
ProDevTM WorkShop:
Static Analyzer User’s Guide

007–2580–005

COPYRIGHT
Copyright © 1991, 1998, 1999 – 2002 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as
indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, and IRIX are registered trademarks and ProDev is a trademark of Silicon Graphics, Inc.

MIPSpro is a trademark of MIPS Technologies, Inc., and is used under license by Silicon Graphics, Inc. PostScript is a trademark of
Adobe Systems. UNIX and the X device are registered trademarks of The Open Group in the United States and other countries.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

New Features in this Guide

Support for Ada has been removed from the Static Analyzer as of the ProDev 2.4.2
release (October 2002). "Ada" may still appear in the screen representations in this
book and in the software; however, the functionality has been removed.

007–2580–005 iii

Record of Revision

Version Description

1.0 1991
Original Printing.

2.7 June 1998
Revised for the ProDev WorkShop 2.7 release.

2.8 March 1999
Revised for the ProDev WorkShop 2.8 release.

2.8 August 1999
Document released under new online and print format.

004 November 2001
Revised for ProDev WorkShop 2.9.1 release.

005 September 2002
Revised for ProDev WorkShop 2.9.2 release.

007–2580–005 v

Contents

About This Guide . xix

Related Publications . xx

Obtaining Publications . xx

Conventions . xxi

Reader Comments . xxi

1. Introduction to the WorkShop Static Analyzer 1

How the Static Analyzer Works 1

Steps in Static Analysis . 3

2. Tutorials for the Static Analyzer 5

Applying the Static Analyzer to Scanned Files 5

Applying the Static Analyzer to Parsed C++ Files 12

Using the Compiler to Create a Static Analysis Database 17

Other Static Analyzer Features 18

3. Creating a Fileset and Generating a Database 21

Fileset Specifications . 21

Using Regular Expressions . 22

Specifying Pathnames . 23

Specifying Included Files . 23

Defining Macros in the Fileset 23

Using the Default Fileset . 24

Using the Fileset Editor . 25

007–2580–005 vii

Contents

Adding Lines to the Fileset Contents List 25

Removing Lines from the Fileset Lists 26

Browsing for Fileset Contents 26

Directories List . 26

Browsing Directory . 26

Language Filters . 26

Adding File Names from Lists 27

Transferring Files in the Fileset between Modes 27

Leaving the Fileset Editor Window 28

Creating a Fileset Manually . 28

Using Command-Line Options to Create and Use a Fileset 28

Generating a Static Analyzer Database 29

Scanner Mode . 29

Parser Mode . 30

Preparing the Fileset for Parser Mode 30

Invoking the Parser . 31

Parser Mode Shortcuts . 32

Size Limitations . 32

Rescanning the Fileset . 33

Setting the Search Path for Included Files 34

Changing to a New Fileset and Working Directory 35

4. Queries . 37

Defining the Scope of a Query 37

Target Text as a Regular Expression 38

Case Sensitivity . 38

Making a Query . 38

General Queries . 39

viii 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Macro Queries . 39

Variable Queries . 40

Function Queries . 42

Files Queries . 43

Class Queries . 43

Method Queries . 44

Common Blocks Queries . 44

Types Queries . 44

Directories Queries . 45

Viewing Source Code . 45

Repeating Queries . 46

Saving Query Results . 46

5. Views . 49

Text View . 49

Call Tree View . 51

The Static Analyzer Control Panel 52

Setting View Options . 53

Viewing Function Definitions and Calls in Source View 54

Tutorial: Working in Call Tree View 55

Class Tree View . 58

File Dependency View . 59

The Results Filter . 60

Setting Results Filters . 60

Filtering by Name, Function, File, Directory, and Source 62

Filtering by Header Files and External Functions 62

Combining Results Filters . 63

Using the Results Filter Buttons 63

007–2580–005 ix

Contents

Tutorial: Using the Results Filter 64

6. Working on Large Programming Projects 67

Creating a Fileset Using a Shell Script 67

Customizing the Fileset for Individual Code Modules 68

Using the Results Filter to Focus Queries 68

Applying Group Analysis Techniques 69

Setting Up a Project Database 70

Querying a Project Database 71

Viewing Suggestions . 71

7. Getting Started with the Browser 73

Starting Browser View . 73

General Characteristics of the Browser 74

Browser View Outline Lists 75

Outline Icons . 75

Browser View Menus . 76

Other Browser Window Features 76

8. Browser Tutorial for C++ 79

Sample C++ Session . 79

9. The Browser Reference 95

Browsing Choices Window . 95

Browsing Choices Window for C++ 96

Browser View Window . 97

Current Subject Field . 98

Show in Static Analyzer Toggle 99

Last Query Button . 99

x 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Browser View Query Identification Area 99

Browser View List Areas . 99

Outline Icons . 100

Annotated Scroll Bars and Highlighted Entries 101

C++ Member List . 101

Display Hierarchy . 101

C++ Access Categories . 101

C++ Scope Categories . 102

C++ Class Member Categories 102

C++ Relation List . 102

C++ Relations List Mouse Shortcuts 103

C++ BASE CLASSES Category Hierarchy 103

C++ DERIVED CLASSES Category Hierarchy 104

Browser View Menu Bar . 104

Admin Menu . 105

Views Menu . 109

History Menu . 109

Queries Menu . 109

Preference Menu . 111

Browser View Popup Menus 112

Data Members Popup Menu 113

Methods Popup Menu . 114

Class Popup Menus . 115

Graph Views Window . 117

Mouse Manipulations . 117

Graph Views Admin Menu 117

Graph Views Window Views Menu 118

Call Graph Window . 118

007–2580–005 xi

Contents

Using the Call Graph Window 120

Call Graph Admin Menu . 120

Appendix A. Customizing the Browser 121

Customizing the Browser View Lists 121

Member List Resource . 121

Related Class List Resource 122

Other Browser View List Resources 123

Customizing Man Page Generation 125

Index . 127

xii 007–2580–005

Figures

Figure 2-1 The Static Analyzer Window 6

Figure 2-2 The Fileset Editor Window 7

Figure 2-3 Static Analyzer Queries Menu and Query Target Field 9

Figure 2-4 The Results of a List Functions Query 11

Figure 2-5 Typical Static Analyzer Call Tree 15

Figure 3-1 The Fileset Selection Browser Window 35

Figure 4-1 List All Global Variables Results 40

Figure 4-2 Who References? Results 41

Figure 4-3 The Save Query File Browser Window 46

Figure 5-1 Sample Text View 50

Figure 5-2 Call Tree View Displaying Functions and Function Calls 52

Figure 5-3 The View Control Panel 53

Figure 5-4 Incremental Mode Example 57

Figure 5-5 Displaying Node Information at Reduced Scale 58

Figure 5-6 The Results Filter Window 61

Figure 5-7 The Results Filter Query Results 65

Figure 6-1 A Project Cross-Reference Database 70

Figure 7-1 Browsing Windows 74

Figure 7-2 Outline Icon Examples 75

Figure 8-1 Steps in Specifying a Parser Fileset (C++) 80

Figure 8-2 Initial Display with Item Selected 81

Figure 8-3 Browser View Window with C++ Data 82

Figure 8-4 Performing a Query on Current Class 85

007–2580–005 xiii

Contents

Figure 8-5 Static Analyzer after a Browser Query 86

Figure 8-6 Performing a Query on an Element in a List 87

Figure 8-7 Graph Views Window in Containment Mode 88

Figure 8-8 Comparison of Data Displayed in a Containment Graph 89

Figure 8-9 Graph Views Window in Inheritance Mode 90

Figure 8-10 Man Page Generator Window 91

Figure 8-11 Man Page Template 92

Figure 8-12 Web Page Generator Window 93

Figure 9-1 Browsing Choices Window 96

Figure 9-2 Browser View Window Elements 98

Figure 9-3 Outline List Icons and Indicator Marks 100

Figure 9-4 Browser View Menu Bar with Menus Displayed 105

Figure 9-5 Man Page Generator and Typical Man Page Template 107

Figure 9-6 Web Page Generator Window 108

Figure 9-7 Queries Popup Menus in the Browser View Window 113

Figure 9-8 Displaying a Selected Method in Call Graph 119

xiv 007–2580–005

Tables

Table 9-1 Browser View List Summary 100

Table A-1 Sort Resources for Outline Lists 125

007–2580–005 xv

Procedures

Procedure 8-1 Preparing for the sample session 79

Procedure 8-2 Understanding the Browser View Window 81

Procedure 8-3 Expanding and Collapsing Categories 83

Procedure 8-4 Making Queries 83

Procedure 8-5 Using the Browser Graphical Views 88

Procedure 8-6 Shortcuts for Entering Subjects 90

Procedure 8-7 Generating Man Pages 91

Procedure 8-8 Generating Web Pages 93

007–2580–005 xvii

About This Guide

This publication documents the ProDev WorkShop Static Analyzer and Browser for
release 2.9.2 running on IRIX systems. The Static Analyzer and Browser help you
view and understand the structure of a program and relationships such as call trees,
function lists, class hierarchies, and file dependencies.

This manual contains the following chapters:

• Chapter 1, "Introduction to the WorkShop Static Analyzer", page 1, describes the
Static Analyzer, which is the WorkShop tool for examining the structure of a
program’s source code and the relationships between its parts, such as files,
functions, and variables.

• Chapter 2, "Tutorials for the Static Analyzer", page 5, provides a sample session to
introduce you to some major features in the Static Analyzer.

• Chapter 3, "Creating a Fileset and Generating a Database", page 21, describes the
fileset concept. A fileset is a file that contains files you specify for inclusion in the
analysis. You also specify whether a file is to be analyzed by the faster scanner
mode or the slower, more thorough parser mode.

• Chapter 4, "Queries", page 37, describes how you perform queries using the Static
Analyzer.

• Chapter 5, "Views", page 49, describes the text and graphical views that the Static
Analyzer uses to present its data.

• Chapter 6, "Working on Large Programming Projects", page 67, presents
techniques for applying the Static Analyzer to large projects.

• Chapter 7, "Getting Started with the Browser", page 73, tells you how to start the
Browser and describes some of the features of the Browser View.

• Chapter 8, "Browser Tutorial for C++", page 79, provides a short tutorial
highlighting the C++ features of the Browser View.

• Chapter 9, "The Browser Reference", page 95, describes all of the Browser
windows, menus, and other features in detail.

007–2580–005 xix

About This Guide

Related Publications
The following documents contain additional information that may be helpful:

• MIPSpro C++ Programmer’s Guide

• C Language Reference Manual

• MIPSpro Fortran 77 Programmer’s Guide

• MIPSpro Fortran 77 Language Reference Manual

• MIPSpro Fortran Language Reference Manual, Volume 1

• MIPSpro Fortran Language Reference Manual, Volume 2

• MIPSpro Fortran Language Reference Manual, Volume 3

• MIPSpro Fortran 90 Commands and Directives Reference Manual

• ProDev WorkShop: Debugger User’s Guide

• ProDev WorkShop: Debugger Reference Manual

• ProDev WorkShop: Performance Analyzer User’s Guide

• ProDev WorkShop: Tester User’s Guide

• ProDev WorkShop: ProMP User’s Guide

• ProDev WorkShop: Overview

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at: http://docs.sgi.com. Various
formats are available. This library contains the most recent and most
comprehensive set of online books, release notes, man pages, and other
information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, select Help from the Toolchest, and then select InfoSearch. Or
you can type infosearch on a command line.

xx 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

• You can also view release notes by typing either grelnotes or relnotes on a
command line.

• You can also view man pages by typing man title on a command line.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

GUI This font denotes the names of graphical user interface
(GUI) elements such as windows, screens, dialog boxes,
menus, toolbars, icons, buttons, boxes, fields, and lists.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact SGI in any of the following ways:

007–2580–005 xxi

About This Guide

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.

xxii 007–2580–005

Chapter 1

Introduction to the WorkShop Static Analyzer

This chapter describes the Static Analyzer, which is the WorkShop tool for examining
the structure of a program’s source code and the relationships between its parts, such
as files, functions, and variables.

Many software projects today contain massive amounts of code that may or may not
compile, have few or no comments, and are written by programmers unfamiliar with
the original code. The ProDev WorkShop Static Analyzer helps solve problems like
these. With the Static Analyzer, you can analyze source code written in C, C++,
Fortran 77, Fortran 90 or 95.

The Static Analyzer shows you code structure, including how functions within
programs call each other, where and how variables are defined, how files depend on
each other, where you can find macros, and other structural details to help you
understand the code. It displays answers in text or easily understood graphic form.
Because the Static Analyzer is interactive, you can quickly locate the portion of code
structure that interests you, or you can step back for an overview. And, because the
Static Analyzer recognizes the connections between elements of the source code, you
can readily trace how a proposed change to one element will affect related elements.

The following topics are covered in this chapter:

• "How the Static Analyzer Works", page 1

• "Steps in Static Analysis", page 3

How the Static Analyzer Works
The Static Analyzer is basically a database program that reads through one or more
source code files and creates a database that includes functions, macros, variables,
files, and object-oriented elements for the C or C++ programming languages. The
database also includes the interconnections between the elements—which functions
call which other functions, which files include which other files, and so on.

Note: Limited support for Fortran 90 is provided for the MIPSPro Fortran 90
compiler, beginning with version 7.1.

007–2580–005 1

1: Introduction to the WorkShop Static Analyzer

The Static Analyzer provides two modes for extracting static analysis data from your
source files:

• Scanner mode—a fast, general-purpose scanner that looks through code with
minimal sensitivity to the programming language. Scanner mode does not require
that your code compile.

• Parser mode—a language-sensitive scanner that can be run at compile time by
setting a switch.

The trade-off between the modes is speed versus accuracy. A very effective technique
is to perform preliminary analysis in scanner mode when you need to see the overall
structure of a large group of files and then focus on a smaller subset using parser
mode to derive detailed relationship information. If a program cannot compile, parser
mode will not work and you must use scanner mode.

The Static Analyzer can perform selective searches (called queries) through the
database. The Static Analyzer displays the results of the query in the query results
area (the interior of the main window). If you have used the UNIX grep(1)
command, you will find that the Static Analyzer can perform the same kinds of
simple searches through the text of your source code, finding strings of text as well as
regular expressions. The Static Analyzer also performs more sophisticated queries
that follow connections between the following elements of source code: function calls,
file includes, class parenthood, and other similar relationships.

When making queries, try not to request too much data. Overly general queries (for
example, a query that asks for all functions defined in millions of lines of source
code) often return extensive results that are difficult to comprehend. The Static
Analyzer can restrict the scope of your queries so you can break down large projects
into pieces of a manageable size. For example, you can see the connections to and
from a single function or take a look at all the classes defined within a single file.

By default, the Static Analyzer displays the results of your query in text form. You
can scroll through the results, and you can immediately call up the file that contains
any element you see in the results. The file appears in the Source View window,
which shows you the exact source code line where that element occurs. You can also
ask the Static Analyzer to display the results of the query in a graphic view that
shows not only the elements found but also—using tree form—the relationships
between elements. To help you see the structure more clearly, you can set the scale
and orientation of the tree, or you can call for a full overview that shows all elements
in the structure and helps you scroll to the particular elements you want.

2 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Steps in Static Analysis
Typically, in performing static analysis, you create an overview showing basic
relationships and then concentrate on the source code requiring further work or
analysis. There are five general steps in the static analysis process:

1. Decide which files to include in your static analysis.

It is good practice to narrow down the set of files to be analyzed as much as
possible. Large static analysis databases are not only difficult to navigate through,
but are time-consuming to build. You specify the files to be used in a special file
called a fileset.

2. Choose how the files will be analyzed: parser mode, scanner mode, a
combination, or different modes in multiple passes.

Scanner mode is good for determining the general structure of a program. It is
most appropriate when you are working on uncompilable code, analyzing large
filesets, or performing preliminary analysis. Parser mode is better when you need
detailed relationship information. You should apply parser mode to smaller
filesets, because it takes longer to extract data.

In some situations, it is desirable to use a combination of modes. For example, if
you need detail but are having compilation problems, you can apply the scanner
to the problem files and the parser to everything else. A different example would
be applying the parser to a few files where you need detail and the scanner to the
rest of the fileset.

An example of a multiple-pass scenario is to analyze a large fileset in scanner
mode, zero in on a subset of the files, and then run that subset through parser
mode to get a detailed analysis.

3. Build the static analysis database.

Both scanner mode and parser mode can be invoked within the Static Analyzer.
After you have defined your fileset, the database will be built when you make
your first query or when you select either the Rescan or the Force Scan option
from the Admin menu of the Static Analyzer main window.

Generally, you can invoke parser mode through the compiler. A particularly
convenient method for using the Static Analyzer parser is to modify an existing
makefile so that it analyzes the files as part of the build process. This can be done
with or without producing object code. For more information on this approach,
see "Using the Compiler to Create a Static Analysis Database", page 17.

007–2580–005 3

1: Introduction to the WorkShop Static Analyzer

4. Perform static analysis queries and view the results.

The queries can give you a good idea of the structure and the relationship of
components in your program. You can review the results in text form, as a list of
items and their source lines or graphically as a tree showing relationships
between items.

If you are programming in C++ you can make object-oriented queries by bringing
up the class browser in the Class View window. This window lets you view
structural and relational information.

5. Once you have isolated an area for analysis, you can edit the source code from
the Static Analyzer. Double-clicking an element brings up the corresponding
source code in the Source View window.

4 007–2580–005

Chapter 2

Tutorials for the Static Analyzer

This chapter shows how you might use the Static Analyzer in a typical session. It
does not go into full detail, but it does explain the fundamental concepts you will
need to use the Static Analyzer. It lists related commands and controls after each
tutorial so you can experiment on your own.

Note that the compiler used in this tutorial is not the SGI MIPSpro compiler; the
compiler examples used here are for an older version of C++ compiler.

This chapter discusses the following topics:

• "Applying the Static Analyzer to Scanned Files"

• "Applying the Static Analyzer to Parsed C++ Files", page 12

• "Using the Compiler to Create a Static Analysis Database", page 17

• "Other Static Analyzer Features", page 18

Applying the Static Analyzer to Scanned Files
In this session, you will create a fileset for the demo program bounce using scanner
mode and perform some basic queries in text mode.

1. Move to the /usr/demos/WorkShop/bounce directory by entering the
following command:

% cd /usr/demos/WorkShop/bounce

This directory contains the C++ source code files for the demo program bounce.

2. Use the ls(1) command to list the directory’s contents to see if the file
cvstatic.fileset already exists (in case someone worked through a tutorial
and forgot to remove the file). If it does exist, remove it along with any other files
the Static Analyzer may have left by entering the following command:

% rm cvstatic.* cvdb* vista.taf

Whenever you run the Static Analyzer, it checks the directory where you invoked
it for the cvstatic.fileset file and uses the content of that file as its fileset. If
it does not find the cvstatic.fileset file, it creates and saves its own fileset

007–2580–005 5

2: Tutorials for the Static Analyzer

containing the expression *.[c|C|f|F] so that all possible C files (.c), Fortran
77 files (.f), Fortran 90 (.F), and C++ files (.C) in the current directory are
included. When you quit the Static Analyzer, any fileset you or the Static Analyzer
created remains in the directory for use in your next Static Analyzer session.

If you do not want to use the default fileset, you can create your own or modify
the default fileset using the Edit Fileset selection on the Admin menu. You can
also create your own cvstatic.fileset file by hand; instructions are found in
"Creating a Fileset Manually ", page 28.

3. Start the Static Analyzer by entering the following command:

% cvstatic &

The Static Analyzer window appears (as shown in Figure 2-1).

Query Target field

Query results area

a11641

Figure 2-1 The Static Analyzer Window

4. Choose Edit Fileset from the Admin menu to open the Fileset Editor window (as
shown in Figure 2-2).

6 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Current
directory

Directory
list

Move
controls

Include
subdirectories

Current
directory
files

Language
filters

Current
fileset

Parser mode
fileset list

Direct entry
field

Scanner
mode fileset
list

Direct entry
field

Literal input
switch

Remove
control

a11593

Figure 2-2 The Fileset Editor Window

The current working directory appears in the Browsing Directory field at the top
left of the window. Subdirectories (if any) appear in the Directories field. The
files in the current working directory appear in the Files field. Select the files you
want to include in the fileset from these two lists. For parser mode files, click the
associated Parser button. For scanner mode, click the Scanner button. There are
two sets of Parser and Scanner mode buttons. The upper set moves whole
directories and the lower set moves individual files. The two fileset fields, Parser
Fileset and Scanner Fileset, are at the right of the window.

007–2580–005 7

2: Tutorials for the Static Analyzer

5. Select the expression *.[c|C|f|F] in both the Parser Fileset and Scanner
Fileset list fields (if it appears), and click the Remove button.

This removes any default expressions from the fileset.

6. Click the C++ language filter button.

This filters the Files list to include only those files with the .C extension
(signifying C++ source files) and selects them all.

7. Now add these source code files to the fileset by clicking the Scanner button from
the Move Files set of buttons.

The Scanner Fileset list now displays the files selected from the Files list. These
files will be scanned into the static analysis database when it is created.

8. Click the OK button at the bottom of the Fileset Editor window.

After you have created the fileset, you can query it for useful information. Your
first query prompts the Static Analyzer to extract static analysis data from the
files in the fileset and create a cross-reference database (using scanner mode). This
occurs before returning the results of your query. The database includes the
relationships between functions, files, classes, and other elements of the code in
the fileset, and is saved in a database file along with two accompanying index
files. The database file is named cvstatic.xref; the accompanying files are
named cvstatic.index and cvstatic.posting. These files are stored in
the same directory as the fileset with which they are associated and remain there
after the Static Analyzer quits.

Subsequent queries use the same database until you ask the Static Analyzer to
rescan the fileset, which creates an updated database. When you quit the Static
Analyzer and return to it later, it automatically updates the database, going
through any files in the fileset that have changed since the last session. If you use
appropriate wild card expressions in the fileset, the fileset will automatically
accommodate new files added to specified directories.

9. From a shell, list the contents of the cvstatic.fileset file.

All files and their paths to be included in the fileset should display. If you selected
files for parsing, the files will have compiler flags following their path names.

10. Click the Queries menu to open it.

To query the database, choose a command from the Queries menu. You’ll find the
commands grouped in submenus according to the type of query (see Figure 2-3).

8 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Query Target
field

a11594

Figure 2-3 Static Analyzer Queries Menu and Query Target Field

The Query submenus let you perform the following types of different searches:

• The General submenu searches for text strings, regular expressions, and
symbols.

• The Macros submenu searches for locations of macro definitions and places
where macros are used.

• The Variables submenu searches for global and local variables and shows
where they are defined and who references and sets the variables.

• The Functions submenu searches for functions, shows where they are defined,
and shows who calls them and whom they in turn call.

• The Files submenu searches for files in the fileset (including headers and
libraries) and shows which files are included by which other files.

007–2580–005 9

2: Tutorials for the Static Analyzer

• The Classes submenu searches C and C++ files for classes and shows where
they are defined. It also shows subclass and superclass relationships and lists
the methods defined within classes.

• The Methods submenu searches C/C++ files for methods and shows where
they are defined and declared.

• The Common Blocks submenu searches Fortran 77 and Fortran 90 files for
common blocks.

• The Types submenu searches C and C++ files for type information.

• The Directories submenu lets you list directories or the files in a directory.

To start a query, choose the type of query you want from the Queries menu. The
Static Analyzer searches through its database or through the original source code
to find what you asked for.

If you want to look for a specific function, file, string, or other element, enter the
target text in the Query Target field above the query results area (as shown in
Figure 2-1, page 6).

Queries that require text in the Query Target field (such as Find String in the
General submenu) are grayed in the Queries menu if there is no text present.
More general queries that require no search text (such as List Global Symbols)
are always available.

11. Choose the List All Functions selection from the Functions submenu of the
Queries menu.

The Static Analyzer builds its cross-reference database and notifies you that it is
doing so. When it is finished, the Static Analyzer displays a list of all functions
found in the fileset (as shown in Figure 2-4), their file, the line number at which
they are first defined or declared, with the actual source line.

Note: During this process, you may get a warning dialog box about multiple
function occurrences. This is due to the inaccuracy of scanner mode; it has
problems with #ifdef statements. You may also get an error message about
missing files. This can happen if your include paths are not set correctly. The
missing files are not necessary for this tutorial.

10 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Query results area

Function name

Source file

Line number

Source code a11595

Figure 2-4 The Results of a List Functions Query

The Static Analyzer returns the results of all queries in the query results area
(below the Query Target field). It presents this information in text form (and by
the previous type of view if applicable for subsequent queries). You can scroll
through a text list to find specific data that interests you. Clicking any part of an
element listed (a filename, a function name, a line number, and so on) pastes it
into the Query Target field so you can use it as the base of your next search. For
example, if you want to determine what functions a particular function calls, click
on the function name to put it into the Query Target field and then choose the
Who Is Called By selection from the Functions submenu of the Queries menu.

Text view allows you to sort the element lines alphanumerically by any one of the
fields in a line. For example, you can sort a list of functions alphabetically by
function name or numerically by line number where they occur. To sort, click
within an element line in the field by which you want to sort, and then choose

007–2580–005 11

2: Tutorials for the Static Analyzer

Sort from the Admin menu. The Static Analyzer sorts the results of a query
according to the field selected.

12. Click the function name Actor in the query results area.

The Static Analyzer pastes the name into the Query Target field.

13. Choose Who Is Called By from the Functions submenu of the Queries menu.

The Static Analyzer displays a list of all functions called by Actor.

14. Clear the Query Target field and then type buffer in it.

In the next steps, you are going to search for any occurrences of the text string
buffer that might lead to information in the code concerning z-buffering or data
buffering.

15. Choose Find String from the General submenu of the Queries menu.

The Static Analyzer returns all the lines of code that contain the text string
buffer, even if it only appears in a comment.

16. Click on the History menu to open it.

It displays the queries you have made so far.

17. Choose List All Functions from the History menu to see a list of all functions
once again.

This brings back your previous query results.

18. Double-click the Actor function.

The Source View window appears, displaying the source code for Actor. You
can examine it, check it out (if you have a versioning system), or edit it.

19. Choose Close from the Source View File menu to close it.

20. Choose Exit from the Static Analyzer Admin menu to end this tutorial.

Applying the Static Analyzer to Parsed C++ Files
In this session, you will create a fileset for the bounce demo program by using parser
mode and perform some detailed static analysis in both text mode and graphic mode.

12 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

1. Move to the /usr/demos/WorkShop/bounce directory by entering the
following command:

% cd /usr/demos/WorkShop/bounce

2. Use the ls(1) command to list the directory’s contents to see if the file
cvstatic.fileset already exists (in case someone worked through a tutorial
and forgot to remove the file). If it does exist, remove it along with any other files
the Static Analyzer may have left by entering the following command:

% rm cvstatic.* cvdb* vista.taf

Whenever you run the Static Analyzer, it checks the directory where you invoked
it for the cvstatic.fileset file and uses the content of that file as its fileset. If
it does not find the cvstatic.fileset file, it creates and saves its own fileset
containing the expression *.[c|C|f|F] so that all possible, C files (.c), Fortran
files (.f or .F), and C++ files (.C) in the current directory are included. When
you quit the Static Analyzer, any fileset you or the Static Analyzer created
remains in the directory for use in your next Static Analyzer session.

If you do not want to use the default fileset, you can create your own or modify
the default fileset using the Edit Fileset selection on the Admin menu. You can
also create your own cvstatic.fileset file by hand; instructions are found in
"Creating a Fileset Manually ", page 28.

3. Start the Static Analyzer by entering the following command:

% cvstatic -mode PARSER &

The Static Analyzer window appears. The -mode PARSER option causes the
Static Analyzer to use parser files only when queries are performed.

4. Choose Edit Fileset from the Admin menu.

This will allow you to use parser mode through the Fileset Editor window.

5. Select the expression *.[c|C|f|F] in both the Parser Fileset and Scanner
Fileset list fields (if it appears), and click the Remove button.

6. Select the BouncingBall.C file in the File list at the lower left of the Fileset
Editor window and click the Parser button from the Move Files set of buttons to
transfer the file to the Parser Fileset list.

This enters the BouncingBall.C file into the fileset and sets it for parsing mode.

007–2580–005 13

2: Tutorials for the Static Analyzer

7. Click the OK button at the bottom of the Fileset Editor window to save the new
fileset. From a shell window, enter the following command to display the
contents of cvstatic.fileset:

% cat cvstatic.fileset

After you have created the fileset, you can query it for useful information. Your
first query prompts the Static Analyzer to extract static analysis data from the
files in the fileset and create a cross-reference database (using scanner mode). This
occurs before returning the results of your query. The database includes the
relationships between functions, files, classes, and other elements of the code in
the fileset, and is saved in a database file along with two accompanying index
files. The database file is named cvstatic.xref; the accompanying files are
named cvstatic.index and cvstatic.posting. These files are stored in
the same directory as the fileset with which they are associated and remain there
after the Static Analyzer quits.

Subsequent queries use the same database until you ask the Static Analyzer to
rescan the fileset, which creates an updated database. When you quit the Static
Analyzer and return to it later, it automatically updates the database, going
through any files in the fileset that have changed since the last session. If you use
appropriate wild card expressions in the fileset, the fileset will automatically
accommodate new files added to specified directories.

8. Choose List All Functions from the Queries Menu.

The Static Analyzer builds a new database using parser mode. Since
BouncingBall.C has a number of include files, this process may take a few
minutes. During the process, a small window called Build Shell appears that
displays any compiler errors or warnings. At the conclusion of the process, the
functions in BouncingBall.C and its include files are listed in text form in the
query results area.

9. Choose Call Tree View from the Views menu.

The query results area now changes to graphical form. The functions are depicted
as rectangles. In addition to listing functions, the Static Analyzer now provides
you with relationship information, that is, who calls which functions. The function
calls are shown as arrows (or arcs) pointing to the functions that were called.

Besides Call Tree View, there are two other types of graphical views: Class Tree
View that displays C/C++ classes and their hierarchy and File Dependency
View that displays files in the fileset and their dependency on each other.

14 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Whenever you use a tree view, the view interprets the results of your query
according to the type of tree displayed. For example, if you perform a Functions
query while you’re in file dependency view, the view changes to show you which
files contain the functions returned by the query. Some views do not make sense
for displaying the results of a query, in which case the Static Analyzer switches to
the view it thinks is most reasonable for the query.

10. Click the Graph Overview button (the fourth button from the left at the bottom
of the Static Analyzer window).

This displays the Call Tree Overview window, a feature to help users navigate
through a graph. It displays the full call tree in overview, with a small
rectangular outline (called the viewport) in the upper-left corner. The viewport
shows which portion of the tree currently appears in the query results area of the
Static Analyzer window and can be dragged by the mouse to expose other
portions of the graph. See Figure 2-5.

Viewport

Graph Overview button a11596

Figure 2-5 Typical Static Analyzer Call Tree

007–2580–005 15

2: Tutorials for the Static Analyzer

11. Click in the center of the Call Tree Overview window.

The viewport jumps so that its upper-left corner matches the pointer location.
The query results area in the Static Analyzer window shifts to display the part of
the tree outlined by the viewport in the Call Tree Overview window.

12. Drag the viewport around in the Call Tree Overview window by holding down
the left mouse button and moving the mouse. Finish by dragging the viewport to
the upper-left corner of the call tree.

As the viewport moves over the call tree overview, the call tree shown in the
Static Analyzer query results area scrolls to match.

13. Choose Close from the Admin menu in the Call Tree Overview window to close
it.

14. Type colorSelected in the Query Target field and choose Who Calls? from the
Functions submenu in the Queries menu. This reduces the graph to three nodes.

15. Hold the right mouse button down over the node labeled colorSelected to open
its popup menu.

This displays the individual node menu, which provides the selections: Hide
Node, Collapse Subgraph, Show Immediate Children, and Show Parents. The
arrow at the right of the colorSelected node indicates that it has undisplayed child
nodes. Therefore, Show Immediate Children is enabled. Because the parents of
colorSelected are already displayed, the Show Parents selection is disabled.

If you hold the right mouse button down over a portion of the query results area
where there are no nodes, the selected nodes menu displays providing additional
selections.

16. Choose Show Immediate Children from the popup menu.

The Static Analyzer displays the functions called by colorSelected.

For more information on the standard graph controls and node manipulation, see
Appendix A in the ProDev WorkShop: Overview. Note that the View Options
menu is unique to the Static Analyzer. It offers options that extend the range of
the nodes you see in the tree to include nodes not included in the original query.

17. Open the History menu to review the commands you have selected.

18. Choose Exit from the Admin menu to exit the Static Analyzer.

16 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

19. Remove all files generated by the Static Analyzer from the directory by entering
the following command:

% rm cvstatic.* cvdb* vista.taf

Using the Compiler to Create a Static Analysis Database
In this session, you will create a static analysis database by using parser mode.

!
Caution: The steps listed in this section will not work in all cases. You should be
aware of the following limitations:

• Using the C compiler with the -sa flag does not work for o32 programs.
• Using the C++ compiler with the -sa flag for o32 programs may produce error

messages and possibily a core dump file.
• Templates are not supported when using the C++ compiler with the -sa flag for

n32 programs.

1. Move to the /usr/demos/WorkShop/bounce directory by entering the
following command:

% cd /usr/demos/WorkShop/bounce

We will analyze the bounce demonstration program.

2. Create a new subdirectory, by entering the following command:

% mkdir staticdir

This creates the subdirectory in which you will store the static analysis database.
If a directory named staticdir already exists, remove it or use a different name.

3. Type cd staticdir to change directories and then type initcvdb.sh.

The initcvdb.sh script creates the cvdb*.* files necessary for producing the
database.

4. The most convenient method for applying the Static Analyzer parser to a large
group of files is to modify the existing Makefile so that it analyzes the files
without producing object code by entering the following command:

-sa,staticdir -nocode

007–2580–005 17

2: Tutorials for the Static Analyzer

The -sa flag tells the compiler to perform static analysis. Following -sa with
,staticdir tells the compiler to store the results in the staticdir
subdirectory; otherwise, the current directory is used. The -nocode flag saves
time by telling the compiler not to create object code.

!
Caution: The -sa flag should be added only to a Makefile that does a sequential
build. Adding the -sa flag to a Makefile that does a parallel build causes
multiple copies of cc or CC to try to write to the same database. However, the
database accepts only one writer at a time.

5. Enter the following command:

% make -k

This runs the compiler as you have specified in the Makefile. The -k option
instructs the make command to abandon work on the current entry if it fails, but
to continue on other branches that do not depend on the failed entry. This may
take a while. Running parser mode performs all major operations of compiling,
short of creating the object code.

6. Go to the staticdir subdirectory and enter the following command:

% cvstatic -mode PARSER -readonly

This invokes the Static Analyzer set for parsed files. The other mode options are
SCANNER for scanned files and BOTH if you mix scanned and parsed files. The
-readonly safeguard flag protects against inadvertent changes. You can now
perform any valid Static Analyzer operations, as shown in the previous tutorials.

Other Static Analyzer Features
You can find complete information about querying in Chapter 4, "Queries". To explore
on your own, try these commands in the Admin menu that also affect queries:

• Rescan: asks the Static Analyzer to update the cross-reference database by
rescanning any source code files in the fileset that have changed since the last
database update.

• Force Scan: asks the Static Analyzer to update the cross-reference database by
rescanning all source code files in the fileset regardless of whether they have
changed.

18 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

• General Options: offers options that determine how a query treats the text string
entered in the Query Target field and how filenames are displayed.

• Set Include Path: allows you to set a search path of directories where the Static
Analyzer looks for include files that are mentioned in the code contained in the
fileset.

• Save Query: saves the text or graphics results of a query to a file. If the query
results are displayed graphically, this command allows you to select a file to save
the PostScript representation.

!
Caution: As you experiment with queries in tree views, you may be tempted to look
at a coding project that includes millions of lines of code. If so, be sure to use
restricted queries or to use the Results Filter to greatly filter the results of the query.
If you use a very comprehensive query such as List All Functions, the Static Analyzer
may be locked into creating a tree view that consists of hundreds of thousands of
nodes and even more arcs. Not only will you have to wait hours for your results, but
the results will probably be so complicated that they will be meaningless to you.

007–2580–005 19

Chapter 3

Creating a Fileset and Generating a Database

This chapter describes the fileset concept. A fileset is a file that contains the names of
the files you want included in the analysis. You also specify whether these files are to
be analyzed by the faster scanner mode or the slower, more thorough, parser mode.

Before you can perform any static analysis queries, you need to specify the source
code files to be analyzed and then generate a database containing the static analysis
information. This chapter covers the following topics:

• "Fileset Specifications", page 21

• "Using the Fileset Editor", page 25

• "Creating a Fileset Manually ", page 28

• "Using Command-Line Options to Create and Use a Fileset", page 28

• "Generating a Static Analyzer Database", page 29

• "Rescanning the Fileset", page 33

• "Setting the Search Path for Included Files", page 34

• "Changing to a New Fileset and Working Directory", page 35

Fileset Specifications
A Static Analyzer fileset is a single file used to specify the source code files to be
analyzed. There are several methods for creating a fileset:

• Using the Fileset Editor

• Creating a file manually

• Letting cvstatic do it automatically at startup by defaulting to those files in the
current directory that match the expression *.[c|C|f|F]

• Letting cvstatic do it automatically at startup by designating an executable file

• Using the compiler to create a fileset (and database) by adding the -sa,dbdirectory
option to your Makefile

007–2580–005 21

3: Creating a Fileset and Generating a Database

!
Caution: Information in this section will not work in all cases. You should be aware
of the following limitations:

• For C and C++ files, the only set of compiler options that works is the following,
where cvstatic.fileset is the name of the fileset if you do not use -sa_fs (cc -o32
rejects the -sa option):

CC -o32 -sa [-sa_fs | cvstatic.fileset]

• CC -n32 -sa and cc -n32 -sa both produce a fileset but do not produce a
database.

• The -sa flag should be added only to a Makefile that does a sequential build.
Adding the -sa flag to a Makefile that does a parallel build causes multiple copies
of cc or CC to try to write to the same database. However, the database accepts
only one writer at a time.

A fileset is a regular ASCII file with a format of one entry per line, each line is
separated from the next by a carriage return. The fileset always begins with the
following line:

-cvstatic

The other entries can be a mixture of the following entities:

• Regular expressions

• File names

• Included directories preceded by the -I dwsignator

Note: In parser mode only, an entry can be followed by the name of the compile
driver, compilation options such as -ansi, and other user-specified options such as
-D for defining macros (see "Parser Mode", page 30).

Using Regular Expressions

Each line in the fileset can use shell expansion characters, a wild card system in
standard use for specifying file names in UNIX shells. If you enter a standard
pathname (either absolute or relative), the Static Analyzer reads the line literally and
looks for the file. If you use metacharacters such as brackets ([]) and asterisks (*),

22 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

you can specify a number of files with a single line of text. For example, the default
fileset contains the single line:

*.[c|C|f|F]

The asterisk specifies any number of characters (zero or greater) before a period, and
the bracketed set of characters specifies any of following single characters: c, C, f, or
F, after the period. The result is that the line specifies any file names in the current
directory that use one of these extensions.

Do not confuse the shell expansion characters used here with the regular expressions
used in the Fileset Selection Browser window; they are different systems.

Specifying Pathnames

The Static Analyzer resolves absolute pathnames in the fileset from the root; it resolves
relative pathnames from the directory in which you invoke the Static Analyzer,
referred to as the browsing directory. Anytime you change to a fileset in another
directory, however, the Static Analyzer changes the working directory to match so
that any relative filenames in the fileset are resolved from the fileset’s own directory.

Specifying Included Files

Besides specifying file names, the fileset also can also specify directories to search for
included files. The default search files are the current directory and /usr/include.
Any additional search paths are specified with the prefix -I followed immediately
(without a space) by the pathname. For example:

-I/usr/include/gl

This pathname listed in a fileset requests that the Static Analyzer to search through
/usr/include/gl for include files.

Filesets created by the Static Analyzer are named cvstatic.fileset by default. If
you create your own filesets, you can give them any name you want, but by
convention you should use the .fileset extension.

Defining Macros in the Fileset

The Static Analyzer lets you define macros to be included in the database. When you
compile with the -sa flag, the fileset is built with one file per line; lines may also

007–2580–005 23

3: Creating a Fileset and Generating a Database

contain a -I flag for including files, -D for defining macros, or -U for undefining
macros. The Static Analyzer does not normally preprocess source code files before
creating a cross-reference database. Some source code, however, requires
preprocessing to resolve ifdef statements before you can successfully analyze the
code.

The way to perform preprocessing is to specify these symbol names and values in the
file cvstatic.fileset and then run cvstatic from the command line with the
-preprocess flag. Macros are specified at the end of a fileset by appending a line in
the following format for each preprocessor symbol you want to define:

-D symbolname

or

-D symbolname=value

For example, to set the macros DEBUG and BUFFERSIZE, you would append two
lines like the following to the end of the fileset:

-DDEBUG

-DBUFFERSIZE=8

In a similar manner, -U undefines macros. These symbol definitions are used for
processing all files in the fileset.

Note: Using the -preprocess option increases the scanning time tremendously
(scanner mode only). Use it only when absolutely necessary.

Using the Default Fileset

When you start the Static Analyzer in a directory that does not contain a file named
cvstatic.fileset, the Static Analyzer creates a default fileset and saves it as
cvstatic.fileset. The contents of the fileset are:

*.[c|C|f|F]

This line specifies any C, C++, Fortran 77, or Fortran 90 files in the working directory.

24 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Note: This line assumes that C++ files have a .C extension, which may not be the
case for all C++ files because there is not yet a pervasive extension standard. If your
C++ files use.c++, .cc, or other extensions and you want to use the default fileset,
you should edit it to include the extensions you want.

Using the Fileset Editor
The Fileset Editor lets you edit the contents of a fileset. You invoke it by choosing
Edit Fileset from the Admin menu. The contents of the current fileset appear in the
two file lists on the right side of the window; directories and files that you can add to
the fileset appear in the Directories and Files lists on the left.

The Current Fileset field at the top right of the window is a read-only display that
shows the full pathname of the current fileset. The directory displayed here is the
Static Analyzer’s current working directory. You cannot change either the fileset or the
working directory here; to do so, use the Change Fileset selection in the Admin menu.

Below the Current Fileset field, there are two list areas. A fileset can contain two
kinds of files: those that are scanned into and those that are parsed into the database.
(For a complete discussion of scanner and parser mode, see "Generating a Static
Analyzer Database", page 29.) The top list area shows files in the fileset to be parsed,
and the lower area shows files to be scanned. Both list areas have vertical scroll bars
to scroll through long lists and horizontal scroll bars to move left and right through
long file names.

Adding Lines to the Fileset Contents List

Both fileset list areas have entry fields immediately below them that allow you to
enter lines in the fileset. You put the pointer in the line entry field and type. When
you press Enter, the Fileset Editor enters your line in the fileset.

The line entry field interprets each typed line as soon as you press Enter. If you
enter a literal filename such as jello.c or ../bounce/bounce.C, that filename
appears in the fileset list when you press Enter. If you enter a wild card entry such
as *.*, the Fileset Editor interprets it, resolving from the working directory, and
places those filenames that match (not the wild card entry itself) in the fileset list.

007–2580–005 25

3: Creating a Fileset and Generating a Database

If you want to enter a wild card entry in the fileset without having it immediately
interpreted and replaced with actual filenames, turn on the toggle button just below
the line entry area. When this button is on, the Fileset Editor treats all strings you
enter literally; it does not interpret them as shell expansion characters, which allows
you to place wild card lines directly into the fileset. The Static Analyzer interprets
these strings later when you query the fileset.Literal Input

Removing Lines from the Fileset Lists

To remove a line from a fileset list, click on it to select it and then click the Remove
button below the lists. The Fileset Editor removes the line from the list. To remove
more than one line at a time, drag the cursor over a range of files or hold down the
Control key while clicking, then click the Remove button.

Browsing for Fileset Contents

You can use the following lists and buttons on the left side of the Fileset Editor
window to browse through available directories for files to add to the fileset.

Directories List

The Directories list shows the subdirectories available in the current directory. You
can double-click on a subdirectory to move to that directory and see its subdirectories
in the Directories list. The .. entry is the parent directory of the current directory.
Double-click it to move up a directory.

Browsing Directory

The Browsing Directory field just above the Directories list shows the current
directory in which you are browsing. You can use it to type an absolute pathname to
a new directory. First, put the pointer in the area to type and then press Enter. The
contents of the Directories list changes to show the subdirectories of the directory
you entered.

Language Filters

The Files list below the Directories list shows the files contained in the current
directory. You can filter the contents you see there by turning on any or all of the
language filter buttons below the list. If none of these buttons is turned on, the Files

26 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

list shows all files in the current directory. Turning on any single button restricts files
listed to C, C++, or Fortran files:

• The C button restricts files shown to those with .c extensions.

• The C++ button restricts files shown to those with .C, .cc, or .cxx extensions.

• The Fortran button restricts files shown to those with .f or .F extensions.

You can set combinations of these buttons to see different source code file types.

Adding File Names from Lists

If you want to add one or more file names from the Files list to one of the fileset lists,
select the file name and click the Move Files Parser button or Scanner button to the
right of the Files list depending on how you want information extracted from the file.
The Fileset Editor puts the absolute pathname of each file in the fileset list.

To add all the files in a directory to the Fileset Contents list, select the directory name
(or directory names if you want more than one) in the Directories list, then click
either the Parser button or Scanner button to the right of the Directories list. The
Fileset Editor (in its default state) adds only the files contained in that directory and
not files contained within any of its subdirectories.

To add files contained within a directory’s subdirectories, turn on the Include
Subdirectories button. When you click on the Add Directories button with this
button turned on, the Fileset Editor adds all files in directories, subdirectories, and so
on, to the fileset lists.

You can specify the kinds of files the Fileset Editor puts in the Parser Fileset and
Scanner Fileset lists when you click the Add Directories button. To do so, turn on
any of the filter buttons below the Files list.

Transferring Files in the Fileset between Modes

The Fileset Editor lets you change the method of data extraction (parser or scanner)
for files in the fileset. You do this by transferring them from one fileset list to the
other using the two Transfer Files arrows. This is particularly useful when you
discover that a file cannot be parsed. You can then transfer the file to scanner mode,
which is not sensitive to programming languages.

007–2580–005 27

3: Creating a Fileset and Generating a Database

Leaving the Fileset Editor Window

You can close the Fileset Editor window by clicking the OK button or the Cancel
button. Click OK to put all the fileset changes you made into effect. Click the Cancel
button to close the window and return the fileset to the state it was in when you first
opened the Fileset Editor window; your editing changes are ignored.

Creating a Fileset Manually
You can create a fileset, either by using a text editor that saves text in a text-only
format (vi, for example) or by using the output of UNIX commands that return
filenames. You may find the UNIX find(1) command useful for returning all
specified filenames within a directory tree. For example, the following command
creates a fileset of all Fortran 77 files (those with a .f extension) found within the
current directory and all of its subdirectories:

% find . -name ‘‘*.f’’ -print > cvstatic.fileset

You can pipe the output of the find(1) command through filtering commands such
as sed(1) to further modify the fileset created. For example, the following command
finds C files within a directory tree and strips out any .c files left by the C++
compiler:

% find . -name "*.c" -print | sed’/\.\.c/d > cvstatic.fileset

Using Command-Line Options to Create and Use a Fileset
The Static Analyzer provides the following special options when you invoke
cvstatic from the command line:

• The -executable option followed by the file name of an executable file instructs
the Static Analyzer to create a fileset that contains the absolute pathname of every
file used to compile that executable. For example, entering the following
command finds C files within a directory tree and strips out any .c files left by
the C++ compiler:

% cvstatic -executable jello

The executable file must not be stripped because stripped files do not contain the
names of their source files. When using the -executable option, it is a good
idea to use the Fileset Editor to exclude files with incomplete names that can occur

28 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

with files compiled into lib using compilers prior to 4.0.1 or nonsupported
languages like Assembler or Pascal. The -executable option requires that the
executable file be built on the same system as that performing the static analysis.

• The -fileset option followed by the file name of a fileset instructs the Static
Analyzer to start using a fileset other than cvstatic.fileset.

• The -mode flag takes the options SCANNER or COMPILER to indicate the types of
files in the fileset to be used in queries. If you do not use the -mode flag, then
scanner mode will be assumed for those files in the fileset without compiler driver
specifications.

Generating a Static Analyzer Database
The most time-consuming part of the static analysis process is creating the database,
which is a collection of symbols and their relationships. The following two methods
are available for extracting static analysis data from a fileset:

• Scanner mode, which is fast but not sensitive to the characteristics of specific
programming languages

• Parser mode, which is language-specific and thus more thorough

If you need a mix of accuracy and speed, you can combine the two modes by
flagging the files in the fileset according to mode and building the database with the
-mode BOTH flag. You might use this approach if some files cannot be compiled or if
scanner mode is misinterpreting necessary symbols.

Scanner Mode

The quickest way to build a database is to use scanner mode. Since scanner mode is
not sensitive to the characteristics of specific programming languages, it may miss or
incorrectly parse certain symbols (especially in Fortran). If you are analyzing a large
quantity of source code, do not care about minor inaccuracies, and do not need the
language-specific relationships (such as C types) available in parser mode, then use
scanner mode.

Scanner mode is the default method for building a static analysis database. It is run
automatically whenever you create a new fileset or perform a rescan, unless you
explicitly specify parser mode.

007–2580–005 29

3: Creating a Fileset and Generating a Database

Scanner mode creates files named cvstatic.fileset, cvstatic.index,
cvstatic.posting, and cvstatic.xref in the directory in which it is started.
These files comprise the Static Analyzer database for the program.

If the Static Analyzer finds cross-reference files to accompany a fileset, it determines
when they were last updated. It then scans the fileset to see which files have been
modified or added since that date. The Static Analyzer updates the cross-reference
files with cross-references found in modified or added files.

Scanner mode is based on a sophisticated pattern matcher. It works by searching for
and identifying common patterns that occur in programs. Both philosophically, and
in terms of the actual implementation, cvstatic(blank) is most closely related to the
grep(1) command. If you expect cvstatic to produce the type of results that can be
accomplished only with a full-compilation type of analysis, you should use the
compiler-based parser mode. If you think of scanner mode as a sort of “super grep”
command and use scanner mode as most programmers use the grep command to
explore a new program, you can get a quick, high-level look at your code.

Parser Mode

Parser mode is language-specific and slower as a result. Use parser mode when you
need to stress accuracy over speed. Parser mode provides relationship data specific to
the programming languages C, C++, and Fortran 77 such as querying on types,
directories, and Fortran common blocks. Parser mode uses the compiler to identify
entities in the source code, so you must be able to compile a file in order for it to be
parsed. If a source file cannot compile, then you need to flag that file for scanning
and run it through scanner mode.

Preparing the Fileset for Parser Mode

File entries for parser mode take the following general form:

/fullpath/sourcefile drivername options

where:

• drivername refers to the compiler driver and can be f77 for Fortran, ncc for the
Edison C compiler, NCC for the standard C++ compiler, or DCC for the Delta C++
compiler. Note that these are outmoded compilers and may not be available on
your system.

30 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

• options lets you choose language level (-ansi, -cckr, -xansi, or -ansiposix)
and user-specified options such as -I for including files, -D for defining macros,
-nostd, and +p.

The Static Analyzer recognizes the type of language by the file extension. Parser
mode assumes that C files are ANSI unless otherwise specified in the Makefile.

Before processing the files, the Static Analyzer must know where to look for include
files. If you are using parser mode, you need to set the include paths before the Static
Analyzer scans the files, so do this before performing any queries or choosing Force
Scan from the Admin menu.

Invoking the Parser

There are three methods for creating a fileset with parser mode files:

• Enter the files in the parser mode fileset list in the Fileset Editor window.

• Edit the cvstatic.fileset file directly, specifying the compiler and other
options after the file entry.

• Use the compiler to generate the fileset by specifying the -sa[,databasedirectory]
and the -nocode flags. Without arguments, the -sa flag stores the static analysis
database in the current directory. If you enter a comma (,) and a database
directory name, the static analysis database will be stored in the specified
directory. If you specify the -nocode flag, the database will be built without
creating new object files.

!
Caution: Information in this section will not work in all cases. You should be aware
of the following limitations:

• For C and C++ files, the only set of compiler options that works is the following,
where cvstatic.fileset is the name of the fileset if you do not use -sa_fs (cc -o32
rejects the -sa option):

CC -o32 -sa [-sa_fs | cvstatic.fileset]

• CC -n32 -sa and cc -n32 -sa both produce a fileset but do not produce a
database.

• The -sa flag should be added only to a Makefile that does a sequential build.
Adding the -sa flag to a Makefile that does a parallel build causes multiple copies
of cc or CC to try to write to the same database. However, the database accepts
only one writer at a time.

007–2580–005 31

3: Creating a Fileset and Generating a Database

While the database is being built, a window appears displaying any messages from
the parsing process. This helps you find problems if there is code that cannot compile.

Parser mode creates a cvstatic.fileset file and new files named cvdb*.dat,
cvdb*.key, vista.taf, and cvdb.dbd in the current directory. In parser mode,
Force Scan rebuilds the database. Rescan looks at the time stamps of files in the
database and rebuilds pieces only when they are out-of-date.

For more information on creating a database in parser mode, see "Using the Compiler
to Create a Static Analysis Database", page 17.

Parser Mode Shortcuts

If you want to use parser mode but want to avoid waiting for the process to finish,
there are two ways to speed up processing:

• You can use the compiler with the -nocode flag to skip creating object files.

• You can build the Static Analyzer database using the compiler and bring up the
graphic user interface later to read this database.

Size Limitations

The following limitations and shortcomings are largely a consequence of the
grep(1)-like model supported by scanner mode. Still, cvstatic does provide a
more powerful way to approach understanding a set of source files than using the
grep(1) command.

When you use the Fileset Editor to add entire directories of files, you cannot enter
more than 10,000 files. This limit exists to prevent someone from inadvertently
starting at the root of a file system and trying to add all files. Note that there is no
limitation on the number of files that can be added to the fileset when the fileset file
is constructed in other ways, such as compiling source files with the -sa flag, or
emitting a fileset from a Makefile rule.

The Static Analyzer displays a maximum of 20,000 lines of unfiltered results from a
query in the Text View window. Larger results can, however, be saved to a file or
reduced to a more manageable size by using the Results Filter.

The Static Analyzer displays no more than 5,000 functions in the Call Tree View,
10,000 files in the File Dependency View, or 10,000 classes in the Class Tree View.
These are absolute maximum limits, and the actual limits may be much lower
depending on characteristics of the graph being displayed. In particular, all graph

32 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

views are displayed in a scrolled X Window System window, which is sized to
accommodate the graph. The X Window System imposes a maximum size on
windows that graphs cannot exceed. To get around this limitation, you can use one of
the following methods:

• Use more specific queries to focus on the part of the program that is of the most
interest.

• Reduce the scale used to view the graph.

• Use the Results Filter to trim query results.

• Use the Incremental Mode setting in the various graph views or the pop-up
menus on nodes of the graph to follow a specific path through a large tree.

Rescanning the Fileset
After you have generated a database, you can always go back and rescan the fileset.
The Admin menu provides two selections for this purpose:

• Rescan: asks the Static Analyzer to check for new or modified files since the last
scan and to store any cross-references found in new and modified files in the
database. Use this command anytime you have modified source code files during
a Static Analyzer session and you want to ensure that the Static Analyzer reflects
those changes in the cross-reference files.

• Force Scan: asks the Static Analyzer to completely rebuild the cross-reference files,
creating a cross-reference database of all files specified in the fileset, whether or
not they’ve been modified since the last scan. Force Scan also returns the Static
Analyzer to its initial startup state with no query results in the main window and
no past queries stored in the History menu. Use this command to restart the Static
Analyzer and to verify the integrity of its cross-reference files.

There are also two command-line options involved with rescanning the fileset:

• -batch: asks the Static Analyzer to perform the equivalent of the Rescan
selection; it updates the cross-reference files to accommodate new and modified
files in the fileset. It does not open the Static Analyzer’s main window, however,
and it quits the Static Analyzer after the scan is finished. You can use the -batch
option to update cross-reference files for a large set of source code files, using the
Static Analyzer as a background process. Note that you must have a fileset in the

007–2580–005 33

3: Creating a Fileset and Generating a Database

directory where you start the Static Analyzer or that you must specify a fileset
when you start the Static Analyzer, or this option will not work.

• -noindex: stops creation of the .index and .posting files. Therefore, the Static
Analyzer does not create an inverted index for the cross-reference database. This
speeds database creation but slows database query response.

Note: This works in scanner mode only.

Setting the Search Path for Included Files
Whenever the Static Analyzer scans a fileset and finds an included file in source code,
it searches by default for the file in the current directory and then in /usr/include.
If it does not find the included file in either of these directories, it displays a Not
Found dialog box that shows the names of those included files listed but not found in
its search path.

To add directories to the search path for included files, choose Set Include Path and
Flags from the Admin menu to open the Scanning Options dialog box.

The Include Directories list at the top of the box lists all directories that the Static
Analyzer searches in addition to the default search path. To add a directory to the
list, move the pointer to the Directory field below the list, type in a directory name,
then press the Enter key (or click on the Add Directory button). The path should be
relative to the directory in which cvstatic is running. To delete a directory, click its
name in the Include Directories list (this puts it in the Directories field), then click
the Remove Directory button. You can also add flags such as -I for including files,
-D for defining macros, or -U for undefining macros, as described in "Defining
Macros in the Fileset", page 23.

To exclude /usr/include from the Static Analyzer’s search path, click the No
Standard Includes button to turn on the option. Turn on this option whenever you
do not want to scan standard libraries and headers into a .xref file. By eliminating
these files from a scan, you can greatly reduce the amount of data the Static Analyzer
handles, increase its speed, and concentrate query results on your custom code.
However, you will not be able to find data in the header files normally found in
/usr/include.

To close the Scanning Options dialog box, click the Close button. Any directories
you added to the search path are stored as part of the fileset. You will not see the

34 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

directories listed if you open the Fileset Editor window, but you will see them if you
examine the fileset file directly because each added search directory appears in a
separate line with a -I prefix.

Changing to a New Fileset and Working Directory
The Static Analyzer uses only one fileset at a time, and resolves each relative
pathname and general line from its current working directory. To change to a new
fileset or a new working directory, use the Fileset Selection Browser window shown
in Figure 3-1 by choosing Change Fileset from the Admin menu.

a11597

Figure 3-1 The Fileset Selection Browser Window

To load a new fileset, change to the directory in which the fileset is located by using
the File Selection field (either by dragging a folder icon into it or by typing directly).

007–2580–005 35

3: Creating a Fileset and Generating a Database

Then select the fileset in the Files list. Once you change to a new fileset, the directory
where it is located becomes the new working directory.

You can use the File Selection field of the Fileset Selection Browser window to
create a new fileset from within the Static Analyzer. If you enter a new filename such
as custom.fileset in the File Selection field (as part of a full pathname) and then
click OK to accept your new fileset, the Static Analyzer creates a file by that name
and saves any fileset edits you make to that file.

36 007–2580–005

Chapter 4

Queries

This chapter describes how you perform queries, which ask the Static Analyzer for
specific information about the source code files included in the fileset. This chapter
covers the following topics:

• "Defining the Scope of a Query", page 37

• "Making a Query", page 38

• "Viewing Source Code", page 45

• "Repeating Queries", page 46

• "Saving Query Results", page 46

For examples of using queries, refer to "Applying the Static Analyzer to Scanned
Files", page 5, and "Applying the Static Analyzer to Parsed C++ Files", page 12.

Defining the Scope of a Query
The Static Analyzer has two types of queries: comprehensive queries (such as List All
Functions and List Global Symbols) that do not require a query target and specific
queries (such as Who Is Called By? and List Methods In Class) that do require a
query target. Specific query selections in the Queries menu are grayed unless you
supply target text in the Query Target field.

To enter text in the Query Target field, put the pointer in the text area and type. You
can also click an element in the query results area and the Static Analyzer pastes it
into the text area. For example, you can click a function name displayed in the query
results area to enter the function name in the Query Target field.

To make a query based on target text, choose a query from the Queries menu. The
Static Analyzer returns all elements matching the query parameters and the target
text. You can also make a query by pressing the Enter key while the pointer is in the
Query Target field. The Static Analyzer repeats the last type of query you made,
using the contents of the Query Target field as target text.

007–2580–005 37

4: Queries

Target Text as a Regular Expression

The Static Analyzer reads target text in the Query Target field as a regular expression,
which is a system of string constructions used by the UNIX ed(1) command to
construct literal strings or wild card strings. Regular expression syntax is described in
the man page for ed(1).

If you enter target text without using any of the following special characters, the
Static Analyzer reads the text as a literal string and searches only for that text:

\ . * () [^ $ +

If you use special characters to create a wild card expression, the Static Analyzer
searches for a variety of target text in a single query, a useful tool for expanding the
scope of a specific query.

Note: Do not confuse regular expressions with the shell expressions you use to create
a fileset. They are different systems.

Case Sensitivity

The Static Analyzer is case-sensitive and recognizes the difference between uppercase
and lowercase characters in target text during queries. However, if you want to
ignore case in target text during a query (useful for case-insensitive Fortran code),
choose General Options from the Admin menu to open the General Options dialog
box. Click the Ignore Case In Searches button to turn it on, then click the Close
button to close the dialog box.

Making a Query
To make a query, choose a query type from the Queries menu.

The Static Analyzer displays the results in the query results area of the main window.
The following sections describe the queries that you can make from the submenus of
the Queries menu.

38 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

General Queries

The General submenu contains a variety of general purpose queries designed to find
strings or nonspecific program elements. Several of these queries find symbols, which
are programmatic tokens sent to the compiler such as macro names, functions,
variables, and other source code elements. The following general queries are available:

• List Global Symbols: returns all global symbols found in the files defined by the
fileset and ignores any target text. Global symbols are standard elements of code
including functions, macros, variables, classes, and so forth.

• List All Constants: returns all constants in the source code including
enums,named constants, and Fortran 77 parameters.

• Where Symbol Used: expects a symbol name in the Query Target field. Returns
the source code locations of all references to the symbol.

• Where Defined?: expects a symbol name in the Query Target field. Finds all
symbols that match the target text and returns the source code locations where
those symbols are defined.

• Find String: expects a literal string in the Query Target field. Returns source code
locations of all strings that match the target text. When you use this query, you
ask the Static Analyzer not to interpret the target text as a regular expression,
which allows you to use regular expression special characters as part of a literal
text string.

• Find Regular Expression: expects a general expression in the Query Target field.
Returns source code locations of all strings that match the target text.

Macro Queries

The Macros submenu contains queries that deal with macros. The following queries
are available:

• List All Macros: returns all macros found in files defined by the fileset. Ignores
any target text.

• Where Defined?: expects a macro name in the Query Target field. Finds all
macros that match the target text and returns the source code locations where the
macros are defined.

007–2580–005 39

4: Queries

• Where Undefined?: expects a macro name in the Query Target field. Finds all
macros that match the target text and returns source code locations where the
macros are undefined (by using #undef).

• Who Uses?: finds all locations where the macro entered in the Query Target field
is used.

• List Unused Macros: lists macros defined but never used.

Variable Queries

The Variables submenu contains queries dealing with variables. In performing a
variable query, you typically list variables first and then select an individual variable
for further information. Figure 4-1 shows the results of the List All Global Variables
selection with the _lastCmd variable selected. Notice that the variable list has five
columns: Name, Function, File, Line, and Source. These identify the variable, its
function or the notation of global, the file in which the variable is defined or
declared, the line number at which it is first defined or declared, and the actual
source line.

a11598

Figure 4-1 List All Global Variables Results

40 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

From the list resulting from List All Global Variables, you can select individual
variables for specific queries. You do this by clicking the variable name. Figure 4-2
shows the results of a Who References? query.

Current query

Query results

a11599

Figure 4-2 Who References? Results

The column headings in the Who References? results are the same as for List All
Global Variables. In this case, however, the Line and Source fields refer to the line
where the reference took place.

The Variables submenu offers the following types of queries:

• List All Global Variables: returns all global variables found in files defined by the
fileset. Ignores any target text.

• Where Defined?: finds the locations where the variable was defined.

• Who References?: expects a variable name in the Query Target field. Finds all
variables that match the target text and returns all references to those variables.

• Who Sets?: expects a variable name in the Query Target field. Finds all variables
that match the target text and returns all source code locations where the values of
the variables are set.

007–2580–005 41

4: Queries

• Where Address Taken: finds all locations where the address of the variable is
taken.

• List Unused Variables: lists all variables that have been defined or declared but
not otherwise used in the source code.

• Where Allocated: lists all locations where memory was allocated for the selected
variable.

• Where Deallocated: lists all locations where memory was deallocated for the
selected variable.

Function Queries

The Functions submenu contains queries that deal with functions. It operates in
similar fashion to the variable queries; that is, you create a list of functions and select
individual functions for detailed queries. The following selections are available:

• List All Functions: returns all functions it finds implemented in the fileset.
Ignores any target text.

• Where Defined?: returns all source code locations where those functions are
defined.

• Where Function Used: returns all source code locations where the function
appears.

• Who Calls?: returns all source code locations where the function is called.

• Who Is Called By?: returns names of all functions called by the selected (or
entered) function, including the line number and source code where the call is
made.

• List Undefined: returns all functions called but not implemented in the fileset
(usually library functions).

• List Unused Function: returns functions that were declared or defined but not
otherwise used in the source code.

• List Local Declarations: returns all local variables and arguments in the source
code and the line and source code in which the declaration is made.

42 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Files Queries

The Files submenu contains queries that deal with files. The following selections are
available:

• List All Files: returns all files included in the fileset as well as any included files
specified by files within the fileset (such as header files). Ignores any target text.

• List All Header Files: returns all header (filename.h) files in the fileset.

• List Matching Files: expects either a file name in the Query Target field or no
target text at all. If it finds target text, it returns all file names that match the
regular expression. If it finds no target text, it returns the same results as the List
All Files query.

• Who Includes?: expects a filename in the Query Target field or a selected filename.
Returns the names of all files that include the files specified by the target text.

• Who is Included By?: expects a file name in the Query Target field or a selected
file name. Returns the names of all files that are included by the specified files.

Class Queries

The Classes submenu contains queries that deal with C++ classes. The following
queries are available:

• List All Classes: returns all classes it finds in files defined by the fileset. Ignores
any target text.

• Where Defined?: expects a class name in the Query Target field. Finds all classes
that match the target text and returns the source code locations where those
classes are defined.

• List Subclasses: expects a class name in the Query Target field. Returns the
immediate subclasses of the classes matching the target text.

• List Superclasses: expects a class name in the Query Target field. Returns the
immediate superclasses of the classes that match the target text.

• List Methods In Class: expects a class name in the Query Target field. Returns
those methods defined within the classes that match the target text.

007–2580–005 43

4: Queries

Method Queries

The Methods submenu contains queries that deal with C++ member functions, also
called methods. The following queries are available:

• List All Methods: returns all methods in the fileset. Ignores any target text.

• Where Defined?: expects a method name in the Query Target field. Finds all
methods that match the target text and returns all source code locations where
those methods are defined.

• Where Declared?: expects a method in the Query Target field. Returns source
code locations of all class declarations that include methods that match the target
text.

Common Blocks Queries

The Common Blocks submenu applies to Fortran source code only. The following
queries are available:

• List All Common Blocks: lists all common blocks in the fileset.

• List All Symbols in Common Block: lists all symbols used in common blocks in
the fileset.

• Where Common Block Defined: expects a common block in the Query Target
field. Finds all common blocks that match the target text and returns the source
code locations where the common blocks are defined.

• Where Common Block Referenced: returns all source code locations where the
common block appears.

Types Queries

The Types submenu helps you get type information. The following queries are
available:

• List All Types: returns all types used in the source code.

• Where Type Defined: expects a type in the Query Target field. Finds all types
that match the target text and returns the source code locations where the types
are defined.

44 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

• List Functions Of Type: returns all functions of the given type and the source
code locations where they are declared or defined.

• List Data Of Type: returns all data declarations and definitions using the given
type and the source code locations where they are declared or defined.

• Where Type Used: returns all source code locations where the type and where
functions and data items using the type appear.

Directories Queries

The Directories submenu helps you determine the organization of the current fileset.
The following queries are available:

• List Directories: lists all directories in the fileset.

• List Files: lists all files in the fileset.

Viewing Source Code
When the Static Analyzer returns query results, you can look at each element’s source
code. To do this, double-click an element in the query results area, or single-click an
element and then choose Edit from the Admin menu. Either of these actions opens
up the Source View window.

The Source View window opens the file containing the element and highlights the
source line. Although this window is set by default to be read only, you can edit text
if you wish. If you have a configuration management tool installed, you can use the
Versioning selection from the File menu to check out the file for editing.

If you prefer to view source code in a text editor window, choose General Options
from the Admin menu to open the General Options dialog box, which offers the Use
Source View selection. Turn this option off to select vi as your text editor for source
code. To set a different alternate text editor, add the following line to your
.Xdefaults file, where editor is the command for the editor you want to use:

*editorCommand: editor

The next time you use the Static Analyzer with the Source View option turned off,
the editor you specified will appear when you view source code.

007–2580–005 45

4: Queries

Repeating Queries
The Static Analyzer retains a list of your 15 most recent queries and presents them in
the History menu. You can choose any of the queries listed in this menu to repeat the
query. The Static Analyzer remembers the query type and the target text it used; it
does not remember any view settings, such as the view type, view options, or Scope
Manager settings. If you change view settings and then choose a query from the
History menu to repeat the query, the Static Analyzer will return the same query
results but will display them differently.

Saving Query Results
You can save query results by choosing Save Query from the Admin menu to open
the Save Query File Browser window shown in Figure 4-3.

File list

Path navigation bar

Drop pocket

Text entry field

a11600

Figure 4-3 The Save Query File Browser Window

46 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

To save query results, move to the directory in which you want to make the save. To
specify a directory, you can use the path navigation bar, enter a path in the text field,
or drag a folder into the drop pocket. Then click the OK button to save the query
results and close the Save Query File Browser window.

The Static Analyzer saves the contents of the query results area to the file you named
in the Browser. If you are in Text View, the Static Analyzer saves the results in text
format. If you are looking at a graphical view, the graph is saved in PostScript
format. The Static Analyzer adds a heading to the text that lists the query type and
the target text that specified the query. It also includes field headings that match
those at the top of the query results area in the main window.

007–2580–005 47

Chapter 5

Views

This chapter discusses the different views available to display your query results. The
Static Analyzer Views menu contains the following selections: Text View, Call Tree
View, Class Tree View, File Dependency View. The Results Filter selection can be
accessed from the Static Analyzer Admin menu. This chapter covers the following
topics:

• "Text View", page 49

• "Call Tree View", page 51

• "Class Tree View", page 58

• "File Dependency View", page 59

• "The Results Filter", page 60

Text View
Text View is the Static Analyzer’s default display for query results. Because this view
is limited to text, it displays query results faster than any of the tree views.

Text View provides labels at the top of the query results area (as shown in Figure 5-1)
that identify the query type, show the extent of Results Filter reductions (called the
Scoping field), and label the columns in the query results area. Below the labels, the
Static Analyzer lists the elements returned by a query, one element per line.

007–2580–005 49

5: Views

Scoping field

Type of query

Column labels

a11601

Figure 5-1 Sample Text View

Text View’s arrangement of information within each element line depends on the
query type. The left field always lists the type of element for which you have
searched. Fields to its right show the location of that element and, if applicable, the
content of the source code line where the element is located. For example, Text View
shows the results of a function query with the function name in the first field, the file
name where the function is located in the second field, the line number of the source
code line where the function is defined in the next field, and the text of the line in the
last field. For class queries, Text View shows any superclasses of returned classes, and
for method queries, it shows the class where each method is defined.

Use the horizontal and vertical scroll bars to scroll left and right to see the full
contents of long lines or up and down to work through long lists of elements
respectively. To see more information at one time, you can enlarge the Static Analyzer
window by dragging a corner.

To see the source code listing where an element occurs, double-click any element line
to open the Source View window. It displays the selected element in the middle of
the window, surrounded by adjacent code.

50 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Text View normally shows filenames in the query results area as short base names. If
you want to see the directory as well as the file name (or at least as full a pathname
as the Static Analyzer can find), use the Full Pathnames option from the General
Options selection of the Admin menu.

The Static Analyzer normally presents elements in the order in which they appear
within each file of the fileset. To sort the elements in alphanumerical order by a single
field, click the field you want within any element line, then choose Sort from the
Admin menu. The Static Analyzer sorts the elements in ascending order by that field.

Call Tree View
Call Tree View is designed to display functions and the static calls between them in a
graphic tree form. Because it is intended for functions, it shows results only for
function queries, not for other types of queries such as file and class queries. A line of
text above the query results area identifies the last type of query made and shows the
extent of Scope Manager reductions.

To use Call Tree View (shown in Figure 5-2), choose Call Tree View from the Views
menu. It presents each function in the query results area as a node (a small movable
box labeled with the function name) and each function call as an arc (an arrow drawn
from the calling function to the called function). Because function relationships are
presented in a tree structure, higher-level functions normally appear on the left side
of the window. They call lower-level functions located farther to the right.

007–2580–005 51

5: Views

a11602

Node

Arc

Figure 5-2 Call Tree View Displaying Functions and Function Calls

The Static Analyzer Control Panel

The Static Analyzer view control panel (shown in Figure 5-3) below the query results
area offers a set of controls you can use to change the view. They help you see query
results in the format most useful to you.

52 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Zoom menu

Zoom out button

Zoom in button

Overview button

Multiple arcs button

Realign button

Rotate button

View Options menu a11603

Figure 5-3 The View Control Panel

To change the scale of the call tree in the query results area to see more or less of the
tree at one time, use the zoom controls: the Zoom menu and the Zoom In and Zoom
Out buttons. If the tree you are viewing does not fit within the boundaries of the
query results area, you can view other parts of the tree by using the scroll bars or
clicking the Overview button and navigating in the Overview window. By default,
Call Tree View shows only a single arc between two functions, even if the calling
function calls more than once. To see multiple calls between functions in the call tree,
click the Multiple Arcs button. After maneuvering nodes, you can return them to
their default positions by clicking the Realign button.

The Static Analyzer’s default tree orientation is horizontal; the tree grows from left to
right. To see vertical tree orientation, that is, top-down (or to toggle back to
horizontal), click the Rotate button.

The Call Tree View allows you to directly manipulate nodes and arcs in the query
results area. You can hide, reveal, and rearrange nodes, and you can select a node or
an arc to view either a function or a function call in the Source View window.

For more information on the graph controls and node/arc manipulation, see the
ProDev WorkShop: Overview.

Setting View Options

The View Options menu (at the lower right of the window) has four view selections
that change the number of nodes you see in the query results area and change the
way query results are cleared between queries. To open the menu, move the pointer

007–2580–005 53

5: Views

over it and hold the left mouse button down. Drag up or down to the selection you
want, then release the button. The following selections are availabe:

• Query Only: shows only the target and results of each query in the query results
area. Each time you make a new query, the results of the old query are cleared
before the new results appear. This is the default selection.

• Incremental Mode: leaves results of the previous query in the query results area
and adds the results of the latest query to the nodes and arcs already on the
screen, so you can incrementally build a tree as you follow function calls.

Shows the target and the results of the last query in target-and-result colors. All
other nodes are shown in a different color so that you can see which nodes were
returned by the query and which nodes were there before the query.

• All Defined: shows at all times a complete tree of all functions defined (that is,
implemented) within the fileset. When you make a function query, it shows the
query target-and-result nodes in target and result colors. All other nodes appear
in the nonquery color, so that the query results stand out as a subtree within the
overall function tree.

• Complete Tree: shows a complete tree at all times of all functions known within
the fileset, regardless of whether they are defined. The display includes all the
defined functions shown in All Defined display mode and adds any functions
called but not defined. Because these include calls to external libraries, even a
small program can generate a very large tree. The Complete Tree selection, like
the All Defined selection, shows the results of any queries you make by
highlighting in target-and-result colors, leaving all other nodes in nonquery colors.

!
Caution: The Complete Tree selection can easily create unmanageably large trees for
even small programs, so use it with care.

Viewing Function Definitions and Calls in Source View

To view a function definition in Call Tree View, either select the function’s node and
choose Edit Selected Item from the Admin menu, or double-click the function’s node.
The Source View window opens with the beginning of the function definition
highlighted amid surrounding code.

Call Tree View offers a Source View function not available in Text View. With Call
Tree View you can view a function call by double-clicking an arc that connects two

54 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

functions. The Source View window shows the line of code (listed within the calling
function) that calls the called function. You also can get the same results by selecting
an arc and then choosing Edit Selected Item from the Admin menu.

Tutorial: Working in Call Tree View

This tutorial traces function calls in Call Tree View using the Incremental Mode and
All Defined viewing options. It first goes from higher- to lower-level functions using
queries, and then returns to higher-level functions by showing parent nodes by using
the Node menu.

Note: To compile the jello demo (from WorkShop.sw.demos), the
gl_dev.sw.gldev subsystem must be installed.

1. Move to the demo directory jello by entering the following command:

% cd /usr/demos/WorkShop/jello

2. Enter the following command to make sure that no fileset and cross-reference files
exist in the directory, so that the Static Analyzer will create its own standard
default files:

% rm cvstatic.*

3. Start the Static Analyzer by entering the following command:

% cvstatic &

4. Select Edit Fileset from the Admin menu and move the jello.c file into the
Scanner Fileset field by using the Move Files Scanner button. Click OK.

This creates the fileset for this tutorial.

5. Choose Call Tree View from the Views menu to put the Static Analyzer in Call
Tree View.

6. Choose Incremental Mode from the View Options menu on the bottom right
side of the control panel to turn on the Incremental Mode view option.

7. Move the pointer into the Query Target field and type main.

8. Choose Who Is Called By from the Functions submenu of the Query menu to
find the functions that main() calls.

007–2580–005 55

5: Views

The Static Analyzer displays a node named main on the left side of the query
results area, which displays in the target color for this scheme. It is connected by
arcs to a set of lower-order function nodes to the right, all in the result color.

9. Drag the vertical scroll bar of the query results area down until you see the
draw_everything node, then click on it to select it.

The draw_everything node appears in the Query Target field.

10. Move the pointer into the Query Target field, then press Enter.

The Static Analyzer repeats its last query using the new target and returns
draw_everything nodes to its right. The nodes from the previous query, main
and its other children, still appear in the query results area in a nonquery color.

11. Select the result node draw_jello by moving the pointer into the Query Target
field and pressing Enter to search for all functions called by draw_jello().

The Static Analyzer returns draw_jello as a target node with result nodes to its
right as shown in Figure 5-4. The nodes from the two previous queries are still in
the query results area.

56 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Activity history

Current target

a11604

Figure 5-4 Incremental Mode Example

12. Choose 15% from the Zoom menu to set scaling to 15%.

The call tree reduces in size so that you can see all of the full call tree, although
the function names are too small to be readable.

13. Hold down the right mouse button over any node in the tree.

The corresponding Node menu displays, and the name of the function appears at
the top of the menu. By using this method, you can see a large part of a tree and
orient yourself by displaying the node menus (see Figure 5-5).

007–2580–005 57

5: Views

Pointer over
selected node

Node menu with
function name

a11605

Figure 5-5 Displaying Node Information at Reduced Scale

14. Click a node towards the top of the call tree and choose 100% from the Zoom
menu.

This returns you to viewing at 100% and demonstrates one technique for
navigating around a large call tree.

Class Tree View
Class Tree View, which you set by choosing Class Tree View from the Views menu,
displays a class inheritance tree containing the classes found in C++ files in the fileset.
It is not intended for nonclass elements, and it will not show the results of function,
file, and method queries.

58 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Class Tree View looks almost identical to Call Tree View. It includes a line of text
above the query results area that lists the last query and the extent of Results Filter
reductions. It shows elements in the query results area using nodes and arcs and
offers a control panel to change the view in the query results area. The main
difference is that each node in Class Tree View represents a class instead of a function,
and each arc shows inheritance instead of a function call. Class trees in horizontal
orientation move from superclasses on the left to subclasses on the right.

When you make class queries in Class Tree View, the Static Analyzer uses colors in
the same way that it does in Call Tree View. A target color indicates target nodes, a
results color indicates result nodes, and a nonquery color indicates nodes not
returned by the last query. The view controls also work the same way, with one
minor variation. The Multiple Arcs button has no effect because no multiple
inheritances exist in a class tree.

The selections in the Node and the Selected Node menus work the same way they do
in Call Tree View, working through parents and children of existing nodes, but they
follow class inheritance instead of a chain of function calls. Using the Source View
window in Class Tree View has one minor difference. You can double-click a node to
view source code for a class, but you cannot double-click an arc to see an inheritance.

File Dependency View
File Dependency View, which you set by choosing File Dependency View from the
Views menu, displays the include relationships between files in the fileset. File
Dependency View is similar to Class Tree View and offers the same controls, colors,
and menus. The main difference is that each node in this view represents a file in the
fileset instead of a function, and each arc shows the inclusion of one file by another.
An arc leads from the including file to the included file.

Although File Dependency View displays only files, it can provide useful information
when used in conjunction with other types of queries. For example, if File
Dependency View is displayed and you select Where Used from the Function
submenu, those files containing the specified function will be highlighted.

File Dependency View shows you the dependency between files. If you double-click
arcs in this view, you can see from where files are imported and also definitions of
where files are brought in.

An include tree in horizontal orientation places including files on the left and
included files on the right. If you use selections from the Node and Selected Node

007–2580–005 59

5: Views

menus to work through parents and children of existing nodes, you follow include
relationships. A child of a node is a file included by that node; a parent of the node is
a file that includes that node.

The Results Filter
The Results Filter is a tool that works in all of the Static Analyzer’s views.

The Results Filter filters the view to show you a subset of all results returned by a
query. The Results Filter filters only the view of query results, not the results
themselves. For example, if a function query returns 18 functions and the Results
Filter is set to filter out 5 of them, the query results area shows only 13 functions. The
Static Analyzer, however, retains all 18 functions returned by the query; it simply
hides the 5 functions filtered by the Results Filter. If you turn off all filters in the
Results Filter, you will see all 18 functions in the query results area.

When the Results Filter is set to filter, its filters remain turned on to affect the view of
any future queries you make. For example, if the Results Filter is set to filter out all
elements contained in header files, it does so for all queries that follow. It removes
variables found in header files from a List All Global Variables query, and it removes
header files from a List All Files query. You must turn off the filters if you want to
see the full results of a query.

The Scoping line, located just above the right corner of the query results area, tells the
extent of any filtering performed by the Results Filter. It lists two numbers separated
by a colon; the first number is the number of elements returned after filtering and the
second is the full number of elements returned by the query. For example, the
following sample scoping line tells you that 154 elements were returned by the current
query, and after filtering, the Results Filter shows 78 of them in the query results area.

Scoping: 78:154

Setting Results Filters

To open the Results Filter window shown in Figure 5-6, choose Results Filter from
the Admin menu.

60 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

a11606

Figure 5-6 The Results Filter Window

The Results Filter has seven different scope filters. The first five filters provide fields
in which you can enter regular expressions that allow you to specify a literal string of
characters or a wild-card expression that matches a set of strings. The last two filters
require specific files and functions.

Note: Regular expressions accepted by the Results Filter are the same as those
supported by the ed(1) command. Refer to the ed(1) man page for details.

The following filters are available:

• Name: filters by the Name field in Text View. The Name field can list variables for
a variable query, target functions for a function query, or other parts of elements,
depending on the query type.

• Function: filters by the Function field in Text View. This field can list functions
called by a target function, functions that define local variables, and other types of
functions, depending on the query type.

007–2580–005 61

5: Views

• File: filters by the File field in Text View. This field can exclude elements
contained in specified files or show only elements contained in specified files.

• Directory: filters by the Directory field in Text View. This field can exclude
elements contained in specified directories or show only elements contained in
specified directories.

• Source: filters by the Source field in Text View. This field can exclude or constrain
elements according to strings contained in lines of source code.

• Headers: filters according to whether elements are contained in a header file.

• External Functions: filters according to whether elements are contained in
externally defined functions.

Although the first five scope filters work using fields in Text View, their results are
the same in tree views such as Call Tree View. They sort by invisible criteria in these
views. For example, you can sort with the Source scope filter in Call Tree View, even
though Call Tree View does not show the Source field for each function it displays.

Filtering by Name, Function, File, Directory, and Source

To filter using the first five scope filters, enter a regular expression in the appropriate
text area, and then click on either the Constrain or Exclude button following the text
area. Constrain filters elements so that only those that match the regular expression
in the appropriate field are displayed in the query results area. Exclude filters
elements so that elements that match the regular expression in the appropriate field
are not displayed in the query results. For example, if you enter jello.c in the File
scope filter and click the Constrain button, the Static Analyzer displays only elements
found in the file jello.c.

To turn off filtering by any one of these five filters, delete all text from its text area.

Filtering by Header Files and External Functions

The Headers scope filter allows the following options:

• Include: displays elements found in header files in addition to elements found in
other files.

• Constrain: displays only elements found in header files.

• Exclude: displays only elements not found in header files.

62 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

The External Functions scope filter also has three options:

• Include: displays elements found in externally defined functions (functions
defined in files outside of the fileset) in addition to elements found in internally
defined files.

• Constrain: displays only elements found in externally defined functions.

• Exclude: displays only elements not found in externally defined functions.

To turn off filtering by using either of these two filters, click their Include button.

Combining Results Filters

You can use results filters singly or in combination to limit the elements you see to a
very specific subset of the query results. For example, you can set the File filter to
show only elements found in the file jello.c. You can then further refine the
filtering by setting the Function filter to show only elements found in the function
draw_everything(). The Static Analyzer combines these two filters to show only
elements found in the function draw_everything(), which is contained in the file
jello.c.

Using the Results Filter Buttons

The Results Filter window displays the following buttons along the bottom of the
window:

• Apply: applies current scope settings to the query results area to filter out
elements. The Static Analyzer automatically applies scope settings whenever you
click the Include, Exclude, or Constrain button, so you do not usually need to
click the Apply button.

• Clear: clears text from all text fields and returns the bottom two filters to the
Include setting. Click on Clear whenever you want to turn off filtering by the
Results Filter.

• Close: closes the Results Filter window.

• Help: opens the Help window, where you can find information about the Results
Filter window.

007–2580–005 63

5: Views

Tutorial: Using the Results Filter

This tutorial uses the Results Filter to see, in Text View, selected methods in a fileset
of C++ files. It first filters the methods by file and then filters them further by a string
found within each method’s source code line.

1. Move to the demo directory bounce by entering the following command:

% cd /usr/demos/WorkShop/bounce

2. Enter the following to make sure that no fileset and cross-reference files exist in
the directory so that the Static Analyzer will create its own standard default files:

% rm cvstatic.*

3. Start the Static Analyzer by entering the following command:

% cvstatic &

4. Use the Fileset Editor to create a fileset for bounce. If you need help, refer to
"Steps in Static Analysis", page 3

5. Choose List All Methods from the Methods submenu of the Queries menu.

The Static Analyzer displays all methods found in the fileset. It uses Text View.
The Scoping field reads 196:196, which means that all 196 elements returned by
the query are displayed in the query results area. Your version of bounce may be
slightly different.

6. Choose Results Filter from the Admin menu to open the Results Filter window.
When it appears, drag it from on top of the Static Analyzer window so that you
can see the query results area.

7. Move the pointer to the File field in the Results Filter window, type
Application.h, and click the Apply button.

The Static Analyzer shows only the methods found in the file Application.h.
The Scoping field shows 16:196, which means that you see only 16 elements of
the 196 returned by the current query.

8. Move the pointer to the Source field, type virtual, and click the Apply button.

The Static Analyzer further filters the view as shown in Figure 5-7, page 65,
showing only the methods found in the file Application.h that include the
string virtual in their source code line. The Scoping field shows 5:196.

64 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

9. Click the Clear button.

The Static Analyzer clears all text fields and turns off all Results Filter filtering.
All elements of the recent query return to the query results area, and the Scoping
field shows 196:196.

10. Click the Close button to close the Results Filter window.

a11607

Figure 5-7 The Results Filter Query Results

007–2580–005 65

Chapter 6

Working on Large Programming Projects

The Static Analyzer works on uncompilable code, analyzes filesets containing files
from completely different programs, and presents query results in a graphic form that
is easy to browse. This flexibility can bring unproductive results, however, if you use
the Static Analyzer carelessly on hundreds of thousands (or millions) of lines of code
that are typical of a large programming project. To be effective, you must narrow
your analysis to a meaningful portion of your project, or you may end up with results
so extensive that they have little meaning.

This chapter recommends techniques to help you get the best results when using the
Static Analyzer for large programming projects. It covers the following topics:

• "Creating a Fileset Using a Shell Script"

• "Customizing the Fileset for Individual Code Modules", page 68

• "Using the Results Filter to Focus Queries", page 68

• "Applying Group Analysis Techniques", page 69

Creating a Fileset Using a Shell Script
Creating a fileset for a large programming project can be difficult to do by hand
because the source code files may be scattered throughout many different directories.
If so, you can use a shell script to create a fileset for you.

The following lines of code show a shell script that searches through a list of
directories for file names with extensions that indicate source code files:

rm -f cvstatic.fileset

DIRS="/usr/local/src /usr/src "

EXTENSIONS="*.c++ *.c *.f"

for DIR in $DIRS
for EXT in $EXTENSIONS

do

find ${DIRS} -name "$EXT" -print >> cvstatic.fileset

done

done

007–2580–005 67

6: Working on Large Programming Projects

The first line removes the old fileset. The DIRS second line sets the search pattern
and assigns a list of directories you want searched. Put the pathname of any directory
you want searched in between the quotes following DIRS, and put a space between
pathnames.

The third line creates a list of the file extensions for which you want to search. Use
shell metacharacters to create list entries. In this example, the script looks for any
filenames that end in .c++, .c, or .f. To create an extension list that looks for
different extensions, use shell metacharacters to spell out the extensions you want,
and put the entries between the two quotes following EXTENSIONS. Be sure to put a
space between each entry.

The six-line nested loop at the end of the script looks through each directory in the
DIRS search path and returns any files that match the list of file extensions in
EXTENSIONS. Be sure to put a space between each entry.. It puts the names of all
returned files into the file cvstatic.fileset in a form that the Static Analyzer
reads as a fileset.

Once you create a fileset with a shell script, you should look at the fileset before you
make any queries. If you find libraries included in the fileset, you may want to
remove them so that you don’t have to analyze the internal workings of each library
function. You may also want to remove all files that do not apply to your specific
area of the project.

Customizing the Fileset for Individual Code Modules
Most programming projects are organized so that the source code is organized in
modules, with individual programmers taking responsibility for different sets of
modules. The Static Analyzer allows you to analyze each module separately, even if
the module will not compile without other parts of the system. You can see your own
code in detail and see calls into other modules without having to view the contents of
those modules. You also reduce the size of the cross-reference database with which
you work, which speeds up the time the Static Analyzer takes to refresh the database
and to complete queries of the database.

Using the Results Filter to Focus Queries
Once you create a reduced fileset, you can further improve the efficiency of your
analysis by setting the Static Analyzer’s Results Filter. The Results Filter’s Headers
and External Functions settings are particularly useful for large programming projects.

68 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

If you set Headers to Exclude, you prevent the Static Analyzer from taking time to
display query results that come from header files. And, if you set External Functions
to Exclude, you ensure that the Static Analyzer does not display query results from
libraries and other nonfileset files.

For example, consider the function foo(), which calls bar(), a function in the
fileset. It also calls XtCreateWidget(), a library function that is not in the fileset. If
you set External Functions to Exclude and then make the query Who Is Called By
foo?, the Static Analyzer will display only bar().

Although the Results Filter does not reduce the time the Static Analyzer takes to
make a query, it does reduce the time it takes to display the results, a substantial gain
if you are using a tree view to display the results of comprehensive queries.

Applying Group Analysis Techniques
Although it is good practice for individual programmers to limit the amount of
source code they analyze with the Static Analyzer to just the modules for which they
are responsible, sometimes it is necessary to analyze all files in a programming
project. For example, library programmers may want to know every function that
calls a specific library function. That way, they know what software is affected by
changes they make to the library function.

For this and similar cases, you should create a comprehensive cross-reference
database on a project workstation as shown in Figure 6-1. This arrangement allows
users on personal workstations to query the extensive project database without
actually creating the database.

007–2580–005 69

6: Working on Large Programming Projects

Project workstation

Static Analyzer

Project fileset and
cross-reference

database

Personal workstation

Static Analyzer

Personal fileset and
cross-reference

database

Personal workstation

Static Analyzer

Personal fileset and
cross-reference

database

NFS mount

a11608

Figure 6-1 A Project Cross-Reference Database

Setting Up a Project Database

To create a project cross-reference database, you first need a comprehensive fileset for
the programming project. To maintain consistency, the programmer in charge of
checking in files for builds should make and maintain the fileset. If the source tree
uses a consistent set of directories, the build programmer can use a shell script like
the example earlier in this chapter to update the fileset automatically.

Once the fileset is up to date, the build programmer creates a cross-reference
database. Because it can take a long time to create a cross-reference database for a
large programming project, you can save time by using the -batch command-line

70 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

option when you start the Static Analyzer. This option runs the Static Analyzer in the
background, keeps the Static Analyzer window from opening, and reduces the time
necessary to create a cross-reference database.

It may be useful to run the Static Analyzer in batch mode on the server once a night.
This provides a fresh database for programmers who wish to query it from their own
workstations. To protect the shared database from automatic modification by outside
users, be sure that read and write permissions for all four Static Analyzer files on the
server (cvstatic.fileset, cvstatic.xref, cvstatic.index, and
dcvstatic.posting) deny write access to outside users.

Querying a Project Database

To query a project database from a personal workstation, you must first mount the
project database in a local directory using the Network File System (NFS). You then
start the Static Analyzer using command line options to specify the project fileset and
to set the Static Analyzer to read only so that it will not try to modify the project
database. For example, the following command starts the Static Analyzer, sets it to
read-only, and directs it to the project fileset, which is NFS-mounted in the directory
/project:

% cvstatic -readonly -fileset /project/cvstatic.fileset

The -readonly command line option sets the Static Analyzer so that it will not try
to rebuild the project database. The -fileset command line option sets the fileset to
cvstatic.fileset, which is NFS-mounted in the directory /project.

When you make queries on a large project database, use caution and common sense.
Comprehensive queries such as List All Functions will not yield useful results as too
much code is displayed at one time. Comprehensive queries like this may also take a
good deal of time to complete. It is more productive to take a task-oriented approach
when querying. Ask what you really need to know in the project, then make the most
specific query that answers your questions. For example, if you get a bug report on a
function, you might use specific queries such as Where Defined, Who Calls, or Who
Is Called By to get the information you need about that function.

Viewing Suggestions

If you need to make comprehensive queries on a large database, consider the
following viewing tips:

007–2580–005 71

6: Working on Large Programming Projects

• Use Text View for your queries. Because Text View does not require the Static
Analyzer to build a tree containing thousands of elements, it is much faster at
displaying the results of a comprehensive query than any of the tree views.

Although Text View does not show connections between calling and called
functions in the query results area, you can easily follow a chain of functions.
First, click the function name you want. Then press Alt-B to see which functions
it calls or press Alt-C to see which functions call it.

• Because the tree views show relationships between query elements more clearly
than Text View, you may want to use tree views to display the results of some
queries. If so, you can reduce the time the Static Analyzer needs to display tree
view results by observing a few limitations.

Use the Query Only and the Incremental Mode viewing options to restrict the
number of elements displayed for a query.

In Incremental Mode, you can build a tree from scratch by making very specific
queries that identify and follow only the branch of the tree in which you are
interested. For example, you may want to follow a chain of function calls starting
with main(). If so, start with the query Who Is Called By main?. Find a function
among those called that you want to follow, then query the Static Analyzer for the
functions called by that function. As you continue through the call chain, the Static
Analyzer displays only the branch of the call tree that applies, not the entire tree.

• You should also consider viewing query results in a tree view that offers coarser
resolution than you normally use. For example, File Dependency View displays
file elements, each of which may contain many functions. This is a much coarser
view of the database than that offered by Call Tree View, which displays functions
individually in function elements. If you make a query such as Who Calls while
in File Dependency View, the Static Analyzer shows you each file that contains
called functions. You can then open the Source View window for one of those
files; it highlights each called function in its display area. The same query in Call
Tree View would show you each called function in tree form, but would probably
require many more elements to show query results and would take much longer
to return results.

72 007–2580–005

Chapter 7

Getting Started with the Browser

This chapter is designed to introduce you to the Browser, a facility accessed from the
Static Analyzer that shows specific C++ relationships. This chapter describes what
you need to run the Browser, shows you how to start it, and presents a brief overview
of its main window and menus. To see examples of using the Browser, see Chapter 8,
"Browser Tutorial for C++", page 79.

This chapter contains the following sections:

• "Starting Browser View", page 73

• "General Characteristics of the Browser", page 74

Starting Browser View
After you have created a fileset and built a static analysis database, you are ready to
make object-oriented queries using the Browser. To access the Browser, open the
Admin menu in the Static Analyzer and select Browser. The Browser View and the
Browsing Choices windows appear as shown in Figure 7-1.

007–2580–005 73

7: Getting Started with the Browser

a11609

Figure 7-1 Browsing Windows

The Browsing Choices window lets you select an item from the fileset to be
displayed in the Browser View window. The Browser View window then displays
detailed information on the item.

General Characteristics of the Browser
The Browser View window shows you the internal structure and relations of the item
you have selected in a textual, outline format. You can also select components of the
item and perform queries on them. The results of queries are highlighted in Browser
View and can also be displayed in the Static Analyzer. Browser View can display the
contents of C++ entities. For the language-specific characteristics, see Chapter 8,
"Browser Tutorial for C++", page 79 for a C++ sample session.

74 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Browser View Outline Lists

The Browser displays its data in outline lists in two side-by-side panes in the Browser
View window. The lists are in a hierarchical, expandable outline format organized by
category. The left pane displays an individual entity and its internals and the right
pane displays other items to which that entity is related. When you are looking at
C++ code, Browser View displays individual classes and their members in the left
pane, and related classes and members in the right pane.

Outline Icons

An outline icon is a diamond-shaped, concave icon. It appears to the left of
component categories in the lists displayed in the Browser. An outline icon is used to
expand or collapse a category. The icon contains an arrow pointing downward if the
category is expanded (all items displayed) or to the right if the category is collapsed
(all items hidden). Clicking the arrow switches back and forth between collapsing
and expanding the category. A right-pointing outline icon that appears filled indicates
that one or more of the hidden items satisfy the current query. Figure 7-2 illustrates
these conditions.

Collapsed list with
no query matches

Expanded list

Collapsed list with
query matches

a11611

Figure 7-2 Outline Icon Examples

007–2580–005 75

7: Getting Started with the Browser

Browser View Menus

The Browser View window provides the following menus:

• Admin menu—for general housekeeping.

• Views menu—for displaying relationships in a graphical format. You can request
four variations of class graphs based on these relationships:

– Inheritance, which describes the relationship of parent classes to derived classes

– Containment, which describes the relationship of container classes to the classes
they contain

– Interaction, which describes the relationship of classes using methods of other
classes

– Friends, which describes the relationship of classes declaring other classes as
friends

You can also request a call graph to view the relationships of selected methods or
functions.

• History menu—for going back to a previous Browser activity.

• Queries menu—for performing queries on the current item. (You can also perform
queries on a selected element in either pane by holding down the right mouse
button. These popup queries menus have different selections depending on the
type of element.)

• Preference menu—for changing the appearance of the display and the behavior
enacted by double-clicking with the mouse.

Other Browser Window Features

The Current Subject field displays the name of the item you have selected. Its label
indicates the kind of item being displayed. Note that the Current Subject field
provides a form of file completion; if you enter the partial name of an item and then
press the space bar, the name will be completed up to the point that a unique string
can be found.

The Show in Static Analyzer toggle lets you display the results of any queries in the
Static Analyzer window. The Static Analyzer shows more detail, including source
information, than the Browser View does.

76 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

The Last Query button lets you display the result of the previous query to the Static
Analyzer.

The Browser has annotated scroll bars. This means that when you perform a query,
tick marks will appear in the scroll bars (if there are any) to indicate matching
elements.

007–2580–005 77

Chapter 8

Browser Tutorial for C++

This tutorial demonstrates the main features in the Browser. It outlines common tasks
you can perform with the Browser, using sample C++ source code to illustrate the use
of each function.

Sample C++ Session
The demonstration directory, /usr/demos/WorkShop/bounce, contains the
complete source code for the C++ sample application bounce. To prepare for the
session, you must create the fileset and static analysis database, then launch the
browser from the Static Analyzer.

Procedure 8-1 Preparing for the sample session

Prepare for the session by following these steps:

1. Open a shell window and change to the /usr/demos/WorkShop/bounce
directory.

2. Start the Static Analyzer by entering cvstatic &

The Static Analyzer window opens.

3. Select Browser from the Static Analyzer Admin menu.

This starts the Browser if a parser mode static analysis database has already been
built.

If no database is available, an error message appears, and you must specify a
parser mode fileset. Select Fileset Editor from the Admin menu and follow the
steps as as shown in Figure 8-1. Then you need to select Browser from the
Admin menu again. This causes a new database to be built using parser mode
and takes several minutes to complete.

4. The Browsing Choices chooser window opens at the same time as the Browser
View window so that you can select the first class. The Browsing Choices
chooser window contains the complete list of C++ classes included in the current
fileset. Locate the Actor class in the chooser window. See Figure 8-2.

007–2580–005 79

8: Browser Tutorial for C++

1. Click the C++ button to select
all C++ files in the directory.

2. Click the Move Files Parser button
to indicate they are to be parsed.

3. Click OK to complete the
specification.

a11612

Figure 8-1 Steps in Specifying a Parser Fileset (C++)

80 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Actor class

a11613

Figure 8-2 Initial Display with Item Selected

Procedure 8-2 Understanding the Browser View Window

1. Double-click the Actor class in the chooser window. The Browsing Choices
window closes, and the data for Actor now appears in the Browser View
window. The class name Actor is displayed in the Current Subject text field.
Information about the class appears in the outline list views in the side-by-side
panes (see Figure 8-3). Actor is now the current subject (class).

007–2580–005 81

8: Browser Tutorial for C++

Member list

Outline icon indicating
collapsible category

Outline icon indicating
expandable category

Static Analyzer
toggle

Relations list

a11614

Figure 8-3 Browser View Window with C++ Data

2. Examine the screen contents for the Browser View window.

The member list is on the left. It displays members according to their
accessibility: PUBLIC, INSTANCE, or PRIVATE.

Each kind of member can be STATIC or INSTANCE (nonstatic). Static objects of a
given class contain the same value for a given member. INSTANCE members can
contain different data values in different instances of that class.

The member pane displays four kinds of class members: TYPES, DATA, METHODS,
and VIRTUAL METHODS.

The relations list is on the left right side of the Browser View window. It displays
information on related classes and methods, based on the point of view of the
current class: BASE CLASSES, DERIVED CLASSES, USES (classes that the
current class uses), USED BY (classes that the current class is used by),
FRIENDS, FRIEND FUNCTIONS, and FRIEND OF relationships.

The layout of both list displays are customizable.

82 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Procedure 8-3 Expanding and Collapsing Categories

1. Click the outline icon to the left of the PROTECTED category (see Figure 8-3, page
82).

This displays the elements in the PROTECTED category and causes the arrow in
the outline icon to point downward.

2. Then click the outline icon to the left of the PROTECTED category again. This hides
the elements and causes the arrow in the outline icon to point to the right again.

Procedure 8-4 Making Queries

1. Click the Queries menu and examine the results.

Queries search the static analysis database for specific information about classes
and their members, including class hierarchy, class and member declarations and
definitions, and the interactions among members and classes (for example, which
members call which members, where a definition overrides another, where an
instance is created or destroyed, and so on).

The Browser provides two types of menus for making queries:

• Queries menu: accessed from the menu bar, its queries apply to the current
class

• Element-specific popup menus: accessed by holding down the right mouse
button while the pointer is over the selected element you want to query

The Browser provides answers to queries by highlighting items in the member
and related class lists that match the query. Optionally, you can display more
detailed query results in the Static Analyzer window from which you launched
the Browser.

2. Click the Show in Static Analyzer toggle button in the Browser View window
(shown in Figure 8-3, page 82).

This button lets you view the results of queries in the Static Analyzer window
along with the Browser window. The Static Analyzer window has the advantage
of showing source lines for your queries

Select What Uses from the Queries menu and To Contain from its submenu (see
Figure 8-4, page 85).

The Queries menu in the menu bar lets you request relationship information for
the current class. In addition to highlighting the matching elements in the list, the

007–2580–005 83

8: Browser Tutorial for C++

Browser displays indicator marks in the scroll bar showing the relative locations
of matching elements. Also, the query is identified in the field over the outline
list area. If you click on an indicator mark, you will scroll directly to the matching
element. Because you turned on the Show in Static Analyzer toggle, the results
are shown in the Browser as well, including the file, line number, and source line
for the classes containing Actor. See Figure 8-5.

84 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Browser before query

Browser after query

Query type
and target

Queries menu
with selection

Scroll bar
indicators

Query
matches

a11615

Figure 8-4 Performing a Query on Current Class

007–2580–005 85

8: Browser Tutorial for C++

a11616

Figure 8-5 Static Analyzer after a Browser Query

3. Select the constructor method in the METHODS category by holding down the right
mouse button. Then select Show Source Where Declared. See Figure 8-6, page 87.

86 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Selected
method

Method-specific
Queries menu

Source view after Browser query
a11617

Figure 8-6 Performing a Query on an Element in a List

007–2580–005 87

8: Browser Tutorial for C++

This displays the Queries menu specific to methods. In this case, the query lets
us see the source code where it is declared. The Source View window now
displays with the matching code highlighted.

For practice, try a few random queries.

4. Click the Last Query button in the Browser View window.

Clicking this button displays the results of the most recent query in the Static
Analyzer window from which the Browser was launched.

Procedure 8-5 Using the Browser Graphical Views

1. Look at the graphical views supplied by the Browser and Select Show
Containment Graph from the Views menu in the Browser View window.

The Graph Views window is displayed, set to Containment as shown in Figure
8-7. You can switch to other relationship modes through the Relation mode menu.

Relation
mode menu

a11618

Figure 8-7 Graph Views Window in Containment Mode

88 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

2. Pull down the Views menu, select Show Butterfly, and resize the Graph Views
Window to be smaller.

This eliminates extraneous classes from the graph, displaying only those classes
that Actor contains or is contained by. Now compare the graph with the query
results shown in the Browser.

a11619

Figure 8-8 Comparison of Data Displayed in a Containment Graph

007–2580–005 89

8: Browser Tutorial for C++

3. Click on the Relation mode menu in the lower right corner of the Graph Views
window and select Inheritance from the displayed options (see Figure 8-7, page
88).

This shows the inheritance relationships. In this case, the derived classes
BouncingBall and Engine inherit from Actor, as shown in Figure 8-9, page 90.

a11620

Figure 8-9 Graph Views Window in Inheritance Mode

4. Next, select Interaction from the Relation mode menu options.

This displays the classes that directly interact with Actor. Those that use Actor
appear on the left and those that are used by Actor appear on the right.
Compare the display results with those from the Inheritance display.

Procedure 8-6 Shortcuts for Entering Subjects

1. Go back to the Browser View window, clear the Current Subject field, and type a
question mark (?), followed by pressing the Enter key.

This is a shortcut for displaying the Browsing Choices window. However,
instead of selecting through the Browsing Choices window, we are going to
demonstrate how name completion works.

2. Type Main and press the space bar.

The Browser fills in the rest of the name, MainWindow in this example, and its
data.

90 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Procedure 8-7 Generating Man Pages

1. The Browser generates man page templates from your classes so that all you have
to do is fill in the descriptions and provide comments. To create man pages for
classes in the fileset, follow these steps:

2. From the Browser View Admin menu, select Generate Man Pages.

The Man Page Generator window opens, as shown in Figure 8-10.

Man page
directory area

Control area

Class display
area

a11621

Figure 8-10 Man Page Generator Window

You can specify the target directory in the area at the top of the window, either
directly in the Man Page Directory field, or by browsing in the dialog box
displayed by clicking the Set Directory button. The control area lets you receive
warnings if a man page already exists, select or unselect all classes, generate new
man pages, and display shells showing the new man pages.

Click the Select All button in the control area.

This selects all the classes in the class list. If you need only a subset of the list,
simply click the desired classes. If you change your mind, you can remove any
current selections by clicking the Unselect All button.

007–2580–005 91

8: Browser Tutorial for C++

3. Click Generate.

Wait for a few seconds while your files are generated.

4. Click View to view the output files.

A winout window containing the man page text opens, as shown in Figure 8-11.
You can edit this file using a text editor, such as vi.

a11622

Figure 8-11 Man Page Template

5. Close the winout window using the window menu in the upper left corner.

92 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Procedure 8-8 Generating Web Pages

The Browser also lets you generate web pages, that is, documentation in HTML format
compatible with World Wide Web readers. To generate a web page, follow these steps:

1. From the Browser View Admin menu, select Generate Web Pages.

The Web Page Generator window opens, as shown in Figure 8-12.

Web page
directory area

Control area

Class display
area

a11623

Figure 8-12 Web Page Generator Window

This window operates in the same manner as the Man Page Generator window.
You specify the target directory by typing directly in the Web Page Directory
field or by browsing in the dialog box that comes up when you click the Set
Directory button. The control area lets you receive warnings if a web page
already exists, select or unselect all classes, generate new web pages, and display
a shell showing the new web pages.

2. Click the Select All button in the control area.

007–2580–005 93

8: Browser Tutorial for C++

This selects all the classes in the class list. If you need only a subset of the list,
simply click the desired classes. If you change your mind, you can remove any
current selections by clicking the Unselect All button.

3. Click Generate.

Wait for a few seconds while your files are generated.

4. Click View to view the output files.

You have reached the end of the C++ tutorial. You can exit both the Static Analyzer
and the Browser by pulling down the Static Analyzer Admin menu and choosing
Exit.

94 007–2580–005

Chapter 9

The Browser Reference

This chapter describes all of the windows and features associated with the Browser.

This chapter contains the following sections:

• "Browsing Choices Window", page 95

• "Browser View Window", page 97

• "Graph Views Window", page 117

• "Call Graph Window", page 118

Browsing Choices Window
The Browsing Choices window (see Figure 9-1) lets you select items to be browsed
from a list derived from the fileset in the Browser View window. Double-clicking an
item in the selection list causes the Browsing Choices window to be raised (moved to
the front) with the chosen item as the current subject for analysis.

007–2580–005 95

9: The Browser Reference

Column
headings

Selection
list

a11631

Figure 9-1 Browsing Choices Window

Browsing Choices Window for C++

With C++ code, the Browsing Choices window displays one column to indicate the
kind of item, a column to identify the item, and three columns indicating properties,
as follows:

• Kind: classes, template definitions, and template instances

• Name: the name of the item

• Abstract: abstract property: concrete (blank), abstract by declaration, or abstract
by inheritance

• Delta: delta property: dynamic, internal dynamic, or non-dynamic (blank)

• Template: template property: specific definition, partial instantiation, or normal
(blank)

The Browsing Choices window provides a facility for sorting items by column. To do
this, click in the column you wish to sort on and select Sort from the Admin menu.

96 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Browser View Window
Browser View is the primary Browser window (see Figure 9-2). It opens when you
select Browser from the Admin menu of the Static Analyzer, but does not display
data until you select an item from the list in the Browsing Choices window. Browser
View displays internal and related information for elements in C++. The information
is presented in hierarchical lists shown in outline format.

Browser View lets you perform a variety of static analysis database queries,
depending on your current work context. Queries concerning the current subject are
accessed from the Queries menu in the menu bar. You can also make queries specific
to the selected elements in the list area by holding down the right mouse button to
display a popup Queries menu specific to that type of element. The results of queries
are indicated by highlighting matching elements in the Browser View window.
Matching results are also highlighted in the Source View window (if it is displayed)
and in the Static Analyzer (if the Show in Static Analyzer toggle (see "Show in Static
Analyzer Toggle", page 99) is turned on) .

You can also launch graphical views showing hierarchies and call graphs from the
Browser View window. In addition, you can generate man pages and web pages
from Browser View.

007–2580–005 97

9: The Browser Reference

Current subject
Current subject kind

Query identification
area

Member list area

Outline icon

Sash Annotated scroll bar

Static Analyzer
toggle

Last Query button

Query matches

Relations list area

Selected element

Match indicator

Element matching
query

a11632

Figure 9-2 Browser View Window Elements

Current Subject Field

The Current Subject field indicates the kind and name of the element to be analyzed.
It is directly below the menu bar (see Figure 9-2, page 98). The label on this field is
initially set to Current Subject. To analyze an element, you can type directly into this
field (or select from the Browsing Choices window). The label changes according to
the kind of element you select. You can enter the following kinds of elements:

• C++ class

• C++ template definition

• C++ template instance

If you type a partial string and then press the space bar, the Browser attempts to
complete the element name by searching the fileset. A beep indicates that more than
one matching name exists. If a match is made, press the Enter key to make the
change effective.

98 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

If you type a question mark (?) into the Current Subject field, the Browsing Choices
window opens. You can select a new item by double-clicking a name in the selection
list.

Show in Static Analyzer Toggle

The Show in Static Analyzer toggle is directly to the right of the Current Subject
field (see Figure 9-2, page 98). When the toggle is set (a check mark and the label Yes
appear), the results of all queries are displayed in the Static Analyzer window from
which the Browser was launched, including the file, line number, and source line for
the matching items. If no results are found and the Static Analyzer window is open,
the window comes to the front with an error message.

Last Query Button

The Last Query button is at the top right of the window, directly beneath the Help
menu (see Figure 9-2, page 98). Clicking this button displays the results of the most
recent query in the Static Analyzer window from which the Browser was launched.

Browser View Query Identification Area

The Browser View query identification area is directly above the list area (see Figure
9-2, page 98). This area displays the most recent query as a sentence containing both
the query question and the name of the object of the query. The number of elements
matching the query is displayed at the right end of the line.

Browser View List Areas

The lower two-thirds of the Browser View window consists of two lists displayed in
side-by-side panes (see Figure 9-2, page 98). The lists contain information about the
currently selected subject and are organized by category in an outline format. The
lists are:

• member list: a detailed view of the internals of the current subject.

• relation list: items related to the current subject.

You can change the relative widths of the panes that display these lists by moving the
sash that separates the panes.

007–2580–005 99

9: The Browser Reference

Table 9-1 Browser View List Summary

Language Member List Contents Relations List Contents

C++ PUBLIC/INSTANCE/PRIVATE
INSTANCE/STATIC
TYPES/DATA/METHODS/
VIRTUAL METHODS

BASE CLASSES (including the current
class)/DERIVED CLASSES/USES/USED
BY/FRIEND
FUNCTIONS/FRIENDS/FRIEND OF

Outline Icons

Each category name appears with an outline icon to its left, that is, a diamond-shaped
icon that can be used to collapse (hide) or expand (make visible) the items under that
category. Inside the icon there is an arrow that indicates whether the category is in
the expanded or collapsed state. If the arrow points downward, the list is in its
expanded state, which means all items are displayed. If the icon points to the right,
the category is in its collapsed state, which means all items in that category are
hidden. Clicking the arrow toggles the state of the category, displaying or hiding the
category’s contents. Another function of the outline icon is to indicate when a
collapsed list contains items matching the current query. This is shown with a filled
outline icon. See Figure 9-3.

Outline icon in
expanded state

Outline icon in
collapsed state
with query matches

Outline icon in
collapsed state

Query match
indicators on
scroll bar

a11633

Figure 9-3 Outline List Icons and Indicator Marks

100 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Annotated Scroll Bars and Highlighted Entries

Lists also use annotated scroll bars to locate highlighted list entries. When you make
a query on an item in a list, the Browser displays indicator marks in the scroll bars in
both panes corresponding to the relative positions of matching items. This informs
you about all matches even if they are in collapsed categories or in a portion of the
list that is not currently in view. If you click an indicator with the middle mouse
button, you scroll directly to the matching item in the list. When the thumb of the
scroll bar overlaps a given tick mark, the corresponding entry is visible in the list
window. See Figure 9-3, page 100.

C++ Member List

The Xmember list displays the types, data members, methods, and virtual methods
internal to the current class, template definition, or template instance when you are
analyzing C++ code. It labels constructor methods as -constructor-> and
destructors as -destructor-> .

Display Hierarchy

The members of the current class are sorted recursively into three nested lists
according to the access specification (PUBLIC, PROTECTED, or PRIVATE) of each
member. Within each of the access categories, the members are sorted by scope into
two categories (INSTANCE and STATIC). Finally, within each category, members are
displayed by member category type in this order: TYPE, DATA, METHODS (member
functions), and VIRTUAL METHODS.

Here is a schematic of the outline format for each nested list:

Access (PUBLIC, PROTECTED, or PRIVATE)

Scope (INSTANCE or STATIC)

TYPES

DATA
METHODS

VIRTUAL METHODS

C++ Access Categories

The following access categories are available:

• PUBLIC members: accessible by any method or C-style function

007–2580–005 101

9: The Browser Reference

• PROTECTED members: accessible only by methods in derived classes, friend
classes, or friend functions

• PRIVATE members: accessible only by methods in the class in which they are
defined, friend classes, or friend functions

C++ Scope Categories

The scope categories are as follows:

• STATIC members: all objects of a given class contain the same value for a given
member

• INSTANCE (nonstatic) members: members in different instances of that class can
contain different data values

C++ Class Member Categories

Class members fall into the following categories:

• TYPES: definitions of data types declared within a class

• DATA: variables that contain state information for a class

• METHODS (or member functions): definitions of how a class interacts with other
classes and structures

• VIRTUAL METHODS: methods for an object that ensure that the method invoked is
defined by the class from which the object was instantiated, regardless of type
casting

The list organization is customizable. For more information, see Appendix A,
"Customizing the Browser", page 121.

C++ Relation List

The C++ relations list displays the current class and its related classes in the class list.
The categories in the list are:

• BASE CLASSES: ccontains the current class and its ancestors, listed hierarchically

• DERIVED CLASSES: ccontains descendants of the current class, listed
hierarchically

102 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

• USES: contains classes that the current class uses (that is, instantiates, destroys,
interacts with, or contains)

• USED BY: contains classes that the current class is used by

• FRIEND FUNCTIONS: contains global functions declared as friends by the current
class

• FRIENDS: contains classes that are declared as friends by the current class.

• FRIEND OF: contains classes that declare the current class as a friend.

Within this list, the current class is displayed as follows:

<- This

This notation refers to the class in the Current Class field.

C++ Relations List Mouse Shortcuts

Double-clicking any displayed class brings up a Source View window that highlights
the function’s definition.

C++ BASE CLASSES Category Hierarchy

The BASE CLASSES category shows the ancestors of the current class, if any. Each
indented class is an ancestor of the class listed above it. The BASE CLASSES category
indicates a multiple inheritance relationship by indenting parent classes to the same
level. If a given class has ancestors, it is accompanied by an outline icon, which
works in a similar manner to the outline icons in the member list. Each ancestor
name is followed by its inheritance access type (PUBLIC, PROTECTED, or PRIVATE)
listed in parentheses.

This schematic gives an example of a BASE CLASSES category:

BASE CLASSES

<-This

first_parent_of_This (access type)
parent_of_first_parent_class (access type)

second_parent_of_This (access type)
parent_of_second_parent_class (access type)

007–2580–005 103

9: The Browser Reference

C++ DERIVED CLASSES Category Hierarchy

The DERIVED CLASSEScategory shows the descendants of the current class, if any.
Each indented class is a descendant of the class listed above it. If a given class has
descendants, it is accompanied by an outline icon, which works in a similar manner
to the outline icons in the base classes category and member list.

This schematic gives an example of a possible DERIVED CLASSES category:

DERIVED CLASSES

first_child_of_This

child_of_first_child_class
second_child_of_This

child_of_second_child_class

Browser View Menu Bar

The following sections describe the menus, found in the Browser View window’s
menu bar (see Figure 9-4).

104 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

a11635

Figure 9-4 Browser View Menu Bar with Menus Displayed

Admin Menu

The Admin menu contains the following options for selecting new subjects,
manipulating Browser View windows, generating man and web pages, and exiting
the Browser View.

• Change Current Subject: lets you select a new current subject without manually
typing it into the Current Subject field. Choosing this option opens the Browsing
Choices window, which contains a scrolling list of all the classes or packages
available from the current fileset. Double-clicking an item selects it for display in
the Browser View window and closes the Browsing Choices window.

007–2580–005 105

9: The Browser Reference

• Another Browser View: creates an identical copy of the Browser View window.
All current information displayed within the initial window appears in the copy,
but connections to the graphical view windows are not carried over to the new
Browser View window.

• Close Browser View: shuts the Browser View window and any associated
windows.

• Generate Man Pages: opens the Man Page Generator window, which lets you
create man page templates for classes (C++).

Select individual subjects by clicking them. If you want a man page for every
subject in the list, click Select All. To remove selections you have made, click
Unselect All. Clicking the Generate button creates a man page template for each
selected subject. If man pages exist for any selected subjects, the Browser warns
you, unless you set the Warn Overwrite toggle to No.

Output files go in the directory shown in the Man Page Directory field, if it exists.
To specify a different output directory, click the Set Directory button in the Man
Page Generator window and enter your choice.

106 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Target directory
selection

Control panel

Subject display

Man page generator window

Generated man page

a11636

Figure 9-5 Man Page Generator and Typical Man Page Template

• Generate Web Pages: opens the Web Page Generator window (see Figure 9-6,
page 108), which lets you create web page templates for classes (C++),
packages.These templates are in HTML format and can be read by World Wide
Web browsers.

007–2580–005 107

9: The Browser Reference

Select individual subjects by clicking them. If you want a web page for every
subject in the list, click Select All. To remove selections you’ve made, click
Unselect All. Clicking the Generate button creates a web page template for each
selected subject. If web pages exist for any selected subjects, the browser warns
you, unless you set the Warn Overwrite toggle to No.

Output files go in the directory shown in the Web Page Directory field, if it exists.
To specify a different output directory, click the Set Directory button in the Web
Page Generator window and enter your choice.

Target directory
selection

Control panel

Subject display

a11637

Figure 9-6 Web Page Generator Window

• Exit Browser: quits the Browser, closing all windows launched from it (except
Source View). The Static Analyzer window from which the browser was
launched is not affected.

108 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Views Menu

The Views menu contains options for opening graphical views. Each of the first four
selections opens a Graph Views window for the current class. The last selection opens
a Call Graph window. The following selections are available from the Views menu:

• Show Inheritance Graph: describes the relationship between base classes and
derived classes.

• Show Containment Graph: describes the relationship of container classes to the
classes they use as components.

• Show Interaction Graph: describes the relationship of used classes to the classes
that are their users.

• Show Friend Graph: describes the relationship of classes declaring friends to the
classes they declare.

• Show Call Graph: opens a Call Graph window. To perform operations in it,
select a method from the member list display, press the right mouse button to
display the Methods popup menu, and select Add, Remove, or Replace from the
Call Graph submenu.

History Menu

The History menu contains options that let you quickly select previously chosen
subjects for display in the Browser View window. If no class was selected previously,
a message appears. The following selections are available from the History menu:

• Show Previous Subject: sets the current subject to the previously displayed class,
and the information in the Browser View window changes to reflect this.

• Show History: opens a List of Subjects Shown chooser window for selecting
previously viewed subjects. The window presents the previous subjects in reverse
chronological order, that is, the most recent subject appears at the bottom of the list.

To select a subject, click it and press Apply or OK. Double-clicking a subject has
the same effect as selecting OK. It makes the selection and closes the window. The
selected class then becomes the current subject in the Browser View window.

Queries Menu

The Queries menu is accessed from the menu bar and applies to the current subject.
The following selections are available from the Queries menu:

007–2580–005 109

9: The Browser Reference

• What Is Declared: displays all methods declared by the current class.

• What Is Defined: displays all members defined by the current class.

• What Is Overridden By: displays all inherited methods that the current class
overrides.

• What is Pure Virtual: displays all pure virtual functions in the current subject.

• What Instantiates: displays classes that instantiate the current class by invoking
its constructors by using its new methods.

• What Destroys: displays classes that destroy the current class by invoking its
destructors or by using its delete methods.

• What Uses submenu: displays classes that use the current class in the following
contexts:

– To Contain: displays classes that use the current class as either an embedded
or linked component.

– As Friend: displays classes that use the current class as a friend class.

– Methods: displays classes that use the methods defined by the current class.

– Data Members: displays classes that use (by modifying, reading, or taking the
address) data members defined by the current class.

• What Is Instantiated: displays classes that the current class instantiates by
invoking its constructors.

• What Is Destroyed: displays classes that the current class destroys by invoking it
destructors.

• What Is Used submenu : displays those classes used by the current class in the
following contexts:

– To Contain: highlights classes that the current class uses as either embedded
or linked components.

– As Friend: highlights classes that the current class uses as friend classes.

– By Methods: highlights classes whose methods are used by the current class.

– By Data Access: highlights classes whose data members are assigned, read, or
have their address taken by the current class.

110 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Additional queries on subjects, data members, and methods are accessible from the
popup menus described in "C++ Member List", page 101 and "C++ Relation List",
page 102.

Preference Menu

The Preference menu allows you to control how the class information is displayed in
the window.

The following selections are available:

• Relation Display submenu: allows you to control how the class relations are
displayed:

– Declaration Order: displays related classes in the order of their declaration or
the detection of their relation.

– End To End Sort: displays a sorted list of related classes.

• Member Display submenu : allows you to control how the class members are
displayed:

– Declaration Order: displays the members in order of their declaration.

– End To End Sort: performs an end-to-end sort of the member display strings
and displays the result.

– Name Sort: performs a sort based on the name of the members and displays
the result.

• Member Alignment submenu: allows you to control how members line up:

– Align Names: aligns the member names in the display. A radio button
indicates if this feature is enabled or disabled.

– Align Arglists: aligns the member function argument lists in the display. A
radio button indicates if this feature is enabled or disabled.

• Member Double Click submenu: lets you select which related source code is
displayed in the Source View window when you double-click an item in the
member list:

– Show Definition: displays the source code where the item is defined.

– Show Declaration: displays the source code where the item is declared.

007–2580–005 111

9: The Browser Reference

– Show Decl if no Defn: displays the code where the item is defined; if there is
no definition, then the source code containing the declaration is displayed
instead.

Browser View Popup Menus

The Browser View popup queries menus provide queries for currently selected items
in the outline list areas. These menu are accessed by selecting an item and then
holding down the right mouse button. Figure 9-7, page 113, shows all of the popup
menus available in the Browser View window.

This section describes the following menus:

• "Data Members Popup Menu", page 113

• "Methods Popup Menu", page 114

• "Class Popup Menus", page 115

Many of the same queries in the class popup menus appear in more than one menu.
To eliminate this redundancy, each query is described once and presented in a single
list rather than by menu.

112 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Methods menu

Data members menu

Friend of menu Friends menu
Friend Functions menu

Used By menu

Uses menu

Derived Classes menu

Base classes menu

a11639

Figure 9-7 Queries Popup Menus in the Browser View Window

Data Members Popup Menu

The data members popup menu performs the following queries on data members
selected in the member display list:

007–2580–005 113

9: The Browser Reference

• What Modifies: highlights all methods and classes in which the selected data
member is assigned a value.

• What Reads: highlights all methods and classes in which the selected data
member is read.

• What Accesses: highlights all classes where the selected data member is assigned
a value, read, or its address is taken.

• What Defines: highlights the class that defines the selected data member.

• Show Source Where Defined: displays the source code where the data is defined
in a Source View window.

Methods Popup Menu

The Methods popup menu lets you perform the following queries on methods:

• What Uses: highlights all methods and classes that use the currently selected
method.

• What Is Used submenu: highlights what is used by the currently selected method.
Contains the following menu items:

– All (method and data access): highlights all data members, methods, and
classes that the currently selected method uses.

– Method Calls: highlights all methods called by the currently selected method.

– Data Access: highlights all data members that have been assigned, read, or
had their address taken by the currently selected method.

– Data Modification: highlights all data members assigned by the currently
selected method.

– Data Read: highlights all data members read by the currently selected method.

• Call Graph submenu: the Call Graph submenu contains the following menu
options:

– Add: adds the currently selected method and its calling structure to the Call
Graph window, if one is open. If not, Add opens a Call Graph window before
adding the method.

– Replace: replaces all methods in the display with the selected method and its
calling structure in the Call Graph window.

114 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

– Remove: removes the currently selected method and its calling structure from
the Call Graph window.

• What Declares: highlights the class that declares the currently selected method.

• What Currently Defines: highlights the class that provides the current definition
for the method.

• What Else Defines: highlights all classes that define the currently selected method.

• What Overloads: highlights all methods and classes that overload the currently
selected method.

Class Popup Menus

This section describes the popup menus available in the related class list display. (The
queries menu that displays when you select <-This is not shown here because it is
exactly the same as the main Queries menu shown in "Queries Menu", page 109.)

Many of the items in the class popup menus are common to more than one menu. To
eliminate the redundancy of describing them in each menu, this section presents all
the queries in a single list in alphabetical order. The menus they belong to are shown
in parentheses. The following selections are available on more than one menu:

• New Browser View (all menus except Friend Functions): opens a new Browser
View window displaying the selected class.

• Show Source (all menus): opens a Source View window on a file containing the
declaration of the selected item. The first line of the declaration is highlighted in
the source.

• What Destroys (Uses and Used By): highlights all members of the current class
that destroy the selected class.

• What Instantiates (Uses and Used By): highlights all members of the current class
that instantiate the selected class.

• What Is Declared (Base Classes): highlights all methods declared by the selected
base class.

• What Is Defined (Base Classes): highlights all members defined by the selected
base class.

• What Is Overloaded (Derived Classes): highlights all members of the current
class that are overloaded by the selected class.

007–2580–005 115

9: The Browser Reference

• What Is Overridden (Base Classes): highlights all the methods of the selected
base class that are overridden by the current class.

• What Is Overridden (Derived Classes): highlights all the methods of the current
class that are overridden by the selected derived class.

• What Is Used (Friends): highlights all members of the current class that the
selected friend class uses.

• What Is Used submenu (Derived Classes and Used By): contains the following
queries:

– by Accessing Any Member: highlights all members of the current class that
the selected class uses.

– by Calling Methods: highlights all methods of the current class that the
selected class uses.

– by Accessing Data Members: highlights all data members of the current class
that the selected class modifies, reads, or takes the address of.

– by Modifying Data Members: highlights all data members of the current class
to which the selected class assigns a value.

– by Reading Data Members: highlights all data members of the current class
from which the selected class reads a value.

• What It Uses (Friend Functions): highlights all members of the current class that
the selected friend function uses.

• What Uses (Friend of): highlights all members of the current class that use the
friend class.

• What Uses submenu (Uses): contains the following queries:

– by Accessing Any Member: highlights all members of the current class that
use the selected class.

– by Calling Methods: highlights all methods of the current class that use the
methods of the selected class.

– by Accessing Data: highlights all data members of the current class that
modify, read, or take the address of data members of the selected class.

– by Modifying Data: highlights all data members of the current class that
assign a value to data members of the selected class.

116 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

– by Reading Data: highlights all data members of the current class that read a
value from data members of the selected class.

Graph Views Window
The Browser provides a graphical view for showing relationships between classes in
the fileset. It depicts classes as nodes and relationships as arcs. The Graph Views
window shows the following types of class relationships:

• Inheritance

• Containment

• Interaction

• Friends

You can display graphical views by selecting any of the following items from the
Views menu of the Browser View window:

• Show Inheritance Graph

• Show Containment Graph

• Show Interaction Graph

• Show Friends Graph

Once the Graph Views window is displayed, you can switch to any of the other
relationships by using the Relationship menu at the bottom right of the Graph Views
window.

Mouse Manipulations

Double-clicking any subject in the Graph Views window causes it to become the new
current subject in both the Browser View and Graph Views windows.

Graph Views Admin Menu

The Graph Views Admin selections control which classes included in the current
fileset are displayed in the Graph Views window. The Admin menu has the
following selections:

007–2580–005 117

9: The Browser Reference

• Save Graph: allows you to save the graph to a file. This selection brings up a file
selection dialog. When you select a file and click OK, you save the graph as a
PostScript file with the name specified in the Selection field.

• Close: closes the Graph Views window.

Graph Views Window Views Menu

The Graph View menu contains options that allow you to various types of classes.

• Show All: displays all classes included in the fileset as nodes, and their relations
as arcs, as chosen from the relationship option menu.

• Show All Related: displays only those classes included in the chain of relations,
which includes the current class.

• Show Butterfly: displays only those classes that are the immediate relatives (for
example, parents and children for an inheritance relation of the current class).

Call Graph Window
The Call Graph window shows all calls made from selected methods in the member
list, including calls made from its target methods. You can invoke it by any of the
following methods:

• Select Call Graph from the Views menu in Browser View.

• Select a method in the member list, displaying the Methods popup menu, and
selecting Call Graph:Add. This displays the Call Graph window the first time
and adds new methods to the graph each time you select Call Graph:Add.

Figure 9-8 illustrates the second method for displaying Call Graph. In this example,
the user has selected the initialize method in the Browser window and then selected
CallGraph:Add from the Methods popup menu. The initialize method now appears
in the Call Graph window with the methods that it calls.

118 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Browser View

Query identifier

Selected method

Call Graph window

Selected node
identifier

Target method

Argument list

Methods popup menu
with "Call Graph:Add"

a11640

Figure 9-8 Displaying a Selected Method in Call Graph

007–2580–005 119

9: The Browser Reference

Using the Call Graph Window

You can add, replace, or remove methods in the Call Graph window by choosing
from the Call Graph submenu in the Methods popup menu in the Browser View
member list (see Figure 9-8, page 119), as follows:

• Add: adds the currently selected method and its calling structure to the Call
Graph window, if one is open. If not, Add opens a Call Graph window and then
adds the method.

• Replace: replaces all methods in the display with the selected method and its
calling structure in the Call Graph window.

• Remove: removes the currently selected method and its calling structure from the
Call Graph window.

The action you request is displayed in the message area in Browser View window. In
the Call Graph window, there is also a message area that identifies the method and
its arguments.

In the Call Graph window, double-clicking any method node opens a Source View
window that displays the code defining the method. The definition is highlighted in
the source.

For information on manipulating graphs, the ProDev WorkShop: Overview.

Call Graph Admin Menu

The Call Graph window’s Admin menu contains the following selections:

• Show Arglist toggle: lets you display or hide the argument list for each method,
as shown in Figure 9-8, page 119.

• Clear: removes all methods from the Call Graph window.

• Save Graph: displays a file selection dialog for saving the graph to a PostScript
file.

• Close: closes the Call Graph window.

120 007–2580–005

Appendix A

Customizing the Browser

The Browser lets you customize your display and the way you work with man pages.
These formats are implemented as X application resources that you can redefine in
your local .Xdefaults file. After editing it, run the following command:

xrdb .Xdefaults

Then reopen the Static Analyzer.

This appendix covers the following topics:

• "Customizing the Browser View Lists", page 121

• "Customizing Man Page Generation", page 125

Customizing the Browser View Lists
The following sections show you how to customize the formats of Browser View lists
by applying your own keyword headers and rearranging the features of each list.

Member List Resource

The layout of the Browser View member list is controlled by the
Cvstatic*memberOrder resource.

The general format of this resource is as follows:

Level-1-keyword: HEADING [keyword], HEADING [keyword],..;
Level-2-keyword: HEADING [keyword], HEADING [keyword],...;
Level-3-keyword: HEADING [keyword], HEADING [keyword],...;

The three keywords are Protection, Scope, and Member. The order in which these
keywords are used determines the level of nesting in the outline list used for
protection, scope, and member headings, respectively.

Headings may consist of any string you choose to describe the heading category. The
headings listed with the level-1 keyword become top-level headings in the outline list,
the level-2 headings appear indented under each of the level-1 headings, and the
level-3 headings appear indented beneath each of the level-2 headings.

007–2580–005 121

A: Customizing the Browser

Each heading in a level has an associated keyword that determines the sort of items
that appear under the heading. The allowable keywords are as follows for each
associated level keyword:

Protection: [public], [protected], [private]

Scope: [instance], [static]

Member: [type], [data], [method], [virtualmethod]

It is also possible to combine the types associated with two or more keywords under
one heading by using the construction for any given heading:

HEADING [keyword1+keyword2+...]

You can also control whether a heading is expanded or collapsed when the browser
starts up. Placing an asterisk (*) at the end of the heading string causes that heading
to be collapsed by default:

HEADING* [keyword]

The default assignment for the outline resource of the member list can be found in
/usr/lib/X11/app-defaults/Cvstatic. The contents of the file appear below:

Cvstatic*memberOrder: Protection: PUBLIC [public],
PROTECTED* [protected], PRIVATE* [private]; Scope: INSTANCE

[instance], STATIC [static]; Member: TYPE* [type], DATA

[data], METHODS [method], VIRTUAL_METHODS [virtualmethod];

Note: The sample above is a single line.

You can override this definition by placing your own definition in your local
.Xdefaults file.

Related Class List Resource

The layout of the Browser View related class list is controlled by the
Cvstatic*relationOrder resource.

The construction of this resource is similar to the member list, but simpler:

HEADING [keyword], HEADING [keyword],...

122 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

The headings and keywords work as described for the member list, but there is no
concept of level keywords in the related class list.

The allowable keywords for the related class list are as follows:

[base], [derived], [uses], [usedby], [friendfunction],[friend],
[friendof]

Note: In the related class list, headings cannot contain multiple keywords, as they can
in the member list.

As in the member list, you can control whether a heading in the related class list is
expanded or collapsed when the browser starts up. Placing an asterisk (*) at the end
of the heading string causes that heading to be collapsed by default:

HEADING* [keyword]

The default assignment for the related class list outline resource can be found in
/usr/lib/X11/app-defaults/Cvstatic, and is listed below for your
convenience:

Cvstatic*relationOrder: BASE CLASSES [base], DERIVED CLASSES

[derived], USES [uses], USED BY [usedby], FRIEND FUNCTIONS

[friendfunction], FRIENDS [friend], FRIEND OF [friendof]

You can override this definition by placing your own definition in your local
.Xdefaults file.

Other Browser View List Resources

X Windows System resources, found in /usr/lib/X11/app-defaults/Cvstatic,
can be modified in your local .Xdefaults file. The default values are listed with
each resource. You can set any true value to false.

Cvstatic*completeClassName: true

Enables ClassName completion. By typing a space in the current
class field, you complete a class name from the list of classes in the
fileset (if set to true, as it is by default).

007–2580–005 123

A: Customizing the Browser

Cvstatic*showMessageArea: true

Enables the message area in the Browser View window (if set to
true, as it is by default).

Cvstatic*scream: true

Enables warning beeps when there are 0 results for a query, or when
a class name has more than one completion in the current class field
(if set to true, as it is by default).

Cvstatic*indentationWidth: 15

Sets the indentation in the outline lists in pixels. Default setting is 15.

Cvstatic*nameAlign: true

Aligns names of the members under the same parent so that the type
declarations and member (variable and function) names form
left-justified columns (if set to true, as it is by default).

Cvstatic*arglistAlign: true

Aligns the argument lists of member functions under the same parent
so they form a left-justified column (if set to true, as it is by default).

Cvstatic*sort: true

Sorts items in the outline lists based on the value of the entire string
denoting an item (if set to true, as it is by default). For example,
given two members, void f and int k, the Browser lists int k
before void f in the list.

Cvstatic*nameSort: true

Sorts items in the outline lists based on the string value of the name
of a member (if set to true, as it is by default). For example, void f
would be listed before int k).

If you use the last two resources in conjunction, output is sorted first by type and
then by name, as shown in .

124 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

Table A-1 Sort Resources for Outline Lists

Sort Name Sort Effect

false false Members are in declaration order

false true Members are sorted based on the name and not on type
or return type.

true false Members are sorted based on the their return type or
type. Within the same return type, members appear in
declaration order.

true true Members are sorted both on their type or return type and
their name. This is the default behavior.

Customizing Man Page Generation
The resources in this section are associated with the Man Pages for Classes window,
available from the Browser View Admin menu item Generate Man Pages.

Cvstatic*manPageDirPath:manpage directory path

The default directory is the current directory (.). To place generated
man pages in the windTunnel directory that you have created use
the following command:

Cvstatic*manPageDirPath: ./manpage/windTunnel

Cvstatic*manPageSuffix: .suffix

The default suffix is 3, which would make the name of a man page:

class_name.3

To change the suffix to 4, use the following command:

Cvstatic*manPageSuffix: .4

Cvstatic*manPageViewCommand: commands

Clicking the View button in the Man Pages for Classes window
executes the command specified by this resource. The argument
given is the set of man pages for the classes that are selected. By

007–2580–005 125

A: Customizing the Browser

default, View displays the most recently generated man page in a
read-only window. The default commands are:

Cvstatic*manPageViewCommand: winterm -H -c man -d

Cvstatic*manPageCopyRightMessage: string

Lists standard copyright information. You can customize the message.

126 007–2580–005

Index

? in current class field, 99

A

access specification, 101
add to call graph, 114, 120
align arglists, 111
align names, 111
All (method and data access) used by method, 114
all defined view option, 54
annotated scroll bars, 101
another class view selection in class view admin

menu, 106
arcs, 52
argument list, 120
as friend, 110
as friends, 110

B

base classes
sublist, 103

batch command-line option, 34, 71
browser

customizing, 121
browser reference, 95
browser view

menus, 76
outline lists, 75
starting, 73

browser view popup menus, 112
browser view window, 97
browsing choices window, 95
browsing directory, 23, 26
by accessing any member, 116

by accessing any member used by derived
class, 116

by accessing data, 116
by accessing data members used by derived

class, 116
by calling methods, 116
by calling methods used by derived class, 116
by data access, 111
by method calls, 110
by modifying data members by derived class, 116
by reading data members by derived class, 116

C

call graph submenu, 114
call graph window, 118
call tree view, 51

tutorial, 55
call tree view selection in static analyzer views

menu, 52
change current class selection in class view

admin menu, 106
change fileset command, 25, 35
chooser window

list of classes, 73
class graph window, 117
class member categories

C++, 102
class queries, 43
class tree view, 15, 59
class tree view selection in static analyzer views

menu, 59
class view

Admin menu, 105
History menu, 109
member list, 101

007–2580–005 127

Index

message area, 99
outline lists, 99
Preference menu, 111
Views menu, 109

clear selection in call graph admin menu, 120
close class view selection in class view admin

menu, 106
close selection of class graph admin menu, 118
common block queries, 44
complete tree view option, 54
Constrain button, 62
cross-reference database, 1, 8, 14

creating a project database, 70
index, 34
querying a project database, 71
shared for project, 70

current class
<-This, 103

current class field, 98
customizing

browser resources, 121
cvstatic.fileset, 23, 24, 71
cvstatic.index, 8, 14, 71
cvstatic.posting, 8, 14, 71
cvstatic.xref, 8, 14, 71

D

data access by method, 114
data members, 110

queries, 113
used by current class, 111

data modification by method, 114
data read by method, 114
database

creating for sample session, 79
See "cross-reference database", 1

database creation, 29
parser mode, 30
scanner mode, 29

defining macros, 23

derived classes
sublist, 104

destroy
class, 115
classes, 110
current class, 110

directories list, 26
Directory filter, 62
directory query, 45
double-clicking

call graph node, 120
related class list entries, 103

E

edit fileset command, 25
edit fileset selection in static analyzer admin

menu, 79
–sa flag

use in makefiles, 22, 31
Exclude button, 62
exit browser selection in class view admin

menu, 109
external functions filter, 62, 69

F

file dependency view, 15
using to view function calls, 73

file dependency view selection in static analyzer
views menu, 59

File filter, 62
file queries, 43
fileset, 21

changing, 35
creating, 25

for sample session, 79
from executable, 28
with a shell script, 67

128 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

with command-line option, 28
with unix find command, 28

custom, 6, 13
customizing for code modules, 68
default, , 6, 13, 24
filename extensions, 25
filenames in, 6, 13
manual creation, 28
parser mode, 30
pathnames in, 23
personal and project, 70
scanner mode, 29
scanning, 8, 14, 33
specifications, , 21
specifying with command-line option, 29
updating, 30
using shell expansion characters, 23

fileset command-line option, 71
fileset creation, 21
fileset editor, 25

add files button, 27
browsing directory text area, 26
browsing for contents, 26
current fileset text area, 25
Directories list, 26
Files list, 27
literal entry, 26
removing entries, 26
wild card entry, 26

find regular expression selection in the queries\
General submenu, 39

find string selection in the queries\
General submenu, 39

force scan command, 33
force scan selection in queries menu, 19
friend

classes, 110
current class, 110

Function filter, 62
function queries, 42

G

general options
command, 38, 45
dialog box, 38

general options selection in queries menu, 19
general queries, 39
generating man pages for c++ classes, 91
generating the database, 29
graph overview, 53

H

Headers filter, 62, 69
highlighted

method definition, 120
query results, 83

History menu, 46
history menu, class view, 109

I

Include button, 62
included files, searching for, 23, 34
incremental mode view option, 54

building a tree, 72
inherited methods, 110
instantiate

current class, 110

L

language filters, 26
last query button, 99
list all classes selection in the queries\

Classes submenu, 43
list all common blocks selection in the queries\

common blocks submenu, 44

007–2580–005 129

Index

list all constants selection in the queries\
General submenu, 39

list all files selection in the queries\
Files submenu, 43

list all functions selection in the queries\
Function submenu, 42

list all global variables selection in the queries\
Variables submenu, 41

list all header files selection in the queries\
Files submenu, 43

list all macros selection in the queries\
Macro submenu, 39

list all method selection in the queries\
Methods submenu, 44

list all symbols in common block selection in the
queries\

common blocks submenu, 44
list all types selection in the queries\

Types submenu, 44
list data of type selection in the queries\

Types submenu, 45
list directories selection in the queries\

Directories submenu, 45
list files selection in the queries\

Directories submenu, 45
list functions of type selection in the queries\

Types submenu, 45
list global symbols selection in the queries\

General submenu, 39
list local declarations selection in the queries\

Function submenu, 43
list matching files selection in the queries\

Files submenu, 43
list methods in class selection in the queries\

Classes submenu, 44
list subclasses selection in the queries\

Classes submenu, 43
list superclasses selection in the queries\

Classes submenu, 43
list undefined selection in the queries\

Function submenu, 42
list unused function selection in the queries\

Function submenu, 42
list unused macros selection in the queries\

Macro submenu, 40
list unused variables selection in the queries\

Variables submenu, 42

M

macro queries, 39
man pages

customizing generation, 125
generating for c++ classes, 91

member display submenu, 111
declaration order, 111
end to end sort, 111
name sort, 111

member list, 101
resource, 121

members
types displayed, 82

menu bar
class view, 104

message area
class view, 99

method calls by method, 114
method queries, 44
methods, 110

used by current class, 110
modifying data, 117
multiple arcs button, 53
multiple inheritance, 103

N

name completion, 98
Name filter, 61
new class view, 115
nodes, 52

colors, 54, 59

130 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

noindex command-line option, 34

O

outline
customizing display, 121
icons, 100

outline icons, 75, 100

P

parent classes
multiple inheritance, 103

parser mode, 2, 17, 30
parser mode shortcuts, 32
pop-up menus

queries on data members, 113
queries on methods

call graph submenu, 120
what uses submenu, 116

Preference menu, 111
preference menu

align arglists, 111
align names, 111
member display submenu, 111
relation display submenu, 111

private members
access, 102

protected members
access, 102

public members
access, 102

Q

queries, 2, 37
case sensitivity, 38
commands, 18
defining, 37

making, 38
regular expressions, use of, 38
relationship to views, 15
repeating, 46
saving the results of, 46
scope of, 2
search text, 10
starting, 10
target text, 38
types of, 9, 39

query
Queries menu selections, 109
result in static analyzer, 99

query only view option, 54
query results area, 11
query target text area, 10, 37

R

readonly command-line option, 71
Realign button, 53
regular expressions, 23, 38, 61
related class list

C++, 102
resource, 122

relation display submenu, 111
declaration order, 111
end to end sort, 111

remove method in call graph, 115, 120
replace method in call graph, 115, 120
Rescan command, 33
rescan selection in queries menu, 18
resources

customizing browser, 121
results filter, 60

combining filters, , 63
filter types, 61
filtering, 60
seeing scope reduction numbers, 60
setting filters, 62

007–2580–005 131

Index

tutorial, 64
using with large projects, 69

results filter selection in static analyzer admin
menu, 61

Rotate button, 53

S

sample session
C++ browser, 79

save graph, 118
save graph selection in call graph admin menu, 120
save query file browser, 46
save query selection admin menu, 49
save query selection in queries menu, 19
scanner mode, 2, 29
scope, 101
scope categories

C++, 102
Scoping line, 60
scroll bars, annotated, 101
set include path and flags command, 34
set include path selection in queries menu, 19
shell expansion characters, 23
shell script, 67
show all related selection of class graph views

menu, 118
show all selection of class graph views menu, 118
show arg list toggle in call graph admin menu, 120
show butterfly” selection of class graph views

menu, 118
show call graph s, 109
show containment graph, 109
show friend graph, 109
show history, 109
show in static analyzer button, 99
show inheritance graph, 109
show interaction graph, 109
show previous subject, 109
show source, 115
show source where defined , 114

sort selection in static analyzer admin menu, 51
Source filter, 62
source view, 3

call graph method mode and, 120
starting, 45, 51, 54
static analyzer highlights, 45

static analyzer
batch mode, 34
command-line options, 28
executable option, 28
fileset option, 29
group analysis techniques, 69
order of activities, 3
overview, 1
queries, 37
starting command, 28
uses

with large programming projects, 67
using alternate text editors with, 45

static analyzer modes, 2

T

text view, 49, 72
elements, 50
fields, 50
full and short pathnames, 51
labels, 50
sorting, 12
sorting elements, 51
speed of, 49

to contain
what is used submenu, 110
what uses submenu, 110

transferring files in filesets, 27
tree views, 72

nodes and arcs, 51
options, 54
starting source view, 55
structure, 51

132 007–2580–005

ProDevTM WorkShop: Static Analyzer User’s Guide

tutorial, 55
type queries, 44

U

use source view option, 45
using

C++ browser, 79

V

variable queries, 40
view controls, 53
viewing source code, , 37, 45
viewport, 15
views, 3, 49

caution in using, 19
relationship to queries, 15
setting scope, 60
suggestions for large projects, 72

views menu, class view, 109

W

what accesses data members, 114
what currently defines method, 115
what declares method, 115
what defines data members, 114
what destroys class, 115
what destroys selection in class view queries

menu, 110
what else defines method, 115
what instantiates class, 115
what instantiates selection in class view queries

menu, 110
what is declared by base class, 115
what is declared selection in class view queries

menu, 110
what is defined by base class, 115

what is defined selection in class view queries
menu, 110

what is destroyed , 110
what is instantiated, 110
what is overloaded by derived class, 116
what is overridden by, 110
what is overridden by base class, 116
what is overridden by derived class, 116
what is pure virtual selection in class view

queries menu, 110
what is used by friend class, 116
what is used submenu, 116

in class view queries menu, 110
queries on methods pop-up, 114

what it uses, 116
what modifies data members, 114
what overloads method, 115
what reads data members, 114
what uses friend class, 116
what uses methods, 114
what uses submenu in class view queries

menu, 110
where address taken selection in the queries\

Variables submenu, 42
where allocated selection in the queries\

Variables submenu, 42
where common block defined selection in the

queries\
common blocks submenu, 44

where common block used selection in the
queries\

common blocks submenu, 44
where deallocated selection in the queries\

Variables submenu, 42
where declared? selection in the queries\

Methods submenu, 44
where defined? selection in the queries\

Classes submenu, 43
Function submenu, 42
General submenu, 39
Macro submenu, 40

007–2580–005 133

Index

Methods submenu, 44
Variables submenu, 41

where function used selection in the queries\
Function submenu, 42

where symbol used? selection in the queries\
General submenu, 39

where type defined” selection in the queries\
Types submenu, 45

where type used selection in the queries\
Types submenu, 45

where undefined? selection in the queries\
Macro submenu, 40

who calls? selection in the queries\
Function submenu, 42

who includes? selection in the queries\
Files submenu, 43

who is called by? selection in the queries\
Function submenu, 42

who is included by? selection in the queries\
Files submenu, 43

who references? selection in the queries\

Variables submenu, 41
who sets? selection in the queries\

Variables submenu, 42
who uses? selection in the queries\

Macro submenu, 40
working directory, 25

changing, 35

X

Xdefaults file, 45
.xdefaults file , 121

Z

zoom in button, 53
Zoom menu, 53
zoom out button, 53

134 007–2580–005

	New Features in this Guide
	Table of Contents
	List of Figures
	List of Tables
	List of Procedures

	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. Introduction to the W orkShop Static Analyzer
	How the Static Analyzer Works
	Steps in Static Analysis

	2. Tutorials for the Static Analyzer
	Applying the Static Analyzer to Scanned Files
	Applying the Static Analyzer to Parsed C++ Files
	Using the Compiler to Create a Static Analysis Database
	Other Static Analyzer Features

	3. Creating a Fileset and Generating a Database
	Fileset Specifications
	Using Regular Expressions
	Specifying Pathnames
	Specifying Included Files
	Defining Macros in the Fileset
	Using the Default Fileset

	Using the Fileset Editor
	Adding Lines to the Fileset Contents List
	Removing Lines from the Fileset Lists
	Browsing for Fileset Contents
	Adding File Names from Lists
	Transferring Files in the Fileset between Modes
	Leaving the Fileset Editor Window

	Creating a Fileset Manually
	Using Command-Line Options to Create and Use a Fileset
	Generating a Static Analyzer Database
	Scanner Mode
	Parser Mode
	Size Limitations

	Rescanning the Fileset
	Setting the Search Path for Included Files
	Changing to a New Fileset and Working Directory

	4. Queries
	Defining the Scope of a Query
	Target Text as a Regular Expression
	Case Sensitivity

	Making a Query
	General Queries
	Macro Queries
	Variable Queries
	Function Queries
	Files Queries
	Class Queries
	Method Queries
	Common Blocks Queries
	Types Queries
	Directories Queries

	Viewing Source Code
	Repeating Queries
	Saving Query Results

	5. Views
	Text View
	Call Tree View
	The Static Analyzer Control Panel
	Setting View Options
	Viewing Function Definitions and Calls in Source View
	Tutorial: Working in Call Tree View

	Class Tree View
	File Dependency View
	The Results Filter
	Setting Results Filters
	Filtering by Name, Function, File, Directory ,and Source
	Filtering by Header Files and External Functions
	Combining Results Filters
	Using the Results Filter Buttons
	Tutorial: Using the Results Filter

	6. W orking on Large Programming Projects
	Creating a Fileset Using a Shell Script
	Customizing the Fileset for Individual Code Modules
	Using the Results Filter to Focus Queries
	Applying Group Analysis Techniques
	Setting Up a Project Database
	Querying a Project Database
	Viewing Suggestions

	7. Getting Started with the Browser
	Starting Browser View
	General Characteristics of the Browser
	Browser View Outline Lists
	Outline Icons
	Browser View Menus
	Other Browser Window Features

	8. Browser Tutorial for C++
	Sample C++ Session

	9. The Browser Reference
	Browsing Choices Window
	Browsing Choices Window for C++

	Browser View Window
	Current Subject Field
	Show in Static Analyzer Toggle
	Last Query Button
	Browser View Query Identification Area
	Browser View List Areas
	C++ Member List
	C++ Relation List
	Browser View Menu Bar
	Browser View Popup Menus

	Graph Views Window
	Mouse Manipulations
	Graph Views Admin Menu
	Graph Views Window Views Menu

	Call Graph Window
	Using the Call Graph Window
	Call Graph Admin Menu

	A. Customizing the Browser
	Customizing the Browser View Lists
	Member List Resource
	Related Class List Resource
	Other Browser View List Resources

	Customizing Man Page Generation

	Index

