
Developer Magic™

Debugger User’s Guide

Document Number 007-2579-003

Developer Magic™ Debugger User’s Guide
Document Number 007-2579-003

CONTRIBUTORS

Written by Douglas B. O’Morain, John Stearns, and Carol Geary
Illustrated by Douglas B. O’Morain, John Stearns, and Carol Geary
Production by Laura Cooper
Engineering contributions by David Henke, Stuart Liroff, Song Liang, Ashok Mouli,

Michey Mehta, Anil Pal, Kim Rachmeler, Jack Repenning, Krishna Sethuraman,
Ravi Shankar, John Templeton, Shankar Unni, and Mike Yang

St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower
image courtesy of Xaview Berenguer, Animatica.

©1996-97, Silicon Graphics, Inc. — All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks and IRIX, IRIS IM, IRIS ViewKit,
Indigo Magic, and Indigo Magic Desktop, are trademarks of Silicon Graphics, Inc.
Open Software Foundation, Motif, OSF, OSF/Motif are trademarks of the Open
Software Foundation, Inc. PostScript is a registered trademark of Adobe Systems, Inc.

iii

 Contents

List of Tables xxv

Introduction xxvii
What This Guide Contains xxvii
What You Should Know Before Reading This Guide xxviii
Related Information xxix
Conventions xxix

1. Getting Started with the WorkShop Debugger 1
Typical Debugger Usage 1

Starting and Exiting the Debugger 1
Using the Debugger From a Remote Host 2
Using Main View 2
Setting Traps 3
Inspecting Debugger Data 4
Changing Source Code 5
Updating and Saving Views 5
Integration With Other WorkShop Tools 6

Accessing the Performance Analyzer From Main View 6
Accessing the Static Analyzer From Main View 6
Accessing Editors From Main View 7
Accessing Configuration Management Tools 7
Recompiling From Main View or Source View 7

iv

Contents

Debugging with Fix+Continue 7
Redefining Functions Using Fix and Continue 7

Fix and Continue Functionality 8
Fix and Continue/WorkShop Integration 9
How Redefined Code Is Distinguished From Compiled Code 10
Restrictions on Fix and Continue 10

The Fix and Continue Environment 11
Debugger With Fix and Continue Support 12
GUI Debugger Command Line 12
Change ID, Build Path, and Other Concepts 12

Debugging with the X/Motif Analyzer 13
Special Libraries 14
Using the X/Motif Analyzer 14

Examiners Overview 14
Examiners and Selections 15
Inspecting Data 15
Inspecting the Control Flow 15
Tracing the Execution 16

Restrictions and Limitations 16
Customizing the Debugger 16

Using a Startup File 17
Implementing User-Defined Buttons 17

2. Managing Source Files 21
Accessing Files Used by an Executable 21
Opening a New File 22
Path Remapping 23

3. A Short Debugger Tutorial 27
Starting the Debugger 27
Performing a Search 29
Setting Traps 31
Examining Data 34

Contents

v

4. Setting Traps 43
Trap Terminology 44

Trap Triggers 44
Trap Actions 44

Setting Traps in Main View and Source View 45
Setting Traps With the Traps Menu in Main View 45
Setting Traps With the Mouse 47

Setting Traps in Trap Manager 48
Setting Single-process and Multiprocess Traps in the Trap: Field 48
Setting a Trap Condition 51
Setting a Trap Cycle Count 52
Setting a Trap With the Traps Menu and Source Display 52
Moving around the Trap Display Area 53
Enabling and Disabling Traps 53
Saving and Reusing Trap Sets 53

Setting Traps With Signal Panel and Syscall Panel 53

5. Controlling Process Execution 55
Main View Control Panel 55

Status and Entry Fields in the Main View Control Panel 56
Execution Control Buttons 56

Controlling Process Execution With PC Menu 59
Execution View 59

6. Examining Debugger Data 61
Tracing Through Call Stack View 61
Evaluating Expressions 64

Expression View 65
Assigning Values to Variables 67

vi

Contents

Evaluating Expressions in C 68
C Function Calls 68

Evaluating Expressions in C++ 69
Limitations 69

Evaluating Expressions in Fortran 70
Fortran Variables 70
Fortran Function Calls 71

7. Debugging with Fix+Continue: A Tutorial 73
Setting Up the Sample Session 73
Redefining a Function 75

Editing a Function 75
Changing Code 77

Deleting Changed Code 79
Changing Code From the Debugger Command Line 79

Saving Changes 80
Setting Breakpoints in Redefined Code 81
Viewing Status 84
Comparing Original and Redefined Code 84

Switching Between Compiled and Redefined Code 85
Comparing Function Definitions 85
Comparing Source Code Files 86

Ending the Session 87

8. Detecting Heap Corruption 89
Typical Heap Corruption Problems 89
Detecting Heap Corruption Errors 90

Compiling With the Malloc Library 90
Setting the Environment Variables 91
Trapping Heap Errors using the Malloc Library 92

Heap Corruption Detection Tutorial 93

Contents

vii

9. Multiple Process Debugging 99
Debugging With Multiprocess View 99

Displaying the Multiprocess View 100
Viewing Process Status 101
Multiprocess Control Buttons 102
Multiprocess Traps 102
Adding and Removing Processes 103
Multiprocess Preferences 104

Controlling Execution and Setting Traps in a Multiprocess Program 105
Using the Multiprocess View to Control Execution 107
Using the Trap Manager to Control Trap Inheritance 109

Debugging a Multiprocess Fortran Program 111
General Fortran Debugging Hints 111
Multiprocess Debugging Session 112

10. Using the X/Motif Analyzer: A Tutorial 117
Setting Up the Sample Session 117

Preparing the Fileset 117
Launching the X/Motif Analyzer 119

Navigating the Widget Structure 120
Examining Widgets 122
Setting Callback Breakpoints 124
Using Additional Features of the Analyzer 126
Ending the Session 130

viii

Contents

A. Debugger Reference 131
Main View 132

Admin Menu 138
Views Menu 142
Query Menu 144
Source Menu 145
Display Menu 147
Perf Menu 148
Traps Menu 153
PC Menu 154
Fix+Continue Menu 154

Show Difference Submenu 155
View Submenu 156
Preferences Submenu 156
Keyboard Accelerators 159

Help Menu 159
Basic Windows 160

Execution View 160
Source View 160

Menu Bar 161
Process Meter 163

Charts Menu 164
Scale Menu 164

Ada-specific Windows 165
Task View 165

Admin Menu 167
Config Menu 167
Layout Menu 168
Display Menu 168

Exception View 169

Contents

ix

X/Motif Analyzer Windows 171
Global Objects 172

Admin Menu 172
Examine Menu 173
Examiner Tabs 174
Return Button 174

Breakpoints Examiner 174
Callback Breakpoints Examiner 176
Event-Handler Breakpoints Examiner 178
Resource-Change Breakpoints Examiner 180
Timeout-Procedure Breakpoints Examiner 182
Input-Handler Breakpoints Examiner 184
State-Change Breakpoints Examiner 185
X-Event Breakpoints Examiner 188
X-Request Breakpoints Examiner 189

Trace Examiner 191
Widget Examiner 193
Tree Examiner 194
Callback Examiner 196
Window Examiner 196
Event Examiner 197
Graphics Context Examiner 198
Pixmap Examiner 199
Widget Class Examiner 200

Project Session Management Windows 201
Project View 203

Project View Admin Menu 204
Project View Text Fields 204
Project Display Area 204
Project Popup Menu 204

x

Contents

Trap Management Windows 204
Trap Manager 205

Config Menu 206
Traps Menu 206
Display Menu 207

Signal Panel 207
Syscall Panel 208

Data Examination Windows 209
Array Browser 209

Spreadsheet Menu 213
Format Menu 214
Render Menu 214
Color Menu 215
Scale Menu 216
Examiner Viewer Controls 216
Examiner Viewer Menu 219

Call Stack View 221
Config Menu 222
Display Menu 223

Expression View 223
Config Menu 224
Display Menu 224
Language Popup 224
Format Popup 224

File Browser 225
Structure Browser 226

Using the Overview Window to Navigate 228
Entering Expressions 228
Working in the Structure Browser Display Area 229
Structure Browser Display Menu 230
Node Menu 232
Formatting Fields 233

Contents

xi

Variable Browser 237
Entering Variable Values 237
Changing Variable Column Widths 238
Viewing Variable Changes 238

Machine-level Debugging Windows 239
Disassembly View 239

Similarities With Main View 240
Disassemble Menu 241
Disassembly View Preferences 242

Register View 244
Register View Window 245
Changing the Register View Display 246

Memory View 248
Viewing a Portion of Memory 248
Changing the Contents of a Memory Location 249
Changing the Memory Display Format 249
Moving around the Memory View Display Area 249

Multiple Process Debugging Windows 250
Multiprocess View 250

Viewing Process Status 251
Multiprocess Control Buttons 251
Multiprocess Traps 252
Adding and Removing Processes 252
Multiprocess Preferences 253

Fix+Continue Windows 254
Fix+Continue Status Window 255

Admin Menu 257
View Menu 258
Fix+Continue Menu 258

Fix+Continue Message Window 260
Admin Menu 262
View Menu 262

xii

Contents

Fix+Continue Build Environment Window 262
Changes to Debugger Views 264

Main View 264
Command-Line Interface 266
Call Stack 266
Trap Manager 266

Debugger Command Line 267

B. Using the Build Manager 279
Build View 279

Build Process Control Area 280
Transcript Area 281
Error List Area 282
Build View Admin Menu 283

Build View Preferences 283
Build Options 284

Using Build View 285
Build Analyzer 286

Build Specification Area 287
Build Graph Area 288
Build Graph Control Area 290

Overview Window 290
Build Analyzer Menus 291

Build Analyzer Admin Menu 291
Build Menu 292
Filter Menu 292
Query Menu 293

Index 295

xv

List of Figures

Figure 1-1 Major Areas of the Main View Window 3
Figure 1-2 Admin Menu in Debugger Views 5
Figure 1-3 Fix and Continue Cycle 9
Figure 1-4 Line Numbers in Decimal Notation 10
Figure 1-5 Launching the X/Motif Analyzer 13
Figure 1-6 User-Defined Button Example 18
Figure 2-1 File Browser Window 21
Figure 2-2 Open Source File Dialog Box 22
Figure 2-3 Path Remapping Dialog Box 24
Figure 3-1 The Main View Window with jello Source Code 28
Figure 3-2 The jello Window 29
Figure 3-3 The Search Dialog Box 30
Figure 3-4 Search Target Indicators 31
Figure 3-5 Stop Trap Indicator 32
Figure 3-6 The Trap Manager Window 33
Figure 3-7 Call Stack View at spin Stop Trap 35
Figure 3-8 Variable Browser at spin 36
Figure 3-9 Variable Browser after Changes 37
Figure 3-10 Expression View With Language and Format Menus

Displayed 38
Figure 3-11 Structure Browser Window With jello_conec Structure 39
Figure 3-12 Structure Browser Window With Next Pointer

Dereferenced 39
Figure 3-13 Array Browser Window for shadow Matrix 40
Figure 3-14 Subscript Control Area in Array Browser 41
Figure 4-1 Traps Menu in Main View 46
Figure 4-2 Typical Trap Icons 47
Figure 4-3 Config, Traps, and Display Menus in the Trap Manager 48

xvi

List of Figures

Figure 4-4 Trap Examples 51
Figure 4-5 Traps Menu in Trap Manager 52
Figure 4-6 Signal Panel and Syscall Panel 54
Figure 5-1 Main View Control Panel 55
Figure 5-2 Step Into Popup Menu and Dialog Box 57
Figure 5-3 Step Over Popup Menu and Dialog Box 58
Figure 5-4 PC Menu in Main View 59
Figure 6-1 Call Stack View Window With Config and Display Menus

and Preferences Dialog Box 62
Figure 6-2 Tracing Through Call Stack View 64
Figure 6-3 Expression View With Major Menus Displayed 66
Figure 6-4 Change Indicators in Expression View 67
Figure 7-1 Execution View Icon 73
Figure 7-2 Debugger Main View With Fix and Continue Menu 74
Figure 7-3 Program Results in Execution View 75
Figure 7-4 Selecting a Function for Redefinition 76
Figure 7-5 Redefined Function 77
Figure 7-6 Checking Syntax Opens Fix and Continue

Status Window 78
Figure 7-7 Report of Successful Redefinition 78
Figure 7-8 Bounce Window 79
Figure 7-9 Saving a Function File 80
Figure 7-10 Stopping After Breakpoints in Redefined Code 82
Figure 7-11 Call Stack BreakPoint Results 83
Figure 7-12 Trap Manager BreakPoint Results 83
Figure 7-13 Using the View Status Window 84
Figure 7-14 Comparing Compiled vs. Redefined Function

Code: xdiff 86
Figure 8-1 Setting Traps to Detect Heap Corruption 95
Figure 8-2 Heap Corruption Warning Displayed in

Execution View 95
Figure 8-3 Call Stack at Boundary Overrun Warning 96
Figure 8-4 Main View at Bus Error 97
Figure 8-5 Watch Point Error Displayed in Main View 98

xvii

Figure 9-1 Multiprocess View With Config and Process Menus
Displayed 101

Figure 9-2 Process Menu in Multiprocess View 103
Figure 9-3 Add Process Dialog Box 103
Figure 9-4 Multiprocess View Preferences Dialog Box 104
Figure 9-5 Launching a Debug Session Dialog Box 108
Figure 9-6 Using the Multiprocess View to Examine Process State 109
Figure 9-7 Modifying a Trap to Affect a Process Group 110
Figure 9-8 Setting the Group Trap Default 110
Figure 9-9 Launching a New Debugging Session From

Multiprocess View 115
Figure 9-10 Comparing Variable Values From Two Processes 116
Figure 10-1 Execution View Icon 117
Figure 10-2 Debugger Main View 118
Figure 10-3 Program Results in Execution View 119
Figure 10-4 First View of the X/Motif Analyzer

(Widget Examiner) 120
Figure 10-5 Widget Hierarchy Displayed in the Tree Examiner 121
Figure 10-6 Adding a Breakpoint for a Widget 123
Figure 10-7 Setting Breakpoints for a Widget Class 124
Figure 10-8 Viewing the Callback Context With the

Callback Examiner 125
Figure 10-9 Viewing Window Attributes With the

Window Examiner 126
Figure 10-10 Selecting the Breakpoints Tab From the Overflow Area 128
Figure 10-11 Viewing Breakpoint Results in the Callstack View 129
Figure A-1 Major Areas of the Main View Window 132
Figure A-2 Show/Hide Annotations Button in Main View 137
Figure A-3 Admin Menu in Main View 138
Figure A-4 The Library Search Path Dialog Box 139
Figure A-5 The Switch Process Dialog Box 140
Figure A-6 The Switch Executable Dialog Box 140
Figure A-7 “Launch Tool” Submenu 141
Figure A-8 “Project” Submenu 142

xviii

List of Figures

Figure A-9 Views Menu in Main View 142
Figure A-10 Query Menu With Submenus 144
Figure A-11 Source Menu in Main View 145
Figure A-12 The Search Dialog Box 146
Figure A-13 Go to Dialog Box 146
Figure A-14 Versioning Submenu 147
Figure A-15 Display Menu in Main View 147
Figure A-16 Preferences Dialog Box 148
Figure A-17 Perf Menu and Subwindows 149
Figure A-18 Launching Performance Analyzer From Perf Menu 150
Figure A-19 Custom Task Dialog 151
Figure A-20 Traps Menu 153
Figure A-21 Set Trap Submenu 153
Figure A-22 Clear Trap Submenu 154
Figure A-23 PC Menu in Main View 154
Figure A-24 Fix+Continue Menu 154
Figure A-25 ”Save File+Fixes As...” Popup Window 155
Figure A-26 Show Difference Submenu 155
Figure A-27 View Submenu 156
Figure A-28 Preferences Submenu 156
Figure A-29 Fix+Continue Preferences Dialog 157
Figure A-30 Help Menu 159
Figure A-31 Execution View 160
Figure A-32 Source View 161
Figure A-33 Source View File Menu 161
Figure A-34 Go To Line Dialog 162
Figure A-35 Process Meter 163
Figure A-36 Process Meter Charts Menu 164
Figure A-37 Process Meter Scale Menu 164
Figure A-38 Task View 165
Figure A-39 Task View Process Detail View 166
Figure A-40 Task View Callstack Detail View 167
Figure A-41 Task View Admin Menu 167

xix

Figure A-42 Task View Config Menu 168
Figure A-43 Task View Layout Menu 168
Figure A-44 Task View Display Menu 168
Figure A-45 Exception View 169
Figure A-46 “When” Exception Option Menu 170
Figure A-47 Launching the X/Motif Analyzer 171
Figure A-48 Admin Menu 172
Figure A-49 “Save Text” Dialog 173
Figure A-50 Examine Menu 173
Figure A-51 Examiner Tabs 174
Figure A-52 Removing Tabs 174
Figure A-53 Breakpoints Examiner 175
Figure A-54 Breakpoint Type Option Button 176
Figure A-55 Callback Breakpoints Examiner 177
Figure A-56 Event-Handler Breakpoints Examiner 179
Figure A-57 Event Type Option Button 180
Figure A-58 Resource-Change Breakpoints Examiner 181
Figure A-59 Timeout-Procedure Breakpoints Examiner 183
Figure A-60 Input-Handler Breakpoints Examiner 184
Figure A-61 State-Change Breakpoints Examiner 186
Figure A-62 State Type Option Button 187
Figure A-63 X-Event Breakpoints Examiner 188
Figure A-64 Event Type Option Button 189
Figure A-65 X-Request Breakpoints Examiner 190
Figure A-66 “Request Type Selection” Dialog 191
Figure A-67 Trace Examiner 192
Figure A-68 Widget Examiner 193
Figure A-69 Tree Examiner 195
Figure A-70 Widget View Type Option Button 195
Figure A-71 Callback Examiner 196
Figure A-72 Window Examiner 197
Figure A-73 Event Examiner 198
Figure A-74 Graphics Context Examiner 199

xx

List of Figures

Figure A-75 Pixmap Examiner 200
Figure A-76 Widget Class Examiner 201
Figure A-77 Iconify and Raise Facilities 202
Figure A-78 Project View Window with Menus 203
Figure A-79 Trap Manager 205
Figure A-80 Trap Manager Config Menu 206
Figure A-81 Trap Manager Traps Menu 206
Figure A-82 Trap Manager Display Menu 207
Figure A-83 Signal Panel 207
Figure A-84 Syscall Panel 208
Figure A-85 Array Browser With Display Menu Options 210
Figure A-86 Subscript Control Area in Array Browser 211
Figure A-87 Array Browser Spreadsheet Area 213
Figure A-88 Spreadsheet Menu 213
Figure A-89 Example of Wrapped Array 214
Figure A-90 Format Menu With Value Submenu 214
Figure A-91 Render Menu 214
Figure A-92 Color Menu 215
Figure A-93 Color Exception Portion of Array Browser Window 215
Figure A-94 Array Browser Graphic Modes 216
Figure A-95 Scale Menu 216
Figure A-96 Examiner Viewer With Controls and Menus 218
Figure A-97 Examiner Viewer Preferences Dialog Box 220
Figure A-98 Call Stack View 221
Figure A-99 Call Stack View Config Menu 222
Figure A-100 Call Stack View Display Menu 223
Figure A-101 Expression View 223
Figure A-102 Expression View Config Menu 224
Figure A-103 Expression View Display Menu 224
Figure A-104 Expression View Language Popup 224
Figure A-105 Expression View Format Popup with Submenus 225
Figure A-106 File Browser 226

xxi

Figure A-107 Structure Browser With the Config, Display, Node, and
Format Menus 227

Figure A-108 Structure Browser Overview Window 228
Figure A-109 Structure Browser Format Menu 229
Figure A-110 Structure Browser Display Menu 230
Figure A-111 Tree and Linked List Arrangements of Structures 231
Figure A-112 Structure Browser Node Menu 232
Figure A-113 Structure Browser Preferences Dialog Box 234
Figure A-114 Type Formatting Dialog Box 235
Figure A-115 Variable Browser With Language and Format Menus 238
Figure A-116 Typical Variable Change Indicators 239
Figure A-117 Disassembly View With Disassemble Menu Displayed 240
Figure A-118 Disassemble Menu 241
Figure A-119 Disassemble From Address Dialog Box 241
Figure A-120 Disassemble Function Dialog Box 242
Figure A-121 Disassemble File Dialog Box 242
Figure A-122 Disassembly View Preferences Dialog Box with Format

Popup Menu 243
Figure A-123 Register View 245
Figure A-124 Register View Preferences Dialog Box 247
Figure A-125 Memory View With Mode Menu Displayed 248
Figure A-126 Multiprocess View with Config and Process Menus

Displayed 250
Figure A-127 Process Menu in Multiprocess View 252
Figure A-128 Add Process Dialog Box 252
Figure A-129 Multiprocess View Preferences Dialog Box 253
Figure A-130 Fix+Continue Menu Selections 255
Figure A-131 Fix+Continue Status Window 256
Figure A-132 Fix+Continue Status Window Menus 257
Figure A-133 Status Window Admin Menu 257
Figure A-134 Status Window View Menu 258
Figure A-135 Status Window Fix+Continue Menu 258
Figure A-136 Show Difference Submenu 258

xxii

List of Figures

Figure A-137 Enable Submenu 259
Figure A-138 Save Submenu 259
Figure A-139 File Dialog 259
Figure A-140 Show Submenu 260
Figure A-141 Fix+Continue Message Window 261
Figure A-142 Fix+Continue Build Environment Window 263
Figure A-143 Debugger Main View 265
Figure A-144 Command-Line Interface With Redefined Function 266
Figure A-145 Call Stack 266
Figure A-146 Trap Manager With Redefined Function 267
Figure A-147 Editing a Function in the vi Editor 273
Figure B-1 Build View Window With Admin Menu Displayed 280
Figure B-2 Build Process Control Area in Build View Window 281
Figure B-3 Build View Window With Typical Data 282
Figure B-4 Admin Menu in Build View Window 283
Figure B-5 Build View Preferences Dialog Box 284
Figure B-6 Build Options Dialog Box 285
Figure B-7 Build Analyzer Window 287
Figure B-8 Build Graph Icons 289
Figure B-9 Build Graph Control Area 290
Figure B-10 Overview Window With Resulting Build

Analyzer Graph 291
Figure B-11 Admin Menu in Build Analyzer 291
Figure B-12 Build Menu 292
Figure B-13 Filter Dialog Box 293
Figure B-14 Query Menu 293

xxi

List of Tables

Table 1-1 Fix and Continue Compile Time Cycle 8
Table 6-1 Valid C Operations 68
Table 6-2 Valid Fortran Operations 70
Table A-1 Fix and Continue Keyboard Accelerators 159

xxvii

Introduction

This guide describes the Debugger. The Debugger is part of ProDev
WorkShop, a suite of graphical, interactive, software engineering tools
designed especially for programmers who develop and maintain C, C++,
Fortran, and Ada libraries and applications.

What This Guide Contains

This guide contains the following chapters:

• Chapter 1, “Getting Started with the WorkShop Debugger” presents an
overview of the ProDev Debugger, including how the Debugger is
typically applied, a road map of the commands available from the
Debugger Main View window, and a summary of the Debugger
command line interface.

• Chapter 2, “Managing Source Files” presents the details for accessing
source code files from the Debugger.

• Chapter 3, “A Short Debugger Tutorial” provides a tutorial to introduce
you to the major features of the ProDev Debugger.

• Chapter 4, “Setting Traps” describes the facilities for setting stop traps
and sample traps from the Debugger Main View, Source View, the Trap
Manager, the Signal Panel, the Syscall Panel, and the Debugger
command line interface.

• Chapter 5, “Controlling Process Execution” describes how to control
process execution in a debugging session through the Debugger Main
View control panel, the PC menu, Execution View, and the Debugger
command line interface.

• Chapter 6, “Examining Debugger Data” presents reference information
for the high-level Debugger views, which let you examine the Call
Stack expressions, variables, arrays, and data structures. The chapter

xxviii

Introduction

also describes how you can access debugger data through the
Debugger command line interface.

• Chapter 7, “Debugging with Fix+Continue: A Tutorial,” teaches you to
perform the basic tasks that the Fix and Continue utility allows, such as
making changes to functions and running the program with compiling
or linking. Each task description is accompanied by a corresponding
tutorial session.

• Chapter 8, “Detecting Heap Corruption” presents techniques for
solving heap corruption problems and includes a tutorial.

• Chapter 9, “Multiple Process Debugging” describes how to use the
Debugger Multiprocess View to debug programs with multiple
processes.

• Chapter 10, “Using the X/Motif Analyzer: A Tutorial,” provides a
tutorial to introduce you to the major features of the X/Motif analyzer.

• Appendix A, “Debugger Reference” contains a complete description of
the Debugger’s graphical user and command-line interfaces.

• Appendix B, “Using the Build Manager,” describes the Build Manager,
the tool for performing builds from ProDev. Two windows comprise
the Build Manager:

– Build View for watching compiles and correcting errors

– Build Analyzer for viewing build dependency relations between
files

What You Should Know Before Reading This Guide

This guide assumes that you’re familiar with C, C++, and object-oriented
programming.

Related Information

xxix

Related Information

The Debugger is layered on the core ProDev WorkShop toolset (available
from Silicon Graphics, Inc.). For further information about related tools,
refer to the following documents:

• Developer Magic Overview, which provides an overview of the Developer
Magic/ProDev toolset.

• Developer Magic: Static Analyzer and Browser User’s Guide, which contains
detailed information on how to use the static analyzer.

• Developer Magic: Performance Analyzer and Tester User’s Guide, which
contains detailed information on how to use the performance analyzer.

• C++ Programmer’s Guide, which describes the Silicon Graphics C++
programming environment.

• Ada Programmer’s Guide, which describes the Silicon Graphics C++
programming environment.

• IRIS ViewKit User’s Guide, which describes how to create programs
using IRIS ViewKit, a C++ toolkit that provides commonly needed
facilities for applications based on the IRIS user interface toolkit.

• MIPSpro Compiling, Debugging and Performance Tuning, which discusses
how to compile, debug, and tune the performance of programs written
in the Silicon Graphics development environment (C, Fortran, and
C++).

Conventions

Below are the typographical and graphic conventions used in this guide:

• Bold—Functions, option flags, and classes.

• Italics—Filenames, button names, field names, variables, emphasis, and
IRIX commands.

• Regular—Menu and window names, data types, keywords, and text.

xxx

Introduction

• “Quoted”—Menu choices.

• Fixed-width—Code examples and command syntax.

• Bold fixed-width—User input. Nonprinting <keys> are bracketed.

• Graphic convention—Pull-down or popup menus.

A

B

1

Chapter 1

1. Getting Started with the WorkShop Debugger

The WorkShop Debugger is a UNIX source-level debugging tool that
provides special windows (views) for displaying program data and
execution status. These views update as the program executes. This chapter
presents an overview of the WorkShop Debugger and is divided into these
sections:

• “Typical Debugger Usage”

• “Customizing the Debugger”

Typical Debugger Usage

This section provides a general description of debugging software with
WorkShop. It covers these topics:

• “Starting and Exiting the Debugger”

• “Using the Debugger From a Remote Host”

• “Using Main View”

• “Setting Traps”

• “Inspecting Debugger Data”

• “Changing Source Code”

• “Updating and Saving Views”

• “Integration With Other WorkShop Tools”

Starting and Exiting the Debugger

To start the Debugger, you use the following syntax:

cvd [-pid pid] [-host host] [executable [corefile]] [&]

2

Chapter 1: Getting Started with the WorkShop Debugger

The -pid option lets you attach the Debugger to a running process. You can
use this to determine why a live process is in a loop.

The argument executable is the name of the executable file for the process you
want to run. It is optional; you can invoke the Debugger first and specify the
executable later.

You can also invoke the Debugger and specify a core file (with its executable)
to try to determine why a program crashed.

To exit the Debugger, select “Exit” from the Admin menu in the Main View
window. You have two other options: you can type quit at the Debugger
command line or press <Ctrl-c> where you first entered cvd into a
terminal. You can also double-click the window system menu, or select its
“Quit” entry.

Using the Debugger From a Remote Host

The -host option lets you specify a remote host on which the target
executable will be run; the Debugger runs locally. This option is useful if

• you don’t want the Debugger windows to interfere with the application
you are debugging

• you are supporting an application remotely

• you don’t want to use the Debugger on the target machine for some
other reason

Using Main View

Starting the Debugger with an executable brings up the Main View window,
loaded with the source code, and ready to run the process with any specified
arguments. You perform most of your work in Main View, which provides

• a menu bar for performing Main View functions and for accessing other
views

• a control panel for specifying and controlling the process to be
debugged

• a source code display area for inspecting the source code

Typical Debugger Usage

3

• a status line for viewing the state of the program

• the Debugger command line for entering special debugging commands
(see “Debugger Command Line” on page 271 for the syntax)

The major areas of the Main View window are shown in Figure 1-1.

Figure 1-1 Major Areas of the Main View Window

Setting Traps

A major part of the debugging process is inspecting data at points during
execution. A trap is a mechanism for gathering this data. A stop trap halts the
process so that you can manually examine data. A sample trap collects
specified performance data without stopping.

Menu bar

Control panel

Source code display area

Debugger command line

Status area

Source filename

Annotation column

4

Chapter 1: Getting Started with the WorkShop Debugger

The Debugger lets you set traps:

• at a line in a file (breakpoint)

• at an instruction address

• on entry to or exit from a function

• when a signal is received

• when a system call is made, at either the entry or exit point

• when a given variable or address is written to, read from, or executed
(watchpoint)

• at set time intervals (pollpoint)

For more information on traps, refer to Chapter 4, “Setting Traps.”

Inspecting Debugger Data

When you stop the process, you then have a number of options for
examining the data. You can inspect

• the call stack at the breakpoint (using Call Stack)

• the value of specified expressions (using Expression View)

• the values, types, or addresses of variables (using Variable Browser)

• data structures (using Structure Browser)

• the values of an array variable (using Array Browser)

• values in specified memory locations (using Memory View) or registers
(using Register View)

• the disassembled code (using Disassembly View)

For more information on the standard Debugger views, refer to Chapter 6,
“Examining Debugger Data.”

Typical Debugger Usage

5

Changing Source Code

To change your source code and recompile, follow these steps:

1. Switch to a text editor (“Fork Editor” selection in Source menu) or edit
in Main View (“Make Editable” in Source menu).

If you are using a configuration management system, then you can
check out the source code, by selecting “Versioning” from the Source
menu and accessing the source through the configuration management
shell.

2. Make any changes and save them. In the Main View, pull down the
Source menu and select “Save...”

3. In the Main View, pull down the Source menu and select “Recompile.”

The Build View window displays and lets you start the compile. Any
compile errors are listed in the window, and you can access the related
source code by clicking the errors. For more information on the Build
Manager, refer to Appendix B, “Using the Build Manager.”

When the code is rebuilt successfully, the new executable reattaches
automatically to the Debugger and Static Analyzer. Previously set traps
are intact unless you have traps triggered at line numbers and have
changed the line count.

Updating and Saving Views

Updating and saving view data is done through the Admin menu in the
particular view (see Figure 1-2).

Figure 1-2 Admin Menu in Debugger Views

Typically, you display the WorkShop views of interest when you are stopped
at a trap and leave them on the screen as you run the process.

6

Chapter 1: Getting Started with the WorkShop Debugger

“Active” Updates the view each time the process stops or if the
context is changed in the Call Stack View window. The
active state is the default.

“Clone” Makes a duplicate, inactive copy of the view, allowing you
to save current information for future reference.

“Save As Text...”
Lets you save the data currently displayed in a view to a text
file. Note that not all views have the “Save as Text...” option.

“Close” Closes the window of the view.

Integration With Other WorkShop Tools

The WorkShop tools are designed so that you can move easily between them
in a work session.

Accessing the Performance Analyzer From Main View

You can switch to the Performance Analyzer at any time while debugging.
Selecting “Performance Task...” from the Admin menu lets you enable data
collection for your experiment. A performance task must be specified before
the process is run; this enables the correct data collection. If you are in the
middle of a run, you must terminate it, select a task, and restart the target to
collect the data. Selecting “Performance Analyzer” from the “Launch Tool”
submenu displays the main Performance Analyzer for analyzing the
experiment results.

Accessing the Static Analyzer From Main View

You can access the Static Analyzer from the “Launch Tool” submenu, if
desired. The Static Analyzer displays source information from Main View,
making it easy to set traps in source code located by the Static Analyzer. Note
that the Query menu enables you to conduct some of the same queries as in
the Static Analyzer.

Debugging with Fix+Continue

7

Accessing Editors From Main View

After you solve a problem with the WorkShop tools, you may wish to make
the change in Source View (or your preferred editor) and then recompile.

Accessing Configuration Management Tools

If you use ClearCase (available from Silicon Graphics), RCS, or SCCS for
configuration management, you can integrate the tool into the WorkShop
environment by typing

cvconfig [clearcase | rcs | sccs]

This enables the “Versioning” in the Source menu, which provides selections
for checking files in and out.

Recompiling From Main View or Source View

To access the Build View window (which lets you start the compile), in the
Main View, pull down the Source menu and select “Recompile.” To examine
the build dependencies, in the Main View, pull down the Admin menu and
select “Build Analyzer.” For more information on the Build Manager tools,
see Appendix B, “Using the Build Manager.”

Debugging with Fix+Continue

Fix and Continue is integrated with the Debugger. You issue Fix and
Continue commands graphically from the Fix+Continue pulldown menu of
the Debugger main window. You may also issue Fix and Continue
commands from the Debugger command line (cvd>).

Redefining Functions Using Fix and Continue

Fix and Continue gives you the ability to make changes to a program you are
debugging without having to recompile and link the entire program, and
then continue debugging the code. With Fix and Continue, you can edit a
function, parse the new function, and continue execution of the program

8

Chapter 1: Getting Started with the WorkShop Debugger

being debugged. Fix and Continue enables you to speed up your
development cycle significantly.

Table 1-1 compares the cycle time in seconds between a full rebuild and a Fix
and Continue for three typical programs.

Fix and Continue Functionality

Fix and Continue lets you:

• Redefine existing function definitions

• Disable, re-enable, save, and delete redefinitions

• Set breakpoints in and single-step within redefined code

• View the status of changes

• Examine differences between original and redefined functions

The basic cycle of using Fix and Continue is shown in Figure 1-3.

Table 1-1 Fix and Continue Compile Time Cycle

Example Time to Rebuild Time to Fix+Continue

Program A 0:06 0:02

Program B 0:33 0:06

Program C 5:24 0:49

Debugging with Fix+Continue

9

Figure 1-3 Fix and Continue Cycle

A typical session would be the following:

1. Using the Fix and Continue commands, you redefine a function. When
you continue executing the program, the Debugger attempts to call the
redefined function. If it cannot, an information popup appears, and the
redefined function will be executed the next time the program calls that
function.

2. You redefine other functions, alternating between debugging,
disabling, re-enabling, and deleting redefinitions. You might save
function redefinitions to their own files, or save files to a different
name, to be used later with the present or with other programs.

Frequently during debugging you can review the status of changes by listing
them, showing specific changes, or looking at the Fix and Continue Status
View. You can compare changes to an individual function or to an entire file
with the compiled versions. When satisfied with the behavior of your
application, you save the file, replacing the compiled source.

Fix and Continue/WorkShop Integration

Using Fix and Continue affects these WorkShop tools:

• The WorkShop Debugger Main View, the Source View, and the Fix and
Continue Status window make a clear distinction between compiled
and redefined code, and allow editing only in redefined code.

Redefine
function

Continue
debugging

Redefine
function

Continue
debugging

Redefine
function

Continue
debugging

Redefine
function

Continue
debugging

10

Chapter 1: Getting Started with the WorkShop Debugger

• The different WorkShop views that are knowledgeable about redefined
code:

– Call Stack

– Trap Manager

– Debugger command-line

How Redefined Code Is Distinguished From Compiled Code

Redefined functions have an identification number and special line
numbers, and in the Debugger views are color-coded according to their state
(edited, parsed, and so on).

Line numbers in the compiled file stay the same, no matter how redefined
functions change. However, when you begin editing a function, the line
numbers of the function body are represented in decimal notation (n.1, n.2,
..., n.m). n is the compiled line number where the function body begins. m is
the line number relative to the beginning of the function body, starting with
1.

Figure 1-4 shows two redefined functions. Function 1 replaces lines 8-15.
Function 2 replaces lines 18-20. Although its three lines are now one, the
following line number is still 21.

The Call Stack and Trap Manager both use function-relative decimal
notation when referring to a line number within the body of a redefined
function.

The Debugger command line reports ongoing status. In addition to
providing the same commands available from the menu, edit commands
allow you to add, replace, or delete lines from files. You can easily operate
on several files at once.

Restrictions on Fix and Continue

Fix and Continue has the following restrictions when you fix a function in
which you have stopped:

• You may not add, delete, or reorder the local variables in a function.

• You may not change the type of a local variable.

Function 1

Function 2

mn.

Figure 1-4 Line Numbers in
Decimal Notation

Debugging with Fix+Continue

11

• You may not change a local variable to be a register variable, and vice-
versa.

• You may not add any function calls that increase the size of the
parameter area.

• You may not add an alloca function to a frame that did not previously
use an alloca.

• Both the old and new functions must be compiled with -g.

In other words, the layout of the stack frames of both the old and new
functions must be identical for you to continue execution in the
function that is being modified. If not, execution of the old function
continues, and the new function is executed the next time it is called.

• If you redefine functions which are in but not on top of the call stack,
the modified code will not be executed when they combine. Modified
functions will be executed only on their next call or on a re-run.

For example, consider the following call stack:

foo()
bar()
foobar()
main()

1. If you redefine foo(), you can continue execution provided the
layout of the stack frames are same.

2. If you redefine bar() [or foobar()], the new code will not be
executed when foo() returns. The code will be executed only on the
next call of bar() [or foobar()].

3. If you redefine main() after you have run, it will be executed only
when you re-run.

The Fix and Continue Environment

The interface to Fix and Continue is through the Fix+Continue menu and its
associated windows: Status, Message, and Build Environment. These
windows are completely dependent on Fix and Continue, and do not
operate unless it is installed.

12

Chapter 1: Getting Started with the WorkShop Debugger

For more complete information on all of the Fix and Continue menus,
windows, and functions, see “Fix+Continue Windows” on page 258.

Debugger With Fix and Continue Support

Without Fix and Continue, the Debugger source views are Read-Only by
default. That is so you can examine your files with no risk of changing them.
When you select “Edit” from the Fix+Continue menu, the Debugger source
code status indicator (in the lower-right corner of the Debugger window—
see Figure A-1) remains Read-Only. Fix and Continue edits are saved in an
intermediate state and must be explicitly written with the “Save File+Fixes
As...” option to be saved.

When you edit a function, it is color-highlighted. Then, if you switch to the
compiled version, the color changes to show that there is a redefinition. If
you try to edit the compiled version, the Debugger beeps, indicating it is
Read-Only.

When you have completed your edits and wish to see the results, click
“Parse and Load.” When the Parse and Load has executed successfully, the
color changes again. If the color doesn’t change, there may be errors, and you
should check your “Message Window...” view.

GUI Debugger Command Line

Just as you can enter any dbx command at the Debugger command line, you
can enter Fix and Continue commands there.

Change ID, Build Path, and Other Concepts

The Fix and Continue methods for accessing functions through ID numbers,
finding files, and so forth, are discussed below.

• Each redefined function is numbered with a change ID. Its status is
redefined, enabled, disabled, deleted, or detached.

• Fix and Continue needs to know where to find include files and other
parameters specified by compiler build flags (compiler options). You
can set the build environment for all files or for a specific file. You can
display the current build environment from the Fix+Continue
pulldown menu, the command line, or the Fix and Continue Status

Debugging with the X/Motif Analyzer

13

Window. When you finish a Fix and Continue session, you can unset
the build environment.

A successful run results in output in the Execution View. This functionality
is the same as it is in the Debugger without Fix and Continue.

Debugging with the X/Motif Analyzer

The X/Motif analyzer is integrated with the Debugger. You issue X/Motif
analyzer commands graphically from the X/Motif analyzer subwindow of
the main Debugger window (see Figure 1-5). To access the subwindow, you
must pull down the Views menu and select “X/Motif Analyzer”

Figure 1-5 Launching the X/Motif Analyzer

Debugger Views Menu

14

Chapter 1: Getting Started with the WorkShop Debugger

Special Libraries

When you first bring up the X/Motif Analyzer, it may ask you if you want
to change $LD_LIBRARY_PATH to include /usr/lib/WorkShop/Motif. In
that directory are instrumented versions of the Silicon Graphics Xlib, Xt, and
Xm libraries. These versions include debugging symbols and special
support for X/Motif Analyzer functions.

It is strongly recommended that you click OK to the dialog and use these
libraries. Doing so enables all of the features of the X/Motif Analyzer. These
libraries are identical in functionality to the libraries shipped with IRIX 5.3.
The analyzer uses the Silicon Graphics enhanced version of these libraries.
There are no instrumented MIPS/ABI versions of the libraries.

Using the X/Motif Analyzer

The X/Motif Analyzer provides specific debugging support for X/Motif
applications. There are various examiners for different X/Motif objects (for
example, widgets and X graphics contexts) that are normally difficult or
impossible to inspect using ordinary debugger functionality. Also, you can
set widget-level breakpoints and collect X event history information (in the
same manner as xscope).

Examiners Overview

When you first bring up the X/Motif Analyzer, you see the Widget examiner.
It may be blank or displaying a Widget that it found on the callstack if you
have a stopped process. Most of the examiners in the X/Motif Analyzer try
to detect interesting objects from the callstack and offer to display them for
you, automatically.

At the bottom of the X/Motif Analyzer is a tab panel showing the current set
of examiners. Besides the Widget examiner, the Breakpoints, Tree, and Trace
examiners are available by default. These four tabs are always present.

To bring up new examiners, use the Examine menu and select one from
below the separator. Some examiners (for example, the Callback examiner)
cannot be manually selected—they appear only when the callstack context

Debugging with the X/Motif Analyzer

15

is appropriate. In the case of the Callback examiner, it appears only when the
process is stopped somewhere in a widget callback.

To remove an examiner from the tab panel, put the pointer over the tab, click
the right button of your mouse, and select ’Remove Examiner’ from the
popup menu. The tab disappears.

Examiners and Selections

If you select text in one examiner and then choose another using the Examine
menu, the new examiner is brought up and the text is used as an expression
for it. If you selected text that evaluated to an inappropriate object for the
new examiner, an error is generated.

Alternatively, you can select text, pull down the Examine menu, and choose
“Selection.” The X/Motif Analyzer attempts to select an appropriate
examiner for the type of the selected text. If the type of the text is unknown,
the error Couldn’t examine selection in more detail is generated.
Otherwise, the appropriate examiner is chosen and the text is evaluated.

You can accomplish the same thing by triple-clicking the line of text. If the
type of the text is unknown, nothing happens. Otherwise, the appropriate
examiner is chosen and the text is evaluated.

Inspecting Data

X/Motif applications consist of collections of objects (Motif widgets) and
make extensive use of X resources such as windows, graphics context, and
so on. The construction model of an X window system hinders you from
inspecting the internal structures of widgets and X resources because you
are presented with ID values. The X/Motif Analyzer provides inspection
capability for you to see into the data structures behind the ID values.

Inspecting the Control Flow

Traditional debuggers enable you to set breakpoints only in source lines or
functions. With the X/Motif Analyzer, you can set breakpoints for specific
widgets or widget classes, for specific control flow constructs like callbacks
or event handlers, and (at a lower level) for specific X events or requests.

16

Chapter 1: Getting Started with the WorkShop Debugger

Tracing the Execution

The X/Motif Analyzer can trace Xlib-level server events and client requests,
Xt-level event dispatching information, widget life cycle, and widget status
information.

Restrictions and Limitations

Due to implementation details, there are several nuisances that currently
pose some restrictions to the X/Motif Analyzer:

• The Breakpoints area is active only after you’ve stopped the process
once, and if you’ve changed $LD_LIBRARY_PATH.

• Sometimes, gadget names may be unavailable and are displayed as
<object>.You can minimize this condition by getting the widget tree
beforehand.

• editres-type requests (widget selection and widget tree) work only if the
process is running or if the process is stopped outside of a system call.
This can be annoying when the process is stopped in select(), waiting
for an X server event.

• The process state and appearance of the cvd Main View flickers while
the X/Motif Analyzer tries to complete an editres request when the
process is stopped.

• editres requests may be unreliable if the process is stopped.

Customizing the Debugger

If there are Debugger commands or combinations of Debugger commands
that you use frequently, you may find it convenient to create a script
composed of Debugger commands. Debugger scripts are ASCII files
containing one Debugger command with its arguments per line. A
Debugger script can in turn call other Debugger scripts. There are three
general methods for running scripts:

• Entering the source command and the filename at the Debugger
command line—this is useful for scripts that you need only
occasionally.

Customizing the Debugger

17

• Including the script in a startup file—this is useful for scripts that you
want implemented every time you use the Debugger.

• Defining a button in the graphical interface to run the script—use this
method for scripts that you use frequently but apply only at specific
times in a debugging session

Using a Startup File

The startup file feature lets you preload your favorite buttons and aliases in
a file that runs when cvd is invoked. It’s also useful if you have traps that you
set the same way each time. The suggested name for the startup file is .cvdrc;
you can supply a different name as long as you specify its path in the
environment variable CVDINIT. The steps in the algorithm that cvd follows
when looking for a startup file are:

1. Check the environment variable CVDINIT.

2. Check for the file .cvdrc in the current directory.

3. Check for the file .cvdrc in the user’s home directory.

Implementing User-Defined Buttons

If there are Debugger commands or combinations of Debugger commands
that you use frequently, you may find it convenient to define a button for the
graphical interface. You can implement buttons by providing a special
Debugger startup file or by creating them on the fly within a debugging
session. Buttons appear in order of implementation in a row at the bottom of
the control panel area. Currently, you can define only one row of custom
buttons. Figure 1-6 is a typical example of Main View with user-defined
buttons. The definitions for the user-defined buttons display in the
Debugger command line area.

18

Chapter 1: Getting Started with the WorkShop Debugger

Figure 1-6 User-Defined Button Example

The syntax for creating a button is

button label command [$sel]

The syntax for creating a multiple-command button is

button label {command1 [$sel]; command2 [$sel]; ...}

where

button is the Debugger command for defining buttons. It can be applied at
the Debugger command line or in a startup file.

label is the name appearing on the button. Button labels should be kept short
since there is only room for a single row of buttons. There can be no spaces
in a label.

Custom button row

Button specifications

Multiple-command example

Customizing the Debugger

19

command is one of the the Debugger commands, which are entered at the
command line at the bottom of Main View. See “Debugger Command Line”
on page 271.

$sel is a substitute for the current cursor selection and should be
appropriate as an argument to the selected command.

command1, command2 (and any additional commands) are Debugger
commands to be applied in order. They must be separated by semicolons (;)
and enclosed by braces ({}). The multiple-command button is a powerful
feature; it lets you write a short script to be executed when you click the
button.

The following syntax

button

displays a list of all currently defined buttons.

The syntax

unbutton label

deletes the button corresponding to the label. You might use this if you
needed room to implement different buttons. The effect of unbutton is
temporary so that subsequently running the startup file reactivates the
button.

The syntax

button label

displays the button’s definition if it exists. If the button does not exist, an
error message displays along with the standard usage syntax for button.

21

Chapter 2

2. Managing Source Files

This chapter looks at the details of working with source files. It covers these
topics:

• “Accessing Files Used by an Executable”

• “Opening a New File”

• “Path Remapping”

Accessing Files Used by an Executable

The File Browser, available from the Views menu in the Main View, provides
a scrollable list of the source files used by your executable, including files in
linked libraries. See Figure 2-1.

Figure 2-1 File Browser Window

The File Browser has a field labeled Search for quickly locating files in the list.
File searching is incremental—as you type the string you are searching for in
the Search field, the first string that matches the entered string is highlighted.

22

Chapter 2: Managing Source Files

To load a file directly into Main View from the File Browser window, simply
double-click the filename.

Opening a New File

Another way to load a file is to specify it by using the “Open...” selection
from the Source menu. The dialog box in Figure 2-2 displays, listing the files
in the file list display area and the currently selected directory in the
selection field.

Figure 2-2 Open Source File Dialog Box

To load a file listed in the file list, double-click the file’s name. You can also
type the full pathname of the file in the Selection field and click the OK button
to load the file. Another alternative is to drag the file’s icon into the drop
pocket.

If the file you want to load is not in the current directory, enter the
appropriate directory in the selection field. The files in the new directory are
listed in the file list.

File list display area

Selection field

Drop pocket

Path Remapping

23

If you specify a filename without a full path, the Debugger will use the
current path remapping information to attempt to locate the file.

Another method for opening a file in Main View is to enter its full name in
the File field, below the source code display area, and press <Enter>.

Path Remapping

The path remapping option allows you to modify the set of mappings used
to redirect filenames located in your executable to their actual locations in
your file system. Since WorkShop uses full (absolute) pathnames, path
remapping is generally not necessary. However, if you have mounted
executable files on a different tree from the one on which they were
compiled, you will need to remap the root prefix to get access to the files in
that hierarchy.

The most basic remapping is for “.”, which allows you to specify the
directories to be searched for files. This basic function works just like dbx and
can be modified using the use and dir commands in the command line. To
open the Path Remapping dialog box, choose “Remap Paths...” from the
“Project” submenu in the Main View Admin menu. The Path Remapping
dialog box appears (see Figure 2-3).

24

Chapter 2: Managing Source Files

Figure 2-3 Path Remapping Dialog Box

For each prefix listed in the Prefix list, there is an ordered set of substitutions
that are used to find a real file. By default, the path remapping is initialized
so that “.” is mapped to the current directory. The Substitution Set list shows
the substitution list for the currently highlighted item in the Prefix list. Here
are some operations you can perform:

• To view the substitution set for a different prefix, click that prefix.

• To add a new prefix, enter the new value in the Value field below the
Prefix list and click the Add button. A new, empty substitution set is
created. Next, type the desired substitution in the Value field below the
Substitution Set list.

Path Remapping

25

• To modify the currently selected prefix, edit the string in the Value field
and click the Modify button.

• To remove the current prefix and its substitution set, select the prefix
and click the Remove button.

27

Chapter 3

3. A Short Debugger Tutorial

This chapter presents a short tutorial for using the Debugger. The tutorial
applies the Debugger to a program called jello, which provides a walk
through some typical debugging situations. The tutorial is divided into four
parts:

• “Starting the Debugger”

• “Performing a Search”

• “Setting Traps”

• “Examining Data”

Note: WorkShop identifies files with the pathnames in which they were
compiled. The pathnames in the tutorial may not match the ones on your
system.

Starting the Debugger

In this part of the tutorial, you invoke the Debugger and start a typical
process running. The jello program simulates an elastic polyhedron
bouncing around inside of a revolving cube. The program’s functionality is
mainly contained in a single loop that calculates the acceleration, velocity,
and position of the polyhedron’s vertices.

1. Go to the directory /usr/demos/WorkShop/jello.

2. If the jello executable does not yet exist, type make jello

3. To invoke the Debugger, type cvd jello

The Main View window appears as shown in Figure 3-1. The display
scrolls automatically to the main function.

28

Chapter 3: A Short Debugger Tutorial

Figure 3-1 The Main View Window with jello Source Code

Note: Main View brings up the source file in read-only mode to avoid
inadvertent changes during debugging. You can change this mode by
selecting “Make Editable” from the Source menu (provided you have
the proper file access permissions).

4. Click the Run button in the upper-right corner of the Main View to start
the jello process.

The jello window opens on your display (see Figure 3-2). Enlarge this
window to watch the program execute. The polyhedron is initially
suspended in the center of the cube.

5. Click the left mouse button anywhere inside the jello window.

The polyhedron drops to the floor of the cube.

Source code display area

Source code file

Target process command

Current process information

Execution control buttons

Source code annotation column

Source code buffer status

Debugger command line

Performing a Search

29

6. Hold down the right mouse button to display the pop-up menu and
select “spin.”

The cube now rotates and the polyhedron bounces. If you select
“display” from the menu, you can change the appearance of the
polyhedron: points only, lines only, full color, visible points only, or
single color.

Note: You may encounter flashing colors inside windows while running
jello. This is a normal side effect due to GL/X interaction.

Figure 3-2 The jello Window

Performing a Search

This part of the tutorial covers the search facility in the Debugger. You will
search through the jello source file for a function called spin. The spin
function recalculates the position of the cube.

1. Choose “Search” from the Source menu.

The Search dialog box appears.

2. Type spin in the entry field in the Search dialog box, as shown in
Figure 3-3.

30

Chapter 3: A Short Debugger Tutorial

Figure 3-3 The Search Dialog Box

3. Click the Apply button in the Search dialog box.

The search takes place. Each instance of “spin,” the target string, is
highlighted in the source code and flagged in the scroll bar to the right
of the display area. Figure 3-4 shows typical search target indicators.
The Next and Prev buttons let you move from one occurrence to the next
in the order indicated. For more information on Search, see “Source
Menu” on page 145.

4. Click the Close button in the Search dialog box.

The dialog box disappears.

5. Click the middle mouse button on the last search target indicator.

This scrolls the source code down to the last occurrence, which is the
location of the spin function.

Setting Traps

31

Figure 3-4 Search Target Indicators

Setting Traps

Stop traps (also called breakpoints) stop the program’s execution at a
specified line in the code, allowing you to track the progress of your program
and to check the values of variables at that point. Typically, you set
breakpoints in your program prior to running it under the Debugger. For
more information on traps, refer to Chapter 4, “Setting Traps.”

In this part of the tutorial, you set a breakpoint at the spin function.

1. Click the left mouse button in the source code annotation column next
to the line containing if ((a+=1)>3600) a -= 3600;.

A stop trap indicator appears in the annotation column as shown in
Figure 3-5. This stop trap halts execution of jello at the beginning of the
next call to the spin function. When the process stops, an icon
indicating the current PC appears and the line becomes highlighted.

Search
target
Indicators

32

Chapter 3: A Short Debugger Tutorial

Figure 3-5 Stop Trap Indicator

2. Click the Continue button at the upper-left corner of the Main View
window repeatedly so that jello goes through several iterations.

The Continue button resumes execution until the next breakpoint (in
this case, spin) is encountered. Stopping at the spin function allows
you to view the jello image one frame at a time.

3. Select “Trap Manager” from the Views menu in Main View.

The Trap Manager window appears as shown in Figure 3-6.

Trap Manager lets you list, add, edit, disable, or remove traps in a
process. You set one breakpoint in the spin function by clicking in the
source code annotation column. This trap is displayed in the trap
display area.

Stop trap indicator

Search

 indicators
target

Setting Traps

33

You can define other traps as well in the Trap Manager. You set
conditional traps in the Condition field from the top. The count
information lets you specify the number of times a trap should be
encountered before it fires. The trap controls let you manipulate traps.
All traps (active and inactive) are shown in the trap display area.

Figure 3-6 The Trap Manager Window

4. Click the button to the left of the stop trap in the trap display area.

The trap is temporarily disabled. Trap Manager lets you turn traps on
and off by clicking them.

5. Click the Clear button, move the cursor to the Trap: field, type

watch display_mode

and click Add.

This sets a watchpoint for the variable display_mode. A watchpoint is a
trap that fires when a specified variable or address is read, written, or
executed.

After you continue the process, you can fire this watchpoint by holding
down the right mouse button in the jello window and selecting
“display” and a different display option. The variable display_mode is
accessed and the watchpoint fires.

Trap specification

Trap condition specification

Cycle count
Current count

Trap controls

Trap display area

Search field

34

Chapter 3: A Short Debugger Tutorial

6. Click the Continue button to restart the process.

The process now runs somewhat slower but still at a reasonable speed
for debugging.

7. Hold down the right mouse button in the jello window to display the
popup menu, and select “display” and then the “conecs” option with
the right button.

This triggers the watchpoint and stops the process. If you were tracking
the effects of changing display modes, you could bring up other views
now.

8. Go to the Trap Manager window and click the button next to the
display_mode watchpoint to deactivate it. Click the button next to the
spin stop trap to reactivate it.

This resets the traps for use in this tutorial.

9. Enter 100 in the Cycle Count field, press <Enter>, and click the Continue
button in Main View.

This takes the process through the stop trap for the specified number of
times, provided no other interruptions occur. The Current Count field
keeps track of the actual number of iterations since the last stop, which
is useful if an interrupt occurs. Note that it updates at interrupts only.

10. Select “Close” from the Admin menu in Trap Manager to close it.

Examining Data

This part of the tutorial describes how to examine data after the process
stops.

1. Select “Call Stack” from the Views menu in Main View.

The Call Stack View window appears as in Figure 3-7. The Call Stack
View window shows each frame in the call stack at the time of the
breakpoint with the calling parameters and their values. You can also
display the calling parameters’ types, locations, and PC (program
counter) through the Display menu. For more information, see “Tracing
Through Call Stack View” on page 61.

Examining Data

35

In this example, the spin and main stack frames are displayed in Call
Stack View, and the spin stack frame is highlighted, indicating that it is
the current stack frame.

2. Pull down the Admin menu and examine the “Active” selection.

By default, the “Active” toggle button in the Admin menu is turned on.
Active views are those that have been specified to change their contents
at stops or at call stack context changes. If the toggle is on, the call stack
is updated automatically whenever the process stops.

Figure 3-7 Call Stack View at spin Stop Trap

3. Double-click the main stack frame.

This shifts the stack frame to the main function, scrolls the source code
in Main View (or Source View) to the place in main where spin was
called, and highlights the call in the designated context color. Any
active views are updated according to the new stack frame.

4. Double-click the spin stack frame.

This returns the stack frame to the spin function.

5. Select “Variable Browser” from the Views menu in Main View.

The Variable Browser window appears. This window shows you the
value of local variables at the breakpoint. The variables appear in the
left column (read-only), and the corresponding values appear in the
right column (editable). Since the right column is editable, you can
change the values of the variables if you want.

36

Chapter 3: A Short Debugger Tutorial

Your Variable Browser window should resemble the one in Figure 3-8,
although you may need to enlarge the window to see all the variables
(the values will be different).

The jello program uses variables a, b, and c as angles (in tenths); ca, cb, cc
as their corresponding cosines; and sa, sb, sc as their sines. Whenever
you stop at spin, these values change.

Figure 3-8 Variable Browser at spin

6. Double-click some different frames in Call Stack View and observe the
changes to Variable Browser and Main View.

These views update appropriately whenever you change frames in Call
Stack View. Notice also the change indicators in the upper right corners
of the Result fields (see Figure 3-9). These appear if the value has
changed. If you click the “folded” corner, the previous value displays
(and the indicator appears “unfolded”). You can then toggle back to the
current value.

Examining Data

37

Figure 3-9 Variable Browser after Changes

7. Select “Close” from the Admin menu in Variable Browser and “Close”
from the Admin menu in Call Stack View to close them.

8. Select “Expression View” from the Views menu in Main View.

The Expression View window appears. It lets you evaluate an
expression involving data from the process. The expression can be
typed in or more conveniently cut and pasted from your source code.
You can view the value of variables (or expressions involving variables)
any time the process stops. Enter the expression in the left column, and
the corresponding value appears in the right column. For more
information, see “Evaluating Expressions” on page 64.

9. Hold down the right mouse button in the Expression column to bring up
the Language menu. Then hold down the right mouse button in the
Result column to display the Format menu.

The Language menu (shown on the left side of Figure 3-10) lets you
apply the language semantics to the expression.

The Format menu (shown on the right side of Figure 3-10) lets you view
the value, type, address, or size of the result. You can further specify the
display format for the value and address.

Change indicator

38

Chapter 3: A Short Debugger Tutorial

Figure 3-10 Expression View With Language and Format Menus Displayed

10. Click on the first Expression field in the Expression View window. Then
enter (a+1)>3600 in the field and press <Enter>.

This is a test performed in jello to ensure that the value of a is less than
3600. This uses the variable a that was displayed previously in Variable
Browser. After you press <Enter>, the result is displayed in the right
column; 0 signifies false.

11. Select “Close” from the Admin menu in Expression View to close it.

12. Select “Structure Browser” from the Views menu in Main View.

13. Enter jello_conec in the Expression field and press <Enter>.

The Structure Browser displays the structure for the given expression;
field names are displayed in the left column, and values in the right
column. If only pointers are available, Structure Browser will
dereference the pointers automatically until actual values are
encountered. You can then perform any further dereferencing by
double-clicking pointer addresses in the right column of the data
structure objects. A window similar to the one shown in Figure 3-11
now appears.

Column sash

Examining Data

39

Figure 3-11 Structure Browser Window With jello_conec Structure

14. Click once to focus, then double-click the address of the next field (in
the right column of the jello_conec structure).

Double-clicking the address corresponding to a pointer field
dereferences it. Double-clicking the field name displays the complete
name of the field in the Expression field at the top of the Structure
Browser window. (See Figure 3-12.)

Figure 3-12 Structure Browser Window With Next Pointer Dereferenced

40

Chapter 3: A Short Debugger Tutorial

15. Select “Close” from the Admin menu in Structure Browser to close it.

16. Select “Array Browser” from the Views menu in Main View.

The Array Browser lets you see or change values in an array variable. It
is particularly valuable for finding bad data in an array or for testing
the effects of values you enter.

17. Type shadow in the Array field and press <Enter>.

You can now see the values of the shadow matrix, which displays the
polyhedron’s shadow on the cube. The Array Browser template should
resemble Figure 3-13 but with different data values. If any fields are
hidden, you can drag the sash buttons at the right of the window to
expose them.

Figure 3-13 Array Browser Window for shadow Matrix

Array specification area

Subscript controls area

Spreadsheet area

Examining Data

41

18. Select the Col button next to the $k index.

The Array Browser can handle matrices containing up to six
dimensions but displays only two dimensions at a time. Selecting the
Col button for $k has the effect of switching from a display of $i by $j to
$i by $k.

Figure 3-14 shows a close-up view of the subscript control area.

Figure 3-14 Subscript Control Area in Array Browser

The row/column toggles indicate whether a vector appears as a row,
column, or not at all in the spreadsheet area. Although any number of
vectors can reside in an array, you can view only two vectors at a time.
The index values show the number of elements in a vector and are used
to change the dimensions of the matrix. The index sliders let you move
the focus cell along the particular vector. The index minimums and
index maximums identify the beginning and ending elements,
respectively, in the vectors. Use the horizontal and vertical scroll bars to
expose hidden portions of the Array Browser window.

Row/column toggles

Index values
Index sliders
Index minimums
Index maximums

Step indicators
Horizontal scroll bar

Vertical scroll bar

Index identifiers

42

Chapter 3: A Short Debugger Tutorial

19. Select “Surface” from the Render menu.

The Render menu displays the data from the selected array variable
graphically, in this case as a three-dimensional surface. The selected cell
is highlighted by a rectangular prism. The selected subscripts
correspond to the x- and y-axes in the rendering; the corresponding
value is plotted on the z-axis. The data can be rendered as a surface, bar
chart, multiple lines, or points.

20. Select “Exit” from the Admin menu in Main View to end this tutorial.

43

Chapter 4

4. Setting Traps

Setting traps is one of the most important functions of a debugger or
performance analyzer. A trap enables you to select a location or condition
within your program at which you can stop the process or collect
performance data automatically. In general, you set or clear traps from Main
View (Source View) or the Trap Manager. You can also specify traps in the
Debugger command line at the bottom of the Main View window. For signal
traps, you can also use the Signal Panel window. For system call traps, use
the Syscall Panel window.

When you are debugging a program, you typically set a trap in a process to
determine if there is a problem at that point. WorkShop lets you inspect the
call stack, examine variables, or perform other procedures to get information
about the state of the process.

Traps are also useful for analyzing a program’s performance. They let you
collect data related to resource usage without stopping the process.

This chapter covers the following topics:

• “Trap Terminology”

• “Setting Traps in Main View and Source View”

• “Setting Traps in Trap Manager”

• “Setting Traps With Signal Panel and Syscall Panel”

For a tutorial on the use of traps, see “Setting Traps” on page 31.

44

Chapter 4: Setting Traps

Trap Terminology

In WorkShop, the term trap refers to any intentional process interruption. A
trap has two dimensions: the trigger, which specifies when the trap fires, and
the action taken when the trap fires, either stopping the process or capturing
data.

When used as a verb, the term trigger refers to engaging a trap but not
necessarily firing it. There are some circumstances where the process may hit
a trap but not satisfy all the conditions necessary for firing it.

Trap Triggers

You can set traps at a specified location or when a specified event occurs. The
triggers provided in WorkShop are

• at a given line in a file (traditionally referred to as “breakpoints”)

• at a given instruction address

• at the entry or exit for a given function

• after set time intervals (referred to as “pollpoints”)

• when a given variable or address is read, written, or executed (referred
to as “watchpoints”)

• when a given signal is received

• when a given system call is entered or exited

Furthermore, you can specify a condition (as an expression) that must be met
before a trap fires. You can also specify the cycle count, that is, a specific
number of passes through a trap without firing it.

Trap Actions

Two actions can occur when a trap is fired:

• one or all processes can be stopped

• a sample of performance data can be taken

Setting Traps in Main View and Source View

45

A trap that stops processes is called a stop trap, or a breakpoint. A trap that
collects performance data is called a sample trap.

In single process debugging, a stop trap stops the current process. In
multiprocess debugging, you can specify the stop trap to stop all processes
or the current process only.

Sample traps are used only in performance analysis, not directly in
debugging. They collect data without stopping the process. You can specify
sample traps to collect such information as call stack data, function counts,
basic block counts, PC profile counts, mallocs/frees, system calls, and page
faults. Sample traps can use any of the triggers that stop traps use. Sample
traps are often set up as pollpoints so that they collect data at set time
intervals.

Setting Traps in Main View and Source View

You can set traps directly in Main View by using the Traps Menu or by
clicking the mouse in the source annotation column. You can also specify
traps in the Debugger command line.

Setting Traps With the Traps Menu in Main View

The Traps Menu in Main View is shown in Figure 4-1.

46

Chapter 4: Setting Traps

Figure 4-1 Traps Menu in Main View

To set a trap using the Traps menu, you need to identify where the trap is to
be located and its type.

To set a stop trap at a line displayed in Main View (or Source View), click the
cursor in the source annotation column next to the appropriate line in the
source code and select “Set Trap,” then “Stop” or “Sample.”

For a trap at the beginning or end of a function, highlight the function name
in the source code display area and select “Set Trap,” then “Stop At Function
Entry,” “Stop At Function Exit,” “Sample At Function Entry,” or “Sample At
Function Exit,” as appropriate.

The traps are indicated by icons in the source annotation column (and also
appear in Trap Manager if you have it open). Figure 4-2 shows some typical
trap icons. Sampling is indicated by a dot in the center of the icon. Traps
appear in normal color or grayed out, depending on whether they are active
or inactive. A transcript of the trap activity appears in the Debugger
command line area. The active/inactive nature of traps is discussed in
“Enabling and Disabling Traps.”

The “Clear Trap” selection in the Traps menu deletes the trap on the line
containing the cursor. You must designate a “Stop” or “Sample” trap type,
since both types can exist at the same location, appearing superimposed on
each other.

Setting Traps in Main View and Source View

47

Figure 4-2 Typical Trap Icons

Setting Traps With the Mouse

The quickest way to set a trap is to click in the source annotation column in
Main View and Source View. A subsequent click removes the trap. When the
trap is set, an icon appears representing the trap. If data collection mode has
been specified in the Performance Data window, clicking produces a sample
trap; otherwise, a stop trap is entered. (The way to tell if data collection is on
is to look at the Debug option menu in the upper-right corner of the
Debugger main view, and see whether it is set to "Debug Only,"
"Performance," or "Purify.")

Active stop trap

Inactive stop trap

Active sample trap

Inactive sample trap

Debugger command
line transcript

48

Chapter 4: Setting Traps

Setting Traps in Trap Manager

The Trap Manager helps you manage all the traps involved with a process.
Its two major functions are to list all traps in the process (except signals) and
to let you add, delete, modify, or disable traps. The Trap Manager appears in
Figure 4-3 with the Config, Traps, and Display menus displayed.

Figure 4-3 Config, Traps, and Display Menus in the Trap Manager

Setting Single-process and Multiprocess Traps in the
Trap: Field

New or modified traps are entered in the Trap: field. They have the general
form:

[stop | sample] [all] [pgrp] <location | condition>

Trap specification

Trap condition specification

Cycle Count

Current Count
Trap controls

Trap display area

Search field

Setting Traps in Trap Manager

49

The entry [stop | sample] refers to the trap action. You can set a default
for it in the Traps menu (“Stop Trap Default” or “Sample Trap Default”) and
omit entering it at the beginning of the specification.

The entries [all] and [pgrp] are used in multiprocess analysis. The [all]
entry causes all processes in the process group to stop or sample when the
trap fires. The [pgrp] entry sets the trap in all processes within the process
group that contains the code where the trap is set. These will be entered by
default if the “Stop All Default” and “Group Trap Default” toggles in the
Traps menu are on.

The specific syntaxes for the location and condition are shown below. After
you enter the trap (by the Add or Modify button or by <Enter>), the full
syntax of the specification appears in the field. The Clear button clears the
Trap and Condition fields and the cycle fields.

[stop | sample] [all] [pgrp] at [file filename] \

[line line-number]

Trap at the specified line in the specified file.

[stop | sample] [all] [pgrp] addr instruction-address

Trap on the specified instruction address.

[stop | sample] [all] [pgrp] entry function [[file] \

filename]

[stop | sample] [all] [pgrp] in function [[file] \

filename]

Trap on entry to the specified function. If the filename is
given, the function is assumed to be in that file’s scope.

[stop | sample] [all] [pgrp] exit function [[file] \

filename]

Trap on exit from the specified function. If the filename is
given, the function is assumed to be in that file’s scope.

[stop | sample] [all] [pgrp] watch expression \

[[for] read | write | execute [access]]

Set a data watchpoint on the specified expression (using the
address and size of the expression for the watchpoint span).
The watchpoint may be specified to fire on write, read, or
execution (or some combination thereof). If not specified,
the write condition is assumed.

50

Chapter 4: Setting Traps

[stop | sample] [all] [pgrp] watch addr[ess] address \

[[size] size] [for] read | write | execute \

[access]]

Set a watchpoint for the specified address and size in bytes.
The watchpoint may be specified to fire on write, read, or
execute (or some combination thereof) of memory in the
given span. If not specified, the size defaults to 4 bytes.

[stop | sample] [all] [pgrp] signal signal-name

Trap on receipt of the given signal. Same as “catch” in dbx.

[stop | sample] [all] [pgrp] syscall entry sys-call-name

Trap on entry to the specified system call. This is slightly
different from setting a trap on entry to the function by the
same name. A syscall entry trap sets a trap on entry to the
actual system call. A function entry trap sets a trap on entry
to the stub function that calls the system call.

[stop | sample] [all] [pgrp] syscall exit sys-call-name

Trap on exit from the specified system call. This is slightly
different from setting a trap on exit from the function by the
same name. A syscall exit trap sets a trap on exit from the
actual system call. A function exit trap sets a trap on exit
from the stub function that calls the system call.

[stop | sample] pollpoint [interval] time [seconds]

Trap at regular intervals of time seconds. This is typically
used for sampling only.

Some typical trap examples are provided in Figure 4-4. The entries made in
the Trap field are shown in the left portion of the figure, the trap display in
Trap Manager resulting from these entries is shown on the right, and the trap
display shown at the command line in Main View is shown at the bottom.

Setting Traps in Trap Manager

51

Figure 4-4 Trap Examples

Setting a Trap Condition

The Condition: field lets you specify a condition necessary for the trap to be
fired. A condition can be any legal expression and will be true if it returns a
nonzero value when the corresponding trap is encountered. The expression
must be valid in the context in which it will be evaluated. For example, a
Fortran condition like a .gt. 2 cannot be evaluated if it is tested while the
program is stopped in a C function.

There are two possible sequences for entering a trap with a condition:

1. Define the trap.

2. Define the condition.

Trap entries

Resulting command line
display in Main View

52

Chapter 4: Setting Traps

3. Click Add.

and

1. Define the trap.

2. Click Add.

3. Define the condition.

4. Click Modify or press <Enter>.

An example of a trap with a condition is shown in Figure 4-4. The expression
i==1 has been entered in the Condition: field. (If you were debugging in
Fortran, you would use the Fortran syntax, for example,
i .eq. 1.) After the trap has been entered, the condition appears as part of
the trap definition in the display area. During execution, the requirements
set by the trigger must be satisfied first for the condition to be tested. A
condition is true if the expression (valid in the language of the program you
are debugging) evaluates to a nonzero value.

Setting a Trap Cycle Count

The Cycle Count field lets you pass through a trap a specific number of times
without firing. If you set a cycle count of n, the trap will fire at the nth time
the trap is encountered and every n iterations thereafter. The Current Count
field indicates the number of times the process has passed the trap since
either the cycle count was set or the trap last fired. The current count updates
only when the process stops.

Setting a Trap With the Traps Menu and Source Display

The Traps menu in Trap Manager (see Figure 4-5) lets you specify traps in
conjunction with Main View or Source View. Clicking “At Source Line” sets
a trap at the line in the source display area containing the current selection.

To set a trap at the beginning or end of a function, you select the function
name in the source display and then click “Entry Function” or “Exit
Function.” The trap set in all of these cases is governed by the defaults you
have set in the menu.Figure 4-5

Traps Menu in Trap Manager

Setting Traps With Signal Panel and Syscall Panel

53

Moving around the Trap Display Area

The trap display area shows all traps set for the current process. You have
vertical and horizontal scroll bars for moving around the display area. The
Search field lets you incrementally search for any string in any trap.

Enabling and Disabling Traps

Each trap has an indicator to its left for toggling back and forth between its
active and inactive states. This feature lets you accumulate traps and turn
them on only as needed. Thus, when you don’t need the trap, it won’t get in
your way. When you do need it, it is readily re-enabled.

Saving and Reusing Trap Sets

The “Load Traps...” selection in the Config menu lets you bring in previously
saved trap sets by means of a file browser window. This is useful for
reestablishing a set of traps between debugging sessions. “Save Traps...” lets
you save the current traps to a file.

Setting Traps With Signal Panel and Syscall Panel

You can trap signals using Signal Panel and system calls using Syscall Panel
(see Figure 4-6).

54

Chapter 4: Setting Traps

Figure 4-6 Signal Panel and Syscall Panel

Both are selected from the Views menu in Main View. Signal Panel sets a trap
on receipt of the signal(s) selected. Syscall Panel sets a trap at the selected
entry to or return from the system call.

55

Chapter 5

5. Controlling Process Execution

This chapter tells you how to control process execution in CASEVision. It
includes the following topics:

• “Main View Control Panel”

• “Controlling Process Execution With PC Menu”

• “Execution View”

Main View Control Panel

Process execution is controlled using the top portion of the Main View
window. See Figure 5-1.

Figure 5-1 Main View Control Panel

The Main View window contains a row of execution control buttons that
enable you to control program execution. The execution control buttons are
located above the source display area. To use any of these commands, click
on the appropriate button with the left mouse button. The Main View control
panel is described below.

Execution control buttons

Status line

Target command

56

Chapter 5: Controlling Process Execution

Status and Entry Fields in the Main View Control Panel

The panel contains the following fields:

Command Lets you enter the command for running the process with
any argument(s).

Status Displays information about the execution status of the
program you are debugging. The top line in this box tells
you whether the program is running or stopped. The next
line lists the current call stack frame, if applicable. (To see all
of the stack frames, open the Call Stack View from the Views
menu.)

Execution Control Buttons

The execution control buttons enable you to control program execution. The
two control buttons for starting and terminating a process are:

Run Creates a new process for the program and starts execution.
It is also used to rerun the program.

Kill Kills the active process.

The control buttons used for process interruptions are

Continue Resumes program execution after a halt and continues until
a breakpoint or other event stops execution.

Stop Stops execution of the program. When program execution
stops, the current source line is highlighted in the Main
View and annotated with an arrow indicating the program
counter (PC).

Step Into Steps to the next source line and into function calls. To step
a specific number of lines, hold down the right mouse
button over the Step Into button. This displays the popup
menu shown in Figure 5-2. You can select one of the fixed
values or enter your own number of steps by selecting
“N...”. Selecting “N...” displays the dialog box shown at the
right in Figure 5-2.

Main View Control Panel

57

Figure 5-2 Step Into Popup Menu and Dialog Box

Step Over Steps to the next source line and over function calls. To step
a specific number of lines, hold down the right mouse
button over the Step Over button. This displays the popup
menu shown in Figure 5-3. You can select one of the fixed
values or enter your own number of steps by selecting
“N...”. Selecting “N...” displays the dialog box shown at the
right in Figure 5-3.

58

Chapter 5: Controlling Process Execution

Figure 5-3 Step Over Popup Menu and Dialog Box

Return Executes the remaining instructions in the current function.
Program execution stops upon return from that procedure.

There is one button in the control panel for spontaneous sampling:

Sample Collects performance data when clicked. A performance
task must have been previously specified in the
Performance Task window and data collection must have
been enabled.

Controlling Process Execution With PC Menu

59

Controlling Process Execution With PC Menu

The PC (program counter) menu in Main View provides a quick and
informal means of controlling process execution. See Figure 5-4.

These options let you manually control process execution without setting
traps. The target location is determined by the location of the cursor in the
source display area. There are two selections:

“Continue To” Lets you select a target location in the current process (by
placing the cursor in the line). The process proceeds from
the current PC to that point (provided there are no
interruptions) and stops there, as it would for a stop trap.
“Continue To” is equivalent to setting a one-time trap. If the
process is interrupted before reaching the target location,
then the command is cancelled.

“Jump To” Lets you select a target location in the current process (by
placing the cursor in the line). The location must be in the
same function. Instead of starting from the current PC,
“Jump To” skips over any intervening code and restarts the
process at the target. This is particularly useful if you want
to get around bad code or irrelevant portions of the
program. It also lets you back up and re-execute a portion of
code.

Execution View

The Execution View window is a simple shell that lets you set environment
variables and inspect error messages. Your target program I/O, if any, is
displayed in the Execution View window. If the program is I/O-based, then
all interaction takes place in Execution View.

Note: When you launch the debugger, the Execution View is launched in
iconified form.

Figure 5-4
PC Menu in Main View

61

Chapter 6

6. Examining Debugger Data

After you have learned how to set traps in CASEVision, the next step is to
look at the facilities for examining the data. This chapter covers:

• “Tracing Through Call Stack View”

• “Evaluating Expressions”

The Debugger also lets you examine data at the machine level. The tools for
viewing disassembled code, machine registers, and data by specific memory
location are described in Appendix A, “Debugger Reference.”

Tracing Through Call Stack View

The Call Stack View window displays the functions in the call stack (referred
to as frames) when the process has stopped. The window is shown in
Figure 6-1 with the major menus displayed.

62

Chapter 6: Examining Debugger Data

Figure 6-1 Call Stack View Window With Config and Display Menus and
Preferences Dialog Box

In addition to the functions, the Call Stack View window lets you see the
argument names, values, and types as well as the locations of the functions
and the PC. If symbolic information for the arguments has been stripped
from the executable, the label <stripped> will appear in place of the
arguments, as in the function _start in the above example. You also have the
option of setting the maximum depth of the Call Stack View by selecting
“Preferences...” from the Config menu.

To move through the call stack, you simply double-click a frame in the stack.
The frame becomes highlighted to indicate the current context. The source
display in Main View (or Source View) scrolls automatically to the location
where the function was called, and any other active views (such as the

Stack frames

Tracing Through Call Stack View

63

Variable Browser or Structure Browser) will update. The source display has
two special annotations:

• The location of the current program state is indicated by a large green
(depending on color scheme) arrow representing the PC.

• The location of the call to the function selected in the Call Stack View
window is indicated by a smaller blue (depending on color scheme)
arrow representing the current context, and the source line becomes
highlighted.

Figure 6-2 illustrates the correspondence between a frame and the source
code when a frame is clicked in the Call Stack View window. In this example,
the stack frame spin has been selected; Main View scrolls to the place where
the trap occurred. If the second stack (main) had been selected, then the
window would have scrolled to the place where the function main calls
spin.

64

Chapter 6: Examining Debugger Data

Figure 6-2 Tracing Through Call Stack View

Evaluating Expressions

You can evaluate any valid expression (in C, C++, or Fortran) at a stopping
point in the process and trace it through the process. Expressions are
evaluated by default in the frame and language of the current context.
Expressions may contain data names or constants; however, they may not
contain names known only to the C pre-processor, as in a #define directive
or a macro.

Evaluating Expressions

65

To evaluate expressions, you can use the Expression View, which lets you
evaluate multiple expressions simultaneously, updating their values each
time the process stops.

Note: Expressions can also be evaluated from the command line.

Expression View

The Expression View window is shown in Figure 6-3 with its major menus
displayed. Note that Expression View has two popup menus. The Language
menu is invoked by holding down the right mouse button while the cursor
is in the Expression column. The Format menu is displayed by holding
down the right mouse button in the Result column.

To specify the expression to be evaluated, first click in the Expression
column, on the left side of the window, then enter the expression in the
selected field. This expression can be typed directly or pasted in from the
source code display. It must be a valid expression in the current or selected
language: C, C++, or Fortran. To change languages, display the Language
menu and make your selection. When you press <Enter>, the result of the
expression is displayed in the right column.

66

Chapter 6: Examining Debugger Data

Figure 6-3 Expression View With Major Menus Displayed

If you want to change the type of result information displayed in the right
column, hold down the right mouse button over the right column. This
displays the Format menu. You can see the value asa string, or as decimal,
unsigned, octal, hexadecimal, float, or characters. You can also display the
type, the address (in decimal, octal, or hex), or the size of the result in bits.

Caution: The CASEVision Debugger uses the target program’s symbol table
to determine the types of variables. Some variables in libraries, such as errno
and _environ, are not fully described in the symbol table. As a result, the
Debugger may not know their types. When the Debugger evaluates such a
variable, it assumes that the variable is a full-word integer. This gives the
correct value for full-word integers or pointers, but the wrong value for non-
full-word integers and for floating-point values.

Editable Result field

Evaluating Expressions

67

To see the value correctly of a variable of unknown type, you can cast the
address of the variable to a pointer to the correct type, using C type-cast
syntax. For example, the global variable _environ should be of type char**.
You can see its value by evaluating *(char***)&_environ.

After you display the current value of the expression, you may find it useful
to leave the window open so that you can trace the expression as it changes
value from trap to trap (or when you change the current context by double-
clicking in the callstack). Like the other views involved with variables,
Expression View has variable change indicators for value fields that let you
see previous values, as shown in Figure 6-4.

Figure 6-4 Change Indicators in Expression View

Another useful technique is to save your expressions to a file for later reuse.
Expressions are saved by choosing “Save Expressions...” from the Config
menu and retrieved by selecting “Load Expressions...”

Assigning Values to Variables

To assign a value to a variable, click the left column and enter the variable
name. The current value appears in the right column. If this Result field is
editable (highlighted), you can click it and enter a new value or legal
expression. Pressing <Enter> performs the assignment. You can perform an
assignment to any expression that evaluates to a legal lvalue (in C). The C
operator = is not valid in Expression View. The valid expression operations
are shown in the following paragraphs.

Change indicators

68

Chapter 6: Examining Debugger Data

Evaluating Expressions in C

The valid C expressions are shown in Table 6-1.

C Function Calls

Function calls can be evaluated in expressions, as long as enough actual
parameters are supplied. Arguments are passed by value. Following the
rules of C, each actual parameter is converted to a value of the same type as
the formal parameter, before the call. If the types of the formal parameters

Table 6-1 Valid C Operations

Operation Symbol

Arithmetic (unary) + - ++ --

(increment and decrement do not have side effects)

Arithmetic (binary) + - * / %

Logical && || !

Relational < > <= >= == !=

Bit & | ^ << >> ~

Dereference *

Address &

Array indexing []

Conditional ? :

Member extraction . -> (these operations are interchangeable)

Sizeof

Type-cast

Function call

Assignment = += -= /= %= >>= <<= &= ^= |=
(Note that a new assignment is made at each stepping
point. Use assignments with caution to avoid
inadvertently modifying variables.)

Evaluating Expressions

69

are unknown, integral arguments are widened to full words, and floating-
point arguments are converted to doubles.

Functions may return pointers, scalar values, unions, or structs. Note that if
the function returns a pointer into its stack frame (rarely a good
programming practice), the value pointed to will be meaningless, since the
temporary stack frame is destroyed immediately after the call is completed.

Function calls may be nested. For example, if the user's program contains a
successor function succ, the Debugger will evaluate the expression
succ(succ(succ(3))) to 6.

Evaluating Expressions in C++

C++ expressions may contain any of the C operations. You can use the word
this to explicitly reference data members of an object in a member function.
When stopped in a member function, the scope for this is searched
automatically for data members. Names may be used in either mangled or
demangled form. Names qualified by class name are supported (for
example, Symbol::a).

If you wish to look at a static member variable for a c++ class, you need not
specify the variable with the class qualifier if you are within the context of
the class. For example, you would specify myclass::myvariable for the
static variable myvariable outside of class myclass and myvariable inside
myclass.

Limitations

Constructors may be called from Expression View, just like any other
member function. To call a constructor, you must pass in a first argument
that points to the object to be created. C++ function calls have the same
possibility of side effects as C functions.

70

Chapter 6: Examining Debugger Data

Evaluating Expressions in Fortran

Fortran expressions may contain any of the arithmetic, relational, or logical
operators. Relational and logical operator keywords may be spelled in upper
case, lower case, or mixed case.

The usual forms of Fortran constants, including complex constants, may be
used in expressions. String constants and string operations, however, are not
supported. The operators in Table 6-2 are supported on data of integral, real,
and complex types.

Fortran Variables

Names of Fortran variables, functions, parameters, arrays, pointers, and
arguments are all supported in expressions, as are names in common blocks
and equivalence statements. Names may be spelled in upper case, lower
case, or mixed case.

Table 6-2 Valid Fortran Operations

Operation Symbol

Arithmetic (unary) - +

Arithmetic (binary) - + * / **

Logical .NOT. .AND. .OR. .XOR. .EQV .NEQV.

Relational .GT. .GE. .LT. .LE. .EQ. .NE.

Array indexing ()

Intrinsic function calls (except
string intrinsics)

Function subroutine calls

Assignment = (Note that a new assignment is made at
each stepping point. Use assignments with
caution to avoid inadvertently modifying
variables.)

Evaluating Expressions

71

Fortran Function Calls

The Debugger evaluates function calls the same way that compiled code
does. If an argument can be passed by reference, it is; otherwise, a temporary
expression is allocated and passed by reference. Following the rules of
Fortran, actual arguments are not converted to match the types of formal
arguments. Side effects can be caused by Fortran function calls. A useful
technique to protect the value of a parameter from being modified by a
function subroutine is to pass an expression such as (parameter + 0) instead
of just the parameter name. This causes a reference to a temporary
expression to be passed to the function rather than a reference to the
parameter itself; the value is the same.

73

Chapter 7

7. Debugging with Fix+Continue: A Tutorial

This chapter provides an interactive sample session that demonstrates most
of the Fix and Continue functions. The session outlines common tasks you
can perform with Fix and Continue, using example C++ application source
to illustrate the use of each function. For complete reference information on
the Fix and Continue user interface, see “Fix+Continue Windows” on
page 258.

Most steps in the session let you use either the graphical interface or the
command-line alternatives.

This chapter contains the following sections:

• “Setting Up the Sample Session”

• “Redefining a Function”

• “Setting Breakpoints in Redefined Code”

• “Viewing Status”

• “Comparing Original and Redefined Code”

• “Ending the Session”

Setting Up the Sample Session

For this tutorial, use the demo files in the directory
/usr/demos/WorkShop/bounce, which contain the complete source code for the
C++ application bounce. To prepare for the session, you first need
tocreatefileset, then launch Fix and Continue from the Debugger. You must
enter the commands listed below:

74

Chapter 7: Debugging with Fix+Continue: A Tutorial

Figure 7-1 Executive View Icon

1. cd /usr/demos/WorkShop/bounce

2. make bounce

3. cvd bounce &

The cvd command brings up the CaseVision Debugger, from which you
can use the Fix and Continue utility. The Execution View icon (shown in
Figure 7-1) and Main View (shown in Figure 7-2) appear. Note that the
Debugger shows that the source code status indicator is (Read Only).

Setting Up the Sample Session

75

Figure 7-2 Debugger Main View With Fix and Continue Menu

4. Open the Execution View and position the window so you can see it
and the Debugger Main View.

5. To see what the program does, click Run. The bounce program opens a
window on your desktop. Click Run in the new window, and then add
balls from the Actors Menu to see how the program executes. (You may
need to resize the bounce window.)

6. The Execution View shows the program output (see Figure 7-3).

Fix and Continue menu

Run button

Debugger command line

Source code display area

Source annotation column

Source code status indicator

76

Chapter 7: Debugging with Fix+Continue: A Tutorial

Figure 7-3 Program Results in Execution View

If your screen shows different results, the program files may have been
modified during a previous tutorial session.

Redefining a Function

In this section, you will do the following:

• edit a function

• change the code of an existing function and then parse and load the
function, rebuilding your program to see the effect of your changes on
program output (without recompiling)

• save the changed function to its own separate file

Editing a Function

1. Choose a function to edit by entering the following on the command
line:

cvd> func Clock::speedChanged

This opens the file Clock.C, and places the cursor at the beginning of the
function Clock::speedChanged, as shown in Figure 7-4.

Redefining a Function

77

Figure 7-4 Selecting a Function for Redefinition

2. Show line numbers by selecting “Show Line Numbers” from the
Debugger Display menu.

3. Select “Edit” from the Debugger Fix+Continue menu, or enter the Alt-
Ctrl-E keyboard accelerator. The function is highlighted.

4. Note the results as shown in Figure 7-5. Line numbers change to a
decimal notation based on the first line number of the function body.
The function body highlights to show that it is being edited. The line
numbers of the rest of the file are not affected.

78

Chapter 7: Debugging with Fix+Continue: A Tutorial

Figure 7-5 Redefined Function

Changing Code

1. To increase the speed of the ball, change the value of _delta from 1000 /

value to 100 / value.

2. Click the Stop button in the Debugger to halt the bounce process.

3. Select “Parse and Load” from the Debugger Fix+Continue menu, or
enter the Alt-Ctrl-X keyboard accelerator.

If there are any errors, the Fix+Continue error messages window opens
as shown in Figure 7-6. The Debugger command line also gives a
report. If all went as planned, there are no errors or warnings.

Redefining a Function

79

Figure 7-6 Checking Syntax Opens Fix and Continue Status Window

If you do have an error, correct it and repeat steps 1-3. You can go to the
error location by double-clicking the appropriate line in the error
message window. When you see the change ID and activated status, as
shown in Figure 7-7, continue with the next step.

When the parse and load has completed, the highlighting color of the
function changes.

Figure 7-7 Report of Successful Redefinition

4. Select Continue from the Debugger main view.

5. The new value is not active until the function is called. To call the
function, adjust the slider bar in the bounce window (see Figure 7-8).

80

Chapter 7: Debugging with Fix+Continue: A Tutorial

Figure 7-8 Bounce Window

Deleting Changed Code

If you make a mistake, there’s a graceful way out. Suppose for example that
you decided you didn’t want to change the speed after all. To delete the
change, you need merely select the “Delete Edits” option from the
Fix+Continue menu in the Source view.

Changing Code From the Debugger Command Line

As an alternative to using the Fix and Continue menu, you can redefine and
check syntax for a function from the Debugger command line. Try changing
_delta to 100 by entering the following at the command line:

cvd> replace_source “Clock.C”:83
“Clock.C”:84.0>
“Clock.C”:84.1>
“Clock.C”:84.2> _delta = 100 / value;
“Clock.C”:84.3> .

This generates the following output:

Change id: 4 redefined
Change id: 4 modified
Process 5779 stopped at [“select.s”:12, 0x0fac2010]
Change id: 4 activated

Redefining a Function

81

Change id: 4 , build results:
4 enabled /usr/demos/WorkShop/bounce/

Clock.C Clock::speedChanged(int)
cvd>

If you prefer to use the command line, experiment with add_source and
redefine to get the same functionality described for the menu commands.
For details on each command, refer to “Debugger Command Line” on
page 271.

Saving Changes

Your original source files are not updated until the changed source file is
saved. You could save redefined function changes to Clock.C. However, if
you did, the file would not match the tutorial. So just observe the following
steps:

1. Select “Save As...” from the Fix+Continue menu.

2. Look at the features of the dialog box (see Figure 7-9) that enable you to
save your file. To save the changes back to the original source files, click
that radio button and then click Apply or OK. To save to a different file,
click the other radio button, choose a suffix, and click Apply or OK.
Since you don’t want to save the changes, press Cancel.

Alternatively, on the Debugger command line, you could type
save_changes -file Clock.C Clock.C. Either method saves all the
changes to the file, replacing the compiled source code.

Figure 7-9 Saving a Function File

82

Chapter 7: Debugging with Fix+Continue: A Tutorial

You usually want to wait until you are finished with Fix and Continue before
you save your changes. In addition to the method described above, you can
also save your changes with the “Save All Files...” option of the
Fix+Continue menu. See “Fix+Continue Menu” on page 158 for more
information.

Setting Breakpoints in Redefined Code

To see how the Debugger works with traps (breakpoints) in redefined code
you’ll set breakpoints, run the Debugger, and view the results (Figure 7-10).

1. Choose the function BouncingBall::BouncingBall by entering the
following on the command line:

cvd> func BouncingBall::BouncingBall

This opens the file BouncingBall.C, and places the cursor at the
beginning of the function BouncingBall::BouncingBall.

2. Select “Edit” from the Fix+Continue menu or enter Alt-Ctrl-E.

3. Enter the following line after line 35.3:

#define SIZE 15

This makes the size of the balls smaller.

4. Select “Parse and Load” from the Fix+Continue menu.

5. Set a breakpoint just after your new SIZE definition by clicking in the
source annotation column at line 35.5.

Alternatively, you can set a breakpoint through the command line by
entering stop at # or b # where # is the line number at which you
want your breakpoint. Note that in code that has already been parsed
and loaded, the line number is in decimal notation.

Setting Breakpoints in Redefined Code

83

Figure 7-10 Stopping After Breakpoints in Redefined Code

6. Select Run, then in the bounce window pull down the Actors menu and
select “Add Red Ball”. The Debugger command line reports that the
process stopped at some point in the code. You see the following
information in the Debugger command line:

[1] Stop at file /usr/demos/WorkShop/bounce/
BouncingBall.C line 35.6
[0] Process 595 stopped at [“BouncingBall.C”:35,
0x004088d0]

84

Chapter 7: Debugging with Fix+Continue: A Tutorial

7. Select “Call Stack” from the Views menu to view the results of the
breakpoint (see Figure 7-11).

Figure 7-11 Call Stack BreakPoint Results

8. Select “Trap Manager” from the Views menu to view the locations of
the traps (see Figure 7-12).

Figure 7-12 Trap Manager BreakPoint Results

Viewing Status

85

9. Remove the breakpoint by clicking on it in the source annotation
column.

Viewing Status

Pull down the Fix+Continue menu, choose the Views submenu, and select
“Status Window”. The View Status window opens, as shown in Figure 7-13.

Figure 7-13 Using the View Status Window

Comparing Original and Redefined Code

You can compare your modified code to the original source when using Fix
and Continue. This section shows you several ways to view your changes.

86

Chapter 7: Debugging with Fix+Continue: A Tutorial

Switching Between Compiled and Redefined Code

If you want to see how the redefined code makes your executable different,
follow these steps:

1. Select Run to view your redefined code. Notice that the balls you add
are smaller in your modified version.

2. Place the insertion point in function BouncingBall.

3. Select “Edit<-->Compiled” from the Fix+Continue menu. This disables
your changes.

4. Select Continue. Notice that the balls you add are now their original
size, and that the Debugger command line states that the change has
been deactivated.

You can get the same results by entering the command
disable_changes # from the Debugger command line, where # is the
redefined function ID number.

To re-enable your changes, do the following:

5. Select Stop.

6. Select “Edit<-->Compiled” from the Fix+Continue menu. This re-
enables your changes. The balls you add will now be smaller.

You can get the same results by entering the command
enable_changes # at the Debugger command line.

Comparing Function Definitions

1. Place the insertion point in the BouncingBall function body.

2. Pull down the Fix+Continue menu, choose the Show Difference
submenu, and select “For Function”. A xdiff window opens as shown in
Figure 7-14.

Comparing Original and Redefined Code

87

Figure 7-14 Comparing Compiled vs. Redefined Function Code: xdiff

You can get the same result by entering the command show_diff #
from the Debugger command line.

If you don’t like xdiff, you can change the comparison tool by pulling
down the Fix+Continue menu, choosing the Show Difference submenu,
and selecting “Set Diff Tool...”.

Comparing Source Code Files

When you have made several redefinitions to a file, sometimes you need a
side-by-side comparison of the entire file. To see how your changes to the file
look, pull down the Fix+Continue menu, choose the Show Difference
submenu, and select “For Function”. This opens a xdiff window that displays
the entire file, rather than just the function.

You’ll get the same result from the Debugger command line if you enter the
following:

show_diff -file BouncingBall.C

As an alternative to pulling down menus using the mouse, you can use
mnemonics to select the menu item from the keyboard. After closing the
difference window, you’ll reopen it. With the insertion point anywhere in the
file, enter the following:

Alt-f d f

Ending the Session

Exit the Debugger by pulling down the Admin menu and choosing “Exit”.

89

Chapter 8

8. Detecting Heap Corruption

This chapter describes heap corruption detection and covers the following
topics:

• “Typical Heap Corruption Problems”

• “Detecting Heap Corruption Errors”

• “Heap Corruption Detection Tutorial”

Typical Heap Corruption Problems

Due to the dynamic nature of allocating and deallocating memory, the heap
is vulnerable to these common corruption problems:

Boundary overrun
occurs when a program writes beyond the malloc region.

Boundary underrun
occurs when a program writes in front of the malloc region.

Access to uninitialized memory
occurs when a program attempts to read memory that has
not yet been initialized.

Access to freed memory
occurs when a program attempts to read or write to
memory that has been freed.

Double frees occur when a program frees some structure that it had
already freed. In such a case, a subsequent reference can
pick up a meaningless pointer, causing a segmentation
violation.

Erroneous frees occur when a program calls free() on addresses that were not
returned by malloc, such as static, global, or automatic
variables, or other invalid expressions.

90

Chapter 8: Detecting Heap Corruption

Detecting Heap Corruption Errors

To detect heap corruption problems, you need to relink your executable with
a special WorkShop malloc library (-lmalloc_cv) instead of the standard malloc
library (-lmalloc). By default, the library always catches these errors:

• malloc call failing (returning NULL)

• realloc call failing (returning NULL)

• realloc call with an address outside the range of heap addresses
returned by malloc or memalign

• memalign call with an improper alignment

• free call with an address that is improperly aligned

• free call with an address outside the range of heap addresses returned
by malloc or memalign

If you additionally set the MALLOC_FASTCHK environment variable, you
can detect these errors:

• free or realloc calls where the words prior to the user block have been
corrupted

• free or realloc calls where the words following the user block have
been corrupted

• free or realloc calls where the address is that of a block that has already
been freed. This error may not always be detected if the area around the
block is reallocated after it was first freed.

Compiling With the Malloc Library

You can compile your executable from scratch as follows:

cc -g -o targetprogram targetprogram.c -lmalloc_cv

You can also relink it by using:

ld -o targetprogram targetprogram.o -lmalloc_cv ...

Detecting Heap Corruption Errors

91

An alternative to rebuilding your executable is to use the environment
variable _RLD_LIST to link the -lmalloc_cv library. See the reference (man)
page for rld(1).

Setting the Environment Variables

After compiling, you invoke the Debugger with your executable as the
target. In Execution View, you can set environment variables to enable
different levels of heap corruption detection from within the malloc library,
as follows:

MALLOC_CLEAR_FREE
clears the data in any memory allocation freed by free. It also
requires that MALLOC_FASTCHK be set.

 MALLOC_CLEAR_FREE_PATTERN <pattern>
 specifies a pattern to clear the data if
MALLOC_CLEAR_FREE is enabled. The default pattern is
0xcafebeef for the 32-bit version, and 0xcafebeefcafebeef for the
64-bit versions. Only full words (double words for 64-bits)
are cleared to the pattern.

MALLOC_CLEAR_MALLOC
clears the data in any memory allocation returned by malloc.
It also requires that MALLOC_FASTCHK be set.

 MALLOC_CLEAR_MALLOC_PATTERN <pattern>
specifies a pattern to clear the data if
MALLOC_CLEAR_MALLOC is enabled. The default
pattern is 0xfacebeef for the 32-bit version, and
0xfacebeeffacebeef for the 64-bit versions. Only full words
(double words for 64-bits) are cleared to the pattern.

MALLOC_FASTCHK
enables certain additional corruption checks when you call
the routines in this library, libmalloc_cv. Error detection is
done by allocating a space larger than the requested area,
and putting “guard words”, that is, specific patterns, in
front of and behind the area returned to the caller. When free
or realloc is called on a block, its guard words are checked,
and if the area was overwritten, an error message is printed

92

Chapter 8: Detecting Heap Corruption

to stderr using an internal call to the routine cvmalloc_error.
Under the Debugger, a trap may be set at exit from this
routine to catch the program at the error.

MALLOC_MAXMALLOC n
(where n is an integer, in any base) sets a maximum size for
any malloc or realloc allocation. Any request exceeding that
size is flagged as an error, and returns a NULL pointer.

 MALLOC_NO_REUSE
specifies that no area that has been freed can be reused. With
this option enabled, no actual free calls are really made, and
the process space and swap requirements can grow quite
large.

MALLOC_TRACING
prints out all the malloc events including address and size of
the malloc or free. Tracing is normally done in the course of a
performance experiment; the variable need not be set in
such cases, because the running of the experiment
automatically enables it. If the option is enabled when the
program is run independently, and MALLOC_VERBOSE is
set to 2 or greater, the trace events and program call stacks
are written to stderr.

MALLOC_VERBOSE
controls message output. If set to 1, minimal output
displays; if set to 2, full output displays.

For further information, see the reference page for malloc_cv.

Trapping Heap Errors using the Malloc Library

If you are using the -lmalloc_cv library, you can use the Trap Manager to set
a stop trap at the exit from the function cvmalloc_error which is called when
an error is detected. Errors are detected only during calls to heap
management routines, such as malloc() and free(). Some kinds of errors,
such as overruns, are not detected until the block is freed or realloced.

When you run the program, it will halt at the stop trap if a heap corruption
error is detected. The error and the address are displayed in Execution View.

Heap Corruption Detection Tutorial

93

You can also examine the Call Stack View at this point to get stack
information. To find the next error, click the Continue button.

If you need more information to isolate the error, set a watchpoint trap to
detect a write at the displayed address; then run your program again. Use
MALLOC_CLEAR_FREE and MALLOC_CLEAR_MALLOC to catch
problems from attempts to access uninitialized or freed memory.

Note: You can run programs linked with -lmalloc_cv library outside of the
Debugger. The trade-off is that you have to browse through the stderr
messages and catch any errors through visual inspection.

Heap Corruption Detection Tutorial

This tutorial demonstrates how to detect corruption errors, using a program
called corrupt. The corrupt program has already been linked with the
WorkShop malloc library (libmalloc_cv). Its listing follows:

#include <string.h>
void main (int argc, char **argv)
{
 char *str;
 int **array, *bogus, value;

 /* Let us malloc 3 bytes */
 str = (char *) malloc(strlen(“bad”));

 /* The following statement writes 0 to the 4th byte */
 strcpy(str, “bad”);

 free (str);

 /* Let us malloc 100 bytes */
 str = (char *) malloc(100);
 array = (int **) str;

 /* Get an uninitialized value */
 bogus = array[0];

 free (str);
 /* The following is a double free */
 free (str);

94

Chapter 8: Detecting Heap Corruption

/* The following statement uses the uninitialized value as a
pointer */
 value = *bogus;
}

1. Go to the directory /usr/demos/WorkShop/mallocbug.

2. Invoke the Debugger by typing:

cvd corrupt &

The Debugger Main View window displays with corrupt as the target
executable.

3. Open the Execution View window (if it is minimized) and set the
MALLOC_FASTCHK and MALLOC_CLEAR_MALLOC environment
variables.

If you are using the C shell, type:

setenv MALLOC_FASTCHK
setenv MALLOC_CLEAR_MALLOC

If you are using the Korn or Bourne shell, type:

MALLOC_FASTCHK=
MALLOC_CLEAR_MALLOC=
export MALLOC_FASTCHK MALLOC_CLEAR_MALLOC

4. Select “Trap Manager” from the Views menu in Main View.

5. Type the following command in the Trap field of the Trap Manager
window and click Add:

Stop exit cvmalloc_error

A stop trap is set at the exit from the malloc library routine
cvmalloc_error. This stops the process when a heap corruption error is
detected. The Trap Manager is shown in Figure 8-1 with the stop trap
set.

Heap Corruption Detection Tutorial

95

Figure 8-1 Setting Traps to Detect Heap Corruption

6. Click Run in the Main View control panel to start program execution
and observe Execution View.

A heap corruption is detected and the process stops at one of the traps.
The type of error and its address display in Execution View as shown in
Figure 8-2.

Figure 8-2 Heap Corruption Warning Displayed in Execution View

Fatal error trap

96

Chapter 8: Detecting Heap Corruption

7. Select “Call Stack” from the Views menu in Main View.

Call Stack View is opened displaying the call stack frame at the time of
the error (see Figure 8-3).

Figure 8-3 Call Stack at Boundary Overrun Warning

8. Click Continue in the Main View control panel and watch Execution
View and Call Stack View.

The process continues from the stop at the boundary overrun warning
until it hits the next trap where an erroneous free error occurs

9. Click Continue again and watch Execution View and Call Stack View.

This time the process stops at a bus error. The PC stops at the statement:

value=*bogus

because bogus was set to an uninitialized value.

10. Type p &bogus at the Debugger command line at the bottom of the
Main View window.

This gives us the address for the variable bogus and has been done in
Figure 8-4. We need the bad address so that we can set a watchpoint to
find out when it is written to. (Note in this example that the address is
0x7fffaef4—your address will be different.)

Heap Corruption Detection Tutorial

97

Figure 8-4 Main View at Bus Error

11. Deactivate the stop trap by clicking the toggle button next to the trap
description in the Trap Manager window, and click Kill in Main View to
kill the process.

12. Type the following command in the Trap field in the Trap Manager
using the address you obtain from the Debugger command line (see
Figure 8-4) and click Add:

stop watch address 0x7fffaef4 for write

Use the actual address from your system, not the one in the tutorial.
This sets a watchpoint that is triggered if a write is attempted at that
address.

13. Click Run and observe Main View.

The process stops at the point where the variable bogus gets a bad value.
The details of the error display in the Main View Status field (see
Figure 8-5).

PC at error line

Problem address
to be watched

Entry to get bad address

Bus error data

98

Chapter 8: Detecting Heap Corruption

Figure 8-5 Watch Point Error Displayed in Main View

Status field

PC at watchpoint

99

Chapter 9

9. Multiple Process Debugging

WorkShop supports performance analysis and debugging of multiprocess
applications, including processes spawned either with fork or sproc. You can
perform process control operations on a single process or on all members of
a process group. You can attach WorkShop automatically to child processes.
You can also specify spawned processes to inherit traps. The Trap Manager
provides special trap commands to facilitate debugging multiple processes
simultaneously.

This chapter discusses the details of multiprocess debugging in WorkShop
and includes the following topics:

• “Debugging With Multiprocess View”

• “Controlling Execution and Setting Traps in a Multiprocess Program”

• “Debugging a Multiprocess Fortran Program”

Debugging With Multiprocess View

Multiprocess View operates on a process group. By default, a process group
includes the parent process and all descendants spawned by sproc. Through
a preferences option, processes spawned with fork during the session can be
added to the process group automatically when they are created. Note that
a child that performs an exec with setuid (the user ID) enabled will not
become part of the process group. Any process to which you have read/
write access can also be added to the process group, if desired. All sproc’d
processes must be in the same process group, since they share information.

Each process in the session can have a standard Main View session
associated with it. All processes in a process group share a single
Multiprocess View. Selecting “Multiprocess View...” from the Admin menu
in Main View for any process in the group brings up the Multiprocess View

100

Chapter 9: Multiple Process Debugging

window. If the Multiprocess window exists, it will be raised to the front;
otherwise, a new window will be created.

Currently, Multiprocess View handles these multiple process situations:

• True multiprocess program, which refers to a tightly integrated system of
sproc’d processes, generated by POWER/Fortran or POWER/C.

• Auto-fork application, which is a process that spawns a child process and
then runs in the background.

• Locally distributed application, which is an application that involves two
different executables running in different processes on the same host,
coordinated by a rendezvous mechanism. To use the Performance
Analyzer, you must have a Main View for each process and enable data
collection accordingly.

• Fork application, which is a process that spawns child processes and can
interact with them. The WorkShop Performance Analyzer supports
applications that fork but not those that exec.

Multiprocess View does not support remotely distributed applications.

Displaying the Multiprocess View

The first step in debugging multiple processes simultaneously is to invoke
the Debugger with the parent process. Then select “Multiprocess View”
from the Admin menu to bring up Multiprocess View. Main View is attached
to the parent process. Figure 9-1 shows a typical Multiprocess View with
Config and Process menus displayed.

Debugging With Multiprocess View

101

Figure 9-1 Multiprocess View With Config and Process Menus Displayed

To open a Main View (or other debugging views) for another process,
double-click the desired process in Multiprocess View. A separate Main
View window displays the selected process, and you can select any
debugging views desired. If a set of views exists for that process, the views
are raised to the foreground. To reuse views already displayed, select
“Switch Process...” from the Admin menu in Main View. (If a process is
currently highlighted in Multiprocess View, its ID is entered automatically
in the Process ID: field in the Switch Process dialog box.)

Viewing Process Status

When Multiprocess View comes up, it lists the status of all processes in the
process group. This information includes:

PID: shows the process identifier (ID).

PPID: lists the parent process IDs. Notice in Figure 9-1 that the first
process PID#7748 is the parent process of the second.

State: represents the state of the process: stopped, running, or
created, which appears just prior to running. Terminated
processes are not displayed.

Name: identifies the process by filename.

Process display area

Multiprocess control area

102

Chapter 9: Multiple Process Debugging

Function/PC: indicates the current function and program counter (PC) for
any stopped processes.

Multiprocess Control Buttons

Multiprocess View uses the same control buttons as MainView with two
exceptions. The buttons are applied to all processes as a group. There is no
separate Run button. Using a control button in Multiprocess View has the
same effect as clicking the button in each process’s Main View window. The
buttons are:

Continue resumes program execution after a halt and continues until
a stop trap or other event stops execution.

Stop stops execution of all processes. When program execution
stops, the current source line of each process is highlighted
in its Main View, if one is active, and annotated with an
arrow indicating the PC.

Step Into steps to the next source line and into function calls. To step
a specific number of lines, hold down the right mouse
button over the Step Into button. A popup menu displays
that lets you select one of the fixed values or a specified
number of steps.

Step Over steps to the next source line and over function calls. To step
a specific number of lines, hold down the right button over
the Step Over button. A popup menu displays that lets you
select one of the fixed values or a specified number of steps.

Return executes the remaining instructions in the current function.
Program execution stops upon return from that procedure.

Sample collects performance data for each process (if performance
data collection is enabled).

Kill terminates all processes in the group.

Multiprocess Traps

As discussed in Chapter 4, “Setting Traps,” the trap qualifiers [all] and [pgrp]
are used in multiprocess analysis. The [all] entry stops or samples all

Debugging With Multiprocess View

103

processes when a trap fires. The [pgrp] entry sets the trap in all processes
within the process group containing the trap location. The qualifiers can be
entered by default by the “Group Trap Default” and “Stop All Default”
selections in the Traps menu in Trap Manager.

Note that the Sample button always samples all processes.

Adding and Removing Processes

The Process menu lets you manually add or remove a process from the
process group (see Figure 9-2).

To remove a process, click the process and select “Remove” from the Process
menu. Note that a process in a sproc share group cannot be removed from the
process group.

To add a process, select “Add...”. The dialog box shown in Figure 9-3
displays. Enter the new process ID and click OK.

Figure 9-3 Add Process Dialog Box

Figure 9-2
Process Menu in
Multiprocess View

104

Chapter 9: Multiple Process Debugging

Multiprocess Preferences

The “Preferences...” option in the Config menu brings up the Preferences
dialog box. It lets you control when processes are added to the group, and it
specifies their behavior (see Figure 9-4).

Figure 9-4 Multiprocess View Preferences Dialog Box

The Multiprocess View preference options are:

Attach to forked processes
attaches new processes spawned by the fork command to
the group automatically. (Note that processes spawned by
sproc are always attached.)

Copy traps to forked processes
copies traps you have set in the parent process to new forked
processes automatically. If you create parent traps with Trap
Manager and specify pgrp, then the children inherit these
traps automatically, regardless of the state of this flag.

Copy traps to sproc’d processes
copies traps you have set in the parent process to new
sproc’d processes automatically. As in the previous option, if
you create parent traps with the Trap Manager and specify
pgrp, the children inherit these traps automatically, whether
this flag is set or not.

Controlling Execution and Setting Traps in a Multiprocess Program

105

Resume parent after fork
restarts the parent process automatically when a child is
forked.

Resume child after attach on fork
restarts the new forked process automatically when it is
attached. If this option is left off, a new process will stop as
soon as it is attached.

Resume parent after sproc
restarts the parent process automatically when a child is
sproced.

Resume child after attach on sproc
restarts the new sproced process automatically when it is
attached. If this option is left off, a new process will stop as
soon as it is attached.

Controlling Execution and Setting Traps in a Multiprocess Program

This section uses a C program that generates numbers in the Fibonacci
sequence to demonstrate some of the tasks you’ll be performing most often
when using cvd to debug mp code. The tasks demonstrated are:

• stopping a child process on a sproc

• using the Multiprocess View buttons to control all processes

• setting traps in the parent process only

• setting group traps

The program fibo uses sproc to split off a child process, which in turn uses
sproc to split off a grandchild process. All three processes churn out
Fibonacci numbers until stopped. If you installed the demo programs, you
can find the source for fibo.c in the directory
/usr/demos/WorkShop/mp.

A listing of fibo.c follows:

#include <stdio.h>
#include <sys/types.h>
#include <sys/prctl.h>

106

Chapter 9: Multiple Process Debugging

int NumberToCompute = 100;
int fibonacci();
void run(),run1();

int fibonacci(int n)
{
int f, f_minus_1, f_plus_1;
int i;

 f = 1;
 f_minus_1 = 0;
 i = 0;

 for (; ;) {
 if (i++ == n) return f;
 f_plus_1 = f + f_minus_1;
 f_minus_1 = f;
 f = f_plus_1;
 }
}

void run()
{
int fibon;
 for (; ;) {
 NumberToCompute = (NumberToCompute + 1) % 10;
 fibon = fibonacci(NumberToCompute);
 printf("%d'th fibonacci number is %d\n",
 NumberToCompute, fibon);
 }
}

void run1()
{
int grandChild;

 errno = 0;
 grandChild = sproc(run,PR_SADDR);

 if (grandChild == -1) {
 perror("SPROC GRANDCHILD");
 }
 else
 printf("grandchild is %d\n", grandChild);
 run();

Controlling Execution and Setting Traps in a Multiprocess Program

107

}

void main ()
{
int second;

 second = sproc(run1,PR_SADDR);
 if (second == -1)
 perror("SPROC CHILD");
 else
 printf("child is %d\n", second);

 run();
 exit(0);
}

To get started, compile the program and run the Debugger.

1. Compile fibo.c.

cc -g fibo.c -o fibo

2. Invoke the Debugger on fibo.

cvd fibo &

3. Bring up the multiprocess view by selecting “Multiprocess View...”
from the Admin menu.

In the next section, you’ll set options to control how the process executes.

Using the Multiprocess View to Control Execution

To examine each process as it appears, you need to stop child processes as
they are created with sproc. You can control the Debugger’s behavior on sproc
by setting Multiprocess preferences.

1. Select “Preferences...” from the Config menu in Multiprocess View.

2. Deactivate Resume child after attach on sproc.

At the same time, you can turn off trap inheritance, so you can
experiment with trap setting later.

3. Click OK to accept the change.

Now you’re ready to run the process.

108

Chapter 9: Multiple Process Debugging

4. In the Main View, click Run.

If you watch Multiprocess View, you see the main process appear, and
spawn a child process. The child process stops as soon as it appears,
since you turned off the Resume child after attach on sproc option. You can
now use Multiprocess View to open a new main view for the child
process.

5. Double-click the child process in the Multiprocess View window.

You see a dialog box like the one in Figure 9-5, and the Debugger
creates a new window.

Figure 9-5 Launching a Debug Session Dialog Box

You can use the buttons in Multiprocess View to control all the
processes simultaneously, or use the buttons in each of the Main Views
to control each process separately.

Note: You’ll probably get a warning that the sproc.s is missing. This is a
reference to assembly code and can be ignored.

6. To send the child process on its way, click Continue in the Multiprocess
View window.

The first child now spawns a grandchild process. The grandchild stops
in sproc, as shown in Figure 9-6:

Controlling Execution and Setting Traps in a Multiprocess Program

109

Figure 9-6 Using the Multiprocess View to Examine Process State

Using the Trap Manager to Control Trap Inheritance

This section shows you how to use the Trap Manager to set traps that affect
one or all of the fibo process group. For complete information on using the
Trap Manager, refer to Chapter 4, “Setting Traps.”

1. In the Main View for the parent process, select “Trap Manager” from
the Views menu.

Right now, traps set using the Traps menu in any of the Main View
windows will affect only the process controlled by that Main View. For
example, see what happens if you set a stop trap in the first executable
line of run(), which is line 32:

32 NumbertoCompute = (NumbertoCompute + 1) % 10;

2. Using the Traps menu of the parent process, set a stop trap at line 32 of
fibo.c.

Only the parent process halts. The child processes continue running, as
a glance at Multiprocess View will confirm.

You can use the Trap Manager to edit the trap so that it affects the
whole process group.

3. Insert the word pgrp after the word Stop.

The trap should read Stop pgrp at.., as shown in Figure 9-7.

110

Chapter 9: Multiple Process Debugging

Figure 9-7 Modifying a Trap to Affect a Process Group

4. Click Modify to accept your change to the trap.

The trap affects the two child processes as well. Watch the Multiprocess
View to see the whole process group stop at the trap on line 32.

You can set an option to make all traps affect the process group by
default for those traps set using the Trap Manager.

5. Select “Group Trap Default” from the Traps menu (see Figure 9-8).

Figure 9-8 Setting the Group Trap Default

6. In the Main View of the parent process, place the cursor in any
executable line in the function fibonacci and select “At Source Line”
from the Traps menu of the Trap Manager.

Debugging a Multiprocess Fortran Program

111

The trap you’ve just set includes the modifier pgrp. It automatically
affects both child processes.

You have now learned the basics of controlling the execution of
multiple processes and setting traps.

7. Select “Exit” from the Admin menu in each Main View to end this
tutorial.

Note that the Multiprocess View window must be closed explicitly. It
does not close when the Main View windows do.

Debugging a Multiprocess Fortran Program

The first part of this section presents a few standard techniques to assist you
in debugging a parallel program. The second part shows you how to use the
WorkShop Debugger to debug the sample program from Chapter 6 of the
Fortran 77 Programmer’s Guide.

General Fortran Debugging Hints

Debugging a multiprocessed program is more difficult than debugging a
single-processor program; therefore, debug as much as possible on the
single-processor version.

Try to isolate the problem as much as possible. If you can, reduce the
problem to a single C$DOACROSS loop.

Once you’ve isolated the problem to a specific DO loop, try changing the
order of its iterations in a single-processor version. If the loop can be
multiprocessed, then the iterations can execute in any order and produce the
same answer. If the loop cannot be multiprocessed, changing the order
frequently causes the single-processor version to fail. If it fails, you can use
standard single-process debugging techniques to find the problem.

If this technique fails, you need to debug the multiprocessed version.
Compile your code with the flags –g and –mp_keep. The –mp_keep flag
saves the file containing the multiprocessed DO loop Fortran code. The
compiler saves the code in a file named

112

Chapter 9: Multiple Process Debugging

$TMPDIR/P<user_subroutine_name><machine_name><pid>

where user_subroutine_name is the name of the subroutine containing the
DOACROSS, machine_name is your machine name, and pid is the process ID
number of the compilation.

If you have not set the environment variable TMPDIR, /tmp is used.

Multiprocess Debugging Session

This section walks you through the process of using the Debugger to debug
a small segment of incorrectly multiprocessed code. The example used in
this section is also treated in Chapter 6 of the Fortran 77 Programmer’s Guide
with dbx. You can use cvd to perform the same tasks with less effort.

If you installed the demo programs, you can find the source for the code you
will be debugging, total.f, in the directory /usr/demos/WorkShop/mp. A listing
follows:

program driver
 implicit none
 integer iold(100,10), inew(100,10),i,j
 double precision aggregate(100, 10),result
 common /work/ aggregate
 call total(100, 10, iold, inew)
 do 20 j=1,10
 do 10 i=1,100
 result=result+aggregate(i,j)
10 continue
20 continue
 write(6,*)’ result=’,result
 stop
 end

 subroutine total(n, m, iold, inew)
 implicit none
 integer n, m
 integer iold(n,m), inew(n,m)
 double precision aggregate(100, 100)
 common /work/ aggregate
 integer i, j, num, ii, jj
 double precision tmp

Debugging a Multiprocess Fortran Program

113

 C$DOACROSS LOCAL(i,ii,j,jj,num)
 do j = 2, m-1
 do i = 2, n-1
 num = 1
 if (iold(i,j) .eq. 0) then
 inew(i,j) = 1
 else
 num = iold(i-1,j) +iold(i,j-1) + iold(i-1,j-1) +
& iold(i+1,j) + iold(i,j+1) + iold(i+1,j+1)
 if (num .ge. 2) then
 inew(i,j) = iold(i,j) + 1
 else
 inew(i,j) = max(iold(i,j)-1, 0)
 end if
 end if
 ii = i/10 + 1
 jj = j/10 + 1
 aggregate(ii,jj) = aggregate(ii,jj) + inew(i,j)
 end do
 end do
 end

In the program, the local variables are properly declared. The inew always
appears with j as its second index, so it can be a share variable when
multiprocessing the j loop. The iold, m, and n are only read (not written), so
they are safe. The problem is with aggregate. The person analyzing this code
reasoned that because j is always different in each iteration, j/10 will also be
different. Unfortunately, since j/10 uses integer division, it often gives the
same results for different values of j.

While this is a fairly simple error, it is not easy to see. When run on a single
processor, the program always gets the right answer. Sometimes it gets the
right answer when multiprocessing. The error occurs only when different
processes attempt to load from and/or store into the same location in the
aggregate array at exactly the same time.

114

Chapter 9: Multiple Process Debugging

Here are the steps in this exercise:

1. First try reversing the order of the iterations. Replace

do j = 2, m-1

with

do j = m-1, 2, -1

This still gives the right answer when running with one process but the
wrong answer when running with multiple processes. The local
variables look right, there are no equivalence statements, and inew uses
only simple indexing. The likely item to check is aggregate. Your next
step is to look at aggregate with the Debugger.

2. Compile the program with the –g –mp_keep options:

% f77 -g -mp -mp_keep total.f -o total

If your debugging session is not running on a multiprocessor machine,
you can force the creation of two threads for example purposes by
setting an environment variable.

3. If you use the C shell, type

% setenv MP_SET_NUMTHREADS 2

4. Start the Debugger:

% cvd total&

The Debugger Main View window displays.

5. Choose “Go To Line...” from the Source menu and select line 43.

This takes you to line 43:

aggregate(ii,jj) = aggregate(ii,jj) + inew(i,j)

The subroutine touches aggregate in only one place, line 43. You want to
set a stop trap at this line, so you can see what each thread is doing with
aggregate, ii, and jj. You also want this trap to affect all threads of the
process group. One way to do this is to turn on trap inheritance using
the Multiprocess View Preferences dialog box. Another way is to use
the Trap Manager to specify group traps, as follows.

6. From the Views menu, select Trap Manager.

7. In the Trap Manager window, pull down the Traps menu. Select the
“Group Trap Default” option from the menu.

Debugging a Multiprocess Fortran Program

115

This sets the group default.

8. Place the cursor in line 43 in the Main View window.

This selects the line.

9. From the Traps menu in Traps Manager, select “At Source Line.”

This sets the stop trap, which should read something like this trap:

Stop pgrp in file /usr/demos/WorkShop/mp/total.f line 43

10. Bring up the Multiprocess View to keep tabs on the status of the two
processes.

Now you’re ready to run the program.

11. Click Run in the Main View window.

As you watch the Multiprocess View, you’ll see the two processes
appear, run, and stop in the function _total_25_aaaa. The Main View
window is now relative to the master process.

12. Double-click the slave process listed in the Multiprocess View window,
as in Figure 9-9.

This invokes a Main View debugging session on the slave process.

Figure 9-9 Launching a New Debugging Session From Multiprocess View

Now you can invoke the Variable Browser on each process. Look at ii
and jj in Figure 9-10.

116

Chapter 9: Multiple Process Debugging

Figure 9-10 Comparing Variable Values From Two Processes

They have the same values in each process; therefore, both processes
may attempt to write to the same member of the array aggregate at the
same time. So aggregate should not be declared as a share variable.
You’ve found the bug in your parallel Fortran program.

117

Chapter 10

10. Using the X/Motif Analyzer: A Tutorial

This chapter provides an interactive sample session that demonstrates most
of the X/Motif Analyzer functions. The session outlines common tasks you
can perform with the X/Motif Analyzer.

This chapter contains the following sections:

• “Setting Up the Sample Session”

• “Navigating the Widget Structure”

• “Examining Widgets”

• “Setting Callback Breakpoints”

• “Using Additional Features of the Analyzer”

• “Ending the Session”

Setting Up the Sample Session

For this tutorial, use the demo files in the directory
/usr/demos/WorkShop/bounce, which contains the complete source code for the
C++ application bounce. To prepare for the session, you first need to create
the fileset, then launch the X/Motif Analyzer from the Debugger.

Preparing the Fileset

You must enter the commands listed below:

1. cd /usr/demos/WorkShop/bounce

2. make bounce

3. cvd bounce &

Figure 10-1
Execution View Icon

118

Chapter 10: Using the X/Motif Analyzer: A Tutorial

The cvd command brings up the CaseVision Debugger, from which you
can use the X/Motif Analyzer. You see the Execution View icon (shown
in Figure 10-1) and Main View (shown in Figure 10-2) appear. Note that
the source code status indicator in the Debugger is (Read Only).

Figure 10-2 Debugger Main View

4. Open the Execution View and position the window so you can see it
and the Debugger Main View.

Run button

Debugger command line

Source code display area

Source annotation column

Source code status indicator

Setting Up the Sample Session

119

5. To see what the program does, click Run. The bounce program opens a
window on your desktop. Click Run in the new window, resize the
window to make it taller, and then add balls from the Actors Menu to
see how the program executes.

6. The Execution View shows the program output (see Figure 10-3).

Figure 10-3 Program Results in Execution View

If your screen shows different results, the program files may have been
modified during a previous tutorial session.

Launching the X/Motif Analyzer

Once the bounce fileset is built and the debugger is active, you need to launch
the X/Motif Analyzer with the following steps:

1. Pull down the Views menu in the menu bar of the debugger Main View.

2. Select “X/Motif Analyzer.”

3. Click OK when asked if you wish to change your $LD_LIBRARY_PATH
environment variable to include /usr/lib/WorkShop/Motif. These are
instrumented versions of the Silicon Graphics 5.3 libraries and add
special support for the X/Motif Analyzer, in addition to containing
symbols.

4. Click Kill in the debugger Main View to kill bounce.

You are now ready to begin the sample session.

120

Chapter 10: Using the X/Motif Analyzer: A Tutorial

Navigating the Widget Structure

After being launched, the X/Motif Analyzer brings up an empty Widget
examiner. The tab panel also shows the Breakpoints area, Trace examiner,
and Tree examiner (see Figure 10-4).

Figure 10-4 First View of the X/Motif Analyzer (Widget Examiner)

1. Click Run in the debugger Main View to run bounce again (this time
with the augmented versions of the libraries).

2. Click Run in the bounce window and resize the window to make it taller.

3. Click Select in the X/Motif Analyzer. This brings up an information
dialog and changes the cursor to a +. Do not click OK in the information
dialog. Click Step in the Bounce window as instructed by the dialog.
The widget examiner displays the Step widget structure.

Navigating the Widget Structure

121

4. In the X/Motif Analyzer, click the Tree tab. The tree examiner displays
the widget hierarchy of the target object (see Figure 10-5).

Figure 10-5 Widget Hierarchy Displayed in the Tree Examiner

5. Double-click the “Run” node in the tree. (“Run” is in the upper-right
area of the window). This brings up the widget examiner, which
displays the Run widget structure. Notice that the Parent button shows
the name of the current widget’s parent.

6. In the X/Motif Analyzer, click the Parent button to switch the view to
the Run widget’s parent, the Control object. The widget examiner now
displays the Control widget structure. You can navigate through the
widget hierarchy using either the widget examiner or the tree examiner.

122

Chapter 10: Using the X/Motif Analyzer: A Tutorial

Examining Widgets

1. In the widget examiner, pull down the Children... menu and select
“Run.” The Run widget structure is now displayed in the examiner.

2. In the bounce window, pull down the Actors... menu and select “Add
Red Ball.”

3. In the debugger Main View, enter stop in Clock::timeout in the cvd
command-line area to set a breakpoint in bounce. Notice that the
“Event” tab (for the event examiner) is added to the tab list.

4. In the debugger Main View, click Continue a few times to observe the
behavior of bounce with this breakpoint added.

5. In the X/Motif Analyzer, click the Breakpoints tab to go to the
breakpoints examiner. This examiner allows you to set widget-level
breakpoints.

6. In the “Callback Name” text field, enter activateCallback, then click
Add to add a breakpoint for the activateCallback object of the Run
widget. The result is displayed in Figure 10-6.

Examining Widgets

123

Figure 10-6 Adding a Breakpoint for a Widget

7. In the debugger Main View, click the breakpoint arrow to remove the
Clock::timeout breakpoint.

8. In the debugger Main View, click Continue.

9. In the bounce window, click Stop.

10. In the bounce window, click Run. The process stops in the Run button’s
registered activateCallback. This is the routine that was passed to
XtAddCallback routine. Notice that the “Callback” tab (for the callback
examiner) is added to the tab list.

124

Chapter 10: Using the X/Motif Analyzer: A Tutorial

Setting Callback Breakpoints

1. In the X/Motif Analyzer, click the Breakpoints list item to highlight the
breakpoint.

2. In the X/Motif Analyzer, delete the widget address in the “Widget” text
field and click Modify. This changes the activateCallback breakpoint to
apply to all push button gadgets (XmPushButtonGadget, set in the
“Class” text field) rather than just the Run button (see Figure 10-7).

Figure 10-7 Setting Breakpoints for a Widget Class

3. In the debugger Main View, click Continue.

4. In the bounce window, click Stop. The process now stops in the Stop
button’s activateCallback routine.

Setting Callback Breakpoints

125

5. In the X/Motif Analyzer, click the Callback tab to go to the callback
examiner. This examiner displays the callback context and the
appropriate call_data structure (see Figure 10-8).

Figure 10-8 Viewing the Callback Context With the Callback Examiner

6. Double-click the window value in the callback structure, fourth line
from bottom.

7. Pull down the Examine menu and select “Window.” The X/Motif
Analyzer displays the window attributes for that window (the window
of the Stop button). Notice that the “Window” tab (for the window
examiner) is added to the tab list. See Figure 10-9.

You can also accomplish the same action by triple-clicking the window
value in the callback structure of the callback examiner. In general,
triple-clicking on an address brings you to that object in the appropriate
examiner.

126

Chapter 10: Using the X/Motif Analyzer: A Tutorial

Figure 10-9 Viewing Window Attributes With the Window Examiner

Using Additional Features of the Analyzer

1. In the X/Motif Analyzer, click the Widget tab.

2. Double-click the widget_class value on the fourth line.

3. Pull down the Examine menu and select “Widget Class.” The X/Motif
Analyzer displays the class record for the XmPushButtonGadget
routine. Notice that the “Widget Class” tab (for the widget class
examiner) is added to the tab list.

(Again, the same action can be accomplished by triple-clicking the
widget_class value in the widget examiner.)

Using Additional Features of the Analyzer

127

4. Triple-click the superclass value on the third line. The X/Motif
Analyzer displays the class record for XmLabelGadget, the superclass
of XmPushButtonGadget. (Triple-clicking is a shortcut for
automatically selecting the correct examiner.)

5. Triple-click the superclass value on the third line. The X/Motif
Analyzer displays the class record for XmGadget, the superclass of
XmLabelGadget.

6. Click the Widget tab to change to the widget examiner.

7. Triple-click the parent value on the fifth line. The X/Motif Analyzer
now displays the widget control, the parent of Run. This action
produces the same results as clicking the Parent button.

8. In the X/Motif Analyzer, click the tab overflow area (the area where the
tabs overlap, to the far left of the tab list) and select the Breakpoints tab
(see Figure 10-10).

128

Chapter 10: Using the X/Motif Analyzer: A Tutorial

Figure 10-10 Selecting the Breakpoints Tab From the Overflow Area

9. Change the Breakpoint Type from “Callback” to “Resource-Change.”

10. In the “Class” text field, enter Any.

11. In the “Resource Name” text field, enter sensitive.

12. Click Add. This adds a breakpoint in instances when the “sensitive”
resource is changed for any push button gadget.

13. In the debugger Main View, click Continue. The Resource-Change
breakpoint was reached, stopping the process in the XtSetValues
routine.

Using Additional Features of the Analyzer

129

14. In the debugger Main View, pull down the Views menu and select “Call
Stack.” Notice the call to XtSetValues on the second line (see
Figure 10-11).

Figure 10-11 Viewing Breakpoint Results in the Callstack View

15. In the Callstack view, double-click the Cmdinterface::activate frame
(just below XtSetSensitive). This is where the sensitive resource was
changed.

16. In the X/Motif Analyzer, click the Widget tab.

17. In the X/Motif Analyzer, double-click the widget address in the
“Widget” text field, press backspace, enter _w, and press <Enter>. The
X/Motif Analyzer now displays the Run widget, which is the widget
currently being changed.

18. In the debugger Main View, click Continue. The process stops again in
the XtSetValues routine, which is another sensitivity change.

19. Double-click the Cmdinterface::active frame (just below
XtSetSensitive).

20. Double-click in Widget field, press backspace, enter _w, and press
<Enter>. The X/Motif Analyzer displays the Step widget, which is the
widget now being changed.

130

Chapter 10: Using the X/Motif Analyzer: A Tutorial

Ending the Session

Exit the X/Motif Analyzer by pulling down the Admin menu and choosing
“Close.” Exit the Debugger by pulling down the Admin menu and choosing
“Exit.”

Note: If you exit the debugger, you automatically exit the X/Motif Analyzer.

131

Appendix A

A. Debugger Reference

This chapter describes in detail the function of each window, menu, and
display in the Debugger’s graphical user interface (GUI). In addition, the
chapter describes the Debugger commands available on the Debugger
command line (see “Debugger Command Line” on page 267). Most
commands are available from either interface. You can move from one to the
other as you prefer.

This chapter contains the following sections:

• “Main View”

• “Basic Windows”

• “X/Motif Analyzer Windows”

• “Project Session Management Windows”

• “Data Examination Windows”

• “Machine-level Debugging Windows”

• “Multiple Process Debugging Windows”

• “Fix+Continue Windows”

• “Debugger Command Line”

132

Appendix A: Debugger Reference

Main View

The major areas of the Main View window are shown in Figure A-1.

Figure A-1 Major Areas of the Main View Window

The Main View contains a menu bar, from which you can perform a number
of functions and launch windows. The menu bar contains the following
items, which are discussed in detail in later pages:

• “Admin Menu”

• “Views Menu”

• “Query Menu”

• “Source Menu”

• “Display Menu”

Menu bar

Control panel

Source code display area

Debugger command line

Status area

Source filename

Annotation column

Main View

133

• “Perf Menu”

• “Traps Menu”

• “PC Menu”

• “Fix+Continue Menu”

• “Help Menu”

In addition, the Main View contains the following items:

“Command” text field
Displays the full pathname of the executable that you are
currently debugging.

Debug option menu
Allows you to conduct performance experiments using
either the built-in WorkShop performance tools, or the
Purify memory corruption analysis tool. The option menu
choices are:

• “Debug Only,” which runs the Debugger in Debug
mode only, with no performance tools enabled.

• “Performance,” which causes performance data to be
gathered and instrumented code to be generated for
performance analysis while using the debugger.

• “Purify,” which causes the Purify memory corruption
analysis tool is active during your debugger run. The
code that you view with the debugger (in Main View,
Source View, and so on) is Purify code. For further
information on Purify, see the Purify documents.

Note: Purify is not part of the standard debugger package;
it must be ordered separately.

Continue Continues the execution of the current process. This
command is legal only if the running process is stopped. If
the program has not been run or has been killed, the
Continue button is desensitized (grayed-out). If the target
program has not yet started executing, use the Run
command to start execution.

134

Appendix A: Debugger Reference

Stop Stops the execution of the current process while it is
running. his command is valid only when a process is
running; otherwise the command button is desensitized
(grayed-out). Traps can also be planted to stop the program
at a specific location or on a particular condition. See the
Trap Manager for more details.

Step Into Executes a source line single step of the current process. If a
function call is encountered, it is stepped “into.” That is, the
current process continues to the next source statement, even
if that statement is encountered in a function that is called.
The Step Over command can be used to step over function
calls, then stop.If a trap is encountered while executing Step
Into, the command is canceled and the process is stopped
where the trap was fired. This command is legal only if the
running process is stopped; otherwise the command button
is desensitized (grayed-out).

When you press the right mouse button over the Step Into
button, a menu pops up to allow you to choose the number
of source lines to be stepped. The step value menu
selections consist of “1, 2, 3, 4, 5, 10, 15, 20, N...” If you
choose the last menu entry “N...”, a dialog window is
opened to allow you to enter a step value.

Step Over Executes source line single step of the current process. If a
function call is encountered, it is stepped “over.” That is, the
current process continues to the next source statement, but
does not count statements in functions that are called while
stepping. Step Into can be used to step into function calls,
then stop. If a trap is encountered while executing Step Over,
the command is canceled and the process is stopped where
the trap was fired.

When you press the right mouse button over Step Over, a
menu pops up to allow you to choose the number of source
lines to be stepped. The step value menu selections consist
of “1, 2, 3, 4, 5, 10, 15, 20, N...” If you choose the last menu
entry “N...”, a dialog window is opened to allow you to
enter a step value.

Main View

135

Return Continues the execution of the process until the current
function that is being executed returns. The process is
stopped immediately upon returning to the calling
function. All code within the current function is executed as
usual. If a trap is encountered while executing the Return
command, the command is canceled and the process is
stopped where the trap was fired. This command is legal
only if the running process is stopped; otherwise the
command button is desensitized (grayed-out). This
command is not allowed if the executable is instrumented
for performance analysis.

Sample Allows you to manually sample the state of a process for
evaluation by the Performance Analyzer. This command is
legal only if the process is running and the Enable Data
Collection mode is set on the Performance panel; otherwise
the command button is desensitized (grayed-out).

Print Prints the value of the currently selected expression.

Kill Kills the currently running process that you are debugging
by sending it the equivalent of a “kill -9” signal. This
command is legal if the process is running or stopped;
otherwise the command button is desensitized
(grayed-out).

Run Runs the program that you are currently debugging. After
the initial run, Run allows you to rerun the program,
maintaining the traps you have set.

Status area Displays information about the process that you are
debugging.

Source Code area
Displays the source code that your are currently debugging.

136

Appendix A: Debugger Reference

Annotation column
Where such things as stop points are displayed.

“File” text field
Displays the name of the file that you are currently
debugging.

Command line area
Area of the Main View where you can enter command-line
Debugger commands.

Show/Hide annotations button
This button (see Figure A-2) only becomes visible if you run
or load a performance experiment (see the Performance
Analyzer User’s Guide for more information on the
performance tools). This is a toggle button that shows or
hides performance related annotations.

Main View

137

Figure A-2 Show/Hide Annotations Button in Main View

Show/Hide annotations button
with annotations showing

Show/Hide annotations button
with annotations hidden

138

Appendix A: Debugger Reference

Admin Menu

The Admin menu in Main View performs general management functions
dealing with processes, windows, and user preferences (see Figure A-3). The
Admin menu provides these selections:

”Library Search Path...”
Controls where the Debugger looks for DSOs when you
invoke the Debugger on an executable or core file. The
Library Search Path dialog box allows you to reset the
environment variables LD_LIBRARY_PATH and
_RLD_ROOT. You can also reset _RLD_LIST to control the
set of DSOs that will be used by the program. See the
reference dpage for rld for more information on these
variables. Any changes you make to these variables are
propagated into the Execution View shell when you run the
program.

The Library Search Path dialog is opened automatically
when you invoke the Debugger on an executable or core
file and the Debugger is unable to find all of the required
DSOs. You may also open the Library Search Path dialog
box by selecting “Library Search Path...” from the Admin
Menu (see Figure A-4). The list of required DSOs displays
at the top of the dialog box, annotated by the status of each
DSO. The status can be “OK,” “Error: Cannot find
library,” or “Error: Core file and library mismatch.” The
status “Error: Core file and library mismatch” indicates
that the debugger found a DSO that did not match the core
file. There are three fields for the variables below the list
area where you can modify their values.

Figure A-3 Admin Menu
in Main View

Main View

139

Figure A-4 The Library Search Path Dialog Box

Insert Before and Insert After move the shared object
specified in the Value field before or after the selected object
in the list. Modify replaces the selected object in the list with
the file entered in the Value field. Remove deletes the
selected shared object from the list.

“Multiprocess View...”
Displays the Multiprocess View window, which helps you
debug several processes at once.

“GLdebug” Provides a toggle to turn on GLdebug. GLdebug is a graphical
software tool for debugging application programs that use
the IRIS Graphics Library (GL). GLdebug locates
programming errors in executables when GL calls are used
incorrectly. For more information, refer to the GLdebug
User’s Guide.

“Switch Process...”
Changes the current process. You will be queried for the
new process ID, as shown in Figure A-5. You can type it in

140

Appendix A: Debugger Reference

or paste it from another window, if desired. Switching
processes changes the session. If you select a process in
Multiprocess View, it is used as the default value.

Figure A-5 The Switch Process Dialog Box

“Switch Executable...”
Changes the current executable. This option also lets you
debug a different core file. It brings up the dialog box shown
in Figure A-6.

Figure A-6 The Switch Executable Dialog Box

“Detach” Releases the process from the Debugger. This allows you to
make changes to the source code. You must detach the
process before you recompile the program.

“Load Settings...”
Allows you to use the previously saved preference settings
to an initialization file used when the Debugger is first
started. See the description of “Save Settings...”, the
following item.

Main View

141

“Save Settings...”
Allows you to save the current preference settings to an
initialization file used when the Debugger is first started.
These can include such items as window sizes, current
views, window configurations, and so on.

“Iconify” Iconifies all of the session’s views.

“Raise” Brings all the session’s view windows to the foreground
and redisplays any iconified windows.

“Launch Tool” Lets you run the WorkShop tools. See Figure A-7. You can
switch to the other tools by selecting “Build Manager,”
“Static Analyzer,” “Performance Analyzer,” or “Tester.”
Selecting “Debugger” lets you start another debugging
session. If you buy WorkShop Pro MPF (for multi-process
debugging), the “Parallel Analyzer” selection is enabled.

Figure A-7 “Launch Tool” Submenu

“Project” Lets you control the WorkShop tools operating on the same
executable as a group. See Figure A-8. For more information
on “Project View,” a facility for managing CASEVision tools
operating on a common target, see “Project View” on
page 203.

142

Appendix A: Debugger Reference

Figure A-8 “Project” Submenu

“Exit” Exits all views in the session and terminates the session.

Views Menu

The Views menu in Main View (see Figure A-9) provides these selections for
viewing the process(es) and their corresponding data:

“Array Browser”
Displays values from an array or array-slice in a
two-dimensional spreadsheet and optionally in a
three-dimensional representation; that is, a bar graph,
surface, multiple lines, or points in space. These help you
pick out bad data more readily. Arrays can contain up to 100
x 100 elements.

“Call Stack” Displays the call stack along with parameters to the calls. If
you double-click a frame in the stack, you can switch the
current context to the invocation of that frame and check the
state of variables.

“Disassembly View”
Displays assembly code corresponding to the source code.

“Exception View”
Displays the Exception View, and Ada-specific window
used for exception handling.

“Execution View”
Displays the Execution View window for handling the
target process’s input and output.

Figure A-9 Views Menu in
Main View

Main View

143

“Expression View”
Evaluates expressions in Fortran, C, or C++. To enter an
expression, select it in the source code display and paste it
into the Expression View field, using the middle mouse
button.

“File Browser” Displays a scrollable list of source files used by the current
executable. Double-click a file in the list to load it directly
into the source display area in Main View or Source View.
The Search field lets you find files in the list quickly.

“Memory View”
Displays the value at a given memory address.

“Process Meter”
Monitors the resource usage of a running process without
saving the data. (Used with the Performance Analyzer.)

“Register View”
Displays the values stored in the hardware registers for the
target process.

“Signal Panel” Displays the signals that can occur. You can specify which
signals trigger traps and which are to be ignored.

“Source View” Displays source code. Lets you set traps, perform searches,
and inspect source code without losing information in Main
View.

“Structure Browser”
Displays data structures in a graphical format. You can
dereference pointers by double-clicking.

“Syscall Panel” Lets you set traps at the entry to or exit from system calls.

“Task View” Brings up the Task View, an Ada-specific view that provides
task and callstack information for processes.

“Trap Manager”
Allows you to set, edit, and manage traps. (Used in both the
Debugger and Performance Analyzer.)

“Variable Browser”
Displays the values of local variables and parameters for the
current context.

144

Appendix A: Debugger Reference

“X/Motif Analyzer”
Provides you with specific debugging support for X/Motif
applications. There are various examiners for different
X/Motif objects, such as widgets and X graphics contexts,
that might be difficult or impossible to inspect using
ordinary debugger functionality.

Query Menu

The Query menu (see Figure A-10) lets you perform some of the queries
available in the Static Analyzer. If you have previously built a cvstatic fileset,
this is rather convenient; however, if you need to build the fileset from
scratch, the process becomes more involved.

Figure A-10 Query Menu With Submenus

With a current fileset, you can double-click any defined entity in the source
code, select the “Where Defined?” option appropriate to its type, and the
source code display area will scroll to the location where the item is defined.

Main View

145

Source Menu

The Source menu in Main View (see Figure A-11) provides these selections
to deal with source code files:

“Open...” Loads a source file.

“Save” Records changes made during the debugging session to the
source file. You must first select “Make Editable,” which
appears in the Source menu when the file is read-only.

“Save As...” Records changes made during the debugging session to the
source file under a different filename.

“Save As Text...”
Records the information in the display area as a text file.

“Insert Source...”
Inserts the text of a file within your current file.

“Fork Editor” Starts your default editor on the current file. The default
editor is determined by the editorCommand resource in the
app-defaults file. The value of this resource defaults to
wsh -c vi +%d, which means run vi in a wsh window and
scroll to the current line. If the editor lets you specify a
starting line, enter %d in the resource to indicate the new line
number.

“Recompile” Displays the Build View window, which lets you compile
the source code associated with the current executable.

“Make Read Only” / “Make Editable”
Toggles the source code displayed between read-only and
writable states so that you can edit your code.

“Search...” Searches for a literal case-sensitive, literal case-insensitive,
or regular expression (see Figure A-12). After you have set
your target and clicked Apply (or pressed <Enter>), each
instance is marked by a search target indicator in the scroll
bar. You can search forward or backward in the file by
clicking the Next and Prev buttons. You can also click an
indicator with the middle mouse button to scroll Main View
to that point. Clicking Reset removes the search target
indicators.

Figure A-11 Source Menu in
Main View

146

Appendix A: Debugger Reference

Figure A-12 The Search Dialog Box

“Go to Line...” Lets you scroll to a position in the source code by specifying
a line number. “Go to Line...” brings up a dialog box similar
to the one shown in Figure A-13.

Figure A-13 Go to Dialog Box

You can enter a line number or use the slider at the top of
the box to select a line number. You do not have to display
line numbers to use this feature.

Versioning” Provides access to the configuration management tool, if
you have designated one. The cvconfig script lets you
designate CASEVision/ClearCase, RCS, or SCCS. Type:

cvconfig [clearcase | rcs | sccs]

Slider

Line specification field

Main View

147

The “Versioning” submenu appears in Figure A-14.

Selecting any of these options displays a shell in which you
can access the configuration management tool. The
selections in the submenu are:

• “Versioning”:“CheckIn”: Saves the source file and
checks it into the database as a new version.

• “Versioning”:“CheckOut”: Recalls the source file from
the tool’s database if you have the proper authority,
locks it, and makes it editable.

• “Versioning”:“UncheckOut”: Cancels the checkout,
with no changes registered.

Display Menu

The Display menu in Main View (see Figure A-15) provides these selections
to annotate the source code displayed:

“Show Line Numbers”/“Hide Line Numbers”
Displays or hides line numbers in the annotation column
corresponding to the source code.

“Preferences...”
Displays the Preferences dialog box (see Figure A-16),
which lets you show or hide column annotations and
menus specific to the different WorkShop tools. In the
Debugger, you can display trap, pc, and context icons. If
you have purchased WorkShop/MP, you can display and
manipulate loop indicators. The Performance Analyzer
displays experiment statistics. The Tester module (if
purchased) lets you see coverage statistics. Turning off the
Performance toggle deletes the performance annotations
from the Source View.

Figure A-14 Versioning
Submenu

Figure A-15 Display Menu in
Main View

148

Appendix A: Debugger Reference

Figure A-16 Preferences Dialog Box

“Hide Icons”/“Show Icons”
Removes or displays the annotation column next to the
source code display area.

Perf Menu

The Perf (Performance) menu (see Figure A-17) offers the following menu
selections:

Select Task submenu
Allows you to choose the task for your performance
analysis. The choices available are shown in Figure A-17.
You may only select one task per performance analysis run.
If none of the given tasks sastisfy your requirements, you
can choose the “Custom task,” which will bring up the
Custom Task dialog, which allows you to design your own
task requirements (see Figure A-19).

Main View

149

Figure A-17 Perf Menu and Subwindows

Examine Results...
Launches the Performance Analyzer (Figure A-18). For
complete information on the Performance Analyzer, see the
Performance Analyzer User’s Guide.

Select Task Submenu

Configuration Dialog

150

Appendix A: Debugger Reference

Figure A-18 Launching Performance Analyzer From Perf Menu

Configs... Brings up the configurations dialog, which contains the
following items:

• “Experiment Directory” text field, which allows you to
specify the directory where the data captured during

Main View

151

the next experiment is stored. The Performance
Analyzer provides a default directory named test0000.
If you use the default or any other name that ends in
four digits, the four digits are used as a counter and
will be incremented automatically for each subsequent
experiment.

• “Instrument Directory,” which lets you reuse a
previously instrumented executable. This technique
avoids the processing necessary for a new
instrumentation. Often in a series of experiments, you
collect the same type of data while stressing the target
executable in different ways. Reusing the instrumented
executable lets you do this conveniently.

• “Track Exec’d Processes” toggle, which enables the
Executable menu, which will contain selections for any
exec’d processes. These selections let you see the
performance results for the other executables.

• “Auto Launch Performance Analyzer” toggle, which
automatically launches the Performance Analyzer
when the experiment is completed.

Figure A-19 Custom Task Dialog

152

Appendix A: Debugger Reference

The Custom Task dialog contains the following items:

“Sampling Data” toggles
These toggles specify which type of sampling data is
collected and recorded during instrumentation. The
available choices are

• “Function Counts”

• “Basic Block Counts”

• “PC Profile Counts”

Tracing Data” toggles”
These toggles the type of data recorded at tthe time at which
an event of the selected type occurred. The available choices
are

• “Malloc/Free Trace”

• “Syscall Trace”

• “Page Fault Trace”

• “I/O Syscall Trace”

• “FP Exception Trace”

“Pollpoint Sampling” text field
Allows you to specify a regular time interval for capturing
performance data, including resource usage and any
enabled sampling or tracing functions. Pollpoint is best
used with call stack data only rather than other profiling
data. Its primary utility is to enable you to identify
boundary points for phases.

“Fine Grained Usage” text field
Allows you to set a time in to record resource usage data
more frequently, at the specified time intervals. Fine grained
usage helps you see fluctuations in usage between sample
points.

“Call Stack Profiling” text field
Allows you to set the interval for which the the call stack of
the target executable is sampled.

Main View

153

For further information on the Performance Analyzer, see the Performance
Analyzer User’s Guide.

Traps Menu

The Traps menu (see Figure A-20) offers the following menu selections:

“Set Trap” Allows you to set a trap in your source code. You can set a
trap in a number of ways, depending on which selection
you make from the submenu (see Figure A-21).

“Set Trap”:”Stop”
Allows you to set a a stop trap at a designated line in your
source code. To set a stop trap at a line displayed in Main
View (or Source View), click the cursor in the source
annotation column next to the appropriate line in the source
code, pull down the “Set Trap” submenu, and select “Stop.”

“Set Trap”:”Stop At Function Entry”
Allows you to set a stop trap at the beginning of a function.
To set, highlight the function name in the source code
display area and select “Set Trap,” then “Stop At Function
Entry.”

“Set Trap”:”Stop At Function Exit”
Allows you to set a stop trap at the end of a fucntion. To set,
highlight the function name in the source code display area
and select “Set Trap,” then “Stop At Function Exit.”

“Set Trap”:”Sample”
Allows you to set a a sample trap at a designated line in
your source code. To set a sample trap at a line displayed in
Main View (or Source View), click the cursor in the source
annotation column next to the appropriate line in the source
code, pull down the “Set Trap” submenu, and select
”Sample.”

“Set Trap”:”Sample At Function Entry”
Allows you to set a sample trap at the beginning of a
function. To set, highlight the function name in the source
code display area and select “Set Trap,” then “Sample At
Function Entry.”

Figure A-20 Traps Menu

Figure A-21 Set Trap Submenu

154

Appendix A: Debugger Reference

“Set Trap”:”Sample At Function Exit”
Allows you to set a sample trap at the end of a function. To
set, highlight the function name in the source code display
area and select “Set Trap,” then “Sample At Function Exit.”

“Clear Trap” Deletes the trap on the line containing the cursor. You must
designate “Stop” or “Sample” trap type, since both types
can exist at the same location, appearing superimposed on
each other (see Figure A-22).

“Clear Trap”:”Stop”
Designates the “Stop” trap type.

“Clear Trap”:”Sample”
Designates the “Sample” trap type.

PC Menu

The PC (program counter) menu in Main View (see Figure A-23) provides
these selections for controlling the execution of a process:

“Continue To” Continues the process to the selected point in the program
unless some other event interrupts. You select a line by
placing the cursor in it.

“Jump To” Goes directly to a selected point within the same function,
jumping over intervening code. Waits for command to
resume execution. You select a line by placing the cursor in
it.

Fix+Continue Menu

The Fix+Continue menu (see Figure A-24) offers the following menu
selections:

“Edit“ Allows you to edit functions using the Debugger editor.

“External Edit“ Allows you to edit functions using an external editor. The
default editor is vi, but can be changed by using the “Set
Edit Tool...” popup menu in the Admin menu of the Status
window. See “Fix+Continue Status Window” on page 255
for further information.

Figure A-22 Clear Trap
Submenu

Figure A-23 PC Menu in Main
View

Figure A-24 Fix+Continue
Menu

Main View

155

“Parse and Load“
Parses your modified function and loads it for execution.
You can execute the modified function by clicking on the
Run or Continue buttons in the Debugger main view.

“Show Difference“ submenu
Allows you to see the difference between the original code
and your modifications. See “Show Difference Submenu”
on page 155 for further information.

“Edited<-->Compiled“
Enables or disables your changes. This switch allows you to
see how your application executed before and after the
changes you made.

“Save As...“ Allows you to save your changes to a file (see Figure A-25).
You can save the changes to the current source file (the
default), or to a separate file.

“Save All Files...”
Launches the “Save File+Fixes As...” dialog (see
Figure A-25), which allows you to update the current
session, saving all the modified functions to the appropriate
files.

“View“ submenu
Allows you to change to different views. Fix and Continue
supports status, message, and build environment windows.
See “View Submenu” on page 156 for further information.

“Preferences” submenu
Allows you to set your Fix+Continue preferences. See
“Preferences Submenu” on page 156 for further
information.

“Cancel Edit” Takes you out of edit mode.

“Delete Edits“ Deletes any changes that you made to functions.

Show Difference Submenu

This submenu (see Figure A-26) allows you to see the difference between the
original and your modified code. It contains the following options:

Figure A-25 ”Save File+Fixes
As...” Popup Window

Figure A-26 Show Difference
Submenu

156

Appendix A: Debugger Reference

“For Function”
Opens a window that shows you the differences between
the original function source and your modified source.

“For File” Opens a window that shows you the differences between
the original source file and your modified version.

“Set Diff Tool ...”
Launches the Preference dialog (see Figure A-29), which
allows you to set the tool that displays the differences
between the two sets of code. The default is xdiff. For further
information on the Preference dialog, see “Preferences
Submenu” on page 156.

View Submenu

This submenu (see Figure A-27) allows you to open different Fix+Continue
view windows. It contains the following options:

“Status Window”
Launches the Fix+Continue Status window. See
“Fix+Continue Status Window” on page 255 for more
information.

“Message Window”
Launches the Fix+Continue Message window. See
“Fix+Continue Message Window” on page 260 for more
information.

“Build Environment Window”
Launches the Fix+Continue Build Environment window.
See “Fix+Continue Build Environment Window” on
page 262 for more information.

Preferences Submenu

The Preference Menu (see Figure A-28) allows you to set various options for
the Fix and Continue environment, such as the difference tool, the external
editor command, and so on. The menu contains the following options:

Figure A-27 View Submenu

Figure A-28 Preferences
Submenu

Main View

157

“Show Preferences”
Launches the Preference dialog (see Figure A-29), which
displays the preferences that are currently enabled for the
session, and allows you to change the settings.

Figure A-29 Fix+Continue Preferences Dialog

The preferences available through the dialog are

• “External Editor Command” text field, which allows
you to choose your text editor. The default is vi.

• “File Difference Tool” text field, which allows you to
choose the tool that you use when comparing code.
The default is xdiff.

• “Copy Traps On Previous Definition” toggle. When
you edit and parse a function, Fix+Continue copies
traps from the old definition to the new one by
mapping old lines to new lines. (This mapping is the
same that can be generated using the UNIX diff utility.)
If “Copy Traps On Previous Definition” is on and the

158

Appendix A: Debugger Reference

mapped line the new definition is modified, then F&C
will look at the switch.

• “Copy Traps Even On Changed Lines” toggle, which
causes the debugger to copy traps onto a mapped line.

• “Continue Even If Line Has Changed” toggle. When
you edit and parse a function in which your program is
currently stopped, Fix+Continue can continue in the
new definition provided some conditions are satisfied.
The line from which the program continues depending
on the mapping from the line in which it stopped. In
case it can continue in the new definition from a line
which you have modified, Fix+Continue consults this
toggle to determine whether to continue in the new or
old definition. This toggle allows you to override the
default behavior.

• “Warn Unfinished Edits Before Run” toggle, which
pops up a warning dialog before a Run if you have
unfinished edits.

• “Warn Unfinished Edits Before Continue” toggle,
which pops up a warning dialog before a continue if
you have unfinished edits.

• “Save deactivated code during File Save” toggle. The
Fix+Continue file save substitutes new definitions in
place of old ones. If you want to save your original
functions in the same file, this switch allows you to
save the old (original or compiled) code under an
#ifdef. When you compile, the old code won’t get
compiled. You can manually edit the source to use the
old definition in any way you desire.

“Reset Factory Defaults”
Sets the preferences to the installed defaults.

“Save Preferences”
Allows you to save your preferences to a file. This item
brings up the File dialog. See Figure A-139.

“Load Preferences...”
Allows you to load preferences from a file. This item brings
up the File dialog. See Figure A-139.

Main View

159

Keyboard Accelerators

Use the accelerators in Table A-1 to issue Fix+Continue commands directly
from the keyboard.The accelerators are listed alphabetically by command.

Help Menu

The Help menu (see Figure A-30) provides these options:

“Click for Help”
Provides information on the selected window’s feature.

“Overview” Provides overview information on the current tool.

“Index...” Displays the entire list of help topics, alphabetically,
hierarchically, or graphically.

“Keys & Shortcuts”
Lists the keys and shortcuts for the current tool.

“Product Information”
Provides general copyright and version number
information on the current tool.

Table A-1 Fix and Continue Keyboard Accelerators

Command Ctrl + key

Cancel Edit U

Edit E

External Edit X

Parse And Load P

Figure A-30 Help Menu

160

Appendix A: Debugger Reference

Basic Windows

This section discusses some of the basic additional views that are available
throught the Debugger; the Execution View, Source View, and Process Meter.

Execution View

The Execution View window is a simple shell that lets you set environment
variables and inspect error messages. Your target program I/O, if any, will
be displayed in the Execution View window. If the program is I/O-based,
then all interaction takes place in Execution View.

The Execution View (see Figure A-31) is launched automatically with the
Debugger.

Figure A-31 Execution View

Source View

The Source View (see Figure A-32) displays your source, opening your Main
program file by default.

Basic Windows

161

Figure A-32 Source View

Menu Bar

The Source View menu bar contains five items that are duplicated from the
Main View: Display, Traps, PC, and Fix+Continue. Each of these menus has
the same functionality as its counterpart in the Main View (see “Main View”
on page 132). The only new menu bar item is the file menu (Figure A-33),
described below:

“Open...” Launches the file dialog (see Figure A-139), allowing you to
choose a file to load into the source view.

“Save” records changes made during the debugging session to the
source file. You must first select “Make Editable,” which
appears in the Source menu when the file is read only.

“Save As...” records changes made during the debugging session to the
source file under a different filename.

“Save As Text...”
records the information in the display area as a text file.

Figure A-33 Source View File
Menu

162

Appendix A: Debugger Reference

“Open Separate...”
launches the File dialog, allowing you to create a new
source view with the contents of a different source file.

“Insert File...” inserts the text of a file within your current file.

“Clone” clones the current window.

“Fork Editor” starts your default editor on the current file. The default
editor is determined by the editorCommand resource in the
app-defaults file. The value of this resource defaults to
wsh -c vi +%d, which means run vi in a wsh window and
scroll to the current line. If the editor lets you specify a
starting line, enter %d in the resource to indicate the new line
number.

“Recompile” displays the Build View window, which lets you compile
the source code associated with the current executable.

“Make Editable”
toggles the source code displayed between read-only and
writable states so that you can edit your code.

“Search” searches for a literal case-sensitive, literal case-insensitive,
or regular expression (see Figure A-12). After you have set
your target and clicked Apply (or pressed <Enter>), each
instance is marked by a search target indicator in the scroll
bar. You can search forward or backward in the file by
clicking the Next and Prev buttons. You can also click an
indicator with the middle mouse button to scroll Main View
to that point. Clicking Reset removes the search target
indicators.

“Go To Line...” launches the Go To Line dialog, which allows you to go to a
specific line in the source. You can type in the line, or select
the line number via the slider bar.

“Versioning” provides access to the configuration management tool, if
you have designated one. The cvconfig script lets you
designate CASEVision/ClearCase from SGI, RCS or SCCS.
Type:

cvconfig [clearcase | rcs | sccs]

Figure A-34 Go To Line Dialog

Basic Windows

163

Selecting any of these options displays a shell in which you
can access the configuration management tool. The
selections in the submenu are:

“Versioning”:“CheckIn”
saves the source file and checks it into the database as a new
version.

“Versioning”:“CheckOut”
recalls the source file from the tool’s database if you have
the proper authority, locks it, and makes it editable.

“Versioning”:“UncheckOut”
cancels the checkout, with no changes registered.

“Close” Dismisses the Source View window.

Process Meter

The Process Meter monitors the resource usage of a running process without
saving the data. Figure A-35 shows the Process Meter in its default
configuration (with only the User/Sys Time chart active).

Figure A-35 Process Meter

The Process Meter contains its own menu bar, which contains the Admin,
Charts, Scale, and Help menus. The Admin menu is the same as that
described in “Admin Menu” on page 167. The Help menu is the same as that
described in “Help Menu” on page 159. The other menus are described in
the following sections.

164

Appendix A: Debugger Reference

Charts Menu

The Charts Menu contains a set of toggles that allow you to choose which
charts are displayed in the Process Meter. You can display as many charts
simultaneously as you wish. The choices available are:

• User/Sys Time (the default)

• Major/Minor Faults

• Context Switches

• Bytes Read/Written

• Read/Write Sys Calls

• Other Sys Calls

• Total Sys Calls

• Signals

• Process Size

Scale Menu

The Scale Menu is a radio button panel that allows you to set the time scale
for the processes displayed in the Process Meter. The choices available are:

• 2 seconds

• 5 seconds

• 10 seconds

• 30 seconds

• 1 minute (the default)

• 2 minutes

• 5 minutes

• 10 minutes

Figure A-36 Process Meter
Charts Menu

Figure A-37 Process Meter
Scale Menu

Ada-specific Windows

165

Ada-specific Windows

This section discusses the Debugger windows that are specific to Ada: the
Task View and Exception View.

Task View

The Task View is an Ada-specific view that provides you with task and
callstack information. If you do not have Ada installed on your system, the
Task View menu item in the Views menu will be grayed-out.

Figure A-38 Task View

The Task View contains its own menu bar, which contains the Admin,
Config, Display, and Help menus. The Help menu is the same as that
described in “Help Menu” on page 159. The other menus are described in
the following sections.

Sort Toggles

Process Display Area

Process Display Tabs

Callstack Display Area

Callstack Display Tabs

166

Appendix A: Debugger Reference

In addition, the Task View contains the following items:

Process Sort toggles
Allow you to sort the process list in one of three ways,
depending on which of the following radio buttons are
active:

• “Name”

• “Status”

• “Sproc”

Process Display tabs
Allows you to view either a list of the tasks, or the details of
the currently running (and highlighted) task. (See
Figure A-39.)

Figure A-39 Task View Process Detail View

Task Display tabs
Allows you to view the callstack information, or the
callstack details of the currently selected process.(See
Figure A-40.)

Ada-specific Windows

167

Figure A-40 Task View Callstack Detail View

Admin Menu

The Admin Menu (see Figure A-41) contains the following items:

“Active” toggle
Activates the current window in a set of cloned windows. In the current
release, this toggle is always active.

“Clone” Creates a clone of the current window. This function is not
supported in the current release, and the option is grayed
out.

“Save As Text...”
Launches the “Save Text” dialog (see Figure A-49). This
dialog allows you to save your current session as text in a
file you designate.

“Close” Closes the current window.

Config Menu

The Config Menu (Figure A-42) contains the following items:

“Preferences...”
launchest the preference dialog (Figure A-42), which allows
you the option of setting the maximum depth of the Task
View.

Figure A-41 Task View
Admin Menu

168

Appendix A: Debugger Reference

Figure A-42 Task View Config Menu

Layout Menu

The Layout Menu (Figure A-41) contains the following toggles:

“Task List” Causes only the Callstack Display to be shown.

“Single Task” Causes only the Process Display to be shown.

Display Menu

The Display Menu (Figure A-41) is divided into the Task List Format and
Callstack Format sections. The Callstack Format toggles match the toggles
that are contained in the Callstack View Display menu. The Task List Format
toggles control what radio buttons are made available in the toggle sort list,
as well as what information is displayed in the Process Display area.

The Task View Display menu contains the following toggles:

“Status” Displays the status of the process. This toggle is active by
default.

“Priority” Displays the priority of the process.

“Sproc” Displays the sproc value of the process. This toggle is active
by default.

“Resource Vector”
Displays the resource vector value of the process.

Figure A-43 Task View
Layout Menu

Figure A-44 Task View
Display Menu

Ada-specific Windows

169

“Arg Values” Allows you to set the argument values in the Task View.
This toggle is active by default.

“Arg Names” Allows you to set the argument names in the Task View.
This toggle is active by default.

“Arg Types” Allows you to set the argument types in the Task View.

“Location” Allows you to set the function location in the Task View.
This toggle is active by default.

“PC” Allows you to set the PC in the Task View.

Exception View

The Exception View is an Ada-specific view that allows you to set traps on
exceptions. This view only functions if Ada is installed.

Figure A-45 Exception View

The Exception View contains the following items:

Admin menu Contains the following items:

Stop toggles
When option Exception
menus names

170

Appendix A: Debugger Reference

• “Active” toggle: Activates the current window in a set
of cloned windows. In the current release, this toggle is
always active.

• “Clone”: Creates a clone of the current window. This
function is not supported in the current release, and the
option is grayed out.

• “Save As Text...”: Launches the “Save Text” dialog (see
Figure A-49). This dialog allows you to save your
current session as text in a file you designate.

• “Close”: Closes the current window.

“Stop” toggle Indicates when a trap is active.

“When” option menu
Allows you to select when an exception trap fires. Contains
the following choices:

• “Always:” stop any time the exception is raised.

• “Catch-All:” stop when caught by a catchall rather
than an explicit handler, or when unhandled.

• “Unhandled:” stop when the exception is unhandled.

The process is always stopped at the point of a raise.

“Search” text field
Allows you to search for an exception.Figure A-46 “When”

Exception Option Menu

X/Motif Analyzer Windows

171

X/Motif Analyzer Windows

The X/Motif analyzer provides specific debugging support for X/Motif
applications. There are various examiners for different X/Motif objects, such
as widgets and X graphics contexts, that might be difficult or impossible to
inspect using ordinary debugger functionality.

To access the X/Motif analyzer window, you must pull down the Views
menu and select “X/Motif Analyzer” (see Figure A-47).

Figure A-47 Launching the X/Motif Analyzer

Debugger Views Menu

X/Motif Analyzer

172

Appendix A: Debugger Reference

Global Objects

Though the X/Motif Analyzer is made up of several different examiner
windows, a number of objects remain constant throughout window
changes. The examiner windows available are

• “Breakpoints Examiner”

• “Trace Examiner”

• “Widget Examiner”

• “Tree Examiner”

• “Callback Examiner”

• “Window Examiner”

• “Event Examiner”

• “Graphics Context Examiner”

• “Pixmap Examiner”

• “Widget Class Examiner”

Admin Menu

The Admin menu (see Figure A-48) offers the following menu selections:

“Active” toggle
Activates the current window in a set of cloned windows. In
the current release, this toggle is always active.

“Clone” Creates a clone of the current window. This function is not
supported in the current release, and the option is grayed
out.

“Save As Text...”
Launches the “Save Text” dialog (see Figure A-49). This
dialog allows you to save your current session as text in a
file you designate.

“Close” Closes the current window.

Figure A-48 Admin Menu

X/Motif Analyzer Windows

173

Figure A-49 “Save Text” Dialog

Examine Menu

The Examine menu (see Figure A-50) offers the following menu selections:

“Selection” Selects the currently highlighted object for examination.

“Widget” Uses the current selection as input to the widget examiner,
then opens that examiner (see “Widget Examiner” for
information).

“Widget Tree” Switches the window view to the widget tree examiner (see
“Tree Examiner” for information).

“Widget Class” Switches the window view to the widget class examiner
(see “Widget Class Examiner” for information).

“Window” Switches the window view to the window examiner (see
“Window Examiner” for information).

“X Event” Switches the window view to the X Event examiner (see
“Event Examiner” for information).

Figure A-50 Examine Menu

174

Appendix A: Debugger Reference

“X Graphics Context”
Switches the window view to the X graphics context
examiner (see “Graphics Context Examiner” for
information).

“X Pixmap” Switches the window view to the X pixmap examiner (see
“Pixmap Examiner” for information).

Examiner Tabs

In addition to access through the Examine menu, each examiner can be
accessed through a tab at the bottom of each view (see Figure A-51).

Figure A-51 Examiner Tabs

When first launched, the X/Motif Analyzer has only four tabs: Breakpoints,
Trace, Widget, and Tree. As you use new examiners through the Examine
menu, new tabs are added for the new examiners. Any of these new tabs
may be deleted at any time by selecting the tab, clicking the right mouse
button, and then selecting “Remove Examiner” (see Figure A-52). The initial
four tabs may not be removed.

Return Button

The “Widget” and “Name” text fields both have return buttons (see
Figure A-53) just to their right. Clicking these buttons causes the X/Motif
Analyzer to respond exactly as if you had pressed Return on your keyboard.

Breakpoints Examiner

The Breakpoints examiner is not really an examiner, but a control area where
you can set widget-level breakpoints. The breakpoints examiner is divided
into three areas (see Figure A-53):

• The widget specification area, which contains the same information as
that in the Widget examiner. You can select a widget address, name, or
class in this area, as well as move to the widgets parents or children, or

Figure A-52 Removing Tabs

X/Motif Analyzer Windows

175

select a widget in the application. In cases where the breakpoint type
does not apply to widgets (for example, input-handler breakpoints),
this area is blank.

• The parameter specification area, the contents of which vary according
to the type of breakpoint you are setting. For example, for Callback
breakpoints, this area contains the callback name and client data; for
event-handler breakpoints, it contains the event type and the client
data, and so on.

• The breakpoint area, which contains the breakpoint name, a search
field, and the Add, Modify, Delete, and Step To buttons.

Figure A-53 Breakpoints Examiner

The control area has eight different breakpoint types that it can examine.
These types are set through the “Breakpoint Type” option button (see

Widget Specification

Breakpoints

Parameter Specification

Return Button

176

Appendix A: Debugger Reference

Figure A-54). The options for the “Breakpoint Type” option button are
described below:

• “Callback:” Widget callback installed by XtAddCallback. Parameters
include callback name and client_data XtPointer value. See “Callback
Breakpoints Examiner” on page 176 for more information.

• “Event-Handler:” Widget event handler installed by
XtAddEventHandler. Parameters include X event type and client_data
XtPointer value. See “Event-Handler Breakpoints Examiner” on
page 178 for more information.

• “Resource-Change:” Resource change caused by XtSetValues or
XtVaSetValues. Parameters include resource name and resource value,
both strings. See “Resource-Change Breakpoints Examiner” on
page 180 for more information.

• “Timeout-Procedure:” Timeout callback installed by
XtAppAddTimeOut. Parameters include client_data XtPointer value.
See “Timeout-Procedure Breakpoints Examiner” on page 182 for more
information.

• “Input-Handler:” Input callback installed by XtAppAddInput.
Parameters include client_data XtPointer value. See “Input-Handler
Breakpoints Examiner” on page 184 for more information.

• “State-Change:” Various widget state changes (for example,
“managed” or “realized”). Parameters include widget state. See
“State-Change Breakpoints Examiner” on page 185 for more
information.

• “X-Event:” X event received by target application. Parameters include
X event type. See “X-Event Breakpoints Examiner” on page 188 for
more information.

• “X-Request:” X request received by target application. Parameters
include X request type. See “X-Request Breakpoints Examiner” on
page 189 for more information.

Callback Breakpoints Examiner

When the “Callback” option of the “Breakpoint Type” option button in the
Breakpoint Examiner is selected, the examiner appears as shown in
Figure A-55.

Figure A-54 Breakpoint Type
Option Button

X/Motif Analyzer Windows

177

Figure A-55 Callback Breakpoints Examiner

The Callback Breakpoints examiner contains the following items:

“Widget” text field
Allows you to choose a widget to examine by entering the
widget address.

“Name” text field
Allows you to choose a widget to examine by entering the
widget name.

“Class” text field
Allows you to choose a widget to examine by entering the
widget’s class. Leave the field blank or enter Any to select all
widgets.

Parent button Allows you to move the parent of the currently selected
widget.

178

Appendix A: Debugger Reference

Previous button Moves you to the previously selected widget.

Children... button
Shows you the widget’s children (it is grayed out if the
selected widget cannot have children).

Select... button Allows you to select the widget in the target process.

“Breakpoint Type” option button
Allows you to select the type of breakpoint you wish to set.

Clear button Clears all the current breakpoint selections and text fields.

“Callback Name” text field
Allows you to set the name of the callback for the
breakpoint.

“Client_Data” text field
Allows you to pass in and get back pointer values for the
Client_Data.

“Search” text field
Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step To creates a
temporary breakpoint, resumes the process, and waits until
the process stops. This temporary breakpoint acts exactly
like an ordinary breakpoint, save that the Step To button
automatically resumes the process and puts up a busy
cursor until the condition becomes true.

Event-Handler Breakpoints Examiner

When the “Event-Handler” option of the “Breakpoint Type” option button
in the Breakpoint Examiner is selected, the examiner appears as shown in
Figure A-56.

X/Motif Analyzer Windows

179

Figure A-56 Event-Handler Breakpoints Examiner

The Event-Handler Breakpoints examiner contains the following items:

“Widget” text field
Allows you to choose a widget to examine by entering the
widget address.

“Name” text field
Allows you to choose a widget to examine by entering the
widget name.

“Class” text field
Allows you to choose a widget to examine by entering the
widget’s class. Leave the field blank or enter Any to select all
widgets.

Parent button Allows you to move the parent of the currently selected
widget.

180

Appendix A: Debugger Reference

Previous button Moves you to the previously selected widget.

Children... button
Shows you the widget’s children (it is grayed out if the
selected widget cannot have children).

Select... button Allows you to select the widget in the target process.

“Breakpoint Type” option button
Allows you to select the type of breakpoint you wish to set.

Clear button Clears all the current breakpoint selections and text fields.

“Event Type” option button
Takes the place of the “Callback Name” text field in the
Callback Breakpoints examiner. Allows you to set the event
type for a given breakpoint. The types available are shown
in Figure A-57.

“Client_Data” text field
Allows you to pass in and get back pointer values for the
Client_Data.

“Search” text field
Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step To creates a
temporary breakpoint, resumes the process, and waits until
the process stops. This temporary breakpoint acts exactly
like an ordinary breakpoint, save that the Step To button
automatically resumes the process and puts up a busy
cursor until the condition becomes true.

Resource-Change Breakpoints Examiner

When the “Resource-Change” option of the “Breakpoint Type” option
button in the Breakpoint Examiner is selected, the examiner appears as
shown in Figure A-58.

Figure A-57 Event Type
Option Button

X/Motif Analyzer Windows

181

Figure A-58 Resource-Change Breakpoints Examiner

The Resource-Change Breakpoints examiner contains the following items:

“Widget” text field
Allows you to choose a widget to examine by entering the
widget address.

“Name” text field
Allows you to choose a widget to examine by entering the
widget name.

“Class” text field
Allows you to choose a widget to examine by entering the
widget’s class. Leave the field blank or enter Any to select all
widgets.

Parent button Allows you to move the parent of the currently selected
widget.

182

Appendix A: Debugger Reference

Previous button Moves you to the previously selected widget.

Children... button
Shows you the widget’s children (it is grayed out if the
selected widget cannot have children).

Select... button Allows you to select the widget in the target process.

“Breakpoint Type” option button
Allows you to select the type of breakpoint you wish to set.

Clear button Clears all the current breakpoint selections and text fields.

“Resource Name” text field
Takes the place of the “Callback Name” text field. Allows
you to set the resource name for the breakpoint.

“Resource Value” text field
Takes the place of the “Client Data” text field. Allows you to
set the resource value for the breakpoint.

“Search” text field
Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step To creates a
temporary breakpoint, resumes the process, and waits until
the process stops. This temporary breakpoint acts exactly
like an ordinary breakpoint, save that the Step To button
automatically resumes the process and puts up a busy
cursor until the condition becomes true.

Timeout-Procedure Breakpoints Examiner

When the “Timeout Procedure” option of the “Breakpoint Type” option
button in the Breakpoint Examiner is selected, the examiner appears as
shown in Figure A-59.

X/Motif Analyzer Windows

183

Figure A-59 Timeout-Procedure Breakpoints Examiner

The Resource-Change Breakpoints examiner contains the following items:

“Breakpoint Type” option button
Allows you to select the type of breakpoint you wish to set.

Clear button Clears all the current breakpoint selections and text fields.

“Client_Data” text field
Allows you to pass in and get back pointer values for the
Client_Data.

“Search” text field
Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s settings.

184

Appendix A: Debugger Reference

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step To creates a
temporary breakpoint, resumes the process, and waits until
the process stops. This temporary breakpoint acts exactly
like an ordinary breakpoint, save that the Step To button
automatically resumes the process and puts up a busy
cursor until the condition becomes true.

Input-Handler Breakpoints Examiner

When the “Input-Handler” option of the “Breakpoint Type” option button
in the Breakpoint Examiner is selected, the examiner appears as shown in
Figure A-60.

Figure A-60 Input-Handler Breakpoints Examiner

X/Motif Analyzer Windows

185

The Input-Handler Breakpoints examiner contains the following items:

“Breakpoint Type” option button
Allows you to select the type of breakpoint you wish to set.

Clear button Clears all the current breakpoint selections and text fields.

“Client_Data” text field
Allows you to pass in and get back pointer values for the
Client_Data.

“Search” text field
Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step To creates a
temporary breakpoint, resumes the process, and waits until
the process stops. This temporary breakpoint acts exactly
like an ordinary breakpoint, save that the Step To button
automatically resumes the process and puts up a busy
cursor until the condition becomes true.

State-Change Breakpoints Examiner

When the “State-Change” option of the “Breakpoint Type” option button in
the Breakpoint Examiner is selected, the examiner appears as shown in
Figure A-61.

186

Appendix A: Debugger Reference

Figure A-61 State-Change Breakpoints Examiner

The Resource-Change Breakpoints examiner contains the following items:

“Widget” text field
Allows you to choose a widget to examine by entering the
widget address.

“Name” text field
Allows you to choose a widget to examine by entering the
widget name.

“Class” text field
Allows you to choose a widget to examine by entering the
widget’s class. Leave the field blank or enter Any to select all
widgets.

Parent button Allows you to move the parent of the currently selected
widget.

X/Motif Analyzer Windows

187

Previous button Moves you to the previously selected widget.

Children... button
Shows you the widget’s children (it is grayed out if the
selected widget cannot have children).

Select... button Allows you to select the widget in the target process.

“Breakpoint Type” option button
Allows you to select the type of breakpoint you wish to set.

Clear button Clears all the current breakpoint selections and text fields.

“State Type” option button
Takes the place of the “Callback Name” text field in the
Callback Breakpoints examiner. Allows you to set the state
change type for a given breakpoint. The types available are
as follows (see Figure A-62):

• Created

• Destroyed

• Managed

• Realized

• Unmanaged

• Any

“Search” text field
Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step To creates a
temporary breakpoint, resumes the process, and waits until
the process stops. This temporary breakpoint acts exactly
like an ordinary breakpoint, save that the Step To button
automatically resumes the process and puts up a busy
cursor until the condition becomes true.

Figure A-62 State Type
Option Button

188

Appendix A: Debugger Reference

X-Event Breakpoints Examiner

When you select the “X-Event” option of the “Breakpoint Type” option
button in the Breakpoint Examiner, the examiner appears as shown in
Figure A-63.

Figure A-63 X-Event Breakpoints Examiner

The X-Event Breakpoints examiner contains the following items:

“Breakpoint Type” option button
Allows you to select the type of breakpoint you wish to set.

Clear button Clears all the current breakpoint selections and text fields.

X/Motif Analyzer Windows

189

“Event Type” option button
Takes the place of the “Callback Name” text field in the
Callback Breakpoints examiner. Allows you to set the event
type for a given breakpoint. The types available are shown
in Figure A-64.

“Window ID” text field
Takes the place of the “Client_Data” text field. Allows you
to set the Window ID value for the breakpoint.

“Search” text field
Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step To creates a
temporary breakpoint, resumes the process, and waits until
the process stops. This temporary breakpoint acts exactly
like an ordinary breakpoint, save that the Step To button
automatically resumes the process and puts up a busy
cursor until the condition becomes true.

X-Request Breakpoints Examiner

When the “X-Request” option of the “Breakpoint Type” option button in the
Breakpoint Examiner is selected, the examiner appears as shown in
Figure A-65.

Figure A-64 Event Type
Option Button

190

Appendix A: Debugger Reference

Figure A-65 X-Request Breakpoints Examiner

The X-Request Breakpoints examiner contains the following items:

“Breakpoint Type” option button
Allows you to select the type of breakpoint you wish to set.

Clear button Clears all the current breakpoint selections and text fields.

Request Type button
Launches the “Request Type Selection” dialog (see
Figure A-66). This dialog allows you to select the type of
X-Request used for your breakpoint. The information
displayed is in outline form; selecting a given item selects
all its subitems. For example, if you select
Window-Category, CreateWindow,
ChangeWindowAttributes, GetWindowAttributes, and so
on are also selected.

X/Motif Analyzer Windows

191

Figure A-66 “Request Type Selection” Dialog

“Search” text field
Allows you to perform a text search through your
breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected breakpoint’s settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition. Step To creates a
temporary breakpoint, resumes the process, and waits until
the process stops. This temporary breakpoint acts exactly
like an ordinary breakpoint, save that the Step To button
automatically resumes the process and puts up a busy
cursor until the condition becomes true.

Trace Examiner

The Trace examiner (see Figure A-67) is a control area where you can trace
the execution of your application and collect various forms of data. The
following data is collected:

• X Server Events

• X Server Requests

192

Appendix A: Debugger Reference

• Widget Event Dispatch Information

• Widget Resource Changes (through XtSetValues)

• Widget State Changes (create, destroy, manage, realize, unmanage)

• Xt Callbacks (widget, event handler, work proc, timeout, input, signal)

Figure A-67 Trace Examiner

The Trace examiner contains the following items:

“Collect Trace” toggle
Allows you to turn the tracing on and off.

“File” text field Allows you to select the filename for the trace. If no file is
selected, a default filename for the trace is chosen.

“Search” text field
Allows you to perform an incremental, textural search for
the trace list.

X/Motif Analyzer Windows

193

Filter... button Launches a dialog that allows you to select the trace entry
types you want displayed in the list.

Clear File button
Erases the trace file. Any subsequent trace information goes
to the beginning of the file.

Widget Examiner

The Widget examiner (see Figure A-68) displays the internal Xt widget
structure, as well as the Xt inheritance implemenation using nested C
structs.

Figure A-68 Widget Examiner

The Widget examiner contains the following items:

194

Appendix A: Debugger Reference

“Widget” text field
Allows you to choose a widget to examine by entering the
widget address.

“Name” text field
Allows you to choose a widget to examine by entering the
widget name.

Parent button Allows you to move the parent of the currently selected
widget.

Previous button Moves you to the previously selected widget.

Children... button
Shows you the widget’s children. (It is grayed out if the
selected widget cannot have children.)

Select... button Allows you to select the widget in the target process.

Tree Examiner

The Tree examiner (see Figure A-69) displays the widget hierarchy.

X/Motif Analyzer Windows

195

Figure A-69 Tree Examiner

You may double-click a node to view that widget in the Widget examiner.
Use the option menu in the bottom-right corner to switch the display among
widget names, class names, and IDs.

If the Tree examiner is currently selected, it will not automatically fetch the
current widget tree each time the process stops. To force retrieval of the
widget tree, select another examiner and then go back to the Tree examiner.
Or, click on the Tree tab.

You may display the tree according to widget name, class, or ID value. You
can select this by choosing the appropriate option from the widget view type
option button (see Figure A-70) in the lower-right portion of the examiner.Figure A-70 Widget View

Type Option Button

196

Appendix A: Debugger Reference

Callback Examiner

The Callback examiner (see Figure A-71) automatically appears when the
process is stopped somewhere in a callback. It first displays the callstack
frame for the callback function. Next, it displays information about the
widget in the callback. Finally, it displays the proper callback structure
contained in the call_data argument to the callback procedure, based on the
widget type and the callback name.

Figure A-71 Callback Examiner

Window Examiner

The Window examiner (see Figure A-72) displays window attributes for an
X window. These are the attributes returned by XGetWindowAttributes,
with decoding of the Visual structure and enums and masks decoded.

X/Motif Analyzer Windows

197

Additionally, the Window examiner shows the parent and children window
IDs.

Figure A-72 Window Examiner

The Window examiner contains the “Window” text field, which displays the
address of the window that is being examined. You may change to a different
window by entering a new address and pressing the ENTER key.

Event Examiner

The Event examiner (see Figure A-73) displays the event structure for an
XEvent pointer. The proper XEvent union member is used, and enums and
masks are decoded.

198

Appendix A: Debugger Reference

Figure A-73 Event Examiner

The Event examiner contains the “X Event” text field, which displays the
address of the X event that is being examined. You may change to a different
X event by entering a new address and pressing the ENTER key.

Graphics Context Examiner

The Graphics Context examiner (see Figure A-74) displays the X graphics
context attributes that are cached by Xlib in the form of an XGCValues
structure. Enums and masks are decoded.

X/Motif Analyzer Windows

199

Figure A-74 Graphics Context Examiner

The Graphics Context examiner contains the “GC” text field, which displays
the address of the graphics context that is being examined. You may change
to a different context by entering a new address and pressing the ENTER
key.

Pixmap Examiner

The Pixmap examiner (see Figure A-75) displays basic attributes of an X
pixmap, like size and depth. It also attempts to provide an ASCII display of
small pixmaps, using the units digit of the pixel values.

200

Appendix A: Debugger Reference

Figure A-75 Pixmap Examiner

The Pixmap examiner displays the contents of an X pixmap. Specify the X
pixmap identifier and optionally, the X colormap identifier, by entering
expressions in the two text areas at the top of the window. Use ’default’ as
the colormap identifier to specify the default X colormap for your screen. In
the actual pixmap display, left-click on a pixel to see the pixel value, position,
and red-green-blue intensities.

Widget Class Examiner

The Widget Class examiner (see Figure A-76) displays the Xt widget class
structure, as well as the Xt inheritance implementation using nested C
structs.

Project Session Management Windows

201

Figure A-76 Widget Class Examiner

The Widget Class examiner contains the “W Class” text field, which displays
the address of the widget class that is being examined. You may change to a
different widget class by entering a new address and pressing the ENTER
key.

Project Session Management Windows

A project is a single CASEVision work session focused on a common task. Its
purpose is to let you perform operations conveniently on selected project
components or on the project as a whole. A project includes all CASEVision
tools and windows invoked from the command line (unless invoked with
the -privateProject switch) and from the graphical user interface of one
of those tools.

202

Appendix A: Debugger Reference

When you are working on a single project, with only a few windows open
simultaneously, you can keep track of your activities with relative ease. In
situations where you have many windows open from one or more projects,
it is easy to get confused. To simplify the use of multiple windows,
WorkShop provides facilities for iconifying and raising windows in

• Main View Admin menu

• the “Project” submenu

• the Project View window

Figure A-77 shows where these facilities are located.

Figure A-77 Iconify and Raise Facilities

The window facilities in the Main View Admin menu apply to the current
application and its windows only. “Iconify” iconifies all of the application’s
views. “Raise” brings all the application’s view windows to the foreground
and redisplays any iconified windows.

Admin menu

Project submenu

Project View Window

Project View
popup menu

Project Session Management Windows

203

The “Project” submenu selections “Iconify,” “Raise,” “Remap Paths...,” and
“Exit” operate the same way as their counterparts do in the MainView
Admin menu, except that they are applied to all tools and windows in the
current project.

Project View

To display the Project View window, in the Main View, pull down the Admin
menu, select the “Project” submenu, and select “Project View...” The Project
View window is shown in Figure A-78 with its Admin menu and
right-button popup menu. Project View represents the components of a
project (tools or windows depending on the toggles in the Admin menu) as
buttons. Elements from the same project are grouped within a rectangle. A
dashed-line rectangle indicates the currently selected project. When a project
is selected, you can change its name or change the command.

Figure A-78 Project View Window with Menus

Project name
Target executable

Project elements

Admin menu

Project

Project display area

with arguments

popup
menu

204

Appendix A: Debugger Reference

Project View Admin Menu

The “Show Applications” and “Show Windows” toggle selections in the
Admin menu determine whether applications or individual windows
display as project element buttons. The “Rescan” selection reevaluates the
state of your projects and redisplays the current elements. “Exit” closes the
Project View window.

Project View Text Fields

The Project field lets you enter a name to identify the current project.

The Command field lets you invoke other tools to be included in the project.
These can be WorkShop tools or integrated tools, such as
CASEVision/ClearCase.

Project Display Area

The elements of a project are represented by buttons. When a button
protrudes from the screen, the item is currently iconified; when it is recessed,
the item is displayed. Clicking the button toggles it between display and
iconify modes.

Project Popup Menu

When you hold down the right mouse button inside a project rectangle, the
Project popup menu displays. It lets you “Iconify,” “Raise,” or “Quit” the
item under the cursor or all items in the project as a whole, if the cursor is
within the rectangle but not over an item.

Trap Management Windows

In addition to setting traps through the Main View and the command line,
the debugger provides you with three views specific to trap management:

• Trap Manager

• Signal Panel

• Syscall Panel

Trap Management Windows

205

Trap Manager

The Trap Manager allows you to set, edit, and manage traps (used in both
the Debugger and Performance Analyzer). The Trap Manager is shown in
Figure A-79.

Figure A-79 Trap Manager

The Trap Manager contains the following items (besides the menu bar,
which is discussed below):

“Trap” text field
Contains a description of the trap.

“Condition” text field
Contains the condition of the trap.

“Cycle Count” text field
Displays the current cycle count.

“Current Count” text field
Displays the current trap count.

Modify button Allows you to change the selected breakpoint’s settings.

Add button Allows you to add a new breakpoint.

Clear button Clears all the current breakpoint selections and text fields.

206

Appendix A: Debugger Reference

Delete button Deletes the selected breakpoint.

Trap Display area
Contains a description of each trap, and a toggle to indicate
whether or not the trap is active.

“Search” text field
Allows you to perform an incremental, textural search for
the trap list.

The Trap Manager has a menu bar which contains the Admin, Config, Traps,
Display, and Help menus. The Admin menu is the same as that described in
“Admin Menu” on page 167. The Help menu is the same as that described
in “Help Menu” on page 159. The other menus are described in the
following sections.

Config Menu

The Config Menu (Figure A-80) contains the following items:

“Load Traps...”
Brings up the File dialog (see Figure A-139), allowing you to
load the traps from a file.

“Save Traps...”
Brings up the File dialog (see Figure A-139), allowing you to
save the current traps to a file.

Traps Menu

The Traps Menu (Figure A-81) allows you to set traps under a number of
conditions. These conditions are:

• “At Source Line”

• “Entry Function”

• “Exit Function”

• “Stop Trap Default”

• “Sample Trap Default”

• “Group Trap Default”

• “Stop All Default”

Figure A-80 Trap Manager
Config Menu

Figure A-81 Trap Manager
Traps Menu

Trap Management Windows

207

Display Menu

The Display Menu (Figure A-82) contains the following items:

“Delete All” Deletes all traps from the trap list.

Signal Panel

The Signal Panel displays the signals that can occur. You can specify which
signals trigger traps and which are to be ignored. The Signal Panel is shown
in Figure A-83.

Figure A-83 Signal Panel

The Signal Panel contains an Admin menu (described in “Admin Menu” on
page 167) and a Help menu (described in “Help Menu” on page 159). Each
signal trigger trap in the display has a toggle associated with it. In addition,
the panel has a Search field.

Figure A-82 Trap
Manager Display Menu

208

Appendix A: Debugger Reference

Syscall Panel

The Syscall Panel lets you set traps at the entry to or exit from system calls.
The Syscall Panel is shown in Figure A-84.

Figure A-84 Syscall Panel

The Syscall Panel contains an Admin menu (described in “Admin Menu” on
page 167) and a Help menu (described in “Help Menu” on page 159). Each
system call in the display has two toggle associated with it: one to set a trap
on entry, one to set a trap on exit. In addition, the panel has a Search field.

Data Examination Windows

209

Data Examination Windows

There are several windows that are used primarily to examine your
debugging data:

• “Array Browser”

• “Call Stack View”

• “Expression View”

• “File Browser”

• “Structure Browser”

• “Variable Browser”

Array Browser

To examine data in an array variable, select Array Browser from the Views
menu at a point in the process where the variable is present. Array Browser
lets you view elements in a multi-dimensional array (up to 100 x 100
elements), presented in a spreadsheet and graphically, if desired. (For a
tutorial example of the Array Browser, see “Examining Data” on page 34.)

210

Appendix A: Debugger Reference

Figure A-85 Array Browser With Display Menu Options

The array specification area lets you specify the variable and its dimensions. It
consists of these fields:

Array: Lets you enter the name of the array variable. This entry is
language-dependent.

Array specification area

Subscript control area

Spreadsheet area

Current element

Graphical display area

Data Examination Windows

211

For Fortran, the expression may be an array or a dummy
array variable name. If the last dimension of the array is
unspecified (*), a subscript value of 1 is assumed initially.

For C and C++, the entry may be an array, a pointer, or an
array pointer. If pointers are used, the expression is treated
as though it were a single element, in which case you need
to use the subscript controls to see more than the first
element.

Indexing Expression:
The expression used to view an element in the array. It is
filled in automatically when you specify an array to view.

The expression supplied is language-specific. It represents
the indexing expression used in the language to access a
particular element. The subscripts are specified by special
indexing variables ($i, $j, $k, and so forth) that can be
manipulated in the subscript controls area.

The subscript control area serves two functions: (1) it lets you control which
elements in the variable are to be displayed, and (2) it lets you shift the
current element. The number of dimensions in the array governs the number
of controls that are displayed. A close-up view of the subscript controls area
appears in Figure A-86.

Figure A-86 Subscript Control Area in Array Browser

Row/column toggles

Index values
Index sliders
Index minimums
Index maximums
Step indicators

Index identifiers

212

Appendix A: Debugger Reference

The subscript control area provides these features

row/column toggles
Control whether an index variable represents rows or
columns (or neither) in the spreadsheet area. You are not
limited by the number of vectors in an array, but you can
only view a two-dimensional orthogonal slice of the array at
a time.

index identifiers Indicate to which subscript the controls in the row refer.

index values Show the value of the subscript for the element currently in
the focus cell. You can enter a different value if you wish.

index sliders Let you move the focus cell along the particular vector.

index minimums
Identify the beginning visible element in a vector.

index maximums
Identify the last visible element in a vector. If you have an
unspecified array, you can use this field to specify the last
element in the vector to be displayed in the spreadsheet.

step indicators Specifies the increment between adjacent elements in a
vector to be displayed. A value of 1 displays consecutive
data. Specifying some n greater than 1 lets you display
every nth element in a vector.

control area scroll bars
Let you expose hidden portions of the subscript control area
if your window is not large enough for viewing all of the
controls.

The spreadsheet area is where numeric data is displayed. It can show two
dimensions at a time (indicated in the upper left corner of the matrix). The
column indexes run along the top of the matrix and the row indexes are
displayed along the left column. The spreadsheet area has scroll bars for
viewing data elements not currently visible in the viewing area. Figure A-87
shows a close-up of the spreadsheet area.

Data Examination Windows

213

Figure A-87 Array Browser Spreadsheet Area

The current element is highlighted by a colored rectangle in the spreadsheet
area. Its corresponding expression is shown in the current element identifier
field, and the value is shown in the current element value field.

Spreadsheet Menu

The Spreadsheet menu (see Figure A-88) lets you change the appearance of
data in the spreadsheet area. It provides these selections:

“Column Width...”
Lets you specify the width of the spreadsheet cells in terms
of characters. For instance, a value of 12 indicates that 12
characters, including punctuation and digits are viewable.

“Wrapped Display”
Lets you display a single dimension of an array wrapped
around the entire spreadsheet area. The index value for an
element is determined by adding the appropriate row index
and column index values.

Figure A-89 shows an example of a wrapped array. There is
only one index $i. The current cell is element 4 in the array
(by adding 3 and +1).

Column indexes

Row indexes

Current element

Current element value field

Current element identifier

Element values

Figure A-88 Spreadsheet Menu

214

Appendix A: Debugger Reference

Figure A-89 Example of Wrapped Array

Format Menu

The Format menu (see Figure A-90) displays a separate menu that you lets
you display the elements in the default format, as formatted values (decimal,
unsigned, octal, and so forth) or as their data types.

The graphical display area presents the array data in a 3-D graph in one of the
following forms:

• surface (polyhedron)

• bar chart

• points

• multiple lines (array vectors)

Render Menu

You select the graphical display mode through the Render menu. The
Render menu (see Figure A-91) has the following items:

“Surface” Exhibits the data as a solid using the data values as vertices
in a polyhedron.

“Bar Chart” Presents the data values as 3-D bar charts.

“Points” Simply plots the data values in 3-D space.

“Multi Line” Plots and connects the data values in each row.

“None” Lets you display Array Browser with no graphical display,
in effect turning off graphical display mode.

Current cell

Figure A-90 Format Menu With
Value Submenu

Figure A-91 Render Menu

Data Examination Windows

215

Color Menu

The Color menu (see Figure A-92) provides these options:

“Monotone Ramp”
Displays the data values in a single tone, with lower
numbers being darker and higher values lighter in tone.

“Hue Ramp” Displays the data values in a spectrum of colors ranging
from blue (lowest values) through green, yellow, orange,
and red (highest values).

“Exception” Lets you flag certain conditions by color, usually for the
purpose of spotting bad data. When you select “Exception,”
the controls shown in Figure A-93 appear in the window.

Figure A-93 Color Exception Portion of Array Browser Window

Thus, you can highlight data values less than or greater
than specified values, values of plus or minus infinity,
values of plus or minus underflow, zero values, and NaN
(not a number) values.

Figure A-92 Color Menu

216

Appendix A: Debugger Reference

Figure A-94 Array Browser Graphic Modes

Scale Menu

The Scale menu (see Figure A-95) provides options for changing the ratio of
the z-dimension, which represents the value of the element. The number on
the left represents the value of the x- and y-dimensions (which are always the
same as each other); the number on the right is the z dimension.

Manipulating the z-dimension affects the ease of spotting differences in
values. If your data is scattered over a narrow range of values, you may wish
to heighten the graph by selecting “10:1” as your scale; this exaggerates the
values in the z-dimension. If your data is in a wide range, selecting “1:2” or
“1:10” as the scale will minimize the differences, flattening the graph.

Examiner Viewer Controls

The graphical display uses controls and menus from Examiner Viewer.
Examiner Viewer is based on a camera metaphor and borrows terms from
the film industry, such as zoom and dolly, in naming its controls. The
graphical display area of the window is shown in Figure A-96, with its main
controls and menus. Note that the buttons on the upper right side of the

Surface rendering Bar chart rendering

Multiple line renderingPoint rendering

Figure A-95 Scale Menu

Data Examination Windows

217

graphical display area may not be visible if the area is too small; you can
expose them by moving either the upper or lower sash to enlarge the display
area.

Examiner Viewer provides these controls for viewing the graph. The right
side buttons are:

view mode Toggles between a view-only mode (closed eye) and
manipulation mode (open eye).

In view-only mode, the cursor appears as an arrow and the
graph cannot be moved. Clicking on a portion of the graph
selects the corresponding array element in the spreadsheet.

In manipulation mode, the cursor appears as a hand and
you can move the graph. Dragging the graph with the left
mouse button down moves the graph in any direction as if
it were in a trackball; a quick movement spins the graph.
Dragging the graph with the left mouse button and the ctrl
button rolls (rotates) the graph in the plane of the screen.
Dragging the graph with the middle mouse button moves
it without changing the viewing angle.

If you drag the graph with both the left and middle mouse
buttons down, the graph will appear to move into or out of
the window (this is the same as the dolly thumbwheel which
is described in this section).

218

Appendix A: Debugger Reference

Figure A-96 Examiner Viewer With Controls and Menus

help Runs a special help system containing Inventor Viewer
information.

home Repositions the graph in its original viewing position.

x rotation

y rotation control zoom control

view mode

help

home

set home

view all

seek

dolly control
 control

and readout

Data Examination Windows

219

set home Changes the home (original viewing) position for
subsequent use of the home button.

view all Repositions the display area so that the entire graph is
visible.

seek Provides a special cursor that lets you reposition the graph
in the center of the display area or lets you center the view
on a point you select with the cursor. See “Seek to point <or
object>” in the Preferences dialog box.

These four controls let you move the graphic display:

x rotation thumbwheel
Rotates the graph around its x-axis.

y rotation thumbwheel
Rotates the graph around its y-axis.

zoom slider and readout
Changes the size of the graph by scaling it.

dolly thumbwheel
Changes the size of the graph and adjusts the angles to
maintain perspective. The dolly control simulates moving
the viewing camera back and forth with respect to the
graph.

Examiner Viewer Menu

You access the Examiner Viewer menu (see Figure A-96) by holding down
the right mouse button in the graphical display area. The Examiner Viewer
menu provides these selections:

“Functions” Displays a submenu with the selections “Help,” “Home,”
“Set Home,” “View All,” and “Seek,” which are the same as
the right mouse button controls described in the previous
section, and the “Copy View” and “Paste View” selections.
These operate like standard copy and paste editing
commands, enabling you to transfer graphs.

“Draw Style” Displays a submenu that controls how the graph is
displayed. The selections “as is,” “filled,” “wireframe,” and
“points” control how the graph is displayed when it is
static. These override the Render menu selections. The

220

Appendix A: Debugger Reference

selections “move wireframe” and “move points” control
how the graph is displayed while in motion. The selections
“single,” “double,” and “interactive” refer to buffering
techniques used in moving the graph. These affect the
smoothness of the movement.

“Viewing” The same as the view mode button described in the previous
section. When it is off, you can select points from the graph
to display in the spreadsheet but cannot move the graph.
When on, it lets you manipulate the graph.

“Decoration” Displays the right side buttons when it is on and hides them
when it is off.

“Headlight” Controls the shadow effect on the graph. When it is on, the
light appears to come from the camera.

“Preferences” Causes the Examiner Viewer Preferences dialog box to
display.

Figure A-97 Examiner Viewer Preferences Dialog Box

“Seek animation time”
Lets you specify the time it takes for the graph to be
repositioned after you change the seek point. See
“Seek to point <or object>.”

“Seek to point <or object>”
Lets you change the view of the graph to its center (object)
or to a point in the graph that you specify with the seek
cursor.

Data Examination Windows

221

“Zoom slider ranges from”
Lets you change the Zoom range, that is, the distance that
the object appears to be away from the front of the window.

“Auto clipping planes”
Centers the graph in your view if enabled. If disabled, it
provides controls for removing data from visibility at either
end of the z-axis. This is useful if you wish to focus on data
above or below a set value.

“Enable spin automation”
Lets you spin the graph. You grab the graph with the
mouse, move it quickly in the desired direction, and release
the mouse button. The graph spins as if in a trackball.

“Show point of rotation axes”
Displays a set of three axes. You can move the graph around
the x and y axes using the thumbwheel controls described
in the previous section. When this option is on, you can set
the size of the axes in pixels.

Call Stack View

The Call Stack View (Figure A-98) displays the functions in the call stack
(referred to as frames) when the process has stopped.

Figure A-98 Call Stack View

222

Appendix A: Debugger Reference

The source display has two special annotations:

• The location of the current program state is indicated by a large green
(depending on color scheme) arrow representing the PC.

• The location of the call to the function selected in the Call Stack View
window is indicated by a smaller blue (depending on color scheme)
arrow representing the current context, and the source line becomes
highlighted.

The Call Stack View contains its own menu bar, which contains the Admin,
Config, Display, and Help menus. The Admin menu is the same as that
described in “Admin Menu” on page 167. The Help menu is the same as that
described in “Help Menu” on page 159. The other menus are described in
the following sections.

Config Menu

The Config Menu (Figure A-99) contains the following items:

“Preferences...”
launchest the preference dialog (Figure A-99), which allows
you the option of setting the maximum depth of the Call
Stack View.

Figure A-99 Call Stack View Config Menu

Data Examination Windows

223

Display Menu

The Display Menu (Figure A-100) contains the following toggles:

“Arg Values” Allows you to set the argument values in the Call Stack
View.

“Arg Names” Allows you to set the argument names in the Call Stack
View.

“Arg Types” Allows you to set the argument types in the Call Stack View.

“Location” Allows you to set the function location in the Call Stack
View.

“PC” Allows you to set the PC in the Call Stack View.

Expression View

The Expression View window is shown in Figure A-101. The expression
view displays a collection of expressions that are evaluated each time the
process stops or the context changes.

Figure A-101 Expression View

In addition to the items on the menu bar, the Expression View has two
popup menus: the Language menu and the Format menu. The menu bar
items and the two popup menus are discussed in the following sections.
(The Admin menu is the same as that described in “Admin Menu” on
page 167. The Help menu is the same as that described in “Help Menu” on
page 159. The other menus are described in the following sections.)

Figure A-100 Call Stack View
Display Menu

224

Appendix A: Debugger Reference

Config Menu

The Config Menu (see Figure A-102) contains the following items:

“Load Expressions...”
Launches the File menu (Figure A-49), allowing you to
choose a source file from which to load your expressions.

“Save Expressions...”
Launches the File menu (Figure A-49), allowing you to
choose a file to which you can save your expressions.

Display Menu

The Display Menu (see Figure A-103) contains the following items:

“Clear All” Clears all fields in the view.

Language Popup

The Language popup (see Figure A-104) contains three radio buttons,
allowing you to select one of three languages for evaluation: C, C++ or
Fortran. The Language popup is invoked by holding down the right mouse
button while the cursor is in the Expression column.

Format Popup

The Format popup (see Figure A-105) The Format menu is displayed by
holding down the right mouse button in the Result column.

Figure A-102 Expression View
Config Menu

Figure A-103 Expression View
Display Menu

Figure A-104 Expression View
Language Popup

Data Examination Windows

225

Figure A-105 Expression View Format Popup with Submenus

The Format popup contains the following items:

“Default” A radio button that sets the format to the default values.

“Value” Launches a submenu of radio buttons from which you can
select a value of type Decimal, Unsigned, Octal, Hex, Float,
Char, or String.

“Type” Launches a submenu of radio buttons from which you can
select a type of Decimal, Octal, or Hex.

“Bit size” A radio button that sets the format to the bit size.

File Browser

The File Browser displays a scrollable list of source files used by the current
executable. Double-click a file in the list to load it directly into the source
display area in Main View or Source View. The Search field lets you find files
in the list quickly.

226

Appendix A: Debugger Reference

Figure A-106 File Browser

The File Browser contains an Admin menu (described in “Admin Menu” on
page 167) and a Help menu (described in “Help Menu” on page 159). In
addition, the browser has a Search field.

Structure Browser

The Structure Browser lets you examine data structures and the
relationships of the data within them. It displays complex data structures as
separate graphical objects, using arrows to indicate relationships. A typical
Structure Browser example is shown in Figure A-107 with the Config,
Display, Node, and Format menus displayed. (For a tutorial example of the
Structure Browser, see “Examining Data” on page 34.)

Data Examination Windows

227

Figure A-107 Structure Browser With the Config, Display, Node, and Format
Menus

The structure name is entered in the Expression field. It then appears as an
object or set of objects in the display area in the lower portion of the window.
Each structure has a header identifying the structure, color coded by data
type. Below the header are two columns: the left displays the field name and
the right displays the field’s value. If the structures to be displayed exceed
the size of the Structure Browser window, scroll bars appear.

In addition to the Admin menu, Structure Browser provides four menus that
are used to change the way the data displays. The menus are:

Config For saving and reusing type-specific formats and
expressions. You can also set preferences regarding how
objects of a given type are to be displayed.

Display Provides operations for all objects in the display area.

Expression field
Display area
Structure header

Field name column

Result column

228

Appendix A: Debugger Reference

Node Provides operations for selected objects in the display area
only.

Format Lets you change or reformat a specific value in the result
column. It is a popup menu that is accessed by holding
down the right mouse button while the cursor is over the
result column.

Using the Overview Window to Navigate

WorkShop provides the Overview window (from the “Show Overview”
selection in the Display menu) as another way to navigate around the
display area (see Figure A-108).

Figure A-108 Structure Browser Overview Window

The Overview window is a reduced-scale view of the requested structures.
The structures are represented by solid rectangles color- coded by data type.
The relative position of the currently visible area is represented by a
transparent rectangle. This rectangle can be dragged (using the left mouse
button) to change the display of the Structure Browser. Clicking the left
mouse button in an area of the Overview window repositions the currently
visible area.

Entering Expressions

The Structure Browser accepts any valid expression. If the result type is
simple, a structure displays showing the type and value. If the result type is
a pointer, it is automatically dereferenced until a non-pointer type is
reached. If the result type is a structure or union, an object is displayed
showing the structures’ fields and their values. After the expression is

Data Examination Windows

229

entered, the Expression field clears. The Structure Browser can display
unrelated structures at the same time—you simply enter new structures
using the Expression field.

The Expression field is also used to enter strings used in searches.

Working in the Structure Browser Display Area

Within the display area, you select objects by clicking in the node headers.
Shift-clicks add the selected object to the current selection. You can drag
selected objects using the middle mouse button.

Clicking the right button while the cursor is in the right column of an object
displays the Format menu, used to change the display of a specific result (see
Figure A-109). You can set a default format or request that results be
displayed by value, type, address, or size in bits.

Figure A-109 Structure Browser Format Menu

Holding down the right button in the header of a Structure Browser object
brings up the Node popup menu, which is the same as the Node Menu in the
menu bar. It is used to change the way selected objects are displayed. When
you left-click in the header of an object, it turns on the resizer, which lets you
change the size of the object. Left-clicking the handle resizes;
middle-clicking moves it.

Graphical arrows show the pointer relationships among the displayed
structures. If a pointer field is not visible in a structure, its arrow tail is
displayed at the top or bottom of the scrolling area for fields. Otherwise, its
tail is adjacent to its field.

230

Appendix A: Debugger Reference

Double-clicking a value field (right column) for a pointer dereferences it, so
that the data structure it points to is displayed.

Double-clicking a member field (left column) puts the full expression for that
member in the Expression field.

Structure Browser Display Menu

The Display menu controls the way structures appear in the display area of
Structure Browser. The menu is shown in Figure A-110.

Figure A-110 Structure Browser Display Menu

The Display menu provides the following selections:

“Display” has two options:

• “Expression” displays the structure of the expression
entered in the Expression field.

• “Selection” displays the structure based on the text
from the current selection.

“Arrange” rearranges the currently selected nodes. There are two
options (see Figure A-111):

• “Tree” arranges them into a tree-type formation, that is,
the hierarchy descends from left to right and child
structures are shown as branches to the right of the
parent.

Data Examination Windows

231

• “Linked List” arranges them into a linked list
formation, that is, horizontally.

Figure A-111 Tree and Linked List Arrangements of Structures

“Search” Lets you select structures containing the string specified in
the Expression field. There are four options:

• “Name” selects structures whose names contain the
specified string.

• “Type” selects structures whose types contain the
specified string.

• “Field Name” selects structures that have a field whose
name contains the specified string.

• “Value” selects structures that have a field value
containing the specified string.

“Update” Explicitly updates the displayed structures. This happens
automatically in the current Structure Browser when the
process stops. This can be used in an inactive Structure
Browser to update it. It can also be used to update the
display after changes have been made in other Debugger
views.

“Show Overview”
Brings up the Overview window.

“Clear All” Clears all structures from the display area.

Tree arrangement

Linked List arrangement

Parent
Node

Child
Node

First
Node

Next
Node

Child
Node

Child
Node

Next
Node

232

Appendix A: Debugger Reference

Node Menu

The Node menu is shown in Figure A-112.

Figure A-112 Structure Browser Node Menu

The Node menu consists of the following entries and applies to the currently
selected objects:

“State” Controls the display of nodes. There are three options:

• “Iconic” displays the node header only.

• “Normal” uses the default chart display but hides
those fields selected to be invisible.

• “Detail” uses the default chart display and shows all
fields.

“Geometry” Manages graphical objects in the display area. There are
four options:

• “Minimize” sets the vertical size of an object to the
default minimum number of fields. The initial default
is four fields but can be changed through either the
“Formatting” selection from the Node menu or the
“Preferences...” selection from the Config menu.

• “Maximize” displays the object as large vertically as
necessary to fit all of the fields.

Data Examination Windows

233

• “Raise” raises the selected object(s) to the top of the
display.

• “Lower” lowers the selected object(s) to the bottom of
the display.

“Select” Lets you select objects in various ways. There are six
options:

• “Parents” selects all objects that have pointers pointing
to a selected object.

• “Children” selects all objects pointed to by any fields in
a selected object.

• “Ancestors” selects all objects pointed to a selected
object or pointing to an object that has a descendant
pointing to a selected object.

• “Descendants” selects all objects pointed to by any
fields in a selected object or pointed to by any children
of a selected object.

• “Family” selects all ancestors and descendants of a
selected object.

• “All” selects all objects.

“Formatting” Brings up the type formatting dialog for this type. See
“Formatting Fields.”

“Dereference Ptrs”
Dereferences any pointers in selected objects.

“Pattern Layout”
Uses the spatial relationship between selected structures
connected by pointers to position all similarly related
structures in the same way.

“Remove” Removes the selected object from the display.

Formatting Fields

Each field in a data structure has certain display characteristics. These can be
specified for all objects in the Structure Browser Preferences dialog box or for
type-specific objects only in the Type Formatting dialog box. To display the

234

Appendix A: Debugger Reference

Structure Browser Preferences dialog box, select “Preferences...” from the
Config menu (see Figure A-113).

Figure A-113 Structure Browser Preferences Dialog Box

The Structure Browser Preferences dialog box has the following fields:

Default Structure Field Count
Sets the number of fields to be displayed initially.

Default Structure Width
The width in pixels of the object.

Default Iconic Width
The width in pixels of the object when it is in iconic form.

Automatic Dereference Limit
Sets a limit on the number of structures that are
automatically dereferenced.

Dereference Ptrs By Default
Lets you toggle automatic dereferencing on and off.

To bring up the Type Formatting dialog box, select the set of structures under
consideration and select “Node Formatting” from the Node menu (see
Figure A-114).

Data Examination Windows

235

Figure A-114 Type Formatting Dialog Box

The Type Formatting dialog box has the following fields:

Type Name Displays the current data type.

Default Field Count
The number of fields to be displayed initially for objects of
that type.

Default Structure Width
The width in pixels of the object.

Default Iconic Width
The width in pixels of the object when it is in iconic form.

Default State Brings up a popup menu that lets you specify whether
structures are first displayed as icons (“Iconic”), with the
minimum number of fields displayed (“Normal”) or with
all fields displayed (“Detail”).

236

Appendix A: Debugger Reference

Type Color Provides a submenu for color coding. It lets you select a
color for the header and overview rectangles for objects of a
given type.

For structure and union types, the list box shows all the fields with their
types. For each field, you can change the result format to one of the
following:

• default

• decimal

• unsigned

• octal

• hex

• float

• char

• string

• type

• dec addr

• oct addr

• hex addr

• size in Bits

You can also specify whether a field is visible in normal state, and if it is a
pointer field, whether it should be automatically dereferenced.

Once you specify the format for this type, you can apply it to any
combination of the following through the toggle buttons in the bottom left
portion of the window:

• selected instances

• all existing instances

• any future instances of this type

Data Examination Windows

237

Variable Browser

The Variable Browser lets you view and change the values of local variables
and arguments at a specific point in a process. (Global variables can be
viewed or changed using Expression View or the “Evaluate Expression”
selection from the Data menu for one-shot evaluations.) In addition to
providing the values, Variable Browser is useful for getting a quick list of the
local variables in a scope without having to search for their names. A sample
Variable Browser window with the Language and Format menus displayed
is shown in Figure A-115. (For a tutorial example of the Variable Browser see
“Examining Data” on page 34.)

Typically, you inspect variable values

• at a stop trap

• at a frame in a call stack

• as you step through a process

Note: A useful technique is to set a trap at the entry to a function and inspect
the values of the variables there. Some variables may be in an uninitialized
state at that point. You can then step through the function and make sure that
no uninitialized variables are used inadvertently.

Entering Variable Values

The Variable Browser lets you change the values of variables in the window.
You simply enter the new value in the result column and press <Enter>.
Thus, you can force new values into the process and see their effect.

238

Appendix A: Debugger Reference

Figure A-115 Variable Browser With Language and Format Menus

Changing Variable Column Widths

The Variable Browser has a sash between columns that lets you adjust the
relative widths of the Variable and Result columns (see Figure A-115). For
example, you may wish to adjust for short variable names and long result
values.

Viewing Variable Changes

The Debugger views that are involved with variables (that is, the Variable
Browser and Expression View) have indicators that show when the variable
has changed since the last breakpoint. If you click the indicator, you can view
the previous value. The variable change indicators for a Variable Browser
window are shown in Figure A-116.

Column sash

Machine-level Debugging Windows

239

Figure A-116 Typical Variable Change Indicators

Machine-level Debugging Windows

The Debugger offers three views useful in debugging at the machine level;
the Disassembly View, Register View, and Memory View.

Disassembly View

The Disassembly View of the Debugger lets you look at machine-level code
rather than source-level code. A typical Disassembly View window appears
in Figure A-117, with the Disassemble menu displayed.

Change indicator (current value)
Change indicator (former value)

No change indicator
(unchanged value)

240

Appendix A: Debugger Reference

Figure A-117 Disassembly View With Disassemble Menu Displayed

Similarities With Main View

At the top of the window are the same process control buttons as those in
Debugger Main View. They behave the same way except for Step Into and
Step Over, which do machine-level instruction stepping instead of
source-level. Remember that you select the number of steps by holding
down the right mouse button over the Step Into and Step Over buttons.

The menus are basically the same as in Main View except for the
Disassemble menu. The PC menu selections “Continue To” and “Jump To”
are based on machine-level instructions rather than source-level steps. The
Config menu has a “Preferences...” selection that brings up a dialog box
oriented to Disassembly View.

Process control buttons

Display area

PC indicator

Machine-level Debugging Windows

241

You can set traps either by using the Traps menu or by clicking in the
annotation column of the source display area that contains the disassembled
code.

Disassemble Menu

The Disassemble menu (see Figure A-118) lets you display disassembled
code. It contains the following items:

“Address...” allows you to disassemble a specified number of lines,
starting from a specified source line address (see
Figure A-119).

Figure A-119 Disassemble From Address Dialog Box

“Function...” allows you to disassemble a specified number of lines,
starting from the beginning address of a specified function
name (see Figure A-120).

Figure A-118 Disassemble
Menu

242

Appendix A: Debugger Reference

Figure A-120 Disassemble Function Dialog Box

“File...” allows you to disassemble a specified number of lines,
starting from the address corresponding to a specified line
number in a specified file (refer to Figure A-121). If you
have a current selection in Main View or Source View, its file
and cursor position are used as the default filename and line
number, respectively.

Figure A-121 Disassemble File Dialog Box

Disassembly View Preferences

Selecting “Preferences...” from the Config menu brings up the Disassembly
View Preferences dialog box (shown in Figure A-122) so that you can change
the global preferences.

Machine-level Debugging Windows

243

Figure A-122 Disassembly View Preferences Dialog Box with Format Popup Menu

The dialog box provides you with these options:

Number of instructions to disassemble
controls the default number of disassembly lines shown
when the process stops. This number appears in the dialog
boxes selected from the Disassemble menu (see
Figure A-119, Figure A-120, and Figure A-121). The default
is all instructions, indicating that the entire function will be
disassembled.

Minimum lines around current instruction
controls the display of the disassembled code, enabling you
to view at least the specified number of instructions before
and after the current instruction.

Register name display format
controls how register names are displayed. The available
modes are “Hardware,” “Compiler,” and “Assembler.”

The Display Options selections control what information is
shown in each disassembled line.

244

Appendix A: Debugger Reference

Show embedded source annotation
turns on interleaved source lines in the appropriate
positions.

Show source file and line number
displays the filename and file position along with each
machine instruction.

Show function name and line number
displays the function name and file position along with each
machine instruction.

Show machine address
displays the memory address of each machine instruction.

Show instruction value
displays the instruction word along with each machine
instruction.

Show jal targets numerically
controls whether the target address of a jal instruction is
displayed as a hex address or symbolic label.

Register View

Register View lets you examine and modify register values. You bring it up
by selecting “Register View” from the Views menu in Main View.
Figure A-123 shows a typical Register View window that has been resized to
show all available registers.

Register View displays each register with its current value. A question mark
(?) displayed immediately before a register value signifies that the value is
suspect; it may not be valid for the current frame. This can occur if a register
is not saved across a function call. A colored marker indicates that a register
value has changed since the last time the process stopped.

Machine-level Debugging Windows

245

Figure A-123 Register View

Register View Window

The major features of the Register View window are:

Current register field
identifies the currently selected register. You can switch to a
different register by entering its name (either by hardware

Current register field

General register display area

Special register display area

Floating register display area

Double register display area

Current register value field Modify button

246

Appendix A: Debugger Reference

name or by alias) in this field and pressing <Enter>. You can
also switch registers by clicking on the new register in the
display area.

Current register value field
shows the contents of the selected register. You can assign a
new value to a register by entering either a literal or an
expression into the Value field. You then click on the Modify
button to change the value or press <Enter>.

Register display area
shows the registers organized into four groups: general,
special, floating, and double. Note that the general registers
are identified by both their hardware and software names.
Double registers have a one-to-two correspondence with
the floating registers.

Note: The special registers p0, p1, and p2 are empty in the figure. These are
used for instrumentation and display values only when instrumentation has
taken place.

Changing the Register View Display

The “Preferences...” selection in the Config menu lets you change the
Register View display. It brings up the Register View Preferences dialog box
(see Figure A-124).

The Register Display toggle buttons let you specify which types of registers
are to be displayed by default.

Machine-level Debugging Windows

247

Figure A-124 Register View Preferences Dialog Box

The Register Formatting area lets you select formats for any of the registers.
You have a choice of “default,” “decimal,” “octal,” or “hex” format.

The default fields in the top row let you change the defaults for the four
major types, which are set as follows:

• general registers—hexadecimal

• special registers—hexadecimal

• float registers—floating point

• double registers—floating point

The rows in the register formatting area let you change the modes for the
individual registers.

Display toggle area

Register formatting area

248

Appendix A: Debugger Reference

Memory View

Memory View lets you examine and modify memory. A typical Memory
View window appears in Figure A-125.

Figure A-125 Memory View With Mode Menu Displayed

Viewing a Portion of Memory

To view a portion of memory, enter the beginning memory location in the
Address field. You can enter the literal value or an expression that evaluates
to an integer address. These address specifications must be in the language
of the current process as indicated by the call stack frame. For example, you
can enter 0x7fff4000+4 as the memory address when stopped in a C
function or enter $7fff4000+4 as the equivalent for a Fortran routine. Press
<Enter> while the cursor is in the field or click the View button to display the
contents of that location and the subsequent locations in the display area.
This also displays the contents of the first address in the Value field where it
can be modified.

Current address field

Current address value field

Display control buttons

Memory display area

Memory address column
Memory contents

Machine-level Debugging Windows

249

The memory display area shows the contents of individual byte addresses. The
column at the left of the display shows the first address in the row. The
contents at that address are shown immediately to its right, followed by the
contents of the next seven byte locations. If you enlarge the Memory View
window, you can see additional rows of memory.

Changing the Contents of a Memory Location

To change the contents of a memory location, you select the address to be
changed, either by direct entry or by clicking on the byte value in the display
area. You can enter a single value or a sequence of hex byte values separated
by spaces (for example, 00 3a 07 b2) in the Value field. You can also enter a
quoted string to change a consecutive range of values to the ASCII values of
that string. Pressing <Enter> while the cursor is in the Value field or clicking
the Modify button substitutes the new value(s) starting at the specified
location.

Changing the Memory Display Format

The Mode menu lets you change the format of the value field or byte
locations to either decimal, octal, hex, or ASCII.

Moving around the Memory View Display Area

The four control buttons at the upper right of the window help you move
around the display area. These buttons are:

Up for moving the displayed bytes up a single row.

Down for moving the displayed bytes down a single row.

 Page Up for moving the displayed bytes upward by as many rows as
are currently displayed.

Page Down for moving the displayed bytes downward by as many rows
as are currently displayed.

250

Appendix A: Debugger Reference

Multiple Process Debugging Windows

WorkShop supports performance analysis and debugging of multiprocess
applications, including processes spawned either with fork or sproc.
Multiprocess debugging is supported primarily through the Multiprocess
View.

Multiprocess View

Select “Multiprocess View” from the Admin menu to bring up Multiprocess
View. Main View is attached to the parent process. Figure A-126 shows a
typical Multiprocess View with Config and Process menus displayed.

Figure A-126 Multiprocess View with Config and Process Menus Displayed

To open a Main View (or other debugging views) for another process,
double-click the desired process in Multiprocess View. A separate Main
View window displays the selected process, and you can select any
debugging views desired. If a set of views exists for that process, the views
are raised to the foreground. To reuse views already displayed, select
“Switch Process...” from the Admin menu in Main View. (If a process is
currently highlighted in Multiprocess View, its id is entered automatically in
the Process id: field in the Switch Process dialog box.)

Process display area

Multiprocess control area

Multiple Process Debugging Windows

251

Viewing Process Status

When Multiprocess View comes up, it lists the status of all processes in the
process group. This information includes:

PID: shows the process identifier (id).

PPID: lists the parent process ids. Notice in Figure A-126 that the
first process PID#7748 is the parent process of the second.

State: represents the state of the process: stopped, running, or
created, which appears just prior to running. Terminated
processes are not displayed.

Name: identifies the process by filename.

Function/PC: indicates the current function and program counter (PC) for
any stopped processes.

Multiprocess Control Buttons

Multiprocess View uses the same control buttons as MainView with two
exceptions. The buttons are applied to all processes as a group. There is no
separate Run button. Using a control button in Multiprocess View has the
same effect as clicking the button in each process’s Main View window. The
buttons are:

Continue resumes program execution after a halt and continues until
a stop trap or other event stops execution.

Stop stops execution of all processes. When program execution
stops, the current source line of each process is highlighted
in its Main View, if one is active, and annotated with an
arrow indicating the PC.

Step Into steps to the next source line and into function calls. To step
a specific number of lines, hold down the right mouse
button over the Step Into button. A popup menu displays
that lets you select one of the fixed values or a specified
number of steps.

Step Over steps to the next source line and over function calls. To step
a specific number of lines, hold down the right button over
the Step Over button. A popup menu displays that lets you
select one of the fixed values or a specified number of steps.

252

Appendix A: Debugger Reference

Return executes the remaining instructions in the current function.
Program execution stops upon return from that procedure.

Sample collects performance data for each process (if performance
data collection is enabled).

Kill terminates all processes in the group.

Multiprocess Traps

As discussed in Chapter 4, “Setting Traps,” the trap qualifiers [all] and [pgrp]
are used in multiprocess analysis. The [all] entry stops or samples all
processes when a trap fires. The [pgrp] entry sets the trap in all processes
within the process group containing the trap location. The qualifiers can be
entered by default by the “Group Trap Default” and “Stop All Default”
selections in the Traps menu in Trap Manager.

Note that the Sample button always samples all processes.

Adding and Removing Processes

The Process menu lets you manually add or remove a process from the
process group (see Figure A-127).

To remove a process, click the process and select “Remove” from the Process
menu. Note that a process in a sproc share group cannot be removed from the
process group.

To add a process, select “Add...” The dialog box shown in Figure A-128
displays. Enter the new process id and click OK.

Figure A-128 Add Process Dialog Box

Figure A-127 Process Menu in
Multiprocess View

Multiple Process Debugging Windows

253

Multiprocess Preferences

The “Preferences...” option in the Config menu brings up the Preferences
dialog box. It lets you control when processes are added to the group, and it
specifies their behavior (see Figure A-129).

Figure A-129 Multiprocess View Preferences Dialog Box

The Multiprocess View preference options are:

Attach to forked processes
attaches new processes spawned by the fork command to
the group automatically. (Note that processes spawned by
sproc are always attached.)

Copy traps to forked processes
copies traps you have set in the parent process to new forked
processes automatically. If you create parent traps with Trap
Manager and specify pgrp, then the children inherit these
traps automatically, regardless of the state of this flag.

Copy traps to sproc’d processes
copies traps you have set in the parent process to new
sproc’d processes automatically. As in the previous option, if
you create parent traps with the Trap Manager and specify
pgrp, the children inherit these traps automatically, whether
this flag is set or not.

254

Appendix A: Debugger Reference

Resume parent after fork
restarts the parent process automatically when a child is
forked.

Resume child after attach on fork
restarts the new forked process automatically when it is
attached. If this option is left off, a new process will stop as
soon as it is attached.

Resume parent after sproc
restarts the parent process automatically when a child is
sproc’d.

Resume child after attach on sproc
restarts the new sproc’d process automatically when it is
attached. If this option is left off, a new process will stop as
soon as it is attached.

Fix+Continue Windows

The Fix and Continue GUI affects several WorkShop windows and provides
three more. The Debugger and Source View access the Fix and Continue
utility from the menu bar. The results of running redefined code are
displayed in the Debugger Execution View. Special line numbers (decimal
notation) applied to redefined functions appear in several WorkShop views
(refer to “Changes to Debugger Views” on page 264). Fix and Continue
comes with three windows devoted entirely to Fix and Continue: Status,
Message, and Build Environment. This section describes Fix and Continue
menu selections and these windows.

The Fix and Continue menu is available from the Debugger Main View
menu bar, as shown in Figure A-130. The menu selections operate on the
selected function or on the file shown in the source view. The Fix and
Continue menu is also available from Source View and from the Fix and
Continue Status window.

Fix+Continue Windows

255

Figure A-130 Fix+Continue Menu Selections

Fix+Continue Status Window

This section describes the Fix+Continue Status window (see Figure A-131).
The Status window provides you with a summary of the modifications that
you have made during your session. It also allows you quick access to your
modified functions, and a somewhat expanded Fix+Continue menu.

Fix+Continue menu

Show Difference submenu

View submenu

Menu Bars

Preferences submenu

256

Appendix A: Debugger Reference

Figure A-131 Fix+Continue Status Window

The function ID number, status, name, and filename are displayed in the
Status window. Double-clicking a line item in the status window brings up
the corresponding source in the Debugger main window.

The menus and submenus that provide you with extra functionality through
the Status window (see Figure A-132) are described below.

Function list

Function ID #

Function status

Function name

Filename for function

Fix+Continue Windows

257

Figure A-132 Fix+Continue Status Window Menus

Admin Menu

The Admin menu (see Figure A-133) contains an option for closing the
window.

“Close” Closes the Status window.

Figure A-133 Status Window
Admin Menu

258

Appendix A: Debugger Reference

View Menu

The View menu (see Figure A-134) contains options for sorting the
information in the window, and displaying filenames.

“Sort Status View”
Sorts the information in the status view according to the
field currently selected.

“Show Long Filenames”
A toggle that allows you to show the absolute (long)
pathnames, relative pathnames, or base names.

Fix+Continue Menu

The Fix+Continue menu (see Figure A-135) that is available from the Status
view is somewhat different from that available through the Debugger main
view. It contains a number of options and submenus, which are all described
below. These options and submenus are active on the function that you select
in the Source view. You can select a function by clicking on it.

“External Editor”
Allows you to edit with an external editor such as vi, rather
than the Debugger’s default editor.

“Parse And Load”
Parses your modified function and loads it for execution.
You can execute the modified function by clicking on the
Run or Continue buttons in the Debugger main view.

Update All Files...”
Launches the “Save File+Fixes As...” dialog (see
Figure A-25), which allows you to update the current
session, saving all the modified functions to the appropriate
files.

“Show Difference” submenu (see Figure A-136)
Allows you to show the difference between the original
source and your modified code. You can show the
difference in the code in one of the two following ways:

• “For Function” shows the differences for the current
function only.

Figure A-134 Status Window
View Menu

Figure A-135 Status Window
Fix+Continue Menu

Figure A-136 Show Difference
Submenu

Fix+Continue Windows

259

• “For File” shows the differences for the entire file that
contains the current function.

“Enable” submenu (see Figure A-137)
Allows you to enable the changes in your modified code in
one of the three following ways:

• “Function” enables the changes in the current function.

• “Functions in File” enables the changes to the current
function in its own file.

• “All Functions” enables the changes to all functions in
the modified code.

“Disable” submenu (see Figure A-137)
Has the same menu choices as the “Enable” submenu, but
disables rather than enables.

“Save” submenu (see Figure A-138)
Allows you to save your code changes to a file. You can save
the changes in one of the three following ways:

• “Function...” launches the File dialog (see
Figure A-139), allowing you to save only the current
function to a file.

• “File...” launches the “Save File+Fixes As...” popup
window (see Figure A-25), allowing you to save the
entire file that contains the current function.

“Delete” submenu (see Figure A-137)
has the same menu choices as the “Enable” submenu, but
deletes rather than enables.

Figure A-137 Enable Submenu

Figure A-138 Save Submenu

Figure A-139 File Dialog

260

Appendix A: Debugger Reference

“Show” submenu (see Figure A-140)
Allows you to launch any of the following three different
Fix and Continue windows:

• “Message Window” launches a Message window for
the selected function. See “Fix+Continue Message
Window” on page 260 for more details.

• “Build Env for File” launches a Build Environment
window for the file shown in the Source View. See
“Fix+Continue Build Environment Window” on
page 262 for more details on the Build Environment
window.

• “Default Build Env” launches the Build Environment
window to show the options that are to be used in
cases where they could not be obtained from the target.
See “Fix+Continue Build Environment Window” on
page 262 for details on the Build Environment window.

Fix+Continue Message Window

The Fix+Continue Message window (see Figure A-141) contains a list of any
errors and other system messages that pertain to your source modifications,
parses, and attempts to run your modified source.

Figure A-140 Show Submenu

Fix+Continue Windows

261

Figure A-141 Fix+Continue Message Window

You can highlight the source line where the error occurred by
double-clicking the appropriate line in the Message window. The window
contains the following buttons:

Clear Clears all the parsing errors and warnings.

Next Puts a tick mark on the next unticked error warning entry in
the parse messages. It displays the corresponding file and
line in the Source view, highlighting it according to the type
of error or warning. Next doesn’t function after all the
entries in the messages are ticked.

Rescan Erases all the ticks, so that you can rescan all the error
warnings from the beginning.

Clear button

Next button

Rescan button

Clear button

Error Messages

262

Appendix A: Debugger Reference

The added functionality available through the Message window’s Admin
and View menus is described below.

Admin Menu

The Admin menu allows you to perform either of the following two
operations:

“Clear All” Clears all messages in the Message window.

“Close” Closes the window.

View Menu

The View menu allows you to set any of the following three toggles:

“Show Warnings”
Causes compile warnings to be displayed in the parse errors
list.

“Append Parse Messages”
Causes parse messages to be appended to the parse errors
list.

“Append Load Messages”
Causes load messages to be appended to the load errors list.

Fix+Continue Build Environment Window

This section describes the Fix+Continue Build Environment window (see
Figure A-142). The Build Environment window provides you with the build
information for your source code in your current environment. It displays
the command that was used to build your executable and the name of the file
that contains the function that you currently have selected.

Fix+Continue Windows

263

Figure A-142 Fix+Continue Build Environment Window

The compiler and associated flags that were used to compile the file are
normally gathered from the target. You can use the Build Environment
window to make any changes to these flags.

The Build Environment window allows you to select your build
environment setting through the “Build Environment Setting” toggle, which
contains the two options described below:

“Default” Sets the build environment to default that is displayed in
the Build Environment window.

Cancel Button

Files Button

OK Button

Clear Button

Set Button

Unset Button

Done Button

264

Appendix A: Debugger Reference

“File Specific” Sets the build environment to that of the file that contains
the currently selected function. You can change the file by
clicking the Select File button, which launches the File dialog
(see Figure A-139).

The Build Environment window also contains the following buttons:

Select File Launches the File dialog and allows you to select a file from
which to set the build environment.

Clear Clears the window.

Set Sets the build environment to what is displayed in the
window.

Unset Unsets the build environment.

Done Dismisses the window.

Changes to Debugger Views

When you use Fix and Continue, Debugger views change to show redefined
functions or stopped lines containing redefined functions.

Main View

When you open the Debugger after installing Fix and Continue, you’ll notice
several changes to the environment. All Fix and Continue functions are
available through the Fix+Continue menu. See Figure A-143 for details.

Fix+Continue Windows

265

Figure A-143 Debugger Main View

You select Fix and Continue commands from the Fix+Continue menu or
enter them at the Debugger command line. The source code status is Read
Only. Color coding shows the differences between editable code, enabled
redefinitions, disabled definitions, and breakpoints. Line numbers in
redefined functions have decimal notation that is used for every reference to
the line number. The integer portion of the decimal is the same as the first
line of the function. This ensures that compiled source code line numbers
remain unchanged.

Editable function

Decimal notation

Source
code
status
indicator

Annotated
scroll
bar

Source view

Fix and
Continue
menu

266

Appendix A: Debugger Reference

Command-Line Interface

The Debugger command-line interface accepts Fix and Continue commands
and reports status involving redefined functions or files. Figure A-144 shows
a function successfully redefined using the command line. Change id 1 was
previously redefined and assigned the number 1.

Figure A-144 Command-Line Interface With Redefined Function

Call Stack

The Call Stack View recognizes redefined functions. It uses the decimal
notation for line numbers, as shown in Figure A-145.

Figure A-145 Call Stack

Trap Manager

The Trap Manager recognizes redefined functions. It uses the decimal
notation for line numbers, as shown in Figure A-146.

Specify function with Change id 1

Decimal notation for line number

Debugger Command Line

267

Figure A-146 Trap Manager With Redefined Function

Debugger Command Line

To use the Debugger commands, which are entered at the command line at
the bottom of Main View (see Figure A-1), you should be familiar with dbx
commands. For more information, refer to the dbx Reference Manual. The
syntax for the debugging commands is as follows:

add_source {“filename”:line_number}

Prompts you to add source code lines (for example,
add_source “fmain.c”:15.2). line_number must be
within the body of a function. Entering a period (.) specifies
the end of your input. The source lines you provide are
added after the specified line. This command returns an ID
existing or new, depending on whether the function
affected has already been changed or not. The resulting new
definition of the function is executed on its entry next time.
See also delete_source, replace_source.

Decimal notation for line numbers

268

Appendix A: Debugger Reference

alias [shortform command]
Lists all aliases without arguments. With arguments, it
assigns command to shortform.

assign expression1=expression2
Assigns expression1 to expression2.

attach pid attaches to specified process ID pid.

call function_name [argument, ...]
Executes the specified function with any arguments
supplied.

catch [signal_name | all]
With no arguments, lists signals to be trapped. If a signal is
specified, it’s added to the list. If all is specified, it traps all
signals.

clear [all | source_line]
Clears breakpoints. The all option clears all breakpoints.
The source_line option clears the breakpoint at the specified
source line.

clearbuffer Clears the currently displayed lines.

clearcalls Cancels pending interactive function calls.

cont in function_name
Continues execution from the current line to the entry to the
specified function.

cont to line_number
Continues execution from the current line until the specified
line.

continue Continues executing a program after a breakpoint. Note
that you can c and cont as aliases for continue.

continue [signal]
Sends specified signal and continues executing a program
after a breakpoint.

corefile [filename]
With no arguments, reports whether data referencing
commands reference a core file. If so, displays the current
core file. With filename provided, specifies core file to be
debugged.

Debugger Command Line

269

delete displaynumber [,displaynumber, ...]
Deletes the specified expression from the display list.

delete all deletes all traps.

delete_changes {func_spec | -all | {-file filename}}

Undoes the changes corresponding to the selected functions
(for example, delete_changes getNumbers -file
fmain.c). Once deleted, you won’t be able to use the IDs
again, since the IDs associated with the selected functions
are released. The default is -all. See also save_changes.

delete_source {“filename”:line_number[,line_number]}

Deletes the given line(s) if line_number or ,line_number
(range) is within the body of a function. An example is:
delete_source “fmain.c”:8.6,8.7. This command
eturns an ID existing or new, depending on whether the
function affected has already been changed or not. The
resulting new definition of the function is executed on its
entry next time.

delete trap_number [,trap_number, ...]
Deletes the specified breakpoint from the status list.

detach Detaches from the current process.

disable all Deactivates all inactive traps.

disable_changes {func_spec | -all | {-file filename}}

Undoes changes specified for the selected functions (for
example, disable_changes getNumbers -file fmain.c.
Nothing happens if the selected function is already
disabled. The compiled definition of the function is
executed on its next entry. You can invoke this command
when the process is stopped or on a running process when
a function entry breakpoint is set.

disable trap_number [,trap_number, ...]
Deactivates a trap set by stop command.

display [expression, ...]
With expression, adds expression to the list of expressions
displayed whenever the process stops. With no arguments,
lists all expressions on the display list.

270

Appendix A: Debugger Reference

down [expression]
Moves down the specified number of frames in the call
stack. down moves in the direction of the called function.

dump Prints local variable values.

enable all Reactivates all inactive traps.

enable_changes {func_spec | -all | {-file filename}}

Redoes changes specified for the selected functions (for
example, enable_changes getNumbers -file fmain.c.
Nothing happens if the selected function is already enabled.
The latest accepted definition of the function is redefined on
its next entry. You can invoke this command when the
process is stopped or on a running process when a function
entry breakpoint is set.

enable trap_number [,trap_number, ...]
Reactivates a disabled stop trap.

expression/[count] [format] or expression,[count] /[format]
Prints the contents of the memory address specified by
expression, according to the specified format. count
represents the number of formatted items. The format
options are:

d prints a short word in decimal
D prints a long word in decimal
o prints a short word in octal
O prints a long word in octal
x prints a short word in hexadecimal
X prints a long word in hexadecimal
b prints a byte in octal
c prints a byte as a character
s prints a string of characters that ends in a null byte
f prints a single-precision real number
g prints a double-precision real number

file [filename]
Displays the name of the current or specified file (filename).
If a file is specified, it becomes the current file.

Debugger Command Line

271

func [func_name]
Moves to the source code corresponding to the specified
frame in the call stack or to the function in the executable if
not on the stack.

givenfile [filename]
With no arguments, displays name of current object file.
With filename, specifies object file to be debugged.

goto linenumber
Goes to the specified line number.

ignore [signal_name | all]
With no arguments, lists those signals not to be trapped. If a
signal is specified, this command removes it from the list of
signals to be trapped. If all is specified, ignores all signals.

kill [pid] Kills the specified process currently controlled by the
Debugger.

list [[expression [,expression]] | [function_name]]
Lists the specified number (expression) of lines. The default
is 10 lines. You can optionally specify a function where the
list is to take place.

list_changes [func_spec | -all | {-file filename}]

Lists one or more lines using the following syntax:

change_id isEnabled filename function_spec

For example:

4 enabled foo.c foo
8 disabled A.c++ A::bingo

The default is list_changes -all.

next [INT] Steps over the specified number of source instructions. This
command does not step into procedures. The default is one
instruction.

nexti [INT] Steps over the specified number of machine instructions.
This command does not step into procedures. The default is
one line.

272

Appendix A: Debugger Reference

print expression [,expression, ...]
Prints the value of the specified expression(s). If the
expression is a character pointer or array, both the string
and address print.

printd expression [,expression, ...]
Prints the value of the specified expression(s) in decimal
format. You can use pd as an alias.

printo expression [,expression, ...]
Prints the value of the specified expression(s) in octal
format. You can use po as an alias.

printregs Prints the contents of the registers.

printx expression [,expression, ...]
Prints the value of the specified expression(s) in
hexadecimal format. You can use px as an alias.

pwd Sisplays the current directory.

quit Exits the debugging session.

redefine func_spec

[-edit |

{ -read filename[line_number,line_number]}]

Specifies a new body for a function. The new definition is
checked, and errors (if any) are printed. The new function
body is redefined on the next function entry. Breakpoints (if
set) on the old definition are put on the new definition based
on their relative line number position from the beginning of
the function definition. (Note that some breakpoints may
not make it to the new definition.) You can invoke this
command when the process is stopped or on a running
process when a function entry breakpoint is set. There are
three ways to provide a new definition:

• -edit pops up an editor of your choice containing the
current definition of the function. The specification of
the new definition is complete when you exit the
editor. You may not leave the editor open. Figure A-147
shows the vi editor.

Debugger Command Line

273

Figure A-147 Editing a Function in the vi Editor

• -read takes the contents of the file specified (within the
line numbers if given) as the new function definition.

• No option allows you to type in replacement code from
the next line. A period in the first column on a fresh
line terminates the definition. For example:

redefine getNums
“/usr/fmain.c”:8.1> {
“/usr/fmain.c”:8.2> printf(“In getNums.\n”);
“/usr/fmain.c”:8.3> }
“/usr/fmain.c”:8.4> .

You can use a combination of characters (yet to be
determined) to open an editor of your choice
containing the lines typed. The specification of the new
definition is complete when you exit the editor.

replace_source {“filename”:line_number[,line_number]}

Prompts you to type in replacement source if line_number
or ,line_number (range) is within the body of a function.
The source lines you provide replace the specified line(s).
An example is replace_source “fmain.c”:12. This
command returns an existing or new id depending on
whether the function affected has already been changed or
not. The resulting new definition of the function is executed
on its entry next time. See also add_source and
delete_source.

rerun Runs the program again using the same arguments.

return Continues executing the current procedure and returns to
the next sequential line in the calling function.

run Runs the program.

274

Appendix A: Debugger Reference

runtime_check func_spec [-options key [key,...]]

Enables all run-time checking options by default. If
-options is specified then run-time checking is restricted to
the keys. The result of the checks selected will be printed
when the specified function is entered next time. You can
invoke this command when the process is stopped or on a
running process where a break point is set at function entry.

key = [[+|-] runtime_check option key]

For example:

A unique identifier (key) is returned whenever you specify
a function as an argument for runtime_check.

save_changes {func_spec | {-file filename}}

[-[w|a]] filename_to_save

Saves (enabled or disabled) function redefinitions or an
entire file to a separate file (filename_to_save). An
example of saving a function definition is the following:

save_changes getNumbers getNumbersFunc

If you specify the -file option, then before saving to
filename_to_save, all function changes are applied to the
compiled source of the file (with the condition that the file
has had only its functions redefined, and has not been
edited since the last build). An example of saving an entire
file is the following:

save_changes -file fmain.c fmain.c

-w replaces the filename_to_save. -a appends to the
file_to_save. An example of adding a function to a file is
the following:

save_changes getNumbers -a newFuncs

See also delete_changes.

setbuildenv [“filename”] compiler-flag-list

Overrides default build environment flags (compiler
options). Without filename, the flags are passed along with
-c -g flags to the compiler for any function in any file
except those set separately with setbuildenv. An example
is the following:

setbuildenv -DnameA -Idir

Debugger Command Line

275

If filename is given, this command sets separate flags
specifically for that file. For example, consider the
following:

setbuildenv “fermat.c” -DnameB -Ianotherdir

See also unsetbuildenv.

sh [shell_command]
Call a shell if no arguments; otherwise, executes the
specified shell command.

showbuildenv [“filename”]

Lists all the build environment flags set so far.
showbuildenv “filename” lists any build environment
specs set separately with setbuildenv “filename”.

show_changes [func_spec | -all | {-file filename}]

Prints the code of all enabled redefinitions of the specified
function(s). The default is show_changes -all. See also
enable_changes and disable_changes.

show_diff {func_spec | {-file filename}}

Launches a xdiff comparing the compiled source and its
latest redefinition for the specified function. If -file
filename is specified, xdiff shows the difference between
the compiled file and the file with all redefinitions applied
to the compiled source of the file (with the condition that the
file has had only its functions redefined, and has not been
edited since the last build).

source filename
Executes commands in the specified file.

status Displays a list of currently set breakpoints and traces.

step [INT] Steps the specified number of source instructions. This
command steps into procedures. The default is one
instruction.

stepi [INT] Steps the specified number of machine instructions. This
command steps into procedures. The default is one line.

stop at [filename:] line_number [if expression]
Traps at the specified line in the specified file. If the if
option is used, the trap fires only if expression is true.

276

Appendix A: Debugger Reference

stop in [filename:] function_name [if expression]
Traps at the entry to the specified function. If the if option
is used, then the trap fires only if expression is true. If the
filename is given, the function is assumed to be in that file’s
scope.

syscall catch | ignore [call | return] \

[sys_call_name | all]
The catch option adds a system call to the list of system
calls to be trapped. The ignore option removes a system
call from the system call trap list. The call option specifies
the entry to the system call and return signifies the return
from the call.

trace [variable] at [[“filename”:] \
[line_number | function_name] \

[if expression]]

Traces the specified variable. You can specify a file and/or
test condition. You can also specify a line number or a
function where the trace is to take place.

unalias aliasname
Cancels the alias specified as aliasname.

undisplay [displaynumber, ...]
Stops display of expression with specified displaynumber
when the process stops. Removes the expression from the
display list.

unsetbuildenv [“filename”]

Disregards the default build environment flags if specified
earlier. For all functions in files that don’t have an
overriding build environment, unsetbuildenv passes only
the -c and -g flags.

If filename is given, this command disregards the build
environment flags specified for the file earlier. Further
redefinition of the functions in the file use the default build
environment flags, if set. See also setbuildenv.

up [expression] Moves up the specified number of frames in the call stack.
up moves in the direction of the caller.

use [path] uses the specified path to search for source files.

Debugger Command Line

277

whatis identifier
Displays all the qualifications of the specified variable.

when at [filename:] line_number {command [; command ...]}
Stops the process and performs other Debugger commands
when the process reaches a specified line number.

when in [filename:] function_name {command [; command ...]}
Stops the process and performs other Debugger commands
at entry to function. If the filename is given, the function is
assumed to be in that file’s scope.

which identifier Displays the qualification of the specified variable.

where Performs a stack trace.

279

Appendix B

B. Using the Build Manager

WorkShop lets you compile software without leaving the WorkShop
environment. Thus, you can look for problems using the WorkShop analysis
tools (Static Analyzer, Debugger, and Performance Analyzer), make changes
to the source, suspend your testing, and run a compile. WorkShop provides
two tools to help you compile:

• “Build View”—for compiling, viewing compile error lists, and accessing
the code containing the errors in Source View (the CASEVision editor)
or an editor of your choice. Build View helps you find files containing
compile errors so that you can quickly fix them, recompile, and resume
testing.

• “Build Analyzer”—for viewing build dependencies and recompilation
requirements and accessing source files.

Build View uses the UNIX make facility as its default build software.
Although cvmake can be set up to run any program instead of make (for
example, gnumake), cvbuild will only parse and display standard makefiles
(in particular, it does not understand gnu make constructs).

Build View

You can access Build View from the WorkShop analysis tools, from a
command line (by typing cvmake), or from Build Analyzer (see next section).

To access Build View from WorkShop, select “Recompile” from the Source
menu in the Main View window in the Debugger or from the File menu in
Source View (for more information on Main View and Source View, refer to
Chapter 1, “Getting Started with the WorkShop Debugger”). Selecting
“Recompile” detaches the current executable from the WorkShop analysis
tools and displays Build View. You can edit the Directory and Target(s) fields
as needed and click Build to compile. If the source compiles successfully, the
new executable is reattached when you reenter the WorkShop analysis tools.

280

Appendix B: Using the Build Manager

The Build View window is shown in Figure B-1 with its Admin menu.

Figure B-1 Build View Window With Admin Menu Displayed

The Build View window has three major areas:

• “Build Process Control Area”

• “Transcript Area”

• “Error List Area”

Build Process Control Area

The build process control area lets you run or stop the build and view the
status. See Figure B-2.

Transcript area

Error list area

Build process control area

Build View

281

Figure B-2 Build Process Control Area in Build View Window

The directory in which the build will run displays in the Directory field at
the top of the area. The current directory displays by default. You can specify
the build using make, smake, pmake, clearmake, or any other builder and any
flags or options that the builder understands (see “Build View Preferences”
and “Build Options”). The target to be built is specified in the Target(s) field.

The build process control buttons let you control the build process. The buttons
are:

Build runs (or reruns) a build.

Note: If you have modified any files in Source View, you
will be prompted to save the new version prior to the
compile.

Interrupt terminates a build.

Suspend stops a build temporarily.

Resume restarts a suspended build.

The status field is to the right of the build process control buttons. It indicates
the progress of the build.

Transcript Area

The transcript area displays the verbatim output from the build. The vertical
scroll bar lets you go through the list; the horizontal scroll bar lets you see
long messages obscured from view. A sash between the compile transcript
area and the error list area lets you adjust the lengths of the lists displayed.
See Figure B-3.

Build command directory

Target directory

Build process control buttons

Status field

282

Appendix B: Using the Build Manager

Figure B-3 Build View Window With Typical Data

Error List Area

The error list area consists of the error list display and three control buttons.
The buttons are:

Next Error brings up the default editor scrolled to the next error
location. This button is below the error list display.

Rescan refreshes the error list display.

Clear clears the error list display area.

The error list area displays compile errors (see Figure B-3). The errors are
annotated according to their severity level (fatal has a solid icon and the
warning icon is hollow). Double-clicking the text portion of an error brings
up the default editor scrolled to the error location and displays a check mark
to help you keep track of where you are in the error list. Check marks also
display when you click the Next Error button.

Transcript area

Error list area

Build View

283

Build View Admin Menu

The Admin menu in Build View (see Figure B-4) has two selections in
addition to the standard WorkShop entries:

• “Build View Preferences”

• “Build Options”

For more information on “Launch Tool” and “Project”menu selections, refer
to the section “Admin Menu” on page 138.

Build View Preferences

The “Preferences...” selection brings up the dialog box shown in Figure B-5.
The options are:

Maker Program field
lets you enter the program you use to build your executable.

Macro Settings field
lets you enter build macros, such as

CFLAGS=-g.

Makefile field lets you enter the name of a makefile if you do not wish to
use the default.

Discard Duplicate Errors button
eliminates subsequent duplicates of errors in the error list
area.

Show Warnings button
toggles the option to display warnings in the list.

Figure B-4 Admin Menu in
Build View Window

284

Appendix B: Using the Build Manager

Figure B-5 Build View Preferences Dialog Box

Build Options

The Build Options dialog box lets you add the options shown in Figure B-6
to your make command.

Build View

285

Figure B-6 Build Options Dialog Box

Using Build View

The steps in running a compile using Build View are:

1. Bring up Build View.

2. Edit the Targets and Directory fields as required.

3. Specify your preference regarding duplicate errors and warnings using
the Admin menu (optional).

4. Click Build to start the build. All compile information displays in the
transcript area; errors are grouped in a list below.

5. Click Interrupt to terminate or Suspend for a temporary stop, if you want
to stop the build. The Resume button restarts a suspended build.

6. Double-click an error to bring up your preferred editor with the
appropriate source code. A check mark indicates that an error has been
accessed.

286

Appendix B: Using the Build Manager

Note: The default editor is determined by the editorCommand resource
in the app-defaults file. The value of this resource defaults to wsh -c vi
+%d, which means run vi in a wsh window and scroll to the current line.
If the editor lets you specify a starting line, enter %d in the resource to
indicate the new line number.

7. Click Build to restart the build.

Build Analyzer

Build Analyzer displays a graph indicating the source files and derived files
in the build, and their dependency relationships and current status. Source
files refers to input files, such as code modules, documentation, data files,
and resources. Derived files refers to output files, such as compiled code.
You request builds in Build Analyzer by either:

• double-clicking a derived module

• making a selection from the Build menu

You access Build Analyzer from WorkShop by selecting “Launch Tool” from
the Admin menu in Main View. Outside of WorkShop, you can access Build
Analyzer by typing cvbuild at the command line. A typical Build Analyzer
window appears in Figure B-7 with the menus displayed.

Build Analyzer

287

Figure B-7 Build Analyzer Window

Build Specification Area

The three fields in the build specification area identify the working directory,
makefile script, and target file(s) for compilation. You can edit the Directory,
Makefile, and Targets field directly. The Targets field also lets you specify a
search string for locating a file in the build graph.

Build specification area

Build graph area

Build graph control area

288

Appendix B: Using the Build Manager

Build Graph Area

The build graph area displays the specified source and derived files and their
dependency relationships. Files are depicted as rectangles; dependency
relationships are shown as arrows, with the supplying file at the base of the
arrow and the dependent file at the head. The colors used to depict the files
depends on your color scheme. Build Analyzer differentiates the two types
of files by depicting one with light characters on a dark background and the
other with dark text on a light background. If you double-click a source file
icon, an editor is brought up for that file. Double-clicking a derived file starts
a build and displays Build View.

In addition to dependency relationships, Build Analyzer indicates the status
of the files and relationships as follows:

• source file availability status: normal or checked out

– Normal means that the source file is read-only and needs to be
made writable to be edited. Normal files appear as light rectangles
with black text.

– Checked out means that you have a writable version of this file
available and can thus edit it. A checked out file appears in a
different color (from normal files) with a shadow.

• derived file compile status: current or obsolete

– When applied to a derived file, the term current means that none of
the files on which the derived file depends have been edited since
the derived file was created. Current derived files appear as dark
rectangles with white text.

– Obsolete means that one or more of the source files have been
modified since the derived file was created. Obsolete files appear in
the same color as current derived files but with a colored outline.

Build Analyzer

289

• dependency relationship: current or obsolete

– Current means that the derived file is up to date with the source
files. Note that a relationship can be current even if both files are
obsolete. This happens when a file on which both files are
dependent has been modified. Current arcs are black.

– Obsolete means that the source file has changed and the derived file
has not been updated accordingly. Obsolete arcs appear as colored
arrows.

Some typical build graph icons are shown in Figure B-8.

Figure B-8 Build Graph Icons

The main.c and hello.h source files are in their normal state. The source files
warn.c++ and foo.h are checked out and thus appear highlighted and with
dropped shadows. The derived file main.o is current, since it has not changed
since the last compile. The black dependency arcs indicate that the source
and derived files at either end are current with each other. When an arc is
highlighted, it indicates that the source has changed since the last compile.
The derived files warn.o and a.out are obsolete because warn.c++ has
changed.

Derived file-normal state

Source file-normal state

Source file-checked out state

Dependency arc-current state

Dependency arc-obsolete state

Derived files-obsolete state

290

Appendix B: Using the Build Manager

Build Graph Control Area

The build graph control area contains a row of graph control buttons similar to
the ones in the WorkShop Static Analyzer and the Call Graph View in the
Performance Analyzer. The Overview button is particularly useful in the
Build Analyzer because it helps you quickly find obsolete files where a lot of
dependencies are involved.

The build graph control area is shown in Figure B-9.

Figure B-9 Build Graph Control Area

Overview Window

Since build graphs can get quite complicated, an overview mode (similar to
those in Static Analyzer and Profiling View) is supplied that lets you view
the entire graph at a reduced scale. To display the overview window, you
click the overview icon (see Figure B-9).

Figure B-10 shows a typical Overview window with the resulting graph in
Build Analyzer. The Overview window has a movable viewport that lets you
select the portion of the build graph displayed in Build Analyzer. Source files
that have changed and derived files needing recompilation are highlighted
for easy detection. In this particular color scheme, the Overview window
displays normal source files in turquoise, checked out source files in pink,
current derived files in dark blue, and obsolete derived files in yellow. Arcs
appear only in black in the Overview window.

Zoom menu
Zoom out button
Zoom in button
Overview button
Multiple arcs button (disabled)
Realign button
Rotate button

Build Analyzer

291

Figure B-10 Overview Window With Resulting Build Analyzer Graph

Build Analyzer Menus

Build Analyzer contains these menus:

• Admin

• Build

• Filter

• Query

Build Analyzer Admin Menu

The Admin menu (Figure B-11) provides one selection “Refresh Graph
Display” in addition to the standard WorkShop selections.

Viewport

Figure B-11 Admin Menu in
Build Analyzer

292

Appendix B: Using the Build Manager

“Refresh Graph Display”
refreshes the window.

“Launch Tool” lets you execute the WorkShop tools. For more information,
see the section “Admin Menu” on page 138.

“Project” lets you control the WorkShop tools operating on the same
executable as a group. For more information, see the section
“Admin Menu” on page 138.

Build Menu

The selections in the Build menu (see Figure B-12) let you perform builds as
follows:

“Build Default Target”
performs a make with no arguments.

“Build Selected Target(s)”
performs the build(s) as entered in the Targets field.

“Show Build Rule”
displays a dialog box showing the makefile line for the
selected node.

Filter Menu

The Filter menu has only one selection:

“Select files to show in graph”
lets you enter a regular expression to filter the files
displayed in the build graph. The File Filter dialog box
appears in Figure B-13.

Figure B-12 Build Menu

Build Analyzer

293

Figure B-13 Filter Dialog Box

The upper list area lets you specify files to be excluded
from the build graph. The lower list is for specifying files to
appear in the graph.

Query Menu

The Query menu lets you request information about the build graph (see
Figure B-14). The selections are:

“Why Is This File Out Of Date?”
identifies the source files requiring this file to be
recompiled. This query only applies to derived files.

“What Will Changing This File Affect?”
shows all derived files dependent on this source file.

Filter out file list

Filter in file list

Figure B-14 Query Menu

295

array variables, 4, 209
assign Debugger command, 268
assigning values to variables, 67
attach Debugger command, 268
Automatic Dereference Limit field in Structure

Browser Preferences box, 234

B

boundary overruns, 89
boundary underrun, 89
breakpoint, 4
breakpoint, adding, 123
breakpoint results, viewing, 129
breakpoints, setting, 81
breakpoints, setting for a class, 124
breakpoints examiner, 174

callback, 176
event-handler, 178
input-handler, 184
resource-change, 180
state-change, 185
timeout-procedure, 182
X-event, 188

breakpoints tab, 128
breakpoint type option button, 176
Build Analyzer, 286-293
Build Environment window, 262
Build Manager, 279-293

A

accessing files, 21
access to freed memory, 89
Access to uninitialized memory, 89
“Active” selection in Admin menu, 6, 35
active toggle, 167, 172
Add button in Trap Manager, 33
adding a breakpoint, 123
“Address...” selection in Disassemble menu, 241
Admin menu, 257

Debugger views, 5
general description, 138
“Library Search Path...”, 138

admin menu, 172
active toggle, 167, 172
clone, 167, 172
close, 167, 172
save as text, 167, 172

alias debugger command, 268
all trap Debugger command option, 49
arguments, command line, 56
“Arrange” selection in Structure Browser Display

menu, 230
Array Browser, 4, 40

general description, 209
subscript controls, 41

“Array Browser” selection in Views menu, 40, 142
Array field in Array Browser, 210
array subscripts, 211

Index

296

Index

build path, 12
Build View, 279-286

C

C++ expressions, 69
callback breakpoints examiner, 176
callback context, viewing, 125
callback examiner, 125, 196
call Debugger command, 268
Call Stack, 4
call stack, 83
“Call Stack” selection in Views menu, 34, 142
Call Stack View, 35, 61, 221
call stack view, 266
callstack view, 129
catch Debugger command, 268
C expressions, 68
C function calls, 68
change ID, 12
changes, re-enabling, 85
classes, examining widget, 124
“Clear All” selection in Structure Browser Display

menu, 231
clearbuffer Debugger command, 268
Clear button in Trap Manager, 33
clearcalls Debugger command, 268
clear Debugger command, 268
“Clear Trap” selection in Traps menu, 46, 154
“Click for Help” selection in Help menu, 159
clone current window, 167, 172
“Clone” selection in Admin menu, 6
close current window, 167, 172
code, changing, 77
code, changing from command line, 79

code, comparing, 84
code, deleting changed, 79
code, switching between compiled and redefined, 85
Col button in Array Browser, 41
“Column Width...” selection in Array Browser

Display menu, 213
Command field in Main View, 56
command line interface, 266
comparing function definitions, 85
Condition field in Trap Manager, 51
Config menu in Structure Browser, 227
Config menu in Trap Manager, 48
cont in Debugger command, 268
Continue button in Main View, 32, 34, 56
continue Debugger command, 268
“Continue To” selection in Disassembly View PC

menu, 240
“Continue To” selection in PC menu, 59, 154
cont to Debugger command, 268
conventions, font, for manual, xxix
corefile Debugger command, 268
cvd

Execution View, 119
Main View, 118

Cycle Count field in Trap Manager, 34, 52

D

data structures, 4
dbx commands, 267
Debugger

call stack view, 266
changes to views, 264
command line interface, 266
exiting, 2
main view, 264

297

Index

process execution control, 55-59, ??-160
starting, 1, 27
trap manager, 266

debugger
Execution View, 119
Main View, 118

Debugger, exiting, 87
Debugger command, 268
Debugger command line, 3, 267-277

process execution commands, ??-59, ??-160
Debugger data, 61-??
Debugger views, 61, 221, 236
Debugger with Fix and Continue support

Fix and Continue
Debugger support with, 12

Default Field Count field in Structure Browser Type
Formatting, 235

Default Iconic Width field in Structure Browser
Preferences box, 234

Default Iconic Width field in Structure Browser Type
Formatting box, 235

Default State field in Structure Browser Type
Formatting box, 235

Default Structure Field Count field in Structure
Browser Preferences box, 234

Default Structure Width field in Structure Browser
Preferences box, 234

Default Structure Width in STructure Browser Type
Formatting box, 235

delete all Debugger command, 269
delete Debugger command, 269
delete trap Debugger command, 269
Dereference Ptrs By Default field in Structure

Browser Preferences box, 234
“Dereference Ptrs” selection in Structure Browser

Node menu, 233
detach, 269

“Detach” selection in Admin menu, 140
“Detail” selection in Structure Browser submenu,

232
difference tools, 86
disable all Debugger command, 269
disable Debugger command, 269
disabling traps, 33
disassembled code, 4
Disassemble File dialog box, 242
Disassemble Function dialog box, 242
Disassemble menu in Disassembly View, 241
Disassembly View, 4

preferences, 242
“Disassembly View” selection in Views menu, 142
display area in Structure Browser, 229
display Debugger command, 269
Display menu

Main View, 147, 291
Display menu in Structure Browser, 227, 230
Display menu in Traps Manager, 48
“Display” selection in Structure Browser Display

menu, 230
documentation, recommended reading, xxviii
double frees, 89
down Debugger command, 270
dump Debugger command, 270

E

enable all Debugger command, 270
enable trap Debugger command, 270
environment variables

setting, 59, 160
erroneous frees, 89
Error Message window, 260
event examiner, 197

298

Index

event-handler breakpoints examiner, 178
examine menu, 173

selection, 173
widget, 173
widget class, 173
X event, 173

examiner
breakpoint, 123
breakpoints, 174
callback, 125, 196
callback breakpoints, 176
event, 197
event-handler breakpoints, 178
graphics context (GC), 198
input-handler breakpoints, 184
pixmap, 199
resource-change breakpoints, 180
state-change breakpoints, 185
timeout-procedure breakpoints, 182
trace, 191
tree, 121, 194
widget, 120, 193
widget class, 200
window, 126, 196
X-event breakpoints, 188

examiner menu
X graphics context, 174
X Pixmap, 174

examiners
overview, 14
selections, 15

examiner tabs, 174
examining Debugger data, 4, 61
Examining view data, 34
examining widget classes, 124
examining widgets, 122
examin menu

widget tree, 173
“Exception View” selection in Views menu, 142

execution control buttons, 56-58
Execution View, 59, 119, 160
“Execution View” selection in Views menu, 142
exiting Debugger, 87
exiting the Debugger, 2
exiting X/Motif analyzer, 130
“Exit” selection in Admin menu, 142
Expression column in Expression View, 65, 224
expression count Debugger command, 270
Expression field in Structure Browser, 38, 229
expressions

C, 68
C++, 69
Fortran, 70

“Expression” selection in Structure Browser Display
submenu, 230

Expression View, 4, 37, 65, 223
“Expression View” selection in Views menu, 37, 143

F

File Browser, 21
“File Browser” selection in Views menu, 143
file Debugger command, 270
File Menu, Source View, 161
files

opening, 22
files, comparing source code, 86
files, finding, 12
“File...” selection in Disassemble menu, 242
finding files, 12
Fix+Continue menu, 258
Fix and Continue

basic cycle, 8
breakpoints, 81
Build Environment window, 262

299

Index

build path, 12
change ID, 12
changing code, 77
changing code from command line, 79
deleting changed code, 79
editing a function, 76
environment, 11
Error Message window, 260
functionality, 8
GUI, 254
GUI command line, 12
menu operations, 154
redefining functions with, 7
restrictions, 10
sample session, 73
Session, 155, 258
Show Difference, 155
starting, 7
Status window, 84, 255
traps, 81
View, 156
WorkShop integration, 9

font conventions, for manual, xxix
“Fork Editor” selection in Source menu, 5, 145
Format menu in Expression View, 37, 65, 223, 224
Format menu in Structure Browser, 228
Format menu in Variable Browser, 237
formatting fields in Structure Browser, 233
Fortran expressions, 70
Fortran function calls, 71
Fortran variables, 70
frames, 61, 221
func Debugger command, 271
function, editing, 76
function, redefining

Fix and Continue
redefining functions, 75

function definitions, comparing, 85

functions, identifying, 12
“Function...” selection in Disassemble menu, 241

G

gdiff, 86
“Geometry” selection in Structure Browser Node

menu, 232
givenfile Debugger command, 271
GLdebug, 139
“GLdebug” selection in Admin menu, 139
goto Debugger command, 271
Goto dialog box, 146
“Go to Line...” selection in Source menu, 146
graphics context (GC) examiner, 198
GUI command line, 12

H

heap corruption
detection, 89-98

heap corruption problems
defined, 89

Help menu, 159
“Hide Icons” selection in Display menu, 148
“Hide Line Numbers” selection in Display menu,

147

I

“Iconic” selection in Structure Browser submenu,
232

“Iconify” selection in Admin menu, 141
“Iconify” selection in Session menu, 202
identifying functions, 12

300

Index

ignore Debugger command, 271
index identifiers in Array Browser, 212
Indexing Expression field in Array Browser, 211
index maximum specification in Array Browser, 212
index minimum specification in Array Browser, 212
“Index...” selection in Help menu, 159
index sliders in Array Browser, 212
index values in Array Browser, 212
input-handler breakpoints examiner, 184
“Insert Source...” selection in Source menu, 145
integration of WorkShop tools, 6
interface, command line, 266

J

jello program, 27
“Jump To” selection in Disassembly View PC menu,

240
“Jump To” selection in PC menu, 59, 154

K

“Keys & Shortcuts” selection in Help menu, 159
Kill button in Main View, 56
kill Debugger command, 271

L

Language menu in Expression View, 37, 65, 223, 224
Language menu in Variable Browser, 237
launching the X/Motif analyer, 13
launching X/Motif analyzer, 119
$LD_LIBRARY_PATH, setting, 14
Library Search Path dialog box, 138

“Linked List” selection in Structure Browser Display
menu, 231

list Debugger command, 271
“Load Expressions...” selection in Expression View

Config menu, 67
“Load Settings...” selection in Admin menu, 140
“Load Traps...” selection in Config menu in Trap

Manager, 53

M

Main View, 118
Command field, 56
Continue button, 56
control panel, 55-58
Display menu, 147, 291
general description, 2
Kill button, 56
menus, ??-159
PC Menu, 59
PC menu, 59
Run button, 56
Sample button, 58
Status field, 56
Step Into, 56
Step Over button, 57
Stop button, 56

main view, Debugger, 264
“Make Editable” in Source menu, 5
“Make Editable” selection in Source menu, 145
“Make Read Only” selection in Source menu, 145
managing source files, 21, 25
“Maximize” selection in Structure Browser Node

submenu, 232
memory locations, 4
Memory View, 4, 248
Memory View Mode menu, 249
“Memory View” selection in Views menu, 143

301

Index

menu operations, 154
Message window, 260

Admin menu, 262
buttons, 261
View menu, 262

“Minimize” selection in Structure Browser Node
submenu, 232

Minimum lines around current instruction field in
Disassembly View Preferences box, 243

multiprocess traps, 48
“Multiprocess View...” selection in Admin menu, 139

N

next Debugger command, 271
nexti Debugger command, 271
Node menu in Structure Browser, 228, 232
Node popup menu in Structure Browser, 229
“Normal” selection in Structure Node submenu, 232
“N...” selection in Step Into menu, 56
“N...” selection in Step Over menu, 57
Number of instructions to disassemble field in

Disassembly View Preferences box, 243

O

opening files, 22
“Open...” selection in Source menu, 145
“Overview” selection in Help menu, 159

P

path remapping, 23
“Pattern Layout” in Structure Browser Node menu,

233

PC, 154
PC menu, 59, 154

“Continue To”, 59
“Jump To”, 59

PC menu in Disassembly View, 240
PC menu in Main View, 59
performance data

Sample button, 58
pgrp trap Debugger command option, 49
pixmap examiner, 199
pollpoint, 4
pollpoint trap Debugger command option, 50
Preference menu, 156
preparing the fileset, 117
printd expression Debugger command, 272
print expression Debugger command, 272
printo expression Debugger command, 272
printregs Debugger command, 272
printx expression Debugger command, 272
process execution control, 55-59, ??-160

Main View control panel, 55-58
PC menu, 59

“Process Meter” selection in Views menu, 143
“Product Information” selection in Help menu, 159
program counter, 59, 154
program output, tracking, 13
“Project” selection in Admin menu, 141
pwd Debugger command, 272

Q

quit Debugger command, 272

302

Index

R

“Raise” selection in Admin menu, 141
“Raise” selection in Session menu, 202
“Raise” selection in Structure Browser Node

submenu, 233
Read-Only

Debugger status, 12
“Recompile” selection in the Source menu, 145
redefining functions, 7
Register name display format field in Disassembly

View Preferences box, 243
registers, 4
Register View, 4, 244
Register View formatting, 247
Register View Preferences dialog box, 247
“Register View” selection in Views menu, 143
Register View window, 245
“Remap Paths...” selection in Session menu, 23
“Remove” selection in Structure Browser Node

menu, 233
removing traps with mouse, 47
rerun Debugger command, 273
resource-change breakpoints examiner, 180
restrictions and limitations, 16
Result column in Expression View, 65, 224
Return button in Main View

Main View
Return button, 58

return Debugger command, 273
row/column toggles in Array Browser, 212
Run button in Main View, 56
run Debugger command, 273

S

“Sample At Function Entry” selection in Traps
submenu, 46, 153

“Sample At Function Exit” selection in Traps
submenu, 46, 154

Sample button in Main View, 58
sample session, 117

Interpreter, 73
preparing fileset, 117
setting up, 117

sample session setup, 73
sample trap, 45
sample trap command, 48-50
sample traps, 3
“Save As...” selection in Source menu, 145
save as text, 167, 172
“Save as Text...” selection in Admin menu, 6
“Save As Text...” selection in Source menu, 145
“Save Expressions...” selection in Expression View

Config menu, 67
“Save” selection in Source menu, 145
“Save Settings...” selection in Admin menu, 141
“Save Traps...” selection in Config menu in Trap

Manager, 53
saving to source file, 80
saving view data, 5
Search field in Trap Manager, 53
“Search...” selection in Source menu, 145
“Search” selection in Source menu, 29
“Search” selection in Structure Browser Display

menu, 231
selection, 173
“Selection” selection in Structure Browser Display

menu, 230
“Select” selection in Structure Browser Node menu,

233

303

Index

Session submenu, 155, 258
setting traps, 31, 54
setting traps with the mouse, 47
“Set Trap” selection in Traps menu, 46, 153
sh Debugger command, 275
Show Difference submenu, 155
Show embedded source annotation field in

Disassembly View Preferences box, 244
“Show Icons” selection in Display menu, 148
Show instruction value field in Disassembly View

Preferences box, 244
Show jal target numerically field in Disassembly

View Preferences box, 244
“Show Line Numbers” selection in Display menu,

147
Show machine address field in Disassembly View

Preferences box, 244
“Show Overview” selection in Structure Browser

Display menu, 231
Show source file and line number field in

Disassembly View Preferences box, 244
continue, 268
Signal Panel, 53
“Signal Panel” selection in Views menu, 143
signals

traps, 4
signal trap Debugger command option, 50
source annotation column

traps, 46
source code display area, 2
source code status indicator, 12, 74
source Debugger command, 275
source file, saving to, 80
source files

managing, 21-25
Source View

File Menu, 161

“Source View” selection in Views menu, 143
special libraries, 14
specifying traps, 54
spreadsheet area in Array Browser, 212
stack frame, 35
stack frames, 61, 221
starting, process execution, 56
starting Fix and Continue, 7
starting the Debugger, 1, 27
starting the X/Motif analyzer, 13
start trap command, 50
state-change breakpoints examiner, 185
“State” selection in Structure Browser Node menu,

232
status, viewing, 84
status Debugger command, 275
Status field in Main View, 56
status line

Main View, 3
Status window, 84, 255

Admin menu, 257
Fix+Continue menu, 258
Preference menu, 156
View menu, 258

step Debugger command, 275
stepi Debugger command, 275
step indicators in Array Browser, 212
Step Into button in Disassembly View, 240
Step Into button in Main View, 56
Step Over button in Disassembly View, 240
Step Over button in Main View, 57
stop at Debugger command, 275
“Stop At Function Entry” selection in Traps

submenu, 46, 153
“Stop At Function Exit” selection in Traps submenu,

46, 153

304

Index

Stop button in Main View, 56
stop in Debugger command, 276
stopping, process execution, 56
stop trap, 45
stop trap command, 48
stop traps, 3, 31
Structure Browser, 4

general description, 226
Structure Browser Preferences dialog box, 234
“Structure Browser” selection in Views menu, 38,

143
subscript controls In Array Browser, 41
subscripts

array, 211
“Switch Executable...” selection in Admin menu, 140
Switch Process dialog box, 140
“Switch Process...” selection in Admin menu, 139
syscall Debugger command, 276
Syscall Panel, 53
“Syscall Panel” selection in Views menu, 143
syscall trap Debugger command option, 50
system calls

traps, 4

T

tab overflow area, 128
tabs, 128
tabs, examiner, 174
“Task View” selection in Views menu, 143
timeout procedure breakpoints examiner, 182
trace Debugger command, 276
trace examiner, 191
tracking program output, 13
trap actions, 44

trap condition, 51
trap examples, 50
Trap Manager, 32
trap manager, 83
Trap Manager menus, 48
“Trap Manager” selection in Views menu, 143
trap mananger, 266
traps, 3, 31

disabling, 33
general description, 43-54
one-time, 59
removing with mouse, 47
setting conditions, 51
setting cycle count, 52
setting with mouse, 47
Signal Panel, 53
Syscall Panel, 53
triggering, 44

traps, setting, 81
Traps menu in Main View, 45
Traps menu in Trap Manager, 48, 52
traps multiprocess, 48
trap terminology, 44
tree examiner, 121, 194
“Tree” selection in Structure Browser Display

submenu, 230
triggering traps, 44
Type Color field in Structure Browser Type

Formatting box, 236
Type Formatting dialog box, 235
Type Name field in Structure Browser Type

Formatting box, 235

U

unalias Debugger command, 276
undisplay Debugger command, 276

305

Index

“Update” selection in Structure Browser Display
menu, 231

updating view data, 5
up Debugger command, 276
use Debugger command, 276
using

Interpreter, 73
using the X/Motif analyzer, 14

V

Variable Browser, 4, 35
general description, 237

“Variable Browser” selection in Views menu, 35, 143
variables

assignment, 67
view, call stack, 266
view changes in Debugger, 264
view data, 5
viewing status, 84
View menu, 258
views

Debugger, 236
Views menu in Main View, 142
View submenu, 156

W

watch command, 33
watchpoint, 33
watchpoints, 4
watch trap Debugger command option, 49
whatis Debugger command, 277
when at Debugger command, 277
when in Debugger command, 277

where Debugger command, 277
which Debugger command, 277
widget classes, examining, 124
widget class examiner, 200
widget class menu item, 173
widget examiner, 193
widget hierarchy, 121
widget item, 173
widgets, examining, 122
widget structure, navigating, 120
widget tree menu item, 173
window attributes, viewing, 126
window examiner, 126, 196
window menu item

examine menu
window, 173

WorkShop integration, 9
“Wrapped Display” selection in Array Browser

Display menu, 213

X

X-event breakpoints examiner, 188
X event menu item, 173
X graphics context menu item, 174
X/Motif analyer

launching, 13
X/Motif analyzer

additional features, 126
default view, 120
exiting, 130
launching, 119
navigating widget structure, 120
restrictions and limitations, 16
sample session, 117
starting, 13
using, 14

306

Index

“X/Motif Analyzer” selection in Views menu, 144
X Pixmap menu item, 174

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2879-003.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

