
Developer MagicTM: Debugger User’s
Guide

Document Number 007–2579–005

St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica.

Copyright © 1996, 1999 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Silicon Graphics, Inc.

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR
52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre
Pkwy., Mountain View, CA 94043-1351.

IRIS, IRIX, and Silicon Graphics are registered trademarks and Developer Magic, and the Silicon Graphics logo are trademarks of
Silicon Graphics, Inc. Open Software Foundation, Motif, OSF, OSF/Motif are trademarks of the Open Software Foundation, Inc.
PostScript is a trademark of Adobe Systems, Inc. UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited. X/Open is a trademark of X/Open Company Ltd. The X device is a
trademark of the Open Group.

New Features

Developer MagicTM: Debugger User’s Guide 007–2579–005

This revision of the Developer Magic: Debugger User’s Guide supports the 2.8 release of MIPSpro WorkShop
tools. New features include the following:

• Improved pthread support

– stability

– ability for user to continue a single POSIX 6.5 pthread

• Fix and continue for -n32 abi

• Trap manager improvements

– ability to save breakpoints across debugging sessions

– ability to set a breakpoint at a line number in a non-loaded DSO — an enhancement to pending
traps, introduces in WorkShop 2.7

• Modules-based installation

Record of Revision

Version Description

2.7 June 1998
Revised to reflect changes for the ProDev WorkShop 2.7 release.

2.8 April 1999
Revised to reflect changes for the MIPSpro WorkShop 2.8 release.

007–2579–005 i

Contents

Page

About This Guide xxi

Related Publications . xxii

Obtaining Publications . xxii

Conventions . xxii

Reader Comments . xxiv

WorkShop Debugger Overview [1] 1

Main Debugger Features . 1

The Debugger Main View Window 2

About Traps . 3

Viewing Program Data . 4

Integrating the Debugger with Other WorkShop Tools 5

Accessing the Performance Analyzer from the Main View Window 5

Accessing the Static Analyzer from the Main View Window 6

Accessing Editors from the Main View Window 6

Accessing Configuration Management Tools 7

Recompiling from the Main View Window 7

Debugging with Fix+Continue . 8

Debugging with the X/Motif Analyzer 8

Customizing the Debugger . 8

Additional Information . 9

Basic Debugger Usage [2] 11

Getting Started with the Debugger 11

Basic Tips and Features . 11

007–2579–005 iii

Developer MagicTM: Debugger User’s Guide

Page

Fortran 90 Code Example and Short Tutorial 13

Example 1: Fortran 90 Example 13

C Code Example and Short Tutorial 15

Example 2: C Code Example 16

Options for Controlling Program Execution 19

Setting Traps . 20

Options for Viewing Variables 20

Viewing Variables Using the cvd> Command Line 21

Viewing Variables Using Click To Evaluate 22

Viewing Variables Using the Variable Browser 23

Viewing Variables Using the Expression View Window 23

Viewing Variables Using the Array Browser 25

Viewing Variables Using the Structure Browser Window 27

Searching . 27

Using the Call Stack View 28

Stopping at Functions or Subroutines 30

Suggestions for Debugging for Serial Execution of Scientific Programs 31

Step 1: Use lint . 32

Step 2: Check for Out-of-Bounds Array Accesses 32

Step 3: Check for Uninitialized Variables Being Used in Calculations 34

Step 4: Find Divisions by Zero and Overflows 35

Step 5: Perform Core File Analysis 36

Step 6: Troubleshoot Incorrect Answers 37

Selecting Source Files [3] 39

How to Load Source Files . 39

Load Directly into the Main View Window 39

Load from the File Browser Dialog Box 40

iv 007–2579–005

Contents

Page

Load from the Open Dialog Box 41

Path Remapping . 43

Case Example for Path Remapping 45

Tutorial: The jello Program [4] 47

Starting the Debugger . 47

Run the jello Program . 48

Perform a Search . 51

Edit Your Source Code . 53

Setting Traps . 54

Examining Data . 58

Exiting the Debugger . 67

Setting Traps [5] 69

Traps Terminology . 70

Trap Triggers . 70

Trap Types . 71

Setting Traps . 72

Setting Traps with the Mouse . 73

Setting Traps Using the cvd> Command Line 73

Setting Traps Using the Traps Menu in the Main View Window 73

Setting Traps in the Trap Manager Window 76

Setting Single-Process and Multiprocess Traps 77

Syntaxes . 78

Setting a Trap Condition . 82

Setting a Trap Cycle Count . 83

Setting a Trap with the Traps Menu 83

Moving around the Trap Display Area 84

Enabling and Disabling Traps . 84

007–2579–005 v

Developer MagicTM: Debugger User’s Guide

Page

Saving and Reusing Trap Sets . 84

Setting Traps by Using Signal Panel and System Call Panel 84

Controlling Program Execution [6] 87

The Main View Window Control Panel 87

Features of the Main View Window Control Panel 87

Execution Control Buttons . 88

Controlling Program Execution Using the PC Menu 91

Execution View . 92

Viewing Program Data [7] 93

Traceback through Call Stack View 93

Options for Viewing Variables . 96

Using the cvd> Command Line 97

Using Click to Evaluate . 97

Using the Array Browser . 97

Using the Structure Browser 97

Using the Variable Browser 98

Using the Expression View 98

Evaluating Expressions . 99

Expression View Window . 99

Assigning Values to Variables . 102

Evaluating Expressions in C . 103

C Function Calls . 104

Evaluating Expressions in C++ 104

Limitations . 104

Evaluating Expressions in Fortran 105

Fortran Variables . 106

Fortran Function Calls . 106

vi 007–2579–005

Contents

Page

Debugging with Fix+Continue [8] 107

Introduction to Fix + Continue . 107

Fix+Continue Functionality . 107

Fix+Continue Integration with Debugger Views 108

How Redefined Code Is Distinguished from Compiled Code 108

The Fix+Continue Interface . 109

Debugger with Fix+Continue Support 109

Change ID, Build Path, and Other Concepts 109

Restrictions on Fix+Continue . 110

Fix+Continue Tutorial . 111

Setting up the Sample Session 111

Redefining a Function: time1 Program 112

Editing a Function . 113

Changing Code . 115

Saving Changes . 118

Setting Breakpoints in Redefined Code 118

Viewing Status . 121

Comparing Original and Redefined Code 121

Switching between Compiled and Redefined Code 121

Comparing Function Definitions 122

Comparing Source Code Files 124

Ending the Session . 124

Detecting Heap Corruption [9] 125

Typical Heap Corruption Problems 125

Finding Heap Corruption Errors . 126

Compiling with the Malloc Library 126

Setting Environment Variables 127

007–2579–005 vii

Developer MagicTM: Debugger User’s Guide

Page

Trapping Heap Errors Using the Malloc Library 128

Heap Corruption Detection Tutorial 129

Multiple Process Debugging [10] 135

Using the Multiprocess View Window 136

Starting a Multiprocess Session 137

Viewing Process Status . 137

Using Multiprocess View Control Buttons 138

Multiprocess Traps . 138

Viewing Pthreaded Applications 138

Adding and Removing Processes 139

Multiprocess Preferences . 139

Bringing up Additional Main View Windows 139

Debugging a Multiprocess C Program 139

Launch the Debugger in Multiprocess View 141

Using Multiprocess View to Control Execution 142

Using the Trap Manager to Control Trap Inheritance 144

Debugging a Multiprocess Fortran Program 146

General Fortran Debugging Hints 146

Fortran Multiprocess Debugging Session 146

Debugging Procedure . 148

Debugging a Pthreaded Program 152

User-Level Continue of Single 6.5 POSIX Pthread 153

Scheduling Anomalies . 153

Blocking Anomalies . 155

How to Continue a Single POSIX 6.5 Pthread 155

Other Pthread Debugging Hints 156

Differences between 6.4 and 6.5 Pthreads 156

viii 007–2579–005

Contents

Page

Pthread Debugging Session . 157

X/Motif Analyzer [11] 159

Introduction to the X/Motif Analyzer 159

Examiners Overview . 159

Examiners and Selections . 160

Inspecting Data . 160

Inspecting the Control Flow . 160

Tracing the Execution . 161

Restrictions and Limitations . 161

X/Motif Analyzer Tutorial . 161

Setting up the Sample Session 162

Launching the X/Motif Analyzer 163

Navigating the Widget Structure 163

Examining Widgets . 166

Setting Callback Breakpoints . 168

Using Additional Features of the Analyzer 172

Ending the Session . 175

Customizing the Debugger [12] 177

Customizing the Debugger with Scripts 177

Using a Startup File . 177

Implementing User-Defined Buttons 178

Changing X Window System Resources 180

DUMPCORE Environment Variable 182

Appendix A Debugger Reference 183

Main View Window . 183

Admin Menu . 190

Views Menu . 192

007–2579–005 ix

Developer MagicTM: Debugger User’s Guide

Page

Query Menu . 194

Source Menu . 194

Display Menu . 197

Perf Menu . 197

Traps Menu . 199

PC Menu . 201

Fix+Continue Menu . 201

Show Difference Submenu 202

View Submenu . 203

Preferences Submenu . 203

Keyboard Accelerators . 205

Help Menu . 205

Some Additional Views . 206

Execution View . 206

Multiprocess View . 206

Status of Processes . 207

Multiprocess View Control Buttons 208

Multiprocess View Administrative Functions 208

Controlling Preferences . 209

Source View . 210

Process Meter . 213

Charts Menu . 214

Scale Menu . 215

Controlling Multiple Processes 215

Ada-specific Windows . 216

Task View . 216

Admin Menu . 217

Config Menu . 218

Layout Menu . 218

Display Menu . 218

x 007–2579–005

Contents

Page

Exception View . 219

X/Motif Analyzer Windows . 222

Global Objects . 223

Admin Menu . 224

Examine Menu . 224

Examiner Tabs . 225

Return Button . 226

Breakpoints Examiner . 226

Callback Breakpoints Examiner 229

Event-Handler Breakpoints Examiner 231

Resource-Change Breakpoints Examiner 233

Timeout-Procedure Breakpoints Examiner 234

Input-Handler Breakpoints Examiner 235

State-Change Breakpoints Examiner 236

X-Event Breakpoints Examiner 237

X-Request Breakpoints Examiner 239

Trace Examiner . 240

Widget Examiner . 242

Tree Examiner . 243

Callback Examiner . 246

Window Examiner . 247

Event Examiner . 248

Graphics Context Examiner . 248

Pixmap Examiner . 249

Widget Class Examiner . 250

Trap Manager Windows . 251

Trap Manager . 252

Config Menu . 253

Traps Menu . 254

007–2579–005 xi

Developer MagicTM: Debugger User’s Guide

Page

Display Menu . 254

Signal Panel . 254

Syscall Panel . 255

Data Examination Windows . 256

Array Browser Window . 257

Spreadsheet Menu . 261

Format Menu . 262

Render Menu . 263

Color Menu . 263

Scale Menu . 265

Examiner Viewer Controls . 266

Examiner Viewer Menu . 268

Call Stack View Window . 271

Config Menu . 273

Display Menu . 273

Expression View Window . 273

Config Menu . 274

Display Menu . 275

Language Pop-up Menu . 275

Format Pop-up Menu . 275

File Browser Window . 276

Structure Browser Window 277

Using the Structure Browser Overview Window to Navigate 279

Entering Expressions . 279

Working in the Structure Browser Display Area 279

Structure Browser Display Menu 280

Node Menu . 282

Formatting Fields . 284

Variable Browser Window 288

Entering Variable Values . 288

xii 007–2579–005

Contents

Page

Changing Variable Column Widths 289

Viewing Variable Changes . 289

Machine-level Debugging Windows 290

The Disassembly View Window 290

Similarities with Main View Window 291

The Disassemble Menu . 292

The Config Menu Preferences Dialog 294

The Register View Window 296

The Register View Window 297

Changing the Register View Display 298

The Memory View Window . 299

Viewing a Portion of Memory 300

Changing the Contents of a Memory Location 301

Changing the Memory Display Format 301

Moving around the Memory View Display Area 301

Fix+Continue Windows . 301

Fix+Continue Status Window 302

Admin Menu . 304

View Menu . 304

Fix+Continue Menu . 305

Fix+Continue Error Messages Window 307

Admin Menu . 307

View Menu . 307

Fix+Continue Build Environment Window 308

Changes to Debugger Views . 309

Main View . 309

Command Line Interface . 310

Call Stack View . 311

Trap Manager . 311

Debugger Command Line . 312

007–2579–005 xiii

Developer MagicTM: Debugger User’s Guide

Page

Syntax for dbx-style Commands 312

Blocking Kernel System Calls . 326

Appendix B Using the Build Manager 329

Build View Window . 329

Build Process Control Area . 330

Transcript Area . 331

Error List Area . 332

Build View Admin Menu . 332

Build View Preferences . 332

Build Options . 333

Using Build View . 334

Build Analyzer Window . 335

Build Specification Area . 336

Build Graph Area . 336

Build Graph Control Area . 338

Build Analyzer Overview Window 339

Build Analyzer Menus . 340

Admin Menu . 340

Build Menu . 340

Filter Menu . 340

Query Menu . 341

Index 343

Figures
Figure 1. The WorkShop Debugger Main View Window 3

Figure 2. Evaluation Pop-Up Menu 22

Figure 3. Expression View Window 24

Figure 4. Array Browser Window 25

xiv 007–2579–005

Contents

Page

Figure 5. Search Window . 28

Figure 6. Call Stack View Window 29

Figure 7. Trap Manager Window 31

Figure 8. File Browser Window 40

Figure 9. Open Dialog Box . 42

Figure 10. Path Remapping Dialog Box 44

Figure 11. The Main View Window with jello Source Code 50

Figure 12. The jello Window 51

Figure 13. The Search Dialog . 52

Figure 14. Search Target Indicators 53

Figure 15. Stop Trap Indicator . 56

Figure 16. Trap Manager Window 57

Figure 17. Call Stack View at spin Stop Trap 59

Figure 18. Variable Browser at spin 60

Figure 19. Variable Browser after Changes 61

Figure 20. Expression View with Language and Format Menus Displayed 62

Figure 21. Structure Browser Window with jello_conec Structure 63

Figure 22. Structure Browser Window with Next Pointer De-referenced 64

Figure 23. Array Browser Window for shadow Matrix 65

Figure 24. Subscript Controls Panel in Array Browser Window 66

Figure 25. Traps Menu in the Main View Window 74

Figure 26. Typical Trap Icons . 75

Figure 27. Trap Manager Config, Traps, and Display Menus 76

Figure 28. Trap Examples . 78

Figure 29. Signal Panel and System Call Panel 85

Figure 30. The Main View Window Control Panel 87

Figure 31. Pop-up Menu and Step Into Dialog 89

007–2579–005 xv

Developer MagicTM: Debugger User’s Guide

Page

Figure 32. Pop-up Menu and Step Over Dialog 90

Figure 33. Call Stack View Window 94

Figure 34. Tracing through Call Stack View 96

Figure 35. Expression View with Major Menus Displayed 100

Figure 36. Change Indicators in Expression View 101

Figure 37. Program Results in Execution View 112

Figure 38. Selecting a Function for Redefinition 114

Figure 39. Redefined Function . 115

Figure 40. Stopping after Breakpoints in Redefined Code 120

Figure 41. Comparing Compiled and Redefined Function Code 123

Figure 42. Heap Corruption Warning Shown in Execution View 131

Figure 43. Call Stack at Boundary Overrun Warning 131

Figure 44. Main View at Bus Error 133

Figure 45. Multiprocess View 137

Figure 46. Examining Process State Using Multiprocess View 144

Figure 47. Comparing Variable Values from Two Processes 152

Figure 48. First View of the X/Motif Analyzer (Widget Examiner) 164

Figure 49. Widget Hierarchy Displayed by the Tree Examiner 165

Figure 50. Adding a Breakpoint for a Widget 167

Figure 51. Setting Breakpoints for a Widget Class 169

Figure 52. Callback Context Displayed by the Callback Examiner 170

Figure 53. Window Attributes Displayed by the Window Examiner 171

Figure 54. Selecting the Breakpoints Tab from the Overflow Area 173

Figure 55. Breakpoint Results Displayed by the Call Stack View 174

Figure 56. User-Defined Button Example 178

Figure 57. Major Areas of the Main View Window 184

Figure 58. Show/Hide Annotations Button in the Main View Window 189

xvi 007–2579–005

Contents

Page

Figure 59. Perf Menu and Subwindows 198

Figure 60. Process Menu . 207

Figure 61. Source View Window 211

Figure 62. Process Meter . 214

Figure 63. Process Menu . 215

Figure 64. Task View Window 217

Figure 65. Exception View . 220

Figure 66. Launching the X/Motif Analyzer Window 223

Figure 67. Examiner Tabs . 225

Figure 68. Breakpoints Examiner Display in the X/Motif Analyzer Window 228

Figure 69. Callback Breakpoints Examiner 230

Figure 70. Event-Handler Breakpoints Examiner 232

Figure 71. Timeout-Procedure Breakpoints Examiner 234

Figure 72. Input-Handler Breakpoints Examiner 235

Figure 73. State-Change Breakpoints Examiner 236

Figure 74. X-Event Breakpoints Examiner 238

Figure 75. X-Request Breakpoints Examiner 239

Figure 76. Request Type Selection Dialog 240

Figure 77. Trace Examiner . 241

Figure 78. Widget Examiner . 242

Figure 79. Tree Examiner . 244

Figure 80. Tree Examiner Window Graphical Buttons 245

Figure 81. Callback Examiner . 246

Figure 82. Window Examiner . 247

Figure 83. Event Examiner . 248

Figure 84. Graphics Context Examiner 249

Figure 85. Pixmap Examiner . 250

007–2579–005 xvii

Developer MagicTM: Debugger User’s Guide

Page

Figure 86. Widget Class Examiner 251

Figure 87. Trap Manager Window 252

Figure 88. Signal Panel . 255

Figure 89. Syscall Panel . 256

Figure 90. Array Browser with Display Menu Options 258

Figure 91. Subscript Controls Area in the Array Browser 259

Figure 92. Array Browser Spreadsheet Area 261

Figure 93. Example of Wrapped Array 262

Figure 94. Color Exception Portion of Array Browser Window 264

Figure 95. Array Browser Graphic Modes 265

Figure 96. Examiner Viewer with Controls and Menus 267

Figure 97. Examiner Viewer Preference Sheet Dialog 270

Figure 98. Call Stack View . 272

Figure 99. Expression View . 274

Figure 100. Expression View Format Popup with Submenus 275

Figure 101. File Browser Window 277

Figure 102. Structure Browser with Menus Displayed 278

Figure 103. Tree and Linked List Arrangements of Structures 281

Figure 104. Node Menu . 282

Figure 105. Structure Browser Preferences Dialog 284

Figure 106. Structure Browser Type Formatting Dialog 286

Figure 107. Variable Browser with Menus Displayed 289

Figure 108. Typical Variable Change Indicators 290

Figure 109. The Disassembly View Window with the Disassembly Menu Displayed . . 291

Figure 110. The Disassemble From Address Dialog 292

Figure 111. The Disassemble Function Dialog 293

Figure 112. The Disassemble File Dialog 294

xviii 007–2579–005

Contents

Page

Figure 113. The Disassembly View Preferences Dialog with Display Format Menu . 295

Figure 114. The Register View Window 297

Figure 115. The Register View Preferences Dialog 299

Figure 116. The Memory View Window with the Mode Submenu Displayed 300

Figure 117. Fix+Continue Status Window 303

Figure 118. Fix+Continue Status Window Menus 304

Figure 119. Fix+Continue Build Environment Window 308

Figure 120. Debugger Main View Window 310

Figure 121. Command Line Interface with Redefined Function 311

Figure 122. Call Stack View 311

Figure 123. Trap Manager Window with Redefined Function 312

Figure 124. Build Process Control Area in Build View Window 330

Figure 125. Build View Window with Typical Data 331

Figure 126. Build View Preferences Dialog 333

Figure 127. Build Options Dialog 334

Figure 128. Build Analyzer Window 336

Figure 129. Build Graph Icons . 338

Figure 130. Build Graph Control Area 338

Figure 131. Build Analyzer Overview Window with Build Analyzer Graph 339

Tables
Table 1. Valid C Operations . 103

Table 2. Valid Fortran Operations 105

Table 3. Fix+Continue Keyboard Accelerators 205

007–2579–005 xix

About This Guide

This publication documents the Developer Magic Debugger, released with the
2.8 version of MIPSpro WorkShop tools running on IRIX systems.

The Debugger is a source-level debugging tool that allows you to see program
data, monitor program execution, and fix code for Ada, C, C++, Fortran 77, and
Fortran 90.

This manual contains the following chapters:

• Chapter 1, page 1, gives you an introductory functional overview of the
Developer Magic Debugger.

• Chapter 2, page 11, outlines principles and procedures of the debugging
process and how to approach them using the WorkShop Debugger.

• Chapter 3, page 39, describes how to manage source files.

• Chapter 4, page 47, presents a short Debugger tutorial based on
demonstration programs provided with your WorkShop tools.

• Chapter 5, page 69, describes how to set various types of traps.

• Chapter 6, page 87, describes methods for controlling process execution.

• Chapter 7, page 93, explains how to examine Debugger data.

• Chapter 8, page 107, presents a short tutorial using Fix and Continue.

• Chapter 9, page 125, describes heap corruption problems and how to detect
them.

• Chapter 10, page 135, describes debugging multiprocess programs.

• Chapter 11, page 159, presents a short tutorial using the X/Motif Analyzer

• Chapter 12, page 177, gives you tips on how you can customize the
Debugger to the requirements of your working environment.

• Appendix A, page 183, describes all of the Debugger windows, menus, and
other features in detail.

• Appendix B, page 329, describes the use of the Build Manager.

007–2579–005 xxi

Developer MagicTM: Debugger User’s Guide

Related Publications

The following documents contain additional information that may be helpful:

• C++ Language System Library

• C++ Language System Overview

• C++ Language System Release 3.0.1 Product Reference Manual

• C++ Programmer’s Guide

• Developer Magic: Performance Analyzer User’s Guide

• Developer Magic: ProDev WorkShop Overview

• Developer Magic: Static Analyzer User’s Guide

• Fortran 77 Language Reference Manual

• dbx User’s Guide

Obtaining Publications

Silicon Graphics maintains publications information at the following web site:

http://techpubs.sgi.com/library

This library contains information that allows you to browse documents online,
order documents, and send feedback to Silicon Graphics.

To order a printed Silicon Graphics document, call 1–800–627–9307.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

xxii 007–2579–005

About This Guide

manpage(x) Man page section identifiers appear in
parentheses after man page names. The following
list describes the identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and
opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

8 Administrator commands

Some internal routines (for example, the
_assign_asgcmd_info() routine) do not have
man pages associated with them.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

007–2579–005 xxiii

Developer MagicTM: Debugger User’s Guide

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. Be sure to include the title and part number of
the document with your comments.

You can contact us in any of the following ways:

• Send electronic mail to the following address:

techpubs@sgi.com

• Send a facsimile to the attention of “Technical Publications” at fax number
+1 650 932 0801.

• Use the Suggestion Box form on the Technical Publications Library World
Wide Web page:

http://techpubs.sgi.com/library/

• Call the Technical Publications Group, through the Technical Assistance
Center, using one of the following numbers:

For Silicon Graphics IRIX based operating systems: 1 800 800 4SGI

For UNICOS or UNICOS/mk based operating systems or CRAY Origin2000
systems: 1 800 950 2729 (toll free from the United States and Canada) or
+1 651 683 5600

• Send mail to the following address:

Technical Publications
Silicon Graphics, Inc.
1600 Amphitheatre Pkwy.
Mountain View, California 94043–1351

We value your comments and will respond to them promptly.

xxiv 007–2579–005

WorkShop Debugger Overview [1]

The Silicon Graphics MIPSpro WorkShop Debugger is a UNIX source-level
debugging tool for Silicon Graphics MIPS systems. It displays program data
and execution status in real time. This tool can be used to debug Ada, C, C++,
FORTRAN 77, and Fortran 90.

Note: Currently, the Debugger does not accommodate all Fortran 90 derived
syntax, but it does accommodate Fortran 90 array syntax.

For an introductory tutorial to the principles of debugging, particularly with the
WorkShop Debugger, see Chapter 2, page 11.

This chapter presents an overview of the WorkShop Debugger and is divided
into the following sections:

• Main Debugger Features, Section 1.1, page 1

• Debugging with Fix+Continue, Section 1.2, page 8

• Debugging with the X/Motif Analyzer, Section 1.3, page 8

• Customizing the Debugger, Section 1.4, page 8

1.1 Main Debugger Features

The following sections outline the primary features and functions of the
WorkShop Debugger and include references to comprehensive information
found throughout this manual:

• The Debugger Main View Window, Section 1.1.1, page 2

• About Traps, Section 1.1.2, page 3

• Viewing Program Data, Section 1.1.3, page 4

• Integrating the Debugger with Other WorkShop Tools, Section 1.1.4, page 5

007–2579–005 1

Developer MagicTM: Debugger User’s Guide

1.1.1 The Debugger Main View Window

When you start the Debugger with an executable file, the Main View window
displays, loaded with source code, ready to execute your program with your
specified arguments. Most of your debugging work takes place in the Main
View window, which includes the following:

• A menu bar for performing debugger functions

• A control panel for specifying and controlling program execution

• A source code display area which displays the code for the program you
are debugging.

• A source filename field which tells gives you the path to the file displayed
in the source code display area

• A status area for viewing the current status of the program

• The Debugger command line in which to enter debugging commands (see
Section A.9, page 312, for command syntax)

The major areas of the Main View window are shown in Figure 1, page 3.

Note: For a comprehensive description of the Main View window, see
Section A.1, page 183.

2 007–2579–005

WorkShop Debugger Overview [1]

Menu bar

Control panel

Status area

Source code
display area

Annotation
column

Source filename

Debugger
command line

Figure 1. The WorkShop Debugger Main View Window

1.1.2 About Traps

Part of the debugging process requires that you inspect data at various points
during program execution. A trap is a mechanism for gathering this data.
There are two categories of traps:

• A stop trap halts a process so that you can manually examine data.

• A sample trap collects specific performance data without stopping.

The Debugger lets you set traps at the following points:

• At a line in a file (a breakpoint). These are the most commonly used stop
traps. You can set them by clicking in the annotation column to the left of
an executable statement in the source code display panel. (See the
annotation column in Figure 1.)

• At an instruction address.

• On entry to or exit from a function.

007–2579–005 3

Developer MagicTM: Debugger User’s Guide

• When a signal is received.

• When a system call is made, at either the entry or exit point.

• When a given variable or address is written to, read from, or executed (a
watchpoint).

• At set time intervals (a pollpoint).

For more information on traps, refer to Chapter 5, page 69.

1.1.3 Viewing Program Data

When you stop a process, the Views menu at the Main View window menu bar
provides several options for viewing your data. These Views menu options
allow you to inspect the following types of data:

• Call Stack

This option allows you to inspect the call stack at the breakpoints.

• Expression View

This option allows you to inspect the value of specified expressions.

• Variable Browser

This option allows you to inspect the values, types, or addresses of variables.

• Structure Browser

This option allows you to inspect data structures.

• Multiprocess View

This option allows you to inspect the values of multiple and / or pthreaded
processes.

• Array Browser

This option allows you to inspect the values of an array variable.

4 007–2579–005

WorkShop Debugger Overview [1]

• Memory View

This option allows you to inspect the values in specified memory locations.

• Register View

This option allows you to inspect registers.

• Disassembly View

This option allows you to inspect the disassembled code.

1.1.4 Integrating the Debugger with Other WorkShop Tools

MIPSpro WorkShop tools are designed so that you can move easily between
them in a work session.

1.1.4.1 Accessing the Performance Analyzer from the Main View Window

You can run the Performance Analyzer from the Main View window as follows:

Note: If you are in the middle of a run, you must first terminate it.

1. Select the following from the menu bar:

Perf
->Select Task

->Task in List

2. Click on the RUN button in the Control Panel.

The executable is run.

3. Select the following from the menu bar:

Perf
->Examine Results

The Performance Analyzer window will display your results. For more
information on the Performance Analyzer, see the Developer Magic:
Performance Analyzer User’s Guide.

007–2579–005 5

Developer MagicTM: Debugger User’s Guide

1.1.4.2 Accessing the Static Analyzer from the Main View Window

The Static Analyzer displays information that makes it easier to determine
where to set traps in your source code. To launch the Static Analyzer, select the
following from the menu bar:

Admin
->Launch Tool

->Static Analyzer

For more information on the Static Analyzer, see the Developer Magic: Static
Analyzer User’s Guide.

1.1.4.3 Accessing Editors from the Main View Window

Once you have isolated your code problem with the WorkShop tools, you will
want to correct and recompile your source. WorkShop offers several ways to do
this:

1. You can select the following from the Source Menu to make code changes
in the source pane of the Main View window:

a. Select Source > Make Editable. Make your changes accordingly.
(Make Editable toggles with Make Read Only.)

b. Select Source > Save to save your changes.

c. Select Source > Recompile to recompile your changed code.

2. You can invoke an editor from the Views menu that is a separate window
in which to edit your code:

Views
->Source View

Note: You must select Make Editable from the File menu at this
point to proceed.

3. You can call up a fork editor window to launch your own editor as follows
(first path):

Source
->Fork Editor

6 007–2579–005

WorkShop Debugger Overview [1]

4. You can call up a fork editor window to launch your own editor as follows
(second path):

Views
->Source View

Then, from the Source View window select the following:

File
->Fork Editor

1.1.4.4 Accessing Configuration Management Tools

If you use ClearCase (a Silicon Graphics product), RCS, or SCCS for
configuration management, you can integrate the tool into the WorkShop
environment by entering the following command:

cvconfig [clearcase | rcs | sccs]

This will allow you to use Versioning source control (from the Source
menu) to check files in and out.

1.1.4.5 Recompiling from the Main View Window

You can recompile your code from the Build View window, accessible from
the menu bar as follows:

Source
->Recompile

For more on the Build View window, see Section B.1, page 329.

To examine build dependencies for your code, launch the Build Analyzer from
the menu bar as follows:

Admin
->Launch Tool

->Build Analyzer

For more on the Build Analyzer window, see Section B.6, page 335.

For general information on the Build Manager tools, see Appendix B, page 329.

007–2579–005 7

Developer MagicTM: Debugger User’s Guide

1.2 Debugging with Fix+Continue

Fix+Continue gives you the ability to make changes to a program written in C
or C++ without having to recompile and link the entire program before
continuing to debug the code. With Fix+Continue, you can edit a function, parse
the new functions, and continue execution of the program being debugged.
Fix+Continue commands may be issued from the Fix+Continue window, which
you launch from the Fix+Continue item on the Main View menu bar.

You can also issue Fix+Continue commands from the Debugger’s command line.

See Chapter 8, page 107, for a comprehensive description of the theory and
operation of Fix+Continue, including a short tutorial.

1.3 Debugging with the X/Motif Analyzer

The X/Motif Analyzer provides specific debugging support for X/Motif
applications. The X/Motif analyzer is integrated with the Debugger. You issue
X/Motif analyzer commands graphically from the X/Motif analyzer
subwindow of the Debugger Main View. Select the following from the Main
View window to access this subwindow:

Views
->X/Motif Analyzer

See Chapter 11, page 159 for a comprehensive description of the theory and
operation of the X/Motif Analyzer, including a short tutorial.

1.4 Customizing the Debugger

WorkShop provides you with a number of ways that you can customize your
Debugger as best suited to the needs of your development environment.

See Chapter 12, page 177, for more tips on customizing the Debugger to your
specific needs.

8 007–2579–005

WorkShop Debugger Overview [1]

1.5 Additional Information

In addition to this manual and the manuals listed in "About This Guide," page
8, you should consult the following sources regarding the WorkShop Debugger:

• The WorkShop 2.8 Release Notes are installed on any system running
WorkShop 2.8. These notes provide the following information:

– Installation instructions

– Changes and additions since the last release

– Bugfixes

– Known problems and their workarounds

There are two ways to view the release notes:

– Enter the following command to view the relnotes as simple text:

% relnotes WorkShop

See the relnotes(1) man page for additional information.

– Enter the following command to view the relnotes through the graphical
release notes viewer:

% grelnotes WorkShop

See the grelnotes(1) man page for additional information.

• The online Help menu includes a FAQ option. Consult this for a list of
frequently asked questions and operating tips.

007–2579–005 9

Basic Debugger Usage [2]

The WorkShop Debugger can be used with the following compilers: C, C++,
Ada, FORTRAN 77, and Fortran 90. Currently, the Debugger does not handle
all Fortran 90 syntax (that is, derived types), but it does handle Fortran 90 array
syntax.

This chapter includes information regarding principles and procedures of the
debugging process and how these are to be approached with the WorkShop
Debugger.

2.1 Getting Started with the Debugger

Before starting a Debugger session from a remote workstation, you must first
enter the following from a window:

xhost + machine_name

Where machine_name is the name or IP address of the machine where the
program that you would like to debug will be run.

On the machine where your program will be running, enter the following:

echo $DISPLAY

The machine_name of your workstation should appear, followed by :0.0. If it
does not, enter the following on the machine where your program will run (if
you are using the csh or tcsh shells):

setenv DISPLAY machine_name:0.0

For other shells, see their respective man pages.

2.1.1 Basic Tips and Features

Note: You can find short Debugger tutorials in Section 2.1.2, page 13 and
Section 2.1.3, page 15 for Fortran 90 and C, respectively.

See also Appendix A, page 183 for a comprehensive description of Debugger
functions.

007–2579–005 11

Developer MagicTM: Debugger User’s Guide

To provide debugging information to the Debugger, compile your program with
the -g option (this disables optimization and produces information for
symbolic debugging).

To begin a Debugger session enter:

%cvd executable &

The Debugger Main View window will automatically appear along with an icon
for the Execution View window.

If your program requires data to be read from a file named input, for example,
then type the following in the command (cvd>) pane of the Main View window:

cvd> run < input

(See Figure 1, page 3.)

The Execution View window receives all the output from running your
program that would normally go directly to your screen. The Main View
window controls your Debugger session, displaying your source code in its
center pane. If you want to see the line numbers for your program, select the
following from the Main View window menu bar:

Display
->Show Line Numbers

At the bottom of the Main View window there is a window with the cvd>
prompt from which you can enter all dbx commands to the Debugger.

The Debugger allows you to run your program and stop at selected places so
you can view current values of program variables to help you find bugs in your
program. To stop at a selected statement in your program, you may either set a
breakpoint (also called a stop trap) at the desired statement or set a breakpoint
prior to the desired statement and then use either the Step Into or Step
Over buttons to reach the desired stopping point. The statement where your
program has stopped is indicated in green. A statement highlighted in red
indicates that a breakpoint has been set on this line. When the Debugger causes
your program to stop at a breakpoint that you have set, the executable statement
immediately prior to the breakpoint has been executed, and the executable
statement on which the breakpoint has been set has yet to be executed.

Note: Programs featured in this chapter are located in the following
directory: /usr/demos/WorkShop/getstarted.

12 007–2579–005

Basic Debugger Usage [2]

2.1.2 Fortran 90 Code Example and Short Tutorial

Use the Fortran 90 files prog.f and dot.f in
/usr/demos/WorkShop/getstarted to demonstrate the Debugger features
in the following tutorial.

Example 1: Fortran 90 Example

• The Fortran 90 code in the file prog.f is as follows:

program prog

parameter (n=3)

double precision A(n,n), x(n), y(,) sum xydot

! initialize arrays
x = 2.0d0

do i = 1, n

y(i) = i

do j = 1, n

A(i,j) = i*j - i

enddo
enddo

! compute the dot product of x and y

call dot(x,y,n,xydot)

print *, ’dot product of x & y = ’, xydot

! compute y = Ax

do i = 1, n

sum = 0.0

do j = 1, n
sum = sum + A(i,j)*x(j)

enddo

y(i) = sum

enddo

print *, ’y = ’, y

stop
end

007–2579–005 13

Developer MagicTM: Debugger User’s Guide

• It includes subroutine dot in file dot.f, as follows:

subroutine dot(a,b,m,answer)

double precision a(m), b(m), answer
integer m

answer = 0.0d0

do i = 1, m

answer = answer + a(i)*b(i)

enddo

end

Perform the following steps with these files to demonstrate Debugger
features:

1. Enter the following command in the
/usr/demos/WorkShop/getstarted directory to produce the executable
program:

% f90 -g -o progf prog.f dot.f

This produces the executable progf.

2. Launch the WorkShop Debugger with your newly-compiled executable as
follows:

% cvd progf &

The WorkShop Debugger Main View displays the source for your prog.f
file (see Example 1, page 13).

3. Select the following from the Main View menu bar to turn on file line
numbering:

Display
->Show Line Numbers

The line numbers will display to the left of the source code.

4. Enter a breakpoint at line 15 as follows at the cvd> prompt at the bottom
of the Main View window. This will enable you to execute through the end
of the initialization of the y array for the sample code:

cvd> stop at 15

Line 15 is highlighted in red and a stop icon appears in the left column.

14 007–2579–005

Basic Debugger Usage [2]

5. Run the program. There are two ways that you can do this:

a. Click on the Run button at the top of the Main View window.

OR

b. Enter the following at the cvd> prompt:

cvd> run

The program executes up to Line 15 and waits for further instruction.

6. Enter the following command at the cvd> prompt to print the y array for
this example:

cvd> print y

The following displays in the cvd> command pane:

y =

(1) = 1.0

(2) = 2.0

(3) = 3.0

cvd>

Note: You should expand this pane (or use the slider at the right side of
the pane) if you do not see the printout.

7. At this point, you can experiment with other command described in this
chapter, notably the execution control buttons described in Section 2.1.4,
page 19.

8. Select the following to end this tutorial for the Fortran 90 demo program.

Admin
->Exit

2.1.3 C Code Example and Short Tutorial

Use the C file prog.c and dot.c in /usr/demos/WorkShop/getstarted to
demonstrate the Debugger features in the following tutorial.

007–2579–005 15

Developer MagicTM: Debugger User’s Guide

Example 2: C Code Example

The following is the same example as the Fortran 90 example in Section 2.1.2,
page 13, but it is written in C. Use this example to see how the Debugger can
be used to view C structures.

• The C code in the file prog.c is as follows:

#include <stdio.h>
#define N 3

double dot(double v[],double w[], int m);

void main(){

int i,j;

double a[N][N],x[N],y[N],sum,xydot;
struct node

{

int value;

struct node *next;

} *list,start;

/* Initialize arrays */

for(i=0;i<N;i++){

x[i]=2;

y[i]=i;

for(j=0;j<N;j++){
a[i][j]=i*j-i;

}

}

/* Compute the dot product x and y */
xydot=dot(x,y,N);

printf("dot product of x & y: %f \n",xydot);

/* Compute y=ax */

for(i=0;i<N;i++){
sum=0;

for(j=0;j<N;j++){

sum+=a[i][j]*x[j];

}

y[i]=sum;

}
printf("y = ");

for(i=0;i<N;j++){

printf("%f ",y[i]);

16 007–2579–005

Basic Debugger Usage [2]

}

printf("\n");

/* Built list*/

start.value=1;

list=&start

for(i=1;i<N;i++){

list->next=(struct node *) malloc(sizeof(struct node));
list=list->next;

list->value=i;

}

list->next=NULL;

printf("list: ");
list=&start;

for(i=0;i<N;i++){

printf("%d ",list->value);

list=list->next;

}
printf("\n");

}

• It includes function dot in file dot.c, as follows:

double dot(double v[],double w[], int m){

int i;

double sum;

for(i=0;i<m;i++){
sum+=v[i]*w[i];

}

return(sum);

}

Perform the following steps with this file to demonstrate Debugger features:

1. Enter the following command in the
/usr/demos/WorkShop/getstarted directory to produce the executable
program:

% cc -g -o progc prog.c dot.c

This produces the executable progc.

007–2579–005 17

Developer MagicTM: Debugger User’s Guide

2. Launch the WorkShop Debugger with your newly-compiled executable as
follows:

% cvd progc &

The WorkShop Debugger Main View displays the source for your prog.c
file (see Example 2, page 16).

3. Select the following from the Main View menu bar to turn on file line
numbering:

Display
->Show Line Numbers

The line numbers will display to the left of the code source window.

4. Enter a breakpoint at line 23 as follows at the cvd> prompt at the bottom
of the Main View window. This will enable you to execute up to the end of
the y array for the sample code:

cvd> stop at 23

Line 23 is highlighted in red and a stop icon appears in the left column.

5. Run the program. There are two ways that you can do this:

a. Click on the Run button at the top of the Main View window.

OR

b. Enter the following at the cvd> prompt:

cvd> run

The program executes up to Line 23 and waits for further instruction.

6. Enter the following command at the cvd> prompt to print the y array for
this example:

cvd> print y

18 007–2579–005

Basic Debugger Usage [2]

The following displays in the cvd> command pane:

y = {

[0] 0.00000000000000000e+00

[1] 1.0

[2] 2.0

}

cvd>

7. At this point, you can experiment with other command described in this
chapter, notably the execution control buttons described in Section 2.1.4,
page 19.

8. Select the following to end this tutorial for the C demo program.

Admin
->Exit

2.1.4 Options for Controlling Program Execution

There are a number of buttons in the Main View window that allow you to
control the execution of your program. The following summarizes their
functions:

• Run creates a new process to execute your program and starts execution. It
can also be used to rerun your program.

• Kill kills the active process that is executing your program.

• Stop stops execution of your program. The first executable statement after
the statement where your program has stopped is highlighted.

• Continue continues program execution until a breakpoint or some other
event stops execution, or program execution terminates. (See also Section
10.4.1.3, page 155.)

• Step Into steps to the next executable statement and into function and
subroutine calls. Thus, if you set a breakpoint at a subroutine call, click on
the Run button so the call to the subroutine is highlighted in green, then click
on the Step Into button to step into this subroutine — source code for
this subroutine will automatically be displayed in the Main View window.

007–2579–005 19

Developer MagicTM: Debugger User’s Guide

By clicking the right mouse button on the Step Into button you can select
the number of steps the Debugger takes. Left-click on the Step Into
button to take one step.

• Step Over steps to the next executable statement and steps over function
and subroutine calls. Thus, if you set a breakpoint at a subroutine call, click
on the Run button so the call to the subroutine is highlighted in green, then
click the Step Over button to step over this subroutine to the next
executable statement displayed in the source pane of the Main View window.

Right-click on the Step Over button to select the number of steps the
Debugger takes. Left-click on the Step Over button to take one step.

• Return executes the remaining instructions in the current function or
subroutine. Execution stops upon return from that function or subroutine.

2.1.5 Setting Traps

A trap (also called a breakpoint) can be set if you click your cursor in the area to
the left of the statement in the area underneath the word Status in the Main
View window. When you do this, the line in your program will be highlighted
in red. To remove the breakpoint, click in the same place and the red
highlighting will disappear. Clicking on the Run button will cause your
program to run and stop at the first breakpoint encountered. To continue
program execution, click on the Continue button. Breakpoints can only be set
at executable statements.

2.1.6 Options for Viewing Variables

There are many ways to view current values of variables with the Debugger.
Before you can view current values of variables with the Debugger. Before you
can do this, you must first run your program under the Debugger and stop
execution at some point. The following sections list ways of viewing current
values of variables with the Debugger. It is suggested that you try each of the
following methods to determine which you would prefer to use.

20 007–2579–005

Basic Debugger Usage [2]

2.1.6.1 Viewing Variables Using the cvd> Command Line

At the bottom of the Main View window is the command/message pane. Here,
you can give the Debugger various instructions at the cvd> command line.

Example 1: Value of array x

If you want to know the current value of array x, enter either of the following
two commands in the command/message pane:

cvd> print x
or

cvd> p x

The current values for x will be printed.

Example 2: Value of x(2)

If your program is written in Fortran and you only want the value of x(2), enter:

cvd> print x(2)

For a C program, enter:

cvd> print x[2]

Example 3: Change value of x(2) to 3.1

To change the value of x(2) to 3.1 in a Fortran program, enter:

cvd> assign x(2) = 3.1

For a C program, enter:

cvd> assign x[2] = 3.1

The value of x(2) will now be 3.1 when execution is resumed.

Such changes are only active during the current Debugger run of your program.
In the preceding examples, if x is a large array, you may want to use the Array
Browser window (see Section 2.1.6.5, page 25).

007–2579–005 21

Developer MagicTM: Debugger User’s Guide

To view the components of the structure start in the prog.c example, enter:

cvd> print start

The current values of each component of start will be printed.

To view what the pointer list points to in the prog.c example, enter:

cvd> print *list

Note: This pointer must be initialized before you can perform this function.

A complete list of the instructions that can be entered at the cvd> command
line can be found in Section A.9, page 312.

2.1.6.2 Viewing Variables Using Click To Evaluate

Perform the following to view variables with Click To Evaluate:

1. Right-click in the window that contains your source code to bring up the
following pop-up menu:

Figure 2. Evaluation Pop-Up Menu

2. Select Click To Evaluate from this menu. You can now click on any
variable and its value will appear. For example:

• If you click on the x in x(i), the address of x will appear.

• If you click-drag to highlight x(i), the current value of x(i) displays.

• If you highlight an expression, the current value of the expression
displays.

22 007–2579–005

Basic Debugger Usage [2]

2.1.6.3 Viewing Variables Using the Variable Browser

Perform the following to view variables with the Variable Browser:

1. Select the following from the Main View window to call up the Variable
Browser:

Views
->Variable Browser

The Variable Browser automatically displays values of all variables
valid within the routine in which you have stopped as well as the address
location for each array.

Values of variables can be changed by typing in their new value in the
Result column and then hitting the ENTER key (or RETURN key, for some
keyboards).

2.1.6.4 Viewing Variables Using the Expression View Window

The Expression View window allows you to enter the variables and/or
expressions for which you would like to know values.

1. Select the following from the Main View window menu bar to display the
Expression View window:

Views
->Expression View

007–2579–005 23

Developer MagicTM: Debugger User’s Guide

Figure 3. Expression View Window

2. To view, for example, the value component of the structure start in
prog.c, enter the following in the Expression column:

start.value

As you step through your program, for example with Step Over, the
values of all the entries in this window will be updated to their current
values.

Values of variables can be changed by typing in their new value in the
Result column and then pressing ENTER.

To enter an expression from your source code into the Expression View
window:

1. Left-click and drag on the expression in your source code.

The expression is highlighted.

2. Left-click in a field in the Expression column.

The cursor appear in the field.

3. Middle-click your mouse.

The desired value appears in the field.

24 007–2579–005

Basic Debugger Usage [2]

2.1.6.5 Viewing Variables Using the Array Browser

To view array values, select the following from the Main View window menu
bar to call up the Array Browser:

Views
->Array Browser

Figure 4. Array Browser Window

007–2579–005 25

Developer MagicTM: Debugger User’s Guide

To view the values of an array in the Array Browser:

1. Enter the name of this array in the Array field

2. Press ENTER

Here, the current values of, at most, two dimensions of the array will display in
the lower pane of the Array Browser window. The values of the array will be
updated to their current values as you step through your program.

2.1.6.5.1 Subscript Controls Field

If the array is large or has more than two dimensions, the Subscript
Controls panel in the middle of the Array Browser window allows you to
specify portions of the array for viewing. You may also use the slide bars at the
bottom and right of the window to view hidden portions of an array.

2.1.6.5.2 How to Change Values

Perform the following to change values of array elements:

1. Click on the box with the array value in the lower portion of the Array
Browser window.

Note: Once the element is selected, the array index and value appear in
the two fields below the Subscript Controls panel in the center of
the Array Browser window.

For example, if you click on the value for array element A(2,3), then
A(2,3) appears in the box above the display of the array values, and its
value appears in the box to the right of A(2,3). Simply click in this box,
and enter a new value for A(2,3). (Press ENTER to change the value of
A(2,3) to the new value.)

2. Enter your change into the Value field described in the note above.

3. If you would like to view a second array at the same time, select the
following in the Array Browser window that you have already opened:

Admin
->Clone

This will bring up a second Array Browser window.

26 007–2579–005

Basic Debugger Usage [2]

4. Select the following from this new window:

Admin
->Active

You can now enter the name of the second array you would like to view.

2.1.6.6 Viewing Variables Using the Structure Browser Window

Perform the following to view values of a C structure:

1. Select the following from the Main View window menu bar to call up the
Structure Browser window:

Views
->Structure Browser

2. Enter the name of the structure in the Expression pane.

This will bring up a window listing the name of the structure, the names of
its components in the left column, and their values in the right column.

3. If one of these components is a pointer, you can see what is being pointed
to by double-clicking on its value to the right of the pointer name. This will
bring up a new window showing what is being pointed at and an arrow
will appear showing this relationship. This can aid in debugging linked
lists, for example.

2.1.7 Searching

Often it is useful to search for the occurrences of a variable or some character
string in your program so you can set breakpoints. Perform a search as follows:

1. Call up the search utility from the Main View window menu bar as follows
to call up the Search window:

Source
->Search

007–2579–005 27

Developer MagicTM: Debugger User’s Guide

Figure 5. Search Window

2. Enter the character string for which you would like to search in this
window, then click on the Apply button.

All occurrences of this string are highlighted.

3. Click on Cancel to remove highlighting.

2.1.8 Using the Call Stack View

As the Debugger executes, it may stop during a program function or
subroutine, or in a system routine. When this happens, you can locate where
the Debugger is in your program by examining the call stack.

There are two ways to examine the call stack:

• You can enter the following in the command/message pane:

cvd> where

28 007–2579–005

Basic Debugger Usage [2]

This will list the functions and subroutines that were called to bring the
Debugger to this place. This call list will include not only your program
functions/subroutines but may also include system routines that have been
used. You can now move up or down the call tree by issuing, for example:

cvd> up [n]

In this case, the source code for a function or subroutine that is ‘up’ n items
in the call stack will appear in the Main View window. If you omit [n] you
move up one item in the call stack.

• You can select the following from the Main View window menu bar:

Views
->Call Stack View

This brings up the Call Stack View window.

Figure 6. Call Stack View Window

If you double-click on an item here, the source code for the function or
subroutine, if available, will display in the Main View window.

007–2579–005 29

Developer MagicTM: Debugger User’s Guide

2.1.9 Stopping at Functions or Subroutines

In the debugging process, it is sometimes useful to stop at each occurrence of a
function or subroutine. The Debugger permits you to do this in either of two
ways:

• Using the cvd command/message pane.

1. Enter the following in the command/message pane of the Main Window:

cvd> stop in name

For name, specify the name of the function or subroutine in your
program where you would like the Debugger to stop.

2. Click on the Run button and the Debugger will stop each time it
encounters this function or subroutine.

3. To remove this stopping condition enter the following in the
command/message pane:

cvd> status

For the Stop in command above, the trap in the list would appear as:

[n] Stop entry name...

Here, the value of n is a positive integer and name is the name of the
function or subroutine where the stop has been set.

4. To delete this stop, enter:

cvd> delete n

• Using the Trap Manager.

1. Select the following from the Main View window menu bar to use the
trap manager:

Views
->Trap Manager

This will call up the Trap Manager window.

30 007–2579–005

Basic Debugger Usage [2]

Figure 7. Trap Manager Window

2. In the pane to the right of the word Trap enter:

stop in name

3. Click on the Add button or press Enter. This will add your breakpoint
at your desired function or subroutine.

Note: To remove the stopping condition so the Debugger will not
stop at each occurrence of name, click on the Delete button in the
Trap Manager window.

If you have multiple traps displayed, click on the trap that you wish
to delete before you click on the Delete button.

2.2 Suggestions for Debugging for Serial Execution of Scientific Programs

This section offers tips and suggestions for debugging programs written for
scientific applications; but many of the suggestions will apply to debugging
other types of applications as well.

Note: This section deals only with debugging programs that are running
serially and not in parallel.

007–2579–005 31

Developer MagicTM: Debugger User’s Guide

Programs can sometimes appear to have no bugs with some sets of data
because all paths through the program may not be executed. To debug your
program, therefore, it is important to test it with a variety of different data sets
so that, one would hope, all paths in your program can be tested for errors.

Now, assume that your program compiles and produces an executable, but the
program execution either does not complete, or it completes but produces
wrong answers. In this case, go through the following steps to find many of the
commonly occurring bugs.

Note: All compiler options mentioned in the following sections are valid for
FORTRAN 77, Fortran 90, C and C++ compilers unless indicated otherwise.

2.2.1 Step 1: Use lint

If your program is written in C, you should use the lint utility. This will help
you identify problems with your code at the compile step. For example, if your
C program is in a file named prog.c, invoke lint with:

> lint prog.c

The output from this command is directed to your screen.

Note: There is a public domain version of lint for FORTRAN 77 called
ftnchek. You can get ftnchek from the /pub directory at the anonymous
ftp site ftp.dsm.fordham.edu at Fordham University. Also, there is a
lint for Fortran 90 for SGI/Cray PVP machines and the Cray T3E called
cflint. You can invoke cflint if you compile with the -rl option.

2.2.2 Step 2: Check for Out-of-Bounds Array Accesses

A common programming error is the use of array indices outside their declared
limits. For help finding these errors, compile your program as follows:

> -g -DEBUG:subscript_check=ON

Then run the generated executable under cvd and click on the RUN button. (See
the DEBUG_group(5) man page for more information on this option.)

The following list explains compiling dependencies when working with
out-of-bounds array accesses:

• If you are running a C or C++ program, your program will stop at the first
occurrence of an array index going out of bounds. You can now examine the
value of the index that caused the problem by using any of the methods

32 007–2579–005

Basic Debugger Usage [2]

described in Section 2.1.6, page 20. If you compile with the -g option, the
compiler generates symbolic debugging information so your program will
execute under cvd. It also disables optimization. Sometimes, disabling
optimization will cause the bug to disappear. If this happens, you should
still carefully go through each of these steps as best as you can.

• If you are using the Fortran 90 compiler, after compiling with the preceding
options and after running the generated executable under cvd, enter the
following in the cvd pane:

cvd> stop in __f90_bounds_check

Note: __f90 in this command has two lead “_” characters.

Now, click on the RUN button. Next select the following from the Main View
window menu bar:

Views
->Call Stack View

Next, double click on the function or subroutine immediately below
__f90_bounds_check. This will cause the source code for this function or
subroutine to display in the Main View window, and the line where cvd has
stopped will be highlighted. You can now find the value of the index that
caused the out-of-bounds problem.

• If you are using the FORTRAN 77 compiler, after compiling with the
preceding options and after running the generated executable under cvd,
enter the following in the cvd> pane:

cvd> stop in s_rnge

Now, click on the RUN button. Next, select the following from the Main
View menu bar:

Views
->Call Stack View

Double-click on the function or subroutine immediately below s_rnge. This
will cause the source code for this function or subroutine to display in the
Main View window and the line where the Debugger stopped will be
highlighted. You can now find the value of the index that caused the
out-of-bounds problem.

007–2579–005 33

Developer MagicTM: Debugger User’s Guide

Note: For Fortran programs, bounds checking cannot be performed in
subprograms if arrays passed to a subprogram are declared with extents
of 1 or * instead of passing in their sizes and using this information in
their declarations. An example of how the declarations should be written
to allow for bounds checking is:

SUBROUTINE SUB(A,LDA,N, ...)

INTEGER LDA,N

REAL A(LDA,N)

2.2.3 Step 3: Check for Uninitialized Variables Being Used in Calculations

To find uninitialized REAL variables being used in floating-point calculations,
compile your program with the following:

-g -DEBUG:trap_uninitialized=ON

This will force all uninitialized stack, automatic, and dynamically allocated
variables to be initialized with 0xFFFA5A5A. When this value is used as a
floating-point variable involving a floating-point calculation, it is treated as a
floating-point NaN and it will cause a floating-point trap. When it is used as a
pointer or as an address a segmentation violation may occur. For example, if x
and y are real variables and the program is compiled as described previously, x
= y will not be detected when y is uninitialized since no floating point
calculations are being done. However, the following will be detected:

x = y + 1.0

After you compile your program with the preceding options, enter the
following:

cvd executable

Then click the RUN button. To find out where your program has stopped, select
the following from the Main View window menu bar:

Views
->Call Stack View

Here, you will see that many routines have been called. Double-click on the
routine closest to the top of the displayed list that is not a system routine. (You
will probably recognize the name of this source file.) This will bring up the
source code for this routine and the line where the first uninitialized variable
(subject to the above-mentioned conditions) was used. You can now examine

34 007–2579–005

Basic Debugger Usage [2]

the values of the indices which caused the problem using any of the methods
described in Section 2.1.6, page 20.

Note: You cannot use cvd to detect the use of uninitialized INTEGER
variables.

2.2.4 Step 4: Find Divisions by Zero and Overflows

If you are using a csh or tsch shell, perform the following to find floating-point
divisions by zero and overflows.

1. Enter the following:

setenv TRAP_FPE ON

Note: For other shells, see their man pages.

2. Compile your program using the following options:

-g -lfpe

3. Enter the following:

cvd executable

4. In the cvd command/message pane enter:

cvd> stop in _catch

5. Click on the RUN button.

6. Select the following from the Main View window:

Views
->Call Stack View

7. Double-click on the routine closest to the top of the displayed list that is not
a system routine. (You will probably recognize the name of this source file.)

The line where execution stopped is highlighted in the source code display
area of the Main View window.

You may now use any of the methods to find variable values, described in
Section 2.1.6, page 20, to discover why the divide-by-zero or overflow
occurred.

007–2579–005 35

Developer MagicTM: Debugger User’s Guide

For more information on handling floating-point exceptions, see the
handle_sigfpes(3) and fsigfpe(3F) man pages.

Perform the following to find integer divisions by zero:

1. Compile your program using the following options:

-g -DEBUG:div_check=1

2. Enter the following:

cvd executable

3. Click the Run button.

The program will automatically stop at the first line where an integer
divide-by-zero occurred. You may now use any of the methods to find
variable values, described in Section 2.1.6, page 20, to discover why the
divide-by-zero occurred.

2.2.5 Step 5: Perform Core File Analysis

Sometimes during program execution a core file is produced and the program
does not complete execution. The file is placed in your working directory and
named core.

Some machines are configured to not produce a core file. To find out if this is
the case on the machine you are using, enter the following:

% limit

If the limit on coredumpsize is zero, no corefile will be produced. If the limit
on coredumpsize is not large enough to hold the program’s memory image,
the core file produced will not be usable.

To change the configuration to allow core files to be produced enter the
following:

% unlimit coredumpsize

Once you have a core file, you can perform the following analysis:

1. You can find the place in your program where the execution stopped and
the core file was produced by entering:

cvd executable core

Here, executable is the executable that you were running.

36 007–2579–005

Basic Debugger Usage [2]

The Main View window will come up and the source line where execution
stopped may be highlighted in green.

2. If the source line is not highlighted in green, select the following from the
Main View window menu bar:

Views
->Call Stack View

3. Double-click on the routine closest to the top of the displayed list that is not
a system routine. (You will probably recognize the name of this source file.)
This will bring up the source code for this routine, and the last line
executed will be highlighted in green.

If the executable was formed by compiling with the -g option, then you can
view values of program variables when program execution stopped.

To find the assembly instruction where execution stopped, select the following
from the Main View window menu bar:

Views
->Disassembly View

Remember that this is the last statement executed before the core file was
produced. It therefore does not necessarily mean that the bug in your program
is in this line of code. For example, a program variable may have been
initialized incorrectly; but the core was not produced until the variable was
used later in the program.

2.2.6 Step 6: Troubleshoot Incorrect Answers

Assume that the preceding steps have been taken and that all detected
problems have been corrected. Your program now completes execution, but
obtains incorrect answers. What you do at this point will likely depend on
special circumstances. The following is a list of some commonly used
debugging tips that may or may not apply to your situation.

1. Try running your program on a very small size problem where you can
easily obtain intermediate results. Run your program under cvd on this
small problem and compare with the known correct results.

2. If you know that a certain answer being calculated is not correct, set
breakpoints in your program so you can monitor the value of the answer at
various points in your program.

007–2579–005 37

Developer MagicTM: Debugger User’s Guide

3. You may want to set breakpoints on each call to a selected function or
subroutine where you suspect there may be problems. (SeeSection 2.1.6,
page 20 for suggested methods.)

4. Debug COMMON blocks and EQUIVALENCE statements in Fortran. Variables
used in these statements must have the same type and dimension
everywhere they appear and they must occur in the same order. Normally
ftnchek, for FORTRAN 77 programs, and cflint, for Fortran 90
programs, will find these errors. However, for FORTRAN 77 programs it is
best to use an include statement for each COMMON block. For Fortran 90
programs, it is best to use a module for each COMMON block. It is best not to
use EQUIVALENCE statements.

5. Save local data that is otherwise not saved. In Fortran, values of local
variables are not guaranteed to be saved from one execution of the
subprogram to the next unless they are either initialized in their
declarations or they are declared to have the SAVE attribute. Some
compilers and machines automatically give all local variables the SAVE
attribute, so moving a working program from one compiler or machine to a
compiler or machine that does not do this may cause this bug to manifest.
The Fortran standards require that you give all uninitialized local variables
the SAVE attribute if you would like their values saved.

38 007–2579–005

Selecting Source Files [3]

This chapter shows you how to select source files for the source pane of the
Main View window of the Debugger (see Figure 1, page 3). It covers the
following topics:

• How to load source files, Section 3.1, page 39

• Path Remapping, Section 3.2, page 43

3.1 How to Load Source Files

The following sections show you the three ways you can load source files for
debugging.

Note: For demonstration purposes, before you begin this section, perform the
following from your shell:

% mkdir demos

% mkdir demos/jello

% cd demos/jello
% cp /usr/demos/WorkShop/jello/* .

% make

% cvd &

3.1.1 Load Directly into the Main View Window

Perform the following steps to load your source file directly into, or run your
executable from, the Debugger Main View window:

• Enter the source file directly.

Enter the name (or full pathname, if necessary) of the source file in the
File: field.

For example enter:

File: jello.c

if you launched cvd & from within the jello/demos directory.

007–2579–005 39

Developer MagicTM: Debugger User’s Guide

• Enter the executable directly.

Enter the name (or full pathname, if necessary) of the executable in the
Command: field.

For example, enter:

Command: jello

if you launched cvd & from within the jello/demos directory.

3.1.2 Load from the File Browser Dialog Box

You can load source files from the File Browser dialog box, available as
follows from the menu bar of the Main View window:

Views
->File Browser

The File Browser window is shown in Figure 8.

Figure 8. File Browser Window

40 007–2579–005

Selecting Source Files [3]

This dialog box provides you with a list of the source files that your executable
file can use, including any files in linked libraries.

locate a file To locate a file, enter your desired filename in the
Search field.

load a file To load a file directly into the Main View window
from the File Browser dialog box, simply
double-click on the file name.

Note: You may be unable to locate some files because the source supports
system routines. Source for these routines may not be available on your
system.

3.1.3 Load from the Open Dialog Box

You can load source files from the Open... dialog box, available as follows
from the menu bar of the Main View window:

Source
->Open...

The standard dialog box lists all available files and the currently selected
directory in the Selection field. You can change this directory as you wish.

007–2579–005 41

Developer MagicTM: Debugger User’s Guide

File list
display area

Drop pocket

Selection field

Figure 9. Open Dialog Box

There are several ways to load a file. You can:

• double-click on the file name.

• type the full pathname of the file in the Selection field and click the OK
button.

• drag the file icon into the drop pocket. (Use an application like fm to
produce file icons.)

If you specify a file name without a full path, the Debugger uses the current
path remapping information to try to locate the file (see Path Remapping,
Section 3.2, page 43).

42 007–2579–005

Selecting Source Files [3]

3.2 Path Remapping

Path remapping allows you to modify mappings to redirect file names, located
in your executable file, to their actual source locations on your file system.
Since WorkShop uses full (that is, absolute) path names, path remapping
generally is not necessary. However, if you have mounted executable files on a
different tree from the one on which they were compiled, you will need to
remap the root prefix to get access to the source files in that hierarchy.

The most basic remapping is for “.”, which allows you to specify the directories
to be searched for files. This basic function works just like dbx and can be
modified by using use/full_path_name and dir/full_path_name in the command
line.

Open the Path Remapping window as follows from the menu bar of the Main
View window:

Admin
->Remap Paths...

007–2579–005 43

Developer MagicTM: Debugger User’s Guide

The following displays:

Figure 10. Path Remapping Dialog Box

For each prefix listed in the Prefix list, there is an ordered set of substitutions
used to find a real file. By default, path remapping is initialized so that “.” is
mapped to the current directory. The Substitution Set for ’.’: list
shows the substitution list for the currently highlighted item in the Prefix list.
You can perform the following operations through the Path Remapping
dialog box:

• To view the substitution set for a different prefix, click that prefix.

• To add a new prefix, enter the new value in the Value: field below the
Prefix list and click the Add button. A new substitution set is created with
the prefix name as the first element. Click on this element to highlight it.

44 007–2579–005

Selecting Source Files [3]

Next, type the desired substitution in the Value field below the
Substitution Set list and insert it by clicking on either the Insert
Before button or the Insert After button.

• To modify the currently selected prefix, edit the string in the Value field
and click the Modify button.

• To remove the current prefix and its substitution set, select the prefix and
click the Remove button.

3.2.1 Case Example for Path Remapping

In some cases, if source files have been moved to new locations, path
remapping is required to help the Debugger find the source files again.

The following tutorial shows you a case for remapping. It includes demo files
bundled with your WorkShop Debugger:

1. Create a new directory in your_home_directory:

% mkdir jellodemos

2. Change to the new directory:

% cd jellodemos

3. Copy the Jello demo files from the Workshop demo directory into your new
directory:

% cp /usr/demos/WorkShop/jello/* .

4. Enter the following to ensure that the jello executable contains the jello
demos source path:

% make clobber

% make

5. Create another new directory in your jellodemos directory:

% mkdir ./newdir

6. Move the Jello source files to a new location:

% mv ./*.c ../newdir

7. Start the WorkShop Debugger:

% cvd ./jello &

007–2579–005 45

Developer MagicTM: Debugger User’s Guide

The Main View window will display with no source in the source pane.
The following message appears:

Unable to find file <your_home_directory/newdir/jello.c

8. Choose the following from the menu bar in the Main View window:

Admin
->Remap Paths...

The Path Remapping window displays.

9. In the Substitution Set for ’.’: dialog box:

a. Select your_home_directory/jellodemos/newdir/jello.c

The path/filename will appear in the Value: field.

b. Enter the following:

.

10. Enter the following in the Value: field below the Substitution Set
for ’.’: dialog box:

newdir

11. Click on the Insert Before button.

The directory is inserted before the highlighted empty line in the
Substitution Set for ’.’: dialog box and after the first element,
which was not highlighted.

Now, the source appears in the Main View source pane as
your_home_directory/newdir/jello.c

46 007–2579–005

Tutorial: The jello Program [4]

This chapter presents a short tutorial with the demonstration program jello,
provided with your MIPSpro WorkShop software package. This tutorial walks
you through commonly encountered debugging situations.

The tutorial is divided into four parts:

• Start the Debugger, Section 4.1, page 47

• Run the jello Program, Section 4.2, page 48

• Perform a Search, Section 4.3, page 51

• Edit Your Source Code, Section 4.4, page 53

• Set Traps, Section 4.5, page 54

• Examine Your Data, Section 4.6, page 58

Before you begin this tutorial, you should be aware of the following:

• This tutorial must be run on an SGI workstation.

• WorkShop identifies files with the path names in which they were compiled.
The path names in the tutorial may not match the ones on your system.

4.1 Starting the Debugger

Use the following syntax to start the Debugger:

cvd [-pid pid] [-host host] [executable_file [corefile]] [&]

Note: The cvd command should be invoked in the same directory as your
program source code.

• The -pid option lets you attach the Debugger to a running process. You can
use this to determine why a live process is in a loop.

007–2579–005 47

Developer MagicTM: Debugger User’s Guide

• The -host option lets you specify a remote host on which to run your
program while the Debugger runs locally. This option is seldom used,
except under the following circumstances:

– You do not want the Debugger windows to interfere with the execution
of your program on the remote host.

– You are supporting an application remotely.

– You do not want to use the Debugger on the target machine for any
other reason.

Note: The host and local machines must be running the same version
of WorkShop. Also, the .rhost files on the machines must allow rsh
commands to operate between them.

• The executable_file argument is the name of the executable file for the process
or processes you want to run. This file is produced when you compile with
the -g option, which disables optimization and produces the symbolic
information necessary to debug with WorkShop. The -g option is most
commonly used, but it is optional; if you wish, you can invoke the
Debugger first and specify the name of the executable file later.

• Sometimes when a file is being executed, a core file is produced (its default
name is core). Use the following command to determine why a program
crashed and produced the core file:

cvd executable_file core

See Section 4.2 for more information.

4.2 Run the jello Program

In this part of the tutorial, you invoke the Debugger and start a typical process
running. The jello program simulates an elastic polyhedron bouncing around
inside of a revolving cube. The program’s functionality is mainly contained in a
single loop that calculates the acceleration, velocity, and position of the
polyhedron’s vertices.

Enter the following commands to run the jello program:

1. Go to the directory with the jello demo program:

> cd /usr/demos/WorkShop/jello

48 007–2579–005

Tutorial: The jello Program [4]

2. List the contents of this directory:

>ls

3. Enter the following to make the program if jello is not listed (from Step 2):

> make jello

4. Invoke the Debugger with the jello program:

> cvd jello &

The Main View window appears, as shown in Figure 11, page 50, and
scrolls automatically to the main function.

In addition to the Main View window, the Execution View icon also
appears. When you run the jello program, the command you used to
invoke jello is displayed in this window.

The Execution View window is the interface between the program and
the user for programs that use standard input/output or generate stderr
messages.

007–2579–005 49

Developer MagicTM: Debugger User’s Guide

Target process
command

Execution control
buttons

Current process
information

Source code
display area

Source code
annotation column

Source code file

Debugger command line

Source code
buffer status

Figure 11. The Main View Window with jello Source Code

Note: The Main View window brings up the source file in read-only
mode. You can change this to read/write mode if you select the
following from the Main View window menu bar (provided you have the
proper file access permissions):

Source
->Make Editable

5. Click the Run button in the upper-right corner of the Main View window to
run the jello program.

The jello window opens on your display (see Figure 12, page 51).
Enlarge this window to watch the program execute. The polyhedron is
initially suspended in the center of the cube.

If you wish, you can perform the following with the jello program:

a. Click the left mouse button anywhere inside the jello window.

The polyhedron drops to the floor of the cube.

50 007–2579–005

Tutorial: The jello Program [4]

b. Hold down the right mouse button to display the pop-up menu and
select spin.

The cube rotates and the polyhedron bounces inside the cube.

c. Hold down the right mouse button to display the pop-up menu and
select the Display option.

This opens a submenu that allows you to change the appearance of the
jello polyhedron.

d. Feel free to select (right-click) from this menu to see how the jello
display changes.

Note: You may encounter flashing colors inside windows while
running jello. This is normal.

Figure 12. The jello Window

6. Right-click and select Exit from the pop-up menu to exit this
demonstration executable.

4.3 Perform a Search

This part of the tutorial covers the search facility in the Debugger. You will
search through the jello source file for a function called spin. The spin
function recalculates the position of the cube.

007–2579–005 51

Developer MagicTM: Debugger User’s Guide

1. Select the following from the Main View menu bar:

Source
->Search

The Search dialog box appears.

2. Type spin in the Search field in the dialog box, as shown in Figure 13.

Figure 13. The Search Dialog

3. Click the Apply button.

The search takes place on the displayed source files. Each instance of spin
is highlighted in the source code and flagged with target indicators in the
scroll bar to the right of the display area. (See search target indicators in
Figure 14, page 53.) The Next and Prev buttons in the Search dialog box
let you move from one occurrence to the next in the order indicated.

For more information on Search, see Section A.1.4, page 194.

4. Click the Close button and the dialog box disappears.

52 007–2579–005

Tutorial: The jello Program [4]

5. Click the middle mouse button on the last search target indicator at the right
side of the source code pane (see the figure below). This scrolls the source
code down to the last occurrence of spin, the location of the spin function.

Search
target
indicators

Figure 14. Search Target Indicators

6. Proceed to Section 4.4 to edit your code.

4.4 Edit Your Source Code

To edit and recompile your source code, follow these steps:

1. Select the following from the Main View menu bar:

Source
->Fork Editor

A text editor will appear. (In this case, if you are proceeding from Section
4.3, page 51, notice that the spin function is displayed.)

007–2579–005 53

Developer MagicTM: Debugger User’s Guide

Note: If you use source control, you can check out the source code
through the configuration management shell by selecting the following
from the menu bar:

Source
->Versioning

->CheckOut

2. Edit the source code as follows:

Change all occurrences of 3600 to 3000 in the following code:

if ((a+=1)>3600) a -= 3600;

if ((b+=3)>3600) b -= 3600;
if ((c+=7)>3600) c -= 3600;

Save your changes.

3. Select the following from the menu bar to recompile your code:

Source
->Recompile

The Build View window displays and starts the compile. Your makefile
will determine which files need to be recompiled and linked to form a new
executable.

Any compile errors are listed in the window, and you can access the related
source code by clicking the errors.

Note: This does not apply to warnings generated by the compiler.

For more information on compiling, see Using the Build Manager,
Appendix B, page 329.

When the code is successfully rebuilt, the new executable file reattaches
automatically to the Debugger and the Static Analyzer. Previously set traps
are intact unless you have traps triggered at line numbers and have
changed the line count.

4.5 Setting Traps

Stop traps (also called breakpoints) stop program execution at a specified line in
the code. This allows you to track the progress of your program and to check
the values of variables at that point. Typically, you set breakpoints in your

54 007–2579–005

Tutorial: The jello Program [4]

program prior to running it under the Debugger. For more information on
traps, refer to Chapter 5, page 69.

In this part of the tutorial, you set a breakpoint at the spin function.

1. Click the Run button to run the jello executable.

The demo window will display.

2. Click the left mouse button in the Main View source code annotation
column next to the line containing if ((a+=1)>3600) a -= 3600;, or
if ((a+=1)>3000) a -= 3000;, if you are proceeding from the
previous section).

A stop trap indicator appears in the annotation column as shown in Figure
15, page 56.

3. Right-click on the jello window and select spin from the pop-up menu.

The program runs up to your stop trap and halts at the beginning of the
next call to the spin function. When the process stops, an icon appears and
the line is highlighted. Note that theStatus field indicates the line at
which the stop occurs.

007–2579–005 55

Developer MagicTM: Debugger User’s Guide

Stop trap
indicator

Figure 15. Stop Trap Indicator

4. Click the Continue button at the upper-left corner of the Main View
window several times. Observe that the jello window goes through a
spin increment with each click.

5. Select the following from the Main View window menu bar:

Views
->Trap Manager

The Trap Manager window appears as shown in Figure 16, page 57.

The Trap Manager window lets you list, add, edit, disable, or remove
traps in a process. In Step 2, you set a breakpoint in the spin function by
clicking in the source code annotation column. The trap now displays in
the trap display area of the Trap Manager window.

The Trap Manager window also permits you to do the following:

• Define other traps.

56 007–2579–005

Tutorial: The jello Program [4]

• Set conditional traps in the Condition field near the top of the window.

• Specify the number of times a trap should be encountered before it
activates by using the Cycle Count field.

• Manipulate traps by using trap controls (Modify, Add, Clear, Delete).

• View all traps (active and inactive) in the trap display area.

Trap specification

Trap condition specification

Cycle count
Current count
Trap controls

Trap display area

Search field

Figure 16. Trap Manager Window

6. Click the button to the left of the stop trap in the trap display area.

The trap is temporarily disabled. (If you click again in this box, the trap
will be re-enabled.)

7. Click the Clear button, move the cursor to the Trap field, then type:

watch display_mode

Click the Add button.

This sets a watchpoint for the display_mode variable. A watchpoint is a
trap that causes an interrupt when a specified variable or address is read,
written, or executed.

8. Click the Continue button in the Main View window to restart the process.

007–2579–005 57

Developer MagicTM: Debugger User’s Guide

The process now runs somewhat slower but still at a reasonable speed for
debugging.

9. Hold down the right mouse button in the jello window to display the
pop-up menu. From this menu, select display and then select the conecs
option with the right mouse button.

This triggers the watchpoint and stops the process.

10. Go to the Trap Manager window and click the button next to the
display_mode watchpoint to deactivate it. Then, click the button next to
the spin stop trap to reactivate it.

11. Enter 100 in the Cycle Count field and click the Modify button. Notice
how the trap description changes in the Trap Manager window.

12. Click the Continue button in the Main View window.

This takes the process through the stop trap for the specified number of
times (100), provided no other interruptions occur.

The Current Count field keeps track of the actual number of iterations
since the last stop, which is useful if an interrupt occurs. Note that it
updates at interrupts only.

13. Select Close from the Admin menu to close the Trap Manager window.

4.6 Examining Data

This part of the tutorial describes how to examine data after the process stops.

1. Select the following from the Main View window menu bar:

Views
->Call Stack

The Call Stack View window appears as shown in Figure 17, page 59.
The Call Stack View window shows each frame in the call stack at the
time of the breakpoint, with the calling parameters and their values.
Through the Call Stack View->Display menu, you can also display
the calling parameters’ types and locations, as well as the program counter
(PC) . The program counter is the address at which the program has
stopped. For more information about the program counter, see Section 7.1,
page 93.

58 007–2579–005

Tutorial: The jello Program [4]

In this example, the spin and main stack frames are displayed in the Call
Stack View window, and the spin stack frame is highlighted, indicating
that it is the current stack frame.

2. Select the following from the Call Stack window menu bar:

Admin
->Active

Notice that the Active toggle button is turned on. Active views are those
that have been specified to change their contents at stops or at call stack
context changes. If the toggle is on, the call stack is updated automatically
whenever the process stops.

Figure 17. Call Stack View at spin Stop Trap

3. Double-click the main stack frame.

This shifts the stack frame to the main function, scrolls the source code in
the Main View window (or Source View) to the place in main where
spin was called, and highlights the call. Any active views are updated
according to the new stack frame.

4. Double-click the spin stack frame.

This returns the stack frame to the spin function.

007–2579–005 59

Developer MagicTM: Debugger User’s Guide

Select Variable Browser from the Views menu in the Main View
window.

The Variable Browser window appears. This window shows you the
value of local variables at the breakpoint. The variables appear in the left
column (read-only), and the corresponding values appear in the right
column (editable).

Your Variable Browser window should resemble the one in Figure 18,
although you may need to enlarge the window to see all the variables (the
values will be different).

The jello program uses variables a, b, and c as angles (in tenths); ca, cb, cc
as their corresponding cosines; and sa, sb, sc as their sines. Whenever you
stop at spin, these values change.

Figure 18. Variable Browser at spin

5. Double-click some different frames in Call Stack View and observe the
changes to Variable Browser and the Main View window.

These views update appropriately whenever you change frames in Call
Stack View. Notice also the change indicators in the upper-right corners
of the Result fields in Figure 19, page 61. These appear if the value has
changed. If you click the folded corner, the previous value displays (and the
indicator appears unfolded). You can then toggle back to the current value.

60 007–2579–005

Tutorial: The jello Program [4]

Change
indicator

Figure 19. Variable Browser after Changes

6. Select Close from the Admin menu in Variable Browser and Close
from the Admin menu in Call Stack View to close them.

7. Select Expression View from the Views menu in the Main View window.

The Expression View window appears. It lets you evaluate an
expression involving data from the process. The expression can be typed in,
or more simply, cut and pasted from your source code. You can view the
value of variables (or expressions involving variables) any time the process
stops. Enter the expression in the left column, and the corresponding value
appears in the right column. For more information, see Section 7.3, page 99.

8. Hold down the right mouse button in the Expression column to bring up
the Language menu. Then hold down the right mouse button in the
Result column to display the Format menu.

The Language menu (shown on the left side of Figure 20, page 62) lets you
apply the language semantics to the expression.

The Format menu (shown on the right side of Figure 20, page 62) lets you
view the value, type, address, or size of the result. You can further specify
the display format for the value and address.

007–2579–005 61

Developer MagicTM: Debugger User’s Guide

Column sash

Figure 20. Expression View with Language and Format Menus Displayed

9. Click on the first Expression field in the Expression View window.
Then enter (a+1)>3600 in the field and press Enter.

This is a test performed in jello to ensure that the value of a is less than
3600. This uses the variable a that was displayed previously in Variable
Browser. After you press Enter, the result is displayed in the right
column; 0 signifies FALSE.

10. Select the following from the Expression View window menu bar to
close that window:

Admin
->Close

11. Select the following from the Main View window to open the Structure
Browser:

Views
->Structure Browser

62 007–2579–005

Tutorial: The jello Program [4]

12. Enter jello_conec in the Expression field and press Enter.

The Structure Browser window displays the structure for the given
expression; field names are displayed in the left column, and values in the
right column. If only pointers are available, the Structure Browser will
de-reference the pointers automatically until actual values are encountered.
You can then perform any further de-referencing by double-clicking pointer
addresses in the right column of the data structure objects. A window
similar to the one shown in Figure 21 now appears.

Figure 21. Structure Browser Window with jello_conec Structure

13. Click once to focus, then double-click the address of the next field (in the
right column of the jello_conec structure).

Double-clicking the address corresponding to a pointer field de-references
it. Double-clicking the field name displays the complete name of the field in
the Expression field at the top of the Structure Browser window.
(See Figure 22, page 64.)

007–2579–005 63

Developer MagicTM: Debugger User’s Guide

Figure 22. Structure Browser Window with Next Pointer De-referenced

14. Select Close from the Admin menu of Structure Browser window to
close it.

15. Select the following from the Main View window menu bar:

Views
->Array Browser

The Array Browser lets you see or change values in an array variable. It
is particularly valuable for finding bad data in an array or for testing the
effects of values you enter.

16. Type shadow in the Array field and press Enter.

You can now see the values of the shadow matrix, which displays the
polyhedron’s shadow on the cube. The Array Browser template should
resemble Figure 23, page 65, but with different data values. If any areas are
hidden, hold down the left mouse button and drag the sash buttons at the
lower right of the array specification and subscript control areas to expose
the area.

64 007–2579–005

Tutorial: The jello Program [4]

Array specification
area

Subscript controls
area

Spreadsheet area

Figure 23. Array Browser Window for shadow Matrix

17. Select the Col button next to the $k index in the Subscript Controls
pane (you may need to scroll down to it).

The Array Browser can handle matrices containing up to six dimensions
but displays only two dimensions at a time. Selecting the Col button for $k
has the effect of switching from a display of $i by $j to a display of $i by
$k.

Figure 24, page 66, shows a close-up view of the subscript control area.

007–2579–005 65

Developer MagicTM: Debugger User’s Guide

Row/column toggles
Index identifiers
Index values
Index sliders
Index minimums
Index maximums
Horizontal scroll bar
Step indicators
Vertical scroll bar

Figure 24. Subscript Controls Panel in Array Browser Window

The row and column toggles indicate whether a particular dimension of the
array appears as a row, column, or not at all in the spreadsheet area.
Although an array may be of 1 to 6 dimensions, you can view only one or
two dimensions at a time. The index values shown as Min and Max initially
exhibit the lower and upper bounds of the dimension indicated. The values
may be changed to allow the user to display a subset of the available index
range in that dimension. The index sliders let you move the focus cell along
the particular dimension. The focus cell may also be changed by selecting a
cell with the left mouse button. The index slider for a dimension whose
row and column toggles are both off may be used to select a different
two–dimensional plane of a multidimensional array. Use the horizontal and
vertical scroll bars to expose hidden portions of the Array Browser
window.

18. Select Surface from the Render menu.

The Render menu displays the data from the selected array variable
graphically, in this case as a three-dimensional surface. The selected cell is
highlighted by a rectangular prism. The selected subscripts correspond to
the x- and y-axes in the rendering with the corresponding value plotted on
the z-axis. The data can be rendered as a surface, bar chart, multiple lines,
or points.

66 007–2579–005

Tutorial: The jello Program [4]

4.7 Exiting the Debugger

There are several ways to exit the Debugger:

• Select Exit from the Admin menu.

• Type quit at the Debugger command line as follows:

cvd> quit

• Double-click on the icon in the upper-left corner of the Main View window.

• Press Ctrl-c in the same window where you entered the cvd command.

007–2579–005 67

Setting Traps [5]

Setting traps (often referred to as breakpoints) is one of the most valuable
functions of a debugger or performance analyzer. A trap enables you to select a
location or condition within your program at which you can stop the execution
of the process, or collect performance data and continue execution. You can set
or clear traps from the Main View window or the Trap Manager window. You
can also specify traps in the Debugger command line at the bottom of the Main
View window. For signal traps, you can also use the Signal Panel window;
and for system call traps, use the Syscall Panel window.

When you are debugging a program, you typically set a trap in your program
to determine if there is a problem at that point. The Debugger lets you inspect
the call stack, examine variable values, or perform other procedures to get
information about the state of your program.

Traps are also useful for analyzing program performance. They let you collect
performance data at the selected point in your program. Program execution
continues after the data is collected.

This chapter covers the following topics:

• Trap Terminology, Section 5.1, page 70

• Setting traps in the Main View and Source View windows, Section 5.2,
page 72

• Setting traps in the Trap Manager, Section 5.3, page 76

• Setting traps with Signal Panel and Syscall Panel, Section 5.4, page
84

For a tutorial on the use of traps, see Section 4.5, page 54.

007–2579–005 69

Developer MagicTM: Debugger User’s Guide

5.1 Traps Terminology

A trap is an intentional process interruption that can either stop a process or
capture data about a process. It has two parts:

trigger Specifies when the trap fires

action Specifies what happens when the trap fires

5.1.1 Trap Triggers

You can set traps at a specified location in your program or when a specified
event occurs. You can set a trigger at any of the following points:

• At a given line in a file (often referred to as a breakpoint)

• At a given instruction address

• At the entry or exit for a given function

• After set time intervals (referred to as a pollpoint)

• When a given variable or address is read, written, or executed (referred to as
a watchpoint)

• When a given signal is received

• When a given system call is entered or exited

In addition, you can use an expression to specify a condition that must be met
before a trap fires. You can also specify a cycle count, which specifies the
number of passes through a trap before firing it.

Note: When you set a breakpoint in C++ code that uses templates, that
breakpoint will be set in each instantiation of the template.

70 007–2579–005

Setting Traps [5]

5.1.2 Trap Types

Traps can effect any of a number of actions in your debugging process. The
following is a list of the variety of traps and their functions:

Note: See Section 5.3.1.1, page 78 for trap syntaxes.

• A stop trap will cause one or all processes to stop. In single process
debugging, a stop trap stops the current process. In multiprocess debugging,
you can specify a stop trap to stop all processes or only the current process.

• A pending trap is a trap with a destination address that does not resolve at
the initial startup of the debugger: it allows you to place breakpoints on
names that do not yet exist. By enabling pending traps, you make unknown
function names acceptable breakpoint locations or entries. Because of this,
the trap manager will not error a pending trap off it if can not be found in
the executable. Instead, when a dlopen of a DSO (dynamic shared object)
occurs, and the function name is found that matches the trap, the trap is
resolved and becomes active.

There are two ways to enable pending traps.

– You can add the following line to your .Xdefaults file:

*AllowPendingTraps: true

– You can enable pending traps by entering the following in the cvd> pane
of the Main View window:

set $pendingtraps=true

The default for this variable is false.

Note: Only “stop entry” / “stop in” and “stop exit” traps can be pending
traps, not “stop at” traps. The debugger will only accept a “stop at” trap
on a DSO (dynamic shared object) and line number loaded at startup.
(See Section 5.3.1.1, page 78 for trap syntaxes.)

To get around this, set a pending “stop in” trap and run to the trap
location. Now you can set “stop at” traps because the DSO is loaded. The
debugger will then remember these traps if you run, kill, and re-run
within a single session.

Pending traps display with the prefix (pending) preceding the normal trap
display line.

007–2579–005 71

Developer MagicTM: Debugger User’s Guide

Note: Breakpoints on misspelled names are not flagged as errors when
pending traps are enabled. This is because the Debugger has no way of
knowing if a pending trap will ever be tripped.

• A sample trap collects performance data. Sample traps are used only in
performance analysis, not in debugging. They collect data without stopping
the process. You can specify sample traps to collect such information as call
stack data, function counts, basic block counts, PC profile counts,
mallocs/frees, system calls, and page faults. Sample traps can use any of
the triggers that stop traps use. Sample traps are often set up as pollpoints
so that they collect data at set time intervals.

• An exception trap fires when a C++ exception is raised.

You can add a conditional expression to an exception trap through the Trap
Manager window. However, the context in which the expression is
evaluated is not that of the throw; the context is the exception handling of
the C++ runtime library. Therefore, only global variables have unambiguous
interpretation in the if clause.

You should not include complex expressions involving operators such as *
and & in your type specification for an exception trap. If you create an
exception trap with a specific base type, however, you will also stop your
program on throws of pointer, reference, const, and volatile types. For
example, if:

cvd> stop exception char

then your program will stop at type char, char*, char&, const char&,
and so forth.

5.2 Setting Traps

You can set traps directly in the Main View window by using the Traps menu
or by clicking the mouse in the source annotation column. You can also specify
traps at the Debugger (cvd>) command line.

The following sections describe the ways that traps can be set:

• Section 5.2.1, page 73, Setting Traps Using the Mouse

• Section 5.2.2, page 73, Setting Traps Using the cvd> Command Line

• Section 5.2.3, page 73, Setting Traps Using the Traps Menu in the Main
View Window

72 007–2579–005

Setting Traps [5]

5.2.1 Setting Traps with the Mouse

The following lists ways to set traps by using your mouse:

• The quickest way to set a trap is to click in the source annotation column in
the Main View or Source View windows. A subsequent click removes the
trap.

• If data collection mode has been specified in the Performance Data
window, clicking produces a sample trap; otherwise, a stop trap is entered.

To determine if data collection is on, look at the upper-right corner of the
Main View window to see which debugging option is selected (Debug
Only, Performance, or Purify).

When the trap is set, a trap icon appears.

5.2.2 Setting Traps Using the cvd> Command Line

The cvd> command line is discussed in . stop commands similar to those
found in dbx, or as documented in Section 5.3.1, page 77, may be entered into
the command line portion of the Main View window as an alternative way to
set traps.

5.2.3 Setting Traps Using the Traps Menu in the Main View Window

To set a trap using the Traps menu, you first need to know which type of trap
you wish to set, then select the location in your program at which to set the trap.

To set a stop trap or sample trap at a line displayed in the Main View window
(or the Source View window), click in the source code display area next to
the desired line in the source code, or click-drag to highlight the line. Then,
select either of the following from the menu bar:

Traps
->Set Trap

->Stop

or

Traps
->Set Trap

->Sample

007–2579–005 73

Developer MagicTM: Debugger User’s Guide

The Traps menu in the Main View window is shown in Figure 25.

Figure 25. Traps Menu in the Main View Window

For a trap at the beginning or end of a function, highlight the function name in
the source code display area and select one of the following from the
Traps->Set Traps submenu as is appropriate to your needs:

• Stop At Function Entry

• Stop At Function Exit

• Sample At Function Entry

• Sample At Function Exit

Traps are indicated by icons in the source annotation column (and also appear
in the Trap Manager window if you have it open). Figure 26, page 75, shows
some typical trap icons. Sampling is indicated by a dot in the center of the icon.
Traps appear in normal color or grayed out, depending on whether they are
active or inactive. A transcript of the trap activity appears in the Debugger
command line area. The active/inactive nature of traps is discussed in Section
5.3.6, page 84.

74 007–2579–005

Setting Traps [5]

The Clear Trap selection in the Traps menu deletes the trap on the line
containing the cursor. You must designate a Stop or Sample trap type, since
both types can exist at the same location appearing superimposed on each other.

When the Group Trap Default toggle is checked (ON), the pgrp option is
added into the resulting trap when a trap is set. This option causes the trap to
apply to all processes/pthreads in the group of which the current process is a
member.

When the Stop All Defaults toggle is checked (ON), the all option is
added into the resulting trap when a trap is set. This option causes the trap to
apply to all processes/pthreads in the current debugging session.

Active stop trap

Inactive stop trap

Active sample trap

Inactive sample trap

Debugger command
line transcript

Annotation column

Figure 26. Typical Trap Icons

007–2579–005 75

Developer MagicTM: Debugger User’s Guide

5.3 Setting Traps in the Trap Manager Window

The Trap Manager window is brought up by selecting the following from the
Main View window menu bar:

Views
->Trap Manager

This tool helps you manage all traps in a process. Its two major functions are to:

• List all traps in the process (except signal traps)

• Add, delete, modify, or disable the traps listed

The Trap Manager window appears in Figure 27 with the Config, Traps,
and Display menus shown.

Trap specification

Trap condition
specification

Cycle Count

Current Count

Trap controls

Trap display area

Search field

Figure 27. Trap Manager Config, Traps, and Display Menus

76 007–2579–005

Setting Traps [5]

5.3.1 Setting Single-Process and Multiprocess Traps

New or modified traps are entered in the Trap field. Traps have the following
general form:

[stop | sample] [all] [pgrp] location | condition

The entry [stop | sample] refers to the trap action. You can set a default for
the action by using the Stop Trap Default or Sample Trap Default
selections of the Traps menu and omitting it on the command line.

The entries [all] and [pgrp] are used in multiprocess analysis. The [all] entry
causes all processes in the process group to stop or sample when the trap fires.
The [pgrp] entry sets the trap in all processes within the process group that
contains the code where the trap is set. You can set a default for the action by
setting the Stop All Default or Group Trap Default toggles in the
Traps menu.

After you enter the trap (by using the Add or Modify button or by pressing
Enter), the full syntax of the specification appears in the field. The Clear
button clears the Trap and Condition fields and the cycle fields.

Some typical trap examples are provided in Figure 28, page 78. The entries
made in the Trap field are shown in the left portion of the figure, the trap
display in the Trap Manager window resulting from these entries is shown on
the right, and the trap display shown at the command line in the Main View
window is shown at the bottom.

007–2579–005 77

Developer MagicTM: Debugger User’s Guide

Trap entries

Resulting command line
display in Main View

Figure 28. Trap Examples

5.3.1.1 Syntaxes

Specific command syntaxes that may be entered in the Trap text field are
shown in the following sections:

Note: A backslash (\) shown at the end of a line in these examples indicates
that the command is continued. Do not enter a backslash in the text field.

5.3.1.1.1 Setting aTrap in filename at line-number

[stop | sample] [all] [pgrp] at [{file] filename]\
[[line] line-number]

This command sets a trap at the specified line in the specified file, for example:
Trap: stop at 1449.

78 007–2579–005

Setting Traps [5]

5.3.1.1.2 Setting aTrap on instruction-address

[stop | sample] [all] [pgrp] addr instruction-address

This command sets a trap on the specified instruction address. Instruction
addresses may be obtained from the Disassembly View window, which is
brought up from the Views submenu on the Main View window menu bar.
The addresses may be entered as shown, such as ’0af8cbb8’X, or as
0x0af8cbb8. For example:

Trap: stop addr 0x0af8cbb8

5.3.1.1.3 Setting a Trap on Entry to function

[stop | sample] [all] [pgrp] entry function \
[[file] filename]

[stop | sample] [all] [pgrp] in function\
[[file] filename]

This command sets a trap on entry to the specified function. For example:

Trap: stop entry anneal

or

Trap: stop in anneal

If the filename is given, the function is assumed to be in that file’s scope.

5.3.1.1.4 Setting a Trap on Exit from function

[stop | sample] [all] [pgrp] exit function\
[[file] filename]

This command sets a trap on exit from the specified function. For example:

Trap: stop exit anneal file generic.c

If the filename is given, the function is assumed to be in that file’s scope.

007–2579–005 79

Developer MagicTM: Debugger User’s Guide

5.3.1.1.5 Setting a Watchpoint on Specified expression

[stop | sample] [all] [pgrp] watch expression \ [
[for] read | write | execute [access]]

This command sets a watchpoint on the specified expression (using the address
and size of the expression for the watchpoint span). The watchpoint may be
specified to fire on write, read, or execute (or some combination thereof). If
not specified, the write condition is assumed. This syntax has no provision for
looking on only a portion of an array. The next syntax item can handle such a
request. For example:

Trap: stop watch x for write

5.3.1.1.6 Setting a Watchpoint for address and size

[stop | sample] [all] [pgrp] watch addr[ess] address \
[[size] size] [[for] read | write | execute \

[access]]

This command sets a watchpoint for the specified address and size in bytes.
Typically the expression is the name of a variable. The watchpoint may be
specified to fire on write, read, or execute (or some combination thereof) of
memory in the given span. If not specified, the size defaults to 4 bytes. Also, if
not specified, the write condition is assumed. Addresses may be found by
choosing the following from the Main View window menu bar:

Views
->Variable Browser

or

Views
->Structure Browser

The window displays addresses for arrays and has options to display addresses
for other variables. Addresses may be entered in the form 0x0123fabc or
’0123fabc’X. For example:

Trap: stop watch addr 0x0123fabc 16

80 007–2579–005

Setting Traps [5]

If the array you are watching at address 0x0123fabc is defined such that each
element is 4 bytes long, this example trap would be watching 4 adjacent array
elements and would cause a stop if any of those 4 elements were updated, since
a size of 16 is specified.

5.3.1.1.7 Setting a Trap at signal-name

[stop | sample] [all] [pgrp] signal signal-name

This command sets a trap upon receipt of the given signal. This is the same as
the dbx(1) catch subcommand. (For a list of signals, or an alternative way to
set traps involving signals, see Section 5.4, page 84.) For example:

Trap: stop signal SGIFPE

5.3.1.1.8 Setting a Trap on Entry to sys-call-name

[stop | sample] [all] [pgrp] syscall entry sys-call-name

This command sets a trap on entry to the specified system call. This is slightly
different from setting a trap on entry to the function by the same name. A
syscall entry trap sets a trap on entry to the actual system call. A function entry
trap sets a trap on entry to the stub function that calls the system call. (For a
list of system calls, or an alternative way to set traps involving system calls, see
Section 5.4, page 84.) For example:

Trap: stop syscall entry write

5.3.1.1.9 Setting a Trap on Exit from sys-call-name

[stop | sample] [all] [pgrp] syscall exit sys-call-name

This command sets a trap on exit from the specified system call. This is slightly
different from setting a trap on exit from the function by the same name. A
syscall exit trap sets a trap on exit from the actual system call. A function exit
trap sets a trap on exit from the stub function that calls the system call. (For a

007–2579–005 81

Developer MagicTM: Debugger User’s Guide

list of signals, or an alternative way to set traps involving signals, see Section
5.4, page 84.) For example:

Trap: stop syscall exit read

5.3.1.1.10 Setting a Trap at time Interval

[stop | sample] pollpoint [interval] time [seconds]

This command sets a trap at regular intervals of seconds. This is typically used
only for sampling. For example:

Trap: stop pollpoint 3

5.3.1.1.11 Setting a Trap for C++ Exception

[stop | sample] exception [all | item] itemname

This command sets a trap on all C++ exceptions, or exceptions that throw the
base type item.

[stop | sample] exception unexpected [all | [item [, item]]]

Stops on all C++ exceptions that have either no handler or are caught by an
unexpected handler. If you specify item, stops on executions that throw the base
type item.

5.3.2 Setting a Trap Condition

The Condition field in the Trap Manager window lets you specify the
condition necessary for the trap to be fired. A condition can be any legal
expression and is considered to be true if it returns a nonzero value when the
corresponding trap is encountered.

The expression must be valid in the context in which it will be evaluated. For
example, a Fortran condition like a .gt .2 cannot be evaluated if it is tested
while the program is stopped in a C function.

82 007–2579–005

Setting Traps [5]

There are two possible sequences for entering a trap with a condition:

1. Define the trap.

2. Define the condition.

3. Click Add.

or

1. Define the trap.

2. Click Add.

3. Define the condition.

4. Click Modify (or press Enter).

An example of a trap with a condition is shown in Figure 28, page 78. The
expression i==1 has been entered in the Condition field. (If you were
debugging in Fortran, you would use the Fortran expression i .eq .1 rather
than i==1.) After the trap has been entered, the condition appears as part of
the trap definition in the display area. During execution, any requirements set
by the trigger must be satisfied first for the condition to be tested. A condition
is true if the expression (valid in the language of the program you are
debugging) evaluates to a nonzero value.

5.3.3 Setting a Trap Cycle Count

The Cycle Count field in the Trap Manager window lets you pass through a
trap a specific number of times without firing. If you set a cycle count of n, the
trap will fire every nth time the trap is encountered. The Current Count field
indicates the number of times the process has passed the trap since either the
cycle count was set or the trap last fired. The current count updates only when
the process stops.

5.3.4 Setting a Trap with the Traps Menu

The Traps menu of the Trap Manager window lets you specify traps in
conjunction with the Main View or Source View windows. Clicking At
Source Line sets a trap at the line in the source display area that is currently
selected. To set a trap at the beginning or end of a function, highlight the
function name in the source display and click Entry Function or Exit
Function.

007–2579–005 83

Developer MagicTM: Debugger User’s Guide

5.3.5 Moving around the Trap Display Area

The trap display area displays all traps set for the current process. There are
vertical and horizontal scroll bars for moving around the display area. The
Search field lets you incrementally search for any string in any trap.

5.3.6 Enabling and Disabling Traps

Each trap has an indicator to its left for toggling back and forth between active
and inactive trap states. This feature lets you accumulate traps and turn them
on only as needed. Thus, when you do not need the trap, it will not be in your
way. When you do need it, you can easily activate it.

5.3.7 Saving and Reusing Trap Sets

The Load Traps selection in the Config menu lets you bring in previously
saved trap sets. This is useful for reestablishing a set of traps between
debugging sessions. The Save Traps... selection of the Config menu lets
you save the current traps to a file.

5.4 Setting Traps by Using Signal Panel and System Call Panel

You can trap signals by using the Signal Panel and set system calls by using
System Call Panel (see Figure 29, page 85).

84 007–2579–005

Setting Traps [5]

Figure 29. Signal Panel and System Call Panel

You can select either panel from the Views menu of the Main View window
menu bar. The Signal Panel sets a trap on receipt of the signal(s) selected.
The System Call Panel sets a trap at the selected entry to or return from the
system call.

Note: When debugging IRIX 6.5 pthreads, the Signal Panel is inaccessible
if more than one thread is active.

007–2579–005 85

Controlling Program Execution [6]

This chapter shows you how to control the execution of your program with
WorkShop Debugger. It includes the following topics:

• Main View Control Panel, Section 6.1, page 87

• Controlling Program Execution Using the PC Menu, Section 6.2, page 91

• Execution View, Section 6.3, page 92

6.1 The Main View Window Control Panel

The Main View window control panel allows you to choose an executable, and
control its execution:

Target command

Execution control
buttons

Status line

Figure 30. The Main View Window Control Panel

6.1.1 Features of the Main View Window Control Panel

The control panel includes the following:

Command field Use this field to enter commands (with
arguments) to run your program.

Status field Displays information about the execution status
of your program. The top line in this box
indicates whether the program is running or
stopped. The message No executable displays
if no executable is loaded. When your program
stops at a breakpoint, an additional status line
lists the current stack frame.

007–2579–005 87

Developer MagicTM: Debugger User’s Guide

Note: To see all of the stack frames, select the
following from the Menu Bar:

Views->Call Stack View

6.1.2 Execution Control Buttons

The execution control buttons enable you to control program execution. Most of
these buttons are not active until the Run button has been selected and the
program is executed.

Note: The Print button does not affect program execution. It is described in
Appendix A, page 183.

Run Creates a new process for your program and
starts its execution. The Run button is also used
to re-run a program.

Kill Kills the active process.

Continue Resumes program execution after a halt and
continues until a breakpoint or other event stops
execution.

Stop Stops execution of your program. When program
execution stops, the current source line is
highlighted in the Main View window and
annotated with an arrow.

Step Into Steps to the next source line and into function or
subroutine calls. To step a specific number of
lines, right-click on the button. This displays the
pop-up menu shown in Figure 31, page 89. You
can select one of the fixed values or enter your
own number of steps by selecting N... Selecting
N...displays the dialog box shown at the right
in Figure 31, page 89.

88 007–2579–005

Controlling Program Execution [6]

Figure 31. Pop-up Menu and Step Into Dialog

Step Over Steps over function or subroutine calls to the next
source line. To step a specific number of lines,
right-click on this button to display the pop-up
menu shown in Figure 32, page 90. You can select
one of the fixed values or enter your own number
of steps by selecting N.... If you select N..., the
dialog box shown at the right in Figure 32, page
90 displays.

007–2579–005 89

Developer MagicTM: Debugger User’s Guide

Figure 32. Pop-up Menu and Step Over Dialog

Return Executes the remaining instructions in the current
function or subroutine, and stops execution at the
return from this subprogram.

Sample Collects performance data. Before this button is
operative, a performance task must have been
previously specified in the Performance Task
window and data collection must have been
enabled.

90 007–2579–005

Controlling Program Execution [6]

For further information about using the
Performance Analyzer, see Developer Magic:
Performance Analyzer User’s Guide.

6.2 Controlling Program Execution Using the PC Menu

The PC (program counter) menu in the Main View window includes two tools,
Continue To and Jump To, which allow you to control program execution
without setting breakpoints.

These tools are inoperative until a process has been executing and is stopped.
At that point, you must place your cursor on a source line you wish to target,
then select from the PC menu depending on your requirements. The program
counter tools are described as follows:

Continue To This tool lets you select a target location in the
current program (by placing the cursor in the
line). The process proceeds from the current
program counter to that point, provided there are
no interruptions. It then stops there, as it would
for a stop trap. Continue To is equivalent to
setting a one-time trap. If the process is
interrupted before reaching your target location,
then the command is cancelled.

Jump To This tool lets you select a target location in the
current program (by placing the cursor in the
line). This location must be in the same function.
Instead of starting from the current program
counter, Jump To skips over any intervening code
and restarts the process at your target. This is
particularly useful if you want to get around bad
code or irrelevant portions of the program. It also
lets you back up and reexecute a portion of code.

007–2579–005 91

Developer MagicTM: Debugger User’s Guide

6.3 Execution View

The Execution View window is a simple shell that lets you set environment
variables and inspect error messages. If your program is designed to be
interactive using standard I/O, this interaction will take place in the
Execution View window. Any standard I/O that is not redirected by your
Target Command is displayed in the Execution View window.

Note: When you launch the debugger, the Execution View window is
launched in iconified form.

92 007–2579–005

Viewing Program Data [7]

After you set traps (breakpoints) in your program, use the Run button to
execute your program. When a trap stops a process, you can view your
program data using the tools described in this chapter. This chapter covers:

• Tracing Through Call Stack View, Section 7.1, page 93.

• Evaluating Expressions, Section 7.3, page 99.

The Debugger also lets you examine data at the machine level. The tools for
viewing disassembled code, machine registers, and data by specific memory
location are described in Appendix A, page 183.

7.1 Traceback through Call Stack View

The Views menu may be used to bring up the Call Stack View window.
This window displays the functions/subroutines (that is, the “frames”) in the
call stack when the process associated with your program has stopped. This
display provides a traceback of subprograms from the system routine which
starts your executable, found at the bottom of the list, to the routine in which
you are currently stopped, found at the top of the list. If the trap/breakpoint at
which you are currently stopped is located in your source code, that code is
displayed in the source pane of the Main View window. If the trap/breakpoint
is located in a system routine, the Call Stack View allows you to
double-click on another routine’s name to bring up that routine’s source and
associated data. A typical Call Stack View window is shown in Figure 33,
page 94.

007–2579–005 93

Developer MagicTM: Debugger User’s Guide

Stack
frames

Figure 33. Call Stack View Window

The Call Stack View window lets you see the argument names, values,
types, and locations of functions, as well as the program counter (PC).

If symbolic information for the arguments has been stripped from the
executable file, the label <stripped> appears in place of the arguments. By
default call stack depth is set to 10, but you can reset the depth of the Call
Stack View by selecting the following from the Main View window:

Config
->Preferences...

To move through the call stack, double-click a frame in the stack. The frame
becomes highlighted to indicate the current context. The source display in the

94 007–2579–005

Viewing Program Data [7]

Main View or Source View windows scrolls automatically to the location
where the function was called and any other active views update.

The source display has two special annotations:

• The location of the current program state is indicated by a large arrow. This
represents the PC (program counter).

• The location of the call to the function selected in the Call Stack View
window is indicated by a smaller arrow. This represents the current context,
and the source line is highlighted.

Figure 34, page 96, illustrates the correspondence between a frame and the
source code when a frame is clicked in the Call Stack View window. In this
example, the stack frame spin has been selected; the Main View display scrolls
to the place where the trap occurred. If the second stack (main) had been
selected, the window would have scrolled to the place where the function main
calls spin.

007–2579–005 95

Developer MagicTM: Debugger User’s Guide

Figure 34. Tracing through Call Stack View

7.2 Options for Viewing Variables

The WorkShop Debugger provides several options for viewing variables or
expressions involving these variables. In this section only brief descriptions of
these options will be provided along with references where further information
may be obtained elsewhere in this document.

96 007–2579–005

Viewing Program Data [7]

7.2.1 Using the cvd> Command Line

At the bottom of the Main View window is the cvd command/message pane.
Here, you can enter print xxx commands to obtain the current value of
variable xxx.

For examples of these commands, see Section 2.1.6.1, page 21.

For the syntax of these commands (such as assign, print, printd, printo,
printx, and so on), see Section A.9.1, page 312.

7.2.2 Using Click to Evaluate

In the Main View window’s source pane, a click of the right mouse button will
bring up a pop-up menu from which you can select Click to Evaluate.
When this option is on, a click on a variable will cause its value to appear. If
you click on a subscript variable, its address will appear. If you hold down the
left mouse button and wipe across a variable and its subscripts to highlight
them, the current value will be displayed. The same is true if an expression in
the source is highlighted.

7.2.3 Using the Array Browser

To view values of arrays, select the following from the Main View menu bar:

Views
->Array Browser

This calls up the Array Browser window. When the name of an array is
entered into the Array field, the values of 1–dimensional arrays or the values
in a selected plane of a multi-dimensional array are displayed.

See Section 2.1.6.5, page 25 for short description of the Array Browser. Also,
Section A.6.1, page 257, “Array Browser Window”, provides a more detailed
description and graphic of the window and associated submenus.

7.2.4 Using the Structure Browser

To view C structures, select the following from the Main View menu bar:

Views
->Structure Browser

007–2579–005 97

Developer MagicTM: Debugger User’s Guide

This calls up the Structure Browser window. When the name of a structure
is entered into the Expression field, the objects in the structure display in the
lower portion of the window.

See Section 2.1.6.6, page 27 for a short description of the Structure Browser.
Also, Section A.6.5, page 277, “Structure Browser Window”, provides a
more detailed description and graphic of the window and associated submenus.

7.2.5 Using the Variable Browser

To call up the Variable Browser window, select the following from the Main
View menu bar:

Views
->Variable Browser

This window lists the names and values of variables associated with the current
routine in which the process has stopped.

See Section 2.1.6.3, page 23 for a short description of the Variable Browser. Also,
Section A.6.6, page 288, “Variable Browser Window”, provides a more
detailed description and graphic of the window and associated submenus.

7.2.6 Using the Expression View

Select the following from the Main View menu bar to bring up the
Expresssion View window:

Views
->Expression View

Expressions may be entered into this window in the Expression column; and
the corresponding Results entry will display the value of the evaluated
expression using values of variables associated with the current routine in
which the process has stopped.

See Section 2.1.6.4, page 23 for a short description of the Expressions View
window. Also, Section A.6.3, page 273, Expression View Window, provides a
more detailed description and graphic of the window and associated submenus.

The next section of this chapter, “Evaluating Expressions”, gives further details
on how to create acceptable expressions for the Expression View.

98 007–2579–005

Viewing Program Data [7]

7.3 Evaluating Expressions

You can evaluate any valid expression at a stopping point and trace it through
the process. Expressions are evaluated by default in the frame and language of
the current context. Expressions may contain data names or constants; however,
they may not contain names known only to the C preprocessor, such as in a
#define directive or a macro.

To evaluate expressions, you can use Expression View, which lets you
evaluate multiple expressions simultaneously, updating their values each time
the process stops.

Note: You can also evaluate expressions from the command line. See Section
A.9, page 312 for more information.

7.3.1 Expression View Window

The Expression View window is shown in Figure 35, page 100, with its
major menus displayed. The Expression View window has two pop-up
menus, the Language menu and the Format menu:

• The Language menu is invoked by holding down the right mouse button
while the cursor is in the Expression column.

• The Format menu is displayed by holding down the right mouse button in
the Result column.

To specify the expression to be evaluated, click in the Expression column and
then enter the expression in the selected field. It must be a valid expression in
the current or selected language: Ada, C, C++, or Fortran. To change languages,
display the Language menu and make your selection. When you press Enter,
the result of the expression is displayed in the Result column.

007–2579–005 99

Developer MagicTM: Debugger User’s Guide

Editable Result
field

Figure 35. Expression View with Major Menus Displayed

To change the type of result information displayed in the right column, hold
down the right mouse button over the right column. This displays the Format
menu. From here you can select the following:

• Select the Default Value menu to see the value as decimal, unsigned,
octal, hex, float, char, or string characters.

• Select the Type Address Of menu to display the address in decimal, octal,
or hexadecimal.

• Select Bit Size to specify the size of the result, in bits.

100 007–2579–005

Viewing Program Data [7]

!
Caution: The Debugger uses the symbol table of the target program to
determine variable type. Some variables in libraries, such as errno and
_environ, are not fully described in the symbol table. As a result, the
Debugger may not know their types. When the Debugger evaluates such a
variable, it assumes that the variable is a fullword integer. This gives the
correct value for fullword integers or pointers, but the wrong value for
non-fullword integers and for floating-point values.

To see the value of a variable of unknown type, use C type cast syntax to cast
the address of the variable to a pointer that points to the correct type. For
example, the global variable _environ should be of type char**. You can see
its value by evaluating *(char***)&_environ.

After you display the current value of the expression, you may find it useful to
leave the window open so that you can trace the expression as it changes value
from trap to trap (or when you change the current context by double-clicking in
the call stack). Like other views involved with variables, Expression View
has variable change indicators for value fields that let you see previous values,
as shown in the following figure:

Change
indicators

Figure 36. Change Indicators in Expression View

007–2579–005 101

Developer MagicTM: Debugger User’s Guide

Another useful technique is to save your expressions to a file for later reuse. To
save expressions, select the following from the Main View menu bar:

Config
->Save Expressions

To load expressions, select the following from the Main View menu bar:

Config
->Load Expressions...

7.3.2 Assigning Values to Variables

To assign a value to a variable, click the left column of the Expression View
window and enter the variable name. The current value appears in the right
column. If this Result field is editable (highlighted), you can click it and enter
a new value or legal expression. Press Enter to assign the new value. You can
perform an assignment to any expression that evaluates to a legal lvalue (in
C). The C operator “=” is not valid in Expression View. Valid expression
operations are shown in the following paragraphs.

102 007–2579–005

Viewing Program Data [7]

7.3.3 Evaluating Expressions in C

The valid C expressions are shown in Table 1.

Table 1. Valid C Operations

Operation Symbol

Arithmetic1
+ - ++ --

Arithmetic (binary)
+ - * / %

Logical
&& || !

Relational
< > <= >= == !=

Bit
& | ^ << >> ~

Dereference
*

Address
&

Array indexing
[]

Conditional
? :

Member extraction2
. ->

Assignment3
= += -= /= %= >>= <<= &= ^= |=

Sizeof

Type-cast

Function call

1 Unary - increment and decrement do not have side-effects
2 These operations are interchangeable.
3 A new assignment is made at each stepping point. Use Assignments with caution to avoid inadvertently modifying

variables.

007–2579–005 103

Developer MagicTM: Debugger User’s Guide

7.3.3.1 C Function Calls

Function calls can be evaluated in expressions, as long as enough actual
parameters are supplied. Arguments are passed by value. Following the rules
of C, each actual parameter is converted to a value of the same type as the
formal parameter, before the call. If the types of the formal parameters are
unknown, integral arguments are widened to full words, and floating-point
arguments are converted to doubles.

Functions may return pointers, scalar values, unions, or structs. Note that if the
function returns a pointer into its stack frame (rarely a good programming
practice), the value pointed to will be meaningless, since the temporary stack
frame is destroyed immediately after the call is completed.

Function calls may be nested. For example, if your program contains a
successor function succ, the Debugger will evaluate the expression
succ(succ(succ(3))) to 6.

7.3.4 Evaluating Expressions in C++

C++ expressions may contain any of the C operations. You can use the word
this to explicitly reference data members of an object in a member function.
When stopped in a member function, the scope for this is searched
automatically for data members. Names may be used in either mangled or
de-mangled form. Names qualified by class name are supported (for example,
Symbol::a).

If you wish to look at a static member variable for a C++ class, you need not
specify the variable with the class qualifier if you are within the context of the
class. For example, you would specify myclass::myvariable for the static
variable myvariable outside of class myclass and myvariable inside myclass.

7.3.4.1 Limitations

Constructors may be called from Expression View, just like other member
functions. To call a constructor, you must pass in a first argument that points to
the object to be created. C++ function calls have the same possibility of side
effects as C functions.

104 007–2579–005

Viewing Program Data [7]

7.3.5 Evaluating Expressions in Fortran

You can enter any Fortran expression under the Expression heading and its
current value will appear in the same row under the Results column. Fortran
expressions may contain any of the arithmetic, relational, or logical operators.
Relational and logical operator keywords may be spelled in upper case, lower
case, or mixed case.

The usual forms of Fortran constants, including complex constants, may be
used in expressions. String constants and string operations, however, are not
supported. The operators in Table 2 are supported on data of integer, real, and
complex types.

Table 2. Valid Fortran Operations

Operation Symbol

Arithmetic (unary)
- +

Arithmetic (binary)
- + * / **

Logical
.NOT. .AND. .OR. .XOR. .EQV .NEQV.

Relational
.GT. .GE. .LT. .LE. .EQ. .NE.

Array indexing
()

Intrinsic function calls (except
string intrinsics)

Function subroutine calls

Assignment4
=

4 A new assignment is made at each stepping point. Use assignments with caution to avoid inadvertently modifying
variables.

007–2579–005 105

Developer MagicTM: Debugger User’s Guide

7.3.5.1 Fortran Variables

Names of Fortran variables, functions, parameters, arrays, pointers, and
arguments are all supported in expressions, as are names in common blocks
and equivalence statements. Names may be spelled in upper case, lower case,
or mixed case.

7.3.5.2 Fortran Function Calls

The Debugger evaluates function calls the same way that compiled code does. If
it can be, an argument is passed by reference; otherwise, a temporary expression
is allocated and passed by reference. Following the rules of Fortran, actual
arguments are not converted to match the types of formal arguments. Side
effects can be caused by Fortran function calls. A useful technique to protect
the value of a parameter from being modified by a function subroutine is to
pass an expression such as (parameter + 0)instead of just the parameter
name. This causes a reference to a temporary expression to be passed to the
function rather than a reference to the parameter itself. The value is the same.

106 007–2579–005

Debugging with Fix+Continue [8]

Fix+Continue allows you to make changes to a C/C++ program you are
debugging without having to recompile and link the entire program. With
Fix+Continue you can edit a function, parse the new function, and continue
execution of the program being debugged.

Fix+Continue is an integral part of the Debugger. You issue Fix+Continue
commands graphically from the Fix+Continue submenu of the Main View
window, or from the cvd> command line prompt in the Command/Message
pane of the Main View window.

This chapter provides an introduction to the Fix+Continue functionality as well
as a tutorial to demonstrate many of the Fix+Continue functions.

8.1 Introduction to Fix + Continue

The following sections give you an overview to Fix+Continue functionality.

8.1.1 Fix+Continue Functionality

Fix+Continue lets you perform the following activities:

• Redefine existing function definitions

• Disable, re-enable, save, and delete redefinitions

• Set breakpoints in redefined code.

• Single-step within redefined code.

• View the status of changes

• Examine differences between original and redefined functions

A typical Fix+Continue cycle proceeds as follows:

1. You redefine a function with Fix+Continue. When you continue executing
the program, the Debugger attempts to call the redefined function. If it
cannot, an information pop-up window appears and the redefined function
will be executed the next time the program calls that function.

007–2579–005 107

Developer MagicTM: Debugger User’s Guide

2. You redefine other functions, alternating between debugging, disabling,
re-enabling, and deleting redefinitions. You might save function
redefinitions to their own files, or save files to a different name, to be used
later with the present or with other programs.

During debugging you can review the status of changes by listing them,
showing specific changes, or looking at the Fix+Continue Status View. You
can compare changes to an individual function or to an entire file with the
compiled versions. When you are satisfied with the behavior of your
application, save the changed file as a replacement for the compiled source.

8.1.2 Fix+Continue Integration with Debugger Views

Fix+Continue interacts with the following Views:

• The Views main view, the Source View, and Fix+Continue Status
windows distinguish between compiled and redefined code, and allow
editing in redefined code.

• The following status windows elements work with redefined code:

– Call Stack window

– Trap Manager

– Debugger command line

8.1.3 How Redefined Code Is Distinguished from Compiled Code

Redefined functions have an identification number and special line numbers.
They are color-coded according to their state (that is, edited, parsed, and so on).

Line numbers in the compiled file stay the same, no matter how redefined
functions change. However, when you begin editing a function, the line
numbers of the function body are represented in decimal notation (n.1, n.2, ...,
n.m), where n is the compiled line number where the function body begins, and
m is the line number relative to the beginning of the function body, starting
with the number 1.

The Call Stack window and the Trap Manager functions both use
function-relative decimal notation when referring to a line number within the
body of a redefined function.

The Debugger command line reports ongoing status. In addition to providing
the same commands available from the menu, edit commands allow you to

108 007–2579–005

Debugging with Fix+Continue [8]

add, replace, or delete lines from files. Therefore, you can operate on several
files at once.

8.1.4 The Fix+Continue Interface

You can access Fix+Continue through the Fix+Continue menu. It includes
three supporting windows: Status, Message, and Build Environment.
These windows are part of Fix+Continue, and do not operate unless it is
installed.

8.1.5 Debugger with Fix+Continue Support

Without Fix+Continue, the Debugger source views are Read-Only by default.
That is so you can examine your files with no risk of changing them. When you
select Edit from the Fix+Continue menu, the Debugger source code status
indicator (in the lower-right corner of the Debugger window) remains
Read-Only. This is because edits made using Fix+Continue are saved in an
intermediate state. Instead, you must choose Save File->Fixes As ... to
save your edits.

When you edit a function, it is highlighted in color; and if you switch to the
compiled version of your code, the color changes to show that the function has
been redefined. If you try to edit the compiled version of your code, the
Debugger beeps indicating Read-Only status.

When you have completed your edits and want to see the results, select Parse
and Load. When the parse and load has executed successfully, the color
changes again. If the color does not change, there may be errors: check the
Message Window.

8.1.6 Change ID, Build Path, and Other Concepts

The Fix+Continue features finding files and accessing functions through ID
numbers as follows:

• Each redefined function is numbered with a change ID. Its status may be
shown as redefined, enabled, disabled, deleted, or detached.

• Fix+Continue needs to know the location of include files and other
parameters specified by compiler build flags. You can set the build
environment for all files or for a specific file. You can display the current
build environment from the Fix+Continue menu, the command line, or

007–2579–005 109

Developer MagicTM: Debugger User’s Guide

the Fix+Continue Status Window. When you finish a Fix+Continue
session, you can unset the build environment.

• Output from a successful run is displayed in the Execution View. This
functionality is the same as it is in the Debugger without Fix+Continue.

8.2 Restrictions on Fix+Continue

Fix+Continue has the following restrictions:

• When you work with C code, you must use the -o32 compiler option.

• Fix+Continue does not support C++ templates.

• You may not add, delete, or reorder local variables in a function.

• You may not change the type of a local variable.

• You may not change a local variable to be a register variable and vice- versa.

• You may not add any function calls that increase the size of the parameter
area.

• You may not add an alloca function to a frame that did not previously use
an alloca function.

• Both the old and new functions must be compiled with the -g option.

In other words, the layout of the stack frames of both the old and new
functions must be identical for you to continue execution in the function
that is being modified. If not, execution of the old function continues and
the new function is executed the next time the function is called.

• If you redefine functions that are in but not on top of the call stack, the
modified code will not be executed when they combine. Modified functions
will be executed only on their next call or on a rerun.

For example, consider the following call stack:

foo()

bar()

foobar()

main()

– If you redefine foo(), you can continue execution, provided that the
layout of the stack frames are the same.

110 007–2579–005

Debugging with Fix+Continue [8]

– If you redefine main() after you have begun execution, the redefined
main() will be executed only when you rerun.

– If you redefine bar() or foobar(), the new code will not be executed
when foo() returns. It will be executed only on the next call of bar()
or foobar().

8.3 Fix+Continue Tutorial

This tutorial illustrates several features of Fix+Continue. The demo files
included in /usr/demos/WorkShop/time1 contain the complete C++ source
code for the program time1. Use this program for your tutorial. Here you will
see how Fix+Continue can modify functions without recompiling and linking
the entire program.

This section contains the following subsections:

• Setting up the Sample Session, Section 8.3.1, page 111.

Redefining a C/C++ Function, Section 8.3.2, page 112

• Setting Breakpoints in Redefined Code, Section 8.3.3, page 118.

• Viewing Status, Section 8.3.4, page 121.

• Comparing Original and Redefined Code, Section 8.3.5, page 121.

• Ending the Session, Section 8.3.6, page 124.

8.3.1 Setting up the Sample Session

For this tutorial, use the demo files in the /usr/demos/WorkShop/time1
directory that contains the complete source code for the C++ application time1.
To prepare for the session, you must create the fileset and launch Fix+Continue
from the Debugger as shown below:

1. Enter the following commands:

% mkdir demos/time1
% cd demos/time1

% cp /usr/demos/WorkShop/time1/* .

% make time1

% cvd time1 &

007–2579–005 111

Developer MagicTM: Debugger User’s Guide

The cvd command brings up the Debugger, from which you can use the
Fix+Continue utility. The Execution View icon and the Main View
window appear. Note that the Debugger shows a source code status
indicator of (Read Only).

2. Open the Execution View window and position it next to the Main View
window.

3. Click Run to run time1.

The Execution View shows the program output (see Figure 37).

Figure 37. Program Results in Execution View

8.3.2 Redefining a Function: time1 Program

In this section, you will do the following in the time1 program:

• Edit a C/C++ function

• Change the code of an existing C/C++ function and then parse and load the
function, rebuilding your program to see the effect of your changes on
program output (without recompiling)

• Save the changed function to its own separate file.

112 007–2579–005

Debugging with Fix+Continue [8]

8.3.2.1 Editing a Function

Perform the following in the Debugger Main View window (the time1
program should be displayed) to edit a function:

1. Selecting the following from the Main View window menu bar to show line
numbers:

Display
->Show Line Numbers

2. Click on the source annotation column to the left of line 17 to set a
breakpoint at that point.

3. Set a breakpoint at line 20 from the cvd> prompt as follows:

cvd> stop at 20

4. Click on the Run button to execute the program.

The following output appears in the Execution View window:

First printing of time:

08:20:50

Second printing of time:

5. Enter the following in the cvd > field to choose a class member function to
edit (in this case, printTime, a C++ member fu nction of class Time):

cvd> func Time::printTime

This command opens the time1/time1.c file, which contains the
implementation of class Time. The cursor is placed at the beginning of the
printTime function. (See Figure 38, page 114.)

007–2579–005 113

Developer MagicTM: Debugger User’s Guide

Note: The syntax of the func command is as follows:

• For C++ class member functions:

cvd> func className::classMemberFunction

• For all other C/C++ functions:

cvd> func functionName

Figure 38. Selecting a Function for Redefinition

6. Select the following option from the menu bar to highlight the function to
be edited:

Fix+Continue
->Edit

Note: You can also use Alt-Ctrl-e to perform this task.

Note the results as shown in Figure 39, page 115. Line numbers changed to
a decimal notation based on the first line number of the function body. The
function body highlights to show that it is being edited. The line numbers
of the rest of the file are not affected.

114 007–2579–005

Debugging with Fix+Continue [8]

Line number
notation

Highlight

Figure 39. Redefined Function

8.3.2.2 Changing Code

1. To change the time output as shown in Step 5 in Section 8.3.2.1, page 113,
delete the 0 from "0" in line 23.2.

2. Select the following option from the menu bar to parse the modified
function and load it for execution:

Fix+Continue
->Parse and Load

An icon for the Fix+Continue Error Messages window displays; and the
following message appears in the cvd> field:

Change id: 1 modified

Note: You can also use Alt-Ctrl-x to perform this task.

If there are errors:

a. Go to the error location(s) by double-clicking the related message line in
the Fix+Continue Error Messages window.

b. Correct the errors.

c. Repeat steps 1 and 2.

Continue to step 3 when you see the change ID and the following messages:

Change id: 1 redefined
Change id: 1 saved func

Change id: 1 file not saved

Change id: 1 modified

Note: The new function value is not active until the function is called.

007–2579–005 115

Developer MagicTM: Debugger User’s Guide

3. Click on the Continue button to continue program execution.

The following output appears in the Execution View window:

Second printing of time:

8:20:50

Notice how the time printout has changed from 08:20:50 to 8:20:50.

8.3.2.2.1 Deleting Changed Code

To cancel any of your changes, you must bring up the source file in which the
change was made and perform the following steps:

1. Enter the following at the cvd> prompt:

cvd> func Time::printTime

2. Select the following option from the menu bar to delete your changes:

Fix+Continue
->Delete Edits

The Verify before deleting... dialog displays.

3. Click OK in the Verify before deleting... dialog.

Your deletion is complete.

8.3.2.2.2 Changing Code from the Debugger Command Line

You can redefine a C++ class member function from the Debugger command
line as follows:

1. Click on the Kill button in the Main View window.

2. Click on the Run button to re-run the program.

3. Choose a class member function (in this case, printTime) to edit by entering
the following at the cvd> command line:

cvd> func Time::printTime

116 007–2579–005

Debugging with Fix+Continue [8]

4. Use the redefine command to edit the function:

cvd> redefine Time::printTime

Note the results as shown in Figure 39, page 115. Here, line numbers have
changed to decimal notation based on the first line number of the function
body. Note also that the command line prompt has changed.

5. Enter the following at the prompt:

"/path/name/time1.C":23.1> .

6. Change the function source by entering the following at the command line:

cvd> replace_source "time1.C":23.2

"time1.C:23.2> cout << (hour < 10 ? "" : "") << hour << ":"

"time1.C:23.3> .

Parse and Load is executed at this point. You exit ouf of the function edit
mode are return to the main source code. The following messages appear in
the command/message pane:

Change id: 2 redefined
Change id: 2 save func

Change id: 2 file not saved

Change id: 2 modified

Change id: 2 , build results:

2 enabled .../time1.C Time::printTime(void)

Note: 2 in these messages is the redefined function ID. You will use this
ID in the procedure in Section 8.3.5.1, page 121. The new function value
is not active until the function is called.

7. Continue execution by entering the following command at the cvd> prompt:

cvd> continue

The following displays in the Execution View window:

Second printing of time:

8:20:50

007–2579–005 117

Developer MagicTM: Debugger User’s Guide

If you prefer to use the command line, experiment with add_source and other
commands that give you the same functionality described for the menu
commands. For details on each command, see Section A.9, page 312.

8.3.2.3 Saving Changes

Your original source files are not updated until the changed source file is saved.
You could save redefined function changes to the time1.C file. However, if
you did, the file would not match the tutorial. So perform the following steps:

1. Enter the following command:

cvd> func Time::printTime

2. Select the following from the menu bar:

Fix+Continue
->Save As

A file_name dialog box opens.

3. The dialog box enables you to save your file changes back to the original
source files or save them to a different file. However, since you do not want
to save your changes, press the Cancel button on the bottom of the dialog
box.

Note: You usually want to wait until you are finished with Fix+Continue
before you save your changes. In addition to the method described above,
you can also save your changes by selecting the following:

Fix+Continue
->Save All Files...

8.3.3 Setting Breakpoints in Redefined Code

To see how the Debugger works with traps in redefined code, this section
shows you how to set breakpoints, run the Debugger, and view the results
(Figure 40, page 120).

1. Reset to the beginning of program execution by entering the following at
the cvd> prompt:

cvd> kill

cvd> run

118 007–2579–005

Debugging with Fix+Continue [8]

2. Bring up the time1.C source file by entering the following at the cvd>
prompt:

cvd> func Time::printTime

3. Select the following from the menu bar:

Fix+Continue
->Edit

Note: You can also use the Alt-Ctrl-e accelerator to perform this task.

4. Enter the following after line 23.4 in the source pane of the Main View
window:

cout << " AM"<< endl;

5. Select the following from the menu bar:

Fix+Continue
->Parse and Load

6. Bring up the time1.C source file again by entering the following command
at the cvd> prompt:

cvd> func Time::printTime

7. Set a breakpoint at line 23.6 by entering the following message at the
cvd> prompt:

cvd> stop at 23.6

The following message appears in the Command/Message pane:

[2] Stop at file /path/name/time1.C line 23.6

8. Click on the Continue button in the Main View window.

007–2579–005 119

Developer MagicTM: Debugger User’s Guide

The following figure shows how the breakpoint has been reached in the
redefined code:

Figure 40. Stopping after Breakpoints in Redefined Code

9. Select the following from the menu bar to see the results of continuing to
the breakpoint:

Views
->Call Stack

120 007–2579–005

Debugging with Fix+Continue [8]

10. Select the following from the menu bar to view the locations of the
breakpoints:

Views
->Trap Manager

11. Remove the breakpoint by clicking on the source annotation column to the
right of line 23.6.

8.3.4 Viewing Status

To view status, select the following from the menu bar:

Fix+Continue
->View

->Status Window

The Fix+Continue Status window opens.

8.3.5 Comparing Original and Redefined Code

You can use Fix+Continue to compare original code with and modified code.
This section shows you several ways to view your changes.

8.3.5.1 Switching between Compiled and Redefined Code

Follow these steps to see how the redefined code affects your executable:

1. Click the Run button to view your redefined code. If you are following
procedures in order in this section, you should see the following display:

8:20:50 AM

2. Enter the following at the cvd> prompt:

cvd> func Time::printTime

3. Select the following from the menu bar:

Fix+Continue
->Parse and Load

007–2579–005 121

Developer MagicTM: Debugger User’s Guide

4. Select the following from the menu bar to disable your changes:

Fix+Continue
->Edit<-->Compiled

5. Click the Continue button to see the printing of Time as in the original
executable. The following displays:

08:20:50

6. Re-enter the following at the cvd> prompt:

cvd> func Time::printTime

7. Select the following from the menu bar to re-enable your changes:

Fix+Continue
->Edit<-->Compiled

8. Click on the RUN button to see the changed printout of Time. The following
displays:

08:20:50 AM

8.3.5.2 Comparing Function Definitions

1. Place the cursor in the time1.C function.

2. Select the following from the menu bar:

Fix+Continue
->Show Difference

->For Function

122 007–2579–005

Debugging with Fix+Continue [8]

A window opens to display an xdiff comparison of the files as follows:

Figure 41. Comparing Compiled and Redefined Function Code

You can get the same result by entering the show_diff # command from
the Debugger command line, where # is the redefined function ID.

If you do not like xdiff, you can change the comparison tool by selecting
the following from the menu bar:

Fix+Continue
->Show Difference

->Set Diff Tool...

007–2579–005 123

Developer MagicTM: Debugger User’s Guide

8.3.5.3 Comparing Source Code Files

If you have made several redefinitions to a file, you may need a side-by-side
comparison of the entire file. To see how changes to the entire file look, select
the following from the menu bar:

Fix+Continue
->Show Difference

->For File

This opens an xdiff window that displays the entire file rather than just the
function.

You can get the same comparison results from the Debugger command line if
you enter the following command:

show_diff -file time1.C

8.3.6 Ending the Session

Exit the Debugger by selecting the following from the menu bar:

Admin
->Exit

124 007–2579–005

Detecting Heap Corruption [9]

The heap is a portion of memory used to support dynamic memory
allocation/deallocation via the malloc and free function. This chapter
describes heap corruption detection and covers the following topics:

• Typical Heap Corruption Problems, Section 9.1, page 125

• Finding Heap Corruption Problems, Section 9.2, page 126

• Heap Corruption Detection Tutorial, Section 9.3, page 129

9.1 Typical Heap Corruption Problems

Due to the dynamic nature of allocating and deallocating memory, the heap is
vulnerable to the following typical corruption problems:

boundary overrun A program writes beyond the malloc region.

boundary underrun A program writes in front of the malloc region.

access to uninitialized
memory

A program attempts to read memory that has not
yet been initialized.

access to freed memory A program attempts to read or write to memory
that has been freed.

double frees A program frees some structure that it had
already freed. In such a case, a subsequent
reference can pick up a meaningless pointer,
causing a segmentation violation.

erroneous frees A program calls free() on addresses that were
not returned by malloc, such as static, global, or
automatic variables, or other invalid expressions.

See the malloc(3F) man page for more
information.

007–2579–005 125

Developer MagicTM: Debugger User’s Guide

9.2 Finding Heap Corruption Errors

To find heap corruption problems, you must relink your executable with the
-lmalloc_ss library instead of the standard -lmalloc library. By default, the
-lmalloc_ss library catches the following errors:

• malloc call failing (returning NULL)

• realloc call failing (returning NULL)

• realloc call with an address outside the range of heap addresses returned
by malloc or memalign

• memalign call with an improper alignment

• free call with an address that is improperly aligned

• free call with an address outside the range of heap addresses returned by
malloc or memalign

If you also set the MALLOC_FASTCHK environment variable, you can catch these
errors:

• free or realloc calls where the words prior to the user block have been
corrupted

• free or realloc calls where the words following the user block have been
corrupted

• free or realloc calls where the address is that of a block that has already
been freed. This error may not always be detected if the area around the
block is reallocated after it was first freed.

9.2.1 Compiling with the Malloc Library

You can compile your executable from scratch as follows:

% cc -g -o targetprogram targetprogram.c -lmalloc_ss

You can also relink it by using:

% ld -o targetprogram targetprogram.o -lmalloc_ss ...

An alternative to rebuilding your executable is to use the _RLD_LIST
environment variable to link the -lmalloc_ss library. See the rld(1) man
page.

126 007–2579–005

Detecting Heap Corruption [9]

9.2.2 Setting Environment Variables

After compiling, invoke the Debugger with your executable as the target. In
Execution View, you can set environment variables to enable different levels
of heap corruption detection from within the malloc library, as follows:

MALLOC_CLEAR_FREE

Clears data in any memory allocation freed by free. It requires
that MALLOC_FASTCHK be set.

MALLOC_CLEAR_FREE_PATTERN pattern

Specifies a pattern to clear the data if MALLOC_CLEAR_FREE is
enabled. The default pattern is 0xcafebeef for the 32-bit
version, and 0xcafebeefcafebeef for the 64-bit versions.
Only full words (double words for 64-bits) are cleared to the
pattern.

MALLOC_CLEAR_MALLOC

Clears data in any memory allocation returned by malloc. It
requires that MALLOC_FASTCHK be set.

MALLOC_CLEAR_MALLOC_PATTERN pattern

Specifies a pattern to clear the data if MALLOC_CLEAR_MALLOC
is enabled. The default pattern is 0xfacebeef for the 32-bit
version, and 0xfacebeeffacebeef for the 64-bit versions.
Only full words (double words for 64-bits) are cleared to the
pattern.

MALLOC_FASTCHK

Enables additional corruption checks when you call the routines
in this library. Error detection is done by allocating a space
larger than the requested area, and putting specific patterns in
front of and behind the area returned to the caller. When free
or realloc is called on a block, the patterns are checked, and
if the area was overwritten, an error message is printed to
stderr using an internal call to the routine ssmalloc_error.
Under the Debugger, a trap may be set at exit from this routine
to catch the program at the error.

007–2579–005 127

Developer MagicTM: Debugger User’s Guide

MALLOC_MAXMALLOC n

Where n is an integer in any base, sets a maximum size for any
malloc or realloc allocation. Any request exceeding that
size is flagged as an error, and returns a NULL pointer.

MALLOC_NO_REUSE

Specifies that no area that has been freed can be reused. With
this option enabled, no actual free calls are made and process
space and swap requirements can grow quite large.

MALLOC_TRACING

Prints out all malloc events including address and size of the
malloc or free. When running a trace in the course of a
performance experiment, you need not set this variable because
running the experiment automatically enables it. If the option is
enabled when the program is run independently, and the
MALLOC_VERBOSEenvironment variable is set to 2 or greater,
trace events and program call stacks are written to stderr.

MALLOC_VERBOSE

Controls message output. If set to 1, minimal output displays; if
set to 2, full output displays.

For further information, see the malloc_ss(3) man page.

9.2.3 Trapping Heap Errors Using the Malloc Library

If you are using the -lmalloc_ss library, you can use the Trap Manager to set
a stop trap at the exit from the function ssmalloc_error that is called when
an error is detected. Errors are detected only during calls to heap management
routines, such as malloc() and free(). Some kinds of errors, such as
overruns, are not detected until the block is freed or realloced.

When you run the program, the program halts at the stop trap if a heap
corruption error is detected. The error and the address are displayed in
Execution View. You can also examine the Call Stack View at this point
to get stack information. To find the next error, click the Continue button.

If you need more information to isolate the error, set a watchpoint trap to detect
a write at the displayed address. Then rerun your program. Use
MALLOC_CLEAR_FREE and MALLOC_CLEAR_MALLOC to catch problems from
attempts to access uninitialized or freed memory.

128 007–2579–005

Detecting Heap Corruption [9]

Note: You can run programs linked with the -lmalloc_ss library outside
of the Debugger. The trade-off is that you have to browse through the
stderr messages and catch any errors through visual inspection.

9.3 Heap Corruption Detection Tutorial

This tutorial demonstrates how to detect corruption errors by using the
corrupt program. The corrupt program has already been linked with the
SpeedShop malloc library (libmalloc_ss). The corrupt program listing is
as follows:

#include <string.h>

void main (int argc, char **argv)
{

char *str;

int **array, *bogus, value;

/* Let us malloc 3 bytes */
str = (char *) malloc(strlen(‘‘bad’’));

/* The following statement writes 0 to the 4th byte */

strcpy(str, ‘‘bad’’);

free (str);

/* Let us malloc 100 bytes */

str = (char *) malloc(100);

array = (int **) str;

/* Get an uninitialized value */

bogus = array[0];

free (str);

/* The following is a double free */
free (str);

/* The following statement uses the uninitialized value as a pointer */

value = *bogus;

}

007–2579–005 129

Developer MagicTM: Debugger User’s Guide

To start the tutorial:

1. Enter the following:

% mkdir demos

% mkdir demos/mallocbug
% cd demos/mallocbug

% cp /usr/demos/WorkShop/mallocbug/* .

2. Invoke the Debugger by typing:

% cvd corrupt &

The Main View window displays with corrupt as the target executable.

3. Open the Execution View window (if it is minimized) and set the
_SSMALLOC_FASTCHK and _SSMALLOC_CLEAR_MALLOC environment
variables.

If you are using the C shell, type:

% setenv _SSMALLOC_FASTCHK

% setenv _SSMALLOC_CLEAR_MALLOC

If you are using the Korn or Bourne shell, type:

$ _SSMALLOC_FASTCHK=

$ _SSMALLOC_CLEAR_MALLOC=

$ export _SSMALLOC_FASTCHK _SSMALLOC_CLEAR_MALLOC

4. To trap any malloc corruption problems, you must enter the following at
the cvd> prompt:

cvd> set $pendingtraps=true

cvd> stop exit ssmalloc_error

A stop trap is set at the exit from the malloc library ssmalloc_error.

5. Enter the following at the cvd> prompt:

cvd> run

The program executes. Observe Execution View as the program executes.

A heap corruption is detected and the process stops at one of the traps. The
type of error and its address display in Execution View (see example in
Figure 42, page 131.)

130 007–2579–005

Detecting Heap Corruption [9]

Figure 42. Heap Corruption Warning Shown in Execution View

6. Select the following from the Main View window menu bar:

Views
->Call Stack

Call Stack View opens displaying the call stack frame at the time of the
error (see Figure 43).

Figure 43. Call Stack at Boundary Overrun Warning

007–2579–005 131

Developer MagicTM: Debugger User’s Guide

7. Click the Continue button in the Main View window’s control panel.
Watch the Execution View and Call Stack View windows.

The process continues from the stop at the boundary overrun warning until
it hits the next trap where an erroneous free error occurs.

8. Click the Continue button again and watch the Execution View and
Call Stack View windows.

This time the process stops at a bus error or segmentation violation. The PC
stops at the following statement because bogus was set to an uninitialized
value:

value=*bogus

9. Enter p &bogus on the Debugger command line at the bottom of the Main
View window.

This gives us the address for the bogus variable and has been done in
Figure 44, page 133. We need the bad address so that we can set a
watchpoint to find out when it is written to. (This example has an address
of 0x7fffaef4; your address will be different.)

132 007–2579–005

Detecting Heap Corruption [9]

Bus error data

PC at error line

Entry to get bad
address

Problem address
to be watched

Figure 44. Main View at Bus Error

10. Deactivate the stop trap by clicking the toggle button next to the trap
description in the Trap Manager window, and click the Kill button in
the Main View window to kill the process.

11. Click on the Clear button in the Trap Manager window.

12. Type the following command in the Trap field. This includes the address
you obtained from the Debugger command line (see Figure 44, page 133).
This sets a watchpoint that is triggered if a write is attempted at that
address.

Note: Use the address from your system, not the one shown here.

stop watch address 0x7fffaef4 for write

007–2579–005 133

Developer MagicTM: Debugger User’s Guide

13. Click the Add button.

14. Click the Run button and observe the Main View window.

The process stops at the point where the bogus variable receives a bad
value. Details of the error display in the Main View window’s Status field.

134 007–2579–005

Multiple Process Debugging [10]

The WorkShop Debugger supports the debugging of programs that use multiple
processes spawned by fork or sproc, as well as threaded applications. The
Debugger allows you to control a single process at a time or all members of a
process group. You can attach child processes automatically. You can also
specify that spawned processes inherit traps from the parent process. The Trap
Manager provides special commands to facilitate debugging multiple processes
by setting traps that apply to the entire process group.

WorkShop supports performance analysis and debugging of multiprocess
applications, including processes spawned either with fork or sproc and
threaded applications. You can perform process control operations on a single
process or on all members of a process group. You can attach WorkShop
automatically to child processes. You can also specify spawned processes to
inherit traps. The Trap Manager provides special trap commands to facilitate
debugging multiple processes simultaneously.

Note: The Multiprocess View window is for use by C, C++, and Fortran
users. If you are debugging Ada code, you should use the Task View
window available through the View menu of the Main View window (see
Section A.3.1, page 216).

Currently, Multiprocess View handles the following multiple process
situations:

• True multiprocess program, which refers to a tightly integrated system of
sproc’d processes, generated by the MIPSpro Automatic Parallelization
Option. For more information on parallel processing, see the auto_p(5)
man page, or the MIPSpro Automatic Parallelizer Programmer’s Guide.

• Auto-fork application, which is a process that spawns a child process and then
runs in the background.

• Fork application, which is a process that spawns child processes and can
interact with them.

• Locally distributed application, which is an application that involves two
different executables running in different processes on the same host
coordinated by a rendezvous mechanism.

007–2579–005 135

Developer MagicTM: Debugger User’s Guide

This chapter discusses the details of multiprocess debugging in WorkShop and
includes the following topics:

• Using the Multiprocess View window, Section 10.1, page 136

• Controlling Execution and Setting Traps in a Multiprocess Program, Section
10.2, page 139

• Debugging a Multiprocess Fortran Program, Section 10.3, page 146

• Debugging pthreaded applications, Section 10.4, page 152

10.1 Using the Multiprocess View Window

The Multiprocess View window is brought up by selecting the following
from the menu bar of the Main View window:

Admin
->Multiprocess View

This window can display individual processes or operate on a process group.
By default, a process group includes the parent process and all descendants
spawned by sproc. Processes spawned with fork during the session can be
added to the process group automatically when they are created. For a program
compiled with the MIPSpro Automatic Parallelization Option, a process group
includes all threads generated by the option. Any process to which you have
read/write access can also be added to the process group. All sproc’d
processes must be in the same process group, since they share information.

Note: Any child process that performs an exec with setuid (set user ID)
enabled will not become part of the process group.

Each process in the session can have a standard main view window session
associated with it. However, all processes in a process group appear on a single
Multiprocess View window.

When debugging multiprocess applications, you should disable the SIGTERM
signal by selecting the following from the Main View window menu bar:

Views
->Signal Panel

Note: Although multiprocessing debugging is possible with SIGTERM
enabled, the multiprocess application may not terminate gracefully after
execution is complete.

136 007–2579–005

Multiple Process Debugging [10]

10.1.1 Starting a Multiprocess Session

The first step in debugging multiple processes is to invoke the Debugger with
the parent process. Then select the following from the menu bar:

Admin
->Multiprocess View

The following figure shows a typical Multiprocess View window.

Multiprocess
control area

Process
display area

Figure 45. Multiprocess View

10.1.2 Viewing Process Status

The process display area of the Multiprocess View lists the status of all
processes and threads in the process group. For definitions of the various status
and states, see Section A.2.2.1.

To get more information about a process or thread displayed in the process
display area, right-click on the process or thread entry. A Process menu pops
up which is applicable to the selected entry. From this menu you can do the
following:

• change entry focus

• create a new window

• focus attention to a user–entered thread

007–2579–005 137

Developer MagicTM: Debugger User’s Guide

• show thread-specific details

• add or remove an entry

For complete details about the Process menu, see Section A.2.5, page 215.

10.1.3 Using Multiprocess View Control Buttons

The Multiprocess View window uses the same control buttons as the Main
View window with the following exceptions:

• Buttons are applied to all processes as a group.

• There are no Return, Print, or Run buttons.

Control buttons in the Multiprocess View window have the same effect as
clicking the corresponding button in the Main View window of each individual
process. For definitions of the buttons, see Section A.2.2.2, page 208.

10.1.4 Multiprocess Traps

As discussed in Chapter 5, page 69, “Setting Traps”, the trap qualifiers [all]
and [pgrp] are used in multiprocess analysis. The [all] entry stops or
samples all processes when a trap fires. The [pgrp] entry sets the trap in all
processes within the process group that contains the trap location. The qualifiers
can be entered by default by using the Stop All Default and Group Trap
Default selections, respectively, in the Traps menu of Trap Manager. The
Trap Manager is brought up from the Views menu of the Main View window.

10.1.5 Viewing Pthreaded Applications

The Multiprocess View supports a hierarchical view of your pthreaded
applications. Select the folder icons of your choosing to get more information
about a process or thread.

Perform the following from within the Multiprocess View window to get
additional information about a process or thread:

1. Double-click on a folder icon.

The process display expands to show its pthreads.

2. Double-click to select the pthread of your choosing.

The call stack for that thread displays.

138 007–2579–005

Multiple Process Debugging [10]

10.1.6 Adding and Removing Processes

To add a process, select Add... from the Process menu. In the Switch
Dialog dialog window, select one of the listed processes or enter a process ID
in the Process ID field and click the OK button.

To remove a process, click on the process name in the Multiprocess View
window and select Remove from the Process menu. Be aware that a process
in a sproc process group cannot be removed. Likewise, you cannot remove a
pthread from a pthread group.

10.1.7 Multiprocess Preferences

The Preferences... option in the Config menu brings up the
Multiprocess View Preferences dialog. The preferences on this dialog
lets you determine when a process is added to the group, specify process
behavior, specify the number of call stack levels to display, and so forth.

For details about Multiprocess View Preference options, see Section
A.2.2.4, page 209.

10.1.8 Bringing up Additional Main View Windows

To create a Main View window for a process, highlight that process in the
Multiprocess View window. Then, select the following in the
Multiprocess View window:

Process
->Create new window

10.2 Debugging a Multiprocess C Program

This section uses a C program that generates numbers in the Fibonacci
sequence to demonstrate the following tasks when using the debugger to debug
multiprocess code:

• Stopping a child process on a sproc

• Using the buttons in the Multiprocess View window

• Setting traps in the parent process only

• Setting group traps

007–2579–005 139

Developer MagicTM: Debugger User’s Guide

The fibo program uses sproc to split off a child process, which in turn uses
sproc to split off a grandchild process. All three processes generate Fibonacci
numbers until stopped. You can find the source for fibo.c in the
/usr/demos/WorkShop/mp directory. A listing of the fibo.c source code
follows:

#include <stdio.h>

#include <sys/types.h>

#include <sys/prctl.h>

int NumberToCompute = 100;

int fibonacci();

void run(),run1();

int fibonacci(int n)
{

int f, f_minus_1, f_plus_1;

int i;

f = 1;
f_minus_1 = 0;

i = 0;

for (; ;) {

if (i++ == n) return f;

f_plus_1 = f + f_minus_1;
f_minus_1 = f;

f = f_plus_1;

}

}

void run()

{

int fibon;

for (; ;) {

NumberToCompute = (NumberToCompute + 1) % 10;
fibon = fibonacci(NumberToCompute);

printf("%d’th fibonacci number is %d\n",

NumberToCompute, fibon);

}

}

void run1()

140 007–2579–005

Multiple Process Debugging [10]

{

int grandChild;

errno = 0;

grandChild = sproc(run,PR_SADDR);

if (grandChild == -1) {

perror("SPROC GRANDCHILD");
}

else

printf("grandchild is %d\n", grandChild);

run();

}

void main ()

{

int second;

second = sproc(run1,PR_SADDR);

if (second == -1)

perror("SPROC CHILD");

else

printf("child is %d\n", second);

run();

exit(0);

}

10.2.1 Launch the Debugger in Multiprocess View

Perform the following to start, compile the program, and run the Debugger:

1. Copy the program source from the demo directory as follows:

% cp /usr/demos/WorkShop/mp .

2. Compile fibo.c by entering the following command:

% cc -g fibo.c -o fibo

3. Invoke the Debugger on fibo as follows:

% cvd fibo &

007–2579–005 141

Developer MagicTM: Debugger User’s Guide

4. Call up the Multiprocess View by selecting the following from the Main
View menu bar:

Admin
->Multiprocess View...

The next section uses the fibo program to illustrate some of the functionality
of the Multiprocess window.

10.2.2 Using Multiprocess View to Control Execution

To examine each process as it is created, you must set preferences so that each
child process created stops immediately after being created. The following steps
show how this can be done:

1. Select the following from the menu bar in the Multiprocess View
window:

Config
->Preferences...

2. Toggle off Resume child after attach on sproc in the
Multiprocess View Preferences window.

3. Toggle off Copy traps to sproc’d processes so you can experiment
with setting traps later.

4. Click on the OK button to accept the changes.

5. Click on the Run button in the Main View window to execute the fibo
program.

Watch the Multiprocess View window, You will see the main process
appear and spawn a child process, which stops as soon as it appears. This
is because you turned off the Resume child after attach on sproc
option. Notice also that the Main View window switched to the stopped
child process.

6. Click on the Stop All button in the Multiprocess View window.

The control buttons on the Multiprocess View window may be used to
control all processes simultaneously, or the control buttons on any Main
View window may be used to control that individual process separately.

7. Click on the first line (that is, the main process) in the process pane of the
Multiprocess View window to highlight this line.

142 007–2579–005

Multiple Process Debugging [10]

8. Select the following from the menu bar of the Multiprocess View
window:

Process
->Create new window...

A new Main View window displays with a debug session for the main
process.

Note: You may get a warning that .../write.s is missing. This
refers to assembly code and can be ignored. The new Main View window
will not have source in its source pane.

9. Select the following from the menu bar of the Main View window you just
created to create a Call Stack View window:

Views
->Call Stack View

10. Double-click on the line in the Call Stack View window that contains
run (). This brings up the fibo.c source for the main process in the
Main View window.

11. Select the following from within the Call Stack View window to close it:

Admin
->Close

12. Click on Continue Allin the Multiprocess View window. The first
child, created in Step 5, now spawns a grandchild process that stops in
_nsproc, as shown here:

Note: A Main View window switches to the new stopped process.

007–2579–005 143

Developer MagicTM: Debugger User’s Guide

Figure 46. Examining Process State Using Multiprocess View

13. Click on Stop All in the Multiprocess View window.

14. Repeat steps 7 through 11 to bring up a Main View window for the parent
process.

10.2.3 Using the Trap Manager to Control Trap Inheritance

Note: The instructions in this section assume that you have just run the
tutorial in Section 10.2.2, page 142.

This section shows you how to use the Trap Manager to set traps that affect one
or all processes in the fibo process group. For complete information on using
the Trap Manager, refer to Chapter 5, page 69.

1. Select the following from the Main View window for the parent process:

Views
->Trap Manager

Note: Traps are specific to the processes in the Main View window in
which they are set.

2. Select the following (from the same Main View window) to turn on line
numbering in the source pane, if not already showing:

Display
->Show Line Numbers

144 007–2579–005

Multiple Process Debugging [10]

3. Click to the left of line 32, to set a breakpoint/stop trap for the parent
process. Line 32 reads as follows:

32 Number to Compute = (NumberToCompute + 1) % 10

Line 32 highlights in red to indicate that a breakpoint has been set. A
corresponding trap command appears in the Trap text box in the Trap
Manager window; and the trap is added to the list on the Active Traps
list of the same window. Remember, this trap will affect only the parent
process.

4. Click on the Continue All button in the Multiprocess View window.

Note: The parent process has stopped, but the other processes are
probably still running.

5. Insert the word pgrp (that is, “process group”) after the word stop in the
Trap field of the Trap Manager window.

The trap should now read Stop pgrp at As the command
suggests, pgrp affects the whole process group.

6. Click on the Modify button.

The trap now affects two child processes. Watch the Multiprocess View
window to see the running processes in the process group stop at the trap
on line 32.

7. Select the following from the Trap Manager window:

Traps
->Group Trap Default

Note: Now, any additional traps that you set using the Trap Manager
will affect the entire process group. Any previously set traps will not be
affected.

8. Select the text of line 23, found in the source pane of the Main View
window associated with the parent process. This line reads as follows:

23 f_minus_1 = f;

9. Select the following from the menu bar of the Trap Manager window:

Traps
->At Source Line

007–2579–005 145

Developer MagicTM: Debugger User’s Guide

The trap you have just set includes the modifier pgrp.

10. Select the following from any Main View window to close your session and
end this tutorial:

Admin
->Exit

10.3 Debugging a Multiprocess Fortran Program

The section of this chapter presents a few standard techniques to assist you in
debugging a parallel program. This section shows you how to debug the
sample program.

See also Chapter 2, page 11 for important related information.

10.3.1 General Fortran Debugging Hints

Debugging a multiprocessed program is more involved than debugging a
single-processor program. Therefore, you should debug a single-processor
version of your program first and try to isolate the problem to a single parallel
DO loop.

Once you have isolated the problem to a specific DO loop, change the order of
iterations in a single-processor version. If the loop can be multiprocessed, then
the iterations can execute in any order and produce the same answer. If it
cannot be multiprocessed, you will see that changing the order in which the
loops execute will cause the single-processor version to produce wrong
answers. If wrong answers are produced, you can use standard single-process
debugging techniques to find the problem. (See Chapter 2, page 11 for
important related information.)

If this technique fails, you must debug the multiprocessed version. To do this,
compile your code with the -g and -FLIST:=ON flags. The -FLIST:=ON flags
save the file containing the multiprocessed DO loop Fortran code in a file called
total.w2f.f and a file tital.rii and an rii_files directory.

10.3.2 Fortran Multiprocess Debugging Session

This section shows you how to debug a small segment of multiprocessed code.

The source code for this tutorial, total.f, can be found in the directory
/usr/demos/WorkShop/mp.

146 007–2579–005

Multiple Process Debugging [10]

A listing of this code is as follows:

program driver

implicit none
integer iold(100,10), inew(100,10),i,j

double precision aggregate(100, 10),result

common /work/ aggregate

result=0.

call total(100, 10, iold, inew)

do 20 j=1,10
do 10 i=1,100

result=result+aggregate(i,j)

10 continue

20 continue

write(6,*)’ result=’,result
stop

end

subroutine total(n, m, iold, inew)

implicit none
integer n, m

integer iold(n,m), inew(n,m)

double precision aggregate(100, 100)

common /work/ aggregate

integer i, j, num, ii, jj

double precision tmp

C$DOACROSS LOCAL(i,ii,j,jj,num)

do j = 2, m-1

do i = 2, n-1

num = 1
if (iold(i,j) .eq. 0) then

inew(i,j) = 1

else

num = iold(i-1,j) +iold(i,j-1) + iold(i-1,j-1) +

& iold(i+1,j) + iold(i,j+1) + iold(i+1,j+1)
if (num .ge. 2) then

inew(i,j) = iold(i,j) + 1

else

inew(i,j) = max(iold(i,j)-1, 0)

end if

end if
ii = i/10 + 1

007–2579–005 147

Developer MagicTM: Debugger User’s Guide

jj = j/10 + 1

aggregate(ii,jj) = aggregate(ii,jj) + inew(i,j)
end do

end do

end

In the program, the local variables are properly declared. The inew always
appears with j as its second index, so it can be a share variable when
multiprocessing the j loop. The iold, m, and n are only read (not written), so
they are safe. The problem is with aggregate. The person analyzing this code
deduces that, because j is always different in each iteration, j/10 will also be
different. Unfortunately, since j/10 uses integer division, it often gives the
same results for different values of j.

While this is a fairly simple error, it is not easy to see. When run on a single
processor, the program always gets the right answer. Sometimes it gets the
right answer when multiprocessing. The error occurs only when different
processes attempt to load from and/or store into the same location in the
aggregate array at exactly the same time.

10.3.2.1 Debugging Procedure

Perform the following to debug this code:

1. Create a new directory for this exercise:

% mkdir demos/mp

2. cd to the new directory and copy the following program source into it:

% cp /usr/demos/WorkShop/mp .

3. Edit the total.f file in a shell editor, such as vi:

% vi total.f

4. Reverse the order of the iterations for demonstration purposes.

Replace

do j = 2, m-1

with

do j = m-1, 2, -1

148 007–2579–005

Multiple Process Debugging [10]

This still produces the right answer with one process running, but the
wrong answer when running with multiple processes. The local variables
look right, there are no equivalence statements, and inew uses only simple
indexing. The likely item to check is aggregate. Your next step is to look
at aggregate with the Debugger.

5. Compile the program with -g option as follows:

% f77 -g -mp total.f -o total

6. If your debugging session is not running on a multiprocessor machine, you
can force the creation of two threads, for example purposes, by setting an
environment variable. If you use the C shell, type:

% setenv MP_SET_NUMTHREADS 2

Is you use the Korn or Bourne shell, type:

$ MP_SET_NUMTHREADS=2

$ export MP_SET_NUMTHREADS

7. Enter the following to start the Debugger:

% cvd total &

The Main View window displays.

8. Select the following from the Main View menu bar to show the line
numbers:

Display
->Show Line Numbers

9. Select the following from the Main View menu bar:

Source
->Go To Line...

And enter 44.

Line 44 is as follows:

aggregate(ii,jj) = aggregate(ii,jj) + inew(i,j)

10. You will now set a stop trap at this line, so you can see what each thread is
doing with aggregate, ii, and jj. You want this trap to affect all threads
of the process group. One way to do this is to turn on trap inheritance in
the Multiprocess View Preferences dialog. To open this dialog,

007–2579–005 149

Developer MagicTM: Debugger User’s Guide

select the following from the Main View menu bar to open the
Multiprocess View window:

->Admin
->Multiprocess View

Then, select the following from within the Multiprocess View window:

Config
->Preferences

Another way is to use the Trap Manager to specify group traps, as follows.

a. Select the following from the Main View window menu bar to open the
Trap Manager:

Views
->Trap Manager

b. Select the following from the Trap Manager window:

Traps
->Group Trap Default

11. Click-drag to select line 44 in the Main View window.

12. Open the Trap Manager window from the Main View window menu bar
as follows:

Views
->Trap Manager

Then select the following from the the Trap Manager window:

Traps
->At Source Line

This sets a stop trap that reads as follows in the cvd> pane of the Main
View window:

Stop pgrp at file /usr/demos/WorkShop/mp/total.f line 44

150 007–2579–005

Multiple Process Debugging [10]

13. Select the following from the menu bar in the Main View window to
monitor status of the two processes:

Admin
->Multiprocess View

You are now ready to run the program.

14. Click the Run button in the Main View window.

As you watch the Multiprocess View, you see the two processes appear,
run, and stop in the function _mpdo_total_1. It is unclear, however, if the
Main View window is now relative to the master process, or that it has
switched to the slave process.

15. Right-click on the name of the slave process in the Multiprocess View
window and select the following:

Process
->Create a new window

A new window is displayed that launches a debug session for the process.
Now, both master and slave processes should display in respective Main
View windows.

16. Invoke the Variable Browser as follows from the Menu Bar of each process:

Views
->Variable Browser

17. Look at ii and jj in the following figure.

007–2579–005 151

Developer MagicTM: Debugger User’s Guide

Figure 47. Comparing Variable Values from Two Processes

They have the same values in each process; therefore, both processes may
attempt to write to the same member of the array aggregate at the same
time. So aggregate should not be declared as a share variable. You have
found the bug in your parallel Fortran program.

10.4 Debugging a Pthreaded Program

cvd supports the debugging of IRIX 6.4 and 6.5 pthreads. You can view
pthread creation and execution through the Multiprocess View window.
Through this window you can:

• View a hierarchal display of a threaded application

• View a process/pthread relationship

• Expand individual call stacks

C, C++, and Fortran users should use the Multiprocess View window when
debugging pthreads. Ada users should use the Task View window.

The next sections give hints on debugging pthreaded programs, list differences
between 6.4 and 6.5 threads, and illustrate how to debug a program that uses
IRIX 6.5 pthreads.

152 007–2579–005

Multiple Process Debugging [10]

10.4.1 User-Level Continue of Single 6.5 POSIX Pthread

The ability to “continue” or “free run” a single POSIX pthread under IRIX 6.5 is
available at the user level with WorkShop release 2.8. However, use of this new
debugging feature can, in certain specific circumstances, lead to anomalous and
possibly confusing behavior. Such behavior occurs when the single thread that
is continued or free run encounters either a “blocking” or “scheduling”
situation in the operating system or the pthreads library. When such situations
arise, the operating system (or, in some cases, the pthreads library) must take
action to dispose of the single continued or free run thread and, possibly, newly
created threads. In the course of this action the debugging user will see things
occur, with both the single continued or free run thread as well as all other
threads, that will be perplexing because complex thread scheduling algorithms
are invoked by both the operating system and the pthreads library to recover
from the original blocking or scheduling incident. This note attempts to provide
information which might lessen frustration on the part of the debugging user in
the face of blocking or scheduling incidents. Debugging true POSIX pthreads is
tricky business, and users of this new feature, allowing a continue or free run of
a single 6.5 POSIX pthread, will gain even more appreciation of this fact.

This feature has been used internally for some time by the WorkShop debugger.
The continue or free run of a single 6.5 pthread is used each time a user
requests a single thread step-over of a function. The single thread is allowed to
free run through the function which is being stepped over. Thus, if any
blocking or scheduling situations occur in the course of this stepping over and
associated free run of a single thread, then anomalous behavior can, and does,
occur. For example, when attempting to step over a function call which
eventually calls the routine pthread_create, the user will see the step over
succeed or not succeed in non-deterministic fashion due to complex scheduling
algorithms in the pthreads library. This is explained in greater detail below in
Section 10.4.1.1, page 153.

As another example, when a single thread step over is requested of a routine
which does a printf somewhere down the call tree, the blocking operating
system call writev is eventually invoked and this can, and does, lead to
anomalous behavior in the eyes of the debugging user. This is explained in
detail inSection 10.4.1.2, page 155.

10.4.1.1 Scheduling Anomalies

Scheduling anomalies may occur when the single 6.5 POSIX pthread which is
being continued or free run creates a new pthread via call to routine
pthread_create. At the time of the call to pthread_create the OS kernel
and the pthreads library get into a complex algorithm in deciding how to give

007–2579–005 153

Developer MagicTM: Debugger User’s Guide

life to the new child pthread. An actual OS kernel thread (OS kernel threads are
not available at the user level — they differ from the user level pthread) must be
either created anew or found elsewhere to support the user’s new child pthread.

First, let’s assume the OS kernel thread is to be found elsewhere, depending on
a vast number of things (for example, number of cpu’s, environment variables,
and so on). The OS kernel may (this is very non-deterministic) decide to just
put the child pthread on a ready queue, in need of an OS kernel thread. Thus
the child does nothing right away. Meanwhile if the parent pthread, via a call
to routine pthread_cond_wait, monitors the child pthread’s struggle for life,
it (the parent) gets parked on a mutex because the child obviously has not been
born yet (remember, it’s on the ready queue). The parent pthread’s OS kernel
thread becomes available, which causes the OS scheduler to check for work for
this newly freed OS kernel thread. Behold, it finds the child sitting in the ready
queue and assigns the parent’s OS kernel thread to the new child pthread. The
child then runs to completion and releases its (parent’s old) OS kernel thread.
The parent, checking for the child’s new life via pthread_cond_wait, now
recaptures its OS kernel thread and things work fine in the eyes of the
debugging user.

Now, let’s assume the OS kernel thread required by the new child pthread must
be created anew. The child is not placed on the ’ready queue’. Again, this is a
non-deterministic decision which depends on a large number of variables (that
is number or cpu’s, and so on). The OS kernel creates a new OS kernel thread
for the child pthread and “engages” it (the child) to that new OS kernel thread.
However, “marriage” of the OS kernel thread and the new child pthread cannot
occur until the new OS kernel thread actually runs. This never occurs because,
in allowing the single parent 6.5 pthread to continue or run free, it was
requested that only one user pthread be run - the parent. If the parent,
however, is using pthread_cond_wait to monitor the new life of its child,
then it (the parent) is parked on a mutex waiting for the child to run. This is a
Catch-22. The parent awaits the child but the child cannot run because only one
pthread, the parent, has been requested to run. The debugger user, meanwhile,
is not amused. The debugger displays “running” as the overall status and this
is because no events of interest are occurring. Everybody is waiting on
everybody else. Things are not working.

154 007–2579–005

Multiple Process Debugging [10]

10.4.1.2 Blocking Anomalies

Blocking anomalies occur when the single 6.5 POSIX thread which is being
continued or free run encounters a blocking condition in the course of its
running. The notion of blocking has three distinct flavors:

• Blocking syscalls in the OS kernel (see Section A.10, page 326 for a list).
When one of these kernel syscalls is blocked by another thread’s usage, the
OS kernel decides what the next move is regarding the OS kernel thread
attached to the user pthread making the call. Control could just transfer to
another application, to disk I/O, or whatever. These syscalls are all
I/O-related. The OS kernel thread says, in effect, "I’m waiting for something
to do -> I’m blocked", and it is immediately available for reassignment. The
best example of a blocking kernel syscall is writev, which is used by the
common library routine printf. Thus, if a single 6.5 POSIX thread is
continued or free run and it eventually calls printf, the debugging user
may see the anomalous behavior of another pthread started running because
the continued or free run 6.5 pthread was blocked in writev. The printf
pthread’s OS kernel thread is reassigned and another pthread suddenly
takes off.

• Various lock blocking in the pthread library, such as Mutex (mutual
exchange lock). This occurs in user space (libc, user code, and so on). The
pthread library sense that a pthread is going to block due to another
pthread’s usage. Control transfers to the routine usync_control which
eventually calls a blocking kernel syscall (see preceding item). Again, the OS
kernel decides the fate of the associated OS kernel thread. Unexpected
things could start running.

• Other lock blocking in the pthread library, whereby the pthread library
senses that a user pthread is going to block but does not go off to
usync_control. Instead it goes to the pthread_scheduler in the
pthread library for the disposition of the associated OS kernel thread. The
pthread_scheduler then reassigns the associated OS kernel thread to
another user pthread and unexpected things could start running.

10.4.1.3 How to Continue a Single POSIX 6.5 Pthread

To continue (or free run) a single POSIX 6.5 pthread, simply click on the
Continue button in the Main View window. Note that this is different from
the function of the Continue button in the Multiprocess View window,
which continues all threads.

007–2579–005 155

Developer MagicTM: Debugger User’s Guide

10.4.2 Other Pthread Debugging Hints

Observe the following guidelines when debugging pthreaded programs:

• C++ exception handling works per process not per thread.

• Using the step over function on a pthread_exit may produce
unexpected results.

10.4.3 Differences between 6.4 and 6.5 Pthreads

The following differences exist between the IRIX 6.4 and the IRIX 6.5
implementation of pthreads:

• In the IRIX 6.5 implementation, many user threads are serviced by a few
kernel micro-threads. This can result in the following problems:

– After stopping at a breakpoint, a pthreaded program may abort with a
Trace/BPT trap error when you try to use the continue function.

– Data race problems may occur as kernel micro-threads switch from one
user pthread to another.

You can alleviate these problems with the following command:

ccall pthread_setconcurrency n

Where n is the number of kernel micro-threads made available to service
user threads. In this manner, you can increase the number of kernel
micro-threads available. However, you must not specify a value for n that is
greater than the number of physical CPUs on your system.

• The Multiprocess View window shows different sets of threads /
processes depending on which version of IRIX you are running. (This is
because in IRIX releases before IRIX 6.5, threads are handled as sprocs, not
as threads.)

156 007–2579–005

Multiple Process Debugging [10]

10.4.4 Pthread Debugging Session

Pthread debugging is highly variable not only from environment to
environment from from IRIX release to IRIX release. Because of this, it is not
possible to provide a representative pthread debugging tutorial that can be
used by all users.

See Section 10.4.1, page 153, Theory of 6.5 Pthreads, for an in depth description
of current pthread implementation in IRIX.

007–2579–005 157

X/Motif Analyzer [11]

This chapter provides an introduction to the X/Motif Analyzer as well as a
tutorial to demonstrate most of the Analyzer functions. The chapter contains
the following sections:

Motif is a library of routines that enable you to create user interfaces in an
X-environment. The Motif libraries handle most of the low-level event handling
tasks common to any GUI system. This way, you can create sophisticated
interfaces without having to contend with all of the complexity of X.

The X/Motif Analyzer helps you debug code that calls Motif library routines.
The X/Motif Analyzer is integrated with the Debugger so you can issue
X/Motif Analyzer commands graphically. To access X/Motif analyzer
subwindow select the following from the Main View window menu bar:

Views
->X/Motif Analyzer

11.1 Introduction to the X/Motif Analyzer

The Analyzer contains X/Motif objects (for example, widgets and X graphics
contexts) that can be difficult or impossible to inspect through ordinary
debugging procedures. It also allows you to set widget-level breakpoints and
collect X–event history information in the same manner as using xscope. See
the xscope(1) man page for more information.

11.1.1 Examiners Overview

When the X/Motif Analyzer first displays, it is set to examine widgets. At
this point, the window may be blank, or it may display a widget found in the
call stack of a stopped process.

At the bottom of the X/Motif Analyzer window is a tab panel that shows
the current set of examiners. In addition to this tab, the Widget Examiner,
Breakpoints, Trace, and Tree Examiners tabs are at the bottom of the
window. These four tabs are always present. Other examiners are available
from the Examine menu of the X/Motif Analyzer window.

007–2579–005 159

Developer MagicTM: Debugger User’s Guide

Some examiners cannot be manually selected. They appear only when
appropriate to the call stack context. For example, the Callback Examiner
appears only when a process is stopped somewhere in a widget callback.

11.1.2 Examiners and Selections

If you select text in one examiner and then choose another examiner by using
the Examine menu, the new examiner is brought up and the text is used as an
expression for it. If you selected text that is an inappropriate object for the new
examiner, an error is generated.

Alternatively, you can select text, pull down the Examine menu, and choose
Selection. Here, the X/Motif Analyzer attempts to select an appropriate
examiner for the text. If the type of text is unknown, the following message
displays:

Couldn’t examine selection in more detail

Otherwise, the appropriate examiner is chosen and the text is evaluated.

You can also accomplish this by triple-clicking on a line of text. If the type of
text is unknown, nothing happens. Otherwise, the appropriate examiner is
chosen and the text is evaluated.

11.1.3 Inspecting Data

X/Motif applications consist of collections of objects (that is, Motif widgets) and
make extensive use of X resources such as windows, graphics context, and so
on. The construction model of an X window system hinders you from
inspecting the internal structures of widgets and X resources because you are
presented with ID values. The X/Motif Analyzer lets you to see the data
structures behind the ID values.

11.1.4 Inspecting the Control Flow

Traditional debuggers enable you to set breakpoints only in source lines or
functions. With the X/Motif Analyzer, you can set breakpoints for specific
widgets or widget classes, for specific control flow constructs like callbacks or
event handlers, and for specific X events or requests.

160 007–2579–005

X/Motif Analyzer [11]

11.1.5 Tracing the Execution

The X/Motif Analyzer can trace Xlib-level server events and client requests,
Xt-level event dispatching information, widget life cycle, and widget status
information.

11.2 Restrictions and Limitations

The X/Motif Analyzer has the following restrictions and limitations:

• The Breakpoints Examiner is active only after you have stopped a process
and if you have changed $LD_LIBRARY_PATH. See Section 11.3.2, page 163
for more information regarding the correct $LD_LIBRARY_PATH.

• Sometimes, gadget names may be unavailable and are displayed as
<object>. You can minimize this condition by first loading the widget tree.

• editres requests (such as, widget selection and widget tree) work only if
the process is running or if the process is stopped outside of a system call.
This can be annoying when the process is stopped in select(), waiting for
an X server event.

• The process state and appearance of the Main View window flickers while
the X/Motif Analyzer tries to complete an editres request when the
process is stopped.

• editres requests may be unreliable if the process is stopped.

11.3 X/Motif Analyzer Tutorial

This section illustrates several features of the X/Motif Analyzer. The demo files
in the /usr/demos/WorkShop/bounce directory are used to demonstrate the
debugging of a running X-application. These files contain the complete C++
source code for the bounce program.

This section includes the following subsections:

• Setting up a Sample Session, Section 11.3.1, page 162.

• Launching the X/Motif Analyzer, Section 11.3.2, page 163.

• Navigating the Widget Structure, Section 11.3.3, page 163.

• Examining Widgets, Section 11.3.4, page 166.

007–2579–005 161

Developer MagicTM: Debugger User’s Guide

• Setting Callback Breakpoints, Section 11.3.5, page 168.

• Using Additional Features of the Analyzer, Section 11.3.6, page 172.

• Ending the Session, Section 11.3.7, page 175.

11.3.1 Setting up the Sample Session

Perform the following to prepare for this session:

1. Enter the following commands:

% mkdir demos/bounce
% cd demos/bounce

% cp /usr/demos/WorkShop/bounce .

% make clean

% make bounce

% cvd bounce &

The Debugger is launched, from which you can use the X/Motif Analyzer.
Upon invocation, you see the Execution View icon and the Main View
window.

2. Double-click the Execution View icon to open the window. Then, tile
your windows so you can clearly see all windows.

3. Click on the Run button in the Main View window to run the bounce
program.

The Execution View window will update with the command that cvd is
executing.

4. Click Run in the Bounce window.

Note: You will see no action until you have finished the next steps.

5. Select the following from the menu bar of the Bounce program window:

Actors
->Add Red Ball

6. Click on the Kill button in the Main View window to terminate the
process that has been running.

7. The Execution View shows the program output.

162 007–2579–005

X/Motif Analyzer [11]

11.3.2 Launching the X/Motif Analyzer

Once the bounce fileset is built and the debugger is active, you need to launch
the X/Motif Analyzer as follows:

1. Select the following from the menu bar of the Main View window:

Views
->X/Motif Analyzer

2. Click OK when asked if you want to change your $LD_LIBRARY_PATH
environment variables to include .../usr/lib/WorkShop/Motif.

This includes instrumented versions of the Silicon Graphics libraries Xlib,
Xt, and Xm. These libraries provide debugging symbols and special support
for the X/Motif Analyzer.

Note: There are no instrumented MIPS/ABI versions of the libraries.

You are now ready to begin the sample session.

Note: Follow the steps in this tutorial precisely as written.

11.3.3 Navigating the Widget Structure

When the X/Motif Analyzer is launched, it brings up the X/Motif Analyzer
window with an empty Widget Examiner tab panel. The tab panels also show
the Breakpoints, Trace, and Tree Examiner tab panels (see Figure 48, page
164).

007–2579–005 163

Developer MagicTM: Debugger User’s Guide

Figure 48. First View of the X/Motif Analyzer (Widget Examiner)

1. Widen the X/Motif Analyzer window shown in Figure 48, page 164. This
will make it easier to understand what you will be asked to do in this
tutorial.

2. Click Run in the Main View window to re-run the bounce program.

The instrumented versions of the Motif libraries will now be used.

3. When the Bounce window appears, re-size it to make it taller.

4. Click Run in the Bounce window.

Note: You will not see any action until you perform the next steps.

5. Position the X/Motif Analyzer and Bounce windows side-by-side.

164 007–2579–005

X/Motif Analyzer [11]

6. Click on the Select button in the X/Motif Analyzer window.

This brings up an information dialog and changes the cursor to a plus sign
(+).

Note: Do not click on the OK button in this dialog.

7. Select the Step widget by clicking on the Step button in the Bounce
window with the (+) cursor, as described in the cvmotif information
dialog.

The Widget Examiner displays the Step widget structure.

8. Click the Tree tab in the X/Motif window.

The Tree Examiner panel displays the widget hierarchy of the target object
(see Figure 49, page 165).

Figure 49. Widget Hierarchy Displayed by the Tree Examiner

007–2579–005 165

Developer MagicTM: Debugger User’s Guide

9. Double-click the Run node in the tree. (Run is in the upper-right area of the
window).

This brings up the Widget Examiner that displays the Run widget
structure. Notice that the parent text area displays the name of the current
widget’s parent, which is control.

10. Click on the word control displayed on the Parent button at the top of
the Widget Examiner in the X/Motif Analyzer window.

This switches the view to the Run widget’s parent, the control object, as
shown in the Name field. And, the Widget Examiner displays the Control
widget structure.

You can now navigate through the widget hierarchy using either the
Widget Examiner or the Tree Examiner.

11.3.4 Examining Widgets

Note: This section follows from the previous section.

1. In the Widget Examiner, click on the Children... button to see the
menu, and select Run from that menu.

The Run widget structure displays in the examiner.

2. Select the following from the Bounce window:

Actors
->Add Red Ball

You should see a bouncing red ball.

3. Enter stop in Clock::timeout at the cvd> prompt in the Main View
window.

After you press ENTER, the red ball will stop bouncing.

4. Select Continue in the Main View window a few times to observe the
behavior of bounce with this breakpoint added.

5. Select the Breakpoints tab in the X/Motif Analyzer window. This
calls up the Breakpoints Examiner which allows you to set widget-level
breakpoints.

166 007–2579–005

X/Motif Analyzer [11]

6. In the Callback Name text field, enter activateCallback, then click on
the Add button to add a breakpoint for the activateCallback object of
the RUN button widget. The result is displayed in Figure 50, page 167.

Return button

Widget

specification

Parameter

specification

Breakpoints

Figure 50. Adding a Breakpoint for a Widget

7. Click on the red breakpoint down arrow in the Annotation Column of the
Main View window to remove the Clock::timeout breakpoint.

Note: If you click on the line, but not the down arrow, the breakpoint
will be deleted; but the source pane will still display the arrow.

8. Click on the Continue button in the Main View window.

9. Click on the Stop button in the Bounce window.

007–2579–005 167

Developer MagicTM: Debugger User’s Guide

10. Click on the Run button in the Bounce window. The process stops in the
Run button’s registered activateCallback. This is the routine that was
passed to XtAddCallback routine. Notice that the Callback tab (for the
Callback Examiner) is added to the tab list.

11.3.5 Setting Callback Breakpoints

1. Click on the Breakpoints list item (the Active box will be checked) to
highlight the breakpoint in the X/Motif Analyzer Breakpoint
Examiner window.

2. Delete the widget address in the Widget text field by backspacing over the
text.

3. Click on the Modify button to change the activateCallback breakpoint
to apply to all push-button gadgets XmPushButtonGadget (see in the
Class text field) rather than just the Run button. See Figure 51.

168 007–2579–005

X/Motif Analyzer [11]

Figure 51. Setting Breakpoints for a Widget Class

4. Click Continue in the Main View window.

5. Click Stop in the Bounce window.

The process now stops in the Stop button’s activateCallback routine.

6. Click the Callback tab in the X/Motif Analyzer window to go to the
Callback Examiner. This examiner displays the callback context and the
appropriate call_data structure (see Figure 52).

007–2579–005 169

Developer MagicTM: Debugger User’s Guide

Figure 52. Callback Context Displayed by the Callback Examiner

7. Double-click the window value in the callback structure, fourth line from
bottom.

8. Select the following in the Callback Examiner

Examine
->Window

The X/Motif Analyzer displays the window attributes for that window (the
window of the Stop button). Notice that the Window tab (for the Window
Examiner) is added to the tab list. See Figure 53.

170 007–2579–005

X/Motif Analyzer [11]

Note: You can also accomplish the same action by triple-clicking the
window value in the callback structure of the Callback Examiner (Step 7).
In general, triple-clicking on an address brings you to that object in the
appropriate examiner.

Figure 53. Window Attributes Displayed by the Window Examiner

007–2579–005 171

Developer MagicTM: Debugger User’s Guide

11.3.6 Using Additional Features of the Analyzer

The following steps demonstrate additional Analyzer features.

1. In the X/Motif Analyzer window, click the Widget tab.

2. Double-click the widget_class value (on the fourth line) to highlight it.

3. Pull down the following:

Examine
->Widget Class

The X/Motif Analyzer window displays the class record for the
XmPushButtonGadget routine. Notice that the Widget Class tab (for
the widget class examiner) is added to the tab list.

(Again, the same action can be accomplished by triple-clicking the
widget_class value in the Widget Examiner.)

4. (This time we used the triple-click shortcut to select the correct examiner.)
Triple-click the superclass value on the third line. The X/Motif Analyzer
window displays the class record for XmLabelGadget, the superclass of
XmPushButtonGadget.

5. Triple-click the superclass value on the right side of the third line. The
X/Motif Analyzer window displays the class record for XmGadget, the
superclass of XmLabelGadget.

6. Select the Widget tab to change to the Widget Examiner.

7. Triple-click the parent value on the fifth line. The X/Motif Analyzer
window displays the control widget, the parent of Run. This action
produces the same results as selecting the control text in the Parent text
box.

8. Right-click on the tab overflow area (the area where the tabs overlap, to the
far left of the tab list) as labeled in Figure 54, and select the Breakpoints
tab.

172 007–2579–005

X/Motif Analyzer [11]

Figure 54. Selecting the Breakpoints Tab from the Overflow Area

9. Click on the word Callback in the Breakpoint Type text field of the
Breakpoints Examiner window to bring up a submenu, and select
Resource-Change.

10. In the Class text field, enter: Any.

11. In the Resource Name text field, enter: sensitive.

007–2579–005 173

Developer MagicTM: Debugger User’s Guide

12. Click Add. This adds a breakpoint. The Active: Breakpoints: list
should now include the following text:

[Any] Resource-Change,name=sensitive

13. Click Continue. The status will update to Stopped in the SetValues
routine, since the breakpoint set in the previous step was reached.

14. Select the following in the Main View window:

Views
->Call Stack

Notice the call to XtSetValues on the second line (see Figure 55).

Figure 55. Breakpoint Results Displayed by the Call Stack View

15. In the Call Stack View, double-click the Cmdinterface::activate
line (just below XtSetSensitive). This is where the sensitive resource
was changed.

16. In the Widget Examiner window, double-click the widget address in the
Widget text field, press backspace, enter _w, and press ENTER. The
X/Motif Analyzer displays the Run widget, which is the widget currently
being changed.

17. Click Continue in the Main View window. The status will update to
Stopped in the SetValues routine, since the breakpoint set in the
previous step was reached again.

174 007–2579–005

X/Motif Analyzer [11]

18. In the Call Stack View, double-click on the
Cmdinterface::activate line (just below XtSetSensitive).

19. Perform the following sub-steps:

a. Double-click in Widget text field of the Widget Examiner.

b. Press backspace.

c. Enter _w.

d. Press ENTER.

The X/Motif Analyzer window displays the Step widget, which is the
widget currently being changed.

11.3.7 Ending the Session

Select the following to close the X/Motif Analyzer:

Admin
->Close

Select the following to exit the Debugger (from the Main View window):

Admin
->Exit

Note: If you exit the Debugger first, you exit the X/Motif Analyzer as well.

For more information on the X/Motif Analyzer, see Section A.4, page 222.

007–2579–005 175

Customizing the Debugger [12]

This section shows you how you may customize the WorkShop Debugger
specifically to your environment needs.

12.1 Customizing the Debugger with Scripts

If there are Debugger commands or combinations of Debugger commands that
you use frequently, you may find it convenient to create a script composed of
Debugger commands. Debugger scripts are ASCII files containing one
Debugger command and its arguments per line. A Debugger script can in turn
call other Debugger scripts. There are three general methods for running scripts:

• Enter the source command and the filename at the Debugger command
line. This is useful for scripts that you need only occasionally.

• Include the script in a startup file. This is useful for scripts that you want
implemented every time you use the Debugger.

• Define a button in the graphical interface to run the script. Use this method
for scripts you use frequently but apply only at specific times during a
debugging session.

12.1.1 Using a Startup File

A startup file lets you preload your favorite buttons and aliases in a file that
runs when the Debugger is invoked. It also is useful if you have traps that you
set the same way each time. The suggested name for the startup file is .cvdrc.
However, you can select a different name as long as you specify its path in the
CVDINIT environment variable. The Debugger uses the following criteria when
looking for a startup file:

• Checks the CVDINIT environment variable.

• Check for a .cvdrc file in the current directory.

• Checks for a .cvdrc file in the user’s home directory.

007–2579–005 177

Developer MagicTM: Debugger User’s Guide

12.1.2 Implementing User-Defined Buttons

You can implement buttons by providing a special Debugger startup file or by
creating them on the fly within a debugging session. Buttons appear in the
order of implementation in a row at the bottom of the control panel area.
Currently, you can define only one row of custom buttons. Figure 56 is a typical
example of the Main View window with user-defined buttons. The definitions
for the user-defined buttons display in the Debugger command line area.

Custom button
row

Button
specifications

Multiple-command
example

Figure 56. User-Defined Button Example

The syntax for creating a button is as follows:

button label command [$sel]

178 007–2579–005

Customizing the Debugger [12]

The syntax for creating a multiple-command button is as follows:

button label {command1 [$sel]; command2 [$sel]; ...}

The button command accepts the following options:

label Specifies the button name. Button labels should
be kept short since there is only room for a single
row of buttons. There can be no spaces in a label.

command Specifies one of the Debugger commands, which
are entered at the command line at the bottom of
the Main View window. See Section A.9, page
312.

$sel Provides a substitute for the current cursor
selection and should be appropriate as an
argument to the selected command.

commandn... Specifies Debugger commands to be applied in
order. Commands must be separated by
semicolons (;) and enclosed by braces ({}). The
multiple-command button is a powerful feature;
it lets you write a short script to be executed
when you click the button.

The following command displays a list of all currently defined buttons:

button

The following command deletes the button corresponding to the label:

unbutton label

You might use this command if you needed room to create a new button. The
effect of unbutton is temporary so that subsequently running the startup file
reactivates the button.

The following command displays the definition of the specified button, if it
exists. If the button does not exist, an error message is displayed:

button label

007–2579–005 179

Developer MagicTM: Debugger User’s Guide

12.1.3 Changing X Window System Resources

While there are many X Window System resources that you can change, we
recommend that you avoid modifying these resources if at all possible. In some
cases, there may be no way within WorkShop to make the desired change. If
you must modify resources, the following X Window System resources for the
Debugger and its views may be useful:

*AllowPendingTraps:

If set to true, enables support for pending traps.

The default value is false.

*autoStringFormat

If set to true, sets default format for *char results as strings in
Expression View, the Variable Browser, and the Structure
Browser.

The default format is the hexadecimal address.

cvmain*sourceView*nameText.columns

Sets the length of the File field in the Main View window.

The default value is 30 characters.

Cvmain*disableLicenseWarnings and *disableLicenseWarnings

Disables the license warning message that displays when you
start the Debugger and the other tools.

*editorCommand

If you prefer to view source code in a text editor rather than in
Source View, lets you specify a text editor.

The default value is the vi editor.

*expressionView*maxNumOfExpr

Lets you set the maximum number of expressions that can be
read from a file by Expression View.

The default value is 25.

180 007–2579–005

Customizing the Debugger [12]

*UseOldExprEval and *useOldExprEval

When set to true, allows you to use the older, dbx–like,
expression evaluator rather than the default C++ expression
evaluator introduced in WorkShop version 2.6.4. Using the older
evaluator may result in faster evaluation of some expressions.

The default value is false.

*varBrowser*maxSymSize

Lets you set the maximum number of variables that can be
displayed by the Variable Browser.

The default value is 25.

The following resources apply to Source View:

*svComponent*lineNumbersVisible

Displays source line numbers by default.

*sourceView*nameText.columns

Sets the length of the File field in Source View.

The default value is 30 characters.

*sourceView*textEdit.scrollHorizontal

If set to true, displays a horizontal scroll bar in Source View.

*tabWidth

Sets the number of spaces for tabs in Source View.

The following resource applies to Build View:

*buildCommand Is used to determine which program to used with
make(1), smake(1), clearmake(1), and so forth.).

The default value is make(1).

*runBuild Specifies whether cvmake(1) begins its build
immediately upon being launched.

The default value is true.

007–2579–005 181

Developer MagicTM: Debugger User’s Guide

To change these resources, you need to set the desired value in your
.Xdefaults file, and run the xrdb(1) command. Then, restart your
application so that the resource gets picked up.

12.2 DUMPCORE Environment Variable

The DUMPCORE environment variable allows the Debugger to dump a core file
in the event that there is a debugger execution problem during the debug
session. To enable core files, enter either of the following before you startup
your debug session:

• For the C shell, enter:

% setenv DUMPCORE

• For the Korn shell or Bourne shell, enter:

$ DUMPCORE=;export DUMPCORE

182 007–2579–005

Debugger Reference [A]

This chapter describes the function of each window, menu, and display in the
Debugger’s graphical user interface and describes the commands available on
the Debugger command line (see Section A.9, page 312).

This chapter contains the following sections:

• Main View Window, Section A.1, page 183

• Basic Windows, Section A.2, page 206

• Ada-Specific Windows, Section A.3, page 216

• X/Motif Analyzer Windows, Section A.4, page 222

• Trap Management Windows, Section A.5, page 251

• Data Examination Windows, Section A.6, page 256

• Machine-Level Debugging Windows, Section A.7, page 290

• Fix+Continue Windows, Section A.8, page 301

• Debugger Command Line, Section A.9, page 312

A.1 Main View Window

The major areas of the Main View window are shown in Figure 57, page 184.

007–2579–005 183

Developer MagicTM: Debugger User’s Guide

Menu bar

Control panel

Status area

Source code
display area

Annotation
column

Source filename

Debugger
command line

Figure 57. Major Areas of the Main View Window

The Main View window contains a menu bar, from which you can perform a
number of actions and launch windows. The menu bar contains the following
menus, which are discussed in detail in later pages:

• Admin, Section A.1.1, page 190

• Views, Section A.1.2, page 192

• Query, Section A.1.3, page 194

• Source, Section A.1.4, page 194

• Display, Section A.1.5, page 197

• Perf, Section A.1.6, page 197

• Traps, Section A.1.7, page 199

• PC, Section A.1.8, page 201

184 007–2579–005

Debugger Reference [A]

• Fix+Continue, Section A.1.9, page 201

• Help, Section A.1.10, page 205

The Main View window also contains several input fields, a source code display
area, and buttons that trigger commonly used actions.

In the Main View window, actions can be applied to a single process or to all
processes. To force an action to apply to all processes, click the right mouse
button over the Run, Continue, or Stop buttons to set the All Processes mode.
For more information about multiprocess and pthreaded programs, refer to
Chapter 10, page 135.

The Main View window contains the following items:

Command text field Displays full pathname of the executable file that
you are currently debugging, including any
run-time arguments (if any).

Debug option menu Allows you to toggle among various modes. The
following mode choices are available:

• Debug (Only) runs the Debugger in Debug
mode with no performance tools enabled.

• Performance mode causes performance data
to be gathered and instrumented code to be
generated for performance analysis while
using the Debugger.

• Purify mode activates the Purify memory
corruption analysis tool. The code displayed
in the Main View window, Source View
window, and so forth will be code generated
by Purify. (This option appears only if
Purify is installed on your system. Purify is
not a Silicon Graphics product nor is it part of
the WorkShop package. It is a product of
Rational Software and is neither available
from nor supported by SGI.)

Cont [All] Continues execution of the current process or all
processes in the program. When you click on the
Continue button, the program runs either to a
breakpoint exception or to termination. This
button is active only after the running process(es)

007–2579–005 185

Developer MagicTM: Debugger User’s Guide

has stopped. If the program has not been run or
has been killed, the Continue button is grayed
out. If the target program has not yet started
executing, use the Run button to start execution.

Stop [All] Stops execution of the current running process(es).
This button is valid only when a process(es) is
running; otherwise the button is grayed out.
Traps can also be set to stop the program at a
specific location or on a particular condition.

Step Into button Executes the code involving a single source line
of the current process. If a function is
encountered in the source line, or is the source
line is a subroutine call, the process will step into
a function or subroutine call and stop at the first
executable line in the function or subroutine. The
Step Over button can be used to continue to the
next source line in the current file. If a trap is
encountered while executing the step into
command, the process is stopped where the trap
was fired. The Step Into button is active only
after the running process(es) has stopped;
otherwise the button is grayed out.

When you click-right on the Step Into button,
a menu pops up to allow you to choose the
number of source lines to be stepped. If you
choose the N... menu entry, a dialog window is
opened to allow you to enter a step value.

Step Over Executes the code involving a single source line of
the current process. The current process continues
to the next source line in the current file, and
does not count any statements in functions that
may be encountered in the source line. If the
source line is a subrouting call, the process will
stop at the next source line in the current file. The
Step Into button can be used to step into a
function or subroutine call and stop at the first
executable line in the function or subroutine. If a
trap is encountered while executing the step over
command, the process is stopped where the trap
was fired. The Step Over button is active only

186 007–2579–005

Debugger Reference [A]

after the running process(es) has stopped;
otherwise the button is grayed out.

When you right-click on the Step Over button,
a menu pops up to allow you to choose the
number of source lines to be stepped. If you
choose the N... menu entry, a dialog window is
opened to allow you to enter a step value.

Return[all] Continues execution of the process until the
current function being executed returns. The
process is stopped immediately upon returning to
the calling function. All code within the current
function is executed as usual. If a breakpoint is
encountered, the action is canceled and the
process is stopped where the breakpoint was
fired. You can use this button only after the
running process(es) has stopped; otherwise the
button is grayed out. This action is not allowed if
the executable is instrumented for performance
analysis.

Note: For IRIX 6.5, this command button
always returns all pthreads.

Sample Allows you to collect process state data to be
used by the Performance Analyzer for program
evaluation. You can use this button only when
the process(es) is running and the Enable Data
Collection mode is set on the Performance
panel; otherwise the button is grayed out.

See Developer Magic: Performance Analyzer User’s
Guide for more information.

Print Prints, in the Source View window, the value of
any highlighted text, or the source pane of the
Main View window.

Kill [All] Kills the currently running process or all running
processes in your debug session by sending the
process(es) the equivalent of a kill -9 signal.
You can use this button if the process(es) is
running or stopped; otherwise the button is
grayed out.

007–2579–005 187

Developer MagicTM: Debugger User’s Guide

Run [All] Runs the program that you are currently
debugging or all programs. After the initial run,
allows you to rerun the program(s) while
maintaining any breakpoints and command line
arguments you have set.

Status area Displays information about the process that you
are debugging, such as process id, thread id,
function name, list of arguments, location of the
PC, and so forth,

Source Code area Displays the source code for the program that
your are currently debugging.

Annotation column Clicking in this area displays information specific
to a line number, such as breakpoints, location of
the PC, and so forth.

File text field Displays the name of the file shown in the source
code area.

Command line area Area of the Main View window where you can
enter Debugger commands and view line-mode
debugger message, and in which Debugger
messages are displayed.

Show/Hide annotations
button

This button (see Figure 58, page 189) is visible
only when you run or load a performance
experiment (see the Developer Magic: Performance
Analyzer User’s Guide for more information on the
performance tools). This is a toggle button that
shows or hides performance related annotations.

188 007–2579–005

Debugger Reference [A]

Show/Hide annotations
button with annotations
showing

Show/Hide annotations
button with annotations
hidden

Figure 58. Show/Hide Annotations Button in the Main View Window

007–2579–005 189

Developer MagicTM: Debugger User’s Guide

A.1.1 Admin Menu

The Admin menu in the Main View window performs administrative and
general management tasks dealing with processes, windows, and user
preferences. The Admin menu provides the following selections:

Library Search
Path...

Controls where the Debugger looks for DSOs
when you invoke the Debugger on an executable
or core file. The Library Search Path dialog
allows you to reset the LD_LIBRARY_PATH and
_RLD_ROOT environment variables. You can also
reset _RLD_LIST to control the set of DSOs that
will be used by the program. See the rld(1) man
page for more information on these variables.
Any changes you make to these variables are
propagated into Execution View when you run
the program.

There are two ways to open this dialog. First,
from the Main View window menu bar, as
follows:

Admin
->Library Search Path...

Or, the Library Search Path dialog opens
automatically if you invoke the Debugger on an
executable or core file and the it is unable to find
all of the required DSOs. In this case, an
annotated list of required DSOs displays at the
top of the dialog box with such status messages
as OK, Error: Cannot find library, or
Error: Core file and library
mismatch (which indicates that the Debugger
found a DSO that did not match the core file).
Below this list are three to nine fields in which
you can modify the value of the corresponding
named environment variable.

Remap Path... Opens a dialog that allows you to enter a new
pathname.

Multiprocess
View...

Displays the Multiprocess View window,
which allows you to control processes and
threads. You should note that if you exit from

190 007–2579–005

Debugger Reference [A]

Multiprocess View, you will exit from your
debugging session. More additional information
about Multiprocess View, refer to Section
A.2.2, page 206.

GLdebug Provides a toggle to turn on GLdebug. GLdebug
is a graphical software tool for debugging
application programs that use the IRIS Graphics
Library (GL). GLdebug locates programming
errors in executables when GL calls are used
incorrectly. For more information, refer to the
GLdebug User’s Guide.

Switch Process... Changes the current process. You will be queried
for the new process ID. You can select one from
the list of items presented, type one in or paste
one in from another window. Switching processes
changes the session.

Switch
Executable...

Changes the current executable. This option also
allows you to debug a different core file.

Detach Releases the process from the Debugger. This
allows you to make changes to the source code.
You must detach the process before you
recompile the program.

Load Settings... Allows you to use the previously saved
preference settings from a file you choose in the
Load Settings dialog.

Save Settings... Allows you to save the current preference settings
to an initialization file used when the Debugger is
first started, or any file you choose through this
dialog. These can include such items as window
sizes, current views, window configurations, and
so on.

Iconify Iconifies all session views.

Raise Brings all session view windows to the
foreground and displays any iconified windows.

Launch Tool Allows you to run other WorkShop tools. You can
switch to the other tools by selecting Build
Analyzer, Static Analyzer, Performance
Analyzer, or Tester. Selecting Debugger

007–2579–005 191

Developer MagicTM: Debugger User’s Guide

allows you to start another debugging session. If
you have ProDev ProMP (formerly called
WorkShop Pro MPF) installed on your system, the
Parallel Analyzer selection is also available.

Project Allows you to bring up a Project View to
manage your work on a project-by-project basis.
You can also Iconify or Raise windows,
Remap paths, and Exit the project.

Close Closes the Main View window.

Exit Closes all views in the session and terminates the
session.

A.1.2 Views Menu

The Views menu in Main View window provides the following selections for
viewing the process(es) and their corresponding data:

Array Browser Displays values from an array or array-slice in a
two-dimensional spreadsheet and optionally in a
three-dimensional representation; that is, a bar
graph, surface, multiple lines, or points in space.
These help you pick out bad data more readily.
Arrays can contain up to 100 x 100 elements.

Call Stack Displays the call stack along with parameters to
the calls. If you double-click an entry in the stack,
you switch the current context to that entry and
you can check the state of variables.

Disassembly View Displays assembly code corresponding to the
source code.

Exception View Displays an Ada-specific window used for
exception handling.

Execution View Displays the iconified Execution View
window, which handles the input and output of
the target process.

Expression View Evaluates expressions in Fortran, C, or C++. To
enter an expression, select it in the source code
display and paste it into the Expression View
field, using the middle mouse button.

192 007–2579–005

Debugger Reference [A]

File Browser Displays a list of source files and library routines
used by the current executable. Double-click a
source file in the list to load it directly into the
source display area in Main View or Source
View windows. The Search field allows you
to find files in the list quickly.

Memory View Displays the value at a given memory address.

Process Meter Monitors the resource usage of a running process
without saving the data. (Used with the
Performance Analyzer.)

Register View Displays the values stored in the hardware
registers for the target process.

Signal Panel Displays the signals that can occur. You can
specify which signals trigger traps and which are
to be ignored.

Source View Displays source code. Allows you to set traps,
perform searches, and inspect source code
without losing information in the Main View
window.

Structure Browser Displays data structures in a graphical format.
You can de-reference pointers by double-clicking.

Syscall Panel Allows you to set traps at the entry to or exit
from system calls.

Task View Brings up an Ada-specific view that provides task
and callstack information for processes.

Trap Manager Allows you to set, edit, and manage traps. The
Trap Manager is used by both the Debugger and
the Performance Analyzer.

Variable Browser Displays values of local variables and parameters
for the current context.

007–2579–005 193

Developer MagicTM: Debugger User’s Guide

X/Motif Analyzer Provides you with specific debugging support for
X/Motif applications. There are various
examiners for different X/Motif objects, such as
widgets and X graphics contexts, that might be
difficult or impossible to inspect using ordinary
Debugger functionality.

A.1.3 Query Menu

The Query menu allows you to perform some of the queries available in the
Static Analyzer. These queries are convenient if you have previously built a
cvstatic fileset. However, if you need to build the fileset from scratch, the
process becomes more involved. For complete information about using the
Static Analyzer, refer to the Developer Magic: Static Analyzer User’s Guide and the
cvstatic(1) man page

With a current fileset, you can double-click any defined entity in the source
code, select the Where Defined? option from the submenu appropriate to its
type, and the source code display area will scroll to the location where the item
is defined.

A.1.4 Source Menu

The Source menu in the Main View window provides the following selections
to manage source code files:

Open... Loads a source file.

Open Recent... Provides you with a popup dialog that gives you
a selection of recently-opened files from which to
choose.

Save Records changes made during the debugging
session to the source file. You must first select
Make Editable, which appears in the Source
menu when the file is read-only.

Save As... Records changes made during the debugging
session to the source file under a different
filename. You must first select Make Editable,
which appears in the Source menu when the file
is read-only.

194 007–2579–005

Debugger Reference [A]

Save As Text... Records the information in the display area as a
text file.

Insert Source... Inserts the text of a file within your current file.
You must first select Make Editable, which
appears in the Source menu when the file is
read-only. You must first select Make Editable,
which appears in the Source menu when the file
is read-only.

Fork Editor Starts your default editor on the current file. The
default editor is determined by the
editorCommand resource in the app-defaults
file. The value of this resource defaults to wsh -c
vi +%d, which means run vi in a wsh window
and scroll to the current line. If the editor allows
you to specify a starting line, enter %d in the
resource to indicate the new line number.

Recompile Displays the Build View window, which allows
you to compile the source code associated with
the current executable.

Make Read Only /
Make Editable

Toggles the source code displayed between
read-only and writable states so that you can edit
your code.

Search... Searches for a literal case-sensitive, literal
case-insensitive, or regular expression. After you
have set your target and clicked Apply (or
pressed Enter), each instance is marked by a
search target indicator in the scroll bar. You can
search forward or backward in the file by clicking
the Next and Prev buttons. You can also click an
indicator with the middle mouse button to scroll
to that point. Clicking Reset removes the search
target indicators.

Go to Line... Allows you to scroll to a position in the source
code by specifying a line number. Go to
Line... brings up a dialog box.

You can enter a line number or use the slider at
the top of the box to select a line number. You do
not have to display line numbers to use this
feature.

007–2579–005 195

Developer MagicTM: Debugger User’s Guide

Versioning Provides access to the configuration management
tool, if you have designated one.

Type the following at the Execution View
prompt:

/usr/sbin/cvconfig [rcs | sccs | ptools | clearcase]

Note: You must have root permissions to run
cvconfig.

The Versioning submenu appears.

Selecting any submenu option displays a shell in
which you can access the configuration
management tool. The following selections are
available on the submenu:

• CheckIn — Saves the source file and checks it
into the database as a new version.

• CheckOut — Recalls the source file from the
tool’s database if you have the proper
authority, locks it, and makes it editable.

• UncheckOut — Cancels the checkout, with
no changes registered.

196 007–2579–005

Debugger Reference [A]

A.1.5 Display Menu

The Display menu in the Main View window provides the following
selections to annotate the displayed source code:

Show Line
Numbers/Hide Line
Numbers

Displays or hides line numbers in the annotation
column corresponding to the source code.

Preferences... Displays the Annotations Preferences
dialog box, which allows you to show or hide
column annotations and menus specific to the
different WorkShop tools. If you have purchased
ProDev ProMP, you can display and manipulate
loop indicators. The Performance toggle
displays experiment statistics. The Tester module
allows you to see coverage statistics. Turning off
the Performance toggle deletes the performance
annotations from the Source View.

Hide Icons/Show
Icons

Hides or displays the annotation column, which is
located to the left of the source code display area.

A.1.6 Perf Menu

The Perf (Performance) menu (see Figure 59, page 198) includes the following
menu selections:

Select Task
submenu

Allows you to choose the task for your
performance analysis. The choices available are
shown in Figure 59, page 198. You may select
only one task per performance analysis run. If
none of the given tasks satisfy your requirements,
you can choose Custom..., which brings up the
configuration dialog open to the General tab.
From here, you can design your own task
requirements.

007–2579–005 197

Developer MagicTM: Debugger User’s Guide

Select Task submenu

Configuration dialog

Figure 59. Perf Menu and Subwindows

Examine Results... Launches the Performance Analyzer. For
complete information about the Performance
Analyzer, see the Developer Magic: Performance
Analyzer User’s Guide.

Configs... Brings up the configuration dialog open to the
Runtime tab as shown in Figure 59, page 198.
The dialog opens with the Experiment
Directory text field filled in with a default

198 007–2579–005

Debugger Reference [A]

value. The Performance Analyzer provides a
default directory named test0000. If you use
the default or any other name that ends in four
digits, the four digits are used as a counter and
will be incremented automatically for each
subsequent experiment

A.1.7 Traps Menu

The Traps menu (see Figure 25, page 74) offers the Set Trap and Clear
Trap submenus and the Group Trap Default and Stop All Default
menu options.

The Set Trap submenu offers submenus for managing breakpoints and
sample points. The following submenu selections are available:

Stop Sets a breakpoint at a designated line in your
source code. To set a breakpoint at a line
displayed in the Main View or Source View
windows:

1. position the cursor on the appropriate line in
the source code display area

2. select the Set Trap submenu

3. choose the Stop option

Note: The preferred method for setting a
breakpoint is to click in the annotations area of
the Main View window, across from the line at
which you want to set the breakpoint.

Stop At Function
Entry

Sets a breakpoint at the beginning of a function.
To set a breakpoint at a function, click on the
function name in the source code display area
and select the Set Trap submenu, then choose
the Stop At Function Entry option.

Stop At Function
Exit

Sets a breakpoint at the end of a function. To set
a breakpoint at a function exit, click on the
function name in the source code display area
and select the Set Trap submenu, then choose
the Stop At Function Exit option.

007–2579–005 199

Developer MagicTM: Debugger User’s Guide

Sample Sets a sample trap at a line displayed in the Main
View or Source View windows. To set a sample
trap:

1. highlight on the appropriate line

2. pull down the Set Trap submenu

3. select the Sample option

Sample At Function
Entry

Sets a sample trap at the beginning of a function.
To set the sample trap, highlight the function
name in the source code display area, then pull
down the Set Trap submenu and select the
Sample At Function Entry option.

Sample At Function
Exit

Sets a sample trap at the end of a function. To set
the sample trap, highlight the function name in
the source code display area, then pull down the
Set Trap submenu and select the Sample At
Function Exit option.

The Clear Trap submenu contains selections that allow you to delete a trap
on the line containing the cursor. You must designate Stop or Sample trap
type, since both types can exist at the same location, appearing superimposed
on each other. The following submenu selections are available:

Stop Designates the stop trap type.

Sample Designates the sample trap type.

The last two menu options allow you to specify the following items:

Group Trap Default Interacts with Source View. If set to true, all
subsequent Source View trap requests will be
group traps. That is, all members of the process
group will apply this trap. This option is the
same as typing stop pgrp in filename from the
command line. Default is false unless you are
using IRIX 6.5 pthreads, when the implied setting
is always true.

Stop All Default Interacts with Source View. If set to true, all
subsequent Source View trap requests will
apply the Stop All command to the trap. That
is, whenever this trap is encountered, all other
members of the process group also will be

200 007–2579–005

Debugger Reference [A]

stopped. This option is the same as typing stop
all in filename from the command line. Default
is false unless you are using IRIX 6.5 pthreads,
when the implied setting is always true.

If both of the default options are set to true, it is the same as typing stop all
pgrp in filename from the command line.

A.1.8 PC Menu

The PC (program counter) menu in the Main View window provides the
following selections for controlling the execution of a process:

Continue To Continues the process to the selected point in the
program unless some other event interrupts.
Select a line by clicking on it.

Note: The process must be stopped before you
can use Continue To.

Jump To Goes directly to a selected point within the same
function, jumping over intervening code. Then
the Debugger waits for a command to resume
execution. Select a line by clicking on it.

A.1.9 Fix+Continue Menu

The Fix+Continue menu offers the following menu selections:

Edit Allows you to edit text using the Debugger editor.

External Edit Allows you to edit text by using an external
editor. The default editor is vi, but can be
changed by using the Set Edit Tool...
pop-up menu in the Admin menu of the Status
window. See Section A.8.1, page 302, for further
information.

Parse and Load Compiles your modified program and loads it for
execution. You can execute the modified program
by clicking on the Run or Continue buttons in
the Main View window.

Show Difference
submenu

Allows you to see the difference between the
original code and your modifications. See Section
A.1.9.1, page 202, for further information.

007–2579–005 201

Developer MagicTM: Debugger User’s Guide

Edited<-->Compiled Enables or disables your changes. This switch
allows you to see how your application executed
before and after the changes you made.

Save As... Allows you to save your changes to a file. You
can save changes to the current source file (the
default) or to a separate file.

Save All Files... Launches the Save File+Fixes As... dialog
that allows you to update the current session and
save all the modifications.

View submenu Allows you to change to different views.
Fix+Continue supports status, message, and build
environment windows. See Section A.1.9.2, page
203, for further information.

Preferences
submenu

Allows you to set your Fix+Continue preferences.
See Section A.1.9.3, page 203, for further
information.

Cancel Edit Takes you out of edit mode and cancels any
changes you have made.

Delete Edits Deletes any modifications that you made.

A.1.9.1 Show Difference Submenu

This submenu allows you to view differences between your original and your
modified code. It contains the following options:

For Function Opens a window that shows you the differences
between the original source and your modified
source.

For File Opens a window that shows you the differences
between the original source file and your
modified version.

Set Diff Tool ... Launches the Fix+Continue Preferences
Dialog that allows you to set the tool that
displays code differences. The default is
xdiff(1). For further information on the
Fix+Continue Preferences Dialog, see
Section A.1.9.3, page 203.

202 007–2579–005

Debugger Reference [A]

A.1.9.2 View Submenu

This submenu allows you to open different Fix+Continue view windows. It
contains the following options:

Status Window Launches the Fix+Continue Status window.
See Section A.8.1, page 302, for more information.

Message Window Launches the Fix+Continue Message window.
See Section A.8.2, page 307, for more information.

Build Environment
Window

Launches the Fix+Continue Build
Environment window. See Section A.8.3, page
308, for more information.

A.1.9.3 Preferences Submenu

This submenu allows you to set various options for the Fix+Continue
environment, such as the difference tool, the external editor command, and so
on. The menu contains the following options:

Show Preferences Launches the Fix+Continue Preference
Dialog that displays preferences currently
enabled for the session, and allows you to change
the settings. The following preferences are
available through the dialog:

• External Editor Command text field that
allows you to choose your text editor. The
default is vi.

• File Difference Tool text field allows
you to choose the tool to use when comparing
code. The default is xdiff.

• Copy Traps On Previous Definition
toggle allows you to edit and parse code.
When Fix+Continue copies traps from the old
definition to the new one by mapping old
lines to new lines. (This mapping is the same
as what can be generated using the UNIX
diff utility.) If Copy Traps On Previous
Definition is on and the mapped line the
new definition is modified, then Fix+Continue
will look at the switch.

007–2579–005 203

Developer MagicTM: Debugger User’s Guide

• Copy Traps Even On Changed Lines
toggle causes the debugger to copy traps onto
a mapped line.

• Continue Even If Line Has Changed
toggle allows you to edit and compile code in
which your program is currently stopped.
Fix+Continue can continue in the new
definition provided some conditions are
satisfied. The line from which the program
continues depending on the mapping from the
line in which it stopped. In case it can
continue in the new definition from a line
which you have modified, Fix+Continue
consults this toggle to determine whether to
continue in the new or old definition. This
toggle allows you to override the default
behavior.

• Warn Unfinished Edits Before Run
toggle pops up a warning dialog before a run
if you have unfinished edits.

• Warn Unfinished Edits Before
Continue toggle pops up a warning dialog
before a continue if you have unfinished edits.

• Save deactivated code during File
Save toggle save old code. The Fix+Continue
file save substitutes new definitions in place of
old ones. If you want to save your original
functions in the same file, this switch allows
you to save the old (original or compiled)
code under an #ifdef. When you compile,
the old code will not get compiled. You can
manually edit the source to use the old
definition in any way you desire.

204 007–2579–005

Debugger Reference [A]

Reset To Factory
Defaults

Sets preferences to the installed defaults.

Save Preferences Brings up the File dialog that allows you to
save your preferences to a file.

Load
Preferences...

Brings up the File dialog that allows you to
load preferences from a file.

A.1.9.4 Keyboard Accelerators

Use the accelerators in Table 3 to issue Fix+Continue commands directly from
the keyboard. The accelerators are listed alphabetically by command.

Table 3. Fix+Continue Keyboard Accelerators

Command Key Sequence

Cancel Edit Alt+Ctrl+q

Edit Alt+Ctrl+e

Parse And Load Alt+Ctrl+x

A.1.10 Help Menu

The Help menu provides the following options:

Click for Help Provides information on the selected window or
menu.

Overview Provides general information on the current tool.

Index... Displays the entire list of help topics,
alphabetically, hierarchically, or graphically.

Keys & Shortcuts Lists the keys and shortcuts for the current tool.

Product
Information

Provides copyright and version number
information on the tool.

007–2579–005 205

Developer MagicTM: Debugger User’s Guide

A.2 Some Additional Views

This section discusses some of the additional views available through the
Debugger: the Execution View, Multiprocess View, Source View, and
Process Meter.

A.2.1 Execution View

The Execution View window is a simple shell that allows you to set
environment variables and inspect error messages. If your program is designed
to be interactive using standard I/O, this interaction will take place in the
Execution View window. Any standard I/O that is not redirected by your
Target command is displayed in the Execution View window. Execution
View is launched (and iconified) automatically with the Debugger.

A.2.2 Multiprocess View

WorkShop supports debugging of multiprocess applications, including
pthreaded programs and processes spawned with either fork or sproc
commands.

Multiprocess debugging is supported primarily through the Multiprocess
View window. To display this window, select Multiprocess View from the
Admin menu of the Main View window. Multiprocess View displays a
hierarchical view of your pthreaded application. Pthreaded processes are
marked with a folder icon. Clicking the folder changes the view to show that
process’s pthreads. Clicking on a thread opens a call stack for that thread.

For each process or thread, clicking the right mouse button brings up a menu
that applies to the selected item.

Note: This menu is a duplicate of the Process menu. See Section A.2.5,
page 215 for more information.

206 007–2579–005

Debugger Reference [A]

Figure 60. Process Menu

A.2.2.1 Status of Processes

When the Multiprocess View window comes up, it lists the status of all
processes in the process group. This view includes the following information:

PID Shows the process identifier (PID).

PPID Lists the parent process PIDs.

Status/State Shows Status or State depending on how you
have set your preferences on the Multiprocess
View Preferences menu, brought up by
selecting Preferences from the Config menu.
Status is user–level status and State is the
kernel–level status.

Name Identifies the process by file name.

Function/PC Indicates the current function and program
counter (PC) for any stopped processes.

The following Status and State conditions are possible:

Status State

Running RUNNING

Stopped RUNNING

Stopped on
breakpoint

RUNNING (but at a trap pc)

007–2579–005 207

Developer MagicTM: Debugger User’s Guide

Waiting to
terminate

JOIN

Thread terminated DEAD

Waiting on kernel READY

Waiting on mutex MUTEX-WAIT

Sleeping in system
call

RUNNING

A.2.2.2 Multiprocess View Control Buttons

The Multiprocess View window uses the same control buttons as are in the
Main View window with following exceptions:

• There are no Run, Return, or Print buttons in the Multiprocess View.

• The buttons in this view apply to all processes as a group.

• Using a control button in the Multiprocess View window has the same
effect as clicking the button in each process’s Main View window.

The following command buttons are available:

Continue All

Stop All

Step Into All

Step Over All

Sample All

Kill All

These buttons operate identically to those described for the Main View window,
Section A.1, page 183, with the All option effect. Refer to that section for
descriptions of these buttons.

A.2.2.3 Multiprocess View Administrative Functions

The Admin menu in the Multiprocess View window lets you perform
several administrative functions. Only the Save as Text..., Close, and
Exit items are described here. All other options perform as those found in the
Admin menu of the Main View window, described in Section A.1.1, page 190.

208 007–2579–005

Debugger Reference [A]

Save as Text... The process status list from in the
Multiprocess View window is saved to the
file you select using the Save Text dialog.

Launch Tool

Project

Close Closes the Multiprocess View window only.

Exit Exits all views in the session and terminates the
session.

A.2.2.4 Controlling Preferences

The Preferences... option in the Config menu brings up the
Multiprocess View Preferences dialog that allows you to control when
processes are added to the group and specifies their behavior. This option also
contains a Save option that allows you to save your preferences.

The Multiprocess View preference options are:

Stack Depth Allows you to set how many lines of the call
stack should be displayed when opening the call
stack. Default is 10.

Levels to open Allows you to specify the number of levels of
hierarchy to be displayed. For pthreaded
programs, you can display information by
program, threads, and callstack. For
non-pthreaded programs, you can display
information by process and callstack. Default is
one level.

Attach to forked
processes

Automatically attaches new processes spawned
by the fork command to the group. (Note that
processes spawned by sproc are always
attached.) Default is off.

Copy traps to
forked processes

Copies traps you have set in the parent process to
new forked processes automatically.
Alternatively, if you create parent traps with
Trap Manager and specify pgrp, then the
children inherit these traps automatically,
regardless of the state of this flag. Default is off.

Copy traps to
sproc’d processes

Copies traps you have set in the parent process to
new sproc’d processes automatically. As in the

007–2579–005 209

Developer MagicTM: Debugger User’s Guide

previous option, if you create parent traps with
the Trap Manager and specify pgrp, the
children inherit these traps automatically, whether
this flag is set or not. Default is on.

Resume parent
after fork

Restarts the parent process automatically when a
child is forked. Default is on.

Resume child after
attach on fork

Restarts the new forked process automatically
when it is attached. If this option is left off, a new
process will stop as soon as it is attached. Default
is on.

Resume parent
after sproc

Restarts the parent process automatically when a
child is sproc’d. Default is on.

Resume child after
attach on sproc

Restarts the new sproc’d process automatically
when it is attached. If this option is left off, a new
process will stop as soon as it is attached. Default
is on.

Combine threads at
same location

Applies a collapsing algorithm to display threads
stopped at the same location at the same time. (It
is possible for threads to arrive at the same
location through different logical routes.) Default
is on.

Show Thread Status
vs Thread State

Displays thread status, which is the user–level
status as opposed to showing thread state, which
is the kernel–level status. Default is status.

Show/Hide Buttons When this option is ON, the Continue All,
Stop All, Step Into All, Step Over All,
Sample All, and Kill All buttons appear near
the top of the Multiprocess View window.

Show/Hide Header
Information

When this option is ON, column headings display
above the list of processes/threads.

A.2.3 Source View

The Source View window is brought by choosing the following from the
Main View window menu bar:

Views
->Source View

210 007–2579–005

Debugger Reference [A]

By default, a copy of the source on display in the Main View window source
pane is displayed in this window.

Figure 61. Source View Window

The Source View menu bar contains selections duplicated from the Main
View window: Display, Traps, PC, and Fix+Continue. Each of these
menus has the same functionality as its counterpart in the Main View window
(see Section A.8.4.1, page 309). The only new menu selection is the File menu
described below:

Open... Launches the Open dialog that allows you to
choose a file to load into Source View.

Save Records changes made to the file during the
current debugging session. You must first select
Make Editable from this File menu when the
file is read only.

Save As... Records changes made during the debugging
session to the source file under a different file

007–2579–005 211

Developer MagicTM: Debugger User’s Guide

name, the name of which you can enter or select
using the Save As Text... dialog.

Save As Text... Records information in the display area as a text
file, the name of which you can enter or select
using the Save As Text... dialog.

Open Separate... Launches the Open Separate dialog that allows
you to create a new Source View with the
contents of a different source file.

Insert File... Inserts the text of a file within your current file.
This item description is available only if the file is
editable. The Make Editable item description
from this File menu can be used to switch the
file from read only.

Clone Clones the current window.

Fork Editor Starts your default editor on the current file. The
default editor is determined by the
editorCommand resource in the app-defaults
file. The value of this resource defaults to wsh -c
vi +%d, which means run vi in a wsh window
and scroll to the current line. If the editor allows
you to specify a starting line, enter %d in the
resource to indicate the new line number.

Recompile Displays the Build View window that allows
you to compile the source code associated with
the current executable.

Make Editable Toggles the source code displayed between
(Read Only) and (Editable) so that you can
edit your code.

Search Searches for a literal case-sensitive, literal
case-insensitive, or regular expression. After you
have set your target and clicked Apply (or
pressed Enter), each instance is marked by a
search target indicator in the scroll bar. You can
search forward or backward in the file by clicking
the Next or the Prev button. You can also click
an indicator with the middle mouse button to
scroll to that point. Clicking Reset removes the
search target indicators.

212 007–2579–005

Debugger Reference [A]

Go To Line... Launches the Go To Line dialog that allows
you to go to a specific line in the source. You can
type in the line, or select the line number via the
slider bar.

Versioning Provides access to the configuration management
tool, if you have designated one.

The cvconfig script allows you to designate
ClearCase, RCS or SCCS. Type the following:

/usr/sbin/cvconfig [rcs | sccs | ptools | clearcase]

You must have root permissions to run
cvconfig.

Selecting any option displays a shell in which
you can access the configuration management
tool. The selections in the submenu are:

Versioning submenu Contains the following options:

• CheckIn — Saves the source file and checks it
into the database as a new version.

• CheckOut — Recalls the source file from the
tool’s database if you have the proper
authority, locks it, and makes it editable.

• UncheckOut — Cancels the checkout, with
no changes registered.

Close Dismisses the Source View window.

A.2.4 Process Meter

The Process Meter window is brought up by choosing the following from
the Main View menu bar:

Views
->Process Meter

The Process Meter monitors resource usage of a running process without
saving the data. Figure 62, page 214, shows the Process Meter in its default
configuration (with only the User Time and Sys Time fields active).

007–2579–005 213

Developer MagicTM: Debugger User’s Guide

Figure 62. Process Meter

The Process Meter contains its own menu bar that contains the Admin,
Charts, Scale, and Help menus. The Admin menu is the same as that
described in Section A.3.1.1, page 217. The Help menu is the same as that
described in Section A.1.10, page 205. The other menus are described in the
following sections.

A.2.4.1 Charts Menu

The Charts menu contains a set of toggles that allow you to choose which
charts are displayed in the Process Meter window. You can display as many
charts simultaneously as you wish. The following choices are available:

• User/Sys Time (the default)

• Major/Minor Faults

• Context Switches

• Bytes Read/Written

• Read/Write Sys Calls

• Other Sys Calls

• Total Sys Calls

• Signals

• Process Size

214 007–2579–005

Debugger Reference [A]

A.2.4.2 Scale Menu

The Scale menu allows you to set the time scale for the processes displayed in
the Process Meter window. A menu allows you to choose a time scale from
2 seconds to 10 minutes.

A.2.5 Controlling Multiple Processes

The Process menu allows you to control processes and threads.

Figure 63. Process Menu

The Process menu has the following options:

Change focus to
this entry...

Opens a dialog that allows you to switch the
process or thread currently focused on in the
Main View window to the process or thread
selected in the Multiprocess View window.
Selecting a call stack entry changes the Main
View window’s focus to that process or thread
and positions the cvmain window at the offset of
the selected call stack.

Create a new
window...

Brings up a new Main View window for the
selected process or thread.

Goto... Opens a dialog box that allows you to enter the
name of a thread on which focus should be
switched. This is useful when multiple threads,
all at the same location, are collapsed into a

007–2579–005 215

Developer MagicTM: Debugger User’s Guide

single line. While Change focus to this
entry... always takes you to the first thread,
Goto... allows you to jump to any thread.

Add... Opens a dialog in which you can select from a list
of process ids. Selecting a process id (PID) in the
dialog and pressing OK will cause the process to
be attached and added into the Multiprocess
View window’s list of processes.

Remove After you select a process/thread (by highlighting
it), click on Remove to remove it from the list of
processes in the Multiprocess View window.

Note: A process in a sproc share group
cannot be removed from the process group.

A.3 Ada-specific Windows

This section discusses the Task View and Exception View windows that are
specific to Ada code.

A.3.1 Task View

Select the following from the Main View window menu bar to call up the Task
View window:

Views
->Task View

The Task View window is an Ada-specific view that provides you with task
and call stack information. If you do not have Ada installed on your system,
the Task View menu option of the Views menu is grayed out.

216 007–2579–005

Debugger Reference [A]

Sort toggles

Process
display area

Process
display tabs

Callstack
display area

Callstack
display tabs

Figure 64. Task View Window

The Task View menu bar contains the Admin, Config, Layout, Display,
and Help menus. The Help menu is the same as that described in Section
A.1.10, page 205. Other menus are described in the following sections.

A.3.1.1 Admin Menu

The Admin menu contains the following options:

Active This toggle activates the current window in a set
of cloned windows.

Clone Creates a clone of the current window. This
action is not supported in the current release, and
the option is grayed out.

007–2579–005 217

Developer MagicTM: Debugger User’s Guide

Save As Text... Launches the Save Text dialog. This dialog
allows you to save your current session as text in
a file you designate.

Close Closes the current window.

A.3.1.2 Config Menu

The Config menu contains the following item:

Preferences... Launches the Task View Preference dialog
that allows you to set maximum call stack depth
shown in Task View. Default depth is 32 frames.

A.3.1.3 Layout Menu

The Layout menu contains the following toggles:

Task List Causes only the CallStack View to be shown.

Single Task Causes only the Process Display to be shown.

A.3.1.4 Display Menu

The Display menu is divided into the Task List Format and Callstack
Format sections. The Task List Format toggle buttons control which
buttons appear in the toggle sort list, as well as what information is displayed
in the Process Display area. The Callstack Format toggles control the
amount of information to be displayed in the Callstack Display area of
theTask View window.

The Task View Display menu contains the following toggles:

Thread/task Displays thread/task number. This toggle is
active by default.

Status Displays process status. This toggle is active by
default.

PID Displays PID number.

Location Displays routine name and location in the current
source file.

Arg Values Allows you to set the argument values in the
Callback Display. This toggle is active by
default.

218 007–2579–005

Debugger Reference [A]

Arg Names Allows you to set the argument names in the
Callback Display. This toggle is active by
default.

Arg Types Allows you to display argument types in the
Callback Display.

PC Allows you to set the program counter (PC) in
Task View.

In addition to menus, Task View also contains the following items from which
you can select to vary the display:

Sort toggles Allow you to sort the process list by Thread,
Name, State, Pid, or Location, depending on
which of the buttons is active. Default selection is
Thread.

Process display tabs Allow you to view a list of tasks or details of the
currently running (highlighted) task.

Callstack display tabs Allow you to view all call stack information or
call stack details of the currently selected process.

A.3.2 Exception View

Select the following from the Main View window menu bar to display the
Exception View window:

Views
->Exception View

Exception View is an Ada-specific view that allows you to set traps on
exceptions and control exception handling. This view works only if the Ada
compiler is installed. By default, this view displays only the following
predefined Ada exceptions:

• Constraint errors

• Program errors

• Storage errors

• Tasking errors

007–2579–005 219

Developer MagicTM: Debugger User’s Guide

In addition, a single breakpoint is set on any unhandled exception.

Figure 65 shows a typical Exception View window.

Stop
toggles

When option
menus

Exception
names

Figure 65. Exception View

The Admin menu has the following options:

Active Activates the current window in a set of cloned
windows.

Clone Creates a clone of the current window.

220 007–2579–005

Debugger Reference [A]

Save As Text... Launches the Save Text dialog. This dialog
allows you to save your current session as text in
a file you designate.

Close Closes the current window.

The Config menu has the following options:

Load Exceptions... Opens the Load User Defined Exceptions
dialog that allows you to add additional
exceptions to the predefined Ada exceptions.

Save Exceptions... Opens the Save User Defined Exceptions
dialog that allows you to save any user-defined
exceptions to the predefined Ada exceptions.

The Display menu has the following options:

Delete All Deletes all exception traps.

Clear All Traps Clears all exception traps. Clearing traps is not
the same as deleting traps. Clearing only
temporarily affects traps while deleting removes
them permanently.

Reset All Buttons Resets all button actions.

The Stop boxes toggle on and off to indicate whether a trap is active.

The When control menus allow you to determine when an exception trap fires.
The following choices are available:

Always Stops any time the exception is raised.

WhenOthers Stops when caught by a when others handler
rather than an explicit handler or when
unhandled.

Unhandled Stops when the exception is unhandled.

007–2579–005 221

Developer MagicTM: Debugger User’s Guide

In the un-labeled text field at the bottom right of the window you can enter a
single, fully qualified Ada exception name or a single, fully qualified Ada unit
name. Depending on whether the add, remove, or find mode is active;
pressing Enter will cause one of the following actions to occur:

• add mode:

– Single exception: Adds single exception to the exception list

– Library unit name: Adds all exceptions found in that library unit name
to the exception list

• remove mode:

– Single exception: Removes single exception from the exception list

– Library unit name: removes all exceptions found in that library unit
name from the exception list

• set mode:

• clear mode:

• find mode:

– Single exception: positions top of the exception list to single exception

– Library unit name: positions top of the exception list to the first
exception found in given library unit name

A.4 X/Motif Analyzer Windows

The X/Motif Analyzer provides specific debugging support for X/Motif
applications. There are various examiners for different X/Motif objects, such as
widgets and X Window System graphics context, that might be difficult or
impossible to inspect using ordinary debugger functionality. See Chapter 11,
page 159 for a comprehensive discussion and tutorial regarding the X/Motif
Analyzer.

To access the X/Motif Analyzer window, pull down the Views menu and
select X/Motif Analyzer (see Figure 66, page 223).

222 007–2579–005

Debugger Reference [A]

Debugger Views Menu

Figure 66. Launching the X/Motif Analyzer Window

A.4.1 Global Objects

Through the X/Motif Analyzer is made up of several different examiner
windows, a number of objects, such as the Admin menu, Examine menu, Help
menu and several text bars, remain constant throughout window changes. The
following examiners are available and discussed in the sections indicated:

• Breakpoints Examiner, Section A.4.2, page 226

• Trace Examiner, Section A.4.3, page 240

• Widget Examiner, Section A.4.4, page 242

• Tree Examiner, Section A.4.5, page 243

• Callback Examiner, Section A.4.6, page 246

• Window Examiner, Section A.4.7, page 247

007–2579–005 223

Developer MagicTM: Debugger User’s Guide

• Event Examiner, Section A.4.8, page 248

• Graphics Context Examiner, Section A.4.9, page 248

• Pixmap Examiner, Section A.4.10, page 249

• Widget Class Examiner, Section A.4.11, page 250

A.4.1.1 Admin Menu

The Admin menu offers the following menu selections:

Active Activates the current window in a set of cloned
windows. In the current release, this toggle is
always active.

Clone Creates a clone of the current window. This
action is not supported in the current release and
the option is grayed out.

Save As Text... Launches the Save Text dialog. This dialog
allows you to save your current session as text in
a file you designate.

Note: This selection is not available for
examiners that are graphical displays, such as
the Breakpoints Examiner, the Tree Examiner,
and the Pixmap Examiner.

Close Closes the current window.

A.4.1.2 Examine Menu

The Examine menu offers the following options:

Selection Selects the currently highlighted object for
examination.

Note: You must first highlight the name of an
object before you select this option.

Widget Uses the current selection as input to the widget
examiner, then opens that examiner (see Section
A.4.4, page 242, for information).

Widget Tree Switches the window view to the widget tree
examiner (see Section A.4.5, page 243, for
information).

224 007–2579–005

Debugger Reference [A]

Widget Class Switches the window view to the widget class
examiner (see Section A.4.11, page 250, for
information).

Window Switches the window view to the window
examiner (see Section A.4.7, page 247, for
information).

X Event Switches the window view to the X Event
examiner (see Section A.4.8, page 248, for
information).

X Graphics Context Switches the window view to the X graphics
context examiner (see Section A.4.9, page 248, for
information).

X Pixmap Switches the window view to the X pixmap
examiner (see Section A.4.10, page 249, for
information).

A.4.1.3 Examiner Tabs

In addition to access through the Examine menu, each examiner can be
accessed through a tab at the bottom of each view (see Figure 67).

Figure 67. Examiner Tabs

When first launched, the X/Motif Analyzer has the following four tabs from
left-to-right:

• Breakpoints

• Trace

• Widget

• Tree

007–2579–005 225

Developer MagicTM: Debugger User’s Guide

As you select other examiners through the Examine menu, new tabs are added
for the new examiners.

To delete a tab:

1. Select the tab you want to delete.

2. Right-click and select Remove Examiner from the pop-up menu.

The selected tab will disappear.

Note: You can not remove the first four tabs.

The X/Motif Analyzer will also bring up new examiner windows whenever
they are needed (see Chapter 11, page 159 for more information).

Click on the collapsed tabs to the right to display them.

A.4.1.4 Return Button

Both the Widget and Name text fields have return buttons (see Figure 68, page
228) just to the right. Clicking these buttons causes the X/Motif Analyzer to
respond exactly as if you had pressed Return on your keyboard.

Note: Only the Breakpoint Examiner and Widget Examiner have a
Return button.

A.4.2 Breakpoints Examiner

The Breakpoints examiner is not really an examiner, but a control area where
you can set widget-level breakpoints. The breakpoints examiner is divided into
three areas (see Figure 68, page 228):

• The widget specification area that contains the same information as that in
the Widget examiner. You can select a widget address, name, or class in this
area, as well as move to the widgets parents or children, or select a widget
in the application. In cases where the breakpoint type does not apply to
widgets (for example, input-handler breakpoints), this area is blank.

• The parameter specification area, the contents of which vary according to the
type of breakpoint you are setting. For example, for callback breakpoints,
this area contains the callback name and client data; for event-handler
breakpoints, it contains the event type and the client data, and so on.

226 007–2579–005

Debugger Reference [A]

• The breakpoint area, which contains the breakpoint name, a search field, and
the Add, Modify, Delete, and Step To buttons. Since the Search text
field and the four buttons appearing in the Breakpoints area function the
same way no matter which Breakpoint Type is selected, descriptions for
these items are included here, and will not be described in each of the eight
remaining subsections. These are:

Search text field Allows you to perform a text search through
your breakpoints.

Add button Allows you to add a new breakpoint.

Modify button Allows you to change the selected
breakpoint’s settings.

Delete button Deletes the selected breakpoint.

Step To button Allows you to step to the next condition.
Step To creates a temporary breakpoint,
resumes the process, and waits until the
process stops. This temporary breakpoint acts
exactly like an ordinary breakpoint, save that
the Step To button automatically resumes
the process and puts up a busy cursor until
the condition becomes true.

007–2579–005 227

Developer MagicTM: Debugger User’s Guide

Return button

Widget

specification

Parameter

specification

Breakpoints

Figure 68. Breakpoints Examiner Display in the X/Motif Analyzer Window

The control area has eight different breakpoint types that it can examine. These
types are set through the Breakpoint Type options. The following
Breakpoint Type options are available:

Callback Widget callback installed by XtAddCallback.
Parameters include callback name and
client_data XtPointer value. See Section
A.4.2.1, page 229, for more information.

Event-Handler Widget event handler installed by
XtAddEventHandler. Parameters include X
event type and client_data XtPointer value.
See Section A.4.2.2, page 231, for more
information.

228 007–2579–005

Debugger Reference [A]

Resource-Change Resource change caused by XtSetValues or
XtVaSetValues. Parameters include resource
name and resource value, both strings. See
Section A.4.2.3, page 233, for more information.

Timeout-Procedure Timeout callback installed by
XtAppAddTimeOut. Parameters include
client_data XtPointer value. See Section
A.4.2.4, page 234, for more information.

Input-Handler Input callback installed by XtAppAddInput.
Parameters include client_data XtPointer
value. See Section A.4.2.5, page 235, for more
information.

State-Change Various widget state changes (for example,
managed or realized). Parameters include widget
state. See Section A.4.2.6, page 236, for more
information.

X-Event X event received by target application.
Parameters include X event type. See Section
A.4.2.7, page 237, for more information.

X-Request X request received by target application.
Parameters include X request type. See Section
A.4.2.8, page 239, for more information.

A.4.2.1 Callback Breakpoints Examiner

When the Callback option of the Breakpoint Type option button in the
Breakpoints Examiner is selected, the Callback Breakpoints Examiner is
displayed.

007–2579–005 229

Developer MagicTM: Debugger User’s Guide

Figure 69. Callback Breakpoints Examiner

The Callback Breakpoints examiner contains the following items:

Widget text field Allows you to choose a widget to examine by
entering the widget address.

Name text field Allows you to choose a widget to examine by
entering the widget name.

Class text field Allows you to choose a widget to examine by
entering the widget’s class. Leave the field blank
or enter Any to select all widgets.

Parent text field Allows you to move to the parent of the currently
selected widget.

Previous button Moves you to the previously selected widget.

230 007–2579–005

Debugger Reference [A]

Children... button Shows you the widget’s children (it is grayed out
if the selected widget cannot have children).

Select... button Allows you to select the widget in the target
process.

Breakpoint Type
option button

Allows you to select the type of breakpoint you
wish to set. In this section, Callback is selected.

Clear button Clears all the current breakpoint selections and
text fields.

Callback Name text
field

Allows you to set the Name of the callback for the
breakpoint.

Client_Data text field Allows you to pass and get back pointer values
for Client_Data.

A.4.2.2 Event-Handler Breakpoints Examiner

When the Event-Handler option of the Breakpoint Type option button in
the Breakpoint Examiner is selected, the examiner appears as shown in Figure
70, page 232.

007–2579–005 231

Developer MagicTM: Debugger User’s Guide

Figure 70. Event-Handler Breakpoints Examiner

The Event-Handler Breakpoints examiner contains the following items:

Widget text field Allows you to choose a widget to examine by
entering the widget address.

Name text field Allows you to choose a widget to examine by
entering the widget name.

Class text field Allows you to choose a widget to examine by
entering the widget’s class. Leave the field blank
or enter Any to select all widgets.

Parent text field Allows you to move the parent of the currently
selected widget.

Previous button Moves you to the previously selected widget.

232 007–2579–005

Debugger Reference [A]

Children... button Shows you the widget’s children (it is grayed out
if the selected widget cannot have children).

Select... button Allows you to select the widget in the target
process.

Breakpoint Type
option button

Allows you to select the type of breakpoint you
wish to set. In this section, Event-Handler is
selected.

Clear button Clears all the current breakpoint selections and
text fields.

Event Type option
button

Allows you to set the event type for a given
breakpoint.

Client_Data text field Allows you to pass and get back pointer values
for the Client_Data.

A.4.2.3 Resource-Change Breakpoints Examiner

When the Resource-Change option of the Breakpoint Type option button
in the Breakpoint Examiner is selected, the examiner appears as shown in
Figure 68, page 228.

The Resource-Change Breakpoints examiner contains the following items:

Widget text field Allows you to choose a widget to examine by
entering the widget address.

Name text field Allows you to choose a widget to examine by
entering the widget name.

Class text field Allows you to choose a widget to examine by
entering the widget’s class. Leave the field blank
or enter Any to select all widgets.

Parent text field Allows you to move the parent of the currently
selected widget.

Previous button Moves you to the previously selected widget.

Children... button Shows you the widget’s children (it is grayed out
if the selected widget cannot have children).

Select... button Allows you to select the widget in the target
process.

007–2579–005 233

Developer MagicTM: Debugger User’s Guide

Breakpoint Type
option button

Allows you to select the type of breakpoint you
wish to set. In this section, Resource-Change is
selected.

Clear button Clears all the current breakpoint selections and
text fields.

Resource Name text
field

Allows you to set the resource name for the
breakpoint.

Resource Value text
field

Allows you to set the resource value for the
breakpoint.

A.4.2.4 Timeout-Procedure Breakpoints Examiner

When the Timeout Procedure option of the Breakpoint Type option
button in the Breakpoint Examiner is selected, the examiner appears as shown
in Figure 71.

Figure 71. Timeout-Procedure Breakpoints Examiner

234 007–2579–005

Debugger Reference [A]

The Timeout-Procedure Breakpoints examiner contains the following items:

Breakpoint Type
option button

Allows you to select the type of breakpoint you
wish to set. In this section, Timeout-Procedure
is selected.

Clear button Clears all the current breakpoint selections and
text fields.

Client_Data text field Allows you to pass in and get back pointer values
for the Client_Data.

A.4.2.5 Input-Handler Breakpoints Examiner

When the Input-Handler option of the Breakpoint Type option button in
the Breakpoint Examiner is selected, the examiner appears as shown in Figure
72.

Figure 72. Input-Handler Breakpoints Examiner

007–2579–005 235

Developer MagicTM: Debugger User’s Guide

The Input-Handler Breakpoints examiner contains the following items:

Breakpoint Type
option button

Allows you to select the type of breakpoint you
wish to set. In this section, Input-Handler is
selected.

Clear button Clears all the current breakpoint selections and
text fields.

Client_Data text field Allows you to pass in and get back pointer values
for the Client_Data.

A.4.2.6 State-Change Breakpoints Examiner

When the State-Change option of the Breakpoint Type option button in
the Breakpoint Examiner is selected, the examiner appears as shown in Figure
73.

Figure 73. State-Change Breakpoints Examiner

236 007–2579–005

Debugger Reference [A]

The State-Change Breakpoints examiner contains the following items:

Widget text field Allows you to choose a widget to examine by
entering the widget address.

Name text field Allows you to choose a widget to examine by
entering the widget name.

Class text field Allows you to choose a widget to examine by
entering the widget’s class. Leave the field blank
or enter Any to select all widgets.

Parent button Allows you to move the parent of the currently
selected widget.

Previous button Moves you to the previously selected widget.

Children... button Shows you the widget’s children (it is grayed out
if the selected widget cannot have children).

Select... button Allows you to select the widget in the target
process.

Breakpoint Type
option button

Allows you to select the type of breakpoint you
wish to set. In this section, State-Change is
selected.

Clear button Clears all the current breakpoint selections and
text fields.

State Type option
button

Allows you to set the state change type for a
given breakpoint.

A.4.2.7 X-Event Breakpoints Examiner

When you select the X-Event option of the Breakpoint Type option button
in the Breakpoint Examiner, the examiner appears as shown in Figure 74, page
238.

007–2579–005 237

Developer MagicTM: Debugger User’s Guide

Figure 74. X-Event Breakpoints Examiner

The X-Event Breakpoints examiner contains the following items:

Breakpoint Type
button

Allows you to select the type of breakpoint you
wish to set. In this section, X-Event is selected.

Clear button Clears all the current breakpoint selections and
text fields.

Event Type button Allows you to set the event type for a given
breakpoint.

Window ID text field Allows you to set the Window ID value for the
breakpoint.

238 007–2579–005

Debugger Reference [A]

A.4.2.8 X-Request Breakpoints Examiner

When the X-Request option of the Breakpoint Type option button in the
Breakpoint Examiner is selected, the examiner appears as shown in Figure 75,
page 239.

Figure 75. X-Request Breakpoints Examiner

The X-Request Breakpoints examiner contains the following items:

Breakpoint Type
option button

Allows you to select the type of breakpoint you
wish to set. In this section, X-Request is
selected.

Clear button Clears all the current breakpoint selections and
text fields.

007–2579–005 239

Developer MagicTM: Debugger User’s Guide

Request Type button Launches the Request Type Selection
dialog (see Figure 76). This dialog allows you to
select the type of X-Request used for your
breakpoint. The information displayed is in
outline form; selecting a given item selects all its
subitems. For example, if you select
Window-Category, CreateWindow,
ChangeWindowAttributes,
GetWindowAttributes, and so on are also
selected.

Figure 76. Request Type Selection Dialog

A.4.3 Trace Examiner

The Trace examiner (see Figure 77, page 241) is a control area where you can
trace the execution of your application and collect the following date:

• X Server Events

• X Server Requests

• Widget Event Dispatch Information

240 007–2579–005

Debugger Reference [A]

• Widget Resource Changes (through XtSetValues)

• Widget State Changes (create, destroy, manage, realize, and
unmanage)

• Xt Callbacks (widget, event handler, work proc, timeout, input,
and signal)

Figure 77. Trace Examiner

The Trace examiner contains the following items:

Collect Trace toggle Allows you to turn the tracing on and off.

File text field Allows you to select the file name for the trace. If
no file is selected, a default filename for the trace
is chosen.

007–2579–005 241

Developer MagicTM: Debugger User’s Guide

Search text field Allows you to perform an incremental, textural
search for the trace list.

Filter... button Launches a dialog that allows you to select the
trace entry types you want displayed in the list.

Clear File button Erases the trace file. Any subsequent trace
information goes to the beginning of the file.

A.4.4 Widget Examiner

The Widget examiner (see Figure 78) displays the internal Xt widget structure,
as well as the Xt inheritance implementation using nested C constructs.

Figure 78. Widget Examiner

242 007–2579–005

Debugger Reference [A]

The Widget examiner contains the following items:

Widget text field Allows you to choose a widget to examine by
entering the widget address.

Name text field Allows you to choose a widget to examine by
entering the widget name.

Parent button Allows you to move the parent of the currently
selected widget.

Previous button Moves you to the previously selected widget.

Children... button Shows you the widget’s children. (It is grayed
out if the selected widget does not have children.)

Select... button Allows you to select the widget in the target
process.

A.4.5 Tree Examiner

The Tree examiner (see Figure 79, page 244) displays the widget hierarchy.

007–2579–005 243

Developer MagicTM: Debugger User’s Guide

Figure 79. Tree Examiner

You may double-click a node to view that widget in the Widget examiner.

If the Tree examiner is currently selected, it will not automatically fetch the
current widget tree each time the process stops. To force retrieval of the widget
tree, select another examiner and then go back to the Tree examiner. Or, click
on the Tree tab.

The graphical buttons across the bottom of the Tree Examiner window from
left-to-right have the following functions.

244 007–2579–005

Debugger Reference [A]

Zoom menu

Zoom Out button

Zoom In button

Overview button

Multiple Arcs button (disabled)

Realign button

Rotate button

Search button

Figure 80. Tree Examiner Window Graphical Buttons

Zoom percentage
indicator

Click on this indicator to bring up a submenu
from which you can select a different percentage.

Zoom Out button Decreases the zoom percentage

Zoom In button Increases the zoom percentage

Overview button Shows the entire tree structure in another
window along with an indication of which
portion of the tree is currently being displayed in
the full-sized Tree Examiner window.

Multiple Arcs button This button shows/hides multiple connections
between nodes on the graph. For example, if
main calls foo several times, you will se a line
(arc) for all calls made.

Realign button This button resets the graph back to its original
configuration (before you began working with it).
Also, hidden nodes will reappear.

Rotate button Change the format of the window from up-down
to left-right, or vice-versa.

Search button Search for text in the tree using a Widget
Hierarchy Search Text window.

Widget View Type
Option button

Click on this indicator to change the kind of
information being displayed in the nodes of the
tree. This will bring up a submenu which allows
you to choose Name, Class, ID (widget address)
or Window (indicate <gadget> or address).

007–2579–005 245

Developer MagicTM: Debugger User’s Guide

A.4.6 Callback Examiner

The Callback examiner (see Figure 81) automatically appears when the process
is stopped somewhere in a callback. It first displays the callstack frame. Then it
displays information about the widget in the callback. Finally, it displays the
proper callback structure contained in the call_data argument to the callback
procedure, based on the widget type and the callback name.

Figure 81. Callback Examiner

246 007–2579–005

Debugger Reference [A]

A.4.7 Window Examiner

The Window examiner (see Figure 82) displays window attributes for an X
window and the parent and children window IDs. These attributes are returned
by XGetWindowAttributes, with decoding of the visual structure, enums,
and masks.

Figure 82. Window Examiner

The Window examiner contains the Window text field that displays the address
of the window that is being examined. You may change to a different window
by entering a new address and pressing Enter.

007–2579–005 247

Developer MagicTM: Debugger User’s Guide

A.4.8 Event Examiner

The Event examiner (see Figure 83) displays the event structure for an XEvent
pointer. The proper XEvent union member is used, and enums and masks are
decoded.

Figure 83. Event Examiner

The Event examiner contains the X Event text field, which displays the
address of the X event that is being examined. You may change to a different X
event by entering a new address and pressing Enter.

A.4.9 Graphics Context Examiner

The Graphics Context examiner (see Figure 84, page 249) displays the X
graphics context attributes that are cached by Xlib in the form of an
XGCValues structure. Enums and masks are decoded.

248 007–2579–005

Debugger Reference [A]

Figure 84. Graphics Context Examiner

The Graphics Context examiner contains the GC text field that displays the
address of the graphics context that is being examined. You may change to a
different context by entering a new address and pressing Enter.

A.4.10 Pixmap Examiner

The Pixmap examiner (see Figure 85, page 250) displays basic attributes of an X
pixmap, like size and depth. It also attempts to provide an ASCII display of
small pixmaps, using the units digit of the pixel values.

007–2579–005 249

Developer MagicTM: Debugger User’s Guide

Figure 85. Pixmap Examiner

The Pixmap examiner displays the contents of an X pixmap. To specify an X
pixmap identifier, enter a numeric expression in the top text field of the
window. Then, use default as the colormap identifier to specify the default X
colormap for your screen. In the pixmap display, left-click on a pixel to see the
pixel value, position, and red-green-blue intensities.

A.4.11 Widget Class Examiner

The Widget Class examiner (see Figure 86, page 251) displays the Xt widget
class structure, as well as the Xt inheritance implementation using nested C
constructs.

250 007–2579–005

Debugger Reference [A]

Figure 86. Widget Class Examiner

The Widget Class examiner contains the W Class text field, which displays the
address of the widget class that is being examined. You may change to a
different widget class by entering a new address and pressing Enter.

A.5 Trap Manager Windows

In addition to setting traps by using the command line, the View menu of the
Main View window provides you with three views specific to trap management:

• Trap Manager

• Signal Panel

• Syscall Panel

007–2579–005 251

Developer MagicTM: Debugger User’s Guide

Call up the Trap Manager window from the Main View window menu bar as
follows:

Views
->Trap Manager

A.5.1 Trap Manager

The Trap Manager allows you to set, edit, and manage traps (used in both the
Debugger and Performance Analyzer). The X window is shown in Figure 87.

Figure 87. Trap Manager Window

The Trap Manager window contains the following items (besides the menu
bar, which is discussed below):

Trap text field Contains a description of the
trap.

Condition text field Contains the condition of the
trap.

Cycle Count text field Displays the current cycle
count.

252 007–2579–005

Debugger Reference [A]

Current Count text field Displays the current trap
count.

Full button Allows you to toggle between
display of full and partial
path names.

Modify button Allows you to change the
selected breakpoint’s settings.

Add button Allows you to add a new
breakpoint.

Clear button Clears all the current
breakpoint selections and text
fields.

Delete button Deletes the selected
breakpoint.

Active label If selected with a check mark,
the trap is enabled.

Trap display area Contains a description of
each trap, and a toggle to
indicate whether or not the
trap is active.

Search text field Allows you to perform an
incremental textual search for
the trap list.

The Trap Manager window has a menu bar which contains the Admin,
Config, Traps, Display, and Help menus. The Admin menu is the same as
that described in Section A.3.1.1, page 217. The Help menu is the same as that
described in Section A.1.10, page 205. The other menus are described in the
following sections.

A.5.2 Config Menu

The Config menu contains the following items:

Load Traps... Brings up the File dialog allowing you to load
the traps from a file.

Save Traps... Brings up the File dialog allowing you to save
the current traps to a file.

007–2579–005 253

Developer MagicTM: Debugger User’s Guide

A.5.3 Traps Menu

The Traps menu has options that allow you to set traps under a number of
conditions. The following conditions are available:

At Source Line Highlight a line in the Main View window’s
source pane before selecting this option to set a
breakpoint at the selected line.

Entry Function Highlight a function name in the Main View
window’s source pane before selecting this option
to set a breakpoint at the entry to the function.

Exit Function Highlight a function name in the Main View
window’s source pane before selection this option
to set a breakpoint at the exit from the function.

Stop Trap Default Causes a trap created to be a “stop” trap. Toggles
with the Sample Trap Default.

Sample Trap
Default

Causes a trap created to be a “sample” trap.
Toggles with the Stop Trap Default.

Group Trap Default ON/OFF toggle to cause a trap created to have
the “pgrp” option.

Stop All Default ON/OFF toggle to cause a trap created to have
the All option.

A.5.4 Display Menu

The Display menu contains the following item:

Delete All Deletes all traps from the trap list.

A.5.5 Signal Panel

The Signal Panel displays the signals that can occur. You can specify which
signals trigger traps and which are to be ignored. The Signal Panel is
shown in Figure 88, page 255.

254 007–2579–005

Debugger Reference [A]

Figure 88. Signal Panel

The Signal Panel contains an Admin menu (described in Section A.3.1.1,
page 217) and a Help menu (described in Section A.1.10, page 205). Each signal
trigger trap in the display has a toggle associated with it. In addition, the panel
has a Search text field.

Note: When debugging IRIX 6.5 pthreads, the Signal Panel is inaccessible
if more than one thread is active.

A.5.6 Syscall Panel

The Syscall Panel allows you to set traps at the entry to or exit from system
calls. The Syscall Panel is shown in Figure 89, page 256.

007–2579–005 255

Developer MagicTM: Debugger User’s Guide

Figure 89. Syscall Panel

The Syscall Panel contains an Admin menu (described in Section A.3.1.1,
page 217) and a Help menu (described in Section A.1.10, page 205). Each
system call in the display has two toggles associated with it: one to set a trap on
entry, one to set a trap on exit. In addition, the panel has a Search text field.

A.6 Data Examination Windows

There are several windows that are used primarily to examine your program’s
data:

• Array Browser Window, Section A.6.1, page 257

• Call Stack View Window, Section A.6.2, page 271

• Expression View Window, Section A.6.3, page 273

256 007–2579–005

Debugger Reference [A]

• File Browser Window, Section A.6.4, page 276

• Structure Browser Window, Section A.6.5, page 277

• Variable Browser Window, Section A.6.6, page 288

A.6.1 Array Browser Window

To examine numeric, pointer, or character string data in an array variable, select
Array Browser from the Views menu at a point in the process where the
variable is present. The Array Browser allows you to view elements in a
multi-dimensional array (up to 100 x 100 elements), presented in a spreadsheet
and graphically, if desired.

007–2579–005 257

Developer MagicTM: Debugger User’s Guide

Array specification
area

Subscript control
area

Graphical display
area

Spreadsheet area

Current element

Figure 90. Array Browser with Display Menu Options

Note: The Render, Color, and Scale tear-off menus are available only if
you are have a Silicon Graphics workstation with Open Inventor installed on
it.

The array specification area allows you to specify the variable and its dimensions.
It consists of the following fields:

Array Allows you to enter the name of the array
variable. This entry is language-dependent.

258 007–2579–005

Debugger Reference [A]

For Fortran, the expression may be an array or a
dummy array variable name. If the last
dimension of the array is unspecified (*), a
subscript value of 1 is assumed initially.

For C and C++, the entry may be an array or a
pointer. If pointers are used, the expression is
treated as though it were a single element, in
which case you need to use the subscript controls
to see more than the first element.

Indexing
Expression

The expression used to view an element in the
array. It is filled in automatically when you
specify an array to view.

The expression supplied is language-specific. It
represents the indexing expression used in the
language to access a particular element. The
subscripts are specified by special indexing
variables ($i, $j, $k, and so forth) that can be
manipulated in the subscript controls area.

The Subscript Controls area allows you to control which elements in the
variable are displayed and allows you to shift the current element. The number
of dimensions in the array governs the number of controls that are displayed. A
close-up view of the subscript controls area appears in Figure 91.

Row/column toggles
Index identifiers
Index values
Index sliders
Index minimums
Index maximums
Step indicators

Figure 91. Subscript Controls Area in the Array Browser

007–2579–005 259

Developer MagicTM: Debugger User’s Guide

The Subscript Controls area provides the following features:

Row/column toggles Control whether an index variable represents
rows or columns (or neither) in the spreadsheet
area. You are not limited by the number of
dimensions of an array, but you can only view a
two-dimensional orthogonal slice of the array at a
time.

Index identifiers Indicate to which subscript the controls in the
row refer.

Index values Show the value of the subscript for the element
currently in the focus cell. You can enter a
different value if you wish.

Index sliders Let you move the focus cell along the particular
dimension.

Index minimums Identify the beginning visible element in that
particular dimension.

Index maximums Identify the last visible element in that particular
dimension. If you have an unspecified array, you
can use this field to specify the last element in the
vector to be displayed in the spreadsheet.

Step indicators Specifies the increment between adjacent
elements in the dimension to be displayed. A
value of 1 displays consecutive data. Specifying
some n greater than 1 allows you to display every
n element in a vector.

Control area scroll bars Allows you to expose hidden portions of the
subscript control area if your window is not large
enough for viewing all of the controls.

The spreadsheet area is where numeric data is displayed. It can show two
dimensions at a time (indicated in the upper left corner of the matrix). The
column indexes run along the top of the matrix and the row indexes are
displayed along the left column. The spreadsheet area has scroll bars for
viewing data elements not currently visible in the viewing area. Figure 92, page
261, shows a close-up of the spreadsheet area.

260 007–2579–005

Debugger Reference [A]

Current element value field

Current element identifier

Column indexes

Current element

Row indexes

Element values

Figure 92. Array Browser Spreadsheet Area

The current element is highlighted by a colored rectangle in the spreadsheet
area. Its corresponding expression is shown in the current element identifier
field, and the value is shown in the current element value field.

A.6.1.1 Spreadsheet Menu

The Spreadsheet menu allows you to change the appearance of data in the
spreadsheet area. It provides these selections:

Column Width... Allows you to specify the width of the
spreadsheet cells in terms of characters. For
instance, a value of 12 indicates that 12 characters,
including punctuation and digits are viewable.

Wrapped Display Allows you to display a single dimension of an
array wrapped around the entire spreadsheet
area. The index value for an element is
determined by adding the appropriate row index
and column index values.

Figure 93, page 262, shows an example of a
wrapped array. There is only one index $i. The
current cell is element 4 in the array (by adding 3
and +1).

007–2579–005 261

Developer MagicTM: Debugger User’s Guide

Current
cell

Figure 93. Example of Wrapped Array

A.6.1.2 Format Menu

The Format menu displays a separate menu that you allows you to display the
elements in the following formats:

Default toggle Toggles the default format.

Value submenu Contains the following display toggles for
formatted values:

• Decimal

• Unsigned

• Octal

• Hex

• Float

• Exponential

• Char

• Wide Character

• String

Type Allows listing by data type.

Bit Size Allows listing by bit size.

262 007–2579–005

Debugger Reference [A]

The graphical display area presents array data in a three-dimensional graph in
one of the following formats:

• Surface (polyhedron)

• Bar chart

• Points

• Multiple lines (array vectors)

A.6.1.3 Render Menu

Note: The Render tear-off menu is available only if you are have a Silicon
Graphics workstation with Open Inventor installed on it.

You select the graphical display mode through the Render menu. The Render
menu has the following options:

Surface Exhibits the data as a solid using the data values
as vertices in a polyhedron.

Bar Chart Presents the data values as 3-D bar charts.

Points Simply plots the data values in 3-D space.

Multi Line Plots and connects the data values in each row.

None Allows you to display with no graphical display,
in effect turning off graphical display mode.

A.6.1.4 Color Menu

Note: The Color tear-off menu is available only if you are have a Silicon
Graphics workstation with Open Inventor installed on it.

If the Color menu is grayed out when the Array Browser window first
opens, select the Surface option of the Render menu. The Color menu
provides the following options:

Monotone Ramp Displays the data values in a single tone, with
lower numbers being darker and higher values
lighter in tone.

Hue Ramp Displays the data values in a spectrum of colors
ranging from blue (lowest values) through green,
yellow, orange, and red (highest values).

007–2579–005 263

Developer MagicTM: Debugger User’s Guide

Exception Allows you to flag certain conditions by color,
usually for the purpose of spotting bad data.
When you select Exception, the controls shown
in Figure 94, page 264 appear in the window.

Figure 94. Color Exception Portion of Array Browser Window

Thus, you can highlight data values less than or
greater than specified values, values of plus or
minus infinity, values of plus or minus underflow,
zero values, and NaN (not a number) values.

264 007–2579–005

Debugger Reference [A]

Surface rendering Bar chart rendering

Point rendering Multiple line rendering

Figure 95. Array Browser Graphic Modes

A.6.1.5 Scale Menu

Note: The Scale tear-off menu is available only if you are have a Silicon
Graphics workstation with Open Inventor installed on it.

If the Scale menu is grayed out when the Array Browser window first
opens, select the Surface option of the Render menu.

The Scale menu provides options for changing the ratio of the z-dimension,
which represents the value of the element. The number on the left represents
the value of the x and y-dimensions (which are always the same as each other).
The number on the right is the z-dimension.

Manipulating the z-dimension affects the ease of spotting differences in values.
If your data is scattered over a narrow range of values, you may wish to
heighten the graph by selecting 10:1 as your scale; this exaggerates the values
in the z-dimension. If your data is in a wide range, selecting 1:2 or 1:10 as
the scale will minimize the differences, flattening the graph.

007–2579–005 265

Developer MagicTM: Debugger User’s Guide

A.6.1.6 Examiner Viewer Controls

Note: The Examiner Viewer is available only if you are have a Silicon
Graphics workstation with Open Inventor installed on it.

The graphical display uses controls and menus from Examiner Viewer.
Examiner Viewer is based on a camera metaphor and borrows terms from the
film industry, such as zoom and dolly, in naming its controls. The graphical
display area of the window is shown in Figure 96, page 267, with its main
controls and menus. Note that the buttons on the upper right side of the
graphical display area may not be visible if the area is too small; you can
expose them by moving either the upper or lower sash to enlarge the display
area. (The lines between the window panes include a small box to the right.
Click-drag this box to change the size of the panes.)

Examiner Viewer provides these controls for viewing the graph. The right side
buttons provide the following actions:

view mode Toggles between a view-only mode (closed eye)
and manipulation mode (open eye).

In view-only mode, the cursor appears as an
arrow and the graph cannot be moved. Clicking
on a portion of the graph selects the
corresponding array element in the spreadsheet.

In manipulation mode, the cursor appears as a
hand and you can move the graph. Dragging the
graph with the left mouse button down moves
the graph in any direction as if it were in a
trackball; a quick movement spins the graph.
Dragging the graph with the left mouse button
and the Ctrl key rolls (rotates) the graph in the
plane of the screen. Dragging the graph with the
middle mouse button moves it without changing
the viewing angle.

If you drag the graph with both the left and
middle mouse buttons down, the graph will
appear to move into or out of the window (this is
the same as the dolly thumbwheel, which is
described in this section).

266 007–2579–005

Debugger Reference [A]

x rotation
control

y rotation
control

Zoom control
and readout

Dolly
control

View mode

Help

Home

Set home

View all

Seek

Figure 96. Examiner Viewer with Controls and Menus

007–2579–005 267

Developer MagicTM: Debugger User’s Guide

help Runs a special help system containing Inventor
Viewer information.

home Repositions the graph in its original viewing
position.

set home Changes the home (original viewing) position for
subsequent use of the home button.

view all Repositions the display area so that the entire
graph is visible.

seek Provides a special cursor that allows you to
reposition the graph in the center of the display
area or allows you to center the view on a point
you select with the cursor. See Seek to point
<or object> in the Preferences dialog box.

The following controls let you move the graphic display:

x rotation
thumbwheel

Rotates the graph around its x-axis.

y rotation
thumbwheel

Rotates the graph around its y-axis.

dolly thumbwheel Changes the size of the graph and adjusts the
angles to maintain perspective. The dolly control
simulates moving the viewing camera back and
forth with respect to the graph.

A.6.1.7 Examiner Viewer Menu

You access the Examiner Viewer menu by holding down the right mouse
button in the graphical display area. The Examiner Viewer menu provides
the following options (see Figure 96, page 267 for illustration):

Functions Displays a submenu with the selections Help,
Home, Set Home, View All, and Seek, which
are the same as the right mouse button controls
described in the previous section, and the Copy
View and Paste View selections. These operate
like standard copy and paste editing commands,
enabling you to transfer graphs.

268 007–2579–005

Debugger Reference [A]

Draw Style Displays a submenu that controls how the graph
is displayed. The top group of options, from as
is to bounding box (no depth) control how
the graph is displayed when it is static. These
override any Render menu selections.

The middle (move...)group of options control
how the graph is displayed while in motion.

The last three option, single, double, and
interactive, refer to buffering techniques used
in moving the graph. These affect the smoothness
of the movement.

Viewing The same as the view mode button described in
the previous section. When it is off, you can
select points from the graph to display in the
spreadsheet but cannot move the graph. When
on, it allows you to manipulate the graph.

Decoration Displays the right side buttons when it is on and
hides them when it is off.

Headlight Controls the shadow effect on the graph. When it
is on, the light appears to come from the camera.

Preferences Causes the Examiner Viewer Preferences
Sheet dialog to display.

007–2579–005 269

Developer MagicTM: Debugger User’s Guide

Figure 97. Examiner Viewer Preference Sheet Dialog

The Examiner Viewer Preference Sheet dialog provides the following
options:

Seek animation
time

Allows you to specify the time it takes for the
graph to be repositioned after you change the
seek point. Set to 0 for instant seek. See also
Seek to point <or object>.

Seek to point <or
object>

Seek to point uses the picked point and
surface normal to align the camera.

Seek to object uses only the object center to
align the camera.

Seek distance wheel This wheel controls how close to the camera the
object will appear. This distance can be either an
absolute distance or a percentage of the distance
to the picked point.

270 007–2579–005

Debugger Reference [A]

Camera Zoom slider This slider allows you to set (in degrees) the
camera height angle (only perspective camera). If
you wish, you may set this value in the field
immediately to the right of the slider.

Zoom slider ranges
from

Range is 1.0 to 140.0 by default, but you can
reset this if you wish.

Auto clipping
planes

Centers the graph in your view if enabled. If
disabled, it allows you to move the graph out of
view at either end of the z-axis. This is useful if
you wish to focus on data above or below a set
value.

Stereo Viewing This may be turned on to see the scene in stereo
(special glasses required). The offset between the
left and right eye can be specified using the
camera rotation thumbwheel.

Enable spin
automation

When selected, you can cause the camera to
continue spinning. To animate, left-click and drag
in the direction of your desired spin, then release
while spinning. The graph spins as if by a
trackball. To stop, left-click anywhere.

Show point of
rotation axes

Displays a set of three axes. You can move the
graph around the x and y axes using the
thumbwheel controls described in the previous
section. When this option is on, you can set the
size of the axes in pixels.

A.6.2 Call Stack View Window

The Call Stack View (Figure 98, page 272) window displays call stack
entries when a process has stopped.

007–2579–005 271

Developer MagicTM: Debugger User’s Guide

Figure 98. Call Stack View

The source display in the Main View window has two special annotations that
are synchronized with the Call Stack View:

• The location of the current program state is indicated by a large arrow
representing the PC. The source line to which the arrow points is
highlighted (usually in green).

• The location of the call to the item selected in the Call Stack View
window is indicated by a small arrow representing the current context. The
source line becomes highlighted (usually in blue-green).

The Call Stack View contains its own menu bar, which contains the Admin,
Config, Display, and Help menus. The Admin menu is the same as that
described in Section A.3.1.1, page 217. The Help menu is the same as that
described in Section A.1.10, page 205. The other menus are described in the
following sections.

272 007–2579–005

Debugger Reference [A]

A.6.2.1 Config Menu

The Config menu contains the following option:

Preferences... Launches the Call Stack View Preferences
dialog that allows you the option of setting the
maximum depth of the Call Stack View.

A.6.2.2 Display Menu

The Display menu contains the following toggles which change what is
displayed in each entry of the Call Stack View in addition to the
subroutine/function name:

Arg Values Allows you to display argument values. Default
is on.

Arg Names Allows you to display argument names. Default
is on.

Arg Types Allows you to display argument types. Default is
off.

Location Allows you to display function location. Default
is on.

PC Allows you to display the program counter (PC).
Default is off.

A.6.3 Expression View Window

The Expression View window is shown in Figure 99, page 274.
Expression View displays a collection of expressions that are evaluated each
time the process stops or the context changes.

007–2579–005 273

Developer MagicTM: Debugger User’s Guide

Figure 99. Expression View

In addition to the items on the menu bar, the window has two pop-up menus:
the Language menu and the Format menu. The Admin menu is the same as
that described in Section A.3.1.1, page 217. The Help menu is the same as that
described in Section A.1.10, page 205. The other menus are described in the
following sections.

A.6.3.1 Config Menu

The Config menu contains the following options:

Load
Expressions...

Launches the Load Expressions dialog box
that allows you to choose source file from which
to load your expressions.

Save
Expressions...

Launches the Save Expressions dialog box
that allows you to choose a file to which you can
save your expressions.

274 007–2579–005

Debugger Reference [A]

A.6.3.2 Display Menu

The Display menu contains the following option:

Clear All Clears all fields in the view.

A.6.3.3 Language Pop-up Menu

The Language pop-up menu contains three buttons that allow you to select
one of three languages for evaluation: C, C++, or Fortran. The Language
pop-up is invoked by holding down the right mouse button while the cursor is
in the Expression column.

A.6.3.4 Format Pop-up Menu

The Format pop-up menu is displayed by holding down the right mouse
button in the Result column.

Figure 100. Expression View Format Popup with Submenus

007–2579–005 275

Developer MagicTM: Debugger User’s Guide

The Format popup contains the following options:

Default Sets the format to the default values.

Value Displays a submenu from which you can select a
value of Decimal, Unsigned, Octal, Hex,
Exponential, Float, Char, String, or Wide
Character type.

Type Displays a submenu from which you can select a
type of Decimal, Octal, or Hex.

Bit size Sets the format to Bit Size.

A.6.4 File Browser Window

The File Browser window displays a list of source files used by the current
executable. Double-click on a file in the list to load it into the source display
area in the Main View or Source View windows. Some files may be listed
due to subroutines/functions being resolved from system libraries. If you select
such a file, you may get the following message:

Unable to find file <xxx.c>

This is because the source for system library routines may not be stored on
your system.

The Search field allows you to find files in the list.

276 007–2579–005

Debugger Reference [A]

Figure 101. File Browser Window

The File Browser contains an Admin menu (described in Section A.3.1.1,
page 217) and a Help menu (described in Section A.1.10, page 205). In
addition, the browser has a Search field.

A.6.5 Structure Browser Window

The Structure Browser window allows you to examine data structures and
the relationships of the data within them. It displays complex data structures as
separate graphical objects, using arrows to indicate relationships. A sample
Structure Browser is shown in Figure 102, page 278, with the Config,
Display, Node, and Format menus displayed.

007–2579–005 277

Developer MagicTM: Debugger User’s Guide

Expression field

Display area
Structure header

Field name
column

Result column

Figure 102. Structure Browser with Menus Displayed

The structure name is entered in the Expression field. It then appears as an
object or set of objects in the display area in the lower portion of the window.
Each structure has a header identifying the structure, color coded by data type.
Below the header are two columns: the left displays the field name and the
right displays the field’s value. If a displayed structure exceeds the size of the
Structure Browser window, scroll bars appear.

While the Admin menu contains options for selecting the active structure,
cloning structures, saving them as text, and closing the Structure Browser
window; the four additional menus contain options that allow you to change
the way data is displayed. The following data-display menus are available:

Config Provides options for saving and reusing
type-specific formats and expressions. You can
also set preferences regarding how objects of a
given type are to be displayed.

278 007–2579–005

Debugger Reference [A]

Display Provides display options for all objects in the
display area.

Node Provides options for selected objects in the
display area only.

Format Allows you to change or reformat a specific value
in the result column. To access this pop-up menu,
hold down the right mouse button while the
cursor is over the result column.

A.6.5.1 Using the Structure Browser Overview Window to Navigate

WorkShop provides the Structure Browser Overview window (from the
Show Overview option in the Display menu) as another way to navigate
around the display.

This window is a reduced-scale view of the requested structures. The structures
are represented by solid rectangles color-coded by data type. The relative
position of the currently visible area is represented by a transparent rectangle.
This rectangle can be dragged (using the left mouse button) to change the
display of the Structure Browser. Clicking the left mouse button in an area
of this window repositions the currently visible area.

A.6.5.2 Entering Expressions

The Structure Browser accepts any valid expression. If the result type is
simple, a structure displays showing the type and value. If the result type is a
pointer, it is automatically de-referenced until a non-pointer type is reached. If
the result type is a structure or union, an object is displayed showing the
structures’ fields and their values. After the expression is entered, the
Expression field clears. The Structure Browser can display unrelated
structures at the same time; you simply enter new structures by using the
Expression field.

The Expression field is also used to enter strings used in searches.

A.6.5.3 Working in the Structure Browser Display Area

Within the display area, you select objects by clicking in the node headers.
Shift-clicks add the selected object to the current selection. You can drag
selected objects using the middle mouse button.

007–2579–005 279

Developer MagicTM: Debugger User’s Guide

Clicking the right button while the cursor is in the right column of an object
displays the Format menu, which is used to change the display. You can set a
default format or request that results be displayed by value, type, address, or
size in bits.

Holding down the right button in the header of an object brings up the Node
pop-up menu, which is the same as the Node menu in the menu bar. It is used
to change the way selected objects are displayed. When you left-click in the
header of an object, it turns on the resizer, which allows you to change the size
of the object. You will see a small square (handle) at the upper-right and
lower-left corners. Left-click-drag the handle to resize the object.
Middle-click–drag the handle to move the object.

Arrows show relationships among the displayed structures. If a member field is
not visible in a structure, its arrow tail is displayed at the top or bottom of the
scrolling area for fields. Otherwise, its tail is adjacent to its field.

Double-clicking a value field (right column) for a pointer changes the display so
that the data structure it points to is displayed.

Double-clicking a member field (left column) puts the full expression for that
member in the Expression field.

A.6.5.4 Structure Browser Display Menu

The Display menu controls the way structures appear in the display area. The
Display menu provides the following options:

Display Determines contents of the display. The Display
option has the following two options:

• Expression — Displays the structure of the
expression entered in the Expression field.

• Selection — Displays the structure based
on the text you have selected in the source
code pane in the Main View window.

Arrange Rearranges the currently selected nodes.
Arrange has the following two options: (See
Figure 103, page 281.)

• Tree — Arranges nodes into a tree-type
formation, that is, the hierarchy descends from
left to right and child structures are shown as
branches to the right of the parent.

280 007–2579–005

Debugger Reference [A]

• Linked List — Arranges nodes into a
linked list formation, that is, horizontally.

Tree arrangement

Linked list arrangement

Child
node

Next
node

Child
node

Child
node

Next
node

First
node

Parent
node

Figure 103. Tree and Linked List Arrangements of Structures

Search Allows you to select structures in the display area
that contain the string specified in the
Expression field. Search has the following
four options:

• Name — Selects structures whose names
contain the specified string.

• Type — Selects structures whose types
contain the specified string.

• Field Name — Selects structures that have a
field whose name contains the specified string.

• Value — Selects structures that have a field
value containing the specified string.

Update Explicitly updates the displayed structures. This
happens automatically in the current Structure
Browser when the process stops. This can be
used in an inactive Structure Browser to
update it. It can also be used to update the
display after changes have been made in other
Debugger views.

007–2579–005 281

Developer MagicTM: Debugger User’s Guide

Show Overview Brings up the Structure Browser Overview
window.

Clear All Clears all structures from the display area.

A.6.5.5 Node Menu

The Node menu gives you options that apply to currently selected objects.

Figure 104. Node Menu

Descriptions for these menu items are as follows:

State Controls the display of nodes. There are three
options:

• Iconic — Displays the node header only.

• Normal — Uses the default chart display but
hides those fields selected to be invisible.

• Detail — Uses the default chart display and
shows all fields.

282 007–2579–005

Debugger Reference [A]

Geometry Manages graphical objects in the display area.
There are four options:

• Minimize — Sets the vertical size of an object
to the default minimum number of fields. The
initial default is four fields but can be changed
through either the Formatting selection from
the Node menu or the Preferences...
selection from the Config menu.

• Maximize — Displays the object as large
vertically as necessary to fit all of the fields.

• Raise — Raises the selected object(s) to the
top of the display.

• Lower — Lowers the selected object(s) to the
bottom of the display.

Select Allows you to select objects in various ways.
There are six options:

• Parents — Selects all objects that have
pointers pointing to a selected object.

• Children — Selects all objects pointed to by
any fields in a selected object.

• Ancestors — Selects all objects pointed to a
selected object or pointing to an object that
has a descendant pointing to a selected object.

• Descendant — Selects all objects pointed to
by any fields in a selected object or pointed to
by any children of a selected object.

• Family — Selects all ancestors and
descendants of a selected object.

• All — Selects all objects.

007–2579–005 283

Developer MagicTM: Debugger User’s Guide

Formatting Brings up the type formatting dialog for this type.

Dereference Ptrs Dereferences any pointers in selected objects.

Pattern Layout Displays selected structures that are connected by
pointers to position related structures in the same
way.

Remove Removes selected object from the display.

A.6.5.6 Formatting Fields

Each field in a data structure has certain display characteristics. These can be
specified for all objects in the Structure Browser Preferences dialog box
or for type-specific objects only in the Structure Browser Type
Formatting dialog box. To display the Structure Browser Preferences
dialog box, select Preferences... from the Config menu (see Figure 105).

Figure 105. Structure Browser Preferences Dialog

284 007–2579–005

Debugger Reference [A]

The dialog has the following fields:

Default Structure
Field Count

Sets the number of fields to be displayed initially.

Default Structure
Width

The width in pixels of the object.

Default Iconic
Width

The width in pixels of the object when it is in
iconic form.

Automatic
Dereference Limit

Limits the number of structures that are
automatically dereferenced.

Dereference Ptrs
By Default

Toggles automatic dereferencing on and off.

To bring up the Structure Browser Type Formatting dialog box, select
the set of structures under consideration and select Node Formatting from
the Node menu (see Figure 106, page 286).

007–2579–005 285

Developer MagicTM: Debugger User’s Guide

Figure 106. Structure Browser Type Formatting Dialog

The dialog box has the following fields:

Type Name Displays the current data type.

Default Field
Count

Lists number of fields to be displayed initially for
objects of that type.

Default Structure
Width

Displays the width in pixels of the object.

Default Iconic
Width

Displays the width in pixels of the object when it
is in iconic form.

Default State Brings up a pop-up menu that allows you to
specify whether structures are first displayed as
icons (Iconic), with the minimum number of
fields displayed (Normal) or with all fields
displayed (Detail).

286 007–2579–005

Debugger Reference [A]

Type Color Provides a submenu for color coding. It allows
you to select a color for the header and overview
rectangles for objects of a given type.

For structure and union types, the list box shows all the fields with their types.
For each field, you can change the result format to one of the following types:

• Default

• Decimal

• Unsigned

• Octal

• Hex

• Float

• Exponential

• Char

• String

• Wide Character

• Type

• Dec addr

• Oct addr

• Hex addr

• Bit Size

You can also specify whether a field is visible in normal state, and if it is a
pointer field, whether it should be automatically dereferenced.

007–2579–005 287

Developer MagicTM: Debugger User’s Guide

Once you specify the format for this type, you can apply it to any combination
of the following through the toggle buttons in the bottom left portion of the
window:

• Selected instances

• All existing instances

• Any future instances of this type

A.6.6 Variable Browser Window

The Variable Browser window allows you to view and change the values of
local variables and arguments at a specific point in a process. (Global variables
can be viewed or changed using Expression View or the Evaluate
Expression selection from the Data menu for one-shot evaluations.) In
addition to providing values, the Variable Browser is useful for getting a
quick list of the local variables in a scope without having to search for their
names. A sample Variable Browser window with the Language and
Format menus displayed is shown in Figure 107, page 289.

Typically, you inspect variable values at the following points:

• At a breakpoint

• At a frame in a call stack

• As you step through a process

A useful technique is to set a trap at the entry to a function and inspect the
values of the variables there. Some variables may be in an uninitialized state at
that point. You can then step through the function and make sure that no
uninitialized variables are used inadvertently.

Note: In programs compiled by using the -n32 -g compiler options, you
cannot click on or print an unused variable as you could when using the
-o32 -g options.

A.6.6.1 Entering Variable Values

The Variable Browser allows you to change the values of variables in the
window. You simply enter the new value in the result column and press
Enter. Thus, you can force new values into the process and see their effect.

288 007–2579–005

Debugger Reference [A]

Column sash

Figure 107. Variable Browser with Menus Displayed

A.6.6.2 Changing Variable Column Widths

By using the sash between the columns, you can adjust the relative widths of
the Variable and Result columns (see Figure 107, page 289). For example,
you may wish to adjust for short variable names and long result values.

A.6.6.3 Viewing Variable Changes

The Debugger views that are involved with variables (that is, the Variable
Browser and Expression View) have indicators that show when the
variable has changed since the last breakpoint. If you click the indicator, you
can view the previous value. The variable change indicators for a Variable
Browser window are shown in Figure 108, page 290.

007–2579–005 289

Developer MagicTM: Debugger User’s Guide

Change indicator
(current value)

Change indicator
(former value)

No change indicator
(unchanged value)

Figure 108. Typical Variable Change Indicators

A.7 Machine-level Debugging Windows

The Debugger offers three views useful in debugging at the machine level: the
Disassembly View, Register View, and Memory View.

A.7.1 The Disassembly View Window

The Disassembly View window allows you to look at machine-level code
rather than source-level code. A typical Disassembly View window is
brought by selecting the following from the Main View window menu bar:

Views
->Assembly View

The window is shown in Figure 109, page 291, with the Disassemble menu
displayed.

290 007–2579–005

Debugger Reference [A]

Process control
buttons

Display area

PC indicator

Annotation column

Figure 109. The Disassembly View Window with the Disassembly Menu Displayed

A.7.1.1 Similarities with Main View Window

At the top of the window are the same process control buttons as those in the
Main View window. They behave the same way except for Step Into and
Step Over, which do machine-level instruction stepping instead of
source-level. Remember that you can select the number of steps by holding
down the right mouse button over the Step Into and Step Over buttons.

The Admin, Display, Traps, and PC items on the menu bar basically work
same as their counterparts in the Main View window. The exception is that the
PC submenu selections Continue To and Jump To are based on
machine-level instructions rather than source-level steps.

The Disassemble menu is discussed in Section A.7.1.2, page 292. The
Preferences... selection from the Config menu is discussed in Section
A.7.1.3, page 294.

007–2579–005 291

Developer MagicTM: Debugger User’s Guide

You can set traps either by using the Traps menu or by clicking in the
annotation column to the left of the source display area that contains the
disassembled code.

A.7.1.2 The Disassemble Menu

The Disassemble menu allows you to display disassembled code. It contains
the following items:

Address... Allows you to disassemble a specified number of
lines, starting from a specified source line address
(see Figure 110).

Figure 110. The Disassemble From Address Dialog

Function... Allows you to disassemble a specified number of
lines, starting from the beginning address of a
specified function name (see Figure 111, page
293).

292 007–2579–005

Debugger Reference [A]

Figure 111. The Disassemble Function Dialog

File... Allows you to disassemble a specified number of
lines, starting from the address corresponding to
a specified line number in a specified file (refer to
Figure 112, page 294). If you have a current
selection in the Main View window or the
Source View window, its file and cursor
position are used as the default file name and line
number, respectively.

007–2579–005 293

Developer MagicTM: Debugger User’s Guide

Figure 112. The Disassemble File Dialog

A.7.1.3 The Config Menu Preferences Dialog

Selecting Preferences... from the Config menu brings up the
Disassembly View Preferences dialog box (shown in Figure 113, page
295) so that you can select the display preferences you desire.

294 007–2579–005

Debugger Reference [A]

Figure 113. The Disassembly View Preferences Dialog with Display
Format Menu

The dialog box provides you with the following options:

Number of
instructions to
disassemble

Controls the default number of disassembly lines
shown when the process stops. This number
appears in the dialog boxes selected from the
Disassemble menu (see Figure 110, page 292,
Figure 111, page 293, and Figure 112, page 294).
The default is all instructions, indicating that the
entire function will be disassembled.

Minimum lines
around current
instruction

Controls the display of the disassembled code,
enabling you to view at least the specified
number of instructions before and after the
current instruction.

Register name
display format

Controls how register names are displayed. The
available modes are Hardware, Compiler, and
Assembler.

Show embedded
source annotation

When ON, displays source and disassembly
statements interleaved. When OFF, displays
disassembly statements only.

007–2579–005 295

Developer MagicTM: Debugger User’s Guide

Show source file
and line number

Displays the filename and file position along with
each machine instruction.

Show function name
and line number

Displays the function name and file position
along with each machine instruction.

Show machine
address

Displays the memory address of each machine
instruction.

Show instruction
value

Displays the instruction word along with each
machine instruction.

Show jal targets
numerically

Controls whether the target address of a jal
instruction is displayed as a hex address or
symbolic label.

A.7.2 The Register View Window

Register View window allows you to examine and modify register values.
You bring it up by selecting Register View from the Views menu in the
Main View window. Figure 114, page 297, shows a typical Register View
window that has been resized to show all available registers.

The Register View window displays each register with its current value. A
question mark (?) displayed immediately before a register value signifies that
the value is suspect; it may not be valid for the current frame. This can occur if
a register is not saved across a function call. A colored marker indicates that a
register value has changed since the last time the process stopped.

296 007–2579–005

Debugger Reference [A]

Current register value field Modify button

Current register
field

General register
display area

Special register
display area

Floating register
display area

Double register
display area

Figure 114. The Register View Window

A.7.2.1 The Register View Window

The major features of the Register View window are the following:

Current register
field

Identifies the currently selected register. You can
switch to a different register by entering its name
(either by hardware name or by alias) in this field
and pressing Enter. You can also switch registers
by clicking on the new register in the display area.

007–2579–005 297

Developer MagicTM: Debugger User’s Guide

Current register
value field

Shows the contents of the selected register. You
can assign a new value to a register by entering
either a literal or an expression into the Value
field. You then click on the Modify button to
change the value or press Enter.

Register display
area

Shows the registers organized into four groups:
general, special, floating, and double. Note that
the general registers are identified by both their
hardware and software names. For systems with
32–bit processors (O2s, for example), double
precision registers represent a pair of
floating-point registers. For systems with 64–bit
processors (Origin2000s, for example), float
registers are not displayed at all. Floating-point
calculations are done in double precision registers.

Note: The special registers p0, p1, and p2 do not appear in Figure 114, page
297. These are used for instrumentation and appear only when
instrumentation has taken place.

A.7.2.2 Changing the Register View Display

The Preferences... selection in the Config menu allows you to change the
Register View display. It brings up the Register View Preferences
dialog box (see Figure 115, page 299).

The register display toggle buttons let you specify which types of registers are
to be displayed by default.

298 007–2579–005

Debugger Reference [A]

Display toggle
area

Register
formatting
area

Figure 115. The Register View Preferences Dialog

The register formatting area allows you to select formats for any of the registers.

The default fields in the top row let you change defaults for the four major
types, which are set as follows:

• General registers — hexadecimal

• Special registers — hexadecimal

• Float registers — floating point

• Double registers — floating point

The rows in the register formatting area let you change the modes for the
individual registers.

A.7.3 The Memory View Window

The Memory View window allows you to examine and modify memory. A
typical Memory View window appears in Figure 116, page 300.

007–2579–005 299

Developer MagicTM: Debugger User’s Guide

Current address
field

Current address
value field

Memory display
area

Memory address column
Memory contents

Display control buttons

Figure 116. The Memory View Window with the Mode Submenu Displayed

A.7.3.1 Viewing a Portion of Memory

To view a portion of memory, enter the beginning memory location in the
Address field. You can enter the literal value or an expression that evaluates to
an integer address. These address specifications must be in the language of the
current process as indicated by the call stack frame. The syntax of this
expression depends upon the language of the program. For example, you can
enter 0x7fff4000+4 as the memory address when stopped in a C function or
enter $7fff4000+4 as the equivalent for a Fortran routine. Press Enter while
the cursor is in the field or click the View button to display the contents of that
location and the subsequent locations in the display area. This also displays the
contents of the first address in the Value field where it can be modified.

The memory display area shows the contents of individual byte addresses. The
column at the left of the display shows the first address in the row. The
contents at that address are shown immediately to its right, followed by the

300 007–2579–005

Debugger Reference [A]

contents of the next seven byte locations. If you enlarge the Memory View
window, you can see additional rows of memory.

A.7.3.2 Changing the Contents of a Memory Location

To change the contents of a memory location, you select the address to be
changed, either by direct entry or by clicking on the byte value in the display
area. You can enter a single value or a sequence of hex byte values separated
by spaces (for example, 00 3a 07 b2) in the Value field. You can also enter a
quoted string to change a consecutive range of values to the ASCII values of
that string. Pressing Enter while the cursor is in the Valuefield or clicking the
Modify button substitutes the new value(s) starting at the specified location.

A.7.3.3 Changing the Memory Display Format

The Mode menu allows you to change the format of the value field and byte
locations to either decimal, octal, hex, or ASCII.

A.7.3.4 Moving around the Memory View Display Area

The four control buttons at the upper right of the window help you move
around the display area. These buttons are:

Up Moves displayed bytes up a single row.

Down Moves displayed bytes down a single row.

Page Up Moves displayed bytes upward by as many rows
as are currently displayed.

Page Down Moves displayed bytes downward by as many
rows as are currently displayed.

A.8 Fix+Continue Windows

The Fix+Continue utility interacts with several Debugger windows. The Main
View and Source View windows access the Fix+Continue utility from the
menu bars. The standard output results of running redefined code are
displayed in the Execution View window (refer to Section A.8.4, page 309).

Special line numbers (in decimal notation) applied to redefined functions
appear in several views.

007–2579–005 301

Developer MagicTM: Debugger User’s Guide

Note: Fix+Continue functionality within the debugger is limited to C/C++
programs compiled with the -o32 compiler option.

The following windows, devoted entirely to Fix+Continue functions, can be
brought up as follows from the Main View window menu bar:

Fix+Continue
->View

->[Pulldown menu...]

• Status window

• Message window

• Build Environment window

This section describes Fix+Continue menu selections and windows.

The Fix+Continue menu is available from the Main View menu bar. The
menu selections operate on the selected code or the file shown in the Source
View window. The Fix+Continue menu is also available from Source View
window and from the Fix+Continue Status window.

A.8.1 Fix+Continue Status Window

The Fix+Continue Status window (see Figure 117, page 303) provides you
with a summary of the modifications you have made during your session. It
also allows you quick access to your modifications and somewhat expanded
menu options.

302 007–2579–005

Debugger Reference [A]

Function list

Function ID #

Function status

Function name

Filename for
function

Figure 117. Fix+Continue Status Window

The function ID number, status, name, and file name are displayed in the
window. Double-clicking a line in the window brings up the corresponding
source in the Debugger main window.

Status window menus and submenus are described in Figure 118, page 304.

007–2579–005 303

Developer MagicTM: Debugger User’s Guide

Figure 118. Fix+Continue Status Window Menus

A.8.1.1 Admin Menu

The Admin menu contains an option for closing the window.

Close Closes the status window.

A.8.1.2 View Menu

The View menu contains options for sorting information in the window and
displaying file names.

Sort Status View Sorts the information in the status view according
to the field currently selected.

304 007–2579–005

Debugger Reference [A]

Show Long
Filenames

Toggles among absolute (long) path names or
base names.

A.8.1.3 Fix+Continue Menu

The Fix+Continue menu available from the Fix+Continue Status
window is somewhat different from that available through the Debugger Main
View. It contains a number of options and submenus that are described below.
These options and submenus are active on the item you select in the source
pane of the Main View window. Before using this menu, you should select an
item by clicking on it. The following options and submenus are available:

External Editor Allows you to edit with an external editor such as
vi, rather than the Debugger’s default editor.

Parse And Load Parses your modified code and loads it for
execution. You can execute the modified code by
clicking on the Run or Continue command
buttons in the Main View window.

Update All
Files...

Launches the Save File+Fixes As... dialog
that allows you to update the current session
while saving all the modifications to the
appropriate files.

Show Difference
submenu

Allows you to show the difference between the
original source and your modified code. You can
show the difference in the code in one of the two
following ways:

• For Function — Shows the differences for
the current function only.

• For File — Shows the differences for the
entire file that contains the current function.

Enable submenu Allows you to enable the changes in your
modified code in one of the following ways:

• Function — Enables the changes in the
current function.

• Functions in File — Enables the changes
to the current function in its own file.

• All Functions — Enables the changes to all
functions in the modified code.

007–2579–005 305

Developer MagicTM: Debugger User’s Guide

Disable submenu Has the same menu choices as the Enable
submenu, but disables rather than enables.

Save submenu Allows you to save your code changes to a file.
You can save the changes in one of the following
ways:

• Function... — Launches the File dialog,
allowing you to save only the current function
to a file.

• File... — Launches the Save
File+Fixes As... pop-up window
allowing you to save the entire file that
contains the current function.

Delete submenu Has the same menu choices as the Save
submenu, but deletes rather than saves.

Show submenu Allows you to launch any of the following
windows:

• Message Window — Launches a
Fix+Continue Error Messages window
for the selected item. See Section A.8.2, page
307, for more details.

• Build Env for File — Launches a
Fix+Continue Build Environment
window for the file shown in the Source
View window. See Section A.8.3, page 308, for
more details on the Fix+Continue Build
Environment window.

• Default Build Env — Launches the
Fix+Continue Build Environment
window to show the options that are to be
used in cases where they could not be
obtained from the target. See Section A.8.3,
page 308, for details on the Fix+Continue
Build Environment window.

306 007–2579–005

Debugger Reference [A]

A.8.2 Fix+Continue Error Messages Window

The Fix+Continue Error Messages window contains a list of errors and
other system messages that pertain to your source modifications, parses, and
attempts to run your modified source.

You can highlight the source line where the error occurred by double-clicking
the appropriate line in the window. The Fix+Continue Error Messages
window contains the following buttons:

Clear Clears all the parsing errors and warnings.

Next Puts a check mark on the next unchecked error
warning entry in the parse messages. It displays
the corresponding file and line in the Source
view, highlighting it according to the type of
error or warning. The Next option does not work
after all the entries in the messages are ticked.

Rescan Erases all the ticks, so that you can rescan all the
error warnings from the beginning.

A.8.2.1 Admin Menu

The Admin menu allows you to perform either of the following operations:

Clear All Clears all messages in the window.

Close Closes the window.

A.8.2.2 View Menu

The View menu allows you to set any of the following toggles:

Show Warnings Causes compile warnings to be displayed in the
parse errors list.

Append Parse
Messages

Causes parse messages to be appended to the
parse errors list.

Append Load
Messages

Causes load messages to be appended to the load
errors list.

007–2579–005 307

Developer MagicTM: Debugger User’s Guide

A.8.3 Fix+Continue Build Environment Window

This section describes the Fix+Continue Build Environment window (see
Figure 119, page 308). The Fix+Continue Build Environment window
provides you with the build information for your source code in your current
environment. It displays the command that was used to build your executable
and the name of the file that contains the function that you currently have
selected.

Clear button

Set button

Unset button

Done button

Cancel button

Filter button

OK button

Figure 119. Fix+Continue Build Environment Window

308 007–2579–005

Debugger Reference [A]

The compiler and associated flags that were used to compile the file are
normally gathered from the target. You can use this window to make any
changes to these flags.

The window allows you to select your build environment setting through the
Build Environment Setting toggle that contains the following two options:

Default Sets the build environment to default that is
displayed in the window.

File Specific Sets the build environment to that of the file that
contains the currently selected function. You can
change the file by clicking the Select File
button, which launches the File dialog.

The Fix+Continue Build Environment window also contains the
following buttons:

Select File Launches the File dialog and allows you to
select a file from which to set the build
environment.

Clear Clears the window.

Set Sets the build environment to what is displayed
in the window.

Unset Unsets the build environment.

Done Dismisses the window.

A.8.4 Changes to Debugger Views

When you use Fix+Continue, views change to show redefined functions or
stopped lines containing redefined functions.

A.8.4.1 Main View

All Fix+Continue actions are available through the Fix+Continue menu on
the Main View window. See Figure 120, page 310, for details.

007–2579–005 309

Developer MagicTM: Debugger User’s Guide

Source
view

Editable
function

Decimal
notation

Fix and
Continue
menu

Annotated
scroll
bar

Source
code
status
indicator

Figure 120. Debugger Main View Window

You can select commands from the Fix+Continue menu or enter them at the
Debugger command line. The source code status is Read Only. Color coding
shows the differences between editable code, enabled redefinitions, disabled
definitions, and breakpoints. Line numbers in redefined functions have decimal
notation that is used for every reference to the line number. The integer portion
of the decimal is the same as the first line of the function. This ensures that
compiled source code line numbers remain unchanged.

A.8.4.2 Command Line Interface

The Debugger command line interface accepts Fix+Continue commands and
reports status involving redefined functions or files. Figure 121, page 311,
shows a function successfully redefined using the command line. Change id 1
was previously redefined and assigned the number 1.

310 007–2579–005

Debugger Reference [A]

Specify function with
Change id 1

Figure 121. Command Line Interface with Redefined Function

A.8.4.3 Call Stack View

The Call Stack View recognizes redefined functions. It uses the decimal
notation for line numbers, as shown in Figure 122.

Decimal notation for line number

Figure 122. Call Stack View

A.8.4.4 Trap Manager

The Trap Manager recognizes redefined functions. It uses the decimal
notation for line numbers, as shown in Figure 123, page 312.

007–2579–005 311

Developer MagicTM: Debugger User’s Guide

Decimal notation
for line numbers

Figure 123. Trap Manager Window with Redefined Function

A.9 Debugger Command Line

You can debug programs by entering dbx-style commands at the cvd> prompt
found at the bottom of the Main View window (see Figure 57, page 184). For
more information, refer to the dbx User’s Guide.

A.9.1 Syntax for dbx-style Commands

The syntax for the debugging commands is as follows:

add_source {"filename”:line_number }

(For C and C++ only, when compiled with -o32.) Prompts you
to add source code lines (for example, add_source
"fmain.c":15.2). line_number must be within the body of a
function. Entering a period (.) specifies the end of your input.
The source lines you provide are added after the specified line.
This command returns an ID existing or new, depending on
whether the function affected has already been changed or not.
The resulting new definition of the function is executed on its

312 007–2579–005

Debugger Reference [A]

entry next time. See also delete_source and
replace_source.

alias [shortform command]

Lists all aliases without arguments. With arguments, it assigns
command to shortform.

assign expression1=expression2

Assigns expression2 to expression1.

attach pid

Attaches to specified process ID (pid).

call function_name [argument, ...]

Executes the specified function with any arguments supplied.

catch [signal_name | all]

With no arguments, lists signals to be trapped. If a signal is
specified, it’s added to the list. If all is specified, it traps all
signals.

clearcalls

Cancels pending function calls.

cont in function_name

Continues execution from the current line to the entry to the
specified function.

cont to line_number

Continues execution from the current line until the specified
line, if there is not an intervening breakpoint to stop execution.

continue [all]

Continues executing a program, or all processes, after a
breakpoint. You can use both c and cont as aliases for
continue.

007–2579–005 313

Developer MagicTM: Debugger User’s Guide

continue [signal]

Sends specified signal and continues executing a program after
a breakpoint.

corefile [filename]

With no arguments, reports whether data referencing
commands reference a core file. If so, displays the current core
file. With filename provided, specifies core file to be debugged.

delete {all | [trap_number [,trap_number, ...]]}

Deletes all traps. The all option deletes all breakpoints.

delete_changes {func_spec | -all | {-file filename}}

(For C and C++ only when compiled with -o32.) Deletes
changes corresponding to the selected functions (for example,
delete_changes getNumbers -file fmain.c). Once IDs
are deleted, you will not be able to use the IDs again because
the IDs associated with the selected functions are released. The
default is -all. See also save_changes.

delete_source {"filename”:line_number[,line_number]}

(For C and C++ only, when compiled with -o32.) Deletes the
given line(s) if line_number or ,line_number (range) is within the
body of a function. An example is:

delete_source "fmain.c":8.6,8.7

This command returns an ID existing or new, depending on
whether the function affected has already been changed or not.
The resulting new definition of the function is executed on its
entry next time.

314 007–2579–005

Debugger Reference [A]

delete trap_number [,trap_number, ...]

Deletes the specified breakpoint numbered trap_number, as
obtained from the list generated when the status command is
issued.

detach

Detaches from the current process.

disable all

Deactivates all traps.

disable_changes {func_spec | -all | {-file filename}}

(For C and C++ only, when compiled with -o32.) Disables
specified changes for selected functions (for example,
disable_changes getNumbers -file fmain.c. Nothing
happens if the selected function is already disabled. The
compiled definition of the function is executed on its next entry.
You can invoke this command when the process is stopped or
on a running process when a function entry breakpoint is set.

disable trap_number [,trap_number, ...]

Deactivates the specified breakpoint numbered trap_number, as
obtained from the list generated when the status command is
issued.

display [expression, ...]

With expression, adds expression to the list of expressions
displayed whenever the process stops. With no arguments, lists
all expressions. See undisplay to delete an expression.

down [number]

Moves down the specified number of frames in the call stack.
down moves away from the direction of the caller.

dump

Prints local variable values.

enable all

Reactivates all inactive traps.

007–2579–005 315

Developer MagicTM: Debugger User’s Guide

enable_changes {func_spec | -all | {-file filename}}

(For C and C++ only when compiled with -o32.) Enables
specified changes for selected functions (for example,
enable_changes getNumbers -file fmain.c. Nothing
happens if the selected function is already enabled. The latest
accepted definition of the function is redefined on its next entry.
You can invoke this command when the process is stopped or
on a running process when a function entry breakpoint is set.

enable trap_number [,trap_number, ...]

Reactivates the specified breakpoint numbered trap_number, as
obtained from the list generated when the status command is
issued.

expression/[count] [format] or expression,[count] /[format]

Prints the contents of the memory address specified by
expression, according to the specified format. count represents
the number of formatted items. The following format options
are available:

d Prints a short word in decimal.

D Prints a long word in decimal.

o Prints a short word in octal.

O Prints a long word in octal.

x Prints a short word in
hexadecimal.

X Prints a long word in
hexadecimal.

b Prints a byte in octal.

c Prints a byte as a character.

s Prints a string of characters that
ends in a null byte.

f Prints a single-precision real
number.

g Prints a double-precision real
number.

316 007–2579–005

Debugger Reference [A]

file [filename]

Displays the name of the current or specified file (filename). If a
file is specified, it becomes the current file.

func [func_name]

Moves to the source code corresponding to the specified frame
in the call stack or to the function in the executable if not on the
stack.

givenfile [filename]

With no arguments, displays name of current object file. With
filename, specifies object file to be debugged.

goto linenumber

Skips over lines going directly to the specified line number in
the current routine. Unlike dbx(1), cvd(1) does not begin
execution at the specified line.

ignore [signal_name | all]

With no arguments, lists those signals not to be trapped. If a
signal is specified, this command removes it from the list of
signals to be trapped. If all is specified, ignores all signals.

kill [pid][all]

Kills the specified process currently controlled by the Debugger
or kills all processes.

list [from-line#[{:line_count} | {,to-line#}]] | [function_name]

Lists source lines beginning at from-line#. If no additional
argument is specified, the default for line_count is 10. If
line_count is specified, a total of line_count lines are listed. If
function_name is specified, the lines from the given function are
listed.

007–2579–005 317

Developer MagicTM: Debugger User’s Guide

list_changes [func_spec | -all | {-file filename}]

Lists one or more lines using the following syntax:

change_id isEnabled filename function_spec

For example:

4 enabled foo.c foo
8 disabled A.c++ A::bingo

The default is list_changes -all.

next [int]

Steps over the specified number of source lines. This command
does not step into procedures. The default is one line.

nexti [int]

Steps over the specified number of machine instructions. This
command does not step into procedures. The default is one
instruction.

print expression[,expression, ...]

Prints the value of the specified expression(s). If the expression
is a character pointer or array, both the string and address
print. You can use p as an alias.

printd expression [,expression, ...]

Prints the value of the specified expression(s) in decimal format.
You can use pd as an alias.

printf string [,expression1 [, expression2, ...]]

Prints the value(s) of the specified expression(s) in the format
specified by the string string. The printf command supports
all formats of the IRIX printf command except %s. For a list
of formats, see the printf(1) man page.

318 007–2579–005

Debugger Reference [A]

printo expression [,expression, ...]

Prints the value of the specified expression(s) in octal format.
You can use po as an alias.

printregs

Prints the contents of the registers.

printx expression[,expression, ...]

Prints the value of the specified expression(s) in hexadecimal
format. You can use px as an alias.

pwd

Displays the current directory.

quit

Exits the debugging session.

redefine func_spec[-edit |{ -read filename[line_number,line_number]}]

(For C and C++ only.) Specifies a new body for a function. The
new definition is checked, and errors (if any) are printed. The
new function body is redefined on the next function entry.
Breakpoints (if set) on the old definition are put on the new
definition based on their relative line number position from the
beginning of the function definition. (Note that some
breakpoints may not make it to the new definition.) You can
invoke this command when the process is stopped or on a
running process when a function entry breakpoint is set. There
are three ways to provide a new definition:

• -edit pops up an editor of your choice containing the
current definition of the function. The specification of the
new definition is complete when you exit the editor. You
may not leave the editor open.

• -read takes the contents of the file specified (within the line
numbers if given) as the new function definition.

007–2579–005 319

Developer MagicTM: Debugger User’s Guide

• No option allows you to type in replacement code from the
next line. A period in the first column on a fresh line
terminates the definition. For example:

redefine getNums

"/usr/fmain.c’’:8.1> {

"/usr/fmain.c’’:8.2> printf(‘‘In getNums.\n’’);

"/usr/fmain.c’’:8.3> }

"/usr/fmain.c’’:8.4> .

replace_source {"filename":line_number[,line_number]}

(For C and C++ only when compiled with -o32.) Prompts you
to type in replacement source if line_number or ,line_number
(range) is within the body of a function. The source lines you
provide replace the specified line(s). An example is:
replace_source "fmain.c":12. This command returns an
existing or new id depending on whether the function affected
has already been changed or not. The resulting new definition
of the function is executed on its entry next time. See also
add_source and delete_source.

rerun

Runs the program again using the same arguments.

return

Continues executing the current procedure and returns to the
next sequential line in the calling function.

run [[all] | [argument_list]]

Runs the program (s). If an argument_list is specified, it is used
as the arguments to be supplied to the program.

runtime_check func_spec [-options key [key,...]]

(For C and C++ only when compiled with -o32.) Enables all
run-time checking options by default. If -options is specified,
then run-time checking is restricted to the keys. The result of the
runtime checks are printed the next time the specified function
(func_spec) is entered. You can invoke this command on a
stopped or a running process.

320 007–2579–005

Debugger Reference [A]

save_changes {func_spec| {-file filename}} [-[w|a]] filename_to_save

(For C and C++ only when compiled with -o32.) Saves
(enabled or disabled) function redefinitions or an entire file to
another file (filename_to_save). The following example shows
how to save a function definition:

save_changes getNumbers getNumbersFunc

If you specify the -file option, then before saving to
filename_to_save, all function changes are applied to the compiled
source of the file (with the condition that the file has had only
its functions redefined, and has not been edited since the last
build). An example of saving an entire file is the following:

save_changes -file fmain.c fmain.c

The -w option replaces the filename_to_save. The -a option
appends to the filename_to_save. An example of adding a
function to a file is the following:

save_changes -file fmain.c -a fmain.c

See also delete_changes.

setbuildenv ["filename"] compiler-flag-list

(For C and C++ only, when compiled with -o32.) Overrides
default build environment flags (compiler options). Without
filename, the flags are passed along with -c -g flags to the
compiler for any function in any file except those set separately
with setbuildenv. An example is the following:

setbuildenv -DnameA -Idir

If filename is given, this command sets separate flags specifically
for that file. For example, consider the following:

setbuildenv "fermat.c" -DnameB -Ianotherdir

See also unsetbuildenv.

sh [shell_command]

Calls a shell if no arguments; otherwise, executes the specified
shell command.

007–2579–005 321

Developer MagicTM: Debugger User’s Guide

showbuildenv ["filename"]

(For C and C++ only, when compiled with -o32.) Lists all the
build environment flags set. showbuildenv with a filename
lists any build environment specifications that have been set
separately with setbuildenv "filename".

show_changes [func_spec | -all | {-file filename}]

(For C and C++ only, when compiled with -o32.) Prints the
code of all enabled redefinitions of the specified function(s).
The default is show_changes -all. See also
enable_changes and disable_changes.

show_diff {func_spec | {-file filename}}

(For C and C++ only, when compiled with -o32.) Launches a
xdiff comparing the compiled source and its latest redefinition
for the specified function. If -file filename is specified, xdiff
shows the difference between the compiled file and the file with
all redefinitions applied to the compiled source of the file (with
the condition that the file has had only its functions redefined,
and has not been edited since the last build).

showthread [full] [thread] {number | all}

Shows brief status information about threads. If full is
specified, prints full status information. You can request status
information for a specific thread by number or you can request
information for all threads. The thread qualifier does not
affect command output.

source filename

Executes commands in the specified file.

status

Displays a list of currently set breakpoints and traces.

322 007–2579–005

Debugger Reference [A]

step [int]

Steps the specified number of source lines. This command steps
into procedures. The default is one line.

stepi [int]

Steps the specified number of machine instructions. This
command steps into procedures. The default is one instruction.

stop {all | pgrp} in [filename]

If set to all, stops all members of the specified process group
whenever the trap is encountered. If set to pgrp, all members
of the process group will apply the trap.

stop at ["filename":] line_number [if expression]

Traps at the specified line in the specified file. If the if option
is used, the trap fires only if expression is true. If specified, the
file name must be enclosed in double-quotation marks. As an
example, to specify a stop at line 5 in myfile.c, the syntax is:

stop at "myfile.c":5

stop exception {all | item}

Stops on all C++ exceptions or exceptions that throw the base
type item. Do not include complex expressions using operators
such as * and & in your type specification for an exception
breakpoint.

stop exception {all | [item [, item]}

Stops on all C++ exceptions or exceptions that either have no
handler or are caught by an unexpected handler. If you specify
item, stops on exceptions that throw the base type item. Do
not include complex expressions using operators such as * and
& in your type specification for an exception breakpoint.

stop in [filename:] function_name [if expression]

Traps at the entry to the specified function. If the if option is
used, then the trap fires only if expression is true. If the filename
is given, the function is assumed to be in that file’s scope. If
specified, the filename must be enclosed in double-quotation

007–2579–005 323

Developer MagicTM: Debugger User’s Guide

marks. As an example, to specify a stop in function func1 in
myfile.f only if n is 20, the syntax is:

stop in "myfile.f":func1 if n .eq. 20

syscall {catch | ignore} {call | return} {sys_call_name | all}

The catch option adds a system call to the list of system calls
to be trapped. The ignore option removes a system call from
the system call trap list. The call option specifies the entry to
the system call and return signifies the return from the call.

trace [variable] at [["filename [line_number “:] | function_name] \ [if
expression]]

Traces the specified variable. You can specify a file and/or test
condition. You can also specify a line number or a function
where the trace is to take place.

unalias aliasname

Cancels the alias specified as aliasname.

undisplay [displaynumber, ...]

Stops display of expression with specified displaynumber when
the process stops. Removes the expression from the display list.

unsetbuildenv ["filename"]

(For C and C++ only, when compiled with -o32.) Disregards
the default build environment flags if specified earlier. For all
functions in files that don’t have an overriding build
environment, unsetbuildenv passes only the -c and -g flags.

If filename is given, this command disregards the build
environment flags specified for the file earlier. Further
redefinition of the functions in the file use the default build
environment flags, if set. See also setbuildenv.

324 007–2579–005

Debugger Reference [A]

up [number]

Moves up the specified number of frames in the call stack. up
moves in the direction of the caller.

use [path]

Uses the specified path to search for source files.

watch identifier [write | read]

Causes program to stop when the identifier is written or read,
depending on whether write or read is specified. If neither is
specified, the default is write.

whatis identifier

Displays all the qualifications of the specified variable.

when at "filename":] line_number {command[; command ...]}

When your program reaches the specified line_number, the
commands specified are executed before the program resumes
execution.

when in ["filename":] function_name {command [; command ...]}

When your program enters the specified function, the
commands specified are executed before the program resumes
execution.

which [identifier]

Displays the qualification of the specified variable.

where [thread | thread-id]

Performs a stack trace showing the activation levels of a
program or, optionally, of the specified thread. You can obtain
thread-ids from the first column of output of the showthread
command.

007–2579–005 325

Developer MagicTM: Debugger User’s Guide

A.10 Blocking Kernel System Calls

The following are the kernel system calls (syscalls) that actually block continued
pthreads. There are numerous library routines, such as printf, that can use
one of these blocking system calls.

It would be impractical here to list all library routines which utilize a blocking
syscall. Nevertheless, as a user you should know, for example, that if you call
the printf library routine it eventually calls writev(), a blocking system call,
and thus may block continued pthreads.

accept accept a connection on a socket

close close a file descriptor

creat create a new file or rewrite an existing one

dmi SGI specific. Used to implement the interface
defined in X/Open document Systems
Management: Data Storage Managment (XDSM) API

fcntl file and descriptor control. Provides for control
over open descriptors.

fsync synchronize a file’s in-memory state with that on
the physical medium

getmsg / getpmsg get next message off a stream

ioctl control device. Performs a variety of control
functions on devices and streams.

lockf record locking on files. Allow sections of a file to
be locked.

mq_open open/create a message queue

msgsnd / msgrcv message send and message receive

msync synchronize memory with physical storage

nanosleep high resolution sleep

open open for reading and writing

pause suspend process until signal is received

poll input/output multiplexing

putmsg / putpmsg send a message on a stream

read / readv / pread read from a file

326 007–2579–005

Debugger Reference [A]

recv / recvfrom /
recvmsg

receive a message from a socket

select synchronous I/O multiplexing

semget / semctl /
semop

semaphore handling

send / sendto /
sendmsg

send a message from a socket

sginap times sleep and processor yield function

write / writev /
pwrite

write on a file

007–2579–005 327

Using the Build Manager [B]

WorkShop lets you compile software without leaving the WorkShop
environment. Thus, you can look for problems using the WorkShop analysis
tools (Static Analyzer, Debugger, and Performance Analyzer), make changes to
the source, suspend your testing, and run a compile. WorkShop provides two
tools to help you compile:

• Build View—for compiling, viewing compile error lists, and accessing the
code containing the errors in Source View (the WorkShop editor) or an
editor of your choice. Build View helps you find files containing compile
errors so that you can quickly fix them, recompile, and resume testing.

• Build Analyzer—for viewing build dependencies and recompilation
requirements and accessing source files.

Build View uses the UNIX make(1) facility as its default build software.
Although cvmake can be set up to run any program instead of make (for
example, gnumake), cvbuild will only parse and display standard makefiles
(in particular, it does not understand gnu make constructs).

B.1 Build View Window

You can access the Build View window from the WorkShop analysis tools,
from the command line (by typing cvmake), or from the Build Analyzer
(see next section).

To access Build View from WorkShop, select Recompile from the Source
menu in the Main View window in the Debugger or from the File menu in
Source View (for more information on the Main View and Source View
windows, refer to Chapter 1, page 1). Selecting Recompile detaches the
current executable from the WorkShop analysis tools and displays Build
View. You can edit the Directory and Target(s): fields as needed and
click Build to compile. If the source compiles successfully, the new executable
is reattached when you reenter the WorkShop analysis tools.

The Build View window has three major areas:

• Build Process Control Area, Section B.2, page 330

• Transcript Area, Section B.3, page 331

• Error List Area, Section B.4, page 332

007–2579–005 329

Developer MagicTM: Debugger User’s Guide

B.2 Build Process Control Area

The build process control area lets you run or stop the build and view the
status. See Figure 124.

Build command
directory

Target directory

Build process
control buttons

Status field

Figure 124. Build Process Control Area in Build View Window

The directory in which the build will run displays in the Directory: field at
the top of the area. The current directory displays by default. You can specify
the build using make, smake, pmake, clearmake, or any other builder and
any flags or options that the builder understands (see Section B.5.1, page 332,
and Section B.5.2, page 333). The target to be built is specified in the
Target(s): field.

The build process control buttons let you control the build process. The
following buttons are available:

Build Runs (or reruns) a build. If you have modified
any files you will be prompted to save the new
versions prior to the compile.

Interrupt Stops a build.

Suspend Stops a build temporarily.

Resume Restarts a suspended build.

The status field is to the right of the build process control buttons. It indicates
the progress of the build.

330 007–2579–005

Using the Build Manager [B]

B.3 Transcript Area

The transcript area displays the verbatim output from the build. The vertical
scroll bar lets you go through the list; the horizontal scroll bar lets you see long
messages obscured from view. A sash between the compile transcript area and
the error list area lets you adjust the lengths of the lists displayed. See Figure
125.

Transcript area

Error list area

Figure 125. Build View Window with Typical Data

007–2579–005 331

Developer MagicTM: Debugger User’s Guide

B.4 Error List Area

The error list area consists of the error list display and three control buttons.
The following buttons are available:

Next Error Brings up the default editor scrolled to the next
error location. This button is below the error list
display.

Rescan Refreshes the error list display.

Clear Clears the error list display area.

The error list area displays compile errors (see Figure 125, page 331). The errors
are annotated according to their severity level (fatal has a solid icon and the
warning icon is hollow). Double-clicking the text portion of an error brings up
the default editor scrolled to the error location and displays a check mark to
help you keep track of where you are in the error list. Check marks also display
when you click the Next Error button.

B.5 Build View Admin Menu

The Admin menu in Build View has two selections in addition to the
standard WorkShop entries:

• Build View Preferences..., Section B.5.1, page 332

• Build Options..., Section B.5.2, page 333

For information on Launch Tool, Project, and Exit menu selections, refer
to Section A.1.1, page 190.

B.5.1 Build View Preferences

The Preferences... selection brings up the dialog box shown in Figure 126,
page 333. The options are:

Maker Program field Lets you enter the program you use to build your
executable.

Macro Settings field Lets you enter build macros, such as

CFLAGS=-g.

Makefile field Lets you enter the name of a makefile if you do
not wish to use the default.

332 007–2579–005

Using the Build Manager [B]

Discard Duplicate
Errors button

Eliminates subsequent duplicates of errors in the
error list area.

Show Warnings
button

Toggles the option to display warnings in the list.

Figure 126. Build View Preferences Dialog

B.5.2 Build Options

The Build Options Dialog lets you add the options shown in Figure 127,
page 334, to your make command.

007–2579–005 333

Developer MagicTM: Debugger User’s Guide

Figure 127. Build Options Dialog

B.5.3 Using Build View

The steps in running a compile using Build View are as follows:

1. Bring up the Build View window.

2. Edit the Target(s): and Directory: fields as required.

3. Specify your preference regarding duplicate errors and warnings using the
Admin menu (optional).

4. Click Build to start the build. All compile information displays in the
transcript area. Errors are grouped in a list below.

5. Click Interrupt to terminate or Suspend for a temporary stop, if you
want to stop the build. The Resume button restarts a suspended build.

6. Double-click an error to bring up your preferred editor with the appropriate
source code. A check mark indicates that an error has been accessed.

334 007–2579–005

Using the Build Manager [B]

Note: The default editor is determined by the editorCommand resource
in the app-defaults file. The value of this resource defaults to wsh -c
vi +%d, which means run vi in a wsh window and scroll to the current
line. If the editor lets you specify a starting line, enter %d in the resource
to indicate the new line number.

7. Click Build to restart the build.

B.6 Build Analyzer Window

The Build Analyzer window displays a graph indicating the source files and
derived files in the build, and their dependency relationships and current
status. Source files refers to input files, such as code modules, documentation,
data files, and resources. Derived files refers to output files, such as compiled
code. You request builds in Build Analyzer by either:

• Double-clicking a derived module

• Making a selection from the Build menu

You access Build Analyzer from WorkShop by selecting Launch Tool from
the Admin menu in Main View. Outside of WorkShop, you can access Build
Analyzer by typing cvbuild at the command line. A typical Build
Analyzer window appears in Figure 128, page 336, with the menus displayed.

007–2579–005 335

Developer MagicTM: Debugger User’s Guide

Build specification area

Build graph area

Build graph control area

Figure 128. Build Analyzer Window

B.7 Build Specification Area

The three fields in the build specification area identify the working directory,
makefile script, and target file(s) for compilation. You can edit the
Directory:, Makefile:, and Target(s): fields directly. The Target(s):
field also lets you specify a search string for locating a file in the build graph.

B.8 Build Graph Area

The build graph area displays the specified source and derived files and their
dependency relationships. Files are depicted as rectangles; dependency
relationships are shown as arrows, with the supplying file at the base of the
arrow and the dependent file at the head. The colors used to depict the files

336 007–2579–005

Using the Build Manager [B]

depends on your color scheme. Build Analyzer differentiates the two types
of files by depicting one with light characters on a dark background and the
other with dark text on a light background. If you double-click a source file
icon, an editor is brought up for that file. Double-clicking a derived file starts a
build and displays Build View.

In addition to dependency relationships, Build Analyzer indicates the status of
the files and relationships as follows:

• Source file availability status: normal or checked out

– Normal means that the source file is read-only and needs to be made
writable to be edited. Normal files appear as light rectangles with black
text.

– Checked out means that you have a writable version of this file
available and can thus edit it. A checked out file appears in a different
color (from normal files) with a shadow.

• Derived file compile status: current or obsolete

– When applied to a derived file, the term current means that none of the
files on which the derived file depends have been edited since the
derived file was created. Current derived files appear as dark rectangles
with white text.

– Obsolete means that one or more of the source files have been
modified since the derived file was created. Obsolete files appear in the
same color as current derived files but with a colored outline.

• Dependency relationship: current or obsolete

– Current means that the derived file is up to date with the source files.
Note that a relationship can be current even if both files are obsolete.
This happens when a file on which both files are dependent has been
modified. Current arcs are black.

– Obsolete means that the source file has changed and the derived file has
not been updated accordingly. Obsolete arcs appear as colored arrows.

Some typical build graph icons are shown in Figure 129, page 338.

007–2579–005 337

Developer MagicTM: Debugger User’s Guide

Derived file-normal state

Source file-normal state

Dependency arc-obsolete state
Source file-checked out state

Dependency arc-current state

Derived files-obsolete state

Figure 129. Build Graph Icons

The main.c and hello.h source files are in their normal state. The source files
warn.c++ and foo.h are checked out and thus appear highlighted and with
dropped shadows. The derived file main.o is current, since it has not changed
since the last compile. The black dependency arcs indicate that the source and
derived files at either end are current with each other. When an arc is
highlighted, it indicates that the source has changed since the last compile. The
derived files warn.o and a.out are obsolete because warn.c++ has changed.

B.9 Build Graph Control Area

The build graph control area contains a row of graph control buttons similar to
the ones in the WorkShop Static Analyzer and the Call Graph View in the
Performance Analyzer. The Overview button is particularly useful in the
Build Analyzer because it helps you quickly find obsolete files where a lot
of dependencies are involved.

The build graph control area is shown in Figure 130, page 338.

Zoom menu

Zoom Out button

Zoom In button

Overview button

Multiple Arcs button (disabled)

Realign button

Rotate button

Figure 130. Build Graph Control Area

338 007–2579–005

Using the Build Manager [B]

B.9.1 Build Analyzer Overview Window

Since build graphs can get quite complicated, an overview mode (similar to
those in Static Analyzer and Profiling View) is supplied that lets you view the
entire graph at a reduced scale. To display the overview window, you click the
overview icon (see Figure 130, page 338).

Figure 131, page 339, shows a typical Build Analyzer Overview window
with the resulting graph. The window has a movable viewport that lets you
select the portion of the build graph displayed in Build Analyzer. Source
files that have changed and derived files needing recompilation are highlighted
for easy detection. In this particular color scheme, the Build Analyzer
Overview window displays normal source files in turquoise, checked out
source files in pink, current derived files in dark blue, and obsolete derived files
in yellow. Arcs appear only in black in this window.

Viewport

Figure 131. Build Analyzer Overview Window with Build Analyzer Graph

007–2579–005 339

Developer MagicTM: Debugger User’s Guide

B.9.2 Build Analyzer Menus

The Build Analyzer window contains the following menus:

• Admin

• Build

• Filter

• Query

B.9.2.1 Admin Menu

The Admin menu provides one selection Refresh Graph Display in
addition to the standard WorkShop selections.

Refresh Graph
Display

Refreshes the window.

Launch Tool Lets you execute the WorkShop tools. For more
information, see the Section A.1.1, page 190.

Project Lets you control the WorkShop tools operating on
the same executable as a group. For more
information, see Section A.1.1, page 190.

B.9.2.2 Build Menu

The selections in the Build menu let you perform builds as follows:

Build Default
Target

Performs a make with no arguments.

Build Selected
Target(s)

Performs the build(s) as entered in the
Target(s): field.

Show Build Rule Displays a dialog box showing the makefile line
for the selected node.

B.9.2.3 Filter Menu

The Filter menu has only one selection:

Select files to
show in graph

Opens the File Filter dialog box that lets you
enter a regular expression to filter files displayed
in the build graph.

340 007–2579–005

Using the Build Manager [B]

The upper list area lets you specify files to be
excluded from the build graph. The lower list is
for specifying files to appear in the graph.

B.9.2.4 Query Menu

The Query menu lets you request information about the build graph. The
following selections are available:

Why Is This File
Out Of Date?

Identifies the source files requiring this file to be
recompiled. This query only applies to derived
files.

What Will Changing
This File Affect?

Shows all derived files dependent on this source
file.

007–2579–005 341

Index

A

accept syscall that blocks continued pthreads, 326
access to freed memory, 125
access to uninitialized memory, 125
action

traps term, 70
Active selection in Admin menu

described in jello tutorial, 59
active toggle, 217, 224
Ada windows description

Task View, 216
Ada-specific windows description, 216
add_source filename, dbx-style command, 312
adding a breakpoint

in X/Motif analyzer tutorial, 167
Address..., selection in disassemble menu, 292
Admin menu, 304

general description, 190
Library search path..., 190

admin menu
active toggle, 224
clone, 224

alias, dbx-style command, 313
all trap debugger command option, 77
AllowPendingTraps

.Xdefaults variable, 71
arguments, command line, 87
Arrange, selection in structure browser display

menu, 280
Array Browser

subscript controls, 66
viewing variables with, 25, 97
Views menu option, 4

Array browser
general description, 258

Array Browser selection in Views menu
in jello tutorial, 64

Array Browser, selection in views menu, 192

Array field in array browser, 258
array subscripts, 259
array variables, 4, 258
assign, dbx-style command, 313
assigning values to variables, 102
At Source Line, Traps menu option, 254
Attach to forked processes, Multiprocess View

preferences option, 209
attach, dbx-style command, 313
auto-fork application, 135
Automatic dereference limit, field in structure

browser preferences box, 285

B

basic debugger usage, 11
blocking anomalies

and pthreads, 155
boundary overrun, 125
boundary underrun, 125
breakpoint, 3
breakpoint results, viewing, 174
breakpoint, adding for a widget, 167
breakpoints tab, 172
breakpoints, setting (Fix+Continue tutorial), 118
breakpoints, setting for a class, 169
Build Analyzer

to examine build dependencies, 7
Build analyzer, 335
build dependencies

examine with Build Analyzer, 7
Build environment window, 308
Build manager, 329
build path, 109
Build view, 329

007–2579–005 343

Developer MagicTM: Debugger User’s Guide

C

C expressions, 103
C function calls, 104
C tutorial code example, 15
C++ exception trap, 72
C++ expressions, 104
Call stack

Views menu option, 4
Call Stack selection in Views menu, 58
Call Stack View, 93
Call stack view, 271
Call Stack View Window

introduction to, 28
Call Stack View with Fix+Continue, 311
Call Stack, selection in views menu, 192
call, dbx-style command, 313
callback breakpoints examiner, 230
callback context, viewing, 170
callback examiner, 170, 246
callstack view

in X/Motif analyzer tutorial, 174
catch, dbx-style command, 313
change id, 109
change values

in Array Browser, 26
changing code from the command line, 116
checking for out-of-bounds array accesses, 32
checking for uninitialized variabled used in

calculations, 34
classes, examining widget, 168
Clear all, selection in structure browser display

menu, 282
Clear button in Trap Manager

in jello tutorial, 57
Clear trap selection in Traps menu, 75
clearcalls, dbx-style command, 313
ClearCase, 7
Click for help, selection in help menu, 205
Click To Evaluate

viewing variables with, 22
Click to Evaluate

viewing variables with, 97

clone current window, 217, 224
close current window, 218, 224
close syscall that blocks continued pthreads, 326
Close, selection in admin menu, 192
code

redefined vs. compiled, 108
code, changing (tutorial), 115
code, changing from command line, 116
code, comparing original to redefined, 121
code, deleting changed, 116
code, switching between compiled and

redefined
in Fix+Continue, 121

Col button in Array Browser
in jello tutorial, 65

Column width..., selection in array browser
display menu, 261

Combine threads at same location,
Multiprocess View preferences option, 210

Command field in the Main View window, 87
command line interface with Fix+Continue, 310
command syntaxes for traps, 78
comparing code, original vs. redefined, 121
comparing function definitions

(in Fix+Continue tutorial), 122
compiled code

distinguished from refined code, 108
compiling

introductory tips, 12
with the malloc library (heap corruption), 126

compiling with the malloc library, 126
Condition field in trap manager, 82
Config menu in structure browser, 278
Config menu in trap manager, 76
cont in, dbx-style command, 313
cont to, dbx-style command, 313
continue

of single 6.5 POSIX pthread, 153
continue signal, dbx-style command, 314
Continue button description, 19
Continue button in the Main View

window, 56, 88

344 007–2579–005

Index

Continue Even If Line Has Changed, toggle in
Fix+Continue Preferences dialog, 204

Continue To selection in PC menu, 91
Continue to, selection in disassembly view pc

menu, 292
Continue to, selection in pc menu, 201
continue, dbx-style command, 313
control flow constructs, 160
controlling program execution options, 19
Copy Traps Even on Changed Lines, toggle in

Fix+Continue Preferences dialog, 204
Copy Traps On Previous Definition, toggle in

Fix+Continue Preferences dialog, 203
Copy traps to forked processes, Multiprocess

View preferences option, 209
Copy traps to sproc’d processes

in multiprocess tutorial, 142
Copy traps to sproc’d processes, Multiprocess

View preferences option, 209
core file analysis

for scientific programs, 36
corefile, dbx-style command, 314
corrupt program

heap corruption tutorial program, 129
creat syscall that blocks continued pthreads, 326
customizing the debugger, 177

changing X window system resources, 180
startup file for, 177
user-defined buttons, 178
with scripts, 177

cvd
Main View window (X/Motif analyzer

tutorial), 162
cvd> command line

viewing variables with, 21
cvdrc file

for customizing the debugger, 177
Cycle Count field in Trap Manager

in jello tutorial, 58
Cycle count field in trap manager, 83

D

data structures, 4
dbx commands, 312
Debugger

Call Stack View with Fix+Continue, 311
changes to views with Fix+Continue, 309
command line interface with

Fix+Continue, 310
exiting, 67
how to start, 47
Main View window with Fix+Continue, 309
program execution control, 87
Trap Manager with Fix+Continue, 311

debugger
how to customize, 177
Main View window (X/Motif analyzer

tutorial), 162
Debugger Command Line, , 312
Debugger command line, 2
Debugger main features, 1
Debugger views, 93, 271
Debugger with Fix+Continue support

Fix+continue
debugger support with, 109

debugging
debugging a multiprocess C program, 139
debugging a multiprocess fortran program, 146
fortran multiprocess debugging session, 146
general fortran debugging hints, 146
tips and features, 11

debugging with the X/Motif analyzer, 8
Default field count, field in structure browser

type formatting, 286
Default iconic width, field in structure browser

preferences box, 285
Default iconic width, field in structure browser

type formatting box, 286
Default state, field in structure browser type

formatting box, 286
Default structure field count, field in structure

browser preferences box, 285

007–2579–005 345

Developer MagicTM: Debugger User’s Guide

Default structure width, field in structure
browser preferences box, 285

Default structure width, field in structure
browser type formatting box, 286

delete all, dbx-style command, 314
delete trap, dbx-style command, 315
delete_changes, dbx-style command, 314
delete_source, dbx-style command, 314
deleting changed code (tutorial), 116
Dereference ptrs by default, field in structure

browser preferences box, 285
Dereference ptrs, selection in structure browser

node menu, 284
detach, dbx-style command, 315
Detach, selection in admin menu, 191
Detail, selection in structure browser

submenu, 282
difference tools

in Fix+Continue, 124
disable all, dbx-style command, 315
disable, dbx-style command, 315
disable_changes, dbx–style command, 315
disabling traps

in jello tutorial, 57
Disassemble File Dialog, 294
Disassemble Function Dialog, 293
Disassemble menu in disassembly view, 292
disassembled code, 5
Disassembly View

Preferences, , 294
Views menu option, 5

Disassembly View, selection in views menu, 192
display area in structure browser, 280
DISPLAY environment variable for debugging, 11
Display menu

in Main View window, 197
Main View window, 340

Display menu in structure browser, 279
Display menu in traps manager, 76
display, dbx-style command, 315
Display, selection in structure browser display

menu, 280
divisions by zero

how to find in scientific programs, 35
dmi syscall that blocks continued pthreads, 326
double frees, 125
down, dbx-style command, 315
dump, dbx-style command, 315
DUMPCORE environment variable, 182

E

edit source code
as shown in jello tutorial, 53

editors
fork editor, 6
how to access from the Main View window, 6

editres requests
and X/Motif analyzer, 161

enable all, dbx-style command, 315
enable trap, dbx-style command, 316
enable_changes, dbx-style command, 316
Entry Function, Traps menu option, 254
environment variables

CVDINIT, 177
DUMPCORE, 182
MALLOC_CLEAR_FREE, 127
MALLOC_CLEAR_FREE_PATTERN, 127
MALLOC_CLEAR_MALLOC, 127
MALLOC_CLEAR_MALLOC_PATTERN, 127
MALLOC_FASTCHK, 127
MALLOC_MAXMALLOC, 128
MALLOC_NO_REUSE, 128
MALLOC_TRACING, 128
MALLOC_VERBOSE, 128
_RLD_LIST, 126
setting in Execution View, 92
setting to detect heap corruption, 127

environment variables for debugging, 11
erroneous frees, 125
Error messages window, 307
evaluating expressions, 99
evaluating expressions in C++, 104
evaluating expressions in Fortran, 105

346 007–2579–005

Index

event examiner, 248
event-handler breakpoints examiner, 231
examine menu, 224
examiner

breakpoint, 167
breakpoints, 226
callback, 170, 246
callback breakpoints, 229
event, 248
event-handler breakpoints, 231
graphics context (GC), 248
input-handler breakpoints, 235
pixmap, 249
resource-change breakpoints, 233
state-change breakpoints, 236
timeout-procedure breakpoints, 234
trace, 240
tree, 243
tree examiner, 166
widget, 242
widget class, 250
widget examiner, 165
window, 171, 247
X-event breakpoints, 237

examiners
overview, in X/Motif analyzer, 159
selections, in X/Motif analyzer, 160

examining data, 4
in jello tutorial, 58

examining program data, 93
examining widget classes, 168
examining widgets

in X/Motif analyzer tutorial, 166
exception trap, 72
Exception View description, 219
Exception View, selection in views menu, 192
executable

run directly from the Main View window, 39
execution control buttons, 88

in Main View window, 88
Execution View, 92
Execution View description, 12, 206
Execution View, selection in views menu, 192

Exit Function, Traps menu option, 254
Exit, selection in admin menu, 192
exiting the debugger, 67
Expression column in Expression View, 99
Expression column in expression view, 275
expression count, dbx-style command, 316
Expression field in Structure Browser

in jello tutorial , 63
Expression field in structure browser, 279
Expression View

viewing variables with, 23
Expression view, 273

Views menu option, 4
Expression View selection in Views menu

in jello tutorial, 61
Expression View Window

for evaluating expressions, 99
Expression View window

viewing variables with, 98
Expression View, selection in views menu, 192
Expression, selection in structure browser

display submenu, 280
expressions

C++, 104
for C operations, 103
Fortran, 105

External Editor Command, text field in
Fix+Continue Preferences dialog, 203

F

fcntl syscall that blocks continued pthreads, 326
fibo program

Fibonacci program used in multiprocess
tutorial, 140

File Browser for locating and loading files, 40
File Browser, selection in views menu, 193
file dbx-style command, 317
File Difference Tool, text field in Fix+Continue

Preferences dialog, 203
File menu, source view, 211

007–2579–005 347

Developer MagicTM: Debugger User’s Guide

“File...”, selection in disassemble menu, 293
files (source)

loading, 39
managing, 39

files, comparing source code with xdiff, 124
files, finding for Fix+Continue, 110
finding files for Fix+Continue, 110
Fix+ continue

change id, 109
Fix+Continue

Build environment window, 308
comparing original to redefined code, 121
Error message window, 307
GUI, 301
keyboard accelerators, 205
menu selections and operations, 201
Session, 305
Show Difference submenu, 202
Status window, 302
switching between compiled and redefined

code, 121
tutorial, 111
View submenu, 203

Fix+continue
basic cycle description, 107
breakpoints, 118
build path, 109
changing code (tutorial), 115
changing code from the command line, 116
deleting changed code (tutorial), 116
editing a function (tutorial), 113
functionality and features, 107
interface description, 109
introduction and tutorial, 107
overview, 8
redefining function, 112
redefining functions with, 107
restrictions, 110
sample session (tutorial), 111
setting traps for, 118
Status window, 121
WorkShop integration, 108

Fix+Continue menu, 305

Fix+Continue Preferences submenu, 203
fork application, 135
fork editor, 6
Fork Editor, selection in Source menu, 195
fork processes, 136
Format menu in Expression View, 99

in jello tutorial, 61
Format menu in expression view, 274, 275
Format menu in structure browser, 279
Format menu in variable browser, 288
Formatting Fields in Structure Browser, , 284
fortran

debugging a multiprocess fortran program, 146
fortran multiprocess debugging session, 146
general fortran debugging hints, 146

Fortran 90 tutorial code example, 13
Fortran expressions, 105
Fortran function calls, 107
Fortran variables supported in expressions, 106
frames, 93, 271
free call errors

heap corruption errors, 126
free run

of single 6.5 POSIX pthread, 153
fsync syscall that blocks continued pthreads, 326
func dbx-style command, 317
function definitions, comparing

(in Fix+Continue tutorial), 122
function, editing, 113
function, redefining

Fix+continue, 112
Function..., selection in disassemble menu, 292
functions, identifying, 109

G

-g option for compiling, 12
Geometry, selection in structure browser node

menu, 283
getmsg syscall that blocks continued

pthreads, 326

348 007–2579–005

Index

getpmsg syscall that blocks continued
pthreads, 326

getstarted tutorial directory, 13
getting started with debugger: tutorial, 11
givenfile dbx-style command, 317
GLdebug, 191
GLdebug, selection in admin menu, 191
Go to line..., selection in Source menu, 195
goto dbx-style command, 317
Goto dialog box, 195
graphics context (GC) examiner, 248
grelnotes release notes , 9
Group Trap Default toggle, 75
Group Trap Default, Traps menu option, 254

H

heap corruption
access to freed memory, 125
access to uninitialized memory, 125
boundary overrun definition, 125
boundary underrun definition, 125
compiling with malloc library, 126
detection, 125
double frees, 125
erroneous frees, 125
how to find heap corruption errors, 126
trapping errors using the malloc library, 128
typical problems, 125

Help menu, 205
Hide Icons, selection in Display menu, 197
Hide Line Numbers, selection in display

menu, 197

I

Iconic, selection in structure browser
submenu, 282

Iconify, selection in admin menu, 191
identifying functions, 109
ignore dbx-style command, 317

include files
and Fix+Continue, 110

index identifiers in array browser, 260
index maximum specification in array

browser, 260
index minimum specification in array

browser, 260
index sliders in array browser, 260
index values in array browser, 260
Index..., selection in help menu, 205
Indexing expression field in array browser, 259
input-handler breakpoints examiner, 235
Insert source..., selection in Source menu, 195
integration of MIPSpro WorkShop tools, 5
interface, command line, 310
introductory tips and features for debugging, 11
ioctl syscall that blocks continued pthreads, 326

J

jello program, 48
Jump To selection in PC menu, 91
Jump to, selection in disassembly view pc

menu, 292
Jump to, selection in pc menu, 201

K

keyboard accelerators in Fix+Continue, 205
Keys & shortcuts, selection in help menu, 205
Kill button description, 19
Kill button in the Main View window, 88
kill dbx-style command, 317

L

Language menu in Expression View, 99
in jello tutorial, 61

Language menu in expression view, 274, 275

007–2579–005 349

Developer MagicTM: Debugger User’s Guide

Language menu in variable browser, 288
Launch, selection in admin menu, 192
launching debugger in Multiprocess View, 141
launching the X/Motif analyzer, 8
launching X/Motif analyzer, 163
Levels to open, Multiprocess View preferences

option, 209
Library search path dialog box, 190
Linked list, selection in structure browser

display menu, 281
lint

option for debugging scientific programs, 32
list dbx-style command, 317
list_changes, dbx-style command, 318
-lmalloc_ss library

for finding heap corruption problems, 126
Load expressions... selection in Expression

View—> Config menu, 102
load files

directly into the Main View window, 39
through the File Browser Window, 40
through the Open dialog box, 41
with File Browser, 41

Load settings..., selection in admin menu, 191
Load traps... selection in config menu in trap

manager, 84
loading source files, 39
locally distributed application, 135
locate files

with File Browser, 41
lockf syscall that blocks continued pthreads, 326

M

Main View window, 309
Command field, 87
Continue button, 88
control panel, 87
Display menu, 197, 340
execution control buttons, 88
general description, 2
Kill button, 88

PC menu, 91
Run button, 88
Sample button, 91
Status field, 88
Step Into button, 88
Step Over button, 90
Stop button, 88

Main View window (X/Motif analyzer
tutorial), 162

Make Editable, selection in Source menu, 195
Make Read Only, selection in Source menu, 195
malloc call failing

heap corruption error, 126
malloc library

compiling with, 126
MALLOC_CLEAR_FREE_PATTERN, 127
MALLOC_CLEAR_MALLOC, 127
MALLOC_CLEAR_MALLOC_PATTERN, 127
MALLOC_FASTCHK, 127
MALLOC_FASTCHK environment variable

and heap corruption errors, 126
MALLOC_MAXMALLOC, 128
MALLOC_NO_REUSE, 128
MALLOC_TRACING, 128
MALLOC_VERBOSE, 128
managing source files, 39
Maximize, selection in structure browser node

submenu, 283
memalign call with improper alignment

heap corruption error, 126
memory locations, 5
Memory View

Views menu option, 5
Memory view, 299
Memory view mode menu, 301
Memory View, selection in views menu, 193
menu selections and operations

Fix+Continue, 201
Message window

Admin menu, 307
buttons, 307
View menu, 307

350 007–2579–005

Index

Messages window, 307
Minimize, selection in structure browser node

submenu, 283
Minimum lines around current instruction field

in disassembly view preferences box, 295
mq_open syscall that blocks continued

pthreads, 326
msgrcv syscall that blocks continued

pthreads, 326
msgsnd syscall that blocks continued

pthreads, 326
msync syscall that blocks continued pthreads, 326
multiple process debugging

description and introduction, 135
multiprocess

add and remove processes, 139
additional main view windows for, 139
debugging a multiprocess fortran program, 146
fortran multiprocess debugging session, 146
multiprocess traps, 138
preferences, 139
using trap manager to control trap

inheritance (tutorial), 144
view control buttons, 138
viewing process status, 137

multiprocess traps, 77
Multiprocess View

launching debugger in, 141
to control execution, 142
Views menu option, 4

Multiprocess View description, 206
administrative functions, 208
control buttons, 208
preferences, 209

Multiprocess View preferences options
Attach to forked processes, 209
Combine threads at same location, 210
Copy traps to forked processes, 209
Copy traps to sproc’d processes, 209
Levels to open, 209
Resume child after attach on fork, 210
Resume child after attach on sproc, 210
Resume parent after fork, 210

Resume parent after sproc, 210
Show Thread Status vs Thread State, 210
Show/Hide buttons, 210
Show/Hide Header Information, 210
Stack Depth, 209

Multiprocess View window, 136
Multiprocess View, selection in admin menu, 190
multiprocessing

debugging, 135

N

N... selection in step into menu, 89
N... selection in Step Over menu, 89
nanosleep syscall that blocks continued

pthreads, 326
next dbx-style command, 318
nexti dbx-style command, 318
Node menu in structure browser, 279
Node pop-up menu in structure browser, 280
Normal, selection in structure node submenu, 282
Number of instructions to disassemble field in

disassembly view preferences box, 295

O

Open dialog box
loading files, 41

Open Recent..., selection in Source menu, 194
open syscall that blocks continued pthreads, 326
Open..., selection in Source menu, 194
overflows

how to find in scientific programs, 35
Overview, selection in help menu, 205

P

path remapping case example, 45
path remapping description, 43

007–2579–005 351

Developer MagicTM: Debugger User’s Guide

Pattern layout, selection in structure browser
node menu, 284

pause syscall that blocks continued pthreads, 326
PC, 201
PC menu, 91, 201

Continue To, 91
Jump To, 91

PC menu in disassembly view, 292
PC menu in main view window, 91
pending trap

definition, 71
performance analyzer

how to access from Main View window, 5
performance data

Sample button, 91
pgrp trap debugger command option, 77
pixmap examiner, 249
poll syscall that blocks continued pthreads, 326
pollpoint, 4
pollpoint trap debugger command option, 82
pread syscall that blocks continued pthreads, 326
preferences for multiprocesses, 139
preparing the fileset for X/Motif analyzer

tutorial, 162
print expression dbx-style command, 318
printd expression dbx-style command, 318
printf expression dbx-style command, 318
printo expression dbx-style command, 319
printregs dbx-style command, 319
printx expression dbx-style command, 319
process group, 136
Process menu description, 215
Process Meter description, 213

Charts menu, 214
Scale menu, 215

Process Meter, selection in views menu, 193
Product information, selection in help menu, 205
Program counter

definition, 59
program counter, 91, 201
Program data, 93
program execution

options for controlling, 19

program execution control, 87
Main View control panel, 87
PC menu, 91

program output, tracking, 110
pthreads

and blocking anomalies, 155
and scheduling anomalies, 153
debugging a pthreaded program, 152
debugging session, 157
differences between 6.4 and 6.5 pthreads, 156
how to continue a single pthread, 155
pthread debugging hints, 156
syscalls which block continued pthreads, 326
user-level continue of single 6.5 POSIX

pthread, 153
viewing pthreaded applications, 138

putmsg syscall that blocks continued
pthreads, 326

putpmsg syscall that blocks continued
pthreads, 326

pwd dbx-style command, 319
pwrite syscall that blocks continued pthreads, 327

Q

quit dbx-style command, 319

R

Raise, selection in admin menu, 191
Raise, selection in structure browser node

submenu, 283
RCS, 7
read syscall that blocks continued pthreads, 326
Read-Only

debugger status, 109
readv syscall that blocks continued pthreads, 326
realloc call errors

heap corruption error, 126
Recompile, selection in the Source menu, 195

352 007–2579–005

Index

recompiling code, 7
recv syscall that blocks continued pthreads, 327
recvfrom syscall that blocks continued

pthreads, 327
recvmsg syscall that blocks continued

pthreads, 327
redefine dbx-style command, 319
redefined code

distinguished from compiled code, 108
redefining a function in Fix+Continue

(tutorial), 112
redefining functions, 107
Register name display format field in

disassembly view preferences box, 295
Register View

Views menu option, 5
Register view, 296
Register view formatting, 299
Register view preferences dialog box, 299
Register view window, 297
Register View, selection in views menu, 193
registers, 5
release notes, 9
relnotes, 9
Remap paths... selection in session menu, 44
Remove, selection in structure browser node

menu, 284
removing traps with mouse, 73
replace_source, dbx-style command, 320
rerun, dbx-style command, 320
Reset To Factory Defaults, toggle in

Fix+Continue Preferences dialog, 205
resource-change breakpoints examiner, 233
restrictions and limitations of X/Motif

analyzer, 161
Result column in Expression View, 99
Result column in expression view, 275
Resume child after attach on fork, Multiprocess

View preferences option, 210
Resume child after attach on sproc,

Multiprocess View preferences option, 210
Resume child after attch on sproc

in multiprocess tutorial, 142

Resume parent after fork, Multiprocess View
preferences option, 210

Resume parent after sproc, Multiprocess View
preferences option, 210

Return button description, 20
Return button in the Main View window

Main View
Return button, 90

return dbx-style command, 320
row/column toggles in array browser, 260
RUN button description, 19
Run button in the Main View window, 88
run dbx-style command, 320
runtime_check, dbx-style command, 320

S

Sample At Function Entry, 200
Sample at Function Entry selection in traps

submenu, 74
Sample at Function Exit selection in traps

submenu, 74
Sample at function exit, selection in traps

submenu, 200
Sample button in the Main View window, 91
sample session

setting up for X/Motif analyzer, 162
sample session setup

Fix+continue, 111
sample trap, 72
sample trap command, 77
Sample Trap Default, Traps menu option, 254
sample traps, 3
save as text, 218, 224
Save as text..., selection in Source menu, 195
Save as... selection in Source menu, 194
Save deactivated code during File Save, toggle

in Fix+Continue Preferences dialog, 204
Save expressions... selection in Expression

View —>Config menu, 102
Save settings..., selection in admin menu, 191

007–2579–005 353

Developer MagicTM: Debugger User’s Guide

Save traps... selection in config menu in trap
manager, 84

Save, selection in Source menu, 194
save_changes, dbx-style command, 321
saving changes to source file (Fix+Continue

tutorial), 118
scheduling anomalies

and pthreads, 153
scientific programs

checking for out-of-bounds array accesses, 32
checking for uninitialized variables used in

calculations, 34
core file analysis for, 36
finding divisions by zero and overflows, 35
suggestions for debugging serial execution

of, 31
using lint for debugging, 32

scripts
for customizing the debugger, 177

Search field in trap manager, 84
Search window, 27
“Search”, selection in structure browser display

menu, 281
Search..., selection in Source menu, 195
searching for character strings, 27
searching in the jello tutorial, 52
select syscall that blocks continued pthreads, 327
Select, selection in structure browser node

menu, 283
selection, 224
selection in structure browser display menu, 280
semctl syscall that blocks continued pthreads, 327
semget syscall that blocks continued

pthreads, 327
semop syscall that blocks continued pthreads, 327
send syscall that blocks continued pthreads, 327
sendmsg syscall that blocks continued

pthreads, 327
sendto syscall that blocks continued pthreads, 327
Session submenu, 305
Set Trap

selection in Traps menu, 74
Set trap, selection in traps menu, 199, 200

setbuildenv, dbx-style command, 321
setting traps

in jello tutorial, 55
introduction, 20

setting traps at the cvd> command line, 73
setting traps with the mouse, 73
setting traps with the Traps menu, 73
sginap syscall that blocks continued pthreads, 327
sh dbx-style command, 321
Show Difference submenu, 202
Show embedded source annotation field in

disassembly view preferences box, 295
Show Icons, selection in Display menu, 197
Show instruction value field in disassembly

view preferences box, 296
Show jal target numerically field in

disassembly view preferences box, 296
Show Line Numbers selection in display

menu, 197
Show machine address field in disassembly

view preferences box, 296
Show overview, selection in structure browser

display menu, 282
Show source file and line number field in

disassembly view preferences box, 296
Show Thread Status vs Thread State,

Multiprocess View preferences option, 210
Show/Hide buttons, Multiprocess View

preferences option, 210
Show/Hide Header Information, Multiprocess

View preferences option, 210
show_changes, dbx-style command, 322
show_diff, dbx-style command, 322
showbuildenv, dbx-style command, 322
showthread dbx-style command, 322
Signal panel, 84
Signal Panel, selection in views menu, 193
signal trap debugger command option, 81
signal traps, 4
SIGTERM signal, 136
source annotation column

traps, 74

354 007–2579–005

Index

source code status indicator, 109
source control

using configuration management tools for, 7
source dbx-style command, 322
source file

saving changes to (Fix+Continue tutorial), 118
source files

comparing code files with xdiff, 124
loading, 39
managing, 39

Source view
File menu, 211

Source View description, 210
Source View, selection in views menu, 193
spreadsheet area in array browser, 260
sproc processes, 136
ssmalloc_error, 128
Stack Depth, Multiprocess View preferences

option, 209
stack frame, 59
stack frames, 94, 272
starting the debugger, 47
starting, program execution, 88
startup file

for customizing the debugger, 177
State, selection in structure browser node

menu, 282
state-change breakpoints examiner, 236
static analyzer

how to access from the Main View window, 6
status dbx-style command, 322
Status field in the Main View window, 87, 88
Status window, 302

Admin menu, 304
Fix+continue, 121
Fix+Continue menu, 305
Fix+Continue Preferences submenu, 203
View menu, 304

status, viewing, 121
step dbx-style command, 323
step indicators in array browser, 260
Step Into button, 12
Step into button in disassembly view, 291

Step Into button in the Main View window, 88
Step Over button, 12
Step Over button description, 20
Step over button in disassembly view, 291
Step Over button in the Main View window, 89
stepi dbx-style command, 323
Stop All Default, Traps menu option, 254
Stop All Defaults toggle, 75
stop at dbx-style command, 323
Stop at Function Entry selection in traps

submenu, 74
Stop at function entry, selection in traps

submenu, 199
Stop at Function Exit selection in traps

submenu, 74
Stop at function exit, selection in traps

submenu, 200
Stop button description, 19
Stop button in the Main View, 88
stop dbx-style command, 323
stop exception, dbx-style command, 323
stop in, dbx-style command, 323
Stop Into button description, 19
stop trap, 71
stop trap command, 77
Stop Trap Default, Traps menu option, 254
stop traps, 3

in jello tutorial, 55
stopping, process execution, 88
Structure Browser

viewing variables with (C code only), 97
Views menu option, 4

Structure browser
general description, 277

Structure Browser (C code only)
viewing variables with, 27

Structure browser preferences dialog box, 284
Structure Browser selection in views menu, 63
Structure Browser, selection in views menu, 193
subscript controls in Array Browser, 65
Subscript Controls panel in Array Browser wi

ndow, 26

007–2579–005 355

Developer MagicTM: Debugger User’s Guide

subscripts
array, 259

Switch executable..., selection in admin
menu, 191

Switch process dialog box, 191
Switch process..., selection in admin menu, 191
switching between compiled and redefined code

in Fix+Continue, 121
syscall dbx-style command, 324
Syscall panel, 84
Syscall Panel, selection in views menu, 193
syscall trap debugger command option, 81
syscalls

accept, 326
close, 326
creat, 326
dmi, 326
fcntl, 326
fsync, 326
getmsg, 326
getpmsg, 326
ioctl, 326
lockf, 326
mq_open, 326
msgrcv, 326
msgsnd, 326
msync, 326
nanosleep, 326
open, 326
pause, 326
poll, 326
pread, 326
putmsg, 326
putpmsg, 326
pwrite, 327
read, 326
readv, 326
recv, 327
recvfrom, 327
recvmsg, 327
select, 327
semctl, 327
semget, 327

semop, 327
send, 327
sendmsg, 327
sendto, 327
sginap, 327
which block continued pthreads, 326
write, 327
writev, 327

system calls
traps, 4
which block continued pthreads, 326

T

tab overflow area, 172
tabs, 173
tabs, X/Motif Analyzer examiner, 225
Task View admin menu

active toggle, 217
clone, 217
close, 218
save as text, 218

Task View config menu, 218
Task View display menu, 218
Task View layout menu, 218
Task View window description, 216
Task View, selection in views menu, 193
timeout procedure breakpoints examiner, 234
tools integration, 5
trace dbx-style command, 324
trace examiner, 240
tracking program output, 110
trap actions, 70
trap condition, 82
trap examples, 77
trap icons, 75
Trap Manager

in jello tutorial, 56
Trap manager menus, 76
Trap Manager Window

introduction to, 76

356 007–2579–005

Index

Trap Manager with Fix+Continue, 311
Trap Manager, selection in views menu, 193
trap triggers, 70
trap types, 71
traps, 3

adding a breakpoint for a widget, 167
all trap debugger command option, 77
C++ exception trap, 72
command syntaxes for, 78
descriptive overview, 69
disabling in jello tutorial, 57
enabling and disabling, 84
for multiprocesses, 138
how to set, 72
in jello tutorial, 55
introduction, 20
multiprocess traps, 77
one-time, 91
pending trap, 71
pgrp trap debugger command option, 77
removing with mouse, 73
sample trap, 72
sample trap command, 77
set at signal-name, 81
set at time interval, 82
set for C++ exception, 82
set in filename at line-number, 78
set on entry to function, 79
set on entry to sys-call-name, 81
set on exit from function, 79
set on exit from sys-call-name, 81
set on instruction-address, 79
setting a watchpoint for address and size, 80
setting a watchpoint on specified

expression, 80
setting at the cvd> command line, 73
setting conditions, 82
setting cycle count, 83
setting with mouse, 73
setting with the Traps menu, 73, 83
Signal panel, 84
stop trap, 71
stop trap command, 77

Syscall panel, 84
trap examples, 78
triggering, 70

traps definition, 70
Traps Manager “Traps” menu options

At Source Line, 254
Entry Function, 254
Exit Function, 254
Group Trap Default, 254
Sample Trap Default, 254
Stop All Default, 254
Stop Trap Default, 254

Traps menu in the Main View window, 74
Traps menu in trap manager, 76, 83
traps terminology , , 70
traps, setting (Fix+Continue tutorial), 118
tree examiner, 166, 243
Tree, selection in structure browser display

submenu, 281
trigger

traps term, 70
triggering traps, 70
true multiprocess program, 135
tutorials

debugging a multiprocess C program, 139
Fix+Continue, 111
fortran multiprocess debugging session, 146
heap corruption tutorial, 129
how to load source files, 39
introductory: C code, 15
introductory: Fortran 90, 13
jello program, 47
path remapping, 45
starting a multiprocess session, 137
X/Motif analyzer, 161

Type color, field in structure browser type
formatting box, 287

Type Formatting Dialog, , 286
Type name, field in structure browser type

formatting box, 286

007–2579–005 357

Developer MagicTM: Debugger User’s Guide

U

unalias dbx-style command, 324
undisplay dbx-style command, 324
uninitialized variables, 34
unsetbuildenv, dbx-style command, 324
up, dbx-style command, 325
Update, selection in structure browser display

menu, 281
use, dbx-style command, 325
using the X/Motif analyzer, 159

V

Variable Browser
in jello tutorial, 60
View menu option, 4
viewing variables with, 23, 98

Variable browser
general description, 288

Variable Browser selection in Views menu, 60
Variable Browser, selection in views menu, 193
variables

assigning values to, 102
compiled with -n32 -g, 288
options for viewing, 20, 96
unused, 288
viewing at the cvd> command line, 97
viewing with Array Browser, 25
viewing with Click To Evaluate, 22
viewing with Click to Evaluate, 97
viewing with cvd> command line, 21
viewing with Expression View, 23
viewing with Structure Browser (C code

only), 27
viewing with the Array Browser, 97
viewing with the Expressions View

window, 98
viewing with the Structure Browser (C code

only), 97
viewing with the Variable Browser, 98
viewing with Variable Browser, 23

versioning
and accessing configuration management

tools, 7
Versioning, selection in Source menu, 196
view changes in debugger, 309
View menu, 304
View submenu, 203
view windows

Multiprocess View, 136
view, call stack, 311
viewing data, 4
viewing status (Fix+Continue tutorial), 121
Views menu in the Main View window, 192

W

Warn Unfinished Edits Before Continue, toggle
in Fix+Continue Preferences dialog, 204

Warn Unfinished Edits Before Run, toggle in
Fix+Continue Preferences dialog, 204

watch command
in jello tutorial, 57

watch trap debugger command option, 80
watch, dbx-style command, 325
Watchpoint

definition, 57
watchpoint, 57
watchpoints, 4
whatis dbx-style command, 325
when at, dbx-style command, 325
when in, dbx-style command, 325
where, dbx-style command, 325
which, dbx-style command, 325
widget class examiner, 250
widget class menu item, 225
widget classes, examining, 168
widget examiner, 242
widget hierarchy, 166
widget item, 224
widget structure, navigating, 163
widget tree menu item, 224

358 007–2579–005

Index

widgets, examining, 166
window attributes, viewing, 171
window examiner, 171, 247
WorkShop integration, 108
Wrapped display, selection in array browser

display menu, 261
write syscall that blocks continued pthreads, 327
writev syscall that blocks continued pthreads, 327

X

X event menu item, 225
X graphics context menu item, 225
X pixmap menu item, 225
X window system resources

changing to customizing the debugger, 180
X-event breakpoints examiner, 237
X/Motif Analyzer

global objects description, 223
X/Motif analyzer

“additional” features, 172
debugging with, 8
default view, 165
inspecting data with, 160
inspecting the control flow with, 160
launching, 163
navigating widget structure, 163
overview, 159
restrictions and limitations, 161
starting, 8
tracing execution with, 161

X/Motif Analyzer admin menu, 224
close, 224
save as text, 224

X/Motif Analyzer breakpoint type option
button, 228

X/Motif Analyzer breakpoints examiner, 226
callback, 229
event-handler, 231
input-handler, 235
resource-change, 233
state-change, 236
timeout-procedure, 234
X-event, 237
X-Request Breakpoints Examiner, 239

X/Motif Analyzer callback examiner, 246
X/Motif Analyzer event examiner, 248
X/Motif Analyzer examine menu

selection, 224
widget, 224
widget class, 225
widget tree, 224
X event, 225
X graphics context, 225
X pixmap, 225

X/Motif Analyzer examiner tabs, 225
X/Motif Analyzer graphics context (GC)

examiner, 248
X/Motif Analyzer pixmap examiner, 249
X/Motif Analyzer trace examiner, 240
X/Motif Analyzer tree examiner, 243

graphical buttons, 245
X/Motif Analyzer widget class examiner, 250
X/Motif Analyzer widget examiner, 242
X/Motif Analyzer window examiner, 247
X/Motif Analyzer window menu item

examine menu
window, 225

X/Motif Analyzer windows description, 222
X/Motif Analyzer, selection in views menu, 194
xdiff, 123
xhost setting for debugger, 11

007–2579–005 359

