
Programming on Silicon Graphics®

Systems: An Overview

Document Number 007-2476-002

Programming on Silicon Graphics® Systems: An Overview
Document Number 007-2476-002

CONTRIBUTORS

Written by Eleanor Bassler
Edited by C. Kleinfeld
Photography by Nancy Cam
Production by Heather Hermstad
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© 1996, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks and IRIX, IRIS Graphics Library,
IRIS IM, IRIS InSight, IconSmith, OpenGL, IRIS ViewKit, POWER Fortran
Accelerator, IRIS Performer, Indigo Video, Indy Video, Galileo Video, Indigo2 Video,
Sirius Video, ImageVision Library, CASEVision, Impressario, Indigo Magic, Open
Inventor, POWER Series, and RealityEngine are trademarks of Silicon Graphics, Inc.
OSF/Motif is a trademark of Open Software Foundation. UNIX is a registered
trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd. X Window System is a trademark of the Massachusetts
Institute of Technology. PostScript is a registered trademark and Display PostScript
is a trademark of Adobe Systems, Inc. Ada is a registered trademark of Ada Joint
Program Office, U. S. Government. AutoCad is a registered trademark of Autodesk,
Inc. Sun Microsystems is a registered trademark of Sun Microsystems. Apple is a
registered trademark and QuickTime is a trademark of Apple Computer, Inc. Kodak
and Kodak Photo CD are trademarks of Eastman Kodak Company.

iii

Contents

List of Figures vii

List of Tables ix

About This Guide xi
What This Guide Contains xii
What You Should Know Before Reading This Guide xii

1. The IRIX Operating System 1
About the IRIX Operating System 1

Standards Compliance 1
Internationalization 2
Networking 3
X Window System 4

Silicon Graphics Extras 4
Fast 3D Graphics 4
Parallel Programming 5
Real-Time Enhancements 5
High-Performance I/O 6
Indigo Magic Environment 6

Device Drivers 6
Writing an Application Program 8

iv

Contents

2. IRIX Developer Documentation 11
A Documentation Roadmap 11
The IRIS Developer’s Option 13
An Annotated List of Manuals 14

Operating System Level Documentation 14
Compilers 15
User Interface Tools 17
Software Development Tools 18
Application Libraries 20

3. Compilers 23
C and C++ 23
Fortran 77 24
The Parallelizing Compilers 24

Power C 24
Power Fortran Accelerator 25

Pascal 26
Ada 27

4. User Interface Tools 29
X Window System 29

Xlib and Xt 30
4Dwm 30

User Interface Toolkits 31
OSF/Motif and IRIS IM 31
IRIS ViewKit 32

Indigo Magic Desktop Integration 34
Learning About Silicon Graphics User Interface Style 34
Integrating Your Application Into the Desktop 34

Contents

v

5. Software Development Tools 37
Creating Executable Files 37

Compiler Drivers 37
Object Files and Dynamic Linking 38

IRIX Tools for Debugging and Tuning Your Program 39
Debugging Tool 39
Tools for Object File Query and Manipulation 40
Performance Tuning Tools 41

The CASEVision Programming Tools 44
The CASEVision Environment 45
CASEVision/WorkShop 45
CASEVision/WorkShop MegaDev 47
CASEVision/WorkShop Pro MPF 48

Version Control and Configuration Management 48
CASEVision/Tracker 48
CASEVision/ClearCase 49

6. Application Libraries 51
Graphics Libraries 51

OpenGL 52
Open Inventor 54
IRIS Graphics Library 56
IRIS Performer 57

ImageVision Library 59
IRIS Digital Media Development Environment 63

IRIS Digital Media Libraries 63
Digital Media Tools 66

Printer/Scanner Management 67

Index 69

vii

List of Figures

Figure i Building an Application with Silicon Graphics Software xi
Figure 1-1 Driver Position in the Kernel 7
Figure 1-2 Component Hierarchy of an IRIX Application Program 9
Figure 2-1 Documentation for Developers 12
Figure 3-1 Using Power C to Produce a Parallelized Program 25
Figure 3-2 Using PFA to Produce a Parallelized Program 26
Figure 4-1 Hierarchy of User Interface Toolkits 31
Figure 4-2 IRIS ViewKit in the Developer Environment 32
Figure 4-3 A Portion of the IRIS ViewKit Class Hierarchy 33
Figure 5-1 Using prof to Obtain pc Sampling Information 42
Figure 5-2 Using pixie to Collect Basic Block Counts 43
Figure 5-3 Using cord to Rearrange Procedures 44
Figure 5-4 An Example of a CASEVision User Interface 46
Figure 6-1 Using the Lighting Feature of OpenGL 53
Figure 6-2 Using the Texture-Mapping Feature of OpenGL 53
Figure 6-3 A Scene Created by Open Inventor 54
Figure 6-4 Open Inventor Architecture 55
Figure 6-5 IRIS GL in the Developer Environment 57
Figure 6-6 IRIS Performer Library Hierarchy 58
Figure 6-7 A Display Created by ImageVision Library 60
Figure 6-8 Using the ImageVision Library to Transform an Image 61
Figure 6-9 A Simple ImageVision Library Application 61
Figure 6-10 Architecture of an ImageVision Library Application 62
Figure 6-11 Interaction of Digital Audio System Components 65
Figure 6-12 Interface to the Spooling System 68

ix

List of Tables

Table 1-1 IRIX-Supported Internationalization Features 2
Table 2-1 Operating System Level Manuals 14
Table 2-2 Compiler Manuals 15
Table 2-3 Documentation About User Interface Tools 17
Table 2-4 Software Development Tools Manuals 18
Table 2-5 Application Libraries Manuals 20
Table 5-1 Compiler Drivers and Source Languages 38
Table 5-2 Summary of Performance Tuning Tools 41
Table 6-1 Database Formats Supported by Performer 59
Table 6-2 Digital Audio Libraries 64
Table 6-3 Digital Media Tools 66

xi

About This Guide

If your goal is to write application programs that run on Silicon Graphics® computers,
and if you know quite a bit about UNIX® but not much about the IRIX™ operating
system, this book is for you. It doesn’t tell you everything you need to know to write your
IRIX application, but it does give you an overview of IRIX and the tools and libraries it
provides, and it tells you where to go to learn more.

The IRIX operating system is Silicon Graphics’ implementation of the UNIX operating
system. All application programs written for Silicon Graphics platforms run in the IRIX
environment. Writing an application with a graphical user interface that runs on Silicon
Graphics platforms requires the IRIX operating system, a compiler for your source code,
tools to build your user interface, tools to debug and tune your program, and typically
one or more application libraries. This guide describes the software Silicon Graphics
provides to perform these tasks.

Figure i illustrates the relationship between Silicon Graphics software, your application,
and your user. In this example, an application uses one of the application libraries, Open
Inventor, to create an image and display it on the monitor.

Figure i Building an Application with Silicon Graphics Software

IRIX

Compilers

User Interface Tools

Software Development Tools

Application Libraries

Application

xii

About This Guide

What This Guide Contains

This introduction to programming on Silicon Graphics computers contains the following
chapters:

• Chapter 1, “The IRIX Operating System,” briefly describes IRIX, the UNIX
standards with which it complies, and the features added beyond UNIX to support
the graphics and multiprocessing capabilities of Silicon Graphics platforms.

• Chapter 2, “IRIX Developer Documentation,” describes the documentation
available for IRIX application developers.

• Chapter 3, “Compilers,” briefly describes the compilers available to IRIX
developers.

• Chapter 4, “User Interface Tools,” tells you about the tools Silicon Graphics
provides to help you develop a graphical user interface for your application.

• Chapter 5, “Software Development Tools,” describes the tools you can use to
compile, debug, and tune your application. It also tells you about configuration
management and version control software.

• Chapter 6, “Application Libraries,” provides an introduction to the application
libraries you can use for graphics, image processing, digital media, and
printer/scanner management applications.

What You Should Know Before Reading This Guide

This guide assumes that readers are experienced programmers who are familiar with a
UNIX programming environment, but not necessarily familiar with IRIX. An
understanding of object-oriented programming is helpful when reading parts of this
book.

1

Chapter 1

1. The IRIX Operating System

This chapter provides a brief overview of the IRIX operating system, Silicon Graphics’
implementation of the UNIX operating system. It describes IRIX compliance with
standards, summarizes the features unique to IRIX (such as support for graphics
hardware), briefly discusses writing device drivers (which run as part of the IRIX kernel),
and lists the hierarchy of tools and libraries you can use when you write an IRIX
application.

About the IRIX Operating System

IRIX, Silicon Graphics’ implementation of the UNIX operating system, is based on UNIX
System V, Release 4 (SVR4).

Standards Compliance

IRIX provides standard SVR4 programming interfaces and BSD networking, and
complies with the following standards:

• System V Interface Definition, Issue 3 (SVID3), which is the defining document for
SVR4. IRIX provides the SVR4 Applications Programming Interface (API) and the
Applications Binary Interface (ABI) as defined in SVID3.

• X/Open Portability Guide, Issue 3 (XPG3), which specifies a set of programming
interfaces to be provided by operating systems in order to facilitate the writing of
portable programs.

• POSIX P1003.1, another standard for portable programming.

• X Window System, Version 11, Release 6 (X11R6). IRIX provides the
industry-standard X Window System™.

• OSF/Motif™ Release 1.2. IRIX includes IRIS IM™, the Silicon Graphics port of the
industry-standard OSF/Motif user-interface toolkit.

• OpenGL™. IRIX provides a full implementation of this standard for 3D graphics.

2

Chapter 1: The IRIX Operating System

Internationalization

Internationalization is the process of making a program capable of running in more than
one spoken-language environment without recompiling. Internationalized software can
be made to produce output in a user’s native language, to format data (such as dates and
currency values) according to local custom, and in other ways make the software more
comprehensible for people whose culture is different than that of the original software
developer.

Table 1-1 lists the internationalization features supported by IRIX and the standards with
which this implementation complies.

The chapter titled “Internationalization” in Topics in IRIX Programming describes
functions you can use and guidelines you can follow to create an application that runs in
more than one spoken-language environment.

Table 1-1 IRIX-Supported Internationalization Features

Feature Standard

Locales ANSI C and POSIX (ISO0045-1)

XPG/3 message catalogs and
interpretation of locale strings

X/OPEN Portability Guide, Issue 3
(XPG/3)

Multi-National Language Support
(MNLS) message catalogs

UNIX System V Release 4

Input methods
Text rendering
Resource files

X11R6

About the IRIX Operating System

3

Networking

The network programming facilities available with the IRIX operating system include
the following:

• The Transport Layer Interface (TLI) defined in ISO-OSI, using System V Release 4
STREAMS modules.

The International Standards Organization (ISO) has developed a standard known as
the Reference Model of Open Systems Interconnection (ISO-OSI). This model uses a
layered view of networking. The TLI, which defines an interface between two of
these layers, provides a set of functions that applications can call to perform various
network operations. TLI conforms to the MIPS® ABI (Application Binary Interface).

• Network interfaces (sockets) defined by the 4.3 release of the Berkeley Software
Distribution (BSD).

The 4.3BSD Inter-Process Communication (IPC) facility provides a socket interface
that enables low-level access to network addressing and data transfer. IRIX
supports libsocket, the standard SVR4 method of accessing the BSD4.3 networking
interface. The libsocket library provides a socket interface that is MIPS ABI
compliant.

• An implementation of the Sun Microsystems® Remote Procedure Call (RPC)
library.

RPC implements a remote procedure call model, in which a procedure executing on
a remote system can be treated as a local procedure call by the calling application.
RPC enables synchronous execution of procedure calls on remote hosts and
provides transparent access to network facilities.

The IRIX operating system implements the Internet Protocol (IP) suite. The IP suite is a
collection of layered protocols developed by the Department of Defence Advanced
Research Project Agency (DARPA). The two most widely used IP protocols are the
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). The IRIX
operating system implements the Internet Protocol suite and UNIX domain sockets
using the 4.3BSD UNIX socket mechanism.

4

Chapter 1: The IRIX Operating System

X Window System

The Silicon Graphics native X Window System is based on the X Version 11 Release 6
(X11R6) standard that supports multiple visuals, overlay windows, the X Input
Extension, the Display PostScript™ Extension, the Shape Extension, and the Shared
Memory Extension. Read “X Window System” for more information about the X
Window System on Silicon Graphics platforms.

Silicon Graphics Extras

In addition to the standard UNIX features described in “About the IRIX Operating
System”, IRIX provides software that supports the graphics and multiprocessing
capabilities of Silicon Graphics platforms. These added features include:

• Fast 3D graphics

• Parallel programming

• Real-time enhancements

• High-performance I/O

• An icon-oriented interface to IRIX

Fast 3D Graphics

Most Silicon Graphics systems are equipped with specialized graphics hardware and
software. Programs can take advantage of this graphics support by using:

• OpenGL interfaces—the industry standard interfaces for 3D rendering across
multiple platforms

• Open Inventor™—a graphics library, built on OpenGL, for creating interactive
graphics applications

• IRIS Graphics Library™ (IRIS GL)—a library of subroutines for creating color
graphics and animation

Silicon Graphics Extras

5

• IRIS Performer™—a graphics library, built on IRIS GL, for creating real-time
graphics and visual simulation applications

• ImageVision Library™—an image processing library built on IRIS GL

“Graphics Libraries” and “ImageVision Library” describe these libraries in greater detail.

Parallel Programming

IRIX is designed to take advantage of multiple processors and provides interfaces to
support parallel programming. These interfaces include:

• Low-overhead inter-process communication routines—The IRIX IPC mechanisms
use a shared arena (shared memory) for communication between processes. This
arena is mapped into a process’s user space, which means most of the shared arena
IPC functions don’t have to make system calls. This keeps overhead lower than for
standard System V IPC. Read the chapter titled “Inter-Process Communication” in
Topics in IRIX Programming for more information about shared arenas.

• Multiprocessor control routines—IRIX supports the sysmp(2) commands
MP_RESTRICT and MP_MUSTRUN, and the runon(1) and mpadmin(1)
commands. These allow you to control the distribution of processes among the
processors in a multiprocessor system. Read the REACT/Pro Release Notes for more
information about these commands.

• Shared address space (sproc)—This system call creates a new process that is a clone
of the calling process and that shares the virtual address space of the calling process.

Real-Time Enhancements

IRIX includes a number of extensions to enable programs to achieve real-time response.
You can use these features to

• accurately time events

• control allocation of memory to the process

• provide for priority scheduling

The REACT/Pro Release Notes tell you where you can find more information about the
mechanisms available to help you achieve real-time performance and how to use these
features together to create the best real-time environment.

6

Chapter 1: The IRIX Operating System

High-Performance I/O

IRIX includes several special programming interfaces for high-performance I/O. These
include:

• Memory-mapped files. You can use the mpin(2) and munpin(2) commands to lock
data into memory, thus reducing I/O activity.

• Asynchronous I/O—IRIX has added support for asynchronous I/O in accordance
with the specification in POSIX 1003.4a Draft 12.

• Direct I/O—This bypasses the system buffer cache.

These interfaces are described in the REACT/Pro Release Notes.

Indigo Magic Environment

The Indigo Magic™ desktop is an end-user environment that provides an icon-oriented
interface to the IRIX system. Users can launch applications and select files using icons
instead of pathnames. You can integrate your application into the desktop environment
to give it the Indigo Magic look and feel.

“Indigo Magic Desktop Integration” provides an overview of desktop integration. The
Indigo Magic Desktop Integration Guide covers the topic in detail.

Device Drivers

A device driver enables communication between a user process and a peripheral device.
In addition to kernel-level drivers, there are user-level drivers and STREAMS modules.
Device drivers perform functions such as taking the device online and offline,
transmitting data from the kernel to the device, receiving data from the single device and
passing it to the kernel, and handling and reporting I/O errors.

Silicon Graphics provides drivers for many popular devices. However, you still may find
that you need to write a device driver to support a device for which no driver is available.

The IRIX filesystem provides a device-independent interface that allows device drivers
to be opened, read, written, and closed as though they were files. The program issues
standard system I/O calls, and the system then calls the driver you’ve written to handle
the device.

Device Drivers

7

Figure 1-1 illustrates the relationship between the various software modules that connect
the user application and the device with which it needs to communicate.

Figure 1-1 Driver Position in the Kernel

The kernel interfaces for IRIX device drivers are

• SVR4 Device Driver interface/Driver Kernel Interface (SVR4 DDI/DKI). IRIX uses
the multiprocessor version of DDI/DDK.

• SVR4 STREAMS Interface, documented in the UNIX System V Release 4 Streams
Programming Guide.

• IRIX 5.x Data Link Provider Interface (DLPI).

• User-level device drivers for VME, EISA, and SCSI.

The following list describes some Silicon Graphics-specific features you may need to
include in a device driver:

• Memory mapping extensions (map and unmap)—the Silicon Graphics-specific
memory mapping functions used by a device driver.

• Utility extensions—the Silicon Graphics-specific utility functions a developer needs
to include in a device driver.

• Data structure extensions—data structure extensions supported by Silicon Graphics
include eisa_dma_buf and eisa_dma_cb.

• Four new kernel definitions.

User application program

Process control
subsystem

Filesystem

System call interface
(open, read, write, close calls)

Device drivers

Hardware control

Peripheral device hardware

User
Level

Kernel
Level

Hardware
Level

8

Chapter 1: The IRIX Operating System

Writing an Application Program

The IRIS Developer’s Option (IDO) is required for writing applications that run on
Silicon Graphics platforms. This option provides the basic software and documentation
for the development environment. “The IRIS Developer’s Option” tells you more about
the IDO.

When you write an application for a Silicon Graphics platform, you can choose from a
number of languages, toolkits, and libraries supplied by Silicon Graphics for developers.
Your choice depends on the nature of your application and, to some degree, on your
personal preference. Here are some choices you can make and the options available
under IRIX:

• A programming language. Choose a language that is best suited for your
application. Silicon Graphics provides compilers for C, C++, Fortran, Pascal, and
Ada®. If your application runs on a multiprocessing platform and performance is a
key consideration, you may want to choose either Power C or POWER Fortran, the
versions of C and Fortran with special support for multiprocessing.

• A graphical user interface. If you plan to incorporate a graphical user interface in
your application, you can use one of the user interface toolkits provided by Silicon
Graphics rather than writing your own. These toolkits are IRIS ViewKit™ and IRIS
IM, which is Silicon Graphics’ port of the industry-standard OSF/Motif. They allow
you to build an interface for your application that looks like the interfaces of other
applications running in the Indigo Magic desktop environment.

• Software development tools. When you order the IDO, you receive tools for
compiling, debugging, and tuning your application. These tools include the
compiler driver, the dbx debugger, and several performance tuning tools. You can
also order the CASEVision WorkShop, which provides several interactive, graphical
tools for debugging and tuning your application. If your project is large, you may
need configuration management and version control. You can use the
CASEVision™/Tracker and CASEVision/ClearCase tools for these tasks.

• An application library. You may want to use one of the application libraries
developed by Silicon Graphics. These libraries provide tools for developers of 3D
graphics, image processing, digital media, and printer/scanner management
applications.

Writing an Application Program

9

Figure 1-2 shows, in a hierarchical arrangement, the components you can select.

Figure 1-2 Component Hierarchy of an IRIX Application Program

Now that you have an overview of the IRIX programming environment, you’re ready to
learn more about the tools and libraries available and the documentation Silicon
Graphics provides for reading about them. Chapter 2 lists the IRIX programming
documentation. Chapters 3 through 6 describe IRIX compilers, tools, and application
libraries in greater detail.

IRIS Performer
OpenGL
IRISGL
ImageVision Library

Open Inventor
Digital Media
Impressario

Compiler drivers
dbx par
pixie xscope
prof cord

CASEVision WorkShop
CASEVision Tracker
CASEVision/ClearCase

Your Application

Xlib
Xt

OSF/Motif
IRIS IM

IRIS ViewKit

C
Fortran

C++
ADA

Pascal
POWER Fortran

Power C

IRIX
Operating
System

Compilers

User Interface
Tools

Software
Development Tools

Application Libaries

11

Chapter 2

2. IRIX Developer Documentation

This chapter tells you about the documentation Silicon Graphics provides to describe the
operating system, compilers, tools, and libraries you can use to develop your
applications. It presents this information in three forms:

• A documentation roadmap that lists the available developer documentation in
graphical form.

• A list of the manuals provided to everyone who orders the IRIS Developer’s Option
(IDO).

• An annotated list of all IRIX developer documentation, grouped by function:

Table 2-1 Operating system manuals

Table 2-2 Programming language manuals

Table 2-3 Documentation about user interface toolkits

Table 2-4 Manuals about software development tools

Table 2-5 Application libraries

A Documentation Roadmap

The diagram in Figure 2-1 shows the documentation provided by Silicon Graphics for
application developers.

12

Chapter 2: IRIX Developer Documentation

Figure 2-1 Documentation for Developers

IRIX

Device Driver

C++

C

Fortran

IRIX Device Driver
 Programming Guide
IRIX Device Driver
 Reference Pages

Window System
Compiling and
Performance Tuning OpenGL

C Language Reference
 Manual
IRIS Power C User's
 Guide Indigo Magic Desktop

 Integration Guide
Indigo Magic User
 Interface Guidelines

Desktop Environment
Integration

Pascal

Fortran 77 Language
 Reference Manual
Fortran 77 Programmer's
 Guide
POWER Fortran
 Accelerator User's
 Guide
MIPSpro Fortran 90
 Programmer's Guide
Fortran 90 Handbook

C++ Programming Guide
C++ Language System
 Overview
C++ Language System
 Guide

Xlib Programming
 Manual
X Toolkit Intrinsics
 Programming Manual
X11 Input Extension
 Library Specification

OpenGL Programming
 Guide
OpenGL Reference Manual
The OpenGL Porting Guide

 MIPS Compiling and
 Performance Tuning
 Guide

Pascal Programming
 Guide

dbx User's Guide
dbx Quick Reference

CASEVision/WorkShop
 User's Guide, Vol. 1-2
CASEVision/WorkShop
 MegaDev User's Guide
Developer Magic: ProDev
 Workshop and
 MegaDev Overview
Developer Magic: X/Motif
 Analyzer User's Guide
Developer Magic: Applica-
 tion Builder User's
 Guide
CASEVision/Workshop
 Pro MPF User's Guide
CASEVision Environment
 Guide

Debugging

Programming Tools

Version Control/
Configuration Management

Operating System Compilers User Interface Tools
Software Development
Tools Application Libraries

IRIS GL

Open Inventor

Performer

ImageVision Library

Digital Media

The Inventor Mentor
The Inventor Toolmaker
Open Inventor C++
 Reference Pages

IRIS Digital Media
 Programming Guide

Printer/Scanner Management
Impressario Programming
 Guide

IRIS Viewkit Programmer's
 Guide
OSF/Motif Programmer's
 Guide
OSF/Motif Programmer's
 Reference
OSF/Motif Style Guide
IRIS IM Programming
 Notes

User Interface Toolkits

Ada

Ada X/Motif Interface
 (AXI) Programmer
 Reference Manual

Programming on
 Silicon Graphics
 Systems: An Overview
Topics in IRIX
 Programming
IRIX Network
 Programming Guide

IRIS Performer
 Programming Guide
IRIS Performer Reference
 Pages
IRIS Performer Quick
 Reference

CASEVision/Tracker
 Design Guide
CASEVision/Tracker
 User's Guide
CASEVision/ClearCase

ImageVision Library
 Programming Guide
ImageVision Library
 Inheritance Hierarchy

Document titles shown in bold are part of the IDO (IRIS Developer's Option)

MIPSpro 64-Bit Porting
 and Transition Guide

 MIPSpro Assembly
 Language Prog-
 rammer's Guide

Assembly Language

Graphics Library Prog-
 ramming Guide, Vol. 1-2
Graphics Library Prog-
 ramming Tools and
 Techniques

The IRIS Developer’s Option

13

The IRIS Developer’s Option

The IRIS Developer’s Option includes the manuals listed below. To order printed
versions of these manuals, call SGI Express at 1-800-800-7441, and supply the desired
product codes. The Documentation Catalog for IRIX 5.3, viewable from IRIS InSight,
contains additional information about these manuals.

• Programming on Silicon Graphics Systems: An Overview

• Topics in IRIX Programming

• IRIX Network Programming Guide

• IRIX Device Driver Programming Guide

• IRIX Device Driver Reference Pages

• C Language Reference Manual

• dbx User’s Guide

• dbx Quick Reference

• OpenGL Programming Guide

• OpenGL Porting Guide

• Graphics Library Programming, Volumes 1 and 2

• Graphics Library Programming Tools and Techniques

• Indigo Magic Desktop Integration Guide

• Indigo Magic User Interface Guidelines

• Xlib Programming Manual

• X11 Input Extension Library Specification

• X Toolkit Intrinsics Programming Manual

• IRIS IM Programming Notes

• OSF/Motif Programmer’s Guide

• OSF/Motif Programmer’s Reference

• OSF/Motif Style Guide

• IRIS Digital Media Programming Guide

• MIPS Compiling and Performance Tuning Guide

14

Chapter 2: IRIX Developer Documentation

• MIPSpro 64-Bit Porting and Transition Guide

• MIPSpro Assembly Language Programmer’s Guide

• Software Packager User’s Guide

An Annotated List of Manuals

The five tables in this section list the manuals available for developers, along with the
production name for each manual and a brief description of the content of the manual.

Operating System Level Documentation

Table 2-1 lists manuals containing information about topics at the operating system level.
You receive online versions of these manuals when you order the IDO.

Table 2-1 Operating System Level Manuals

Product Name Title Description

IDO Programming on Silicon
Graphics Systems: An
Overview

Provides an overview of the IRIX operating system,
programming languages, software development and
user interface toolkits, and application libraries.

IDO Topics in IRIX
Programming

Describes selected topics in IRIX programming,
including interprocess communication, file and
record locking, fonts, and internationalization.

IDO IRIX Network
Programming Guide

Describes various approaches to writing software that
sends or receives information through a network.

IDO IRIX Device Driver
Programming Guide

Tells you how to write device drivers to control
peripheral devices.

IDO IRIX Device Driver
Reference Pages

Contains reference pages that describe the functions
and data structures used in writing device drivers.

An Annotated List of Manuals

15

Compilers

Table 2-2 lists the manuals containing information about programming languages
supported by Silicon Graphics. Some of these manuals come with IDO. Others you
receive only when you order the associated product.

Table 2-2 Compiler Manuals

Product Name Title Description

C++ C++ Programming Guide Tells you how to compile, link, and run a C++
program. Documents the interface between C
and C++, and the differences between the 64-
and 32-bit versions of the compiler. Describes
how to use the Delta/C++ compiler.

C++ Language System Overview Contains an overview of the language
features of C++. Describes the differences
between C and C++.

C++ Language System Library Introduces the iostream support in the C++
library and describes facilities for using
complex-number arithmetic.

IDO C Language Reference Manual Contains a summary of the syntax and
semantics of the C programming language as
implemented on Silicon Graphics platforms.

IRIS Power C IRIS Power C User’s Guide Describes how to use IRIS Power C, a C
compiler for developers who want to make
efficient use of IRIX multiprocessors by
executing parts of their programs
concurrently.

Fortran Fortran 77 Language Reference
Manual

Describes the Fortran 77 language
specifications as implemented on the IRIS
workstations.

Fortran 77 Programmer’s Guide Describes the implementation of Fortran 77
for IRIX and the IRIS workstations.

POWER Fortran POWER Fortran Accelerator
User’s Guide

Describes the features of the POWER Fortran
Accelerator™ (PFA), a source-to-source
preprocessor that allows you to run Fortran 77
programs on multiprocessor systems.

16

Chapter 2: IRIX Developer Documentation

MIPSpro Fortran 90
Programmer’s Guide

Discusses the use of the MIPSpro Fortran 90
compiler, including run-time considerations,
linking to other languages, optimization, and
considerations for porting from Fortran 77.
The optimization material covers the use of
POWER Fortran 90, the multiprocessor
parallel optimization tool.

Fortran 90 Handbook Contains a complete reference to the
ANSI/ISO standard for the Fortran 90
language. It contains hypertext links to the
MIPSpro Fortran 90 Programmer’s Guide
allow you to look up the SGI implementation
of optional features immediately.

Pascal Pascal Programming Guide Describes the general syntax of the Pascal
programming language, including data
structures and program flow control.

IRIX5 AXM Ada X/Motif Interface (AXI)
Programmer Reference Manual

Contains information about programming in
the AXM environment, including the Ada
preprocessor, the Statistical Analyzer, and
interfaces to libraries written in other
languages.

IDO MIPSPro Assembly Language
Programmer’s Guide

Describes the assembly language supported
by the RISCompiler system, including its
syntax rules.

Table 2-2 (continued) Compiler Manuals

Product Name Title Description

An Annotated List of Manuals

17

User Interface Tools

Table 2-3 lists the manuals containing information about the user interface libraries and
toolkits supported by IRIX. Some of these manuals come with the IDO. Others you
receive only when you order the associated product.

Table 2-3 Documentation About User Interface Tools

Product Name Title Description

IDO Xlib Programming Manual Describes the X library, the C interface to the
X Window System.

IDO X11 Input Extension Library
Specification

Describes the input extension to the X11
server. This extension supports the use of
additional input devices beyond the pointer
and keyboard devices defined by the core X
protocol.

IDO X Toolkit Intrinsics
Programming Manual

Describes how to use the Xt Intrinsics library
to write X Window System programs.

IDO OSF/Motif Programmer’s Guide Describes how to use the OSF/Motif API to
create Motif applications.

IDO OSF/Motif Programmer’s
Reference

Contains descriptions of the OSF/Motif
toolkit, window manager, and user interface
language commands and functions.

IDO OSF/Motif Style Guide Provides a framework of behavior
specifications to guide developers in the
design and implementation of products
consistent with the OSF/Motif user interface.

IDO IRIX IM Programming Notes Describes how to develop applications using
IRIS IM. Contains advice for X and Xt
programmers about programming in the
Silicon Graphics X environment.

IDO Indigo Magic Desktop
Integration Guide

Explains how to integrate applications into
the Indigo Magic desktop environment.

18

Chapter 2: IRIX Developer Documentation

Software Development Tools

Table 2-4 contains a list of the manuals describing the tools for compiling, debugging,
and tuning your application. Some of these manuals come with IDO. Others you receive
only when you order the associated product.

IDO Silicon Graphics User Interface
Guidelines

Helps you create products whose user
interface is consistent with other applications
in the Indigo Magic desktop environment.

C++ IRIS ViewKit Programmer’s
Guide

Describes how to create programs using IRIS
ViewKit, a toolkit that provides user interface
facilities for applications.

Table 2-4 Software Development Tools Manuals

Product Name Title Description

IDO MIPS Compiling and
Performance Tuning Guide

Describes the compiler system, dynamic shared
objects (DSOs), and program debugging tools. It
explains ways to improve program performance
using prof, pixie, and the optimization options.

IDO MIPSpro 64-bit Porting and
Transition Guide

Describes the IRIX 6 operating system and MIPSpro
32-bit and 64-bit compilers, calling conventions and
language implementation differences, source code
porting, compilation and runtime issues, and
performance tuning for the R8000.

IDO dbx User’s Guide Describes how to use dbx, a source level debugger, to
debug C, C++, Fortran 77, Pascal, and assembler
programs. This includes how to execute a program
using dbx, examine source code, control program
execution, debug machine language code, and debug
multiple processes.

CASEVision
WorkShop

CASEVision/WorkShop
User’s Guide - Volume 1

Describes how to use the Debugger and Static
Analyzer tools in the WorkShop toolset.

Table 2-3 (continued) Documentation About User Interface Tools

Product Name Title Description

An Annotated List of Manuals

19

CASEVision/WorkShop
User’s Guide - Volume 2

Describes how to use the Performance Analyzer,
Tester, and Build Manager tools in the WorkShop
toolset.

CASEVision/WorkShop
MegaDev User’s Guide

Describes the C++ Browser and the Fix and Continue
utilities. The C++ Browser lets you view the structure
of any set of C++ classes. Fix and Continue allows
you to redefine functions and then continue
execution without recompiling.

Developer Magic: ProDev
Workshop and MegaDev
Overview

Describes the major tools in the ProDev WorkShop
toolkit. It provides a user model for each tool,
highlights some major features, and provides
pointers to the user guides where you can get
detailed information on the tools.

Developer Magic: X/Motif
Analyzer User’s Guide

Describes the X/Motif Analyzer, a tool that provides
special debugging support for X/Motif applications.
The X/Motif Analyzer provides information
unavailable through conventional debuggers. It lets
you set widget-level breakpoints and collect X event
history.

Developer Magic: RapidApp
User’s Guide

Describes RapidApp, a tool for creating application
interfaces. RapidApp generates C++ code, with
interface classes based on the IRIS ViewKit toolkit
and IRIX IM (the Silicon Graphics version of
X/Motif). RapidApp also includes predefined
interface components based on other Developer
Magic libraries such as OpenGL(TM) and Open
Inventor(TM). Applications produced by RapidApp
are automatically integrated into the Indigo Magic
Desktop environment, letting you take advantage of
Silicon Graphics’ interface and desktop technology.

CASEVision/WorkShop Pro
MPF User’s Guide

Describes the Pro MPF tool, an interactive, visual
comparison of the original source with transformed,
parallelized code.

CASEVision Environment
Guide

Describes the common environment that all the tools
in the CASEVision product line share.

Table 2-4 (continued) Software Development Tools Manuals

Product Name Title Description

20

Chapter 2: IRIX Developer Documentation

Application Libraries

Table 2-5 contains a list of the manuals describing the graphics, image processing, digital
media, and printer/scanner libraries available on an IRIS system. Some of these manuals
come with IDO. Others you receive only when you order the associated product.

CASEVision/Tracker
Design Guide

Describes the CASEVision/Tracker, a tool for
creating systems to track bugs and enhancement
requests.

CASEVision/Tracker User’s
Guide

Describes how to use the Request Tracking System
(RTS), a system for tracking bugs and requests for
enhancements.

CASEVision/ClearCase Describes the CASEVision/ClearCase software
configuration management system.

DESK Software Packager User’s
Guide

Describes how to use the Software Packager (swpkg),
a graphical tool for packaging software for
installation on Silicon Graphics workstations.
Products packaged with Software Packager can be
installed with Software Manager (swmgr), an Indigo
Magic Desktop utility for installing software.

Table 2-5 Application Libraries Manuals

Product Name Title Description

IDO OpenGL Programming
Guide

Describes how to use OpenGL, a
platform-independent standard for rendering
3D graphics.

OpenGL Reference Manual Contains the reference pages for OpenGL, the
OpenGL Utility Library (GLU), and GLX—the
OpenGL extension to X. Also includes an
overview and summary of OpenGL routines and
commands.

IDO The OpenGL Porting Guide Provides directions, hints, and tips for porting
your IRIS Graphics Library software to OpenGL.

Table 2-4 (continued) Software Development Tools Manuals

Product Name Title Description

An Annotated List of Manuals

21

IDO Graphics Library
Programming Guide,
Volumes 1-2

Describes the IRIS Graphics Library API.

IDO Graphics Library
Programming Tools and
Techniques

Describes useful software tools and
programming techniques for use with IRIS GL.

Open Inventor The Inventor Mentor Provides basic information on programming
with Open Inventor.

The Inventor Toolmaker Provides advanced information on extending
Open Inventor by creating new C++ classes and
customizing existing classes.

Open Inventor C++
Reference Pages

Contains the C++ reference pages for Open
Inventor.

ImageVision ImageVision Library
Programming Guide

Describes how to use the ImageVision Library to
perform image processing tasks.

The ImageVision Library
Inheritance Hierarchy

A quick reference card that shows the entire
inheritance hierarchy of the ImageVision
Library.

IRIS Performer IRIS Performer
Programming Guide

Provides an overview of IRIS Performer and
describes the API of IRIS Performer’s two main
libraries: libpf—the high-level visual simulation
library, and libpr—the low-level
high-performance graphics library.

IRIS Performer Reference
Pages

Contains the reference pages for all the functions
in the two primary IRIS Performer libraries and
the adjunct IRIS Performer utilities library.

IRIS Performer Quick
Reference

Lists the function prototype for each function in
the IRIS Performer libraries: libpr, libpf, libpfutil,
and libpfsgi.

Table 2-5 (continued) Application Libraries Manuals

Product Name Title Description

22

Chapter 2: IRIX Developer Documentation

IDO IRIS Digital Media
Programming Guide

Describes the API’s of the libraries that comprise
the IRIS Digital Media Development
Environment. This environment includes the
Audio, Audio File, CD, DAT, MIDI, Video,
IndigoVideo™, Compression, and Movie
Libraries.

Impressario Impressario Programming
Guide

Describes Impressario™, which provides tools
for developers who need to print and scan from
their applications, or who need to write printer
or scanner drivers.

Table 2-5 (continued) Application Libraries Manuals

Product Name Title Description

23

Chapter 3

3. Compilers

This chapter describes the compilers supported by IRIX and the programming language
standards adhered to in the implementation of these compilers. Read “Creating
Executable Files” on page 37 to learn how to compile and debug programs written in
these languages. Refer to Table 2-2 for a list the manuals you can read to learn more about
the topics discussed in this chapter.

C and C++

Silicon Graphic provides compilers for both the C and C++ programming languages.

The IRIX C compiler conforms to the ANSI C standard as well as “traditional C”, the
dialect of C defined by Kernigan and Ritchie in The C Programming Language. Compiler
options allow you to compile programs written in “traditional C”, pure ANSI C, or ANSI
C with Silicon Graphics extensions. ANSI C is part of the IRIS Developer’s Option (IDO).

The Silicon Graphics implementation of C++ conforms to the standard as defined in The
Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup.

The IRIX operating system supports two versions of the C++ compiler.

NCC This is a 32-bit native compiler that implements all the features of the
language described in The Annotated C++ Reference Manual by Margaret
Ellis and Bjarne Stroustrup.

DCC This is the Delta/C++ compiler that is available as part of the
CASEVision/Workshop Pro C++ package. Delta C++ is an extension to
C++. It is a native compiler (not a preprocessor). It supports dynamic
classes, which minimizes the need for recompilation if you modify
classes.

24

Chapter 3: Compilers

Fortran 77

Fortran, as implemented on Silicon Graphics IRIS workstations, contains the full ANSI
Programming Language Fortran (X3.9-1978). It has extensions that provide full VMS
Fortran compatibility to the extent possible without the VMS operating system or data
representation. It also contains extensions that provide partial compatibility with
programs written in VMS Fortran and Fortran 77.

The Parallelizing Compilers

If your application runs on a multiprocessor platform and performance is a critical issue,
you may want parts of the program to run concurrently. Two Silicon Graphics compilers,
C and Fortran, have preprocessors that analyze source code and produce, where
possible, object code that utilizes the multiprocessor environment.

Power C

IRIS Power C allows your program to make efficient use of Silicon Graphics
multiprocessor platforms by generating code segments that execute concurrently. Power
C consists of the standard C compiler and a preprocessor that automatically analyzes
sequential code to determine where loops can run in parallel. The preprocessor generates
a modified version of the source code with multiprocessing directives added. The C
compiler, when it compiles the modified source code, interprets the directives and
produces object code that uses multiple processors. An advantage of Power C is that you
can use it to recompile existing serial C programs so that they run efficiently on
multiprocessor computers without hand recoding.

The IRIS Power C Analyzer (PCA) is the C code optimization preprocessor that detects
potential parallelism in C code. It also performs other optimizing tasks. The Power C
Analyzer can

• direct C code to run in parallel

• determine data dependencies which might prevent code from running concurrently

• distribute well-behaved loops and certain other code across multiprocessors

• optimize source code

The Parallelizing Compilers

25

You can use PCA either as a standalone tool or as a phase of the C compiler. You can also
enter the directives that produce concurrent code directly into your program rather than
using the PCA. Figure 3-1 illustrates the role of the PCA in producing an executable
module that can utilize more than one processor on a multiprocessor system.

Figure 3-1 Using Power C to Produce a Parallelized Program

Power C can produce a listing containing information about the loops that it parallelizes
and those that it cannot. Using this information, you may be able to modify your source
so that a subsequent Power C compilation produces more efficient code. You can select a
PCA compilation of your source code by specifying the pca compiler driver option when
you compile your program.

Power Fortran Accelerator

The Power Fortran Accelerator (PFA) is a source-to-source preprocessor that enables you
to run existing Fortran 77 programs efficiently on the Silicon Graphics POWER Series™

multiprocessor systems.

PFA analyzes a program and identifies loops that don’t contain data dependencies. It is
a preprocessor that automatically inserts special compiler directives into a Fortran
program to produce a modified copy of the source. The Silicon Graphics Fortran 77
compiler can then interpret these directives to generate code that can run across all
available processors. Because the directives inserted by PFA look like standard Fortran
77 comment statements, PFA does not affect the portability of the code to non-Silicon
Graphics systems. Figure 3-2 illustrates the role of PFA in producing an executable
module that can utilize more than one processor on a multiprocessor system.

C source
code

Power C
Analyzer (PCA)

C source with
hand−coded
directives

C compiler
Executable
module

Source code

+ Directives

26

Chapter 3: Compilers

Figure 3-2 Using PFA to Produce a Parallelized Program

PFA can, if you request it, produce a listing file explaining which loops were parallelized
and if not, why not. You may be able to use this information to modify your application
for more efficient use of multiple processors.You can select a PFA compilation of your
source code by specifying the pfa compiler driver option when you compile your
program.

Pascal

The Pascal language supported by the Silicon Graphics Pascal compiler is an
implementation of ANSI Standard Pascal (ANSI/IEEE770X3.97-1983). This
implementation complies with ANSI requirements except for some extensions. These
extensions include:

• names—allows underscores in identifiers and use of lowercase for public names

• constants—four extensions for constants

• statement—seven statement extensions

• declaration—six declaration extensions

• predefined procedures—four new procedures

• predefined functions—20 new functions

• predefined data types and predefined data type attributes

• extensions that affect the compile process

Fortran
source

Power Fortran
Analyzer (PFA)

Fortran
source with
hand−coded
directives

Fortran
compiler

Executable
module

Source code

+ Directives

Ada

27

Ada

The Silicon Graphics AXM (Ada X/Motif) Ada Development System provides an Ada
development environment for Silicon Graphics platforms. It consists of

• Ada compiler (ANSI/MIL-STD-1815A)

• X11 and OSF/Motif

• Bindings to the IRIS Graphics Library

• Non-intrusive, symbolic debugger

MP/Ada 6.2 is a multiprocessor Ada development system. It’s built using the
POSIX-compliant threads model for Ada tasking. If your application runs on a
multiprocessor platform, MP/Ada6.2 allows Ada tasks in this application to run
concurrently.

29

Chapter 4

4. User Interface Tools

This chapter describes the user interface libraries and toolkits you can use to create a
graphical interface between your application and its users. Refer to Table 2-3 for a list of
the manuals you can read to learn more about the topics discussed in this chapter.

X Window System

A window system allows a user to run several tasks at the same time and to view and
control each of these tasks from a separate window. Silicon Graphics implements the X
Window System, a hardware- and operating system-independent windowing system.
The X Window System is a portable, network-based windowing system whose
portability allows you to create applications that can run on many different workstations.
You can compile and execute portable X application code in IRIX without modification.

The Silicon Graphics native X Window System is based on the X Version 11 Release 6
(X11R6) standard. The IRIX extensions to X include

• support for multiple visuals

• overlay windows

• the Display PostScript extension

• the Shape Extension that supports non-rectangular windows

• the X Input Extension that supports devices other than keyboard and mouse

• the Shared Memory Extension

• simultaneous display on multiple graphics monitors

• support for OpenGL

• PEX Version 5.1 supports 3D graphics

30

Chapter 4: User Interface Tools

Xlib and Xt

 The X library, known as Xlib, is the C-language programming interface to the X Window
System. It is the lowest level programming interface to X. You can use Xlib to build a
graphical user interface for your application, although most application developers
choose higher level tools.

It’s difficult to build applications with a graphical user interface that uses a low-level
library such as Xlib. The Xt Intrinsics library (or simply Xt) simplifies this task by
providing a library of C language routines designed to facilitate the interface to Xlib. Xt
is a standard established by the X Consortium that provides an object-oriented
programming style in the C language. Xt routines can be used to create interface
components called widgets. OSF/Motif, for example, uses Xt to create its widget set (see
“OSF/Motif and IRIS IM”).

Silicon Graphics implements Xlib and Xt as defined by the standard and supports them
as dynamic shared libraries.

4Dwm

The IRIS Extended Motif Window Manager, 4Dwm, is an X Window System client based
on mwm, the Motif Window Manager. In addition to the standard functions found in
mwm, 4Dwm provides:

• support for multiple screens

• session management functions that support the Indigo Magic desktop

• support for the desk overview feature of the Indigo Magic desktop, which allows
the user to organize windows into related groups called desks

• control of background images on desks, which switches the screen background
automatically when the user switches desks

• communication between the application and 4Dwm using the tellwm program

For more detailed information about mwm and 4Dwm, read the mwm and 4Dmw
reference pages.

User Interface Toolkits

31

User Interface Toolkits

Silicon Graphics provides developers with several user-interface toolkits that simplify
the development of a graphical user interface. These toolkits supply a set of objects that
appear in graphical form on the screen and allow users to interact with an application by
manipulating these objects.

OSF/Motif and IRIS IM

The industry-standard OSF/Motif library provides user-interface objects (called
widgets) to be used with Xt. The objects defined by OSF/Motif include menus, scrollbars,
dialog boxes, and command buttons.

IRIS IM is Silicon Graphics’ port of OSF/Motif for use on Silicon Graphics IRIS
workstations. Figure 4-1 shows the relationship of an application to the various user
interface libraries you might choose to use.

Figure 4-1 Hierarchy of User Interface Toolkits

The application programming interface (API) to IRIS IM is the same as that for
OSF/Motif. However, Silicon Graphics has modified the appearance of some IRIS IM
widgets so that they conform to the Silicon Graphics user interface style. You can select
either the OSF/Motif or the IRIS IM widget set for use with your application, although
using IRIS IM widgets is preferable because their appearance conforms to the Indigo
Magic style.

Application

IRIS IM
(OSF/Motif)

Xt

Xlib

32

Chapter 4: User Interface Tools

In addition to the low-level building blocks such as buttons and scrollbars that IRIS IM
provides, it also supplies some related software that isn’t part of the standard
OSF/Motif. This includes the GLwMDrawingArea widget for IRIS IM programs that use
OpenGL to draw to a window within an IRIS IM application.

IRIS ViewKit

IRIS ViewKit is a C++ toolkit that provides user interface facilities for applications. It
defines a collection of high-level components that you typically must implement in all
applications, for example, components such as windows, menus, and dialogs. IRIS
ViewKit components are designed to implement as many commonly used features as
possible. To build a user interface component for your application, you can create a
subclass of an IRIS ViewKit component and define any application-specific behavior.
Also, with ViewKit classes as a base, you can create your own library of reusable
components.

IRIS ViewKit is based on IRIS IM and uses IRIS IM widgets to implement all of its user
interface components. You can make IRIS IM and X calls directly from your IRIS ViewKit
application, but using ViewKit components directly is simpler and faster than creating
your own components from low-level widgets. Figure 4-2 shows the relationship of an
application to IRIS ViewKit and the libraries upon which it is built.

Figure 4-2 IRIS ViewKit in the Developer Environment

Application

Xlib

IRIS IM or
OSF/Motif

IRIS ViewKit

Xt

User Interface Toolkits

33

An IRIS ViewKit component is a C++ class that encapsulates sets of widgets and methods
for their manipulation. Figure 4-3 shows a graphical representation of a portion of the
ViewKit class hierarchy.

Figure 4-3 A Portion of the IRIS ViewKit Class Hierarchy

The functions of some of these IRIS ViewKit base classes are:

• VkComponent—This abstract class defines the basic structure and protocol for all
ViewKit components.

• VkDialog Manager—This is the base class for specific dialog classes.

• VkApp—This base class handles application-level tasks such as Xt initialization,
event handling, window management, and cursor control.

• VkSimpleWindow—This base class implements a simple top-level window (one
that does not require a menu bar).

• VkMenu—This base class provides a standard set of functions for accessing and
manipulating menu items.

VkComponent

VkDialogManager

VkWindow

VkPromptDialog

VkInfoDialog

VkWarningDialog

VkApp

VkSimpleWindow

VkMenuLabel

VkMenuAction

VkMenu

VkMenuItem

34

Chapter 4: User Interface Tools

Indigo Magic Desktop Integration

The Indigo Magic desktop is an end-user environment that provides an icon-oriented
interface to the IRIX operating system and filesystem. Users can launch applications and
select files using icons instead of typing shell commands and pathnames. Integrating
your product into this desktop is an important part of your application. It is much easier
for users of your application who are familiar with the desktop to get started if your
interface conforms to the Indigo Magic standard.

Learning About Silicon Graphics User Interface Style

Silicon Graphics provides user interface style guidelines for developers of software
products used on Silicon Graphics workstations. The Silicon Graphics User Interface
Guidelines describes these style guidelines. Its purpose is to help you create products that
are consistent with other applications and that integrate seamlessly into the Indigo Magic
desktop environment.

The guidelines cover these areas:

• The design of icons for your application programs and files—they should be
meaningful and behave appropriately in response to user actions.

• The appearance of your application’s windows and the expected behavior these
windows should support—such as when users should be able to size, move, and
minimize windows.

• The individual components of your desktop interface, such as menus, controls,
dialogs, and use of color.

Integrating Your Application Into the Desktop

Integrating your application into the desktop is an important step in creating your
product. Since your users are already familiar with the appearance and behavior of
applications in the desktop environment, you can simplify their use of your application
by conforming to this standard. Here are the steps to follow to integrate your application:

1. Achieve the Indigo Magic look and feel

2. Create desktop icons for your application

3. Package your application for installation

Indigo Magic Desktop Integration

35

Achieving the Indigo Magic Look and Feel

Here are some of the things you want to consider to achieve the Indigo Magic look and
feel:

• Use schemes—Silicon Graphics includes schemes in its implementation of Xt.
Schemes allow you to provide default colors and fonts for your application while
also ensuring that users can easily select other colors and fonts according to their
individual needs and preferences. If you provide default colors, your application
will use the same colors and fonts as other applications on the desktop using default
colors.

• Use enhanced widgets—IRIS IM provides new and enhanced widgets that are part
of the Indigo Magic look and feel. Some of these widgets are the Color Chooser, the
Dial, and the Thumbwheel. You can use these widgets by linking to the appropriate
library.

• Provide window, session, and desk management for your application—Most users
of Silicon Graphics systems use 4Dwm, which is based on mwm (the Motif window
manager).

• Create minimized windows—You can customize the minimized version of your
application’s window so it’s easily recognized when a user clicks the minimize
button.

Creating Desktop Icons

When you create icons for your application, perform these tasks:

• Draw the icons—Use IconSmith™, a tool for drawing desktop icons.

• Program the icon—Define the look and behavior of the icons in your application,
for example, the actions to be taken if a user double-clicks an icon.

• Install the icon in the icon catalog—Use the iconbookedit command to install your
icon in the desktop’s Icon Catalog.

Packaging Your Application for Installation

Silicon Graphics recommends that you use the software packaging tool Software
Packager (swpkg) to package your application for installation. This allows your users to
easily install your application using Software Manager (swmgr), Silicon Graphics
software installation program.

37

Chapter 5

5. Software Development Tools

After you’ve written the source code for your application, you typically compile, debug,
and link it. You may also want to optimize the performance of the resulting executable
code. This chapter describes the tools you can use to perform these tasks. It tells you how
you can

• create executable modules from your source programs

• use IRIX tools to debug, analyze, and optimize your program

• use CASEVision programming tools to debug and optimize your program

• use CASEVision tools to perform version control and configuration management

Refer to Table 2-4 for a list of the manuals you can read to learn more about the topics
discussed in this chapter.

Creating Executable Files

An executable file (or executable) is a program that is ready for execution. To create an
executable version of your application, compile your source code and link it with the
appropriate libraries. This section briefly describes how to create executables.

Compiler Drivers

A compiler driver is a program that prepares your application for execution by calling
subsystems that compile the source into object code, and then linking together object

38

Chapter 5: Software Development Tools

files, default libraries, and any other libraries you specify. Here are some of the compiler
drivers Silicon Graphics provides and the programming language each supports.

When you invoke a compiler driver, specify the name of one or more source files and,
optionally, one or more of the compiler driver options. The compiler drivers share a
common set of options, although a few options are unique to a single driver or have
different meanings for each driver. For example, the –c option suppresses the linker step
for all drivers, while the –C option has one meaning for C and another for Pascal and
Fortran. You can use compiler driver options to control these functions:

• program compilation

• program linking

• production of profiling information for performance tuning (see “Performance
Tuning Tools”)

Read the MIPS Compiling and Performance Tuning Guide for more information about
compiler drivers. The reference page for each driver contains detailed information about
command options for that driver.

Object Files and Dynamic Linking

Object files generated by Silicon Graphics compilers are in the Executable and Linking
Format (ELF). ELF is the format specified by the System V Release 4 Applications Binary
Interface (SVR4 ABI).

ELF provides support for dynamic shared objects (DSOs). A DSO is an object file that’s
shared by multiple applications as they are executing. The object code of a DSO is
position-independent and can be mapped into the virtual address of several processes.
DSOs are loaded at runtime (instead of at linking time) by the runtime loader, rld.

Table 5-1 Compiler Drivers and Source Languages

Compiler Driver Name Source Language

f77 Fortran

cc C

pc Pascal

CC C++

IRIX Tools for Debugging and Tuning Your Program

39

DSOs replace the static shared libraries provided with releases of IRIX prior to IRIX 5.0.
You can, and generally should, use them in place of archive libraries. Using DSOs with
your application provides you with several benefits. These include the following:

• Overall memory usage is minimized because code is shared.

• Executables linked with DSOs are smaller (and take less disk space) than those
linked with unshared libraries because the shared objects are not part of the
executable file image.

• Executables containing DSOs don’t have to be relinked if the DSO changes.

• DSOs are easier to use and build than the static shared libraries available in releases
of IRIX prior to IRIX 5.0.

Most libraries supplied by Silicon Graphics are available as DSOs. When you invoke a
compiler driver to build an executable file from your source program, the driver links to
DSOs unless you specify otherwise.

You can build your own DSOs if you have the IRIS Developer’s Option installed on your
system. You don’t have to make any changes to your source code to make it part of a
DSO. Just use ld with the –shared option to build the DSO.

IRIX Tools for Debugging and Tuning Your Program

IRIX provides a number of standard UNIX tools to aid you in debugging and tuning the
performance of your program. It also provides performance tools developed at Silicon
Graphics.

Debugging Tool

IRIX provides dbx, a source level debugger that allows you to debug C, C++, Fortran 77,
Pascal, and assembler code. You can execute a program under dbx control to

• examine source code

• examine and change data

• control program execution

• debug machine language code

• debug multiple processes.

40

Chapter 5: Software Development Tools

You can also use dbx to examine a core file, if a program crash occurs, to determine the
point at which the crash occurred.

To use dbx

• compile the source using an appropriate compiler driver option, usually –g. This
produces an executable containing symbol table information that is used by dbx
during program execution.

• execute the program under dbx control.

Tools for Object File Query and Manipulation

Object files generated by Silicon Graphics compilers are in the Executable and Linking
Format (ELF), the format specified by the SVR4 ABI. IRIX provides several tools to query
and manipulate object files:

dis Dissembles an object file into machine instructions.

elfdump Lists the contents of an ELF-format object file.

file Provides descriptive information on the properties of a file.

nm Lists symbol table information.

size Prints the size of each section of an object file.

strip Removes symbol table and relocation bits from an object file, which
saves space after you’ve debugged your program.

IRIX Tools for Debugging and Tuning Your Program

41

Performance Tuning Tools

IRIX provides several tools that you can use to optimize the performance of your
application. Table 5-2 summarizes these tools and the paragraphs following the table
describe each tool in greater detail.

Using prof and pixie

You can use the profiling tools prof and pixie to find areas of your program where most of
the execution time is spent. With this information, you can concentrate your effort on
improving code efficiency in these parts of the program. The profiling tools provide two
kinds of information:

• Program counter (pc) sampling, which measures the amount of execution time
spent in various parts of a program. It does this by interrupting program execution
every 10 milliseconds and recording the value of the program counter.

• Basic-block counting, which counts the number of times each basic block executes.
A basic block is a region of the program that can be entered only at the beginning
and exited only at the end.

To obtain pc sampling data, specify the –p compiler driver option when you prepare your
program for execution. A program prepared using this option produces pc sampling
data during program execution. To view the pc sampling data, run the prof program. prof
analyzes the data files generated during program execution and produces a formatted
listing.

Table 5-2 Summary of Performance Tuning Tools

Name of Tool Function

prof Measures the amount of time spent in various parts of a program—
used in conjunction with the –p compiler driver option.

pixie Counts the number of times basic blocks in a program are
executed—used in conjunction with the prof program.

par Traces system calls and scheduling activity.

cord Rearranges procedures in your program to reduce paging and
reduce instruction cache mapping.

xscope Monitors connections between an X server and a client.

42

Chapter 5: Software Development Tools

Figure 5-1 shows the steps necessary to get pc sampling information.

Figure 5-1 Using prof to Obtain pc Sampling Information

To obtain block counting information, use the pixie program. pixie reads an executable
program, partitions it into basic blocks, and writes (instruments) an equivalent program
containing additional code that counts the execution of each basic block. You can execute
this instrumented program to obtain a file containing basic block counts.

To obtain a formatted listing of the block count information, run the prof program using
the –pixie option. Figure 5-2 shows how you can obtain basic block counts for your
program.

Invoke the compiler driver with
the −p option to compile and link
your program

Execute prof
Formatted listing of pc
sampling data

Execute the program to collect
profiling data

IRIX Tools for Debugging and Tuning Your Program

43

Figure 5-2 Using pixie to Collect Basic Block Counts

par

The par system utility program traces system calls and scheduling activity. You can use it
to trace the activity of a single process, a related group of processes, or the system as a
whole. par prints a report showing all system calls made by the specified processes, along
with arguments and return values.

cord

The cord program rearranges procedures in an executable object to reduce paging and
achieve better instruction cache mapping. Typically, the order specified either minimizes
paging or maximizes the likelihood that data items are in cache when needed. Figure 5-3
shows how you can use cord to rearrange the procedures in your program.

Run pixie to get an instrumented
program with additional code for
block counting

Run prof using the −pixie option
Formatted listing of
profile statistics

Compile your source to get an
executable module

Execute the instrumented
program to collect data

44

Chapter 5: Software Development Tools

Figure 5-3 Using cord to Rearrange Procedures

xscope

The xscope program monitors connections between an X server and a client. It prints the
contents of each request, reply, error, or event that is communicated between the server
and client. This information can be useful in debugging and performance tuning of X
servers and clients.

The CASEVision Programming Tools

Silicon Graphics provides several interactive, graphical programming tools to aid you in
debugging and tuning your application. These computer-aided software engineering
(CASE) tools, which comprise the CASEVision product line, operate in a common
environment that provides a consistent user interface. “The CASEVision Environment”
describes this environment.

The CASEVision tools include:

• CASEVision/WorkShop

• CASEVision/WorkShop MegaDev

• CASEVision/WorkShop Pro MPF

Compile your program

Execute pixie to create an instrumented
version of your program

Execute prof −pixie −feedback to
generate a feedback file

Execute cord to rearrange procedures
and produce a new executable

The CASEVision Programming Tools

45

Note: The CASEVision/WorkShop tools are not part of IDO—you have to order them
separately.

The CASEVision Environment

All tools in the CASEVision product line share a common environment. Some common
facilities and features of this environment are:

• CASEVision tools use standard IRIS IM elements such as the File Browser (used to
save and load files) and offer easily set X defaults.

• The CASEVision environment offers a comprehensive online help system with
context-sensitive access.

• All CASEVision tools provide access to source code through a common text editor
called Source View. Source View provides a window displaying lines of text in a
source code file and offers simple text editing features and the ability to fork other
text editors such as vi or emacs.

• Many CASEVision tools provide graphical representations of code, such as function
call trees or class hierarchies. These have common features for manipulating the
presentation so that you can focus on the data of specific interest or get a larger
overview.

CASEVision/WorkShop

CASEVision/Workshop is a software development environment that helps you visualize
your code. It’s a set of tools that use an object-oriented application framework and an
IRIS IM interface with user-selectable color schemes. The WorkShop toolset includes five
graphical tools:

• Debugger

• Static Analyzer

• Performance Analyzer

• Tester

• Build Manager

Figure 5-4 gives you an example of what an interface to a CASEVision tool looks like.
This example, output from the Performance Analyzer, shows the total time spent in

46

Chapter 5: Software Development Tools

several routines, and the time each routine actually executed, exclusive of the time spent
in called routines.

Figure 5-4 An Example of a CASEVision User Interface

The WorkShop Debugger

The WorkShop Debugger is a source-level debugging tool that provides special windows
(views) for displaying program data and execution status as the program executes. The
Debugger lets you set various types of traps (breakpoints) and watch points.

The WorkShop Static Analyzer

The WorkShop Static Analyzer helps you analyze source code written in C, C++, or
Fortran by showing you the code’s structure (graphically or in text format). It also shows
you how the functions within programs call one another, where and how variables are
defined, how files depend on one another, where you can find macros, and many other
structural details that help you understand the code.

The CASEVision Programming Tools

47

The Performance Analyzer

You can use the Performance Analyzer to define and run experiments that collect
performance data. The Performance Analyzer uses this data to produce charts, tables,
and annotated code that help you analyze the performance of your program.

WorkShop Tester

WorkShop Tester is a software quality assurance toolset for software and test engineers
and their managers who are involved in the development, test, and maintenance of
long-lived software projects.

WorkShop/Build Manager

You can use the WorkShop/Build Manager to compile software without leaving the
WorkShop environment. You can look for problems using the WorkShop analysis tools
(Static Analyzer, Debugger, and Performance Analyzer), make changes to the source,
suspend your testing, and then recompile. The Build Manager has two components:

• Build View—for compiling, viewing compile error lists, and accessing the code
containing the errors in Source View (the CASEVision editor) or an editor of your
choice. Build View helps you find files containing compile errors so that you can
quickly fix them, recompile, and resume testing.

• Build Analyzer—for viewing build dependencies and recompilation requirements
and accessing source files.

Build View uses the UNIX make facility as its default build software. Although Build
Analyzer determines dependencies using make, you can use the build software of your
choice.

CASEVision/WorkShop MegaDev

CASEVision/WorkShop MegaDev is a suite of graphical, interactive computer-aided
software engineering (CASE) tools designed especially for programmers developing and
maintaining C++ libraries and applications.

It contains the C++ Browser and the Fix and Continue utilities. The C++ Browser lets you
view the structure of any set of C++ classes. It provides a global, graphical view of
interclass relationships such as inheritance, containment, and interaction within a set of

48

Chapter 5: Software Development Tools

classes. The Fix and Continue utilities allow you to redefine functions in your program
and then continue execution without recompiling.

CASEVision/WorkShop Pro MPF

Fortran 77 programmers can use the WorkShop Pro MPF Parallel Analyzer View to view
the structure of multiprocessing applications. This tool reads analysis files generated by
the Power Fortran Accelerator (PFA) and provides a visual comparison of the original
source with the parallelized code.

The function of the Parallel Analyzer View’s is integrated with that of
CASEVision/WorkShop to allow examination of a program’s loops in conjunction with
a performance experiment on either a uni- or multiprocessor execution of the program.

Version Control and Configuration Management

CASEVision provides a tool for creating tracking systems and another for software
configuration management.

CASEVision/Tracker

CASEVision/Tracker is a tool for creating tracking systems for bugs and enhancement
requests. It allows you to design and create the tracking database and the interface
programs.

The Request Tracking System (RTS) was designed using the CASEVision/Tracker tool.
RTS is a system for tracking bugs and requests for enhancements. RTS is designed to:

• meet the basic request tracking needs of most software organizations with only
minor modification

• serve as a functioning starter example of a Tracker-based system for those
organizations that want to create their own systems

Version Control and Configuration Management

49

CASEVision/ClearCase

CASEVision/ClearCase is a software configuration management system that’s
specifically designed for large-scale, long-lived software projects. ClearCase
simultaneously manages multiple versions of evolving software and tracks versions
used in software builds. It performs builds and rebuilds of individual programs or entire
releases according to user-defined specifications, and enforces project-defined policies.

ClearCase provides enhanced version control of all UNIX (or IRIX) filesystem objects,
binary sharing to minimize rebuilds and unnecessary copies or links, and complete build
auditing. It also supports parallel builds across the network.

51

Chapter 6

6. Application Libraries

Silicon Graphics provides several application libraries that you can use in writing your
applications. These libraries provide tools for developing programs in the following
areas:

• Graphics

• Image processing

• Digital media

• Printer/scanner management

Refer to Table 2-5 for a list of the manuals you can read to learn more about the topics
discussed in this chapter.

Graphics Libraries

Silicon Graphics supports four graphics libraries.

• OpenGL provides low-level graphics routines and is an interface to the graphics
hardware.

• Open Inventor is a toolkit, built on OpenGL, that allows you to create interactive
graphics applications.

• IRIS Graphics Library is a library of subroutines for creating 2D and 3D color
graphics and animation.

• IRIS Performer is a toolkit for creating real-time graphics and visual simulation
applications.

52

Chapter 6: Application Libraries

OpenGL

OpenGL is a software interface to graphics hardware. It consists of about 120 commands
that you can use to specify the objects and operations needed to create interactive
programs that produce color images of moving 3D objects. OpenGL is an industry
standard for 2D and 3D graphics rendering and is a part of the IDO.

OpenGL uses a client-server model for interpretation of commands. An application
using OpenGL can run under IRIX on any Silicon Graphics platform and be rendered on
a platform with another operating system and window system, provided the
implementation of OpenGL on each platform conforms to the standard.

OpenGL doesn’t include commands for performing windowing tasks or obtaining user
input. For that you must work through the windowing system that controls your
hardware. Since the OpenGL application programming interface (API) is independent of
hardware platforms, window systems, and operating systems, porting among
conforming implementations of OpenGL is an easy task.

OpenGL allows you to build the models you need from a small set of geometric
primitives—points, lines, and polygons. It doesn’t provide high-level commands for
describing models of 3D objects—Silicon Graphics provides higher level graphics
libraries for these tasks. One of these libraries is Open Inventor, which is built on
OpenGL and uses OpenGL calls for rendering. You can write your application using the
OpenGL API, although it’s often easier to use one of the higher level libraries. Using the
higher level graphics libraries makes rendering operations transparent to your
application, which allows you to concentrate on your application rather than on the
time-consuming details of rendering.

Note: IRIS Performer and the ImageVision Library are being converted from IRIS GL
(the precursor to OpenGL) to the OpenGL standard.

The OpenGL library contains functions for

• rendering primitives (points, lines, polygons)

• controlling colors and lighting

• using texture mapping to add surface characteristics to geometry

• setting and controlling transformations

Figure 6-1 shows an object created by OpenGL—a sphere illuminated by a light source.

Graphics Libraries

53

Figure 6-1 Using the Lighting Feature of OpenGL

Figure 6-2 shows another object created by OpenGL—a texture-mapped Bezier surface
mesh.

Figure 6-2 Using the Texture-Mapping Feature of OpenGL

OpenGL provides a small but powerful set of rendering commands, and all higher-level
drawing must be done using these commands. To simplify your programming tasks,
OpenGL provides a Utility Library (GLU) that includes routines that encapsulate
OpenGL commands. These GLU routines perform tasks such as:

• drawing common objects such as spheres, cylinders, and disks

• manipulating images used in texturing

• handling simple non-convex polygons

• setting up matrices for a variety of viewing orientations and projections

54

Chapter 6: Application Libraries

Open Inventor

Open Inventor is an object-oriented toolkit that provides objects and methods for
creating interactive 3D graphics applications. This toolkit contains 3D objects you can
use to represent your 3D physical models, as well as objects that allow you to
interactively operate on these models.

Figure 6-3 shows a single scene from a racing game created using Open Inventor. In this
game, mouse buttons control the speed and position of a car as it moves along a track.
Open Inventor creates scenes showing the car, the track, and the terrain that appears as
the car moves along the track.

Figure 6-3 A Scene Created by Open Inventor

Graphics Libraries

55

Open Inventor is written in C++ but also includes C bindings. It is object-oriented and
extensible. The Inventor toolkit is based on OpenGL and provides a library of objects you
can use, modify, and extend to meet your needs.

Figure 6-4 illustrates the architecture of an Open Inventor application. The Open
Inventor components shown in the figure are described in the paragraphs following the
figure.

Figure 6-4 Open Inventor Architecture

Open Inventor Toolkit

The Open Inventor Toolkit provides three programming tools that you can use in your
Open Inventor application.

Scene database A scene database is a collection of 3D objects and properties arranged to
represent a 3D scene. A scene is composed of nodes that define all
information about an object—its shape, size, coloring, surface texture,
and location in 3D space. You can use this information to render the
object or to vary it in a variety of ways—for example, to move the object
or change the way it looks. Some objects, called engines, are used to
animate part of a scene.

Open Inventor
Component Library

Application

IRIX

Open Inventor
3D Interchange Format

OpenGL

Open Inventor 3D Toolkit
(Scene database, Node kits, Manipulators)

56

Chapter 6: Application Libraries

Manipulators A manipulator is a special kind of node that reacts to user events.
Manipulator objects allow users to interact with 3D objects on a screen.
Manipulators allow rendering into a scene and provide a means for
translating user-initiated events into changes to the scene database.

Node kits A node kit is a collection of nodes grouped together to provide a
simplified model. Open Inventor provides these ready-made kits to
make building a structured scene database easier. The kit provides the
basic structure of an object, but allows you to define information specific
to your object. For example, the shape node kit describes the shape but
allows you to define a geometric specification, material, a lighting
model, texture, and other properties of the shape.

Component Library

The Component Library is a convenience library for programmers who use X Window
System and X-based toolkits such as Xt and Motif. It contains an event translator that
converts X events into Open Inventor events.

3D Interchange File Format

Open Inventor includes an interchange file format for exchanging 3D objects and scenes
between applications. Objects in the scene database can be written to a file during the
execution of your program, in either ASCII or binary form.

IRIS Graphics Library

The IRIS Graphics Library (IRIS GL) is a library of subroutines for creating 2D and 3D
color graphics and animation.

Here are some of the things IRIS GL allows you to do:

• draw graphics primitives such as points, lines, polygons

• draw characters and define fonts

• use color modes and color maps to control the way colors are displayed

• use double buffering to create animated graphics

• perform coordinate transformations

Graphics Libraries

57

• define and manipulate light sources to create lighted scenes

• use texture mapping to add surface characteristics to geometry

IRIS GL is a predecessor of OpenGL, the industry standard for graphics applications.
Silicon Graphics’ application libraries that were originally built on IRIS GL are moving
to the OpenGL standard. Figure 6-5 shows relationship of an application to IRIX GL and
to the ImageVision Library and IRIS Performer, the libraries currently built on IRIS GL.

Figure 6-5 IRIS GL in the Developer Environment

Note: You should never reference both IRIS GL and OpenGL in a single application. This
means you should not use a higher-level library based on OpenGL (for example, Open
Inventor) in the same application in which you use a library based on IRIS GL (for
example, the ImageVision Library).

IRIS Performer

IRIS Performer is a software development environment layered above the IRIS Graphics
Library (IRIS GL). It provides high-level support for visual simulation, interactive
entertainment, virtual reality, and graphics-intensive tasks. Applications that require
real-time visuals and high-performance rendering benefit from using IRIS Performer.

Application

IRIS GL

ImageVision
Library

IRIS
Performer

58

Chapter 6: Application Libraries

The main components of IRIS Performer are the two libraries libpr and libpf.

• libpr is a low-level library that provides optimized rendering functions, state
control, and other functions that are fundamental to real-time graphics. It provides
highly optimized rendering loops for rendering a wide variety of geometric
primitives.

• libpf is a visual simulation development environment that layers a multiprocessing
database traversal and rendering system on libpr. It supports multiprocessing,
hierarchical scene construction, multiple channels, culling to each channel’s
field-of-view, and frame-rate control.

Figure 6-6 shows the relationship between the IRIS Performer libraries and the IRIX
system software.

Figure 6-6 IRIS Performer Library Hierarchy

You can choose the IRIS Performer libraries that best suit your needs. You may want to
build your own toolkits on top of libpr, the low-level, high-performance library, or you
may choose to take advantage of the visual simulation environment that libpf provides.
Note that functions from libpf make calls to libpr functions so you don’t necessarily have
to use the libpr functions directly.

Application

libpf

libpr

IRIX and IRIS GL

Silicon Graphics Hardware

ImageVision Library

59

IRIS Performer doesn’t define a file format; it imports files from many standard database
formats at run time. Some of the database formats supported by IRIS Performer are
shown in Table 6-1.

ImageVision Library

Unlike the graphics libraries, which build a display from a series of geometric objects,
image processing applications start with an image consisting of pixel information stored
in a file. These images can originate as a photographic image that’s scanned or obtained
from a Kodak™ CD, data obtained from medical imaging equipment, satellite data, or
numerous other sources. An image processing application can manipulate this image in
ways that are meaningful to the user of the application.

The ImageVision Library (IL) is a set of tools designed for developers of image
processing applications. The IL is written in C++ but has interfaces for C and Fortran.
You can use this library to import, manipulate, display, and store images.

The IL is an object-oriented toolkit whose modularity provides an easy and efficient
means to create and maintain programs that use it for image manipulation and display.
This modular structure also makes it easy to extend the IL—for example, to augment the
image operators supplied by the IL or to design new ones.

Table 6-1 Database Formats Supported by Performer

Format Name Description

BIN Silicon Graphics format

DWB Designer’s Workbench format

DXF AutoCAD format

FLT MultiGen™ FLIGHT format

IV Inventor format

OBJ Wavefront Technologies Model format

60

Chapter 6: Application Libraries

The ImageVision Library contains objects and methods that allow an image processing
application to:

• Import images created in a variety of different file types. The supported file formats
include TIFF, GIF, Kodak Photo CD™, SGI, and FIT.

• Process images using any sequence of the image processing operators supported by
the IL. Image processing functions include color conversion, arithmetic operations
on pixel data, radiometric and geometric transformations, generation of statistical
data for an image, spatial and non-spatial domain transformations, and edge, line,
and spot detection.

• Display one or more images in an X Window. The IL provides many ways to control
image displays, including stacking images or aligning them side by side, roaming a
large image, or doing a wipe to move one edge of an image to reveal what is stacked
beneath it.

• Store processed images on disk.

The following figures illustrate an ImageVision Library operation. Figure 6-7 shows an
image imported from a Kodak Photo CD.

Figure 6-7 A Display Created by ImageVision Library

ImageVision Library

61

Figure 6-8 shows the image created when the ImageVision library performs a geometric
transformation called a warp on the image in Figure 6-7.

Figure 6-8 Using the ImageVision Library to Transform an Image

Figure 6-9 illustrates a simple ImageVision application that reads an image from disk,
applies a rotation transformation, displays both images on a monitor, and writes the
rotated image to disk.

Figure 6-9 A Simple ImageVision Library Application

The ImageVision Library toolkit provides an application program interface (API) that is
common across all Silicon Graphics workstations. The IL uses Xlib for window
management and allows you to use either IRIS GL or X to render into an X window.

ImageVision Library
Application

Read an
Image

Rotate the Image

Write the
rotated image
to disk

Display both images

X Window

62

Chapter 6: Application Libraries

Figure 6-10 shows the architecture of an IL application.

Figure 6-10 Architecture of an ImageVision Library Application

The IL implements an execution model that optimizes memory usage and performance
as image data is processed. This execution model

• supports the parallel processing features of Silicon Graphics workstations

• caches image data to minimize file access

• is demand-driven so that only image data needed for output is processed

• chains operations together, which saves time because intermediate results don’t
have to be stored

• uses hardware acceleration of graphics operations whenever possible to improve
performance of IL operations

ImageVision Library

Application

IRIS GL

IRIX

IRIS Digital Media Development Environment

63

IRIS Digital Media Development Environment

The IRIS Digital Media Development Environment provides digital media libraries and
tools for developers of media applications.

IRIS Digital Media Libraries

The IRIS Digital Media Libraries provide programming support for digital media
development on Silicon Graphics platforms. These libraries are included with the IDO.
The term digital media describes digitally sampled audio and video (including still image)
data, MIDI event streams, and other associated information such as time codes. Sampled
audio/video data can be digitally encoded in a variety of uncompressed and compressed
formats

The IRIS Digital Media Development Environment provides programming support for
digital audio, digital video, and MIDI applications. The libraries provide programming
interfaces to:

• audio, video, and MIDI I/O subsystems

• data format conversion (including compression)

• digital media file importation/exportation

• high-level playback functions

The five libraries that comprise the IRIS Digital Media Development Environment are
briefly described in the following paragraphs.

64

Chapter 6: Application Libraries

Digital Audio Libraries

The digital audio libraries provide a device-independent programming interface to the
digital audio I/O subsystems built into Silicon Graphics workstations. You can use the
digital audio libraries individually or in combination. Table 6-2 describes the libraries
contained in the digital audio library set.

Figure 6-11 diagrams the interaction between an audio application and the audio
libraries, the device drivers, the IRIX filesystem, the audio hardware, and the optional
SCSI devices.

Table 6-2 Digital Audio Libraries

Library Library Function

Audio Provides an interface for configuring the audio system, managing
audio I/O between the application program and audio hardware,
specifying attributes of digital audio data, and facilitating real-time
programming.

Audio File Provides an interface for reading and writing the standard digital
audio file formats AIFF and AIFF-C standards.

CD Audio Provides an interface for optional Silicon Graphics SCSI CD-ROM
drives. This interface features a special mode that allows it to read
audio CD format as well as CD-ROM format.

DAT Audio Provides an interface for optional Silicon Graphics SCSI DAT
drives.

IRIS Digital Media Development Environment

65

Figure 6-11 Interaction of Digital Audio System Components

MIDI library

The Musical Instrument Digital Interface (MIDI) Library provides a programming
interface for timestamped MIDI input/output via serial ports.

Video Library

The Video Library provides both device-independent and device-dependent interfaces
to the on-board Indy VINO, and to video options such as Indy Video™, Galileo Video™,
Indigo2 Video™, and Sirius Video™.

Compression Library

The Compression Library (CL) provides an algorithm-independent, extensible interface
for compressing and decompressing animation, video, audio, and image data. The CL
interface supports the Cosmo Compress JPEG codec (available for Indigo R4000, Indy,

Audio application

Audio Library

Audio File Library

Audio Utility Library

CD Audio Library DAT Audio Library

Audio hardware SCSI
CD−ROM drive

SCSI
DAT drive

Audio driver IRIX filesystem SCSI drivers

66

Chapter 6: Application Libraries

Indigo 2) in addition to several software codecs, including software JPEG. Cosmo
Compress connects to a Galileo-family video device to allow realtime JPEG video capture
and playback. In this configuration, Cosmo operates as a component of the video I/O
system.

Movie Library

The Movie Library is a collection of routines that provides a C language API for creating,
reading, writing, editing, and playing movie files. Supported file formats include Silicon
Graphics Movie File (SGIMF) format and the Apple QuickTime™ movie file format.

Digital Media Tools

IRIX includes several interactive media tools that are built on the IRIS Digital Media
Development Environment and make it easy to perform basic media functions. These
tools have command-line interfaces that allow you to incorporate them into your digital
media application. Table 6-3 lists the digital media tools.

Table 6-3 Digital Media Tools

Tool Tool Function

Capture Record audio, video input, audio, and still images on your
system disk and import them into multimedia applications.

Movie Maker Combine audio, video, and still images to create a movie
you can play on your workstation.

Movie Player Play movies on your workstation using controls that allow
you to play, stop, reverse, and fast forward.

Sound Editor Record sound into and edit audio files.

Sound Filer Play audio files on your system and convert audio files to
different formats and sizes.

CD Manager Play and record from a compact disc drive attached to your
workstation SCSI port.

DAT Manager Play and record to and from DAT tapes on a DAT drive
attached to your workstation SCSI port

Printer/Scanner Management

67

Read the Media Tools User’s Guide, available in IRIS Insight, or the reference page for each
tool to learn more about these media tools.

Printer/Scanner Management

Silicon Graphics provides a printing and scanning environment for IRIS workstations.
This environment, Impressario, has features for a wide range of IRIX audiences: printer
and scanner driver developers, application program developers, and end users.
Impressario allows files of different types to be printed on a wide variety of printers and
allows images to be scanned from a scanning device, an IRIS screen, or a Silicon Graphics
image file.

Impressario provides the following libraries for application developers:

libspool Provides an API to the IRIX printer spooling system and functions,
allowing you to submit print jobs, query their status, and so on.

libprintui Provides a graphical interface for printing that’s compatible with IRIS
IM.

libpod Provides a network-transparent interface to the Printer Object Database
(POD). Each printer has a POD that contains configuration, status, and
other information about that printer.

libscan Provides an interface to the Impressario scanning system.

libstiff Allows you to read and write Stream TIFF (STIFF) files.

libimp Allows you to read and write Silicon Graphics image files in RGB
format.

Impressario is built on top of the System V print spooling system. It provides model files,
filters, and drivers to convert ISO text files, SGI images files, PostScript® documents, and
a wide variety of other file formats to a format suitable for both raster and PostsScript
printers. Figure 6-12 shows the relationship between an application program, the
Impressario libraries, and the spooling system in IRIX.

68

Chapter 6: Application Libraries

Figure 6-12 Interface to the Spooling System

Refer to the Impressario Programming Guide for information about writing a driver for a
printer or scanner device for which no driver is available.

Application

libspool

IRIX

libprintuilibpod

69

Index

Numbers

4Dwm, 30

A

Ada compiler, 27
application

creating icons for, 35
integrating into desktop, 34
packaging for installation, 35
writing, 8-9

application libraries, 51-68
audio file library, 64
audio library, 64

B

Berkeley Software Distribution (BSD) IPC, 3

C

Capture tool, 66
CASEVision

ClearCase, 49
programming tools, 44-48
Tracker, 48

CASEVision/WorkShop, 45-48
Build Manager, 47
Debugger, 46
MegaDev, 47
Performance Analyzer, 47
Pro MPF, 48
Static Analyzer, 46
WorkShop Tester, 47

CD audio library, 64
CD Manager tool, 66
compiler driver, 37
compilers

Ada, 27
C, 23
C++, 23
Fortran 77, 24
Pascal, 26
Power C, 24
Power Fortran Accelerator (PFA), 25

Compression Library, 65
configuration control, 48
cord, 43

D

DAT audio library, 64
DAT Manager tool, 66
dbx, 39
device drivers, 6-7
digital media tools, 66

70

Index

dis, 40
documentation

application libraries, 20
compilers, 15
roadmap, 11
software development tools, 18
user interface tools, 17

DSO (Dynamic Shared Object), 38

E

elfdump, 40
Executable and Linking Format (ELF), 38

F

file, 40
Fortran 77 compiler, 24

H

high-performance I/O, 6

I

IDO (IRIS Developer’s Option), 8
ordering printed manuals, 13

ImageVision Library, 59-62
Impressario, 67
Indigo Magic desktop, 6, 34

look and feel, 35
internationalization, 2
Internet protocols, 3
IRIS Graphics Library, 56-57
IRIS IM, 31

IRIS Media Libraries, 63-66
IRIS Performer, 57-59
IRIS ViewKit, 32
IRIX

device driver interfaces, 7
high-performance I/O, 6
internationalization features, 2
network programming facilities, 3
parallel programming support, 5
performance tuning tools, 41-44
real-time programming support, 5
standards compliance, 1
tool for debugging, 39
tools for object file manipulation, 40

L

libpf, 58
libpr, 58

M

MIDI Library, 65
Movie Library, 66
Movie Maker tool, 66
Movie Player tool, 66

N

network programming facilities, 3
nm, 40

71

Index

O

object file
format, 38
querying and manipulating, 40

OpenGL, 52-53
Open Inventor, 54-56

component library, 56
toolkit, 55

OSF/Motif, 31

P

par, 43
parallel programming, 5
Pascal compiler, 26
Performance Analyzer, 47
performance tuning tools, 41-44
pixie, 41
Power C compiler, 24
Power Fortran Accelerator (PFA), 25
printer/scanner management, 67
prof, 41

R

real-time programming, 5
rld, 38
RPC (Remote Procedure Call), 3

S

size, 40
software development tools, 37-49
Sound Editor tool, 66
Sound Filer tool, 66
Static Analyzer, 46
strip, 40

T

TCP/IP, 3
TLI (Transport Layer Interface), 3

U

UNIX
Silicon Graphics enhancements to, 4

user interface
Silicon Graphics style, 34
tools, 31-33

V

Video Library, 65
ViewKit, 32

class hierarchy, 33

72

Index

W

WorkShop
Build Manager, 47
Debugger, 46
MegaDev, 47
Pro MPF, 48
Tester, 47

X

Xlib, 30
xscope, 44
Xt, 30
X Window System, 4, 29

Tell Us About This Manual

As a user of Silicon Graphics documentation, your comments are important to us. They
help us to better understand your needs and to improve the quality of our
documentation.

Any information that you provide will be useful. Here is a list of suggested topics to
comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Important Note

Please include the title and part number of the document you are commenting on. The
part number for this document is
007-2476-002.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your comments on
the postage-paid card for your country, then detach and mail it. If your country is not
listed, either use the international card and apply the necessary postage or use electronic
mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail message and mail
it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of pages from the manual) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

