” from now on), ending with quit to return to the shell. cleartool
commands can be continued onto additional lines with the backslash (\)
character, as with UNIX shells.

38

Chapter 2: Using the ClearCase Command Line Interface

Command options may appear in any order, but all options must precede
any non-option arguments (typically, names of files, versions, branches, and
so on). If an option is followed by an additional argument, such as -branch
/main/bugfix, there must be white space between the option string and the
argument. If the argument itself includes space characters, it must be quoted.

Command Abbreviations and Aliases

Many subcommand names and option words can be abbreviated. A
command’s syntax summary indicates all valid abbreviations. For example:

lsc·heckout (in printed manual pages)
lsc/heckout (in on-line manual pages)

This means that you can abbreviate the subcommand name to the minimal
“lsc”, or to any intermediate spelling: “lsch”, “lsche”, and so on.

A few cleartool commands have a built-in command alias. For example,
checkin’s alias is ci; similarly, checkout’s alias is co. These commands are
equivalent:

% cleartool checkin test.c

and

% cleartool ci test.c

Command Options

cleartool commands use multiple-character options, such as -all, -default,
and -comment. Long options can always be abbreviated; as with commands,
the minimal abbreviation is always three characters or fewer, and any
intermediate spelling is valid: you can abbreviate -delete to -del, -dele, or
-delet.

Options that are commonly used in standard UNIX commands have
single-letter abbreviations. For example, you can abbreviate -directory to
-d. The others options in this category include -all, -recurse, -long, and
-short.

Using cleartool

39

Options rigorously distinguish between type objects and instances of those
types. For example:

-brtype ... Specifies a particular branch type object.

-branch ...
Specifies a particular branch — that is, a particular instance
of a branch type object, within the version tree of some
element.

Pathnames in cleartool Commands

Many cleartool commands take one or more pathnames as arguments —
typically, the name of a file or directory element, or a view-private file, or a
derived object that you’ve built with clearmake. You can use either kind of
standard UNIX pathname: full or relative. In many cases, you can also use a
ClearCase extended pathname:

/vobs/proj/test.c (standard full pathname)
/view/akp/vobs/proj/test.c (view-extended full pathname)
/vobs/proj/test.c@@/main/bugfix/4
 (version-extended full pathname)

test.c (standard relative pathname)
test.c@@/RLS2.0 (version-extended relative pathname)
test.c@@/main/LATEST (version-extended relative pathname)

../lib/libsort.a (standard relative pathname)

../lib/libsort.a@@/RLS4.2
 (version-extended relative pathname)

hello.o (standard pathname to derived object)
hello.o@@14-Mar.09:55.4388
 (extended pathname to derived object)

40

Chapter 2: Using the ClearCase Command Line Interface

For both full or relative pathnames:

• Your current view automatically resolves a standard pathname to a
particular ClearCase object (this is called transparency):

– The standard operating system pathname of an element implicitly
references the version selected by your view.

– The standard pathname of a derived object references the one built
in your view. (Users in different views can build makefile targets
independently; different derived objects produced by such builds
appear at the same pathname in the respective views.)

• A view-extended pathname references the object that another view sees at
a standard pathname.

• A VOB-extended pathname references an object using VOB database
identifier. The most commonly-used is a version-extended pathname,
which references a particular version of an element using its unique
version-ID (for example, test.c@@/main/bugfix/4) or using a version label
(for example, test.c@@RLS2.0). Other kinds of VOB-extended
pathnames include:

hello.c@@ (extended pathname to element object)
hello.c@@/main/bugfix (extended pathname to branch object)
hello.o@@14-Mar.09:55.4388
 (extended pathname to derived object,)
 (incorporating a unique DO-ID)

DesignFor@566 (extended pathname to hyperlink object)
Merge@268 (incorporating a unique hyperlink-ID)
SyncWith@4099

(Strictly speaking, the extended names for hyperlinks are not “pathnames”,
since hyperlinks do not appear at all in the operating system’s file
namespace. Syntactically, however, cleartool treats hyperlink names like
other pathnames.)

For more information on ClearCase pathnames, see the version_selector and
pathnames_ccase manual pages.

Using cleartool

41

Command-Line Processing

In single-command mode, the cleartool command you enter is first processed
by the UNIX shell. The shell expands file name patterns and environment
variables, and it interprets quotes and other special characters. cleartool
processes the resulting argument list directly, without any further
interpretation.

In interactive mode, cleartool itself interprets the command line similarly, but
not identically, to the UNIX shells. In particular, it does not expand
environment variables and does not perform command substitution (`...`).
For details, see the cleartool manual page.

Event Records and Comments

Each change to a VOB (checkin of a new version, attaching of a version label,
and so on) is accompanied by the creation of an event record in the VOB
database. Many cleartool commands allow you to annotate the event
record(s) they create with a comment string. In some cases, your comment is
appended to a ClearCase-generated comment. All commands that accept
comment strings recognize the same options:

-c comment-string
Specifies a comment for all the event records created by the
command.

-cq The command prompts for a comment, which will be
placed in the event records for all objects processed by this
command.

-cqe For each object it processes, this command prompts for a
comment to be placed in the corresponding event record.

-nc (“no additional comment”) For each object it processes, the
command creates an event record with no user-supplied
comment string.

42

Chapter 2: Using the ClearCase Command Line Interface

Examining Event Records

cleartool includes several commands that display event records, optionally
including the comment strings: lshistory, lscheckout, lstype, lslock, and lspool.
See the fmt_ccase manual page for a description of the simple report-writing
facility built into these commands.

The chevent command revises the comment string in an existing event
record. See the events_ccase manual page for a detailed discussion of event
records.

Customizing Comment Handling

Each command that accepts a comment string has comment default, which
takes effect if you enter the command without any comment option. For
example, the checkin command’s comment default is -cqe, causing cleartool to
prompt you to enter a comment for each element being checked in. The ln
command’s comment default is -nc: create the event record without a
user-supplied comment.

You can customize cleartool’s comment-handling with a user profile file,
.clearcase_profile, in your home directory. For example, you might establish
-cqe as the comment default for the ln command. See the user_profile manual
page for details.

Permissions Checking and Locks

All cleartool commands that modify (“write”) a VOB are subjected to
permissions checking. The following hierarchy is used, in a
command-specific manner, to determine whether a command should
proceed or be cancelled:

• the root user (superuser)

• the VOB owner (typically, the user who created the VOB storage area)

• the owner of the element involved in the command

• the creator of the type object (for modifications to objects of that type)

Using clearmake

43

• the creator of a particular version or derived object

• members of an element’s group or derived object’s group (same UNIX
group ID)

For example, the root user always has permission to use commands that
modify a VOB. However, if you try to modify an element that you do not
own, and are neither the VOB owner nor the root user, cleartool will not allow
the operation to proceed.

ClearCase also provides for temporary access control through explicit
locking of individual objects, with the lock command. When an object is
locked, it cannot be modified by anyone (except, perhaps, for a list of
explicitly-exempted users).

For details on permissions-checking and locks, see the ct_permissions manual
page.

Exit Status

If you exit cleartool by entering a quit command in interactive mode, the exit
status is 0. The exit status from single-command mode depends on whether
the command succeeded (zero exit status) or generated an error message
(nonzero exit status).

Error Logs

Some of the warning and error messages displayed by cleartool commands
are also written to log files located in directory /usr/adm/atria/log. You may
sometimes find that a message has been written to a log on another host; this
is a artifact of ClearCase’s client-server architecture.

Using clearmake

clearmake is the ClearCase build utility, designed to be compatible with many
different make variants. We recommend that, you read Chapter 5, Building
Software with ClearCase in the CASEVision™/ClearCase Concepts Guide, before
reading this section.

44

Chapter 2: Using the ClearCase Command Line Interface

Invoking clearmake

You can invoke clearmake using the ClearCase CLI or GUI. The
command-line interface is designed to be as similar as possible to other make
variants. Single-letter command options have their familiar meanings. For
example:

–n no-execute mode

–f specify name of makefile

–u unconditional rebuild

clearmake recognizes additional options (also single-letter) that control its
enhanced functionality: configuration lookup, creation of configuration
records and derived objects, parallel and distributed building, and so on. For
a complete description, see the clearmake manual page.

You can run clearmake as a background process or invoke it from a shell
script, just like any other program. (In clearmake output, some names are
emboldened, for clarity. On some architectures, running clearmake in the
background suppresses this emboldening, but no characters are lost.)

A Simple clearmake Build Scenario

clearmake was designed to let developers in makefile-based build
environments continue working in their accustomed manner. The following
simple build scenario demonstrates how little adjustment is required to
begin building with clearmake.

1. Set a view — Since working with ClearCase data requires a view
context, it makes sense to set a view before starting a build.

(Strictly speaking, this is not required: if your process has a working
directory view context, but not a set view context, clearmake automatically
sets the view by executing a cleartool setview -exec clearmake command.
See “Setting a View” on page 80.)

2. Go to a development directory — Change to a directory within any
VOB.

Using clearmake

45

3. Edit some source files — Typically, you need to edit some sources
before performing a build; accordingly, you checkout some file elements
and revise the checked-out versions.

4. Start a build — You can use your existing makefile(s) to perform a
ClearCase build. Just invoke clearmake instead of your standard make
program. For example:

% clearmake (build the default target)
% clearmake cwd.o libproj.a
 (build one or more particular targets)
% clearmake -k monet CFLAGS=-g
 (use standard options and make-macro overrides)

Note: We recommend that you avoid specifying make-macro overrides
on the command line. See “Using a Build Options Specification (BOS)
File” on page 156.

clearmake builds targets (or avoids building them) in a manner similar to, but
more sophisticated than, other make variants. Figure 2-1 illustrates the
results of a typical build:

46

Chapter 2: Using the ClearCase Command Line Interface

Figure 2-1 ‘clearmake’ Build Scenario

Build: Invoke clearmake

Start: no files are checked-out

each version selected by view is
accessed from VOB storage (shared

data) on read-only basis

before checkout

Edit: Checkout a Source File

writable copy of selected version
created in view-private storage

checkout source file

for checked-out versions, and for some
versions that are not checked-out

create new derived object
for some versions that
are not checked-out

wink-in derived object
for some versions that
are not checked-out

reuse derived object

build
reuse

wink-in

build

Using clearmake

47

clearmake builds a new derived object for each newly-checked-out source file,
because no other build could possibly have used your checked-out version.

Note: clearmake does not attempt to verify that you have actually edited the
file; the checkout itself triggers the rebuild. As you work, each text-editor
“save file” followed by an invocation of clearmake will cause a rebuild of the
updated file’s dependents, in the standard make manner.

For source files that you have not checked out, clearmake may or may not
actually build a new derived object:

• Sometimes, it reuses a derived object that already appears in your view,
produced by a previous build.

• Sometimes, clearmake winks-in an existing derived object originally
built in another view. (It’s even possible that a winked-in DO was
originally created in your view, but then deleted — for example, by a
“make clean”.)

• Sometimes, changes to other aspects of your build environment trigger
a clearmake rebuild: revision to a header file; change to the build script,
use of a make-macro override; change to an environment variable used
in the build script.

More on Building with clearmake

This manual contains a great deal more information on using clearmake and
related software build mechanisms starting with Chapter 10, “Building with
clearmake; Some Basic Pointers”.

49

Chapter 3

3. Using the ClearCase Graphical User Interface

This chapter contains basic background and usage fundamentals for the
ClearCase graphical interface.

Starting xclearcase

The xclearcase command line can include any of the numerous X(1)
command options, but examples in this chapter are all derived from an
interface invoked with:

% xclearcase &

You can start xclearcase with or without a view context. If you are not in a
view, xclearcase first prompts you for a view-tag. Figure 3-1 shows a view-tag
browser.

The view-tag browser lists all registered views. You can set the current view
to any on the list, whether or not it is currently “active.” (An active view
already has an entry in the viewroot directory, /view.)

Click leftMouse over a view-tag to select (highlight) it, and press the Ok
button.

50

Chapter 3: Using the ClearCase Graphical User Interface

Figure 3-1 View-tag Browser at xclearcase Startup

File Browser

Figure 3-2 shows the file browser, which appears once you have an active
view. Think of the file browser as your “home base.” A file browser displays
the current directory name and, below it, the directory contents.

Like all xclearcase browsers, a file browser includes a variety of menus —
toolbar menu, pop-up menu, and pull-down menus — to do the real work. Each
menu item launches an operating system command script, which typically
includes some ClearCase-specific enhancements.

The file browser in Figure 3-2 is displaying the contents of a directory under
a VOB mount point. To change to a VOB directory, type the desired
pathname into the directory input box, and press <Return>.

Figure 3-2 The xclearcase File Browser

Note: If the graphical interface has been customized at your site, your screen
display may vary. See Chapter 18, “Customizing the Graphical Interface,”
for more information.

View-tags View storage dirs

File Browser

51

With the main file browser displayed, you are ready to work. Notice that
only some of the toolbar and pull-down menu items are enabled, while
others are “grayed out.” To familiarize yourself with the workings of a
browser:

• Scan through the various pull-down menus.

• Display “pop-up help” for any enabled toolbar item by moving to it and
clicking rightMouse. For pull-down menu items, click on the menu to
“post” it, and press rightMouse on the desired item.

• Try selecting various files, and combinations of files, and watch how the
set of enabled operations changes with your selections.

• Post the pop-up menu by clicking rightMouse in the browser.

• Use the Admin and Metadata menus to look at other browsers.

File Browser Toolbar

Here are brief descriptions for the default file browser toolbar items (see also
each item’s “pop-up help”):

Here are brief descriptions for the default file browser toolbar items (see also
each item’s “pop-up help”):

Toggle Graphic Mode — Toggle between iconic and textual display modes
for directory listings. See Figure 3-3.

Figure 3-3 Toggle Graphic Mode

Toggle Keyboard Input Mode — Enable or disable the file browser’s
keyboard input box. See “Keyboard Input” on page 56 . See Figure 3-4.

Figure 3-4 Toggle Keyboard Input Mode

52

Chapter 3: Using the ClearCase Graphical User Interface

Checkin — Checkin the checked-out versions of the selected elements. See
Figure 3-5.

Figure 3-5 Checkin Versions

Checkout — For selected elements, checkout (reserved) the versions
selected by your current view. See Figure 3-6.

Figure 3-6 Checkout Versions

Uncheckout — Uncheckout one or more checked-out versions. See
Figure 3-7.

Figure 3-7 Uncheckout Versions

Describe — Describe each selected object (in a read-only text output window).
See Figure 3-8.

Figure 3-8 Describe Selected Object

Vtree — Start a vtree (version tree) browser on the selected element. See
Figure 3-9.

Figure 3-9 Vtree (Version Tree)

Basic Usage Model

53

Diff — Diff the selected version against its predecessor version. See
Figure 3-10.

Figure 3-10 Diff Versions

Merge — Merge from another version (which is prompted for) to the
selected version. See Figure 3-11.

Figure 3-11 Merge Versions

Clearmake: default — Run clearmake on the default target (using Makefile or
makefile in current directory). See Figure 3-12.

Figure 3-12 clearmake Default

Shell — Start up a shell process in a separate window. See Figure 3-13.

Figure 3-13 Shell Process

Basic Usage Model

The basic usage model involves a simple cycle:

1. Select data to operate on (one or more file elements, for example). Your
selection enables some subset of the available toolbar buttons and
menu commands.

54

Chapter 3: Using the ClearCase Graphical User Interface

2. Invoke an enabled menu item, either on the toolbar or from a
pull-down menu.

3. If necessary, respond to interactive prompts (by the various kinds of
browsers) for more information.

At any given time, some items are active, or enabled, while others are “grayed
out” (or insensitive). Many operations are defined to remain insensitive until
you select one or more data objects relevant to the operation. For example,
the checkout button is not enabled until you preselect at least one
unchecked-out element.

Menu Command Nesting

While xclearcase is displaying a browser prompt, you can start another menu
command. When you have completed the “interrupt”, the original prompt
is still active, waiting for input. When nesting commands, you cannot cancel
a browser started to collect input for a previous command. The command
nesting level limit is ten.

Basic Pointer Actions and Keystrokes

Table 3-1 covers basic pointer actions and keystrokes for all file browsers. (In
general, these actions apply to the other kinds of browsers, as well.).

Table 3-1 File Browser Pointer Actions and Keystrokes

Function Pointer Action/Keystroke

Basic

Select item Click leftMouse

Select region Drag leftMouse

Extend-select (discontiguous) control-leftMouse

Extend-select (range)

(for textual, not graphical, dir list)

shift-leftMouse

Basic Pointer Actions and Keystrokes

55

Figure 3-14 List directory history button

Display “pop-up help” for an enabled
menu item

Toolbar: rightMouse on button

Other menus: click leftMouse to post
menu, then rightMouse over item

Change working directory doubleClick on directory icon, or
edit directory text input box

List directory history Press button. See Figure 3-14

Display pop-up menu rightMouse in browser

Exit xclearcase Exit option on File menu

Menu Navigation

Post (“pin up”) a pull-down menu;
...using mnemonic (underlined char)

Click leftMouse on menu;
AltKey-mnemonicChar

Cycle through posted menu options upArrow/downArrow

Post submenu mnemonicChar
rightArrow

Cycle through menus left-to-right rightArrow/leftArrow

Invoke highlighted menu item return
spacebar

Table 3-1 (continued) File Browser Pointer Actions and Keystrokes

Function Pointer Action/Keystroke

56

Chapter 3: Using the ClearCase Graphical User Interface

Keyboard Input

Each browser has an optional keyboard input box as shown in Figure 3-15,
which lets you type in data selections directly. Some commands enable it
automatically, but you can also enable it manually with the toolbar’s
Keyboard input button.

Figure 3-15 Keyboard Input Box

You can use the keyboard input box to type in one or more items. For
browsers that accept pathnames, most commands allow wildcard patterns,
including *, ?, and [] (but not {}). Any selection you make by pointing
replaces the current contents of the input box. The items that appear in the
keyboard input box constitute the current selection. Select a menu item to
operate on them.

Note: The keyboard input box sidesteps many built-in protections against
incorrect input to buttons and menu commands. When the keyboard input
box is enabled, all menu items become active, whether or not they are
applicable. Typed-in data is not validated until the command executes. (The
number of typed-in data items is continually evaluated; if this number
violates the conditions required to enable a menu item, the item becomes
insensitive.)

The File Menu

57

The File Menu

The File menu and the menu items in Table 3-2 are common to all browsers.

Figure 3-16 illustrates the transcript pad, a scrolling text window that
functions as xclearcase’s “standard output” and “standard error” devices.

Figure 3-16 The Transcript Pad

As you work in the graphical interface, the transcript pad receives error,
status, and warning messages, as well as command output from menu
operations. By default, the transcript pad pops up automatically only in
response to error and status messages. You can manually post the transcript
pad at any time with the menu item File -> Show transcript icon.

Table 3-2 File Menu Options

Option Brief Description

Show transcript Display the transcript pad. By default, the transcript pad
pops up automatically only to display error and warning
messages. It stays up until dismissed.

Update browsers Manually update all browser displays.

New file browser Start a new file browser.

Close window Close current browser.

58

Chapter 3: Using the ClearCase Graphical User Interface

Depending on how a menu operation is defined, its text output can appear
in a variety of places, including:

• the transcript pad

• a list browser

• a read-only display window

• a text editor

Although a menu operation’s primary output may be redirected from the
transcript pad, a Starting - “operationName” message appears in the transcript
pad for each operation you execute.

Transcript Menu

The menu options for the transcript pad are detailed in Table 3-3.

Browsers

The xclearcase interface includes numerous browsers. File, VOB, viewtag,
vtree, type, pool, and username browsers let you query and select the data
objects used by ClearCase. List and string browsers facilitate string data I/O.
This section provides a brief introduction to each kind of browser.

Table 3-3 Transcript Menu Options

Option Brief Description

Clear transcript Clear all text from the transcript pad.

Scroll to Bottom When set, the transcript pad automatically scrolls to the
bottom to display new output as it arrives. Unset this
toggle button when you are examining a particular section
of text and don’t want to be interrupted by new output.

Browsers

59

Browser Basics

Browser interaction follows two distinct patterns:

• You explicitly start browsers (Metadata -> Label -> Label type... or
Admin -> Vob..., for example) in order to view or select data objects.
Bringing up a file browser with xclearcase also falls into this category. A
browser started in this manner stays up until you close it

• Other browsers come and go automatically as you work. When
executing the scripts attached to menu items, xclearcase frequently starts
browsers to prompt for additional data, and terminates them after you
Ok or Cancel the prompt. For example, a button labeled Prepare vob
report might start numerous browsers (with interactive prompts) to
collect information about the various data objects in a particular VOB.

At any one time, your screen display may include multiple instances of both
“long-lived” and “transient” browsers. If xclearcase requires data from you,
the same prompt may appear in multiple browsers, if more than one is
capable of satisfying the prompt.

Browsers and Data Types

In general, each class of browser exists to handle a particular type of data.
The following Table 3-4 shows the tight correspondence between browsers
and xclearcase data types.

Table 3-4 Browsers and Data Types

Data type Browsers that Display or
Prompt for the Data Type

PNAME File/Vtree

HYPERLINK Vtree

LIST List

ATTYPE/BRTYPE/ELTYPE/
HLTYPE/LBTYPE/TRTYPE

Attype/Brtype/Eltype/
Hltype/Lbtype/Trtype

POOL Pool

STRING String

60

Chapter 3: Using the ClearCase Graphical User Interface

File Browsers

See the section “File Browser” on page 50.

Type Object Browsers

Each of the six type object browsers operates on the corresponding class of
type object. You can start type object browsers explicitly from the file
browser’s Admin and Metatype menus, and with the Version -> Branch ->
Branch type... menu item.

Figure 3-17 shows a label type browser.

Figure 3-17 A Type Object Browser

USERNAME Username

VIEWTAG View-tag

VOBTAG VOB-tag

Table 3-4 Browsers and Data Types

Data type Browsers that Display or
Prompt for the Data Type

Press for list of active VOBs

Browsers

61

The type object browsers share a common toolbar:

Toggle Keyboard Input Mode — Enable or disable the file browser’s
keyboard input box. See Figure 3-18.

Figure 3-18 Toggle Keyboard Input

Toggle Unlocked Object Display — Enable or disable the display of
unlocked type objects. See Figure 3-19.

Figure 3-19 Toggle Unlocked Object

Toggle Locked Object Display — Enable or disable the display of locked
type objects. See Figure 3-20

Figure 3-20 Toggle Locked Object

Toggle Obsolete Object Display — Enable or disable the display of obsolete
type objects. See Figure 3-21.

Figure 3-21 Toggle Obsolete Object

Describe — Describe the selected object (in a read-only text output
window). See Figure 3-22.

Figure 3-22 Describe Selected Object

62

Chapter 3: Using the ClearCase Graphical User Interface

List Browsers

List browsers are not started directly. You encounter a list browser only
when a menu command redirects output to one and prompts you to select
data from it. Figure 3-23 shows a sample list browser — the one Help ->
Manual page... uses to prompt you for a topic.

Figure 3-23 A List Browser

A list browser prompts you to select one or more items (entire lines only, no
partial lines or substrings). Press Ok to submit the selection, or Cancel to
cancel the prompt (and, therefore, the entire command operation). You
cannot edit the contents of a list browser.

Text Output and Terminal Emulation Windows

For comparison with list browsers, Figure 3-24 shows a sample text output
window, and Figure 3-25 shows a terminal emulation window. Neither prompts
for, or accepts, user input; they are display-only devices.

Browsers

63

Figure 3-24 A Text Output Window

Figure 3-25 A Terminal Emulation Window

The text output window was generated by the Describe button and the
terminal window by menu item Report -> Find query -> Whole VOB ->
Versions with Label...

You can cancel output to a terminal emulation window with <Ctrl-C>.

Pool Browsers

Admin -> Pool...

A pool browser lists the storage pools and their locations for any registered
VOB. Click the down-arrow next to the text input box to display a list of
currently registered VOBs.

64

Chapter 3: Using the ClearCase Graphical User Interface

String Browsers

String browsers exist only to prompt for text strings and, therefore, are more
like simple dialog boxes than browsers Figure 3-26 shows the text string
browser that results when you choose Help -> Apropos...

Figure 3-26 A Text String Browser

A variety of menu command use string browsers to prompt for simple text
string arguments (comments, for example) or for other data strings — any
data that cannot be captured by the more specific data type browsers.

Username Browsers

Browse and select user’s login names.

VOB-tag Browsers

Admin -> Vob...

Browse and select VOB-tags. The VOB browser lists the VOB-tags, or mount
points, for all registered VOBs.

Browsers

65

View-tag Browsers

Admin -> View... Contrast this with the Version -> Set... command, which
starts a transient, prompting view-tag browser.

Browse and select view-tags. A viewtag browser lists all registered views.
You can set the current view to any on the list, whether or not it is currently
“active.” (An active view already has an entry in the viewroot directory, /view.)

Vtree Browsers

You can start a vtree browser with the vtree toolbar button, or from the
command line with either the cleartool xlsvtree or xlsvtree commands.

Use vtree browsers to scan version trees and to operate on file and directory
versions, branch names, and merge arrows. (On a vtree browser, arrows
show merge hyperlinks.) Figure 3-31 shows a sample vtree browser.

Vtree-specific toolbar items:

Toggle Checked-out Version Display — Enable or disable the display of
checked-out versions. See Figure 3-27.

Figure 3-27 Toggle Checked-out Version

66

Chapter 3: Using the ClearCase Graphical User Interface

Toggle All Versions Display — Enable or disable the display of all versions
in the element. If unset, only labeled versions, branch points, and merge
endpoints are displayed. See Figure 3-28.

Figure 3-28 Toggle All Versions

Toggle Merge Arrow Display — Enable or disable the display of merge
arrows. See Figure 3-29.

Figure 3-29 Toggle Merge Arrow

Toggle All Labels Display — Enable or disable the display of all labels on
all versions. If unset, up to five labels are display for any one version
(followed by “...” if there are more than five). See Figure 3-30.

Figure 3-30 Toggle All Version Labels

Browsers

67

Figure 3-31 The Vtree Browser

69

Chapter 4

4. Setting Up a View

This chapter describes how to set up a new ClearCase view for a
development project.

Note: Your organization may have policies or restrictions as to where you
can create a view. For example, you might be required to use a particular
disk that is part of a strictly-observed data-backup scheme. And in some
organizations, individual users are not permitted to create their own views.
Consult with your system administrator before actually creating any views.

Planning the View

Before creating a view, consider how, and by whom, it will be used:

• Should other users be able to read data in your view (perhaps the
contents of a source file that you have checked out and edited)?

• Should other users be able to write data in your view (perhaps you will
occasionally share the view with another user)?

• Will the view be used principally, or exclusively with a particular VOB
or a small, localized set of VOBs?

• Will the view be used to export one or more VOBs to non-ClearCase
hosts?

70

Chapter 4: Setting Up a View

Keep in mind that others users working on the same project do not
necessarily need to explicitly access your view in order to share your work.
When you build software with clearmake, the resulting derived objects are
automatically sharable. On the source level, a typical strategy is to have each
project member use a separate, personal view; but all these views are
configured with the same config spec. With this strategy, each user’s changes
to checked-out source files and directories will be visible only to that user.
When the user checks in a version, the changes become visible to all other
group members — all those using like-configured views.

Adjust Your ‘umask’

Your umask(1) setting at the time you create a view affects how accessible it
will be to others. For example:

• A umask of 002 is appropriate for a view that you will share with other
users in the same group. Members of your group will be able to create
and modify view-private data; those outside your group will be able to
read view-private data, but won’t be able to modify it. To completely
exclude non-group members, set your umask to 007.

• A umask of 022 will produce a view in which only you can write data,
but anyone can read data.

• A umask of 077 is appropriate for a completely private view. No other
user will be able to read or write view-private data.

Change your umask in the standard way. For example:

% umask 022

Planning the View

71

Choose a Location

A view is implemented as a view storage directory, with an associated
view_server process. Accordingly, ClearCase imposes these requirements on
view creation:

• You can create a view storage directory only in locations where you
have permission to create a standard directory.

• The view_server process runs on the host where the view storage
directory physically resides; ClearCase must be installed on that host.

A typical location for a view is your home directory. At some sites, however,
a user’s home directory may fail to meet the second requirement — it may
be located on a file-server host where ClearCase is not installed.

If the view will be used to access a particular VOB, placing the view on the
same host as the VOB may provide a significant reduction in network traffic.
In general, we don’t advise placing additional loads on a VOB server host;
so save this technique for special cases — for example, a shared view used
for a final-integration-and-test task. Non-ClearCase access is a special case
in which you should create a view on the same host as a VOB — see “Setting
Up an Export View for Non-ClearCase Access,” in the
CASEVision™/ClearCase Administrator’s Manual.

If you will be using the view on several hosts, make sure that the location at
which you create the view can be accessed by all those hosts. For example,
you use a view on several hosts at the same time when performing a
distributed build. See Chapter 13, “Setting Up a Distributed Build.”

72

Chapter 4: Setting Up a View

Choose a Name

In selecting new view’s view-tag, take into account the fact that it will be a
unique, network-wide identifier for the view.1 Thus, names like myview,
work, or tmpvu are to be discouraged. You, and perhaps other users, may
often need to type the view-tag in view-extended pathnames — for example,
/view/view-tag/vobs/proj. Thus, try not to select a name that is too long or too
hard to type correctly. Following are some suggested names:

josef personal view

akp_home personal view, located in your home directory

akp_neptune personal view, located on remote host neptune

RLS1.2_fix shared view for use in a particular bugfixing task

monet_exp view to be used to export a VOB named monet

In any case, keep in mind the restriction that a view-tag must take the form
of a simple directory name.

Creating the View

Having adjusted your umask (if necessary), selected a location for the view
storage directory, and selected a view-tag, you are ready to create the view.

GUI: Use the View Browser to Create a New View

In xclearcase, bring up the View Browser, which displays information on all
existing views. Then, select the Create menu choice.

1 Actually, a view can have different tags in different network regions; and it can have multiple tags within the
same region. Taking advantage of this flexibility increases the likelihood of user confusion, though.

Creating the View

73

CLI: Enter a ‘mkview’ Command

Here’s how to use cleartool to create the same view as in the preceding
section:

% cleartool mkview -tag gomez ~/views/gomez.vws
Created view.
Host-local path: einstein:/home/gomez/views/gomez.vws
Global path: /net/einstein/home/gomez/views/gomez.vws
It has the following rights:
User : gomez : rwx
Group: dvt : rwx
Other: : r-x

Verify the View’s Registry-Level Information

When you create a view, ClearCase stores information regarding its location
in the network-wide view storage registry. It derives this information
heuristically; in some networks, you must update this information to
guarantee global accessibility of your new view.

As the example above shows, mkview displays its “guess” as to a
globally-valid pathname to the view storage directory:
...
Global path: /net/einstein/home/gomez/views/gomez.vws
...

If this pathname is not valid on all hosts in the network, you may be able to
use the register command to substitute a globally-valid pathname in the
storage registry entry. This topic is discussed in Chapter 3, “Using the
ClearCase Graphical User Interface,” and Chapter 7, “Setting Up ClearCase
Views,” , in the CASEVision™/ClearCase Administrator’s Manual.

74

Chapter 4: Setting Up a View

Configuring the View

Before you start using your new view, you may need to revise its config spec,
in order to select a particular configuration of source versions. Every view is
created with the default config spec:

element * CHECKEDOUT
element * /main/LATEST

In many organizations, new development takes place on the main branch,
while special projects take place on subbranches. The default config spec is
appropriate for new development work in such a situation.

There are several ways to reconfigure a view with a non-default config spec:

• Copy a project-specific file — Your ClearCase administrator may
publish the pathname of a file containing the correct config spec for
your project. Use the setcs command to reconfigure your view; then use
catcs to confirm the change. For example:

% cleartool setview gomez
% cleartool setcs /usr/local/lib/munchkin_proj
% cleartool catcs
.
. <new config spec displayed>
.

If the administrator subsequently revises the contents of that file, you’ll need
to enter the same setcs command again to update your view’s configuration.

Configuring the View

75

• Include a project-specific file — Instead a copying a file, you can
incorporate its contents with an include statement:

% cleartool setview gomez
% cleartool edc
 .

 . use text editor to remove all existing lines, and then add this one:

 include /usr/local/lib/munchkin_proj

If the administrator subsequently revises the contents of that file, you can
update your view’s configuration by having the view_server reinterpret its
current config spec:

% cleartool setcs -current

• Compose your own config spec — There is no single method for
composing a set of rules that go into a config spec. The language
described in the config_spec manual page has many features, and can be
used to create many “special effects”. Having stated that proviso, we
present below a step-by-step procedure for writing a config spec that
uses the standard ClearCase baselevel-plus-changes model. Be sure
also to consult:

– Chapter 5, “Defining View Configurations,” which presents and
explains a collection of config specs.

– Chapter 6, “Working in a Parallel Development Environment,”,
which examines in more detail the creation of the “standard” config
spec for a project that is to “work on a branch”.

Composing Your Own Config Spec

A few simple questions are presented below, based on the assumption that
your development proceeds according to a baselevel-plus-changes model. In
a well-managed environment, the answers to the questions will be simple,
too, and writing the correct config spec will be easy.

76

Chapter 4: Setting Up a View

What versions should the project start with?

Describe the set of versions that make up the baselevel that constitutes the
project’s starting point. Typical answers are:

• “all the versions that went into Release 1.3”

• “the versions of source files that went into Release 1.3, but use the
Release 1.2 version of the libsort library”

• “all the versions that went into last night’s build of the sortmerge
executable”

If the answer is “the most recent versions on the main branch”, then you
should probably just use the default config spec. We’ll assume that you wish
to work with a “more interesting” set of versions.

How can this set of versions be described in terms of ClearCase
meta-data?

Often, the translation from English-language description to ClearCase
meta-data is very simple: “the versions that went into Release 1.3 are all
labeled RLS1.3” corresponds to this config spec rule:

element * RLS1.3

Similarly, “the versions that went into last night’s sortmerge build are listed
in its config spec” might correspond to:

element * -config sortmerge@@11-Mar.09:07.1559

Sometimes, the description is a bit more involved. It may help to think of
simple sets of versions as being “layers” in a more complex configuration
(See Figure 4-1).

Configuring the View

77

Figure 4-1 “Layers” in a Source Configuration

In this example, the RLS1.2 rule should precede the RLS1.3 rule, because the
Release 1.2 versions of the libsort sources are to be selected in preference to
(that is, are to be “layered on top of”) the Release 1.3 versions.

Note: It is very important to describe the set(s) of versions in terms of stable
meta-data — make sure that no one moves any of the RLS1.3 version labels,
and never define a baselevel in terms of the LATEST label, which
automatically moves. Today’s LATEST version of a source file may be
compatible with the rest of your baselevel versions, but tomorrow’s LATEST
version of that file may be incompatible!

Will the project be modifying any source versions?

For most projects, the answer is “yes”, in which case the config spec should
begin with the standard CHECKEDOUT rule:

element * CHECKEDOUT

Some projects may not modify any sources — for example, a
performance-testing or QA project.

“layers” of source configuration corresponding config spec rules

element libsort/*.[ch] RLS1.2

element * RLS1.3versions
not used

all other sources libsort sources

versions in
 Release 1.2

versions in
 Release 1.3

78

Chapter 4: Setting Up a View

On what branch will the project be working?

Devise a new branch name that describes your project. Often, the branch
name is related to a version label that defines the baselevel. For example, a
rls1.3_fix branch might be used to modify a baselevel defined with RLS1.3
labels.

The config spec should include a rule that selects the most recent version on
the branch:

element * .../rls1.3_fix/LATEST

Note the use of ellipsis (“...”), which allows the branch to be located
anywhere within an element’s version tree, not just as a subbranch of the
main branch. This rule should precede the rule(s) that define the project’s
baselevel — versions created during the project are to be preferred to
versions in the underlying baselevel.

At some point before beginning work on the project, you (or an
administrator) must create a branch type with the chosen name. Be sure to
enter a meaningful comment:

% cleartool mkbrtype rls1.3_fix
Comments for "rls1.3_fix":
Branch for project fixing bugs in Release 1.3 (version label RLS1.3)
.
Created branch type "rls1.3_fix".

Note: Label types and branch types share a single namespace. Observe the
convention of spelling names of label types with capital letters, and names
of branch types with lowercase letters.

Configuring the View

79

Should branches be created automatically?

We encourage you to answer “yes”. Using the view to “work on a branch” is
much simpler if you let the view do the branching. When you wish to
modify any element, you simply use checkout; if no project-specific branch
has been created at the baselevel version yet, a mkbranch (“make branch”)
command is executed automatically.

Here’s how you would modify the rules in Figure 2-1 that define the
baselevel, in order to turn on this auto-make-branch capability:

element libsort/*.[ch] RLS1.2 -mkbranch rls1.3_fix
element * RLS1.3 -mkbranch rls1.3_fix

If you’ve defined your baselevel by referencing one or more derived objects,
you cannot use a -mkbranch clause; you must create branches explicitly, using
mkbranch.

Will you be creating new elements?

If so, include this rule from the default config spec as the final rule in your
config spec:

element * /main/LATEST

We suggest that you include this rule in the auto-make-branch scheme, too:

element * /main/LATEST -mkbranch rls1.3_fix

With this rule, creating a new element will:

• create a main branch, along with version 0 on the branch

• create subbranch rls1.3_fix at version /main/0, along with version
/main/rls1.3_fix/0

• checkout version /main/rls1.3_fix/0

If you will not be creating any new versions, your view may not need to
select main branch versions of any elements. As a convenience, however, you
may wish to include the standard /main/LATEST rule, to enable the view to
access data belonging to other projects, located in other VOBs.

80

Chapter 4: Setting Up a View

Modify the View’s Config Spec

Having devised your own config spec (on paper), configure your view with
it:

% cleartool edcs -tag gomez
 .
 . <use text editor to revise default config spec — for example,>

element * CHECKEDOUT
element * .../rls1.3_fix/LATEST
element libsort/*.[ch] RLS1.2 -mkbranch rls1.3_fix
element * RLS1.3 -mkbranch rls1.3_fix
element * /main/LATEST -mkbranch rls1.3_fix

Starting to Use the View

Now that your view is configured, you can start using it. (Actually, you can
reconfigure a view at any time — before or after you start using it.) This is
termed establishing a view context — a set view or a working directory view.

Setting a View

Typically, most of your work involves just one view. Moreover, you will
probably want to use standard operating system pathnames to access
version-controlled objects. For both these reasons, you will probably want to
begin your ClearCase work by setting a view. This creates a process in which
an element’s standard name automatically accesses a particular version of
that element — the version selected by the view’s config spec, as discussed
above.

This set view capability completes ClearCase’s transparency feature — the
version-control mechanism disappears completely, allowing system
software and third-party applications to process versions of elements as if
they were ordinary files, using ordinary pathnames.

A process with a set view can spawn any number of subprocesses, to any
nesting level, using standard UNIX commands and subject to standard
UNIX restrictions. All these subprocesses are also set to the view.

Starting to Use the View

81

Transparency also applies to derived objects, in a slightly different manner.
The standard name of a DO can reference different files in different views.
But a DO appears in a view by virtue of having been built there by clearmake,
not through the config spec facility.

GUI: Select the View from the View Browser

Select View ->Set, which brings up the View Browser. Then, select a view from
this browser.

CLI: Enter a setview Command

The cleartool subcommand setview creates a shell that is set to a specified
view:

% cleartool setview gamma
%

Hint: Include the view-tag in your shell prompt. See CASEVision™/ClearCase
Tutorial.

Working Directory View

When you are set to a particular view, you may still occasionally wish to
access other views. For example, if you are set to view gamma, you can
compare your version of util.c with the one selected by view alpha. Following
are two ways to accomplish this.

• While in a set view, use a view-extended pathname to “reach into” another
view. See Figure 4-2.

Figure 4-2 “Reach Into” Another View from Set View

% cleartool setview gamma
% cd /vobs/proj/include
% diff util.c /view/alpha/vobs/proj/include/util.c (use a view-extended pathname)

version selected
by view gamma

version selected
by view alpha

82

Chapter 4: Setting Up a View

• “Temporarily” go to another view, then “reach back” to the set view.
See Figure 4-3.

Figure 4-3 “Reach Back” to Set View from Another View

In the second method, you change your current working directory (CWD) to
another view — that is, to a “remote” location in ClearCase’s view-extended
namespace. See Figure 1-6. This is termed “changing your working directory
view”, and is reported by the pwv command like this:

% cleartool pwv
Working directory view: alpha
Set view: gamma

Using a Working Directory View without a Set View

There may be some situations in which you find it necessary (or simply
prefer) to use working directory view contexts, dispensing with the set view
facility. For example, processes started by init(1M) at system startup time
cannot be set to a view. Such a process can process VOB data only by
referencing files with view-extended pathnames and/or by setting its
current working directory to a view-extended pathname.

If you routinely work with several views, you may find it easier to keep
yourself organized by explicitly specifying the view context in which each
pathname is to be interpreted.

% cleartool setview gamma
% cd /view/alpha/vobs/proj/include (change CWD to a view-extended pathname)
% diff util.c /vobs/proj/include/util.c

version selected
by view alpha

version selected
by view gamma

Starting to Use the View

83

The following commands illustrate this mode of usage:

% cd (go to home directory)

% cleartool pwv (no view context)
Working directory view: ** NONE **
Set view: ** NONE ** (full pathname has no view context,)

% ls /usr/hw/src/util.c (and so cannot access VOB data)
ls: /usr/hw/src/util.c: No such file or directory

% cd /view/akp/usr/hw/src (go to view-extended pathname)

% cleartool pwv (you now have a)
Working directory view: jj (working directory view context)
Set view: ** NONE **

% ls util.c (relative pathname works, because it uses)
util.c (your working directory view context)

Note: The standard full pathname is unable to access VOB data in this
situation.

View Contexts: Summary

In deciding how to use views, bear in mind this capsule summary of the
discussion in the preceding sections. When using ClearCase data, you must
use a view — without a view context, a process or pathname cannot “see
into” a VOB. A pathname can acquire a view context in several ways:

• A set view endows any pathname with a view context.

• A working directory view endows a relative pathname with a view
context (perhaps overriding a set view context)

• A view-extended pathname specifies a particular view context, perhaps
overriding a working directory view and/or set view context.

dSymbolic links (either UNIX-level links or VOB symbolic links) can cause
unexpected behavior if you have not set a view. For example, suppose your
file system includes this symbolic link:

% ls -l /vobs/aardvark
/vobs/aardvark -> /vobs/all_projects/aardvark

84

Chapter 4: Setting Up a View

If your shell is not set to a view, you might attempt to visit the aardvark VOB
with this command:

% cd /view/gamma/vobs/aardvark/src

But the component-by-component resolution of the pathname by the OS
kernel effectively transforms this command to:

% cd /vobs/all_projects/aardvark/src

By specifying a full pathname, the symbolic link “pops you out” of the
gamma working directory view context. And because your shell is not set to
a view, the pathname will have no view context at all, and thus will fail.

The same analysis applies to view-extended pathname. For example,
changing the command from cd to cat or ls in the above scenario would
produce the same failure to access ClearCase data.

In consideration of this behavior, avoid creating UNIX-level or VOB-level
symbolic links whose texts are full pathnames — use relative pathnames
only. For example:

% ls -l /vobs/aardvark
/vobs/aardvark -> ../all_projects/aardvark

For more on this topic, see the pathnames_ccase manual page.

85

Chapter 5

5. Defining View Configurations

This chapter presents a series of config specs that accomplish useful
configuration management goals. For specificity, we use the following
development environment:

Developers use a VOB whose VOB-tag is /proj/monet, which has this
structure:

/proj/monet (VOB-tag, VOB mount point)
src/ (C language source files)
include/ (C language header files)
lib/ (project’s libraries)

For the purposes of this chapter, suppose that the lib directory has this
substructure:

lib/
libcalc.a (checked-in “staged” version of library)
libcmd.a (checked-in “staged” version of library)
libparse.a (checked-in “staged” version of library)
libpub.a (checked-in “staged” version of library)
libaux1.a (checked-in “staged” version of library)
libaux2.a (checked-in “staged” version of library)

libcalc/ (sources for ‘calc’ library)
libcmd/ (sources for ‘cmd’ library)
libparse/ (sources for ‘parse’ library)
libpub/ (sources for ‘pub’ library)
libaux1/ (sources for ‘aux1’ library)
libaux2/ (sources for ‘aux2’ library)

86

Chapter 5: Defining View Configurations

Sources for libraries are located in subdirectories of lib. After a library is built
in its source directory, it can be “staged” to /proj/monet/lib by checking it in as
a DO version. The build scripts for the project’s executable programs can
instruct the link editor, ld(1), to use the libraries in this directory (the “library
staging area”) instead of a more standard location (for example,
/usr/local/lib).

The following version labels have been assigned to versions of monet
elements:

These version labels have been assigned to versions on the main branch of
each element. Most of the project’s development tasks take place on the main
branch. For some special tasks, however, development takes places on a
subbranch::

The following sections present ClearCase config specs, explaining in detail
how each one achieves a particular configuration management goal.

Version Labels Description

R1.0 First customer release

R2_BL1 Baselevel 1 prior to second customer release

R2_BL2 Baselevel 2 prior to second customer release

R2.0 Second customer release

Subbranches Description

major Used for work on the application’s graphical user
interface, certain computational algorithms, and other
major enhancements

r1_fix Used for fixing bugs in Release 1.0

Dynamic ‘Mainline’ View

87

Dynamic ‘Mainline’ View

This config spec defines a dynamic configuration, which automatically
“sees” changes made on the main branch of every element — throughout the
entire source tree, by any developer. See Example 5-1.

Example 5-1 Spec #1

element * CHECKEDOUT (1)
element * /main/LATEST (2)

This is ClearCase’s default config spec, to which each newly-created view is
initialized. (The mkview command automatically uses the contents of file
/usr/atria/default_config_spec.)

A view with this config spec provides a private work area that “sees” your
checked-out versions (Rule 1). By default, a checkout command processes the
currently-selected branch — in this case, the main branch (Rule 2). As long as
an element remains checked-out, you can change it without affecting anyone
else’s work. As soon as you perform a checkin, the changes become visible
instantly to other users whose views select /main/LATEST versions.

The view also “sees” all other elements (that is, all elements that you have
not checked out), on a read-only basis. If another user checks in a new
version on the main branch of such an element, the new LATEST version
appears in this dynamic view, automatically and instantly.

The Standard Configuration Rules

The two configuration rules in the default config spec will reappear in many
of this chapter’s examples. The CHECKEDOUT rule enables modification of
existing elements. You can perform checkout commands in a view that lacks
this rule, but your view_server process will complain:

88

Chapter 5: Defining View Configurations

% cleartool checkout -nc cmd.c

cleartool: Warning: Unable to rename "cmd.c" to "cmd.c.keep":
Read-only filesystem.

cleartool: Warning: Checked out version, but could not copy
to "cmd.c": File exists.

cleartool: Warning: Copied checked out version to
"cmd.c.checkedout".

Checked out "cmd.c" from version "/main/7".

In this example, the view continues to select version 7 of element cmd.c,
which is read-only. A read-write copy of this version, cmd.c.checkedout, is
created in view-private storage. (This is not a recommended way of
working!)

The /main/LATEST rule selects the most recent version on the main branch to
appear in the view. Often, this is the version that represents the
state-of-the-art for that element.

In addition, a /main/LATEST rule is required to enable creation of new
elements in a view. More precisely, you can create a new element in the
absence of such a rule, but your view will then be unable to “see” the
element you just created. (Element creation involves creating a main branch,
and an empty version, /main/0).

Omitting the Standard Configuration Rules

It makes sense to omit one or both of the standard configuration rules only
if a view is not going to be used to modify data. For example, you might
configure a “historical” view, to be used only for browsing old data, not for
creating new data. Similarly, you might configure a view in which to compile
and test only, or to verify that sources have been properly labeled.

Frozen View, Defined by Version Labels

89

Frozen View, Defined by Version Labels

This config spec defines a “frozen” configuration. See Example 5-2.

Example 5-2 Spec #2

element * R1.0 -nocheckout (1)

The view always selects the same set of versions — the ones that have been
labeled R1.0. In this scenario, all these versions are on the main branch of
their elements; but this config spec works even if the R1.0 version is on a
subbranch.

Note: This assumes the R1.0 label type is “one-per-element”, not
“one-per-branch” — see the mkbrtype manual page

To reinforce “frozenness”, the -nocheckout qualifier prevents any element
from being checked out in this view. (It also prevents creation of new
elements, since this requires the parent directory element to be checked-out.)
Thus, there is no need for the standard CHECKEDOUT configuration rule.

Note: This configuration is not completely frozen, since version labels can be
moved and deleted. For example, using the command mklabel -replace to
move R1.0 from version 5 of an element to version 7 would automatically
change which version appears in the view. Similarly, using rmlabel would
suppress the specified element(s) from the view. (The ClearCase ls command
lists them with a [no version selected] annotation.) If the label type is locked
with the lock command, the configuration becomes truly frozen.

This configuration is not appropriate for development. It might be used to
rebuild Release 1.0, thus verifying that all source elements have been labeled
appropriately. It might also be used by a developer or maintenance engineer
to browse the old release.

As noted above, elements that have no version labeled R1.0 will be
suppressed from the view. This might include recently-created elements,
elements from which the R1.0 label has been removed, and elements in other
VOBs.

90

Chapter 5: Defining View Configurations

Frozen View, Defined by Time

This config spec defines a “frozen” configuration in a slightly different way
than the preceding one. See Example 5-3.

Example 5-3 Spec #3

element * /main/LATEST -time 4-Sep.02:00 -nocheckout (1)

This configuration is “more frozen” than the preceding one: for each
element, it selects the version that was the most recent on the main branch on
September 4 at 2am (presumably, a time when no development was taking
place). Subsequent checkout/checkin activity cannot change which versions
satisfy this criterion — only deletion commands such as rmver or rmelem can
change the configuration. As with the preceding config spec, the -nocheckout
qualifier prevents elements from being checked out or created.

This configuration might be used to “roll back the clock” to a point when a
consistent set of versions existed. If modifications must be made to this
source base, you must modify the config spec to “unfreeze” the
configuration (see Example 5-5).

View That Allows an ‘Old’ Configuration to be Modified

This config spec allows modifications to be made to a configuration defined
with version labels. See Example 5-4.

Example 5-4 Spec #4

element * CHECKEDOUT (1)
element * .../r1_fix/LATEST (2)
element * R1.0 -mkbranch r1_fix (3)

View That Allows an ‘Old’ Configuration to be Modified

91

The configuration initially selects the same set of versions as Spec #2 in
Example 5-2. This set of versions constitutes a baselevel configuration, which
can then be modified:

• Elements can be checked out (Rule 1).

• The checkout command automatically creates a branch named r1_fix at
the initially selected version (the auto-make-branch clause in Rule 3).

A key aspect of this scheme is that the same branch name, r1_fix, is used in
every modified element. The only administrative overhead is the creation of
a single branch type, r1_fix, with the mkbrtype command.

This config spec is efficient: just two rules (Rules 2 and 3) configure the
appropriate versions of all elements:

• For elements that have not been modified, it is the most recent version
on the main branch (Rule 2).

• For elements that have been modified, it is the most recent version on
the r1_fix subbranch (Rule 3).

Figure 5-1 illustrates the two kinds of elements. In this illustration, the r1_fix
branch is a subbranch of the main branch. But Rule #2 handles the more
general case, too: the “...” wildcard allows the r1_fix branch to occur
anywhere in any element’s version tree, and at different locations in different
elements’ version trees.

92

Chapter 5: Defining View Configurations

Figure 5-1 Making a Change to an Old Version

Where Is the ‘/main/LATEST’ Rule?

This config spec lacks the standard /main/LATEST rule. It is not useful for
work with VOBs in which the version label R1.0 does not exist. In addition,
it is not useful in situations where new elements are created, as described in
Composing Your Own Config Spec on page 75. If your organization forbids
creation of new elements during maintenance of an old configuration, the
lack of a /main/LATEST rule is appropriate.

To allow creation of new elements during the modification process, add a
fourth configuration rule:

element * CHECKEDOUT (1)
element * /main/r1_fix/LATEST (2)

main branch

r1_fix branch

Rule 3:
version that was

labeled R1.0

Rule 2:
most recent

modification to the
old version

main branch

element that has been
modified in this configuration

element that has not been
modified in this configuration

View for New Development on a Branch

93

element * R1.0 -mkbranch r1_fix (3)
element * /main/LATEST -mkbranch r1_fix (4)

When a new element is created with mkelem, the -mkbranch clause in Rule 4
causes the new element to be checked out on the r1_fix branch (which is
automatically created). This conforms to the scheme of localizing all changes
to r1_fix branches.

Variations on the Theme

This config spec as shown in Example 5-5 combines aspects of Spec #3 found
in Example 5-3 and Spec #4 found in Example 5-4.

Example 5-5 Spec #5

element * CHECKEDOUT (1)
element * /main/r1_fix/LATEST (2)
element * /main/LATEST -time 4-Sep:02:00 -mkbranch r1_fix (3)

This baselevel configuration is defined not with version labels like Rule 3 in
Spec #4 (See Example 5-4), but with a -time rule as in Spec #3 (See
Example 5-3).

View for New Development on a Branch

You can use this config spec for work that is to be isolated on branches
named major as shown in Example 5-6.

Example 5-6 Spec #6

element * CHECKEDOUT (1)
element * .../major/LATEST (2)
element * BASELEVEL_X -mkbranch major (3)
element * /main/LATEST -mkbranch major (4)

94

Chapter 5: Defining View Configurations

The scheme is essentially similar to the one introduced above, in which all
“fixup” work is performed on branches named r1_fix. Here, all work on a
project (say, a command-line syntax overhaul) is isolated on branches named
major (Rule 2).

Once again, major branches should be created at versions that constitute a
consistent baselevel: a major release, a minor release, or just a set of versions
that produces a working version of the application. In this config spec, the
baselevel is defined by the version label BASELEVEL_X.

Variations on the Theme

Turning back the clock on a recent change — Sometimes, other developers
checkin versions that become visible in your view, but which are
incompatible with your own work. In such cases you can “turn back the
clock” to a time before those changes were made. For example, Rule 2 in this
variant shown in Example 5-7 turns back the clock on the branch to 4:00 PM
on November 12.

Example 5-7 Spec #7

element * CHECKEDOUT (1)
element * /main/major/LATEST -time 12-Nov.16:00 (2)
element * BASELEVEL_X -mkbranch major (3)
element * /main/LATEST -mkbranch major (4)

Note: Your own checkouts are unaffected by this rollback.

Config spec include files — ClearCase supports an “include file” facility
that makes it easy to ensure that all members of the group are using the same
config spec. For example, the configuration rules in Spec #7 as shown in
Example 5-7 might be placed in file /public/config_specs/major.cspec. Each
developer then needs just a single-line config spec as shown in Example 5-8.

Example 5-8 Spec #8

include /public/config_specs/major.cspec (1)

View That Implements Multiple-Level Branching

95

If the project leader decides to modify this config spec (for example, to adopt
the no-directory-branching policy), only the contents of
/public/config_specs/major.cspec need be changed. You can use this command
to reconfigure your view with the modified spec:

% cleartool setcs -current

View That Implements Multiple-Level Branching

This config spec shown in Example 5-9 is a variant of Spec #6 (See
Example 5-6); it implements and enforces consistent multiple-level branching:

Example 5-9 Spec #9

element * CHECKEDOUT (1)
element * .../major/autumn/LATEST (2)
element * .../major/LATEST -mkbranch autumn (3)
element * BASELEVEL_X -mkbranch major (4)
element * /main/LATEST -mkbranch major (5)

A view configured with this config spec is appropriate in the following
situation:

• As in Spec #6, all changes from the baselevel designated by the
BASELEVEL_X version label must take place on a branch named major.

• Moreover, you are working on a special side-project, whose changes are
to be made on a subbranch of major, named autumn.

(It is important for each modified element to have a major branch; it will be
used to integrate all the changes made in your side-project and other
sub-projects.) Figure 5-2 shows what happens in such a view when you
checkout an element that has not been modified since the baselevel.

96

Chapter 5: Defining View Configurations

Figure 5-2 Multiple-Level Auto-Make-Branch

For more on multiple-level branching, see the config_spec and checkout
manual page.

View That Selects Versions Using ‘External Criteria’

Suppose that some members of the development group working on the
major branch (see Spec #6 in Example 5-6) are designated as the “QA team”.
Individual developers are responsible for making sure that their modules
pass a lint(1) check. The QA team builds and tests the application, using the
most recent versions that have passed lint.

The QA team might work in a view with this config spec as shown in
Example 5-10.

Example 5-10 Spec #10

element -file src/* /main/major/{lintOK=="Yes"} (1)
element * /main/LATEST (2)

major

-mkbranch clause
in Rule 4 creates
major branch at

BASELEVEL_X version

checkout creates branch

major

Rule 3 now applies; its
–mkbranch clause

creates autumn branch
at /main/major/0

create another branch

autumn major autumn

Rule 4 selects
baselevel version,

labeled
BASELEVEL_X

before checkout
Rule 2 now applies; its
most recent version,

/main/major/autumn/0, is
checked out

complete checkout

check-o
ut

BASELEVEL_X

View That Selects Versions Using ‘External Criteria’

97

This scheme calls for an attribute type, lintOK, to be created. Whenever a
new version that passes lint is checked in on the major branch, an instance of
lintOK with the value "Yes" is attached to that version. (This might be
performed manually or with a ClearCase trigger.)

If an element in the /src directory has been edited on the major branch, this
view selects the branch’s most recent version that has been marked as
passing lint (Rule 1). If no version has been so marked, or if no major branch
has been created, the most recent version on the main branch is used (Rule 2).

Note: Rule 1 on this config spec does not provide a match if an element has
a major branch, but no version on the branch has a lintOK attribute. This
command can locate the no-such-attribute branches:

% cleartool find . -branch '{brtype(major) \
&& \! attype_sub(lintOK)}' -print

The backslash “\” character is required in the C shell only, to keep the
exclamation point “!” from indicating a history substitution. The
attype_sub primitive searches for attributes throughout an element — on
its versions and branches, as well as on the element itself.

This scheme allows the QA team to track the progress of the rest of the
group, without having to keep absolutely up-to-date. The development
config spec always selects the most recent version on the major branch, but
the QA config spec may select an intermediate version (Figure 5-3).

98

Chapter 5: Defining View Configurations

Figure 5-3 Development Config Spec vs. QA Config Spec

Can This Configuration Be Used for Development?

It might be tempting to add a “CHECKEDOUT” rule to the above config
spec, turning the “QA configuration” into a development configuration”
shown in Example 5-11.

Example 5-11 Spec #11

element * CHECKEDOUT (0)
element -file src/* /main/major/{lintOK=="Yes"} (1)
element * /main/LATEST (2)

More generally, it may seem desirable to use attributes, or other kinds of
meta-data in addition to (or instead of) branches to control version- selection
in a development view. But such schemes involve complications. Suppose
that the config spec above selects version /main/major/2 of element
.../src/cmd.c (Figure 5-4).

0

1

2

main branch

major branch

3

selects version using attributes — it may
be an intermediate version:

/main/major/{lintOK=="Yes"}

QA config spec

selects most recent version on branch:

/main/major/LATEST

development config spec

View That Selects Versions Using ‘External Criteria’

99

Figure 5-4 Checking Out a Branch of an Element

Performing a checkout in this view checks out version /main/major/3, not
version /main/major/2:

cleartool: Warning: Version checked out is different from
version previously selected by view.
Checked out "cmd.c" from version "/main/major/3".

This reflects the ClearCase restriction that new versions can be created only
at the end of a branch. While such operations are possible, they are
potentially confusing to users. And in this situation, it is almost certainly not
what the developer performing the checkout desired.

You can avoid the “wrong-version-checked-out” problem by modifying the
config spec and creating another branching level at the attribute-selected
version. The new config spec might be as shown in Example 5-12.

Example 5-12 Spec #12

element * CHECKEDOUT (0)
element * /main/major/temp/LATEST (0a)
element -file src/* /main/major/{lintOK=="Yes"}
 -mkbranch temp (1)
element * /main/LATEST (2)

0

1

2

major branch

3
always checks out most
recent version on branch

checkout command

by config spec rule:

/main/major/{lintOK=="Yes"}

intermediate version selected

100

Chapter 5: Defining View Configurations

View That Shows Only One Developer’s Changes

This config spec shown in Example 5-13 makes it easy to peruse all of the
changes a developer has made since a certain milestone.

Example 5-13 Spec #13

element * '/main/{created_by(jackson) && created_since(25-Apr)} ' (1)
element * /main/LATEST -time 25-Apr

Note: Rule 1 must be wholly contained on a single physical text line.

A particular date, April 25, is used as the milestone. The configuration is a
“snapshot” of the main line of development at that date (Rule 2), overlaid
with all changes that user jackson has made on the main branch since then
(Rule 1).

Directory listings made by the ClearCase ls command distinguish jackson’s
files from the others: each listing entry includes an annotation as to which
configuration rule applies to the selected version.

This is a “perusal view”, not a development view. The selected set of files
may not be consistent: some of jackson’s changes may rely on changes made
by others, and those other changes are excluded from this view. Thus, this
config spec lacks the standard “CHECKEDOUT” and “/main/LATEST”
rules.

View That Restricts Changes to a Single Directory

This config spec shown in Example 5-14 is appropriate for a developer who
is to be restricted to making changes in just one directory, /proj/monet/src.

Example 5-14 Spec #14

element * CHECKEDOUT (1)
element src/* /main/LATEST (2)
element * /main/LATEST -nocheckout (3)

View That Uses Results of a Nightly Build

101

The most recent version of each element is selected (Rules 2 and 3), but Rule
3 prevents checkouts to all elements except those in the desired directory.

Note: Rule 2 matches elements in any directory named src, in any VOB. The
pattern /proj/monet/src/* would restrict matching to just one VOB.

This config spec can easily be extended with additional rules that allow
additional areas of the source tree to be modified.

View That Uses Results of a Nightly Build

Many development organizations use scripts to perform unattended
software builds each night. Such “nightly builds” verify that the application
is still buildable. In layered build environments, they can also provide
up-to-date versions of lower-level software: libraries, utility programs, and
so on.

Suppose that each night, a script:

• builds libraries in various subdirectories of /proj/monet/lib

• checks them in as DO versions in the “library staging area”,
/proj/monet/lib

• labels the versions LAST_NIGHT

You can use this config spec shown in Example 5-15 if you wish to use the
libraries produced by the nightly builds.

Example 5-15 Spec #15

element * CHECKEDOUT (1)
element lib/*.a LAST_NIGHT (2)
element lib/*.a R2_BL2 (3)
element */main/LATEST (4)

The LAST_NIGHT version of a library is selected whenever such a version
exists (Rule 2). If a nightly build fails, the previous night’s build will still
have the LAST_NIGHT label, and will be selected. If no LAST_NIGHT
version exists (the library is not currently under development), the stable
version labeled R2_BL2 is used instead (Rule 3).

102

Chapter 5: Defining View Configurations

For each library, selecting on the LAST_NIGHT label rather than simply
taking the most recent version in the staging area allows new versions to be
staged during the next day, without affecting developers who use this config
spec.

Variations on the Theme

The scheme described above uses version labels to select particular versions
of libraries. For more flexibility, the LAST_NIGHT version of some libraries
might be selected, the R2_BL2 version of others, and the most recent version
of still others as shown in Example 5-16.

Example 5-16 Spec #16

element * CHECKEDOUT (1)
element lib/libcmd.a LAST_NIGHT (2a)
element lib/libparse.a LAST_NIGHT (2b)
element lib/libcalc.a R2_BL2 (3a)
element lib/*.a /main/LATEST (3b)
element * /main/LATEST (4)

(Rule 3b is not required here, since Rule 4 would handle “all other libraries”.
It is included for clarity only.)

Other kinds of meta-data could also be used to select library versions. For
example, lib_selector attributes might take values such as "experimental",
"stable", and "released". A config spec might mix-and-match library
versions as shown in Example 5-17.

Example 5-17 Spec #17

element * CHECKEDOUT (1)
element lib/libcmd.a {lib_selector=="experimental"} (2)
element lib/libcalc.a {lib_selector=="experimental"} (3)
element lib/libparse.a {lib_selector=="stable"} (4)
element lib/*.a {lib_selector=="released"} (5)
element * /main/LATEST (6)

Playing Mix-and-Match with Application Subsystems

103

Playing Mix-and-Match with Application Subsystems

This config spec shown in Example 5-18 extends the scheme used in Spec #15
through Spec #17 from programming libraries to the application’s
subsystems.

Example 5-18 Spec #18

element * CHECKEDOUT (1)
element /proj/monet/lib/... R2_BL1 (2)
element /proj/monet/include/... R2_BL2 (3)
element /proj/monet/src/... /main/LATEST (4)
element * /main/LATEST (5)

In this situation, a developer is making changes to the application’s source
files on the main branch (Rule 4). Builds of the application use the libraries in
directory /lib that were used to build Baselevel 1, and the header files in
directory /include that were used to build Baselevel 2.

Selecting Versions That Built a Particular Program

This config spec shown in Example 5-19 defines a “sparse view”, which sees
just enough files to rebuild a particular program or peruse its sources.

Example 5-19 Spec #19

element * -config /proj/monet/src/monet (1)

All elements that were not involved in the build of monet will be listed by
ClearCase ls with a [no version selected] annotation.

This config spec selects the versions listed in the config rec of a particular
derived object (and in the config recs of all its build dependencies). It can be
a derived object that was built in the current view, or another view, or it can
be a DO version.

104

Chapter 5: Defining View Configurations

In this config spec as shown in Example 5-20, monet is a derived object in the
current view. You can reference a derived object in another view with an
extended pathname that includes a DO-ID.

Example 5-20 Spec #20

element * -config /proj/monet/src/monet@@09-Feb.13:56.812

But typically, this kind of config spec is used to configure a view from a
derived object that has been checked in as a DO version.

Configuring the Makefile

By default, a derived object’s config rec does not list the version of the
makefile that was used to build it. Instead, the config rec includes a copy of
the build script itself. (Why? — when a new version of the makefile is created
with a revision to one target’s build script, the config recs of all other derived
objects built with that makefile are not rendered out-of-date.)

But if the monet program is to be rebuilt in this view using clearmake (or even
standard make), a version of the makefile must be selected somehow. You can
have clearmake record the makefile version in the config rec by including the
special clearmake macro $(MAKEFILE) in the target’s dependency list:

monet: $(MAKEFILE) monet.o ...
 cc -o monet ...

clearmake always records the versions of explicit dependencies in the config
rec.

Alternatively, you can configure the makefile at the source level: attach a
version label to the makefile at build time, then use a config spec like Spec #2
or Spec #4 to configure a view for building.

Making a Fix in the Program

If a bug is discovered in the monet program, as rebuilt in a view configured
with Spec #19 (See Example 5-19), it is easy to convert the view from a
perusal/build configuration to a development configuration. As usual when
making changes in “old” sources, the strategy is to:

Selecting Versions That Built a Particular Program

105

• create a branch at each version to be modified

• use the same branch name (that is, create an instance of the same
branch type) in every element

If the “fixup” branch type is r1_fix, then this modified config spec shown in
Example 5-21 reconfigures the view for performing the fix.

Example 5-21 Spec #21

element * CHECKEDOUT (1)
element * .../r1_fix/LATEST (2)
element * -config /proj/monet/src/monet -mkbranch r1_fix (3)
element * /main/LATEST -mkbranch r1_fix (4)

Selecting Versions That Built a Set of Programs

It is easy to expand Spec #19 (See Example 5-21) so that it configures a view
with the sources used to build a set of programs, rather than a single
program as shown in Example 5-22.

Example 5-22 Spec #22

element * -config /proj/monet/src/monet (1)
element * -config /proj/monet/src/xmonet (2)
element * -config /proj/monet/src/monet_conf (3)

There can be version conflicts in such configurations, however. For example,
different versions of file params.h might have been used in the builds of monet
and xmonet. In this situation, the version used in monet is configured, since
its configuration rule came first. Similarly, there can be conflicts when using
a single -config rule: if the specified derived object was created by actually
building some targets, but simply using DO versions of other targets,
multiple versions of some source files might be involved.

You can apply a transformation to this config spec similar to the one that
transforms Spec #19 to Spec #21, in order to change the perusal/build
configuration to a development configuration.

107

Chapter 6

6. Working in a Parallel Development
Environment

This chapter describes techniques for working in an environment where
elements are to be branched and merged.

Parallel Development Using Branches

ClearCase supports parallel development, in which an element evolves
simultaneously along several branches, with new versions being added to
each branch independently. Parallel development has many uses:

• It allows different projects — for example, different versions of a
product — to use the same source tree(s) at the same time.

• It isolates the work of developers whose changes should not (yet) be
dynamically shared with others.

• It isolates work that should never be shared with others — for example,
a bugfix in a “retired” release.

• It prevents roadblocks — development need not cease during a
software integration period; it can proceed on branches, to be
reintegrated later.

A version tree can have any number of branches, organized in a hierarchy of
arbitrary depth. A checkout can be performed on the main branch in one
view, on the bug404 branch in another view, on the motif branch in yet
another view, and so on.

108

Chapter 6: Working in a Parallel Development Environment

Branches are merely logical structures for organizing the versions of an
element. The storage requirement for an element with 100 versions is the
same whether the version tree has a single branch, or many branches
organized into a deep hierarchy. (In either case, all the versions of an element
of type text_file are stored as deltas in a single structured file.)

‘Working on a Subbranch’

ClearCase keeps your work on a project organized by operating at two levels
(and keeping the levels synchronized):

• Version control — At the individual-element level, new versions
created for a particular project go onto a dedicated branch, as discussed
above. This isolates the project’s changes from other concurrent work.

• Configuration management — At the aggregate
(“entire-set-of-sources”) level, all the branches created in individual
elements’ version trees must form a well-defined, isolated group. The
simplest way (and the ClearCase-standard way) to accomplish this
grouping is to require that all the branches have the same name.

All like-named branches are created as instances of a single object, the branch
type. When you modify a set of elements for a project, you create a branch in
each element’s version tree (or, more typically, ClearCase creates the
branches for you). All the branches are instances of the same branch type,
and have the same name. Thus, working on the project is often termed
“working on a subbranch”, an abbreviation for “working on a set of
like-named subbranches”.

Note: Each VOB must have its own branch type object.

Setting Up a View for Parallel Development

Chapter 4, “Setting Up a View,” included a general discussion of setting up
a view. This section presents a view-setup procedure for (perhaps) the most
typical situation: launching a new project that will work “on a branch”,
starting from a well-defined baselevel. Suppose that:

Setting Up a View for Parallel Development

109

• Your username is sakai.

• The baselevel is defined as “all versions labeled PROJ_BASE”.

• Work for the project is to take place on branches names koala.

The following steps set up a view to work on this project, assuming that the
PROJ_BASE version labels are all in place.

1. Create the branch type — By convention, names for branch types have
lowercase letters only:

% cleartool mkbrtype koala
Comments for "koala":
branch type for KOALA project, from baselevel defined by
label PROJ_BASE
.
Created branch type "koala".

2. Create the view — See Chapter 4, “Setting Up a View,” for a discussion
of selecting a view’s storage location, its view-tag, and so on.

% cleartool mkview -tag sakai_koala ~/view/koala.vws
Host-local path: pluto:/home/sakai/views/koala.vws
Global path: /net/pluto/home/sakai/views/koala.vws
It has the following rights:
User : sakai : rwx
Group: user : rwx
Other: : r-x

3. Configure the view for your project — Establish the standard
“working on a branch” config spec, using the particular version label
and branch names for your project.

% cleartool edcs -tag sakai_koala
 .
 . use text editor to revise current config spec:
 element * CHECKEDOUT
 element * .../koala/LATEST
 element * PROJ_BASE -mkbranch koala
 element * /main/LATEST -mkbranch koala

This view is now ready to be used for project-specific work.

110

Chapter 6: Working in a Parallel Development Environment

Automatic Creation of Branches

The last two config spec rules listed in Step 3 take advantage of ClearCase’s
auto-make-branch facility. Using this feature guarantees that all modifications
you make to elements in this view will be made on a koala branch. It also
simplifies your work, by automatically creating such branches, as needed —
that is, the first time you checkout an element in this view.

The auto-make-branch facility hides the difference between “working on the
main branch” and “working on a subbranch” — checkout and checkin are the
only commands you need to modify sources on branches, and you do not
even need to remember the branch name! For most purposes, you can
“forget” about the special way in which your work is organized, leaving that
job to ClearCase.

Working in a Multiple-View Environment

This section presents some useful techniques for working in a group
environment where each user works in a separate view. Before accessing a
view — in particular, one whose storage directory is located on a remote host
— you may first need to activate the view on your host. You can check the
ClearCase viewroot directory to determine whether the view is active. For
example, this command determines whether view alpha is active on your
host:

% ls /view | grep alpha

An active view appears as a subdirectory entry in the viewroot directory,
/view.

Alternatively, enter an lsview command to determine whether a view is
active on your host:

% cleartool lsview alpha
* alpha /net/ccsvr01/shared_views/alpha.vws

Note: Asterisk (*) indicates view is active on the local host.

Working in a Multiple-View Environment

111

If a view is not active on your host, enter a startview command to activate it:

% cleartool startview alpha

Using a File in Another View

If you are set to a particular view, you may still occasionally wish to access
data stored in (or merely visible in) other views. You can use a
view-extended pathname access any object within another active view:

% grep 'order-dependent' /view/alpha/vobs/project/src/util.c

View-extended pathnames work no matter what your current view context:
you can be set to another view, set to the same view, or not set to any view at
all.

Comparing Your Version of an Element to Another View’s

You may sometimes wish to compare a version selected by your view with
the version of the same element selected by another view. If the element
appears at the same pathname in both views, you can use the command
substitution feature of UNIX shells:

% cleartool setview david
% cd /vobs/project/src
% cleardiff util.c /view/alpha/‘pwd‘/util.c

You could also use the standard diff(1) command, or access cleardiff with a
cleartool diff command. Some variants of diff allow you to omit the redundant
“util.c” at the end of the command.

Resolving Namespace Differences between Views

Sometime, the same element appears at different pathnames in different
views. ClearCase can track directory-level changes, from simple renamings
to wholesale reorganizations. In such situations, a colleague may direct your
attention to a particular element, using a pathname that is not valid in your
view. Given the “foreign” pathname to the object, you can use a describe
-cview command to determine its pathname in your own view:

112

Chapter 6: Working in a Parallel Development Environment

% cleartool describe -cview \
 /view/gordon/vobs/project/include/hello_base.h@@
file element "/vobs/project/src/hello.h@@"
 created 20-May-93.14:46:00 by rick.devt@saturn
 .
 .

You might then compare your version of the element with your colleague’s
version as follows:

% cleardiff hello.h \
 /view/gordon/vobs/project/include/hello_base.h

Merging Versions of an Element

In a parallel development environment, the “flip side” of branching is
merging. In the simplest scenario, the changes made by a project “on a
subbranch” are incorporated back into the main branch:

• If there has been no activity on the main branch of an element in the
meantime, this involves a trivial copy operation.

• If an element’s main branch has evolved, than an intelligent manual or
(preferably) automated merge operation is required.

More generally, work from any branch can be merged into any other branch.
ClearCase includes automated merge facilities for handling just about any
scenario. Often, all of a project’s work can be integrated with other work
using a single command.

A merge involves computation of the “sum-of-pairwise-differences” of a set
of files and/or versions (Figure 6-1).

Merging Versions of an Element

113

Figure 6-1 ClearCase Merger Algorithm

Critical to this algorithm is the appropriate selection of one file to be the base
contributor. Usually, ClearCase selects the base automatically, and can even
take into account previous merges, in order to simplify and speed its work.
For special

cases, you can specify a particular base contributor to the merge command;
this command also has options (-insert and -delete) to implement common
special cases.

The xcleardiff utility makes it easy to merge versions of an element, even
when you need to make “manual” adjustments. Merge output appears in an
edit panel, in which you can make minor edits directly; for more significant
changes, you can pause the xcleardiff session to invoke your favorite text
editor at any time. The current contents of the edit panel are channeled to
your editor; when you return to xcleardiff, the changes you’ve made
“externally” appear the edit panel, appropriately annotated (Figure 6-2).

B

C1 C2 Cn

base
contributor

additional
contributors

∆(B,C1)
∆(B,C2)

∆(B,Cn)

merge result = B + ∆(B,C1) + ∆(B,C2) + . . . + ∆(B,Cn)

114

Chapter 6: Working in a Parallel Development Environment

Figure 6-2 xcleardiff Graphical Merge Utility

The following sections present a series of “merge scenarios” — situations
that call for information on one branch of an element to be incorporated into
another branch. In each scenario, we show the version tree of an element that
requires a merge, and indicate the appropriate command to perform the
merge.

Merging Versions of an Element

115

Scenario: Merging All the Changes Made on a Subbranch

This is the simplest case (Figure 6-3). Bugfixes for an element named opt.c are
being made on branch r1_fix, which was created at the baselevel version
RLS1.0 (/main/4). Now, all the changes made on the subbranch are to be
incorporated back into main, where a few new versions have been created in
the meantime.

Figure 6-3 Version Tree of an Element Requiring a Merge

Set a view configured with the default config spec:

element * CHECKEDOUT
element * /main/LATEST

4

5

6

7

8

0

1

2

3

4

5

6

r1_fix

mainelement:
opt.c

merge

checkout

merge all changes
made on r1_fix
subbranch back
into main branch

RLS1.0

116

Chapter 6: Working in a Parallel Development Environment

Go to the source directory and enter this command to perform the merge:

% cleartool findmerge opt.c -fversion .../r1_fix/LATEST

Scenario: Selective Merge from a Subbranch

This a variant of the preceding merge scenario. The project leader wants the
changes in version /main/r1_fix/4 (and only that version — it’s a particularly
critical bugfix) to be incorporated into new development. In performing the
merge, you specify which version(s) on the r1_fix branch to be included as
shown in Figure 6-4.

Figure 6-4 Selective Merge of a Version from a Subbranch

In a view configured with the default config spec, enter these commands to
perform the selective merge:

% cleartool checkout opt.c
% cleartool merge -to opt.c -insert -version /main/r1_fix/4

4

5

6

7

8

0

1

2

3

4

exclude changes
in these versions
from merge

include changes
in this version only

5

6

r1_fix

mainelement:
opt.c

exclude changes
in these versions
from merge

checkout

merge

Merging Versions of an Element

117

You can also specify a range of consecutive versions to be merged. For
example, this command merges selects only the changes in versions
/main/r1_fix/2 through /main/r1_fix/4:

% cleartool merge -to opt.c -insert -version /main/r1_fix/2 \
/main/r1_fix/4

Scenario: Removing the Contributions of Some Versions

The project leader has decided that a new feature, implemented in versions
14 through 16 on the main branch in Figure 6-5, will not be included in the
product. You must perform a “subtractive merge” to remove the changes
made in those versions.

Figure 6-5 Subtractive Merge

Enter these commands to perform the subtractive merge:

% cleartool checkout opt.c
% cleartool merge -to opt.c -delete -version /main/14 /main/16

13

14

15

16

17

18

these versions’
contributions
to be removed

element:
opt.c

checkout

118

Chapter 6: Working in a Parallel Development Environment

Scenario: Merging an Unreserved Checkout

ClearCase allows the same version to have several checkouts at the same,
each in a different view. At most one of the checkouts is reserved — all the
others (or perhaps every one of them) is unreserved. This mechanism allows
several users to work on the same file at the same time, without having to
use separate branches.

To prevent confusion and loss of data in such situations, ClearCase imposes
a constraint: if the version from which you performed an unreserved
checkout (version 7 in Figure 6-6) is not the most recent version on the
branch, then you cannot simply checkin your work — this would obliterate
the contributions of the versions created in the interim (versions 8 and 9 in
Figure 6-6). Instead, you must first merge the most recent version into your
checked-out version, then perform the checkin.

Figure 6-6 Merge of an Unreserved Checkout

6

7

8

10

element: opt.c

9

of version 7
to your view

1. unreserved checkout
in other views, while your
checkout remains pending

2. other versions created

contributions of new
versions into your

checked-out version

3. merge

merged data
4. checkin

merge

checkin

6

7

6

7

8

9

created
in other

Merging Versions of an Element

119

Enter these commands to merge your unreserved checkout:

% cleartool merge -to opt.c -version /main/9
 (Step 3 in Figure 6-6)

% cleartool checkin opt.c
 (Step 4 in Figure 6-6)

Scenario: Merging All of a Project’s Work

In the preceding scenarios, a merge was performed on a single element; now
for a more realistic scenario. Suppose a team of developers has been working
in isolation on a project for an extended period (weeks or months). Now,
your job is to merge all the changes back into the main branch.

The findmerge command has the tools to handle most common cases easily. It
can accommodate the following schemes for isolating the project’s work.

All of Project’s Work Isolated “On a Branch”

In the standard ClearCase approach to parallel development, all of a
project’s work takes place “on the same branch”. More precisely, new
versions of source files are all created on like-named branches of their
respective elements (that is, on branches that are instances of the same branch
type). This makes it possible for a single findmerge command to locate and
incorporate all the changes. Suppose the common branch is named gopher.
You can enter these commands in a “mainline” view, configured with the
default config spec:

% cd root-of-source-tree
% cleartool findmerge . -fversion .../gopher/LATEST \
-merge -xmerge

The -merge -xmerge syntax causes the merge to take place automatically
whenever possible, and to bring up the graphical merge utility if an
element’s merge requires user interaction (see Chapter 7, “Comparing and
Merging Files Graphically with xcleardiff.”) If the project has made changes
in several VOBs, you can perform all the merges at once by specifying
several pathnames, or by using the -avobs option to findmerge.

120

Chapter 6: Working in a Parallel Development Environment

All of Project’s Work Isolated “In a View”

Some projects are organized so that all changes are performed in a single
view (typically, a shared view). For such projects, use the -ftag option to
findmerge. Suppose the project’s work has been performed in a view whose
view-tag is goph_vu. These commands perform the merge:

% cd root-of-source-tree
% cleartool findmerge . -ftag goph_vu -merge -xmerge

Scenario: Merging a New Release of an Entire Source Tree

Here is another project-level merge scenario as shown in Figure 6-7. Your
group has been using an externally-supplied source-code product,
maintaining the sources in a VOB. The successive versions supplied by the
vendor are checked into the main branch and labeled VEND_R1 through
VEND_R3. Your group’s fixes and enhancements are created on subbranch
enhance. The views in which your group works are all configured to branch
from the VEND_R3 baselevel:

element * CHECKEDOUT
element * .../enhance/LATEST
element * VEND_R3 -mkbranch enhance
element * /main/LATEST -mkbranch enhance

• The version trees illustrated below shows three different likely cases:

• an element that your group started changing at Release 1 (enhance
branch created at the version labeled VEND_R1)

• an element that your group started changing at Release 3

• an element that your group has never changed

Merging Versions of an Element

121

Figure 6-7 Merge a New Release of an Entire Source Tree

Now, a tape containing Release 4 arrives, and you need to integrate the new
release with your group’s changes. After you add the new release to the main
branch and label the versions VEND_R4, it will be easy to specify the merge
process: “for all elements, merge from the version labeled VEND_R4 to the
most recent version on the enhance branch; if an element has no enhance
branch, don’t do anything at all”

0

1

2

3

VEND_R1 0

1

enhance

VEND_R2

VEND_R3
2

3

4

5

previous
merges

0

1

2

3

VEND_R1

VEND_R2

VEND_R3

0

1

2

3

VEND_R1

VEND_R2

VEND_R3

enhance
0

1

2

3

used for vendor’s
releases, not for

development

‘main’ branch

used for your
organization’s

changes

‘enhance’ branch

122

Chapter 6: Working in a Parallel Development Environment

Here’s a complete procedure for accomplishing the integration:

1. Load the vendor’s “Release 4” tape into a standard UNIX directory
tree:

% cd /usr/tmp
% tar -xv

Suppose this creates directory tree mathlib_4.0.

2. As the VOB owner, run the UNIX-to-ClearCase conversion utility,
clearcvt_unix, to create a script that will add new versions to the main
branches of elements (and very likely, to create new elements, as well).

% cd ./mathlib_4.0
% clearcvt_unix
 . (lots of output)
 .

3. In a view configured with the default config spec, run the conversion
script created by clearcvt_unix, creating Release 4 versions on the main
branches on elements:

% cleartool setview mainline
% cd /vobs/proj/mathlib
% /usr/tmp/mathlib_4.0/cvt_dir/cvt_script

4. Label the new versions:

% cleartool mklbtype -c "Release 4 of MathLib \
 sources" VEND_R4
Created label type "VEND_R4".
% cleartool mklabel -recurse VEND_R4 /vobs/proj/mathlib
 . (lots of output)
 .

5. Go to a view that is configured with your group’s config spec, selecting
the versions on the enhance branch:

% cleartool setview enh_vu

6. Merge from the VEND_R4 configuration to your view:

% cleartool findmerge /vobs/proj/mathlib -fver \
VEND_R4 -merge -xmerge

The -merge -xmerge syntax says “merge automatically if possible; but if
not possible, bring up the graphical merge tool”.

7. Verify the merges, and checkin the modified elements.

Merging Versions of an Element

123

8. You have now established Release 4 as the new baselevel. Developers in
your group can update their views’ configurations as follows:

element * CHECKEDOUT
element * .../enhance/LATEST
element * VEND_R4 -mkbranch enhance
element * /main/LATEST -mkbranch enhance

Note: VEND_R3 was changed to VEND_R4 in Step 8.

Elements that have been active will continue to evolve on their enhance
branches. Elements that are revised for the first time will have their
enhance branches created automatically at the VEND_R4 version.

Scenario: Merging Directory Versions

One of ClearCase’s most powerful features is versioning of directories. Each
version of a directory element catalogs a set of file elements, directory
elements, and VOB symbolic links. In a parallel development environment,
directory-level changes are just as frequent as file-level changes. And with
ClearCase, merging the changes to another branch is just as easy.

Let’s take a closer look at the externally-supplied source tree scenario from
the preceding section: suppose you find that in the vendor’s new release (the
one you’ve labeled VEND_R3), several changes have been made in directory
/vobs/proj/mathlib/src:

1. file elements Makefile, getcwd.c, and fork3.c have been revised

2. file elements readln.c and get.c have been deleted

3. a new file element, newpaths.c, has been created

When you use findmerge to merge the changes made in the VEND_R3 release
out to the enhance branch (Step #6 in “Scenario: Merging a New Release of an
Entire Source Tree” on page 120), both the file-level changes (Step #1 in this
section “Scenario: Merging Directory Versions”), and the directory-level
changes (Step #2 and #3 in this section “Scenario: Merging Directory
Versions”), are handled automatically.

124

Chapter 6: Working in a Parallel Development Environment

The following findmerge excerpt in Example 6-1 shows the directory-level
merge activity.

Example 6-1 Directory -level Merge Activity

<<< directory 1: /vobs/proj/mathlib/src@@/main/3
>>> directory 2: .@@/main/enhance/1
>>> directory 3: .

----[removed directory 1]----|----[directory 2]----
get.c 19-Dec-1991 drp |-
*** Automatic: Applying REMOVE from directory 2
----[directory 1]----|----[added directory 2]----
 -| newpaths.c 08-Mar.21:49 drp
*** Automatic: Applying ADDITION from directory 2
----[removed directory 1]----|----[directory 2]----
readln.c 19-Dec-1991 drp |-
*** Automatic: Applying REMOVE from directory 2
Recorded merge of ".".

Using Your Own Merge Tools

If you wish, you can create a merged version of an element completely
manually, or with any available analysis and editing tools. Check out the
target version, revise it, and check it back in. Just before (or just after) the
checkin, be sure to record your activity, by using the merge command with the
-ndata (“no data”) option:

% cleartool checkout -nc nextwhat.c
Checkout comments for "nextwhat.c":
merge enhance branch
.
Checked out "nextwhat.c" from version "/main/1".

% <Invoke your tools to merge data into checked-out version>

% cleartool merge -to nextwhat.c -ndata -version \
 .../enhance/LATEST
Recorded merge of "nextwhat.c".

Using Your Own Merge Tools

125

This form of the merge command does not change any file system data — it
merely attaches a merge arrow (a hyperlink of type Merge) the specified
versions. After you’ve made this annotation, your merge is
indistinguishable from one performed only with ClearCase tools.

127

Chapter 7

7. Comparing and Merging Files Graphically with
xcleardiff

The previous chapter discussed file comparison and merge operations. This
chapter describes the graphical diff/merge utility, xcleardiff, in more detail.
The main topics are:

• invoking xcleardiff

• comparing files

• merging files

For a discussion of the actual file comparison and merge algorithms, see the
diff and merge manual pages.

Summary

xcleardiff is a graphical diff and merge utility for text files. (It implements the
xcompare and xmerge methods for the predefined element types text_file and
compressed_text_file.) xcleardiff can also compare, but not merge, directory
versions.

On color display monitors, xcleardiff uses different colors to highlight
changes, insertions, and deletions from one or more contributing files. During
merge operations, input files are processed incrementally and, when
necessary, interactively, to visibly construct a merged output file. You can
edit the merged output as it is being built—either directly in the merged
output display pane, or with an arbitrary text editor—to add, delete, or
change code manually, or to add comments.

xcleardiff is implemented with a standard window system toolkit. See your
window system documentation for a description of general mouse and
keyboard conventions.

128

Chapter 7: Comparing and Merging Files Graphically with xcleardiff

Invoking xcleardiff

You can invoke xcleardiff directly from the command line, specifying files or
versions to compare or merge. However, because xcleardiff implements the
xcompare and xmerge methods for the text_file_delta and z_text_file_delta type
managers, the following cleartool subcommands, when applied to text files,
also invoke xcleardiff:

• xdiff

• xmerge

• findmerge (with options -xmerge or -okxmerge)

The xdiff, xmerge, and findmerge commands include the advantage of some
extra command options—optional ClearCase preprocessing—in the same
way that diff and merge offer more flexibility than direct calls to the
character-based cleardiff utility. xdiff -pred, xmerge -insert, and findmerge -ftag
are all examples of commands that perform useful ClearCase processing
before invoking xcleardiff.

You can also invoke xcleardiff using xclearcase buttons and menu options:

• file or vtree browser menubar: Versions -> Diff and Versions -> Merge

• file or vtree browser toolbar: Diff button (see Figure 7-1) and Merge
button (see Figure 7-2).

Figure 7-1 Diff Button

Figure 7-2 Merge Button

Comparing Files

129

Setting Your Color Scheme

The ClearCase GUI utilities support several predefined color schemes,
which are collections of X resource settings. ClearCase schemes are stored in
the directory /usr/atria/config/ui/Schemes. (A special scheme, Willis, is
designed for use with monochrome monitors.)

You can specify a scheme in your standard X resources file (typically
$home/.Xdefaults) with a line like:

*scheme: Monet

See the schemes manual page for more details.

You can also use standard X Window System mechanisms to customize the
xcleardiff display window. The X class name is xcleardiff or Diff. The following
color-related resources are specific to graphical diff and merge operations:

xcleardiff*promptBrightColor
 (highlight prompt and current diff (default: yellow))
xcleardiff*changeColor
 (highlight change relative to base contributor (default: blue))
xcleardiff*deleteColor
 (highlight deletion relative to base contributor
(default: red))
xcleardiff*insertColor
 (highlight insertion relative to base contributor (default: green))

Comparing Files

As you study the examples in this chapter, keep in mind that there are
usually several ways to accomplish the same thing.

130

Chapter 7: Comparing and Merging Files Graphically with xcleardiff

Example 1: Compare with Predecessor

Let’s compare versions of a file element. The most common comparison
operation is to diff the version selected by your view with its predecessor
version.

1. Open the desired directory in a file browser as shown in Figure 7-3 and
select the element, util.c for example.

Figure 7-3 File Browser with File Element util.c Selected

2. Press the Diff button (see Figure 7-1) .

This button (as explained in its “pop-up help”, accessible with
rightMouse) compares the version selected by the current view with its
direct predecessor. Figure 7-4 shows the resulting output.

Comparing Files

131

Figure 7-4 Graphical File Comparison

The following command line and the Diff button are equivalent.

% cleartool xdiff -predecessor util.c

The menu item Versions -> Diff -> Selected vs. predecessor provides a third
path to the same result.

Menubar

Difference

Base
Contributor

Annotation
Panes

Panes

(predecessor

Scroll

version, in this

Version selected by current view (/main/3)

Lock/Unlock
Toggle Button

case)

(each displays
a text file)

132

Chapter 7: Comparing and Merging Files Graphically with xcleardiff

Base Contributor File

The base contributor file is the first file specified (first on the command line or
selected first in a browser) and is displayed on the left of the screen. All other
contributors are compared against the base file.

Text Line Annotations

By default (that is, unless line numbering is enabled), the following
annotations can appear in the annotation panes:

Insert Line occurs in this file, but not in base contributor file.
(Insertions default to green on a color display monitor.)

Delete Line occurs in base contributor file, but not in this file.
(Deletions default to red on a color display monitor.)

Change Line has changed from the base contributor file to this file.
(Changes default to blue on a color display monitor.)

****** Empty lines, introduced to keep corresponding source lines
aligned when files are displayed side-by-side.

The Options Menu

Show Line Numbers
Enable/disable line number annotations for all lines of all
contributor files.

Stack Vertically
Enable/disable vertical stacking of the difference panes.
Side-by-side is the default.

Comparing Files

133

The View Menu

base-file
Enable/disable display of the base file. Typically, you want
to see the base file during a diff operation, but probably do
not need to see it during a merge.

contributor-1 ...
Enable/disable display of this contributor file.

Display Lock Icon

You can scroll difference panes independently or synchronously. Each
difference pane has a lock/unlock toggle button. If vertical and/or
horizontal scrollbars are active, all locked panes scroll together. An unlocked
pane can be scrolled independently. Whenever you press Previous Diff or
Next Diff, the difference panes all resynchronize with the base file. You
cannot unlock the base file.

Example 2: Comparing Arbitrary Versions of an Element

The Versions -> Diff submenu (and the xdiff command) lets you compare any
combination of versions (including three, or even more, simultaneously).
Suppose you wanted to compare the version of util.c selected by your view
with /main/1, instead of its immediate predecessor:

1. Select util.c from a file browser.

2. Choose the menu item Versions -> Diff -> Selected vs. other...
A vtree browser (Figure 7-5) comes up and prompts you for the (older)
version to compare with the selected version of util.c.

134

Chapter 7: Comparing and Merging Files Graphically with xcleardiff

Figure 7-5 Vtree Browser Prompting for a Version to Compare

Click on version 1 to select it, and then press the Ok button. A Cleardiff
window appears, like the one in Figure 7-4, but with different versions this
time.

The command line equivalent for this merge operation is:

% cleartool xdiff util.c@@/main/1 util.c

Comparing Directories

You can compare directory versions as well as file versions (see Figure 7-6.)
Use the following procedure to compare two versions of a directory element,
neither of which is selected by your current view.

1. Select the directory icon from a file browser.

2. Choose Versions -> Diff -> Other vs. other...

3. In the prompting vtree, supply the “older” version and press Ok. Then
supply the “newer” version and press Ok.

Press this button to display all
versions in the tree.

Prompt

Select a version to enable the
Ok button.

Merging Files

135

Figure 7-6 Comparing Directory Versions

The equivalent command line is:

% cd /vobs2/rell4/src; cleartool xdiff .@@/main/1 .@@/main/2

Merging Files

As we did for file comparison, let’s start with a common operation.

Example: Merging from a Branch to a Checked-out Version

A sample element, util2.c, has the following version tree (see Figure 7-7.)

136

Chapter 7: Comparing and Merging Files Graphically with xcleardiff

Figure 7-7 Sample Version Tree for util2.c

To merge from the version /main/rel2_bugfix/LATEST to the checked-out
version:

1. From a file browser, select the checked-out element (util2.c) and choose
the menu item Versions -> Merge -> From ...branch/LATEST -> view...

2. A branch type browser prompts for a branch; select rel2_bugfix and
press Ok.

3. At this point, a prompt asks whether to do a fully automated merge, if
one is possible. If you answer “Yes” here, a terminal emulation window
(see Figure 7-8) displays a character mode summary of the merge. If the
merge can be completed automatically, press <Return> to exit the
display window; the merge is complete.

Merging Files

137

Figure 7-8 Automatic Merge Output

If a conflict occurs during the automatic merge (two or more contributor files
differ from the base contributor file at the same location), or if you answer
No to the “Automatic merge?” prompt, the merge operation takes an
interactive, graphical form.

Figure 7-9 shows the graphical merge window. In this example, we have
chosen not to attempt an automatic merge. Furthermore, we have already
responded Yes to the first two “Accept changes?” prompts, accepting in the
merged output file several modified lines from “file 3” (the checked-out
version) and a one-line insertion from “file 2” (the rel2_bugfix version). Note
that ClearCase calculates the base contributor file, util2.c@@/main/1,
automatically (see the merge manual page for details) and includes it in the
display. All other contributing files are compared against the base
contributor to identify changes, insertions, and deletions.

138

Chapter 7: Comparing and Merging Files Graphically with xcleardiff

Figure 7-9 Graphical Merge Display

Annotations Change Processing Buttons

Base

Checked-out VersionBugfix Branch Version

Contributor
File

Merged
Output

(File 1)

(File 2) (File 3)

3

3

2

2

Merging Files

139

Before moving on to describe the graphical merge display, note that we
could perform the same merge — from /main/rel2_bugfix/latest to
/main/checkedout — with any of the following procedures, and some others as
well:

• From a file browser, select the checked-out element, press the Merge
button (see Figure 7-2), and select rel2_bugfix when prompted by the
branch type browser.

• From a vtree browser on element util2.c, select the menu item Version
-> Merge -> From version -> branch... At the prompts, click on the
“from” version and press Ok, then click on the “to” version and click
Ok.

• From a file browser, select the checked-out element, and choose the
menu item Versions -> Findmerge -> Selected items -> From
...branch/LATEST -> view... Select /main/rel2_bugfix from the branch
type browser. Answer “Yes” to the prompt. Alternatively, answer “No”
to the prompt in Figure 7-10.

Figure 7-10 Reply Prompt “No”

Answer Yes to the prompt in Figure 7-11 (after findmerge has written merge
commands to a log file/command script)

140

Chapter 7: Comparing and Merging Files Graphically with xcleardiff

Figure 7-11 Reply Prompt “Yes”

Or, answer No to both prompts and run the .log script later.

• From the command line:

% cleartool xmerge -to util2.c \
 util2.c@@/main/rel2_bugfix/LATEST

• From the command line:

% cd src; cleartool findmerge . -fversion\
/main/rel2_bugfix/LATEST -merge -xmerge

The Graphical Merge Display Window

The graphical merge display shares many features with the file comparison
display: difference panes, text line annotations, color usage, Next/Prev Diff
buttons, and so on. Following are the significant additions.

Merged Output Pane (Editable)

Displays the merge output as it is being built. You can edit the merged text
directly (using primitive editing keystrokes) or press the Edit button to
invoke a text editor. The merged output can include the following
annotations:

File # Identifies the file that contributed the line (no annotations
for lines from the base contributor file).

Edtblk Marks a block of text modified in a text editor with the Edit
button (described below).

Merging Files

141

Edited Marks each line that has been manually edited in the
merged output pane itself.

Calculated Base Contributor File

Unless you invoke xcleardiff directly and without a -base argument,1 a base
contributor file is calculated automatically and displayed on the left of the
screen, or on the top with vertical stacking in effect. The base contributor file
is the common ancestor for all versions of the element being merged. See
merge for a discussion of how ClearCase calculates the base contributor for
various types of merge operations.

Merge-Related Menu Options

File -> Restart — Cancel and restart the entire merge operation.

Options -> Query on Conflicts — The default merge automation mode. If a
difference section (insertion, deletion, or change) has exactly one contributor
that differs from the base file, the change is accepted automatically and
applied to the merged output. You are prompted to intervene manually only
when the same text section in two or more contributors differs from the
corresponding section in the base file.

Options -> Query on All — Turns off automatic change acceptance, and
prompts you to take action on every change from every contributor.

Options -> Pause after Auto Decisions — After each automatic merge
decision (see Query on Conflicts), xcleardiff pauses and prompts “Continue
merge?”. This option has no effect in Query on All mode.

1 You might do this if attempting to merge unrelated files, or files that are not elements.

142

Chapter 7: Comparing and Merging Files Graphically with xcleardiff

Merge Processing Buttons

Yes Accept the current prompt (“Accept change?”, “Save
Merged output?”, and so on).

No Refuse the current prompt. Specifically, reject the current
change, insertion, or deletion section in a contributor file;
preserve the base file’s version of the applicable text section.

Yes/Pause Accept the change/insertion/deletion, but then pause
merge processing; a “Continue merge?” prompt appears.

No/Pause Reject the change/insertion/deletion, and then pause
merge processing; a “Continue merge?” prompt appears.

Edit (Active whenever processing is paused) Press Edit to edit
the merged output file in a text editor (the system searches,
in order, the visual, editor, and wineditor environment
variables).While in the text editor, the Yes button is enabled
as an “escape hatch” in case the editor process hangs

Note: The Edited annotation marks every line edited
manually (directly in the output pane, not with a text
editor), but the Edtblk annotation is somewhat less precise;
it marks each text block in which one or more changes were
made with the text editor.

Current Diff (Bottom of display window) Any pause in automatic merge
processing enables the Previous Diff, Next Diff, and Current
Diff buttons. If you use Previous Diff or Next Diff to move
around during a pause, Current Diff resynchronizes all
difference panes with the base file and returns you to the
pause point—a yellow highlighted insertion, change, or
deletion that the system is waiting for you to accept or
reject.

Merging Files

143

Example Revisited

Let’s return to the scenario in Figure 7-9 to edit the merged output, complete
the merge, and check the results.

Edit the Merged Output

With merging paused at the “Accept change?” prompt:

1. Position the cursor above the change block from File 3.

2. Type in a comment. For example:

/* Merged from rel2_bugfix branch:5/1/94 */

3. Use a text editor to supply a matching comment.

Press the Edit button. When the text editor comes up, add a comment
below the changed block. For example:

/* End merged section */

4. Quit the editor and answer Yes to the prompt “Apply changes from
editing session?”. The prompt returns to its state before you began
editing:
“Accept change?”

5. Compare the new Edited and Edtblk annotations on the merged output.

Complete the Merge

6. Answer Yes to the remaining prompts.

Check the Results of the Merge

7. Finally, let’s check the merge results for consistency by comparing the
new util2.c@@/main/checkedout — which was overwritten with the
merged output — against util2.c.contrib, an automatically saved copy of
the original checked-out version.

% cleartool xdiff util2.c.contrib util2.c

Figure 7-12 shows the comparison.

144

Chapter 7: Comparing and Merging Files Graphically with xcleardiff

8. Checkin the merged file.

% cleartool checkin -c "merged from rel2_bugfix" util2.c

Figure 7-12 Verifying Merged Output

145

Chapter 8

8. Using the ClearCase/SoftBench Integration

This chapter describes ClearCase support for the SoftBench integrated
software development environment. The ClearCase Encapsulation for
SoftBench enables integration of ClearCase with all SoftBench tools.
ClearCase services and broadcasts all the messages prescribed for
configuration-management systems in the document “CASE Communique:
Configuration Management Operation Specifications” from the “historical”
standard.

ClearCase adds a menu to the SoftBench Development Manager, providing
users with a familiar interface to ClearCase’s most important version-control
and configuration-management functions. You can customize the SoftBench
environment to add items to this menu, accessing more sophisticated
features.

You can configure the SoftBench Builder to use the ClearCase build tool,
clearmake. All other SoftBench tools (debugger, browser, static analyzer, and
so on) work within ClearCase environments by using view-extended
pathnames.

ClearCase can broadcast SoftBench messages whenever ClearCase performs
a configuration-management operation, no matter how that operation was
requested: from the SoftBench or ClearCase graphical user interface, from
the ClearCase command line interface, from the ClearCase API, from other
SoftBench tools, and so on. This flexibility accommodates a variety of
working styles without sacrificing tool integration.

146

Chapter 8: Using the ClearCase/SoftBench Integration

Architecture

SoftBench tools communicate with ClearCase through the SoftBench
Broadcast Message Server (BMS), and two ClearCase processes:

• clearencap_sb — ClearCase Encapsulator for SoftBench

• sb_nf_server — ClearCase Notice Forwarder for SoftBench

When a SoftBench tool makes a configuration-management request, such as
checkout, the BMS receives the message and passes it on to the ClearCase
encapsulator, clearencap_sb. The BMS starts the encapsulator process if it is
not already running. clearencap_sb then evaluates the message and invokes
the appropriate ClearCase operation, such as a checkout command:

• If the operation succeeds, the individual ClearCase tool sends a
message to the Notice Forwarder process, sb_nf_server, starting it if
necessary. (For example, cleartool might send notice of a successful
checkout.) sb_nf_server then informs the BMS that the operation
succeeded.

• If the operation fails, the BMS receives the message directly from
clearencap_sb.

In both cases, the BMS passes the final status message back to the SoftBench
tool. This “alternate path” architecture for sending success and failure
statuses to the BMS enables ClearCase events to generate SoftBench
messages without using the encapsulator. For example, you can perform a
checkout command in a non-SoftBench shell, and still have your SoftBench
processes be notified that the checkout succeeded. See “One-Way
Messaging” on page 151 for more information on this topic.

Configuring the Development Manager for ClearCase

To include the “ClearCase” menu item in the SoftBench Development
Manager Main menu, place this line in your X Window System resources file
(typically, $HOME/.Xdefaults):

Softdm*menuDirSelect_CM: ClearCase

Configuring HP VUE

147

Configuring HP VUE

If you are using HP VUE with SoftBench, you must add the
$ATRIAHOME/bin directory to your Vuelogin*userPath resource. Edit the file
/usr/lib/X11/vue/Vuelogin/Xconfig to include a line like:

Vuelogin*userPath: /usr/bin/X11:/bin:/usr/bin:/etc: \
/usr/contrib/bin:/usr/atria/bin:/usr/lib:/usr/lib/acct

Using SoftBench

The sections below discuss various topics pertaining to day-to-day usage of
the ClearCase Encapsulation for SoftBench.

Using the SoftBench Development Manager

The SoftBench Development Manager is a graphical browser and file
manager. The ClearCase installation procedure adds a “ClearCase”
submenu to the Development Manager menu:

Check Out ...
Sends a CM VERSION-CHECK-OUT message to the
ClearCase Encapsulator. This pops up a window in which
you specify a (multiline) checkout comment, then checks out
the selected element.

Cancel Check Out ...
Sends a CM VERSION-CHECK-IN message with the
CANCEL keyword to the ClearCase Encapsulator. This
pops up a window, in which you can specify that the
view-private copy is to be saved (uncheckout -keep option), or
to be removed (uncheckout -rm option); then, the checkout of
the selected element is cancelled.

Check In ...
Sends a CM VERSION-CHECK-IN message to the
ClearCase Encapsulator. This pops up a window, in which
you specify a (multiline) checkin comment, then checks in
the selected element. Specifying no comment preserves the
checkout comment, if any.

148

Chapter 8: Using the ClearCase/SoftBench Integration

Cleartool List ...
Sends a CM VERSION-LIST-DIR message to the ClearCase
Encapsulator. This pops up a window that lists the
particular version of the selected element that appears in
the view. The configuration rule that selects this version is
also listed.

List Checkouts ...
Sends a CM VERSION-LIST-CHECKOUTS message to the
ClearCase Encapsulator. This pops up a window that lists
the selected element’s checkout records (if any).

List History ...
Sends a CM VERSION-SHOW-HISTORY message to the
ClearCase Encapsulator. This pops up a window showing
the event history of the selected element. For directory
elements, the history of the directory’s contents is
displayed, rather than the history of the directory element
itself.

Display Version Tree ...
Sends a CM VERSION-SHOW-VTREE message to the
ClearCase Encapsulator. This pops up an xlsvtree window
showing a graphical version tree of the selected element.

Describe ...
Sends a CM VERSION-DESCRIBE message to the
ClearCase Encapsulator. This pops up a window that lists
information on the particular version of the selected
element that appears in the view.

Compare Versions ...
Sends a CM VERSION-COMPARE-REVS message to the
ClearCase Encapsulator. This opens an xcleardiff window
that compares the predecessor version of the selected element
with the version that appears in your view.

Merge Versions ...
Sends a CM VERSION-MERGE-REVS message to the
ClearCase Encapsulator. This pops up an xcleardiff window,
in which you perform the merger interactively.

Using SoftBench

149

Make Element ...
Sends a CM VERSION-INITIALIZE message to the
ClearCase Encapsulator. This pops up a window, in which
you specify an element-creation comment, then checks in
the selected file as the first version of a new element.

Make Directory ...
Sends a CM VERSION-MKDIR message to the ClearCase
Encapsulator. This pops up windows, in which you specify
a directory name and an element-creation comment; then, a
new directory element is created.

Make Branch ...
Sends a CM VERSION-MAKE-BRANCH message to the
ClearCase Encapsulator. This pops up a window, in which
you specify a branch name (the branch type must already
exist) and a (multiple-line) branch-creation comment; then,
a branch is created in the selected element and version 0 on
the branch is checked out.

Make Label ...
Sends a CM VERSION-MAKE-LABEL message to the
ClearCase Encapsulator. This pops up a window, in which
you specify a version label (the label type must already
exist); then, a version label is attached to the version of the
selected element that appears in your view.

Make Attribute ...
Sends a CM VERSION-MAKE-ATTRIBUTE message to the
ClearCase Encapsulator. This pops up windows, in which
you specify an attribute name (the attribute type must
already exist) and a value for the attribute; then, an attribute
is attached to the version of the selected element that
appears in your view.

Cat Configuration Record ...

Flattened Cat Configuration Record ...
Sends a CM DERIVED-CAT-CONFIG-REC message to the
ClearCase Encapsulator. This pops up a window that lists
the contents of the config rec for the selected derived object.

150

Chapter 8: Using the ClearCase/SoftBench Integration

Compare Configuration Records ...

Flattened Compare Configuration Records ...
Sends a CM DERIVED-DIFF-CONFIG-REC message to the
ClearCase Encapsulator. This pops up a window, in which
you specify the DO-ID of a derived object; then, the contents
of that derived object’s config rec are compared with those
of the selected derived object.

Start View ...
Sends a CM START-VIEW message to the ClearCase
Encapsulator. This pops up a window, in which you specify
a view-tag; then, the view with that view-tag is activated.

Edit Configuration Specification ...
Sends a CM VERSION-SET-MASTER message to the
ClearCase Encapsulator. This pops up a “text widget”
window, in which you revise the current config spec.

Using Views

Do not start any SoftBench process from a shell that is set to a view. As you
work, use view-extended pathnames to indicate the desired view context(s).
For example:

• To do new development, you might use the “Set Context” selection on
the “File” menu to change the current directory to
/view/jones_vu/proj/libpub.

• To do maintenance work, you might use the “Set Context” selection on
the “File” menu to change the current directory to
/view/r1fix_vu/proj/monet/include.

Before referencing files in a particular view, make sure that the view is
started, using “Start View”. Attempting to start a view that is already started
generates a harmless error message.

Caution: Do not attempt to communicate with SoftBench servers on other
hosts using view-extended pathnames. This may cause NFS deadlocks.

Using SoftBench

151

Setting the Build Program

By default, the SoftBench softbuild(1) program (invoked with the “Build” or
“Rebuild” selection on the “Action” menu) runs make(1). You can have it run
clearmake by setting two X resources in your .Xdefaults file (typically, in your
home directory):

*buildProgram : clearmake
*knownBuildProgs : clearmake

As an alternative, you can make the change system-wide by setting these X
resources in /usr/softbench/app-defaults/Softdm.

One-Way Messaging

Success messages can be sent from ClearCase to SoftBench, even if the
successful operation was not initiated by a SoftBench tool. If environment
variable CLEARCASE_MSG_PROTO is set to SoftBench, ClearCase tools will
generate success messages, whether or not the operation was initiated by a
SoftBench tool. The Notice Forwarder sends the success message to the BMS,
even if the encapsulator process, clearencap_sb, is not running.

Error Conditions

Message passing succeeds only if ClearCase and SoftBench processes have
the same value for the DISPLAY environment variable. A ClearCase tool
generates an error message if CLEARCASE_MSG_PROTO is set, but
DISPLAY is not set or is incorrect.

The Notice Forwarder process logs errors, warnings, and other messages in
file /usr/adm/atria/ti_server_log.

152

Chapter 8: Using the ClearCase/SoftBench Integration

ClearCase Encapsulation Summary

The ClearCase pull-down menu (described in “Using the SoftBench
Development Manager” on page 147) provides access to a subset of the
message-handling capabilities of clearencap_sb. For a complete listing, see the
softbench_ccase manual page.

Customization

This version of clearencap_sb conforms to the CASE Communique:
Configuration Management operation specification (the one marked
“historical”). You can customize the SoftBench environment to access
additional features of the ClearCase encapsulation. See the Hewlett-Packard
SoftBench Encapsulator: Programmer’s Guide for details.

153

Chapter 9

9. Using the ClearCase/ToolTalk Integration

This chapter describes ClearCase support for the ToolTalkTM integrated
software development environment. ClearCase can broadcast ToolTalk
messages whenever ClearCase performs a configuration management
operation, no matter how that operation was requested: from a ToolTalk tool,
from the ClearCase graphical user interface, from the ClearCase command
line interface, from the ClearCase API, and so on. This flexibility
accommodates a variety of working styles without sacrificing tool
integration.

Architecture

ToolTalk tools communicate with ClearCase through the ToolTalk Session
Server, ttsession, and two ClearCase processes:

• clearencap_tt — ClearCase encapsulator for ToolTalk

• tt_nf_server — ClearCase notice forwarder for ToolTalk

After ToolTalk has been configured to work with ClearCase, certain ToolTalk
commands automatically invoke ClearCase operations. When a ToolTalk
tool makes a configuration management request, such as CM-Checkin-File,
the ToolTalk Session Server receives the message and passes it on to
clearencap_tt. (The Session Server starts an encapsulator process if one is not
already running.) clearencap_tt evaluates the message and invokes the
appropriate ClearCase tool, such as cleartool checkout.

• If the operation succeeds, the ClearCase tool returns a success exit
status to clearencap_tt, which sends a success reply back to the Session
Server.

• If the operation fails (non-zero exit status), the encapsulator returns a
failure status to the Session Server.

154

Chapter 9: Using the ClearCase/ToolTalk Integration

In both cases, the Session Server passes the final status message back to the
requesting ToolTalk tool.

Using Views

On SunOS systems, do not start any ToolTalk program from a shell that is set
to a view. As you work, use view-extended pathnames to indicate the
desired view context(s).

On IRIX systems, you can work as described in the preceding paragraph.
Alternatively, you can start a ToolTalk program from within a view; the
program will be able to communicate only with other programs that were
also started from within that view. You can use standard
(non-view-extended) pathnames with such programs.

Standalone Notice Forwarding

A ClearCase tool can send a success message even if the operation was not
initiated by a ToolTalk tool:

• Make sure that the ClearCase tool and the Session Server both have the
environment variable DISPLAY set to the same value.

• Run the ClearCase tool in an environment with
CLEARCASE_MSG_PROTO set to ToolTalk.

(An error occurs in a ClearCase tool that has CLEARCASE_MSG_PROTO
set correctly, but not DISPLAY.) In this environment, the Notice Forwarder
generates a success message on each applicable ClearCase operation that
succeeds.

The notice forwarder process logs errors, warnings, and other messages in
file /usr/adm/atria/ti_server_log.

ClearCase Encapsulation Summary

For a complete listing of the messages handled by clearencap_tt, see the
tooltalk_ccase manual page.

155

Chapter 10

10. Building with clearmake;
Some Basic Pointers

This chapter presents some simple pointers on making best use of clearmake.
See the chapters that follow for more detailed discussions.

Accommodating clearmake’s Build Avoidance

When you first begin to build software systems with ClearCase, the fact that
clearmake uses a different build-avoidance algorithm than other make
variants may occasionally “surprise” you. This section describes several
such situations, and presents simple techniques for handling them.

Increasing clearmake’s Verbosity Level

If you don’t understand clearmake’s build-avoidance decisions, use the -v
(somewhat verbose) or -d (extremely verbose) option. Equivalently, set
environment variable CLEARCASE_BLD_VERBOSITY to 1 or 2,
respectively.

156

Chapter 10: Building with clearmake; Some Basic Pointers

Handling Temporary Changes in the Build Procedure

Typically, you do not edit a target’s build script in the makefile very often. But
you may often change the effective build script by specifying overrides for
make macros, either on the command line or in the UNIX environment. For
example, suppose target hello.o is specified as follows in the makefile.

hello.o: hello.c hello.h
 rm -f hello.o
 cc -c $(CFLAGS) hello.c

When it executes this build script, clearmake enters the effective build script,
after macro substitution, into the config rec. The command:

% clearmake hello.o CFLAGS="-g -O1"

... produces this configuration record entry:

Build script:

 cc -c -g -O1 hello.c

So would this command:

env CFLAGS="-g -O1" clearmake -e hello

The clearmake build-avoidance algorithm compares effective build scripts. If
you subsequently issue the command clearmake hello.o without specifying
CFLAGS="-g -O1", clearmake will reject the existing derived object, which
was built with those flags. The same mismatch would be caused by creating
a CFLAGS environment variable (EV) with a different value, and invoking
clearmake with the –e option.

Using a Build Options Specification (BOS) File

To manage “temporary overrides” specified with make macros and EVs,
place macro definitions in build options specification (BOS) files. There are
several mechanisms for having clearmake use a BOS file. For example, if your
makefile is named project.mk, macro definitions are automatically read from
project.mk.options. You can also keep a BOS file in your home directory, or
specify one or more BOS files with clearmake -A; see the clearmake.options
manual page for details.

Accommodating clearmake’s Build Avoidance

157

Using a BOS file to specify make macro overrides relieves you of the burden
of having to remember which options you specified last time on the
command line or in the environment. If you have not modified the BOS file
recently, derived objects in your view will not be disqualified for reuse on the
basis of build script discrepancies. Some of the sections below describe other
applications of BOS files.

Handling Targets Built in Multiple Ways

clearmake’s inclination to compare build scripts may produce undesirable
results if your build environment includes more than one way to build a
particular target. For example, there might be a test_prog_3 target in two
directories:

... in its source directory, util_src:

test_prog_3: ...
 cc -o test_prog_3 ...

... and in another nearby directory, app_src:

../util_src/test_prog_3: ...
 cd ../util_src ; cc -o test_prog_3

Derived objects built with these scripts are potentially equivalent, because
they are built at the same file name (test_prog_3) in the same VOB directory
(util_src). But by default, a build in the app_src directory will never reuse or
wink-in a DO built in the util_src directory, because build-script comparison
fails.

You can suppress build-script comparison for this target using a clearmake
special build target, either in the makefile or in an associated BOS file:

.NO_CMP_SCRIPT: ../util_src/test_prog_3

For a one-time suspension of build-script comparison, you can use clearmake
-O.

158

Chapter 10: Building with clearmake; Some Basic Pointers

Using a Recursive Invocation of clearmake

It is easy to eliminate the different-build-scripts problem described in the
preceding section. Figure 10-1 shows the recursive invocation of clearmake.

Figure 10-1 Recursive Invocation of clearmake

Now, target test_prog_3 is built the same way in both directories. You can
turn build-script comparison on again, by removing the .NO_CMP_SCRIP
special target.

Changes of this kind may cause unexpected encounters with another
clearmake build-avoidance feature, however. Whenever clearmake executes
the build script of a lower-level target, it always rebuilds all higher-level
targets that depend on it. (Many make variants are not as insistent as
clearmake in this regard.) In this example, the execution of the build script for
target ../util_src/test_prog_3 may or may not actually build a new
test_prog_3; but because clearmake has executed the build script, it will always
rebuild a higher-level target that depends on ../util_src/test_prog_3:

TESTPROGS = ../util_src/test_prog_3 ../util_src/test_prog_7
TESTDATA = test_input.1 test_input.2 test_input.3

test_output: $(TESTPROGS) $(TESTDATA)
rm test_output
../util_src/test_prog_3 test_input.1 >> test_output
../util_src/test_prog_3 test_input.2 >> test_output
../util_src/test_prog_3 test_input.3 >> test_output

../util_src/test_prog_3: ..
 cd ../util_src ; $(MAKE) test_prog_3

invoke clearmake
recursively

Accommodating clearmake’s Build Avoidance

159

Optimizing Wink-In by Avoiding Pseudo-Targets

Like other make variants, clearmake always executes the build script for a
pseudo-target, a target that does not name a file system object built by the
script. For example, in the preceding section, you might be tempted to use a
pseudo-target in the app_src directory’s makefile. Figure 10-2 provides an
example of :

Figure 10-2 Build Script Example

A build of any higher-level target that has test_prog_3 as a build dependency
will always build a new test_prog_3, which in turn triggers a rebuild of the
higher-level target. If the rebuild of test_prog_3 was not really necessary, then
the rebuild of the higher-level target may not have been necessary, either.
Such unnecessary rebuilds decrease the extent to which you can take
advantage of ClearCase’s derived object sharing capability.

Accommodating clearmake’s Different Name

The fact that the ClearCase build utility has a unique name, “clearmake”,
may conflict with existing build procedures that implement recursive builds.
Most make variants automatically define the make macro $(MAKE) to be the
name of the build program, as it was typed on the command line:

% make hello.o .. sets MAKE to “make”
% clearmake hello.o .. sets MAKE to “clearmake”
% my_make hello.o .. sets MAKE to “my_make”

This enables recursive builds to use $(MAKE) to invoke the same build
program at each level. The preceding section includes one such example;
here is another one:

SUBDIRS = lib util src
all:
for DIR in $(SUBDIRS) ; do (cd $$DIR ; $(MAKE) all) ; done

shortened from
../util_src/test_prog_3

test_prog_3: ...

 cd ../util_src ; $(MAKE) test_prog_3

160

Chapter 10: Building with clearmake; Some Basic Pointers

Executing this build script with clearmake will recursively invoke clearmake
all in each subdirectory.

Avoid “breaking” this mechanism by explicitly setting a particular build
program in the makefile, or in a BOS file:

MAKE = make

With the above setting, executing the build script above with clearmake
would recursively invoke make all (instead of clearmake all) in each
subdirectory. Presumably, this would be an error.

Continuing to Work During a Build / Reference Time

clearmake takes into account the fact that software builds are not
instantaneous. As your build progresses, other developers continue to work
on their files, and may check in new versions of elements that your build
uses. If your build takes an hour to complete, you would not want build
scripts executed early in the build to use version 6 of a header file, and scripts
executed later to use version 7 or 8.

To prevent such inconsistencies from occurring, any versions that were
checked in after the moment that clearmake was invoked are automatically
“locked out”. The moment that the clearmake build session begins is termed
the build reference time.

The same reference time is reported in each configuration record produced
during the build session, even if the session lasts hours (or days!) as shown
in Figure 10-3.

Using Config Spec ‘Time Rules’ to Increase Your View’s Isolation

161

Figure 10-3 Build Reference Time Report

When determining whether an object was created before or after the build
reference time, clearmake automatically adjusts for clock skew, the inevitable
small differences among the system clocks on different hosts. For more on
build sessions, see “Build Sessions, Subsessions, and Hierarchical Builds” on
page 185.

Caution: A build’s coordinated reference time applies to elements only,
providing isolation from “after-the-last-minute” changes to them. You are
not protected from changes to view-private objects and non-MVFS objects.
For example, if you begin a build and then change a checked-out file used in
the build, a failure may result. Thus, don’t keep working on the same project
in a view where a build is in progress.

Using Config Spec ‘Time Rules’ to Increase Your View’s Isolation

Using the reference time facility described in the preceding section, clearmake
automatically blocks out potentially incompatible source-level changes that
take place after your build begins. But sometimes, the incompatible change
has already taken place. ClearCase allows you to “roll back the clock” in
order to block out recently-created versions.

A typical ClearCase team-development strategy is to have each user in the
team work in a separate view, but to have all the views use the same config
spec. In this way, the entire team works “on the same branch”. As long as a
source file remains checked-out, its changes are isolated to a single view; but
as soon as the user checks in a new version, the entire team sees the new
version on the dedicated branch.

% cleartool catcr hello.o
Target hello.o built by drp.dvt
Host "fermi" running OSF1 V1.3 (alpha)
Reference Time 26-Feb-94.16:53:58, this audit started 26-Feb-94...

build reference time:
when overall clearmake

build session began

time at which execution
of individual build

script began

162

Chapter 10: Building with clearmake; Some Basic Pointers

This “incremental integration” strategy is often very effective — but suppose
that another user’s recently-checked-in version has caused your builds to
start failing. Through an exchange of electronic mail, you determine that the
“killer checkin” was to header file project_base.h, at 11:18 AM today. You, and
other team members, can reconfigure your views to roll back just that one
element to a “safe” version:

element project_base.h .../onyx_port/LATEST -time 5-Mar.11:00

If many interdependent files have been revised, you might roll back the clock
for all checked-in elements:

element * .../onyx_port/LATEST -time 5-Mar.11:00

For a complete description of time rules, see the config_spec manual page.

Overprecise Use of Time Rules

Your view’s view_server process interprets time rules with respect to the
create version event record written by the checkin command. The checkin is
read from the system clock on the host where the VOB resides. If that clock
is seriously out-of-sync with the clock on your host (where the view_server
runs), your attempt to roll back the clock may fail. Thus, don’t strive for
extreme precision with time rules: select a time that is well before the actual
cutoff time (for example, a full hour before, or in the middle of the night).

Inappropriate Use of Time Rules

Do not use time rules to “freeze” a view to the current time just before
starting a build. Just allow clearmake’s reference time facility to perform this
service automatically. Here’s an inappropriate use scenario:

1. You checkin version 12 of util.c at what is 7:05 PM on your host. You do
not know that clock skew on the VOB host causes the time “7:23 PM” to
be entered in the create version event record.

2. In an effort to “freeze” your view, you change your config spec to
include this rule:

element * /main/LATEST -time 19:05

Problems with ‘Forced Builds’

163

3. You issue a clearmake command right away (at 7:06 PM) to build a
program that uses util.c. When selecting a version of this element to use
in the build, your view_server consults the event history of util.c and
rejects version 12, because the “7:23PM” time stamp is too late for the
-time configuration rule.

Problems with ‘Forced Builds’

clearmake has a -u option (“unconditional”), which forces rebuilds. Using this
option reduces the efficiency of derived object sharing, however. If you
force-build

a target in a situation where clearmake would have winked-in an existing DO,
you create a new DO with same configuration as an existing one. In such
situations, a user who expects a build to share a particular existing DO may
get another, identically-configured DO instead. This may result in user
confusion and wasted disk space.

clearmake tries to minimize the problems by selecting the oldest DO in such
situations. With this strategy, most builds will tend to “stabilize” on old
objects, rather than picking up newly-built equivalent candidates.

We suggest that you use a flag-file to force a rebuild, rather than using
clearmake –u. (See “Explicitly-Declared Source Dependencies” on page 182.)

Wink-in, Permissions on Derived Objects, and clearcase_bld_umask

UNIX-level permissions on derived objects (DOs) affect the extent to which
they are sharable:

• When you perform a build, clearmake winks-in a derived object to your
view only if you have ‘read’ permission on the DO.

• clearmake will wink-in a DO to which you do not have ‘write’
permission. But “permission denied” errors may occur during a
subsequent build, when a compiler (or other build script command)
attempts to overwrite such a DO. (Removing the target before
rebuilding it is an easy, reliable workaround; but you may wish to
avoid revising your makefiles in this way.)

164

Chapter 10: Building with clearmake; Some Basic Pointers

If you and other members of your group wish to share DOs, make sure that
they are created with a mode that grants both ‘read’ and ‘write’ access to
group members. To accomplish this, you (and other group members) can use
either of the following alternatives:

• Set your umask value to 2 in your shell startup file.

• Leave a more restrictive umask value in your shell startup file. (The
value 22 is commonly used, which denies ‘write’ rights to group
members.) Instead, set environment variable
CLEARCASE_BLD_UMASK to 2. The value of this

• EV temporarily replaces your current umask value during each
invocation of clearmake.

Note: If you wish, you can set CLEARCASE_BLD_UMASK as a make
macro, instead of as an environment variable.

Don’t worry about the “safety” of your derived objects — using a
CLEARCASE_BLD_UMASK that grants ‘write’ rights to group members
does not mean that they can overwrite and destroy a derived object that you
still are using. If your DO has been winked into another view, and a user in
that view actually rebuilds the corresponding makefile target, clearmake first
“breaks the link” to your DO, and then provides an actual file in that view
for the build script to overwrite.

165

Chapter 11

11. Derived Objects and Configuration Records

This chapter is for users who wish to learn more about how clearmake
accomplishes its work, and to manipulate ClearCase’s build management
data structures.

Extended Naming Scheme for Derived Objects

In a parallel-development environment, it is likely that many DOs with the
same pathname will exist at the same time. For example, suppose that source
file msg.c is being developed on three branches concurrently, in three
different views. ClearCase builds performed in those three views produce
object modules named msg.o. Each of these is a DO, and each has the same
standard pathname, say /vobs/proj/src/msg.o.

In addition, each DO can be accessed with ClearCase extended names:

• Within each view, a standard UNIX pathname accesses the DO built in
that view. This is another example of ClearCase’s transparency feature.

msg.o (the derived object in the current view)

• You can use a view-extended pathname to access a DO in any view:

/view/drp/vobs/proj/src/msg.o
 (the derived object in view ‘drp’)

/view/R2_integ/vobs/proj/src/msg.o
 (the derived object in view ‘R2_integ’)

166

Chapter 11: Derived Objects and Configuration Records

• Each derived object is cataloged in the VOB database with a unique
identifier, it DO-ID, which references it independently of views. The
lsdo (“list derived objects”) command can list all DOs created at a
specified pathname, regardless of which views (if any) can “see” them:

% cleartool lsdo hello
07-May.16:09 akp "msg.o@@07-May.16:09.623" on neptune
06-May.12:47 akp "msg.o@@06-May.12:47.539" on neptune
01-May.21:49 akp "msg.o@@01-May.21:49.282" on neptune
03-Apr.21:40 akp "msg.o@@01-May.21:40.226" on neptune

Together, a DO’s standard name (msg.o) and its DO-ID
(07-May.16:09.623) constitute a VOB-extended pathname to that particular
derived object. (The extended naming symbol is host-specific; most
organizations use the default value, @@.)

Standard software must access a DO through a view, using a standard
pathname or view-extended pathname. You can use such names with
debuggers, profilers, rm, tar, and so on. Only ClearCase programs can
reference a DO using a VOB-extended pathname, and only the DO’s
meta-data is accessible in this way (see Figure 11-1):

Extended Naming Scheme for Derived Objects

167

Figure 11-1 Using an Extended Pathname of Derived Object

Exception: you can use a VOB-extended pathname with the winkin
command, to copy the file system data of any DO into your view. See
“Wink-In without Configuration Lookup / The ‘winkin’ Command” on
page 174.

ClearCase
commands can

use extended
pathname of

derived object

Standard
programs cannot

use extended
pathname of

derived object

% cleartool describe hello@@07-Mar.11:40.217
 created 07-Mar-94.11:40.217 by Allison K. Pak (akp.users@phobos)
 references: 1 => cobalt:/usr1/tmp/akp/tut/old.vws
% cleartool catcr hello@@07-Mar.11:40.217
Target hello built by akp.user
Host "cobalt" running SunOS 4.1.3 (sun4m)
Reference Time 07-Mar-94.11:40:41, this audit started
 07-Mar-94.11:40:46
View was cobalt:/var/tmp/akp/tut/old.vws
Initial working directory was /usr1/tmp/akp_cobalt_hw/src

MVFS objects:

/usr1/tmp/akp_cobalt_hw/src/hello@@07-Mar.11:40.217
/usr1/tmp/akp_cobalt_hw/src/hello.o@@07-Mar.11:40.213
/usr1/tmp/akp_cobalt_hw/src/util.o@@07-Mar.11:40.215

Variables and Options:

MKTUT_CC=cc

Build Script:

 cc -o hello hello.o util.o

% hello@@07-Mar.11:40.217
hello@@07-Mar.11:40.217: Command not found.

168

Chapter 11: Derived Objects and Configuration Records

More on CRs and Configuration Lookup

The following sections discuss how you can use the configuration records
with which ClearCase keeps track of builds.

Listing CRs

The catcr command displays the configuration record (CR) of a specified
derived object (DO). Figure 11-2 shows a CR, with annotations to indicate
the various kinds of information in the listing.

Figure 11-2 Kinds of Information in a Configuration Record

% cleartool catcr util.o
Target util.o built by mike.dvt
Host "proton" running OSF1 V1.3 (alpha)
Reference Time 26-Feb-94.20:41:33,
this audit started 26-Feb-94.20:41:34
View was proton:/net/proton/home/mike/mike.vws
Initial working directory was /usr/hw/src

MVFS objects:

/usr/hw/src/hello.h@@/main/2 <25-Feb-94.17:03:11>
/usr/hw/src/my.flag.file <26-Feb-94.20:21:56>
/usr/hw/src/util.c <25-Feb-94.17:02:27>
/usr/hw/src/util.o@@26-Feb.20:41.461

non-MVFS objects:

/tmp/build.notes.1 <26-Feb-94.20:31:30>

Variables and Options:

MKTUT_CC=cc

Build Script:

cc -c util.c

version of source
element, listed
with version-ID

checked-out version,
highlighted and listed with

standard pathname

DO created in
this build, listed

with DO-ID

view-private file

non-MVFS file
(pathname outside VOB),

explicitly declared as
dependency

information
from
makefile

More on CRs and Configuration Lookup

169

Some notes on Figure 11-2:

• Directory versions — By default, catcr does not list versions of the VOB
directories involved in a build. To list this information, use the -long
option:

% cleartool catcr -long util.o
 directory version /usr/hw/.@@/main/1 <25-Feb-94.16:59:31>
 directory version /usr/hw/src@@/main/3 <26-Feb-94.20:53:07>

• Declared dependencies — One of ClearCase’s principal features is the
automatic detection of source dependencies on MVFS files: versions of
elements and objects in view-private storage. In addition, a CR includes
non-MVFS objects that are explicitly declared as dependencies in the
makefile. Figure 11-2 shows one such declared dependency, on file
build.notes.1, located in the non-VOB directory /tmp.

• Listing of checked-out versions — Checked-out versions of file
elements are highlighted (for example, with boldface or reverse-video).
Checked-out versions of directory elements are listed like this:

 directory version /usr/hw/src@@/main/CHECKEDOUT <26-Feb...

When the elements are subsequently checked in, a listing of the same
configuration record shows the updated information. For example,

/usr/hw/src/util.c <25-Feb-94.17:02:27>

 ... might become ...

/usr/hw/src/util.c@@/main/4 <25-Feb-94.17:02:27>

The actual configuration record contains a ClearCase-internal identifier
for each MVFS object. After checkin converts the checked-out version
object to a “real” version, catcr changes the way it lists that object.

170

Chapter 11: Derived Objects and Configuration Records

Comparing CRs

When deciding whether or not to rebuild a target, clearmake compares one or
more CRs of existing DOs with your view’s current build configuration. You
can use the diffcr command to compare two existing CRs. This command is
a valuable diagnostic tool in a parallel development environment.

For example, suppose that a new build of a program dumps core; you have
no idea what changed from the preceding build, which ran correctly. A
comparison of the CRs might show that the culprit is a change to one header
file:

% cleartool diffcr -flat hello@@07-Mar.11:40.217 hello@@08-Mar.12:48.265

MVFS objects:

 .
 .
< First seen in target "hello.o"
< 2 /usr/hw/src/hello.h@@/main/5 <20-Mar-94.14:46:00>
> First seen in target "hello.o"
> 2 /usr/hw/src/hello.h <28-Mar-94.12:48:12>
 .
 .

To get the build working again, you could fix the header file; alternatively,
you could isolate yourself from this change by reconfiguring your view to
select the old version of the header file. (See “Using Config Spec ‘Time Rules’
to Increase Your View’s Isolation” on page 161.)

More on CRs and Configuration Lookup

171

CR Hierarchies

Makefile-based builds of large software systems are almost always
hierarchical: you explicitly request a build of a goal target; as necessary, this
recursively invokes builds of one or more levels of subtargets. Thus, a single
invocation of clearmake can involve the execution of many build scripts. Each
execution of a build script is recorded in a separate CR; the result is a CR
hierarchy that mirrors the structure of the makefile (Figure 11-3).

The catcr and diffcr commands have options for handling CR hierarchies:

• By default, these commands compare individual CRs.

• With the -recurse option, they process the entire CR hierarchy of each
specified derived object, keeping the individual CRs separate.

• With the -flat option, they combine (“flatten”) the CR hierarchy of each
specified derived object.

Some ClearCase features automatically process entire CR hierarchies. For
example, when the mklabel command attaches version labels to all versions
used to build a particular derived object (mklabel -config), it uses the entire CR
hierarchy of the specified DO. Similarly, ClearCase maintenance procedures
are careful not to “scrub” the CR associated with a deleted DO if it is a
member of the CR hierarchy of a higher-level DO.

172

Chapter 11: Derived Objects and Configuration Records

Figure 11-3 Configuration Record Hierarchy

hello

user.o

resulting CR hierarchy

msg.o

hello

libhello.a hello.o

env.o

depends on three
2nd-level targets

top-level target

depends on two
3rd-level targets

2nd-level targets

have no build
dependencies

3rd-level targets

makefile hierarchy # makefile to build ‘hello’ program

hello: hello.o msg.o libhello.a
cc -o hello -L. hello.o msg.o -lhello

hello.o
cc -c hello.c

msg.o
cc -c msg.c

libhello.a user.o env.o
ar r libhello.a user.o env.o

user.o
cc -c user.c

env.o
cc -c env.c

More on CRs and Configuration Lookup

173

An individual “parent-child” link in a CR hierarchy is established in either
of these ways:

• In a target/dependencies line — For example, the following
target/dependencies line declares derived objects hello.o, msg.o, and
libhello.a to be build dependencies of derived object hello:

hello: hello.o msg.o libhello.a
...

Accordingly, the CR for hello is the parent of the CRs for the .o files and
the .a file.

• In a build script — For example, in the following build script, derived
object libhello.a in another directory is referenced in the build script for
derived object hello:

hello: $(OBJS)
 cd ../lib ; $(MAKE) libhello.a (1)
 cc -o hello $(OBJS) ../lib/libhello.a (2)

Accordingly, the CR for hello is the parent of the CR for libhello.a. Note
that the recursive invocation of clearmake in the first line of this build
script produces a separate CR hierarchy, which is not necessarily linked
to the CR for hello. It is the reading of ../lib/libhello.a in the second line of
the build script that creates the link between the CRs of ../lib/libhello.a
and hello.

Why is Configuration Lookup Necessary?

The configuration lookup algorithm used by clearmake guarantees that your
builds in a parallel-development environment will be both correct (never
reuse an object that is not appropriate) and optimal (always reuse an existing
object that is appropriate).

At the time you enter a clearmake command, quite a few wink-in candidates
may exist. You cannot simply select the candidate most recently built,
because it might have been built in another view, using a completely
different set of source versions. Even a single-view scenario demands
configuration lookup, given the dynamic nature of views:

174

Chapter 11: Derived Objects and Configuration Records

1. Suppose that you build program hello in a view that is configured to
select the most recent version of hello.c to which the attribute QAed has
been attached with the value "Yes". This turns out to be version 12 on
the main branch.

2. A user discovers a bug in hello that the QA department did not catch.
As a result, the QA manager removes the attribute from version 12.
Now, version 9 is the most recent version with the attribute, so your
view is dynamically reconfigured to access that version.

3. You enter a clearmake hello command. Since the version of hello.c in the
view (/main/9) does not match the version in the config rec of your
current instance of hello, clearmake rebuilds the program.

A “standard” make program would have been fooled by the recent
time-modified stamp in this situation. The program hello is not out-of-date
with respect to version 12 of hello.c, so it is certainly not out-of-date with
respect to the even-older version 9. Thus, the standard make algorithm
would have declared hello up-to-date, and declined to rebuild it.

Wink-In without Configuration Lookup / The ‘winkin’
Command

clearmake is careful never to wink-in a DO that does not match your view’s
build configuration. But you can “manually” wink-in any DO to your view,
using the winkin command:

% cleartool lsdo hello
08-Mar.12:48 akp "hello@@08-Mar.12:48.265"
07-Mar.11:40 george "hello@@07-Mar.11:40.217"

% cleartool winkin hello@@07-Mar.11:40.217
Winked in derived object "hello"

% hello
Greetings, sakai-san!
Your home directory is /net/neptune/home/sakai.
It is now Tue Mar 8 12:58:30 1994.

You might wink-in an DO with the “wrong” configuration in order to run it,
to perform a byte-by-byte comparison with another DO, or to perform any
other operation that requires access to the DO’s file system data.

Management of DOs and CRs

175

Management of DOs and CRs

This section describes the ways in which ClearCase manages derived objects
and configuration records. This user-level discussion provides background
information for your day-to-day development tasks. We also mention some
administrative-level facilities, and provide cross-references to the
CASEVision/ClearCase Administration Guide.

Storage of DOs and CRs

You probably think of derived objects (DOs) simply as build targets — the
files produced by your compiler (or other translation program). But actually,
a DO consists of several parts (Figure 11-4):

Figure 11-4 Derived Object and its Configuration Record

• VOB database object — Each DO is cataloged in the VOB database,
where it is identified both by an extended name that includes both its
standard pathname (for example, /usr/hw/src/hello.c) and a unique
DO-ID (for example, 23-Feb.08:41.391).

VOB
database

VOB derived object
storage pools

data container and configuration
record stored in view

DO cataloged in VOB database

1. create new derived object

viewCR
data
cont

CR
data
cont

data container and configuration
record migrate to VOB storage

2. derived object becomes shared

copymove

176

Chapter 11: Derived Objects and Configuration Records

• Data container — The “data” portion of a derived object is stored in a
standard file within a ClearCase storage area. This file is called a data
container — it contains the DO’s file system data (as opposed to its
meta-data in the VOB database).

• Configuration record — Actually, a CR is associated with a DO; it not an
intrinsic part of the DO itself. More precisely, a CR is associated with
the entire set of sibling DOs created by a particular invocation of a
particular build script.

During the lifetime of a DO, both its data container and its CR can migrate
between storage areas. When you first create a new DO in your view, its data
container and CR are both stored in your view. (The actual pathname of the
data container is probably of little concern to you; if you’re curious — or
you’re troubleshooting — you can use the mvfsstorage utility to determine its
“real” pathname. See Chapter 15,” Determining a Data Container’s
Location”, in the CASEVision/ClearCase Administration Guide.)

When you are about to perform a large build, keep in mind the fact that
derived objects are initially created in view storage. In the “worst-case”
scenario, the disk partition containing your view’s private storage area must
be able to accommodate building a new DO for every build target.
(Conversely, building a large software system might cost your view very
little disk space — if someone else recently built it using a similar
configuration of sources.)

Promotion of DOs

The first time that the DO is shared with another view — during a clearmake
build or with an explicit winkin command — the DO is promoted from view
storage to VOB storage:

• The derived object in the VOB database remains where it is — this
object never migrates.

• The data container is copied (by the promote_server utility) to one of the
VOB’s derived object storage pools.

• The CR is moved from view storage to the VOB’s database.

Management of DOs and CRs

177

Promotion allows any number of views to share derived objects without
having to communicate directly with each other. For example, a view alpha
can be “unaware” of the other views, beta and gamma, with which it shares a
derived object. The hosts on which the view storage directories are located
need not have network access to each other’s disk storage. Information on
which views are currently sharing a DO is maintained in the VOB database,
and is accessible with the lsdo command:

% cleartool lsdo -l hello.o
10-Mar-94.15:25:52 Allison K. Pak (akp.user@copper)
 create derived object "hello.o%10-Mar.15:25.213"
 references: 2 (shared)
 => copper:/var/tmp/akp/tut/old.vws
 => copper:/var/tmp/akp/tut/fix.vws

DO Reference Counts

When a new derived object is created, clearmake sets the DO’s reference count
to 1, indicating that it is visible in one view. Thereafter, each wink-in of the
DO to an additional view increments the reference count. You can also create
additional UNIX-level hard links to an existing DO, each of which also
increments the reference count.

Such additional hard links are sometimes subject to wink-in:

• If the additional hard link was created along with the original DO, in
the same build script, then a wink-in of the DO during a subsequent
clearmake build also causes a wink-in of the additional hard link.

• Additional hard links that you’ve created “manually” are not
winked-in during subsequent builds.

Decrementing the Reference Count

When a program running in any of these views overwrites or deletes a
shared derived object, the “link” is broken and the reference count is
decremented. That is, the program deletes the view’s reference to the DO; the
DO itself remains in VOB storage, safe and sound.

This occurs most often when a compiler overwrites an old build target. You
can also explicitly remove the derived object with a standard rm(1)
command, or a make clean invocation.

178

Chapter 11: Derived Objects and Configuration Records

Zero Reference Counts

It is quite common for a derived object’s reference count to become zero.
Suppose you build program hello and rebuild it a few minutes later. The
second hello overwrites the first hello, decrementing its reference count. Since
the reference count probably was 1 (no other view has winked it in), it now
becomes 0. Similarly, the reference counts of “old” DOs — even those widely
shared — eventually decrease to zero as development proceeds and new
DOs replace them.

The lsdo command ignores such DOs by default, but you can use the -zero
option to list them:

% cleartool lsdo -zero -long hello.o
 .
 .
08-Mar-94.12:47:54 Allison K. Pak (akp.user@cobalt)
 create derived object "hello.o@@08-Mar.12:47.259"
 references: 0
 .
 .

A derived object that is listed with a references: 0 annotation does not
currently appear in any view. But some or all of its information may still be
available:

• If the DO was ever promoted to VOB storage (ever shared), then its
data container is still in the VOB storage pool, and its CR is still in the
VOB database. You can use catcr and diffcr to work with the CR; you can
get to its file system data by performing a clearmake build in an
appropriately-configured view, or by using the winkin command.

• If the DO was never promoted, then its CR may be gone forever:

% cleartool catcr msg.o@@26-Feb.20:27.453
Config record data no longer available for
"msg.o@@26-Feb.20:27.453"

Management of DOs and CRs

179

Explicit Removal of DOs

Before a DO becomes shared, ClearCase makes no special effort to preserve
it. You can delete it with standard software that removes or overwrites files.
Likewise, a subsequent clearmake build in the same view may overwrite data
containers in that view. Such activity destroys the data container in
view-private storage; typically, it also destroys the associated CR, which is
also in view storage.

After a DO becomes shared, however, it can be deleted only with special
ClearCase commands. You can delete individual DOs with the rmdo
command, but be careful — it will cause errors in processes that are currently
attempting to use the deleted DO.

Derived Object Scrubbing

A zero reference count means that the derived object has been deleted,
overwritten, or rebuilt in every view that ever used it. This situation calls for
scrubbing: automatic deletion of DO-related information from the VOB. This
can include the removal of the derived object from the VOB database,
removal of its data container from a VOB storage pool (if the DO had ever
been shared), and in some cases removal of its associated CR, as well. For
more on scrubbing, see Chapter 10, “Periodic Maintenance of the Data
Repository”, in the CASEVision/ClearCase Administration Guide.

181

Chapter 12

12. Makefile Optimization

This chapter presents guidelines for makefile construction, which will help
you to make best use of clearmake.

Pathnames in Build Scripts

ClearCase extends the standard UNIX file system, allowing you to use both
view-extended and version-extended pathnames:

/view/gamma/usr/hw/src/msg.c (view-extended pathname)
msg.c@@/main/REL3 (version-extended pathname)

You can use such pathnames with <ProgramName>cleartool and with
standard operating system programs. But such names do not work in
makefile build scripts — use standard pathnames only.

Declaring Source Dependencies in Makefiles

To implement build avoidance based on files’ time-modified stamps,
standard make variants require you to declare all the source file dependencies
of each build

target. For example, object module hello.o might depend on source files hello.c
and hello.h in the same directory:

hello.o: hello.c hello.h
 rm -f hello.o
 cc -c hello.o

182

Chapter 12: Makefile Optimization

Typically, these source files depend on project-specific header files through
#include directives, perhaps nested within one another. The standard UNIX
files do not change very often, but it is a common programmer’s lament that
“it didn’t compile because someone changed the project’s header files
without telling me”.

To alleviate this problem, some organizations include every header file
dependency in their makefiles. They rely on utility programs (for example,
makedepend) to read the source files and determine the dependencies.

clearmake does not require that source-file dependencies be declared in
makefiles (but see the next section). The first time a derived object is built, its
build script is always executed — thus, the dependency declarations are
irrelevant. On rebuilds of a derived object, its configuration record provides
a complete list of source-file dependencies, including those on header files.

You can leave source-file dependency declarations in your existing makefiles,
but you need not update them as you revise the makefiles. And you need not
place source-file dependencies in new makefiles to be used with clearmake.

Note: Even though dependency declarations are not required, you may
want to include them in your makefiles, anyway. The principal reason for
doing so is portability — you may need to provide your sources to another
group (or another company) that is not using ClearCase.

Explicitly-Declared Source Dependencies

ClearCase’s automatic build auditing facility tracks only the MVFS objects
actually used in the building of a target. Sometimes, however, you may wish
to track other objects:

• the version of a compiler, which is not stored in a VOB

• the version of the operating system kernel, which is not referenced at all
during the build

• the state of a flag-file, possibly a non-MVFS file, used to force rebuilds

You can force such objects to be recorded in a build’s CR as shown in
Figure 12-1 by declaring them as dependencies of the makefile target:

Declaring Source Dependencies in Makefiles

183

Figure 12-1 Explicitly-Declared Source Dependencies

We suggest that you use view-private files as flag files, rather than using
non-MVFS files (such as /tmp/flag). In a distributed build, a view-private flag
file is guaranteed to be the same object on all hosts; there is no such
guarantee for a non-MVFS file.

As an alternative to declaring your C compiler as a build dependency, you
might place it (and other tools) in a “tools VOB”. The versions of such tools
will automatically be recorded, eliminating the need for explicit dependency
declarations. Additional issues in the auditing of build tools are discussed in
the next section.

Explicit Dependencies on ‘Searched-For’ Sources

There are situations in which clearmake’s configuration lookup algorithm
qualifies a derived object, even though an actual target rebuild would
produce a different result. Configuration lookup requires that for each object
listed in an existing CR, the current view must select the same version of that
object. It does not take into account the possibility that a target rebuild might
use a different object altogether.

For files that are accessed by explicit pathnames, this situation cannot occur.
But it can occur if a file is accessed at build time by a search through multiple
directories. For example, the following build script uses a search to locate a
library file, libprojutil.a:

hello.o: hello.c hello.h /usr/5bin/cc my.flag

 rm -f hello.o

 cc -c hello.o

optional — automatically recorded
by clearmake and MVFS, anyway

dependencies on MVFS objects required to track versions of build
tools that are not stored in VOBs

dependencies on build tools

can implement “flag-file” capability
dependencies on view-private objects

184

Chapter 12: Makefile Optimization

hello:
 cc -o hello -L /usr/project/lib -L /usr/local/lib \
 main.o util.o -lprojutil

The command clearmake hello might qualify an existing derived object built
with /usr/local/lib/libprojutil.a, even though performing a target rebuild
would now use /usr/project/lib/libprojutil.a instead.

clearmake addresses this problem in the same way as some standard make
implementations:

• You must declare the searched-for source object as an explicit
dependency in the makefile:

hello: libprojutil.a
...

You must use the VPATH macro to specify the set of directories to be
searched:

VPATH = /usr/project/lib:/usr/local/lib

Given this makefile, clearmake will use the VPATH (if any) when it performs
configuration lookup on libprojutil.a. If a candidate derived object was built
with /usr/local/lib/projutil.a, but would be built with /usr/project/lib/projutil.a in
the current view, the candidate is rejected.

Note: The VPATH macro is not used for all source dependencies listed in the
config rec. It is used only for explicitly-declared dependencies of the target.

Build Tool Dependencies. You can use this mechanism to implement
dependencies on build tools. For example, you might track the version of the
C compiler used in a build as follows:

msg.o: msg.c $(CC)
 $(CC) -c msg.c

With this makefile, either your VPATH must include the directories on your
search path (if the $(CC) value is simply “cc”), or you must use a full
pathname as the $(CC) value.

Build-Order Dependencies

185

Build-Order Dependencies

In addition to source dependencies, makefiles also contain build-order
dependencies. For example:

hello: hello.o libhello.a
 ...
libhello.a: hello_env.o hello_time.o
 ...

These dependencies are buildable objects, and thus are termed subtargets.
Executable hello must be built after its subtargets, object module hello.o and
library libhello.a, and the library must be built after its subtargets, object
modules hello_env.o and hello_time.o.

ClearCase does not automatically detect build-order dependencies; you
must include such dependencies in makefiles used with clearmake, just as
with other make variants.

Build Sessions, Subsessions, and Hierarchical Builds

Note: Throughout this section, references to “clearmake” should more
precisely be “clearmake or clearaudit”. See the clearaudit manual page for
more on non-makefile-based building of software.

The following terms are useful in describing the details of ClearCase build
auditing:

• A “top-level” invocation of clearmake starts a build session. The time at
which the build session begins becomes the build reference time for the
entire build session, as described on “Continuing to Work During a
Build / Reference Time” on page 160.

• During a build session, one or more target rebuilds typically take place.

• Each target rebuild involves the execution of one or more build scripts.
(A double-colon target can have multiple build scripts.)

• During each target rebuild, clearmake conducts a build audit.

186

Chapter 12: Makefile Optimization

Subsessions

A build session can have any number of subsessions, all of which inherit the
reference time of the build session. A subsession corresponds to a “nested
build” or “recursive make”, started when a clearmake process is invoked in
the process family of a higher-level clearmake. Examples of clearmake
invocations that start subsessions include:

• including a clearmake command in a makefile build script executed by
clearmake

• entering a clearmake command in an interactive process started by
clearaudit

A subsession begins while a higher-level session is still conducting build
audits. The subsession conducts its own build audit(s), independent of the
audits of the higher-level session — that is, the audits are not nested or
related in any way, other than that they share the same build reference time.

Versions of Elements Created During a Build Session

Any version created during a build session and selected by a LATEST config
spec rule will not be visible in that build session. For example, a build might
checkin a derived object it has created; subsequent commands in the same
build session will not “see” the checked-in version, unless it is selected by a
config spec rule that does not involve the version label LATEST.

Coordinating Reference Times of Several Builds

Different build sessions have different reference times. The “best” way to
have a series of builds share the same reference time is to structure them as
a single, hierarchical build.

Build Sessions, Subsessions, and Hierarchical Builds

187

An alternative approach is to run all the builds within the same clearaudit
session. For example, you might write a shell script, multi_make, that
includes several invocations of clearmake (along with other commands).
Running the script as follows ensures that all the clearmake builds will be
subsessions that share the same reference time:

% clearaudit -c multi_make

Objects Written at More than One Level

Undesirable results occur when the same file is written at two or more
session levels (for example, a top-level build session and a subsession): the
build audit for the higher-level session does not contain complete
information about the file system operations that affected the file. For
example:

% clearaudit -c "clearmake shuffle > logfile"

The file logfile may be written both:

• during the clearaudit build session, by the shell program invoked from
clearaudit

• during the clearmake subsession, when the clearaudit build session is
suspended

In this case, clearaudit issues this error message:

Unable to create derived object "logfile"

To work around this limitation, “postprocess” the derived object at the
higher level with a copy command:

% clearaudit -c "clearmake shuffle > log.tmp"
% cp log.tmp logfile
% rm log.tmp

No Automatic Creation of Configuration Record Hierarchy

CRs created during a build session and its subsessions are not automatically
linked into a single configuration record hierarchy. For more information,
see “CR Hierarchies” on page 171.

188

Chapter 12: Makefile Optimization

Incremental Updating of Derived Objects

The design of ClearCase’s build auditing capability makes it ideal for use with
tools that build derived objects “from scratch”. Since such newly-created
objects have no “history”, ClearCase can learn everything it needs to know
at build time. But this reliance on build-time file-system-level auditing
causes ClearCase to record incomplete information for
incrementally-updated objects, which do have a history.

From ClearCase’s perspective, incremental updating means that an object is
partially updated during the builds of multiple makefile targets, instead of
being completely generated by the build of one target. clearmake does not
incrementally update an existing CR when it builds a target. Instead:

• Each time a build script incrementally updates an object’s file system
data, clearmake writes a completely new CR, which describes only the
most recent update, not the entire build history.

• The new CR does not match the desired build configuration for any of
the other targets that incrementally update the object.

This results in a situation that is both unstable and incorrect: all
incremental-update targets will be rebuilt each time that clearmake is
invoked; when it’s done, the DO will have the correct file system data, but
its CR will not accurately describe the DO’s configuration.

Example: Building an Archive

A common incremental-update scenario in “traditional” UNIX
environments is the building of an archive (programming library) by ar(1).

 A traditional make program treats an archive as a compound object; it can
examine the time-modified stamps of the individual components (object
modules) in the archive; and it can update the archive by replacing one or
more individual object modules. Here is a simple makefile in which a special
syntax enables multiple targets to incrementally update a single archive,
libvg.a:

Incremental Updating of Derived Objects

189

libvg.a:: libvg.a(base.o)
libvg.a:: libvg.a(in.o)
libvg.a:: libvg.a(out.o)

If you edit one of the library’s sources (for example, out.c); a “traditional”
make program uses the special syntax and a .c.a built-in rule to update the
library as follows:

• It looks inside the archive libvg.a, and determines that it includes an
out.o that is older than its source file.

• It compiles a new out.o from out.c.

• It uses ar to incrementally update libvg.a, replacing the old instance of
object module out.o with the newly-built instance.

clearmake does not implement this algorithm, and includes no support for
treating an archive as a compound object. ClearCase build-avoidance is
based solely on meta-data (CRs), not on any analysis at the file-system-data
level. clearmake interprets the above makefile as follows

• It considers all the libvg.a(...) dependencies to be multiple instances of
the same “double-colon” build target.

• Accordingly, whenever one of those “double-colon” targets requires
rebuilding, it rebuilds them all, using the standard .c.a built-in rule.
This effectively rebuilds the entire archive libvg.a from scratch.

Thus, clearmake accepts the standard incremental-update syntax, but
interprets it in a way that produces a non-incremental build procedure.

Remedies for the Incremental-Update Problem

Some makefile restructuring can ameliorate the situation described above.
Often, a restructured build procedure can take advantage of wink-in to
compensate for the loss of incremental updating. For example, you might
revise the procedure for building the archive libvg.a (discussed in the
preceding section) to dispense with the special ar-informed syntax:

190

Chapter 12: Makefile Optimization

libvega.a: base.o in.o out.o
 ar rv libvega.a base.o in.o out.o
base.o:
 cc -c base.c

in.o:
 cc -c in.c

out.o:
 cc -c out.c

Object modules built by this makefile are standard, sharable derived objects;
typically, as they libraries sources stabilize over time, most builds of target
libvega.a will reuse or wink-in most of the object modules.

Avoid the following restructuring; it will cause a complete rebuild of the
archive each time any object module is updated:

base.o: base.c
 cc -c base.c
 ar rv libvg.a base.o
 .
 . and so on

Additional Incremental-Update Situations

You may encounter incremental updating in other situations, as well. For
example, C++ compilers that support parameterized types (templates) often
update type map files incrementally as different targets are built. ClearCase
includes special makefile rules that store per-target type map files.

Ada compilers often update certain common files in Ada libraries
incrementally, as different compilation units are built. There are no current
clearmake workarounds to implement per-target CRs for Ada libraries. To
produce a CR for an Ada library, you can perform a complete rebuild of the
library from its sources in a single clearaudit session.

Build Auditing and Background Processes

191

Build Auditing and Background Processes

The ClearCase build programs — clearmake, clearaudit, and abe — all use the
same procedure to produce configuration records:

1. Sends a request to the host’s multiversion file system (MVFS), initiating
build auditing.

2. Invoke one or more child processes (typically, shell processes), in which
makefile build scripts or other commands are executed.

3. Turn off MVFS building auditing.

4. If all the subprocesses have indicated success by returning a zero exit
status, and at least one MVFS file has been created, compute and store
one or more configuration records.

Any subprocesses of the child processes invoked in Step #2 inherit the same
MVFS build audit. (Recursive invocations of ClearCase build programs
conduct their own, independent audits — see <Emphasis>Build Sessions,
Subsessions, and Hierarchical Builds on page 185.)

A problem can occur if a build script (or other audited command) invokes a
background subprocess, and exits without waiting for it to complete. The
build program has no knowledge of the background process; it may proceed
to Steps #3 and #4 before the background process has finished its work. In
such situations, ClearCase cannot guarantee what portion, if any, of the
actions of background commands will be reflected in the resulting CR — it
depends on system scheduling and timing behavior. Thus, you should
strictly avoid using background processes in audited build scripts.

193

Chapter 13

13. Setting Up a Distributed Build

This chapter describes the process of setting up and running builds that use
several hosts in the local area network. Included are descriptions of both the
“client-side” and the “server-side” control mechanisms.

Overview of Distributed Building

ClearCase can perform distributed builds, in which multiple hosts around the
local area network execute the build scripts associated with makefile targets.
This feature can provide a significant performance improvement — instead
of using a single processor to perform the work, one build script at a time,
you can have 5, 10, or 20 processors work in parallel. With large software
systems, this performance improvement can make a critical difference — for
example, enabling the entire application to be built each night.

You start a distributed build in much the same way as a single-host build: by
entering a clearmake command. A command-line option or environment
variable setting causes the build to “go distributed”.

A distributed build is controlled by specifications on all the hosts involved:

• Client-side controls — The host where you enter the clearmake
command is the “build client” or “build controller”. On this host, you
specify such information as the set of hosts to be used for building and
the number of build scripts to be executed concurrently.

• Server-side controls — Each “build server” host used in a distributed
build can have an access-control file. A build client must meet the
access-control requirements in order to use the host as a build server.

194

Chapter 13: Setting Up a Distributed Build

The Audited Build Executor (abe)

To dispatch a build script, clearmake uses the standard UNIX “remote shell”
facility to start an Audited Build Executor (abe) process, set to the current
view, on a build host. A build script runs under abe control much as if it were
being executed by clearmake — the typical result is the creation of a set of
derived objects and an associated configuration record. abe collects terminal
output produced by the build script, and sends it back to the build controller,
where it appears in your clearmake window.

Figure 13-1 illustrates the ClearCase distributed build architecture. The
following section presents a simple step-by-step procedure for setting up
both the client and server sides of a distributed build.

Overview of Distributed Building

195

Figure 13-1 ClearCase Distributed Build Architecture

abe

host on which clearmake is
invoked, starting a
distributed build

build client

bldserver.control bldserver.control

bldhost.XXX

bldserver.control

view

hosts that perform actual
target rebuilds, dispatched

from the build client

build servers

environment variable
clearcase_bld_host_type

determines name of
build hosts file

all derived
objects are built
in a single view

clearmake

abe

abe

196

Chapter 13: Setting Up a Distributed Build

Client-Side Setup

No special setup is required for the client host itself where you enter the
clearmake command. Rather, you must set up one or more build hosts files in
your home directory. Each such file must have a name that begins with
“.bldhost”. Choose a file name suffix for each build hosts file that describes
its intended use. For example:

.bldhost.sun5 list of hosts used to build SunOS 5 binaries

.bldhost.day list of hosts used to perform distributed builds during the
work day

.bldhost.night list of hosts used to perform overnight distributed builds

Depending on your build environment, you may or may not need multiple
build hosts files. In a heterogeneous network, for example,
architecture-specific builds may or may not need to be performed on hosts
of that architecture. (You may have cross-compilers, which eliminates this
restriction.)

When you start a distributed build, clearmake selects a particular build hosts
file using an environment variable — even if you have only one such file. See
“Starting a Distributed Build” on page 198.

You might set up two build hosts files, for daytime and nighttime use, as
follows:

1. Create a build hosts file for daytime use — For daytime builds, you
might use the list of hosts that your system administrator has provided
in /usr/local/lib, along with your own host. To minimize the disruption
to other work, you might specify that each host is to be used only if it is
not heavily loaded: at least 75% idle.

% cat > $HOME/.bldhost.day
-idle 75
neptune
#include /usr/local/lib/day_builds
<ctrl-d>

Server-Side Setup

197

2. Create a build hosts file for overnight use — For overnight builds, you
might use another list of hosts provided by the system administrator.

% cat > $HOME/.bldhost.night
#include /usr/local/lib/night_builds
<ctrl-d>

Since this file does not include a -idle specification, clearmake will default
to using a host only if it at least 50% idle.

For details on build hosts files, see the bldhosts manual page.

Server-Side Setup

Each build server host can have a bldserver.control file, which controls its
usage for distributed builds. This file can impose such restrictions as limiting
who can use the host for distributed builds, and specifying when it can be
used for this purpose. If a build server host has no such file, it will accept all
distributed build requests. The bldserver.control manual page describes the
details of this mechanism.

Here’s how you might set up a build server host that is used both for your
group’s daytime builds and its overnight builds:

1. Create a bldserver.control file — Each line of the bldserver.control file
defines a situation in which it will accept distributed build requests.

% cat > /usr/adm/atria/config/bldserver.control
-time 08:30,19:30 -idle 60 (1)
-time 19:30,05:30 (2)
-user bldmeister (3)
<ctrl-d>

Line 1 specifies that during the interval between 8:30am and 7:30pm,
this host will honor a distributed request when it is at least 60% idle.
Line 2 specifies that during the interval between 7:30pm and 5:30am,
this host will honor any distributed request, no matter how busy it is.
Line 3 specifies that a distributed build request from a clearmake
invoked by user bldmeister will always be honored.

198

Chapter 13: Setting Up a Distributed Build

2. Protect the bldserver.control file — Make sure that your access-control
settings can’t be deleted or altered:

% chmod 444 /usr/adm/atria/config/bldserver.control

Handling of the Idleness Threshold

Note that the idleness threshold can be specified with -idle settings on both the
client and server sides. If there is a conflict, the overall principle is that the
build server host is the “master of its own fate”. Examples:

• A clearmake process is searching for hosts that are at least 50% idle (the
default). A build server that would appear to qualify because it is 70%
idle will not be used if its bldserver.control file includes an -idle 75
specification.

• A bldserver.control file on a build server host permits access, because
–idle 60 is specified on a host that is currently 75% idle. But clearmake
does not dispatch a build script to this host, because the build hosts file
specifies an even higher threshold, -idle 80.

Starting a Distributed Build

To start a distributed build, you must set an environment variable, then
invoke clearmake with the appropriate option:

1. Set the clearcase_bld_conc variable — The value of this variable
determines the name of the build hosts file in your home directory:

clearcase_bld_conc value Name of build hosts file

sun5 .bldhost.sun5

SUN5 .bldhost.SUN5

day .bldhost.day

night .bldhost.night

Starting a Distributed Build

199

2. Invoke clearmake with distributed building enabled — You can use a
command-line options or an environment variable to enable distributed
building. You can start a build that uses up to five hosts concurrently in
either of these ways:

% clearmake -J 5 my_target (command-line option)
% setenv CLEARCASE_BLD_CONC 7 (environment variable)
% clearmake my_target

Setting clearcase_bld_conc in a Shell Startup Script

In some distributed build environments, you may find it convenient to have
your shell startup script set clearcase_bld_conc automatically. For example,
your group may be supporting an application on several architectures.
Building the application for a particular architecture should be as simple as
...

• ... logging in to a host of that architecture

• ... setting a view and go to the appropriate directory

• ... entering a clearmake -J command to start a distributed build

You can implement such a scheme as follows:

1. Use architecture-specific build hosts files — Each build hosts file
should have a suffix that names a target architecture: .bldhosts.hpux9,
.bldhosts.sunos5, and so on. Typically, each of these files would list hosts
of just one architecture — for example, all SunOS 5 hosts in
.bldhosts.sunos5.

2. Set clearcase_bld_conc according to the local host’s architecture —
Include a routine in your shell startup file that determines the
hardware/software architecture of the local host, and sets
clearcase_bld_conc to one of the suffix strings: hpux9, sunos5, and so on.
Here is a code fragment from C shell startup script:

200

Chapter 13: Setting Up a Distributed Build

set ARCHSTRING = "`uname -s ; uname -r`"
switch ("$ARCHSTRING")
 case "SunOS 5*":
 setenv CLEARCASE_BLD_CONC sunos5
 breaksw
 case "HP-UX 9*":
 setenv CLEARCASE_BLD_CONC hpux9
 breaksw
 ...

201

Chapter 14

14. Building Software for Multiple Architectures

This chapter addresses the challenge of using a single source tree to develop
an application for a variety of hardware/software platforms. We discuss
various approaches, contrasting their advantages and disadvantages. An
extended example incorporates some of the approaches.

Issues in Multiple-Architecture Development

The following issues arise in an environment where developers are creating
and maintaining several architecture-specific variants of an application:

• Different source code is required for different variants — Different
UNIX-based operating systems may use different functions to
implement the same task (for example, strchr(3) vs. index(3)). Likewise,
it may be necessary to include different header files for different
variants (for example, string.h vs. strings.h).

• Different build procedures are required for different variants — The
build procedures for different platforms vary. The differences might
involve such particulars as compiler locations, compiler options, and
libraries.

• Builds for different variants must be kept separate — Since there is a
single source tree, care must be taken to ensure that object modules and
executables for one architecture do not become confused with those for
other architectures. For example, the link editor must not try to create
an IRIX–5 executable using an object module that was built for
SunOS–4.

The following sections discuss and compare approaches to these issues.
There are additional issues to be addressed in situations where ClearCase
itself does not run on one of the target platforms. See Chapter 15, “Setting
Up a Build on a Non-ClearCase Host,” for a discussion of one such issue.

202

Chapter 14: Building Software for Multiple Architectures

Handling Source Code Differences

We recommend that you use the same files (that is, the same versions of file
elements) in all builds, for all platforms. You can usually achieve this goal
using the standard UNIX approach: conditional compilation using the C
preprocessor, cpp(1). If header file string.h is to be used for the architecture
whose cpp symbol is ARCH_A, and header file strings.h is to be used for
architecture ARCH_B, use this code:

#ifdef ARCH_A
#include <string.h>
#else
#ifdef ARCH_B
#include <strings.h>
#endif /* ARCH_B */
#endif /* ARCH_A */

If a file element is not amenable to conditional compilation (for example, a
bitmap image), the traditional solution is to put architecture-specific code in
different elements altogether (for example, panel.image.sparc vs.
panel.image.mc68k). This approach requires that build scripts be made
architecture-specific, too.

With ClearCase, you also have the alternative of splitting the element into
branches. The ARCH_A variant might be developed on the element’s
/main/arch_a branch; edits and builds for that variant would be performed in
a view configured with this rule:

element * /main/arch_a/LATEST

Other variants would be developed on similarly-named branches, each
using a different view, configured with a rule like the one above. In such a
situation, the element’s main branch might not be used at all.

We recommend that you use this branching strategy sparingly, because of
these disadvantages:

• Each time platform-independent code is changed on one of the
branches, you may need to merge the change to all the other branches.

• Developers must remember to set their views’ config specs in an
architecture-specific manner. In each view, only one variant of the
application can be built.

Handling Build Procedure Differences

203

Handling Build Procedure Differences

Ideally, a single file (that is, a single version of a file element) will drive all
architecture-specific builds. One way to accomplish this is to revise makefiles
as follows:

• regularize build scripts

• replace architecture-specific constructs (for example, /bin/cc) with
make-macros (for example, a $(CC) macro)

• use clearmake’s include directive to incorporate architecture-specific
settings of the make-macros

For example, suppose that source file main.c is compiled in different ways for
the SunOS–4 and IRIX–5 variants:

main.o (SunOS–4)
 /usr/5bin/cc -c -fsingle main.c

main.o: (IRIX–5)
 /usr/bin/cc -c main.c

To “merge” these two build scripts, abstract the compiler pathname and the
compiler options into make-macros, CC and CFLAGS. Then, place an
architecture-specific include at the beginning of the makefile:

include /usr/project/make_macros/$(BLD_ARCH)_macros
 .
 .
main.o:
 $(CC) -c $(CFLAGS) main.c

The files in the make_macros directory would have these contents:

CC = /usr/5bin/cc /usr/project/make_macros/sun4_macros
CFLAGS = -fsingle

CC = /usr/bin/cc /usr/project/make_macros/irix5_macros
CFLAGS =

204

Chapter 14: Building Software for Multiple Architectures

The make-macro BLD_ARCH acts as a selector between these two files. The
value of this macro might be placed in an environment variable by a shell
startup script:

setenv BLD_ARCH ‘uname -s‘

Alternatively, developers might specify the value at build time:

clearmake main BLD_ARCH="IRIX5"

Alternative Approach, Using ‘imake’

The imake utility, distributed with many UNIX variants and available
free-of-charge from MIT, provides an alternative to the scheme described in
the preceding section. The imake methodology also involves
architecture-specific make-macros, but in a different way. imake generates an
architecture-specific makefile by running cpp on an architecture-independent
template file, typically named imakefile.

A typical imakefile contains a series of cpp macros, each of which expands to
a build target line and its corresponding multiline build script. Typically, the
expansion itself is architecture-independent:

MakeObjectFromSrc(main) (macro in ‘imakefile’)

 (expansion in actual makefile)
main.o: $(SRC)/main.c
 $(CC) -c $(CFLAGS) $(SRC)/main.c

Segregating the Derived Objects of Different Variants

205

imake places architecture-specific make-macro settings at the top of the
generated makefile. For example:

SRC = ..
CC = /usr/5bin/cc
CFLAGS = -fsingle
RM = rm -f

An idiosyncrasy of imake usage is that makefiles are derived objects, not
source files. The architecture-independent template file (imakefile) is the
source file, and should maintained as a ClearCase element.

Segregating the Derived Objects of Different Variants

It is essential to keep derived objects (object modules, executables) built for
different architectures separate. This section describes two approaches,
though others are possible.

Approach 1: Use Architecture-Specific Subdirectories

Each variant of an application can be built in its own subdirectory of the
source directory. For example, if executable monet’s source files are located in
directory /usr/monet/src, then the variants might be built in subdirectories
/usr/monet/src/sun4, /usr/monet/src/irix5, and so on. It is simplest to have the
makefile create view-private subdirectories for this purpose. But if you wish
to use different derived object storage pools for the different variants, you
must create the sudirectories as elements (mkdir command) and then adjust
their storage pool assignments (chpool command).

Since the derived objects for the different variants are built at different
pathnames (for example, /usr/monet/src/sun4/main.o), they are guaranteed to
be segregated by variant, and clearmake will never wink-in an object built for
another architecture.

206

Chapter 14: Building Software for Multiple Architectures

This approach has several advantages:

• All variants of the application can be built in a single view.

• It eliminates the burden of having to consider whether wink-in should
be suppressed for some or all targets.

• Since the derived objects for different variants have different
pathnames, it is easier to organize multiple-architecture releases.

But this approach may have the disadvantage of requiring build script
changes: the binaries for a build are no longer in the source directory, but in
a subdirectory. Note, however, that the build script in
<Emphasis>Alternative Approach, Using ‘imake’ on page 204 is structured
for just this situation:

main.o: $(SRC)/main.c
 .
 .

Approach 2: Use Different Views

Perform builds for different platforms in different views (sun4_bld_vu,
irix_bld_vu, and so on). A group of developers working on the same variant
can share a view, or each can work in his or her own architecture-specific
view.

In most cases, the build script that creates a derived object varies from
variant to variant, as discussed in “Handling Build Procedure Differences”
on page 203. If so, clearmake automatically prevents wink-in of derived
objects built for another architecture. If this is not the case, force the build
script to be architecture-specific by including a well-chosen message or
comment. For example, if BLD_ARCH is used as described the “Handling
Build Procedure Differences” on page 203 section, you might include this
message:

@echo "Building $@ for $(BLD_ARCH)"

This approach has the disadvantage that when an element is checked out,
the developer can build only one variant of the application. Since the
checked-out version is visible only in one view, builds of other variants
(which take place in other views) do not “see” the checked-out version. The
developer must checkin the element before building other variants.

Multiple-Architecture Example, Using ‘imake’

207

Another disadvantage of this approach is a “combinatoric explosion” — if
seven developers all wish to maintain their own views in which to build four
variants, 28 views are required.

Multiple-Architecture Example, Using ‘imake’

The remainder of this chapter presents an example of multiple-architecture
development. This example uses imake to support building in
architecture-specific subdirectories.

Scenario

We will show how to set up multiple-architecture development in the
/proj/monet/src directory. A developer will be able to perform a build for a
particular architecture as follows:

1. She logs into a machine of the desired architecture — for example, a
workstation running SunOS 4.1.3.

2. In her regular view, she goes to the source directory, /proj/monet/src, and
enters a command to have imake generate a Makefile.

3. She enters the command clearmake Makefiles to have imake create the
appropriate Makefile in the architecture-specific subdirectory sun4. Note
that the Makefile is a derived object, not a source file. Thus, there is no
need to create an element from this file.

4. She goes to the sun4 subdirectory, and then builds software for that
architecture, using clearmake.

The sections below describe the way in which imake is involved in each of
these steps.

208

Chapter 14: Building Software for Multiple Architectures

Defining Architecture-Specific CPP Macros

Step #1 places the developer in an environment where the C preprocessor,
cpp, defines one or more architecture-specific symbols. On an SunOS–4 host,
cpp defines the symbols sun and sparc. This, in turn, causes imake to generate
many architecture-specific (“machine-dependent”) cpp macros (See
Figure 14-1):

Figure 14-1 Defining Architecture-Specific CPP Macros

Additional Sun-specific cpp macros are read in from the auxiliary file sun.cf.

imake defines
longer symbols

‘sparc’ defined by
 C preprocessor

‘sun’ defined by
 C preprocessor #ifdef sun

#undef sun
#define SunArchitecture
#ifdef mc68020
 .
 .
#endif
#ifdef sparc
#undef SUN4
#undef sun4
#define MachineDep SUN4
#define machinedep sun4
#endif
 .
 .

Multiple-Architecture Example, Using ‘imake’

209

Creating Makefiles in the Source and Build Directories

A file named Imakefile in the source directory is the imake input file. This file
drives the creation of Makefiles both in the source directory itself, and in the
architecture-specific subdirectories where software is actually built:

#ifndef InMachineDepSubdir
 .
 <code to generate Makefile in source directory>
 .
#else
 .
 <code to generate Makefile in an architecture-specific
subdirectory>
 .
#endif

The Imakefile code used in the source directory simply defines a symbol to
record the fact that builds will not take place in this directory:

#define IHaveMachineDepSubdirs

The resulting Makefile generated by imake includes a Makefiles target that
populates an architecture-specific subdirectory with its own Makefile:

Makefiles::
 @echo "Making Makefiles in $(CURRENT_DIR)/$$CPU"
 -@if [! -d $$CPU]; then \
 mkdir $$CPU; \
 chmod g+w $$CPU; \
 else exit 0; fi
 @$(IMAKE_CMD) -s $$CPU/Makefile \
 -DInMachineDepSubdir \
 -DTOPDIR=$(TOP) -DCURDIR=$(CURRENT_DIR)/$$CPU

Note: CPU environment variable determines name of architecture-specific
subdirectory

The command clearmake Makefiles invokes imake once again, using the same
Imakefile for input. This time, however, the symbol InMachineDepSubdir is
defined, causing the actual build code to be generated.

210

Chapter 14: Building Software for Multiple Architectures

The Imakefile in /proj/monet/src contains these macros:

OBJS = cmd.o main.o opt.o prs.o
LOCAL_LIBRARIES = ../../lib/libpub/libpub.a

MakeObjectFromSrc(cmd)
MakeObjectFromSrc(main)
MakeObjectFromSrc(opt)
MakeObjectFromSrc(prs)

ComplexProgramTarget(monet)

The resulting Makefile generated in the build directory, /proj/monet/src/sun4,
includes this build script:

$(AOUT): $(OBJS) $(LOCAL_LIBRARIES)
 @echo "linking $@"
 -@if [! -w $@]; then $(RM) $@; else exit 0; fi
 $(CC) -o $@ $(OBJS) $(LOCAL_LIBRARIES) \
 $(LDFLAGS) $(EXTRA_LOAD_FLAGS)

211

Chapter 15

15. Setting Up a Build on a
Non-ClearCase Host

This chapter describes a technique that creates configuration records for a
build that involves ClearCase data, but is performed on a non-ClearCase
host. Non-ClearCase access (exporting a VOB through a view) makes the data
available to that host; a remote shell is invoked to perform the build on that
host.

Scenario

Suppose you wish to build library libpub.a for an architecture that is not
currently supported by ClearCase, using a host of that architecture named
titan. The VOB storage area for the library’s sources is located at
/vobstore/libpub.vbs on host sol. This VOB is also mounted on sol, at
/proj/libpub.

Setting Up an Export View

A ClearCase export view allows limited access to one or more VOBs using
standard NFS export facilities. Each NFS export provides remote access to
one VOB through a particular view:

• The VOB itself cannot be modified through the export view: versions
cannot be checked out or checked in; CRs cannot be created.

• Builds can be performed in the VOB through the export view; building
creates view-private objects, however, not derived objects.

Several VOBs can be exported through the same view, with separate NFS
exports. The exports_ccase manual page provides a detailed discussion of this
subject.

212

Chapter 15: Setting Up a Build on a Non-ClearCase Host

Note: Export views are only to be used for non-ClearCase access to VOBs.
To make a view accessible on a remote host, just use the startview or setview
command on that host. An export view can be mounted on a ClearCase host
— but never try to mount it on the viewroot directory, /view.

The following steps enable the non-ClearCase host to access the libpub VOB.
As discussed in “Setting Up an Export View for Non-ClearCase Access”, of the
CASEVision™/ClearCase Administration Guide, we will avoid a “multihop”
situation by co-locating the VOB storage area, the VOB mount point, and the
view storage area on the same host.

1. Create a view through which the libpub VOB will be exported. This
view must reside the same host as the VOB storage area (host sol).

% cleartool mkview -tag libpub_expvu /public/export.vws
Comments for "/public/export.vws":
export view for libpub VOB
.
Created view "/public/export.vws".

2. Export the mount point of the VOB (/proj/libpub) through the export
view (/view/libpub_expvu). The exact procedure varies from system to
system — see exports_ccase for details. For example, on a SunOS-4 host:

• Edit the ClearCase-specific exports table:

% su
Password: <enter root password>
vi /etc/exports.mvfs

 <add export entry>

/view/libpub_expvu/proj/libpub -access:titan

• Invoke export_mvfs to actually perform the export:

/usr/etc/export_mvfs /view/libpub_expvu/proj/libpub

Mounting the VOB through the Export View

213

Mounting the VOB through the Export View

On the non-ClearCase host, a standard NFS mount is performed on the
exported pathname. For example, /view/libpub_expvu/proj/libpub should be
mounted at /proj/libpub (the same location at which the VOB is mounted on
ClearCase hosts).

Revising the Build Script

Build script revisions are required to produce an audited build on a
non-ClearCase host. Thus, it makes sense to build in an architecture-specific
subdirectory, with a customized Makefile. (See Chapter 14, “Building
Software for Multiple Architectures,” for more on this subject.)

To enable creation of a CR that lists all of the build’s input files and output
files, the build script executed by <ProgramName>clearmake must:

• declare all input files as explicit dependencies — since the MVFS does
not run on the non-ClearCase host, there is no automatic detection of
source dependencies

• invoke a remote shell to perform the actual build on the non-ClearCase
host

• if the build performed by the remote shell succeeded, perform a
touch(1) of all output files from the ClearCase host — this turns the
view-private files created by the remote shell command into derived
objects.

214

Chapter 15: Setting Up a Build on a Non-ClearCase Host

A simple build script might be transformed as illustrated in Example 15-1.

Example 15-1 Build Script for Non-ClearCase Build

Native build:

OBJS = data.o errmsg.o getcwd.o lineseq.o

data.o: (no source dependencies need be declared)
 cc -c data.c
 .
 . (other object modules produced
similarly)
 .

libpub.a: $(OBJS)
ar -rc $@ $(OBJS)

Non-ClearCase build:

OBJS = data.o errmsg.o getcwd.o lineseq.o

data.o: data.c libpub.h
 (source dependencies must be declared)

rm -f $@
rsh titan 'cd /proj/libpub ; cc -c data.c'
if [-w $@]; then \
touch $@ ; \
fi

 .
 . (other object modules produced similarly)
 .

libpub.a: $(OBJS)
rm -f $@
rsh titan 'cd /proj/libpub ; ar -rc $@ $(OBJS)'
if [-w $@]; then

\touch $@ ; \
fi

The “remote shell” command (rsh in the Example 15-1) varies from system
to system

.

Performing an Audited Build in the Export View

215

The remote shell program typically exits with status 0, even if the
compilation failed. Thus, you must use some other technique for checking
the success of the build, after the remote shell returns. In the example above,
the build scripts assume that the remote build has been successful if the
target file exists and is writable.

Performing an Audited Build in the Export View

The following steps perform the desired build:

1. A developer registers and sets the export view on her own workstation,
which is a ClearCase host:

% cleartool mktag /public/export.vws libpub_expvu
% cleartool setview libpub_expvu

2. The developer builds in the normal way, on her own host:

% cd /proj/libpub
% clearmake

The script listed above specifies a particular non-ClearCase host, titan, on
which remote shells are to be executed. If there is more than one
non-ClearCase host on which builds are to be performed, you must
generalize this script.

Note: Since the remote hostname is part of the build script, wink-in of
derived objects built on the various hosts will fail, unless you make further
modifications (for example, using clearmake -O to disable build-script
checking).

217

Chapter 16

16. Adding a Timestamp to an Executable

This chapter describes simple techniques for incorporating a “version
string” and/or “timestamp” into a C-language compiled executable. This
allows anyone (for example, a customer) to determine the exact version of a
program by entering a simple shell command. The techniques described
below support:

• Using the standard UNIX what(1) command to determine the version of
an executable:

% what monet
monet R2.0 Baselevel 1
Thu Feb 11 17:33:23 EST 1993

• Adding a “what version?” command-line option to the executable
itself:

% monet -Ver
monet R2.0 Baselevel 1 (Thu Feb 11 17:33:23 EST 1993)

Once the particular version of the program is determined, you can use
ClearCase commands to find a local copy, examine its config rec, and if
appropriate, reconstruct the source configuration with which it was built.
(Presumably, the local copy is a derived object that has been checked in as a
version of an element.)

You can identify the appropriate derived object by attaching a ClearCase
attribute with the version string to the checked-in executable, or you could
simply rely on the timestamp and your ability to “what” the checked-in
executable to find it.

218

Chapter 16: Adding a Timestamp to an Executable

Creating a ‘what’ String

The what program searches for a null-terminated string that starts with a
special four-character sequence:

@(#)

To include a “what string” in a C-language executable, define a global
character-string variable. For example, these source statements would
produce the two-line what listing above:

char *version_string = "@(#)monet R2.0 Baselevel 1";
char *version_time = "@(#)Thu Feb 11 17:33:23 EST 1993;

As an alternative, you can generate the timestamp dynamically when the
monet program is linked, using this procedure:1

1. Create a new source file, version_info.c, which contains the statements
that define the “what” strings. But instead of hard-coding a date string,
use a cpp(1) macro, DATE:

In version_info.c:

char *version_string = "@(#)monet R2.0 Baselevel 1";
char *version_time = DATE;

2. Revise your makefile so that before linking the executable, it compiles
version_info.c. Use shell command substitution to dynamically
incorporate the current time into the value for the DATE macro:

SHELL = /bin/sh
OTHER_OBJS = main.o cmd_line.o (and so on)

monet: version_info.c $(OTHER_OBJS)
 cc -c -DDATE="\"@(#)‘date‘\"" version_info.c
 cc -o monet version_info.o $(OTHER_OBJS)

A rebuild of monet will also be triggered if the version_string variable is
edited manually in version_info.c.

Note: If you use clearmake to build monet, you need not declare
version_info.c as an explicit dependency.

1 The version_string could be generated dynamically, too (for example, with environment variables). But it is
more likely that the project leader would manually edit this string’s value before major builds.

Implementing a ‘-Ver’ Option

219

Implementing a ‘-Ver’ Option

You need not depend on the what command to extract version information
from your executable. Instead, you can have the program itself output the
information stored in the version_string and version_time variables. Just
revise the source module that does command-line processing to support a
“what version” option (for example, -Ver):

#include <stdio.h>

main(argc,argv)

 int argc;
 char **argv;
{
/*
 * implement -Ver option
 */
 if (argc > 1 && strcmp(argv[1],"-Ver") == 0) {
 extern char *version_string;
 extern char *version_time;
 /*
 * Print version info, skipping the "@(#)" characters
 */
 printf ("%s (%s)\n",
 &version_string[4], &version_time[4]);
 exit(0);
 }
}

221

Chapter 17

17. Compatibility between clearmake and Other
make Variants

The clearmake program has been designed for compatibility with existing
make programs, minimizing the work necessary to switch to clearmake. There
are many independently-evolving variants of make, however, which provide
different sets of extended features. clearmake does not support all the features
of all the variants, and absolute compatibility is not guaranteed.

If your makefiles use only the common extensions, they will probably work
with clearmake as-is. If you must use features that clearmake does not support,
consider using another make program in a clearaudit shell. This alternative
provides build auditing (configuration records), but does not provide build
avoidance (wink-in).

‘clearmake’ Compatibility With Standard ‘make’

In its default mode, clearmake is designed to be compatible with System V
Release 3 make(1) — “standard make”. Standard make represents a “least
common denominator” for make functionality; most other variants of make
are at least upward-compatible with standard make.

We suggest that you limit yourself to standard make functionality, since this
allows maximum portability among hardware/software platforms, and
among different variants of make on any single platform. It is also the most
complete and most fully-tested of the clearmake modes.

In its default mode, clearmake supports most standard make description file
syntax and command line options.

222

Chapter 17: Compatibility between clearmake and Other make Variants

Standard ‘make’ Description File Features Not Supported

clearmake does not support standard make inference rules for SCCS files —
special-case suffix rules using the tilde (~) character.

Standard ‘make’ Command Line Options Not Supported

The following standard make options are not supported by clearmake:

–t “touch” option. This is not supported because clearmake
configuration lookup differs significantly from standard
make’s build-avoidance algorithm, which is based on file
modification times.

–q question option

–f – reading a description file from stdin

‘clearmake’ Compatibility Modes

clearmake allows you to specify one make-compatibility mode with a
command-line option. Complete compatibility is not guaranteed — only the
features listed in the sections below are supported.

clearmake supports these make-compatibility modes:

-C sgismake emulate IRIX 4.0.1 smake (on SGI hosts)

-C sgipmake emulate IRIX 4.0.1 pmake (on SGI hosts)

-C sun emulate SunOS 4.1.x make and SunOS 5.1 (Solaris) make

-C gnu emulate Gnu make

Except where noted, descriptions of the features listed below can be found
in the manual pages for the relevant make variant on the appropriate
platform.

Supported SGI ‘smake’ Features

223

Supported SGI ‘smake’ Features

The following features are enabled when you specify -C sgismake:

• all extended macro-assignment operators:

?= assign if undefined
:= expand RHS immediately
+= append to macro
!= assign result of shell command

• all extended macro-expansion operators:

$(VAR:T)
$(VAR:S/pattern/replace/)
$(VAR:H)
$(VAR:R)
$(VAR:Mpattern)
$(VAR:E)
$(VAR:Npattern)

• most makefile conditional directives:

#if (expressions may contain ‘defined’ operator
 and ‘make’ operator)
#ifdef, #ifndef
#ifmake, #ifnmake
#else
#elif
#elifmake, #elifnmake
#elifdef, #elifndef
#endif

• makefile inclusion with search rules similar to those of cpp(1):

#include <file>
look for file in /usr/include/make

#include "file"
look for file in current directory, then in directories
specified with -I command-line options, then in
/usr/include/make

224

Chapter 17: Compatibility between clearmake and Other make Variants

• command line option –I, for use with #include statements

• aliases for internal make macros:

$(.TARGET) alias for $@
$(.PREFIX) alias for $*

$(.OODATE) alias for $?
$(.IMPSRC) alias for $<
$(.ALLSRC) alias for $>

Note: $> is not supported by standard make(1).

• smake-specific builtins file: /usr/include/make/system.mk

• inference rules with non-existent intermediates

• search paths for dependencies (.PATH and .PATH.suffix)

• deferring build script commands (“...” in build script)

• .NULL target: specifies suffix to use when target has no filename suffix

• .NOTPARALLEL target: disables parallel building

• .MAKE target: specifies that a target corresponds to a sub-make; that
target’s build script is be invoked even when -n is used

Supported SGI ‘pmake’ Features

When you specify -C sgipmake, all the SGI smake features listed above are
enabled, along with the following:

• if no target description file is specified on the command line, search for
Makefile before searching for makefile

• undefined macros in build scripts are left unexpanded

• undefined macros outside build scripts cause a fatal error

• one shell per build script (with -C sgismake, each command in the build
script is executed in a separate shell)

Supported Sun ‘make’ Features

225

Supported Sun ‘make’ Features

The following features are enabled when you specify -C sun:

• all extended macro-expansion operators:

+= append to macro
:sh= assign result of shell command

• pattern-replacement macro expansions:

$(macro:op%os=np%ns)

• shell-execution macro expansions:

$(macro:sh)

• conditional (target-dependent) macro definitions:

tgt-list := macro = value
tgt-list := macro += value

Target names must be explicit — patterns with % cannot be specified.

• special-purpose macros:

HOST_ARCH
TARGET_ARCH
HOST_MACH
TARGET_MACH

• sun-specific builtins file:

– ./default.mk or /usr/include/make/default.mk (SunOS 4.1.x)

– ./make.rules or /usr/share/lib/make/make.rules (SunOS 5.1)

• Sun pattern-matching rules:

tp%ts : dp%ds

226

Chapter 17: Compatibility between clearmake and Other make Variants

VPATH: Searches for Both Targets and Dependencies

When you specify -C sun, clearmake uses the VPATH search list (if there is
one) to look for the target if both these conditions are true:

• the target’s name is not an absolute pathname

• there is no existing file corresponding to the target’s name

For each directory in the value of VPATH, the directory path is concatenated
with the target’s name, and if there is an existing file at the resulting path,
then that file is evaluated.

This feature works whether or not clearmake uses configuration lookup (that
is, either with or without the -T or -F option). If it does use configuration
lookup, clearmake “prefers” to use a DO in the current view:

1. As always, clearmake tries to reuse the candidate DO (if any) in the
current view, built at the target’s name.

2. If such a candidate does not exist or does not qualify for reuse,
clearmake searches for a candidate in the current view, built in
directories on the VPATH.

3. If candidate with an appropriate name exists in a VPATH directory but
is rejected by the configuration lookup algorithm, clearmake proceeds
to look in the VOB database for other candidates that were built in that
same VPATH directory.

4. If no VPATH directory has any candidate with an appropriate name,
clearmake proceeds to search the VOB database for other candidates in
the directory corresponding to the target’s name.

Note: In all these cases, all the DOs on which clearmake performs
configuration lookup were built in a single directory — it traverses multiple
VPATH directories only in deciding where to begin performing
configuration lookup.

Supported ‘Gnu make’ Features

227

VPATH Substitutions in Build Scripts

The names of targets and dependencies in build scripts are replaced by their
VPATH-elaborated counterparts. If a file is found using the VPATH, then all
white-space-delimited occurrences of the file’s name in a build script are
replaced with the pathname at which the file was found. For example:

VPATH = tgtdir:depdir

bar.o : bar.c
 cc -c bar.c -o bar.o

If bar.c is found in directory depdir, and bar.o is found in directory tgtdir, and
the target must be rebuilt, then this build script will be executed:

cc -c depdir/bar.c -o tgtdir/bar.o

Supported ‘Gnu make’ Features

clearmake provides partial compatibility with Gnu make. Some Gnu make
features are supported directly by clearmake. Others are supported by
preprocessing the makefile(s) using /usr/atria/bin/Gmake, a program derived
from Gnu make.

Note: Machine-readable sources to Gmake are available. For more
information, call Atria Customer Support.

The Gmake preprocessor “elaborates” the makefile(s). This involves
evaluation of conditional expressions, static pattern rules, and macro
references (except those in build scripts). The elaborated makefile is stored
as a temporary file, used as input to clearmake, and (usually) deleted when
clearmake no longer needs it.

You can save an elaborated makefile (for example, to examine it) in either of
these ways:

• Perform the build with a clearmake -C gnu -d command. clearmake will
preserve the elaborated makefile and display its pathname.

228

Chapter 17: Compatibility between clearmake and Other make Variants

• Invoke Gmake directly, specifying -E option and redirecting standard
output. For example:

/usr/atria/bin/Gmake -E > Makefile.elab

The following features are enabled when you specify -C gnu:

• “export” statement

• extended macro-assignment operator:

:= expand RHS immediately

• macro assignment ‘override’ keyword

• pattern-replacement macro expansions:

$(macro:op%os=np%ns)

• all other extended-macro expansion operators (unless the expansion
occurs in a build script)

• function calls, except those that occur in build scripts and those that
occur on the RHS of an = macro assignment. (You can use a function
call on the RHS of a := macro assignment.)

• conditional expressions

• static pattern rules

• pattern-matching rules

BOS Files and ‘Gnu Make’ Compatibility

When you use -C gnu, clearmake does not automatically use build options
specification (BOS) files associated with the makefiles it reads. (This is due
to the fact that the makefiles are read by the Gmake preprocessor, not by
clearmake itself.) Use clearmake’s -A option or environment variable
CLEARCASE_BLD_OPTIONS_SPECS to specify the BOS files when using
Gnu make compatibility.

Compatibility Limitations

229

Compatibility Limitations

Different systems have different names for their “built-in makefiles” — for
example, system.mk versus default.mk. Using -C -sgismake on a non-IRIX
system, or -C sun on a non-SunOS system, may cause errors. You can disable
use of built-in rules with clearmake -r.

With -C sun, clearmake uses the SunOS arch(1) and mach(1) commands to set
the values of special macros (for example, HOST_ARCH and
HOST_MACH). This generates error messages on systems that do not
support these commands. You can safely ignore such messages if your build
scripts do not use the special macros. Some alternatives:

• Comment out the lines in /usr/atria/etc/sunvars.mk that define the
.CLEARMAKE_ARCH and .CLEARMAKE_MACH macros.

• Write shell scripts to implement the arch and mach commands.

231

Chapter 18

18. Customizing the Graphical Interface

This chapter contains both the guide and reference information necessary to
customize the graphical user interface.

Introduction

Group Files and Item Definitions

Customizing the graphical interface involves editing group files. A group file
(.grp) defines a set of named operations — a menu. A group file’s scope
declaration determines exactly where the menu appears in the interface —
file browser toolbar, pulldown menu, vtree browser popup menu, and so on.

Each group file entry, or item definition, defines a single menu item. These
menu items typically have names like checkout or merge, but there are no
inherent restrictions; labels and operations can be entirely unrelated to
ClearCase. You can customize any menu item to perform any operation
expressible as a shell script.

The “meat” of an item definition is a function call, command line, or shell
script (several of these can be combined in one item definition). An item
definition can also specify multi-state icon bitmaps, a menu mnemonic,
whether to execute in the background, and so on.

232

Chapter 18: Customizing the Graphical Interface

Editing the Predefined Group Files

The default, predefined group files are installed in /usr/atria/config/ui/grp.
You should not edit these files in place. It is also not advised to copy and edit
them elsewhere — they amount to “source code”; future ClearCase
enhancements and bug fixes will leave you behind.

To add your own menus, create new group files in the .grp subdirectory of
your home directory ($home/.grp:/usr/atria/config/ui/grp is the the default
group file search path). Alternatively, specify a group file search path with
the environment variable grp_path, and do your customization work in any
of its component directories. Copy to your work area the predefined group
file template /usr/atria/config/ui/grp/user.grp.template, and use it as a template
for your own work. (This template is scoped to the Fast menu, so you can use
your additions as pulldown menus or add them to the toolbar as “push
buttons”. See “Scope” on page 237 for details.)

Upcoming sections describe group file contents in detail. Look ahead to
“Customization Procedures” on page 289 for more recommendations
regarding the customization process.

Note: If you are responsible for implementing or maintaining the graphical
interface for a group of people, make your group file customizations in one
or more globally accessible directories and see that each user’s grp_path
environment variable gets set accordingly. Also, note that you can use
grp_path to control which menus are visible to which users.

How xclearcase Processes Group Files at Startup Time

The default search path for group files is $home/.grp:/usr/atria/config/ui/grp.
You can override this search path with the environment variable grp_path.
The grp_path can include any combination of directories and files.

Group File Syntax

233

When you start xclearcase, it traverses the group file search path, collects all
group files, and caches them in ASCII-sorted order. (This determines the
order in which pull-down menus appear on the menubar.) If a group file has
syntax errors, messages appear in the transcript pad, and all or part of the
group file is ignored. If xclearcase encounters more than one group file with
the same leaf name, it uses the first one found (permitting you to “eclipse” a
group file with one of your own).

Using the cached group files, xclearcase builds the menubar, toolbar, and
popup menus for various browser classes.

Group File Syntax

First, let’s look at a group file. Figure 18-1 shows a file browser and its
menus, which are defined by group files. The Basic pulldown menu is
defined by the group file basic.grp, which appears in Figure 18-2.

Figure 18-1 A File Browser and Some Menus

Fast Menu

Toolbar

Menubar

A pulldown menu defined in a group file Menu names

234

Chapter 18: Customizing the Graphical Interface

Figure 18-2 A Sample Group File, basic.grp

Although the basic.grp file and Basic menu are fictitious, they illustrate the
structure and function of group files.

Syntax Summary

You may have noticed similarities between group file syntax and that of X
window manager startup files like .mwmrc or .twmrc. As in a .mwmrc file, the
! and # characters can begin comment lines, and an unquoted, un-escaped #
in any column comments the rest of the line. The backslash (\) escape
character doubles as the line continuation character.

The file begins with a Scope definition. (Scope is described below.) Each
group file defines exactly one primary menu and names it with a RootMenu
declaration. The RootMenu declaration is followed immediately by a line
containing only an open brace character ({). Submenus, if there are any, are
named with Menu declarations.

 Scope main:pulldown

 RootMenu Basic
 {
 "checkin" %PNAME[](INVOB CHECKOUT) f.exec "cleartool checkin -nc %SELECTION()"
 "checkout" %PNAME[](INVOB NCHECKOUT) f.exec %QUOTE

cleartool checkout -c "%STRING[]
 (Checkout comment)" %SELECTION()

%QUOTE
 "toggle icon-or-text display mode" f.call "GRAPHIC"
 "describe -long" %PNAME[](INVOB) f.exec "cleartool describe -long %SELECTION()"
 "history" %PNAME[](INVOB) f.exec "cleartool lshistory %SELECTION()"
 "diff -pred" %PNAME(INVOB) f.exec "cleartool xdiff -pre %SELECTION()"
 "merge to" %PNAME(INVOB CHECKOUT) f.exec %QUOTE% cleartool xmerge -to \

%SELECTION() %PNAME[](Select versions to merge,ELEM)%QUOTE%
 }

Begin Group File’s
Root Menu

Menu
Name

End Menu Definition

Menu Item Labels

 Execution Scripts

Enable history button

 Open Brace Alone on a Line

... and when the button is pressed,
if one or more VOB
pathnames are selected...

pass the preselected pathnames to
the lshistory command.

 Preselect Clause
 Scope definition

Group File Syntax

235

Each menu item definition is a single logical text line that includes, in order:

• a label

• optional bitmap files (for toolbar items)

• an optional menu mnemonic

• an optional preselect clause

• an optional ampersand (&), to run a menu item’s command operation
in the background

• one or more f-dot functions — usually an execution string

• a “popup” help text string

The menu declaration ends with a closed brace character (}).

You may also have observed that the execution scripts, or f.exec strings, in
basic.grp contain unfamiliar uppercase keywords, prefixed with the %
character. These are ClearCase macros, inserted to perform specialized tasks,
like prompting the user for more data or redirecting output to a browser. An
input macro, like %pname, can serve two functions: (1) to prompt for
interactive input, and (2) as a preselect clause, which specifies the conditions
necessary to activate the menu item.

236

Chapter 18: Customizing the Graphical Interface

Figure 18-3 restates these rules.

Figure 18-3 Group File Syntax

Scope browserClass [, browserClass]... : menuType [, menuType]...Scope declaration

RootMenu MenuName
{

ItemDefinition
ItemDefinition

}

[Menu subMenuName
{
ItemDefinition
ItemDefinition.

}] ...

Group File Syntax

label [bitmaps] [mnemonic] [preselectClause] [&] function [f.help "text"]

f.exec %QUOTE%script%QUOTE%)

f.menu submenuName

f.separator

@unarmed [,armed [,insensitive]]

_character

%PNAME[](restrictions)
%ATTYPE[](restrictions)

%VOBTAG[](restrictions)
%VIEWTAG[](restrictions)

pulldown | popup | toolbarList
Pool

*

String
Username
Viewtag

Vob

File

Examples: Scope Vtree:toolbar
Scope File:pulldown

f.call "built-in-function"

Run in background

Off and On for

Variants:
- no brackets: select exactly one
- [] select one or more
- [n] select exactly n
- [n+] select n or more
- [n-m] select between n and m

Attype
Brtype
Eltype
Hltype
Lbtype
Trtype

Vtree

Scope *:popup
Scope Fast:pulldown

Fast

f.alias "aliasedMenuItem"

...

listBrowserClass

...

...

toggle buttons

"string"
no-label

Group File Syntax

237

The following subsections describe first the Scope and RootMenu declarations
that begin a group file, and then, the individual components of an item
definition.

Scope

Scope browserClass [, browserClass]... : menuType [, menuType]...

Each menu — pulldown, popup, or toolbar — corresponds to a .grp file. The
menu definitions (.grp files) all have the same structure and syntax, but they
have different scopes. A menu can have one of four basic scopes:

Fast:pulldown
The menu is accessible from the Fast pulldown menu on the
main panel. Menus with this scope can be duplicated (at
runtime) as a static menu of buttons below the iconic toolbar.

browserClass:pulldown
The group appears as a stand-alone pulldown menu on any
browser of class browser (file, xxtype, vtree, and so on).

browserClass:popup
The group appears as a popup menu when the user presses
rightMouse on any browser of class browser. You can scope
only one menu as any browser’s pop-up (the first one found
wins).

browserClass:toolbar
The group appears as a toolbar on any browser of class
browser. You can scope only one menu to any browser
toolbar (the first one found wins).

238

Chapter 18: Customizing the Graphical Interface

The browserClass is one of the following as shown in Figure 18-4:

Figure 18-4 browserClass Listing

The menuType is one of:

pulldown
popup
toolbar

If a menu has no scope specifier, it defaults to *:pulldown and, therefore,
appears as a pulldown menu on all browsers.

For example, the ClearCase-supplied group file file_popup.grp begins with
the following line, which defines it as the popup menu for all file browsers:

Scope File:popup

*
Fast
File
List
Pool
String
Username
Viewtag
Vob
Vtree
Attype
Brtype
Eltype
Hltype
Lbtype
Trtype
listBrowserClass

First letter can be upper-case
or lower-case

see %list, %listout macros

Group File Syntax

239

Popup and Toolbar Scopes

For any browser class, only one menu can be explicitly scoped to the toolbar
or pop-up menu. (See “Fast Menu Scope” on page 239 to learn how to create
a pull-down menu that can be appended to the toolbar.) If you choose to
replace a browser’s toolbar or pop-up menu, follow the procedure described
in “Replacing an Existing Menu” on page 290. If you depart from this
procedure, and use a group file with a different name than the standard
menu, make sure the new file name sorts ahead of the existing one; xclearcase
ASCII-sorts group files when it first reads them in.

Fast Menu Scope

The Fast scope is compatible only with menu type pulldown; Fast:popup and
Fast:toolbar scopes have no effect.

The Fast menu appears only on the file browser that comes up when you
execute xclearcase. It does not appear at all if no menu is scoped to it. If you
close the original file browser, the Fast menu is lost for the duration of the
xclearcase session (even if you start a new file browser with the Filet -> New
file browser option on another browser).

The Fast menu’s distinguishing feature is the Static menu option that is
prepended to each menu scoped there. You can set the Static menu option to
duplicate a menu as a set of “fast access” buttons below the file browser’s
iconic toolbar. (You could scope your “fast access” menu to File:toolbar, but
since only one group file can be scoped to a browser’s toolbar, the standard
iconic toolbar would be displaced.)

Typical usage — “Pick and choose” a set of commonly used menu items
from elsewhere in the interface, and collect them together as a “fast access”
menu scoped to Fast:pulldown. When constructing the “fast access” menu,
use the f.alias function to clone menu items that reside elsewhere in the
interface.

Figure 18-5, Figure 18-6, Figure 18-7, and Figure 18-8 illustrate the results of
scoping group files, respectively, to File:pulldown, File:toolbar, File:popup,
and Fast:pulldown.

240

Chapter 18: Customizing the Graphical Interface

Figure 18-5 Basic Menu Scoped to File:pulldown

Note that it is the file name, not the menu name, that determines where in
the menubar the View menu appears.

Figure 18-6 Basic Menu Scoped to File:toolbar

Group File Syntax

241

Figure 18-7 View Menu Scoped to File:popup

Figure 18-8 View Menu Scoped to Fast:pulldown

RootMenu Name

RootMenu menuName [_mnemonicChar]

For menus scoped pulldown, the RootMenu name is the character string that
actually appears in the interface. The RootMenu name has no effect on menu
location; that is determined by sorting the names of the group files
themselves (See “How xclearcase Processes Group Files at Startup Time” on
page 232.) See also “Menu Mnemonics” on page 243 for details on specifying
an optional menu mnemonic character.

242

Chapter 18: Customizing the Graphical Interface

Item Labels

label [bitmaps] [mnemonic] [preselectClause] [&] function [f.help "text"]

"label string" or no-label

Item labels are quoted character strings (labels without blanks do not require
quotes, but they are recommended for consistency). If the item is scoped to
a toolbar, and its definition includes bitmaps, then the item label is not
visible in the interface. In all other cases, this is a user-visible label for the
menu item. Use no-label to suppress a label — with f.separator, in particular.

Bitmaps

label [bitmaps] [mnemonic] [preselectClause] [&] function [f.help "text"]

@unarmedFilename[,armedFilename[,insensitiveFilename]]

You can specify bitmap icons for RootMenu menu items scoped to a toolbar.
Bitmaps for submenu items, or for items not scoped to a toolbar, are ignored.

The first two bitmaps represent the “unarmed” and “armed” (depressed)
states. These two states correspond to “off” and “on” for two-state toggle
buttons. (See the builtin function descriptions in section “f.call” on
page 247.) The third bitmap is displayed when the item is insensitive, or
“greyed out”. A toolbar button with a preselect clause needs all three
bitmaps.

Bitmaps supplied in item definitions must be stored in
/usr/atria/config/ui/bitmaps; otherwise, they must be full pathnames
(including suffixes). Do not confuse toolbar bitmaps with file browser icons,
which are managed as described in cc.icon (and in the section “Icon Display
in the File Browser” on page 292).

Group File Syntax

243

Menu Mnemonics

label [bitmaps] [mnemonic] [preselectClause] [&] function [f.help "text"]

_character

The underscore character is required; character is a single, printable
character, which must occur in the label string. The first occurrence of
character in the label string is underlined — but only if the character’s letter
case (upper or lower) matches the case in which it appears in the label string.

Menu mnemonics enable keyboard access to menus and menu items. See
Table 3-2 in Chapter 3, “Using the ClearCase Graphical User Interface,” for
a description of how menu mnemonics are used to navigate menus.

A mnemonic character has no meaning for an item or menu scoped to a
toolbar.

Preselect Clauses

label [bitmaps] [mnemonic] [preselectClause] [&] function [f.help "text"]

% dataType[preselect-count](restrictions)

The preselect clause defines the conditions necessary to activate the menu
item. The item is “greyed out” until the user selects at least one object that
satisfies the preselect clause. If there is no preselect clause, the button or
menu option is always enabled.

• A preselect clause has three parts:

• a single data type (or input macro) keyword; see “Input Macros” on
page 262 for a information on how to construct this piece of a preselect
clause.

244

Chapter 18: Customizing the Graphical Interface

• an optional “how many?” specifier, inside square brackets, which
specifies the number of applicable data items the user must preselect in
order to enable the menu item; some representative examples:

none user must preselect exactly one item

[] same as [1+]; user must preselect one or more items

[2] user must preselect two items

[2+] user must preselect two or more items

[2-4] user must preselect between two and four items,
inclusive

[0+] no preselection requirement

[0] no preselection permitted (item not enabled if any data
is selected)

• a parenthesized list of restrictions (see the restrictions arguments to the
various input macros in the section “Input Macros”). The actual
restrictions are optional; the parentheses are not.

Preselect clauses are closely linked to the %selection macro. If an item
definition includes a preselect clause, its execution script includes at least
one %selection macro, which is replaced by the preselected data at execution
time.

You cannot have the user preselect multiple data types (three pathnames and
two label types, for example). If your menu item operation requires multiple
kinds of data, or it requires data items in a particular sequence, you can get
only one type of data, or one argument, via preselection. You must use one
or more additional mechanisms to collect the remaining input; xclearcase
input macros and clearprompt exist for this purpose.

Group File Syntax

245

Background or Foreground Processing

label [bitmaps] [mnemonic] [preselectClause] [&] function [f.help "text"]

&

Include an ampersand character to have the menu operation execute in the
background. When a script executes in foreground mode (no &, the default),
the watch cursor blocks other commands until the currently executing f.exec
script (or f.call) is complete.

For backgrounded item definitions, all f.exec scripts except the last one
behave like foreground scripts. The last (or only) f.exec script runs in the
background. Any f.call functions that follow the last f.exec run in the
foreground, without waiting for the f.exec to complete.

F-dot Functions

label [bitmaps] [mnemonic] [preselectClause] [&] function [f.help "text"]

Each item definition includes at least one of the following functions in
Table 18-1.

Table 18-1 Group Item Functions

F-dot
Function

Argument Description

f.alias aliasedItem Duplicate an existing menu item.

f.call builtinCall Call a built-in function.

f.exec execString Execute the command or shell script when the
button is pressed or menu option selected.

f.separator none Insert a dividing line in the group menu.

f.menu submenuName Specify a submenu (“cascading” menu).

f.help helpString Specify help text for item.

246

Chapter 18: Customizing the Graphical Interface

Quoting — The argument to any f-dot function can be quoted with either
%QUOTE% keywords or quote characters (""). %QUOTE % keywords
permit unescaped quote characters (") to appear in the argument. See also
“Group File Processing and Macro Expansion” on page 254.

f.alias

f.alias "groupFileLeafName/menuSpecifier/itemLabel"

Duplicates an existing menu item from another group file. An “aliased” item
inherits the following characteristics from an existing menu item definition:

• preselect clause

• foreground/background execution specifier

• all f-dot functions (f.calls, f.execs, f.menu, f.help, f.title, f.alias)

 example as shown in Figure 18-9 (from file_popup.grp)

Figure 18-9 f.alias Example

Note: The menu name root in the second example. Use root if the menu item
is defined in the target group file’s RootMenu.

You cannot override f-dot functions in the alias definition. Also, an f.alias
function cannot be combined with other f-dot functions.

group file name (leaf only) menu name item label

"Shell" _S f.alias "file_pulldown_A_file.grp/execute_menu/Shell"

"Open file" _O f.alias "file_pulldown_A_file.grp/root/Open file"

Group File Syntax

247

f.call

f.call "builtinFunction"

Calls one of the built-in xclearcase functions. Many of these calls toggle
browser display parameters. (See
/usr/atria/config/ui/grp/file_pulldown_G_options.grp, for example).

There are also calls to invoke or “pop up” each of the xclearcase browsers.
Others perform miscellaneous operations, like closing a browser or quitting
xclearcase.

If the builtinFunction call includes an argument with literal quotes, quote the
call with %QUOTE% keywords, instead of quote characters (").

Some of the f.call functions create two-state toggle buttons (rather than
“push buttons”) automatically. Figure 18-10 shows iconic and textual
examples of two-state toggle buttons

Figure 18-10Two-state Toggle Buttons (Iconic and Textual)

These builtin calls exist to let you position toggle buttons using the menu
scope of your choice. Note that you do not get default graphical icons if you
scope a toggle item to a toolbar; supply them in the menu item definition like
the ClearCase-supplied group files do.

A “customized toggle button” is any toggle button you create with an f.call
whose description in Table 18-3 begins “Enable/disable”. Adhere to the
following guidelines to guarantee that the state of a customized toggle
button is always predictable:

f.call "GRAPHIC" f.call "FILE_DISP_VERSION"

248

Chapter 18: Customizing the Graphical Interface

• In a single item definition, do not combine a toggle f.call with any other
f.calls or f.execs. You may be tempted to try and control multiple
parameters from a single menu item. However, because xclearcase
frequently adjusts these parameters internally in response to other user
operations, the state of a toggle button that controls multiple
parameters may become inaccurate with respect to one or more
parameters.

• Do not create two toggle buttons for the same parameter on the same
browser, as their states are likely to become confused.

Table 18-2 documents the built-in calls.

Table 18-2 Built-in Calls

Calla Descriptionb Applicable
Browsers

XXTYPE pname Bring up type browser for VOB identified by pname. all

CLOSE Close current browser. all

FILE directory-pname Bring up file browser on directory-pname. all

FILE_DISP_DATE Enable/disable size and date modified display. file

FILE_DISP_OWNER Enable/disable owner and permissions display. file

FILE_DISP_RULE Enable/disable config spec rule display. file

FILE_DISP_TYPE Enable/disable object type information display. file

FILE_DISP_VERSION Enable/disable version information display. file

FILE_SORT_BY_CHECKO
UT

Enable (disable by-rule and by-type)/disable sort-
by-checkout for file system objects in file browser.

file

FILE_SORT_BY_RULE Enable (disable by-checkout and by-type)/disable
sort-by-rule for file system objects in file browser.

file

FILE_SORT_BY_TIME Enable/disable “minor”c sort-by-time. file

FILE_SORT_BY_TYPE Enable (disable by-rule and by-checkout)/disable
sort-by-type for file system objects in file browser.

file

FORCE Force update of current browser. all

GRAPHIC Disable/enable graphic (icon) display mode. file, vtree

Group File Syntax

249

KEYBOARD Enable/disable the keyboard input box for the current
browser.

file, xxtype, pool,
VOB-tag,
view-tag

LIST_DELETE_SELECTED Delete selected items from the current list browser. list

POOL pname Bring up pool browser on VOB identified by pname. all

print
 output-pname

 [pagesize] [scale]

Send PostScript image of vtree to output-pname.
pagesize :=

 a0 | a1 | a2 | a3 | a4 | a5 | letter | legal
scale :=

SCALE_TO_PAGE | percentScalingFactor
percentScalingFactor := an integer; default = 100

vtree

QUIT Quit xclearcase. all

SETVIEW view-tag Set the process’s current working view to view-tag. all

SHOWTRANS Bring up the transcript pad. all

TYPE_DISP_ACTIVE Enable/disable display of active objects. xxtype

TYPE_DISP_LOCKED Enable/disable display of locked objects. xxtype

TYPE_DISP_OBSOLETE Enable/disable display of locked-obsolete objects. xxtype

UPDATE Update any browsers marked for update. By default,
browsers are updated when a GUI command completes,
or whenever 15 seconds elapse without any GUI activity.

all

USERNAME Bring up username browser. all

VIEWTAG Bring up view-tag browser. all

VOBTAG Bring up VOB-tag browser. all

VTREE element-pname Bring up vtree browser on element-pname. all

VTREE_DISP_ALL_LABEL Enable/disable all labels display (disabled: max=5). vtree

VTREE_DISP_ALL_VER Enable/disable display of all versions (disabled: show
“significant” versions only — branch points, labeled
versions, and hyperlink endpoints).

vtree

Table 18-2 (continued) Built-in Calls

Calla Descriptionb Applicable
Browsers

250

Chapter 18: Customizing the Graphical Interface

While xclearcase macros are most common in f.exec strings, they can appear
in f.call arguments as well. Here is a common example:

f.call "VTREE %SELECTION()"

See the sections “Group File Processing and Macro Expansion” on page 254
and “xclearcase Macros” on page 258 for details on xclearcase macros.

f.exec

f.exec %QUOTE%execString%QUOTE%

Executes a command line or command script. The argument to f.exec is an
executable command or shell script, enclosed either by double-quotes (" ") or
by %quote% keywords.

By default, /bin/sh is used. Include a first line like #!/bin/csh to specify
another shell.

In a single item definition, you can combine an f.exec script with one or more
additional f.calls and/or f.execs. However, if an f.exec script returns a
non-zero exit status, f-dot processing terminates for the current operation.

If the execString includes an argument with literal quotes, quote the
execString with %QUOTE% keywords, instead of double-quote characters
("). In general, it is highly recommended that you use %QUOTE% for
complicated scripts.

a. Arguments are required, unless enclosed in brackets ([]).

b. For two-state toggle functions, the first word in an “enable/disable” pair specifies the state that corresponds to “on” or
“armed”.

c. A “minor” sort parameter applies only to data items within the subsets created by the “major” parameters.

VTREE_DISP_CHECKOUT Enable/disable display of checked-out versions. vtree

VTREE_DISP_MERGE Enable/disable merge arrow display. vtree

Table 18-2 (continued) Built-in Calls

Calla Descriptionb Applicable
Browsers

Group File Syntax

251

Because xclearcase adds macro expansion to f.exec string processing, quoting
and character escaping are different than in ordinary scripts. For details on
macro expansion, and on using the specific macro themselves, see the
sections “Group File Processing and Macro Expansion” on page 254 and
“xclearcase Macros” on page 258.

Environment Variables. If you set the environment variable
clearcase_dbg_grp to a non-zero value, xclearcase sends debugging
information to the transcript pad when executing commands.

If they are not already set, xclearcase sets the atriahome and grp_path
environment variables to their default values when it starts up. (atriahome
defaults to /usr/atria; grp_path defaults to
$home/.grp:$atriahome/config/ui/grp.) This means you can rely on the
existence of these variables when writing scripts.

f.separator

no-label f.separator

Inserts a separator line in a menu, or breaks the horizontal run of a toolbar
button set. As for any item definition, a label is required; use the keyword
no-label instead of a quoted label string.

f.menu

f.menu submenuName

Specifies a submenu to include in the current menu or submenu (no effect for
a menu scoped to a toolbar). The submenuName specifies a menu that is
named in a Menu declaration in the same group file.

Figure 18-11 shows a “cascading” menu — the ClearCase menu, and its
submenu Checkouts. Figure 18-12 shows an abbreviated version of the
group file that defines the ClearCase menu.

252

Chapter 18: Customizing the Graphical Interface

Figure 18-11 Cascading Menu

Group File Syntax

253

Figure 18-12Group File with Cascading Menus

Note: The submenu name, referenced in the f.menu function and in the
submenu definition, is not the label that appears in the interface. As with all
item definitions, the quoted label string, Checkout Info in this case, is what the
user actually sees.

 RootMenu ClearCase
 {
 "checkin" _i %PNAME[](INVOB CHECKOUT) f.exec "cleartool checkin -nc %SELECTION()"
 "checkout" _o %PNAME[](INVOB NCHECKOUT) f.exec "cleartool checkout -c \"%STRING[] \
 (Checkout comment)\"%SELECTION()"
 "uncheckout" _u %PNAME[](INVOB CHECKOUT) f.exec "cleartool unco -rm %SELECTION()"
 xxx f.separator
 "Checkout Info" _C f.menu checkouts # checkouts submenu
 "Views" _V f.menu views # views submenu
 }

 Menu checkouts
 {
 "my local checkouts" _l f.exec "cleartool lsch -me -short -cview \
 -cview %LISTOUT(local checkouts,,PNAME)"
 "my vob checkouts" _v f.exec "cleartool lsch -me -short -all \
 -cview .%LISTOUT(vob checkouts,,PNAME)"
 "all local checkouts" _a f.exec "cleartool lsch"
 "cview checkouts" _c f.exec "cleartool lsch -cview -short . \
 %TEXTOUT"
 }

 Menu views
 {
 "cat config spec" _c f.exec "cleartool catcs"
 "start view" _s f.exec "cleartool startview %VIEWTAG()"
 "list viewtags" _l f.exec "cleartool lstags %TEXTOUT"
}

Begin Group File
Root Menu

RootMenu
Name

Submenu Definition

Menu

Submenu options can appear on
pulldown or popup submenus

Mnemonics

but not on toolbars

submenuName

254

Chapter 18: Customizing the Graphical Interface

f.help

label [bitmaps] [mnemonic] [preselectClause] [&] function [f.help "text"]

Specifies help text, which is displayed in a popup window when the user
presses rightMouse over the menu item (if it is enabled). It is good practice to
supply popup help text for all items that include f.call or f.exec functions.
There is no need to supply help for f.menu declarations; users cannot access
help text on non-command menu items.

When supplying help text, keep each line under approximately 70
characters, to prevent lines from wrapping in the default-sized “popup
help” display window.

If the helpText includes literal quotes, quote the execString with %QUOTE%
keywords, instead of quote characters (").

Group File Processing and Macro Expansion

Command script quoting and special character escaping are somewhat
different than in standard scripts due to the addition of xclearcase macros (see
also “xclearcase Macros” on page 258). Three passes are made over your
f.exec scripts, two by xclearcase and one by the unix shell:

1. When xclearcase starts up, it scans all group files to build the menu
interface.

2. When the user selects a menu item, xclearcase expands macros in the
item’s execution script. (This discussion focuses on f.exec scripts, but
applies as well to the less common f.call functions.)

3. Once xclearcase macros have been replaced with appropriate strings, the
command, or command script, is passed to the unix shell, which
performs its own substitutions and executes the commands.

If an item definition includes multiple f.exec scripts, each is evaluated and
executed separately, first to last.

The template file /usr/atria/config/ui/grp/user.grp.template illustrates many of
the quoting, character escaping, and line continuation rules described in this
section.

Group File Processing and Macro Expansion

255

Pass 1: Scan Group Files

When xclearcase starts up, it scans the group files, checks syntax, and
configures the various menus.

%quote%

The execution script syntax analysis is simplified if you use %quote%
keywords, instead of quote characters ("), to enclose your f.exec scripts.
Using %quote% eliminates the need to escape backslash characters (\\n, for
example) and quote characters (\") in scripts. Inside %quote% delimiters,
there is no escape character, and no need for one.

xclearcase Line Continuation

Recall that an item definition is a single logical line. Therefore, a newline
(<nl>) must be escaped with the backslash “line continuation character”,
unless it falls inside quotes (", ’, or %QUOTE%).

Note: Continue to use line continuation characters in execution scripts as
required by the unix shell.

The xclearcase Escape Character — %

The percent character (%) is the xclearcase macro escape character. It is used
to prefix macros, and to escape literal characters that might confuse macro
processing — % (percent character) and) (close parenthesis), in particular. If
you want a % character to appear as a literal anywhere in an item definition
(label string, prompt argument to an input macro, etc.) you must escape it,
like this: %%.

256

Chapter 18: Customizing the Graphical Interface

Pass 2: Macro Expansion.

Macro expansion — string substitution — occurs when user selects the menu
item. In the case of input macros, macro expansion includes prompting for
user input.

During this pass, xclearcase is looking for:

• the macro escape character, %, which prefixes all xclearcase macros

• after any macro keyword, the parentheses () that enclose macro
arguments

• within parentheses, the commas that separate macro arguments

If you desire that %, (, or) characters survive this pass (to appear in a macro
prompt string, for example), escape them with the % character, like this: %%
%(%).

If a macro argument includes a comma, quote the argument. (All macro
arguments are strings, though only a few require explicit quotes.)

Macros can appear anywhere within the quoted f.exec string, and they can be
nested as well. Macros are evaluated left-to-right; nested macros are
evaluated from innermost to outermost.

Pass 3: Script Execution

Once macro expansion is complete, the unix shell makes pass 3, performing
its own standard substitutions and executing the script. By default, /bin/sh is
used to execute your f.exec scripts. Include a first line like #!/bin/csh to
specify another shell.

Figure 18-13 follows an item definition through all three passes, illustrating
how the execution string and its xclearcase macros are processed.

Group File Processing and Macro Expansion

257

Figure 18-13How an Item Definition’s f.exec String is Processed

User presses the checkout button, and xclearcase prepares for script execution by expanding macros,
left to right (and innermost to outermost, for nested macros). During macro expansion, xclearcase
first encounters the %string macro, which prompts for a checkout comment. Until the user presses
Ok or Cancel (which aborts the entire operation), macro processing is suspended. Suppose the user
supplies the comment, Fix Bug 273-2. Now the command line looks like this:

Pass 1 — Scan Group File

Pass 2 — Macro Expansion

Pass 3 — Shell Script Execution

Button Definition

When you start xclearcase, it reads and caches the item label, mnemonic, pre-select clause, and
execution string, looking for syntax errors. It removes whatever kind of quotes enclose the
executaion (f.exec) string. Here is the resulting one-line execution script:

cleartool co -c "Fix Bug 273-2" \
/usr/src/file2.c

cleartool co -c "%STRING[](Checkout comment)" \
%SELECTION()

The command shell reads and executes the command normally (including handling
the line continuation character).

continue item definition

continue command

line for xclearcase

line for /bin/sh

cleartool co -c "Fix Bug 273-2" \
%SELECTION()

Moving left to right, xclearcase encounters the %selection macro. Because the button was active, we
know there was at least one pre-selected pathname satisfying the conditions %PNAME[](ELEM
NCHECKOUT). Assume the preselection was the single file /usr/src/file2.c. xclearcase
substitutes this for %selection and macro expansion is complete:

"checkout" _o %PNAME[](ELEM NCHECKOUT) \
f.exec %QUOTE

cleartool co -c "%STRING[](Checkout comment)" \
%SELECTION()
%QUOTE% \

f.help "Checkout the selected elements."

258

Chapter 18: Customizing the Graphical Interface

xclearcase Macros

We have made numerous references to xclearcase macros. This section
describes them more precisely and includes a set of tables to use as a
reference.

xclearcase macros provide a specialized but straightforward
string-replacement mechanism. The overall syntax rules follow:

• Nesting — Macros can be nested to 32 levels, which are evaluated from
innermost to outermost.

• Arguments — Character string arguments for prompts and titles need
not be enclosed in quotes:

%PNAME(Source file?,NELEM,file,ENABLE)

This example specifies as a prompt the character string “Source file?”.
Titles of browsers can be arbitrary character strings; in particular, they
can include < SPACE > characters.

Extra white space is allowed between the arguments of a macro, even
< NL > characters. Also see Figure 18-14:

Figure 18-14Character String Examples

cleartool checkin \
%PNAME[](Files to checkin,
NDIR,
file /vobs/proj1/src,)

backslash required as line-continuation character
here, because it does not occur within a macro

no line-continuation character required here,
because it does occur within a macro

xclearcase Macros

259

• Parentheses — Macro arguments must be enclosed in parentheses. If
you omit one or more arguments, you must use commas to indicate the
“null” argument(s):

%PNAME(Source file? ,NELEM,file,ENABLE)
 (Four explicit arguments)
%PNAME(Source file? ,,,ENABLE)
 (Four arguments, two of them “null”)

Even if a macro takes no arguments, you must include the parentheses:

%SELECTION() (Macro that takes no arguments)

• Square brackets — With input macros only, you can use square brackets
to collect multiple data input items. See “Input Macros” on page 262.

Table 18-3 lists all the xclearcase macros. The following sections describe the
xclearcase macros in detail.

260

Chapter 18: Customizing the Graphical Interface

Table 18-3 xclearcase Macros

Macro Brief Description

Input Macros

%ATTYPE[]()

%BRTYPE[]()

%ELTYPE[]()

%HLTYPE[]()

%LBTYPE[]()

%TRTYPE[]()

Prompt for one or more attribute types

Prompt for one or more branch types

Prompt for one or more element types

Prompt for one or more hyperlink types

Prompt for one or more label types

Prompt for one or more trigger types

%HYPERLINK[]() Prompt for one or more hyperlink objects

%LIST[]() Prompt for one or more list browser entries

%PNAME[]() Prompt for one or more pathnames

%POOL[]() Prompt for one or more VOB storage pools

%STRING[]() Prompt for one or more character strings

%USERNAME[]() Prompt for one or more user IDs

%VIEWTAG[]() Prompt for one or more view-tags

%VOBTAG[]() Prompt for one or more VOB-tags

Modifier Macros

%ELEMENT() Strip version IDs from pathnames

%ELEMSUFFIX() Add extended naming symbol (@@) to pathnames

%MOUNT() Convert VOB pathnames to VOB-tags (mount
points)

%RELATIVE() Convert names to relative pathnames

%SETVIEW() Convert pathnames to view-extended pathnames

xclearcase Macros

261

%SORT() Return sorted list of pathnames

%VERMOD() Convert pathnames to version IDs
(branch/version)

%WHICH() Return filename’s full pathname from search path

%WILD() Expand wildcard characters in a pathname
argument

Output Macros

%LISTOUT() Redirect output to a list browser

%TEXTOUT() Redirect output to a read-only text window

Memory Macros

%SAVE() Save a string in a named register for later recall

%REMOVE() Remove named register storage

%RESTORE() Restore a saved string from a named register

Miscellaneous Macros

%SELECTION() Insert pre-selected data in f.exec string

%TMPFILE() Create a file in /usr/tmp (or in $tmpdir)

%DIR() Return directory associated with current browser

%NAME() Return name associated with current browser

Table 18-3 (continued) xclearcase Macros

Macro Brief Description

262

Chapter 18: Customizing the Graphical Interface

Input Macros

Input macros collect input from the user after he or she selects the menu
item. Unlike the f.calls (vtree, file, vobtag, and so on) that launch new
browsers, an input macro displays a text string prompt, and it does not
“return” until the user selects data and presses Ok or aborts the operation
with Cancel. Although the user can “interrupt” and perform other
operations, the prompting browser waits until its original prompt is
satisfied.

An input macro’s prompt can appear in multiple browsers. For example, if
the user has two file browsers up, a %pname macro’s prompt will appear in
both, as either is capable of returning the required data. Unlike its f.call
counterpart, an input macro does not start a new browser if an appropriate
one is already displayed.

Input Macros as Preselect Clauses

Input macros, in abbreviated form, double as the preselect clauses in item
definitions. The macro tables that follow below document both uses; in
particular, they include the various restriction parameters, which apply
when composing both preselect clauses and f.exec scripts.

Input Macros and clearprompt

If your f.exec script calls a second script, which itself requires input from the
user, use clearprompt in the second script. Note that some cleartool
commands, when run from xclearcase, invoke clearprompt automatically to
get user input. For example, a checkin command in an f.exec script uses
clearprompt to collect a comment (if neither a comment nor -nc is supplied on
the command line).

xclearcase Macros

263

Input Macros and Keyboard Input

Most input macros have an optional keyboard argument, which you can use
to enable keyboard input on the prompting browser. Always supply the
ENABLE argument when the operation requires input strings that cannot, or
may not, appear on the browser. For example, when defining a “make new
directory” menu item, use ENABLE so the user can type in a new directory
name.

In addition, you may want to use ENABLE even when the user could “point
and click” from a browser; the keyboard input box lets users supply
pathnames with wildcards, instead of having to select many individual
items. In general, enable keyboard input whenever there is a chance the user
will want to type in the required data items.

Input Macros and Browsers

Each ClearCase data type has a corresponding input macro whose job it is to
prompt for that type of data as shown in Table 18-4.

Table 18-4 Data Types, Browsers, and Input Macros

Input macro Kind of data returned by macro

%PNAME() pathname

%HYPERLINK() hyperlink

%LIST() list data

%POOL() storage pool

%ATTYPE(), %BRTYPE(), %ELTYPE(),
%HLTYPE(), %LBTYPE(), %TRTYPE()

ClearCase type object

%STRING() character string

%USERNAME() UNIX username
(login name)

%VIEWTAG() view-tag

%VOBTAG() VOB-tag

264

Chapter 18: Customizing the Graphical Interface

The prompt from an input macro appears at the bottom of the browser
display and includes Ok and Cancel buttons. After Ok or Cancel,
auto-displayed browsers disappear. In general, browsers stay up when
started with an f.call function; otherwise, they come and go as needed to
satisfy the input macros in f.exec strings.

Input Macros and Brackets

By default, an input macro seeks exactly one data item, and if the user selects
more than one item, the operation fails with a Function not executed error
message in the transcript pad.Use the optional square brackets on an input
macro to collect multiple data input items. Note that the various numerical
specifiers permitted inside brackets in preselect clauses do no apply to input
macros.

Input Macros and Restrictions

If the user presses Ok, but the selected data does not satisfy the restrictions
argument of an input macro, the transcript pad displays the script and the
message Function not executed. (Note that the Ok button is not enabled until
the user selects the number of data items that satisfies the [] construct.)

xclearcase Macros

265

%ATTYPE

%ATTYPE[preselect-count](restrictions) preselector
%ATTYPE[](prompt,restrictions,pname-in-VOB, keyboard) macro

(also: %BRTYPE, %ELTYPE, %HLTYPE, %LBTYPE, %TRTYPE)

Prompt for one or more attribute, branch, element, hyperlink, label, or
trigger types (see Table 18-5 and Example 18-1.)

Example 18-1 ATTYPE

f.exec %QUOTE%
cleartool mkbranch %BRTYPE(Which branch?,,,ENABLE) %SELECTION()
%QUOTE%

Each xxtype macro invokes a corresponding type browser on a particular
VOB. Use the restrictions argument to limit the kind of data that the user can
specify:

ACTIVE Prompt for (or allow preselection of) type objects that are
not locked.

LOCK Accept only type objects that are locked.

OBSOLETE Accept only type objects that are obsolete. (See the lock
manual page.)

Table 18-5 %ATTYPE Input Macro

Argument Values Default

prompt Character string for user prompt Select xxx
type(s)

restrictions ACTIVE or LOCK or OBSOLETE any type object

pname-in-vob Pathname in any VOB VOB containing
working dir

keyboard ENABLE not enabled

266

Chapter 18: Customizing the Graphical Interface

%HYPERLINK

%HYPERLINK[preselect-count]() preselector
%HYPERLINK[](prompt,browser) macro

Prompt for one or more hyperlink objects (see Table 18-6 and Example 18-2.)

Example 18-2 HYPERLINK

f.exec %QUOTE%
cleartool rmhlink \
 %HYPERLINK[](Select merge arrows to remove:,vtree
 %SELECTION())
%QUOTE%

a. Optional; if you omit it, user is prompted to select an element

Table 18-6 %HYPERLINK Input Macro

Argument Values Default

prompt Character string for user prompt

browser vtree element-pname a

xclearcase Macros

267

%LIST

%LIST[preselect-count]() preselector
%LIST[](prompt,title) macro

Prompt for data from a named list browser (see Table 18-7 and
Example 18-3.)

Example 18-3 LIST

f.exec %QUOTE%
%SAVE(COs,%LIST[](Select items to checkin:,My Checkouts))
cleartool checkin %RESTORE(COs)
%QUOTE%

Use %list to read list data from a named list browser, to which data was
previously directed with %listout. (Only the %list macro can read the data in
a list browser, and only %listout can create one.) The title argument must
match the title used by %listout to create the list browser.

Use the %listout/%list combination when you need to display data and then
have the user select from that data. The %listout and %list macros can appear
in “back to back” f.exec scripts in the same item definition, or they can appear
in separate item definitions — even in separate group files.

A list browser prompts the user to select one or more items (line of text). For
each item, only the text preceding the first tab character is returned; any
remainder is ignored. Pressing Ok submits the selection; pressing Cancel
cancels the entire command operation. The user cannot edit the contents of
a list browser.

Table 18-7 %LIST Input Macro

Argument Values Default

prompt Character string for user prompt

title Title of list browser to use

268

Chapter 18: Customizing the Graphical Interface

%PNAME

%PNAME[preselect-count](restrictions) preselector
%PNAME[](prompt,restrictions,browser,keyboard) macro

Prompt (with file or vtree browser) for one or more pathnames (see
Table 18-8.)

In Example 18-4, the File Browser comes up in /vobs/proj1/src, not in the
current working directory.

Example 18-4 PNAME

f.exec %QUOTE%
cleartool checkin \
%PNAME[](Files to checkin,
NDIR ELEM INVOB CHECKOUT RESERVED,
file /vobs/proj1/src)
%QUOTE%

a. file — dir-pname is optional; if you omit it, current working directory is used

b. vtree — element-pname is optional; if you omit it, user is prompted to select an element

Table 18-8 %PNAME Input Macro

Argument Values Default

prompt Character string for user prompt Select
pathname(s)

restrictions DIR or NDIR

ELEM or NELEM

DOBJ or NDOBJ

INVOB or NINVOB

CHECKOUT or NCHECKOUT

RESERVED or NRESERVED

don’t care

don’t care

don’t care

don’t care

don’t care

don’t care

browser file dir-pname a

 or

vtree element-pname b

file browser
prompts for

file in current
directory

keyboard ENABLE not enabled

xclearcase Macros

269

Use the restrictions argument to limit the kind of data that the user can
specify:

dir all pathnames must be directories

ndir all pathnames must not be directories

elem all pathnames must be elements

nelem all pathnames must not be elements

dobj all pathnames must be derived objects

ndobj all pathnames must not be derived objects

invob all pathnames must be within some VOB

ninvob all pathnames must not be within any VOB

checkout all pathnames must be checked-out elements

ncheckout all pathnames must not be checked-out elements

reserved all pathnames must be elements with reserved checkouts

nreserved all pathnames must not be elements with reserved
checkouts

%POOL

%POOL[preselect-count]() preselector
%POOL[](prompt,pname-in-vob,keyboard) macro

Prompt for one or more storage pool names (see Table 18-9 and
Example 18-5.)

Example 18-5 POOL

Table 18-9 %POOL Input Macro

Argument Values Default

prompt Character string for user prompt

pname-in-vob Pathname in any VOB VOB containing
working dir

keyboard ENABLE not enabled

270

Chapter 18: Customizing the Graphical Interface

f.exec %QUOTE%
cleartool chpool %POOL(Select new pool:,,ENABLE) %SELECTION()
%QUOTE%

%STRING

%STRING[preselect-count]() preselector
%STRING[](prompt,default) macro

Prompt for one or more text lines (see Table 18-11 and Example 18-6.)

Example 18-6 STRING

f.exec %QUOTE%
TAG=’%STRING(Enter view tag name:)’
STGPNAME=’%WILD(%STRING(Enter view storage pathname:,""))’
cleartool mkview -tag $TAG $STGPNAME
%QUOTE%

Use string browsers to prompt for simple text string arguments (for
example, comments) or for other data strings— any data that cannot be
captured by the more specific data type browsers.

If the %STRING macro includes square brackets, xclearcase may prompt the
user for multiple lines of input. When the user presses Ok, the entire contents
of the string browser is returned as a single text string: the last line is
terminated with <NULL>; all other lines are terminated with <NL>.

%USERNAME

%USERNAME[preselect-count]() preselector
%USERNAME[](prompt,keyboard) macro

Table 18-10 %STRING Input Macro

Argument Values Default

prompt Character string for user prompt Enter string

default Character string; pre-fills text input area

xclearcase Macros

271

Prompt for one or more usernames (see Table 18-11 and Example 18-7.)

Example 18-7 USERNAME

f.exec %QUOTE%
cleartool lscheckout -user \
 %USERNAME(Specify a user:,ENABLE) %TEXTOUT()
%QUOTE%

%VIEWTAG

%VIEWTAG[preselect-count](restrictions) preselector
%VIEWTAG[](prompt,restrictions,keyboard) macro

Prompt for one or more view-tags (see Table 18-9 and Example 18-8.)

Example 18-8 VIEWTAG

f.exec %QUOTE%
cleartool startview %VIEWTAG()
%QUOTE%

Table 18-11 %USERNAME Input Macro

Argument Values Default

prompt Character string for user prompt Select user
name(s)

keyboard ENABLE Not enabled

Table 18-12 %VIEWTAG Input Macro

Argument Values Default

prompt Character string for user prompt Select
viewtag(s)

restrictions ACTIVE or INACTIVE Don’t care

keyboard ENABLE not enabled

272

Chapter 18: Customizing the Graphical Interface

%VOBTAG

%VOBTAG[preselect-count](restrictions) preselector

%VOBTAG[](prompt,restrictions,keyboard) macro

Prompt for one or more VOB-tags (see Table 18-9 and Example 18-9.)

Example 18-9 VOBTAG

f.exec %QUOTE%
cleartool umount %VOBTAG(,MOUNTED,ENABLE)
%QUOTE%

Note: The default xclearcase interface implements this operation differently:

%VOBTAG(MOUNTED) f.exec "cleartool umount %SELECTION()"

Table 18-13 %VOBTAG Input Macro

Argument Values Default

prompt Character string for user prompt Select vobtag(s)

restrictions MOUNTED or NMOUNTED Don’t care

keyboard ENABLE Not enabled

xclearcase Macros

273

Modifier Macros

Modifier macros take pathname arguments, perform some kind of data
manipulation (expansion, extraction, sorting, etc.), and return the resultant
text strings.

Note: Unlike input macro arguments, arguments to modifier macros are all
required.

%ELEMENT

%ELEMENT(pathnames) macro

Strip any ClearCase annotations from pathnames, leaving standard
pathname (see Table 18-11 and Example 18-10.)

Example 18-10 ELEMENT

f.exec %QUOTE%
cleartool checkin %ELEMENT(%SELECTION())
%QUOTE%

Table 18-14 %ELEMENT Modifier Macro

Argument Values

pathnames Any pathname(s) (non-element pathnames are returned
unchanges)

274

Chapter 18: Customizing the Graphical Interface

%ELEMSUFFIX

%ELEMSUFFIX(pathnames) macro

Append extended naming symbol (@@) to pathnames (see Table 18-11 and
Example 18-11.)

Example 18-11 ELEMSUFFIX

f.exec %QUOTE%
cleartool lsvtree %ELEMSUFFIX(
%ELEMENT(
%PNAME(Element whose version tree is to be listed,
INVOB ELEM)))
%QUOTE%

%MOUNT

%MOUNT(pathnames) macro

Return the VOB mount points (VOB-tags) of specified pathnames (see
Table 18-11 and Example 18-12.)

Example 18-12 MOUNT

f.exec %QUOTE
%TEXTOUT(Mount List,"No mounted VOBs specified",6,4)
echo '%MOUNT(%PNAME[](Select VOB pathname%(s%),INVOB))'
%QUOTE%

Table 18-15 %ELEMSUFFIX Modifier Macro

Argument Values

pathnames Any pathname(s) (non-element pathnames are returned
unchanges)

Table 18-16 %MOUNT Modifier Macro

Argument Values

pathnames Any pathname(s) within one or more VOBs

xclearcase Macros

275

The two parenthesis characters are escaped — %(and %) — to protect them
from the macro expansion pass.

%RELATIVE

%RELATIVE(pathnames,dir) macro

Convert full or relative pathnames into pathnames relative to directory (see
Table 18-11 and Example 18-13.)

Example 18-13 RELATIVE

f.exec %QUOTE%
#!/bin/sh
PATH=$PATH:$HOME/%RELATIVE(
%PNAME(Select a dir anywhere under your home dir),$HOME)
%QUOTE%

%SETVIEW

%SETVIEW(pathnames) macro

Table 18-17 %RELATIVE Modifier Macro

Argument Values

pathnames Any pathname(s) within one or more VOBs

dir The directory to which the converted pathnames are to be
relative

276

Chapter 18: Customizing the Graphical Interface

Convert pathnames to view-extended pathnames, based on the current set
view (see Table 18-11 and Example 18-14.)

The example invokes a text editor on the selected file.

Example 18-14 SETVIEW

f.exec %QUOTE%
%WHICH(GRP_PATH,editor.sh) %SETVIEW(%SELECTION())
%QUOTE%

Note: If the argument is already a view-extended pathname, it is unchanged
by %setview, regardless of the view-tag on which it is based.

%SORT

%SORT(pathnames) macro

Table 18-18 %SETVIEW Modifier Macro

Argument Values

pathnames Any pathname(s)

xclearcase Macros

277

Sort pathnames as shown in Table 18-11 and Example 18-15.

Example 18-15 SORT

f.exec %QUOTE%
echo '%SORT(%PNAME[]())' %TEXTOUT(Sorted Pnames,,8,4)
%QUOTE%

%VERMOD(pathnames) macro

Convert standard pathnames to version-extended pathnames (see
Table 18-11 and Example 18-16.)

Example 18-16 VERMOD

f.exec %QUOTE%
cleartool findmerge %SELECTION() -xmerge -log /dev/null \
 -whynot -fver %VERMOD(%PNAME(
Select 'from' version: ['to' %VERMOD(%SELECTION())],ELEM INVOB,
vtree %SELECTION())
) | grep -v "Needs Merge" %TEXTOUT("Merge Info",,8,2)
%QUOTE%

Table 18-19 %SORT Modifier Macro

Argument Values

pathnames Any pathname(s)

Table 18-20 %VERMOD Modifier Macro

Argument Values

pathnames Any pathname(s) (non-element pathnames are returned
unchanges)

278

Chapter 18: Customizing the Graphical Interface

%WHICH

%WHICH(path-ev,filename) macro

Search specified path for the first occurrence of filename (see Table 18-11 and
Example 18-17.)

Example 18-17 WHICH

f.exec %QUOTE%
%WHICH(GRP_PATH,editor.sh) %SETVIEW(%SELECTION())
%QUOTE%

Like the unix which(1) command, %which returns (by searching path-EV) the
full pathname of its filename argument. The %which macro exists to help
support local customizations to the ClearCase-supplied .sh scripts that are
installed in /usr/atria/config/ui/grp.

The ClearCase-supplied group files include a number of f.exec scripts that
invoke .sh files to perform specialized processing — finding and invoking
the user’s preferred text editor, for example. To customize a .sh file, first copy
it to another directory. Make sure this directory occurs in the path-EV, and
use %which to invoke your customized file.

For example, suppose you copy the file term_display.sh to $home/.grp and
customize it. If your grp_path variable is set to
$home/.grp:/usr/atria/config/ui/grp (which is the default), then the macro
%WHICH(GRP_PATH,term_display.sh) finds and executes your version.

Table 18-21 %WHICH Modifier Macro

Argument Values

path-EV Any environment variable that stores a directory search path
(typically, grp_path)

filename Any valid file name (a shell script or executable)

xclearcase Macros

279

%WILD

%WILD(pathnames) macro

Expand wildcards in pathnames (see Table 18-11 and Example 18-18.)

Example 18-18 WILD

f.exec %QUOTE%
%PNAME(%WILD(%STRING()))
%QUOTE%

Table 18-22 %WILD Modifier Macro

Argument Values

path-expr Pathname with one or more of these wildcard characters:
(“), “*”, or “?”

280

Chapter 18: Customizing the Graphical Interface

Output Macros

By default, the output generated by menu commands is collected in the
transcript pad. The %listout and %textout macros redirect standard output
to a list browser or read-only text window, respectively.

Both %textout and %listout redirect output for the entire f.exec operation,
regardless of their location in the script. Either macro “expands” to the null
string in the script; output redirection is established during the macro
expansion “pre-pass”.

%LISTOUT

%LISTOUT(title,class,persistence,width,height) macro

Redirect output to a list browser (named or unnamed) (see Table 18-11 and
Example 18-19.)

Example 18-19 LISTOUT

f.exec %QUOTE%
cleartool lsch -short . %LISTOUT(VOB Checkouts,,,6,4)
%QUOTE%

Use %listout to capture lists of pathnames or other VOB objects into a named
list browser, from which data can later be selected (see %list) and supplied
to other operations.

Table 18-23 %LISTOUT Output Macro

Argument Values Default

title Character string Enter string

class Character string class of active browser
when macro invoked

persistence TRANSIENT browser stays up until
user closes it

width 1-32 (window width in inches) 8

height 1-32 (window height in inches) 4

xclearcase Macros

281

The title argument gives the list browser a name, which %list then uses to
refer to the browser when using it to collect user input.

The optional class argument specifies a list browser class. You can scope a
group file to a list browser class (giving the class an arbitrary name: Scope
myList:toolbar, for example), thereby providing a set of menu items for the
user to choose from when such a list browser is displayed. The group file
menu appears on any list browser that %listout creates with the applicable
class argument.

List data entries are separated or terminated by <nl> or null characters.
Furthermore, within a single list entry (one line), only the text before the first
tab character is returned by %list; the rest is ignored.

By default, a list browser created with %listout stays up until the user closes
it. The TRANSIENT argument forces the list browser to close after either:

• a %list macro generates a prompt in that list browser, and the user
responds to the prompt by pressing Ok or Cancel, or

• the menu item’s command operation completes.

282

Chapter 18: Customizing the Graphical Interface

%TEXTOUT

%TEXTOUT(title,default-text,width,height) macro

Redirect standard output to read-only text-display window (see Table 18-11
and Example 18-20.)

Example 18-20 TEXTOUT

f.exec %QUOTE%
%TEXTOUT("Describe",,8,2)
cleartool lstype -attype -long %SELECTION() 2>&1"
%QUOTE%

Unlike %listout, %textout redirects the standard output of commands to an
untyped, read-only text window. Use %textout when your only objective is
to display information.

The default text argument (def-text) specifies text to be displayed if the
redirected operations generate no output.

Like %listout, %textout redirects stdout for the entire f.exec script. To redirect
both stderr and stdout for a given command, use the /bin/sh construct 2>&1.

Text Output and Terminal Emulation Windows

For comparison with list browsers, Figure 18-15 shows a sample text output
window, and Figure 18-16 shows a terminal emulation window. Neither
prompts for, or accepts, user input; they are display-only devices.

Table 18-24 %TEXTOUT Output Macro

Argument Values Default

title Title of text browser

default-text Character string

width 1-32 (window width in inches) 8

height 1-32 (window height in inches) 4

xclearcase Macros

283

Figure 18-15A Text Output Window

Figure 18-16A Terminal Emulation Window

The text output window was generated by the Describe button and the
terminal window by menu item Report ->Find query -> Whole VOB ->
Versions with Label...

You can cancel output to a terminal emulation window with <Ctrl-C>.

284

Chapter 18: Customizing the Graphical Interface

Memory Macros

Use the %save and %restore macros to mimic user-defined shell variables
inside other xclearcase macros. Because xclearcase simply expands macros
into strings (before running the execution script), you cannot use shell
variables or other shell constructs inside macros. However, in an f.exec script,
you can use %save to store and name an arbitrary string. Later in the same
script — or in a subsequent f.exec script — you can use %restore to apply the
saved string in a command line (including inside an xclearcase macro).

By default, the temporary storage is release when the f.exec script terminates.
Use the KEEP argument to retain the temporary variable until either (a) it is
released by a %remove macro, or (b) the xclearcase session terminates.

%SAVE

%SAVE(var-name,string,persistence) macro

Save string into named temporary variable (can be referenced with
%RESTORE (see Table 18-11 and Example 18-21.))

Example 18-21 SAVE

f.exec %QUOTE%
%SAVE(dir, %PNAME(Select target dir, DIR INVOB),KEEP)
 .
 .

Table 18-25 %SAVE Memory Macro

Argument Values Default

var-name Name of temporary variable Enter string

string Character string to be stored in variables

persistence KEEP variable
removed after
this f.exec
completes

xclearcase Macros

285

DIR='%RESTORE(dir)' %REMOVE(dir)
%QUOTE%

%REMOVE

%REMOVE(var-name) macro

Delete a persistent temporary variable created with %SAVE (see Table 18-11
and Example 18-22.)

Example 18-22 REMOVE

f.exec %QUOTE%
%SAVE(tmp_print_file, %TMPFILE(), KEEP)
 .
 .
%REMOVE(tmp_print_file)
%QUOTE%

Table 18-26 %REMOVE Memory Macro

Argument Values

var-name Name of temporary variable

286

Chapter 18: Customizing the Graphical Interface

%RESTORE

%RESTORE(var-name) macro

Retrieve the value of a temporary variable created with %SAVE (see
Table 18-11 and Example 18-23.)

Example 18-23 RESTORE

f.exec %QUOTE%
%SAVE(dir, %PNAME(Select target directory, DIR INVOB))
 .
 .
DIR='%RESTORE(dir)'
%QUOTE%

Table 18-27 %RESTORE Memory Macro

Argument Values

var-name Name of temporary variable

xclearcase Macros

287

Miscellaneous Macros

These macros take no arguments.

%SELECTION

%SELECTION() macro

Return the current data selection(s) from the current browser (see
Example 18-24.)

Example 18-24 SELECTION

f.exec %QUOTE%
cleartool uncheckout -rm %SELECTION()
%QUOTE%

The %selection() macro is replaced by the data that has been preselected by
the user. %selection() can appear only in items in which the f.exec strings is
preceded by an activation clause.

%DIR

%DIR() macro

Return the pathname of the current browser’s directory (see Example 18-25.)

Example 18-25 DIR

f.exec %QUOTE%
echo "Current working dir is %DIR()"
%QUOTE%

288

Chapter 18: Customizing the Graphical Interface

%NAME

%NAME()macro

Return the name associated with the current browser (see Example 18-26.)

Example 18-26 NAME

f.exec %QUOTE%
%WHICH(GRP_PATH,term_display.sh) USE_MORE \
cleartool lshistory -long %NAME()
%QUOTE%"

For a vtree browser, expands to name of the element whose vtree is
displayed. For all other browsers, expands to the current directory
pathname.

%TMPFILE

%TMPFILE() macro

Create a temporary file and return its pathname (see Example 18-27.)

Example 18-27 TMPFILE

f.exec %QUOTE%
%SAVE(tmp_print_file, %TMPFILE(), KEEP)
%QUOTE%

This example creates a temporary file in $TMPDIR (or /usr/tmp, if this EV is
not set). The full pathname of the temporary file is placed in the xclearcase
variable tmp_print_file.

Customization Procedures

289

Customization Procedures

Customization tasks fall into two general categories:

• add a new menu

• replace an existing menu

Here are the basic procedures for accomplishing each task.

Adding a New Menu

1. Copy to your work area (typically, $home/.grp) the predefined group
file template /usr/atria/config/ui/grp/user.grp.template, which is a syntax
skeleton. Rename the file to user.grp, or to some other name with a .grp
suffix.

2. Determine a scope for your new menu (Fast:pulldown,
Vtree:pulldown, or File:pulldown, for example).

The template group file defaults to Fast:pulldown scope. This positions
the new menu on the file browser’s Fast pulldown menu and,
optionally, as a set of buttons on the file browser toolbar. See “Scope”
on page 237 for more details.

3. Replace the template group file’s menu item definitions with your own.
Copy and modify an item definition from one of the
ClearCase-supplied group files (ideally, one that does some or all of the
desired operation).

Each item definition must include at least a label (or no-label) and an
f-dot function. (Most will include one or more f.exec scripts.) For a
pull-down or pop-up menu item, it is good practice to add a menu
mnemonic and, when applicable, a preselect clause. For a toolbar
button, you may wish to add bitmap icons. If your menu will be used
by others, supply f.help strings for all menu items.

Before attaching a complex script to a menu item, see “Complex
Execution Scripts”, below.

4. Restart xclearcase and test the new menu items.

290

Chapter 18: Customizing the Graphical Interface

Because the group files are read once at startup time and cached, you
must exit and restart xclearcase to activate any group file changes. In
general, a menu is ignored (it does not appear in the interface) if its
group file contains syntax errors; check the transcript pad for diagnostic
messages.

By default, /bin/sh is used to execute your f.exec scripts. Include a first
line like #!/bin/csh to specify another shell.

Note: If you set the environment variable clearcase_dbg_grp to a
non-zero value, xclearcase sends debugging information to the transcript
pad when executing commands.

Replacing an Existing Menu

1. Find the ClearCase-supplied .grp file you want to customize (typically,
to add new items) and copy it to $home/.grp, or to any directory in your
grp_path that precedes /usr/atria/config/ui/grp. Because xclearcase ignores
any group file with the same name as one already scanned in, your
copied group file now “eclipses” the standard group file.

2. Add your own item definitions.

Note: Although you are now in a position to modify the predefined
menu items, this is not advised. Such customizations are equivalent to
modifying the source code, and have the potential to leave you “out of
sync” with future ClearCase-supplied enhancements and bug fixes to
the standard group files.

3. Restart xclearcase and test each new menu item.

Complex Execution Scripts

The technique described here is recommended if you are attaching either of
the following to a menu item:

• a complex operation

• an operation that must be repeated for multiple menu items

Resource Schemes

291

Code the “meat” of the operation as a standard shell script (no ClearCase
macros), and invoke the script from an f.exec script using the %which macro.
The %which macro is described on page 278. The ClearCase-supplied group
files include numerous examples of this technique (calling the various .sh
scripts installed in /usr/atria/config/ui/grp).

For example, the following item definition includes an f.exec script that calls
print_file.sh to find a print command and then print the preselected files:

"Print" _P %PNAME[](NDIR) & \
f.exec %QUOTE%
 %WHICH(GRP_PATH,print_file.sh) %SETVIEW(%SELECTION())
 %QUOTE% \
f.help "Print the selected files."

Note: “external” scripts cannot use xclearcase macros to collect input and,
therefore, must use clearprompt or some other mechanism to do so.

Resource Schemes

ClearCase provides a number of predefined color and font combinations for
use with the graphical interface. Each predefined collection of resources is
called a scheme. See the schemes manual page for details.

Note: The scheme files commonly set specific widget class resources.
Therefore, xclearcase command line options (for example, -bg and -fg) may
not work as expected, because they set resources at the most general level.
You have the option to disable schemes, to modify them, or to set still more
specific resources.

292

Chapter 18: Customizing the Graphical Interface

Icon Display in the File Browser

A file browser can display file system objects either by-name or graphically.
In the latter case xclearcase selects an icon for each file system object as
follows:

• In a process described in the cc.magic manual page, xclearcase uses an
object’s name, and/or its contents, to compile a list of one or more file
types that correspond to the object.

• One by one, the file types are compared to the rules in predefined and
user-defined icon files, as described in the cc.icon manual page. For
example, the file type c_source matches this icon file rule:

c_source : -icon c ;

As soon as a match is found, the search ends. The token following -icon
identifies the icon’s bitmap file.

• By default, xclearcase searches first for the bitmap file (which must be in
bitmap(1) format) in the .bitmaps subdirectory of your home directory,
then in /usr/atria/config/ui/bitmaps. If the bitmap_path variable is set,
xclearcase searches the directories there instead.

• If a valid bitmap file is found, xclearcase displays it; otherwise, the
search for an icon continues with the next file type.

The name of an icon file should include a numeric suffix, which need not be
specified in the icon file rule. The suffix tells xclearcase how much screen
space to allocate for the icon. Each bitmap supplied with ClearCase is stored
in a file with a .60 suffix (for example, lib.60), indicating a 60x60 icon.

Icon Display in the File Browser

293

Enabling a Customized Icon

The following steps install a customized icon for unix-style manual page
source files.

1. Add a rule to your personal magic file ($home/.magic) that includes
manpage among the file types assigned to all manual page source files:

 manpage src_file text_file file: -name "*.[1-9]" ;

2. Add a rule to your personal icon file (in directory $home/.icon) that
maps manpage to a user-defined bitmap file:

 manpage : -icon manual_page_icon ; manpage : -icon manual_page_icon ;

3. Create a manpage icon in your personal bitmaps directory
($home/.bitmaps) by revising one of the standard icon bitmaps with the
X bitmap utility:

% mkdir $HOME/.bitmaps
% cd $HOME/.bitmaps
% cp /usr/atria/config/ui/bitmaps/c.60 manual_page_icon.60
% bitmap manual_page_icon.60

4. Test your work by having an xclearcase file browser display a manual
page source file (Figure 18-17).

Figure 18-17User-Defined Icon Display

checkin.1

lookup of file name in
magic file yields

manpage file type

lookup of manpage in icon
file yields customized
manpage_icon bitmap

clearmake.1

295

Chapter 19

19. Type Managers and Customized Processing of
File Elements

This chapter discusses several features that allow you to classify files, and
customize the way in which ClearCase manages different classes of files.
These features include:

• file types

• element types and predefined type managers

• user-defined type managers

• icons for file types

Scenario

As an example, consider the various kinds of files involved in the monet
project, discussed in several earlier chapters. Also see Table 19-1. (For
simplicity, we won’t attempt to classify all the files, just a representative
sample.)

296

Chapter 19: Type Managers and Customized Processing of File Elements

File Typing

In various contexts, ClearCase determines one or more file types for an
existing file system object, or for a name to be used for a new object:

• When a mkelem command is entered without the -eltype option, file
typing is performed on the new element’s simple file name (leaf name).

• xclearcase sometimes displays file system objects as icons. To do so, it
performs file typing on each object; then, it uses the file type to select an
icon.

The file typing routines use predefined and user-defined magic files, as
described in the cc.magic manual page. A magic file can use many different
techniques to determine a file type, including file name pattern-matching,
stat(2) data, and standard UNIX “magic numbers”.

For example, the magic file listed in Figure 19-1 specifies several file types
for each kind of file listed in Table 19-1.

Table 19-1 Files Used in ‘monet’ Project

Kind of Files Identifying Characteristics

Source Files

C-language source file .c file name suffix

C-language header file .h file name suffix

FrameMakerTM binary file <MakerFile> as “magic number”

manual page source file .1 – .9 file name suffix

Derived Files

ar(1) archive (library) .a file name suffix

compiled executable <varies with system architecture>

Element Types and Type Managers

297

Figure 19-1 Sample ‘Magic’ File

Element Types and Type Managers

ClearCase’s ability to handle different classes of files differently hinges on
the concept of element type. Each file element in a VOB must have an element
type. An element gets its type when it is created with the mkelem command;
you can change an element’s type subsequently, with the chtype command.
(An element is an instance of its element type, in the same way that an
attribute is an instance of an attribute type, and a version label is an instance
of a label type.)

Each element type has an associated type manager, a suite of programs that
handle the storage and retrieval of versions from storage pools. Thus, the
way in which a particular file element’s data is handled involves two
correspondences: (1) the file element has an element type; (2) the element
type has a type manager. Figure 19-2 shows how these facilities work
together.

Note: Each directory element also has an element type. But directory
elements do not use type managers — the contents of a directory version are
stored in the VOB database itself, not in storage pools.

c_src src_file text_file file: -name "*.c" ; (1)
hdr_file text_file file: -name "*.h" ; (2)
frm_doc doc file: -magic 0, "<MakerFile" ; (3)
manpage src_file text_file file: -name "*.[1-9]" ; (4)
archive derived_file file: -magic 32, "archive" ; (5)
sunexec derived_file file: -magic 40,"SunBin" ; (6)

298

Chapter 19: Type Managers and Customized Processing of File Elements

Figure 19-2 Data Handling: File Type, Element Type, Type Manager

list of file types
magic file(s) and

file-typing routines

name for new
file element

mkelem command
without -eltype

option

mkelem command
with -eltype

option

rule from magic file
that matches file name

use first file type in
matching rule that
names an existing

element type

use specified
element type

element type
for new

file element

list of file types
type manager for

element type

Element Types and Type Managers

299

For example, a new element named monet_adm.1 might get its element type
as follows:

1. A user enters a “create element” command:

% cleartool mkelem monet_adm.1

2. Since the user did not specify an element type (–eltype option), mkelem
uses one or more magic files to determine the file type(s) of the
specified name. Suppose that the magic file shown in Figure 19-1 is the
first (or only) one to be used. In this case, rule (4) is the first one to
match the name monet_adm.1, yielding this list of file types:

manpage src_file text_file file

3. mkelem compares this list with the set of element types defined for the
new element’s VOB. Suppose that text_file is the first file type that
names an existing element type; in this case, monet_adm.1 is created as
an element of type text_file.

4. Data storage and retrieval for versions of element monet_adm.1 will be
handled by the type manager associated with the text_file element type;
its name is text_file_delta:

% cleartool describe -type text_file
element type "text_file"
 01-Feb-93.09:11:32 by VOB administrator (vobadm.dvt@sol)
 "Predefined element type used to represent a text file."
 type manager: text_file_delta
 supertype: file
 meta-type of element: file element

Note: ClearCase supports a “search path” facility, using the environment
variable MAGIC_PATH. See the cc.magic manual page for details.

File-typing mechanisms are defined on a per-user (or per-site) basis; element
types are defined on a per-VOB basis.A new element named monet_adm.1
was created as a text_file element in this case; in a VOB with a different set
of element types, the same magic file might have caused it to be created as a
src_file element.

Note: Ensuring element-type consistency among VOBs is a manual
administrative task.

300

Chapter 19: Type Managers and Customized Processing of File Elements

Other Applications of Element Types

Element types allow differential and customized handling of files beyond
the selection of type managers discussed above. Following are some
examples.

Using Element Types to Configure a View

Creating all C-language header files as elements of type hdr_file allows
flexibility in configuring views. Suppose that one developer has been
reorganizing

all of the project’s header files, working on a branch named header_reorg to
avoid destabilizing others’ work. To compile with the new header files,
another developer can use a view reconfigured with one additional rule:

element * CHECKEDOUT
element -eltype hdr_file * /main/header_reorg/LATEST
element * /main/LATEST

Processing Files by Element Type

Suppose that a coding-standards program named check_var_names is to be
executed on each C-language source file. If all such files have element type
c_src, then a single cleartool command does the job:

% cleartool find -avobs -visible -element 'eltype(c_src)' \
 -exec 'check_var_names $CLEARCASE_PN'

Predefined and User-Defined Element Types

Some of the element types discussed in the sections above (for example,
text_file) are predefined. Others (for example, c_src and hdr_file) are not
predefined — the examples above work only if user-defined element types
with these names are created with the mkeltype command.

When a new VOB is created, it automatically gets a full set of the predefined
element types. Each one is associated with one of the type managers
provided with ClearCase. The mkeltype manual page describes the
predefined element types and their type managers.

Predefined and User-Defined Type Managers

301

When you create a new element type with mkeltype, you must specify an
existing element type as its supertype. By default, the new element type uses
the same type manager as its supertype; in this case, the only distinction
between the new and old types is for the purposes described in “Other
Applications of Element Types” on page 300. For differential data handling,
use the –manager option to create an element type that uses a different type
manager from its supertype.

Directory /usr/atria/examples/mkeltype contains shell scripts that create a
hierarchy of element types.

Predefined and User-Defined Type Managers

Just as ClearCase has predefined element types, it also has predefined type
managers. They are described in the type_manager manual page. Each type
manager is implemented as a suite of programs in a subdirectory of
/usr/atria/lib/mgrs — the name of the subdirectory is the name of the type
manager.

The mkeltype -manager command creates an element type that uses an
existing type manager. You can further customize ClearCase by creating
totally new type managers (and then creating new element types that use
them). Architecturally, type managers are mutually independent. But new
type managers can use symbolic links to “inherit” some of the functions of
existing ones.

The type_manager manual page describes the basic components of a type
manager, and outlines the process of creating a new type manager. File
/usr/atria/lib/mgrs/mgr_info.h provides comprehensive information on type
managers. We suggest that you familiarize yourself with these sources
before proceeding to the following sections, which present an extended
example of creating and using a new type manager.

302

Chapter 19: Type Managers and Customized Processing of File Elements

Type Manager for Manual Page Source Files

One kind of file listed in Table 19-1 is “manual page source file” (a file coded
in nroff(1) format). A type manager for this kind of file might have these
characteristics:

• stores all versions in compressed form in separate data containers, like
the z_whole_copy type manager

• implements version-comparison (compare method) by diff’ing
formatted manual pages instead of the source versions themselves

The basic strategy is to use most of the z_whole_copy type manager’s
methods. The compare method will use nroff(1) to format the versions before
displaying their differences.

Creating the Type Manager Directory

The name mp_mgr (“manual page file”) is appropriate for this type manager.
The first step is to create a subdirectory with this name:

mkdir /usr/atria/lib/mgrs/mp_mgr

Inheriting Methods from Another Type Manager

Most of the mp_mgr methods will be inherited from the z_whole_copy type
manager, through symbolic links. You might enter the following commands
as the root user in a Bourne shell:

MP=$ATRIAHOME/lib/mgrs/mp_mgr
for FILE in create_element create_version construct_version \

create_branch delete_branches_versions \
merge xmerge xcompare

> do
> ln -s ../z_whole_copy/$FILE $MP/$FILE
> done
#

Any methods that will not be supported by the new type manager can be
omitted from this list. The lack of a symbolic link will cause ClearCase to
generate an Unknown Manager Request error.

Type Manager for Manual Page Source Files

303

The following sections describe two of these inherited methods,
create_version and construct_version, which can serve as models for
user-defined methods. Both are actually implemented as scripts in the same
file, /usr/atria/lib/mgrs/z_whole_copy/Zmgr.

The ‘create_version’ Method

The create_version method is invoked when a checkin command is entered.
The create_version method of the z_whole_copy type manager:

• compresses the data in the checked-out version

• stores the compressed data in a data container located in a source
storage pool

• returns an exit status to the calling process, indicating what to do with
the new data container

File /usr/atria/lib/mgrs/mgr_info.h shows what arguments will be passed to
the method from the calling program (usually cleartool or xclearcase):

/**
 * create_version
 * Store the data for a new version.
 * Store the version's data in the supplied new container, combining it
 * with the predecessor's data if desired (e.g for incremental deltas).
 *
 * Command line:
 * create_version create_time new_branch_oid new_ver_oid new_ver_num
 * new_container_pname pred_branch_oid pred_ver_oid
 * pred_ver_num pred_container_pname data_pname

The only arguments that require special attention are new_container_pname
(5th argument), which specifies the pathname of the new data container, and
data_pname (10th argument), which specifies the pathname of the
checked-out file.

304

Chapter 19: Type Managers and Customized Processing of File Elements

File /usr/atria/lib/mgrs/mgr_info.sh lists the appropriate exit statuses and
provides a symbolic name for the create_version method:

Any unexpected value is treated as failure
MGR_FAILED=1

Return Values for store operations
MGR_STORE_KEEP_NEITHER=101
MGR_STORE_KEEP_JUST_OLD=102
MGR_STORE_KEEP_JUST_NEW=103
MGR_STORE_KEEP_BOTH=104
 .
 .
MGR_OP_CREATE_VERSION="create_version"

Figure 19-3 shows the code that implements the create_version method.

Figure 19-3 ’create_version’ Method

The Bourne shell allows only nine command-line arguments. The shift 1 in
Line 1 discards the first argument (create_time), which is unneeded. Thus,
the

pathname of the checked-out version (data_pname), originally the 10th
argument, becomes $9.

In Line 6, the contents of data_pname are compressed, then appended to the
new, empty data container: new_container_pname, originally the 5th
argument, but shifted to become $4. (Lines 2-5 verify that the new data
container is, indeed, empty.)

shift 1 (1)
if [-s $4] ; then (2)
 echo '$0: error: new file is not of length 0!' (3)
 exit $MGR_FAILED (4)
fi (5)
if cat $9 | compress >> $4 ; ret=$? ; then : ; fi (6)
if ["$ret" = "2" -o "$ret" = "0"] ; then (7)
 exit $MGR_STORE_KEEP_BOTH (8)
else (9)
 exit $MGR_FAILED (10)
fi (11)

Type Manager for Manual Page Source Files

305

Finally, the exit status of the compress command is checked, and the
appropriate value is returned (Lines 7–11). The exit status of the
create_version method indicates that both the old data container (which
contains the predecessor version) and the new data container (which
contains the new version) should be kept.

The ‘construct_version’ Method

An element’s construct_version method is invoked when standard UNIX
software reads a particular version of the element (unless the contents are
already cached in a cleartext storage pool). For example, the construct_version
method of element monet_admin.1 is invoked by the view_server when a user
enters these commands:

% cp monet_admin.1 /usr/tmp (read version selected by view)
% cat monet_admin.1@@/main/4 (read a specified version)

It is also invoked during a checkout command, which makes a view-private
copy of the most recent version on a branch. The construct_version method of
the z_whole_copy type manager:

• uncompresses the contents of the data container

• returns an exit status to the calling process, indicating what to do with
the new data container

File /usr/lib/lib/mgrs/mgr_info.h shows what arguments will be passed to the
method:

/**
 * construct_version
 * Fetch the data for a version.
 * Extract the data for the requested version into the supplied pathname, or
 * return a value indicating that the source container can be used as the
 * cleartext data for the version.
 *
 * Command line:
 * construct_version source_container_pname data_pname version_oid

306

Chapter 19: Type Managers and Customized Processing of File Elements

File /usr/atria/lib/mgrs/mgr_info.sh lists the appropriate exit statuses and
provides a symbolic name for the construct_version method:

Any unexpected value is treated as failure
MGR_FAILED=1

Return Values for construct operations
MGR_CONSTRUCT_USE_SRC_CONTAINER=101
MGR_CONSTRUCT_USE_NEW_FILE=102
 .
 .
MGR_OP_CONSTRUCT_VERSION="construct_version"

Figure 19-4 shows the code that implements the construct_version method.

Figure 19-4 ’construct_version’ Method

In Line 1, the contents of source_container_pname are uncompressed, then
stored in the cleartext container, data_pname. The remaining lines return the
appropriate value to the calling process, depending on the success or failure
of the uncompress command.

if cat $1 | uncompress >> $2; then
 (1)
 exit $MGR_CONSTRUCT_USE_NEW_FILE
 (2)
else
 (3)
 exit $MGR_FAILED

 (4)

fi
 (5)

Type Manager for Manual Page Source Files

307

Implementing a New ‘compare’ Method

The compare method is invoked by a cleartool diff command. This method
will:

• format each version using nroff(1), producing a pure-ASCII text file

• compare the formatted versions, using cleardiff

File /usr/atria/lib/mgrs/mgr_info.h shows what arguments will be passed to
the method from cleartool or xclearcase:

/**
 * compare
 * Compare the data for two or more versions.
 * For more information, see man page for cleartool diff.
 *
 * Command line:
 * compare [-tiny | -window] [-serial | -diff | -parallel] [-columns n]
 * [pass-through-options] pname pname ...

This listing shows that a user-supplied implementation of the compare
method must accept all of the command-line options supported by the
ClearCase diff command. Our strategy will be simply to pass the options on
to cleardiff, without attempting to interpret them. After all options are
processed, the remaining arguments specify the files to be compared.

File /usr/atria/lib/mgrs/mgr_info.sh lists the appropriate exit statuses and
provides a symbolic name for the compare method:

Return Values for COMPARE/MERGE Operations
MGR_COMPARE_NODIFFS=0
MGR_COMPARE_DIFF_OR_ERROR=1
 .
 .
MGR_OP_COMPARE="compare"

The Bourne shell script listed in Figure 19-5 implements the compare method.
Implementing the xcompare method as a slight variant of compare is left as an
exercise for the reader.

308

Chapter 19: Type Managers and Customized Processing of File Elements

Figure 19-5 Script for ‘compare’ Method

Testing the Type Manager

A new type manager can be tested only by actually using it on some
ClearCase host. This process need not be obtrusive. Since the type manager
has a new name, no existing element type — and hence, no existing element
— uses it automatically. To place the type manager in service, create a new
element type, create some test elements of that type, and run some tests.

#!/bin/sh -e
MGRDIR=${ATRIAHOME:-/usr/atria}/lib/mgrs

read file that defines methods and exit statuses
. $MGR_DIR/mgr_info.sh

process all options: pass them through to cleardiff
OPTS=""
while (expr $1 : '\-' > /dev/null) ; do
 OPTS="$OPTS $1"
 if ["$1" = "$MGR_FLAG_COLUMNS"] ; then
 shift 1
 OPTS="$OPTS $1"
 fi
 shift 1
done

all remaining arguments ($*) are files to be compared
first, format each file with NROFF
COUNT=1
TMP=/usr/tmp/compare.$$
for X in $* ; do
 nroff -man $X | col | ul -Tcrt > $TMP.$COUNT
 COUNT=‘expr $COUNT + 1‘
done

then, compare the files with cleardiff
cleardiff -quiet $OPTS $TMP.*

cleanup and return appropriate exit status
if [$? -eq MGR_COMPARE_NODIFFS] ; then
 rm -f $TMP.*
 exit MGR_COMPARE_NODIFFS
else
 rm -f $TMP.*
 exit MGR_COMPARE_DIFF_OR_ERROR
fi

Type Manager for Manual Page Source Files

309

The following testing sequence continues the mp_mgr example.

Creating a Test Element Type. To make sure that an untested type manager
is not used accidentally, associate it with a new element type, manpage_test,
whose use is restricted to yourself.

% cleartool mkeltype -nc -supertype compressed_file \
 -manager mp_mgr manpage_test
% cleartool lock -nusers $USER -eltype manpage_test

Creating and Using a Test Element. These commands create a test element
that uses the new type manager, and tests the various data-manipulation
methods:

% cd directory-in-test-VOB
% cleartool checkout -nc .
 (tests ‘create_element’ method)
% cleartool mkelem -eltype manpage_test -nc -nco test.1
% cleartool checkout -nc test.1
 (tests ‘construct_version’ method)
% vi test.1 (edit checked-out version)
% cleartool checkin -c "first" test.1
 (tests ‘create_ version’ method)
% cleartool checkout -nc test.1
 (tests ‘construct_ version’ method)
% vi test.1
 (edit checked-out version)
% cleartool checkin -c "second" test.1
 (tests ‘create_ version’ method)
% cleartool diff test.1@@/main/1 test.1@@/main/2
 (tests ‘compare’ method)

Installing and Using the Type Manager

After a type manager has been fully tested, you can “make it official” with
the following procedure.

310

Chapter 19: Type Managers and Customized Processing of File Elements

Installation. A VOB is a network-wide resource — it can be mounted on any
ClearCase host. But a type manager is only a host-wide resource — a
separate copy must be installed on each host where ClearCase client
programs execute. (It need not be installed on hosts that serve only as
repositories for VOBs and/or views.)

To install the type manager on a particular host, create a subdirectory in
/usr/atria/lib/mgrs, then populate it with the programs that implement the
methods. You might create across-the-network symbolic links to a “master
copy” on a server host.

Creation of Element Types. Create one or more element types that use the
type manager, just as you did in <Emphasis>Testing the Type Manager on
page 308 (but don’t include “test” in the name of the element type!). For
example, you might name the element type named manpage or nroff_src.

Conversion of Existing Elements. It is likely that you’ll want to have at least
a few existing elements use the new type manager. The chtype command
does the job:

% cleartool chtype -force manpage pathname(s)

Permission to change an element’s type is restricted to the element’s owner,
the VOB owner, and the root user.

Revision of Magic Files. If you want the new element type(s) to be used
automatically for certain newly created elements, create (or update) a
local.magic file in each host’s /usr/atria/config/magic directory:

manpage src_file text_file file: -name "*.[1-9]" ;

Public Relations. Advertise the new element type(s) to all ClearCase users,
describing the features and benefits of the new type manager. Be sure to
include directions on how to gain access to the new functionality
automatically (through filenames that match ‘magic’ file rules) and explicitly
(with mkelem -eltype).

Icon Usage by GUI Browsers

311

Icon Usage by GUI Browsers

An xclearcase browser can display file system objects either by-name or
graphically. In the latter case, xclearcase selects an icon for each file system
object as follows:

• The object’s name or its contents determines a list of file types, as
described in “File Typing” on page 296.

• One by one, the file types are compared to the rules in predefined and
user-defined icon files, as described in the cc.icon manual page. For
example, the file type c_source matches this icon file rule:

c_source : -icon c ;

As soon as a match is found, the search ends. The token following -icon
names the file that contains the icon to be displayed.

• xclearcase searches for the file, which must be in bitmap(1) format, in
directory $HOME/.bitmaps, or /usr/atria/config/ui/bitmaps, or the
directories specified by the environment variable BITMAP_PATH.

• If a valid bitmap file is found, xclearcase displays it; otherwise, the
search for an icon continues with the next file type.

The name of an icon file should include a numeric suffix, which need not be
specified in the icon file rule. The suffix tells xclearcase how much screen
space to allocate for the icon. Each bitmap supplied with ClearCase is stored
in a file with a .60 suffix (for example, lib.60), indicating a 60x60 icon. These
bitmaps themselves are all 40x40, however; the discrepancy allows for future
revisions of xclearcase to annotate the icons.

312

Chapter 19: Type Managers and Customized Processing of File Elements

The following steps show how you can have xclearcase display manual page
source files with a customized icon. In accordance with the preceding
sections of this chapter, all manual pages will have file type manpage.

1. Add a rule to your personal magic file (in directory $HOME/.magic) that
includes manpage among the file types assigned to all manual page
source files:

manpage src_file text_file file: -name "*.[1-9]" ;

2. Add a rule to your personal icon file (in directory $HOME/.icon) that
maps manpage to a user-defined bitmap file:

manpage : -icon manual_page_icon ;

3. Create a manpage icon in your personal bitmaps directory
($HOME/.bitmaps) by revising one of the standard icon bitmaps with
the standard X bitmap utility:

% mkdir $HOME/.bitmaps
% cd $HOME/.bitmaps
% cp $ATRIAHOME/config/ui/bitmaps/c.60 manual_page_icon.60
% bitmap manual_page_icon.60

4. Test your work by having an xclearcase graphical directory browser
display a manual page source file (Figure 19-6).

Figure 19-6 User-Defined Icon Displayed by xclearcase

lookup of file name in
magic file yields

manpage file type

lookup of manpage in icon
file yields customized
manpage_icon bitmap

313

Chapter 20

20. Using Triggers, Attributes, and Locks to
Implement Development Policies

This chapter presents brief scenarios, showing how common development
policies can be implemented and enforced with ClearCase.

Scenario: Requiring Good Documentation of Changes

Policy #1 “All changes to sources should be recorded and comments
should be provided.”

Each ClearCase command that modifies a VOB automatically creates one or
more event records. Many such commands (for example, checkin) prompt for
a comment. The event record automatically includes the user’s name, date,
comment, host machine, and description of what was changed.

To prevent users from subverting the system by providing empty or
meaningless comments, you might create a pre-operation trigger type to
monitor the checkin operation. The trigger action script could analyze the
user’s comment (passed in an environment variable), disallowing “bad”
ones (for example, those shorter than 10 words).

314

Chapter 20: Using Triggers, Attributes, and Locks to Implement Development Policies

Trigger definition:

% mktrtype -element -global -preop checkin \
-exec comment_policy.sh CommentPolicy

Trigger action script:

#!/bin/sh
#
comment_policy
#
ACCEPT=0
REJECT=1
WORDCOUNT=‘echo $CLEARCASE_COMMENT | wc -w‘

if [$WORDCOUNT -ge 10] ; then
 exit $ACCEPT
else
 exit $REJECT
fi

Scenario: Tracking State Transitions

Policy #2 “The system must track the progress of each source file
through the official approval stages.”

A process-control system must be able to track the progress of individual
files. Ideally, the system will shepherd the file through various intermediate
states, until it is finally declared “ready”. Attributes fit this model naturally
— you can create a string-valued attribute type, Status, which accepts only a
specified set of values.

Attribute definition:

% cleartool mkattype -c "standard file levels" \
 -enum '"inactive","under_devt","QA_approved"' Status
Created attribute type "Status".

A Status attribute will be applied to many different versions of an element.
Early versions on a branch might get the attribute with "inactive" and
"under_dvt" values; later versions the "QA_approved" value. The same
value might be used for several versions, or moved from an earlier version
to a later version.

Scenario: Recording a Released Configuration

315

To enforce conscientious application of the status attribute to versions of all
source files, you might create an CheckStatus trigger type much like the
CommentPolicy trigger type in the preceding scenario. The associated trigger
action script would disallow checkin of versions that had no Status attribute.

Trigger definition:

% mktrtype -element -global -preop checkin \
-exec check_status.sh CheckStatus

Trigger action script:

#!/bin/sh
#
check_status
#

ACCEPT=0
REJECT=1
ATTYPE="Status"

if ["`cleartool find $CLEARCASE_XPN \
 -version 'attype($ATTYPE)' -print`"]
then
 exit $REJECT
else
 exit $ACCEPT
fi

Scenario: Recording a Released Configuration

Policy #3 “All the versions that went into the building of Release 2 —
and only those versions — should be labeled REL2.”

After Release 2 is built and tested, you can create label type REL2, using the
mklbtype command. You can then attach REL2 as a version label to the
appropriate source versions, using the mklabel command.

316

Chapter 20: Using Triggers, Attributes, and Locks to Implement Development Policies

What are the appropriate versions? If Release 2 was built “from the bottom
up” in a particular view, you can label the versions selected by that view:

% cleartool mklabel -recurse REL2 top-level-directory

Alternatively, you can use the configuration records (CRs) of the release’s
derived objects to drive the labeling process:

 .. on June 17:

% clearmake vega

 .. sometime later, after QA approves the build:

% cleartool mklbtype REL2

 .. and then:

% cleartool mklabel -config vega@@17-Jun.18:05 REL2

Using CRs to attach version labels assures accurate and complete labeling,
even if users have created new versions since the release build. You need not
stop development while quality-assurance and release procedures are
performed.

To prevent version label REL2 from being used further, lock the label type:

% cleartool lock -lbtype REL2

 ... and then:

% cleartool lock -nusers vobadm -lbtype REL2

The -nusers option provides a controlled “escape hatch” — the object will be
locked to all users, except the specified ones.

Scenario: Isolating Work on a Bugfix

317

Scenario: Isolating Work on a Bugfix

Policy #4 “Fixes to a past release must be performed in isolation,
starting with the exact configuration of versions that went
into that release.”

This policy fits perfectly with ClearCase’s baselevel-plus-changes
development model. First, a REL2 label must be attached to the release
configuration, as described in the preceding scenario. Then, a view
configured with the following config spec implements the policy:

element * CHECKEDOUT
element * .../rel2_bugfix/LATEST
element * REL2 -mkbranch rel2_bugfix

If all fixes are performed in one or views with this configuration, all the
changes will be isolated on branches of type rel2_bugfix. The -mkbranch
clause causes such branches to be created automatically, as needed, when
element are checked out.

This config spec selects versions from rel2_bugfix branches, where branches
of this type exist; it creates such a branch whenever a REL2 version would be
checked out.

Scenario: Isolating All Users from Each Other

Policy #5 “Users should be isolated from changes.”

ClearCase views provide isolation from other users’ changes. Using just a
few configuration rules, you can specify exactly which changes you wish to
see, and which you wish to exclude. Some examples:

• Your own work, plus all the versions that went into the building of
Release 2:

element * CHECKEDOUT
element * REL2

318

Chapter 20: Using Triggers, Attributes, and Locks to Implement Development Policies

• Your own work on the main branch, plus the checked-in versions as of
Sunday evening

element * CHECKEDOUT
element * /main/LATEST -time Sunday.18:00

• Your own work, along with new versions created in the graphics
directory, plus the versions that went into last night’s build

element * CHECKEDOUT
element graphics/* /main/LATEST
element * -config myprog@@12-Jul.00:30

• Your own work, plus whatever versions either you (jones) or mary have
checked in today, plus the most recent QAed versions:

element * CHECKEDOUT
element * /main/{ created_since(06:00) && \
 (created_by(jones) || created_by(mary)) }
element * /main/{QAed=="TRUE"}

• You can use the config spec “include” facility to set up standard sets of
configuration rules to be incorporated by users into their personal
config specs:

element * CHECKEDOUT
element msg.c /main/18
include /usr/cspecs/rules_for_rel2_maintenance

Scenario: Freezing Certain Data

Policy #6 “Public header files may not be changed until further
notice.”

The lock command is designed to enforce such “temporary” policies:

• Lock all header files:

% cleartool lock src/pub/*.h

• Lock the headers for all users except Mary and Fred:

% cleartool lock -nusers mary,fred src/pub/*.h

Scenario: Customized Change Notification

319

• Lock all header files, not just public ones:

% cleartool lock -eltype c_header

• Lock an entire VOB:

% cleartool lock -vob /vobs/myproj

Scenario: Customized Change Notification

Policy #7 “Whenever anyone changes the GUI, mail should be sent to
the Doc Group, for a documentation update.”

Post-operation triggers are designed to support such notification-oriented
policies. First, create a trigger type that sends mail, then attach it to the
relevant elements.

Trigger definition:

% cleartool mktrtype -nc -element -postop checkin \
 -exec informwriters.sh InformWriters
Created trigger type "InformWriters".

Attaching triggers to existing elements:

• Place the trigger on the inheritance list of all existing directory elements
within the GUI source tree:

% cleartool find /vobs/gui_src -type d \
-exec 'mktrigger -recurse -nattach InformWriters

 $CLEARCASE_PN'

• Place the trigger on the attached list of all existing file elements within
the GUI source tree:

320

Chapter 20: Using Triggers, Attributes, and Locks to Implement Development Policies

Trigger action script:

#!/bin/sh
#
#check_status
#

DOC_GROUP="john george"

mail $DOC_GROUP << 'ENDMAIL'
New version of element created: $CLEARCASE_PN
 by: $CLEARCASE_USER
Comment string:

$CLEARCASE_COMMENT

ENDMAIL

Scenario: Enforcing Quality Standards

Policy #8 “C-language source files may not be checked-in unless they
pass our quality metrics.”

Pre-operation triggers can run any user-defined programs, and can cancel the
operations that trigger them. You might have your own metrics program, or
you might run lint(1). Suppose that you have defined an element type,
c_source, for C language files (*.c).

Trigger definition:

% cleartool mktrtype -element -global \
-eltype c_source \
-preop checkin \
-exec 'apply_metrics.sh $CLEARCASE_PN' ApplyMetrics

This trigger type ApplyMetrics is global — it will fire on a checkin of any
element of type c_source. (When a new c_source element is created, it will be
monitored automatically.) If a user attempts to check in a c_source file that
fails the apply_metrics.sh test, the checkin operation will be disallowed.

Note: The apply_metrics.sh script could read the value of $CLEARCASE_PN
from its environment. But having it accept a file name argument provides
flexibility: the script can be invoked as a trigger action, but developers can
also use it “manually”.

Scenario: Associating Changes with Change Orders

321

Scenario: Associating Changes with Change Orders

Policy #9 “All changes (ECOs) should be tagged with the number of
the bug they are intending to fix.”

Define ECO as an integer-valued attribute type. Define a global trigger type,
EcoTrigger, which fires whenever a new version is created, using a built-in
operations to set the ECO attribute to a bug number (which is read from the
developer’s environment).

Attribute definition:

% cleartool mkattype -c "bug number associated with change" \
 -vtype integer ECO
Created attribute type "ECO".

Trigger definition:

% cleartool mktrtype -element -global -postop checkin \
 -mkattr 'ECO=$ECONUM' EcoTrigger
Created trigger type "EcoTrigger".

Alternative Implementation, Using Branches

Create a distinct branch type for each ECO number (for example, bug253).
Fixes for a bug go onto the appropriate branch, and can be merged into
whichever releases wished to incorporate those changes.

Here is the config spec for a view in which to work on ECO #253, a fix to
Release 4.3:

element * CHECKEDOUT
element * .../bug253/LATEST
element * REL4.3 -mkbranch bug253

Using branches allows different bugfix projects to be isolated from one
another. All the work can still can be integrated, by using multiple
configuration rules:

element * CHECKEDOUT
element * .../bug253/LATEST
element * .../bug247/LATEST
element * .../bug239/LATEST

322

Chapter 20: Using Triggers, Attributes, and Locks to Implement Development Policies

Scenario: Requirements Tracing

Policy #10 “Each source code module should have a pointer to an
associated design document.”

Requirements tracing applications can be implemented with ClearCase
hyperlinks, which associate pairs of VOB object. The association should be at
the version level (rather than the branch or element level): each version of a
source code module should be associated with a particular version of a
related design document (see Figure 20-1.)

ClearCase’s hyperlink inheritance feature makes the implementation easy:

• When the source module, hello.c, and the design document,
hello_dsn.doc, are both updated, a new hyperlink is created connecting
the two updated versions.

• When either the source module or the design document gets a minor
update, no hyperlink-level change is required — the new version
automatically inherits the hyperlink connection of its predecessor.

• When either the source module or the design document gets a
significant update that renders the connection invalid, a null-ended
hyperlink effectively severs the connection.

Figure 20-1 Requirements Tracing

0

1

2

3

4

0

1

2

3

source module:
hello.c

design document:
hello_desn.doc

DesignDoc

DesignDoc

DesignDoc

Scenario: Change Sets

323

Using the -ihlink option when describing version /main/2 of the source
module lists the hyperlink inherited from version /main/1 (Figure 20-2):

Figure 20-2 Hyperlink Inheritance

Scenario: Change Sets

Policy #11 “A set of files form a group and should be checked out
together.”

Related files often live in a common directory and can be checked-out with
a wildcard:

% cleartool checkout -c "Fix rendering bug" graphics/*.c

When the files are not co-located, you can implement this policy by using an
attribute to annotate elements, and by using a find query to supply a list of
arguments to checkout.

% cleartool mkattype -c "group identifier" ElemGroup
Created attribute type "ElemGroup".

% cleartool mkattr ElemGroup '"graphics subsystem"' \
file1@@ \
subd/file2@@ \
../subd/file3@@ ...

Created attribute "ElemGroup" on "file1@@/main/14".
Created attribute "ElemGroup" on "subd/file2@@/main/8".
Created attribute "ElemGroup" on "../subd/file3@@/main/10".
 ...
< ... whenever checkout is to be performed:

% cleartool checkout -c "Fix rendering bug" \
‘cleartool find . -element ' \

 ElemGroup="graphics"' -nxname -print‘

version that
inherits hyperlink

version to which hyperlink
is explicitly attached

% cleartool describe -ihlink DesignDoc hello.c@@/main/2
hello.c@@/main/2
 Inherited hyperlinks: DesignDoc@366@/tmp/jjp_slyboots_hw
 /tmp/jjp_slyboots_hw/src/hello.c@@/main/1 ->
 /tmp/jjp_slyboots_hw/src/hello_dsn.doc@@/main/1

325

Chapter 21

21. Using ClearCase to Organize and Implement
Parallel Development

This chapter shows one way in which ClearCase can be used to organize
development work, including both creation of a new release and concurrent
maintenance of the previous release.

The approach taken in this chapter is by no means the only one that
ClearCase supports. We believe that it addresses typical organizational
needs in a straightforward, sensible way.

Project Overview

Release 2.0 development of the monet project is to include several kinds of
work:

• patches — a small number of high-priority bugfixes to Release 1.0

• minor enhancements — some commands need new options; some
option names need to be shortened (-recursive becomes -r); some
algorithms need performance work

• major new features — graphical user interface; many new commands;
internationalization support

These three development streams can proceed largely in parallel (Figure 21-1),
but major dependencies and milestone dates must be considered:

• Several Release 1 patch releases will ship before Release 2.0 is complete.

• The new features will take longer to complete than the minor
enhancements.

• Certain new features depend on the minor enhancements.

326

Chapter 21: Using ClearCase to Organize and Implement Parallel Development

Figure 21-1 Project Plan for Release 2.0 Development

The overall plan adopts a baselevel-plus-changes approach. Periodically,
developers stop writing new code, and spend some time integrating their
work, building, and testing. The result is a baselevel: a stable, working version
of the application. ClearCase makes it easy to integrate product
enhancements, incrementally and frequently. The more frequent the
baselevels, the easier the tasks of merging parallel development work and
testing the results.

After a baselevel is produced, “real” work resumes; any new development
efforts begin with the set of source versions that went into the baselevel
build.

Release
1.0

‘MAJ’ Team

major development

‘FIX’ Team

Release 1
bugfixing

Freeze
‘MIN’ Team

minor
development

Baselevel
1 Freeze

Freeze

Release
1.0.1

Release
1.0.2

Freeze

Baselevel
2

Release
2.0

integration:
merge bugfixes with
minor enhancements

integration:
merge Baselevel 1 work

with major enhancements

integration:
merge major enhancements, minor
enhancements, and further bugfixes

Development Strategy

327

With ClearCase, a baselevel can be defined by assigning the same version
label (for example, R2_BL1 for “Release 2, Baselevel 1”) to all the versions
that go into, or are produced by, the baselevel build.

The development staff will be divided into three teams, each working on a
different development stream: the MAJ team (major enhancements), the
MIN team (minor enhancements) and the FIX team (Release 1 bugfixes and
patches).

Note: Some developers might belong to multiple teams. Such developers
would switch views, depending on their current task

Figure 21-2 shows the development area for the monet project. At the
beginning of Release 2 development, the most recent versions on the main
branch are all labeled R1.0.

Figure 21-2 Source Tree for monet Project

Development Strategy

This section discusses the ClearCase-related issues to be resolved before
development begins.

Project Leader and ClearCase Administrator

In most development efforts, the project leader and the system administrator
are different people. The leader of this project will be a user named meister.
The administrator will be the vobadm user, introduced in earlier chapters as
the creator and owner of the monet and libpub VOBs.

/proj/monet/ (project top-level directory)
src/ (sources)
include/ (include files)
lib/ (archives — sources and .a files)

328

Chapter 21: Using ClearCase to Organize and Implement Parallel Development

Use of Branches

In general, different kinds of work should be performed on different
branches. High-priority Release 1 bugfixing, for example, should take place
on its own branch. This isolates it from new development. It also enables
creation of bugfix (“patch”) releases that do not include any of the Release 2
enhancements — and incompatibilities.

Since the MIN team will produce the first baselevel release essentially on its
own, the project leader decides to give the main branch to this team. The MAJ
team will develop major enhancements on a subbranch, and will not be
ready to integrate for a while;1 the FIX team will perform Release 1 bugfixing
on another subbranch, and can integrate its bugfix changes at any time.

Note: The project leader has arranged matters so that the first baselevel will
be created from versions on the main branches of their elements. This is not
a requirement, however — you can create a release that uses versions on any
branch, or combination of branches.

Figure 21-3 shows the evolution of a typical element during Release 2
development, and indicates correspondences to the overall project plan
(Figure 21-1).

1 Each major enhancement can be developed on its own subbranch, to make integration and testing more
manageable. For simplicity, this chapter discusses use of a single major-enhancements branch.

Development Strategy

329

Figure 21-3 Development Milestones: Evolution of a Typical Element

main

R2_BL1

merge

merge

merge

r1_fix major

R1.0

2. (main) freeze minor enhancements work

11. (main) Baselevel 2 release

12. (main) final testing period

13. (main) Release 2.0

(R1.0.1)

(R1.0.2)

5. (major) freeze major enhancements work

7. (main) freeze minor enhancements work

9. (major) freeze major enhancements work

merge

R2_BL2

R2.0

4. (main) Baselevel 1 release

1. (all branches) Start minor and major
enhancements, along with R1.0
bugfixing

6. (major) Merge Baselevel 1 changes
into major enhancements

10. (main) merge major enhancements
work with minor enhancements work

8. (main) merge additional bugfixes
into minor enhancements

3. (main) merge bugfixes from Release 1.0.1
into minor enhancements

330

Chapter 21: Using ClearCase to Organize and Implement Parallel Development

Work Environment Planning — Views

Each developer will work in his or her own view, editing programs, building
software, testing, and so on. Though the views are separate, they will all be
configured with the same config spec. This produces a development
environment in which developers on the same team:

• “see” the development tree in the same way

• are totally isolated from work performed on other branches

• are isolated from each other when they checkout elements and make
changes to them

• share each others’ source code, as versions are checked in on their
common branch

• share each others’ derived objects (through clearmake’s wink-in
capability), when appropriate

The MAJ team will work on a branch named major, and will use this config
spec:

element * CHECKEDOUT (1)
element * .../major/LATEST (2)
element * R1.0 -mkbranch major (3)
element * /main/LATEST -mkbranch major (4)

The MIN team will work on the main branch, and so can use the default
config spec:

element * CHECKEDOUT (1)
element * /main/LATEST (2)

The FIX team will work on a branch named r1_fix, and will use this config
spec:

element * CHECKEDOUT (1)
element * .../r1_fix/LATEST (2)
element * R1.0 -mkbranch r1_fix (3)
element * /main/LATEST -mkbranch r1_fix (4)

For the MAJ and FIX teams, use of the auto-make-branch facility in Rules 3 and
4 enforces consistent use of subbranches. It also relieves developers of
having to create branches explicitly, and ensures that all branches are created
at the version labeled R1.0.

Creating Branch Types

331

Creating Branch Types

The project leader creates the major and r1_fix branch types required for the
config specs listed above:

% cleartool mkbrtype -vob /proj/monet r1_fix major
Comments for "r1_fix":
development branch for monet R1 bugfixes
.
Created branch type "r1_fix".
Comments for "major":
development branch for monet R2 major enhancements
.
Created branch type "major".
% cleartool mkbrtype -vob /proj/libpub r1_fix m
(same interaction as above)

Note: Since each VOB has its own set of branch types, the branch types must
be created separately in the monet VOB and the libpub VOB. Throughout the
remainder of this chapter, we will note where such separate processing is
required, without providing details.

Creating Project-Standard Config Specs

To ensure that all developers in a team configure their views the same way,
the project leader creates files containing standard config specs:

• /public/config_specs/MAJ contains the MAJ team’s config spec

• /public/config_specs/FIX contains the FIX team’s config spec.

(These standard config spec files are stored in a standard UNIX directory, so
that there is no possibility of users getting different versions of them.)

332

Chapter 21: Using ClearCase to Organize and Implement Parallel Development

Creating, Configuring, and Registering Views

Each developer creates a view under his or her home directory. For example,
developer allison enters these commands:

% mkdir $HOME/view_store
% cleartool mkview -tag allison_major
 $HOME/view_store/arbmaj.vws
View /net/phobos/usr/people/arb/view_store/arbmaj.vws
 created
It has the following rights:
User : allison : rwx
Group: mon : rwx
Other: : rwx

A new view has the default config spec. Thus, developers on the MAJ and
FIX teams must reconfigure their views, using the standard file for their
team. For example:

% cleartool setcs -tag allison_major /public/config_specs/MAJ

If the project leader changes the standard file, developers can pick up the
changes by entering this command again.

Development Begins

To begin the project, a developer sets his or her properly-configured view,
checks out one or more elements, and gets to work. For example, developer
david on the MAJ team enters:

% cleartool setview david_major
% cd /proj/monet/src
% cleartool checkout -nc opt.c prs.c
Created branch "major" from "opt.c" version "/main/6".
Checked out "opt.c" from version "/main/major/0".
Created branch "major" from "prs.c" version "/main/7".
Checked out "prs.c" from version "/main/major/0".

The auto-make-branch facility causes each element to be checked out on the
major branch (see Rule 4 in the MAJ team’s config spec, on page 330). If a
developer on the MIN team enters this command, the elements are checked
out on the main branch, with no conflict.

Creating Baselevel 1

333

ClearCase is fully compatible with standard UNIX development tools and
practices. Thus, developers use their familiar editing, compilation, and
debugging tools (including personal scripts and aliases) while working in
their views.

Developers use checkin periodically to make their work automatically visible
to other developers on the same team (that is, others whose views select the
most recent version on the team’s branch). This allows intra-team
integration and testing to proceed throughout the development period.

Techniques for Maintaining Privacy

Although this chapter is intended to illustrate a single approach to
organizing development, we briefly note here some techniques that
individual developers might use to isolate themselves from changes made
by other members of their team.

• Time rules — If another team member checks in an incompatible
change, a developer can “turn back the clock” to a time before those
changes were made.

• Further subbranching — A developer can create a private subbranch in
one or more elements (for example, /main/major/jackson_wk) to isolate
herself from other team members’ new versions of those elements. This
requires a config spec change, to “prefer” versions on the
/main/major/jackson_wk branch to versions on the /main/major branch.

• Viewing only one’s own revisions — A developer can use a ClearCase
query to configure a view which sees only her own revisions to the
source tree.

Creating Baselevel 1

The MIN team has implemented and tested the first group of minor
enhancements, and the FIX team has produced a patch release, whose
versions are labeled R1.0.1. It is time to combine these efforts, to produce
Baselevel 1 of Release 2.0 (Figure 21-4).

334

Chapter 21: Using ClearCase to Organize and Implement Parallel Development

Figure 21-4 Creating Baselevel 1

Merging of Data on Two Branches

The project leader asks the MIN developers to merge the R1.0.1 changes
from the r1_fix branch into their own branch (main). All the changes can be
merged with a single invocation of findmerge:

% cleartool findmerge /proj/libpub /proj/monet/src \
-fversion .../r1_fix/LATEST -merge -xmerge

 .
 . <lots of output>
 .

Integration and Test

After all merges have been performed, the /main/LATEST versions of certain
elements represent a combination of the efforts of the MIN and FIX teams.
Members of the MIN team now compile and test the monet application to
find and fix incompatibilities in the two teams’ work.

‘MIN’ Team

minor
development

‘FIX’ Team

Release 1
bugfixing

Freeze
Baselevel

1

Release
1.0.1

Release
1.0

Creating Baselevel 1

335

The developers on the MIN team choose to perform the integration in a
single, shared view. The project leader creates the view storage area in a
location that is NFS-accessible to all developers’ hosts:

% umask 2
% mkdir /netwide/public
% cleartool mkview /netwide/public/integrate.vws
View /netwide/public/integrate.vws created
It has the following rights:
User : meister : rwx
Group: mon : rwx
Other: : r-x

The umask value of 2 allows all members of the mon group to use the view.
Each developer registers this view on his or her host, under the name
base1_vu. For example, suppose that sol:/netwide/public is mounted at /public
on all user’s workstations:

% cleartool mktag /public/integrate.vws base1_vu

Since all integration work takes place on the main branch, there is no need to
change the configuration of the new view from the ClearCase default. MIN
team developers set this view (cleartool setview base1_vu) and coordinate
builds and tests of the monet application. Since the developers are sharing a
single view, they are careful not to “clobber” each other’s view-private files.
Any new versions created to fix inconsistencies (and other bugs) go onto the
main branch.

Labeling Sources

The monet application’s minor enhancement work and bugfix work are now
integrated, and a clean build has been performed in view base1_vu. To create
the baselevel, the project leader assigns the same version label, R2_BL1, to
the /main/LATEST versions of all source elements. He begins by creating an
appropriate label type:

% cleartool mklbtype -vob /proj/monet -c "Release 2, \
 Baselevel 1" R2_BL1
Created label type "R2_BL1".

Note: Also creates and locks label type in libpub VOB.

336

Chapter 21: Using ClearCase to Organize and Implement Parallel Development

For security, he locks the label type, preventing all developers (except
himself) from using it:

% cleartool lock -nusers meister -vob /proj/monet -lbtype \
 R2_BL1
Locked label type "R2_BL1".

Note: Also creates and locks label type in libpub VOB.

Before applying labels, he verifies that all elements are checked in on the
main branch (checkouts on other branches are still permitted):

% cleartool lscheckout -avobs | egrep '(monet|libpub)'

Null output indicates that all elements for the monet project are checked in.
Now, the project leader attaches the R2_BL1 label to the currently-selected
version (/main/LATEST) of every element in the two VOBs:

% cleartool mklabel -recurse R2_BL1 /proj/monet /proj/libpub
Created label "R2_BL1" on "/proj/monet" version "/main/1".
Created label "R2_BL1" on "/proj/monet/src" version "/main/3".
 <many more label messages>

Deleting the Integration View

The view registered as base1_vu is no longer needed, so the project leader
deletes it:

% cleartool rmview -force -tag base1_vu

Synchronizing Ongoing Development

The MAJ team has been working undisturbed throughout the Baselevel 1
integration period. At some point following this milestone, the MAJ team
pauses to merge the Baselevel 1 changes into its work (Figure 21-5). This
provides access to the minor enhancements that the MAJ team needs for
further development. It also provides an early opportunity for MAJ team
members to determine whether they have made any incompatible changes.

Synchronizing Ongoing Development

337

Figure 21-5 Updating Major Enhancements Development

Accordingly, the project leader declares a freeze of major enhancements
development.1 MAJ team members checkin all elements, and verify that the
monet application builds and runs, making small source changes as
necessary. When all such changes have been checked in, the team has a
consistent set of /main/major/LATEST versions.

Preparing to Merge

The project leader makes sure that no element is checked out on the major
branch:

% cleartool lscheckout -avobs | egrep \
'(monet|libpub).*/major/'

Note: Any MAJ team members who wish to continue with non-merge work
can create a subbranch at the “frozen” version (or work with a version that
is checked out unreserved).

The project leader determines which elements need to be merged:

% cleartool setview major_vu (use any MAJ team view)
% cleartool findmerge /proj/monet /proj/libpub -version \
 /main/LATEST -print
 .

1 Developers working on other major enhancements branches might merge at other times, using the same merge
procedures described in this section.

Release
1.0

‘MAJ’ Team

major development

Freeze
‘MIN’ Team

minor
development

Baselevel
1

Freeze

338

Chapter 21: Using ClearCase to Organize and Implement Parallel Development

 . <lots of output>
 .
A 'findmerge' log has been written to
"findmerge.log.04-Feb-94.10:01:23"

The findmerge log file is in the form of a shell script: it contains a series
cleartool findmerge commands, each of which will actually perform the
required merge for one element:

% cat findmerge.log.04-Feb-94.10:01:23
cleartool findmerge -dir /proj/monet/src@@/main/major/3 -fver /main/LATEST -merge
cleartool findmerge /proj/monet/src/opt.c@@/main/major/1 -fver /main/LATEST -merge
cleartool findmerge /proj/monet/src/prs.c@@/main/major/3 -fver /main/LATEST -merge
 .
 .
cleartool findmerge -dir /proj/lubpub/src@@/main/major/1 -fver /main/LATEST -merge
cleartool findmerge /proj/libpub/src/dcanon.c@@/main/major/3 -fver /main/LATEST -merge
cleartool findmerge /proj/libpub/src/lineseq.c@@/main/major/10 -fver /main/LATEST -merge

Assigning merge tasks to individual developers amounts to parceling out
the contents of this log file.

The project leader then locks the major branch, allowing it to be used only by
the developers who will be performing merges:

% cleartool lock -nusers meister,allison,david,sakai \
-brt major

Locked branch type "major".

Note: Also locks branch type in libpub VOB.

Performing Merges

Since the MAJ team is not immediately heading for a baselevel, it is not
essential that all merges be performed (and the results tested) in a shared
view. Each MAJ developer can continue working in his regular view.

Periodically, the project leader sends an excerpt from the findmerge log to an
individual developer, who executes the commands and monitors the results.
(The developer can sends the resulting log files back to the project leader, as
confirmation of the merge activity.)

Synchronizing Ongoing Development

339

A merged version of an element will include changes from three
development streams: Release 1 bugfixing, minor enhancements, and major
enhancements (Figure 21-6).

Figure 21-6 Merging Baselevel 1 Changes into the ‘major’ Branch

The project leader verifies that no more merges need to be performed, by
entering a findmerge command with the -whynot option:

% cleartool findmerge /proj/monet /proj/libpub -version \
 /main/LATEST -whynot -print
 .
 .
No merge "/proj/monet/src" [/main/major/4 already merged from /main/3]
No merge "/proj/monet/src/opt.c" [/main/major/2 already merged from /main/12]
 ..

He ends the merge period by removing the lock on the major branch:

% cleartool unlock -brtype major
Unlocked branch type "major".

Note: Also locks branch type in libpub VOB.

development here when BL1 complete

development freeze

main

merge

r1_fix major

R1.0

(R1.0.1)

R2_BL1

merge

340

Chapter 21: Using ClearCase to Organize and Implement Parallel Development

Creating Baselevel 2

The MIN team has reached its second development freeze, and the MAJ
team will do so shortly (Figure 21-7). Baselevel 2 will integrate all three
development streams, thus requiring two sets of merges:

• Bugfix changes from the most recent patch release (versions labeled
R1.0.2) are to be merged to the main branch.

• Major enhancements are to be merged from the major branch to the
main branch. (This is the opposite direction from the merges described
in “Synchronizing Ongoing Development” on page 336.)

Figure 21-7 Baselevel 2

ClearCase supports multi-way merges, so both the bugfix changes and the
major enhancements could be merged into the main branch at the same time.
In general, though, it is easier to verify the results of two-way merges.

Merging from the r1_fix Branch

The first set of merges is virtually identical to those described in “Merging
of Data on Two Branches” on page 334. Thus, we omit the details here.

Preparing to Merge from the major Branch

After the integration of the r1_fix branch is completed, the project leader gets
ready to manage the merges from the major branch.1 These merges will be
performed in a tightly-controlled environment, because of the approaching
Baselevel 2 milestone, and because the major branch is to be abandoned.

Freeze

Release
1.0.2

Freeze

Baselevel
2

Creating Baselevel 2

341

The project leader verifies that everything is checked in on both the main
branch and major branches:

% cleartool lscheckout -recurse /proj/monet \
/proj/libpub | grep -v 'r1_fix'

%

This command filters out checkouts on the r1_fix branch, which are still
permitted. Thus, null output from this command indicates that no element
is checked-out on either its main branch or its major branch.

Next, the project leader determines which elements require merges:

% cleartool setview minor_vu(use any MIN team view)
% cleartool findmerge /proj/monet /proj/libpub \

-version .../major/LATEST -print
 .
 . <lots of output>
 .
A 'findmerge' log has been written to
"findmerge.log.26-Feb-94.19:18:14"

All development on the major branch is to cease after this baselevel. Thus,
the project leader locks the major branch to all users, except those who will
be performing the merges; this will allow ClearCase to record the merges
with a hyperlink of type Merge:

% cleartool lock -brtype -nusers allison,david major
Locked branch type "major".

Note: Also locks branch type in libpub VOB.

The main branch will be used for Baselevel 2 integration by a small group of
developers. Accordingly, the project leader had vobadm lock the main branch
to everyone else:

% cleartool lock -nusers meister,allison,david,sakai \
 -brtype main
Locked branch type "main".

1 It is probably more realistic to build and verify the application, then apply version labels before proceeding to
the next merge.

342

Chapter 21: Using ClearCase to Organize and Implement Parallel Development

Note: Also locks branch type in libpub VOB.

(Only the VOB owner or root can lock the main branch.)

Performing the Merges from the ‘major’ Branch

Since the main branch is the destination of the merges, developers work in a
view with the default config spec. The situation is similar to that on
described in <Emphasis>Preparing to Merge on page 337; this time, the
merges are to take place in the opposite direction: from the major branch to
the main branch. Accordingly, the findmerge command is very similar:

% cleartool findmerge /proj/monet /proj/libpub
-version /main/major/LATEST -print

 .
 . <lots of output>
 .
A 'findmerge' log has been written to
"findmerge.log.23-Mar-94.14:11:53"

After checkin, a typical merged element appears as in Figure 21-8.

Creating Baselevel 2

343

Figure 21-8 Element Structure after the Pre-Baselevel-2 Merge

Decommissioning the ‘major’ Branch

After all data has been merged to the main branch, no further development
is to take place on the major branch. At that time, the project leader enforces
this policy by obsoleting the major branch:

% cleartool unlock -brtype major
Unlocked branch type "major".
% cleartool lock -obsolete -brtype major
Locked branch type "major".

Note: Also locks branch type in libpub VOB.

R2_BL1

merge

merge

(R1.0.2)

merge

R2_BL2

344

Chapter 21: Using ClearCase to Organize and Implement Parallel Development

Integration and Test

Structurally, the Baselevel 2 integration-and-test phase is identical to the one
for Baselevel 1 (see “Integration and Test” on page 334). At the end of the
integration period, the project leader attaches version label R2_BL2 to the
/main/LATEST version of each element in the monet and libpub VOBs (the
Baselevel 1 version label was R2_BL1).

Final Validation - Creating Release 2.0

Baselevel 2 has been released internally, and further testing has flushed out
only minor bugs. These bugs have been fixed by creating new versions on
the main branch (Figure 21-9).

Figure 21-9 Final Test and Release

Prior to customer shipment, the monet application will go through a
tightly-controlled validation phase:

• All editing, building, and testing will be restricted to a single, shared
view.

• All builds will be performed from sources with a particular version
label (R2.0), and only the project leader will have permission to make
changes involving that label.

• Only high-priority bugs will be fixed, using this procedure:

– The project leader authorizes a particular developer to fix the bug,
by granting her permission to create new versions (on the main
branch).

– The developer’s checkin activity is automatically tracked by a
ClearCase trigger.

– After the bug is fixed, the project leader moves the R2.0 version
label to the fixed version, and revokes the developer’s permission
to create new versions.

Baselevel
2

Release
2.0

minor bugfixes

Final Validation - Creating Release 2.0

345

Labeling Sources

The project leader labels the /main/LATEST versions throughout the entire
monet development tree:

% cleartool setview meister_vu
(set a view with default config spec)

% cleartool mklbtype -c "Release 2.0" R2.0
 (create a label type)

% cleartool lock -nusers meister -lbtype R2.0
 (restrict usage of label type)
Locked label type "R2.0".
 (label the entire development tree)
% cleartool mklabel -recurse R2.0 /proj/monet
 <many label messages>

Note: Also locks branch type and labels versions in libpub VOB.

During the final test phase, he will move the label forward, using mklabel
–replace, if any new versions are created.

Further Restricting Use of the main Branch

At this point, use of the main branch is restricted to a few users: those who
performed the merges and integration leading up to Baselevel 2 (see
page 341). Now, the project leader has vobadm close down the main branch to
everyone except himself, meister:

% cleartool unlock -brtype main
Unlocked branch type "main".
% cleartool lock -brtype -nusers meister main
Locked branch type "main".

The main branch will be opened only for last-minute bugfixes (see
“Implementing a Final Bugfix” on page 347.)

346

Chapter 21: Using ClearCase to Organize and Implement Parallel Development

Setting Up the Test View

The project leader creates a new shared view, r2_vu, and gives it a special,
one-rule config spec:

% umask 2
% cleartool mkview -tag r2_vu /public/integrate_r2.vws
% cleartool edcs -tag r2_vu

 <edit config spec to contain ... >
element * R2.0 (1)

This config spec guarantees that only properly-labeled versions will be
included in final-validation builds.

Setting Up the Trigger to Monitor Bugfixing

The project leader places a trigger on all elements in the
monet VOB; the trigger will fire whenever a new version of
any element is checked in. First, he creates an executable
shell script in a standard UNIX directory (not within a VOB):

% vi /public/ccase_triggers/notify_leader

 <edit script to contain ... >

#!/bin/sh
PATH=/bin:/usr/ucb

mail meister <<!
Subject: Checkin $CLEARCASE_PN by $CLEARCASE_USER
$CLEARCASE_XPN
Checked in by $CLEARCASE_USER.

Comments:
$CLEARCASE_COMMENT
!

% chmod +x /public/ccase_triggers/notify_leader

Final Validation - Creating Release 2.0

347

Then, he has vobadm create a global element trigger type in the monet and
libpub VOBs, specifying the script as the trigger action:

% cleartool mktrtype -nc -vob /proj/monet -element -global \
-postop checkin -brtype main \
-exec '/public/ccase_triggers/notify_leader' r2_checkin

Created trigger type "r2_checkin".

Note: Also creates trigger type in libpub VOB.

(Only the VOB owner or root can create trigger types.)

Implementing a Final Bugfix

This section demonstrates the final validation environment in action.
Developer allison discovers a serious bug, and requests permission to fix it.
The project leader grants her permission to create new versions on the main
branch, by having vobadm enter these commands.

% cleartool unlock -brtype main
Unlocked branch type "main".
% cleartool lock -nusers allison,meister -brtype main
Locked branch type "main".

The developer fixes the bug in a view with the default config spec, and tests
the fix there. This involves creation of two new versions of element prs.c and
one new version of element opt.c. On each checkin, the r2_checkin trigger
automatically sends mail to the project leader. For example:

Subject: Checkin /proj/monet/src/opt.c by allison
/proj/monet/src/opt.c@@/main/9
Checked in by allison.

Comments:
fixed bug #459: made buffer larger

348

Chapter 21: Using ClearCase to Organize and Implement Parallel Development

When regression tests verify that the bug has been fixed, the project leader
revokes allison’s permission to create new versions. Once again, the
commands are executed by vobadm:

% cleartool unlock -brtype main
Unlocked branch type "main".
% cleartool lock -brtype -nusers meister main
Locked branch type "main".

Then, the project leader moves the version labels to the new versions of prs.c
and opt.c, as indicated in the mail messages. For example:

% cleartool mklabel -replace R2.0 \
/proj/monet/src/opt.c@@/main/9

Moved label "R2.0" on "prs.c" from version "/main/8" to
"/main/9".

Rebuilding from Labels

After the labels have been moved, developers rebuild the monet application
once again, to prove that a good build can be performed using only those
versions labeled R2.0.

Wrapping Up

When the final build in the r2_vu passes the final test, Release 2.0 of monet is
ready to ship. After the distribution medium has been created, from derived
objects in the r2_vu, the project leader has vobadm clean up and get ready for
the next release:

• vobadm removes the checkin triggers from all elements by deleting the
global element trigger type:

% cleartool rmtype -trtype r2_checkin
Removed trigger type "r2_checkin".

• vobadm reopens the main branch to everyone:

% cleartool unlock -brtype main
Unlocked branch type "main".

349

administrator
project leader relationship to, 327
tasks

element type consistency among VOBs, 299
algorithms

compound object build
Clearmake issues and alternatives, 189

configuration lookup
comparison with standard make algorithms, 173
limitations, 183

aliases
for commands, 38

annotations (meta-data)
annotate (cleartool subcommand)

description (table), 34
API (ClearCase)

broadcasting SoftBench messages from, 145
application subsystems

config specs that select components of, 103
apropos

obtaining cleartool help with, 37
ar(1) command

building an archive, 188
architecture(s)

distributed build (figure), 195
multiple

building software for (chapter), 201
distributed build setting up for, 199

Symbols

-Ver option (version option)
creating for an executable, 219

@(#) - (what string prefix)
creating a what string using, 218

~ (tilde) rules (standard make)
not supported by clearmake, 222

A

abbreviations
for commands

finding the valid, 38
abe (audited build executor)

CR production procedure description, 191
distributed build use, 194

access control
ct_permissions manual page

permissions checking and locks described in, 43
distributed builds, 193
locks use for, 43
permissions

checking, hierarchy and characteristics, 42
DOs, practices that enhance sharing, 163

techniques for isolating work, 333
Ada compilers

incremental update issues, 190

Index

350

Index

SoftBench/ClearCase integration, 146
ToolTalk/ClearCase integration, 153

archives
building

incremental build issues and alternatives, 188
config specs that show the results of nightly builds,

101
selecting version created by nightly-build, 101

at-sign characters (@@ - extended naming symbol)
VOB-extended, 166

at-sign etc. characters @(#) - (what string prefix)
creating a what string using, 218

attributes (meta-data)
change set common checkout enforcement, 323
configuring a view to select libraries based on

configuring a view to show, 102
creating

SoftBench ClearCase menu Make Attribute item
description, 149

disadvantages of
for version selection control, 98

implementing development policies with
(chapter), 313

integer-valued
associating changes with ECOs using (scenario),

321
searching for through an element

with find (cleartool subcommand), 97
tracking file changes, 314
types

config spec use of, for QA, 97
version string

adding to an executable (chapter), 217
auto-make-branch facility

multiple-level, 95

parallel development environment planning
(scenario), 330

version label use for making branches, 90

B

background processes
build audit issues, 191
running clearmake in

emboldening loss on some architectures, 44
backslash escape character (\)

continuing command lines with, 37
baselevel

term definition, 326
baselevel-plus-changes model

baselevel
configuration, modifying, 90
creating (scenario), 333
describing versions that comprise, 76
old, frozen configuration use in securing, 89

creating a config spec that uses, 75
scenario, 326

BLD_ARCH make-macro
multiple-architecture development use, 204

bldserver.control file
build server host use, 197

BMS (Broadcast Message Server-SoftBench)
architecture, 146

BOS (Build Options Specification) files
changing the effective build script with, 156
GNU make compatibility, 228

branches
advantages over attributes for version selection

control, 98

351

associating changes with ECOs using
(scenario), 321

config specs for work that is to be isolated on, 93
creating

reasons for specifying automatic creation, 79
SoftBench ClearCase menu Make Branch item

description, 149
isolating work on a bugfix with

(scenario), 317
major

decommissioning (scenario), 343
performing merges from (scenario), 342

merging
of data on (scenario), 334

multiple-architecture development use, 202
multiple-level

configuring views for, 95
names

description considerations, 78
obsoleting

(scenario), 343
parallel development

baselevel-plus-changes use, 328
restricting use

(scenario), 345
subbranches

enforcing consistent use of, config specs
(example), 330

isolating work with, 333
types

config spec that creates instances of, 105
creating, for a new view, 79
creating, for version-label defined

configuration, 91
creating, parallel development (scenario), 331
naming conventions, 79

Broadcast Message Server (BMS-SoftBench)
architecture, 146

browsers
characteristics and types, 58
file

characteristics, 50
pointer actions and keystrokes (table), 54
toolbar item descriptions, 51

list
characteristics, 62

pool
characteristics, 63

string
characteristics, 64

type object
characteristics, 60

username
characteristics, 64

viewtag
characteristics, 65
xclearcase startup (figure), 50

vobtag
characteristics, 64

vtree
characteristics, 65

build (management)
audit

background process issues, 191
corruption hazards, 187
incremental build issues and alternatives, 188
performance procedures, in a non-ClearCase

host build, 215
provided in clearaudit use with non-clearmake

programs, 221
setting up on a non-ClearCase host (chapter),

211
subsession independence of, 185

build controller
term definition, 193

clearaudit
CR production procedure description, 191
non-clearmake make programs,

recommendations, 221
session, coordinating build reference times

with, 187
clearmake

352

Index

-u option problems, 163
accomodating the name difference, 159
as the utility for, 43
building with (chapter), 155
compatibility with other make variants (chapter),

221
imake use with, 207
incremental build issues and alternatives, 189
makefile optimization (chapter), 181
overriding makefiles, 156
recording a released configuration, 316
recording makefile with, 104
recursive invocation, 158
scenario (figure), 46
scenario, 44
SoftBench Builder, configuration to use, 145
SoftBench, setting to run, 151

client
term definition, 193

configuration lookup
algorithm, comparison with standard make

algorithms, 173
algorithm, limitations, 183
CR content and use, 168
DO use, with Sun make, 226
reasons for necessity of, 173

distributed
as clearmake function, 44
setting up (chapter), 193
starting, 198

forced
object sharing problems, 163

hosts file
syntax and use, 196

incremental-update scenario, 188
layered

config specs that support, 101
multiple-architecture development

handling procedure differences, 203
nightly

config specs that show the results of, 101

non-makefile-based, 185
reference time

term definition, 160
scripts

effective, changing with BOS files, 156
establishing CR hierarchy links in, 173
revising for an audited non-ClearCase host

build, 213
standard makefiles required in, 181
VPATH substitutions, with Sun make, 227

server
term definition, 193

sessions
term definition, 185

setting up on a non-ClearCase host (chapter), 211
SoftBench

setting, 151
software

for multiple architectures (chapter), 201
unattended, config specs that show the results of,

101
starting

clearmake command examples, 45
strategies

incremental integration, 161
tracking limitations, 182
working during

reference time facilitation of, 160

C

C++ compiler
incremental update issues, 190

catcr (cleartool subcommand)
CR hierarchy handling methods, 171
description (table), 33
displaying CR contents with, 168

catcs (cleartool subcommand)
description (table), 32
displaying config specs for reconfigured views, 74

353

cautions
branch use for multiple-architecture

development, 202
build audit background process issues, 191
clearmake command -u option problems, 163
DOs written at multiple build session levels, 187
flag files, 183
reference time use, 161
removing shared DOs, 179
SoftBench

communicating with SoftBench servers on other
hosts, 150

starting processes, 150
symbolic link use, 83
time rule use, 162
ToolTalk

starting processes, 154
CC make-macro

multiple-architecture development use, 203
cd (cleartool subcommand)

description (table), 36
CFLAGS environment variable

(example of use), 156
CFLAGS make-macro

multiple-architecture development use, 203
changes

common checkout enforcement
with attributes, 323

notification of
trigger use for (scenario), 319

checkout-edit-checkin model
check-in

controlling the execution of with triggers,
monitoring status attribute use, 315

checkin (cleartool subcommand)
default config spec actions, 87
description (table), 32

checkout (cleartool subcommand)
canceling, SoftBench ClearCase menu Cancel

Checkout item description, 147

checking out elements, 332
default config spec actions, 87
description (table), 32
SoftBench ClearCase menu Checkout item

description, 147
checkouts

change sets, enforcing group checkout, with
attributes, 323

CR listing of, 169
listing records, SoftBench ClearCase menu List

Checkouts item description, 148
preventing, config specs used for, 100

SoftBench ClearCase menu Check In item
description, 147

chevent (cleartool subcommand)
description (table), 34
revising an event record comment string, 42

chpool (cleartool subcommand)
description (table), 35

chtype (cleartool subcommand)
changing element type, 297
description (table), 32

clearaudit(1A) command
non-clearmake make programs

recommendations, 221
session

coordinating build reference times with, 187
ClearCase

development strategy issues, 327
CLEARCASE_BLD_CONC environment variable

distributed build use, 198
CLEARCASE_BLD_UMASK environment variable

shared DO use of, 163
CLEARCASE_MSG_PROTO environment variable

SoftBench setting
one-way messaging enabled by, 151

ToolTalk setting
one-way messaging enabled by, 154

$CLEARCASE_PN environment variable

354

Index

pre-operation trigger use
(scenario), 320

.clearcase_profile file
customizing comment-handling, 42

clearencap_sb process
encapsulator process for SoftBench

characteristics, 146
clearencap_tt process

encapsulator process for ToolTalk, 153
clearmake(1A) command

-u option
forcing rebuilds with, 163

accommodating the name difference, 159
basic use pointers (chapter), 155
BOS file use to change effective build scripts, 156
compatibility

modes, 222
with other make programs (chapter), 221

CR production procedure description, 191
increasing the verbosity level, 155
invoking, 44
MAKEFILE macro, 104
options

enhanced functionality, 44
options, 44
recording makefile versions, 104
recursive invocation, 158
scenario

recording a released configuration, 316
simple build, (figure), 46
simple build, 44

SoftBench Builder use of, 145
using, 43

cleartool command
option syntax, 38
pathnames in, 39
subcommands

basic set for day-to-day needs, 36
list and description (table), 31

using

overview, 37
using, 31

cleartool subcommands
annotate, 34
apropos, 36
catcr, 33, 168, 171
catcs, 32, 74
cd, 36
checkin, 87
checkout, 87, 147, 332
chevent, 34, 42
chpool, 35
chtype, 32, 297
describe, 32
diffcr, 33, 170, 171
diff, 34, 307
edcs, 32, 346
findmerge, 34, 337, 338, 339, 341
find, 33, 97, 333
help, 36
ln, 33
lock, 35, 43, 89, 341, 345, 347
lscheckout, 34, 42, 336, 337, 341
lsdo, 33, 166, 177, 178
lshistory, 34, 42
lslock, 35, 42
lspool, 35, 42
lsprivate, 32
lstype, 34, 42
lsview, 32, 35
lsvob, 35
lsvtree, 33
ls, 32, 89, 100, 103
man, 36, 37
merge, 35
mkattr, 34
mkattype, 34, 314
mkbranch, 33
mkbrtype, 33, 91, 331
mkdir, 33
mkelem, 33, 93, 297, 299

355

mkeltype, 33, 300
mkhlink, 34
mkhltype, 34
mklabel, 34, 171, 316, 336, 348
mklbtype, 34, 315, 335, 345
mkpool, 35
mktag, 32, 215, 335
mktrigger, 35
mktrtype, 35, 314, 347
mkview , 346
mkview, 32, 73, 87, 332, 335
mkvob, 35
mount, 35
mv, 33
protectvob, 35
protect, 35
pwd, 36
pwv, 32
quit, 36
recoverview, 32
reformatview, 32
reformatvob, 35
register, 35
reserve, 33
rmattr, 34
rmbranch, 33
rmdo, 33, 179
rmelem, 33, 90
rmhlink, 34
rmlabel, 34
rmmerge, 34
rmname, 33
rmpool, 35
rmtag, 32
rmtrigger, 35
rmtype, 34, 348
rmver, 33, 90
rmview, 32, 336
rmvob, 35
rnpool, 35
rntype, 34

setcs, 32, 74, 95, 332
setview, 212
setview, 32, 81, 332, 337, 341, 345
shell, 36
space, 35
startview, 212
startview, 32
umount, 36
uncheckout, 33, 147
unlock, 36, 339, 345, 347, 348
unregister, 36
unreserve, 33
wink-in, 33
winkin, 167, 174
xdiff, 35
xlsvtree, 33, 148
xmerge, 35

clients
distributed build

controls, 193
host file syntax and use, 196

clock skew
term definition, 161

color schemes
setting, 129

command line interface (CLI)
command-line processing

cleartool, 41
enter a ‘setview’ command, 81
interactive mode

cleartool use, 37, 41
single-command mode

cleartool command-line processing, 41
using

(chapter), 31
commands

cleartool subcommands
list and description (table), 31

comment string options, 41
names

356

Index

abbreviations and aliases for, 38
options

creating what version option, 219
syntax and use, 38

substitution
cleartool does not perform, 41

syntax summary
displaying, 37

comments
adding to event records, 41
customizing, 42
strings

command options, 41
compare methods

implementing a new version, 307
compatibility

clearmake and other make programs (chapter),
221

make
limitations, 229

compound object build algorithm
Clearmake issues and alternatives, 189

config specs
attribute type use in, 97
auto-make-branch

parallel development environment planning
(scenario), 330

characteristics, creation, and modification, 74
configuration rules

-config qualifier, 103, 105
-file qualifier, 96, 99
-mkbranch qualifier, 90, 92, 93, 99, 105
-nocheckout qualifier, 89, 90, 100
-time qualifier, 93, 94
CHECKEDOUT, characteristics, 87
CHECKEDOUT, not used by frozen

configurations, 89
CHECKEDOUT, reasons for not using, 100
CHECKEDOUT, 98
listing with ls command, 100

/main/LATEST, -nocheckout qualifier, 90
/main/LATEST, -time qualifier, 90
/main/LATEST, characteristics, 88
/main/LATEST, when not to use, 92
/main/LATEST, 100
ordering considerations, 105
pattern matching in, 101
restricting directory selection, 100
selecting application subsystems, 103
standard, characteristics, 87
time, cautions on overprecise and inappropriate

use of, 162
time, rolling back the clock with, 161

creating
for a new view, 332
project-standard (scenario), 331
questions to consider when, 75

default
characteristics, 87
explanation of appropriate use, 74
parallel development environment planning

(scenario), 330
editing

SoftBench ClearCase menu Edit Configuration
Specification item description, 150

examples and uses
(chapter), 85

for new development on a branch, 93
include facility

setting up standard sets of configuration rules
(example), 318

include facility, 75, 94
isolating

users from each other, (example), 317
work on a bugfix with (scenario), 317

mixing application subsystems, 103
modifying

a view with, 80
to reconfigure a view, 74

multiple-level branching, 95
parallel development environment planning

357

(scenario), 330
project-specific

reconfiguring a view using, 75
quality assurance, 96
restricting to single directory, 100
selecting

a particular program, 103
a set of programs, 105

showing
one developer’s changes, 100
the results of nightly builds, 101

time rules
rolling back the clock with, 161

version label use, 90
view

creating strategies, 70
configuration(s)

dynamic
config spec example, 87

frozen
config spec, defined by time, 90
config spec, defined by version labels, 89
unfreezing, 93

HP VUE, 147
lookup

algorithm, comparison with standard make
algorithms, 173

algorithm, limitations, 183
as clearmake function, 44
CR content and use, 168
DO use, with Sun make, 226
reasons for necessity of, 173

maintaining old, 89
makefiles, 104
management

config specs that support different goals,
(chapter), 85

SoftBench integration with ClearCase, 146
modifying

version-label use for, 90

of views
with element types, 300

released
recording, with label types, 315

SoftBench Development Manager
for ClearCase, 146

construct_version method
characteristics and use in creating a new type

manager, 305
cpp(1) C preprocessor

macros
defining architecture-specific, 208
imake use, 204

multiple-architecture development use, 201
cpp(1) macros

DATE
timestamp generation with, 218

CR (configuration records)
(chapter), 165
comparing

SoftBench ClearCase menu Compare
Configuration Records item description, 150

with diffcr, 170
created by clearaudit use with non-clearmake

programs, 221
creating

as clearmake function, 44
on a non-ClearCase host (chapter), 211

displaying
SoftBench ClearCase menu Cat Configuration

Record item description, 149
displaying, 168
forcing the recording of objects in

through explicit declarations, 182
hierarchies

methods for handling, 171
not automatically created during a build, 187

information contained in
(annotated figure), 168

358

Index

listing
SoftBench ClearCase menu Cat Configuration

Record item description, 149
with catcr, 168

management of, 175
per-target

incremental update issues, 190
selecting versions from, 103
storage structures, 175
version labeling use of, 316

create_version method
characteristics and use in creating a new type

manager, 303
customization

files (chapter), 295
SoftBench

environment, through adding items to the
ClearCase menu, 145

SoftBench, 152

D

data
container

term definition, 176
freezing

lock use for, 318
handling

file type, element type, and type manager
interactions (figure), 298

structures
CRs (chapter), 165
DOs (chapter), 165

types
browsers, that can display (table), 59

DATE macro
timestamp generation with, 218

debugging
-time qualifier use to restore a previous

environment, 94
bugfixing

during final release validation (scenario), 344
implementing, (scenario), 347
isolating work on a (scenario), 317
managing (scenario), 325
time rules use for incompatible change handling,

333
trigger use for monitoring, (scenario), 346

config specs
converting build config specs to development

config specs for, 104
rolling back the clock with config spec time rules,

161
CRs

comparing, with diffcr, 170
forced builds

object sharing problems, 163
freezing configurations to restore a previous

environment, 90
getting help, 37
standard make compatibility problems, 229
wrong-version-checked-out problem

avoiding, 99
dependencies

build tool, 184
build-order, 185
explicit

declaring input files as, for an audited non-
ClearCase host build, 213

necessity for in searched-for sources, 183
specifying makefile versions in, 104

incremental
Clearmake issues and alternatives, 188

list
specifying makefile versions in, 104

monet project development (list), 325

359

MVFS files
automatic detection of, 169

non-MVFS files
CR listing of explicitly declared, 169

source
CR provision of complete list, after a DO rebuild,

182
declaring in makefiles, 181
explicit declaration, reasons for, 182
on MVFS files, automatic detection of, 169

target/dependencies line
establishing CR hierarchy links in, 173

tools
(figure), 182
VOB, eliminating explicit dependency

declarations with, 183
VPATH macro

use with Sun make, 226
when to use, 184

describe (cleartool subcommand)
description (table), 32

development
conditional compilation

multiple-architecture development use, 201
distributed

build management (chapter), 193
management

scenario (chapter), 325
milestones

element evolution (figure), 329
perusing changes since, 100

multiple architecture targets
issues, 201

parallel
build, as clearmake function, 44
environment, isolating users from each other,

(example), 317
environment, organization and implementation

(chapter), 325
synchronizing, (scenario), 336

strategy issues, 327

testing
(scenario), 334

view
changing config specs to, 104

diff (cleartool subcommand)
description (table), 34
implementing a new compare method for, 307

diffcr (cleartool subcommand)
comparing

CRs, 170
CR hierarchy handling methods, 171

directories
comparing

with xcleardiff, 134
config specs that restrict changes to a single, 100
creating

SoftBench ClearCase menu Make Directory item
description, 149

current working
changing to another view, 82

elements
disallowing automatic creation of, config specs

(example), 330
inheritance list, attaching triggers to (scenario),

319
type, differences between file element types , 297

type manager
creating, 302

/usr/atria/examples/mkeltype
element type shell scripts contained in, 301

/usr/atria/lib/mgrs
predefined type managers found in, 301

versions
listing with catcr -long, 169

view storage
naming considerations, 72
views implemented as, 71

DISPLAY environment variable
SoftBench and ClearCase values required to be the

same, 151

360

Index

ToolTalk and ClearCase values required to be the
same, 154

DOs (derived objects)
(chapter), 165
accessing

standard software restrictions, 166
through extended pathnames, 165
transparency impact on, 81

automatic deletion of related information from the
VOB, 179

avoiding multiple source file versions, 105
cleartool subcommands for working with (table),

33, 34
converting view-private files into

in a non-ClearCase host build, 213
CR (configuration records)

displaying, with catcr, 168
relationship, 176

CR (configuration records), 103
creating

as clearmake function, 44
incremental build issues, 188
simple scenario, 47

DO-ID
accessing DOs with, 166
config spec that includes, 104

executable
adding timestamps to (chapter), 217

hard links, 177
listing

with lsdo, 166
managing, 175
multiple-architecture development handling, 201
multiple-architecture development issues, 205
permissions

practices that enhance sharing, 163
promotion

term definition and characteristics, 176
reference counts, 177
removing

explicitly, 179

removing, 179
reuse

(figure), 46
vs. wink-in, 47

shared
forced build problems, 163

storage structures, 175
versions

config specs that check in, 101
versions, 103
VPATH search

with Sun make, 226
written at multiple build session levels

cautions and workarounds, 187

E

ECOs
associating changes with

attribute, branches, and triggers use for
(scenario), 321

edcs (cleartool subcommand)
description (table), 32
editing config specs, 346

element(s)
as instances of element types, 297
creating

during modification, configuration rule that
permits, 92

SoftBench ClearCase menu Make Element item
description, 149

creating, 79
development

evolution, during (scenario example), 328
evolution, milestones (figure), 329

directory
disallowing automatic creation of, config specs

(example), 330
inheritance list, attaching triggers to (scenario),

319

361

preventing creation of
with frozen configurations, 89, 90

state transition model
tracking, with attributes, branches, locks, version

labels, and triggers (scenarios), 314
tracking changes in

attributes, branches, locks, version labels, and
triggers (scenarios), 314

types
applications, 300
configuring views with, 300
consistency among VOBs, as manual

administrative task, 299
converting, 310
creating, 300, 310
determining for a newly created element

(example), 299
directories, 297
mechanisms compared with file-typing

mechanisms, 299
predefined, characteristics, 300
processing files with, 300
type managers and, 297

ellipsis characters (...)
branch name use, 78

encapsulation
SoftBench

ClearCase integration, 146
using (chapter), 145

environment
development

monet project specifications, 85
parallel, isolating users from each other,

(example), 317
parallel, organization and implementation

(chapter), 325
parallel, planning (scenario), 330

previous
-time qualifier use to restore, 94
freezing configurations to restore a, 90

SoftBench
customization, through adding items to the

ClearCase menu, 145
variables

CFLAGS, 156
CLEARCASE_BLD_CONC, 198
CLEARCASE_BLD_UMASK, 163
CLEARCASE_MSG_PROTO, 151, 154
$CLEARCASE_PN, 320
DISPLAY, 151, 154
MAGIC_PATH, 299
multiple-architecture development use, 204
non-expansion by cleartool, 41

errors
error logs, 43
SoftBench, 151

event records (meta-data)
comment strings

customizing, 42
trigger to enforce, 313

comment strings, 41
detailed discussion of, 41
displaying, 42
examining, 42

events
history

displaying, SoftBench ClearCase menu List
History item description, 148

examples
attributes

tracking file changes, 314
state transition tracking

with attributes, branches, locks, version labels,
and triggers (scenarios), 314

triggers
pre-operation, monitoring event record

comment strings, 314
pre-operation, status checking script, 314
pre-operation, tracking file changes, 314

executables

362

Index

adding timestamps to (chapter), 217
multiple-architecture development handling, 201

exiting
cleartool command

exit status, 43

F

file(s)
architecture-dependent template

multiple-architecture development use, 204
bldserver.control

build server host use, 197
BOS

changing the effective build script with, 156
GNU make compatibility, 228

browsers
characteristics, 50
pointer actions and keystrokes (table), 54
toolbar item descriptions, 51

classifying (chapter), 295
.clearcase_profile

customizing comment-handling, 42
comparing

with xcleardiff, 129
configuration rules

-file qualifier, 96, 99
customized handling (chapter), 295
flag

importance of using view-private files as, 183
graphically comparing and merging with

xcleardiff (chapter), 127
header

config specs that select application subsystems
use of, 103

include facility
config spec use, 94

magic
file typing capabilities, 296

MAGIC_PATH environment variable, 299
revising, 310

merging
with xcleardiff, 135

nroff
type manager for, 302

pattern matching, 101
processing

using element types, 300
source

tracking changes to, with attributes and
triggers, 314

stdin description
not supported by clearmake, 222

template
architecture-dependent, multiple-architecture

development use, 204
tracking changes in

with attributes and triggers, 314
types

handling, 296
mechanisms compared with element-typing

mechanisms, 299
/usr/adm/atria/ti_server_log

SoftBench messages logged in, 151
ToolTalk messages logged in, 154

/usr/atria/default_config_spec
default config spec location, 87

/usr/atria/lib/mgrs/mgr_info.h
type manager information contained in, 301

.Xdefaults
SoftBench entries, 146, 151

find (cleartool subcommand)
configuring views with, 333
description (table), 33
enforcing development policies with, 323
searching for attributes throughout an element, 97

findmerge (cleartool subcommand)
-whynot option

verifying merge completion (scenario), 339
description (table), 34

363

determining which elements require merges, 341
locating elements that need merging

(scenario), 337
log file characteristics

(scenario), 338
flag files

forced rebuild use, 163
importance of using view-private files as, 183

G

Gmake program
Gnu make support by, 227

GNU make
BOS file compatibility, 228
clearmake emulation option, 222
supported features (list), 227

graphical user interface (GUI)
basic usage model, 53
creating a new view with the view browser, 72
selecting a view from the view browser, 81
using (chapter), 49

H

help
help (cleartool subcommand)

description (table), 36
using, 37

on-line
accessing, 37

permuted index, 37
hierarchies

CRs
methods for handling, 171

permissions checking, 42
host

build

client, term definition, 193
server, setting up, 197
server, term definition, 193

non-ClearCase
setting up a build on (chapter), 211

hosts
SGI

pmake program, supported features (list), 224
smake program, clearmake emulation options,

222
smake program, supported features (list), 223

HP VUE
configuring, 147

hyperlinks (meta-data)
names

cleartool treatment same as for pathnames, 40
requirements tracing use, 322

I

icons
customizing, 311

idleness threshold
distributed build priority setting with, 198

imake utility
multiple-architecture development use

(example), 207
multiple-architecture development use, 204

include statement
copying files into a config spec, 75

inference rules (standard make)
not supported by clearmake, 222

init(1M)-started processes
view-extended pathname use to process VOB data,

82
instances

command option distinguishing between types
and, 39

364

Index

IRIX systems
clearmake emulation options, 222
ToolTalk process starting requirements, 154

K

keyboard
file browser keystrokes

(table), 54

L

LATEST label
dangers of using in defining a baselevel, 77

lint(1) command
config specs that require, 96

list browsers
characteristics, 62

ln (cleartool subcommand)
description (table), 33

lock (cleartool subcommand)
(scenario), 347
description (table), 35
locking

branches, 341
label types, 89
labels, 345

temporary access control provided by, 43
locks

explicit
creating, with lock command, 43

freezing data with, 318
implementing development policies with

(chapter), 313
obsoleting branches with

(scenario), 343
protecting

branches during merges, 338

label type definition with, 336
released configuration labels with, 316

temporary access control provided by, 42
unlocking a major branch

(scenario), 339
ls (cleartool subcommand)

description (table), 32
distinguishing developers with, 100
no version selected annotation

meaning of, 89
"no version selected" message, 103

lscheckout (cleartool subcommand)
description (table), 34
event record display by, 42
tracking checked out elements

(scenario), 336, 337
verifying checkin with, 341

lsdo (cleartool subcommand)
-zero option

list zero reference count DOs, 178
accessing

which views shared a DO, 177
description (table), 33
listing

DOs with, 166
lshistory (cleartool subcommand)

description (table), 34
event record display by, 42

lslock (cleartool subcommand)
description (table), 35
event record display by, 42

lspool (cleartool subcommand)
description (table), 35
event record display by, 42

lsprivate (cleartool subcommand)
description (table), 32

lstype (cleartool subcommand)
description (table), 34
event record display by, 42

365

lsview (cleartool subcommand)
description (table), 32, 35

lsvob (cleartool subcommand)
description (table), 35

lsvtree (cleartool subcommand)
description (table), 33

M

macros
cpp

defining architecture-specific, 208
DATE, 218
make-macros

imake use, 204
multiple-architecture development use, 203

MAKEFILE, 104
VPATH, 184, 226, 227

magic files
file typing capabilities, 296
MAGIC_PATH environment variable (footnote),

299
revising, 310

MAGIC_PATH environment variable
search path facility provided through (footnote),

299
make (standard)

command line options not supported (list), 222
compatibility

between clearmake and (chapter), 221
limitations, 229

description file features not supported, 222
disabling built-in rules

with clearmake -r, 229
term definition, 221

makefiles
$(MAKEFILE) macro

specifying makefile versions, 104
creating

a new version, 104
multiple-architecture development (example),

209
elaborated GNU

saving, 227
hierarchies

CR hierarchy relationships (figure), 171
optimization (chapter), 181
overriding, 156
recording in config rec, 104
standard

view- and version-extended not permitted in,
181

version labeling, 104
man (cleartool subcommand)

accessing
manual reference pages with, 37

description (table), 36
manual pages

cleartool
accessing, 37

menu(s)
file

menu items description (table), 57
items

grayed out, meaning, 54
navigation

pointer actions and keystrokes (table), 54
merging

branches
data on two, (scenario), 334

development work
(scenario), 334

files with xcleardiff, 135
incremental

Clearmake issues and alternatives, 189
term definition, 188

merge (cleartool subcommand)
description (table), 35

multi-way support

366

Index

(scenario), 340
performing

baselevel merges (scenario), 338
from the main branch (scenario), 342

preparing for
(scenario), 336

two-way
(scenario), 340

versions
SoftBench ClearCase menu Merge Versions item

description, 148
message passing

one-way
enabling for SoftBench, 151
enabling for ToolTalk, 154

SoftBench and ClearCase DISPLAY environment
variable values required to be the same, 151

meta-data
configuring a view to select libraries based on

configuring a view to show, 102
describing baselevel versions in terms of, 76
disadvantages of using to control version-

selection, 98
methods

compare
implementing a new version, 307

construct_version
characteristics and use in creating a new type

manager, 305
create_version

characteristics and use in creating a new type
manager, 303

directory element inheritance list
attaching triggers to (scenario), 319

type manager
inherited, 302

mkattr (cleartool subcommand)
description (table), 34

mkattype (cleartool subcommand)
creating attribute types

status change, 314
description (table), 34

mkbranch (cleartool subcommand)
description (table), 33

mkbrtype (cleartool subcommand)
creating branch types

(scenario), 331
creating branch types, 91
description (table), 33

mkdir (cleartool subcommand)
description (table), 33

mkelem (cleartool subcommand)
-mkbranch qualifier effect on, 93
description (table), 33
element typing performed by

(example), 299
element typing performed by, 297

mkeltype (cleartool subcommand)
defining element types with, 300
description (table), 33

mkhlink (cleartool subcommand)
description (table), 34

mkhltype (cleartool subcommand)
description (table), 34

mklabel (cleartool subcommand)
(scenario), 348
attaching release labels to versions (scenario), 336
CR hierarchy handling methods, 171
creating labels with, 316
description (table), 34

mklbtype (cleartool subcommand)
creating label types

(scenario), 335
creating label types, 315, 345
description (table), 34

mkpool (cleartool subcommand)
description (table), 35

mktag (cleartool subcommand)
description (table), 32

367

registering views on remote hosts
(scenario), 335

registering views on remote hosts, 215
mktrigger (cleartool subcommand)

description (table), 35
mktrtype (cleartool subcommand)

creating trigger types
(scenario), 347
pre-operation type to monitor event record

comment strings, 314
mkview (cleartool subcommand)

creating views
NFS-accessible (scenario), 335

creating views, 73, 332, 346
default config spec actions, 87
description (table), 32

mkvob (cleartool subcommand)
description (table), 35

monet project
development

environment specifications, 85
Release 2.0 process (scenario), 325

project plan (figure), 326
mount (cleartool subcommand)

description (table), 35
mv (cleartool subcommand)

description (table), 33
MVFS (multiversion file system)

mvfsstorage utility
determining DO data contained pathname, 176

objects
dependencies (figure), 182
DOs, copying with winkin command, 167
operating on with file browsers, 50

N

naming conventions
branch types, 78

label types, 78
NFS

creating a view that is accessible by
(scenario), 335

export facilities
mounting a VOB, 213
setting up an export view with, 211

notice forwarding
SoftBench

ClearCase integration, 146
ToolTalk

ClearCase integration, 154
nroff files

type manager for, 302

P

pathnames
can acquire a view context in several ways, 83
extended

cleartool use, 40
full

cleartool use, 40
in makefile build scripts, 181
relative

cleartool use, 40
recommendation for symbolic links, 84

standard
cleartool use, 39
required in makefile build scripts, 181

version-extended
cleartool use, 40
not permitted in standard makefiles, 181

view context relationship, 83
view-extended

accessing other views with, 81
cleartool use, 40
not permitted in standard makefiles, 181

VOB-extended

368

Index

accessing DOs with, restrictions on, 166
cleartool use, 40

permissions
checking

hierarchy and characteristics, 42
DOs

practices that enhance sharing, 163
platforms (multiple)

building software for, 201
distributed build setting up for, 199

pmake program
clearmake emulation option, 222
supported features (list), 224

pointers
basic actions and keystrokes (table), 54

portability
importance of declaring dependency for, 182
standard make

recommendations for, 221
priorities

distributed build
idleness threshold use, 198

process control
bugfix isolation

config spec use (scenario), 317
change

associating with ECOs, using attribute, branches,
and triggers (scenario), 321

isolation, config spec use (scenario), 317
development

parallel, management scenario (chapter), 325
using triggers, attributes, and locks to manage

(chapter), 313
enforcing policies

attribute tagging of element status, using
attributes, 314

change set common checkout, with attributes,
323

event record commenting, using triggers, 313

no-directory-branching policy, config spec
modification for, 95

quality assurance standards, with pre-operation
triggers (scenario), 320

freezing data
lock use for, 318

reporting
customizing notification, with triggers

(scenario), 319
released configuration identification, version

label use, 315
requirements tracing

hyperlink use, 322
processes

background
build audit issues, 191
running clearmake in, emboldening loss on some

architectures, 44
init(1M)-started

view-extended pathname use to process VOB
data, 82

programs
config specs that select versions that built

particular, 103
projects

config specs
project-specific, reconfiguring a view using, 75
project-standard, creating (scenario), 331

leader
relationship to administrator, 327

monet
development environment specifications, 85
project plan (figure), 326
Release 2.0 process (scenario), 325

/proj/monet VOB-tag
config specs examples using

(chapter), 85
protect (cleartool subcommand)

description (table), 35

369

protectvob (cleartool subcommand)
description (table), 35

pwd (cleartool subcommand)
description (table), 36

pwv (cleartool subcommand)
description (table), 32

Q

QA (quality assurance)
config specs for, 96
enforcing standards with pre-operation triggers,

320
question option (standard make)

not supported by clearmake, 222
quitting

quit (cleartool subcommand)
description (table), 36

R

recovering
recoverview (cleartool subcommand)

description (table), 32
reference count

term definition, characteristics, and handling, 177
reformatview (cleartool subcommand)

description (table), 32
reformatvob (cleartool subcommand)

description (table), 35
register (cleartool subcommand)

description (table), 35
registry

view storage
verification when creating a view, 73

releases
development process (scenario), 325

past
isolating work on (scenario), 317

released configurations
recording, with label types, 315

validation (scenario), 344
reporting

customizing change notification with post-
operation triggers (scenario), 319

requirements tracing
hyperlink use, 322

reserve (cleartool subcommand)
description (table), 33

reuse
derived objects

(figure), 46
vs. wink-in, 47

rmattr (cleartool subcommand)
description (table), 34

rmbranch (cleartool subcommand)
description (table), 33

rmdo (cleartool subcommand)
description (table), 33
explicitly removing DOs, 179

rmelem (cleartool subcommand)
changing frozen configurations with, 90
description (table), 33

rmhlink (cleartool subcommand)
description (table), 34

rmlabel (cleartool subcommand)
description (table), 34

rmmerge (cleartool subcommand)
description (table), 34

rmname (cleartool subcommand)
description (table), 33

rmpool (cleartool subcommand)
description (table), 35

rmtag (cleartool subcommand)
description (table), 32

370

Index

rmtrigger (cleartool subcommand)
description (table), 35

rmtype (cleartool subcommand)
description (table), 34
removing global element trigger type

(scenario), 348
rmver (cleartool subcommand)

changing frozen configurations with, 90
description (table), 33

rmview (cleartool subcommand)
deleting views

(scenario), 336
description (table), 32

rmvob (cleartool subcommand)
description (table), 35

rnpool (cleartool subcommand)
description (table), 35

rntype (cleartool subcommand)
description (table), 34

rolling back the clock
with config spec time rules, 161

root user
permissions hierarchy position of, 42

S

sb_nf_server process
notice forwarder process for SoftBench

characteristics, 146
SCCS

make inference rules not supported, 222
schemes (resource)

setting color for GUI utilities, 129
scripts

build
changing with BOS files, 156
establishing CR hierarchy links in, 173
pathnames in, 181

revising for an audited non-ClearCase host
build, 213

VPATH substitutions, with Sun make, 227
element type shell

contained in the /usr/atria/examples/mkeltype
directory, 301

status checking
pre-operation triggers in, 314

trigger action (example), 320
scrubbing

term definition, 179
search path facility

MAGIC_PATH environment variable used, 299
servers

distributed build controls, 193
setcs (cleartool subcommand)

-current option, 95
description (table), 32
reconfiguring views, 74
setting new config specs, 332

setview (cleartool subcommand)
accessing views on a remote host, 212
changing current working directory to a VOB

directory with, 81
description (table), 32
setting views

(scenario), 337
setting views, 332, 341, 345

SGI hosts
pmake program

supported features (list), 224
smake program

clearmake emulation options, 222
supported features (list), 223

shells
shell (cleartool subcommand)

description (table), 36
smake program

clearmake emulation option, 222
supported features (list), 223

371

snapshot
config specs that create, 100

SoftBench
build program

setting, 151
Builder

configuring to use clearmake, 145
cautions

communicating with SoftBench servers on other
hosts, 150

starting processes, 150
ClearCase

integration architecture, 146
support (chapter), 145

Development Manager
ClearCase menu item descriptions, 147
configuring for ClearCase, 146

one-way messaging, 151
softbuild(1) program

setting up to run clearmake, 151
source code

labeling
(scenario), 335

multiple-architecture differences
handling, 201

searched-for sources
explicit dependencies required for, 183

tree
restricting changes to specific areas of, 101

space (cleartool subcommand)
description (table), 35

special characters
backslash escape character (\), 37
ellipsis characters (...), 78
extended naming symbol (@@), 166
what string prefix - @(#) characters, 218

start-up
views

SoftBench ClearCase menu Start View item
description, 150

startview (cleartool subcommand)
accessing views on a remote host, 212
description (table), 32

state transition model
elements

tracking, with attributes, branches, locks, version
labels, and triggers (scenarios), 314

status
elements

tracking changes in with attributes and triggers,
314

stdin description file
not supported by clearmake, 222

storage pools
browsers

characteristics, 63
source

type manager methods for handling, 302
type manager handling of (footnote), 297
VOB

DO, (figure), 175
DO, accessing, 178
DO, assigning, 205
DO, scrubbing, 179
DO, wink-in use for storing shared DO data

containers, 176
strings

browsers
characteristics, 64

subcommands
cleartool

list and description (table), 31
subsessions

term definition and characteristics, 185
Sun

make program
supported features (list), 225

372

Index

Solaris
clearmake emulation option, 222

SunOS system
clearmake emulation option, 222
ToolTalk process starting requirements, 154

supertype
term definition, 301

System V Release 3 make(1)
clearmake compatibility, 221

T

targets
build scripts

changing, with BOS files, 156
rebuild

term definition, 185
subtargets

coordinating build reference times using, 186
term definition, 185

Sun
clearmake use of VPATH search list use to find,

226
templates

architecture-dependent
multiple-architecture development use, 204

incremental update issues, 190
terminal emulation window

compared with list browsers, 62
text output window

compared with list browsers, 62
tilde (~) rules (standard make)

not supported by clearmake, 222
time

configuration rules
-time qualifier, 90, 93, 94
cautions on overprecise and inappropriate use

of, 162
incompatible change handling, 333

rolling back the clock with, 161
configuring

frozen views with, 90
snapshot views with, 100

reference
build session relationship to, 185
coordinating for several builds, 186
term definition, 160

timestamps
adding to an executable (chapter), 217
configuration lookup compared with algorithms

based on, 173
toolbar

file browser
item descriptions, 51

ToolTalk
cautions

starting processes, 154
ClearCase support (chapter), 153
Session Server

architecture, 153
touch option (standard make)

reasons why not supported by clearmake, 222
transcript pad

characteristics, 57
menu options description (table), 58

triggers (meta-data)
associating changes with ECOs using

(scenario), 321
enforcing

attribute tagging of state transitions with, 314
event record commenting enforcement using, 313
implementing development policies with

(chapter), 313
monitoring bugfixing with

(scenario), 346
post-operation

customizing change notification with (scenario),
319

373

pre-operation
enforcing attribute tagging of state transitions

with, 314
quality assurance standard enforcement with

(scenario), 320
tt_nf_server process

notice forwarder process for ToolTalk
characteristics, 153

type(s)
attribute

config spec use of, for QA, 97
creating to track element status changes, 314

attribute, 59
branch

config spec that creates instances of, 105
creating, for a new view, 78
creating, for version-label defined

configuration, 91
creating, parallel development (scenario), 331
naming conventions, 78

branch, 59
browsers that operate on, 60
data

browsers that can display (table), 59
distinguishing between instances and

command option for, 39
elements

applications, 300
creating, 300, 310
determining for a newly created element

(example), 299
mechanisms compared with file-typing

mechanisms, 299
predefined, 300
processing files with, 300
type managers and, 297

elements, 59
files

handling, 296
mechanisms compared with element-typing

mechanisms, 299

hyperlink, 59
managers

creating, procedure (example), 302
customized handling of files using (chapter), 295
different from supertype, specifying with -

manager option, 301
inheriting methods from, 302
installing, 309
predefined, characteristics, 301
term definition and characteristics, 297
testing, 308

parameterized
incremental update issues, 190

supertype
term definition, 301

trigger
creating (scenario), 347
creating to track element status changes, 315

trigger, 59
version label

creating, for source identification, (scenario), 335
creating, to record a released configuration, 315
locking, with lock command, 89
naming conventions, 78

version label, 59

U

umask(1) setting
changing, 70
view accessibility impact, 70

umount (cleartool subcommand)
description (table), 36

uncheckout (cleartool subcommand)
-keep option, 147
-rm option, 147
description (table), 33

unlock (cleartool subcommand)
(scenario), 347

374

Index

description (table), 36
unlocking branches

(scenario), 339, 348
unlocking branches, 345

unregister (cleartool subcommand)
description (table), 36

unreserve (cleartool subcommand)
description (table), 33

USERNAME
browsers

characteristics, 64
users

profiles
customizing profile files described in user-profile

manual page, 42
root

permissions hierarchy position of, 42
/usr/adm/atria/ti_server_log file

SoftBench messages logged in, 151
ToolTalk messages logged in, 154

/usr/atria/bin/Gmake program
Gnu make support by, 227

/usr/atria/default_config_spec file
default config spec location, 87

/usr/atria/doc/man/apropos
accessing

apropos files with, 37
/usr/atria/doc/man/permuted_index

accessing
the permuted index with, 37

/usr/atria/examples/mkeltype directory
element type shell scripts contained in, 301

/usr/atria/lib/mgrs directory
predefined type managers found in, 301

/usr/atria/lib/mgrs/mgr_info.h file
type manager information contained in, 301

/usr/softbench/app-defaults/softdm
setting the SoftBench build program, 151

V

validation
releases

(scenario), 344
variants

architecture-specific
issues surrounding the development of, 201

version control
set view capability impact on, 81

version labels (meta-data)
attaching

to makefiles, 104
configuring views with, 90, 103
creating

SoftBench ClearCase menu Make Label item
description, 149

defining baselevels with, 327
libraries, 102
source identification

(scenario), 335, 345
types

browsers that can display (table), 59
creating, to record a released configuration, 315
locking, to freeze a configuration, 89
locking, with lock command, 89
naming conventions, 78

version-extended pathname use, 40
versions

checked-out
CR listing of, 169

comparing
SoftBench ClearCase menu Compare Versions

item description, 148
conflicts

avoiding, 105
creating

construct_version method, characteristics and
use in creating a new type manager, 305

375

create_version method, characteristics and use in
creating a new type manager, 303

directories
listing, with catcr -long, 169

displaying information about
SoftBench ClearCase menu Describe item

description, 148
elements

created during a build session, status of, 186
type manager handling of, 297

listing
SoftBench ClearCase menu Cleartool List item

description, 148
merging

SoftBench ClearCase menu Merge Versions item
description, 148

selecting
that built a particular program, 103

string
adding to an executable (chapter), 217

tracking changes in
with attributes and triggers, 314

trees
browser characteristics, 65
displaying, SoftBench ClearCase menu Display

Version Tree item description, 148
version-ID

version-extended pathname use, 40
version_selector manual page

pathname documentation, 40
views

cleartool subcommands for working with (table),
32

views (workspace management)
accessing

with view-extended pathnames, 81
browsers

characteristics, 65
configuring

(chapter), 85
by attribute query, 96

by query, 100
by time, 90
by version label, 89, 103
for debugging, 104
for multiple-level branching, 95
for new development, 93
for QA, 96
parallel development (scenario), 332
preventing version conflicts, 105
to restore a previous environment, 94
to restrict changes to a single directory, 100
to select application subsystems, 103
to show only one developer’s changes, 100
to show results of a nightly build, 101
using version labels, 90
with element types, 300
with find (cleartool subcommand), 333

configuring, 74
context

establishing, term definition, 80
specifying explicitly with view-extended

pathnames, 82
summary of use, 83
view-extended pathnames use with, SoftBench,

150
view-extended pathnames use with, ToolTalk,

154
creating

an NFS-accessible view, 335
parallel development (scenario), 332

creating, 72
development

changing config specs to, 104
export

setting for non-ClearCase access, 71
term definition and setup, 211

extended pathnames
accessing DOs with, 165
accessing other views with, 81
cleartool use, 40
SoftBench use requirement, 150

376

Index

SoftBench use, cautions, 150
ToolTalk use requirement, 154
view context relationship, 83

freezing
cautions against using time rules for, 162

frozen
defined by time, 90
defined by version labels, 89

historical
configuring, 88

isolating users from each other
(config spec examples), 317

isolating work with, 333
location considerations, 71
multiple-architecture development use, 206
naming, 72
parallel development environment planning

(scenario), 330
perusal

contrasted with development views, 100
planning considerations, 69
reconfiguring, 74
registering

parallel development (scenario), 332
selecting a location for, 71
server process

term definition, 71
set

term definition, 80
view context relationship, 83

setting
(chapter), 69
simple clearmake build scenario, 44
term definition, 80
unexpected behavior if you have not, 83
up for final validation (scenario), 346

setting, 80
sparse

config spec that creates, 103
starting

SoftBench ClearCase menu Start View item
description, 150

to use, 80
storage

directory, term definition, 71
storage registry

verification when creating a view, 73
transparency

derived objects included in, 81
DOs accessible through standard UNIX

pathnames, 165
set view capability, 80
term definition and description, 40

umask setting impact on accessibility of, 70
view-private objects

dependencies (figure), 182
viewtags

naming considerations, 72
starting views with, SoftBench ClearCase menu

Start View item description, 150
VOB location relative to, 71
working directory

characteristics and use, 81
term definition, 80
view context relationship, 83

VOB (versioned object base)
accessing

from init(1M)-started processes, with view-
extended pathname, 82

automatic deletion of DO-related information from
the, 179

browsers
characteristics, 64

changing
event record creation triggered by, 41

element types defined on a per-VOB basis, 299
event records

comment strings, enforcing the use of, 313
comment strings, 41
creation, triggered by VOB changes, 41
lscheckout, displaying, 42

377

lshistory, displaying, 42
lslock, displaying, 42
lspool, displaying, 42
lstype, displaying, 42

extended pathnames
cleartool use, 40

links
parent-child, establishing for CR hierarchy, 173
symbolic, caution on use of, 83
symbolic, relative pathnames recommended

for, 84
symbolic, set view importance, 83
symbolic, type manager, linking across the

network, 310
symbolic, type manager, use for inheritance, 301,

302
mounting

through export view, 213
objects

DOs as, 175
remote access

through NFS export views, 211
separate branch type sets maintained for, 331
tags

VOBTAG data type, browsers that can display
(table), 59

tools
eliminating explicit dependency declarations

with, 183
view location relative to, 71
VOB-extended pathname

accessing DOs with, restrictions on, 166
VPATH macro

dependency declarations
when to use, 184

specifying directories to be searched with, 184
Sun make program

clearmake actions, 226
substitutions in build scripts, 227

W

what(1) command
creating a string for, 218
four character string prefix (@(#)), 218

whatis file
accessing, 37

wildcards
controlling use

(scenario), 323
windows

terminal emulation
compared with list browsers, 62

text output
compared with list browsers, 62

wink-in
(figure), 46
handling differences between standard build

avoidance algorithms and, 155
manually handling with winkin command, 174
not provided in clearaudit use with non-clearmake

programs, 221
optimizing, 159
permission settings that facilitate, 163
reuse compared with, 47
winkin (cleartool subcommand)

copying DO file system data with, 167
description (table), 33
manually winking in a DO with, 174

wrong-version-checked-out problem
avoiding by using branches in the config spec, 99

X

X Windows
.Xdefaults file

SoftBench entries, 151
SoftBench/ClearCase entries, 146

378

Index

xclearcase command
starting, 49
using

(chapter), 49
xcleardiff utility

accessing from SoftBench, 148
graphically comparing and merging files (chapter),

127
invoking, 128

.Xdefaults file
SoftBench entries, 146, 151

xdiff (cleartool subcommand)
description (table), 35

xlsvtree (cleartool subcommand)
description (table), 33
SoftBench ClearCase menu Display Version Tree

item description, 148
xmerge (cleartool subcommand)

description (table), 35

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2369-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

