
REACT™ Real-Time
Programmer’s Guide

Document Number 007-2499-002

REACT™ Real-Time Programmer’s Guide
Document Number 007-2499-002

CONTRIBUTORS

Written by David Cortesi
Illustrated by Gloria Ackley
Edited by Christina Cary
Production by Gloria Ackley
Engineering contributions by Rich Altmaier, Jeffrey Heller, Ralph Humphries, and

Luis Stevens
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© Copyright 1996, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, CHALLENGE, Indy, IRIS Insight, Onyx,
Performer, POWERpath, POWER Channel, POWER CHALLENGE and REACT/Pro
are registered trademarks, and IRIX is a trademark of Silicon Graphics, Inc. AT&T
and SVR4 are registered trademarks of AT&T. UNIX is a registered trademark in the
United States and other countries, licensed exclusively through X/Open Company,
Ltd.

iii

Contents

List of Examples xv

List of Figures xvii

List of Tables xix

About This Guide xxi
Who This Guide Is For xxi
What the Book Contains xxii
Other Useful Books xxiii

1. Real-Time Programs 1
Defining Real-Time Programs 1
Major Types of Real-Time Programs 1
Simulators 2

Requirements on Simulators 2
Frame Rate 3
Transport Delay 3

Aircraft Simulators 3
Ground Vehicle Simulators 4
Plant Control Simulators 4
Virtual Reality Simulators 4
Hardware-in-the-loop (HITL) Simulators 5

Data Collection Systems 5
Requirements on Data Collection Systems 5
Achieving High Transfer Rates to Devices 6
Achieving High Transfer Rates to Disk 7

Real-Time Programming Languages 7

iv

:

2. Basic Features of the CHALLENGE and IRIX™ Architectures 9
Multiprocessor Architecture 9

CPUs, Memory, and the System Bus 10
Concurrent Execution 11
Memory Hierarchy 11

Cache Coherency Updates 11
Virtual Memory 12

Translation Lookaside Buffer Updates 13
Device Interrupts 13

VME Interrupts 14
Interrupt Latency 14
Interrupt Response Time 14

Processor Arrays 15
Process Management 15

Process Composition 15
Process Creation 16

Normal Process Creation With fork() 16
Address Space Replacement With exec() 16
Lightweight Process Creation With sproc() 17

Process Scheduling 17
I/O Scheduling 18

Disk I/O 18
VME Bus I/O 19
Other I/O 19
Asynchronous I/O 19

:

v

3. How IRIX™ and REACT/Pro™ Support Real-Time Programs 21
Kernel Facilities for Real-Time Programs 21

Kernel Optimizations 22
Special Scheduling Disciplines 22

Nondegrading Priorities 22
Deadline Scheduling 23
Gang Scheduling 23

Processor Sets 23
Locking Virtual Memory 24
Mapping Processes and CPUs 24
Controlling Interrupt Distribution 25

REACT/Pro Frame Scheduler 25
How Frames Are Defined 26
Advantages of the Frame Scheduler 27
Designing With the Frame Scheduler 27

Interprocess Communication 29
Shared Memory Segments 29

IRIX Shared Memory Arenas 29
 SVR4-Compatible Shared Memory 30

Semaphores 31
IRIX Semaphores 32
SVR4-Compatible Semaphores 32

Locks 33
Barriers 34
Mutual Exclusion Primitives 35
Signals 36

Signal Latency 38

vi

:

Timers and Clocks 38
Timer Interrupts (Itimers) 38

BSD Itimers 38
POSIX Timers 39

Timestamps 40
Time of Day Timestamp 40
Hardware Cycle Counter 40

Interchassis Communication 41
Socket Programming 41
Message-Passing Interface (MPI) 41
Reflective Shared Memory 42
External Interrupts 42

4. Managing Virtual Memory in a Real-Time Program 43
Defining the Address Space 43

Address Space Boundaries 44
Page Numbers and Offsets 44
Address Definition 45
Address Space Limits 46
Page Validation 47
Read-Only Pages 47
Copy-on-Write Pages 48

Interrogating the Memory System 48
Locking Pages in Memory 49

Locking Functions 49
Locking Program Text and Data 50
Locking Mapped Files Into Memory 51

Reducing Cache Misses 52
Locality of Reference 52
Cache Mapping in Challenge/Onyx 53
Multiprocessor Cache Conflicts 54
Detecting Cache Problems 54

:

vii

5. Managing Time and Time Intervals 55
Using Interval Timers 55

Timed Pauses 55
POSIX Timer Support 56
BSD Timer Support 56

Using an Itimer 57
Time Data Structures 58
Time Signal Latency 59
How Timers Are Managed 59

Timer Management in Challenge, Onyx, and POWER-Challenge 60
Timer Management Without a Clock Comparator 60

Using Short Timer Intervals 61
Fast Timers With a Clock Comparator 61
Fast Timers Without a Clock Comparator 61
Selecting the fasthz Value 62
Which CPU Handles Timer Interrupts 62

Using Timestamps 63
Using the Time of Day 63

Using BSD gettimeofday() 63
Using POSIX clock_gettime() 64

Using the Cycle Counter 65
Comparing the Timestamps 66

viii

:

6. Controlling CPU Workload 67
Using Priorities and Scheduling Queues 67

Scheduling Concepts 68
Tick Interrupts 68
Time Slices 68
Priorities 69
Aging Priorities 69
Scheduler Queues 70

Setting a Nondegrading Batch Priority 70
Setting a Nondegrading Real-Time Priority 71
Understanding Affinity Scheduling 72
Using Gang Scheduling 73
Using Deadline Scheduling 74
Changing the Time Slice Duration 75

Using Processor Sets 76
Assigning a Process to a Processor Set 76
Assigning a Processor Set to a Queue 77
Assigning a Discipline to a Processor Set 78
Processor Set Contradictions 78

Minimizing Overhead Work 79
Assigning the Clock Processor 79
Assigning the fasthz Processor 79
Unavoidable Timer Interrupts 80
Isolating a CPU From Sprayed Interrupts 81
Assigning Interrupts to CPUs 81
Understanding the Vertical Sync Interrupt 82
Restricting a CPU From Scheduled Work 82

Assigning Work to a Restricted CPU 83
Isolating a CPU From TLB Interrupts 84

Isolating a CPU When Performer™ Is Used 86
Making a CPU Nonpreemptive 86

:

ix

Minimizing Interrupt Response Time 87
Maximum Response Time Guarantee 87
Components of Interrupt Response Time 88
Hardware Latency 89
Software Latency 90

Kernel Critical Sections 90
Service Time for Other Devices 91

Device Service Time 91
Dispatch Cycle 92

Adjust Scheduler Queue 92
Switch Processes 92
Mode Switch 92

Minimal Interrupt Response Time 93

7. Using the Frame Scheduler 95
Frame Scheduler Concepts 96

Frame Scheduler Basics 96
Frame Scheduling 96

The FRS Control Process 98
The Frame Scheduler API 98

Library Interface for C Programs 99
System Call Interface for Fortran and Ada 100

Process Execution 101
Scheduling Within a Minor Frame 102

Scheduler Flags frs_run and frs_yield 102
Detecting Overrun and Underrun 103
Estimating Available Time 103

Using Multiple Synchronized Schedulers 104
Starting a Single Scheduler 104
Starting Multiple Schedulers 105
Pausing Frame Schedulers 105
Managing Activity Processes 106

x

:

Selecting a Time Base 107
On-Chip Timer Interrupt 107
High-Resolution Timer 108
Vertical Sync Interrupt 108
External Interrupts 108
Device Driver Interrupt 109
Software Interrupt 109

Using the Scheduling Disciplines 110
Realtime Discipline 110
Background Discipline 111
Underrunable Discipline 111
Overrunnable Discipline 111
Continuable Discipline 112
Using Multiple Consecutive Minor Frames 112

Preparing the System 113
Implementing a Single Frame Scheduler 114
Implementing Synchronized Schedulers 115

Syncronized Scheduler Concepts 115
Synchronized Schedulers: the Sync-Master Process 116
Synchronized Schedulers: Sync-Slave Processes 117

Handling Frame Scheduler Exceptions 118
Exception Types 118
Exception Handling Policies 118

Injecting a Repeat Frame 119
Extending the Current Frame 119
Dealing With Multiple Exceptions 119

Setting Exception Policies 119
Querying Counts of Exceptions 121

Using Signals Under the Frame Scheduler 122
Signal Delivery and Latency 122
Handling Signals in the FRS Controller 123
Handling Signals in an Activity Process 124
Setting Frame Scheduler Signals 124

:

xi

Using Timers with the Frame Scheduler 125
The Frame Scheduler Device Driver Interface 126

Device Driver Overview 126
Exporting the Initialization and Termination Functions 127
Frame Scheduler Initialization Function 128
Frame Scheduler Termination Function 130
Generating Interrupts 131

8. Optimizing Disk I/O for a Real-Time Program 133
Memory-Mapped I/O 133
Asynchronous I/O 134

Conventional Synchronous I/O 134
Synchronous Input 134
Synchronous Output 135

Asynchronous I/O Basics 135
Two Implementation Versions 136
Asynchronous I/O Functions 137
Asynchronous I/O Control Block 137

Initializing Asynchronous I/O 138
Implicit Initialization 138
Initializing with aio_sgi_init() 138
When to Initialize 139

Scheduling Asynchronous I/O 140
Assuring Data Integrity 140

Checking the Progress of Asynchronous Requests 141
Polling for Status 141
Checking for Completion 142
Establishing a Completion Signal 142
Establishing a Callback Function 143
Holding Callbacks Temporarily 146

Multiple Operations to One File 146

xii

:

Synchronous Writing and Direct Writing 147
Using Synchronous Writing 147
Using Direct I/O 148
Performance Comparison 148
Using a Delayed System Buffer Flush 150

Guaranteed-Rate I/O 150
Guaranteed-Rate I/O Basics 150
Creating a Real-time File 151
Requesting a Guarantee 153
Releasing a Guarantee 154
Sharing Access to Guaranteed Files 154
Hard Guarantees 155
Soft Guarantees 155
Video On Demand (VOD) Guarantees 156

9. Managing Device Interactions 157
Device Drivers 157

How Devices Are Defined 158
How Devices Are Used 158

Device Driver Entry Points 159
Taking Control of Devices 160

SCSI Devices 160
SCSI Hardware on CHALLENGE and Onyx Systems 161
SCSI Adapter Support 161
System Disk Device Driver 161
System Tape Device Driver 162
Generic SCSI Device Driver 162
CD-ROM and DAT Audio Libraries 163

:

xiii

The VME Bus 164
CHALLENGE Hardware Nomenclature 164
VME Bus Attachments 165
VME Address Space Mapping 166

PIO Address Space Mapping 167
DMA Mapping 167

Program Access to the VME Bus 168
PIO Access 168
User-Level Interrupt Handling 169
DMA Access to Master Devices 169
DMA Engine Access to Slave Devices 170

Serial Ports 172
External Interrupts 173

A. Sample Programs 175
Mapping and Reading the Cycle Counter 175

Testing Cycle Counter Precision. 176
Reading the Cycle Counter 177

Getting the Time of Day Stamp 184
Interprocess Communication 186
Probing the Address Space 198
Deadline Scheduling Subroutines 200
Asynchronous I/O Example 203
Guaranteed-Rate Request 221
Frame Scheduler Examples 225

Basic Example 226
Real-Time Application Specification 226
Frame Scheduler Design 226

Example of Scheduling Separate Programs 227
Examples of Multiple Synchronized Schedulers 229
Example of Device Driver 230
Examples of a 60 Hz Frame Rate 230
Example of Managing Lightweight Processes 231

xiv

:

Glossary 233

Index 241

xv

List of Examples

Example 2-1 Schematic of Using fork() 16
Example 4-1 Using systune to Check Address Space Limits 46
Example 4-2 Function to Lock Maximum Stack Size 50
Example 5-1 Timer Initialization 57
Example 6-1 Setting a Nondegrading Batch Priority 71
Example 6-2 Displaying Tuning Variable ndpri_hilim 71
Example 6-3 Setting a Real-Time Priority 71
Example 6-4 Initiating Gang Scheduling 74
Example 6-5 Setting the Time-Slice Length 76
Example 6-6 Command to Assign Process to Processor Set 77
Example 6-7 Setting the Clock CPU 79
Example 6-8 Setting the fasthz CPU 80
Example 6-9 Number of Processors Available and Total 83
Example 6-10 Restricting a CPU 83
Example 6-11 Assigning the Calling Process to a CPU 84
Example 6-12 Making a CPU nonpreemptive 87
Example 7-1 Skeleton of an Activity Process 101
Example 7-2 Alternate Skeleton of Activity Process 102
Example 7-3 Function to Set INJECTFRAME Exception Policy 120
Example 7-4 Function to Set STRETCH Exception Policy 120
Example 7-5 Function to Return a Sum of Exception Counts 121
Example 7-6 Function to Set Frame Scheduler Signals 125
Example 7-7 Minimal Activity Process as a Timer 126
Example 7-8 Exporting Device Driver Entry Points 128
Example 7-9 Device Driver Initialization Function 128
Example 7-10 Device Driver Termination Function 130
Example 7-11 Generating an Interrupt From a Device Driver 131

xvi

: List of Examples

Example 8-1 Initializing Asynchronous I/O 139
Example 8-2 Polling for Asynchronous Completion 141
Example 8-3 Set of Functions to Schedule Asynchronous I/O 144
Example 8-4 Function to create a real-time file 152
Example A-1 Program to Return Cycle Counter Precision 176
Example A-2 Functions to Map and Read the Cycle Counter 177
Example A-3 Program to Exercise gettimeofday() 184
Example A-4 Producer/Consumer Program Test 1 188
Example A-5 Producer/Consumer Program Test 2 188
Example A-6 Producer/Consumer Program Demonstrating IPC Functions 188
Example A-7 Program That Explores the Address Space 198
Example A-8 Helper Functions for Using schedctl() 200
Example A-9 Asynchronous I/O Example Program 204

xvii

List of Figures

Figure 2-1 Symmetric Multiprocessor Architecture 10
Figure 3-1 Major and Minor Frames 26
Figure 6-1 Components of Interrupt Response Time 89
Figure 7-1 Major and Minor Frames 97
Figure 8-1 Effect of Blocksize on write() Performance 149
Figure 9-1 Multiprocessor CHALLENGE Data Path Components 165

xix

List of Tables

Table 3-1 Signal Handling Interfaces 37
Table 3-2 Types of itimer 39
Table 4-1 Memory System Calls 48
Table 5-1 Functions for Timed Suspensions 55
Table 5-2 Types of itimer 57
Table 5-3 Time Data Structure Usage 58
Table 5-4 Comparison of Timestamp Functions 66
Table 6-1 Priority Ranges 69
Table 6-2 Scheduler Queues 70
Table 7-1 Frame Scheduler Operations 99
Table 7-2 Frame Scheduler schedctl() Support 100
Table 7-3 Signal Numbers Passed in frs_signal_info_t 124
Table 8-1 Data on Which Figure 8-1 is Based 149
Table 9-1 Multiprocessor CHALLENGE VME Cages and Slots 165
Table 9-2 POWER Channel-2 and VME bus Configurations 166
Table 9-3 VME Bus PIO Bandwidth 168
Table 9-4 VME Bus Bandwidth, VME Master Controlling DMA 169
Table 9-5 VME Bus Bandwidth, DMA Engine, D32 Transfer 170
Table i Summary of Frame Scheduler Example Programs 225

xxi

About This Guide

A real-time program is one that must maintain a fixed timing relationship to external
hardware. In order to respond to the hardware quickly and reliably, a real-time program
must have special support from the system software and hardware.

This guide describes the support that IRIX™ and the Silicon Graphics CHALLENGE™,
Onyx™, and POWERCHALLENGE computers provide to real-time programs. The
support bundled with all versions of IRIX is called REACT™. A set of extra-cost features
is called REACT/Pro™. This guide covers REACT for IRIX 6.2, and REACT/Pro 3.0.

This guide is designed to be read online, using IRIS InSight™. You are encouraged to
read it in non-linear order using all the navigation tools that Insight provides. In the
online book, the name of a reference page (“man page”) is red in color (for example:
mpin(2), sproc(2)). You can click on these names to cause the reference page to open
automatically in a separate terminal window.

Who This Guide Is For

This guide is written for real-time programmers. You, a real-time programmer, are
assumed to be

• an expert in the use of your programming language, which must be either C, Ada,
or FORTRAN to use the features described here

• knowledgeable about the hardware interfaces used by your real-time program

• familiar with system-programming concepts such as interrupts, device drivers,
multiprogramming, and semaphores

You are not assumed to be an expert in UNIX® system programming, although you do
need to be familiar with UNIX as an environment for developing software.

xxii

: About This Guide

What the Book Contains

Here is a summary of what you will find in the following chapters.

Chapter 1, “Real-Time Programs,” describes the important classes of real-time programs,
emphasizing the different kinds of performance requirements they have.

Chapter 2, “Basic Features of the CHALLENGE and IRIX™ Architectures,” contains an
overview of how IRIX manages the resources of a Challenge or Onyx system for the
benefit of normal, interactive UNIX applications; and points out how these methods
often conflict with the needs of real-time programs. This chapter also touches on the
operation of a multiprocessor array such as the POWERChallenge Array.

Chapter 3, “How IRIX™ and REACT/Pro™ Support Real-Time Programs,” gives an
overview of the real-time features of IRIX. From these survey topics you can jump to the
detailed topics that interest you most.

Chapter 4, “Managing Virtual Memory in a Real-Time Program,” covers the
management of your virtual address space: locking it to real memory; mapping devices
and files into it; and sharing segments of it between processes.

Chapter 5, “Managing Time and Time Intervals,” covers the use of timers and clocks in
the Challenge/Onyx architecture.

Chapter 6, “Controlling CPU Workload,” describes how you can isolate a CPU and
dedicate almost all of its cycles to your program’s use.

Chapter 7, “Using the Frame Scheduler,” describes the REACT/Pro Frame Scheduler,
which gives you a simple, direct way to structure your real-time program as a group of
cooperating processes, efficiently scheduled on one or more isolated CPUs.

Chapter 8, “Optimizing Disk I/O for a Real-Time Program,” describes how to set up disk
I/O to meet real-time constraints, including the use of asynchronous I/O and
guaranteed-rate I/O.

Chapter 9, “Managing Device Interactions,” summarizes the software interfaces to
external hardware, including and user-level programming of external interrupts and
VME and SCSI devices.

: About This Guide

xxiii

Other Useful Books

The following books contain more information that can be useful to a real-time
programmer.

• For a survey of all IRIX facilities and manuals, see Programming on Silicon Graphics
Systems: An Overview. This useful manual, part of the IRIX Developer Option, is new
in version 5.3; part number 007-2476-001.

• The WindView™ for IRIX Programmer’s Guide, part number 007-2824-001, tells how
to use a graphical performance analysis tool that can be of great help in debugging
and tuning a real-time application on a multiprocessor system.

• The IRIX Device Driver Programmer’s Guide, part number 007-0911-060, gives details
on all types of device control, including programmed I/O (PIO) and direct memory
access (DMA) from the user process, as well as discussing the design and
construction of device drivers and other kernel-level modules.

• Administration of a multiprocessor is covered in a family of six books, including

– IRIX Admin: System Configuration and Operation (007-2859-001)

– IRIX Admin: Disks and Filesystems (007-2825-001)

– IRIX Admin: Peripheral Devices (007-2861-001)

• For details of the architecture of the CPU, processor cache, processor bus, and
virtual memory, see the MIPS R4000 Microprocessor User’s Manual, 2nd Ed. by Joseph
Heinrich and other chip-specific documents that are available for downloading
from the MIPS home page, http://www.mips.com/HTMLs/Mips_Chip_Rm.html.

• For details of some IRIX system facilities not covered in this book, Topics in IRIX
Programming, part number 007-2478-001 and MIPS Compiling and Performance Tuning
Guide, 007-2479-001 (both available with the IRIX Developer’s Option).

• For programming inter-computer connections using sockets, IRIX Network
Programming Guide, part number 007-0810-050.

• For coding functions in assembly language, MIPSpro Assembly Language
Programmer’s Guide, part number 007-2418-001.

In addition, Silicon Graphics offers training courses in Real-Time Programming and in
Parallel Programming.

1

Chapter 1

1. Real-Time Programs

This chapter surveys the categories of real-time programs, and indicates which types can
best be supported by REACT and REACT/Pro. As an experienced programmer of
real-time applications, you might want to read the chapter to verify that this book uses
terminology that you know; or you might want to proceed directly to Chapter 2, “Basic
Features of the CHALLENGE and IRIX™ Architectures”.

Defining Real-Time Programs

A real-time program is any program that must maintain a fixed, absolute timing
relationship with an external hardware device.

Normal-time programs do not require a fixed timing relationship to external devices. A
normal-time program is a correct program when it produces the correct output, no
matter how long that takes. You can specify performance goals for a normal-time
program, such as “respond in at most 2 seconds to 90% of all transactions,” but if the
program does not meet the goals, it is merely slow, not incorrect.

A real-time program is one that is incorrect and unusable if it fails to meet its
performance requirements, and so falls out of step with the external device.

Major Types of Real-Time Programs

There are three major types of real-time programs: simulators, data collection systems,
and process control systems. This section describes each type briefly. Simulators and data
collection systems are described in more detail in following sections.

• A simulator maintains an internal model of the world. It receives control inputs,
updates the model to reflect them, and displays the changed model. It must process
inputs in real time in order to maintain an accurate simulation, and it must generate
output in real time to keep up with the display hardware.

2

Chapter 1: Real-Time Programs

Silicon Graphics systems are well suited to programming many kinds of simulators.

• A data collection system receives input from reporting devices, for example
telemetry receivers, and stores the data. It may be required to process, reduce,
analyze or compress the data before storing it. It must react in real time in order to
avoid losing data.

Silicon Graphics systems are suited to many data collection tasks.

• A process control system monitors the state of an industrial process and constantly
adjusts it for efficient, safe operation. It must react in real time to avoid waste,
damage, or hazardous operating conditions.

Although Silicon Graphics systems can be used for process control, dedicated
process-control computers are sometimes a more economical choice for these uses.

Simulators

All simulators have the same four components,

• An internal model of the world or part of it; for example a model of a vehicle
travelling through a model geography, or a model of the physical state of a nuclear
power plant.

• External devices to display the state of the model; for example, one or more video
displays, audio speakers, or a simulated instrument panel.

• External devices to supply control inputs; for example a steering wheel, a joystick,
or simulated knobs and dials.

• An operator (or hardware under test) that “closes the loop” by moving the controls
in response to what is shown on the display.

Requirements on Simulators

The real-time requirements on a simulator vary depending on the nature of these four
components. Two key performance requirements on a simulator are frame rate and
transport delay.

Simulators

3

Frame Rate

A crucial measure of simulator performance is the rate at which it updates the display.
This rate is called the frame rate, whether or not the simulator displays its model on a
video screen.

Frame rate is given in cycles per second (abbreviated Hz). Typical frame rates run from
15 Hz to 60 Hz, although rates higher and lower than these are used in special situations.

The inverse of frame rate is frame interval. For example, a frame rate of 60 Hz implies a
frame interval of 1/60 second, or 16.67 milliseconds. To maintain a frame rate of 60 Hz,
a simulator must update its model and prepare a new display in less than 16.67 ms.

The REACT/Pro Frame Scheduler helps you organize a multi-process application to
achieve a specified frame rate. (See Chapter 7, “Using the Frame Scheduler.”)

Transport Delay

Transport delay is the term for the number of frames that elapses before a control motion
is reflected in the display. When the transport delay is too long, the operator will perceive
the simulation as sluggish or unrealistic. If a visual display lags behind control inputs, a
human operator can become physically ill.

Aircraft Simulators

Simulators for real or hypothetical aircraft or spacecraft typically require frame rates of
30 Hz to 120 Hz and transport delays of 1 or 2 frames. There will be several analogue
control inputs or and possibly many digital control inputs (simulated switches and
circuit breakers, for example). There are often multiple video display outputs (one each
for the left, forward and right “windows”), and possibly special hardware to shake or tilt
the “cockpit.” The display in the “windows” must have a convincing level of detail.

Silicon Graphics systems with REACT/Pro are well suited to building aircraft
simulators.

4

Chapter 1: Real-Time Programs

Ground Vehicle Simulators

Simulators for automobiles, tanks, and heavy equipment have been built with Silicon
Graphics systems. Frame rates and transport delays are similar to those for aircraft
simulators. However, there is a smaller world of simulated “geography” to maintain in
the model. Also, the viewpoint of the display changes more slowly, and through smaller
angles, than the viewpoint from an aircraft simulator. These factors can make it
somewhat simpler for a ground vehicle simulator to update its display.

Plant Control Simulators

A simulator can be used to train the operators of an industrial plant such as a nuclear or
conventional power generation plant. Power-plant simulators have been built using
Silicon Graphics systems.

The frame rate of a plant control simulator can be as low as 1 or 2 Hz. However, the
number of control inputs (knobs, dials, valves, and so on) can be very large. Special
hardware may be required to attach the control inputs and multiplex them onto the VME
bus. Also, the number of display outputs (simulated gauges, charts, warning lights, and
so on) can be very large and may also require custom hardware to interface them to the
computer.

Virtual Reality Simulators

A virtual reality simulator aims to give its operator a sense of presence in a
computer-generated world. (So also does a vehicle simulator. One difference is that a
vehicle simulator strives for an exact model of the laws of physics, which a virtual reality
simulator typically does not need to do.)

Usually the operator can see only the simulated display, and has no other visual
referents. Because of this, the frame rate must be high enough to give smooth,
nonflickering animation, and any perceptible transport delay can cause nausea and
disorientation. However, the virtual world is not required (or expected) to look like the
real world, so the simulator may be able to do less work to prepare the display.

Silicon Graphics systems, with their excellent graphic and audio capabilities, are well
suited to building virtual reality applications.

Data Collection Systems

5

Hardware-in-the-loop (HITL) Simulators

The operator of a simulator need not be a person. In a hardware-in-the-loop simulator,
the role of operator is played by another computer, such as an aircraft autopilot or the
control and guidance computer of a missile. The inputs to the computer under test are
the simulator’s display output. The output signals of the computer under test are the
simulator’s control inputs.

Depending on the hardware being exercised, the simulator may have to maintain a very
high frame rate, up to 1000 Hz. Silicon Graphics systems can be used for some hardware
simulators. Special-purpose systems may be more practical or more economical for very
demanding frame rates.

Data Collection Systems

A data collection system has the following major parts:

1. Sources of data, for example telemetry. Typically the source or sources are interfaced
to the VME bus.

2. A repository for the data. This can be a raw device such as a tape, or it can be a disk
file or even a database system.

3. Rules for processing. The data collection system might be asked only to buffer the
data and copy it to disk. Or it might be expected to compress the data, smooth it,
sample it, or filter it for noise.

4. Optionally, a display. The data collection system may be required to display the
status of the system or to display a summary or sample of the data. The display is
typically not required to maintain a particular frame rate, however.

Requirements on Data Collection Systems

The first requirement on a data collection system is imposed by the peak data rate of the
combined data sources. The system must be able to receive data at this peak rate without
an overrun; that is, without losing data because it could not read the data as fast as it
arrived.

6

Chapter 1: Real-Time Programs

The second requirement is that the system must be able to process and write the data to
the repository at the average data rate of the combined sources. Writing can proceed at the
average rate as long as there is enough memory to buffer short bursts at the peak rate.

You might specify a desired frame rate for updating the display of the data. However,
there is usually no real-time requirement on display rate for a data collection system.
That is, the system is correct as long as it receives and stores all data, even if the display
is updated slowly.

Achieving High Transfer Rates to Devices

The Challenge/Onyx systems support a variety of I/O types with different bandwidth
and latency characteristics:

• VME device registers can be mapped directly into the program’s address space,
where they can be read and written as memory variables. This is implemented as
programmed I/O (PIO).

Memory-mapping makes I/O programming simple, especially when large numbers
of devices or complex device protocols are involved. Memory-mapped,
programmed I/O can transfer data from 250 KB/second to 1 MB/second. (See “PIO
Access” on page 168.)

• When transferring 32 or more consecutive bytes, transfer rate can be increased
using direct memory access (DMA) to devices on the VME bus. The Challenge/Onyx
architecture allows a user-level process DMA access to VME master and slave
devices through a unique DMA engine (see “Program Access to the VME Bus” on
page 168.)

• Maximum transfer rates on the VME bus are achieved with a VME device that
supports block mode transfer as a bus master. Challenge/Onyx systems can achieve
VME transfer rates greater than 50 MB/second to such devices.

• Multiple SCSI controllers can be attached to all Silicon Graphics systems. SCSI
transfer rates can reach 14 MB/second on each channel for 16-bit SCSI-II controllers
(see “SCSI Hardware on CHALLENGE and Onyx Systems” on page 161).

Real-Time Programming Languages

7

Achieving High Transfer Rates to Disk

A data collection system can exploit two features to achieve a high rate of data transfer
to disk,

• asynchronous disk I/O

• Guaranteed-rate I/O (GRIO), a feature of the XFS filesystem

Asynchronous I/O that conforms to POSIX 1003.1b-1993 is a standard feature of IRIX.
You use asynchronous I/O library calls to initiate disk I/O in a separate process, while
your real-time process continues to work with the input data. (In fact you can start
asynchronous I/O to any device, not only to disk files.) You can ensure that the
asynchronous process performing the I/O executes on a different CPU than the one used
by the real-time process.

Using GRIO, your real-time program can claim a specified portion of the bandwidth of a
device. I/O requested by other processes is deferred, if necessary, to ensure that your
process achieves the promised data rate.

 For details of both these features, see Chapter 8, “Optimizing Disk I/O for a Real-Time
Program.”

Real-Time Programming Languages

The majority of real-time programs are written in C, which is the most common language
for system programming on UNIX. All of the examples in this book are in C syntax.

The second most common real-time language is Ada, which is used for many
defense-related projects. SGI sells Ada 95, a new implementation of the language. Ada 95
programs can call any function that is available to a C program, so all the facilities
described in this book are available, although the calling syntax may vary slightly. Ada
offers additional features that are useful in real-time programming; for example, it
includes a partial implementation of POSIX threads which is used to implement Ada
tasking.

Some real-time programs are written in FORTRAN. A program in FORTRAN can access
any IRIX system function, that is, any facility that is specified in volume 2 of the reference
pages. For example, all the facilities of the REACT/Pro Frame Scheduler are accessible

8

Chapter 1: Real-Time Programs

through the IRIX system function schedctl(), and hence can be accessed from a
FORTRAN program (see “The Frame Scheduler API” on page 98).

A FORTRAN program cannot directly call C library functions, so any facility that is
documented in volume 3 of the reference pages is not directly available in FORTRAN.
Thus the mmap() function, a system function, is available, but the usinit() library
function, which is basic to SGI semaphores and locks, is not available. However, it is
possible to link subroutines in C to FORTRAN programs, so you can write interface
subroutines to encapsulate C library functions and make them available to a FORTRAN
program.

9

Chapter 2

2. Basic Features of the CHALLENGE and IRIX™
Architectures

IRIX overview<$startrange>The architecture of the CHALLENGE, Onyx, and
POWERCHALLENGE computers provides multiple CPUs, a large real memory, a
high-speed system bus, and fast I/O channels. (For brevity, the phrase Challenge/Onyx
is used to refer to these machines as a single type.)

The IRIX operating system normally manages the hardware resources so as to optimize
the throughput of a large number of UNIX* applications, both batch and interactive.

This chapter gives a high-level summary of the standard operational methods of IRIX,
and points out how they can sometimes conflict with the needs of a real-time program.

If you already know IRIX and the Challenge/Onyx architecture, you can skip to
Chapter 3, “How IRIX™ and REACT/Pro™ Support Real-Time Programs,”, which
introduces the features you can use to create fully deterministic system behavior for
real-time programs.

Multiprocessor Architecture

Challenge/Onyx architectureFigure 2-1 shows a simplified, high-level view of the
Challenge/Onyx architecture.

10

Chapter 2: Basic Features of the CHALLENGE and IRIX™ Architectures

Figure 2-1 Symmetric Multiprocessor Architectureprocessor bus:diagram

CPUs, Memory, and the System Bus

processor bus:capacitybus:processor. <Italics>See<Default Para Font> processor
bus<$nopage>CPU:relation to bus and memorymultiprocessor architectureA
Challenge/Onyx system contains from 2 to as many as 36 CPUs. All are functionally
identical. The CPUs are connected to each other and to a single memory by the processor
bus. The processor bus carries 128-bit parallel packets at a data rate of 1.2
Gigabytes/second. An important feature of the bus design is that it is “fair,” that is, there
is a very low probability of any CPU on it starving for access. This helps to make
real-time program timings determinate and repeatable.

IRIX:kernelkernel:multiprocessor usememory:mainThere is a single physical memory
(shown as “main memory” in Figure 2-1) that is accessed equally by all CPUs. For
example, there is a single image of the UNIX kernel in memory, and any of the CPUs
could be executing instructions from it, in any combination, at any time.

CPU 0 CPU nCPU 1 ...

Graphics
subsystem
(Optional) Main memory

Second level cache

Processor bus

First level cache First level cache First level cache

Second level cache Second level cache

VME bus
interface

SCSI
channel

Multiprocessor Architecture

11

Concurrent Execution

concurrent executionThe Challenge/Onyx computers permit true concurrency—two or
more CPUs executing the same program at the same instant. However, most ordinary
UNIX programs execute in only one CPU at a time.

lock:used by kernelsemaphore:used by kernelkernel:multiprocessor useTwo or more
CPUs, executing on behalf of different processes, can enter the IRIX kernel
simultaneously. The kernel is written to optimize concurrent use. It uses semaphores and
locks to serialize the use of the data structures that can be used by two or more processes
at the same time.

A real-time program may need to use two or more CPUs concurrently in order to finish
the work it needs to do in each frame interval. You can structure your real-time program
as multiple processes. You can cause these processes to run concurrently on multiple
CPUs, and you can use semaphores and locks to protect their common resources. Process
creation is discussed later in this chapter, under “Process Management” on page 15.

Memory Hierarchy

cache:architecturememory:hierarchyEach CPU in a Challenge/Onyx system accesses
memory through a four-level hierarchy:

• First-level instruction and data caches within the CPU chip provide the fastest
access to recently-used data (the cache size depends on the microprocessor model).

• A larger second-level cache on each CPU board stores recently-used instructions
and data (this cache size depends on the CPU board model).

• Main memory contains the current state of swapped-in processes.

• Swapped-out virtual pages are kept in the swap partition on disk.

locality of referenceThere is a ratio of roughly 100:1 in access speeds between each level
of this hierarchy. There is a large reward of execution speed for a program that maintains
locality of reference, and so executes mostly out of cache. This is examined in more detail
under “Reducing Cache Misses” on page 52. At the other extreme, there is a large penalty
of lost time for any program that causes pages to be swapped in and out of memory.

12

Chapter 2: Basic Features of the CHALLENGE and IRIX™ Architectures

Cache Coherency Updates

cache coherencyEach CPU has two levels of cache that hold copies of memory data.
Copies of the same data can exist in multiple caches at the same time. When a CPU writes
to its cache memory, it broadcasts the fact on the processor bus. Other CPUs that have
cached the same location mark their cached copies as invalid, so that if they need to refer
to it again, they will reload the modified data.

This is a greatly oversimplified summary of a complicated protocol that ensures
consistent, correct behavior of the multiple CPUs, even when they use the same memory
areas. (For details on the subject, refer to one of the MIPS processor books listed in “Other
Useful Books” on page xxiii.) Cache coherence is built into the hardware at a low level,
and your program does not need to take any special steps to maintain it.

Virtual Memory

address spaceIn general, each UNIX process has its own address space. The process sees
the address space as a continuous range of memory locations containing the process’s
code, data, and other resources.

The composition of the address space, and the methods by which a process can share it
with other processes, are covered in Chapter 4, “Managing Virtual Memory in a
Real-Time Program.”

page sizememory:virtualvirtual memorymemory:page sizeThe IRIX kernel manages
each process’s address space as a set of pages. All pages are the same size in one
implementation of IRIX. (The page size is 4 KB in 32-bit systems, but larger in 64-bit
systems. Programs should always determine the page size dynamically by calling the
getpagesize() function.)

virtual memory:page faultpage faultSome or all of the pages that represent a process’s
address space may be stored on disk. When the process attempts to access a page not in
memory, it causes a page fault interrupt. The kernel suspends the process until it can
provide the page contents. If the page has defined contents, the kernel schedules a disk
I/O operation to load it. If this is the first use of a stack or heap page, the kernel simply
creates a page of zeros. In order to make room for the needed page, the kernel may have
to invalidate some other page, and may have to save the contents of the other page to the
swap disk.

Multiprocessor Architecture

13

A page fault causes an unpredictable and possibly lengthy pause in the execution of a
process. A real-time program cannot tolerate such delays. However, you can have part
or all of your program’s address space locked into memory, so that a page fault cannot
occur.

Translation Lookaside Buffer Updates

TLBtranslation lookaside buffer. <Italics>See<Default Para Font> TLB<$nopage>Virtual
addresses are mapped to real memory locations using translation tables kept in memory.
For speed, each CPU has a cache of recently-used page addresses, called the translation
lookaside buffer (TLB).

interrupt:TLBTLB update interruptUnder certain conditions, kernel code executing in
one CPU can change the address space mapping in a way that could invalidate TLB
entries in other CPUs. In order to synchronize the TLBs, the kernel broadcasts an
interrupt to all CPUs. The interrupt service routine in each CPU purges the TLB for that
CPU so it will be reloaded with accurate values. Memory accesses immediately after a
TLB purge are slow, while the TLB contents are reconstructed. The TLB update interrupt
comes at unpredictable times. A real-time program with tight timing constraints cannot
tolerate being delayed this way.

However, when you dedicate one or more CPUs to executing your real-time program,
you can isolate your dedicated CPUs from TLB interrupts. (For details, see “Isolating a
CPU From TLB Interrupts” on page 84).

Device Interrupts

device interruptinterrupt:devicedevice driverWhen a device needs attention, it requests
an interrupt. This forces one CPU to trap to an interrupt handler to service the interrupt.
The interrupt handler locates a device driver that can respond to the interrupt. There are
two kinds of device drivers:

• Multiprocessor-aware device drivers can run on any CPU. The interrupt handler
enters the code of the device driver immediately, on the CPU that was interrupted.

• Device drivers that are not multiprocessor-aware cannot be executed safely on any
CPU. The interrupted CPU in turn interrupts CPU 0, and then returns to the
interrupted work. The interrupt handler in CPU 0 calls the old device driver.

14

Chapter 2: Basic Features of the CHALLENGE and IRIX™ Architectures

Interrupts at the same and lower priority levels are masked off (blocked) in the
interrupted CPU while the device driver is running. Other CPUs continue to run, and can
even receive interrupts.

The design of multiprocessor-aware device drivers is covered in the IRIX Device Driver
Programmer’s Guide (see page xxiii). Disk and network drivers are always
multiprocessor-aware. However, VME device drivers (other than disk drivers) are not
required to be multiprocessor-aware.

VME Interrupts

interrupt:VME busVME bus:interrupt levelsbus,VME. <Italics>See<Default Para Font>
VME bus<$nopage>Interrupts from the VME bus are grouped into 7 priority levels. Each
device on the bus uses a particular level. Higher numbered levels have superior priority
(IRQ7 is superior to IRQ1).

interrupt:sprayingBy default, interrupts are “sprayed” (dynamically distributed, in
rotation) to all CPUs in order to equalize the load of handling interrupts. You can control
this in two ways:

• Designate CPUs that are not to receive sprayed interrupts. You would do this to
protect real-time processes in those CPUs from being interrupted by devices not
related to real-time work.

• Specify that interrupts of a specified VME interrupt level are to be directed to a
specified CPU. You would do this either to group all non-real-time interrupts on a
designated CPU, or to direct real-time interrupts to a CPU that is dedicated to
handling them.

For details on these actions, see “Minimizing Overhead Work” in Chapter 6.

Interrupt Latency

interrupt:latencyWhen interrupts come from the real-time input and output devices, you
are concerned about interrupt latency, the amount of time that elapses between the
hardware signal and the start of the IRIX kernel’s response to it. Interrupt latency has
several sources, some of which you can control. (See “Components of Interrupt Response
Time” in Chapter 6.)

Process Management

15

Interrupt Response Time

device service timedevice driverinterrupt response timeThe time that elapses from the
arrival of an interrupt until the system returns to executing user code is interrupt response
time. It includes interrupt latency, plus the time spent in the device driver (called device
service time), plus the time IRIX needs to switch program contexts, and other factors.
When you take full advantage of the features of IRIX and REACT/Pro and configure the
system properly, you can guarantee a maximum 200 microsecond interrupt response
time. See “Minimizing Interrupt Response Time” in Chapter 6.

Processor Arrays

The POWERChallenge Array is a collection of two or more POWERChallenge systems,
each one of which is a symmetric multiprocessor as described in the preceding topics.
Within each “node” of the Array there are multiple CPUs, a system bus, and a single
memory. The nodes are connected by a high-speed network, HIPPI or FDDI.

The real-time features discussed in this book apply within one Challenge/Onyx system,
whether it stands alone or is a node in an Array system. You can distribute an application
across multiple nodes of an Array using the Message-Passing Interface (MPI) standard.
However, the MPI standard does not provide for guaranteed message latencies. As a
result, you cannot distribute a real-time application across nodes of an Array. You can run
multiple, real-time, applications in different nodes of an Array, but you cannot
synchronize them at real-time levels of determinacy.

Process Management

process<$startrange>A process is one executable instance of a program. The IRIX kernel
creates new processes, and by default it attempts to schedule their shared use of the
hardware in a fair and effective way. You can alter the default scheduling to favor a
real-time program in several different ways.

Process Composition

kernel:process managementprocess:attributesprocess:compositionA process consists of
an address space containing the program text and data, and a number of process attributes
managed by the IRIX kernel. A few examples of process attributes are

16

Chapter 2: Basic Features of the CHALLENGE and IRIX™ Architectures

• process IDa unique process ID number

• machine register contents, representing the current instruction and stack level as
well as working data

• user IDgroup IDUNIX user and group identities

• current directorycurrent working directory for file searches

• signal handler:as process attributesignal-handling status

For a more complete list, refer to the fork(2) reference page and read the list of attributes
that a new process does and does not inherit from its parent.

Process Creation

device driverThere are two system calls that create a process. They differ in that one
creates a new address space and the other does not.

Normal Process Creation With fork()

address space:duplicated by <Function>fork()<Default Para Font>process:created with
<Function>fork()<Default Para Font><Function>fork()<Default Para Font>The
conventional method of creating a new process in UNIX is to issue the fork() system call.
It creates a “child” process, which is a copy of the “parent” process that issued the call.
The address space of the child is a duplicate of the parent’s address space, as are most of
its attributes, including its machine register contents. Only the return value of fork()
differs. The use of fork() is shown in Example 2-1.

Example 2-1 Schematic of Using fork()<Function>fork()<Default Para Font>:example

int childProcId;
switch(childProcId = fork())
{
case 0:

{ /* this is executed by the child process */ }
break;

case -1:
{ /* parent process, no child process created */ }
break;

default:
{ /* parent process, child process exists */ }

}

Process Management

17

copy on write page statueaddress space:copy on writeIRIX does not physically duplicate
all the pages of the parent’s address space. That would waste a great deal of time. Instead,
the page translation table that defines the child’s address space initially refers to the
physical pages of the parent’s address space. However, the table designates these pages
as “copy on write.”

Whenever the child process writes into a page, it causes a hardware trap. The kernel then
makes a duplicate of that one page so that the child has a unique copy into which it can
write. Thus only the pages that are written are copied, and then only when the child uses
them.

Address Space Replacement With exec()

process:attributes initialized by <Function>exec()address space:replaced by
<Function>exec()<Function>exec()<Default Para Font>The exec() system call is the
means by which UNIX “loads a program.” This call replaces the entire address space
with a new one based on a program image loaded from an executable file. The exec() call
also initializes many of the process attributes (refer to the exec(2) reference page for
details).

The combination of fork() and exec() suits the needs of a command shell. The way a
UNIX command shell launches a program is to fork(), creating a new process. In the new
process (case 0 in Example 2-1) it calls exec(), replacing the new address space. As a
result, in the great majority of fork() calls, the child’s address space is completely
replaced before more than one or two of its pages have been copied.

However, fork() is not well-suited to building a program designed as a number of small,
cooperating processes—the kind of design that your real-time application needs if it is to
exploit multiple CPUs.

Lightweight Process Creation With sproc()

address space:shared by lightweight processesprocess:lightweight. <Italics>See<Default
Para Font> lightweight process<$nopage>lightweight process:created with
<Function>sproc()<Function>sproc()The sproc() system call is unique to IRIX. It creates
a new process that shares its parent’s address space. The new process has its own
machine registers and its own memory region for its stack. Otherwise, both processes
execute concurrently using the same program text and data, and sharing many process
attributes. A parent process and its children by sproc() constitute a process group.

18

Chapter 2: Basic Features of the CHALLENGE and IRIX™ Architectures

lightweight process:preferred for real-time usereal-time program:lightweight processes
preferredFor several reasons, you should use sproc() if you structure your real-time
application as multiple, cooperating processes:

• lightweight process:less work to createThe kernel does less work to create a process
with sproc(). For example, it does not have to build a page table to describe a new
address space.

• The parent process can initialize disk files, device files, global data structures,
memory-mapped I/O, and other objects, and all these are automatically available to
the child processes.

• The parent and all child processes have write access to global data, and can use
high-performance semaphores and locks to regulate access.

• There is only one address space to lock into memory, no matter how many
processes use it.

Process Scheduling

scheduling:assumptionskernel:scheduling assumptionsprocess schedulingWhen
managing a mix of programs, the IRIX kernel attempts to keep all CPUs busy and all
processes advancing, and is generally successful at this. (For details, see “Using Priorities
and Scheduling Queues” on page 67.) By default, the IRIX kernel schedules processes to
execute under these assumptions:

• There are far more processes (dozens to hundreds) than there are CPUs to execute
them.

• The system’s resources should be shared among all processes as equitably as
possible.

• Most processes spend most of their time waiting for input or output.

• As long as a process makes some progress (is not blocked indefinitely), its exact rate
of progress is not crucial (“the system is busy” is always a valid excuse for slow
response).

real-time program:and scheduler assumptionsHowever, when a real-time program is
running, the assumptions for scheduling must change: there is typically only one
real-time program in a system; you are prepared to give it all of the system’s resources if
necessary; it spends very little time waiting for input. Most important, its precise rate of
progress is an integral part of its design, and “the system is busy” is never an excuse.

Process Management

19

Your real-time program can give itself a high scheduling priority or, if it cannot tolerate
time-sharing at all, it can seize one or more CPUs and dedicate them to its exclusive use.
The specific calls are surveyed in Chapter 3, “How IRIX™ and REACT/Pro™ Support
Real-Time Programs” and covered in detail in Chapter 6, “Controlling CPU Workload”.

I/O Scheduling

process:blocked by I/OWhen a process initiates I/O, IRIX usually suspends the process
until data transfer is complete. By understanding the I/O system, and by using the
Asynchronous I/O feature, you can make sure that a real-time process is not blocked in
this way.

Disk I/O

When a process requests disk input, it is blocked until the data has been read and copied
into the designated buffer. When a process requests disk output, it is blocked until the
data has been copied into a kernel buffer or until the disk write is complete, depending
on the options used when the file was opened.

VME Bus I/O

VME bus:and process schedulingYour program can perform I/O to the VME bus in three
ways: programmed I/O (PIO), direct memory access (DMA) from VME Bus Master
devices, and a unique form of DMA from VME Bus Slave devices.

When it uses programmed I/O, your program polls the device registers or memory as if
they were variables in memory, and does not block. Your real-time program can do PIO
in a time-critical process.

VME-bus I/O using either form of DMA generally does delay the requesting process
until the DMA transfer is complete. All of these methods are discussed under “Program
Access to the VME Bus” on page 168.

Other I/O

file descriptor:returned by <Function>open() device:opening <Function>open()In
general, UNIX allows your process to open any device for I/O with the open() call. You
specify a pathname designating one of the device special files found in the /dev directory.
The open() call returns a file descriptor which you can pass to the read() or write()

functions. For device files, these functions are routed directly to the device driver for the
device. Through this means your program can read or write serial devices, SCSI devices,
and (in SGI systems other than Challenge/Onyx), devices on the GIO or EISA bus.

A call to a device driver for input or output normally blocks the calling process until the
data has been transferred.

Asynchronous I/O

asynchronous I/OTypically, a real-time process cannot allow itself to be blocked for I/O.
Asynchronous I/O is a feature of IRIX that gives you the ability to schedule I/O to be done
in a separate process. This process—created automatically for you—requests the I/O and
waits for it, while your real-time process continues to execute. For details on
asynchronous I/O, see Chapter 8, “Optimizing Disk I/O for a Real-Time
Program.”process<$endrange>

IRIX overview<$endrange>

21

Chapter 3

3. How IRIX™ and REACT/Pro™ Support Real-Time
Programs

This chapter provides an overview of the real-time support in IRIX and REACT/Pro. The
discussion uses terms that are defined in Chapter 1, “Real-Time Programs” and
Chapter 2, “Basic Features of the CHALLENGE and IRIX™ Architectures”.

Some of the features mentioned here are discussed in more detail in the following
chapters of this guide. For details on other features, you are referred to reference pages
or to other manuals. The main topics surveyed are

• “Kernel Facilities for Real-Time Programs,” including special scheduling
disciplines, isolated CPUs, and locked memory pages

• “REACT/Pro Frame Scheduler,” which takes care of the details of scheduling
multiple processes on multiple CPUs at guaranteed rates

• “Interprocess Communication,” reviewing the ways that a concurrent, multiprocess
program can coordinate its work

• “Timers and Clocks,” reviewing your options for time-stamping and interval timing

• “Interchassis Communication,” reviewing two ways of connecting multiple chassis

Kernel Facilities for Real-Time Programs

The IRIX kernel has a number of features that are valuable when you are designing your
real-time program.

22

Chapter 3: How IRIX™ and REACT/Pro™ Support Real-Time Programs

Kernel Optimizations

The IRIX kernel has been carefully optimized for performance in a multiprocessor
environment. Some of the optimizations are as follows:

• Instruction paths to system calls and traps are optimized, including some hand
coding, to maximize cache utilization.

• In the real-time dispatch class (described further in “Using Priorities and
Scheduling Queues” on page 67), the run queue is kept in priority-sorted order for
fast dispatching.

• Floating point registers are saved only if the next process needs them, and restored
only if saved.

• Paging I/O is prioritized with the process priority.

• The kernel tries to redispatch a process on the same CPU where it most recently ran,
in hopes of finding some of its data remaining in cache (see “Understanding
Affinity Scheduling” on page 72).

Special Scheduling Disciplines

The default IRIX scheduling algorithm employs “degrading” priorities. Processes are
ranked by a priority value, the one with the lowest priority number running first. But the
priority number of a process grows steadily while it runs. The longer a process runs
without suspending itself, the lower its priority becomes, and the more likely it is that
another process will preempt it.

Nondegrading Priorities

A real-time process needs an unchanging priority. The kernel allows you to apply a
nondegrading priority to a specified process. When this priority is in the range of
real-time priorities (smaller than normal priorities), the process is scheduled from a
real-time scheduling queue, which is tested before the normal dispatch queue. For more
information, see “Setting a Nondegrading Batch Priority” on page 70 and “Setting a
Nondegrading Real-Time Priority” on page 71.)

Kernel Facilities for Real-Time Programs

23

Deadline Scheduling

The kernel also supports a deadline scheduling discipline. Under deadline scheduling, a
process can request a certain amount of processing time in every interval of a specified
length—for example, 30 milliseconds in every 100 milliseconds. For more information,
see “Using Deadline Scheduling” on page 74.

Gang Scheduling

When your program is structured as a process group (see “Lightweight Process Creation
With sproc()” on page 17), you can request that all the processes of the group be
scheduled as a “gang.” The kernel runs all the members of the gang concurrently,
provided there are enough CPUs available to do so. This helps to ensure that, when
members of the process group coordinate through the use of locks, a lock will usually be
released in a timely manner. Without gang scheduling, the process that holds a lock
might not be scheduled in the same interval as another process that is waiting on that
lock.

For more information, see “Using Gang Scheduling” on page 73.

Processor Sets

IRIX 5.2 and above support the concept of processor sets. You can partition the CPUs of a
system into multiple, possibly overlapping sets. Then you can

• assign a set of processors to work on a specific scheduling queue, for example the
real-time queue, or the gang-scheduling queue

• assign certain processes to run on a specified processor set

• run a UNIX command on a specified processor set (if the command is a shell,
commands started from that shell run on the same processor set)

The use of kernel scheduling queues, priorities, and processor sets is covered in more
detail in Chapter 6, “Controlling CPU Workload,”. When a real-time application requires
only a fraction of the system’s power, these tools may be sufficient to ensure the needed
performance. For more critical applications, you need to replace the kernel scheduler
with the Frame Scheduler (see “REACT/Pro Frame Scheduler” on page 25).

24

Chapter 3: How IRIX™ and REACT/Pro™ Support Real-Time Programs

Locking Virtual Memory

IRIX allows a process to lock all or part of its virtual memory into physical memory, so
that it cannot be paged out and a page fault cannot occur while it is running.

This allows you to protect a process from the unpredictable delays caused by paging. Of
course the locked memory is not available for the address spaces of other processes. The
system must have enough physical memory to hold the real-time address space plus
space for a minimum of other activities.

The system calls used to lock memory are discussed in detail in Chapter 4, “Managing
Virtual Memory in a Real-Time Program.”

Mapping Processes and CPUs

Normally IRIX tries to keep all CPUs busy, dispatching the next ready process to the next
available CPU. (This simple picture is complicated by the needs of affinity scheduling,
deadline scheduling, and gang scheduling). Since the number of ready processes
changes all the time, dispatching is a random process. A process cannot predict how
often or when it will next be able to run. For normal programs this does not matter, as
long as each process continues to run at a satisfactory average rate.

Real-time processes cannot tolerate this unpredictability. To reduce it, you can dedicate
one or more CPUs to real-time work. There are two steps:

• Restrict one or more CPUs from normal scheduling, so that they can run only the
processes that are specifically assigned to them.

• Assign one or more processes to run on the restricted CPUs.

A process on a dedicated CPU runs when it needs to run, delayed only by interrupt
service and by kernel scheduling cycles (if scheduling is enabled on that CPU). For
details, see “Assigning Work to a Restricted CPU” on page 83. The REACT/Pro Frame
Scheduler takes care of both steps automatically; see “REACT/Pro Frame Scheduler” on
page 25.

REACT/Pro Frame Scheduler

25

Controlling Interrupt Distribution

In normal operations, CPUs receive frequent interrupts:

• I/O interrupts are “sprayed” to different CPUs to equalize workload.

• A scheduling clock causes an interrupt to every CPU every time-slice interval of 10
milliseconds.

• Whenever interval timers are in use (“Timers and Clocks” on page 38), a CPU
handling timers receives frequent timer interrupts.

• When the map of virtual to physical memory changes, a TLB interrupt is broadcast
to all CPUs.

These interrupts can make the execution time of a process unpredictable. However, you
can designate one or more CPUs for real-time use, and keep interrupts of these kinds
away from those CPUs. The system calls for interrupt control are discussed at more
length under “Minimizing Overhead Work” on page 79. The REACT/Pro Frame
Scheduler also takes care of interrupt isolation.

REACT/Pro Frame Scheduler

The REACT/Pro Frame Scheduler is a process execution manager that schedules
processes on one or more CPUs in a predefined, cyclic order. The scheduling interval is
determined by a repetitive time base, usually a hardware interrupt.

Many real-time programs must sustain a fixed frame rate. In such programs your central
design problem is that the program must complete certain activities during every frame
interval. When there is more to do in a frame than one CPU can do, some activities must
run concurrently on multiple CPUs.

Besides designing the activities themselves, you must design a way to schedule and
initiate activities in sequence, once per frame, on multiple CPUs. This is what the
REACT/Pro Frame Scheduler does: executes the multiple processes of your real-time
program, in sequence, on one or more CPUs.

26

Chapter 3: How IRIX™ and REACT/Pro™ Support Real-Time Programs

How Frames Are Defined

The Frame Scheduler divides time into successive frames, each of the same length. You
specify the time base as one of

• a specific interval in microseconds

• the Vsync (vertical retrace) interrupt from the graphics subsystem

• an external interrupt (see “External Interrupts” on page 42)

• a device interrupt from a specially-modified device driver

• a software call (normally used for debugging)

The interrupts from the time base define minor frames. You choose the fixed number of
minor frames that make a major frame, as shown in Figure 3-1.

Figure 3-1 Major and Minor Frames

The Frame Scheduler keeps a queue of processes for each minor frame. It dispatches each
process once in its scheduled turn. The process runs until it finishes its work; then it
yields.

In the simplest case, you have a single frame rate, such as 60 Hz, and every activity your
program does must be done once per frame. In this case, the major and minor frame rates
are the same.

Q0 Q1 Q2

TIME

Major frame

Minor−0 Minor−1 Minor−2 Minor−0 Minor−1 Minor−2

Major frame

Real−time event interrupts

Process queues

REACT/Pro Frame Scheduler

27

In other cases, you have some activities that must be done in every minor frame, but you
also have activities that are done less often, in every other minor frame or in every third
one. In these cases you define the major frame so that its rate is the rate of the
least-frequent activity. The major frame contains as many minor frames as necessary to
schedule activities at their relative rates.

Sometimes what is here called a “major frame” is called a “process cycle.”

Advantages of the Frame Scheduler

The Frame Scheduler makes it easy for you to organize a real-time program as a set of
independent, cooperating processes. The Frame Scheduler manages the housekeeping
details of reserving and isolating CPUs. You concentrate on designing the activities and
implementing them as processes in a clean, structured way. It is relatively easy to change
the number of activities, or their sequence, or the number of CPUs, even late in the
project.

Designing With the Frame Scheduler

To use the Frame Scheduler, you approach the design of your real-time program in the
following steps.

1. Partition the program into activities, where each activity is an independent piece of
work that can be done without interruption.

For example, in a simple vehicle simulator, activities might include “poll the
joystick,” “update the positions of moving objects,” “cull the set of visible objects,”
and so forth.

2. Decide the relationships among the activities:

• Some must be done once per minor frame, others less frequently.

• Some must be done before or after others.

• Some may be conditional. For example, an activity could poll a semaphore and
do nothing unless an event had completed.

3. Estimate the worst-case time required to execute each activity. Some activities may
need more than one minor frame interval (the Frame Scheduler allows for this).

28

Chapter 3: How IRIX™ and REACT/Pro™ Support Real-Time Programs

4. Schedule the activities: If all are executed sequentially, will they complete in one
major frame? If not, choose activities that can execute concurrently on two or more
CPUs, and estimate again. You may have to change the design in order to get
greater concurrency.

When the design is complete, implement each activity as an independent process that
communicates with the others using shared memory, semaphores, and locks (see
“Interprocess Communication” on page 29).

When the real-time activities can be handled in a single CPU, the master process that
initiates the program contains these steps:

1. Open, create, andinitialize all the shared files and memory resources.

2. Initiate a Frame Scheduler (a single library call).

3. Initiate each activity as a process using sproc() or fork().

Each process initializes itself and then waits at a barrier (see “Barriers” on page 34).

4. Enqueue each activity process to the Frame Scheduler that will dispatch it (another
library call).

The master process specifies the process ID and the minor frame or frames in which
the process should run, and a scheduling discipline.

5. Join the barrier where the activity processes are waiting.

When all processes are ready to proceed, all are released.

6. Start the Frame Scheduler going (a library call).

7. Wait for a signal indicating it is time to shut down.

8. Terminate the Frame Schedulers.

A Frame Scheduler seizes its assigned CPU, isolates it, and takes over process scheduling
on it. It waits for all enqueued processes to initialize themselves and to execute a library
call to ”join” the scheduler. Then it begins dispatching the processes in the specified
sequence during each frame interval. It monitors errors, such as a process that fails to
complete its work within its frame, and takes a specified action when an error occurs.
Typically the error action is to send a signal to the master process. The master process can
interrogate the Frame Scheduler, and stop it or restart it.

Interprocess Communication

29

The Frame Scheduler is discussed in more detail in Chapter 7, “Using the Frame
Scheduler”. Sample programs that illustrate the Frame Scheduler are described under
“Frame Scheduler Examples” on page 225.

Interprocess Communication

In a program organized as multiple, cooperating processes, the processes need to share
data and coordinate their actions in well-defined ways. IRIX with REACT provides the
following mechanisms, which are surveyed in the topics that follow:

• Shared memory allows a single segment of memory to appear in the address spaces
of multiple processes. The Silicon Graphics implementation is also the basis for
implementing interprocess semaphores, locks, and barriers.

• Semaphores are used to coordinate access from multiple processes to resources that
they share.

• Locks provide a low-overhead, high-speed method of mutual exclusion.

• Barriers make it easy for multiple processes to synchronize the start of a common
activity.

• Signals provide asynchronous notification of special events or errors. IRIX supports
signal semantics from all major UNIX heritages, but POSIX-standard signals are
recommended for real-time programs.

Shared Memory Segments

IRIX allows you to map a segment of memory into the address spaces of two or more
processes at once. The block of shared memory can be read concurrently, and possibly
written, by all the processes that share it. There are two interfaces, one compatible with
SVR4 UNIX and one unique to IRIX.

IRIX Shared Memory Arenas

IRIX supports a unique system of shared memory allocation. The purpose is to create a
memory arena designed as the basis for high-speed, low-overhead communication
between concurrent processes.

30

Chapter 3: How IRIX™ and REACT/Pro™ Support Real-Time Programs

You create a shared memory segment with a call to usinit(). The argument to usinit() is
a file pathname string. The file is created (if necessary) and mapped into a segment of
memory in the calling process (for a description of mapping files into memory, see
Chapter 4). The file, and hence the segment, may or may not continue to exist after the
creating process ends. This, and many other options, can be set by calling usconfig()
before calling usinit().

Once the memory segment exists, any other process can access it by calling usinit() with
the same pathname string. If that process has access privileges to the specified file, the
memory segment is made part of its address space and it, too, can read the memory
space, and optionally write in it.

There is a set of memory-allocation library calls that you can use to suballocate memory
within a shared arena allocated by usinit(). Equally important, IRIX support for
semaphores, locks, and barriers is based on the use of arenas allocated with usinit().

For more information on usinit() and arenas, refer to Topics in IRIX Programming manual,
and to the usinit(3p), usconfig(3p) and usmalloc(3p) reference pages. See also the sample
code of “Interprocess Communication” in Appendix A. In addition, some of the special
cases of usinit() are covered in Chapter 4 of this book.

 SVR4-Compatible Shared Memory

IRIX supports shared memory library calls compatible with those in AT&T SVR4 UNIX.
In this scheme, one process calls shmget() to create a segment of shared memory. In some
ways the segment resembles a file more than it resembles memory, for example

• the segment has an owner and group ID, as a file does

• the segment has read and write access permissions for user, group and public,
similar to those of a file

• the segment, with its contents intact, continues to exist until it is explicitly deleted
using shmctl() or until the system is rebooted

A shared segment has an associated integer key. Any other process can present the key
to shmat(). If the user and group ID of the calling process have access permission, the
segment becomes part of the address space of the process. Its virtual address is returned,
and the process can use it as memory. If the process has write access, it can update the
segment as well as read it.

Interprocess Communication

31

The SVR4 shared memory facility is useful between processes created by fork(), since
they have separate address spaces. Processes created by sproc() share their entire address
space by default.

For sample code and more information on SVR4-compatible shared memory, refer to
Topics in IRIX Programming, and to the ipcst(1), shmget(2), shmctl(2), and stdipc(3)
reference pages.

There is a family of memory-allocation library calls that you can use to suballocate
memory within a shared segment (or within any other segment of memory). Refer to the
amalloc(3p) reference page for details.

Tip: Use an SVR4-compatible shared memory segment if you require portability.
Otherwise, the IRIX implementation is faster and more flexible for a real-time
program.

Semaphores

A semaphore is a memory object that represents the state of a shared resource. The content
of a semaphore is an integer count, representing the number of resource units now
available. Typically the count is 1, and the semaphore represents the availability of a
single object such as a table or file.

A process that needs to use the resource executes a “P” operation on the semaphore. This
operation tests and decrements the count in the semaphore. If the count is greater than
zero before the operation, at least one resource unit is available. The count is reduced by
1 and the process continues executing. When the count is not greater than zero, the
process is blocked until a resource unit is available; then it continues. In either case,
following a P operation, the process knows that it has exclusive use of a resource unit.

When it finishes its work, the process releases the resource by executing a “V” operation
on the semaphore. This operation increments the count. It also unblocks any process that
might be blocked in a P operation, waiting for the resource. If more than one process is
waiting, the one that has waited longest is released first (FIFO order).

Tip: Useful mnemonics for P and V: P depletes the resource. V revives it.

IRIX supports two forms of semaphore: SVR4-compatible, and Silicon Graphics.

32

Chapter 3: How IRIX™ and REACT/Pro™ Support Real-Time Programs

IRIX Semaphores

IRIX supports a set of semaphore operations designed for low-overhead coordination
between multiple concurrent processes. You create these semaphores within a shared
arena created with usinit() (see “IRIX Shared Memory Arenas” on page 29). The
usnewsema() call creates a semaphore. You specify the arena handle and the initial value
for the semaphore (that is, the count of resources that it represents, typically 1).

To acquire a resource, blocking if it is not available, a process applies the uspsema() call
to the semaphore. To test the resource, acquiring it if it is available but not blocking when
it is in use, a process can call uscpsema(). To release the resource, a process calls
usvsema().

IRIX also supports a parallel set of “pollable” semaphores. The P operation on a pollable
semaphores does not block when the resource is in use. Instead, it returns a flag value,
and the process must use the poll() system call to find out when a V operation has made
the resource available.

IRIX semaphores support “metering” (use counts) and debug tracing. You can turn either
facility on and off dynamically. By metering a semaphore, you can find out how often
processes actually block in a P operation. This can reveal whether or not a resource is a
bottleneck to performance.

For more information on semaphores, refer to Topics in IRIX Programming, and to the
usnewsema(3), usnewpollsema(3), uspsems(3), usvsema(3), and poll(2) reference pages.
The sample program shown in “Interprocess Communication” on page 186 uses IRIX
semaphores, and demonstrates the use of metering information.

SVR4-Compatible Semaphores

SVR4-compatible semaphores are created in sets of one or more—typically a set contains
all the semaphores that one application needs. A set is created by a semget() call, which
specifies an integer key to identify the set and access permissions for the set.

Like a shared memory segment (see “SVR4-Compatible Shared Memory” on page 30), a
set of semaphores is somewhat like a file in that it

• has a user and group ID from the process that created it

• has read and write access permissions for owner, group and world

• continues to exist after its creating process ends.

Interprocess Communication

33

Once a set of semaphores exists, any other process can issue semget() with the same key.
If the user and group ID of the calling process have access permission, the process can
use the semaphores in the set.

SVR4-compatible semaphores do not support the conventional P and V operations.
Instead, the semop() system call supplies a wider range of operations, including
incrementing and decrementing counts by more than 1. The semop() call supports
concurrent operations on multiple semaphores at once. This is convenient in some cases
because it allows you to claim more than one resource simultaneously, without danger
of deadlock.

For sample code and more information on SVR4-compatible semaphores, refer to Topics
in IRIX Programming, and to the ipcst(1), semget(2), semctl(2), and semop(2) reference
pages. The administration of SVR4-compatible semaphores is covered in the IRIX
Advanced Site and Server Administrator Guide.

Tip: If you require portability, use SVR4-compatible semaphores. Otherwise, the IRIX
semaphore implementation is faster, has more features, and works with the IRIX
shared-memory implementation.

Locks

A lock is a memory object that represents the exclusive right to use a shared resource. A
process that wants to use the resource sets the lock. The process releases the lock when it
is finished with the resource.

A lock is functionally the same as a semaphore with a count of 1. The set-lock operation
on a lock and the P operation on a semaphore with a count of 1 both acquire exclusive
use of a resource. In a multiprocessor, the important difference between a lock and
semaphore is that, when the resource is not immediately available, a semaphore always
suspends the process, while a lock does not.

A lock, in a multiprocessor system, is set by “spinning.” The program enters a tight loop
using the test-and-set machine instruction to test the lock’s value and to set it as soon as
the lock is clear. In practice the lock is often already available, and the first execution of
test-and-set acquires the lock. In this case, setting the lock takes a trivial amount of time.

When the lock is already set, the process spins on the test a certain number of times. If
the process that holds the lock is executing concurrently in another CPU, and if it releases
the lock during this time, the spinning process acquires the lock instantly. There is zero

34

Chapter 3: How IRIX™ and REACT/Pro™ Support Real-Time Programs

latency between release and acquisition, and no overhead from entering the kernel for a
system call.

If the process has not acquired the lock after a certain number of spins, it defers to other
processes by calling sginap(). When the lock is released, the process resumes
execution.

You create a lock in an arena created by usinit(). The lock is allocated by usnewlock().
You set a lock with ussetlock() and release it with usunsetlock().

Like IRIX semaphores, locks can collect metering (use-count) information anddebugging
trace data. You can use the metering information to find out how many times a lock was
used and how often a process had to spin or block at a lock.

For more information on locks, refer to Topics in IRIX Programming, and to the
usnewlock(3), ussetlock(3) and usunsetlock(3) reference pages. See also the sample code
of “Interprocess Communication” in Appendix A.

Barriers

A barrier is a memory object that represents a point of rendezvous between multiple
processes. You use a barrier to ensure that processes do not advance until some necessary
preparation has been done.

A barrier is created by newbarrier() in an arena built by usinit(). The barrier is used by
some fixed number (N) of processes. When each process is ready to rendezvous with the
others, it issues barrier(N). As each process arrives at the barrier, it is suspended. When
the Nth process calls barrier(), all the processes resume execution.

A barrier is the computing equivalent of N coworkers who agree to go to lunch together.
When each person realizes it is lunch time, he or she goes to the lobby. When the Nth
coworker reaches the lobby, all of them depart together for lunch. A barrier is very useful
in initializing an application based on the Frame Scheduler (see “Preparing the System”
on page 113).

As an example of the use of a barrier, imagine that you discover that a nested loop to take
the sum of a large matrix is a bottleneck in your program. To speed up the calculation
you divide it between two processes. (Presumably they will run in different CPUs.) The
first process is the one that requires the matrix sum, and which originally calculated the

Interprocess Communication

35

sum by itself. The second process is a new one, whose only purpose is to assist in the
matrix sum calculation. You create a barrier named matsum to coordinate the two.

The logic of the second, helper, process is as follows:

1. Call barrier(matsum,2) to wait until it is time to take the sum.

2. Calculate the sum over all even-numbered rows of the matrix.

3. Store the sum in global evensum.

4. Call barrier(matsum,2) to wait until the first process is finished.

5. Return to step 1.

The logic of the first, main process would be as follows:

1. Perform other work as required until the matrix sum is needed.

2. Call barrier(matsum,2) to release the helper process.

3. Calculate the sum over all odd-numbered rows of the matrix.

4. Call barrier(matsum,2) to wait until the second process has finished its calculation.

5. Add evensum to the odd total to get the grand total.

6. Return to step 1.

The example can be generalized to more processes, and to any other calculation that can
be partitioned in this way.

Mutual Exclusion Primitives

IRIX supports library functions that perform atomic (uninterruptable) sample-and-set
operations on words of memory. For example, test_and_set() copies the value of a word
and stores a new value into the word in a single operation; while test_then_add()
samples a word and then replaces it with the sum of the sampled value and a new value.

These primitive operations can be used as the basis of mutual-exclusion protocols using
words of shared memory. For details, see the test_and_set(3p) reference page.

The test_and_set() and related functions are based on the MIPS R4000 instructions Load
Linked and Store Conditional. Load Linked retrieves a word from memory and tags the
processor data cache “line” from which it comes. The following Store Conditional tests

36

Chapter 3: How IRIX™ and REACT/Pro™ Support Real-Time Programs

the cache line. If any other processor or device has modified that cache line since the Load
Linked was executed, the store is not done. The implementation of test_then_add() is
comparable to the following assembly-language loop:

1:
ll retreg, offset(targreg)
add tmpreg, retreg, valreg
sc tmpreg, offset(targreg)
beq tmpreg, 0, b1

The loop continues trying to load, augment, and store the target word until it succeeds.
Then it returns the value retrieved. For more details on the R4000 machine language, see
one of the books listed in “Other Useful Books” on page xxiii.

The Load Linked and Store Conditional instructions only operate on memory locations
that can be cached. Uncached pages (for example, pages implemented as reflective
shared memory, see “Reflective Shared Memory” on page 42) cannot be set by the
test_and_set() functions.

Signals

A signal is an urgent notification of an event, sent asynchronously to a process. Some
signals originate from the kernel: for example, the SIGFPE signal that notifies of an
arithmetic overflow; or SIGALRM that notifies of the expiration of a timer interval (for
the complete list, see the signal(5) reference page). The Frame Scheduler issues signals to
notify your program of errors or termination. Other signals can originate within your
own program.

In order to receive a signal, a process must establish a signal handler, a function that will
be entered when the signal arrives.

Interprocess Communication

37

There are three UNIX traditions for signals, and IRIX supports all three. They differ in the
library calls used, in the range of signals allowed, and in the details of signal delivery (see
Table 3-1). Your real-time program should use the POSIX interface for signals.

The POSIX interface supports the following 64 signal types:

1-31 Same as BSD

32 Reserved by IRIX kernel

33-48 Reserved by the POSIX standard for system use

49-64 Reserved by POSIX for real-time programming

Signals with smaller numbers have priority for delivery. The low-numbered
BSD-compatible signals, which include all kernel-produced signals, are delivered ahead
of real-time signals; and signal 49 takes precedence over signal 64. (The BSD-compatible
interface supports only signals 1-31. This set includes two user-defined signals.)

IRIX 5.3 supports POSIX signal handling as specified in document 1003.1b-1993. This
includes FIFO queueing new signals when a signal type is held, up to a system maximum
of queued signals. (The maximum can be adjusted using systune; see the systune(1)
reference page.)

Table 3-1 Signal Handling Interfaces

Function SVR4-compatible
Calls

BSD 4.2 Calls POSIX Calls

set and query
signal handler

sigset(2)
signal(2)

sigvec(3)
signal(3)

sigaction(2)
sigsetops(3)
sigaltstack(2)

send a signal sigsend(2)
kill(2)

kill(3)
killpg(3)

sigqueue(2)

temporarily block
specified signals

sighold(2)
sigrelse(2)

sigblock(3)
sigsetmask(3)

sigprocmask(2)

query pending
signals

sigpending(2)

wait for a signal sigpause(2) sigpause(3) sigsuspend(2)
sigwait(2)
sigwaitinfo(2)
sigtimedwait(2)

38

Chapter 3: How IRIX™ and REACT/Pro™ Support Real-Time Programs

For more information on the POSIX interface to signal handling, refer to Topics in IRIX
Programming and to the signal(5), sigaction(2), and sigqueue(2) reference pages. Some
POSIX signal-handling functions are used in sample code in “Interprocess
Communication” in Appendix A.

Signal Latency

The time that elapses from the moment a signal is generated until your signal handler
begins to execute is the signal latency. Signal latency can be long (as real-time programs
measure time) and signal latency has a high variability. (Some of the factors are discussed
under “Signal Delivery and Latency” on page 122.) In general, you should use signals to
deliver infrequent messages of high priority. You should not use the exchange of signals
as the basis for scheduling in a real-time program.

Note: Signals are delivered at particular times when using the Frame Scheduler. See
“Using Signals Under the Frame Scheduler” on page 122.

Timers and Clocks

A real-time program sometimes needs a source of timer interrupts, and some need a way
to create a high-precision timestamp. Both of these are provided by IRIX.

Timer Interrupts (Itimers)

IRIX supports the BSD UNIX feature of interval timers or “itimers,” and part of the
POSIX timer definition.

BSD Itimers

An itimer is a request to have a signal sent at the expiration of a specified interval. In
order to use an itimer, you establish a signal handler, then issue the setitimer() call. The
timer can be a one-shot or it can repeat at a regular interval (see the setitimer(2) reference
page).

Timers and Clocks

39

There are three itimers (see Table 3-2), only one of which is of interest to a real-time
programmer.

The ITIMER_VIRTUAL and ITIMER_PROF timers are not useful to a real-time program
because of their coarse precision and because their intervals vary depending on when
and how often the process is dispatched. The ITIMER_REAL type measures absolute
time, and on the Challenge/Onyx, its resolution can be 500 microseconds or less.

Timers and the resolution of the real-time timer are discussed further in Chapter 5,
“Managing Time and Time Intervals.” Sample code that sets up an itimer can be found
under “Interprocess Communication” in Appendix A.

Note: Interval timers are usually not necessary, and should not be used, under the Frame
Scheduler. See “Using Timers with the Frame Scheduler” on page 125.

POSIX Timers

The POSIX real-time standard 1003.1b-1993 specifies several timer-related functions
which it is the intention of Silicon Graphics to support. However, in release 6.2 of IRIX,
only the nanosleep() function is implemented (see the nanosleep(2) reference page).

IRIX also supports the POSIX-defined functions alarm() and sleep(). However, since
these functions deal with intervals of seconds, they are of less interest to real-time
programmers (see alarm(2) and sleep(2) reference pages).

The POSIX functions comparable to setitimer(), such as timer_settime(), will be
implemented in a future release.

Table 3-2 Types of itimer

Kind of itimer Interval Measured Resolution Signal Sent

ITIMER_REAL Elapsed clock time 1 millisecond or less SIGALRM

ITIMER_VIRTUAL User time (process
execution time)

1 second SIGVTALRM

ITIMER_PROF User+system time 1 second SIGPROF

In the release after
6.2 we have a better
story for this topic.

40

Chapter 3: How IRIX™ and REACT/Pro™ Support Real-Time Programs

Timestamps

The IRIX operating system and Silicon Graphics hardware provide two forms of
free-running clock that you can use as a timestamp; that is, as a value establishes the
relative time difference between two events. One clock is returned by a standard system
call; the other is a hardware device you map into process address space.

Time of Day Timestamp

The BSD-compatible function gettimeofday() returns the time of day as two long
integers which together give the time since 1/1/1970 to the microsecond. The resolution
of this value is at least 10 milliseconds—that is, it is guaranteed to change at least 100
times a second. The actual resolution depends on the system.

The time of day timestamp is discussed further in Chapter 5, “Managing Time and Time
Intervals.” The sample program under “Getting the Time of Day Stamp” on page 184
tests the time-of-day clock to find out its true precision.

Hardware Cycle Counter

The cycle counter is a high-precision hardware counter that is updated continuously. In
a Challenge/Onyx machine it is a 64-bit value. In other Silicon Graphics architectures the
cycle counter has less precision; for example, in the Indy it is a 32-bit counter.

In the Challenge/Onyx, the cycle counter is incremented every 21 nanoseconds. In other
architectures the frequency is lower, although it is always comparable to the instruction
execution time. (For example, in the Indy it is incremented every 40 nanoseconds.)
Because of the high frequency, the cycle counter is certain to contain a different value
every time it is sampled.

Note: Considered as a time standard, the Challenge/Onyx cycle counter is accurate to 1
part in 10,000. If you use it to measure intervals between events, be aware that it can drift
by as much as 100 microseconds per second.

You sample the cycle counter by mapping it into the process’s address space, then
reading it as if it were a memory variable. The method is covered in Chapter 5,
“Managing Time and Time Intervals.” The sample program under “Mapping and
Reading the Cycle Counter” on page 175 also demonstrates its use.

Interchassis Communication

41

Interchassis Communication

Silicon Graphics systems support three methods by which you can connect multiple
computers:

• Standard network interfaces let you send packets or streams of data over a local
network or the Internet.

• Reflective shared memory (provided by third-party manufacturers) lets you share
segments of memory between computers, so that programs running on different
chassis can access the same variables.

• External interrupts let one Challenge/Onyx signal another.

Socket Programming

One standard, portable way to connect processes in different computers is to use the
BSD-compatible socket I/O interface. You can use sockets to communicate within the
same machine, between machines on a local area network, or between machines on
different continents.

For more information about socket programming, refer to one of the networking books
listed in “Other Useful Books” on page xxiii.

Message-Passing Interface (MPI)

The Message-Passing Interface (MPI) is a standard architecture and programming
interface for designing distributed applications. Silicon Graphics, Inc. supports MPI in
the POWERChallenge Array product. For details on MPI in Silicon Graphics systems, see
the World-Wide Web page
http://www.sgi.com/Products/PowerChallengeArray/TechInfo/MPI/. For the MPI
standard, see http://www.mcs.anl.gov/mpi/index.html.

The performance of both sockets and MPI depends on the speed of the underlying
network. The network that connects nodes (systems) in an Array product has a very high
bandwidth.

42

Chapter 3: How IRIX™ and REACT/Pro™ Support Real-Time Programs

Reflective Shared Memory

Reflective shared memory consists of hardware that makes a segment of memory appear
to be accessible from two or more computer chassis. Actually the Challenge/Onyx
implementation consists of VME bus devices in each computer, connected by a very
high-speed, point-to-point network.

The VME bus address space of the memory card is mapped into process address space.
Firmware on the card handles communication across the network, so as to keep the
memory contents of all connected cards consistent. Reflective shared memory is slower
than real main memory but faster than socket I/O. Its performance is essentially that of
programmed I/O to the VME bus, which is discussed under “PIO Access” on page 168.

Reflective shared memory systems are available for Silicon Graphics equipment from
several third-party vendors. The details of the software interface differ with each vendor.
However, in most cases you use mmap() to map the shared segment into your process’s
address space (see Chapter 4, “Managing Virtual Memory in a Real-Time Program” as
well as the usrvme(7) reference page).

External Interrupts

The Challenge/Onyx systems (only) support external interrupt lines for both incoming
and outgoing external interrupts. Software support for these lines is provided in IRIX.

Four outgoing external interrupt lines appear on the back panel of the computer. You can
control them individually, creating pulses or simply asserting and deasserting the lines.

Two input jacks for external interrupts are provided. Either of these jacks can cause an
interrupt, but you cannot distinguish which jack caused a given interrupt. The interrupt
is level-triggered, not edge-triggered.

For details of the use and programming of external interrupts, see the IRIX Device Driver
Programmer’s Guide, and see the ei(7) reference page. You can use the external interrupt
as the time base for the Frame Scheduler. In that case, the Frame Scheduler manages the
external interrupts for you. (See “Selecting a Time Base” on page 107.)

43

Chapter 4

4. Managing Virtual Memory in a Real-Time Program

When planning a real-time program you must understand how IRIX creates the virtual
address space of a process, and how you can modify the normal behavior of the address
space. The major topics covered are:

• “Defining the Address Space” on page 43 tells what the address space is and how it
is created.

• “Interrogating the Memory System” on page 48 summarizes the ways your
program can get information about the address space.

• “Locking Pages in Memory” on page 49 discusses when and how to lock pages of
virtual memory to avoid page faults.

This chapter is a condensed version of a longer discussion of virtual memory
management which can be found in the book Topics In IRIX Programming. In particular,
Topics In IRIX Programming has detailed information on memory mapping.

The the structure of physical and virtual address spaces is discussed in the IRIX Device
Driver Programmer’s Guide and the MIPS architecture documents listed on page xxiii.

Defining the Address Space

Each process has a virtual address space; in other words, a set of memory addresses that
the process can use. When 32-bit addressing is in use, the addresses can range from 0 to
0x7fffffff; that is, 231 numbers, for a total theoretical size of 2 gigabytes. (Numbers greater
than 231 are reserved for kernel addresses.) When 64-bit addressing is used, a process’s
address space can encompass 240 numbers. (The numbers greater than 240 are reserved
for kernel address spaces.)

44

Chapter 4: Managing Virtual Memory in a Real-Time Program

Address Space Boundaries

A process has at least 3 segments of usable addresses:

• A text segment contains the executable image of the program. The text segment is
always read-only.

• A data segment contains the “heap” of allocated data space.

• A stack segment contains the function-call stack.

Another text segment is created for each dynamic shared object (DSO) with which a
process is linked. A process can create additional data segments in various ways
described later in the chapter.

Although the address space begins at location 0, by convention the lowest segment is
allocated at 0x0040 0000 (4 MB). Addresses less than this are left undefined so that an
attempt to reference them (for example, through an uninitialized pointer variable) causes
a hardware exception.

Page Numbers and Offsets

IRIX manages memory in units of a page. The size of a page can differ from one system
to another. The size when 32-bit addressing is used is 4,096 bytes. In each 32-bit virtual
address,

• the least-significant 12 bits specify an offset from 0 to 0x0fff within a page

• the most-significant 20 bits specify a virtual page number (VPN)

The page size when 64-bit addressing is used is greater than 4,096 bytes (and can differ
between versions of IRIX), but the principle is the same. The less-significant bits of an
address specify an offset within a page, while the more-significant bits specify the VPN.

The actual size of a page in the present system can be learned with getpagesize() as noted
under “Interrogating the Memory System” on page 48.

Defining the Address Space

45

Address Definition

Most of the possible addresses in an address space are undefined, that is, not entered in
the page tables, not related to contents of any kind, and not available for use. A reference
to an undefined address causes a SIGBUS error.

Addresses are defined, that is, made available for potential use, in one of four ways:

Fork When a process is created using fork(), any addresses that were defined
in the parent’s address space are defined in the address space of the new
process (see “Normal Process Creation With fork()” on page 16).

Stack The call stack is created and extended automatically. When a function is
entered and more stack space is needed, IRIX makes the stack segment
larger, defining new addresses if required.

Mapping Your program can ask IRIX to map (associate byte-for-byte) a segment of
address space to one of a number of special objects, for example, the
contents of a file. This is covered further in the book Topics in IRIX
Programming.

Allocation The brk() function extends the segment devoted to data (the heap) to a
specific virtual address. The malloc() function allocates memory for use,
calling brk() as required. (See the brk(2) and malloc(3) reference pages).
The more commonly used library version of malloc() calls the
underlying malloc() (see the malloc(3x) reference page).

When an address is defined, it is entered in the page tables and related to a backing store,
a source from which its contents can be retrieved. A page in the data or stack segment is
related to a page in the swap partition on disk.

The total size of the defined pages in an address space is its virtual size, displayed by the
ps command under the heading SZ (see the ps(1) reference page).

46

Chapter 4: Managing Virtual Memory in a Real-Time Program

Address Space Limits

The segments of the address space have maximum sizes that are set as resource limits on
the process. Hard limits are set by:

The limits active during a login session can be displayed and changed using the C-shell
command limits. The limits can be queried with getrlimit() and changed with setrlimit()
(see the getrlimit(2) reference page).

The initial default value, and the possible range, of a resource limit is established in the
kernel tuning parameters. For a quick look at the kernel limits, use

fgrep rlimit /var/sysgen/mtune/kernel

To examine and change the limits, use systune (see the systune(1) reference page):

Example 4-1 Using systune to Check Address Space Limits

systune -i
Updates will be made to running system and /unix.install
systune-> rlimit_vmem_max

rlimit_vmem_max = 536870912 (0x20000000) ll
systune-> resource
group: resource (statically changeable)
...

rlimit_vmem_max = 536870912 (0x20000000) ll
rlimit_vmem_cur = 536870912 (0x20000000) ll

...
rlimit_stack_max = 536870912 (0x20000000) ll
rlimit_stack_cur = 67108864 (0x4000000) ll

...

Tip: These limits interact in the following way: each time your program creates a process
with sproc() (see “Lightweight Process Creation With sproc()” on page 17) and does not
supply a stack area, an address segment equal to rlimit_stack_max is dedicated to the
stack of the new process. When rlimit_stack_max is set high, a program that creates many
processes can quickly run into the rlimit_vmem_max boundary.

rlimit_vmem_max Total size of the address space of a process

rlimit_data_max Size of the portion of the address space used for data

rlimit_stack_max Size of the portion of the address space used for stack

Defining the Address Space

47

Page Validation

Although an address is defined, the corresponding page is not necessarily loaded in
physical memory. The sum of the address spaces of all processes is normally far larger
than available real memory. IRIX keeps selected pages in real memory. A page that is not
present in real memory is marked as “invalid” in the page tables. Invalid pages can be
any of the following:

Text Pages of program text—executable code of programs and
dynamically-linked libraries—can be retrieved on demand from the
program file or library files on disk.

Data Pages of data from the heap and stack can be retrieved from the swap
partition or file on disk.

Never used Pages that have been defined but never used can be created as pages of
binary zero when needed.

When your process refers to a VPN that is defined but invalid, a hardware interrupt
occurs. The interrupt handler chooses a page of physical memory to hold your page. In
order to acquire a memory page, it might have to invalidate some other page belonging
to your process or to another process. The contents of the needed page are retrieved from
the appropriate backing store, and your process continues to execute.

Page validation takes from 10 to 50 milliseconds, a delay that a real-time program
normally cannot tolerate.

The total size of all the valid pages in an address space is displayed by the ps command
under the heading SZ. The aggregate size of the pages that are actually in memory is the
resident set size, displayed by ps under the heading RSS.

Read-Only Pages

A page of memory can be marked as valid for reading but invalid for writing. Program
text is marked this way because program text is read-only; it is never changed. If a
process attempts to modify a read-only page, a hardware interrupt occurs. When the
page is truly read-only, the kernel turns this into a SIGSEGV signal to the program.
Unless the program is handling this signal (see “Signals” on page 36) the result is to
terminate the program with a segmentation fault.

48

Chapter 4: Managing Virtual Memory in a Real-Time Program

Copy-on-Write Pages

When fork() is executed, the new process shares the pages of the parent process under a
rule of copy-on-write. The pages in the new address space are marked read-only. When
the new process attempts to modify a page, a hardware interrupt occurs. The kernel
makes a copy of that page, and changes the new address space to point to the copied
page. Then the process continues to execute, modifying the page of which it now has a
unique copy.

You can apply the copy-on-write discipline to the pages of an arena shared with other
processes.

Interrogating the Memory System

You can get information about the state of the memory system with the system calls
shown in Table 4-1.

Table 4-1 Memory System Calls

Memory Information System Call Invocation

Size of a page uiPageSize = getpagesize();
ulPageSize = sysconf(_SC_PAGESIZE);

Virtual and resident sizes of a process syssgi(SGI_PROCSZ, pid, &uiSZ, &uiRSS);

Maximum stack size of a process uiStackSize = prctl(PR_GETSTACKSIZE)

Free swap space in 512-byte units swapctl(SC_GETFREESWAP, &uiBlocks);

Total physical swap space in 512-byte
units

swapctl(SC_GETSWAPTOT, &uiBlocks);

Total real memory sysmp(MP_KERNADDR, MPSA_RMINFO, &rmstruct);

Free real memory sysmp(MP_KERNADDR, MPSA_RMINFO, &rmstruct);

Total real+swap space sysmp(MP_KERNADDR, MPSA_RMINFO, &rmstruct);

Locking Pages in Memory

49

The structure used with the sysmp() call shown above has this form (a more detailed
layout is in sys/sysmp.h):

struct rminfo {
long freemem; /* pages of free memory */
long availsmem; /* total real+swap memory space */
long availrmem; /* available real memory space */
long bufmem; /* not useful */
long physmem; /* total real memory space */

};

A sample program that applies swapctl() and sysmp() to display these numbers is
shipped in the 4DGifts example directory. See ~4Dgifts/examples/unix/irix/freevmen.c

Locking Pages in Memory

A page fault interrupts a process for many milliseconds. Not only are page faults lengthy,
their occurrence and frequency are unpredictable. If your real-time frame rate exceeds a
few Hertz, your program cannot tolerate such interruptions. The solution is to lock some
or all of the pages of your address space into memory. A page fault cannot occur on a
locked page.

Locking Functions

There are two functions that you use to lock segments into physical memory.

mpin() Locks a specified range of pages into memory.

plock() Locks all program text, or all data, or the entire address space.

The two functions have the same effect. They differ only in how you specify the pages to
be locked. (Refer to the mpin(2) and plock(2) reference pages.)

Using mpin() you have to calculate the starting address and the length of the segment to
be locked. It is relatively easy to calculate the starting address and length of global data
or of a mapped segment, but it can be awkward to learn the starting address and length
of program text or of stack space. The best use of mpin() is to lock mapped memory
segments, since you know their starting addresses and lengths immediately after
creating them.

50

Chapter 4: Managing Virtual Memory in a Real-Time Program

Both plock() and mpin() define all pages of the specified segments before locking them.
When virtual swap is in use, it is possible to receive a SIGKILL exception while locking
because there was not enough swap space to define all
pages.

Locking pages in memory of course reduces the memory that is available for all other
programs in the system. Locking a large program will increase the rate of page faults for
other programs.

You use either munpin() or punlock() to unlock pages, allowing the kernel to reclaim
them when necessary. Locked pages of an address space are unlocked when the last
process using the address space terminates.

Locking Program Text and Data

Using plock() you specify whether to lock text, data, or both.

When you specify the text option, the function locks all executable text as loaded for the
program, including shared objects (DSOs). (It does not lock segments created with
mmap() even when you specify PROT_EXEC. Use mpin() to lock executable, mapped
segments.)

When you specify the data option, the function locks the default data (heap) and stack
segments, and any mapped segments made with MAP_PRIVATE, as they are defined at
the time of the call. If you extend these segments after locking them, the newly-defined
pages are also locked as they are defined.

Although new pages are locked when they are defined, you still should extend these
segments to their maximum size while initializing the program. The reason is that it takes
time to extend a segment: the kernel must process a page fault and create a new page
frame, possibly writing other pages to backing store to make space.

One way to ensure that the full stack is created before it is locked is to call plock() from
a function like the one in Example 4-2

Example 4-2 Function to Lock Maximum Stack Size

#define MAX_STACK_DEPTH 100000 /* your best guess */
int call_plock()
{

char dummy[MAX_STACK_DEPTH];

Locking Pages in Memory

51

return plock(PROCLOCK);
}

The large local variable forces the call stack to what you expect will be its maximum size
before plock() is entered.

The plock() function does not lock mapped segments you create with MAP_SHARED.
You must lock them individually using mpin(). You only need to do this from one of the
processes that shares the segment.

Locking Mapped Files Into Memory

If you map a file before you lock the data segment into memory, the mapped file is read
into the locked pages. If you map a file after locking the data segment, the new mapped
segment is not locked. Pages of file data are read on demand, as the program accesses
them. From these facts you can conclude that:

• You should map small files before locking memory, thus getting fast access to their
contents without paging delays.

• Conversely, if you map a file after locking memory, your program could be delayed
for input on any access to the mapped segment.

• However, if you map a large file and then try to lock memory, the attempt to lock
could fail because there is not enough physical memory to hold the entire address
space including the mapped file.

In a real-time program you cannot tolerate a delay to read a file page. However, a very
large file can easily exceed the capacity of physical memory.

One alternative for a large file is to not map it, but to use conventional read and write
access to it. However, this alternative forfeits the convenience of referring to the file as if
it were an array in memory.

Another alternative is to map the entire file, perhaps hundreds of megabytes, into the
address space, but to lock only the portion or portions that are of interest at any moment.
For example, a vehicle simulator could lock the parts of a scenery file that the vehicle is
approaching. When the vehicle moves away from a segment of scenery, the simulator
could unlock those parts of the file, and possibly use madvise() to release them.

52

Chapter 4: Managing Virtual Memory in a Real-Time Program

You can use mpin() to lock any portion of a mapped segment, and munpin() to unlock
portions that are not needed. A call to mpin() implies a wait while the contents of that
portion of the file are read, so this call should be made in an asynchronous process.

Reducing Cache Misses

When the frame rate is high you become concerned, not with the loss of milliseconds to
a page fault, but with the loss of microseconds to a cache miss. When your program
accesses instructions or data that are not in cache memory (see Figure 2-1 on
“Multiprocessor Architecture” on page 10 and “Memory Hierarchy” on page 11), the
CPU requests a load of a “cache line” of 128 bytes from main memory. Possibly hundreds
of CPU clock cycles pass while the cache is being loaded. Due to the pipeline architecture
of the CPU, it can often continue to work during this delay. However, multiple successive
cache misses can bring effective work to a halt for tens of microseconds.

In a normal program, delays due to cache misses are not noticeable because the overall
average speed of the program is satisfactory. However, for a real-time program with a
frame rate above 50 Hz, a cache miss can cause the unpredictable loss of a useful fraction
of one frame interval.

Note: In addition to the following guidelines, the IRIX kernel assists you in maintaining
good cache use with special scheduling rules. See “Understanding Affinity Scheduling”
on page 72.

Locality of Reference

The key to good cache performance is to maintain strong locality of reference. This can
be restated as a rule of thumb: “Keep things that are used together, close together.” Or,
“Extract the greatest possible use from any 128-byte cache line before touching another.”
You must decide how to apply these principles in the context of your program design.
Some possible techniques:

• When designing a large data structure, group small fields together at one end of the
structure. Do not mix small and large fields.

• Consolidate frequently-tested switches, flags, and pointers into a single record so
they will tend to stay in cache.

Reducing Cache Misses

53

• Avoid searching linked lists of structures. Each time a process visits a link merely to
find the address of the next link, it is likely to incur a cache miss. Worse, a search
over a long list fills the cache with unneeded links, driving out useful data.

• Avoid striding through a large array of structures (such as an array of graphics
library objects), visiting only one or two fields in each structure. Whenever possible,
arrange the data so that any sequential scan will visit and use every byte before
moving on.

• Use inline function definitions for functions that are called within innermost loops.
Do not use inline definitions indiscriminately, however, because they increase the
total size of the binary, potentially causing more cache misses in non-looping code.

• Use memalign() to allocate important structures on 128-byte boundaries, so as to
ensure the structures fit in the smallest number of cache lines (see the memalign(3)
reference page).

Cache Mapping in Challenge/Onyx

The cache design in the Challenge/Onyx line depends on the CPU model in use. The
basic Challenge/Onyx uses the IP19 with an R4000 processor. This CPU board uses a
simple algorithm to assign a memory location to a cache line: the address of a byte of data
is taken modulo the cache size to generate the cache address. This means that two words
that are separated in main memory by an exact multiple of the cache size are always
loaded to the same cache location.

Only one of the words can occupy the cache at a time, so if your program alternates
between words, it will have a cache miss on each reference. It is surprisingly easy to
create this situation. The following code fragment causes bad performance in a
Challenge/Onyx with a 1 MB cache.

float part1[262144]; /* 1 MB */
float part2[262144]; /* adjacent 1 MB */
for (j=0;j<262144;++j) part1[j] = part2[j];

In that code fragment, the words of each array hash to the identical cache lines, so each
assignment in the loop incurs two cache misses. (Some Challenge/Onyx systems have
caches of different sizes, but the same principle applies.)

Note: The cache in the R8000-based POWER Challenge does not use simple modulus
mapping; it is an associative memory that is much more resistant to cache conflicts.

54

Chapter 4: Managing Virtual Memory in a Real-Time Program

Multiprocessor Cache Conflicts

As described under “Memory Hierarchy” on page 11, when one CPU modifies cached
data, it broadcasts the fact on the bus. Any other CPU holding that same cache line marks
it invalid. If another CPU then needs to refer to the so-called “dirty” cache line, it has to
fetch the modified version from the first CPU. This takes even longer than reloading the
cache line from main memory.

These conflicts can cause cache delays when the processes in two or more CPUs are
working on the same data concurrently. There is no conflict so long as all CPUs are
reading the data. Each works from its own cache copy in that case. But whenever one CPU
modifies the data, all other CPUs suffer a cache miss on the same data.

In general the only way to avoid such conflicts is to separate the readers and writers in
time. Arrange the program so that data is updated occasionally in a burst, then used for
a longer period. When using the REACT/Pro Frame Scheduler, plan the schedule so the
process that updates the data runs in a different minor frame from processes that read
the data.

Detecting Cache Problems

There are relatively few tools for detecting or fixing cache problems in code. You can
combine the two IRIX profiling tools, pixie and prof (see the pixie(1) and prof(1) reference
pages), to arrive at a tentative diagnosis.

The pixie tool modifies the executable of a program so that every basic block is counted
during execution. Its output ranks functions by the absolute count of instructions they
executed.

The prof tool samples the instruction counter of the program while the program is
executing. Its output ranks functions by the amount of time that the CPU spent in their
code.

Normally the output of these tools should agree on the location of the hot spots in a
program. However, if prof shows that a function is taking more time than is justified by
its pixie execution count, that function may be running slowly due to cache-miss
problems.

55

Chapter 5

5. Managing Time and Time Intervals

The topics in this chapter cover the details of using the timer and time-of-day facilities of
IRIX. The emphasis is on high-precision timing facilities used by real-time programs in
Challenge/Onyx systems.

• “Using Interval Timers” on page 55 discusses the use of timers, which interrupt a
program when a certain amount of time has elapsed.

• “Using Timestamps” on page 63 discusses the ways of getting the current time in
order to record the moment when something happens.

Using Interval Timers

IRIX supports a variety of programming interfaces to interval timer services. However,
the timers are implemented using a single underlying mechanism.

Timed Pauses

In many instances a program, or a process within a multiprocess program, needs to
suspend execution for a period of time. IRIX contains a variety of functions that provide
this capability. The functions differ in their precision and in their portability. Table 5-1
contains a summary.

Table 5-1 Functions for Timed Suspensions

Reference Page Precision Portability Operation

sleep(3C) second POSIX Suspend for a number of seconds or until a
signal arrives.

56

Chapter 5: Managing Time and Time Intervals

POSIX Timer Support

POSIX standard 1003.1b-1993 defines several functions related to interval timers. Of
these, IRIX 6.2 supports only the alarm() function. Using this function you can cause a
signal of type SIGALRM to be sent to the calling process after a specified number of
seconds has elapsed. The remaining POSIX timer functions allow intervals to be specified
in units of nanoseconds, for repeating intervals, and for signals at absolute times. These
functions will be implemented in a release of IRIX following 6.2.

BSD Timer Support

As described under “Timer Interrupts (Itimers)” on page 38, IRIX supports the BSD
UNIX functions for interval timing, which defines three kinds of software interval timers.
All three are used the same way:

1. The program calls setitimer(), specifying the timer, a time duration, and an optional
repeat duration.

2. The kernel counts down the time interval against some time base.

3. When the interval has elapsed, the kernel generates a signal to the process, and
optionally starts a new interval of the repeat duration.

usleep(3C) microsecond SGI Suspend for a number of microseconds or until
a signal arrives.

nanosleep(2) nanosecond POSIX Suspend for a number of seconds and
nanoseconds or until a signal arrives.

Table 5-1 Functions for Timed Suspensions

Reference Page Precision Portability Operation

In the release after
6.2 we have a better
story for this topic.

Using Interval Timers

57

The three kinds of timers differ in the time base they use, the precision with which you
can specify the intervals, and in the signals they send, as summarized in Table 5-2.

Of the three, only the ITIMER_REAL, which measures elapsed time, is useful for
real-time processes. The signal it generates, SIGALRM, is always delivered as soon as
possible. (Other signals are not delivered until a scheduling interval occurs; see “Signal
Delivery and Latency” on page 122.)

Note: Interval timers are not normally used with the Frame Scheduler. See “Using
Timers with the Frame Scheduler” on page 125

Using an Itimer

Example 5-1 shows an outline of code to initialize a repeating timer signal.

Example 5-1 Timer Initialization

usema_t * alarmSema; /* initialized elsewhere */
void uponSigalrm()
{

usvsema(alarmSema); /* count a period */
}
int setUpTimer(long periodInMicrosec)
{

struct sigaction alarmActor = {SA_RESTART,uponSigalrm,0};
struct itimerval period = {{0, 0}, {0, 0}};
if (sigaction(SIGALRM, & alarmActor,

NULL))
{

perror("sigaction");
return -1;

}
period.it_interval.tv_usec = periodInMicrosec;

Table 5-2 Types of itimer

Kind of itimer Interval Measured Resolution Signal Sent

ITIMER_REAL Elapsed clock time 1 millisecond or less SIGALRM

ITIMER_VIRTUAL User time (process
execution time)

1 second SIGVTALRM

ITIMER_PROF User+system time 1 second SIGPROF

58

Chapter 5: Managing Time and Time Intervals

period.it_value.tv_usec = periodInMicrosec;
if (setitimer(ITIMER_REAL, &period, NULL))

{
perror("setitimer");
return -1;

}
return 0; /* indicate success */

}

The example begins by defining a signal-handling function, uponSigalrm(). This handler
performs the V (count-up, revive) operation on a semaphore. When the main process has
completed its work for one interval and is ready to wait until the next interval, it will
perform the P (count-down, deplete) operation on the same semaphore. (This is one of
many possibilities for interaction between the signal handler and the main process. For
an example of another method based on sigsuspend(), see “Interprocess
Communication” in Appendix A.)

The periodic timer is initialized in the function setUpTimer(). It establishes
uponSigalrm() as the signal handler. Then it initializes the itimer, using a period passed
as an argument.

Time Data Structures

The include files time.h and sys/time.h define several data types and data structures
related to time with confusing relationships between them. Some features of these
structures are summarized in Table 5-3.

Table 5-3 Time Data Structure Usage

Data Type Declared In Contains Some Functions Using this Type

time_t time.h long int with time in seconds since
00:00:00 UTC, January 1, 1970

time(2), ctime(3C), cftime(3C),
difftime(3C)

timeval sys/time.h time_t of seconds, long of
microseonds

adjtime(2), getitimer(2),
getrusage(3C), gettimeofday(3C),
select(2), utimes(3B), utmpx(4)

itimerval sys/time.h two timeval fields for first interval
and repeat interval

getitimer(2) and setitimer(2)

Using Interval Timers

59

Time Signal Latency

It takes time for the kernel to deliver the SIGALRM that notifies your program at the end
of the interval. (The issue of signal latency in general is discussed under “Signal Delivery
and Latency” on page 122.) The signal latency is less for SIGALRM than for other signals,
since the kernel initiates a scheduling cycle immediately after the timer interrupt,
without waiting for the end of a fixed time slice. When the program is running or ready
to run, in a CPU that has been restricted and isolated (as discussed in Chapter 6), the
latency is fairly short and consistent from one signal to the next. (Even so, it is not
advisable to use a repeating itimer as the time base for a real-time program). Under less
favorable conditions, signal latency can be variable and sometimes lengthy (tens of
milliseconds) relative to a fast timer frequency.

How Timers Are Managed

The IRIX kernel can be asked to implement itimers for many processes at once, each
interval having a different length and starting at a different time. The kernel’s method
differs depending on the hardware architecture:

• Some systems have no hardware support for interval timers, so the kernel has to
rely on frequent, periodic interrupts as a time base.

In these systems, the precision of timer interrupts is controlled by a tuning
paramater, the fasthz variable.

• In the Challenge/Onyx and POWER-Challenge architecture, each CPU has a clock
comparator that the kernel can program to cause an interrupt after a specific
interval has elapsed.

timespec_t time.h time_t of seconds, long of
nanoseconds

clock_gettime(2), nanosleep(2),
aio_suspend(3), sigtimedwait(3)

itimerspec time.h two timespec fields for first interval
and repeat interval

(none at this time)

tm time.h int fields for seconds, minutes,
hours, day, month, year, etc.

localtime(2), gmtime(2),
strftime(3C)

Table 5-3 (continued) Time Data Structure Usage

Data Type Declared In Contains Some Functions Using this Type

60

Chapter 5: Managing Time and Time Intervals

In these systems, timer interrupts have sub-microsecond precision.

Timer Management in Challenge, Onyx, and POWER-Challenge

In the Challenge/Onyx and POWER-Challenge architectures, each CPU has a
hardware-operated cycle counter and a hardware comparator that generates an interrupt
when the comparator register matches the cycle counter. In these systems, the kernel can
manage interval timers with the minimum number of interrupts.

• The kernel keeps active itimerval structures in a list, sorted by ascending time until
expiration.

• The kernel calculates the cycle counter value at which the next interval timer will
expire, and sets this value in the comparator register.

• When the interval expires, an interrupt occurs.

• The kernel processes the timer event: it sends the signal, and either removes the
timer from the list or restarts it with a new interval, depending on
itimerval.it_interval.

In the Challenge/Onyx systems, the number of timer interrupts the kernel must handle
depends only on the number of active timer requests and their repetition rates. If there
are many timers, or if there are repeating timers with very short intervals, there will be
many interrupts. Normally there are fewer interrupts than in a system without a clock
comparator.

Timer Management Without a Clock Comparator

In all uniprocessor systems and in the Crimson series (the only multiprocessor systems
supported by IRIX 6.2 that lack a hardware clock comparator) the kernel manages
interval timers using a periodic interrupt, as follows.

• The kernel keeps active itimerval structures in a list.

• The kernel arranges to be interrupted at a regular interval of length T.

• On each timer interrupt, T is deducted from the it_value field of each active itimerval
structure.

• When the result is negative, the kernel processes the timer event: it sends the signal,
and either removes the timer from the list or restarts it with a new interval.

Using Interval Timers

61

The key point is the value of the periodic interval T at which the kernel updates timers.
No timer interval can be shorter than T. The smaller the value of T, the more frequently
the kernel must inspect all timers.

By default, T is one second divided by the value HZ defined in /usr/include/sys/param.h.
In all recent versions of IRIX, HZ=100, so T, the minimum itimer interval, is 10
milliseconds. For normal processes—that is, processes not running at a nondegrading
priority in the real-time band—no interval shorter than 10 milliseconds can be scheduled.
The interval requested by a normal process is rounded up to whole multiples of
10 milliseconds.

Using Short Timer Intervals

Timer requests from processes that are not running under a nondegrading real-time
priority are, in all systems, rounded up to the HZ interval.

A process running at a nondegrading, real-time priority (see “Setting a Nondegrading
Real-Time Priority” on page 71) can make use of an interval that is shorter than the HZ
frequency (10 milliseconds). The actual interval that elapses is different in different
versions of IRIX.

Fast Timers With a Clock Comparator

In systems with a clock comparator, the fasthz tuning parameter has no effect on timer
requests. Timer requests from real-time processes are rounded only to the nearest
hardware timer unit—21 nanoseconds in the Challenge/Onyx system.

Fast Timers Without a Clock Comparator

In uniprocessors and Crimson systems, the minimum effective timer resolution for
real-time processes is set by the fasthz system tuning parameter. Any timer request is
rounded up to the nearest multiple of the fasthz interval.

You can inspect and change the current value of fasthz using the systune command

systune -i
Updates will be made to running system and /unix.install
systune-> fasthz
 fasthz = 1000 (0x3e8)
systune-> quit

62

Chapter 5: Managing Time and Time Intervals

The default value is 1000. That is, the minimum effective timer interval for a real-time
process is 1 millisecond.

In systems that have no clock comparator, the kernel implements fast timers by
shortening the periodic timer interval to the fasthz frequency whenever a process sets a
timer at an interval that is not a multiple of HZ The frequent interrupts needed to support
fast timers cause an overhead load of several percent of the power of one CPU. In these
systems you should try to design your real-time application to use intervals that are
multiples of 10 milliseconds, so that the fast interrupt rate is not needed. When that is not
feasible, you can assign the interrupt to a particular CPU (see “Assigning the fasthz
Processor” on page 79).

Selecting the fasthz Value

You may need to experiment with different fasthz values in order to produce a repeatable,
short interval. On a Challenge/Onyx system the hardware clock interval is 21
nanoseconds, which does not divide evenly into most fasthz intervals. The fast timer
support code uses integer division, and it has some difficult problems with truncation.

For example, suppose you want to set an itimer to define a 60 Hz frame rate. You would
set an itimer with a value of 16,667 microseconds.

Experience has shown that the default fasthz value of 1000 does not give good results
with a 16.67 millisecond itimer. In IRIX version 5.2, this combination “jitters” on either
side of the target interval. In version 5.3, itimers are guaranteed always to delay at least
the specified time. While in 5.3 the interval is not shorter than 16.67 milliseconds, it is
sometimes longer. Changing to a fasthz of 2400 (a multiple of the desired interval rate)
does not solve the problem, which was due to integer truncation in the timer routine.
However, a fasthz frequency slightly less than a multiple of the desired frame rate, 2390,
does produce a dependable 16.7 millisecond interval.

Note: Itimers are not recommended as a way to schedule for a high frame rate. When
designing a real-time program for a high frame rate the REACT/Pro Frame Scheduler
offers a much more reliable and accurate way to schedule repetitive processes.

Which CPU Handles Timer Interrupts

Normally, interval timer interrupts are taken by the CPU in which the itimer was
initialized. However, when you isolate a particular CPU (see “Isolating a CPU From TLB
Interrupts” on page 84), all itimers pending for that CPU are retargeted to the assigned

Using Timestamps

63

Clock CPU (see “Assigning the Clock Processor” on page 79). Any new itimer requests
made in an isolated CPU after it has been isolated are taken on that CPU.

For a continuously-running real-time process, it is generally best to take interval timer
interrupts on the CPU where the process runs. This helps to reduce the impact of timer
handling on other CPUs, and helps to reduce the time to deliver the SIGALRM.

When timer interrupts are handled in any CPU, timer handling can temporarily be out
of synchronization with the time-of-day service. There is a kernel tuning parameter,
itimer_on_clkcpu, which if set forces all timer interrupts to be taken on the CPU that is the
clock CPU. This parameter should only be set when it is crucial that all processes see an
exact, consistent relationship between itimer intervals and time of day stamp values.
Because it forces timer handling to a single CPU, it can increase the latency of SIGALRM
delivery.

Using Timestamps

There are two sources of timestamps, as described earlier in “Timestamps” on page 40.
They differ in their accessibility, precision, and accuracy.

Using the Time of Day

There are two system functions that return the current system time of day, one based on
BSD UNIX and one on POSIX.

Using BSD gettimeofday()

TheBSD UNIX gettimeofday() function returns the time as two long integers in a timeval
structure. (For details of the call, refer to the gettimeofday(3) reference page.) The fields
of a timeval are as follows:

struct timeval {
long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* additional microseconds */

}

The nominal resolution of this timestamp is 1 microsecond. However, it is not practical
for the kernel to update an internal timestamp with this frequency. The actual timestamp
value is updated at intervals that are convenient to the kernel. The intervals are not

64

Chapter 5: Managing Time and Time Intervals

regular, and they differ with hardware and with the version of IRIX in use. However they
are never greater than 10 milliseconds.

This does not mean that successive calls to gettimeofday() return the same value. On the
contrary, experimentation reveals that successive calls always return different values.
(See the sample program under “Getting the Time of Day Stamp” on page 184.)

Normally an IRIX system uses one of the time-synchronization daemons, either timed or
timeslave, to keep the local clock accurate. These daemons use adjtime() to adjust the time
of day when necessary. (See the timed(1), timeslave(1), and adjtime(2) reference pages.)
Thus the timestamp returned by gettimeofday() should reflect the true local time, with
an inaccuracy of at worst -10 milliseconds.

Either the date command or the time daemon can adjust the current time by a negative
increment. As a result, gettimeofday() can in rare circumstances return duplicate values,
or a value that is less than the value from the preceding call (see the date(1) reference
page).

Using POSIX clock_gettime()

The POSIX-compliant clock_gettime() function returns the time of day as two long
integers in a structure

The gettimeofday() function returns the time as two long integers in a timespec structure.
(For details of the call, refer to the gettimeofday(3) reference page.) The fields of a timeval
are as follows:

typedef struct timespec {
long tv_sec; /* seconds */
long tv_usec; /* and nanoseconds */

} timespec_t;

The nominal resolution of this timestamp is 1 nanosecond. However, it is not practical for
the kernel to update an internal timestamp with this frequency. The actual timestamp
value is updated at intervals that are convenient to the kernel. The intervals are not
regular, and they differ with hardware and with the version of IRIX in use. However they
are never greater than 10 milliseconds.

Normally an IRIX system uses one of the time-synchronization daemons, either timed or
timeslave, to keep the local clock accurate. These daemons use adjtime() to adjust the time
of day when necessary. (See the timed(1), timeslave(1), and adjtime(2) reference pages.)

Using Timestamps

65

Thus the timestamp returned by clock_gettime() should reflect the true local time, with
an inaccuracy of at worst -10 milliseconds.

Either the date command or the time daemon can adjust the current time by a negative
increment. As a result, clock_gettime() can in rare circumstances return duplicate values,
or a value that is less than the value from the preceding call (see the date(1) reference
page).

Using the Cycle Counter

All Silicon Graphics systems have a free-running counter that is updated by hardware at
a high frequency. You can map the image of this counter into the process address space,
then sample its value as an integer. (For a discussion on mapping segments of memory,
see the book Topics in IRIX Programming.)

The precision of the cycle counter depends on the hardware system. In the
Challenge/Onyx line it is a 64-bit integer. The frequency that it counts also varies with
the system. In the Challenge/Onyx, it is 21 nanoseconds (47.6 MHz).

You obtain the size fo the cycle counter in bytes (4 or 8) using
syssgi(SGI_CYCLECNTR_SIZE). You obtain the address of the cycle counter (in the
kernel’s virtual address space) using syssgi(SGI_QUERY_CYCLECNTR), a call that also
returns the counter precision in picoseconds (1e-12 seconds, millionths of a
microsecond). See the syssgi(2) reference page for details. As can be seen from an
example program (“Mapping and Reading the Cycle Counter” on page 175), this method
of reading the cycle counter is somewhat complex since it has to take into account two
variables: the precision of the clock in the current system, and the programming model
of the compiled program (32-bit or 64-bit).

You can also interrogate the cycle counter value, converted to a timespec_t form, using the
clock_gettime() function (see clock_gettime(2) for use of the nonstandard
CLOCK_SGI_CYCLE option). The first time this function is used, maps the cycle counter
into the process address space. After that, each call merely fetches the hardware value
and formats it into the fields of a timespec_t structure. By using clock_gettime() you
eliminate the complexity of syssgi() and mmap() calls, and the function is portable to all
current Silicon Graphics, Inc. systems.

Since the update frequency of the cycle counter is close to the maximum CPU instruction
rate, it is not possible to read the same value from it twice.

66

Chapter 5: Managing Time and Time Intervals

However, the cycle counter is simply a free-running hardware device; it is not
synchronized with any corrected time base. Its drift rate can be as high as 1 part in
10,000—100 microseconds per second, or approximately 8 seconds per day.

Comparing the Timestamps

The two timestamp sources can be compared on several different attributes, listed in
Table 5-4.

Because gettimeofday() is synchronized to a time standard, you must use it when you
want to record the actual time of an event, and when times recorded in one machine will
be compared to times recorded in another. You should use it to measure durations of
minutes and longer; in those cases its possible error of up to -10 milliseconds becomes
less important than its resistance to long-term drift.

Because the cycle counter can be sampled with negligible overhead and has very high
precision, you should use it whenever you want to measure durations of seconds or less,
and whenever you simply want a source of unduplicated, monotonically-increasing,
unsigned numbers to provide unique key values.

Table 5-4 Comparison of Timestamp Functions

Timestamp Overhead Nominal Precision Accuracy Drift

gettimeofday()

clock_gettime()

System call
(100s of
instructions)

1 microsecond

1 nanosecond

+0, -10
milliseconds

1 part in 10,000
short-term; corrected
to negligible amount
over long periods

cycle counter microseconds 21 nanoseconds
(Challenge)

instruction
cycle time

1 part in 10,000,
varying

67

Chapter 6

6. Controlling CPU Workload

This chapter describes how to use IRIX kernel features to make the execution of a
real-time program predictable. Each of these features works in some way to dedicate
hardware to your program’s use, or to reduce the influence of unplanned interrupts on
it. The main topics covered are:

• “Using Priorities and Scheduling Queues” on page 67 covers scheduling concepts,
tells how to set nondegrading priorities, and explains affinity scheduling, gang
scheduling, and deadline scheduling.

• “Using Processor Sets” on page 76 describes how to define sets of CPUs and how to
assign them to specific kinds of work.

• “Minimizing Overhead Work” on page 79 discusses how to remove all unnecessary
interrupts and overhead work from the CPUs that you want to use for real-time
programs.

• “Minimizing Interrupt Response Time” on page 87 discusses the components of
interrupt response time and how to minimize them.

Using Priorities and Scheduling Queues

The default IRIX scheduling algorithm is designed for a conventional time-sharing
system, in which the best results are obtained by favoring I/O-bound processes and
discouraging CPU-bound processes. However IRIX in a multiprocessor system supports
a variety of scheduling disciplines that are optimized for parallel processes. You can take
advantage of these in different ways to suit the needs of different programs.

Note: You can use the methods discussed here to make a real-time program more
predictable. However, to reliably achieve a high frame rate, you should plan to use the
REACT/Pro Frame Scheduler described in Chapter 7.

68

Chapter 6: Controlling CPU Workload

Scheduling Concepts

In order to understand the differences between scheduling methods you need to know
some basic concepts.

Tick Interrupts

In normal operation, the kernel pauses to make scheduling decisions every 10
milliseconds in every CPU. The duration of this interval, which is called the “tick”
because it is the metronomic beat of the scheduler, is defined in sys/param.h. Every CPU
is normally interrupted by a timer every tick interval. (However, the CPUs in a
multiprocessor are not necessarily synchronized. Different CPUs may take tick
interrupts at a different times.)

During the tick interrupt the kernel updates accounting values, does other housekeeping
work, and chooses which process to run next—usually the interrupted process, unless a
process of superior priority has become ready to run. The tick interrupt is the mechanism
that makes IRIX scheduling “preemptive”; that is, it is the mechanism that allows a
high-priority process to take a CPU away from a lower-priority process.

Before the kernel returns to the chosen process, it checks for pending signals, and may
divert the process into a signal handler.

You can stop the tick interrupt in selected CPUs in order to keep these interruptions from
interfering with real-time programs—see “Making a CPU Nonpreemptive” on page 86.

Time Slices

Each process has a guaranteed time slice, which is the amount of time it is normally
allowed to execute without being preempted. By default the time slice is 3 ticks, or 30 ms.
A typical process is usually blocked for I/O before it reaches the end of its time slice.

At the end of a time slice, the kernel chooses which process to run next on the same CPU
based on process priorities. When runnable processes have the same priority, the kernel
runs them in turn.

Using Priorities and Scheduling Queues

69

Priorities

Every process that is ready to run (not blocked on I/O or a semaphore) is listed in a queue
of processes. (There are actually multiple queues, as described in a later topic.) Every
process has a priority and a “nice” value. When a CPU needs a process to run, it normally
takes the one with the lowest sum of priority and nice value. Thus a lower-numbered
priority value gives a process a superior priority to run.

The specific priority values are shown in Table 6-1. The constant identifiers are defined
in sys/schedctl.h.

Note that the names ending in MAX correspond to the lowest numbers. This reflects the
fact that processes with lower numerical priority values have superior priority for use of
the system; while those with higher numbers have inferior priority.

Aging Priorities

In order to favor I/O bound processes and to penalize CPU-bound processes, IRIX
“ages” or “degrades” the priority of any normal process as it runs. The longer a process
runs without blocking, the worse its priority becomes. When the process finally suspends
voluntarily (to wait for I/O or some event), its priority is restored.

Table 6-1 Priority Ranges

Numeric Range Purpose Identifiers

30 … 39 Real-time and other
high-priority processes

NDPHIMAX … NDPHIMIN

40 … 127 Normal user processes with
degrading priorities

NDPNORMAX … NDPNORMIN

40 … 127 Processes with assigned,
nondegrading priorities

NDPNORMAX … NDPNORMIN

128 … 254 Batch jobs and other
low-priority processes

NDPLOMAX … NDPLOMIN

70

Chapter 6: Controlling CPU Workload

Scheduler Queues

The kernel maintains not one but several different scheduling queues, each containing
processes that are scheduled under a different set of rules. These rules are covered in the
following topics. The queues are listed in Table 6-2.

You can list the names of the queues and their associated priority-range numbers using

pset -q

Setting a Nondegrading Batch Priority

Any user can give create a process with a nondegrading priority in the batch range. This
is done with the npri command (see the npri(1) reference page).

npri -h 129 echo hello from the Batch queue

The specified command executes with fixed priority 129 (in this example). The same
priority change could be performed within the program using schedctl() (see the
schedctl(2) reference page), as shown in Example 6-1.

Table 6-2 Scheduler Queues

Queue Processes and Discipline

Kernel Kernel code

Real-time Processes with fixed priorities between 30 and 39

Time-sharing Processes with priorities between 40 and 127 (priorities in this
range can be either degrading or nondegrading)

Batch Batch processes with priorities between 128 and 254

Deadline Processes under the deadline scheduling rules

Gang Processes under the gang scheduling rules with priorities less
than 128

Gang-batch Processes under the gang scheduling rules with priorities of
128 or greater

Using Priorities and Scheduling Queues

71

Example 6-1 Setting a Nondegrading Batch Priority

if (-1 == schedctl(NDPRI,0,129))
{ perror("most unlikely error"); }

The smallest numerical value a regular user can set in these ways is established by the
system tuning parameter ndpri_hilim. To see its value use systune, as shown in
Example 6-2.

Example 6-2 Displaying Tuning Variable ndpri_hilim

systune -i
systune-> ndpri_hilim

ndpri_hilim = 128 (0x80)

Typically ndpri_hilim is set to 128, the superior priority within the batch range. The
system administrator could change the limit to a smaller number, allowing ordinary
users to set nondegrading priorities that compete with interactive processes, or even
with real-time processes.

Setting a Nondegrading Real-Time Priority

With superuser privilege a user can create a process that executes in the real-time band
of priorities.

npri -h 38 sh ~rtuser/bin/realtime.sh

The same change can be effected from within a process using schedctl(), as shown in
Example 6-3.

Example 6-3 Setting a Real-Time Priority

if (-1 == schedctl(NDPRI,0,38))
{

if (EPERM == errno)
fprintf(stderr,"You forget to suid again\n");

else
perror("schedctl");

}

The real-time priorities are those numerically less than or equal to the system tuning
parameter ndpri_lolim, which is normally 39. You can view or change ndpri_lolim using
systune, as shown in Example 6-2.

72

Chapter 6: Controlling CPU Workload

The kernel guarantees that a runnable process with one of the real-time band of priorities
will never sit idle waiting for a process with a lower priority.

The preemptible network daemon, rtnetd, which is used by default on multiprocessor
systems, normally runs at a nondegrading priority of 39. If you give a process a superior
(numerically smaller) priority value, it cannot be preempted by network I/O. This can
affect network operations.

Caution: If a process with a real-time priority goes into a loop, it can monopolize its
CPU, excluding all other processes.

On a multiprocessor system, a runaway real-time process is not the disaster it would be
on a uniprocessor. You can kill the looping process with a command executed on another
CPU. However, if you have isolated all but one CPU, for example by running the Frame
Scheduler on all other CPUs, a high-priority process on the remaining CPU can lock the
entire system. A looping process with priority 30 can lock out all other processes,
including network and NFS daemons and the X-server, making the system unusable.

Understanding Affinity Scheduling

Affinity scheduling is a special scheduling discipline used in multiprocessor systems.
You do not have to take action to benefit from affinity scheduling, but you should know
that it is done.

As a process executes, it causes more and more of its data and instruction text to be
loaded into the processor cache (see “Reducing Cache Misses” on page 52). This creates
an “affinity” between the process and the CPU. No other process can use that CPU as
effectively, and the process cannot execute as fast on any other CPU.

The IRIX kernel notes the CPU on which a process last ran, and notes the amount of the
affinity between them. Affinity is measured as the amount of time the process used the
CPU, with 300 microseconds or less having zero affinity, and 10 milliseconds or more
having 100% affinity.

When the process gives up the CPU—either because its time slice is up or because it is
blocked—one of three things will happen to the CPU:

• The CPU runs the same process again immediately.

• The CPU spins idle, waiting for work.

Using Priorities and Scheduling Queues

73

• The CPU runs a different process.

The first two actions do not reduce the process’s affinity. But when the CPU runs a
different process, that process begins to build up an affinity while simultaneously
reducing the affinity of the earlier process.

As long as a process has any affinity for a CPU, it is dispatched only on that CPU if
possible. When its affinity has declined to zero, the process can be dispatched on any
available CPU. The result of the affinity scheduling policy is that:

• I/O-bound processes, which execute for short periods and build up little affinity,
are quickly dispatched whenever they become ready.

• CPU-bound processes, which build up a strong affinity, are not dispatched as
quickly because they have to wait for “their” CPU to be free. However, they do not
suffer the serious delays of repeatedly “warming up” a cache.

Using Gang Scheduling

You have been advised to design a real-time program as a family of cooperating,
lightweight processes sharing an address space (see, for example, “Lightweight Process
Creation With sproc()” on page 17). These processes typically coordinate their actions
using locks or semaphores (“Interprocess Communication” on page 29).

When process A attempts to seize a lock that is held by process B, one of two things will
happen, depending on whether or not process is B is running concurrently in another
CPU.

• If process B is not currently active, process A spends a short time in a “spin loop”
and then is suspended. The kernel selects a new process to run. Time passes.
Eventually process B runs and releases the lock. More time passes. Finally process A
runs and now can seize the lock.

• When process B is concurrently active on another CPU, it typically releases the lock
while process A is still in the spin loop. The delay to process A is negligible, and the
overhead of multiple passes into the kernel and out again is avoided.

In a system with many processes, the first scenario is common even when processes A,
B, and their siblings have real-time priorities. Clearly it would be better if processes A
and B were always dispatched concurrently.

74

Chapter 6: Controlling CPU Workload

Gang scheduling achieves this. Any process in a share group can initiate gang
scheduling. Then all the processes that share that address space are scheduled as a unit,
using the priority of the highest-priority process in the gang. IRIX tries to ensure that all
the members of the share group are dispatched when any one of them is dispatched.

You initiate gang scheduling with a call to schedctl(), as sketched in Example 6-4

Example 6-4 Initiating Gang Scheduling

if (-1 == schedctl(SCHEDMODE,SGS_GANG))
{

if (EPERM == errno)
fprintf(stderr,"You forget to suid again\n");

else
perror("schedctl");

}

You can turn gang scheduling off again with another call, passing SGS_FREE in place of
SGS_GANG.

Tip: Gang-scheduled processes are queued in one of the two gang queues (see
“Scheduler Queues” on page 70). You can use pset to assign a set of CPUs to work only
on the gang queues (see “Assigning a Processor Set to a Queue” on page 77).

Using Deadline Scheduling

You can apply the deadline scheduling discipline to any process that must be assured of
receiving a certain amount of execution time out of every interval, regardless of what
other processes are running.

A process with normal or batch priority might enjoy a lot of execution time under light
system load, but might be held idle for long periods under heavy system load. A process
with a high, nondegrading priority is assured of getting all the execution time it can use,
but it can monopolize resources. Deadline scheduling is best for a process that must have
a certain minimum amount of time, but which should use little or none of the remainder
of the time.

It requires no special privilege to assign deadline scheduling to a process. You can do it
with the npri command. The following command schedules a shell script to execute at
least 20% of each 100-millisecond interval.

Using Priorities and Scheduling Queues

75

npri -d 100,20 /usr/local/bin/deadline.sh

If the system cannot dedicate the requested amount of time, the command returns an
error. Otherwise, the process is guaranteed the specified amount of time per interval.

Note: Execution time can be given at any point within the interval, and need not be
continuous. Thus deadline scheduling cannot be used as the basis for a reliable real-time
frame rate.

A deadline guarantee is not inherited by processes created by fork() or sproc(). Each
process must have deadline scheduling set for it independently.

The schedctl() call is used to set deadline scheduling within a process, and to choose a
rule for what the process should do in the balance of the interval, after it has achieved its
target percentage:

DL_ONLY Process should be idle the rest of the period.

DL_ANY Process should execute under the normal rules for its priority and nice
value.

For an example of using schedctl() to set deadline scheduling, see “Deadline Scheduling
Subroutines” on page 200.

Note: The kernel uses a high-precision interval timer to measure usage under deadline
scheduling. When deadline scheduling is in use, more frequent timer interrupts are
generated. In some architectures this causes frequent kernel interrupts (see “Timer
Management Without a Clock Comparator” on page 60 and “Assigning the fasthz
Processor” on page 79).

Changing the Time Slice Duration

You can change the length of the time slice for all processes from its default 30ms using
the systune command (see the systune(1) reference page). The kernel variable is
slice_length; its value is the number of tick intervals that comprise a slice. There is
probably no good reason to make a global change of the time-slice length.

You can change the length of the time slice for one particular process using the schectl()
function (see the schedctl(2) reference page). The code would resemble Example 6-5.

76

Chapter 6: Controlling CPU Workload

Example 6-5 Setting the Time-Slice Length

#include <sys/schedctl.h>
int setMyTimeSliceInTicks(const int ticks)
{

int ret = schedctl(SLICE,0,ticks)
if (-1 == ret)

{ perror("schedctl(SLICE)"); }
return ret;

}

You might lengthen the time slice for the parent of a process group that will be
gang-scheduled (see “Using Gang Scheduling” on page 73). This will keep members of
the gang executing concurrently longer.

Using Processor Sets

A processor set is a group of 1 or more designated CPUs. You define a processor set and
apply it using pset (see the pset(1) reference page). A processor set is identified by an
integer that you assign. For example, to create set 1357 containing all odd-numbered
CPUs in an 8-CPU system, use:

pset -s 1357 1,3,5,7

You can also define processor sets in a file, /etc/psettab, so they are defined at all times.
With root privilege, you can create any number of processor sets. Sets can be disjoint or
overlapping.

With root privilege, you can use processor sets in several ways to partition the system
workload.

Tip: Most of the variants of the pset command have a functional equivalent in the
sysmp(MP_PSET) function. For details, refer to the sysmp(2) reference page.

Assigning a Process to a Processor Set

Using pset you can assign a designated process or command to execute on a specified
processor set only. For example, you can run a shell script on CPUs 2 and 3 this way:

pset -s 10023 2,3
pset -c 10023 /bin/csh ~/runreal.csh

Using Processor Sets

77

The created process (and any processes it might create) runs only on the CPUs in that
group. Those CPUs are available to run other processes as well.

A user with administrator privilege can call the schedctl() function to associate a process
with a specified processor set. This assignment is inherited over a fork()—so if it is
applied to a shell process, all the commands run from that shell are also assigned to the
processor set. This gives somewhat more control over the assignment than does pset.
Example 6-6 shows the absolute minimum command code.

Example 6-6 Command to Assign Process to Processor Set

#include <limits.h>
#include <sys/types.h>
#include <sys/prctl.h>
#include <sys/schedctl.h>
main(int argc, char **argv)
{

if (argc != 3) exit(-1);
if (-1 == schedctl(SETPSET, atoi(argv[1]), atoi(v[2])))

perror("schedctl:");
}

The code in Example 6-6 can clearly be extended and improved with more detailed
diagnostics and with security checks. An additional function, to invoke
schedctl(UNSETPSET) when the second argument is -1, would be useful. However, a
command of this sort can be used by a system operator, or, with setuid permission, in
login scripts.

Tip: Keep in mind that affinity scheduling tends to keep a CPU-bound process on one
CPU in any case (see “Understanding Affinity Scheduling” on page 72). In general, the
dynamic operation of the IRIX scheduler, guided by a nondegrading priority or deadline
scheduling, can do a better job of allocating CPUs to processes than you can do with a
static assignment through pset.

Assigning a Processor Set to a Queue

Using pset you can assign a set of CPUs to service a particular scheduling queue (see
“Scheduler Queues” on page 70). Only those CPUs will take processes from that queue,
and they will take processes from no other queue. For example, to assign CPU 9 alone to
service the batch queue, use:

pset -s 1009 9

78

Chapter 6: Controlling CPU Workload

pset -q bt 1009

Only CPU 9 will work on processes with a batch-level priority, and CPU 9 will work on
no other processes.

If you assign a processor set to the gang or gang-batch queue, the set should contain
enough CPUs to match the size of the largest gang. (Assigning a single CPU to the gang
queue would rather defeat the purpose of gang scheduling.)

Assigning a Discipline to a Processor Set

The kernel recognizes the concept of a scheduling discipline apart from the queues and
methods mentioned already. At present only one special discipline is defined: the
Graphics discipline, which includes all processes that open a graphics pipe.

You can use pset to assign a processor group to service only processes that use a particular
discipline, without regard for the queue they are in.

Processor Set Contradictions

You can create contradictions using the pset command. For example, you can assign a
processor set to the gang-scheduled queue, and also assign a normal or real-time process
to that same processor set. Since the assigned process is not gang-scheduled, it will never
appear in the queue that the processor group can service. Since the process is assigned to
that group, it can run on no other CPUs. Accordingly, the process never runs at all. You
have to change one of the assignments before the process can even terminate.

It is also possible to create an empty set, one with no CPUs assigned to it. Processes or
queues that depend on that set simply do not execute. Some users consider this to be a
feature, not an problem. For example, if the processor set servicing the batch queue is
made empty, batch-queue work—even active, half-completed programs—simply sit and
do not execute. At some later time, pset can be used to take CPUs from some other
processor set and reassign them to the batch queue set, at which time the unserviced jobs
begin to execute again.

Minimizing Overhead Work

79

Minimizing Overhead Work

A certain amount of CPU time must be spent on general housekeeping. Since this work
is done by the kernel and triggered by interrupts, it can interfere with the operation of a
real-time process. However, you can remove almost all such work from designated
CPUs, leaving them free for real-time work.

First decide how many CPUs are required to run your real-time application (regardless
of whether it will be scheduled normally, or as a gang, or by the Frame Scheduler). Then
apply the following steps to isolate and restrict those CPUs. The steps are independent
of each other. Each needs to be done to completely free a CPU.

Assigning the Clock Processor

Every CPU that uses normal IRIX scheduling takes a “tick” interrupt that is the basis of
process scheduling. However, one CPU does additional housekeeping work for the
whole system, on each of its tick interrupts. You can specify which CPU has these
additional duties using the privileged mpadmin command (see the mpadmin(1) reference
page). For example, to make CPU 0 the clock CPU (a common choice), use

mpadmin -c 0

The equivalent operation from within a program uses sysmp() as shown in Example 6-7
(see also the sysmp(2) reference page).

Example 6-7 Setting the Clock CPU

#include <sys/sysmp.h>
int setClockTo(int cpu)
{

int ret = sysmp(MP_CLOCK,cpu);
if (-1 == ret) perror("sysmp(MP_CLOCK)");
return ret;

}

Assigning the fasthz Processor

When high precision timers are used, timer interrupts occur more frequently. In
machines that lack a clock comparator, fast timer interrupts cause overhead processing
(see “Fast Timers Without a Clock Comparator” on page 61). A particular CPU can be

80

Chapter 6: Controlling CPU Workload

designated to handle this work. You can use the -f parameter of mpadmin to find out
which CPU has responsibility:

% mpadmin -f
0

With root privilege, mpadmin can be used to specify the CPU to handle the fast timer.

mpadmin -f 1

The equivalent operation from software uses sysmp(), as shown in
Example 6-8.

Example 6-8 Setting the fasthz CPU

#include <sys/sysmp.h>
int setFasthzTo(int cpu)
{

int ret = sysmp(MP_FASTCLOCK,cpu);
if (-1 == ret) perror("sysmp(MP_FASTCLOCK)");
return ret;

}

Note: On Challenge/Onyx and POWER-Challenge systems, assigning the fasthz CPU is
allowed, but has no effect. Timer interrupts are taken only as required, not at the fasthz
rate, and are targeted to the CPU where they were initiated. (See “Timer Management in
Challenge, Onyx, and POWER-Challenge” on page 60.)

Unavoidable Timer Interrupts

Prior to IRIX version 5.3, even when the clock and fast timer duties were removed from
a CPU, that CPU still received a timer interrupt approximately every 42 seconds. This
was the result of the maximum value, 0x7fff ffff, counting down in a hardware timer. The
resulting interrupt was processed in the normal timer-handling code, which used nearly
100 microseconds before recognizing the interrupt as unwanted.

Thus in IRIX 5.2 and IRIX 6.0, every CPU gets a 100 microsecond interrupt every 42
seconds. This can interfere with the timing of a real-time program with a high frame rate,
or can extend the latency of an interrupt handler.

Starting in IRIX 5.3 and IRIX 6.0.1, the interrupt frequency is halved, to approximately
every 80 seconds. More important, a fast path in the timer code recognizes the unwanted

Minimizing Overhead Work

81

interrupt and exits in 5 microseconds. Thus in these later systems, the only unwanted
interrupt in an isolated CPU is a 5 microsecond “blip” every 80 seconds. Processes
running under the Frame Scheduler are not affected even by this small interrupt.

Isolating a CPU From Sprayed Interrupts

By default, the Challenge/Onyx hardware directs I/O interrupts from the VME bus to
CPUs in rotation (called spraying interrupts). You do not want a real-time process
interrupted at unpredictable times to handle I/O. The system administrator can isolate
one or more CPUs from sprayed interrupts by placing the NOINTR statement in the
configuration file /var/sysgen/system/irix.sm. The syntax is

NOINTR cpu# [cpu#]...

After modifying irix.sm, rebuild the kernel using the command /etc/autoconfig -vf.

Assigning Interrupts to CPUs

To minimize the latency of real-time interrupts, you can arrange for the VME bus
interrupts with real-time significance to be delivered to a specified CPU where no other
interrupts are handled. This is done with the IPL (Interrupt Priority Level) statement in
the /var/sysgen/system/irix.sm file. The syntax is

IPL level# cpu#

Interrupts with the specified level initiated on any VME bus will be delivered to the
specified CPU. After modifying irix.sm, rebuild the kernel using the command
/etc/autoconfig -vf.

For more on how to handle time-critical interrupts see “Minimizing Interrupt Response
Time” on page 87).

The best way to handle non-critical interrupts is to allow the hardware to “spray” them
to all available CPUs. You can protect specific CPUs from interrupts as discussed under
“Isolating a CPU From Sprayed Interrupts” on page 81.

82

Chapter 6: Controlling CPU Workload

Understanding the Vertical Sync Interrupt

In systems with dedicated graphics hardware, the graphics hardware generates a variety
of hardware interrupts. The most frequent of these is the vertical sync interrupt, which
marks the end of a video frame. The vertical sync interrupt can be used by the Frame
Scheduler as a time base (see “Vertical Sync Interrupt” on page 108). Certain GL and
Open GL functions are internally synchronized to the vertical sync interrupt (for an
example, refer to the gsync(3g) reference page).

All the interrupts produced by dedicated graphics hardware are at an inferior priority
compared to other hardware. All graphics interrupts including the vertical sync
interrupt are directed to CPU 0. They are not “sprayed” in rotation, and they cannot be
directed to a different CPU.

Restricting a CPU From Scheduled Work

For best performance of a real-time process or for minimum interrupt response time, you
need to use one or more CPUs without competition from other scheduled processes. You
can exert three levels of increasing control: restricted, isolated, and nonpreemptive.

In general, the IRIX scheduling algorithms will run a process that is ready to run on any
CPU. This is modified by considerations of

• affinity—CPUs are made to execute the processes that have developed affinity to
them

• processor group assignments—the pset command can force a specified group of
CPUs to service only a given scheduling queue

You can restrict one or more CPUs from running any scheduled processes at all. The only
processes that can use a restricted CPU are processes that you assign to those CPUs.

Note: Restricting a CPU overrides any group assignment made with pset. A restricted
CPU remains part of a group, but does not perform any work you assign to the group
using pset.

You can find out the number of CPUs that exist, and the number that are still unrestricted,
using the sysmp() function as in Example 6-9.

Minimizing Overhead Work

83

Example 6-9 Number of Processors Available and Total

#include <sys/sysmp.h>
int CPUsInSystem = sysmp(MP_NPROCS);
int CPUsNotRestricted = sysmp(MP_NAPROCS);

To restrict one or more CPUs, you can use mpadmin. For example, to restrict CPUs 4 and
5, you can use

mpadmin -r 4
mpadmin -r 5

The equivalent operation from within a program uses sysmp() as in Example 6-10 (see
also the sysmp(2) reference page).

Example 6-10 Restricting a CPU

#include <sys/sysmp.h>
int restrictCpuN(int cpu)
{

int ret = sysmp(MP_RESTRICT,cpu);
if (-1 == ret) perror("sysmp(MP_RESTRICT)");
return ret;

}

You remove the restriction, allowing the CPU to execute any scheduled process, with
mpadmin -u or with sysmp(MP_EMPOWER).

Note: The following points are important to remember:

• The CPU assigned to handle the scheduling clock (“Assigning the Clock Processor”
on page 79) must not be restricted.

• The REACT/Pro Frame Scheduler automatically restricts and isolates any CPU it
uses. See Chapter 7.

Assigning Work to a Restricted CPU

After restricting a CPU, you can assign processes to it using the command runon (see the
runon(1) reference page). For example, to run a program on CPU 3, you could use

runon 3 ~rt/bin/rtapp

The equivalent operation from within a program uses sysmp() as in Example 6-11 (see
also the sysmp(2) reference page).

84

Chapter 6: Controlling CPU Workload

Example 6-11 Assigning the Calling Process to a CPU

#include <sys/sysmp.h>
int runMeOn(int cpu)
{

int ret = sysmp(MP_MUSTRUN,cpu);
if (-1 == ret) perror("sysmp(MP_MUSTRUN)");
return ret;

}

You remove the assignment, allowing the process to execute on any available CPU, with
sysmp(MP_RUNANYWHERE). There is no command equivalent.

The assignment to a specified CPU is inherited by processes created by the assigned
process. Thus if you assign a real-time program with runon, all the processes it creates run
on that same CPU. More often you will want to run multiple processes concurrently on
multiple CPUs. There are three approaches you can take:

1. Use the REACT/Pro Frame Scheduler, letting it restrict CPUs for you.

2. Let the parent process be scheduled normally using a nondegrading real-time
priority. After creating child processes with sproc(), use
schedctl(SCHEDMODE,SGS_GANG) to cause the share group to be
gang-scheduled. Assign a processor group to service the gang-scheduled process
queue.

The CPUs that service the gang queue cannot be restricted. However, if yours is the
only gang-scheduled program, those CPUs will effectively be dedicated to your
program.

3. Let the parent process be scheduled normally. Let it restrict as many CPUs as it will
have child processes. Have each child process invoke sysmp(MP_MUSTRUN,cpu)
when it starts, each specifying a different restricted CPU.

Isolating a CPU From TLB Interrupts

As described under “Translation Lookaside Buffer Updates” on page 13, when the kernel
changes the address space in a way that could invalidate TLB entries held by other CPUs,
it broadcasts an interrupt to all CPUs, telling them to update their translation lookaside
buffers (TLBs).

You can isolate the CPU so that it does not receive broadcast TLB interrupts. When you
isolate a CPU, you also restrict it from scheduling processes. Thus isolation is a superset

Minimizing Overhead Work

85

of restriction, and the comments in the preceding topic, “Restricting a CPU From
Scheduled Work” on page 82, also apply to isolation.

The command is mpadmin -I; the function is sysmp(MP_ISOLATE, cpu#). After isolation,
the CPU will synchronize its TLB and instruction cache only when a system call is
executed. This removes one source of unpredictable delays from a real-time program and
helps minimize the latency of interrupt handling.

Note: The REACT/Pro Frame Scheduler automatically restricts and isolates any CPU it
uses.

When an isolated CPU executes only processes whose address space mappings are fixed,
it receives no broadcast interrupts from other CPUs. Actions by processes in other CPUs
that change the address space of a process running in an isolated CPU can still cause
interrupts at the isolated CPU. Among the actions that change the address space are:

• Causing a page fault. When the kernel needs to allocate a page frame in order to
read a page from swap, and no page frames are free, it invalidates some unlocked
page. This can render TLB and cache entries in other CPUs invalid. However, as
long as an isolated CPU executes only processes whose address spaces are locked in
memory, such events cannot affect it.

• Extending a shared address space with brk(). Allocate all heap space needed before
isolating the CPU.

• Using mmap(), munmap(), mprotect(), shmget(), or shmctl() to add, change or
remove memory segments from the address space; or extending the size of a
mapped file segment when MAP_AUTOGROW was specified and MAP_LOCAL
was not. All memory segments should be established before the CPU is isolated.

• Starting a new process with sproc(), thus creating a new stack segment in the shared
address space. Create all processes before isolating the CPU; or use sprocsp()
instead, supplying the stack from space allocated previously.

• Accessing a new DSO using dlopen() or by reference to a delayed-load external
symbol (see the dlopen(3) and DSO(5) reference pages). This adds a new memory
segment to the address space but the addition is not reflected in the TLB of an
isolated CPU.

• Calling cacheflush() (see the cacheflush(2) reference page).

• Using DMA to read or write the contents of a large (many-page) buffer. For speed,
the kernel temporarily maps the buffer pages into the kernel address space, and
unmaps them when the I/O completes. However, these changes affect only kernel

86

Chapter 6: Controlling CPU Workload

code. An isolated CPU processes a pending TLB flush when the user process enters
the kernel for an interrupt or service function.

Isolating a CPU When Performer™ Is Used

The Performer™ graphics library supplies utility functions to isolate CPUs and to assign
Performer processes to the CPUs. You can read the code of these functions in the file
/usr/src/Performer/src/lib/libpfutil/lockcpu.c. They use CPUs starting with CPU number 1
and counting upward. The functions can restrict as many as 1+2×pipes CPUs, where pipes
is the number of graphical pipes in use (see the pfuFreeCPUs(3pf) reference page for
details). The functions assume these CPUs are available for use.

If your real-time application uses Performer for graphics—which is the recommended
approach for high-performance simulators—you should use the libpfutil functions with
care. Possibly you will need to replace them with functions of your own. Your functions
can take into account the CPUs you reserve for other time-critical processes. If you
already restrict one or more CPUs, you can use a Performer utility function to assign
Performer processes to those CPUs.

Making a CPU Nonpreemptive

After a CPU has been isolated, you can turn off the dispatching “tick” for that CPU (see
“Tick Interrupts” on page 68). This eliminates the last source of overhead interrupts for
that CPU. It also ends preemptive process scheduling for that CPU. This means that the
process now running will continue to run until

• it gives up control voluntarily by blocking on a semaphore or lock, requesting I/O,
or calling sginap()

• it calls a system function and, when the kernel is ready to return from the system
function, a process of higher priority is ready to run

Some effects of this change within the specified CPU include the following:

• IRIX will no longer age degrading priorities. Priority ageing is done on clock tick
interrupts.

• IRIX will no longer preempt a low-priority process when a high-priority process
becomes runnable, except when the low-priority process calls a system function.

• Signals (other than SIGALARM) can only be delivered after I/O interrupts or on
return from system calls. This can extend the latency of signal delivery.

Minimizing Interrupt Response Time

87

Normally an isolated CPU runs only a few, related, time-critical processes that have
equal priorities, and that coordinate their use of the CPU through semaphores or locks.
When this is the case, the loss of preemptive scheduling is outweighed by the benefit of
removing the overhead and unpredictability of interrupts.

To make a CPU nonpreemptive you can use mpadmin. For example, to isolate CPU 3 and
make it nonpreemptive, you can use

mpadmin -I 3
mpadmin -D 3

The equivalent operation from within a program uses sysmp() as shown in Example 6-12
(see the sysmp(2) reference page).

Example 6-12 Making a CPU nonpreemptive

#include <sys/sysmp.h>
int stopTimeSlicingOn(int cpu)
{

int ret = sysmp(MP_NONPREEMPTIVE,cpu);
if (-1 == ret) perror("sysmp(MP_NONPREEMPTIVE)");
return ret;

}

You reverse the operation with sysmp(MP_PREEMPTIVE) or with mpadmin -C.

Minimizing Interrupt Response Time

Interrupt response time is the time that passes between the instant when a hardware device
raises an interrupt signal, and the instant when—interrupt service completed—the
system returns control to a user process. IRIX guarantees a maximum interrupt response
time on certain systems, but you have to configure the system properly to realize the
guaranteed time.

Maximum Response Time Guarantee

In Challenge/Onyx and POWER-Challenge systems running IRIX 5.3 and 6.2, interrupt
response time is guaranteed not to exceed 200 microseconds in a properly configured
system.

88

Chapter 6: Controlling CPU Workload

This guarantee is important to a real-time program because it puts an upper bound on
the overhead of servicing interrupts from real-time devices. You should have some idea
of the number of interrupts that will arrive per second. Multiplying this by 200
microseconds yields a conservative estimate of the amount of time in any one second
devoted to interrupt handling in the CPU that receives the interrupts. The remaining
time is available to your real-time application in that CPU.

Components of Interrupt Response Time

The total interrupt response time includes these sequential parts:

The parts are diagrammed in Figure 6-1 and discussed in the following topics.

Hardware latency The time required to make a CPU respond to an
interrupt signal.

Software latency The time to set aside other work and enter the
device driver code.

Device service time The time the device driver spends processing the
interrupt, which must be minimal.

Dispatch cycle time The time to choose the next user process to run,
and to return to its code.

Minimizing Interrupt Response Time

89

Figure 6-1 Components of Interrupt Response Time

Hardware Latency

When a VME device requests an interrupt, one of the 7 VME IRQ lines is set active. The
Challenge/Onyx VCAM VME Controller contains interrupt destination registers that are
programmed by the IRIX kernel to direct IRQ lines to specific CPUs. (The programming
is in the IPL and NOINTR configuration statements. See “Isolating a CPU From Sprayed
Interrupts” on page 81 and “Assigning Interrupts to CPUs” on page 81).

The VCAM VME Controller places an interrupt request to a specific CPU on the
POWERpath-2 bus. The destination CPU records the interrupt in its interrupt register
and, if interrupts at that level are not masked off, it responds by trapping to an interrupt
vector.

The time taken for these events is the hardware latency, or interrupt propagation delay.
The typical propagation delay is 2 microseconds. The theoretical worst-case delay is 8

CPU
Reacts

Enter
User
Code

Exit
Device
Driver

Enter
Device
Driver

Device
Raises
Interrupt

Hardware
Latency

Software
Latency

Dispatch
Cycle

Device
Service

Kernel Critical Section

Other Device Service

Mode Switch

Mode
Switch

Switch
Process

(optional)

Adjust
Scheduler

Queue

90

Chapter 6: Controlling CPU Workload

microseconds, but this requires a very large system configuration. For typical
configurations, 4 microseconds is an appropriate estimate of worst-case delay.

The worst-case hardware latency can be significantly reduced by not placing either
graphics or HIPPI interfaces on the POWERchannel-2 interface used for VME devices.

Software Latency

Some instructions have to be executed before control reaches the device driver. When the
interrupt arrives, the software will be in one of three states:

• executing user code or noncritical kernel code

Entry to the device driver requires only a mode switch, a small number of
instructions.

• executing a critical section in the kernel

The kernel masks interrupts while in critical sections. The mode switch occurs when
the critical section ends.

• executing another device driver at the same or higher interrupt level

The mode switch occurs when the other device service ends.

Kernel Critical Sections

Most of the IRIX kernel code is noncritical and executed with interrupts enabled.
However, certain sections of kernel code depend on exclusive access to shared resources.
Spin locks are used to control access to these critical sections. Once in a critical section,
the interrupt level is raised in that CPU. New interrupts are not serviced until the critical
section is complete.

Although most kernel critical sections are short, there is no guarantee on the length of a
critical section. In order to achieve 200 microsecond response time, your real-time
program must avoid executing system calls on the CPU where interrupts are handled.
The way to ensure this is to restrict that CPU from running normal processes (see
“Restricting a CPU From Scheduled Work” on page 82) and isolate it from TLB interrupts
(see “Isolating a CPU From TLB Interrupts” on page 84)—or to use the Frame Scheduler.

You may need to dedicate a CPU to handling interrupts. However, if the
interrupt-handling CPU has power well above that required to service interrupts—and
if your real-time process can tolerate interruptions for interrupt service—you can use the

Minimizing Interrupt Response Time

91

isolated CPU to execute real-time processes. If you do this, the processes that use the CPU
must avoid system calls that do I/O or allocate resources, for example fork(), brk(), or
mmap(). The processes must also avoid generating external interrupts with long pulse
widths (see “External Interrupts” on page 173).

In general, processes in a CPU that services time-critical interrupts should avoid all
system calls except those for interprocess communication and for memory allocation
within an arena of fixed size.

Service Time for Other Devices

While a device driver interrupt handler is executing, interrupts at the same or inferior
priority are masked. During the interrupt handling, devices at a superior priority can
interrupt and be handled. When the interrupt handler exits, interrupts are unmasked.
Any pending interrupt at the same or inferior priority will then be taken before the kernel
returns to the interrupted process. Thus the handling of an interrupt could be delayed by
one or more device service times at either a superior or an inferior priority level.

Since device drivers are often provided by third parties, there is no guarantee on the
service time of a device. In order to achieve 200 microsecond response time, you must
ensure that the time-critical devices supply the only interrupts directed to that CPU. The
system administrator assigns interrupt levels to devices using the VECTOR statement in
the /var/sysgen/system file. Then the assigned level is directed to a CPU using the IPL
statement (see “Assigning Interrupts to CPUs” on page 81).

Device Service Time

The time spent servicing an interrupt should be negligible. The interrupt handler should
do very little processing, only wake up a sleeping user process and possibly start another
device operation. Time-consuming operations such as allocating buffers or locking down
buffer pages should be done in the request entry points for read(), write(), or ioctl().
When this is the case, device service time is minimal.

Device drivers supplied by SGI indeed spend negligible time in interrupt service. Device
drivers from third parties are an unknown quantity. Hence the 200 microsecond
guarantee is not in force when third-party device drivers are used on the same CPU at a
superior priority to the time-critical interrupts.

92

Chapter 6: Controlling CPU Workload

Dispatch Cycle

When the device driver interrupt handler exits, the kernel returns to a user process. This
may be the same process that was interrupted, or a different one.

Adjust Scheduler Queue

Typically, the result of the interrupt is to make a sleeping process runnable. The runnable
process is entered in one of the scheduler queues. (This work may be done while still
within the interrupt handler, as part of a device driver library routine such as wakeup().)

Switch Processes

If the CPU was idling when the interrupt arrived, and if the interrupt has made a process
runnable, the kernel spends some time setting up the context of the process to be run.

If the CPU has not been made nonpreemptive (see “Making a CPU Nonpreemptive” on
page 86), and if the interrupt has made a superior-priority process runnable, the
interrupted process will be preempted. The kernel has to save the context of the
inferior-priority process before setting up the context of the new process.

If the CPU has been made nonpreemptive, there is no process switch. The kernel always
returns to the interrupted process, if there was one.

In short, the kernel may spend time saving the context of one process, and may spend
time setting up the context of another process.

Note: In a CPU controlled by the Frame Scheduler, control always returns to the
interrupted process in minimal time.

Mode Switch

A number of instructions are required to exit kernel mode and resume execution of the
user process. Among other things, this is the time the kernel looks for software signals
addressed to this process, and redirects control to the signal handler. If a signal handler
is to be entered, the kernel might have to extend the size of the stack segment. (This
cannot happen if the stack was extended before it was locked; see “Locking Program Text
and Data” on page 50.)

Minimizing Interrupt Response Time

93

Minimal Interrupt Response Time

To summarize, you can ensure interrupt response time of less than 200 microseconds for
one specified device interrupt provided you configure the system as follows:

• The interrupt is directed to a specific CPU, not “sprayed”; and is the
highest-priority interrupt received by that CPU.

• The interrupt is handled by an SGI-supplied device driver, or by a device driver
from another source that promises negligible processing time.

• That CPU does not receive any other “sprayed” interrupts.

• That CPU is restricted from executing general UNIX processes, isolated from TLB
interrupts, and made nonpreemptive—or is managed by the Frame Scheduler.

• Any process you assign to that CPU avoids system calls other than interprocess
communication and allocation within an arena.

When these things are done, interrupts are serviced in minimal time.

Tip: If interrupt service time is a critical factor in your design, consider the possibility of
using VME programmed I/O to poll for data, instead of using interrupts. It takes at most
4 microseconds to poll a VME bus address (see “PIO Access” on page 168). A polling
process can be dispatched one or more times per frame by the Frame Scheduler with low
overhead.

94

Chapter 6: Controlling CPU Workload

95

Chapter 7

7. Using the Frame Scheduler

The REACT/Pro Frame Scheduler makes it easy to structure a real-time program as a
family of independent, cooperating processes, running on multiple CPUs, scheduled in
sequence at the frame rate of the application. For an overview of the Frame Scheduler,
see “REACT/Pro Frame Scheduler” on page 25.

This chapter contains details on the operation and use of the Frame Scheduler, under
these main headings:

• “Frame Scheduler Concepts” on page 96 details the operation and methods of the
Frame Scheduler.

• “Selecting a Time Base” on page 107 covers the important choice of which source of
interrupts should define a frame interval.

• “Using the Scheduling Disciplines” on page 110 explains the options for scheduling
activities of different kinds.

• “Preparing the System” on page 113 reviews the system administration steps
needed to prepare the CPUs that the Frame Scheduler will use.

• “Implementing a Single Frame Scheduler” on page 114 outlines the structure of an
application that uses one CPU.

• “Implementing Synchronized Schedulers” on page 115 outlines the structure of an
application that needs the power of multiple CPUs.

• “Handling Frame Scheduler Exceptions” on page 118 describes how overrun and
underrun exceptions are dealt with.

• “Using Signals Under the Frame Scheduler” on page 122 discusses the issue of
signal latency and the signals the Frame Scheduler generates.

• “Using Timers with the Frame Scheduler” on page 125 covers the use of itimers
with the Frame Scheduler.

• “The Frame Scheduler Device Driver Interface” on page 126 documents the way
that a kernel-level device driver can generate time-base interrupts for a Frame
Scheduler.

96

Chapter 7: Using the Frame Scheduler

Frame Scheduler Concepts

One Frame Scheduler dispatches selected processes at a real-time rate on one CPU. You
can also create multiple, synchronized Frame Schedulers so as to dispatch concurrent
processes on multiple CPUs.

Frame Scheduler Basics

A Frame Scheduler takes over the scheduling and dispatching of processes on one CPU.
It isolates the CPU (see “Isolating a CPU From TLB Interrupts” on page 84), and
completely supersedes the operation of the normal IRIX scheduler on that CPU. Only
processes enqueued to the Frame Scheduler can use the CPU. IRIX dispatching priorities
are not relevant on that CPU. If that CPU is assigned to a processor set (see “Using
Processor Sets” on page 76), the set assignment is ignored while the Frame Scheduler is
running.

The execution of normal processes, daemons, and pending timeouts are all migrated to
other CPUs—typically to CPU 0, which cannot be owned by a Frame Scheduler. All
interrupt handling is usually directed away from a Frame Scheduler CPU as well (see
“Preparing the System” on page 113). However, a Frame Scheduler CPU can be used to
handle interrupts, although doing so runs a risk of causing overruns.

Frame Scheduling

Instead of scheduling processes according to priorities with an attempt at fairness, the
Frame Scheduler dispatches them according to a strict, cyclic rotation governed by a
repetitive time base. The time base determines the fundamental frame rate. (See
“Selecting a Time Base” on page 107.)

The interrupts from the time base define minor frames. You tell the Frame Scheduler a
fixed number of minor frames that should be considered a major frame. The length of a
major frame defines the application’s true frame rate. The minor frames allow you to
divide a major frame into sub-frames. Major and minor frames are depicted in Figure 7-1.

Frame Scheduler Concepts

97

Figure 7-1 Major and Minor Frames

As pictured in Figure 7-1, the Frame Scheduler maintains a queue of processes for each
minor frame. You enqueue each activity processes of your program to a specific minor
frame. You determine the order of cyclic execution within a minor frame by the order in
which you enqueue processes. You can:

• Enqueue multiple processes in one minor frame. They are run in queue sequence
within the frame. All must complete their work within the minor frame interval.

• Enqueue the same process to run in more than one minor frame. Say that process
double is to run twice as often as process solo. You could enqueue double to Q0 and
Q2 in Figure 7-1, and enqueue solo to Q1.

• Enqueue a process that takes more than a minor frame to complete its work. If
process sloth could need more than one minor interval, you could enqueue it to Q0,
Q1 and Q2 in Figure 7-1, such that it would be able to continue working in all three
minor frames until it completed.

• Enqueue a background process that is allowed to run only when all others have
completed, to use up any remaining time within a minor frame.

All these options are controlled by scheduling disciplines you specify for each process as
you enqueue it (see “Using the Scheduling Disciplines” on page 110).

Q0 Q1 Q2

TIME

Major frame

Minor−0 Minor−1 Minor−2 Minor−0 Minor−1 Minor−2

Major frame

Real−time event interrupts

Process queues

98

Chapter 7: Using the Frame Scheduler

The processes that a Frame Scheduler dispatches are typically child processes of the
process that creates the Frame Scheduler, but that is not a requirement. Any process can
be enqueued, even one that starts execution as a separate command.

The FRS Control Process

The process that creates a Frame Scheduler is called the frs control process. It is privileged
in three respects:

• Its process ID (PID) is used to identify its Frame Scheduler in various functions.

• It can receive signals when errors are detected by the Frame Scheduler (see “Using
Signals Under the Frame Scheduler” on page 122).

• It cannot itself be enqueued to the Frame Scheduler. It continues to be dispatched by
IRIX. It executes on some other CPU than the one the Frame Scheduler uses.

The Frame Scheduler API

The details of the Frame Scheduler API can be found in the frs(3) reference page. The API
elements are declared in /usr/include/sys/frs.h. The following are some important types are
declared in /usr/include/sys/frs.h:

typedef frs_fsched_info_t A structure containing information about one scheduler,
including its CPU number, time base, and number of minor
frames. Used when creating a Frame Scheduler.

typedef frs_t A structure containing an frs_fsched_info_t and the process
ID of the frs control of the master Frame Scheduler. Used to
create or specify any Frame Scheduler.

typedef frs_queue_info_t A structure containing information about one activity
process: the Frame Scheduler and minor frame it uses and its
scheduling discipline. Used when enqueuing a process.

typedef frs_recv_info_t A structure containing error recovery options.

Frame Scheduler Concepts

99

Library Interface for C Programs

The API library functions in /usr/lib/libfrs.so are summarized in Table 7-1 on “Library
Interface for C Programs” on page 99 for convenient reference.

Table 7-1 Frame Scheduler Operations

Operation Application Interface Options

Create a Frame Scheduler frs_t* frs_create(int cpu, int intr_source, int intr_qualifier, int n_minors,
pid_t sync_master_pid, int num_slaves);
frs_t* frs_create_master(int cpu, int intr_source, int intr_qualifier, int n_minors,
int num_slaves);
frs_t* frs_create_slave(int cpu, frs_t* sync_master_frs);

Enqueue an activity process to a Frame
Scheduler

int frs_enqueue(frs_t* frs, pid_t pid, int minor_index, uint discipline);

Join a Frame Scheduler (activity is ready to start) int frs_join(frs_t* frs);

Start scheduling (all activities enqueued) int frs_start(frs_t* frs);

Yield control after completing activity int frs_yield(void);

Pause scheduling at end of minor frame int frs_stop(frs_t* frs);

Resume scheduling at next time-base interrupt int frs_resume(frs_t* frs):

Destroy a Frame Scheduler and send SIGKILL to
its FRS control process

int frs_destroy(frs_t* frs);

Interrogate a process queue int frs_getqueuelen(frs_t* frs, int minor_index);
int frs_readqueue(frs_t* frs, int minor_index, pid_t* pidlist);

Remove a process from a queue int frs_premove(frs_t* frs, int minor_index, pid_t remove_pid);

Reinsert a process in a queue, possibly changing
discipline

int frs_pinsert(frs_t* frs, int minor_index, pid_t insert_pid, int discipline, pid_t
base_pid);

Retrieve error-recovery options int frs_getattr(frs_t* frs, int minor_index, pid_t pid, frs_attr_t att_index,
frs_recv_info_t* options);

Set error-recovery options int frs_setattr(frs_t* frs, int minor_index, pid_t pid, frs_attr_t att_index,
frs_recv_info_t* options);

100

Chapter 7: Using the Frame Scheduler

System Call Interface for Fortran and Ada

Each Frame Scheduler function is available in two ways: as a system call to schedctl(), or
as one or more library calls to functions in the frs library, /usr/lib/libfrs.so. The system call
is accessible from FORTRAN and Ada programs because both languages have bindings
for schedctl() (see the schedctl(2) reference page). The correspondence between the
library functions and schedctl() calls is shown in Table 7-2.

Table 7-2 Frame Scheduler schedctl() Support

Library Function Schedctl Syntax

frs_create() int schedctl(MPTS_FRS_CREATE, frs_info_t* frs_info);

frs_enqueue() int schedctl(MPTS_FRS_ENQUEUE, frs_queue_info_t* frs_queue_info);

frs_join() int schedctl(MPTS_FRS_JOIN, pid_t frs_master);

frs_start() int schedctl(MPTS_FRS_START, pid_t frs_master);

frs_yield() int schedctl(MPTS_FRS_YIELD);

frs_stop() int schedctl(MPTS_FRS_STOP, pid_t frs_master);

frs_resume() int schedctl(MPTS_FRS_RESUME, pid_t frs_master);

frs_destroy() int schedctl(MPTS_FRS_DESTROY, pid_t frs_master);

frs_getqueuelen() int schedctl(MPTS_FRS_GETQUEUELEN, frs_queue_info_t* frs_queue_info);

frs_readqueue() int schedctl(MPTS_FRS_READQUEUE, frs_queue_info_t* frs_queue_info,
pid_t* pidlist);

frs_premove() int schedctl(MPTS_FRS_PREMOVE, frs_queue_info_t* frs_queue_info);

frs_pinsert() int schedctl(MPTS_FRS_PINSERT, frs_queue_info_t* frs_queue_info,
pid_t *base_pid);

frs_getattr() int schectl(MPTS_FRS_GETATTR, frs_attr_info_t* frs_attr_info);

frs_setattr() int schectl(MPTS_FRS_SETATTR, frs_attr_info_t* frs_attr_info);

Frame Scheduler Concepts

101

Process Execution

An activity process that is enqueued to a Frame Scheduler has the basic structure shown
in Example 7-1.

Example 7-1 Skeleton of an Activity Process

/* Initialize data structures etc. */
frs_join(scheduler-handle)
do
{

/* Perform the activity. */
frs_yield();

} while(1);
_exit();

When the process is ready to start real-time execution, it calls frs_join(). This call blocks
until all enqueued processes are ready and scheduling begins (see “Starting Multiple
Schedulers” on page 105). When frs_join() returns, the process is running in its first
minor-frame execution.

The process then performs whatever activity it is supposed to complete in each minor
frame. When it completes that work, it calls frs_yield(). This gives up control of the CPU
until the next minor frame in which the process is enqueued.

An activity process is never preempted. As long as it yields before the end of the frame,
it can do its assigned work without interruption from other processes (it can be
interrupted by hardware interrupts, if any hardware interrupts are allowed in that CPU).
The Frame Scheduler preempts the process at the end of the minor frame.

Tip: Because an activity process cannot be preempted, it can often use global data
without locks or semaphores. When the process that modifies a global variable is
enqueued in a different minor frame from the processes that read the variable, there can
be no access conflicts between them.

Conflicts are still possible between two processes that are queued to the same minor
frame in different, synchronized Frame Schedulers. However, such processes are
guaranteed to be running concurrently. This means they can use spin-locks (see “Locks”
on page 33) with high efficiency.

102

Chapter 7: Using the Frame Scheduler

Tip: When a very short minor frame interval is used, it is possible for a process to have
an overrun error in its first frame due to cache misses. A simple variation on the basic
structure shown in Example 7-1 is to spend the first minor frame touching a set of
important data structures in order to “warm up” the cache (see “Reducing Cache Misses”
on page 52). This is sketched in Example 7-2.

Example 7-2 Alternate Skeleton of Activity Process

/* Initialize data structures etc. */
frs_join(scheduler-handle); /* Much time could pass here. */
/* First frame: merely touch important data structures. */
do
{

frs_yield();
/* Second and later frames: perform the activity. */

} while(1);
_exit();

When an activity process is scheduled on more than one minor frame in a major frame,
it can be designed to do nothing except warm the cache in the entire first major frame. To
do this, the activity process function has to know how many minor frames it is scheduled
on, and calls frs_yield() that many times in order to pass the first major frame.

Scheduling Within a Minor Frame

Processes in a minor frame queue are dispatched in queue order. Initially, queue order is
the order in which processes are named in frs_enqueue() calls. (The queues can be
reordered dynamically; see “Managing Activity Processes” on page 106.)

Scheduler Flags frs_run and frs_yield

The Frame Scheduler keeps two status flags per queued process, named frs_run and
frs_yield. If a process is ready to run when its turn comes, it is dispatched and its frs_run
flag is set to indicate that this process has run at least once within this minor frame.

When a process yields, its frs_yield flag is set to indicate that the process has released the
processor. It will not be activated again within this minor frame.

If a process is not ready (usually because it is blocked waiting for I/O, a semaphore, or a
lock), it is skipped. Upon reaching the end of the queue, the scheduler goes back to the
beginning, in a round-robin fashion, searching for processes that have not yielded and

Frame Scheduler Concepts

103

may have become ready to run. If no ready processes are found, the Frame Scheduler
goes into idle mode until a process becomes available or until an interrupt marks the end
of the frame.

Detecting Overrun and Underrun

When a time base interrupt occurs to indicate the end of the minor frame, the Frame
Scheduler checks the flags for each process. If the frs_run flag has not been set, that
process never ran and therefore is a candidate for an underrun exception. If the frs_run
flag is set but the frs_yield flag is not, the process is a candidate for an overrun exception.

Whether these exceptions are declared depends on the scheduling discipline assigned to
the process. Scheduling disciplines are explained under “Using the Scheduling
Disciplines” on page 110).

At the end of a minor frame, the Frame Scheduler resets all frs_run flags, except for those
of processes that use the Continuable discipline in that minor frame. For those processes,
the residual frs_yield flags keeps the processes that have yielded from being dispatched
in the next minor frame.

Underrun and overrun exceptions are typically communicated via IRIX signals. The
rules for sending these signals are covered under “Using Signals Under the Frame
Scheduler” on page 122.

Estimating Available Time

It is up to you to make sure that all the processes equeued to any minor frame can
actually complete their work in one minor-frame interval. If there is too much work for
the available CPU cycles, overrun errors will occur.

Estimation is simplified by the fact that only the enqueued processes can execute in a
CPU controlled by the Frame Scheduler. You need to estimate the maximum time each
process can consume between one call to frs_yield() and the next.

Frame Scheduler processes do compete for CPU cycles with I/O interrupt service in the
same CPU. If you direct I/O interrupts away from the CPU (see “Isolating a CPU From
Sprayed Interrupts” on page 81 and “Assigning Interrupts to CPUs” on page 81), then
the only competition for CPU cycles (other than a very few essential TLB interrupts) is
the overhead of the Frame Scheduler itself, and it has been carefully optimized for least
overhead.

104

Chapter 7: Using the Frame Scheduler

Alternatively, you may assign specific I/O interrupts to a CPU used by the Frame
Scheduler. In that case, you must estimate the time that interrupt service will consume
(see “Maximum Response Time Guarantee” on page 87) and allow for it.

Using Multiple Synchronized Schedulers

When the activities of one frame cannot be completed by one CPU, you need to recruit
additional CPUs and execute some activities concurrently. However, it is important that
each of the CPUs have the same time base, so that each starts and ends frames at the same
time.

You can create one master Frame Scheduler, which owns the time base and one CPU, and
as many synchronized Frame Schedulers as you need, each managing an additional
CPU. The synchronized schedulers take their time base from the master, so that all start
minor frames at the same instant.

Each Frame Scheduler has its own queues of processes. A given process can be enqueued
to only one CPU. (However, you could create multiple processes based on the same code,
and enqueue each to a different CPU.) All synchronized Frame Schedulers use the same
number of minor frames per major frame, which is taken from the definition of the
master FRS.

A process can have the FRS control relationship to only one Frame Scheduler. In order to
create multiple, synchronized Frame Schedulers, you must create a process to be the FRS
controller of each one. Typically these will be lightweight processes created with sproc().

Starting a Single Scheduler

A single Frame Scheduler comes into existence when the FRS control process calls
frs_create(). Then the FRS controller calls frs_enqueue() one or more times to tell the new
Frame Scheduler the PID values of the processes that it will schedule. The FRS controller
calls frs_start() when it has enqueued all the processes. Each scheduled process must call
frs_join() when it has initialized itself and is ready to be scheduled.

The Frame Scheduler requires the frs_enqueue() call for a given PID to precede the
frs_join() call from the same PID. That is, an activity process cannot join the scheduler
until the FRS controller has enqueued it—the frs_join() returns an error unless the calling
process has been enqueued. After the Frame Scheduler receives the frs_start() call it

Frame Scheduler Concepts

105

waits until all enqueued processes have called frs_join(); then it begins the first minor
frame.

Tip: A barrier provides a good way to coordinate the startup of a Frame Scheduler (see
“Barriers” on page 34). When each activity process starts, it should wait at a barrier. The
FRS controller, after performing all the enqueues, comes to the same barrier. The activity
processes can then join the scheduler.

Note: In version 1.0, 1.1, and 2.0 of REACT/Pro (the versions used with IRIX prior to
version 6.2), the Frame Scheduler allowed a process to join prior to the enqueue. This
flexibility was removed in version 3.0 (for IRIX 6.2) in order to simplify the
implementation and to improve performance.

Starting Multiple Schedulers

A Frame Scheduler cannot start dispatching activities until

• the FRS controller has enqueued all the activity processes to their minor frames

• all the enqueued processes have done their own initial setup and have joined.

When multiple Frame Schedulers are used, none can start until all are ready.

Each FRS controller tells its Frame Scheduler that it has enqueued all activities by calling
frs_start(). Each activity process tells its Frame Scheduler that it is ready to begin
real-time processing by calling frs_join().

A Frame Scheduler is ready when it has received one or more frs_enqueue() calls, an
appropriate number of frs_join() calls, and an frs_start() call. Each synchronized Frame
Scheduler tells the master Frame Scheduler when it is ready. When all the schedulers are
ready, the master Frame Scheduler gives the downbeat, and the first minor frame begins.

Pausing Frame Schedulers

Any Frame Scheduler can be made to pause and restart. Any process (typically but not
necessarily the FRS controller) can call frs_stop(), specifying a particular Frame
Scheduler. That scheduler continues dispatching processes from the current minor frame
until all have yielded. Then it goes into an idle loop until a call to frs_resume() tells it to
start. It resumes on the next time-base interrupt, with the next minor frame in succession.

106

Chapter 7: Using the Frame Scheduler

Note: If there is a process running Background discipline in the current minor frame, it
will continue to execute until it yields or is blocked on a system service.

Since a Frame Scheduler does not stop until the end of a minor frame, you can stop and
restart a group of synchronized schedulers by calling frs_stop() for each one before the
end of a minor frame. There is no way to restart all of a group of schedulers with the
certainty that they start up on the same time-base interrupt.

Managing Activity Processes

The FRS control process creates the initial set of activity processes by calling
frs_enqueue() prior to starting the Frame Scheduler. All the enqueued processes must
call frs_join() before scheduling can begin. However, the FRS controller can change the
set of activity processes dynamically while the Frame Scheduler is working, using the
following functions:

Using these functions, the FRS controller can change the queueing discipline of a process
(by removing it and inserting it with a new discipline). The FRS controller can suspend
a process by removing it from its queue; or can restart a process by putting it back in its
queue.

Note: When an activity process is removed from the last or only queue it was in, it is
returned to the normal IRIX scheduler and can begin to execute on some other
CPU.When an activity process is removed from a queue, a signal may be sent to the
removed process (see “Handling Signals in an Activity Process” on page 124). If a signal
is sent to it, it will begin executing in its specified or default signal handler; otherwise, it
will simply begin executing following frs_yield(). Once returned to the IRIX scheduler,
a call to an FRS function such as frs_yield() returns an error (this also can be used to
indicate the resumption of normal scheduling).

frs_getqueuelen() Get the number of processes currently in the queue for a
specified minor frame.

frs_readqueue() Return the PID values of all queued processes for a specified
minor frame as a vector of integers.

frs_premove() Remove a process (specified by PID) from a minor frame queue.

frs_pinsert() Insert a process (specified by PID and discipline) into a given
position in a minor frame.

Selecting a Time Base

107

The FRS controller can also enqueue new processes that have not been scheduled before.
The Frame Scheduler does not reject an frs_pinsert() call for a process that has not yet
joined the scheduler. However, a process must call frs_join() before it can be scheduled.

If an enqueued process should be terminated for any reason, the Frame Scheduler
removes the process from all queues in which it appears.

Selecting a Time Base

Your program specifies an interrupt source to be the time base when it creates the master
(or only) Frame Scheduler. The master Frame Scheduler initializes the necessary
hardware resources and redirects the interrupt to the appropriate CPU and handler.

The Frame Scheduler time base is fundamental because it determines the duration of a
minor frame, and hence the frame rate of the program. This section explains the different
time bases available.

When you use multiple, synchronized Frame Schedulers, the master Frame Scheduler
creates an interrupt group, a hardware mechanism that distributes the time-base interrupt
to each synchronized CPU. This ensures that minor-frame boundaries are synchronized
across all the Frame Schedulers. (For details of the interrupt group mechanism, you can
read “Group Interrupts on Challenge and Onyx Systems,” a technical paper distributed
with the REACT/Pro product.)

On-Chip Timer Interrupt

Each processor chip contains a free-running timer that is used by IRIX for normal process
scheduling. This timer is not synchronized between processors, so it cannot be used to
drive multiple synchronized schedulers. The on-chip timer can be used as a time base
when only one CPU is used and there is a reason to not use the high-precision timer
described in the next topic.

To use the on-chip timer, specify FRS_INTRSOURCE_R4KTIMER as the interrupt source,
and the minor frame interval in microseconds, to frs_create().

108

Chapter 7: Using the Frame Scheduler

High-Resolution Timer

The high-resolution timer and clock is a timer that is synchronous across all processors,
and is ideal to drive synchronous schedulers. On Challenge and Onyx systems this timer
is based on the high resolution counter discussed under “Hardware Cycle Counter” on
page 40.

To use this timer, specify FRS_INTRSOURCE_CCTIMER, and the minor frame interval
in microseconds, to frs_create().

The IRIX kernel uses this timer for managing timer events. When your program creates
the master Frame Scheduler, the Frame Scheduler migrates all timeout events to CPU 0,
leaving the timer on the scheduled CPU free.

An interrupt group is not required to coordinate multiple Frame Schedulers when this
time base is used. The high-resolution timers in all CPUs are synchronized automatically.

Vertical Sync Interrupt

An interrupt is generated for every vertical retrace by the graphics subsystem (see
“Understanding the Vertical Sync Interrupt” on page 82). The frame rate will be either 50
Hz or 60 Hz, depending on the installed hardware. This interrupt is especially
appropriate for a visual simulator, since it defines a frame rate that matches the graphics
subsystem frame rate.

To use the vertical sync interrupt, specify FRS_INTRSOURCE_VSYNC to frs_create().
An error is returned if this system lacks a graphics subsystem.

When multiple synchronized schedulers are used, the master Frame Scheduler allocates
an interrupt group to distribute the vertical sync interrupt.

External Interrupts

An external interrupt is generated via a signal applied to the external interrupt sockets
on a Challenge or Onyx system (see “External Interrupts” on page 173). To use external
interrupts as a time base, specify FRS_INTRSOURCE_EXTINTR to frs_create().

Selecting a Time Base

109

When multiple synchronized schedulers are used, the master Frame Scheduler receives
the interrupt, and allocates an interrupt group that is used to make the interrupt
simultaneously available to the synchronized schedulers.

Note: External output signals can be generated by software using ioctl() to the external
interrupt driver. An imaginative designer might think of connecting an external output
jack to an external interrupt input jack on the same system, thus creating
software-controlled external interrupts as an FRS time base. This would work in
principle. However, if user process generating the interrupts are generated by a user
process that makes any other system calls, there is a possibility of system deadlock.

Device Driver Interrupt

A user-written, kernel-level device driver can supply the time-base interrupt (see “The
Frame Scheduler Device Driver Interface” on page 126). The Frame Scheduler allocates
an interrupt group. The device driver must direct interrupts to it.

To use a device driver as a time base, specify FRS_INTRSOURCE_DRIVER and the
device driver’s identifying number, to frs_create().

Software Interrupt

A programmed, software-generated interrupt can be used as the time base. Any user
process can send this interrupt to the master Frame Scheduler by calling frs_userintr().

Note: Software interrupts are primarily intended for application debugging. It is not
feasible for a user process to generate interrupts with the kind of regularity that a
real-time scheduler requires.

To use software interrupts as a time base, specify FRS_INTRSOURCE_USER to
frs_create().

Caution: The use of software interrupts has a potential for causing a system deadlock if
the interrupt-generating process contends for a resource that is also used by a
frame-scheduled activity process. If any activity process calls IRIX system functions, the
only way to be absolutely sure of avoiding deadlock is for the interrupt-generating
process to avoid using any IRIX system functions. Note that C library functions such as
printf() invoke system functions, and can lead to deadlocks in this case.

110

Chapter 7: Using the Frame Scheduler

Using the Scheduling Disciplines

When an FRS control process enqueues a process to a minor frame (using frs_enqueue()),
it must specify a scheduling discipline that tells the Frame Scheduler how the process is
expected to use its time within that minor frame.

Realtime Discipline

In the simplest case, an activity process should start during the minor frame to which it
is queued, and should complete its work and yield within the same minor frame.

If the process is not ready to run (for example, is blocked on I/O) during the entire minor
frame, an underrun exception is said to occur. If the process fails to complete its work and
yield within the minor frame interval, an overrun exception is said to occur.

The Frame Scheduler calls this strict discipline the Realtime scheduling discipline.

The simplest case of a Frame Scheduler would consist of

• one minor frame per major frame—the time base is also the frame rate

• one or more activities enqueued to the frame with Realtime discipline

This model could describe a simple kind of simulator in which certain activities—poll the
inputs; calculate the new status; update the display—must be repeated in that order
during every frame. In this scenario, each activity must start and must finish in every
frame. If one fails to start, or fails to finish, the real-time program is broken in some way
and must take some action.

However, realistic designs need the flexibility to have processes that

• need not start every frame; for instance, processes that sleep on a semaphore until
there is work for them to do

• may run longer than one minor frame

• should run only when time is available, and whose rate of progress is not critical

The other disciplines are used, in combination with Realtime and with each other, to
allow these variations.

Using the Scheduling Disciplines

111

Background Discipline

The Background discipline is mutually exclusive with the other disciplines. The Frame
Scheduler only dispatches a Background process when all other processes queued to that
minor frame have run and have yielded. Since the Background process cannot be sure it
will run and cannot predict how much time it will have, the concepts of underrun and
overrun do not apply to it.

Note: A process with the Background discipline must be queued to its frame following
all non-Background processes. Do not queue a real-time process after a Background
process.

Underrunable Discipline

You specify Underrunable discipline with Realtime discipline to prevent detection of
underrun exceptions. You specify Underrunable in two cases:

• When a process needs to run only when some event has occurred such as a lock
being released or a semaphore being posted.

• When a process may need more than one minor frame (see “Using Multiple
Consecutive Minor Frames” on page 112).

When you specify Realtime+Underrunable, the process is not required to start in that
minor frame. However, if it starts, it is required to yield before the end of the frame or an
overrun exception is raised.

Overrunnable Discipline

You specify Overrunnable discipline with Realtime discipline to prevent detection of
overrun exceptions. You specify it in two cases:

• When it truly does not matter if the process fails to complete its work within the
minor frame—for example, a calculation of a game strategy which, if it fails to
finish, merely makes the computer a less dangerous opponent.

• When a process may need more than one minor frame (see “Using Multiple
Consecutive Minor Frames” on page 112).

112

Chapter 7: Using the Frame Scheduler

When you specify Overrunnable+Realtime, the process is not required to call frs_yield()
before the end of the frame. Even so, the process is preempted at the end of the frame. It
does not have a chance to run again until the next minor frame in which it is enqueued.
At that time it resumes where it was preempted, with no indication that it was
preempted.

Continuable Discipline

You specify Continuable discipline with Realtime discipline to prevent the Frame
Scheduler from clearing the flags at the end of this minor frame (see “Scheduling Within
a Minor Frame” on page 102).

The result is that, if the process yields in this frame, it need not run or yield in the
following frame. The residual frs_yield flag value, carried forward to the next frame,
applies. You specify Continuable discipline with other disciplines in order to let a process
execute just once in a block of consecutive minor frames.

Using Multiple Consecutive Minor Frames

There are cases when a process sometimes or always requires more than one minor frame
to complete its work. Possibly the work is lengthy, or possibly the process could be
delayed by a system call or a lock or semaphore wait.

You must decide the absolute maximum time the process could consume between
starting up and calling frs_yield(). If this is unpredictable, or if it is predictably longer
than the major frame, the process cannot be scheduled by the Frame Scheduler. It should
probably run in another CPU under the IRIX scheduler.

However, when the worst case time is bounded and is less than the major frame, you can
enqueue the process to enough consecutive minor frames to allow it to finish. A
combination of disciplines is used in these frames to ensure that the process starts when
it should, finishes when it must, and does not cause an error if it finishes early.

The discipline settings for each frame should be:

First frame Realtime + Overrunnable + Continuable—the process must start in this
frame (not Underrunable) but is not required to yield (Overrunnable). If
it yields, it is not restarted in the following minor frame (Continuable).

Preparing the System

113

Intermediate Realtime+Underrunable+Overrunnable+Continuable—the process
need not start (it might already have yielded, or might be blocked) but
is not required to yield. If it does yield (or if it had yielded in a preceding
minor frame), it is not restarted in the following minor frame
(Continuable).

Final frame Realtime+Underrunable—the process need not start (it might already
have yielded) but if it starts, it must yield in this frame (not
Overrunnable). The process can start a new run in the next minor frame
to which it is queued (not Continuable).

A process can be enqueued for one or more of these multi-frame sequences in one major
frame. For example, suppose that the minor frame rate is 60 Hz, and a major frame
contains 60 minor frames (1 Hz). You have a process that should run at a rate of 5 Hz and
can use up to 3/60 second at each dispatch. You would enqueue the process to 5
sequences of 3 consecutive frames each. It would start in frames 0, 12, 24, 36, and 48.
Frames 1, 13, 25, 37 and 49 would be intermediate frames, and 2, 14, 26, 38 and 50 would
be final frames.

Preparing the System

Before a real-time program executes, you must set up the system in the following ways.

1. Choose the CPU or CPUs that the real-time program will use. CPU 0 (at least) must
be reserved for IRIX system functions.

2. Decide which CPUs will handle I/O interrupts. By default, IRIX distributes I/O
interrupts across all available processors as a means of balancing the load (referred
to as spraying interrupts). CPUs that are used for real-time programs should be
removed from the distribution set (see “Assigning Interrupts to CPUs” on page 81).

3. Make sure that none of the real-time CPUs is managing the clock (see “Assigning
the Clock Processor” on page 79). Normally the responsibility of handling 10ms
scheduler interrupts is given to CPU 0.

4. Make sure none of the real-time CPUs is handling the fast timer (“Assigning the
fasthz Processor” on page 79). This responsibility is typically given to CPU 0 along
with all other housekeeping.

Each Frame Scheduler takes care of restricting and isolating its CPU, so that the CPU is
used only be processes scheduled by the Frame Scheduler.

114

Chapter 7: Using the Frame Scheduler

Implementing a Single Frame Scheduler

When the activities of your real-time program can be handled within a major frame
interval by a single CPU, your program needs to create only one Frame Scheduler.

Typically your program has a top-level process (called the master process here) to handle
start-up and termination, and one or more activity processes that are dispatched by the
Frame Scheduler. The activity processes are typically lightweight processes created using
sproc(), but that is not a requirement—the activity processes can be created with fork(),
and they need not be children of the master process. (See for instance “Example of
Scheduling Separate Programs” on page 227.)

In general, these are the steps that the master process follows:

1. Initialize global resources such as memory-mapped segments, memory arenas, files,
asynchronous I/O, and other resources.

2. Lock the address space segments shared by activity processes (see “Locking Pages
in Memory” on page 49). (When fork() is used, each child process must lock its own
address space.)

3. Create the Frame Scheduler using frs_create_master() (see Table 7-1 on “Library
Interface for C Programs” on page 99).

4. Change the Frame Scheduler signals or exception policy, if desired (see “Setting
Frame Scheduler Signals” on page 124 and “Setting Exception Policies” on
page 119).

5. Create the activity processes using sproc() or fork() or, if they are independent
processes, get them started and obtain their PID values.

6. Use frs_enqueue() to queue each activity process to the queue or queues on which it
is to run.

Each activity process independently uses frs_join() to let the Frame Scheduler
know it is ready to start real-time execution. This call must follow the frs_enqueue()
call for that process. The call blocks until scheduling begins, then returns to start the
first frame dispatch of each activity process.

7. Set up signal handlers for signals from the Frame Scheduler (see “Using Signals
Under the Frame Scheduler” on page 122). The handlers are set at this time, after
creation of the activity processes, so that the activity processes do not inherit them.

8. Use frs_start() (Table 7-1) to enable scheduling.

Implementing Synchronized Schedulers

115

The Frame Scheduler begins scheduling processes as soon as all the activity
processes have called frs_join().

9. Wait for error and termination signals from the Frame Scheduler and for the
termination of child processes.

10. Use frs_destroy() to terminate the Frame Scheduler.

11. Tidy up the global resources as required.

Implementing Synchronized Schedulers

When the real-time application requires the power of multiple CPUs, you must add one
more level to the program design for a single CPU. The program creates multiple Frame
Schedulers, one master and one or more synchronized slaves.

Syncronized Scheduler Concepts

The first Frame Scheduler provides the time base for the others. It is called the
sync-master scheduler. The other schedulers take their time base interrupts from the
sync-master, and so are called sync-slaves. The combination is called a sync group.

No single process may create more than one Frame Scheduler. This is because every
Frame Scheduler must have a unique FRS control process to which it can send signals.
As a result, the program will have three types of processes:

• a master process that sets up global data and creates the master Frame Scheduler

• one FRS control process for each sync-slave Frame Scheduler

• activity processes

The sync-master scheduler must be created before any sync-slave schedulers can be
created. Sync-slaves must be specified to have the same time base and the same number
of minor frames as the sync-master.

Sync-slave schedulers can be stopped and restarted independently. However, when any
scheduler, master or slave, is destroyed, all are immediately destroyed.

116

Chapter 7: Using the Frame Scheduler

Synchronized Schedulers: the Sync-Master Process

A variety of program designs is possible but the simplest is possibly the set of processes
described in the following paragraphs.

The master process executes first and performs these steps:

1. Initialize global resources such as memory-mapped segments, memory arenas, files,
asynchronous I/O, and other resources. One global resource is the process ID of the
master process.

2. Lock the address space shared with lightweight processes.

3. Create the sync-master Frame Scheduler using the call frs_create_master(), and
store its handle in a global location.

4. Create one FRS control process for each synchronized CPU to be used.

5. Create the activity processes that will be scheduled by the master Frame Scheduler
and use frs_enqueue() to enqueue them to their assigned minor frames.

6. Set up signal handlers for signals from the Frame Scheduler (see “Using Signals
Under the Frame Scheduler” on page 122).

7. Use frs_start() (Table 7-1) to tell the master Frame Scheduler that its activity
processes are all enqueued.

The master Frame Scheduler will start scheduling processes as soon as all processes
have called frs_join() for their respective schedulers.

8. Wait for termination or error signals.

9. Use frs_destroy() to terminate the master Frame Scheduler.

10. Tidy up global resources as required.

Implementing Synchronized Schedulers

117

Synchronized Schedulers: Sync-Slave Processes

Each FRS control process for a synchronized scheduler (a sync-slave) will:

1. Create a synchronized Frame Scheduler using frs_create_slave(), specifying
information about the master Frame Scheduler stored by the master process. The
sync-master must exist. A sync-slave must specify the same time base and number
of minor frames as the sync-master.

2. Change the Frame Scheduler signals or exception policy, if desired (see “Setting
Frame Scheduler Signals” on page 124 and “Setting Exception Policies” on
page 119).

3. Create the activity processes that will be scheduled by this synchronized Frame
Scheduler, and use frs_enqueue() to enqueue them to their assigned minor frames.

4. Set up signal handlers for signals from the synchronized Frame Scheduler.

5. Use frs_start() to tell the synchronized Frame Scheduler that all activity processes
have been enqueued.

The sync-slave notifies the master Frame Scheduler when all processes have called
frs_join(). When the master Frame Scheduler starts broadcasting interrupts,
scheduling will begin.

6. Wait for termination or error signals.

7. Use frs_destroy() to terminate the synchronized Frame Scheduler.

For an example of this kind of program structure, refer to “Examples of Multiple
Synchronized Schedulers” on page 229.

Tip: In this design sketch, the knowledge of which activity processes to create, and on
which frames to enqueue them, is distributed throughout the code of multiple processes,
where it might be hard to maintain. However, it would be possible to centralize the plan
of schedulers, activities, and frames in one or more arrays that are statically initialized.
This would improve the maintainability of a complex program.

Tip: A program of this type is place where you might use a barrier (see “Barriers” on
page 34). For example, you want to be sure that all Frame Schedulers are successfully
created before you start to create activity processes. The master and the FRS control
processes could rendezvous at a barrier after creating their schedulers, but before
starting to create activity processes or enqueue them.

118

Chapter 7: Using the Frame Scheduler

Handling Frame Scheduler Exceptions

The FRS control process for a scheduler controls the handling of the Overrun and
Underrun exceptions. It can specify how these exceptions should be handled, and what
signals the Frame Scheduler should send. These policies have to be set before the
scheduler is started. While the scheduler is running, the FRS controller can query the
number of exceptions that have occurred.

Exception Types

The Overrun exception indicates that a process failed to yield in a minor frame where it
was expected to yield, and was preempted at the end of the frame. An Overrun exception
indicates that an unknown amount of work that should have been done was not done,
and will not be done until the next frame in which the overrunning process is queued.

The Underrun exception indicates that a process that should have started in a minor
frame did not start. Possibly the process has terminated. More likely it was blocked in
some kind of wait because of an unexpected delay in I/O, or a deadlock on a lock or
semaphore.

Exception Handling Policies

The FRS control process can establish one of four policies for handling overrun and
underrun exceptions. When it detects an exception, the Frame Scheduler can:

• Send a signal to the FRS controller

• Inject an additional minor frame

• Extend the frame by a specified number of microseconds

• Steal a specified number of microseconds from the following frame

The default action is to send a signal (the specific signals are listed under “Setting Frame
Scheduler Signals” on page 124). The scheduler continues to run. The FRS control
process can then take action, for example, terminating the Frame Scheduler.

Handling Frame Scheduler Exceptions

119

Injecting a Repeat Frame

The policy of injecting an additional minor frame can be used with any time base. The
Frame Scheduler inserts another complete minor frame, essentially repeating the minor
frame in which the exception occurred. In the case of an overrun, the activity processes
that did not finish have another frame’s worth of time to complete. In the case of an
underrun, there is that much more time for the waiting process to wake up. Because
exactly one frame is inserted, all other processes remain synchronized to the time base.

Extending the Current Frame

The policies of extending the frame, either with more time or by stealing time from the
next frame, are allowed only when the time base is an on-chip or high-resolution timer
(see “Selecting a Time Base” on page 107).

When adding time, the current frame is made longer by a fixed amount of time. Since the
minor frame becomes a variable length, it is possible for the Frame Scheduler to drop out
of synch with an external device.

When stealing time from the following frame, the Frame Scheduler returns to the original
time base at the end of the following minor frame—provided that the processes queued
to that following frame can finish their work in a reduced amount of time. If they do not,
the Frame Scheduler will steal time from the next frame still.

Dealing With Multiple Exceptions

You decide how many consecutive exceptions are allowed within a single minor frame.
After injecting, stretching, or stealing time that many times, the Frame Scheduler stops
trying to recover, and sends a signal instead.

The count of exceptions is reset when a minor frame completes with no remaining
exceptions.

Setting Exception Policies

The frs_setattr() function is used to change exception policies. This function must be
called before the Frame Scheduler is started. After scheduling has begun, an attempt to
change the policies or signals is rejected.

120

Chapter 7: Using the Frame Scheduler

In order to allow for future enhancements, frs_setattr() accepts arguments for minor
frame number and process ID; however it currently only allows setting exception
policies for all policies and all minor frames. The most significant argument to it is the
frs_recv_info structure, declared with these fields.

typedef struct frs_recv_info {
mfbe_rmode_t rmode; /* Basic recovery mode */
mfbe_tmode_t tmode; /* Time expansion mode */
uint maxcerr; /* Max consecutive errors */
uint xtime; /* Recovery extension time */

} frs_recv_info_t;

The recovery modes and other constants are declared in /usr/include/sys/frs.h. The
function in Example 7-3 sets the policy of injecting a repeat frame. The caller specifies
only the Frame Scheduler and the number of consecutive exceptions allowed.

Example 7-3 Function to Set INJECTFRAME Exception Policy

int
setInjectFrameMode(frs_t *frs, int consecErrs)
{

frs_recv_info_t work;
bzero((void*)&work,sizeof(work));
work.rmode = MFBERM_INJECTFRAME;
work.maxcerr = consecErrs;
return frs_setattr(frs,0,0,FRS_ATTR_RECOVERY,(void*)&work);

}

The function in Example 7-4 sets the policy of stretching the current frame (a function to
set the policy of stealing time from the next frame would be nearly identical). The caller
specifies the Frame Scheduler, the number of consecutive exceptions, and the stretch time
in microseconds.

Example 7-4 Function to Set STRETCH Exception Policy

int
setStretchFrameMode(frs_t *frs,int consecErrs,uint microSecs)
{

frs_recv_info_t work;
bzero((void*)&work,sizeof(work));
work.rmode = MFBERM_EXTENDFRAME_STRETCH;
work.tmode = EFT_FIXED; /* only choice available */
work.maxcerr = consecErrs;
work.xtime = microSecs;
return frs_setattr(frs,0,0,FRS_ATTR_RECOVERY,(void*)&work);

Handling Frame Scheduler Exceptions

121

}

Querying Counts of Exceptions

When you set a policy that permits exceptions, the FRS control process can query for
counts of exceptions. This is done with a call to frs_getattr(), passing the handle to the
Frame Scheduler, the number of the minor frame, and the process ID of the process
within that frame.

The values returned in a structure of type frs_overrun_info_t are the counts of overrun and
underrun exceptions incurred by that process in that minor frame. In order to find out
the count of all overruns in a given minor frame, you must sum the counts for all
processes queued to that frame. If a process is queued to more than one minor frame,
separate counts are kept for it in each frame.

The function in Example 7-5 takes a Frame Scheduler handle and a minor frame number.
It gets the list of process IDs queued to that that minor frame, and returns the sum of all
exceptions for all of them.

Example 7-5 Function to Return a Sum of Exception Counts

#define THE_MOST_PIDS 250
int
totalExcepts(frs_t * theFRS, int theMinor)
{

int numPids = frs_getqueuelen(theFRS, theMinor);
int j, sum;
pid_t allPids[THE_MOST_PIDS];

if ((numPids <= 0) || (numPids > THE_MOST_PIDS))
return 0; /* invalid minor #, or no procs queued? */

if (!frs_readqueue(theFRS, theMinor, allPids))
return 0; /* unexpected problem with reading IDs */

for (sum = j = 0; j<numPids; ++j)
{

frs_overrun_info_t work;
frs_getattr(theFRS, /* the scheduler */

theMinor, /* the minor frame */
allPids[j], /* the process */
FRS_ATTR_OVERRUNS, /* want counts */
&work); /* put them here */

122

Chapter 7: Using the Frame Scheduler

sum += (work.overruns + work.underruns);
}
return sum;

}

Tip: If a function such as the one in Example 7-5 is to be called frequently, it is a good
idea to prepare the arrays of process IDs once and save them. The repeated calls to
frs_getqueuelen() and frs_readqueue() can be avoided.

Using Signals Under the Frame Scheduler

The Frame Scheduler itself sends signals to the processes using it. And processes can
communicate by sending signals to each other. In brief, an FRS sends signals to indicate
that

• The FRS has been terminated

• Overrun or underrun have been detected

• A process has been dequeued

The rest of this topic details how to specify the signal numbers and how to handle the
signals.

Signal Delivery and Latency

When a process is scheduled by the IRIX kernel, it receives a pending signal the next time
the process exits from the kernel domain. For most signals, this could occur

• when the process is dispatched after a wait or preemption

• upon return from some system call

• upon return from the kernel’s usual 10-millisecond tick interrupt

(SIGALRM is delivered as soon as the kernel is ready to return to user processing after
the timer interrupt, in order to preserve timer accuracy.) Thus, for a process that is ready
to run, in a CPU that has not been made nonpreemptive, normal signal latency is at most
10 milliseconds, and SIGALARM latency is less. However, when the receiving process is
not ready to run, or when there are competing processes with superious priorities, the
delivery of a signal is delayed until the next time the receiving process is scheduled.

Using Signals Under the Frame Scheduler

123

When the CPU is nonpreemptive (see “Making a CPU Nonpreemptive” on page 86),
there are no clock tick interrupts, so signals can only be delivered following a system call.

Signal latency can be greater when running under the Frame Scheduler. Like the normal
IRIX scheduler, the Frame Scheduler delivers pending signals to a process when it next
returns to the process from the kernel domain. This can occur

• when the process is dispatched at the start of a minor frame where it is enqueued

• upon return from some system call

The upper bound on signal latency in this case is the interval between the minor frames
to which that process is queued. If the process is scheduled only once in a major frame,
it might not receive a signal until a full major frame interval after the signal is sent.

Handling Signals in the FRS Controller

When a Frame Scheduler detects an Overrun or Underrun exception that it cannot
recover from, and when it is ready to terminate, it sends a signal to the FRS control
process.

Tip: Child processes inherit signal handlers from the parent, so a parent should not set
up handlers prior to sproc() or fork() unless they are meant to be inherited.

The FRS control process for a synchronized Frame Scheduler should have handlers for
Underrun and Overrun signals. The handler could report the error and issue
frs_destroy() to shut down its scheduler. An FRS controller for a synchronized scheduler
should use the default action for SIGHUP (Exit) so that completion of the frs_destroy()
quietly terminates the FRS controller.

The FRS controller for the master (or only) Frame Scheduler should catch Underrun and
Overrun exceptions, report them, and shut down its scheduler.

When an FRS is terminated with frs_destroy(), it sends SIGKILL to its FRS control
process. This cannot be changed; and SIGKILL cannot be handled. Hence frs_destroy()
is equivalent to termination for the FRS control process. (In the first release, the FRS sent
SIGHUP, but this made deadlocks possible and had to be given up.)

124

Chapter 7: Using the Frame Scheduler

Handling Signals in an Activity Process

A Frame Scheduler can send a signal to an activity process when the process is removed
from any queue using frs_premove() (see “Managing Activity Processes” on page 106).
The scheduler can also send a signal to an activity process when it is removed from the
last or only minor frame to which it was enqueued (at which time a process is returned
to normal IRIX scheduling).

In order to have these signals sent, the FRS controller must set nonzero signal numbers
for them, as discussed in the following topic, “Setting Frame Scheduler Signals.”

Setting Frame Scheduler Signals

The frame scheduler sends signals to the FRS control process.

Note: In earlier versions of REACT/Pro, the Frame Scheduler sent these signals to all
processes queued to that Frame Scheduler as well as the FRS controller. That is no longer
the case. You can remove signal handlers for these signals from activity processes, if they
exist.

The signal numbers used for most events can be modified. The signal numbers can be
queried using frs_getattr(FRS_ATTR_SIGNALS) and changed using
frs_setattr(FRS_ATTR_SIGNALS), in each case passing an frs_signal_info structure. This
structure contains room for four signal numbers, as shown in Table 7-3

Table 7-3 Signal Numbers Passed in frs_signal_info_t

Field Name Signal Purpose Default Signal Number

sig_underrun Notify FRS controller of Underrun. SIGUSR1

sig_overrun Notify FRS controller of Overrun. SIGUSR2

sig_dequeue Notify an activity process that it has been
dequeued with frs_premove().

0 (do not send)

sig_unframesched Notify an activity process that it has been
removed from the last or only queue in
which it was enqueued.

SIGRTMIN

Using Timers with the Frame Scheduler

125

Signal numbers must be changed before the Frame Scheduler is started. All the numbers
must be specified to frs_setattr(), so the proper way to set any number is to first file the
frs_signal_info_t using frs_getattr(). The function in Example 7-6 sets the signal numbers
for Overrun and Underrun from its arguments.

Example 7-6 Function to Set Frame Scheduler Signals

int
setUnderOverSignals(frs_t *frs, int underSig, int overSig)
{

int error;
frs_signal_info_t work;
error = frs_getattr(frs,0,0,FRS_ATTR_SIGNALS,(void*)&work);
if (!error)
{

work.sig_underrun = underSig;
work.sig_overrun = overSig;
error = frs_setattr(frs,0,0,FRS_ATTR_SIGNALS,(void*)&work);

}
return error;

}

Using Timers with the Frame Scheduler

In general, interval timers and the Frame Scheduler do not mix. The expiration of an
interval is marked by a signal. However, signal delivery to an activity process can be
delayed (see “Signal Delivery and Latency” on page 122), so timer latency is
unpredictable.

An FRS control process, because it is scheduled by IRIX, not the Frame Scheduler, can use
interval timers. However, it has a more reliable time base available in the activity
processes it creates. The FRS controller can create a global semaphore on which it waits
with uspsema() (see “IRIX Semaphores” on page 32). The minimal activity process
shown in Example 7-7 can be enqueued to one or more minor frames to provide a
repeating interval at any multiple of the major-frame interval.

126

Chapter 7: Using the Frame Scheduler

Example 7-7 Minimal Activity Process as a Timer

frs_join(scheduler-handle)
do {

usvsema(frs-controller-wait-semaphore);
frs_yield();

} while(1);
_exit();

The Frame Scheduler Device Driver Interface

The Frame Scheduler provides a device driver interface to allow any device with a
kernel-level device driver to generate the time-base interrupt. As many as 16 different
device drivers can support the Frame Scheduler in any one Challenge/Onyx system. The
Frame Scheduler distinguishes device drivers by an ID number in the range 0 through 15
that is coded into each driver.

Note: The structure of an IRIX kernel-level device driver is discussed in the IRIX Device
Driver Programming Guide (see “Other Useful Books” on page xxiii). The generation of
time-base signals can be added as a minor enhancement to a existing device driver.

In order to interact with the Frame Scheduler, a driver provides two routines, one for
initialization and one for termination, which it exports during driver initialization. After
a master Frame Scheduler has initialized a device driver, the driver calls a Frame
Scheduler entry point to signal the occurrence of each interrupt.

Device Driver Overview

The following sequence of actions occurs when a device driver is used as a source of
time-base interrupts for the Frame Scheduler.

The Frame Scheduler Device Driver Interface

127

1. During its initialization in the pfxstart() or pfxinit() entry point, the driver calls a
kernel function to report its pfx_frs_func_set() and pfx_frs_func_clear() functions,
and to specify a unique driver identifier between 0 and 15. After this has been done,
the Frame Scheduler is aware of the existence of this driver, and will allow
programs to request it as the source of interrupts.

2. Later, a real-time program creates a master Frame Scheduler and specifies this
driver (by number) as the source of interrupts. The Frame Scheduler verifies that
this driver has exported the two functions. Then it calls pfx_frs_func_set(intrgroup)
for this particular driver. This tells the driver that time signals are needed.

3. The device driver calls frs_handle_driverintr() each time its interrupt handling
routine is entered. This informs the Frame Scheduler that an interrupt has been
received.

4. When the Frame Scheduler is being terminated, it invokes pfx_frs_func_clear() for
the associated driver. This tells the driver that time signals are no longer needed,
and to cease calling frs_handle_driverintr() until it is again initialized by a Frame
Scheduler.

The pfx in function names is the name of the loadable device driver as specified in its
master.d file. Device driver names, device driver structure, configuration files, and related
topics are covered in the IRIX Device Driver Programming Guide.

Exporting the Initialization and Termination Functions

A device driver must export the Frame Scheduler interface functions to make them
known to the Frame Scheduler. This call, which occurs during the device driver’s own
initialization, also makes the driver known as a source of time-base interrupts:

frs_driver_export(int frs_driver_id,
void (*frs_func_set)(intrgroup_t*),
void (*frs_func_clear)(void));

A typical call resembles the code in Example 7-8.

The parameter frs_driver_id is the driver’s identification number. A real-time program
specifies the same number to frs_create_master() in order to select this driver as the
source of interrupts. The identifier is an integer between 0 and 7. Different drivers in the
same system must use different identifiers.

128

Chapter 7: Using the Frame Scheduler

Example 7-8 Exporting Device Driver Entry Points

/*
** Function called by the example driver to export
** its Frame Scheduler interface functions.
*/
frs_driver_export(3, example_frs_func_set, example_frs_func_clear);

Frame Scheduler Initialization Function

The device driver must provide a function with the following prototype:

void pfx_frs_func_set (intrgroup_t* intrgroup) ;

A skeleton of an initialization function is shown in Example 7-9. The function is called by
a new master Frame Scheduler that is created with an interrupt source parameter of
FRS_INTRSOURCE_DRIVER and an interrupt qualifier specifying this device driver’s
number (see “Device Driver Interrupt” on page 109). A device driver is used by only one
Frame Scheduler at a time.

The argument intrgroup is passed by the Frame Scheduler to identify the interrupt group
it has allocated. A VME device driver must set the hardware devices it manages so that
interrupts are directed to this interrupt group (see the paper “Group Interrupts on
Challenge and Onyx Systems” distributed with REACT/Pro). The actual group
identifier may be obtained using the macro:

intrgroup_get_groupid(intrgroup)

The effective destination may be obtained using the following macro:

EVINTR_GROUPDEST(intrgroup_get_groupid(intrgroup))

Example 7-9 Device Driver Initialization Function

/*
** Frame Scheduler initialization function
** for the External Interrupts Driver
*/
int FRS_is_active = 0;
int FRS_vme_install = 0;
void
example_frs_func_set(intrgroup_t* intrgroup)
{

int s;

The Frame Scheduler Device Driver Interface

129

ASSERT(intrgroup != 0);
/*
** Step 1 (VME only):
** In a VME device driver, set up the hardware to send
** the interrupt to the appropriate destination.
** This is done with vme_frs_install() which takes:
** * (int) the VME adapter number
** * (int) the VME IPL level
** * the intrgroup as passed to this function.
*/
FRS_vme_install = vme_frs_install(

my_edt.e_adap, /* edt struct from example_edtinit */
((vme_intrs_t *)my_edt.e_bus_info)->v_brl,
intrgroup);

/*
** Step 2: any hardware initialization required.
*/
/*
** Step 3: note that we are now in use.
*/
FRS_is_active = 1;

}

Only VME device drivers need to call vme_frs_install(). As suggested by the code in
Example 7-9, the arguments to vme_frs_install() can be taken from data supplied at boot
time to the device driver’s pfxedtinit() function:

• the adapter number is in the edt.e_adap field

• the configured interrupt priority level is in the vme_intrs.v_brl addressed by the
edt.e_bus_info field

The pfxedtinit() entry point is documented in the IRIX Device Driver Programming Guide.

Tip: The vme_frs_install() function is a dynamic version of the VECTOR configuration
statement. You are not required to use the IPL value from the configuration file.

Frame Scheduler Termination Function

The device driver must provide a function with the following prototype:

void prfx_frs_func_clear (void) ;

A skeleton for this function is shown in Example 7-10. The Frame Scheduler that
initialized a device driver calls this function when the Frame Scheduler is terminating.
The Frame Scheduler deallocates the interrupt group to which interrupts were directed.

The device driver should clean up data structures and make sure that the device is in a
safe state. A VME device driver must call vme_frs_uninstall().

Example 7-10 Device Driver Termination Function

/*
** Frame Scheduler termination function
*/
void
example_frs_func_clear(void)
{

/*
** Step 1: any hardware steps to quiesce the device.
*/

/*
** Step 2 (VME only):
** Break the link between interrupts and the interrupt
** group by calling vme_frs_uninstall() passing:
** * (int) the VME adapter number
** * (int) the VME IPL level
** * the value returned by vme_frs_install()
*/
vme_frs_uninstall(

my_edt.e_adap, /* edt struct from example_edtinit */
((vme_intrs_t *)my_edt.e_bus_info)->v_brl,
FRS_vme_install);

/*
** Step 3: note we are no longer in use.
*/
FRS_is_active = 0;

}

The Frame Scheduler Device Driver Interface

131

Generating Interrupts

A driver has to call the Frame Scheduler interrupt handler from within the driver’s
interrupt handler using code similar to that shown in Example 7-11. This handler is
entered concurrently on each CPU where the master or a synchronized Frame Scheduler
is running. It delivers the interrupt to the Frame Scheduler on that CPU. The function to
be invoked is

void frs_handle_driverintr(void);

It is possible for an interrupt handler to be entered at a time when the Frame Scheduler
for its processor is not active; that is, after frs_destroy() has been called and before the
driver termination function has been entered. The frs_handle_driverintr() function
checks for this and does nothing when nothing is required.

Example 7-11 Generating an Interrupt From a Device Driver

void example_intr()
{

/*
** Step 1: anything required by the hardware
*/
/*
** Step 2: if connected to the Frame Scheduler, send
** an interrupt to it. Flag FRS_is_active is set in
** Example 7-9 and cleared in Example 7-10.
*/
if (FRS_is_active) frs_handle_driverintr();
/*
** Step 3: any additional processing needed.
*/
return;

}

132

Chapter 7: Using the Frame Scheduler

133

Chapter 8

8. Optimizing Disk I/O for a Real-Time Program

A real-time program sometimes needs to perform disk I/O under tight time constraints
and without affecting the timing of other activities such as data collection. This chapter
covers techniques that IRIX supports that can help you meet these performance goals,
including these topics:

• “Memory-Mapped I/O” on page 133 points out the uses of mapping a file into
memory.

• “Asynchronous I/O” on page 134 describes the use of the asynchronous I/O
feature of IRIX version 5.3 and later.

• “Synchronous Writing and Direct Writing” on page 147 documents the performance
cost of knowing when disk output is complete.

• “Guaranteed-Rate I/O” on page 150 describes the use of the guaranteed-rate
feature of XFS.

Memory-Mapped I/O

When an input file has a fixed size, the simplest as well as the fastest access method is to
map the file into memory (for details on mapping files and other objects into memory, see
the book Topics in IRIX Programming). A file that represents a data base of some kind—for
example a file of scenery elements, or a file containing a precalculated table of operating
parameters for simulated hardware—is best mapped into memory and accessed as a
memory array. A mapped file of reasonable size can be locked into memory so that access
to it is always fast (see “Locking Mapped Files Into Memory” on page 51).

You can also perform output on a memory-mapped file simply by storing into the
memory image. When the mapped segment is also locked in memory, you control when
the actual write takes place. Output happens only when the program calls msync() or
changes the mapping of the file. At that time the modified pages are written. (See the
msync(2) reference page.) The time-consuming call to msync() can be made from an
asynchronous process.

134

Chapter 8: Optimizing Disk I/O for a Real-Time Program

Asynchronous I/O

You can use asynchronous I/O to isolate the real-time processes in your program from
the unpredictable delays caused by I/O.

Conventional Synchronous I/O

Conventional I/O in UNIX is synchronous; that is, the process that requests the I/O is
blocked until the I/O has completed. The effects are different for input and for output.

Synchronous Input

The normal sequence of operations for IRIX input is as follows:

1. Normal code in a process invokes the system call read(), either directly or
indirectly—for example, by accessing a new page of a memory-mapped file, or by
calling a library function that calls read().

2. The kernel, still operating under the identity of the calling process, enters the read
entry point of the device driver.

3. The device driver initiates the input operation and blocks the calling process, for
example by waiting on a semaphore in the kernel address space.

4. The kernel schedules another process to use the CPU.

5. Later, the device completes the input operation and causes a hardware interrupt.

6. The kernel interrupt handler enters the device driver interrupt entry point.

7. The device driver, finding that the data has been received, unblocks the sleeping
process, for example by posting a semaphore.

8. The kernel recalculates the scheduling queues to account for the fact that a blocked
process can now run.

9. Then or perhaps later, depending on scheduling priorities, the kernel schedules the
original process to run on some CPU.

10. The unblocked process exits the device driver read function and returns to user
code, the read being complete.

During steps 4-8, the process that requested input is blocked. The duration of the delay
is unpredictable. For example, the delay can be negligible if the data is already in a buffer

Asynchronous I/O

135

in memory. It can be as long as one rotation time of a disk, if the disk is positioned on the
correct cylinder. It can be longer still, if the disk has to seek. The probability of seeking
depends on the way the file is arranged on the disk surface and also on the I/O
operations of other processes in the system.

Synchronous Output

For disk files, the process that calls write() is normally delayed only as long as it takes to
copy the output data to a buffer in kernel address space. The device driver schedules the
device write and returns. The actual disk output is asynchronous. As a result, most
output requests are blocked for only a short time. However, since a number of disk writes
could be pending, the true state of a file on disk is unknown until the file is closed.

In order to make sure that all data has been written to disk successfully, a process can call
fsync() for a conventional file or msync() for a memory-mapped file (see the fsync(2) and
msync(2) reference pages). The process that calls these functions is blocked until all
buffered data has been written. (An alternative for disk output is to use direct output,
discussed under “Synchronous Writing and Direct Writing” on page 147.)

Devices other than disks may block the calling process until the output is complete. It is
the device driver logic that determines whether a call to write() blocks the caller, and for
how long. Device drivers for VME devices are often supplied by third parties.

Asynchronous I/O Basics

A real-time process needs to read or write a device, but it cannot tolerate an
unpredictable delay. One obvious solution can be summarized as “call read() or write()
from a different process, and run that process in a different CPU.” This is the essence of
asynchronous I/O. You could implement an asynchronous I/O scheme of your own
design, and you may wish to do so in order to integrate the I/O closely with your own
design of processes and data structures. However, a standard solution is available.

136

Chapter 8: Optimizing Disk I/O for a Real-Time Program

Two Implementation Versions

IRIX (since version 5.3) supports asynchronous I/O library calls conforming to POSIX
document 1003.1b-1993. You use relatively simple calls to initiate input or output. The
library package handles the details of

• initiating several lightweight processes to perform I/O

• allocating a shared memory arena and the locks, semaphores, and/or queues used
to coordinate between the I/O processes

• queueing multiple input or output requests to each of multiple file descriptors

• reporting results back to your processes, either on request, through signals, or
through callback functions

Note: In IRIX 5.2 and IRIX 6.0, asynchronous I/O was implemented to conform to POSIX
standard 1003.4 Draft 12, an earlier document. Support for the later POSIX
standard1003.1b was implemented in IRIX 5.3. Programs compiled in IRIX 5.2 continue
to work in later releases. However, conversion of programs to POSIX standard1003.1b is
recommended. The remainder of this topic describes that interface.

Only in IRIX 5.3, both the Draft-12 and 1003.1b interfaces were supported. In that release,
you had to take two steps to compile with the later version of asynchronous I/O:

• Define the compiler variable _ABI_SOURCE. This indicates conformance with the
MIPS Application Binary Interface.

• Include the library parameter -labi in the link.

In releases following 5.3, support for POSIX 1003.1b-1993 is the only version of
asynchronous I/O. These steps are no longer required. It is no longer possible to compile
programs that use the Draft-12 interface.

Asynchronous I/O

137

Asynchronous I/O Functions

Once you have opened the files and initialized asynchronous I/O, you perform
asynchronous I/O by calling some of these functions:

Each of these functions is described in detail in a reference page in volume 3.

Asynchronous I/O Control Block

Each asynchronous I/O request is represented by an instance of struct aiocb, a data
structure that your program must allocate. The important fields are as follows.

• The file descriptor that is the target of the operation.

File descriptors are returned by open() (see the open(2) reference page). A file
descriptor used for asynchronous I/O can represent any file or device—not only a
disk file.

• The address and size of a buffer to supply or receive the data.

• The file position for the operation as it would be passed to lseek() (see the lseek(2)
reference page)

The use of this value is discussed under “Multiple Operations to One File” on
page 146.

• A sigevent structure, whose contents indicate what, if anything, should be done to
notify your program of the completion of the I/O.

The use of the sigevent is discussed under “Checking for Completion” on page 142.

Note: The IRIX 5.2 implementation also accepted a request priority value. Request
priorities are no longer supported. The field exists for compatibility and for possible
future use, but must currently contain zero.

aio_read(3) Initiates asynchronous input from a file or device.

aio_write(3) Initiates asynchronous output to a file or device.

lio_listio(3) Initiates a list of operations to one or more files or devices.

aio_error(3) Returns the status of an asynchronous operation.

aio_fsync(3) Waits for all scheduled output for a file to complete.

aio_cancel(3) Cancels pending, scheduled operations.

138

Chapter 8: Optimizing Disk I/O for a Real-Time Program

Initializing Asynchronous I/O

You can initialize asynchronous I/O in either of two ways. One way is simple; the other
gives you control over the initialization.

Implicit Initialization

You can initialize asynchronous I/O simply by starting an operation with aio_read(),
lio_listio(), or aio_write(). The first such call causes default initialization. This is the only
form of initialization described by the POSIX standard. However, in a real-time program
you often need to control at least the timing of initialization.

Initializing with aio_sgi_init()

You can take greater control of asynchronous I/O by calling aio_sgi_init() (refer to the
aio_sgi_init(3) reference page and to the declarations in /usr/include/aio.h). The argument
to this call can be a null pointer, indicating you want default values, or you can pass an
aioinit_t structure. The principal fields of this structure specify

• the number of asynchronous processes to execute I/O (aio_threads)

The default is 5 processes; the minimum is 2. Specify 1 more than the number of I/O
operations that could reasonably be executed in parallel on the available hardware.
For example if you will be doing asynchronous I/O to one disk file and one tape
drive, there could be at most two concurrent I/O operations, so there is no need to
have more than 3 (1 more than 2) asynchronous processes.

• the number of locks that the asynchronous I/O processes should preallocate
(aio_locks)

The default used by aio_init() is 3 locks; the minimum is 1. Specify the maximum
number of simultaneous lio_listio(LIO_NOWAIT), aio_fsync(), and aio_suspend()
calls that your program could execute concurrently. If in doubt, specify the number
of subprocesses your program contains.

• the number of lightweight processes (sprocs) that will be sharing the use of
asynchronous I/O (aio_numusers)

The default is 5; the minimum is 2. Specify 1 more than the number of different
sproc’d processes that will be requesting asynchronous I/O.

Other fields of the aioinit_t structure such as aio_num and aio_usedba are not used at this
time and must be zero. Zero-valued fields are taken as a request for the default for that

Asynchronous I/O

139

field. Example 8-1 shows a subroutine to initialize asynchronous I/O, given counts of
devices and calling processes.

Example 8-1 Initializing Asynchronous I/O

int initAIO(int numDevs, int numSprocs, int maxOps)
{

aioinit_t A = {0}; /* ensure zero’d fields */
if (numDevs) /* we do know how many devices */

A.aio_threads = 1+numDevs;
if (numSprocs) /* we do know how many sprocs */

A.aio_locks = A.aio_numusers = 1+numSprocs;
if (maxOps) /* we do know max aiocbs at 1 time */

A.aio_num = maxOps;
return aioinit(&A);

}

When to Initialize

The time at which initialization occurs is important. If you initialize in a process that has
been assigned to run on an isolated CPU, the asynchronous I/O processes will also run
on that CPU. You probably want the I/O processes to run under normal dispatching on
unrestricted CPUs. In that case, the proper sequence of initialization is:

• Open all file descriptors and verify that files and devices are ready.

• Initialize asynchronous I/O. The lightweight processes created by aioinit() inherit
the attributes of the calling process, including its current priority and access to open
file descriptors.

• Isolate any CPUs that are dedicated to real-time work (see “Restricting a CPU From
Scheduled Work” on page 82)—or create the Frame Schedulers (see “Starting
Multiple Schedulers” on page 105).

• Assign real-time processes to their CPUs.

The asynchronous I/O processes created by aioinit() continue to be scheduled according
to their priority in whatever CPUs remain available.

140

Chapter 8: Optimizing Disk I/O for a Real-Time Program

Scheduling Asynchronous I/O

You schedule an input or output operation by calling aio_read() or aio_write(), passing
an aiocb structure to describe the operation (see the aio_read(3) and aio_write(3) reference
pages). The operation is queued to the file descriptor, but it will not execute until one of
the asynchronous I/O processes is available. The return code from the library call says
nothing about the I/O operation itself; it merely indicates whether or not the aiocb could
be queued.

Note: It is important to use a given aiocb for only one operation at a time, and to not
modify an aiocb until its operation is complete.

You can find examples of the use of aio_read(), aio_write(), and aio_fsync() in the
program beginning on “Asynchronous I/O Example” on page 203.

You can schedule a list of operations using lio_listio() (see the lio_listio(3) reference
page). The advantage of this function is that you can request a single notification (either
a signal or a callback) when all of the operations in the list are complete. Alternatively,
you can be notified of the completion of each one as it happens.

When an asynchronous I/O process is free, it takes a queued aiocb and performs the
equivalent function to lseek() (if a file position is specified), then the equivalent of read()
or write(). The asynchronous process may be blocked for some time. That depends on the
file or device and on the options that were specified when it was opened. When the
operation is complete, the asynchronous process notifies the initiating process using the
method requested in the aiocb.

You can cancel a started operation, or all pending operations for a given file descriptor,
using aio_cancel() (see the aio_cancel(3) reference page).

Assuring Data Integrity

With sequential I/O, you call fsync() to ensure that all buffered data has been written.
However, you cannot use fsync() with asynchronous I/O, since you are not sure when
the write() calls will execute.

The aio_fsync() function queues the equivalent of an fsync() call for asynchronous
execution (see the aio_fsync(3) reference page). This function takes an aiocb. The file
descriptor in it specifies which file is to be synchronized. The fsync() operation is done
following all other asynchronous operations that are pending when aio_fsync() is called.
The synchronize operation can take considerable time, depending on how much output

Asynchronous I/O

141

data has been buffered. Its completion is reported in the same ways as completion of a
read or write (see the next topic). The example program starting in “Asynchronous I/O
Example” on page 203 contains calls to aio_fsync().

Checking the Progress of Asynchronous Requests

You can test the progress and completion of an asynchronous operation by polling. Your
program can be informed of the completion of an operation in a variety of ways. All of
the methods discussed here are demonstrated in the example program that starts in
“Asynchronous I/O Example” on page 203.

Polling for Status

You can check the progress of any asynchronous operation (including aio_fsync()) using
aio_error(). As long as the operation is incomplete, this function returns
EIINPROGRESS. When the operation is complete, you can check the final return code
from read(), write(), or fsync() using aio_return() (see the aio_error(3) and aio_return(3)
reference pages).

To see in an example of polling for status, see function inWait0() under “Asynchronous
I/O Example” on page 203. This function is used when the aiocb is initialized with
SIGEV_NONE, meaning that no notification is to be returned at the completion of the
operation. The function waits for an asynchronous operation to complete using a loop in
the general form shown in Example 8-2.

Example 8-2 Polling for Asynchronous Completion

int waitForEndOfAsyncOp(aiocb *pab)
{

while (EINPROGRESS == (ret = aio_error(pab)))
sginap(0);

return ret;
}

The function result is the final return code from the read, write, or sync operation that
was started. Under the Frame Scheduler, the call to sginap() would be replaced with a
call to frs_yield().

142

Chapter 8: Optimizing Disk I/O for a Real-Time Program

Checking for Completion

In the aiocb, the program can specify one of three things to be done when the operation
is complete:

• Nothing; take no action.

• Send a signal of a specified number.

• Invoke a callback function directly from the asynchronous process.

In addition, the aio_suspend() function blocks its caller until one of a list of pending
operations is complete (see the aio_suspend(3) reference page).

These choices give you a wide variety of design options. Your program can

• periodically poll the aiocb using aio_error() until it completes (shown in
Example 8-2)

• use aio_suspend() to wait until one of a list of operations completes

• set up an empty signal handler function and use sigsuspend() or sigwait() to wait
until a signal arrives (see the sigsuspend(2) and sigwait(3) reference pages)

• use either a signal handler function or a callback function to report completion—for
example, the function can post a semaphore.

Most of these methods are demonstrated in the program starting in “Asynchronous I/O
Example” on page 203.

Tip: When operating under the Frame Scheduler, a handler or callback function can
simply set a flag. An activity process can test the flag in each minor frame, calling
frs_yield() immediately if the flag is not set.

Establishing a Completion Signal

You request a signal from an asynchronous operation by setting these values in the aiocb
(refer to /usr/include/aio.h and /usr/include/sys/signal.h):

aio_sigevent.sigev_notify Set to SIGEV_SIGNAL.

aio_sigevent.sigev_signo The number of the signal. This should be one of
the POSIX real-time signal numbers (see
“Signals” on page 36).

Asynchronous I/O

143

When you set up a signal handler for asynchronous completion, do so using sigaction()
and specify the SA_SIGINFO flag (see the sigaction(2) reference page). This has two
benefits: any new completion signal that arrives while the first is being handled is
queued; and the aio_sigev.sigev_value word is passed to the handler in a siginfo structure.

Establishing a Callback Function

You request a callback at the end of an asynchronous operation by setting the following
values in the aiocb:

The callback function is invoked from the asynchronous process when the read(), write()
or fsync() operation finishes. This notification method has the lowest overhead and
shortest latency, but it requires careful design to avoid race conditions in the use of
shared variables.

The asynchronous processes are created with sproc(), so they share the address space of
the process that initialized asynchronous I/O. They typically execute in a different CPU
from the real-time processes using that address space. Since the callback function could
be entered at any time, it must coordinate its use of shared data structures. This is a good
place to use a lock (see “Locks” on page 33). Locks have very low overhead in cases such
as this, where there is likely to be little contention for the use of the lock.

Tip: You can call aio_read() or aio_write() from within a callback function or within a
signal handler. This lets you start another operation with the least delay.

aio_sigevent.sigev_value A value to be passed to the signal handler. This
can be used to inform the signal handler of which
I/O operation has completed; for example, it
could be the address of the aiocb.

aio_sigevent.sigev_notify Set to SIGEV_CALLBACK.

aio_sigevent.sigev_func The address of the callback function. Its prototype
must be void functionName(union sigval);

aio_sigevent.sigev_value A word to be passed to the callback function. This
can be used to inform the function of which I/O
operation has completed; for example, it could be
the address of the aiocb.

144

Chapter 8: Optimizing Disk I/O for a Real-Time Program

The code in Example 8-3 demonstrates a hypothetical set of subroutines to schedule
asynchronous reads and writes using a single aiocb. The principle functions and global
variables it uses are:

Note: The code in Example 8-3 is not intended to be realistic and is not recommended as
a model. In order to demonstrate the use of callback functions and the aiocb, it essentially
duplicates work that could be done by the lio_listio() feature of asynchronous I/O.

Example 8-3 Set of Functions to Schedule Asynchronous I/O

#define _ABI_SOURCE
#include <signal.h>
#include <aio.h>
#include <ulocks.h>
#define MAX_PENDING 10
#define STATUS_EMPTY 0
#define STATUS_ACTIVE 1
#define STATUS_PENDING 2
static struct onePendingIO {

int status;
int theFile;
void *theData;
off_t theSize;

pendingIO An array of records, each holding one request for
an I/O operation.

dontTouchThatStuff A lock used to gain exclusive use of pendingIO.

scheduleRead() A function that accepts a request to read some
amount of data, from a specified file descriptor, at
a specified file offset. It places the request in
pendingIO and then, if no asynchronous operation
is under way, initiates it.

yeahWeFinishedOne() The callback function that is entered when an
asynchronous operation completes. If any more
operations are pending, it initiates one.

initiatePending() A function that initiates one selected pending
operation. It prepares the aiocb structure,
including the specification of
yeahWeFinishedOne() as the callback function.
The lock dontTouchThatStuff must be held before
this function is called.

Asynchronous I/O

145

off_t theSeek;
int readNotWrite;
} pendingIO[MAX_PENDING];

static unsigned numPending;
static struct aiocb theAiocb;
static ulock_t dontTouchThatStuff;
static unsigned scanner;
static void initiatePending(int P);
static void
yeahWeFinishedOne(union sigval S)
{

ussetlock(dontTouchThatStuff);
pendingIO[S.sival_int].status = STATUS_EMPTY;
if (numPending)
{

while (pendingIO[scanner].status != STATUS_PENDING)
{

if (++scanner >= MAX_PENDING)
scanner = 0;

}
initiatePending(scanner);

}
usunsetlock(dontTouchThatStuff);

}
static void
initiatePending(int P) /* lock must be held on entry */
{

theAiocb.aio_fildes = pendingIO[P].theFile;
theAiocb.aio_buf = pendingIO[P].theData;
theAiocb.aio_nbytes = pendingIO[P].theSize;
theAiocb.aio_offset = pendingIO[P].theSeek;
theAiocb.aio_sigevent.sigev_notify = SIGEV_CALLBACK;
theAiocb.aio_sigevent.sigev_func = yeahWeFinishedOne;
theAiocb.aio_sigevent.sigev_value.sival_int = P;
if (pendingIO[P].readNotWrite)

aio_read(&theAiocb);
else

aio_write(&theAiocb);
pendingIO[P].status = STATUS_ACTIVE;
--numPending;

}
/*public*/ int
scheduleRead(int FD, void *pdata, off_t len, off_t pos)
{

int j;

146

Chapter 8: Optimizing Disk I/O for a Real-Time Program

if (numPending >= MAX_PENDING)
likeTotallyFreakOut();

ussetlock(dontTouchThatStuff);
for(j=0; pendingIO[j].status != STATUS_EMPTY; ++j)

;
pendingIO[j].theFile = FD;
pendingIO[j].theData = pdata;
pendingIO[j].theSize = len;
pendingIO[j].theSeek = pos;
pendingIO[j].readNotWrite = 1;
pendingIO[j].status = STATUS_PENDING;
if (1 == ++numPending)

initiatePending(j);
usunsetlock(dontTouchThatStuff);

}

Holding Callbacks Temporarily

You can temporarily prevent callback functions from being entered using the aio_hold()
function. This function is not defined in the POSIX standard; it is added by the MIPS ABI
standard. Use it as follows:

• Call aio_hold(AIO_HOLD_CALLBACK) to prevent any callback function from
being invoked.

• Call aio_hold(AIO_RELEASE_CALLBACK) to allow callback functions to be
invoked. Any that were held are now called.

• Call aio_hold(AIO_ISHELD_CALLBACK) returns 1 if callbacks are currently being
held; otherwise it returns 0.

Multiple Operations to One File

When you queue multiple operations to a single file descriptor, the asynchronous I/O
package does not always guarantee the order of their execution. There are three ways
you can ensure the sequence of operations.

You can open any output file descriptor passing the flag O_APPEND (see the open(1)
reference page). Asynchronous write requests to a file opened with O_APPEND are
executed in the sequence of the calls to aio_write() or the sequence they are listed for
lio_listio(). You can use this feature to ensure that a sequence of records is appended to
a file in sequence.

Synchronous Writing and Direct Writing

147

For files that support lseek(), you can specify any order of operations by specifying the
file offset in the aiocb. The asynchronous process executes an absolute seek to that offset
as part of the operation. Even if the operations are not performed in the sequence they
were requested, the data is transferred in sequence. You can use this feature to ensure
that multiple requests for sequential disk input are stored in sequential locations.

For non-disk input operations, the only way you can be certain that operations are done
in sequence is to schedule them one at a time, waiting for each one to
complete.

Synchronous Writing and Direct Writing

Two options of open() give you more control over the timing of output.

Using Synchronous Writing

When you open a disk file and do not specify the O_SYNC flag, a call to write() for that
file returns as soon as the data has been copied to a buffer managed by the device driver
(see the open(2) reference page).

The actual disk write may not take place until considerable time has passed. A common
pool of disk buffers is used for all disk files. Disk buffering is integrated with the virtual
memory paging mechanism. A daemon executes periodically and initiates output of
buffered blocks according to the age of the data and the needs of the system.

Tip: The number of disk blocks that are written in each output operation is set by the
dwcluster tuning variable. The system administrator can adjust this value with systune
(see the systune(1) reference page).

The default management of disk output improves performance in general but has two
drawbacks:

• All output data must be copied from the buffer in process address space to a buffer
in the kernel address space. For small or infrequent writes, the copy time is
negligible, but for large quantities of data it adds up.

• You do not know when the written data is actually safe on disk. A system crash
could prevent the output of a large amount of buffered data.

148

Chapter 8: Optimizing Disk I/O for a Real-Time Program

You can force the writing of all pending output for a file by calling fsync() (see the
fsync(2) reference page). This gives you a way of creating a known checkpoint of a file.
However, fsync() blocks until all buffered writes are complete, possibly a long time.

When you open a disk file specifying O_SYNC, each call to write() blocks until the data
has been written to disk. This gives you a way of ensuring that all output is complete as
it is created. If you combine O_SYNC access with asynchronous I/O, you can let the
asynchronous process suffer the delay.

The O_SYNC option requires completed output even when the amount of data written
is less than the physical blocksize of the disk, or when the output data does not align with
the physical boundaries of disk blocks. This can lead to writing and rewriting the same
disk blocks, wasting time. A file opened with O_SYNC also copies data to kernel memory
before writing.

Using Direct I/O

You can avoid both sources of delay by using the option O_DIRECT. Under this option,
writes to the file take place directly from your program’s buffer—the data is not copied
to a buffer in the kernel first. In order to use O_DIRECT you are required to transfer data
in quantities that are multiples of the disk blocksize. This ensures that a block is written
only once. (The requirements for O_DIRECT use are documented in the open(2) and
fcntl(2) reference pages.)

Control does not return from an O_DIRECT read() or write() until the disk write is
complete. However, you can open a file O_DIRECT and use the use file descriptor for
asynchronous I/O.

Performance Comparison

The data displayed in Figure 8-1 was collected on a 4-processor Challenge system under
IRIX 5.3, using a test program that wrote approximately 250,000 bytes of binary data
using a specified blocksize and one of three options:

• default: asynchronous buffered write

• synchronous writes (option O_SYNC)

• direct writes (option O_DIRECT)

Synchronous Writing and Direct Writing

149

Figure 8-1 Effect of Blocksize on write() Performance

The values in Table 8-1reflect the total execution time for one run of the program, as
reported by the time command (see the time(1) reference page).

Table 8-1 Data on Which Figure 8-1 is Based

Blocksize O_SYNC O_DIRECT Asynchronous

512 40.4 13.9 2.7

1024 25.3 8.5 2.6

2048 12.9 5.8 2.6

4096 8.5 4.4 2.6

8192 6.2 3.7 2.6

16384 5.0 3.4 2.6

32768 4.4 3.1 2.5

65536 4.1 3.0 2.5

200000 3.9 2.9 2.5

Synchronous

U
ser T

im
e for P

rogram

Block Size for Write
512

1024

2048

4096

8192

16384

32768

65536

200000

+ ++++ ++++

Direct

Default

150

Chapter 8: Optimizing Disk I/O for a Real-Time Program

Blocksize was almost irrelevant for asynchronous writes, because the only delay was the
time to switch to kernel mode and block-copy the data from the program buffer to a
kernel buffer. The actual disk operations occurred asynchronously, in another CPU, and
so are not reflected in the time output. As shown in Figure 8-1, O_DIRECT is considerably
faster than O_SYNC.

Using a Delayed System Buffer Flush

When your application has both clearly defined times when all unplanned disk activity
should be prevented, and clearly defined times when disk activity can be tolerated, you
can use the syssgi() function to control the kernel’s automatic disk writes.

Prior to a critical section of length s seconds that must not be interrupted by unplanned
disk writes, use syssgi() as follows:

syssgi(SGI_BDFLUSHCNT,s);

The kernel will not initiate any deferred disk writes for s seconds. At the start of a period
when disk activity can be tolerated, initiate a flush of the kernel’s buffered writes with
syssgi() as follows:

syssgi(SGI_SSYNC);

Note: This technique is most useful in a uniprocessor—code executing in an isolated
CPU of a multiprocessor is not affected by kernel disk writes.

Guaranteed-Rate I/O

Under specific conditions, your program can demand a guaranteed rate of data transfer.
You would use this feature, for example, to ensure input of picture data for real-time
video display, or to ensure disk output of high-speed telemetry data capture.

Guaranteed-Rate I/O Basics

Guaranteed-rate I/O (GRIO) is applied on a file basis. The file must have these
characteristics for any guarantee to be granted:

• The file must be managed by XFS. EFS, the older IRIX file system, does not support
GRIO.

Guaranteed-Rate I/O

151

• The file must be contained in the real-time subvolume of a logical volume created
by XLV.

The real-time subvolume of an XLV volume can span multiple disk partitions, and
can be striped. The real-time subvolume differs from the more common data
subvolume in that it contains only data, no file system management data such as
directories or inodes.

Note: Real-time subvolumes cannot include RAID partitions.

• The predictive failure analysis feature and the thermal recalibration feature of the
drive firmware must be disabled, as these can make device access times
unpredictable.

• A guaranteed-rate stream must be available. Unless extra-cost options are installed,
a maximum of four streams can be in use at one time.

You can request either of two types of guarantee. A hard guarantee asks XFS and IRIX to
subordinate all other considerations, including data integrity, to meet the guaranteed
rate. A soft guarantee asks IRIX to make its best effort at the rate, accepting that error
correction might cause glitches.

You can qualify either type of guarantee as being for Video On Demand (VOD),
indicating a particular, special use of a striped volume. These three types of guarantee
are discussed further in the following topics.

For information about using XFS, XLV, and how to prepare a real-time subvolume for
GRIO, see the IRIX Admin: Disks and Filesystems manual (see “Other Useful Books” on
page xxiii). For an example of how the grio_request() function is used, see the function
starting in “Guaranteed-Rate Request” on page 221.

Creating a Real-time File

You can only request a guaranteed rate from a real-time disk file. A real-time disk file is
identified by the fact that it is stored within the real-time subvolume of an XFS logical
volume.

The file management information for all files in a volume (the directories as well as XFS
management records) are stored in the data subvolume. A real-time subvolume contains
only the data of real-time files. A real-time subvolume comprises an entire disk device or
partition and uses a separate SCSI controller from the data subvolume. Because of these

152

Chapter 8: Optimizing Disk I/O for a Real-Time Program

constraints, the GRIO facility can predict the data rate at which it can transfer the data of
a real-time file.

You create a real-time file in the following steps, which are illustrated in Example 8-4.

1. Open the file with the options O_CREAT, O_EXCL, and O_DIRECT. That is, the file
must not exist at this point, and must be opened for direct I/O (see “Using Direct
I/O” on page 148).

2. Modify the file descriptor to set its extent size, which is the minimum amount by
which the file will be extended when new space is allocated to it, and also to
establish that the new file is a real-time file. This is done using fcntl() with the
FS_FSSETXATTR command. Check the value returned by fcntl() as several errors
can be detected at this point.

The extent size must be chosen to match the characteristics of the disk; for example
it might be the “stripe width” of a striped disk.

3. Write any amount of data to the new file. Space will be allocated in the real-time
subvolume instead of the data subvolume because of step (2). Check the result of
the first write() call carefully, since this is another point at which errors could be
detected.

Once created, you can read and write a real-time file the same as any other file, except
that it must always be opened with O_DIRECT. You can use a real-time file with
asynchronous I/O, provided it is not under a guarantee (see “Sharing Access to
Guaranteed Files” on page 154).

Example 8-4 Function to create a real-time file

#include <sys/fcntl.h>
#include <sys/fs/xfs_itable.h>
int createRealTimeFile(char *path, __uint32_t esize)
{

struct fsxattr attr;
bzero((void*)&attr,sizeof(attr));
attr.fsx_xflags = XFS_XFLAG_REALTIME;
attr.fsx_extsize = esize;
int rtfd = open(path, O_CREAT + O_EXCL + O_DIRECT);
if (-1 == rtfd)

{perror("open new file"); return -1; }
if (-1 == fcntl(rtfd, F_FSSETXATTR, &attr))

{perror("fcntl set rt & extent"); return -1; }
return rtfd; /* first write to it creates file*/

}

Guaranteed-Rate I/O

153

Requesting a Guarantee

To obtain a guaranteed rate, a program places a reservation for a specified part of the I/O
capacity of a file. In the request, the program specifies

• the file descriptor to be used

• the start time and duration of the reservation

• the time unit of interest, typically 1 second

• the amount of data required in any one unit of time

For example, a reservation might specify: now, for 90 minutes, 1 megabyte per second. A
process places a reservation by calling grio_request() (refer to the grio_request(3X)
reference page).

XFS (in a GRIO daemon) keeps information on the transfer capacity of all real-time
subvolumes, as well as the capacity of the controllers and busses to which they are
attached. When you request a reservation, XFS tests whether it is possible to transfer data
at that rate, from that file, during that time period.

This test considers the capacity of the hardware as well as any other reservations that
apply during the same time period to the same subvolume, drives, or controllers. Each
reservation consumes some part of the total capacity.

When XFS predicts that the guaranteed rate can be met, it accepts the reservation. Over
the reservation period, the available capacity of the subvolume is reduced by the
promised rate. Other processes can place reservations against any capacity that remains.

If XFS predicts that the guaranteed rate cannot be met at some time in the reservation
period, XFS returns the maximum data rate it could supply. The program can reissue the
request for that available rate. However, this is a new request that is evaluated afresh.

During the reservation period, the process can use read() and write() to transfer up to the
guaranteed number of bytes in each time unit. XFS raises the priority of requests as
needed in order to ensure that the transfers take place. However, a request that would
transfer more than the promised number of bytes within a 1-second unit is blocked until
the start of the next time unit.

154

Chapter 8: Optimizing Disk I/O for a Real-Time Program

Releasing a Guarantee

A guarantee ends under three circumstances,

• when the process calls grio_remove_request() (see the grio_remove_request(3X)
reference page)

• when the requested duration expires

• when all file descriptors held by the requesting process that refer to the guaranteed
file are closed (an exception is discussed in the next topic)

When a guarantee ends, the guaranteed transfer capacity becomes available for other
processes to reserve. When a guarantee expires but the file is not closed, the file remains
usable for ordinary I/O, with no guarantee of rate.

Sharing Access to Guaranteed Files

Other processes can use a file or the hardware it resides on, even though guarantees are
active. XFS never grants guarantees for the whole capacity of the I/O path; it always
reserves some capacity. Non-guaranteed I/O requests are delayed within any 1-second
interval until guarantees have been met, and may be executed bit by bit in smaller units,
but they will finally be completed.

Once a guarantee is granted, the guarantee is uniquely identified with the file, through
the I-node number, and with the process, through the process ID. However, it is possible
to have the same file (I-node) open under different file descriptors. This has important
implications:

• All requests from that process to that file are handled under the guarantee—even if
they are issued to different file descriptors. (It is not possible for a single process to
request both guaranteed and nonguaranteed I/O to the same file.)

• It is not possible for one process to have two guarantees on the same file. The
second guarantee request is rejected, even if it uses a different file descriptor.

• Only the process that received a guarantee can remove the guarantee—that is,
grio_remove_request() must be called from the same process ID that called
grio_request().

• A rate guarantee is not shared by other processes created with fork() or sproc()—
even though they may have shared access to the file descriptor used with

Guaranteed-Rate I/O

155

grio_request(). Each process that wants guaranteed access must obtain its own
guarantee.

The last point has the important implication that you cannot use a rate guarantee with
asynchronous I/O. An input requested using aio_read() is executed by a different
process than the one that requested the guaranteed rate. That read is treated as
non-guaranteed, and executed on a time-available basis.

A complication can arise when a guaranteed rate is obtained by one process of a process
group created with sproc(). When the PR_SDIR flag (synchronize file descriptors; see the
sproc(2) reference page) is used, a rate guarantee obtained by one process of the group
cannot be terminated simply by closing all file descriptors. It can be terminated explicitly,
or by the time expiring, or by the whole process group terminating.

Hard Guarantees

When a program requests a hard guarantee, it asserts that nothing, not even data
integrity, should interfere with data transfer. A hard guarantee can be given only when

• the SCSI controller or controllers that attach the real-time subvolume have only
disks attached to them—no tapes or other nondisk devices

I/O to a non-disk device can delay disk data transfer.

• sector remapping in the drive firmware, as well as any device driver retry and
correction mechanisms, is disabled

Error retry can introduce unpredictable delays in data transfer.

When your program requests I/O under a hard guarantee, any device error is returned
directly to the program. No effort is made to retry the failure. If the drive contains a bad
sector, the bad sector is read and returned with no indication of error.

Soft Guarantees

A soft guarantee can be granted for a subvolume that has error retry and sector
remapping enabled. Your program accepts a possible, occasional failure to meet the
specified rate in exchange for having errors retried and possibly corrected.

156

Chapter 8: Optimizing Disk I/O for a Real-Time Program

In addition, a soft guarantee can be granted when the disk controller also controls
non-disk devices such as scanners and printers. Use of these devices during the
guarantee period can prevent the guaranteed rate from being met.

Video On Demand (VOD) Guarantees

You specify the VOD disk layout as a modifier on either a hard or soft guarantee (see the
grio_request(2) reference page and /usr/include/sys/grio.h). A VOD guarantee can be
requested only for a striped volume. In a striped volume, fixed-size segments of the
volume space that are logically sequential (“stripes”) are physically located on successive
drives. The potential data rate of a striped volume is higher because the multiple drives
can be used in parallel.

However, in order to achieve the higher rate, the striped volume must be used
concurrently by multiple processes, each reading in a different stripe. The maximum rate
is reached when as many processes are reading sequentially in stripe-sized units as the
subvolume has drives.

When a program requests a VOD guarantee, it must specify a data rate that equals one
stripe-width per second. VOD guarantees can be given concurrently to several processes
for the same subvolume. As long as all the processes read different stripes, the
guaranteed rate can be sustained for each.

When the first VOD guarantee is granted against a striped volume, the XFS system
begins VOD-style I/O scheduling for that volume. This establishes a strict cyclic rotation
of time intervals during which any disk in the striped volume can be read. In general, a
process must be ready for access when its turn in the rotation comes up. If it is not ready,
it can be delayed by as many seconds as there are disks in the volume.

• The first access by a process to a striped volume under VOD scheduling can be
delayed.

• If the process fails to request its next access before the beginning of the next second
of time, it can miss its assigned slot and be delayed.

• When a process uses lseek() to move to a stripe other than the next stripe in
sequence, its next I/O request can be delayed.

157

Chapter 9

9. Managing Device Interactions

A real-time program is defined by its close relationship to external hardware. This
chapter reviews the ways that IRIX gives you to access and control external devices:

• “Device Drivers” on page 157 summarizes the role that device drivers play in the
IRIX system, and points to sources for information on how you can write a device
driver.

• “SCSI Devices” on page 160 describes the facilities of the dslib package, with which
you can write code to control SCSI devices directly.

• “The VME Bus” on page 164 describes two methods for accessing the most popular
interface for real-time devices.

• “Serial Ports” on page 172 summarizes the use of serial ports for real-time input and
output.

• “External Interrupts” on page 173 on page 186 summarizes the facilities offered by
the External Interrupt device driver.

Device Drivers

Note: This section contains an overview for readers who are not familiar with the details
of the UNIX I/O system. All these points are covered in much greater detail in the IRIX
Device Driver Programmer’s Guide (see “Other Useful Books” on page xxiii).

It is a basic concept in UNIX that all I/O is done by reading or writing files. All I/O
devices—disks, tapes, printers, terminals, and VME cards—are represented as files in the
file system. Each physical device is represented by an entry in the /dev file system
hierarchy. The purpose of each device special file is to associate a device name with a a
device driver, a module of code that is loaded into the kernel either at boot time or
dynamically, and is responsible for operating that device at the kernel’s request.

158

Chapter 9: Managing Device Interactions

How Devices Are Defined

When a device special file is created in the /dev file system, it is associated with the device
driver that will manage it. The connection between the device name and the device
driver is made through major and minor device numbers, which are recorded with the
device name in the file system. To see these numbers, try a command such as

ls -l /dev/dsk

Device creation is documented in the system(4) reference page, the makedev(1),
mknod(1), and install(1) reference pages, and in the /dev/MAKEDEV script. Device
administration is covered in detail in IRIX Admin: System Configuration and Operation (see
“Other Useful Books” on page xxiii).

The major device number selects the device driver. The minor number is passed to the
device driver each time it is entered; it encodes such useful parameters as logical unit
number or density. In some cases, a device is represented by more than one name in the
/dev hierarchy. This associates it with more than one device driver, or else causes the
device driver to treat the device differently depending on the minor number that is
passed.

For example, a disk device can appear in both the /dev/dsk and the /dev/rdsk directories,
and the same disk can appear under several names in each directory, with each name
standing for a different partition of the disk. (The naming of disk devices is documented
in the dksc(7) reference page.) Again, a tape drive usually appears multiple times in
/dev/mt, with each name receiving different treatment from the tape device driver—
names containing “ns,” for example, are written with integers in non-byte-swapped
order for compatibility with other systems.

How Devices Are Used

To use a device, a process opens the special device file by passing its pathname to open()
(see the open(2) reference page). For example, a generic SCSI device might be opened by
a statement such as this.

int scsi_fd = open("/dev/scsi/sc0d11l0",O_RDWR);

The returned integer is the file descriptor, a number that indexes an array of control blocks
maintained by IRIX in the address space of each process. With a file descriptor, the
process can call other system functions that give access to the device. Each of these

Device Drivers

159

system calls is implemented in the kernel by transferring control to an entry point in the
device driver.

Device Driver Entry Points

Each device driver supports one or more of the following operations:

open Notifies the driver that a process wants to use the device.

close Notifies the driver that a process is finished with the device.

interrupt Entered by the kernel upon a hardware interrupt, notes an event
reported by a device, such as the completion of a device action, and
possibly initiates another action.

read Entered from the function read(), transfers data from the device to a
buffer in the address space of the calling process.

write Entered from the function write(), transfers data from the calling
process’s address space to the device.

control Entered from the function ioctl(), performs some kind of control
function specific to the type of device in use.

Not every driver supports every entry point. For example, the generic SCSI driver (see
“Generic SCSI Device Driver” on page 162) supports only the open, close, and control
entries.

Device drivers in general are documented with the device special files they support, in
volume 7 of the reference pages. For a sample, review:

• dsk(7m), documenting the standard IRIX SCSI disk device driver

• smfd(7m), documenting the diskette and optical diskette driver

• tps(7m), documenting the SCSI tape drive device driver

• plp(7), documenting the parallel line printer device driver

• klog(7), documenting a “device” driver that is not a device at all, but a special
interface to the kernel

If you review a sample of entries in volume 7, as well as other reference pages that are
called out in the topics in this chapter, you will understand the wide variety of functions
performed by device drivers.

160

Chapter 9: Managing Device Interactions

Taking Control of Devices

When your program needs direct control of a device, you have the following choices:

• If it is a device for which IRIX or the device manufacturer distributes a device
driver, find the device driver reference page in volume 7 to learn the device driver’s
support for read(), write(), mmap(), and ioctl(). Use these functions to control the
device.

• If it is a VME device without bus master capability, you can control it directly from
your program using programmed I/O or user-initiated DMA. Both options are
discussed under “The VME Bus” on page 164.

• If it is a VME device with bus master (on-board DMA) capability, you should
receive an IRIX device driver from the OEM. Consult IRIX Admin: System
Configuration and Operation to install the device and its driver. Read the OEM
reference page to learn the device driver’s support for read(), write(), and ioctl().

• If it is a SCSI device that does not have built-in IRIX support, you can control it from
your own program using the generic SCSI device driver. See “Generic SCSI Device
Driver” on page 162.

In the remaining case, you have a device with no driver. In this case you must create a
device driver. This process is documented in the IRIX Device Driver Programmer’s Guide,
which contains extensive information and sample code (see “Other Useful Books” on
page xxiii).

SCSI Devices

The SCSI interface is the principal way of attaching disk, cartridge tape, CD-ROM, and
digital audio tape (DAT) devices to the system. It can be used for other kinds of devices,
such as scanners and printers.

IRIX contains device drivers for supported disk and tape devices. Other SCSI devices are
controlled through a generic device driver that must be extended with programming for
a specific device.

SCSI Devices

161

SCSI Hardware on CHALLENGE and Onyx Systems

Two SCSI-2 controllers are incorporated in each POWER Channel-2 board. Additional
controllers can be added in two groups of 3 on HIO modules, for a maximum of 8
controllers per channel. The SCSI controllers are DMA devices that make near-optimum
use of the POWER Channel-2 bus bandwidth.

Using 8-bit data transfers, a data rate of approximately 7 megabytes per second can be
reached, per controller. Using 16-bit SCSI, data rates near 14 MB per second can be
achieved, per controller.

Note: These data rates can be achieved by configuring the system to perform DMA
directly into the requesting process’s address space without buffering. This requires the
use of Direct file access for disk files (see “Using Direct I/O” on page 148). The generic
SCSI device driver also performs DMA directly in or out of the process’s buffers (see
“Generic SCSI Device Driver” on page 162).

All Challenge/Onyx SCSI controllers are capable of differential output and so can be
cabled longer distances from the system cabinet.

SCSI Adapter Support

The detailed, board-level programming of the host SCSI adapters is done by an
IRIX-supplied host adapter driver. The services of this driver are available to the SCSI
device drivers that manage the logical devices. If you write a SCSI driver, it will control
the device indirectly, by calling a host adapter driver.

The host adapter drivers handle the low-level communication over the SCSI interface,
such as programming the SCSI interface chip or board, negotiating synchronous or wide
mode, and handling disconnect/reconnect. SCSI device drivers call on host adapter
drivers using indirect calls through a table of adapter functions. The use of host adapter
drivers is documented in the IRIX Device Driver Programmer’s Guide.

System Disk Device Driver

The naming conventions for disk and tape device files are documented in the intro(7)
reference page. In general, devices in /dev/[r]dsk are disk drives, and devices in /dev/[r]mt
are tape drives.

162

Chapter 9: Managing Device Interactions

Disk devices in /dev/[r]dsk are operated by the SCSI disk controller, which is documented
in the dks(7) reference page. It is possible for a program to open a disk device and read,
write, or memory-map it, but this is almost never done. Instead, programs open, read,
write, or map files; and the EFS or XFS file system interacts with the device driver.

System Tape Device Driver

Tape devices in /dev/[r]mt are operated by the magnetic tape device driver, which is
documented in the tps(7) reference page. Users normally control tapes using such
commands as tar, dd, and mt (see the tar(1), dd(1M) and mt(1) reference pages), but it is
also common for programs to open a tape devices and then to use read(), write(), and
ioctl() to interact with the device driver.

Since the tape device driver supports the read/write interface, you can schedule tape
I/O through the asynchronous I/O interface (see “Asynchronous I/O Basics” on
page 135). You need to take pains to ensure that asynchronous operations to a tape are
executed in the proper sequence; see “Multiple Operations to One File” on page 156.

Generic SCSI Device Driver

Generally, non-disk, non-tape SCSI devices are installed in the /dev/scsi directory. Devices
so named are controlled by the generic SCSI device driver, which is documented in the
ds(7m) reference page.

Unlike most kernel-level device drivers, the generic SCSI driver does not support
interrupts, and does not support the read() and write() functions. Instead, it supports a
wide variety of ioctl() functions that you can use to issue SCSI commands to a device. In
order to invoke these operations you prepare a dsreq structure describing the operation
and pass it to the device driver. Operations can include input and output as well as
control and diagnostic commands.

The programming interface supported by the generic SCSI driver is quite primitive. A
library of higher-level functions makes it easier to use. This library is documented in the
dslib(3x) reference page. It is also described in detail in the IRIX Device Driver
Programmer’s Guide. The most important functions in it are listed below:

• dsopen(), which takes a device pathname, opens it for exclusive access, and returns
a dsreq structure to be used with other functions.

SCSI Devices

163

• fillg0cmd(), fillg1cmd(), and filldsreq(), which simplify the task of preparing the
many fields of a dsreq structure for a particular command.

• doscsireq(), which calls the device driver and checks status afterward.

The dsreq structure for some operations specifies a buffer in memory for data transfer.
The generic SCSI driver handles the task of locking the buffer into memory (if necessary)
and managing a DMA transfer of data.

When the ioctl() function is called (through doscsireq() or directly), it does not return
until the SCSI command is complete. You should only request a SCSI operation from a
process that can tolerate being blocked.

Upon the basic dslib functions are built several functions that execute specific SCSI
commands, for example, read08() performs a read. However, there are few SCSI
commands that are recognized by all devices. Even the read operation has many
variations, and the read08() function as supplied is unlikely to work without
modification. The dslib library functions are not complete. Instead, you must alter them
and extend them with functions tailored to a specific device.

The source for dslib, and some example programs that use dslib, can be found in the
4DGifts distribution, in /usr/people/4Dgifts/examples/devices/devscsi.

CD-ROM and DAT Audio Libraries

A library of functions that enable you to read audio data from an audio CD in the
CD-ROM drive is distributed with IRIX. This library was built upon the generic SCSI
functions supplied in dslib. The CD audio library is documented in the CDintro(3dm)
reference page (installed with the dmedia_dev package).

A library of functions that enable you to read and write audio data from a digital audio
tape is distributed with IRIX. This library was built upon the functions of the magnetic
tape device driver. The DAT audio library is documented in the DTintro(3dm) reference
page(installed with the dmedia_dev package) .

164

Chapter 9: Managing Device Interactions

The VME Bus

Each CHALLENGE XL, POWER CHALLENGE, or Onyx system includes full support
for the VME interface, including all features of Revision C.2 of the VME specification,
and the A64 and D64 modes as defined in Revision D. VME devices can access system
memory addresses, and devices on the system bus can access addresses in the VME
address space.

The naming of VME devices in /dev/vme, and other administrative issues, are covered in
the usrvme(7) reference page.

CHALLENGE Hardware Nomenclature

A number of special terms are used to describe the multiprocessor CHALLENGE
support for VME. The terms are described in the following list. Their relationship is
shown graphically in Figure 9-1.

POWERpath-2 Bus The primary system bus, connecting all CPUs and I/O channels
to main memory.

POWER Channel-2 The circuit card that interfaces one or more I/O devices to the
POWERpath-2 bus.

F-HIO card Adapter card used for cabling a VME card cage to the
POWER Channel

VMECC VME control chip, the circuit that interfaces the VME bus to the
POWER Channel.

The VME Bus

165

Figure 9-1 Multiprocessor CHALLENGE Data Path Components

VME Bus Attachments

All multiprocessor CHALLENGE systems contain a 9U VME bus in the main card cage.
Systems configured for rack-mount can optionally include an auxiliary 9U VME card
cage, which can be configured as 1, 2, or 4 VME busses. The possible configurations of
VME cards are shown in Table 9-1.

Table 9-1 Multiprocessor CHALLENGE VME Cages and Slots

Model Main Cage
Slots

Aux Cage Slots
(1 bus)

Aux Cage Slots
(2 busses)

Aux Cage Slots
(4 busses)

Challenge L 5 n.a. n.a. n.a.

Onyx Deskside 3 n.a. n.a. n.a.

Challenge XL 5 20 10 and 9 5, 4, 4, and 4

Onyx Rack 4 20 10 and 9 5, 4, 4, and 4

CPU

Second level cache

Main Memory

POWERpath−2 (system) Bus

First level cache

VMECC

F−HIO Card

VME Bus

166

Chapter 9: Managing Device Interactions

Each VME bus after the first requires an F cable connection from an F-HIO card on a
POWER Channel-2 board, as well as a Remote VCAM board in the auxiliary VME cage.
Up to three VME busses (two in the auxiliary cage) can be supported by the first POWER
Channel-2 board in a system. A second POWER Channel-2 board must be added to
support four or more VME busses. The relationship among VME busses, F-HIO cards,
and POWER Channel-2 boards is detailed in Table 9-2.

F-HIO short cards, which are used only on the first POWER Channel-2 board, supply
only one cable output. Regular F-HIO cards, used on the second POWER Channel-2
board, supply two. This explains why, although two POWER Channel-2 boards are
needed with four or more VME busses, the F-HIO slots on the first POWER Channel-2
board remain unused.

VME Address Space Mapping

A device on the VME bus has access to an address space in which it can read or write.
Depending on the device, it uses 16, 32, or 64 bits to define a bus address. The resulting
numbers are called the A16, A32, and A64 address spaces.

There is no direct relationship between an address in the VME address space and the set
of real addresses in the Challenge/Onyx main memory. An address in the VME address
space must be translated twice:

• The VMECC and POWER Channel devices establish a translation from VME
addresses into addresses in real memory.

Table 9-2 POWER Channel-2 and VME bus Configurations

Number of
VME Busses

PC-2 #1
FHIO slot #1

PC-2 #1
FHIO slot #2

PC-2 #2
FHIO slot #1

PPC-2 #2
FHIO slot #2

1 unused unused n.a. n.a.

2 F-HIO short unused n.a. n.a.

3 (1 PC-2) F-HIO short F-HIO short n.a. n.a.

3 (2 PC-2) unused unused F-HIO unused

4 unused unused F-HIO F-HIO

5 unused unused F-HIO F-HIO

The VME Bus

167

• The IRIX kernel assigns real memory space for this use, and establishes the
translation from real memory to virtual memory in the address space of a process or
the address space of the kernel.

Address space mapping is done differently for programmed I/O, in which slave VME
devices respond to memory accesses by the program, and for DMA, in which master
VME devices read and write directly to main memory.

Note: VME addressing issues are discussed in greater detail from the standpoint of the
device driver, in the IRIX Device Driver Programmer’s Guide.

PIO Address Space Mapping

In order to allow programmed I/O, the mmap() system function establishes a
correspondence between a segment of a process’s address space and a segment of the
VME address space. The kernel and the VME device driver program registers in the
VMECC to recognize fetches and stores to specific main memory real addresses and to
translate them into reads and writes on the VME bus. The devices on the VME bus must
react to these reads and writes as slaves; DMA is not supported by this mechanism.

One VMECC can map as many as 12 different segments of memory. Each segment can be
as long as 8 MB. The segments can be used singly or in any combination. Thus one
VMECC can support 12 unique mappings of at most 8 MB, or a single mapping of 96 MB,
or combinations between.

DMA Mapping

DMA mapping is based on the use of page tables stored in system main memory. This
allows DMA devices to access the virtual addresses in the address spaces of user
processes. The real pages of a DMA buffer can be scattered in main memory, but this is
not visible to the DMA device. DMA transfers that span multiple, scattered pages can be
performed in a single operation.

The kernel functions that establish the DMA address mapping are available only to
device drivers. For information on these, refer to the IRIX Device Driver Programmer’s
Guide.

The hardware of the POWER Channel-2 supports up to 8 DMA streams simultaneously
active on a single VME bus without incurring a loss of performance.

168

Chapter 9: Managing Device Interactions

Program Access to the VME Bus

Your program accesses the devices on the VME bus in one of two ways, through
programmed I/O (PIO) or through DMA. Normally, VME cards with Bus Master
capabilities always use DMA, while VME cards with slave capabilities are accessed using
PIO.

The Challenge/Onyx architecture also contains a unique hardware feature, the DMA
Engine, which can be used to move data directly between memory and a slave VME
device.

PIO Access

You perform PIO to VME devices by mapping the devices into memory using the
mmap() function (The use of PIO is covered in greater detail in the IRIX Device Driver
Programmer’s Guide. Memory mapping of I/O devices and other objects is covered in the
book Topics in IRIX Programming.)

Each PIO read requires two transfers over the POWERpath-2 bus: one to send the
address to be read, and one to retrieve the data. The latency of a single PIO input is
approximately 4 microseconds. PIO write is somewhat faster, since the address and data
are sent in one operation. Typical PIO performance is summarized in Table 9-3.

When a system has multiple VME busses, you can program concurrent PIO operations
from different CPUs to different busses, effectively multiplying the bandwidth by the
number of busses. It does not improve performance to program concurrent PIO to a
single VME bus.

Tip: When transferring more than 32 bytes of data, you can obtain higher rates using the
DMA Engine. See “DMA Engine Access to Slave Devices” on page 170.

Table 9-3 VME Bus PIO Bandwidth

Data Unit Size Read Write

D8 0.2 MB/second 0.75 MB/second

D16 0.5 MB/second 1.5 MB/second

D32 1 MB/second 3 MB/second

The VME Bus

169

User-Level Interrupt Handling

When a VME device that you control with PIO can generate interrupts, you can arrange
to trap the interrupts in your own program. In this way you can program the device for
some lengthy operation using PIO output to its registers, and then wait until the device
returns an interrupt to say the operation is complete.

The programming details on user-level interrupts are covered in the IRIX Device Driver
Programmer’s Guide.

DMA Access to Master Devices

VME bus cards with Bus Master capabilities transfer data using DMA. These transfers
are controlled and executed by the circuitry on the VME card. The DMA transfers are
directed by the address mapping described under “DMA Mapping” on page 167.

DMA transfers from a Bus Master are always initiated by a kernel-level device driver. In
order to exchange data with a VME Bus Master, you open the device and use read() and
write() calls. The device driver sets up the address mapping and initiates the DMA
transfers. The calling process is typically blocked until the transfer is complete and the
device driver returns.

The typical performance of a single DMA transfer is summarized in Table 9-4. Many
factors can affect the performance of DMA, including the characteristics of the device.

Up to 8 DMA streams can run concurrently on each VME bus. However, the aggregate
data rate for any one VME bus will not exceed the values in Table 9-4.

Table 9-4 VME Bus Bandwidth, VME Master Controlling DMA

Data Transfer Size Reading Writing

D8 0.4 MB/sec 0.6 MB/sec

D16 0.8 MB/sec 1.3 MB/sec

D32 1.6 MB/sec 2.6 MB/sec

D32 BLOCK 22 MB/sec (256 byte block) 24 MB/sec (256 byte block)

D64 BLOCK 55 MB/sec (2048 byte block) 58 MB/sec (2048 byte block)

170

Chapter 9: Managing Device Interactions

DMA Engine Access to Slave Devices

A DMA engine is included as part of each POWER Channel-2. The DMA engine is
unique to the Challenge/Onyx architecture. It performs efficient, block-mode, DMA
transfers between system memory and VME bus slave cards—cards that would normally
be capable of only PIO transfers.

The DMA engine greatly increases the rate of data transfer compared to PIO, provided
that you transfer at least 32 contiguous bytes at a time. The DMA engine can perform D8,
D16, D32, D32 Block, and D64 Block data transfers in the A16, A24, and A32 bus address
spaces.

All DMA engine transfers are initiated by a special device driver. However, you do not
access this driver through open/read/write system functions. Instead, you program it
through a library of functions. The functions are documented in the udmalib(3x)
reference page. They are used in the following sequence:

1. Call dma_open() to initialize action to a particular VME card.

2. Call dma_allocbuf() to allocate storage to use for DMA buffers.

3. Call dma_mkparms() to create a descriptor for an operation, including the buffer,
the length, and the direction of transfer.

4. Call dma_start() to execute a transfer. This function does not return until the
transfer is complete.

For more details of user DMA, see the IRIX Device Driver Programmer’s Guide.

The typical performance of the DMA engine for D32 transfers is summarized in
Table 9-5. Performance with D64 Block transfers is somewhat less than twice the rate
shown in Table 9-5. Transfers for larger sizes are faster because the setup time is
amortized over a greater number of bytes.

Table 9-5 VME Bus Bandwidth, DMA Engine, D32 Transfer

Transfer Size Read Write Block Read Block Write

32 2.8 MB/sec 2.6 MB/sec 2.7 MB/sec 2.7 MB/sec

64 3.8 MB/sec 3.8 MB/sec 4.0 MB/sec 3.9 MB/sec

128 5.0 MB/sec 5.3 MB/sec 5.6 MB/sec 5.8 MB/sec

256 6.0 MB/sec 6.7 MB/sec 6.4 MB/sec 7.3 MB/sec

The VME Bus

171

Some of the factors that affect the performance of user DMA include

• The response time of the VME board to bus read and write requests

• The size of the data block transferred (as shown in Table 9-5)

• Overhead and delays in setting up each transfer

The numbers in Table 9-5 were achieved by a program that called dma_start() in a tight
loop, in other words, with minimal overhead.

The dma_start() function operates in user space; it is not a kernel-level device driver. This
has two important effects. First, overhead is reduced, since there are no mode switches
between user and kernel, as there are for read() and write(). This is important since the
DMA engine is often used for frequent, small inputs and outputs.

Second, dma_start() does not block the calling process, in the sense of suspending it and
possibly allowing another process to use the CPU. However, it waits in a test loop,
polling the hardware until the operation is complete. As you can infer from Table 9-5,
typical transfer times range from 50 to 250 microseconds. You can calculate the
approximate duration of a call to dma_start() based on the amount of data and the
operational mode.

You can use the udmalib functions to access a VME Bus Master device, if the device can
respond in slave mode. However, this would normally be less efficient than using the
Master device’s own DMA circuitry.

While you can initiate only one DMA engine transfer per bus, it is possible to program a
DMA engine transfer from each bus in the system, concurrently.

512 6.4 MB/sec 7.7 MB/sec 7.0 MB/sec 8.0 MB/sec

1024 6.8 MB/sec 8.0 MB/sec 7.5 MB/sec 8.8 MB/sec

2048 7.0 MB/sec 8.4 MB/sec 7.8 MB/sec 9.2 MB/sec

4096 7.1 MB/sec 8.7 MB/sec 7.9 MB/sec 9.4 MB/sec

Table 9-5 VME Bus Bandwidth, DMA Engine, D32 Transfer

Transfer Size Read Write Block Read Block Write

172

Chapter 9: Managing Device Interactions

Serial Ports

Occasionally a real-time program has to use an input device that interfaces through a
serial port. This is not a recommended practice for several reasons: the serial device
drivers and the STREAMS modules that process serial input are not optimized for
deterministic, real-time performance; and at high data rates, serial devices generate
many interrupts.

When there is no alternative, a real-time program will typically open one of the files
named /dev/tty*. The names, and some hardware details, for these devices are
documented in the serial(7) reference page. Information specific to two serial adapter
boards is in the duart(7) reference page and the cdsio(7) reference page.

When a process opens a serial device, a line discipline STREAMS module is pushed on
the stream by default. If the real-time device is not a terminal and doesn’t support the
usual line controls, this module can be removed. Use the I_POP ioctl (see the streamio(7)
reference page) until no modules are left on the stream. This minimizes the overhead of
serial input, at the cost of receiving completely raw, unprocessed input.

An important feature of current device drivers for serial ports is that they try to minimize
the overhead of handling the many interrupts that result from high character data rates.
The serial I/O boards interrupt at least every 4 bytes received, and in some cases on every
character (at least 480 interrupts a second, and possibly 1920, at 19,200 bps). Rather than
sending each input byte up the stream as it arrives, the drivers buffer a few characters
and send multiple characters up the stream.

When the line discipline module is present on the stream, this behavior is controlled by
the termio settings, as described in the termio(7) reference page for non-canonical input.
However, a real-time program will probably not use the line-discipline module. The
hardware device drivers support the SIOC_ITIMER ioctl that is mentioned in the
serial(7) reference page, for the same purpose.

The SIOC_ITIMER function specifies the number of clock ticks (see “Tick Interrupts” on
page 68) over which it should accumulate input characters before sending a batch of
characters up the input stream. A value of 0 requests that each character be sent as it
arrives (do this only for devices with very low data rates, or when it is absolutely
necessary to know the arrival time of each input byte). A value of 5 tells the driver to
collect input for 5 ticks (50 milliseconds, or as many as 24 bytes at 19,200 bps) before
passing the data along.

External Interrupts

173

External Interrupts

The Challenge/Onyx hardware includes support for generating and receiving external
interrupt signals. Four jacks for outgoing signals are available on the master IO4 board.
Your program can change the level of these lines individually. Two jacks for incoming
interrupt signals are also provided. The input lines are logically OR’d together and
presented as a single interrupt; your program cannot distinguish one input line from
another.

The electrical interface to the external interrupt lines is documented at the end of the ei(7)
reference page.

Your program controls and receives external interrupts by interacting with the external
interrupt device driver. This driver is associated with the special device file /dev/ei, and is
documented in the ei(7) reference page. (External interrupt support and the ei(7) page are
first available in IRIX 5.3.)

For programming details of the external interrupt lines, see the IRIX Device Driver
Programmer’s Guide. You can also trap external interrupts with a user-level interrupt
handler (see “User-Level Interrupt Handling” on page 169); this is also covered in the
IRIX Device Driver Programmer’s Guide.

175

Appendix A

A. Sample Programs

The programs in this appendix illustrate the use of some of the features discussed in the
book. The following programs are included:

• “Mapping and Reading the Cycle Counter” on page 175 illustrates the use of the
cycle-counter.

• “Getting the Time of Day Stamp” on page 184 illustrates the use of gettimeofday()
and shows how to test its precision.

• “Interprocess Communication” on page 186 illustrates some uses of arenas,
semaphores, and interval timers.

• “Probing the Address Space” on page 198 displays the addresses assigned to a
process address space, and illustrates some uses of mmap().

• “Deadline Scheduling Subroutines” on page 200 illustrates the use of schedctl(2) to
set a deadline scheduling policy.

• “Asynchronous I/O Example” on page 203 illustrates the use of asynchronous I/O
including four different methods of testing for I/O completion, and also shows
process creation with sproc() and the use of semaphores and barriers.

• “Guaranteed-Rate Request” on page 221 demonstrates how to request a
guaranteed rate of I/O transfer.

• “Frame Scheduler Examples” on page 225 describes the sample programs
distributed with the REACT/Pro Frame Scheduler.

Mapping and Reading the Cycle Counter

This section contains two example programs. The first simply reports the precision of the
hardware cycle counter. The second demonstrates mapping and reading the cycle
counter.

176

: Sample Programs

Testing Cycle Counter Precision.

The program in Example A-1 is a simple utility that gets the cycle counter precision using
syssgi() and displays it. The timer precision (in bits, either 32 or 64) is displayed to
standard output. Also, the precision is returned by the program, so it can be tested in a
shell script in the $status shell variable.

Example A-1 Program to Return Cycle Counter Precision

/***
||
|| This program makes the value returned by syssgi(SGI_CYCLECNTR_SIZE)
|| accessible at the command line. The output display can be read, or
|| tested in a shell script. The value is also returned, so it can
|| be tested in the $status variable.
||
***/
#include <sys/syssgi.h> /* for syssgi(), SGI_QUERY_CYCLECNTR */
#include <stdio.h>
int main(int argc, char *argv[])
{

unsigned int tbc = syssgi(SGI_CYCLECNTR_SIZE);
int arg, quiet = 0;
for (arg=1; arg<argc; ++arg)
{

if (0==strcmp(argv[arg],"-q"))
{

quiet = 1;
}
else /* includes case of -h */
{

printf("%s [-h | -q]\n",argv[0]);
printf("\tReport the precision of the hardware cycle counter.\n");
printf("\tPrecision in bits displayed to stdout unless -q.\n");
printf("\tPrecision in bits returned as status.\n");
return tbc;

}
}
if (!quiet)

printf("%d bits in the cycle counter\n",tbc);
return tbc;

}

Mapping and Reading the Cycle Counter

177

Reading the Cycle Counter

The program in Example A-2 shows how to map the high-precision cycle counter into
memory and sample it. The file compiles to a library of the following functions:

Example A-2 Functions to Map and Read the Cycle Counter

/***
||
|| The functions in this module provide access to the free-running timer
|| on the CPU board of certain SGI systems.
||
|| timerBitCount()
||
|| Returns the number of bits of data in the timer, as reported
|| by syssgi(SGI_CYCLECNTR_SIZE):
|| 0 error reported by syssgi -- probably no timer in this machine
|| 32 in an Indy or Crimson
|| 64 in a Challenge, Onyx, and other big machines.
||
|| mapTheTimer()
||
|| This function tests the hardware environment. If the current system has
|| a timer, the function tries to map it into memory. Errors can include:
|| * 0 returned by timerBitCount()
|| * error returned by syssgi(SGI_QUERY_CYCLECNTR)
|| * error returned by mmap(2)
|| When there is no error, the function returns a positive integer which is

mapTheTimer() Uses mmap() to map the cycle counter into the
address space. Returns the unit-value of the timer in
picoseconds; for example returns 21000 in a Challenge
where the timer unit value is 21 nanoseconds.

timerBitCount() Returns the number of bits of precision in the timer,
which varies with the CPU board type, either 32 or 64
bits.

readTimer32() Returns the least-significant (or only) word of the
timer value.

readTimer64() Returns the timer value as a 64-bit unsigned integer
(extended with 0-bits when necessary).

main() Compiled only when variable UNIT_TEST is set,
contains code to exercise the preceding functions.

178

: Sample Programs

|| the number of picoseconds represented by one unit increment of the timer.
|| In the event of an error, the function returns 0, and errno is set to
|| some error code.
|| mapTheTimer() can be called multiple times without harm. To convert
|| its returned value to a fraction of a second, convert to double and
|| multiply by 1e-12.
||
|| readTimer32()
||
|| This function calls mapTheTimer(), if it has not been called already.
|| Thus the first attempt to read the clock will map it if necessary.
|| If the timer has been mapped, its least-significant bits are returned
|| as an unsigned 32-bit integer.
|| * if mapTheTimer() failed, the returned value is always 0
|| * if the timer has 32-bit precision, the returned value is
|| the whole timer value
|| * if the timer has 64-bit precision (e.g. Challenge), the returned
|| value is the low-order word.
||
|| readTimer64()
||
|| This function is like readTimer32(), except that it returns an unsigned
|| 64-bit integer.
|| * if mapTheTimer() failed, the returned value is always 0
|| * if the timer has 32-bit precision, the returned value is
|| the whole timer value, extended with high-order 0-bits
|| * if the timer has 64-bit precision, the returned value is the whole
|| timer value. The 64-bit timer is sampled in such as way as to
|| compensate for rollover while minimizing bus traffic.
||
|| main()
||
|| Compiled only when UNIT_TEST is defined, provides a functional test
|| platform for the above functions.
||
|| NOTE: in two of these routines we assume that this machine is operating
|| in big-endian mode, such that the least-significant 32 bits of a
|| long-long are at the higher word address.
||
***/
#include <stddef.h> /* for NULL */
#include <fcntl.h> /* for O_RDONLY and open() */
#include <unistd.h> /* for getpagesize() */
#include <sys/mman.h> /* for constants used with mmap() */
#include <sgidefs.h> /* for __psint_t, __uint*_t, and ABI defs */

Mapping and Reading the Cycle Counter

179

#include <sys/syssgi.h> /* for syssgi(), SGI_QUERY_CYCLECNTR */
#include <errno.h> /* for errno global */
/***
|| The following globals are set up by mapTheTimer() the first time called.
|| timerMapAddress == NULL means mapTheTimer() has never been called
|| == -1 means mapTheTimer() called and failed
|| else it points to the timer in memory
|| The data type (void *) is coerced to __uint32_t or __uint64_t in use.
||
|| The "volatile" declaration keeps the compiler from optimizing away
|| successive references to it.
||
|| timerPicoSecs == 0 means the timer has not been mapped successfully
|| else is the value returned by syssgi(QUERY_CYCLECOUNTER)
||
|| timerPrecision == value returned by syssgi(SGI_CYCLECNTR_SIZE),
|| but as this value is needed in the timer-reading
|| functions, it is cached, so as to avoid a system call
|| every time we read the clock.
||
|| If this code was redone in C++ (not a bad idea, feel free) these would
|| be class variables.
***/
#define TIMER_IS_MAPPED (0 != timerPicoSecs)
#define TIMER_MAP_ATTEMPTED (NULL != timerMapAddress)
static volatile void * timerMapAddress = NULL;
static unsigned int timerPicoSecs = 0;
static unsigned int timerPrecision = 0;
unsigned int
mapTheTimer()
{
__uint32_t timerUnits = 0; /* receives timer picosecond unit value */
__psint_t timerPhysAddr; /* receives timer absolute address */
__psint_t timerPhysVPN; /* timerPhysAddr masked to a page boundary */
__psint_t addrMask; /* page offset bit mask */
int fdMem; /* file descriptor for /dev/mmem */

if (! TIMER_MAP_ATTEMPTED) /* first time through this code */
{

/*
|| Get the physical address of the clock in full. If there
|| is no cycle counter on this machine, syssgi returns -1.
*/
timerPhysAddr = syssgi(SGI_QUERY_CYCLECNTR, &timerUnits);
if ((__psint_t)-1 != timerPhysAddr) /* we have a timer */
{

180

: Sample Programs

/*
|| Trim out the offset from the address leaving the
|| page number part of the address. (VPN == virtual page number)
*/
addrMask = getpagesize() - 1;
timerPhysVPN = timerPhysAddr & ~addrMask;
/*
|| Map the page containing the clock's address into the virtual
|| address space of this process.
*/
fdMem = open("/dev/mmem", O_RDONLY);
timerMapAddress = (void *) mmap(

NULL, /* addr = 0, don't care it goes */
addrMask, /* len = pagesize - 1 */
PROT_READ, /* prot = read-only */
MAP_PRIVATE, /* changes are unshared (n.a.) */
fdMem, /* map base is physical memory */
(off_t)timerPhysVPN /* source address to map */
);

if ((__psint_t)-1 != (__psint_t)timerMapAddress)
{

/*
|| mmap() succeeded, cache info in global variables.
*/
timerPicoSecs = timerUnits;
timerPrecision = syssgi(SGI_CYCLECNTR_SIZE);
/*
|| Restore any nonzero offset bits to mapped page address.
*/
timerMapAddress = (void*) (

((__psint_t)timerMapAddress) /* addr as int */
| (timerPhysAddr & addrMask) /* plus offset bits */
);

}
else

; /* mmap() failed, timerMapAddress == -1, errno set */
} /* end syssgi() successful */
else
{

timerMapAddress = (void *)-1; /* syssgi error, no timer (?) */
}

} /* end attempting to initialize */
return timerPicoSecs;

}
unsigned int

Mapping and Reading the Cycle Counter

181

timerBitCount()
{

if (TIMER_IS_MAPPED)
return timerPrecision;

if (! TIMER_MAP_ATTEMPTED)
{

mapTheTimer();
return timerPrecision;

}
else return 0;

}
/***
||
|| In both of the following routines, one goal is to minimize the number of
|| references to the mapped timer. Reason: each such reference is an
|| uncached memory reference plus a bus access, taking at least 1 usec and
|| possibly more depending on the machine. Unnecessary references to the
|| timer should be avoided when possible.
||
|| If the timer has 64 bits, return its least-significant word. Which word
|| is that? This code assumes the big-endian model. An alternative
|| would be to load the long-long value and force C to convert it. That is
|| be portable but would hit the bus twice instead of once, nullifying the
|| speed advantage that this routine has over the one following.
||
***/
__uint32_t
readTimer32()
{
__uint32_t ret = 0;

if (! TIMER_IS_MAPPED) mapTheTimer();
if (TIMER_IS_MAPPED) /* timer mapped ok */
{

if (64 == timerPrecision)
ret = ((__uint32_t *)timerMapAddress)[1]; /* low word of 2 */

else /* in IRIX 6.2, 32 bits is the only alternative */
ret = *((__uint32_t *)timerMapAddress);

}
return ret;

}
/***
||
|| When the timer has 32 bits, just fake up a long-long and return it.
|| For long timers we must ask: was this code compiled to an ABI that does

182

: Sample Programs

|| atomic loads of long-longs (-64 or -n32), or not (-32)?
|| In the newer ABIs, we just fetch the 64-bit timer in one move.
||
|| When compiled under a 32-bit system, the generated code loads the timer
|| value in two "lw" instructions. The low word of the timer overflows into
|| the high word about every 90 seconds, and if that happens between the
|| lw's, the result will be wrong. Worse, we cannot be certain which of the
|| two words the compiler will choose to load first, the low or the high.
||
|| In order to minimize the number of uncached accesses, we test for
|| overflow only when it has recently happened; that is, when
|| the most significant 9 bits of the low word are all-0. This
|| condition defines a window of 0.17 seconds following the overflow
|| (21e-12 * 2^23 == .176160768).
|| If this were kernel code, the window could be much smaller. In enabled
|| code we have to allow for a series of interrupts between the load of the
|| upper and lower words. As it is, if we load the upper word just before
|| overflow, and an interrupt delays the next fetch 0.17+ seconds, we will
|| return an incorrect value.
||
***/
__uint64_t
readTimer64()
{
union {

struct { __uint32_t msw,lsw; }w;
__uint64_t ll;
} ret;

ret.ll = 0;
if (! TIMER_IS_MAPPED) mapTheTimer();
if (TIMER_IS_MAPPED) /* it mapped ok */
{

if (timerPrecision == 32)
{

ret.w.msw = 0;
ret.w.lsw = *((__uint32_t *)timerMapAddress);

}
else
{

#if (_MIPS_SIM == _MIPS_SIM_NABI32 || _MIPS_SIM == _MIPS_SIM_ABI64)
/* 64-bit loads are atomic */
ret.ll = *(__uint64_t *)timerMapAddress;

#else /* 64-bit loads are not atomic */
ret.w.msw = ((__uint32_t *)timerMapAddress)[0];

Mapping and Reading the Cycle Counter

183

ret.w.lsw = ((__uint32_t *)timerMapAddress)[1];
if ((ret.w.lsw & 0xff800000) == 0)
{
/*
|| The high word incremented not more than .17 sec ago.
|| Provided there is not a delay here exceeding 89.8 sec,
|| the following single load ensures we have the high word
|| value that is correctly associated with the low word
|| we already picked up.
*/

ret.w.msw = ((__uint32_t *)timerMapAddress)[0];
}

#endif
}

}
return ret.ll;

}

#ifdef UNIT_TEST
#include <stdio.h>

int main(int argc, char*argv[])
{

int j;
int numTix = 10;
unsigned int picosecs;
unsigned short tbits;
double dmicsecs;

if (argc>1) numTix = atoi(argv[1]);

if (picosecs = mapTheTimer())
{

tbits = timerBitCount();
dmicsecs = ((double)picosecs)/1e6;
printf("The timer has %d bits of precision\n",tbits);
printf("One timer unit == %d picoseconds or %g us\n",

picosecs, dmicsecs);
}
else
{

perror("mapTheTimer");
return errno;

}

184

: Sample Programs

{
__uint32_t st1, st2, stx;
st1 = readTimer32();
printf("\nreading timer as 32 bits\n\n");
for(j=0; j<numTix; ++j)
{

st2 = readTimer32();
stx = st2 - st1;
printf("0x%0x - 0x%0x = 0x%0x (%g usecs)\n",

st2, st1, stx, (stx*dmicsecs));
st1 = st2;

}
}

{
__uint64_t lt1, lt2, ltx;
lt1 = readTimer64();
printf("\nreading timer as 64 bits\n\n");
for(j=0; j<numTix; ++j)
{

lt2 = readTimer64();
ltx = lt2 - lt1;
printf("0x%0llx - 0x%0llx = 0x%0llx (%g usecs)\n",

lt2, lt1, ltx, (ltx * dmicsecs));
lt1 = lt2;

}
}

}
#endif

Getting the Time of Day Stamp

The program in Example A-3 tests the precision of the time of day stamp returned by
gettimeofday(). The function getTODdiff() contains an example call to gettimeofday().

Example A-3 Program to Exercise gettimeofday()
#include <sys/time.h>
#include <stdio.h>
#define LOOPS 1000
/*
 * This function loops on gettimeofday() until the returned time
 * changes by more than 1 microsecond, then reports the difference.

Getting the Time of Day Stamp

185

 *
 * We look for a change of >1 usec because in some older systems
 * (apparently not in 6.2) IRIX, in order to ensure that gettimeofday()
 * never returns the same value twice while not actually updating the
 * timer, just adds 1 usec on each call until a normal dispatching
 * tick occurs. In 6.2 systems, IRIX actually recalculates the timer
 * on each call.
 *
 * The function also updates a maximum loop-count value.
 */
long getTODdiff(int * pMaxLoops)
{

long first, second;
int nloops = 0;
struct timeval tod;
struct timezone tz;
gettimeofday(&tod, &tz);
first = tod.tv_usec;
do
{

gettimeofday(&tod, &tz);
second = tod.tv_usec;
++nloops;

} while (first == (second-nloops));
if (first > second)

second += 1000000;
if (pMaxLoops)

if (nloops > *pMaxLoops)
*pMaxLoops = nloops;

return second - first;
}
int main(int argc, char *argv[])
{

int j, limit;
int maxLoops = 0;
long sample, sum, min, max;
double mean;

limit = LOOPS;
if (argc > 1)

limit = atoi(argv[1]);
/* get past the first call, which is likely to be short */
sum = getTODdiff(NULL);

/* exercise gettimeofday a few times */

186

: Sample Programs

for (j=0, sum=0, min=999999, max=0; j< limit; j++)
{

sample = getTODdiff(&maxLoops);
sum += sample;
if (sample > max) max = sample;
if (sample < min) min = sample;

}
mean = sum/LOOPS;
printf("gettimeofday() increments: min=%ld, mean=%g, max=%ld\n",

 min, mean, max);
if (maxLoops > 1)

printf("Max number of loops %d\n", maxLoops);
else

printf("Honest timer update in this system.\n");
return 0;

}

Interprocess Communication

The program in Example A-6 illustrates the use of some of the interprocess
communication (IPC) features of IRIX, in particular:

• Code following allocRBStuff() on page 189 demonstrates the creation of a
shared-memory arena and suballocation of memory, semaphores, and locks within
the arena.

• Code following inputProcess(void *arena) on page 192 demonstrates the use of the
P and V operations on a semaphore, and testing the value of a semaphore without
waiting on it.

• Code following outputProcess(void *arena) on page 194 demonstrates the use of
POSIX-type signal-handling functions.

• Code following showSemaInfo(char *semaName, usema_t *sema) on page 195
demonstrates how to extract metering information from a metered semaphore and
display it.

• Code following main(int argc, char**argv) on page 196 demonstrates the creation of
child processes using sproc().

The program models a real-time data-collection program. The main process establishes
an arena. Within the arena it creates a data structure that defines and manages a ring
buffer. Then the main process uses sproc() to create three processes:

Interprocess Communication

187

• inputProcess() generates random-integer “input data” and stores it in the ring
buffer. To simulate an unpredictable and varying input rate, the process “receives”
bursts of from 1 to 16 data items. The average input rate is calculable (see the
commentary in the code).

The number of items to generate can be specified on the command line as the -c
option followed by the count. The default is 2000 items. After generating that many
items, inputProcess() waits until all data has been consumed, then terminates.

• outputProcess()—of which two instances are created—takes data from the ring
buffer. To simulate a steady average output rate, each process sets a repeating itimer
and takes one data item each time the timer expires. The itimer interval represents
the simulated “processing time” of a data item. This interval can be specified on the
command line as the -t option followed by the interval in microseconds. The default
is 10,000 (10 milliseconds per item per process, an output rate of 200 items/second).

After starting the three processes, the main process waits for one to terminate. When
there are no errors, inputProcess() is the first and only process to terminate—the two
outputProcess() instances end up blocked on a semaphore, waiting for more data.

The main process kills the remaining processes; then displays the metering information
from the lock and semaphores, and terminates the program.

The three simulated real-time processes communicate through two semaphores and a
lock.

• Semaphore semRBdata represents the number of data items now in the ring buffer.
inputProcess() does the V operation, increasing the semaphore count with each
input datum; outputProcess() does the P operation, decreasing the count with each
output.

• Semaphore semRBspace represents the number of empty slots in the ring buffer.
inputProcess() does the P operation to acquire an empty slot, and outputProcess()
does the V operation when it releases a slot.

• Lock lockRBupdate represents the right to alter the ring buffer index values. All
processes set this lock before modifying the ring buffer, and clear it afterward.

The displayed metering data at the end of the program shows whether the output
processes could keep up with the input process. It is necessary to run the program with
a nondegrading real-time priority to get consistent results. The output in Example A-4
shows a case in which output did not keep up.

188

: Sample Programs

Example A-4 Producer/Consumer Program Test 1

npri -h 39 ./ringBuffer -t 20000
Lock lockRBupdate acquired 4004 times, 4004 without waiting (100%)
Metering info on sema semRBdata
 P: 2004, 2000 with no wait (99%)
 V: 2002, 2 with P waiting (0%)
Metering info on sema semRBspace
 P: 2002, 1423 with no wait (71%)
 V: 2002, 579 with P waiting (28%)

In Example A-4, look first at the P operations for semRBspace. 71% of the time, when
inputProcess() applies uspsema() to this semaphore to acquire a slot in the ring buffer, it
does not wait. However, 29% of the time it did wait, meaning that the ring buffer was full
and no free slots were available until an outputProcess() released one. Clearly, the output
processes were not keeping up with the input data rate.

Example A-5 Producer/Consumer Program Test 2

npri -h 39 ./ringBuffer -t 5000
Lock lockRBupdate acquired 4004 times, 4004 without waiting (100%)
Metering info on sema semRBdata
 P: 2004, 1565 with no wait (78%)
 V: 2002, 437 with P waiting (21%)
Metering info on sema semRBspace
 P: 2002, 2002 with no wait (100%)
 V: 2002, 0 with P waiting (0%)

Example A-5 shows a test run in which the output processes did keep up with the input
rate. In every case, inputProcess() was able to acquire a slot from semRBspace without
waiting. 22% of the time, when an outputProcess() tried to acquire a data item from
semRBdata, it had to wait, meaning the ring buffer was empty. (This percentage would be
higher if inputProcess() did not frequently dump blocks of 2-16 items into the buffer.)

Example A-6 Producer/Consumer Program Demonstrating IPC Functions

#include <stdlib.h> /* for getopt() */
#include <signal.h>
#include <sys/time.h>
#include <ulocks.h>
#include <math.h> /* for random() and srandom() */
#include <sys/types.h> /* for pid_t */
#include <sys/wait.h> /* for wait() */
/*
|| The following declarations define a structure that controls a ring buffer.

Interprocess Communication

189

||
|| rbElem_t the type of thing that is stored in the buffer
|| RB_MAXELS the size of the ring buffer
|| rbStruct_t control and serialization items for the buffer
||
|| The buffer and structure are built together in an arena, and the
|| address of the structure is the arena info (usgetinfo()).
*/
typedef long rbElem_t; /* can be any scalar, but assumed long below */
#define RB_MAXELS 160 /* specify enough to buffer the peak data rate */
typedef struct rbStruct {

rbElem_t * theBuffer; /* -> [RB_MAXELS] of rbElem_t */
usema_t * semRBdata; /* -> semaphore for buffered data */
usema_t * semRBspace; /* -> semaphore for open buffer slots */
ulock_t * lockRBupdate; /* -> lock on the following words */
int rbGet; /* theBuffer[rbGet] is next live data */
int rbPut; /* theBuffer[rbPut] is next empty slot */

} rbStruct_t;
/*
|| The following constants are default values for the global parameters.
|| See the prologs of the inputProcess and outputProcess functions.
*/
#define MAX_BURST 16 /* data rate average 25*16/2 == 200/sec */
#define FINAL_COUNT ((MAX_BURST/2)*25)*10 /* run for ~10 seconds */
#define OUTPUT_TIME 10000 /* 10 ms delay or 100 Hz */
/*
|| The following global variables are input parameters to the
|| child processes. They are set by main() from command line arguments.
*/
static int outputTimer = OUTPUT_TIME; /* -t argument */
static int inputCount = FINAL_COUNT; /* -c argument */
/*
|| Allocate the arena and initialize it with the ring buffer structure.
|| If any error occurs, report it and return NULL. The following filename
|| is used. It must address a writeable directory. If the file already
|| exists, it must be writeable to this process.
*/
#define ARENA_FILE "/var/tmp/ring.buffer.arena"
usptr_t *
allocRBStuff()
{

usptr_t * arena;
rbStruct_t * rbs;
int okSoFar = 1;
/*

190

: Sample Programs

|| Announce that we want metering info stored with our locks.
*/
if (-1 == usconfig(CONF_LOCKTYPE, US_DEBUGPLUS))
{

perror("usconfig(CONF_LOCKTYPE)");
return NULL;

}
/*
|| Create the arena.
*/
if (NULL == (arena = usinit(ARENA_FILE)))
{

perror("usinit");
return NULL;

}
/*
|| From here on, a failure means we must call usdetach().
*/
rbs = (rbStruct_t *)uscalloc(1, sizeof(rbStruct_t), arena);
if (!(okSoFar=(0 != rbs)))
{

fprintf(stderr, "Unable to allocate anything in arena\n");
}
else
{

rbs->theBuffer =
(rbElem_t *)uscalloc(RB_MAXELS, sizeof(rbElem_t), arena);

if (!(okSoFar=(0 != rbs->theBuffer)))
fprintf(stderr, "Unable to allocate ring buffer in arena\n");

}
if (okSoFar)
{ /* value of semRBdata is 0 because no data in buffer yet */

rbs->semRBdata = usnewsema(arena, 0);
if (!(okSoFar=(0!=rbs->semRBdata)))

perror("usnewsema #1");
}
if (okSoFar)
{ /* value of semRBspace is number of empty slots in ring buffer */

okSoFar = 0 != (rbs->semRBspace = usnewsema(arena, RB_MAXELS));
if (!okSoFar)

perror("usnewsema #2");
}
if (okSoFar)
{

okSoFar = 0 != (rbs->lockRBupdate = usnewlock(arena));

Interprocess Communication

191

if (!okSoFar)
perror("usnewlock");

}
/*
|| Set the semaphores to collect metering information.
*/
if (okSoFar)
{

okSoFar = (0==(usctlsema(rbs->semRBdata, CS_METERON)))
&& (0==(usctlsema(rbs->semRBspace, CS_METERON)));

if (!okSoFar)
perror("usctlsema(METERON)");

}
if (okSoFar)
{ /* stow the ring buffer structure as the arena info word */

usputinfo(arena, (void *)rbs);
}
else
{ /* something went wrong, return null */

usdetach(arena);
arena = NULL;

}
return arena;

}
/*
|| Put an item into the ring buffer. This dePletes the count of open
|| slots, and reViVes the count of waiting data. If the ring buffer is
|| full it blocks until getElement() has been called. It can also
|| block briefly on the lock if another process is updating the ring.
*/
void
putElement(rbElem_t value, rbStruct_t * rbs)
{

uspsema(rbs->semRBspace); /* dePlete the open slots */
ussetlock(rbs->lockRBupdate); /* get exclusive use of rbPut */
rbs->theBuffer[rbs->rbPut++] = value;
if (rbs->rbPut >= RB_MAXELS)

rbs->rbPut = 0;
usunsetlock(rbs->lockRBupdate); /* release use of lock */
usvsema(rbs->semRBdata); /* reViVe the count of active data */

}
/*
|| Fetch an item from the ring buffer. This dePletes the count of
|| waiting data items and reVives the count of open slots. If the
|| ring buffer is empty it blocks until putElement() is called.

192

: Sample Programs

*/
rbElem_t getElement(rbStruct_t * rbs)
{

rbElem_t ret;
uspsema(rbs->semRBdata); /* dePlete the available data */
ussetlock(rbs->lockRBupdate); /* get exclusive use of rbGet */
ret = rbs->theBuffer[rbs->rbGet++];
if (rbs->rbGet >= RB_MAXELS)

rbs->rbPut = 0;
usunsetlock(rbs->lockRBupdate); /* release use of lock */
usvsema(rbs->semRBspace); /* reViVe the count of open slots */
return ret;

}
/*
|| This is the body of the simulated data collection process.
|| The process actually runs at a constant rate of 25 Hz, invoking
|| sginap(4) to pace itself: 100 ticks per second / 4 ticks = 25Hz.
|| However, to simulate "data" received in bursts, it "receives" from
|| 1 to MAX_BURST items per iteration, an average of MAX_BURST/2,
|| for an average data rate of (25*MAX_BURST/2) items/second.
||
|| With MAX_BURST at 16, that gives 200 items/second.
|| This is the average rate the data writers must achieve, and the ring
|| buffer has to take up the slack during long bursts.
||
|| At a rough approximation, the probability of a burst of length
|| n*MAX_BURST should be (1/MAX_BURST)^n. (This means that there is
|| a nonzero probability of a burst of any length whatever, and you
|| cannot make a buffer big enough to completely preclude blockages.)
||
|| However, with MAX_BURST==16 and RB_MAXEL==160, this buffer should
|| overflow once in ~1e-12 times, provided the data writers keep to the rate.
||
|| The process executes until it has buffered FINAL_COUNT elements,
|| then terminates. main() waits for this, and shuts down the program.
*/
void
inputProcess(void *arena)
{

rbElem_t datum;
rbStruct_t * rbs = usgetinfo((usptr_t *)arena);
int myPid = getpid();
int counter = inputCount;
int burst;
srandom(myPid); /* seed random() */

Interprocess Communication

193

do
{

sginap(4);
datum = (rbElem_t) random(); /* ASSUMES rbElem_t is long */
burst = 1+(datum % MAX_BURST);
for (; burst; --burst)
{

putElement(datum, rbs);
--counter;

}
} while (counter > 0);
/*
|| Kill time until all data has been consumed by the output procs.
|| The semaphore count is positive until all data is consumed, then
|| it becomes negative, -2, when the two output procs are waiting.
*/
while(ustestsema(rbs->semRBdata) > -2)
{

sginap(10);
}
/* exit, ending the process and satisfying wait() in main() */

}
/*
|| This is the body of both simulated data-output processes.
|| Two instances of this code are started. The purpose of starting
|| two is merely to complicate the use of the semaphores -- it is
|| not intended to b realistic.
||
|| Each process sets a repeating itimer with an interval of OUTPUT_TIME
|| microseconds. That constant determines the "output data rate" that
|| can be achieved. However, due to integer truncation effects in the
|| precision timer routines, you should not expect fine-grained
|| adjustments of this value to be effective. (Not to mention the
|| interference of other processes in the system, even when this
|| program runs with a real-time priority level.)
||
|| The signal handler is empty. The POSIX sigsuspend() call is used
|| to block until the SIGALRM comes. When it comes, the empty handler
|| is called and then control returns from the sigsuspend().
|| Then one data item is fetched from the ring buffer.
||
|| When the input rate averages 200/sec, each output process needs to
|| get signals at a rate of 100/sec, or an interval of 10000 usec.
|| (Tested on an Indy, the interval had to be 2500 usec to work)
||

194

: Sample Programs

*/
void
uponSigalrm()
{

return; /* empty handler for SIGALRM */
}
void
outputProcess(void *arena)
{

rbStruct_t * rbs = usgetinfo((usptr_t *)arena);
sigset_t alarmSet, emptySet;
struct sigaction alarmAct = {SA_RESTART, uponSigalrm, 0};
struct itimerval timer = {{0, 0}, {0, 0}};
rbElem_t datum;
/*
|| Prepare an empty set of signals to use with sigsuspend().
*/
sigemptyset(&emptySet);
/*
|| Prepare a mask to block SIGALRM, and apply it.
*/
alarmSet = emptySet;
sigaddset(&alarmSet, SIGALRM);
sigprocmask(SIG_BLOCK, &alarmSet, NULL);
/*
|| Set the action for SIGALRM to the empty handler.
*/
if (sigaction(SIGALRM, &alarmAct, NULL))
{

perror("sigaction");
return;

}
/*
|| If a nonzero "processing time" is specified, set a repeating
|| itimer to deliver SIGALRMs regularly.
*/
if (outputTimer)
{

timer.it_interval.tv_usec = outputTimer;
timer.it_value.tv_usec = outputTimer;
if (setitimer(ITIMER_REAL, &timer, NULL))
{

perror("setitimer");
return;

}

Interprocess Communication

195

}
/*
|| Loop getting successive data items. If a nonzero processing
|| time is specified, wait for a timer pop after each one.
 */
for (;;)
{

datum = getElement(rbs);
if (outputTimer)

sigsuspend(&emptySet);
}

}
/*
|| Subroutine to display metering info about a lock in a more
|| compact form than usdumplock(3)
*/
void
showLockInfo(char *lockName, ulock_t *lock)
{

lockmeter_t linfo;
if (0==usctllock(lock,CL_METERFETCH,&linfo))
{

int nowaits = linfo.lm_hits - linfo.lm_spins;
int nwpct = (100 * nowaits) / linfo.lm_hits;
printf("Lock %s acquired %d times, %d without waiting (%d%%)\n",

 lockName, linfo.lm_hits, nowaits, nwpct);
}
else

printf("No metering info for lock %s\n",lockName);
}
/*
|| Subroutine to display metering info about a semaphore.
*/
void
showSemaInfo(char *semaName, usema_t *sema)
{

semameter_t sinfo;
if (0==usctlsema(sema,CS_METERFETCH,&sinfo))
{

int pct, nwait;
printf("Metering info on sema %s\n",semaName);
pct = (100 * sinfo.sm_phits) / sinfo.sm_psemas;
printf(" P: %d, %d with no wait (%d%%)\n",

 sinfo.sm_psemas, sinfo.sm_phits, pct);
nwait = sinfo.sm_vsemas - sinfo.sm_vnowait;

196

: Sample Programs

pct = (100 * nwait)/sinfo.sm_vsemas;
printf(" V: %d, %d with P waiting (%d%%)\n",

sinfo.sm_vsemas, nwait, pct);
}
else

printf("No metering info for sema %s\n",semaName);
}
/*
|| The main() function:
|| * Gets the arguments, if any.
|| * Sets up the arena.
|| * Starts the 3 processes.
|| * Waits for the outputProcess to terminate.
|| * Dumps the lock and semaphore info.
|| * Detaches the arena and unlinks its file.
*/
main(int argc, char**argv)
{

pid_t kids[3];
usptr_t * arena = allocRBStuff();
rbStruct_t *rbs;
int c;
/*
|| Check that the arena and structures allocated OK.
*/
if (!arena)

return -1; /* allocation failed, message issued */
rbs = usgetinfo(arena);
/*
|| get command line arguments for input count and output delay
*/
while (EOF != (c = getopt(argc, argv, "c:t:")))
{

switch (c)
{
case 'c':

inputCount = atoi(optarg);
break;

case 't':
outputTimer = atoi(optarg);
break;

case '?':
printf("usage: [-c input data count] [-t output time usec]\n");
return -2;
break;

Interprocess Communication

197

}
}
/*
|| Create the inputProcess (simulated data collection).
*/
kids[0] = sproc(inputProcess, PR_SALL, (void *)arena);
if (-1 == kids[0])
{

perror("sproc(outputProcess)");
return -1;

}
/*
|| Create the 2 outputProcesses (simulated data reduction).
 */
kids[1] = sproc(outputProcess, PR_SALL, (void *)arena);
if (-1 == kids[1])
{

perror("sproc(inputProcess 1)");
return -1;

}
kids[2] = sproc(outputProcess, PR_SALL, (void *)arena);
if (-1 == kids[2])
{

perror("sproc(inputProcess 2)");
return -1;

}
/*
|| Wait until a child process (don't care which) ends.
*/
wait(0);
/*
|| Display the metering information from the lock and semaphores.
*/
showLockInfo("lockRBupdate",rbs->lockRBupdate);
showSemaInfo("semRBdata",rbs->semRBdata);
showSemaInfo("semRBspace",rbs->semRBspace);
/*
|| Clean up: terminate the 2 output procs (which are probably
|| blocked on semRBdata at this time). Then detach the arena
|| and unlink its file.
*/
kill(kids[1],SIGTERM);
kill(kids[2],SIGTERM);
printf("\ndetaching arena file\n");
usdetach(arena);

198

: Sample Programs

unlink(ARENA_FILE);
return 0;

}

Probing the Address Space

The sample program in Example A-7 uses some generally unsafe coding tricks to get the
addresses of segments for text, stack, library DSO and mapped data. It demonstrates the
use of mmap() with /dev/zero, for default and absolute segment addresses.

Example A-7 Program That Explores the Address Space

#include <stddef.h> /* for standard malloc(3C) */
#include <unistd.h> /* for sbrk(2) */
#include <stdio.h> /* for printf */
#include <sys/types.h> /* for __psint_t */
/* include <sys/stat.h> */
#include <sys/fcntl.h> /* for O_RDWR */
#include <sys/mman.h> /* for mmap(2) */
#define DISPLAY(v,t) {printf("%s:\t%0lx\n",t,(__psint_t)v);}
int main()
{

/*
|| Get a mask that truncates an address to a page boundary.
*/
__psint_t psize = getpagesize();
__psint_t pmask = ~(psize-1);
/*
|| Get a file descriptor for the nothing device.
|| Use that FD to map two segments of memory containing 00.
*/
int zero = open("/dev/zero",O_RDWR);
void * zmap1 = mmap(0,16384,PROT_WRITE,MAP_SHARED,zero,0);
void * zmap2 = mmap(0,16384,PROT_WRITE,MAP_SHARED,zero,0);
/*
|| Map one segment at a designated address reserved for
|| user maps by the MIPS ABI.
*/
void * abi_map = (char *)mmap((void *)0x30040000L,16384,

PROT_WRITE,MAP_SHARED+MAP_FIXED,zero, 0);

/*
|| Get the address of this program.

Probing the Address Space

199

*/
char * poke = (char *)((__psint_t)main);
/*
|| Get some program addresses supplied by ld(1), but note
|| the warnings in end(3C) -- these addresses "have no standard
|| definition" when multiple text/data segments exist.
*/
extern int _ftext[];
void * ld_ftext = (void *)_ftext;
extern int _etext[];
void * ld_etext = (void *)_etext;
extern int _fdata[];
void * ld_fdata = (void *)_fdata;
extern int _edata[];
void * ld_edata = (void *)_edata;
extern int _fbss[];
void * ld_fbss = (void *)_fbss;
extern int _end[];
void * ld_end = (void *)_end;
/*
|| Get the address of some code in the libc DSO.
*/
void * libc_adr = (void *)fprintf;
/*
|| Get the current start and end of the heap.
*/
void * malloc_adr = (void *)malloc((size_t)256);
void * brk_adr = sbrk(0);
/*
|| Get the address of an item in our stack space.
*/
void * stack_adr = (void *)&psize;
/*
|| Display all the above.
*/
DISPLAY(psize,"Page size")
DISPLAY(zmap1,"Mapped segment 1")
DISPLAY(zmap2,"Mapped segment 2")
DISPLAY(abi_map,"ABI mapped segment")
DISPLAY(ld_ftext,"Text starts")
DISPLAY(ld_etext,"Text ends")
DISPLAY(ld_fdata,"Initialized data starts")
DISPLAY(ld_edata,"Initialized data ends")
DISPLAY(ld_fbss,"Uninitialized starts")
DISPLAY(ld_end,"Uninitialized ends")

200

: Sample Programs

DISPLAY(malloc_adr,"Heap data starts")
DISPLAY(brk_adr,"Heap data ends")
DISPLAY(stack_adr,"Stack data")
DISPLAY(libc_adr,"Spot in one DSO")
/*
|| See if we can get away with patching our own text.
*/
if (!mprotect((void *)(pmask&(__psint_t)poke),psize,PROT_WRITE+PROT_EXEC))
{

poke[0] = poke[0];
printf("I wrote into program text\n");

}
else
{

perror("mprotect(text)");
}

}

Deadline Scheduling Subroutines

The following example contains two subroutines that simplify the interface to the
schedctl() function for deadline scheduling. If the code is compiled with variable
UNIT_TEST defined, it compiles a main() procedure that runs a test. Otherwise it
compiles only the functions. A test run of the program resembles the following:

% setDeadline 20 100
schedule pid 0 for 20% of 100ms --> 0
policy DL_ONLY-->0
policy DL_ANY-->0
policy DL_RELEASE-->0

On a uniprocessor, a request for much more than 20% of the CPU is rejected. On a
multiprocessor, a request for 98% or 99% is generally successful.

Example A-8 Helper Functions for Using schedctl()

/*
|| Issue the schedctl(2) calls to set up deadline scheduling, using
|| the simpler interface of npri(1). That is, where schedctl() requires
|| you to set up a structure containing two intervals in nanoseconds,
|| setDeadlinePct() lets you specify an interval in milliseconds and a
|| percentage duty cycle.
||

Deadline Scheduling Subroutines

201

|| As a bonus, setDeadlinePolicy() is a short way to call for any of
|| the four policies, DL_ONLY, DL_ANY, DL_RELEASE (the rest of the period)
|| and DL_BLOCK (for the rest of the period).
*/
#include <errno.h>
#include <sys/schedctl.h>
#include <stdio.h> /* for stderr, perror */
/*
|| This local function does the arithmetic to convert a count of
|| milliseconds into the fields of a timestruc_t.
*/
static void putMSinTimestruc(timestruc_t *ts, const int milliseconds)
{

int ms = milliseconds;
if (1000 > ms)

ts->tv_sec = 0;
else
{ /* set the seconds as well as the nanoseconds */

ts->tv_sec = ms/1000;
ms %= 1000;

}
/* set the nanoseconds: 1e3*1e6 == 1e9 */
ts->tv_nsec = ms*1000000;

}
/*
|| Request deadline scheduling for the specified PID (0 for "self"),
|| in terms of a period in milliseconds and a percentage.
*/
int setDeadlinePct(int pid, int period, int pct)
{

struct sched_deadline dd = {{0,0},{0,0}};
int retval;
putMSinTimestruc(&dd.dl_period, period);
putMSinTimestruc(&dd.dl_alloc, (period * pct)/100);
if (-1 == (retval = schedctl(DEADLINE, pid, &dd)))
{

if (ENOSPC == errno)
{ /* system cannot guarantee that duty cycle */

fprintf(stderr,"schedctl: cannot promise %d%% of %dms\n",
 pct, period);

}
else perror("schedctl");

}
return retval;

}

202

: Sample Programs

/*
|| Request one of the constants defined in schedctl.h as a new
|| scheduling policy for the specified PID.
||
|| Note: the constants DL_ONLY, etc., are declared in schedctl.h
|| as type-casts to (struct sched_deadline *). That is why this
|| function speficies that type for its second argument -- when
|| it logically should be simply "int."
*/
int setDeadlinePolicy(int pid, struct sched_deadline * policy)
{

int retval = schedctl(DEADLINE,pid,policy);
if (-1 == retval)
{

char msg[64];
sprintf(msg,"schedctl(DEADLINE,%d,%ld)",pid,policy);
perror(msg);

}
return retval;

}
#ifdef UNIT_TEST
int main(int argc, char **argv)
{

int pct = 25;
int per = 100;
int pid = 0; /* which means "self" to schedctl() */
if (1 < argc)
{

pct = atoi(argv[1]);
}
if (2 < argc)
{

per = atoi(argv[2]);
}
if (3 < argc)
{

pid = atoi(argv[3]);
}
if ((4 < argc) || (0==pct) || (0==per))
{

fprintf(stderr,
"usage: setDeadline [pct_duty_cycle [period_ms [pid]]]\n");

exit();
}
printf("schedule pid %d for %d%% of %dms --> %d\n",

Asynchronous I/O Example

203

pid, pct, per, setDeadlinePct(pid, per, pct));
printf("policy DL_ONLY-->%d\n", setDeadlinePolicy(pid,DL_ONLY));
printf("policy DL_ANY-->%d\n", setDeadlinePolicy(pid,DL_ANY));
printf("policy DL_RELEASE-->%d\n", setDeadlinePolicy(pid,DL_RELEASE));

}
#endif

Asynchronous I/O Example

The program in Example A-9 demonstrates the use some asynchronous I/O functions.
The basic purpose of the program is to read a list of input files and write their
concatenated contents as its output—work that does not normally require asynchronous
I/O. However, this test program reads the input files using aio_read(), and writes the
output files using aio_write() and aio_fsync(). In addition, it can be compiled in either of
two ways,

• to copy the input files one at a time, using subroutine calls

• to copy the input files concurrently, using a separate process for each input file

There is no functional advantage to using multiple processes. Doing so merely makes
the example more interesting. It also demonstrates that, even though multiple processes
ask for output at different points in the same file at the same time, the output is written
to the requested offsets.

The reading and writing is done in one of four functions. The functions all perform the
following sequence of actions:

1. Initialize the aiocb for the type of notification desired. The type of notification is the
principal difference between the functions: some use signals, some callback
functions, some no notification.

2. Until the input file is exhausted,

• Call aio_read() for up to one BLOCKSIZE amount from the next offset in the
input file

• Wait for the read to complete

• Call aio_write() to write the data read to the next offset in the output file

• Wait for the write to complete

3. Use aio_fsync() to ensure that output is complete and wait for it to complete.

204

: Sample Programs

The four functions, inProc0() through inProc3(), differ only in the method they use to
wait for completion.

• inProc0() alternates calling aio_error() with sginap() until the status is other than
EINPROGRESS.

• inProc1() calls aio_suspend() to wait for the current operation.

• inProc2() sets the aiocb to request a signal on completion. Then it waits on a
semaphore that is posted from the signal handler function.

• inProc3() waits on a semaphore which is posted from a callback function.

You select which of the four function to use with the -a argument to the program. If you
compile the program with the variable DO_SPROCS defined as 0, the chosen function is
called as a subroutine once for each input file. If you compile with DO_SPROCS defined
as 1, the chosen function is launched by sprocsp() once for each input file.

Example A-9 Asynchronous I/O Example Program

/* ==
|| aiocat.c : This highly artificial example demonstrates asynchronous I/O.
||
|| The command syntax is:
|| aiocat [-o outfile] [-a {0|1|2|3}] infilename...
||
|| The output file is given by -o, with $TMPDIR/aiocat.out by default.
|| The aio method of waiting for completion is given by -a as follows:
|| -a 0 poll for completion with aio_error() (default)
|| -a 1 wait for completion with aio_suspend()
|| -a 2 wait on a semaphore posted from a signal handler
|| -a 3 wait on a semaphore posted from a callback routine
||
|| Up to MAX_INFILES input files may be specified. Each input file is
|| read in BLOCKSIZE units. The output file contains the data from
|| the input files in the order they were specified. Thus the
|| output should be the same as "cat infilename... >outfile".
||
|| When DO_SPROCS is compiled true, all I/O is done asynchronously
|| and concurrently using one sproc'd process per file. Thus in a
|| multiprocessor concurrent input can be done.
== */

#define _SGI_MP_SOURCE /* see the "Caveats" section of sproc(2) */
#include <sys/time.h> /* for clock() */
#include <errno.h> /* for perror() */

Asynchronous I/O Example

205

#include <stdio.h> /* for printf() */
#include <stdlib.h> /* for getenv(), malloc(3c) */
#include <ulocks.h> /* usinit() & friends */
#include <bstring.h> /* for bzero() */
#include <sys/resource.h> /* for prctl, get/setrlimit() */
#include <sys/prctl.h> /* for prctl() */
#include <sys/types.h> /* required by lseek(), prctl */
#include <unistd.h> /* ditto */
#include <sys/types.h> /* wanted by sproc() */
#include <sys/prctl.h> /* ditto */
#include <signal.h> /* for signals - gets sys/signal and sys/siginfo */
#include <aio.h> /* async I/O */

#define BLOCKSIZE 2048 /* input units -- play with this number */
#define MAX_INFILES 10 /* max sprocs: anything from 4 to 20 or so */
#define DO_SPROCS 1 /* set 0 to do all I/O in a single process */

#define QUITIFNULL(PTR,MSG) if (NULL==PTR) {perror(MSG);return(errno);}
#define QUITIFMONE(INT,MSG) if (-1==INT) {perror(MSG);return(errno);}
/***
|| The following structure contains the info needed by one child proc.
|| The main program builds an array of MAX_INFILES of these.
|| The reason for storing the actual filename here (not a pointer) is
|| to force the struct to >128 bytes. Then, when the procs run in
|| different CPUs on a CHALLENGE, the info structs will be in different
|| cache lines, and a store by one proc will not invalidate a cache line
|| for its neighbor proc.
*/
typedef struct child
{

/* read-only to child */
char fname[100]; /* input filename from argv[n] */
int fd; /* FD for this file */
void* buffer; /* buffer for this file */
int procid; /* process ID of child process */
off_t fsize; /* size of this input file */

/* read-write to child */
usema_t* sema; /* semaphore used by methods 2 & 3 */
off_t outbase; /* starting offset in output file */
off_t inbase; /* current offset in input file */
clock_t etime; /* sum of utime/stime to read file */
aiocb_t acb; /* aiocb used for reading and writing */

} child_t;

/**

206

: Sample Programs

|| Globals, accessible to all processes
*/
char* ofName = NULL; /* output file name string */
int outFD; /* output file descriptor */
usptr_t* arena; /* arena where everything is built */
barrier_t* convene; /* barrier used to sync up */
int nprocs = 1; /* 1 + number of child procs */
child_t* array; /* array of child_t structs in arena */
int errors = 0; /* always incremented on an error */

/**
|| forward declaration of the child process functions
*/
void inProc0(void *arg, size_t stk); /* polls with aio_error() */
void inProc1(void *arg, size_t stk); /* uses aio_suspend() */
void inProc2(void *arg, size_t stk); /* uses a signal and semaphore */
void inProc3(void *arg, size_t stk); /* uses a callback and semaphore */

/**
// The main()
*/
int main(int argc, char **argv)
{

char* tmpdir; /* ->name string of temp dir */
int nfiles; /* how many input files on cmd line */
int argno; /* loop counter */
child_t* pc; /* ->child_t of current file */
void (*method)(void *,size_t) = inProc0; /* ->chosen input method */
char arenaPath[128]; /* build area for arena pathname */
char outPath[128]; /* build area for output pathname */
/*
|| Ensure the name of a temporary directory.
*/
tmpdir = getenv("TMPDIR");
if (!tmpdir) tmpdir = "/var/tmp";
/*
|| Build a name for the arena file.
*/
strcpy(arenaPath,tmpdir);
strcat(arenaPath,"/aiocat.wrk");
/*
|| Create the arena. First, call usconfig() to establish the
|| minimum size (twice the buffer size per file, to allow for misc usage)
|| and the (maximum) number of processes that may later use
|| this arena. For this program that is MAX_INFILES+10, allowing

Asynchronous I/O Example

207

|| for our sprocs plus those done by aio_sgi_init().
|| These values apply to any arenas made subsequently, until changed.
*/
{

ptrdiff_t ret;
ret = usconfig(CONF_INITSIZE,2*BLOCKSIZE*MAX_INFILES);
QUITIFMONE(ret,"usconfig size")
ret = usconfig(CONF_INITUSERS,MAX_INFILES+10);
QUITIFMONE(ret,"usconfig users")
arena = usinit(arenaPath);
QUITIFNULL(arena,"usinit")

}
/*
|| Allocate the barrier.
*/
convene = new_barrier(arena);
QUITIFNULL(convene,"new_barrier")
/*
|| Allocate the array of child info structs and zero it.
*/
array = (child_t*)usmalloc(MAX_INFILES*sizeof(child_t),arena);
QUITIFNULL(array,"usmalloc")
bzero((void *)array,MAX_INFILES*sizeof(child_t));
/*
|| Loop over the arguments, setting up child structs and
|| counting input files. Quit if a file won't open or seek,
|| or if we can't get a buffer or semaphore.
*/
for (nfiles=0, argno=1; argno < argc; ++argno)
{

if (0 == strcmp(argv[argno],"-o"))
{ /* is the -o argument */

++argno;
if (argno < argc)

ofName = argv[argno];
else
{

fprintf(stderr,"-o must have a filename after\n");
return -1;

}
}
else if (0 == strcmp(argv[argno],"-a"))
{ /* is the -a argument */

char c = argv[++argno][0];
switch(c)

208

: Sample Programs

{
case '0' : method = inProc0; break;
case '1' : method = inProc1; break;
case '2' : method = inProc2; break;
case '3' : method = inProc3; break;
default:

{
fprintf(stderr,"unknown method -a %c\n",c);
return -1;

}
}

}
else if ('-' == argv[argno][0])
{ /* is unknown -option */

fprintf(stderr,"aiocat [-o outfile] [-a 0|1|2|3] infiles...\n");
return -1;

}
else
{ /* neither -o nor -a, assume input file */

if (nfiles < MAX_INFILES)
{

/*
|| save the filename
*/
pc = &array[nfiles];
strcpy(pc->fname,argv[argno]);
/*
|| allocate a buffer and a semaphore. Not all
|| child procs use the semaphore but so what?
*/
pc->buffer = usmalloc(BLOCKSIZE,arena);
QUITIFNULL(pc->buffer,"usmalloc(buffer)")
pc->sema = usnewsema(arena,0);
QUITIFNULL(pc->sema,"usnewsema")
/*
|| open the file
*/
pc->fd = open(pc->fname,O_RDONLY);
QUITIFMONE(pc->fd,"open")
/*
|| get the size of the file. This leaves the file
|| positioned at-end, but there is no need to reposition
|| because all aio_read calls have an implied lseek.
|| NOTE: there is no check for zero-length file; that
|| is a valid (and interesting) test case.

Asynchronous I/O Example

209

*/
pc->fsize = lseek(pc->fd,0,SEEK_END);
QUITIFMONE(pc->fsize,"lseek")
/*
|| set the starting base address of this input file
|| in the output file. The first file starts at 0.
|| Each one after starts at prior base + prior size.
*/
if (nfiles) /* not first */

pc->outbase =
array[nfiles-1].fsize + array[nfiles-1].outbase;

++nfiles;
}
else
{

printf("Too many files, %s ignored\n",argv[argno]);
}

}
} /* end for(argc) */
/*
|| If there was no -o argument, construct an output file name.
*/
if (!ofName)
{

strcpy(outPath,tmpdir);
strcat(outPath,"/aiocat.out");
ofName = outPath;

}
/*
|| Open, creating or truncating, the output file.
|| Do not use O_APPEND, which would constrain aio to doing
|| operations in sequence.
*/
outFD = open(ofName, O_WRONLY+O_CREAT+O_TRUNC,0666);
QUITIFMONE(outFD,"open(output)")
/*
|| If there were no input files, just quit, leaving empty output
*/
if (!nfiles)
{

return 0;
}
/*
|| Note the number of processes-to-be, for use in initializing
|| aio and for use by each child in a barrier() call.

210

: Sample Programs

*/
nprocs = 1+nfiles;
/*
|| Initialize async I/O using aio_sgi_init(), in order to specify
|| a number of locks at least equal to the number of child procs
|| and in order to specify extra sproc users.
*/
{

aioinit_t ainit = {0}; /* all fields initially zero */
/*
|| Go with the default 5 for the number of aio-created procs,
|| as we have no way of knowing the number of unique devices.
*/

#define AIO_PROCS 5
ainit.aio_threads = AIO_PROCS;
/*
|| Set the number of locks aio needs to the number of procs
|| we will start, minimum 3.
*/
ainit.aio_locks = (nprocs > 2)?nprocs:3;
/*
|| Warn aio of the number of user procs that will be
|| using its arena.
*/
ainit.aio_numusers = nprocs;
aio_sgi_init(&ainit);

}
/*
|| Process each input file, either in a child process or in
|| a subroutine call, as specified by the DO_SPROCS variable.
*/
for (argno = 0; argno < nfiles; ++argno)
{

pc = &array[argno];
#if DO_SPROCS
#define CHILD_STACK 64*1024

/*
|| For each input file, start a child process as an instance
|| of the selected method (-a argument).
|| If an error occurs, quit. That will send a SIGHUP to any
|| already-started child, which will kill it, too.
*/
pc->procid = sprocsp(method /* function to start */

,PR_SALL /* share all, keep FDs sync'd */
,(void *)pc /* argument to child func */

Asynchronous I/O Example

211

,NULL /* absolute stack seg */
,CHILD_STACK); /* max stack seg growth */

QUITIFMONE(pc->procid,"sproc")
#else

/*
|| For each input file, call the selected (-a) method as a
|| subroutine to copy its file.
*/
fprintf(stderr,"file %s...",pc->fname);
method((void*)pc,0);
if (errors) break;
fprintf(stderr,"done\n");

#endif
}

#if DO_SPROCS
/*
|| Wait for all the kiddies to get themselves initialized.
|| When all have started and reached barrier(), all continue.
|| If any errors occurred in initialization, quit.
*/
barrier(convene,nprocs);
/*
|| Child processes are executing now. Reunite the family round the
|| old hearth one last time, when their processing is complete.
|| Each child ensures that all its output is complete before it
|| invokes barrier().
*/
barrier(convene,nprocs);

#endif
/*
|| Close the output file and print some statistics.
*/
close(outFD);
{

clock_t timesum;
long bytesum;
double bperus;
printf(" procid time fsize filename\n");
for(argno = 0, timesum = bytesum = 0 ; argno < nfiles ; ++argno)
{

pc = &array[argno];
timesum += pc->etime;
bytesum += pc->fsize;
printf("%2d: %-8d %-8d %-8d %s\n"

,argno,pc->procid,pc->etime,pc->fsize,pc->fname);

212

: Sample Programs

}
bperus = ((double)bytesum)/((double)timesum);
printf("total time %d usec, total bytes %d, %g bytes/usec\n"

 ,timesum , bytesum , bperus);
}
/*
|| Unlink the arena file, so it won't exist when this progam runs
|| again. If it did exist, it would be used as the initial state of
|| the arena, which might or might not have any effect.
*/
unlink(arenaPath);
return 0;

}
/**
|| inProc0() alternates polling with aio_error() with sginap(). Under
|| the Frame Scheduler, it would use frs_yield() instead of sginap().
|| The general pattern of this function is repeated in the other three;
|| only the wait method varies from function to function.
*/
int inWait0(child_t *pch)
{

int ret;
aiocb_t* pab = &pch->acb;
while (EINPROGRESS == (ret = aio_error(pab)))
{

sginap(0);
}
return ret;

}
void inProc0(void *arg, size_t stk)
{

child_t *pch = arg; /* starting arg is ->child_t for my file */
aiocb_t *pab = &pch->acb; /* base address of the aiocb_t in child_t */
int ret; /* as long as this is 0, all is ok */
int bytes; /* #bytes read on each input */
/*
|| Initialize -- no signals or callbacks needed.
*/
pab->aio_sigevent.sigev_notify = SIGEV_NONE;
pab->aio_buf = pch->buffer; /* always the same */

#if DO_SPROCS
/*
|| Wait for the starting gun...
*/
barrier(convene,nprocs);

Asynchronous I/O Example

213

#endif
pch->etime = clock();
do /* read and write, read and write... */
{

/*
|| Set up the aiocb for a read, queue it, and wait for it.
*/
pab->aio_fildes = pch->fd;
pab->aio_offset = pch->inbase;
pab->aio_nbytes = BLOCKSIZE;
if (ret = aio_read(pab))

break; /* unable to schedule a read */
ret = inWait0(pch);
if (ret)

break; /* nonzero read completion status */
/*
|| get the result of the read() call, the count of bytes read.
|| Since aio_error returned 0, the count is nonnegative.
|| It could be 0, or less than BLOCKSIZE, indicating EOF.
*/
bytes = aio_return(pab); /* actual read result */
if (!bytes)

break; /* no need to write a last block of 0 */
pch->inbase += bytes; /* where to read next time */
/*
|| Set up the aiocb for a write, queue it, and wait for it.
*/
pab->aio_fildes = outFD;
pab->aio_nbytes = bytes;
pab->aio_offset = pch->outbase;
if (ret = aio_write(pab))

break;
ret = inWait0(pch);
if (ret)

break;
pch->outbase += bytes; /* where to write next time */

} while ((!ret) && (bytes == BLOCKSIZE));
/*
|| The loop is complete. If no errors so far, use aio_fsync()
|| to ensure that output is complete. This requires waiting
|| yet again.
*/
if (!ret)
{

if (!(ret = aio_fsync(O_SYNC,pab)))

214

: Sample Programs

ret = inWait0(pch);
}
/*
|| Flag any errors for the parent proc. If none, count elapsed time.
*/
if (ret) ++errors;
else pch->etime = (clock() - pch->etime);

#if DO_SPROCS
/*
|| Rendezvous with the rest of the family, then quit.
*/
barrier(convene,nprocs);

#endif
return;

} /* end inProc1 */
/**
|| inProc1 uses aio_suspend() to await the completion of each operation.
|| Otherwise it is the same as inProc0, above.
*/

int inWait1(child_t *pch)
{

int ret;
aiocb_t* susplist[1]; /* list of 1 aiocb for aio_suspend() */
susplist[0] = &pch->acb;
/*
|| Note: aio.h declares the 1st argument of aio_suspend() as "const."
|| The C compiler requires the actual-parameter to match in type,
|| so the list we pass must either be declared "const aiocb_t*" or
|| must be cast to that -- else cc gives a warning. The cast
|| in the following statement is only to avoid this warning.
*/
ret = aio_suspend((const aiocb_t **) susplist,1,NULL);
return ret;

}
void inProc1(void *arg, size_t stk)
{

child_t *pch = arg; /* starting arg is ->child_t for my file */
aiocb_t *pab = &pch->acb; /* base address of the aiocb_t in child_t */
int ret; /* as long as this is 0, all is ok */
int bytes; /* #bytes read on each input */
/*
|| Initialize -- no signals or callbacks needed.
*/
pab->aio_sigevent.sigev_notify = SIGEV_NONE;

Asynchronous I/O Example

215

pab->aio_buf = pch->buffer; /* always the same */
#if DO_SPROCS

/*
|| Wait for the starting gun...
*/
barrier(convene,nprocs);

#endif
pch->etime = clock();
do /* read and write, read and write... */
{

/*
|| Set up the aiocb for a read, queue it, and wait for it.
*/
pab->aio_fildes = pch->fd;
pab->aio_offset = pch->inbase;
pab->aio_nbytes = BLOCKSIZE;
if (ret = aio_read(pab))

break;
ret = inWait1(pch);
/*
|| If the aio_suspend() return is nonzero, it means that the wait
|| did not end for i/o completion but because of a signal. Since we
|| expect no signals here, we take that as an error.
*/
if (!ret) /* op is complete */

ret = aio_error(pab); /* read() status, should be 0 */
if (ret)

break; /* signal, or nonzero read completion */
/*
|| get the result of the read() call, the count of bytes read.
|| Since aio_error returned 0, the count is nonnegative.
|| It could be 0, or less than BLOCKSIZE, indicating EOF.
*/
bytes = aio_return(pab); /* actual read result */
if (!bytes)

break; /* no need to write a last block of 0 */
pch->inbase += bytes; /* where to read next time */
/*
|| Set up the aiocb for a write, queue it, and wait for it.
*/
pab->aio_fildes = outFD;
pab->aio_nbytes = bytes;
pab->aio_offset = pch->outbase;
if (ret = aio_write(pab))

break;

216

: Sample Programs

ret = inWait1(pch);
if (!ret) /* op is complete */

ret = aio_error(pab); /* should be 0 */
if (ret)

break;
pch->outbase += bytes; /* where to write next time */

} while ((!ret) && (bytes == BLOCKSIZE));
/*
|| The loop is complete. If no errors so far, use aio_fsync()
|| to ensure that output is complete. This requires waiting
|| yet again.
*/
if (!ret)
{

if (!(ret = aio_fsync(O_SYNC,pab)))
ret = inWait1(pch);

}
/*
|| Flag any errors for the parent proc. If none, count elapsed time.
*/
if (ret) ++errors;
else pch->etime = (clock() - pch->etime);

#if DO_SPROCS
/*
|| Rendezvous with the rest of the family, then quit.
*/
barrier(convene,nprocs);

#endif
} /* end inProc0 */
/**
|| inProc2 requests a signal upon completion of an I/O. After starting
|| an operation, it P's a semaphore which is V'd from the signal handler.
*/
#define AIO_SIGNUM SIGRTMIN+1 /* arbitrary choice of signal number */
void sigHandler2(const int signo, const struct siginfo *sif)
{

/*
|| In this minimal signal handler we pick up the address of the
|| child_t info structure -- which was put in aio_sigevent.sigev_value
|| field during initialization -- and use it to find the semaphore.
*/
child_t *pch = sif->si_value.sival_ptr ;
usvsema(pch->sema);
return; /* stop here with dbx to print the above address */

}

Asynchronous I/O Example

217

int inWait2(child_t *pch)
{

/*
|| Wait for any signal handler to post the semaphore. The signal
|| handler could have been entered before this function is called,
|| or it could be entered afterward.
*/
uspsema(pch->sema);
/*
|| Since this process executes only one aio operation at a time,
|| we can return the status of that operation. In a more complicated
|| design, if a signal could arrive from more than one pending
|| operation, this function could not return status.
*/
return aio_error(&pch->acb);

}
void inProc2(void *arg, size_t stk)
{

child_t *pch = arg; /* starting arg is ->child_t for my file */
aiocb_t *pab = &pch->acb; /* base address of the aiocb_t in child_t */
int ret; /* as long as this is 0, all is ok */
int bytes; /* #bytes read on each input */
/*
|| Initialize -- request a signal in aio_sigevent. The address of
|| the child_t struct is passed as the siginfo value, for use
|| in the signal handler.
*/
pab->aio_sigevent.sigev_notify = SIGEV_SIGNAL;
pab->aio_sigevent.sigev_signo = AIO_SIGNUM;
pab->aio_sigevent.sigev_value.sival_ptr = (void *)pch;
pab->aio_buf = pch->buffer; /* always the same */
/*
|| Initialize -- set up a signal handler for AIO_SIGNUM.
*/
{

struct sigaction sa = {SA_SIGINFO,sigHandler2};
ret = sigaction(AIO_SIGNUM,&sa,NULL);
if (ret) ++errors; /* parent will shut down ASAP */

}
#if DO_SPROCS

/*
|| Wait for the starting gun...
*/
barrier(convene,nprocs);

#else

218

: Sample Programs

if (ret) return;
#endif

pch->etime = clock();
do /* read and write, read and write... */
{

/*
|| Set up the aiocb for a read, queue it, and wait for it.
*/
pab->aio_fildes = pch->fd;
pab->aio_offset = pch->inbase;
pab->aio_nbytes = BLOCKSIZE;
if (!(ret = aio_read(pab)))

ret = inWait2(pch);
if (ret)

break; /* could not start read, or it ended badly */
/*
|| get the result of the read() call, the count of bytes read.
|| Since aio_error returned 0, the count is nonnegative.
|| It could be 0, or less than BLOCKSIZE, indicating EOF.
*/
bytes = aio_return(pab); /* actual read result */
if (!bytes)

break; /* no need to write a last block of 0 */
pch->inbase += bytes; /* where to read next time */
/*
|| Set up the aiocb for a write, queue it, and wait for it.
*/
pab->aio_fildes = outFD;
pab->aio_nbytes = bytes;
pab->aio_offset = pch->outbase;
if (!(ret = aio_write(pab)))

 ret = inWait2(pch);
if (ret)

break;
pch->outbase += bytes; /* where to write next time */

} while ((!ret) && (bytes == BLOCKSIZE));
/*
|| The loop is complete. If no errors so far, use aio_fsync()
|| to ensure that output is complete. This requires waiting
|| yet again.
*/
if (!ret)
{

if (!(ret = aio_fsync(O_SYNC,pab)))
ret = inWait2(pch);

Asynchronous I/O Example

219

}
/*
|| Flag any errors for the parent proc. If none, count elapsed time.
*/
if (ret) ++errors;
else pch->etime = (clock() - pch->etime);

#if DO_SPROCS
/*
|| Rendezvous with the rest of the family, then quit.
*/
barrier(convene,nprocs);

#endif
} /* end inProc2 */

/**
|| inProc3 uses a callback and a semaphore. It waits with a P operation.
|| The callback function executes a V operation. This may come before or
|| after the P operation.
*/
void callBack3(union sigval usv)
{

/*
|| The callback function receives the pointer to the child_t struct,
|| as prepared in aio_sigevent.sigev_value.sival_ptr. Use this to
|| post the semaphore in the child_t struct.
*/
child_t *pch = usv.sival_ptr;
usvsema(pch->sema);
return;

}
int inWait3(child_t *pch)
{

/*
|| Suspend, if necessary, by polling the semaphore. The callback
|| function might be entered before we reach this point, or after.
*/
uspsema(pch->sema);
/*
|| Return the status of the aio operation associated with the sema.
*/
return aio_error(&pch->acb);

}
void inProc3(void *arg, size_t stk)
{

child_t *pch = arg; /* starting arg is ->child_t for my file */

220

: Sample Programs

aiocb_t *pab = &pch->acb; /* base address of the aiocb_t in child_t */
int ret; /* as long as this is 0, all is ok */
int bytes; /* #bytes read on each input */
/*
|| Initialize -- request a callback in aio_sigevent. The address of
|| the child_t struct is passed as the siginfo value to be passed
|| into the callback.
*/
pab->aio_sigevent.sigev_notify = SIGEV_CALLBACK;
pab->aio_sigevent.sigev_func = callBack3;
pab->aio_sigevent.sigev_value.sival_ptr = (void *)pch;
pab->aio_buf = pch->buffer; /* always the same */

#if DO_SPROCS
/*
|| Wait for the starting gun...
*/
barrier(convene,nprocs);

#endif
pch->etime = clock();
do /* read and write, read and write... */
{

/*
|| Set up the aiocb for a read, queue it, and wait for it.
*/
pab->aio_fildes = pch->fd;
pab->aio_offset = pch->inbase;
pab->aio_nbytes = BLOCKSIZE;
if (!(ret = aio_read(pab)))

ret = inWait3(pch);
if (ret)

break; /* read error */
/*
|| get the result of the read() call, the count of bytes read.
|| Since aio_error returned 0, the count is nonnegative.
|| It could be 0, or less than BLOCKSIZE, indicating EOF.
*/
bytes = aio_return(pab); /* actual read result */
if (!bytes)

break; /* no need to write a last block of 0 */
pch->inbase += bytes; /* where to read next time */
/*
|| Set up the aiocb for a write, queue it, and wait for it.
*/
pab->aio_fildes = outFD;
pab->aio_nbytes = bytes;

Guaranteed-Rate Request

221

pab->aio_offset = pch->outbase;
if (!(ret = aio_write(pab)))

 ret = inWait3(pch);
if (ret)

break;
pch->outbase += bytes; /* where to write next time */

} while ((!ret) && (bytes == BLOCKSIZE));
/*
|| The loop is complete. If no errors so far, use aio_fsync()
|| to ensure that output is complete. This requires waiting
|| yet again.
*/
if (!ret)
{

if (!(ret = aio_fsync(O_SYNC,pab)))
ret = inWait3(pch);

}
/*
|| Flag any errors for the parent proc. If none, count elapsed time.
*/
if (ret) ++errors;
else pch->etime = (clock() - pch->etime);

#if DO_SPROCS
/*
|| Rendezvous with the rest of the family, then quit.
*/
barrier(convene,nprocs);

#endif
} /* end inProc3 */

Guaranteed-Rate Request

The following subroutine simplifies the task of requesting a guaranteed rate of I/O
transfer. The file descriptor passed to function requestRate() must describe a file located
in the real-time subvolume of a volume managed by XLV and XFS.

/*
 * Simple function to request a guaranteed rate reservation.
 * Input:
 * fd file descriptor to be guaranteed
 * dur duration of guarantee in seconds
 * bps bytes per second required
 * flag one of SOFT_ or HARD_GUARANTEE [+VOD_LAYOUT]

222

: Sample Programs

 * (extra entry points included for those who do not
 * want to include sys/grio.h)
 *
 * Assumed:
 * reservation start time of "1 second from now"
 * guarantee unit time of 1 second
 *
 * Returns:
 * 0 success, guarantee granted
 * -1 error returned and displayed with perror()
 * +n n is the best bytes/second that XFS can offer
 *
 * Usage:
 * #define BEST_RATE zillions
 * #define MINIMAL_RATE somewhat_less
 * if ((ret = requestRate(fd, dur, BEST_RATE, SOFT_GUARANTEE)))
 * { // not a success
 * if (ret >= MINIMAL_RATE) // acceptable lower rate offered
 * ret = requestRate(fd, dur, ret, SOFT_GUARANTEE);
 * }
 * if (ret) // failed for some reason
 * {
 * if (0<ret) // not an error as such
 * fprintf(stderr, "Cannot get rate\n");
 * exit();
 * }
 * // guaranteed rate obtained, continue
 */
#include <sys/types.h> /* for time_t */
#include <time.h> /* for time() */
#include <errno.h> /* for error codes */
#include <stdio.h> /* [fs]printf() */
#include "grio.h" /* for grio_* */

/*
 * This subroutine displays a diagnostic message to stderr when
 * grio_request() returns an error. perror() cannot be used in
 * this case because the generic messages are not descriptive.
 *
 */
void printGRIOerror(grio_resv_t *g)
{
 char work[80];
 char *msg = work;

Guaranteed-Rate Request

223

 switch (g->gr_error)
 {
 case EINVAL:
 {
 msg = "unable to contact grio daemon";
 break;
 }
 case EBADF:
 {
 msg = "cannot stat file, or file already guaranteed";
 break;
 }
 case ESRCH:
 {
 msg = "invalid procid";
 break;
 }
 case ENOENT:
 {
 msg = "file has no (real-time?) extents";
 break;
 }
 case EIO:
 {
 msg = "incorrect start time";
 break;
 }
 case EACCES:
 {
 msg = (g->gr_flags & VOD_LAYOUT)
 ? "unable to provide VOD guarantee"
 : (
 (g->gr_flags & HARD_GUARANTEE)
 ? "unable to provide HARD guarantee"
 : "unable to provide SOFT guarantee"
);
 break;
 }
 case ENOSPC:
 {
 sprintf(work, "out of bandwidth on device %s",
 g->gr_errordev);
 break;
 }
 default: /* in case they think of something else */

224

: Sample Programs

 {
 sprintf(work, "error %d", g->gr_error);
 }
 }
 fprintf(stderr, "grio_request: %s.\n", msg);
}

/*
 * This function actually places the request.
 */
int requestRate(int fd, int dur, int bps, int flag)
{
 int ret;
 grio_resv_t grio;

 grio.gr_duration= dur;
 grio.gr_start = 1+time(NULL);
 grio.gr_optime = 1; /* unit time is 1 second */
 grio.gr_opsize = bps;
 grio.gr_flags = flag;
 ret = grio_request(fd, &grio);
 if (ret) /* not a success */
 {
 if ((ENOSPC == grio.gr_error) /* insufficient bandwidth.. */
 && (grio.gr_opsize)) /* ..but nonzero rate remaining */
 ret = grio.gr_opsize; /* return available rate */
 else /* some other problem or 0 bandwidth available */
 printGRIOerror(&grio);
 }
 return ret;
}
/*
 * When you don't want to #include sys/grio.h to define one constant...
 */
int requestHardRate(int fd, int dur, int bps)
{ return requestRate(fd, dur, bps, HARD_GUARANTEE); }

int requestSoftRate(int fd, int dur, int bps)
{ return requestRate(fd, dur, bps, SOFT_GUARANTEE); }

#ifdef UNIT_TEST
#include <sys/stat.h>
#include <fcntl.h>
/* requestRate pathname [rate [duration [flags]]] */
int main(int argc, char **argv)

Frame Scheduler Examples

225

{
 int fd = open(argv[1], O_RDONLY);
 int bps = 1000000; /* 1MB */
 int dur = 60; /* a new york minute */
 int flg = SOFT_GUARANTEE;
 int rc;
 if (argc > 2) bps = atoi(argv[2]);
 if (argc > 3) dur = atoi(argv[3]);
 if (argc > 4) flg = atoi(argv[4]);
 printf("Requesting guarantee on fd=%d of %d bps for %d sec\n",
 fd, bps, dur);
 rc = requestRate(fd, dur, bps, flg);
 printf("requestRate() returns %d\n", rc);
}
#endif /*UNIT_TEST*/

Frame Scheduler Examples

A number of example programs are distributed with the REACT/Pro Frame Scheduler.
This section describes them. Only one is reproduced here; the others are found on disk.

The example programs distributed with the Frame Scheduler are found in the directory
/usr/react/src/examples. They are summarized in Table i and are discussed in more detail
in the topics that follow.

Table i Summary of Frame Scheduler Example Programs

Directory Features of Example

simple
r4k_intr

Two processes scheduled on a single CPU at a frame rate slow enough to
permit use of printf() for debugging. The examples differ in the time base used;
and the r4k_intr code uses a barrier for synchronization.

mprogs Like simple, but the scheduled processes are independent programs.

multi
ext_intr
user_intr
vsync_intr

Three synchronous Frame Schedulers running lightweight processes on three
processors. These examples are much alike, differing mainly in the source of
the time base interrupt.

complete
stop_resume

Like multi in starting three Frame Schedulers. Information about the activity
processes is stored in arrays for convenient maintenance. The stop_resume code
demonstrates frs_stop() and frs_resume() calls.

226

: Sample Programs

Basic Example

The example in /usr/react/src/examples/simple shows how to create a simple application
using the Frame Scheduler API. The code in /usr/react/src/examples/r4kintr is similar.

Real-Time Application Specification

The application consists of two processes that have to periodically execute a specific
sequence of code. The period for the first process, process A, is 600 milliseconds. The
period for the other process, process B, is 2400 ms.

Note: Such long periods are unrealistic for real-time applications. However, they allow
the use of printf() calls within the “real-time” loops in this sample program.

Frame Scheduler Design

The two periods and their ratio determine the selection of the minor frame period—
600 ms—and the number of minor frames per major frame—4, for a total of 2400 ms.

The discipline for process A is strict real-time (FRS_DISC_RT). Underrun and overrrun
errors should cause signals.

Process B should run only once in 2400 ms, so it operates as Continuable over as many
as 4 minor frames. For the first 3 frames, its discipline is Overrunnable and Continuable.
For the last frame it is strict real-time. The Overrunnable discipline allows process B to

driver
dintr

driver contains a pseudo-device driver that demonstrates the Frame Scheduler
device driver interface. dintr contains a program based on simple that uses the
example driver as a time base.

sixtyhz
memlock

One process scheduled at a 60 Hz frame rate. The activity process in the
memlock example locks its address space into memory before it joins the
scheduler.

upreuse Complex example that demonstrates the creation of a pool of reusable
processes, and how they can be dispatched as activity processes on a Frame
Scheduler.

Table i Summary of Frame Scheduler Example Programs

Directory Features of Example

Frame Scheduler Examples

227

run without yielding past the end of each minor frame. The Continuable discipline
ensures that once process B does yield, it is not resumed until the fourth minor frame has
passed. The combination allows process B to extend its execution to the allowable period
of 2400 ms, and the strict real-time discipline at the end makes certain that it yields by the
end of the major frame.

There is a single Frame Scheduler so a single processor is used by both processes. Process
A runs within a minor frame until yielding or until the expiration of the minor frame
period. In the latter case the frame scheduler generates an overrun error signaling that
process A is misbehaving.

When process A yields, the frame scheduler immediately activates process B. It runs until
yielding, or until the end of the minor frame at which point it is preempted. This is not
an error since process B is Overrunable.

Starting the next minor frame, the Frame Scheduler allows process A to execute again.
After it yields, process B is allowed to resume running, if it has not yet yielded. Again in
the third and fourth minor frame, A is started, followed by B if it has not yet yielded. At
the interrupt that signals the end of the fourth frame (and the end of the major frame),
process B must have yielded, or an overrun error is signalled.

Example of Scheduling Separate Programs

The code in directory /usr/react/src/examples/mprogs does the same work as example simple
(see “Basic Example” on page 226). However, the activity processes A and B are
physically loaded as separate commands. The main program establishes the single
Frame Scheduler. The activity processes are started as separate programs. They
communicate with the main program using SVR4-compatible interprocess
communication messages (see the intro(2) and msgget(2) reference pages).

There are three separate executables in the mprogs example. The master program, in
master.c, is a command that has the following syntax:

master [-p cpu-number] [-s slave-count]

The cpu-number specifies which processor to use for the one Frame Scheduler this
program creates. The default is processor 1. The slave-count tells the master how many
subordinate programs will be enqueued to the Frame Scheduler. The default is two
programs.

228

: Sample Programs

The problems that need to be solved in this example are as follows:

• The frs-master program must enqueue the activity processes. However, since they
are started as separate programs, the master has no direct way of knowing their
process IDs, which are needed for frs_enqueue().

• The activity processes need to specify upon which minor frames they should be
enqueued, and with what discipline.

• The master needs to enqueue the activities in the proper order on their minor
frames, so they will be dispatched in the proper sequence. Therefore the master has
to distinguish the subordinates in some way; it cannot treat them as
interchangeable.

• The activity processes must join the Frame Scheduler, so they need the handle of the
Frame Scheduler to use as an argument to frs_join(). However, this information is
in the master’s address space.

• If an error occurs when enqueueing, the master needs to tell the activity processes
so they can terminate in an orderly way.

There are many ways in which these objectives could be met (for example, the three
programs could share a shared-memory arena). In this example, the master and
subordinates communicate using a simple protocol of messages exchanged using
msgget() and msgput() (see the msgget(2) and msgput(2) reference pages). The sequence
of operations is as follows:

1. The master program creates a Frame Scheduler.

2. The master sends a message inviting the most important subordinate to reply. (All
the message queue handling is in module ipc.c, which is linked by all three
programs.)

3. The subordinate compiled from the file processA.c replies to this message, sending
its process ID and requesting the FRS handle.

4. The subordinate process A sends a series of messages, one for each minor queue on
which it should enqueue. The master enqueues it as requested.

5. The subordinate process A sends a “ready” message.

6. The master sends a message inviting the next most important process to reply.

7. The program compiled from processB.c will reply to this request, and steps 3-6 are
repeated for as many slaves as the slave-count parameter to the master program.
(Only two slaves are provided. However, you can easily create more using
processB.c as a pattern.)

Frame Scheduler Examples

229

8. The master issues frs_start(), and waits for the termination signal.

9. The subordinates independently issue frs_join() and the real-time dispatching
begins.

Examples of Multiple Synchronized Schedulers

The example in /usr/react/src/examples/multi demonstrates the creation of three
synchronized Frame Schedulers. The three use the cycle counter to establish a minor
frame interval of 50 ms. All three Frame Schedulers use 20 minor frames per major frame,
for a major frame rate of 1 Hz.

The following processes are scheduled in this example:

• Processes A and D require a frequency of 20 Hz

• Process B requires a frequency of 10 Hz and can consume up to 100 ms of execution
time each time

• Process C requires a frequence of 5 Hz and can consume up to 200 ms of execution
time each time

• Process E requires a frequency of 4 Hz and can consume up to 250 ms of execution
time each time

• Process F requires a frequency of 2 Hz and can consume up to 500 ms of execution
time each time

• Processes K1, K2 and K3 are background processes that should run as often as
possible, when time is available.

The processes are assigned to processors as follows:

• Scheduler 1 runs processes A (20 Hz) and K1 (background).

• Scheduler 2 runs processes B (10 Hz), C (5 Hz), and K2 (background).

• Scheduler 3 runs processes D (20Hz), E (4 Hz), F (2 Hz), and K3.

In order to simplify the coding of the example, all real-time processes use the same
function body, process_skeleton(), which is parameterized with the process name, the
address of the Frame Scheduler it is to join, and the address of the “real-time” action it is
to execute. In the sample code, all real-time actions are empty function bodies (feel free
to load them down with code).

230

: Sample Programs

The examples in /usr/react/src/examples/ext_intr, user_intr, and vsync_intr are all similar to
multi, differing mainly in the time base used. The examples in complete and stop_resume
are similar in operation, but more evolved and complex in the way they manage
subprocesses.

Tip: It is helpful to use the xdiff program when comparing these similar programs—see
the xdiff(1) reference page.

Example of Device Driver

The code in /usr/react/src/examples/driver contains a skeletal test-bed for a kernel-level
device driver that interacts with the Frame Scheduler. Most of the driver functions
consist of minimal or empty stubs. However, the ioctl() entry point to the driver (see the
ioctl(2) reference page) simulates a hardware interrupt and calls the Frame Scheduler
entry point, frs_handle_driverintr() (see “Generating Interrupts” on page 131). This
allows you to test the driver. Calling its ioctl() entry is equivalent to using frs_usrintr()
(see “The Frame Scheduler API” on page 98).

The code in /usr/react/src/examples/dintr contains a variant of the simple example that uses
a device driver as the time base. The program dintr/sendintr.c opens the driver, calls ioctl()
to send one time-base interrupt, and closes the driver. (It could easily be extended to send
a specified number of interrupts, or to send an interrupt each time the return key is
pressed.)

Examples of a 60 Hz Frame Rate

The example in directory /usr/react/src/examples/sixtyhz demonstrates the ability to
schedule a process at a frame rate of 60 Hz, a common rate in visual simulators. A single
Frame Scheduler is created. It uses the cycle counter with an interval of 16,666
microseconds (16.66 ms, approximately 60 Hz). There is one minor frame per major
frame.

One real-time process is enqueued to the Frame Scheduler. By changing the compiler
constant LOGLOOPS you can change the amount of work it attempts to do in each frame.

This example also contains the code to query and to change the signal numbers used by
the Frame Scheduler.

Frame Scheduler Examples

231

The example in /usr/react/src/examples/memlock is similar to the sixtyhz example, but the
activity process uses plock() to lock its address space. Also, it executes one major frame’s
worth of frs_yield() calls immediately after return from frs_join(). The purpose of this is
to “warm up” the processor cache with copies of the process code and data. (An actual
application process could access its major data structures prior to this yield in order to
speed up the caching process.)

Example of Managing Lightweight Processes

The code in /usr/react/src/examples/upreuse implements a simulated real-time application
based on a pool of reusable processes. A reusable process is created with sproc() and
described by a pdesc_t structure. Code in pqueue.c builds and maintains a pool of
processes. Code in pdesc.c provides functions to get and release a process, and to dispatch
one to execute a specific function.

The code in test_hello.c creates a pool of processes and dispatches each one in turn to
display a message. The code in test_singlefrs.c creates a pool of processes and causes them
to join a Frame Scheduler.

233

Glossary

activity

When using the Frame Scheduler, the basic design unit: a piece of work that can be done
by one process without interruption. You partition the real-time program into activities,
and use the Frame Scheduler to invoke them in sequence within each frame interval.

address space

The set of memory addresses that a process may legally access. The potential address
space in IRIX is either 232 (IRIX 5.3) or 264 (IRIX 6.0); however only addresses that have
been mapped by the kernel are legally accessible.

affinity scheduling

The IRIX kernel attempts to run a process on the same CPU where it most recently ran,
in the hope that some of the process’s data will still remain in the cache of that CPU. The
process is said to have “cache affinity” for that CPU. (“Affinity” means “a natural
relationship or attraction.”)

arena

A segment of memory used as a pool for allocation of objects of a particular type. Usually
the shared memory segment allocated by usinit().

asynchronous I/O

I/O performed in a separate process, so that the process requesting the I/O is not
blocked waiting for the I/O to complete.

average data rate

The rate at which data arrives at a data collection system, averaged over a given period
of time (seconds or minutes, depending on the application). The system must be able to
write data at the average rate, and it must have enough memory to buffer bursts at the
peak data rate.

backing store

The disk location that contains the contents of a memory page. The contents of the page
are retrieved from the backing store when the page is needed in memory. The backing

234

:

store for executable code is the program or library file. The backing store for modifiable
pages is the swap disk. The backing store for a memory-mapped file is the file itself.

barrier

A memory object that represents a point of rendezvous or synchronization between
multiple processes. The processes come to the barrier asynchronously, and block there
until all have arrived. When all have arrived, all resume execution together.

context switch time

The time required for IRIX to set aside the context, or execution state, of one process and
to enter the context of another; for example, the time to leave a process and enter a device
driver, or to leave a device driver and resume execution of an interrupted process.

deadline scheduling

A process scheduling discipline supported by IRIX version 5.3. A process may require
that it receive a specified amount of execution time over a specified interval, for instance
70ms in every 100ms. IRIX adjusts the process’s priority up and down as required to
ensure that it gets the required execution time.

deadlock

A situation in which two (or more) processes are blocked because each is waiting for a
resource held by the other.

device driver

Code that operates a specific hardware device and handles interrupts from that device.
Refer to the IRIX Device Driver Programmer’s Guide, part number 007-0911-060.

device numbers

Each I/O device is represented by a name in the /dev file system hierarchy. When these
“special device files” are created (see the makedev(1) and install(1) reference pages) they
are given major and minor device numbers. The major number is the index of a device
driver in the kernel. The minor number is specific to the device, and encodes such
information as its unit number, density, VME bus address space, or similar
hardware-dependent information.

device service time

The amount of time spent executing the code of a device driver in servicing one interrupt.
One of the three main components of interrupt response time.

235

device special file

The symbolic name of a device that appears as a filename in the /dev directory hierarchy.
The file entry contains the device numbers that associate the name with a device driver.

direct memory access (DMA)

Independent hardware that transfers data between memory and an I/O device without
program involvement. Challenge/Onyx systems have a DMA engine for the VME bus.

file descriptor

A number returned by open() and other system functions to represent the state of an
open file. The number is used with system calls such as read() to access the opened file
or device.

frame rate

The frequency with which a simulator updates its display, in cycles per second (Hz).
Typical frame rates range from 15 to 60 Hz.

frame interval

The inverse of frame rate, that is, the amount of time that a program has to prepare the
next display frame. A frame rate of 60 Hz equals a frame time of 16.67 milliseconds.

frs control process

The process that creates a Frame Scheduler. Its process ID is used to identify the Frame
Scheduler internally, so a process can only be frs control to one scheduler.

gang scheduling

A process scheduling discipline supported by IRIX. The processes of a share group can
request to be scheduled as a gang; that is, IRIX attempts to schedule all of them
concurrently when it schedules any of them—provided there are enough CPUs. When
processes coordinate using locks, gang scheduling helps to ensure that one does not
spend its whole time slice spinning on a lock held by another that is not running.

guaranteed rate

A rate of data transfer, in bytes per second, that definitely is available through a
particular file descriptor.

hard guarantee

A type of guaranteed rate that is met even if data integrity has to be sacrificed to meat it.

236

:

heap

The segment of the address space devoted to static data and dynamically-allocated objects.
Created by calls to the system function brk().

interrupt

A hardware signal from an I/O device that causes the computer to divert execution to a
device driver.

interrupt group

In the Challenge/Onyx hardware, each CPU has a register containing an interrupt group
mask. Each interrupt source can be directed to a specific CPU or to an interrupt group
number. When the interrupt destination is a group, all CPUs that have enabled that
group receive the interrupt. The Frame Scheduler creates an interrupt group in order to
synchronize minor frames among multiple synchronized CPUs.

interrupt latency

The amount of time that elapses between the arrival of an interrupt signal and the entry
to the device driver that handles the interrupt.

interrupt response time

The total time from the arrival of an interrupt until the user process is executing again.
Its three main components are interrupt latency, device service time, and context switch time.

locality of reference

The degree to which a program keeps memory references confined to a small number of
locations over any short span of time. The better the locality of reference, the more likely
a program will execute entirely from fast cache memory. The more scattered are a
program’s memory references, the higher is the chance that it will access main memory
or, worse, load a page from swap.

locks

Memory objects that represent the exclusive right to use a shared resource. A process that
wants to use the resource requests the lock that (by agreement) stands for that resource.
The process releases the lock when it is finished using the resource. See semaphore.

major frame

The basic frame rate of a program running under the Frame Scheduler.

237

minor frame

The scheduling unit of the Frame Scheduler, the period of time in which any scheduled
process must do its work.

overrun

When incoming data arrives faster than a data collection system can accept it, so that data
is lost, an overrun has occurred.

overrun exception

When a process scheduled by the Frame Scheduler should have yielded before the end
of the minor frame and did not, an overrun exception is signalled.

pages

The units of real memory managed by the kernel. Memory is always allocated in page
units on page-boundary addresses. Virtual memory is read and written from the swap
device in page units.

page fault

The hardware event that results when a process attempts to access a page of virtual
memory that is not present in physical memory.

peak data rate

The instantaneous maximum rate of input to a data collection system. The system must
be able to accept data at this rate to avoid overrun. See average data rate.

process

The entity that executes instructions in a UNIX system. A process has access to an address
space containing its instructions and data. The state of a process includes its set of
machine register values, as well as many process attributes.

process attributes

Variable information about the state of a process. Every process has a number of
attributes, including such things as its process ID, user and group IDs, working directory,
open file handles, scheduler class, environment variables, and so on. See the fork(2)
reference page for a list.

process group

See share group.

238

:

processor sets

Groups of one or more CPUs designated using the pset command.

programmed I/O (PIO)

Transfer of data between memory and an I/O device in byte or word units, using
program instructions for each unit. Under IRIX, I/O to memory-mapped VME devices is
done with PIO. See DMA.

race condition

Any situation in which two or more processes update a shared resource in an
uncoordinated way. For example, if one process sets a word of shared memory to 1, and
the other sets it to 2, the final result depends on the “race” between the two to see which
can update memory last. Race conditions are prevented by use of semaphores or locks.

resident set size

The aggregate size of the valid (that is, memory-resident) pages in the address space of a
process. Reported by ps under the heading RSS. See virtual size and the ps(1) reference
page.

scheduling discipine

The rules under which an activity process is dispatched by a Frame Scheduler, including
whether or not the process is allowed to cause overrun or underrun exceptions.

segment

Any contiguous range of memory addresses. Segments as allocated by IRIX always start
on a page boundary and contain an integral number of pages.

semaphore

A memory object that represents the availability of a shared resource. A process that
needs the resource executes a “p” operation on the semaphore to reserve the resource,
blocking if necessary until the resource is free. The resource is released by a “v” operation
on the semaphore. See locks.

share group

A group of two or more processes created with sproc(), including the original parent
process. Processes in a share group share a common address space and can be scheduled
as a gang (see gang scheduling). Also called a process group.

239

signal latency

The time that elapses from the moment when a signal is generated until the
signal-handling function begins to execute. Signal latency is longer, and much less
predictable, than interrupt latency.

soft guarantee

A type of guaranteed rate that XFS may fail to meet in order to retry device errors.

spraying interrupts

In order to equalize workload across all CPUs, the Challenge/Onyx systems direct each
I/O interrupt to a different CPU chosen in rotation. In order to protect a real-time
program from unpredictable interrupts, you can isolate specified CPUs from sprayed
interrupts, or you can assign interrupts to specific CPUs.

striped volume

A logical disk volume comprising multiple disk drives, in which segments of data that
are logically in sequence (“stripes”) are physically located on each drive in turn. As many
processes as there are drives in the volume can read concurrently at the maximum rate.

translation lookaside buffer (TLB)

An on-chip cache of recently-used virtual-memory page addresses, with their
physical-memory translations. The CPU uses the TLB to translate virtual addresses to
physical ones at high speed. When the IRIX kernel alters the in-memory page translation
tables, it broadcasts an interrupt to all CPUs, telling them to purge their TLBs. You can
isolate a CPU from these unpredictable interrupts, under certain conditions.

transport delay

The time it takes for a simulator to reflect a control input in its output display. Too long
a transport delay makes the simulation inaccurate or unpleasant to use.

underrun exception

When a process scheduled by the Frame Scheduler should have started in a given minor
frame but did not (owing to being blocked), an underrun exception is signalled. See
overrun exception.

240

:

VERSA-Model Eurocard (VME) bus

A hardware interface and device protocol for attaching I/O devices to a computer. The
VME bus is an ANSI standard. Many third-party manufacturers make VME-compatible
devices. The Silicon Graphics Challenge/Onyx and Crimson computer lines support the
VME bus.

video on demand (VOD)

In general, producing video data at video frame rates. Specific to guaranteed rate, a disk
organization that places data across the drives of a striped volume so that multiple
processes can achieve the same guaranteed rate while reading sequentially.

virtual size

The aggregate size of all the pages that are defined in the address space of a process. The
virtual size of a process is reported by ps under the heading SZ. The sum of all virtual
sizes cannot exceed the size of the swap space. See resident set size and the ps(1) reference
page.

virtual address space

The set of numbers that a process can validly use as memory addresses.

241

affinity scheduling, 72
compared to static assignment, 77

affinity value, 72
aio_cancel(), 140
aio_error(), 141, 142

example code, 212
aio_fsync(), 140
aio_read(), 140

example code, 213
from callback, 143
implies aio_init(), 138

aio_return(), 142
example code, 213

aio_sgi_init(), 138
example code, 210

aio_suspend(), 142
example code, 214

aio_write(), 140
example code, 213
from callback, 143
implies aio_init(), 138

aircraft simulator, 3
Application Binary Interface. See MIPS ABI
asynchronous I/O, 7, 19, 134-147

aiocb structure, 137, 142
difference between 5.3 and 5.2, 136
example code, 203-??, 204-??
in IRIX 6.0, 136
initializing, 138
multiple operations to one file, 146
not compatible with guaranteed rate, 155

Numbers

32-bit addressing
address size, 43
page size, 44

64-bit addressing
address size, 43
page size, 44

A

_ABI_SOURCE compiler variable, 136
address range, 43
address space, 12, 43-48

copy on write, 16
copy-on-write pages, 48
defining addresses, 45
duplicated by fork(), 16
functions that change, 85
heap segment, 44
interrogating, 48
limits of, 46
lowest used address, 44
of VME bus devices, 166
read-only pages, 47
replaced by exec(), 16
resident set size, 47
shared by lightweight processes, 17
stack segment, 44
text segment, 44
virtual size of, 45

Index

242

Index

notification methods, 142
POSIX 1003.1b-1993, 136
request priority no longer supported, 137
signal use, 142

average data rate, 6

B

backing store, 45, 47
barrier, 34-35

starting Frame Scheduler, 117
barrier(), 34

example code, 211
batch priority, 70
brk(), 45

modifies address space, 85
bus

processor. See processor bus
bus,VME. See VME bus

C

cache
address mapping in Challenge/Onyx, 53
affinity scheduling, 72
architecture, 11
effect of miss, 52
management, 52-54
multiprocessor conflicts, 54
warming up in first frame, 102

cache coherency, 11
cacheflush(), 85
cache line, 52
CD-ROM audio library, 163
Challenge/Onyx architecture, 9

cache address mapping, 53
cache management in, 52

clock_gettime(), 64
concurrent execution, 11
copy on write page statue, 16
CPU

assign interrupt to, 81
assign process to, 83
CPU 0 not used by Frame Scheduler, 96
isolating from sprayed interrupts, 81
isolating from TLB interrupts, 84
making nonpreemptive, 86
relation to bus and memory, 10
restricting to assigned processes, 24, 82

current directory, 15
cycle counter, 40

as Frame Scheduler time base, 108
drift rate of, 40, 66
example program, 177-184
in interval timer management, 60
mapping into memory, 65
precision of, 40, 65
used for timestamp, 65

D

data collection system, 2, 5-7
average data rate, 6
input rate, 6
peak data rate, 5
requirements on, 5

data segment
locking, 50

DAT audio library, 163
date command, 64, 65
deadline scheduling, 23, 74
degrading priority, 22, 69
/dev/ei, 173
/dev file system, 158
device

243

Index

defined in /dev, 158
device numbers, 158
opening, 19, 158

device driver, 13, 14
as Frame Scheduler time base, 126-131
entry points to, 159
for VME bus master, 169
generic SCSI, 162
in synchronous input, 134
reference pages, 159
tape, 162

device interrupt, 13
device service time, 14, 88, 91

not guaranteed, 91
device special file, 158
direct disk output, 148
disk output

synchronous direct, 148
synchronous unbuffered, 147

dispatch cycle time, 88, 92
dlopen(), 85
DMA engine for VME bus, 170

performance, 170
DMA mapping, 167
DMA to VME bus master devices, 169
drift rate of cycle counter, 66
dslib, 162
DSO, 85
DSO, text segment for, 44
dynamic shared object. See DSO

E

/etc/autoconfig command, 81
exec(), 16
external interrupt, 42, 173-??

with Frame Scheduler, 108

F

fasthz tuning parameter, 61
effect of truncation, 62

fcntl()
example code, 152

file, mapping into memory, 51
file descriptor

of a device, 158
returned by open(), 19
with asynchronous I/O, 137
with guaranteed-rate I/O, 153

fork(), 16
defines address space, 45
example, 16
new address space copy-on-write, 48
rate guarantee not inherited, 154

frame interval, 3
frame rate, 3

of plant control simulator, 4
of virtual reality simulator, 4

Frame Scheduler, 25-29, 95-131
advantages, 27
and cycle counter, 108
and external interrupt, 108
and R4000 timer, 107
and vertical sync, 108
background discipline, 111
continuable discipline, 112
CPU 0 not used by, 96
definition of frame, 26
design process, 27
device driver initialization, 128
device driver interface, 126-131
device driver interrupt, 131
device driver termination, 130
device driver use, 126
example code, 225-??
exception handling, 118-121
frs_run flag, 102

244

Index

frs_yield flag, 102
FRS control process, 98, 104
interface to, 98-101
interval timers not used with, 125
major frame, 96
minor frame, 96
multiple synchronized, 104
overrun exception, 110, 118
overrunnable discipline, 111
pausing, 105
process outline for multiple, 115
process outline for single, 114
process structure, 101
realtime discipline, 110
scheduling disciplines, 110-113
scheduling rules of, 102
signals produced by, 123, 124
software interrupt to, 109
starting up, 105
time base selection, 26, 107
underrunable discipline, 111
underrun exception, 110, 118
using consecutive minor frames, 112
warming up cache, 102

frs_create_master(), 114, 116, 127
frs_create_slave(), 117
frs_destroy(), 115, 116, 117
frs_driver_export(), 127
frs_enqueue(), 102, 110, 114, 116, 117
frs_handle_driverintr(), 131
frs_join(), 101, 105, 114, 116, 117
frs_resume(), 105
frs_setattr()

example code, 120
frs_start(), 105, 114, 116, 117
frs_stop(), 105
frs_userinter(), 109
frs_yield, 101
frs_yield()

with overrunable discipline, 112
FRS control process, 98, 104

design of, 114-117
receives signals, 124

fsync(), 135, 148

G

gang scheduling, 23, 73
getpagesize(), 44, 48
getrlimit(), 46
gettimeofday(), 40, 63

example code, 184-186
grio_remove_request(), 154
grio_request(), 153

example code, 224
GRIO. See guaranteed-rate I/O
ground vehicle simulator, 4
group ID, 15
guaranteed-rate I/O, 7, 150-156

creating a real-time file, 152
example code, 221-225
hard guarantee, 155
requesting a guarantee, 153
requires XFS, 150
requires XLV volume, 151
soft guarantee, 155
tied to PD and I-node, 154
video on demand guarantee, 156

H

hardware latency, 88, 89
hardware simulator, 5
heap segment, 44, 45
HZ value in timer management, 61

245

Index

I

inline functions and cache management, 53
input

synchronous, 134
interchassis communication, 41-42
interprocess communication, 29-38
interrupt

assign to CPU, 81
clock comparator, 60
controlling distribution of, 25
device, 13
external. See external interrupt
group. See interrupt group
isolating CPU from, 81
latency, 14
periodic timer, 60
propogation delay, 89
response time. See interrupt response time
spraying, 14, 81
TLB, 13, 84
validity fault, 47
vertical sync, 82, 108
VME bus, 14, 89

interrupt group, 107
Frame Scheduler passes to device driver, 128
not used with cycle counter, 108
to distribute external interrupt, 109
to distribute vertical sync, 108

interrupt response time, 14, 87-93
200 microsecond guarantee, 87
components, 88
device service not guaranteed, 91
device service time, 91
dispatch cycle, 92
hardware latency, 89
kernel service not guaranteed, 90
restrictions on processes, 90
software latency, 90

interrupts

unavoidable from timer, 80
interval timer, 38, 55-63

cycle counter used to manage, 60
example, 57
management by kernel, 59
not used with Frame Scheduler, 39, 125

ioctl()
and device driver, 159

IPL statement, 81
IRIS InSight, xxi
IRIX

kernel, 10
IRIX overview, 9-19
irix.sm configuration file, 81
itimer. See interval timer

K

kernel
address space limits in, 46
affinity scheduling, 72
critical section, 90
deadline scheduling, 74
degrading priority, 69
gang scheduling, 73
interrupt response time, 90
multiprocessor use, 10, 11
optimizations in, 22
originates signals, 36
priority assignment, 69
process management, 15
real-time features, 21-25
scheduling, 68
scheduling assumptions, 17
scheduling queues, 70
tick, 68
timer management, 59
time slice, 68

246

Index

kernel address space, 43

L

latency
hardware, 88, 89
software, 88, 90

lightweight process
created with sproc(), 17
less work to create, 17
preferred for real-time use, 17

limits command, 46
linked lists and cache management, 53
lio_listio(), 140
Locality of Reference, 52
locality of reference, 11
lock, 33-34

defined, 33
effect of gang scheduling, 73
metering, 34
set by spinning, 33
used by kernel, 11

locking virtual memory, 24
lseek()

with asynchronous I/O, 137
with guaranteed-rate I/O, 156

M

major device number, 158
major frame, 96
malloc(), 45
MAP_AUTOGROW flag, 85
MAP_LOCAL flag, 85
memalign(), 53
memory, 43-54

address ranges of, 43
backing store for, 45
hierarchy, 11
interrogating size of, 48
locking pages in, 49-52
main, 10
page, 44
page size, 12
shared. See shared memory
virtual, 12

memory mapping, 45
for I/O, 133
locking mapped file, 51
of cycle counter, 65

metering lock use, 34
metering semaphore use, 32
minor device number, 158
minor frame, 96, 102
MIPS ABI

asynchronous I/O, 136
mmap(), 85
mpadmin command

assign clock processor, 79
make CPU nonpreemptive, 87
query fasthz CPU, 80
restrict CPU, 83
set fasthz CPU, 80
unrestrict CPU, 83

mpin(), 49, 52
mprotect(), 85
multiprocessor architecture, 10

affinity scheduling, 72
and Frame Scheduler, 104

munmap(), 85
munpin(), 50, 52
mutual exclusion primitive, 35

247

Index

N

NDPHIMAX constant, 69
NDPHIMIN constant, 69
ndpri_hilim tuning parameter, 71
ndpri_lolim tuning parameter, 71
newbarrier(), 34
“nice” value, 69
NOINTR statement, 81
nondegrading batch priority, 70
nondegrading priorities, 22
nondegrading real-time priority, 71
npri command, 70

deadline scheduling, 74
nondegrading priority, 71

O

open(), 19
example code, 152
of a device, 158

operator
affected by transport delay, 3
in virtual reality simulator, 4
of simulator, 2

output
synchronous, 135
to disk is buffered, 147

overrun in data collection system, 5
overrun in Frame Scheduler, 110

P

page
copy on write, 48
locking, 49
read-only, 47

page fault, 12
causes TLB interrupt, 85
prevent by locking memory, 24, 49

page size, 12, 44
page validation, 47
peak data rate, 5
performance effects of cache, 52
performance tools, 54
PIO access to VME devices, 168
PIO address mapping, 167
pixie command, 54
plant control simulator, 4
plock(), 49

example of, 50
poll(), 32
power plant simulator, 4
prctl(), 48
priority, 69-72

degrading, 22, 69
looping process can halt system, 72
nondegrading, 22
nondegrading batch, 70
nondegrading real-time, 71
ranges of, 69

process, 15-19
address space, 44
assigned to processor, 76
assign to CPU, 83
attributes, 15
attributes initialized by exec(), 16
blocked by I/O, 18
composition, 15
created with fork(), 16
FRS control, 98
lightweight. See lightweight process
mapping to CPU, 24
”nice” value, 69
priority of, 69

248

Index

time slice, 68
process control, 2
process creation, 16
process group, 23

and gang scheduling, 74
process ID, 15
process id

identifies rate guarantee, 154
processor bus

capacity, 10
diagram, 10

processor set, 23, 76-78
contradiction, 78

process scheduling, 17
prof command, 54
propogation delay. See hardware latency
ps command, 45
pscommand, 47
pset command, 70, 76-78

and restricted CPU, 82
contradictions, 78

punlock(), 50

Q

queue, scheduling, 69, 70

R

R4000 timer, 107
REACT, xxi
REACT/Pro, xxi
read()

and device driver, 159
synchronous, 134
with guaranteed-rate I/O, 153

real-time priority, 71
real-time program

and Frame Scheduler, 25
and scheduler assumptions, 18
data collection, 2, 5-7
defined, 1
disk I/O by, 133
frame rate, 2
lightweight processes preferred, 17
process control, 2
simulator, 1, 2-5
types of, 1-7

reflective shared memory, 42
resident set size, 47
response time. See interrupt response time
restricting a CPU, 82
rlimit kernel parameter, 46
rtnetd daemon, priority of, 72
runon command, 83

S

schedctl(), 70, 71, 74, 75, 84
example code, 71, 74, 200-203
with Frame Scheduler, 100

scheduling, 68-76
affinity type, 72
assumptions, 17
deadline type, 23, 74
degrading priority, 22
gang type, 23, 73
nondegrading priority, 22

scheduling discipline, 78
See also Frame Scheduler scheduling disciplines

scheduling queue, 69, 70
processor set assigned to, 77

SCSI interface, 160-163
generic device driver, 162

249

Index

segment
heap, 44
locking, 50
lowest address, 44
stack, 44
text, 44

semaphore, 31-33
defined, 31
IRIX implementation, 32
metering, 32
pollable, 32
portable implementation, 32
used by kernel, 11
used with interval timer, 58

semget(), 32
semop(), 33
setitimer(), 38, 56
setitimer()example code, 58
setrlimit(), 46
sginap(), 34

example code, 212
shared memory, 29-31

IRIX implementation, 29
portable implementation, 30
reflective, 42
usconfig(), 30
usinit(), 30

shmat(), 30
shmctl(), 30, 85
shmget(), 30, 85
sigaction()

example code, 57, 217
with asynchronous I/O, 143

SIGALRM
from interval timer, 39, 57

SIGBUS
on reference to undefined page, 45

sigevent structure, 137

SIGKILL
possible when locking pages, 50

signal, 36-38
delivery priority, 37
generated from interval timer, 56
generated in asynchronous I/O, 142
latency, 122
SIGALRM, 39, 57
SIGBUS, 45
SIGKILL, 50
signal numbers, 37
SIGSEGV, 47
SIGUSR1, 124
SIGUSR2, 124
with Frame Scheduler, 122

signal handler
as process attribute, 15
when setting up Frame Scheduler, 114, 116, 117

SIGRTMIN on dequeue, 124
SIGSEGV

on attempt to change read-only page, 47
sigsuspend(), 142
SIGUSR1

on underrun, 124
SIGUSR2

on overrun, 124
sigwait(), 142
simulator, 1, 2-5

aircraft, 3
control inputs to, 2, 4
frame rate of, 2, 4
ground vehicle, 4
hardware, 5
operator of, 2
plant control, 4
state display, 2
virtual reality, 4
world model in, 2

sockets, 41

250

Index

software latency, 88, 90
spin lock, 33
sproc(), 17

CPU assignment inherited, 84
modifies address space, 85
rate guarantee not inherited, 154

sprocsp(), 85
example code, 210

stack segment, 44, 45
locking, 50

striped volume, 156
structures and cache management, 53
swap, 45, 47
swapctl(), 48
synchronous disk output, 147
sysconf(), 48
sysmp(), 48, 84

assign process to CPU, 83
example code, 79, 80, 83, 84, 87
isolate TLB interrupts, 84
make CPU nonpreemptive, 87
number of CPUs, 82
restrict CPU, 83
run process on any CPU, 84
set fasthz CPU, 80

sys/param.h, 68
sys/schedctl.h, 69
syssgi

set flush interval, 150
syssgi(), 48, 65
systune command, 46, 61

T

tape device, 162
telemetry, 2
test_and_set, 35

text segment, 44
loaded from program file, 47
locking, 50
read-only, 47

tick, 68
disabling, 86

time base for Frame Scheduler, 107
timer interrupts unavoidable, 80
timer management, 59
time slice, 68
timestamp, 40, 63-66

comparing methods, 66
from clock_gettime(), 64
from cycle counter, 65
from gettimeofday(), 63

TLB, 13
TLB update interrupt, 13, 84
translation lookaside buffer. See TLB
transport delay, 3

U

udmalib, 170-171
underrun, in Frame Scheduler, 110
usconfig(), 30
user ID, 15
usinit(), 30

arena for barrier, 34
arena for lock, 34
arena for semaphore, 32

usnewlock(), 34
usnewsema(), 32
uspsema, 32
uspsema()

example code, 217
ussetlock(), 34
usunsetlock(), 34

251

Index

usvsema, 32
usvsema()

example code, 57, 216

V

validity fault, 47
vertical sync interrupt, 82, 108
video on demand (VOD). See guaranteed-rate I/O,

video on demand
virtual address space. See address space
virtual memory, 12

loading pages, 47
locking, 24
page fault, 12
See also memory

virtual page number, 44
virtual reality simulator, 4
virtual size, 45
VME bus, 164-171

address space mapping, 166
and process scheduling, 19
assign interrupt to CPU, 81
configuration, 165
data input rate, 6
DMA mapping, 167
DMA to master devices, 169
hardware latency of, 89
interrupt levels, 14
performance, 168, 169, 170
PIO access, 168
PIO address mapping, 167
udmalib, 170

VPN. See virtual page number

W

write()
and device driver, 159
direct, 148
synchronous, 135, 148
with guaranteed-rate I/O, 152, 153

Tell Us About This Manual

As a user of Silicon Graphics documentation, your comments are important to us. They
help us to better understand your needs and to improve the quality of our
documentation.

Any information that you provide will be useful. Here is a list of suggested topics to
comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Important Note

Please include the title and part number of the document you are commenting on.
The part number for this document is 007-2499-002.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your comments on
the postage-paid card for your country, then detach and mail it. If your country is not
listed, either use the international card and apply the necessary postage or use electronic
mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail message and mail
it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of pages from the manual) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

