
Developer MagicTM: Performance
Analyzer User’s Guide

Document Number 007–2581–004

Copyright © 1996, 1998 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set
forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in
similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the
Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View,
CA 94043-1389.

IRIX and Silicon Graphics are registered trademarks and Developer Magic, ProDev, and the Silicon Graphics logo are trademarks
of Silicon Graphics, Inc. UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited. X/Open is a trademark of X/Open Company Ltd. The X device is a trademark of the Open Group.

New Features

Developer MagicTM: Performance Analyzer User’s Guide 007–2581–004

This revision of the Developer Magic: Performance Analyzer User’s Guide supports the 2.7 release of the
ProDev Workshop tools.

Record of Revision

Version Description

Revision level Month Year
Original Printing.

2.7 June 1998
Revised to reflect changes for the ProDev WorkShop 2.7 release, including the
ability to present SpeedShop data within WorkShop.

007–2581–004 i

Contents

Page

About This Guide xv

Related Publications . xv

Obtaining Publications . xv

Conventions . xvi

Reader Comments . xvi

Introduction to the Performance Analyzer [1] 1

Performance Analyzer Overview 1

The Performance Analyzer Tools . 1

Sources of Performance Problems 4

CPU-Bound Processes . 4

I/O-Bound Processes . 5

Memory-Bound Processes . 5

Bugs . 5

Performance Phases in Programs 5

Interpreting Performance Analyzer Results 6

The Time Line Display . 7

Resource Usage Graphs . 7

Usage View (Numerical) . 8

The Function List Area . 10

Call Graph View . 11

Butterfly View . 12

Source View with Performance Annotations 14

Disassembled Code with Performance Annotations 15

Malloc Error View, Leak View, Malloc View, and Heap View 16

007–2581–004 iii

Developer MagicTM: Performance Analyzer User’s Guide

Page

Memory Leakage . 17

Bad Frees . 17

Call Stack View . 18

I/O View . 19

Working Set View . 20

Cord Analyzer . 21

Performance Analyzer Tutorial [2] 23

Tutorial Overview . 23

Tutorial Setup . 23

Analyzing the Performance Data 25

Setting Up Performance Analysis Experiments [3] 33

Experiment Setup Overview . 33

Selecting a Performance Task . 34

Setting Sample Traps . 35

Understanding Predefined Tasks . 36

Profiling/PC Sampling . 36

User Time/Callstack Sampling 36

Ideal Time/Pixie . 37

Floating Point Exception Trace 38

I/O Trace . 39

Memory Leak Trace . 39

R10000 Hardware Counters 39

Custom . 41

Performance Analyzer Reference [4] 43

Selecting Performance Tasks . 43

Specifying a Custom Task . 45

Specifying Data to be Collected 45

iv 007–2581–004

Contents

Page

Call Stack Profiling . 46

Basic Block Count Sampling 46

PC Profile Counts . 47

Specifying Tracing Data . 48

malloc and free Heap Analysis 48

I/O (read , write) Operations 48

Floating-Point Exceptions . 49

Specifying Polling Data . 49

Pollpoint Sampling . 49

Call Stack Profiling . 49

Specifying the Experiment Configuration 50

Specifying the Experiment Directory 51

Other Options . 51

The Performance Analyzer Main Window 52

Task Field . 54

Function List Display and Controls 54

Usage Chart Area . 55

Time Line Area and Controls . 56

The Time Line Calipers . 56

Current Event Selection . 57

Time Line Scale Menu . 57

Admin Menu . 57

Config Menu . 59

Views Menu . 66

Executable Menu . 67

Thread Menu . 68

Usage View (Graphs) . 68

Charts in the Usage View (Graphs) Window 69

Getting Event Information from the Usage View (Graphs) Window 71

007–2581–004 v

Developer MagicTM: Performance Analyzer User’s Guide

Page

The Process Meter Window . 72

Usage View (Numerical) Window 73

The I/O View Window . 75

The Call Graph View Window 76

Special Node Icons . 77

Annotating Nodes and Arcs . 78

Node Annotations . 78

Arc Annotations . 78

Filtering Nodes and Arcs . 78

Call Graph Preferences Filtering Options 78

Node Menu . 78

Selected Nodes Menu . 79

Filtering Nodes through the Display Controls 80

Other Manipulation of the Call Graph 83

Geometric Manipulation through the Control Panel 83

Using the Mouse in the Call Graph View 85

Selecting Nodes from the Function List 85

Butterfly View . 85

Analyzing Memory Problems . 86

Conducting Memory Leak Experiments 86

Using Malloc Error View , Leak View , and Malloc View 88

Analyzing the Memory Map with Heap View 91

Heap View Window . 92

Source View malloc Annotations 94

Saving Heap View Data as Text 94

Memory Experiment Tutorial . 95

The Call Stack Window . 97

Analyzing Working Sets . 98

Working Set Analysis Overview 99

vi 007–2581–004

Contents

Page

Working Set View . 101

DSO List Area . 102

DSO Identification Area . 103

Page Display Area . 104

Admin Menu . 104

Cord Analyzer . 105

Working Set Display Area . 106

Working Set Identification Area 106

Page Display Area . 107

Function List . 107

Admin Menu . 108

File Menu . 108

Using Tester [5] 111

Tester Overview . 111

Test Coverage Data . 112

Types of Experiments . 112

Experiment Results . 113

Multiple Tests . 113

Test Components . 114

Usage Model . 115

Single Test Analysis Process . 115

Automated Testing . 122

Example 1: Making Tests and Running Them 123

Example 2: Applying a Make-and-Run Script 123

Additional Coverage Testing . 124

Tester Command Line Interface Tutorial [6] 127

Setting Up the Tutorials . 127

007–2581–004 vii

Developer MagicTM: Performance Analyzer User’s Guide

Page

Tutorial #1 - Analyzing a Single Test 128

Instrumenting an Executable . 128

Making a Test . 129

Running a Test . 129

Analyzing Test Coverage Data 130

Example 3: lssum Example 130

Example 4: lssource Example 131

Tutorial #2 - Analyzing a Test Set 132

Example 5: tut_make_testset Script: Making Individual Tests 133

Example 6: tut_make_testset Script: Making and Adding to the Test Set 134

Example 7: Contents of the New Test Set 135

Example 8: Running the New Test Set 136

Example 9: Examining the Results of the New Test Set 136

Example 10: Source with Counts 137

Tutorial #3 - Optimizing a Test Set 139

Example 11: Test Contributions by Function 139

Example 12: Arc Coverage Test Contribution Portion of Report 140

Example 13: Test Set Summary after Removing Tests [8] and [7] 141

Tutorial #4 - Analyzing a Test Group 142

Example 14: Setting up a Test Group 143

Example 15: Examining Test Group Results 144

Tester Command Line Reference [7] 147

Common cvcov Options . 147

cvcov Command Syntax and Description 149

General Test Commands . 150

Example 16: cattest Example 151

Example 17: cattest Example without -r 151

viii 007–2581–004

Contents

Page

Example 18: cattest Example with -r 152

Example 19: lsinstr Example 152

Example 20: Test Description File Examples 153

Coverage Analysis Commands 155

Example 21: lssum Example 155

Example 22: lsfun Example 155

Example 23: lsblock Example% 156

Example 24: lsbranch Example 157

Example 25: lsarc Example 158

Example 26: lscall Example 158

Example 27: lsline Example 159

Example 28: lssource Example 159

Example 29: lstrace Example 160

Example 30: diff between Two Tests 161

Example 31: diff between Different Instrumentations of the Same Test 161

Test Set Commands . 161

Example 32: Optimizing Test Sets 163

Test Group Commands . 163

Tester Graphical User Interface Tutorial [8] 165

Setting Up the Tutorial . 165

Tutorial #1 — Analyzing a Single Test 166

Invoking the Graphical User Interface 166

Tutorial #2 — Analyzing a Test Set 178

Tutorial #3 — Exploring the Graphical User Interface 181

Tester Graphical User Interface Reference [9] 191

Accessing the Tester Graphical Interface 191

007–2581–004 ix

Developer MagicTM: Performance Analyzer User’s Guide

Page

Main Window and Menus . 192

Test Name Input Field . 193

Coverage Display Area . 194

Search Field . 194

Control Area Buttons . 194

Status Area and Query-Specific Fields 195

Main Window Menus . 195

Test Menu Operations . 196

Views Menu Operations . 206

Queries Menu Operations . 209

Admin Menu Operations . 228

Glossary [10] 231

Index 235

Figures
Figure 1. Performance Analyzer Main Window 2

Figure 2. Typical Performance Analyzer Time Line 7

Figure 3. Typical Resource Usage Graphs 9

Figure 4. Typical Textual Usage View 10

Figure 5. Typical Performance Analyzer Function List Area 11

Figure 6. Typical Performance Analyzer Call Graph 12

Figure 7. Butterfly View . 13

Figure 8. Detailed Performance Metrics by Source Line 15

Figure 9. Disassembled Code with Stalled Clock Annotations 16

Figure 10. Typical Heap View Display Area 18

Figure 11. Typical Call Stack . 19

Figure 12. I/O View . 20

x 007–2581–004

Contents

Page

Figure 13. Working Set View . 21

Figure 14. Cord Analyzer . 22

Figure 15. Performance Analyzer Main Window—arraysum Experiment 26

Figure 16. Usage View (Graphs) —arraysum Experiment 27

Figure 17. Significant Call Stacks in the arraysum Experiment 28

Figure 18. Function List Portion of Performance Analyzer Window 29

Figure 19. Call Graph View —arraysum Experiment 30

Figure 20. Viewing a program in the Usage View (Numerical) window 31

Figure 21. Source View with Performance Metrics—arraysum Experiment 32

Figure 22. Select Task Submenu 35

Figure 23. Runtime Configuration Dialog Box 51

Figure 24. Typical Function List Area 54

Figure 25. Performance Analyzer Admin Menu 58

Figure 26. Experiment Window 59

Figure 27. Performance Analyzer Data Display Options 61

Figure 28. Performance Analyzer Sort Options 62

Figure 29. Performance Analyzer Views Menu 67

Figure 30. Usage View (Graphs) Window: Top Graphs 68

Figure 31. Usage View (Graphs) Window: Lower Graphs 69

Figure 32. The Process Meter Window with Major Menus Displayed 73

Figure 33. The Usage View (Numerical) Window 75

Figure 34. The I/O View Window 76

Figure 35. Call Graph View with Display Controls 77

Figure 36. Node Menus . 79

Figure 37. Chain Dialog Box . 81

Figure 38. Prune Chains Dialog Box 81

Figure 39. Show Important Children Dialog Box 82

007–2581–004 xi

Developer MagicTM: Performance Analyzer User’s Guide

Page

Figure 40. Show Important Parents Dialog Box 83

Figure 41. Call Graph View Controls for Geometric Manipulation 84

Figure 42. Performance Analyzer Window Displaying Results of a Memory Experiment 87

Figure 43. Malloc Error View Window with an Admin Menu 89

Figure 44. Leak View Window with an Admin Menu 90

Figure 45. Malloc View Window with Admin Menu 90

Figure 46. Source View Window with Memory Analysis Annotations 91

Figure 47. Heap View Window 92

Figure 48. Heap View Save Text Dialog Boxes 95

Figure 49. Performance Analyzer Call Stack Window 98

Figure 50. Working Set Analysis Process 100

Figure 51. Working Set View . 102

Figure 52. The Cord Analyzer Window 107

Figure 53. Instrumentation Process 119

Figure 54. Make Test Process . 119

Figure 55. Run Test Process . 120

Figure 56. The Queries Menu from the Main Tester Window 122

Figure 57. Typical Coverage Testing Hierarchy 125

Figure 58. Main Tester Window 168

Figure 59. Running Instrumentation 169

Figure 60. Selecting Make Test 171

Figure 61. Run Test Dialog Box 173

Figure 62. List Summary Query Window 174

Figure 63. List Functions Query with Options 175

Figure 64. List Functions Display Area with Blocks and Branches 176

Figure 65. Source View with Count Annotations 177

Figure 66. Disassembly View with Count Annotations 177

xii 007–2581–004

Contents

Page

Figure 67. Make Test Dialog Box with Features Used in Tutorial 179

Figure 68. Make Test Dialog Box for Test Set Type 180

Figure 69. Call Graph for List Functions Query 183

Figure 70. Call Graph Display Controls 184

Figure 71. Call Graph for List Arcs Query 186

Figure 72. Call Graph for List Arcs Query — Multiple Arcs 187

Figure 73. Test Analyzer Queries: List Arcs 188

Figure 74. Test Analyzer Queries: List Blocks 189

Figure 75. Test Analyzer Queries: List Branches 190

Figure 76. Accessing Tester from the WorkShop Debugger 192

Figure 77. Main Test Analyzer Window 193

Figure 78. Test Menu Commands 197

Figure 79. Run Instrumentation Dialog Box 198

Figure 80. Run Test Dialog Box 200

Figure 81. Make Test Dialog Box 201

Figure 82. Make Test Dialog Box with Test Group Selected 203

Figure 83. Delete Test Dialog Box 204

Figure 84. List Tests Dialog Box 205

Figure 85. Modify Test Dialog Box after Loading Tests 206

Figure 86. List Functions Query in Text View Format 207

Figure 87. List Functions Query in Call Tree View Format 208

Figure 88. List Summary Query in Bar Graph View Format 209

Figure 89. Query-Specific Default Fields for a Test or Test Set 210

Figure 90. Query-Specific Default Fields for a DSO Test Group 210

Figure 91. Queries Menu . 211

Figure 92. List Summary Query 212

Figure 93. List Functions Query with Options 215

007–2581–004 xiii

Developer MagicTM: Performance Analyzer User’s Guide

Page

Figure 94. List Functions Example in Call Tree View Format 216

Figure 95. List Blocks Example 217

Figure 96. List Branches Example 219

Figure 97. List Arcs Example 220

Figure 98. List Argument Traces Example 222

Figure 99. List Instrumentation Example 224

Figure 100. “List Line Coverage” Example 225

Figure 101. Describe Test Example 226

Figure 102. Compare Test Example — Coverage Differences 227

Figure 103. Compare Test Example — Function Differences 228

Figure 104. Admin Menu . 229

Figure 105. “Set Defaults” Dialog Box 229

Figure 106. Launch Tool Submenu 230

Tables
Table 1. Summary of Performance Analyzer Tasks 44

Table 2. Basic Block Counts and PC Profile Counts Compared 48

Table 3. Call Stack Profiling and PC Profiling Compared 50

Table 4. Task Display in Usage Chart Area 56

Table 5. Common Queries for a Single Test 121

xiv 007–2581–004

About This Guide

This publication documents the ProDev WorkShop Performance Analyzer for
release 2.7, running on IRIX systems.

This release of the WorkShop toolkit requires the following software levels:

• IRIX 6.2 or higher

• MIPSpro 7.2.1

• SpeedShop 1.3.1

Related Publications

The following documents contain additional information that may be helpful:

• SpeedShop User’s Guide

• C Language Reference Manual

• C++ Language System Library

• C++ Language System Overview

• C++ Language System Product Reference Manual

• C++ Programmer’s Guide

• Developer Magic: WorkShop Pro MPF User’s Guide

• Developer Magic: Debugger User’s Guide

• Developer Magic: Static Analyzer User’s Guide

• Developer Magic: ProDev WorkShop Overview

• Fortran 77 Language Reference Manual

• MIPSPro 7 Fortran 90 Commands and Directives Reference Manual

Obtaining Publications

Silicon Graphics maintains publications information at the following World
Wide Web site:

007–2581–004 xv

Developer MagicTM: Performance Analyzer User’s Guide

http://techpubs.sgi.com/library

The preceding website contains information that allows you to browse
documents online, order documents, and send feedback to Silicon Graphics.

To order a printed Silicon Graphics document, call 1–800–627–9307.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that a PV be filed.

xvi 007–2581–004

About This Guide

• Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

1–800–950–2729 (toll free from the United States and Canada)

+1–612–683–5600

• Send a facsimile of your comments to the attention of Software Publications
Group in Eagan, Minnesota, at fax number +1–612–683–5599.

We value your comments and will respond to them promptly.

007–2581–004 xvii

Introduction to the Performance Analyzer [1]

The Performance Analyzer helps you understand your program in terms of
performance. If there are areas in which performance can be improved, it helps
you find those areas and make the changes. This chapter provides a brief
introduction to the Performance Analyzer tools and describes how to use them
to solve performance problems. It includes the following sections:

• Performance Analyzer Overview, see Section 1.1, page 1.

• The Performance Analyzer Tools, see Section 1.2, page 1.

• Sources of Performance Problems, see Section 1.3, page 4.

• Interpreting Performance Analyzer Results, see Section 1.4, page 6.

1.1 Performance Analyzer Overview

To conduct performance analysis, you first run an experiment to collect
performance data. Specify the objective of your experiment through a task
menu or with the SpeedShop command ssrun (1). The Performance Analyzer
reads the required data and provides charts, tables, and annotated code to help
you analyze the results.

There are three general techniques for collecting performance data:

• Counting. This involves counting the exact number of times each function
or basic block has been executed. This requires instrumenting the program;
that is, inserting code into the executable to collect counts.

• Profiling. The program’s program counter (PC), call stack, and/or resource
consumption are periodically examined and recorded. For a list of resources,
see Section 1.4.2, page 7.

• Tracing. Events that impact performance, such as reads and writes, system
calls, floating-point exceptions, and memory allocations, reallocations, and
frees, can be traced.

1.2 The Performance Analyzer Tools

This section describes the major windows in the Performance Analyzer toolset.
The main window (see Figure 1, page 2) contains the following major areas:

007–2581–004 1

Developer MagicTM: Performance Analyzer User’s Guide

• The function list area, which shows functions with their performance metrics.

• The system resource usage chart, which shows the mode of the program at
any time.

• The time line, which shows when sample events occur in the experiment
and controls the scope of analysis for the Performance Analyzer views.

Current performance
task

Function list area

Scrollable legend
for usage chart

Usage chart

Time line area

Figure 1. Performance Analyzer Main Window

2 007–2581–004

Introduction to the Performance Analyzer [1]

The following supplemental views bring up their own windows:

• Usage View (Graphs) , containing charts that indicate resource usage and
the occurrence of samples corresponding to time intervals set by the time
line calipers (see Figure 3, page 9).

• Usage View (Numerical) , providing the actual resource usage values
corresponding to time intervals set by the time line calipers (see Figure 4,
page 10).

• Call Graph View , displaying the selected function, with its metrics, in a
graphical format that shows the functions that called it (callers) and the
functions it called (callees) (see Figure 6, page 12).

• Butterfly View , showing the selected function along with the callers and
callees (see Figure 7, page 13).

• Call Stack , displaying the contents of the call stack at the selected event
or I/O trace (see Figure 11, page 19).

• Malloc Error View , displaying each malloc error (bad memory frees)
that occurred in the experiment, the number of times the malloc occurred
(a count is kept of calls to malloc that occurred with identical call stacks),
and the call stack corresponding to the selected malloc error.

• Leak View , displaying each memory leak that occurred in your
experiment, its size, the number of times the leak occurred at that location
during the experiment, and the call stack corresponding to the selected leak.

• Malloc View , displaying each malloc (whether or not it caused a
problem) that occurred in your experiment, its size, the number of times the
malloc occurred (a count is kept of malloc calls with identical call stacks),
and the call stack corresponding to the selected malloc .

• Heap View , displaying a map of memory indicating how blocks of memory
were used in the time interval set by the time line calipers (see Figure 10,
page 18).

• I/O View , displaying a chart devoted to I/O system calls. It identifies up
to 10 files involved in I/O (see Figure 12, page 20).

• Working Set View , measuring the coverage of your executable and the
dynamic shared objects (DSOs) that make up your executable. It indicates
instructions, functions, and pages that were not used when the experiment
was run (see Figure 13, page 21).

007–2581–004 3

Developer MagicTM: Performance Analyzer User’s Guide

• Cord analyzer, accessed from sscord (1), works in conjunction with the
Working Set View to let you try out different working set configurations
to improve performance (see Figure 14, page 22).

• Source View with performance annotations, displaying performance
metrics adjacent to the corresponding line of source code (see Figure 8, page
15) .

• Disassembled Source view with performance annotations, displaying
the performance metrics adjacent to the corresponding machine code. For
the Ideal Time/Pixie experiment, the Disassembled Source view
can show where and why the processor may have stalled during the
execution of an instruction.

1.3 Sources of Performance Problems

To tune a program’s performance, you must determine its consumption of
machine resources. At any point in a process, there is one limiting resource
controlling the speed of execution. Processes can be slowed down by:

• CPU speed and availability

• I/O processing

• Memory size and availability

• Bugs

• Instruction cache and data cache sizes

• Any of the above in different phases

The following sections describe these sources of performance problems in more
detail.

1.3.1 CPU-Bound Processes

A CPU-bound process spends its time executing in the CPU and is limited by
CPU speed and availability. To improve the performance of CPU-bound
processes, you may need to streamline your code. This can entail modifying
algorithms, reordering code to avoid interlocks, removing nonessential steps,
blocking to keep data in cache and registers, or using alternative algorithms.

4 007–2581–004

Introduction to the Performance Analyzer [1]

1.3.2 I/O-Bound Processes

An I/O-bound process has to wait for input/output (I/O) to complete. I/O may
be limited by disk access speeds or memory caching. To improve the
performance of I/O-bound processes, you can try one of the following
techniques:

• Improve overlap of I/O with computation.

• Optimize data usage to minimize disk access.

• Use data compression.

1.3.3 Memory-Bound Processes

A program that continuously needs to swap out pages of memory is called
memory-bound. Page thrashing is often due to accessing virtual memory on a
haphazard rather than strategic basis. To fix a memory-bound process, you can
try to improve the memory reference patterns or, if possible, decrease the
memory used by the program.

1.3.4 Bugs

You may find that a bug is causing the performance problem. For example, you
may find that you are reading in the same file twice in different parts of the
program, that floating-point exceptions are slowing down your program, that
old code has not been completely removed, or that you are leaking memory
(making malloc calls without the corresponding calls to free).

1.3.5 Performance Phases in Programs

Because programs exhibit different behavior during different phases of
operation, you need to identify the limiting resource during each phase. A
program can be I/O-bound while it reads in data, CPU-bound while it
performs computation, and I/O-bound again in its final stage while it writes
out data. Once you’ve identified the limiting resource in a phase, you can
perform an in-depth analysis to find the problem. And after you have solved
that problem, you can check for other problems within the phase. Performance
analysis is an iterative process.

007–2581–004 5

Developer MagicTM: Performance Analyzer User’s Guide

1.4 Interpreting Performance Analyzer Results

Before we discuss the mechanics of using the Performance Analyzer, let’s look
at these features that help you understand the behavior of your processes:

• The time line display shows the experiment as a set of events over time and
provides calipers to allow the user to specify an interval of interest. See the
following section, and for more information, see Section 4.4.4, page 56.

• The Usage View (Graphs) displays process resource usage data in the
form of strip charts and event charts. See Section 1.4.2, page 7.

• The Usage View (Numerical) presents a textual display of the process
and system-wide resource usage data. See Section 1.4.3, page 8.

• The Function List Area displays the program’s functions with associated
performance metrics. See Section 1.4.4, page 10.

• The Call Graph View presents the target program as nodes and arcs,
along with associated metrics. See Section 1.4.5, page 11.

• The Butterfly View presents a selected function along with the functions
that called it and the functions that it called. See Section 1.4.6, page 12.

• Source View with performance annotations, see Section 1.4.7, page 14.

• Disassembled Source with performance annotations, see Section 1.4.8,
page 15.

• Malloc Error View , Leak View , Malloc View , and Heap View , see
Section 1.4.9, page 16.

• The Call Stack View shows the path through functions that led to an
event. See Section 1.4.10, page 18.

• I/O View displays a chart of the number of bytes for each I/O transfer. See
Section 1.4.11, page 19.

• The Working Set View displays a list of the DSOs in the program, with
information on the efficiency of use of the text (instruction) pages. See
Section 1.4.12, page 20.

• The cord analyzer lets you explore the working set behavior of an
executable or DOS. See Section 1.4.13, page 21.

The following sections describe these features in more detail.

6 007–2581–004

Introduction to the Performance Analyzer [1]

1.4.1 The Time Line Display

Have you ever considered timing a program with a stopwatch? The
Performance Analyzer time line serves the same function. The time line shows
where each sample event in the experiment occurred. By setting sample traps at
phase boundaries, you can analyze metrics on a phase-by-phase basis. The
simplest metric, time, is easily recognized as the space between events. The
triangular icons are calipers; they let you set the scope of analysis to the
interval between the selected events.

Figure 2, page 7, shows the time line portion of the Performance Analyzer
window with typical results. Event number 4 is selected; it is labeled according
to the caliper number, third . You can see from the graph that the phase
between the selected event and event number 5 is taking more of the program’s
time than any of the other phases.

Left caliper

Current event marker

Left caliper controls

Right caliper controls

Selected event controls

Time line scale menu

Figure 2. Typical Performance Analyzer Time Line

1.4.2 Resource Usage Graphs

The Performance Analyzer lets you look at how different resources are
consumed over time. It produces a number of resource usage graphs that are
tied to the time line (see Figure 3, page 9, which shows six of the graphs
available). These resource usage graphs indicate trends and let you pinpoint
problems within phases.

Resource usage data refers to items that consume system resources. They
include

• User and system time

007–2581–004 7

Developer MagicTM: Performance Analyzer User’s Guide

• Page faults

• Context switches

• The size of reads and writes

• Read and write counts

• Poll and I/O calls

• Total system calls

• Process signals received

• Process size

Resource usage data is not always recorded (written to file) at each sample
point. If you discover inconsistent behavior within a phase, you can set new
sample points and break the phase down into smaller phases.

You can analyze resource usage trends in the charts in Usage View (Graphs)
and can view the numerical values in the Usage View (Numerical) window.

1.4.3 Usage View (Numerical)

The usage graphs show the patterns; the textual usage views let you view the
aggregate values for the interval specified by the time line calipers. Figure 4,
page 10, shows a typical Usage View (Numerical) window.

8 007–2581–004

Introduction to the Performance Analyzer [1]

System usage

Page faults

Context switches

Reads/writes:
data size

Reads/writes:
number calls

Figure 3. Typical Resource Usage Graphs

007–2581–004 9

Developer MagicTM: Performance Analyzer User’s Guide

Analysis interval

Process metrics

System-wide
metrics

Figure 4. Typical Textual Usage View

1.4.4 The Function List Area

The function list displays all functions in the source code, annotated by
performance metrics and ranked by the criterion of your choice, such as counts
or one of the time metrics. Figure 5, page 11, shows an example of the function
list, ranked by inclusive CPU time.

10 007–2581–004

Introduction to the Performance Analyzer [1]

Function name

Performance metrics

Figure 5. Typical Performance Analyzer Function List Area

You can configure how functions appear in the function list area by selecting
Preferences... in the Config menu. It lets you select which performance
metrics display, whether they display as percentages or absolute values, and the
style of the function name. The Sort... selection in the Config menu lets
you order the functions in the list by the selected metric. Both selections disable
those metric selections that were not collected in the current experiment.

1.4.5 Call Graph View

In contrast to the function list, which provides the performance metrics for
functions, the call graph puts this information into context by showing you the
relationship between functions. The call graph displays functions as nodes and
calls as arcs (displayed as lines between the nodes). The nodes are annotated
with the performance metrics; the arcs come with counts by default and can
include other metrics as well.

In Figure 6, page 12, for example, the inclusive time spent by the function main
is 8.107 seconds. Its exclusive time was 0 seconds, meaning that the time was
actually spent in called functions. The main function can potentially call three
functions. The Call Graph View indicates that in the experiment, main
called three functions: getArray , which consumed 1.972 seconds; sum1, which
consumed 3.287 seconds; and sum2, which consumed 2.848 seconds.

007–2581–004 11

Developer MagicTM: Performance Analyzer User’s Guide

Inclusive time
in getArray

Inclusive time
in main

Inclusive time
in sum2

Figure 6. Typical Performance Analyzer Call Graph

1.4.6 Butterfly View

The Butterfly View shows a selected routine in the context of functions that
called it and functions it called. For an illustration, see Figure 7, page 13.

12 007–2581–004

Introduction to the Performance Analyzer [1]

Figure 7. Butterfly View

Select a function to be analyzed by clicking on it in the function list area of the
main Performance Analyzer window. The Butterfly View window displays
the function you click on as the selected function.

The two main parts of the Butterfly View window identify the immediate
parents and the immediate children of the selected function. In this case, the

007–2581–004 13

Developer MagicTM: Performance Analyzer User’s Guide

term immediate means they either call the selected function directly or are called
by it directly.

The columns of data in the illustration show:

• The percentage of the sort key (inclusive time, in the illustration) attributed
to each caller or callee.

• The time the function and any functions it called required to execute.

• The time the function alone (excluding other functions it called) required to
execute.

You can also display the address from which each function was called by
selecting the Show All Arcs Individually from the Config menu.

1.4.7 Source View with Performance Annotations

The Performance Analyzer lets you view performance metrics by source line in
the Source View (see Figure 8, page 15) or by machine instruction in the
Disassembled Source view. Displaying performance metrics is set in the
Preferences dialog box, accessed from the Display menu in the Source
View and Disassembled Source view. The Performance Analyzer sets
thresholds to flag lines that consume more than 90% of a total resource. These
indicators appear in the metrics column and on the scroll bar.

14 007–2581–004

Introduction to the Performance Analyzer [1]

Performance metrics

Source display area

Threshold flags

Figure 8. Detailed Performance Metrics by Source Line

1.4.8 Disassembled Code with Performance Annotations

The Performance Analyzer also lets you view performance metrics by machine
instruction (see Figure 9, page 16). You can view any of the performance
metrics that were measured in your experiment. If you ran an Ideal
Time/Pixie experiment, you can get a special three-part annotation that
provides information about stalled instructions.

The yellow bar spanning the top of three columns in this annotation indicates
the first instruction in each basic block. The first column labeled Clock in the
annotation displays the clock number in which the instruction issues relative to
the start of a basic block. If you see clock numbers replaced by quotation marks
(“), it means that multiple instructions were issued in the same cycle. The
column labeled Stall shows how many clocks elapsed during the stall before
the instruction was issued. The column labeled Why shows the reason for the
stall. There are three possibilities:

• B - Branch delay

• F - Function unit delay

007–2581–004 15

Developer MagicTM: Performance Analyzer User’s Guide

• O - Operand has not arrived yet

Yellow bars
indicating
span of
basic block

Figure 9. Disassembled Code with Stalled Clock Annotations

1.4.9 Malloc Error View, Leak View, Malloc View, and Heap View

The Performance Analyzer lets you look for memory problems. The Malloc
Error View , Leak View , Malloc View , and Heap View windows address
two common types of memory problems that can inhibit performance:

• Memory leakage, see Section 1.4.9.1, page 17

• Bad calls to free , see Section 1.4.9.2, page 17.

The difference between these windows lies in the set of data that they collect.
Malloc Error View displays all malloc errors. When you run a memory
leak experiment and problems are found, a dialog box displays suggesting you
use Malloc Error View to see the problems. Leak View shows memory
leak errors only. Malloc View shows each malloc operation whether faulty
or not. Heap View displays a map of heap memory that indicates where both
problems and normal memory allocations occur and can tie allocations to
memory addresses. The first two views are better for focusing on problems; the
latter two views show the big picture.

16 007–2581–004

Introduction to the Performance Analyzer [1]

1.4.9.1 Memory Leakage

Memory leakage occurs when a program dynamically allocates memory and
fails to deallocate that memory when it is through using the space. This causes
the program size to increase continuously as the process runs. A simple
indicator of this condition is the Total Size strip chart on the Usage View
(Graphs) window. The strip chart only indicates the size; it does not show the
reasons for an increase.

Leak View displays each memory leak in the executable, its size, the number
of times the leak occurred at that location, and the corresponding call stack
(when you select the leak), and is thus the most appropriate view for focusing
on memory leaks.

A region allocated but not freed is not necessarily a leak. If the calipers are not
set to cover the entire experiment, the allocated region may still be in use later
in the experiment. In fact, even when the calipers cover the entire experiment,
it is not necessarily wrong if the program does not explicitly free memory
before exiting, since all memory is freed anyway on program termination.

The best way to look for leaks is to set sample points to bracket a specific
operation that should have no effect on allocated memory. Then any area that is
allocated but not freed is a leak.

1.4.9.2 Bad Frees

A bad free (also referred to as an anti-leak condition) occurs when a program
frees some structure that it had already freed. In many such cases, a subsequent
reference picks up a meaningless pointer, causing a segmentation violation. Bad
calls to free are indicated in both Malloc Error View and in Heap View .
Heap View identifies redundant calls to free in its memory map display. It
helps you find the address of the freed structure, search for the malloc event
that created it, and find the free event that released it. Hopefully, you can
determine why it was prematurely freed or why a pointer to it was referenced
after it had been freed.

Heap View also identifies unmatched calls to free in an information window.
An unmatched free is a free that does not have a corresponding allocation in
the same interval. As with leaks, the caliper settings may cause false
indications. An unmatched free that occurs in any region not starting at the
beginning of the experiment may not be an error. The region may have been
allocated before the current interval and the unmatched free in the current
interval may not be a problem after all. A segment identified as a bad free is
definitely a problem; it has been freed more than once in the same interval.

007–2581–004 17

Developer MagicTM: Performance Analyzer User’s Guide

A search facility is provided in Heap View that allows the user to find the
allocation and deallocation events for all blocks containing a particular virtual
address.

The Heap View window lets you analyze memory allocation and deallocation
between selected sample events in your experiment. Heap View displays a
memory map that indicates calls to malloc and realloc , bad deallocations,
and valid deallocations during the selected period, as shown in Figure 10, page
18. Clicking an area in the memory map displays the address.

Figure 10. Typical Heap View Display Area

1.4.10 Call Stack View

The Performance Analyzer allows you to recall call stacks at sample events,
which helps you reconstruct the calls leading up to an event so that you can

18 007–2581–004

Introduction to the Performance Analyzer [1]

relate the event back to your code. Figure 11, page 19, shows a typical call
stack. It corresponds to sample event #3 in an experiment.

Event identification

Call stack at
selected event

Event type

Figure 11. Typical Call Stack

1.4.11 I/O View

I/O View helps you determine the problems in an I/O-bound process. It
produces a graph of all I/O system calls and identifies up to 10 files involved in
I/O. By selecting an event with the left mouse button, you can display the call
stack corresponding to the event in the Call Stack View . See Figure 12.

007–2581–004 19

Developer MagicTM: Performance Analyzer User’s Guide

Event identification field

File field

I/O system call chart

Figure 12. I/O View

1.4.12 Working Set View

Working Set View measures the coverage of the dynamic shared objects
(DSOs) that make up your executable (see Figure 13). It indicates instructions,
functions, and pages that were not used when the experiment was run. It
shows the coverage results for each DSO in the DSO list area. Clicking a DSO in
the list displays its pages with color coding to indicate the coverage of the page.

20 007–2581–004

Introduction to the Performance Analyzer [1]

DSO list area

DSO identification
area

Page display area
(for selected DSO)

Figure 13. Working Set View

1.4.13 Cord Analyzer

The cord analyzer is not actually part of the Performance Analyzer and is
invoked by typing sscord at the command line. The cord analyzer (see Figure
14, page 22) lets you explore the working set behavior of an executable or
dynamic shared library (DSO). With it you can construct a feedback file for
input to cord to generate an executable with improved working-set behavior.

007–2581–004 21

Developer MagicTM: Performance Analyzer User’s Guide

Status area

Working set
display area

Working set
identification area

Page display area
(for selected working set)

Figure 14. Cord Analyzer

22 007–2581–004

Performance Analyzer Tutorial [2]

This chapter presents a tutorial for using the Performance Analyzer and covers
these topics:

• Tutorial Overview, see Section 2.1, page 23

• Tutorial Setup, see Section 2.2, page 23

• Analyzing the Performance Data, see Section 2.3, page 25

Note: Because of inherent differences between systems and also due to
concurrent processes that may be running on your system, your experiment
will produce different results from the one in this tutorial. However, the basic
form of the results should be the same.

2.1 Tutorial Overview

This tutorial is based on a sample program called arraysum . The arraysum
program goes through the following steps:

1. Defines the size of an array (2,000 by 2,000).

2. Creates a 2,000-by-2,000 element array, gets the size of the array, and reads
in the elements.

3. Calculates the array total by adding up elements in each column.

4. Recalculates the array total differently, by adding up elements in each row.

It is more efficient to add the elements in an array row-by-row, as in step 4, than
column-by-column, as in step 3. Because the elements in an array are stored
sequentially by rows, adding the elements by columns potentially causes page
faults and cache misses. The tutorial shows you how you can detect symptoms
of problems like this and then zero in on the problem. The source code is
located in /usr/demos/WorkShop/performance if you want to examine it.

2.2 Tutorial Setup

You need to compile the program first so that you can use it in the tutorial.

1. Change to the /usr/demos/WorkShop/performance directory.

007–2581–004 23

Developer MagicTM: Performance Analyzer User’s Guide

You can run the experiment in this directory or set up your own directory.

2. Compile the arraysum.c file by entering the following:

make arraysum

This will provide you with an executable for the experiment, if one does
not already exist.

3. From the command line, enter the following:

cvd arraysum&

The Debugger Main View window is displayed. You need the Debugger
to specify the data to be collected and run the experiment.

4. Choose User Time/Callstack Sampling from the Select Task
submenu in the Perf menu.

This is a performance task that will return the time your program is
actually running and the time the operating system spends performing
services such as I/O and executing system calls. It includes the time spent
in each function.

5. If you want to watch the progress of the experiment, choose Execution
View in the Views menu. Then click Run in the Debugger Main View
window.

This starts the experiment. When the status line indicates that the process
has terminated, the experiment has completed. The main Performance
Analyzer window is displayed automatically. The experiment may take 1 to
3 minutes, depending on your system. The output file will appear in a
newly created directory, named test0000 .

You can also generate an experiment using the ssrun (1) command with the
-workshop option, naming the output file on the cvperf (1) command. In the
following example, the output file from ssrun is
arraysum.usertime.m2344 .

% ssrun -workshop -usertime arraysum

% cvperf arraysum.usertime.m2344

If you are analyzing your experiment on the same machine you generate it, you
do not need the -workshop option. If the _SPEEDSHOP_OUTPUT_FILENAMEis
set to a file name, such as my_prog , the experiment file from the example
above would be my_prog.m2345 . See the ssrun (1) or the Speedshop User’s
Guide for more SpeedShop environment variables.

24 007–2581–004

Performance Analyzer Tutorial [2]

2.3 Analyzing the Performance Data

Performance analysis experiments are set up and run in the Debugger window;
the data is analyzed in the main Performance Analyzer window. The
Performance Analyzer can display any data generated by the ssrun (1)
command, by any of the Debugger window performance tasks (which use the
ssrun (1) command), or by pixie (1).

Note: Again, the timings and displays shown in this tutorial could be quite
different from those on your system. For example, setting caliper points in the
time line may not give you the same results as those shown in the tutorial,
because the program will probably run at a different speed on your system.

1. Examine the main Performance Analyzer window, which is invoked
automatically if you created your experiment file from the cvd window.

The Performance Analyzer window now displays the information from the
new experiment (see Figure 15, page 26).

2. Look at the usage chart in the Performance Analyzer window.

The first phase is I/O-intensive. The second phase, during which the
calculations took place, shows high user time.

3. Select Usage View (Graphs) from the Views menu.

The Usage View (Graphs) window displays as in Figure 16, page 27. It
shows high read activity and high system calls in the first phase, confirming
our hypothesis that it is I/O-intensive.

007–2581–004 25

Developer MagicTM: Performance Analyzer User’s Guide

Function list
area

Usage chart
area

Time line
area

Event selector
control

Figure 15. Performance Analyzer Main Window—arraysum Experiment

26 007–2581–004

Performance Analyzer Tutorial [2]

Page faults

Context switches

Size of data
read/written

Counts of data
read/written

Poll and I/O calls

System calls

Process signals

Process size

Figure 16. Usage View (Graphs) —arraysum Experiment

As a side note, scroll down to the last chart, which indicates that the
maximum total size of the process is reached at the end of the first phase
and does not grow thereafter.

4. Select Call Stack View from the Views menu.

007–2581–004 27

Developer MagicTM: Performance Analyzer User’s Guide

The call stack displays for the selected event. An event refers to a sample
point on the time line (or any usage chart).

At this point, no events have been selected so the call stack is empty. To
define events, you can add calls to ssrt_caliper_point to record caliper
points in the source file, set a sample trap from the WorkShop Debugger
window, or set pollpoint calipers on the time line. (For more information on
the ssrt_caliber_point function, see the ssapi (3) man page.) See
Figure 17, page 28, for an illustration of how the Call Stack View
responds when various caliper points are recorded.

Figure 17. Significant Call Stacks in the arraysum Experiment

5. Return to the Performance Analyzer window and pull down the sash to
expose the complete function list.

This shows the inclusive time (that is, time spent in the function and its
called functions) and exclusive time (time in the function itself only) for
each function. As you can see, more time is spent in sum1 than in sum2.

28 007–2581–004

Performance Analyzer Tutorial [2]

Figure 18. Function List Portion of Performance Analyzer Window

6. Select Call Graph from the Views menu and click on the Butterfly
button.

The call graph provides an alternate means of viewing function
performance data. It also shows relationships, that is, which functions call
which functions. After the Butterfly button is clicked, the Call Graph
View window appears, as shown in Figure 19, page 30. The Butterfly
button takes the selected function (or most active function if none is
selected) and displays it with the functions that call it and those that it calls.

007–2581–004 29

Developer MagicTM: Performance Analyzer User’s Guide

Figure 19. Call Graph View —arraysum Experiment

7. Select Close from the Admin menu in the Call Graph View window to
close it. Return to the main Performance Analyzer window.

8. Select Usage View (Numerical) from the Views menu.

The Usage View (Numerical) window appears as shown in Figure 20,
page 31.

30 007–2581–004

Performance Analyzer Tutorial [2]

Figure 20. Viewing a program in the Usage View (Numerical) window

9. Return to the main Performance Analyzer window, select sum1 from the
function list, and click Source .

The Source View window displays as shown in Figure 21, page 32,
scrolled to sum1, the selected function. The annotation column to the left of

007–2581–004 31

Developer MagicTM: Performance Analyzer User’s Guide

the display area shows the performance metrics by line. Lines consuming
more than 90% of a particular resource appear with highlighted annotations.

Notice that the line where the total is computed in sum1 is seen to be the
culprit, consuming 2,100 milliseconds. As in the other WorkShop tools, you
can make corrections in Source View , recompile, and try out your
changes.

sum1 entry point

Significant time
consumption

Exclusive time
column annotations

Inclusive time
column annotations

Figure 21. Source View with Performance Metrics—arraysum Experiment

At this point, we have uncovered one performance problem: the sum1
algorithm is inefficient. As a side exercise, you may want to take a look at
the performance metrics at the assembly level. To do this, return to the
main Performance Analyzer window, select sum1 from the function list, and
click Disassembled Source . The disassembly view displays the
assembly language version of the program with the performance metrics in
the annotation column.

10. Close any windows that are still open.

This concludes the tutorial.

32 007–2581–004

Setting Up Performance Analysis
Experiments [3]

In performance analysis, you set up the experiment, run the executable, and
analyze the results. To make setup easier, the Performance Analyzer provides
predefined tasks that help you establish an objective and ensure that the
appropriate performance data will be collected. This chapter tells you how to
conduct performance tasks and what to look for.

It covers these topics:

• Experiment Setup Overview, see Section 3.1, page 33.

• Selecting a Performance Task, see Section 3.2, page 34.

• Setting Sample Traps, see Section 3.3, page 35.

• Understanding Predefined Tasks, see Section 3.4, page 36.

3.1 Experiment Setup Overview

Performance tuning typically consists of examining machine resource usage,
breaking down the process into phases, identifying the resource bottleneck
within each phase, and correcting the cause. Generally, you run the first
experiment to break your program down into phases and run subsequent
experiments to examine each phase individually. After you have solved a
problem in a phase, you should then reexamine machine resource usage to see
if there is further opportunity for performance improvement.

Each experiment has these steps:

1. Specify the performance task.

The Performance Analyzer provides predefined tasks for conducting
experiments. When you select a task, the Performance Analyzer
automatically enables the appropriate performance data items for collection.

The predefined tasks ensure that only the appropriate data collection is
enabled. Selecting too much data can bog down the experiment and skew
the data for collection. If you need a mix of performance data not available
in the predefined tasks, you can select Custom from the Select Task
submenu. It lets you enable combinations of the data collection options.

007–2581–004 33

Developer MagicTM: Performance Analyzer User’s Guide

2. Specify where to capture the data.

If you want to gather information for the complete program, this step is not
needed. If you want data at specific points in the process, you need to set
sample traps. See Section 3.3, page 35, for a brief description of traps or
Chapter 4, “Setting Traps,” in the Developer Magic: Debugger User’s Guide for
an in-depth discussion.

The Performance Analyzer records samples at the beginning and end of the
process automatically. If you want to analyze data within phases, set
sample traps at the beginning of each phase and at intermediate points.

3. Specify the experiment configuration parameters.

This step is not necessary if you use the defaults; if you want to make
configuration changes, select Configs from the Perf menu. The dialog
box lets you specify a number of configuration options, many of which
depend on the experiment you plan to run. The dialog box in Figure 23,
page 51, shows the runtime configuration choices, and the options are
described in Section 4.3, page 50.

4. Run the program to collect the data.

You run the experiment from the WorkShop Debugger window. If you are
running a small experiment to capture resource usage, you may be able to
watch the experiment in real time in the Process Meter. SpeedShop stores
the results in the designated experiment subdirectory.

5. Analyze the results.

After the experiment completes, you can look at the results in the
Performance Analyzer window and its associated views. Use the calipers to
get information for phases separately.

3.2 Selecting a Performance Task

To set up a Performance Analyzer experiment, choose a task from the Select
Task submenu in the Perf menu in the Debugger Main View (see Figure 22,
page 35).

34 007–2581–004

Setting Up Performance Analysis Experiments [3]

Figure 22. Select Task Submenu

Selecting a task enables data collection. The mode indicator in the upper right
corner of the Main View changes from Debug Only to Performance .

3.3 Setting Sample Traps

Sample traps allow you to record data when a specified condition occurs. You
set them from the debugger main view, Trap Manager, or Source View. For a
thorough discussion of setting traps, see Chapter 4, “Setting Traps,” in the
Developer Magic: Debugger User’s Guide.

Note: In order for trap-based caliper points to work, you must activate the
Attach Debugger toggle on the Runtime tab window. That window is
available from the Configs... menu item on the Perf menu of the
debugger window.

You can define sample traps:

• At function entry or exit points

• At source lines

• For events

• Conditionally

• Manually during an experiment

007–2581–004 35

Developer MagicTM: Performance Analyzer User’s Guide

Sample traps at function entry and exit points are preferable to source line
traps, because they are more likely to be preserved as your program evolves.
This better enables you to save a set of traps in the Trap Manager in a file for
subsequent reuse.

Manual sample traps are triggered when you click the Sample button in the
Debugger Main View. They are particularly useful for applications with
graphical user interfaces. If you have a suspect operation in an experiment, a
good technique is to take a manual sample before and after you perform the
operation. You can then examine the data for that operation.

3.4 Understanding Predefined Tasks

If you are unfamiliar with performance analysis, it is very easy to request more
data collection than you actually need. Doing so can slow down the
Performance Analyzer and skew results. To help you record data appropriate to
your current objective, WorkShop provides predefined combinations of tasks,
which are available in the Select Task submenu in the Perf menu (see
Figure 22, page 35). These tasks are described in the following sections. When
you select a task, the required data collection is automatically enabled.

3.4.1 Profiling/PC Sampling

Use the Profiling/PC Sampling task selection when you are identifying
which parts of your program are using the most CPU time. PC profiling results
in a statistical histogram of the program counter. The exclusive CPU time is
presented as follows:

• By function in the function list

• By source line in Source View

• By instruction in Disassembly View

• Machine resource usage data at 1-second intervals and at sample points

3.4.2 User Time/Callstack Sampling

Use the User Time/Callstack Sampling task selection to tune a
CPU-bound phase or program. It enables you to display the time spent in the
CPU by function, source line, and instruction. This task records the following:

• The call stack every 3 milleseconds (ms)

36 007–2581–004

Setting Up Performance Analysis Experiments [3]

• Machine resource usage data at 1-second intervals and at sample points

Data is measured by periodically sampling the call stack. The program’s call
stack data is used to do the following:

• Attribute exclusive user time to the function at the bottom of each call stack
(that is, the function being executed at the time of the sample).

• Attribute inclusive user time to all the functions above the one currently
being executed.

The time spent in a procedure is determined by multiplying the number of
times an instruction for that procedure appears in the stack by the average time
interval between call stacks. Call stacks are gathered whether the program was
running or blocked; hence, the time computed represents the total time, both
within and outside the CPU. If the target process was blocked for a long time as
a result of an instruction, that instruction will show up as having a high time.

User time runs should incur a program execution slowdown of no more than
15%. Data from a usertime experiment is statistical in nature and shows some
variance from run to run.

3.4.3 Ideal Time/Pixie

Use the Ideal Time/Pixie task selection to tune a CPU-bound phase. This
task provides exact counts with theoretical times. The analysis determines the
cost on a per-basic block basis; it does not deal with data dependencies between
basic blocks. It is very useful when used in conjunction with the
Profiling/PC Sampling task. This approach lets you examine actual versus
ideal time. The difference is the time spent as a result of the following:

• The load operations, which take a minimum of two cycles if the data is
available in the cache and much longer if the data has to be accessed from
the swap area, secondary cache, or main memory

• The store operations, which cause the CPU to stall if the write buffer in
the CPU gets filled

• Time spent with the CPU stalled as a result of data dependencies between
basis blocks

This task records the following:

• Basic block counts

• Counts of branches taken

007–2581–004 37

Developer MagicTM: Performance Analyzer User’s Guide

• Machine resource usage data at 1-second intervals and at sample points

• Function pointer traces with counts

The following results can be displayed in the function list, the Source View ,
and the Disassembly View :

• The ideal time, which is the product of the number of the number of times
each machine instruction executes, the cycle time of the machine, and the
estimated number of cycles per execution.

• Execution counts.

• Resulting machine instructions.

• A count of resulting loads, stores, and floating-point instructions.

• An approximation of the time spent with the CPU stalling (caused by data
and functional unit interlocks).

The task requires instrumentation of the target executable. This involves
dividing the code into basic blocks, which are a set of instructions with a single
entry point, a single exit point, and no branches within. Counter code is
inserted at the beginning of each basic block.

After the instrumented executable runs, the Performance Analyzer multiplies
the number of times a basic block was executed by the number of instructions in
it. This yields the total number of instructions executed as a result of that basic
block (and similarly for other specific kinds of instructions, like loads or stores).

3.4.4 Floating Point Exception Trace

Use the Floating Point Exception Trace task selection when you
suspect that large, unaccounted for periods of time are being spent in
floating-point exception handlers. The task records the call stack at each
floating-point exception. The number of floating-point exceptions is presented
as follows:

• By function in the function list

• By source line in the Source View

• By instruction in Disassembly View

38 007–2581–004

Setting Up Performance Analysis Experiments [3]

To observe the pattern of floating-point exceptions over time, look in the
floating-point exceptions event chart in the Usage View (Graphical)
window.

3.4.5 I/O Trace

Use the I/O Trace task selection when your program is being slowed down
by I/O calls, and you want to find the responsible code. This task records call
stacks at every read and write system call, along with file descriptor
information and the number of bytes read or written.

The number of bytes read and written is presented as follows:

• By function in the function list

• By source line in the Source View

• By instruction in the Disassembly View

3.4.6 Memory Leak Trace

Use the Memory Leak Trace task selection to determine where memory leaks
and bad calls to free may occur in a process. The task records the call stacks,
address, and number of bytes at every malloc , realloc , and free call. The
bytes currently allocated by malloc (that might represent leaks) and the list of
double calls to free are presented in Malloc Error View and the other
memory analysis views. The number of bytes allocated by malloc is presented:

• By function in the function list

• By source line in the Source View

• By instruction in the Disassembly View

3.4.7 R10000 Hardware Counters

If you are running your application on a system using the R10000 series CPU,
you can use the R10k Hardware Counters task selection once you have
focused in on where your problem is coming from. This task gives low-level,
detailed information about hardware events. It counts the following events:

• The cycles counter, which is incremented on each clock cycle.

• Issued instructions.

007–2581–004 39

Developer MagicTM: Performance Analyzer User’s Guide

• Graduated instructions. The graduated instruction counter is incremented
by the number of instructions that were graduated on the previous cycle.

• Issued loads.

• Graduated loads.

• Issued stores.

• Graduated stores.

• Issued store conditionals.

• Graduated store conditionals.

• Graduated floating-point instructions. This counter is incremented by the
number of floating-point instructions that graduated on the previous cycle.

• Decoded branches.

• Primary cache quadword writeback.

• Secondary cache quadword writeback.

• TLB (task lookaside buffer) misses. This counter is incremented on the cycle
after the TLB mishandler is invoked.

• Correctable secondary cache data array ECC errors.

• Mispredicted branches.

• Primary instruction cache misses. This counter is incremented one cycle
after an instruction fetch request is entered into the miss handling table.

• Primary data cache misses. This counter is incremented on the cycle after a
primary cache data refill is begun.

• Secondary instruction cache misses. This counter is incremented after the
last 16-byte block of a 64-byte primary instruction cache line is written into
the instruction cache.

• Secondary data cache misses. This counter is incremented on the cycle after
the second 16-byte block of a primary data cache line is written into the data
cache.

• Instruction misprediction.

• Data misprediction.

40 007–2581–004

Setting Up Performance Analysis Experiments [3]

• External interventions.

• External interventions, secondary cache.

• External invalidations.

• External invalidation, secondary cache.

• Virtual coherency conditions.

• Store/prefetch exclusive to clean block in secondary cache.

• Store/prefetch exclusive to shared block in secondary cache.

You can also choose hardware counter profiling based on either PC sampling or
call stack sampling.

3.4.8 Custom

Use the Custom task selection when you need to collect a combination of
performance data that is not available through the predefined tasks. Selecting
Custom brings up the same tab panel screen displayed by the Configs...
selection (see Figure 23, page 51).

The Custom task lets you select and tune the following:

• Sampling data. This includes profiling intervals, counter size, and whether
rld (1) will be involved in data collection.

• Tracing data. This includes malloc and free trace, I/O system call trace,
and floating-point exception trace.

• Recording intervals. This includes the frequency of data recording for usage
data or usage or call stack data at caliper points. You can also specify this
with marching orders. (For more information on marching orders, see the
ssrun (1) man page.)

• Call stack. This includes sampling intervals and the type of timing.

• Ideal experiments. This specifies whether or not the basic block count data
is collected.

• Hardware counter specification. This specifies the hardware event you want
to count, the counter overflow value, and the profiling style (PC or call
stack). Hardware counter experiments are possible only on R10000 systems.

007–2581–004 41

Developer MagicTM: Performance Analyzer User’s Guide

• Runtime. This specifies the same as those listed for the Configs menu
selection. See Section 3.1, page 33.

Remember the basic warnings in this chapter about collecting data:

• Too much data can slow down the experiment.

• Call stack profiling is not compatible with count operations or PC profiling.

• If you combine count operations with PC profiling, the results will be
skewed due to the amount of instrumented code that will be profiled.

42 007–2581–004

Performance Analyzer Reference [4]

This chapter provides detailed descriptions of the Performance Analyzer
toolset, including:

• Selecting Performance Tasks, see Section 4.1, page 43.

• Specifying a Custom Task, see Section 4.2, page 45.

• Specifying the Experiment Configuration, see Section 4.3, page 50.

• The Performance Analyzer Main Window, see Section 4.4, page 52.

• Usage View (Graphs), see Section 4.5, page 68.

• Process Meter, see Section 4.6, page 72.

• Usage View (Numerical), see Section 4.7, page 73.

• I/O View, see Section 4.8, page 75.

• Call Graph View, see Section 4.9, page 76.

• Butterfly View, see Section 4.10, page 85.

• Analyzing Memory Problems, see Section 4.11, page 86.

• Call Stack, see Section 4.12, page 97.

• Analyzing Working Sets, see Section 4.13, page 98.

4.1 Selecting Performance Tasks

You choose performance tasks from the Select Task submenu of the Perf
menu in Debugger View. You should have an objective in mind before you start
an experiment. The tasks ensure that only the appropriate data collection is
enabled. Selecting too much data can slow down the experiment and skew the
data for collection.

The tasks are summarized in Table 1, page 44. The Task column identifies the
task as it appears in the Select Task menu of the WorkShop Debugger’s
Perf menu. The Clues column provides an indication of symptoms and
situations appropriate for the task. The Data Collected column indicates
performance data set by the task. Note that call stacks are collected

007–2581–004 43

Developer MagicTM: Performance Analyzer User’s Guide

automatically at sample points, poll points, and process events. The Description
column describes the technique used.

Table 1. Summary of Performance Analyzer Tasks

Task Clues Data Collected Description

Profiling/PC
Sampling

CPU-bound • PC Profile Counts
• Fine-Grained Usage

(1 sec.)
• Call stacks at sample

points

Tracks CPU time spent in functions, source
code lines, and instructions. Useful for
CPU-bound conditions. CPU time metrics
help you separate CPU-bound from
non-CPU-bound instructions.

User
Time/Callstack
Sampling

Not
CPU-bound

• Fine-Grained Usage
(1 sec.)

• Call Stack Profiling
(30 ms)

• Call stacks at sample
points

Tracks the user time spent by function,
source code line, and instruction.

Ideal
Time/Pixie

CPU-bound • Basic Block Counts
• Fine-Grained Usage

(1 sec.)
• Call stacks at sample

points

Calculates the ideal time, that is, the time
spent in each basic block with the
assumption of one instruction per machine
cycle. Useful for CPU-bound conditions.
Ideal time metrics also give counts, total
machine instructions, and
loads/stores/floating point instructions. It
is useful to compare ideal time with the
CPU time in an “Identify high CPU time
functions” experiment.

Floating
Point
Exception
Trace

High system
time in
usage charts;
presence of
floating
point
operations;
NaNs

• FPE Exception Trace
• Fine-Grained Usage

(1 sec.)
• Call stacks at sample

points

Useful when you suspect that time is
being wasted in floating-point exception
handlers. Captures the call stack at each
floating-point exception. Lists
floating-point exceptions by function,
source code line, and instruction.

44 007–2581–004

Performance Analyzer Reference [4]

Task Clues Data Collected Description

I/O trace Process
blocking due
to I/O

• I/O system call trace
• Fine-Grained Usage

(1 sec.)
• Call stacks at sample

points

Captures call stacks at every read and
write . The file description and number of
bytes are available in I/O View.

Memory Leak
Trace

Swelling in
process size

• malloc /free trace
• Fine-Grained Usage

(1 sec.)
• Call stacks at sample

points

Determines memory leaks by capturing
the call stack, address, and size at all
malloc , realloc , and free routines and
displays them in a memory map. Also
indicates double free routines.

R10k Hardware
Counters...

Need more
detailed
information

• Wide range of
hardware-level counts

On R10000 systems only, returns low-level
information by counting hardware events
in special registers. An overflow value is
assigned to the relevant counter. The
number of overflows is returned.

Custom... • Call stacks at sample
points

• User’s choice

Lets you select the performance data to be
collected. Remember that too much data
can skew results.

4.2 Specifying a Custom Task

When you choose Custom... from the Select Task submenu in the Perf
menu in the Main View, a dialog box appears. This section provides an
explanation of most of the windows involved in setting up a custom task.

The Custom... Runtime and HWC Spec(the hardware counters) windows
are identical to the Configs... Runtime and HWC Specwindows. For an
illustration of Runtime , see Figure 23, page 51. For information on HWC Spec,
see Section 3.4.7, page 39.

4.2.1 Specifying Data to be Collected

Data is collected and recorded at every sample point. The following data
collection methods are available:

• Call stack (the CallStack window). See the following section.

• Basic block counts (the Ideal window). See Section 4.2.1.2, page 46.

007–2581–004 45

Developer MagicTM: Performance Analyzer User’s Guide

• PC profile counts (the PC Sampling window). See Section 4.2.1.3, page 47.

4.2.1.1 Call Stack Profiling

The Performance Analyzer performs call stack data collection automatically.
There is no instrumentation involved. This corresponds to the SpeedShop
usertime experiment.

The CallStack window lets you choose from real time, virtual time, and
profiling time and specify the sampling interval.

Real time is also known as wall-clock time and total time. It is the total time a
program takes to execute, including the time it takes waiting for a CPU.

Virtual time is also called process virtual time. It is the time spent when a
program is actually running, as opposed to when it is swapped out and waiting
for a CPU or when the operating system is in control, such as performing I/O
for the program.

Profiling time is time the process has actually been running on the CPU,
whether in user or system mode. This is the default for the usertime
experiment. The is also called CPU time or user time.

For the sampling interval, you can select one of the following intervals:

• Standard (every 30 milleseconds)

• Fast (every 20 milliseconds)

• Custom (enter your own interval)

4.2.1.2 Basic Block Count Sampling

Basic block counts are translated to ideal CPU time (as shown in the SpeedShop
ideal experiment) and are displayed at the function, source line, and machine
line levels. The assumptions made in calculating ideal CPU time are as follows:

• Each instruction and system call takes exactly one cycle.

• Potential floating-point interlocks and memory latency time (cache misses
and memory bus contention) are ignored.

The end result might be better described as ideal user CPU time.

The Ideal window lets you select the counter size, either 16 or 32 bits, and the
option to use rld (1) profiling.

46 007–2581–004

Performance Analyzer Reference [4]

The data is gathered by first instrumenting the target executable. This involves
dividing the executable into basic blocks consisting of sets of machine
instructions that do not contain branches into or out of them. A few
instructions are inserted for every basic block to increment a counter every time
that basic block is executed. The basic block data is actually generated, and
when the instrumented target executable is run, the data is written out to disk
whenever a sample trap fires. Instrumenting an executable increases its size by
a factor of three and greatly modifies its performance behavior.

!
Caution: Running the instrumented executable causes it to run more slowly.
By instrumenting, you might be changing crucial resources; during analysis,
the instrumented executable might appear to be CPU-bound, whereas the
original executable is I/O-bound.

4.2.1.3 PC Profile Counts

Enabling PC profile counts causes the Program Counter (PC) of the target
executable to be sampled every 10 milliseconds when it is in the CPU. PC
profiling is a lightweight, high-speed operation done with kernel support.
Every 10 milliseconds, the kernel stops the process if it is in the CPU,
increments a counter for the current value of the PC, and resumes the process.
It corresponds to the SpeedShop pcsamp experiment.

PC profile counts are translated to the actual CPU time displayed at the
function, source line, and machine line levels. The actual CPU time is calculated
by multiplying the PC hit count by 10 milliseconds.

A major discrepancy between actual CPU time and ideal CPU time indicates
one or more of the following:

• Cache misses in a single process application.

• Secondary cache invalidations in a multiprocess application run on a
multiprocessor.

Note: This comparison is inaccurate over a single run if you collect both
basic block and PC profile counts simultaneously. In this situation, the ideal
CPU time will factor out the interference caused by instrumenting; the actual
CPU time will not.

A comparison between basic block counts and PC profile counts is shown in
Table 2, page 48.

007–2581–004 47

Developer MagicTM: Performance Analyzer User’s Guide

Table 2. Basic Block Counts and PC Profile Counts Compared

Basic Block Counts PC Profile Counts

Used to compute ideal CPU time Used to estimate actual CPU time

Data collection by instrumenting Data collection done with the kernel

Slows program down Has minimal impact on program
speed

Generates an exact count Approximates counts

4.2.2 Specifying Tracing Data

Tracing data records the time at which an event of the selected type occurred.
There are five types of tracing data:

• malloc and free Heap Analysis, see Section 4.2.2.1, page 48.

• I/O (read , write) Operations, see Section 4.2.2.2, page 48.

• Floating-Point Exceptions, see Section 4.2.2.3, page 49.

Note: These features should be used with care; enabling tracing data adds
substantial overhead to the target execution and consumes a great deal of
disk space.

4.2.2.1 malloc and free Heap Analysis

Tracing malloc and free allows you to study your program’s use of dynamic
storage and to quickly detect memory leaks (malloc routines without
corresponding free routines) and bad free routines (freeing a previously
freed pointer). This data can be analyzed in the Malloc Error View , Leak
View , Malloc View , and Heap View (see Section 4.11, page 86).

4.2.2.2 I/O (read , write) Operations

I/O tracing records every I/O-related system call that is made during the
experiment. It traces read and write system calls with the call stack at the
time, along with the number of bytes read or written. This is useful for
I/O-bound processes.

48 007–2581–004

Performance Analyzer Reference [4]

4.2.2.3 Floating-Point Exceptions

Floating-point exception tracing records every instance of a floating-point
exception. This includes problems like underflow and NaN (not a number)
values. If your program has a substantial number of floating-point exceptions,
you may be able to speed it up by correcting the algorithms.

The floating-point exceptions are as follows:

• Overflow

• Underflow

• Divide-by-zero

• Inexact result

• Invalid operand (for example, infinity)

4.2.3 Specifying Polling Data

The following categories of polling data are available:

• Pollpoint Sampling, see Section 4.2.3.1, page 49.

• Call Stack Profiling, see Section 4.2.3.2, page 49.

Entering a positive nonzero value in their fields turns them on and sets the time
interval at which they will record.

4.2.3.1 Pollpoint Sampling

Setting pollpoint sampling on the Runtime tab window enables you to specify
a regular time interval for capturing performance data, including resource
usage and any enabled sampling or tracing functions. Since pollpoint sampling
occurs frequently, it is best used with call stack data only rather than other
profiling data. Its primary utility is to enable you to identify boundary points
for phases. In subsequent runs, you can set sample points to collect the
profiling data at the phase boundaries.

4.2.3.2 Call Stack Profiling

Enabling call stack profiling in the CallStack tab window causes the call
stack of the target executable to be sampled at the specified time interval
(minimum of 10 milliseconds) and saved. The call stack continues to be

007–2581–004 49

Developer MagicTM: Performance Analyzer User’s Guide

sampled when the program is not running: that is, while it is internally or
externally blocked. Call stack profiling is used in the User Time/Callstack
Sampling task to calculate total times.

You can choose the type of time you want to eventually display: real time,
virtual time, or profiling time. See the glossary for definitions.

By setting the sampling interval to a higher number, you can sample more often
and receive better finer grained results.

Call stack profiling is accomplished by the Performance Analyzer views and not
by the kernel. As a result, it is less accurate than PC profiling. Collecting call
stack profiling data is far more intrusive than collecting PC profile data.

!
Caution: Collecting basic block data causes the text of the executable to be
modified. Therefore, if call stack profiling data is collected along with basic
block counts, the cumulative total time displayed in Usage View
(Graphs) is potentially erroneous.

Table 3, page 50, compares call stack profiling and PC profiling.

Table 3. Call Stack Profiling and PC Profiling Compared

PC Profiling Call Stack Profiling

Done by kernel Done by Performance Analyzer
process

Accurate, nonintrusive Less accurate, more intrusive

Used to compute CPU time Used to compute total time

4.3 Specifying the Experiment Configuration

To specify the experiment configuration, choose Configs... from the Perf
menu. See Figure 23, page 51, for an illustration of the resulting window. While
you can access other tabs, the only ones that are active are the Runtime and
General tabs.

50 007–2581–004

Performance Analyzer Reference [4]

Figure 23. Runtime Configuration Dialog Box

4.3.1 Specifying the Experiment Directory

The Experiment Directory field lets you specify the directory where you
want the data to be stored. The Performance Analyzer provides a default
directory named test0000 for your first experiment. If you use the default or
any other name that ends in four digits, the four digits are used as a counter
and will be incremented automatically for each subsequent session. Note that
the Performance Analyzer does not remove (or overwrite) experiment
directories. You need to remove directories yourself.

4.3.2 Other Options

The following configuration options are available on the Runtime display:

• Specifies the base name of the experiment file (if blank, it is the name of the
executable).

• Lets you specify whether you want the Performance Analyzer to gather
performance data for any processes launched by one or more of the
following:

007–2581–004 51

Developer MagicTM: Performance Analyzer User’s Guide

– exec()

– fork()

– sproc()

– system()

– Tracks fork() to exec() processes.

• Other options:

– Verbose output yields more explanatory information in the Execution
View .

– Reuse File Descriptors opens and closes the file descriptors for the
output files every time performance data is to be written. If the target
program is using chdir() , the
_SPEEDSHOP_REUSE_FILE_DESCRIPTORSenvironment variable is set
to the value selected by this configuration option.

– Compress Experiment Data saves disk space.

– Disable Stack Unwind suppresses the stack unwind as is done in the
SpeedShop usertime , totaltime , and other call stack-based
experiments.

– Disable Signal Handlers disables the normal setting of signal
handlers for all fatal and exit signals.

• CaliperPoint Signal sets the value of the signal sent by the sample
button to cause the process to write out a caliper point. The default value is
40.

• PollPoint Caliper Interval (seconds) specifies the interval at
which pollpoint caliper points are taken.

• AutoLaunch Analyzer launches the Performance Analyzer automatically
when the experiment finishes.

4.4 The Performance Analyzer Main Window

The Performance Analyzer main window is used for analysis after the
performance data has been captured. It contains a time line area indicating
when events took place over the span of the experiment, a list of functions with

52 007–2581–004

Performance Analyzer Reference [4]

their performance data, and a resource usage chart. The following sections
cover these topics:

• Task field, see the Section 4.4.1, page 54.

• Function list display and controls, see Section 4.4.2, page 54.

• Usage chart area, see Section 4.4.3, page 55.

• Time line area and controls, seeSection 4.4.4, page 56.

• Admin menu, see Section 4.4.5, page 57.

• Config menu, see Section 4.4.6, page 59.

• Views menu, see Section 4.4.7, page 66.

• Executable menu, see Section 4.4.8, page 67.

• Thread menu, see Section 4.4.9, page 68.

The Performance Analyzer main window can be invoked from the Launch
Tool submenu in the Debugger Admin menu or from the command line, by
typing one of the following:

cvperf [-exp] directory

cvperf speedshop_exp_files

cvperf [-pixie] pixie.counts_files

The arguments to these commands are as follows:

directory A directory containing data from old WorkShop
performance experiments.

speedshop_exp_files One or more SpeedShop experiment files
generated either by the ssrun (1) command or by
using the Select Task ... submenu of the
Perf menu on the WorkShop Debugger window.

007–2581–004 53

Developer MagicTM: Performance Analyzer User’s Guide

pixie.counts_files An output file from pixie (1) measuring code
execution frequency. The ideal task generates a
pixie.counts_file.

4.4.1 Task Field

The Task field identifies the task for the current experiment and is read-only.
See Section 4.1, page 43, for a summary of the performance tasks. For an
in-depth explanation of each task, refer to Section 3.4, page 36.

4.4.2 Function List Display and Controls

The function list area displays the program’s functions with the associated
performance metrics. It also provides buttons for displaying function
performance data in other views. See Figure 24, page 54.

Performance metrics
annotations

Function list
display area

Search field

Hide 0 functions
toggle

Show Node
Source View button
Disassembly View button

Figure 24. Typical Function List Area

The main features of the function list are:

54 007–2581–004

Performance Analyzer Reference [4]

Function list display
area

Shows all functions in the program annotated
with their associated performance data. The
column headings identify the metrics.

You select the performance data to display from
the Preferences... selection in the Config
menu. The order of ranking is set by the Sort...
selection in the Config menu. The default order
of sorting (depending on availability) is:

1. Inclusive time

2. Exclusive time

3. Counts

Search field Lets you look for a function in the list and in any
active views.

Hide 0 Functions
toggle button

Lets you filter functions with 0 time from the list.

Show Node button Displays the specified node in the Call Graph
View .

Source button Displays the Source View window
corresponding to the selected function. The
Source View window displays performance
metrics in the annotation column. Source View
can also be displayed by double-clicking a
function in the function list or a node or arc in the
call graph. This is discussed in the next section.

Disassembled
Source button

Displays the Disassembly View window
corresponding to the selected function. The
Disassembly View is annotated with the
performance metrics.

4.4.3 Usage Chart Area

The usage chart area in the Performance Analyzer main window displays the
stripchart most relevant to the current task. The upper subwindow displays the
legend for the stripchart, and the lower subwindow displays the stripchart
itself. This gives you some useful information without having to open the
Usage View (Graphs) window. Table 4, page 56, shows you the data
displayed in the usage chart area for each task.

007–2581–004 55

Developer MagicTM: Performance Analyzer User’s Guide

Table 4. Task Display in Usage Chart Area

Task Data in Usage Chart Area

User Time/Callstack Sampling User versus system time

Profiling/PC Sampling User versus system time

Ideal Time/Pixie User versus system time

Floating Point Exception Trace Floating-point exception event chart

I/O Trace read() , write() system calls

Memory Leak Trace Process Size stripchart

R10000 Hardware Counters Depends on experiment

Custom task User versus system time, unless
tracing data has been selected
(see Trace tasks above)

4.4.4 Time Line Area and Controls

The time line shows when each sample event in the experiment occurred.
Figure 2, page 7, shows the time line portion of the Performance Analyzer
window with typical results.

4.4.4.1 The Time Line Calipers

The time line calipers let you define an interval for performance analysis. You
can set the calipers in the time line to any two sample event points, using the
caliper controls or by dragging them directly. The calipers appear solid for the
current interval. If you drag them with the mouse (left or middle button), they
appear dashed to give you visual feedback. When you stop dragging a caliper, it
appears in outlined form denoting a tentative and as yet unconfirmed selection.

Specifying an interval is done as follows:

1. Set the left caliper to the sample event at the beginning of the interval.

You can drag the left caliper with the left or middle mouse button or by
using the left caliper control buttons in the control area. Note that calipers
always snap to sample events. (It does not matter whether you start with
the left or right caliper.)

56 007–2581–004

Performance Analyzer Reference [4]

2. Set the right caliper to the sample event at the end of the interval. This is
similar to setting the left caliper.

3. Confirm the change by clicking the OKbutton in the control area.

After you confirm the new position, the solid calipers move to the current
position of the outlined calipers and change the data in all views to reflect
the new interval.

Clicking Cancel or clicking with the right mouse button before the change
is confirmed restores the outlined calipers to the solid calipers.

4.4.4.2 Current Event Selection

If you want to get more information on an event in the time line or in the
charts in the Usage View (Graphs) , you can click an event with the left
button. The Event field displays the following:

• Event number

• Description of the trap that triggered the event

In addition, the Call Stack View window updates to the appropriate times,
stack frames, and event type for the selected event. A black diamond-shaped
icon appears in the time line and charts to indicate the selected event. You can
also select an event using the event controls below the caliper controls; they
work in similar fashion to the caliper controls.

4.4.4.3 Time Line Scale Menu

The time line scale menu lets you change the number of seconds of the
experiment displayed in the time line area. The Full Scale selection displays
the entire experiment on the time line. The other selections are time values; for
example, if you select 1 min , the length of the time line displayed will span 1
minute.

4.4.5 Admin Menu

The Admin menu and its options are shown in Figure 25, page 58. The Admin
menu has selections common to the other WorkShop tools. The following
selections are different in the Performance Analyzer:

Experiment... Lets you change the experiment directory and
displays a dialog box (see Figure 26, page 59).

007–2581–004 57

Developer MagicTM: Performance Analyzer User’s Guide

Save As Text... Records a text file with preference information
selected in the view and displays a dialog box.
You can use the default file name or replace it
with another name in the Selection dialog box
that displays. You can specify the number of lines
to be saved. The data can be saved as a new file
or appended to an existing one.

Figure 25. Performance Analyzer Admin Menu

58 007–2581–004

Performance Analyzer Reference [4]

Figure 26. Experiment Window

4.4.6 Config Menu

The main purpose of the Config menu in the Performance Analyzer main
window is to let you select the performance metrics for display and for ranking
the functions in the function list. However, your selections also apply
elsewhere, such as the Call Graph View window.

The selections in the Config menu are as follows:

Preferences... Lets you select which metrics display and
whether they appear as absolute times and counts
or percentages. Remember you can only select
the types of metrics that were collected in the

007–2581–004 59

Developer MagicTM: Performance Analyzer User’s Guide

experiment. You can also specify how C++ file
names (if appropriate) are to display:

• Demangled shows the function and its
argument types.

• As Is uses the translator-generated C-style
name.

• Function shows the function name only.

• Class::Function shows the class and
function.

For an illustration of the Preferences...
window, see Figure 27, page 61.

Sort... Lets you establish the order in which the
functions appear; this helps you find questionable
functions. The default order of sorting
(depending on availability) is:

1. Inclusive time or counts

2. Exclusive time or counts

3. Counts

For an illustration, see Figure 28, page 62.

The performance data selections for the Preferences and Sort dialog boxes
are similar. The difference between the inclusive (Incl.) and exclusive
(Excl.) metrics is that inclusive data includes a function’s calls and exclusive
data does not.

60 007–2581–004

Performance Analyzer Reference [4]

Figure 27. Performance Analyzer Data Display Options

007–2581–004 61

Developer MagicTM: Performance Analyzer User’s Guide

Figure 28. Performance Analyzer Sort Options

The toggle buttons in both the Data Display Options and Sort Options
windows are as follows:

Incl. Percentage , Excl. Percentage

Percentage of the total time spent inside and outside of the
CPU (by a function, source line, or instruction).

Incl. Total Time, Excl. Total Time

Time spent inside and outside of the CPU (by a function, source
line, or instruction). It is calculated by multiplying the number
of times the PC appears in any call stack by the average time
interval between call stacks.

62 007–2581–004

Performance Analyzer Reference [4]

Incl. CPU Time, Excl. CPU Time

Time spent inside the CPU (by a function, source line, or
instruction). It is calculated by multiplying the number of times
a PC value appears in the profile by 10 ms.

Incl. Ideal Time, Excl. Ideal Time

Theoretical time spent by a function, source line, or instruction
under the assumption of one machine cycle per instruction. It is
useful to compare ideal time with actual.

Incl. HWC Data , Excl. HWC Data

Number of events measured.

Incl. Cycles , Excl. Cycles

Number of machine cycles.

Incl. Instr’ns , Excl. Instr’ns

Number of instructions.

Incl. FP operations , Excl. FP operations

Number of floating-point operations.

Incl. Load counts, Excl. Load counts

Number of load operations.

Incl. Store counts, Excl. Store counts

Number of store operations.

Incl. System calls, Excl. System calls

Number of system calls.

Incl. Bytes Read, Excl. Bytes Read

Number of bytes in a read operation.

Incl. Bytes Written, Excl. Bytes Written

Number of bytes in a write operation.

007–2581–004 63

Developer MagicTM: Performance Analyzer User’s Guide

Incl. FP Exceptions, Excl. FP Exceptions

Number of floating-point exceptions.

Incl. Page faults, Excl. Page faults

Number of page faults.

Incl. bytes leaked, Excl. bytes leaked

Number of bytes leaked as a result of calls to malloc that were
not followed by calls to free .

Incl. bytes malloc’d, Excl. bytes malloc’d

Number of bytes allocated in malloc operations.

Address

Address of the function.

Instr’n Coverage

A percentage of instructions (in the line or function) that were
executed at least once.

Calls

Number of times a function is called.

Pixstats/Cycles-per instr’n

Shows how efficient the code is written to avoid stalls or to take
advantage of super scalar operation. A cycles per-instruction
count of 1.0 means that an instruction is executed every cycle. A
count greater than 1.0 means some instructions took more than
one cycle. A count less that 1.0 means that sometimes more
than one instruction was executed at a given cycle. The R10000
can potentially execute up to 4 instructions on every cycle.

In the disassembly view, this metric turns into pixstats ,
which displays basic block boundaries and the cycle counts
distribution for each instruction in the basic block.

The following options are on the Data Display Options window only:

64 007–2581–004

Performance Analyzer Reference [4]

Display Data As:
Times/Counts
Percentages

Lets you choose whether you want to display
your performance metrics as times and counts
(for instance, the time a function required to
execute) or as percentages (the percentage of the
program’s time a function used). The default is
Times/Counts .

Hide 0 Functions
in Function List
and Hide 0
Functions in Graph

Lets you filter functions with 0 counts from the
list or graph.

Incl. Percentage Show inclusive percentages on the Call Graph
View window.

Incl. Total Time Show inclusive total time on the Call Graph
View window.

Incl. CPU Time Show inclusive CPU time on the Call Graph
View window.

Incl. Ideal Time Show inclusive ideal time on the Call Graph
View window.

Incl. HWC Data Show inclusive hardware counter data on the
Call Graph View window.

Incl. System
calls

Show inclusive system calls on the Call Graph
View window.

Incl. Bytes Read Show inclusive bytes read on the Call Graph
View window.

Incl. Bytes
Written

Show inclusive bytes written on the Call Graph
View window.

Incl. FP
Exceptions

Show inclusive floating–point exceptions on the
Call Graph View window.

Incl. Page faults Show inclusive page faults on the Call Graph
View window.

007–2581–004 65

Developer MagicTM: Performance Analyzer User’s Guide

Incl. bytes
leaked

Show inclusive bytes leaked as a result of malloc
operations not followed by matching free
operations on the Call Graph View window.

Incl. bytes
malloc’d

Show inclusive bytes allocated with a malloc
operation on the Call Graph View window.

Calls Show the number of calls to that function on the
Call Graph View window.

The following option is on the Sort Options window only:

Alphabetic Sort alphabetically by function name.

4.4.7 Views Menu

The Views menu in the Performance Analyzer (see Figure 29, page 67)
provides the following selections for viewing the performance data from an
experiment. Each view displays the data for the time interval bracketed by the
calipers in the time line.

Usage View
(Graphs)

Displays resource usage charts and event charts.
See Section 4.5, page 68.

Usage View
(Numerical)

Displays the aggregate values of resources used.
See Section 4.7, page 73.

I/O View Displays I/O events. See Section 4.8, page 75.

Call Graph View Displays a call graph that shows functions and
calls and their associated performance metrics.
See Section 4.9, page 76.

Butterfly View Displays the callers and callees of the function.
See Section 4.10, page 85.

Leak View Displays individual leaks and their associated call
stacks. See Section 4.11.2, page 88.

Malloc View Displays individual malloc routines and their
associated call stacks. See Section 4.11.2, page 88.

Malloc Error View Displays errors involving memory leaks and bad
calls to free , indicating error locations and the
total number of errors. See Section 4.11.2, page 88.

Heap View Displays a map of heap memory showing
malloc , realloc , free , and bad free
operations. See Section 4.11.3, page 91.

66 007–2581–004

Performance Analyzer Reference [4]

Call Stack Displays the call stack for the selected event and
the corresponding event type. See Section 4.12,
page 97.

Working Set View Measures the coverage of the DSOs that make up
the executable, noting which were not used. See
Section 1.4.12, page 20.

Figure 29. Performance Analyzer Views Menu

4.4.8 Executable Menu

If you enabled Track Exec’d Processes (in the Performance Panel) for the
current experiment, the Executable menu will be enabled and will contain
selections for any exec ed processes. These selections let you see the
performance results for the other executables.

Note: The Executable menu is not enabled by an experiment generated by
the Select Task submenu in the Perf menu of the WorkShop Debugger
window, the ssrun (1) command, or any other method using SpeedShop
functionality. It can only be enabled by experiments generated in older
versions of WorkShop.

007–2581–004 67

Developer MagicTM: Performance Analyzer User’s Guide

4.4.9 Thread Menu

If your process forked any processes, the Thread menu is activated and
contains selections corresponding to the different threads. Selecting a thread
displays its performance results.

Note: The Thread menu is not enabled by an experiment generated by the
Select Task submenu in the Perf menu of the WorkShop Debugger
window, the ssrun (1) command, or any other method using SpeedShop
functionality. It can only be enabled by experiments generated in older
versions of WorkShop.

4.5 Usage View (Graphs)

The Usage View (Graphs) window displays resource usage and event charts
containing the performance data from the experiment. These charts show
resource usage over time and indicate where sample events took place. Sample
events are shown as vertical lines. Figure 30, page 68, shows the user versus
system time and page faults graphs; Figure 31, page 69, shows the other graphs.

User vs
system time

Page faults

Figure 30. Usage View (Graphs) Window: Top Graphs

68 007–2581–004

Performance Analyzer Reference [4]

Context switch

Reads/writes:
data size

Reads/writes:
counts

Poll and I/O calls

Total system calls

Process signals

Process size

Figure 31. Usage View (Graphs) Window: Lower Graphs

4.5.1 Charts in the Usage View (Graphs) Window

The available charts in the Usage View (Graphs) Window are as follows:

User vs system
time

Shows CPU usage. Whenever the system clock
ticks, the process occupying the CPU is charged
for the entire ten millisecond interval. The time is
charged either as user or system time, depending

007–2581–004 69

Developer MagicTM: Performance Analyzer User’s Guide

on whether the process is executing in user mode
or system mode. The graph provides these
annotations to show how time is spent during an
experiment’s process: Running (user mode) ,
Running (system mode) , Running
(graphics mode) , Waiting (for block
I/O) , Waiting (raw I/O, paging) ,
Waiting (for memory) , Waiting (in
select) , Waiting in CPU queue , Sleep
(for resource) , Sleep (for stream
monitor) , and Stopped (job control) .

Page faults Shows the number of page faults that occur
within a process. Major faults are those that
require a physical read operation to satisfy; minor
faults are those where the necessary page is
already in memory but not mapped into the
process address space.

Each major fault in a process takes approximately
10 to 50 milliseconds. A high page-fault rate is an
indication of a memory-bound situation.

Context switch Shows the number of voluntary and involuntary
context switches in the life of the process.

Voluntary context switches are attributable to an
operation caused by the process itself, such as a
disk access or waiting for user input. These occur
when the process can no longer use the CPU. A
high number of voluntary context switches
indicates that the process is spending a lot of time
waiting for a resource other than the CPU.

Involuntary context switches happen when the
system scheduler gives the CPU to another
process, even if the target process is able to use it.
A high number of involuntary context switches
indicates a CPU contention problem.

KBytes Read and
KBytes Written

Shows the number of bytes transferred between
the process and the operating system buffers,
network connections, or physical devices.
KBytes Read are transferred into the process
address space; KBytes Written are transferred

70 007–2581–004

Performance Analyzer Reference [4]

out of the process address space. A high
byte-transfer rate indicates an I/O-bound process.

read() calls and
write() calls

Shows the number of read and write system
calls made by the process.

poll() calls and
ioctl() calls

Shows the combined number of poll or select
system calls (used in I/O multiplexing) and the
number of I/O control system calls made by the
process.

System Calls Shows the total number of system calls made by
the process. This includes the counts for the calls
shown on the other charts.

Signals Shows the total number of signals received by the
process.

Total Size and
Resident Size

Shows the total size of the process in pages and
the number of pages resident in memory at the
end of the time interval when the data is read. It
is different from the other charts in that it shows
the absolute size measured at the end of the
interval and not an incremental count for that
interval.

If you see the process total size increasing over
time when your program should be in a steady
state, the process most likely has leaks and you
should analyze it with Leak View and Malloc
View .

4.5.2 Getting Event Information from the Usage View (Graphs) Window

The charts indicate trends; to get detailed data, click the relevant area on the
chart, and the data displays at the top of the window. The left mouse button
displays event data; the right mouse button displays interval data.

When you click the left mouse button on a sample event in a chart, the
following actions take place:

• The point becomes selected, as indicated by the diamond marker above it.
The marker appears in the time line, resource usage chart, and Usage View
(Graphs) charts if the window is open.

007–2581–004 71

Developer MagicTM: Performance Analyzer User’s Guide

• The current event line at the top of the window identifies the event and
displays its time.

• The call stack corresponding to this sample point gets displayed in the Call
Stack window (see Section 4.12, page 97).

Clicking a graph with the right mouse button displays the values for the
interval if a collection is specified. If a collection is not specified, clicking a
graph with the right mouse button displays the interval bracketed by the
nearest sample events.

4.6 The Process Meter Window

The Process Meter lets you observe resource usage for a running process
without conducting an experiment. To call the Process Meter, select Process
Meter from the Views menu in the Debugger Main View.

A Process Meter window with data and its menus displayed appears in
Figure 32, page 73. The Process Meter window uses the same Admin menu
as the WorkShop Debugger tools.

The Charts menu options display the selected stripcharts in the Process
Meter window.

The Scale menu adjusts the time scale in the stripchart display area such that
the time selected becomes the end value.

You can select which usage charts and event charts display. You can also display
sample point information in the Status field by clicking within the charts.

72 007–2581–004

Performance Analyzer Reference [4]

Stripchart area

Status field

Figure 32. The Process Meter Window with Major Menus Displayed

4.7 Usage View (Numerical) Window

The Usage View (Numerical) window (see Figure 33, page 75) shows
detailed, process-specific resource usage information in a textual format for the
interval defined by the calipers in the time line area of the Performance

007–2581–004 73

Developer MagicTM: Performance Analyzer User’s Guide

Analyzer main window. To display the Usage View (Numerical) window,
select Usage View (Numerical) from the Views menu.

The top of the window identifies the beginning and ending events for the
interval. The middle portion of the window shows resource usage for the target
executable. The bottom panel shows resource usage on a system-wide basis.
Data is shown both as total values and as per-second rates.

74 007–2581–004

Performance Analyzer Reference [4]

Analysis
interval

Process
metrics

System-wide
metrics

Figure 33. The Usage View (Numerical) Window

4.8 The I/O View Window

The I/O View window helps you determine the problems in an I/O-bound
process. It produces graphs of all I/O system calls for up to 10 files involved in
I/O. Clicking an I/O event with the left mouse button displays information

007–2581–004 75

Developer MagicTM: Performance Analyzer User’s Guide

about it in the event identification field at the top of the I/O View window.
See Figure 34, page 76.

Event identification field

File field

I/O Sys Call chart

File field

I/O Sys Call chart

File field

I/O Sys Call chart

File field

I/O Sys Call chart

Figure 34. The I/O View Window

4.9 The Call Graph View Window

The Call Graph View window displays the functions as nodes, annotated
with performance metrics, and their calls as connecting arcs (see Figure 35, page
77). Bring up the Call Graph View window by selecting Call Graph View
from the Views menu.

76 007–2581–004

Performance Analyzer Reference [4]

Display area

Call graph
control area

Figure 35. Call Graph View with Display Controls

Since a call graph can get quite complicated, the Performance Analyzer
provides various controls for changing the graph display. The Preferences
selection in the Config menu lets you specify which performance metrics
display and also lets you filter out unused functions and arcs. There are two
node menus in the display area; these let you filter nodes individually or as a
selected group. The top row of display controls is common to all ProDev
WorkShop graph displays. It lets you change scale, alignment, and orientation.
See an overview in the Developer Magic: ProDev WorkShop Overview. The bottom
row of controls lets you define the form of the graph. You can view the call
graph as a butterfly graph, showing the functions that call and are called by a
single function, or as a chain graph between two functions.

4.9.1 Special Node Icons

Although rare, nodes can be annotated with two types of graphic symbols:

• A right-pointing arrow in a node indicates an indirect call site. It represents
a call through a function pointer. In such a case, the called function cannot
be determined by the current methods.

• A circle in a node indicates a call to a shared library with a data-space jump
table. The node name is the name of the routine called, but the actual target
in the shared library cannot be identified. The table might be switched at
run time, directing calls to different routines.

007–2581–004 77

Developer MagicTM: Performance Analyzer User’s Guide

4.9.2 Annotating Nodes and Arcs

You can specify which performance metrics appear in the call graph, as
described in the following sections.

4.9.2.1 Node Annotations

To specify the performance metrics that display inside a node, use the
Preferences dialog box in the Config menu from the Performance Analyzer
main view. (For an illustration of the Preferences... window, see Figure 27,
page 61.)

4.9.2.2 Arc Annotations

Arc annotations are specified by selecting Preferences... from the Config
menu in the Call Graph View window. (For an illustration of the
Preferences... window, see Figure 27, page 61.) You can display the counts
on the arcs (the lines between the functions). You can also display the
percentage of calls to a function broken down by incoming arc. For an
explanation of the performance metric items, see Section 4.4.6, page 59.

4.9.3 Filtering Nodes and Arcs

You can specify which nodes and arcs appear in the call graph as described in
the following sections.

4.9.3.1 Call Graph Preferences Filtering Options

The Preferences selection in the Call Graph View Config menu also lets
you hide functions and arcs that have 0 calls. See Figure 27, page 61.

4.9.3.2 Node Menu

There are two node menus for filtering nodes in the graph: the Node menu and
the Selected Nodes menu. Both menus are shown in Figure 36, page 79.

The Node menu lets you filter a single node. It is displayed by holding down
the right mouse button while the cursor is over the node. The name of the
selected node appears at the top of the menu.

78 007–2581–004

Performance Analyzer Reference [4]

Selected Nodes menu

Node menu

Figure 36. Node Menus

The Node menu selections are:

Hide Node Removes the selected node from the call graph
display.

Collapse Subgraph Removes the nodes called by the selected node
(and subsequently called nodes) from the call
graph display.

Show Immediate
Children

Displays the functions called by the selected node.

Show Parents Displays all the functions that call the selected
node.

Show All Children Displays all the functions and the descendants
called by the selected node.

4.9.3.3 Selected Nodes Menu

The Selected Nodes menu lets you filter multiple nodes. You can select
multiple nodes by dragging a selection rectangle around them. You can also
Shift-click a node, and it will be selected along with all the nodes that it calls.
Holding down the right mouse button anywhere in the graph, except over a
node, displays the Selected Nodes menu. The Selected Nodes menu
selections are as follows:

007–2581–004 79

Developer MagicTM: Performance Analyzer User’s Guide

Hide Removes the selected nodes from the call graph
display.

Collapse Removes the nodes called by the selected nodes
(and descendant nodes) from the call graph
display.

Expand Displays all the functions (descendants) called by
the selected nodes.

4.9.3.4 Filtering Nodes through the Display Controls

The lower row of controls in the Call Graph View panel helps you reduce
the complexity of a busy call graph.

You can perform these display operations:

Butterfly Presents the call graph from the perspective of a
single node (the target node), showing only those
nodes that call it or are called by it. Functions
that call it are displayed to the left and functions
it calls are on the right. Selecting any node and
clicking Butterfly redraws the display with the
selected node in the center. The selected node is
displayed and highlighted in the function list.

Chain Lets you display all paths between a given source
node and target node. The Chain dialog box is
shown in Figure 37, page 81. You designate the
source function by selecting it or entering it in the
Source Node field and clicking the Make
Source button. Similarly, the target function is
selected or entered and then established by
clicking the Make Target button. If you want to
filter out paths that go through nodes and arcs
with zero counts, click the toggle. After these
selections are made, click OK.

80 007–2581–004

Performance Analyzer Reference [4]

Figure 37. Chain Dialog Box

Prune Chains Displays a dialog box that provides two
selections for filtering paths from the call graph
(see Figure 38, page 81).

Figure 38. Prune Chains Dialog Box

The Prune Chains button is only activated
when a chain mode operation has been
performed. The dialog box selections are:

007–2581–004 81

Developer MagicTM: Performance Analyzer User’s Guide

• The Hide Paths Through toggle removes
from view all paths that go through the
specified node. You must have a current node
specified. Note that this operation is
irreversible; you will not be able to redisplay
the hidden paths unless you perform the
Chain operation again.

• The Hide Paths Not Through toggle
removes from view all paths except the ones
that go through the specified node. This
operation is irreversible.

Important Children Lets you focus on a function and its descendants
and set thresholds to filter the descendants. You
can filter the descendants either by percentage of
the caller’s time or by percentage of the total
time. The Threshold key field identifies the
type of performance time data used as the
threshold. See Figure 39, page 82.

Figure 39. Show Important Children Dialog Box

Important Parents Lets you focus on the parents of a function, that
is, the functions that call it. You can set
thresholds to filter only those parents making a

82 007–2581–004

Performance Analyzer Reference [4]

significant number of calls, by percentage of the
caller’s time, or by percentage of the total time.
The Threshold key field identifies the type of
performance time data used as the threshold. See
Figure 40, page 83.

Figure 40. Show Important Parents Dialog Box

Clear Graph Removes all nodes and arcs from the call graph.

4.9.4 Other Manipulation of the Call Graph

The Call Graph View window provides facilities for changing the display of
the call graph without changing the data content.

4.9.4.1 Geometric Manipulation through the Control Panel

The controls for changing the display of the call graph are in the upper row of
the control panel (see Figure 41, page 84).

007–2581–004 83

Developer MagicTM: Performance Analyzer User’s Guide

Zoom menu

Zoom Out button

Zoom In button

Overview button

Realign button

Rotate button

Figure 41. Call Graph View Controls for Geometric Manipulation

These facilities are:

Zoom menubutton Shows the current scale of the graph. If you click
this button, a pop-up menu appears displaying
other available scales. The scaling range is
between 15% and 200% of the normal (100%) size.

Zoom Out button Resets the scale of the graph to the next
(available) smaller size in the range.

Zoom In button Resets the scale of the graph to the next
(available) larger size in the range.

Overview button Invokes an overview pop-up display that shows a
scaled down representation of the graph. The
nodes appear in the analogous places on the
overview pop-up, and a white outline can be
used to position the main graph relative to the
pop-up. Alternatively, the main graph may be
repositioned by using its scroll bars.

Realign button Redraws the graph, restoring the positions of any
nodes that were repositioned.

Rotate button Flips the orientation of the graph between
horizontal (calling nodes at the left) and vertical
(calling nodes at the top).

For more information on the graphical controls, see the Developer Magic: ProDev
WorkShop Overview manual.

84 007–2581–004

Performance Analyzer Reference [4]

4.9.4.2 Using the Mouse in the Call Graph View

You can move an individual node by dragging it using the middle mouse
button. This helps reveal obscured arc annotations.

You can select multiple nodes by dragging a selection rectangle around them.
Shift-clicking a node selects the node along with all the nodes that it calls.

4.9.4.3 Selecting Nodes from the Function List

You can select functions from the function list of the Performance Analyzer
window to be highlighted in the call graph. Select a node from the list and then
click the Show Node button in the Function List window. The node will be
highlighted in the graph.

4.10 Butterfly View

The Butterfly View shows a selected function, the functions that called it
(the Immediate Parents), and the functions it calls (the Immediate
Children). For an illustration, see Figure 7, page 13.

You can change the selected function by clicking on a new one in the function
list area of the main Performance Analyzer window.

The Attrib.% column shows the percentage of the sort key (inclusive time, in
the illustration) attributed to each caller or callee. The sort key varies according
to the view; on an I/O View , for instance, it is by default inclusive bytes read.
You can change the criteria for what is displayed in the columns and how the
list is ordered by using the Preferences... and Sort... windows, both of
which are accessed through the Config menu on the main Performance
Analyzer menu.

You can display the addresses from which the caller functions call the selected
function, and from which the selected function calls the callee functions, by
Show All Arcs Individually on the Config menu. You can view the
source code for the selected function (and the rest of the program) by clicking
on the Source button.

If you want to save the data as text, select Save As Text... from the Admin
menu.

007–2581–004 85

Developer MagicTM: Performance Analyzer User’s Guide

4.11 Analyzing Memory Problems

The Performance Analyzer provides four tools for analyzing memory problems:
Malloc Error View , Leak View , Malloc View , and Heap View . Setting
up and running a memory analysis experiment is the same for all four tools.
After you have conducted the experiment, you can apply any of these tools.

4.11.1 Conducting Memory Leak Experiments

To look for memory leaks or bad free routines, or to perform other analysis of
memory allocation, run a Performance Analyzer experiment with Memory
Leak Trace specified as the experiment task. You run a memory corruption
experiment like any performance analysis experiment, by clicking Run in the
Debugger Main View. The Performance Analyzer keeps track of each malloc
(memory allocation), realloc (reallocation of memory), and free . The
general steps in running a memory experiment are as follows:

1. Display the WorkShop Debugger, including the executable file (generic , in
this case, from the /usr/demos/SpeedShop directory) as an argument.

cvd generic &

2. Specify Memory Leak Trace as the experiment task.

Memory Leak Trace is a selection on the Perf menu.

3. Run the experiment.

You run experiments by clicking the Run button.

4. The Performance Analyzer window is displayed automatically with the
experiment information.

The Performance Analyzer window displays results appropriate to the
task selected. Figure 42, page 87, shows the Performance Analyzer
window after a memory experiment.

86 007–2581–004

Performance Analyzer Reference [4]

Experiment identifier

Function list showing
leaks by function

Process size
chart legend

Process size chart

Figure 42. Performance Analyzer Window Displaying Results of a Memory Experiment

The function list displays inclusive and exclusive bytes leaked and allocated
with malloc per function. Clicking Source brings up the Source View ,
which displays the function’s source code annotated with bytes leaked and
allocated by malloc . You can set other annotations in Source View and

007–2581–004 87

Developer MagicTM: Performance Analyzer User’s Guide

the function list by choosing Preferences... from the Config menu in
the Performance Analyzer window and selecting the desired items.

5. Analyze the results of the experiment in Leak View when doing leak
detection and Malloc Error View when performing broader memory
allocation analysis. To see all memory operations, whether problems or not,
use Malloc View . To view memory problems within the memory map,
use Heap View . See the following section for more information.

4.11.2 Using Malloc Error View , Leak View , and Malloc View

After you have run a memory experiment using the Performance Analyzer, you
can analyze the results using Malloc Error View (see Figure 43, page 89),
Leak View (see Figure 44, page 90), or Malloc View (see Figure 45, page 90).
Malloc View is the most general, showing all memory allocation operations.
Malloc Error View shows only those memory operations that caused
problems, identifying the cause of the problem and how many times it occurred.
Leak View displays each memory leak that occurs in your executable, its size,
the number of times the leak occurred at that location during the experiment,
and the corresponding call stack (when you select the leak).

Each of these views has three major areas:

• Identification area—This indicates which operation has been selected from
the list. Malloc View identifies malloc routines, indicating the number of
malloc locations and the size of all malloc operations in bytes. Malloc
Error View identifies leaks and bad free routines, indicating the number
of error locations and how many errors occurred in total. Leak View
identifies leaks, indicating the number of leak locations and the total number
of bytes leaked.

• List area—This is a list of the appropriate types of memory operations
according to the type of view. Clicking an item in the list identifies it at the
top of the window and displays its call stack at the bottom of the list. The
list displays in order of size.

• Call stack area— This displays the contents of the call stack when the
selected memory operation occurred. Figure 46, page 91, shows a typical
Source View window with leak annotations. (You can change the
annotations by using the Preferences... selection in the Performance
Analyzer Config menu). Colored boxes draw attention to high counts.

88 007–2581–004

Performance Analyzer Reference [4]

Note: As an alternative to viewing leaks in Leak View , you can save one or
more memory operations as a text file. Choose Save As Text... from the
Admin menu, select one or more entries, and view them separately in a text
file along with their call stacks. Multiple items are selected by clicking the
first and then either dragging the cursor over the others or shift-clicking the
last in the group to be selected.

Identification area

List area

Call stack area

Figure 43. Malloc Error View Window with an Admin Menu

007–2581–004 89

Developer MagicTM: Performance Analyzer User’s Guide

Identification area

List area

Call stack area

Figure 44. Leak View Window with an Admin Menu

Identification area

List area

Call stack area

Figure 45. Malloc View Window with Admin Menu

90 007–2581–004

Performance Analyzer Reference [4]

Memory operation
annotations

Source line corresponding
to call stack frame

Annotation
identifiers

Figure 46. Source View Window with Memory Analysis Annotations

4.11.3 Analyzing the Memory Map with Heap View

Heap View lets you analyze data from experiments based on the Memory
Leak Trace task. The Heap View window provides a memory map that
shows memory problems occurring in the time interval defined by the calipers
in the Performance Analyzer window. The map indicates the following
memory block conditions:

• malloc —reserved memory space

• realloc —reallocated space

• free —open space

• error—bad free space

• unused space

In addition to the Heap View memory map, you can analyze memory leak
data using these other tools:

• If you select a memory problem in the map and bring up the Call Stack
window, it will show you where the selected problem took place and the
state of the call stack at that time.

• The Source View window shows exclusive and inclusive malloc routines
and leaks and the number of bytes used by source line.

007–2581–004 91

Developer MagicTM: Performance Analyzer User’s Guide

4.11.3.1 Heap View Window

A typical Heap View window with its parts labeled appears in Figure 47, page
92.

Heap size data

Map key

Heap map

Search field

Event list area

Call stack area

Memory event
indicators

Zoom Out button
Zoom In button

Malloc Errors

Figure 47. Heap View Window

The major features of a Heap View window are as follows:

Map key Appears at the top of the heap map area to
identify blocks by color. The actual colors depend
on your color scheme.

Heap map Shows heap memory as a continuous, wrapping
horizontal rectangle. The memory addresses
begin at the upper left corner and progress from
left to right, row by row. The rectangle is broken

92 007–2581–004

Performance Analyzer Reference [4]

up into color-coded segments according to
memory use status. Clicking a highlighted area in
the heap map identifies the type of problem, the
memory address where it occurred, its size in the
event list area, and the associated call stack in the
call stack display area.

Note in Figure 47, page 92, that there are only a
few problems in the memory at the lower
addresses and many more at the higher addresses.

Memory event
indicators

The events appear color-coded in the scroll bar.
Clicking an indicator with the middle button
scrolls the display to the selected problem.

Search field Provides two functions:

• If you enter a memory address in the field, the
corresponding position will be highlighted in
the heap map. If there was a problem at that
location, it will be identified in the event list
area. If there is no problem, the event list area
displays the address at the beginning of the
memory block and its size.

• If you hold down the left mouse button and
position the cursor in the heap map, the
corresponding address will display in the
Search field.

Event list area Displays the events occurring in the selected
block. If only one event was received at the given
address, its address is shown by default. If more
than one event is shown, double-clicking an event
will display its corresponding call stack.

Call stack area Displays the call stack corresponding to the event
highlighted in the event list area.

Malloc Errors
button

Causes malloc errors and their addresses to
display in the event list area. You can then enter
the address of the malloc error in the Search
field and press the Enter key to see the error’s
malloc information and its associated call stack.

007–2581–004 93

Developer MagicTM: Performance Analyzer User’s Guide

Zoom in button An upward-pointing arrow, it redisplays the heap
area at twice the current size of the display. If
you reach the limit, an error message displays.

Zoom out button A downward-pointing arrow, it redisplays the
heap area at half the current size (to a limit of one
pixel per byte). If you reach the limit, an error
message displays.

4.11.3.2 Source View malloc Annotations

Like Malloc View , if you double-click a line in the call stack area of the Heap
View window, the Source View window displays the portion of code
containing the corresponding line. The line is highlighted and indicated by a
caret (^), with the number of bytes used by malloc in the annotation column.
See Figure 46, page 91.

4.11.3.3 Saving Heap View Data as Text

Selecting Save As Text... from the Admin menu in Heap View lets you
save the heap information or the event list in a text file. When you first select
Save As Text... , a dialog box displays asking you to specify heap
information or the event list. After you make your selection, the Save Text
dialog box displays (see Figure 48, page 95). This lets you select the file name
in which to save the Heap View data. The default file name is
experiment-filename.out . When you click OK, the data for the current caliper
setting and the list of unmatched free routines, if any, are appended to the
specified file.

Note: The Save As Text... selection in the File menu for the Source
View from Heap View saves the current file. No file name default is
provided, and the file that you name will be overwritten.

94 007–2581–004

Performance Analyzer Reference [4]

Figure 48. Heap View Save Text Dialog Boxes

4.11.4 Memory Experiment Tutorial

In this tutorial, you will run an experiment to analyze memory usage. The
following short program generates memory problems that demonstrate how
you can use the Performance Analyzer to detect memory problems.

1. Go to the /usr/demos/WorkShop/mallocbug directory. The executable
mallocbug was compiled as follows:

cc -g -o mallocbug mallocbug.c -lc

2. Invoke the Debugger by typing:

cvd mallocbug

3. Bring up a list of the performance tasks by selecting Select Task from
the Perf menu.

4. Select Memory Leak Trace from the menu and click Run to begin the
experiment. The program runs quickly and terminates.

5. The Performance Analyzer window appears automatically. A dialog
box indicating malloc errors displays also.

007–2581–004 95

Developer MagicTM: Performance Analyzer User’s Guide

6. Select Malloc View from the Performance Analyzer Views menu.

The Malloc View window displays, indicating two malloc locations.

7. Select Malloc Error View from the Performance Analyzer Views menu.

The Malloc Error View window displays, showing one problem, a bad
free , and its associated call stack. This problem occurred 99 times

8. Select Leak View from the Performance Analyzer Views menu.

The Leak View window displays, showing one leak and its associated call
stack. This leak occurred 99 times for a total of 99,000 leaked bytes.

9. Double-click the function foo in the call stack area.

The Source View window displays, showing the function’s code,
annotated by the exclusive and inclusive leaks and the exclusive and
inclusive calls to malloc .

10. Select Heap View from the Performance Analyzer Views menu.

The Heap View window displays the heap size and other information at
the top. The heap map area of the window shows the heap map as a
continuous, wrapping horizontal rectangle. The rectangle is broken up into
color-coded segments, according to memory use status. The color key at the
top of the heap map area identifies memory usage as malloc , realloc ,
free , or an error, or bad free . Notice also that color-coded indicators
showing malloc , realloc , and bad free routines are displayed in the
scroll bar trough. At the bottom of the heap map area are: the Search
field, for identifying or finding memory locations; the Malloc Errors
button, for finding memory problems; a Zoom In button (upward pointing
arrow) and a Zoom Out button (downward pointing arrow).

The event list area and the call stack area are at the bottom of the window.
Clicking any event in the heap map area displays the appropriate
information in these fields.

11. Click on any memory block in the heap map.

The beginning memory address appears in theSearch field. The event
information displays in the event list area. The call stack information for
the last event appears in the call stack area.

12. Select other memory blocks to try out this feature.

96 007–2581–004

Performance Analyzer Reference [4]

As you select other blocks, the data at the bottom of the Heap View
window changes.

13. Double-click on a frame in the call stack area.

A Source View window comes up with the corresponding source code
displayed.

14. Close the Source View window.

15. Click the Malloc Errors button.

The data in the Heap View information window changes to display
memory problems. Note that a free may be unmatched within the analysis
interval, yet it may have a corresponding free outside of the interval.

16. Click Close to leave the Heap View window.

17. Select Exit from the Admin menu in any open window to end the
experiment.

4.12 The Call Stack Window

The Call Stack window, which is accessed from the Performance Analyzer
Views menu, lets you get call stack information for a sample event selected
from one of the Performance Analyzer views. See Figure 49, page 98.

007–2581–004 97

Developer MagicTM: Performance Analyzer User’s Guide

Event identification area

Call stack area

Event type

Figure 49. Performance Analyzer Call Stack Window

There are three main areas in the Call Stack window:

Event identification area

Displays the number of the event, its time stamp, and the time
within the experiment. If you have a multiprocessor
experiment, the thread will be indicated here.

Call stack area

Displays the contents of the call stack when the sample event
took place.

Event type area

Highlights the type of event and shows the thread in which it
was defined. It indicates, in parentheses, whether the sample
was taken in all threads or the indicated thread only.

4.13 Analyzing Working Sets

If you suspect a problem with frequent page faults or instruction cache misses,
conduct a working set analysis to determine if rearranging the order of your
functions will improve performance. The term working set refers to those

98 007–2581–004

Performance Analyzer Reference [4]

executable pages, functions, and instructions that are actually brought into
memory during a phase or operation of the executable. If more pages are
required than can fit in memory at the same time, page thrashing (that is,
swapping in and out of pages) may result, slowing down your program.
Strategic selection of which pages functions appear on can dramatically
improve performance in such cases. You do this by creating a file containing a
list of functions, their sizes, and addresses called a cord mapping file. The
functions should be ordered so as to optimize page swapping efficiency. This
file is then fed into the cord utility, which rearranges the functions according to
the order suggested in the cord mapping file. See the man page for cord (1).

Working set analysis is appropriate for:

• Programs that runs for a long time.

• Programs whose operation comes in distinct phases.

• Distributed shared objects (DSOs) that are shared among several programs.

4.13.1 Working Set Analysis Overview

WorkShop provides two tools to help you conduct working set analysis:

• Working Set View is part of the Performance Analyzer. It displays the
working set of pages for each DSO that you select and indicates the degree
to which the pages are used.

• The cord analyzer, sscord (1), is separate from the Performance Analyzer
and is invoked by typing sscord at the command line. It displays a list of
the working sets that make up a cord mapping file, shows their utilization
efficiency, and, most importantly, computes an optimized ordering to reduce
working sets.

Figure 50, page 100, presents an overview of the process of conducting working
set analysis.

007–2581–004 99

Developer MagicTM: Performance Analyzer User’s Guide

cord mapping file

1. Run one or more "Get Ideal Time" Performance
Analyzer experiment(s) and set sample traps to
delineate phases/operations.

2. Run Working Set View in Performance Analyzer
for each caliper-pair setting in each experiment and
save individual working sets and initial version
of cord mapping file.

3. In a text editor, create a working set list with one
.ws file per line, ordered with the most important sets
last.

testnnnn data

file(s).ws

working set list

4. If desired, run the Cord Analyzer (cvcord) and
load the cord mapping file and working set list.
Generate union and/or intersection sets and write out
a new working set list. If you don't need to construct
unions or intersections, go to Step 6.

5. In a text editor edit working set list to
have proper order.

6. Run the Cord Analyzer again to construct cording
feedback, that is, a new optimized cord mapping file.

7. Run cord using the new feedback file to produce
an optimized executable file.

Optimized executable file

Figure 50. Working Set Analysis Process

First, conduct one or more Performance Analyzer experiments using the Ideal
Time/Pixie task. Set sample traps at the beginning and end of each operation
or phase that represents a distinct task. You can run additional experiments on
the same executable to collect data for other situations in which it can be used.

100 007–2581–004

Performance Analyzer Reference [4]

After you have collected the data for the experiments, run the Performance
Analyzer and select Working Set View . Save the working set for each phase
or operation that you want to improve. Do this by setting the calipers to
bracket each phase and select Save Working Set from the Admin menu.

Select Save Cord Map File to save the cord mapping file (for all runs and
caliper settings). This need only be done once.

The next step is to create the working set list file, which contains all of the
working sets you want to analyze using the cord analyzer. Create the working
set list file in a text editor, specifying one line for each working set and in
reverse order of priority, that is, the most important comes last.

The working set list and the cord mapping file serve as input to the cord
analyzer. The working set list provides the cord analyzer with working sets to
be improved. The cord mapping file provides a list of all the functions in the
executable. The cord analyzer displays the list of working sets and their
utilization efficiency. It lets you do the following:

• Construct gray-code cording feedback (the preferred method).

• Examine the page layout and the efficiency of each working set with respect
to the original ordering of the executable.

• Construct union and intersection sets as desired.

• View the efficiency of a different ordering.

• Construct a new cord mapping file as input to the cord utility.

If you have a new order that you would like to try out, edit your working set
list file in the desired order, submit it to the cord analyzer, and save a new cord
mapping file for input to cord .

4.13.2 Working Set View

The Working Set View measures the coverage of the dynamic shared objects
(DSOs) that make up your executable (see Figure 51, page 102). It indicates
instructions, functions, and pages that were not used when the experiment was
run. It shows the coverage results for each DSO in the DSO list area. Clicking a
DSO in the list displays its pages with color-coding to indicate the coverage of
the page.

007–2581–004 101

Developer MagicTM: Performance Analyzer User’s Guide

DSO list area

DSO identification
area

Page display area
(for selected DSO)

Figure 51. Working Set View

4.13.2.1 DSO List Area

The DSO list area displays coverage information for each DSO used by the
executable. It has the following columns:

Text or DSO Region Name

Identifies the DSO.

Ideal Time

Lists the percentage of ideal time for the caliper setting
attributed to the DSO.

102 007–2581–004

Performance Analyzer Reference [4]

Counts of: Instrs.

Lists the number of instructions contained in the DSO.

Counts of: Funcs.

Lists the number of functions contained in the DSO.

Counts of: Pages

Lists the number of pages occupied by the DSO.

% Coverage of: Instrs.

Lists the percentage obtained by dividing the number of
instructions used by the total number of instructions in the DSO.

% Coverage of: Funcs.

Lists the percentage obtained by dividing the number of
functions used by the total number of functions in the DSO.

% Coverage of: Pages

Lists the coverage obtained by dividing the number of pages
touched by the total pages in the DSO.

Avg. Covg. of Touched: Pages

Lists the coverage obtained by dividing the number of
instructions executed by the total number of instructions on
those pages touched by the DSO.

Avg. Covg. of Touched: Funcs

Lists the average percentage use of instructions within used
functions.

The Search field lets you perform incremental searches to find DSOs in the
DSO list. (An incremental search goes to the immediately matching target as
you enter each character.)

4.13.2.2 DSO Identification Area

The DSO identification area shows the address, size, and page information for
the selected DSO. It also displays the address, number of instructions, and
coverage for the page selected in the page display area.

007–2581–004 103

Developer MagicTM: Performance Analyzer User’s Guide

4.13.2.3 Page Display Area

The page display area at the bottom of the Working Set View window shows
all the pages in the DSO and indicates untouched pages, unused functions,
executed instructions, unused instructions, and table data (related to rld (1)). It
also includes a color legend at the top to indicate how pages are used.

Clicking a page displays its address, number of instructions, and coverage data
in the identification area. Clicking a function in the function list of the main
Performance Analyzer window highlights (using a solid rectangle) the page on
which the function begins. Clicking the left mouse button on a page indicates
the first function on the page by highlighting it in the function list area of the
Performance Analyzer window. Similarly, clicking the middle button on a page
highlights the function at the middle of the page, and clicking the right button
highlights the button at the end of the page. For all three button clicks, the
page containing the beginning of the function becomes highlighted. Note that
left clicks typically highlight the page before the one clicked, since the function
containing the first instruction usually starts on the previous page.

4.13.2.4 Admin Menu

The Admin menu of the Working Set View window provides the following
menu selections:

Save Working Set

Saves the working set for the selected DSO. You can incorporate
this file into a working set list file to be used as input to the
Cord Analyzer.

Save Cord Map File

Saves all of the functions in the DSOs in a cord mapping file for
input to the Cord Analyzer. This file corresponds to the
feedback file discussed in the reference page for cord .

Save Summary Data as Text

Saves a text file containing the coverage statistics in the DSO
list area.

Save Page Data as Text

Saves a text file containing the coverage statistics for each page
in the DSO.

104 007–2581–004

Performance Analyzer Reference [4]

Save All Data as Text

Saves a text file containing the coverage statistics in the DSO
list area and for each page in the selected DSO.

Close

Closes the Working Set View window.

4.13.3 Cord Analyzer

The cord analyzer is not actually part of the Performance Analyzer; it is
discussed in this part of the manual because it works in conjunction with the
Working Set View . The cord analyzer lets you explore the working set
behavior of an executable or shared library (DSO). With it you can construct a
feedback file for input to the cord (1) utility to generate an executable with
improved working set behavior. Invoke the cord analyzer at the command line
using the following syntax:

sscord -fb fb_file -wsl ws_list_file -ws ws_file -v|-V executable

The sscord command accepts the following arguments:

-fb fb_file Specifies a single text file to use as a feedback file
for the executable. It should have been generated
either from a Performance Analyzer experiment
on the executable or DSO, or from the cord
analyzer. If no -fb argument is given, the
feedback file name will be generated as
executable.fb .

-wsl ws_list_file Specifies a single text file name as input; the
working set list consists of the working set files
whose names appear in the input file. Each file
name should be on a single line.

-ws ws_file Specifies a single working set file name.

-v|-V Verbose output. If specified, mismatches between
working sets and the executable or DSO are
noted.

executable Specifies a single executable file name as input.

The Cord Analyzer window is shown in Figure 52, page 107, with its major
areas and menus labeled.

007–2581–004 105

Developer MagicTM: Performance Analyzer User’s Guide

4.13.3.1 Working Set Display Area

The working set display area of the Cord Analyzer window shows all of the
working sets included in the working set list file. It has the following columns:

Working-set pgs. (util. %)

Lists the number of pages in the working set and the
percentage of page space that is utilized.

cord’d set pgs

Specifies the minimum number of pages for this set, that is, the
number of pages the working set would occupy if the program
or DSO were reordered optimally for that specific working set.

Working-set Name

Identifies the path for the working set.

Note that when the function list is displayed, double-clicking a function
displays a plus sign (+) in the working set display area to the left of any
working sets that contain the function.

4.13.3.2 Working Set Identification Area

The working set identification area shows the name of the selected working set.
It also shows the number of pages in the working set list, in the selected
working set, and in the cord ed working set, and the number of pages used as
tables. It also provides the address for the selected page, its size, and its
coverage as a percentage.

106 007–2581–004

Performance Analyzer Reference [4]

Working set
display area

Working set
identification area

Page display area
(for selected working set)

Figure 52. The Cord Analyzer Window

4.13.3.3 Page Display Area

The page display area at the bottom of the window shows the starting address
for the DSO and its pages, and their use in terms of untouched pages, unused
functions, executed instructions, unused instructions, and table data (related to
rld). It includes a color legend at the top to indicate how pages are used.

4.13.3.4 Function List

The Function List window displays all the functions in the selected
working set. It contains the following columns:

Use Count of the working sets containing the function.

Address Starting address for the function.

Insts. Number of instructions in the function.

Function (File) Name of the function and the file in which it
occurs.

When the Function List window is displayed, clicking a working set in the
working set display area displays a plus sign (+) in the function list to the left
of any functions that the working set contains. Similarly, double-clicking a

007–2581–004 107

Developer MagicTM: Performance Analyzer User’s Guide

function displays a plus sign in the working set display area to the left of any
working sets that contain the function.

The Search field lets you do incremental searches for a function in the
Function List .

4.13.3.5 Admin Menu

The Admin menu contains the standard Admin menu commands in WorkShop
views (see Appendix A, in the Developer Magic: Debugger User’s Guide). It has
the following command specific to the cord analyzer:

Save Working Set List

Saves a new working set list with whatever changes you made
to it in the session.

4.13.3.6 File Menu

The File menu contains the following selections:

Delete All Working Sets

Removes all the working sets from the working set list. It does
not delete any files.

Delete Selected Working Set

Removes the selected working set from the working set list.

Add Working Set

Includes a new working set in the working set list.

Add Working Set List from File

Adds the working sets from the specified list to the current
working set file.

Construct Gray-code Cording Feedback

Generates an ordering to minimize the working sets for the
highest priority set first. It then orders it to minimize the
transitions between the first set and the second, then
compacting the second, and minimizing the transitions between
it and the third, and so on. Gray code is believed to be superior

108 007–2581–004

Performance Analyzer Reference [4]

to weighted ordering, but you might want to experiment with
them both.

Construct Weighted Cording Feedback

Finds as many distinct affinity sets as it can and orders them to
minimize the working sets for their operations in a weighted
priority order.

Construct Union of Selected Sets

Displays a new working set built as a union of working sets.
This is the same as an ORof the working sets.

Construct Intersection of Selected Sets

Displays a new working set built from the intersection of the
specified working sets. This is the same as an ANDof the
working sets.

Read Feedback File

Loads a new cord mapping file into the Cord Analyzer.

007–2581–004 109

Using Tester [5]

This chapter describes the Tester usage model. It shows the general approach of
applying Tester for coverage analysis. It contains these sections:

• Tester Overview, Section 5.1, page 111

• Usage Model, Section 5.2, page 115

5.1 Tester Overview

WorkShop Tester is a UNIX-based software quality assurance toolset for
dynamic test coverage over any set of tests. The term covered means the test has
executed a particular unit of source code. In this product, units are functions,
individual source lines, arcs, blocks, or branches. If the unit is a branch, covered
means it has been executed under both true and false conditions. This product
is intended for software and test engineers and their managers involved in the
development, test, and maintenance of long-lived software projects.

WorkShop Tester provides these general benefits:

• Provides visualization of coverage data, which yields immediate insight into
quality issues at both engineering and management levels

• Provides useful measures of test coverage over a set of tests/experiments

• Lets you view the coverage results of a dynamically shared object (DSO) by
executables that use it

• Provides comparison of coverage over different program versions

• Provides tracing capabilities for arguments and function arcs that go beyond
traditional test coverage tools

• Supports programs written in C, C++, and Fortran

• Is integrated into the CASEVision family of products

• Allows users to build and maintain higher quality software products

There are two versions of Tester:

• cvcov is the command line version of the test coverage program.

• cvxcov is the GUI version of the test coverage program.

007–2581–004 111

Developer MagicTM: Performance Analyzer User’s Guide

Most of the functionality is available from either program, although the
graphical representations of the data are available only from cvxcov , the GUI
tool.

5.1.1 Test Coverage Data

Tester provides the following basic coverage:

• Basic block—how many times was this basic block executed?

• Function—how many times was this function executed?

• Branch—did this condition take on both TRUE and FALSE values?

You can also request the following coverage information:

• Arc—was function F called by function A and function B? Which arcs for
function F were not taken?

• Source line coverage—how many times has this source line been executed
and what percentage of source lines is covered?

• Argument—what were the maximum and minimum values for argument X
in function F over all tests?

• When the target program execs , forks , or sprocs another program, only
the main target is tested, unless you specify which executables are to be
tested, the parent and/or child programs.

Note: When you compile with the -g flag, you may create assembly blocks
and branches that can never be executed, thus preventing “full” coverage
from being achieved. These are usually negligible. However, if you compile
with the01 flag (the default), you can increase the number of executable
blocks and branches.

5.1.2 Types of Experiments

You can conduct Tester coverage experiments for:

• Separate tests

• A set of tests operating on the same executable

• A list of executables related by fork , exec , or sproc commands

112 007–2581–004

Using Tester [5]

• A test group of executables sharing a common dynamically shared object
(DSO)

5.1.3 Experiment Results

Tester presents the experiment results in these reports:

• Summary of test coverage, including user parameterized dynamic coverage
metric

• List of functions, which can be sorted by count, file, or function name and
filtered by percentage of block, branch, or function covered

• Comparison of test coverage between different versions of the same program

• Source or assembly code listing annotated with coverage data

• Breakdown of coverage according to contribution by tests within a test set
or test group

The graphical user interface lets you view test results in different contexts to
make them more meaningful. It provides:

• Annotated function call graph highlighting coverage by counts and
percentage (ASCII function call graph supported as well)

• Annotated Source View showing coverage at the source language level

• Annotated Disassembly View showing coverage at the assembly language
level

• Bar chart summary showing coverage by functions, lines, blocks, branches,
and arcs

5.1.4 Multiple Tests

Tester supports multiple tests. You can:

• Define and run a test set to cover the same program.

• Define and run a test group to cover programs sharing a common DSO. This
approach is useful if you want to test different client programs that bind
with the same libraries.

• Automate test execution via command line interface as well as GUI mode.

007–2581–004 113

Developer MagicTM: Performance Analyzer User’s Guide

5.1.5 Test Components

Each test is a named object containing the following:

• Instrumentation file—This describes the data to be collected.

• Executable—This is the program being instrumented for coverage analysis.

• Executable list—If the program you are testing can fork , exec , or sproc
other executables and you want these other executables included in the test,
then you can specify a list of executables for this purpose.

• Command—This defines the program and command line arguments.

• Instrumentation directory—The instrumentation directory contains
directories representing different versions of the instrumented program and
related data. Instrumentation directories are named ver##<n> where n is
the version number. Several tests can share the same instrumentation
directory. This is true for tests with the same instrumentation file and
program version. The instrumentation directory contains the following files,
which are automatically generated:

<program|DSO>.Arg optional arg trace file

<program|DSO>.Binmap basic block & branches bitmap file

<program|DSO>.Graph arc data

<program|DSO>.Log instrumentation log file (cvinstr)

<program|DSO>.Map function map file

<program|DSO>_Instr instrumented executable

As part of instrumentation, you can filter the functions to be included or
excluded in your test, through the directives INCLUDE, EXCLUDE, and
CONSTRAIN.

• Experiment results—Test run coverage results are deposited in a results
directory. Results directories are named exp##<n> where n corresponds to
the instrumentation directory used in the experiment. There is one results
directory for each version of the program in the instrumentation directory
for this test. Note that results are not deposited in the instrumentation
directory because the instrumentation directory may be shared by other
tests. The results directory is different when you run the test with or
without the -keep option.

When you run your test without the -keep option the results directory
contains the following files:

COV_DESC Description file of experiment.

114 007–2581–004

Using Tester [5]

COUNTS_<exe> Counts file for each executable; <exe> is an
executable file name.

USER_SELECTIONS Instrumentation criteria.

When you run your test with the -keep option the results directory
contains the following files:

COV_DESC Description file of experiment.

COUNTS_ <exe> Counts file for each executable; <exe> is an
executable file name.

USER_SELECTIONS Instrumentation criteria.

ARGTRACE_<n> Argument trace database; <n> is a unique
number for each process.

COUNTS_<n> Basic block and branch counts database.

DESC Experiment description file.

FPTRACE_<n> Function pointer tracing database.

LOG Experiment log file (cvmon).

TRAP N/A.

USAGE_<n> N/A.

There are also soft links of the instrumentation data files in the results
directory to the instrumentation directory described above.

5.2 Usage Model

This section is divided into three parts:

• Section 5.2.1, page 115, shows the general steps in conducting a test.

• Section 5.3, page 122, discusses using scripts to automate your testing.

• Section 5.3.1, page 124, describes strategies using multiple tests.

5.2.1 Single Test Analysis Process

In performing coverage analysis for a single test, you typically go through the
following steps:

1. Plan your test.

007–2581–004 115

Developer MagicTM: Performance Analyzer User’s Guide

Test tools are only as good as the quality and completeness of the tests
themselves.

2. Create (or reuse) an instrumentation file.

The instrumentation file defines the coverage data you wish to collect in
this test. You can define:

• COUNTS—three types of count items perform tracking. bbcounts
tracks execution of basic blocks. fpcounts counts calls to functions
through function pointers. branchcounts tracks branches at the
assembly language level.

• INCLUDE/EXCLUDE—lets you define a subset of functions to be
covered. INCLUDE adds the named functions to the current set of
functions. EXCLUDE removes the named functions from the set of
functions. Simple pattern matching is supported for pathnames and
function names. The basic component for inclusion/exclusion is of the
form:

<shared library | program name>:<functionlist>

INCLUDE, EXCLUDE, and CONSTRAIN (see below) play a major role
in working with DSOs. Tester instruments all DSOs in an executable
whether you are testing them or not, so it is necessary to restrict your
coverage accordingly. By default, the directory
/usr/tmp/cvinstrlib/CacheExclude is used as the excluded DSOs
cache and /usr/tmp/cvinstrlib/CacheInclude as the included
DSOs cache. If you wish to override these defaults, set the CVINSTRLIB
environment variable to the desired cache directory.

• CONSTRAIN—equivalent to EXCLUDE *, INCLUDE < subset>. Thus,
the only functions in the test will be those named in the CONSTRAIN
subset. You can constrain the set of functions in the program to either a
list of functions or a file containing the functions to be constrained. The
function list file format is:

function_1

function_2

function_3

...

You can use the -file option to include an ASCII file containing all the
functions as follows:

CONSTRAIN -file filename

116 007–2581–004

Using Tester [5]

• TRACE—lets you monitor argument values in the functions over all
experiments. The only restriction is that the arguments must be of the
following basic types: int , char , long , float , double , or pointer
(treated as a 4-byte unsigned int). MAX monitors the maximum
value of an argument. MIN monitors the minimum value of an
argument. BOUNDS monitors both the minimum and maximum values.
RETURN monitors the function return values.

The default instrumentation file
/usr/WorkShop/usr/lib/WorkShop/Tester/default_instr_file
contains:

COUNTS -bbcounts -fpcounts -branchcounts

EXCLUDE libc.so.1:*

EXCLUDE libC.so:*

EXCLUDE libInventor.so:*

EXCLUDE libMrm.so.1:*
EXCLUDE libUil.so.1:*

EXCLUDE libX11.so.1:*

EXCLUDE libXaw.so:*

EXCLUDE libXawI18n.so:*

EXCLUDE libXext.so:*
EXCLUDE libXi.so:*

EXCLUDE libXm.so.1:*

EXCLUDE libXmu.so:*

EXCLUDE libXt.so:*

EXCLUDE libcrypt.so:*

EXCLUDE libcurses.so:*
EXCLUDE libdl.so:*

EXCLUDE libfm.so:*

EXCLUDE libgen.so:*

EXCLUDE libgl.so:*

EXCLUDE libil.so:*
EXCLUDE libks.so:*

EXCLUDE libmf.so:*

EXCLUDE libmls.so:*

EXCLUDE libmutex.so:*

EXCLUDE libnsl.so:*

EXCLUDE librpcsvc.so:*
EXCLUDE libsocket.so:*

EXCLUDE libtbs.so:*

EXCLUDE libtermcap.so:*

EXCLUDE libtermlib.so:*

007–2581–004 117

Developer MagicTM: Performance Analyzer User’s Guide

EXCLUDE libtt.so:*

EXCLUDE libview.so:*
EXCLUDE libw.so:*

EXCLUDE nis.so:*

EXCLUDE resolv.so:*

EXCLUDE straddr.so:*

EXCLUDE tcpip.so:*

The excluded items are all dynamically shared objects that might interfere
with the testing of your main program.

Note: If you do not use the default_instr_file file, functions in
shared libraries will be included by default, unless your instrumentation
file excludes them.

The minimum instrumentation file contains the line:

COUNTS -bbcounts

You create an instrumentation file using your preferred text editor.
Comments are allowed only at the beginning of a new line and are
designated by the “#” character. Lines can be continued using a back slash
(\) for lists separated with commas. White space is ignored. Keywords are
case insensitive. Options and user-supplied names are case sensitive. All
lines are additive to the overall experiment description.

Here is a typical instrument file:

COUNTS -bbcounts -fpcounts -branchcounts

defines the counting options, in this case,<

basic blocks, function pointers, and branches.

CONSTRAIN program:abc, xdr*, functionF, \

classX::methodY, *::methodM, functionG
constrains the set of functions in the

‘‘program’’ to the list of user specified functions

TRACE BOUNDS functionF(argA)

traces the upper and lower values of argA

TRACE MAX classX::methodY(argZ)
traces the maximum value of argZ

EXCLUDE libc.so.1:*

...

Note: Instrumentation can increase the size of a program two to five
times. Using DSO caching and sharing can alleviate this problem.

3. Apply the instrument file to the target executable(s).

118 007–2581–004

Using Tester [5]

This is the instrumentation process. You can specify a single executable or
more than one if you are creating other processes through fork , exec , or
sproc .

The command line interface command is runinstr . The graphical user
interface equivalent is the Run Instrumentation selection in the Test
menu.

The effect of performing a run instrument operation is shown in Figure 53,
page 119. An instrumentation directory is created (.../ver##<n>). It
contains the instrumented executable and other files used in
instrumentation.

Run instrument

.../ver##<n>

<instrumented executable(s)>
<other instrumentation data>

Target executable(s)

Instrument file

Figure 53. Instrumentation Process

4. Create the test directory.

This part of the process creates a test data directory (test0000) containing
a test description file named TDF. See Figure 54, page 119.

Make test
.../test<nnnn>

TDF
Command line

Instrument directory

Figure 54. Make Test Process

Tester names the test directory test0000 by default and increments it
automatically for subsequent make test operations. You can supply your
own name for the test directory if you prefer.

The TDF file contains information necessary for running the test. A typical
TDF file contains the test name, type, command-line arguments, instrument

007–2581–004 119

Developer MagicTM: Performance Analyzer User’s Guide

directory, description, and list of executables. In addition, for a test set or
test group, the TDF file contains a list of subtests.

Note that the Instrument Directory can be either the instrumentation
directory itself (such as ver##0) or a directory containing one or more
instrumentation subdirectories.

The command line interface command is mktest . The graphical user
interface equivalent is the Make Test selection in the Test menu.

5. Run the instrumented version of the executable to collect the coverage data.

This creates a subdirectory (exp##0) under the test directory in which
results from the current experiment will be placed. See Figure 55, page 120.
The commands to run a test use the most recent instrumentation directory
version unless you specify a different directory.

Run test

.../test<nnnn>

TDF exp##0
 <experimental results>

Test description file (TDF)

Figure 55. Run Test Process

The command-line interface command is runtest . The graphical user
interface equivalent is the Run Test selection in the Test menu.

6. Analyze the results.

Tester provides a variety of column-based presentations for analyzing the
results. The data can be sorted by a number of criteria. In addition, the
graphical user interface can display a call graph indicating coverage by
function and call.

The Tester interface provides many kinds of queries for performing analysis
on a single test. Table 5, page 121, shows query commands for a single test
that are available either from the command line or the graphical user
interface Queries menu.

120 007–2581–004

Using Tester [5]

Table 5. Common Queries for a Single Test

Command
Line

Graphical User
Interface Description

lsarc List Arcs Shows the function arc coverage. An arc is
a call from one function to another.

lsblock List Blocks Shows basic block count information.

lsbranch List Branches Shows the count information for assembly
language branches.

lsfun List Functions Shows coverage by function.

lssum List Summary Provides a summary of overall coverage.

lstrace List Argument
Traces

Shows the results of argument tracing,
including argument, type, and range.

lsline List Line
Coverage

Shows coverage for native source lines.

cattest Describe Test Describes the test details.

diff Compare Test Shows the difference in coverage between
programs.

lsinstr List
Instrumentation

Show instrumentation details for a test.

Other queries are accessed differently from either interface.

• lscall —Shows a function graph indicating caller and callee functions
and their counts. From the graphical user interface, function graphs are
accessed from a Call Tree View (Views menu selection).

• lssource —Displays the source or assembly code annotated with the
execution count by line. From the graphical user interface, you access
source or assembly code from a Source View (using the Source
button) or a Disassembly View (using the Disassembly button),
respectively.

The queries available in the graphical user interface are shown in Figure 56,
page 122.

007–2581–004 121

Developer MagicTM: Performance Analyzer User’s Guide

Figure 56. The Queries Menu from the Main Tester Window

5.3 Automated Testing

Tester is best suited to automated testing of command-line programs, where the
test behavior can be completely specified at the invocation. Command-line
programs let you incorporate contextual information, such as environment
variables and current working directory.

Automated testing of server processes in a client-server application proceeds
basically the same as single-program cases except that startup time introduces a
new factor. Tester can substantially increase the startup time of your target
process so that the instrumented target process will run somewhat slower than
the standard, uninstrumented one. Tests which start a server, wait a while for it
to be ready, and then start the client will have to wait considerably longer. The
additional time depends on the size and complexity of the server process itself
and on how much and what kind of data you have asked Tester to collect. You
will have to experiment to see how long to wait.

Automated testing of interactive or nondeterministic tests is somewhat harder.
These tests are not completely determined by their command line; they can
produce different results (and display different coverage) from the same
command line, depending upon other factors, such as user input or the timing
of events. For tests such as these, Tester provides a -sum argument to the
runtest command. Normally each test run is treated as an independent event,
but when you use runtest -sum , the coverage from each run is added to the
coverage from previous runs of the same test case. Other details of the coverage
measurement process are identical to the first case.

122 007–2581–004

Using Tester [5]

In each case, you first need to instrument your target program, then run the
test, sum the test results if desired, and finally analyze the results. There are
two general approaches to applying cvcov in automated testing

• If you have not yet created any test scripts or have a small number of tests,
you should create a script that makes each test individually and then runs
the complete test set. See Example 1, which shows a script that automates a
test program called target with different arguments:

Example 1: Making Tests and Running Them

instrument program

cvcov runinstr -instr_file instrfile mypath/target

test machinery

make all tests
cvcov mktest -cmd ‘‘target A B C’’ -testname test0001

cvcov mktest -cmd ‘‘target D E F’’ -testname test0002

...

define testset to include all tests

cvcov lstest > mytest_list

cvcov mktset -list mytest_list -testname mytestset
run all tests in testset and sum up results

cvcov runtest mytestset

• If you have existing test scripts of substantial size or an automated test
machinery setup, then you may find it straightforward to embed Tester by
replacing each test line with a script containing two Tester command lines
for making and running the test and then accumulating the results in a
testset, such as in Example 2. Of course, you can also rewrite the whole test
machinery as described in Example 1, page 123.

Example 2: Applying a Make-and-Run Script

instrument program
cvcov runinstr -instr_file instrfile mypath/target

test machinery

make and run all tests

make_and_run ‘‘target A B C’’

make_and_run ‘‘target D E F’’

...
make testset

cvcov lstest > mytestlist

cvcov mktset -list mytestlist -testname mytestset

accumulate results

007–2581–004 123

Developer MagicTM: Performance Analyzer User’s Guide

cvcov runtest mytestset

where the make_and_run script is:

#!/bin/sh

testname=‘cvcov mktest -instr_dir /usr/tmp -cmd ‘‘$*’’‘
testname=‘expr ‘‘$testname’’ : ‘‘.*Made test directory: ‘.*’’’‘

cvcov runtest $testname

Note that both examples use simple testset structures—these could have been
nested hierarchically if desired.

After running your test machinery, you can use cvcov or cvxcov to analyze
your results. Make sure that your test machinery does not remove the products
of the test run (even if the test succeeds), or it may destroy the test coverage
data.

5.3.1 Additional Coverage Testing

After you have created and run your first test, you typically need additional
testing. Here are some scenarios.

• You can define a test set so that you can vary your coverage using the same
instrumentation. You can analyze the new tests singly or you can combine
them in a set and look at the cumulative results. If the tests are based on the
same executable, they can share the same instrumentation file. You can also
have a test set with tests based on different executables but they should
have the same instrumentation file.

• You can change the instrumentation criteria to gather different counts,
examine a different set of functions, or perform argument tracing differently.

• You can create a script to run tests in batch mode (command line interface
only).

• You can run different programs that use a common dynamically shared
object (DSO) and accumulate test coverage for a test group containing the
DSO.

• You can run the same tests using the same instrumentation criteria for two
versions of the same program and compare the coverage differences.

• You can run a test multiple times and sum the result over the runs. This is
typically used for GUI-based applications.

124 007–2581–004

Using Tester [5]

As you conduct more tests, you will be creating more directories. A typical
coverage testing hierarchy is shown in Figure 57, page 125.

There are two different instrumentation directories, ver##0 and ver##1 . The
test directory test0000 contains results for a single experiment that uses the
instrumentation from ver##0 . (Note that the number in the name of the
experiment results directory corresponds to the number of the instrumentation
directory.) Test directory test0001 has results for two experiments
corresponding to both instrumentation directories, ver##0 and ver##1 .

Test Directories

.../ver##0

<instrumented executable(s)>
<other instrumentation data>

Instrumentation Directories

.../ver##1

<instrumented executable(s)>
<other instrumentation data>

.../test0000

exp##0
<experiment results>

TDF

.../test0001

exp##0
<experiment results>

TDF exp##1
<experiment results>

Figure 57. Typical Coverage Testing Hierarchy

007–2581–004 125

Tester Command Line Interface Tutorial [6]

The tutorials in this chapter are based on simple programs written in C. To run
them, you need the C compiler. The chapter is broken down into these sections:

• Section 6.1, page 127, shows you how to run the script that creates the files
needed for the tutorials.

• Section 6.2, page 128, takes you through the steps of performing coverage
analysis for a single test.

• Section 6.3, page 132, discusses creating additional tests to achieve full
coverage.

• Section 6.4, page 139, explains how to fine-tune a test set to eliminate
redundant tests.

• Section 6.5, page 142, explains how you would use a test group to analyze
the coverage of a dynamically shared object (DSO) in different executables
sharing the DSO.

Note that if you are going to run these tutorials, you must run them in order;
each tutorial builds on the results of previous tutorials.

If you would rather have the test data built automatically, run the following
script:

/usr/demos/WorkShop/Tester/setup_Tester_demo

If at any time a command syntax is not clear, enter the following:

cvcov help < commandname >

6.1 Setting Up the Tutorials

1. Enter the following commands to set up the tutorials:

% cp -r /usr/demos/WorkShop/Tester /usr/tmp/tutorial

% cd /usr/tmp/tutorial

% echo ABCDEFGHIJKLMNOPQRSTUVWXYZ > alphabet

% make -f Makefile.tutorial copyn

This moves some scripts and source files used in the tutorial to
/usr/tmp/tutorial , creates a test file named alphabet , and makes a

007–2581–004 127

Developer MagicTM: Performance Analyzer User’s Guide

simple program, copyn , which copies n bytes from a source file to a target
file.

2. To see how the program works, try a simple test by typing:

% copyn alphabet targetfile 10
% cat targetfile

ABCDEFGHIJ

You should see the first 10 bytes of alphabet copied to targetfile .

6.2 Tutorial #1 - Analyzing a Single Test

Tutorial #1 discusses the following topics:

• Instrumenting an executable

• Making a test

• Running a test

• Analyzing test coverage data

6.2.1 Instrumenting an Executable

This is the first step in providing test coverage. The user defines the
instrumentation criteria in an instrumentation file.

1. Enter the following to see the instrumentation directives in the file
tut_instr_file used in the tutorials:

% cat tut_instr_file
COUNTS -bbcounts -fpcounts -branchcounts

CONSTRAIN main, copy_file

TRACE BOUNDS copy_file(size)

We will be getting all counting information (blocks, functions, branches,
and arcs) for the two functions specified in the CONSTRAIN directive,
main and copy_file . We will also be tracing the size argument for the
copy_file function.

2. Enter the following command to instrument copyn :

% cvcov runinstr -instr_file tut_instr_file copyn
cvcov: Instrument "copyn" of version "0" succeeded.

128 007–2581–004

Tester Command Line Interface Tutorial [6]

Directory ver##0 has been created by default. This contains the
instrumented executable, copyn_Instr , and other instrumentation data.

6.2.2 Making a Test

A test defines the program and arguments to be run, instrument directory,
executables, and descriptive information about the test.

1. Enter the following to make a test:

% cvcov mktest -cmd "copyn alphabet targetfile 20"

You will see the following message:

cvcov: Made test directory:

"/usr/var/tmp/tutorial/test0000"

Directory test0000 has been created by default. It contains a single file,
TDF, the test description file.

Note: The directory /usr/var/tmp is linked to /usr/tmp .

2. Enter the following to get a textual listing of the test:

% cvcov cattest test0000

Test Info Settings

Test /usr/var/tmp/tutorial/test0000

Type single

Description

Command Line copyn alphabet targetfile 20

Number of Exes 1
Exe List copyn

Instrument Directory /usr/var/tmp/tutorial

Experiment List

6.2.3 Running a Test

To run a test, we use technology from the WorkShop Performance Analyzer. The
instrumented process is set to run, and a monitor process (cvmon) captures test
coverage data by interacting with the WorkShop process control server (cvpcs).

1. Enter the following command:

% cvcov runtest test0000

007–2581–004 129

Developer MagicTM: Performance Analyzer User’s Guide

2. You will see the following message:

cvcov: Running test "/usr/var/tmp/tutorial/test0000" ...

Now the directory test0000 contains the directory exp##0 , which contains
the results of the first test experiment.

6.2.4 Analyzing Test Coverage Data

You can analyze test coverage data many ways. In this tutorial, we will
illustrate a simple top-down approach. We will start at the top to get a
summary of overall coverage, proceed to the function level, and go finally to
the actual source lines.

1. Enter the following to get the summary:

% cvcov lssum test0000

You will see the display shown in Example 3.

Example 3: lssum Example

% cvcov lssum test0000

Coverages Covered Total % Coverage Weight

Function 2 2 100.00% 0.400

Source Line 17 35 48.57% 0.200

Branch 0 10 0.00% 0.200

Arc 8 18 44.44% 0.200

Block 19 42 45.24% 0.000

Weighted Sum 58.60% 1.000

Notice that although both functions have been covered, we have incomplete
coverage for source lines, branches, arcs, and blocks.

Note: Items are highlighted on your screen to emphasize null coverage.
As a convention in this manual, we are showing highlighting or user
input in boldface.

2. Enter the following to look at the line count information for the main
function:

% cvcov lssource main test0000

This produces a source listing annotated with counts, shown in Example 4.

130 007–2581–004

Tester Command Line Interface Tutorial [6]

Example 4: lssource Example

% cvcov lssource main test0000

Counts Source
--

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#define OPEN_ERR 1
#define NOT_ENOUGH_BYTES 2

#define SIZE_0 3

int copy_file();

main (int argc, char *argv[])
1 {

int bytes, status;

1 if(argc < 4){

0 printf("copyn: Insufficient arguments.\n");

0 printf("Usage: copyn f1 f2 bytes\n");
0 exit(1);

}

1 if(argc > 4) {

0 printf("Error: Too many arguments\n");

0 printf("Usage: copyn f1 f2 bytes\n");

0 exit(1);
}

1 bytes = atoi(argv[3]);

1 if((status = copy_file(argv[1], argv[2], bytes)) >0){

0 switch (status) {

case SIZE_0:
0 printf("Nothing to copy\n");

0 break;

case NOT_ENOUGH_BYTES:

0 printf("Not enough bytes\n");

0 break;
case OPEN_ERR:

0 printf("File open error\n");

0 break;

}

0 exit(1);

}
1 }

007–2581–004 131

Developer MagicTM: Performance Analyzer User’s Guide

int copy_file(source, destn, size)
char *source, *destn;

int size;

1 {

char *buf;

int fd1, fd2;

struct stat fstat;
1 if((fd1 = open(source, O_RDONLY)) <= 0){

0 return OPEN_ERR;

}

1 stat(source, &fstat);

1 if(size <= 0){
0 return SIZE_0;

}

1 if(fstat.st_size < size){

0 return NOT_ENOUGH_BYTES;

}
1 if((fd2 = creat(destn, 00777)) <= 0){

0 return OPEN_ERR;

}

1 buf = (char *)malloc(size);

1 read(fd1, buf, size);
1 write(fd2, buf, size);

1 return 0;

0 }

Notice that the 0-counted lines appear in a highlight color. In this example,
the lines with 0 counts occur where there is an error condition. This is our
first good look at branch and block coverage at the source line level. The
branch and block coverage in the summary are at the assembly language
level.

6.3 Tutorial #2 - Analyzing a Test Set

In the second tutorial, we are going to create additional tests with the objective
of achieving 100% overall coverage. From examining the source code in
Example 4, page 131, it seems that the 0-count lines in main and copy_file
are due to error-checking code that is not tested by test0000 .

Note: This tutorial needs test0000 , which was created in the previous
tutorial.

132 007–2581–004

Tester Command Line Interface Tutorial [6]

The script tut_make_testset is supplied to demonstrate how to set up this
test set.

1. Enter sh -x tut_make_testset to run the script.

Example 5, page 133, shows the first portion of the script (as it runs), in
which the individual tests are created. The tut_make_testset script uses
mktest to create eight additional tests. The tests test0001 and test0002
pass too few and too many arguments, respectively. test0003 attempts to
copy from a nonexistent file named no_file . test0004 attempts to pass
0 bytes, which is illegal. test0005 attempts to copy 20 bytes from a file
called not_enough , which contains only one byte. In test0006 , we
attempt to write to a directory without proper permission. test0007 tries
to copy too many bytes. In test0008 , we attempt to copy from a file
without read permission.

Example 5: tut_make_testset Script: Making Individual Tests

% sh -x tut_make_testset

+ cvcov mktest -cmd copyn alphabet target -des not enough arguments

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0001"

+ cvcov mktest -cmd copyn alphabet target 20 extra_arg \
-des too many arguments

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0002"

+ cvcov mktest -cmd copyn no_file target 20 -des cannot access file

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0003"

+ cvcov mktest -cmd copyn alphabet target 0 -des pass bad size arg

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0004"

+ echo a

+ cvcov mktest -cmd copyn not_enough target 20 -des not enough data \

(less bytes than requested) in original file

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0005"

+ cvcov mktest -cmd copyn alphabet /usr/bin/target 20 \
-des cannot create target executable due to permission problems

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0006"

+ ls -ld /usr/bin

drwxr-xr-x 3 root sys 3584 May 12 18:25 /usr/bin

007–2581–004 133

Developer MagicTM: Performance Analyzer User’s Guide

+ cvcov mktest -cmd copyn alphabet targetfile 200
-des size arg too big

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0007"

+ cvcov mktest -cmd copyn /usr/adm/sulog targetfile 20 \

-des no read permission on source file

cvcov: Made test directory: "/usr/var/tmp/tutorial/test0008"

After the individual tests are created, the script uses mktset to make a new
test set and addtest to include the new tests in the set. Example 6, page
134, shows the portion of the script in which the test set is created and the
individual tests are added to the test set.

Example 6: tut_make_testset Script: Making and Adding to the Test Set

+ cvcov mktset -des full coverage testset -testname tut_testset

cvcov: Made test directory: "/usr/var/tmp/tutorial/tut_testset"

+ cvcov addtest test0000 tut_testset

cvcov: Added "/usr/var/tmp/tutorial/test0000" to "tut_testset"

+ cvcov addtest test0001 tut_testset

cvcov: Added "/usr/var/tmp/tutorial/test0001" to "tut_testset"

+ cvcov addtest test0002 tut_testset
cvcov: Added "/usr/var/tmp/tutorial/test0002" to "tut_testset"

+ cvcov addtest test0003 tut_testset

cvcov: Added "/usr/var/tmp/tutorial/test0003" to "tut_testset"

+ cvcov addtest test0004 tut_testset
cvcov: Added "/usr/var/tmp/tutorial/test0004" to "tut_testset"

+ cvcov addtest test0005 tut_testset

cvcov: Added "/usr/var/tmp/tutorial/test0005" to "tut_testset"

+ cvcov addtest test0006 tut_testset

cvcov: Added "/usr/var/tmp/tutorial/test0006" to "tut_testset"

+ cvcov addtest test0007 tut_testset

cvcov: Added "/usr/var/tmp/tutorial/test0007" to "tut_testset"

+ cvcov addtest test0008 tut_testset

134 007–2581–004

Tester Command Line Interface Tutorial [6]

cvcov: Added "/usr/var/tmp/tutorial/test0008" to "tut_testset"

2. Enter cvcov cattest tut_testset to check that the new test set was
created correctly.

This is shown in Example 7, page 135. The index numbers in brackets in
the subtest list are used to identify the individual tests as part of a test set.
This index is used to list the contribution of each test.

Example 7: Contents of the New Test Set

% cvcov cattest tut_testset
Test Info Settings

--

Test /usr/var/tmp/tutorial/tut_testset

Type set

Description full coverage testset

Number of Exes 1
Exe List copyn

Number of Subtests 9

Subtest List

[0] /usr/var/tmp/tutorial/test0000

[1] /usr/var/tmp/tutorial/test0001
[2] /usr/var/tmp/tutorial/test0002

[3] /usr/var/tmp/tutorial/test0003

[4] /usr/var/tmp/tutorial/test0004

[5] /usr/var/tmp/tutorial/test0005

[6] /usr/var/tmp/tutorial/test0006
[7] /usr/var/tmp/tutorial/test0007

[8] /usr/var/tmp/tutorial/test0008

Experiment List

3. Enter the following to run the tests in the test set:

% cvcov runtest tut_testset

By applying the runtest command to the test set, we can run all the tests
together. See Example 8, page 136. Note that when you run a test set, only
tests without results are run; tests that already have results will not be run
again. In this case, test0000 has already been run. If you need to rerun a
test, you can do so using the -force flag.

007–2581–004 135

Developer MagicTM: Performance Analyzer User’s Guide

Example 8: Running the New Test Set

% cvcov runtest tut_testset

cvcov: Running test "/usr/var/tmp/tutorial/test0000" ...
cvcov: Running test "/usr/var/tmp/tutorial/test0001" ...

copyn: Insufficient arguments.

Usage: copyn f1 f2 bytes

cvcov: Running test "/usr/var/tmp/tutorial/test0002" ...

Error: Too many arguments

Usage: copyn f1 f2 bytes
cvcov: Running test "/usr/var/tmp/tutorial/test0003" ...

File open error

cvcov: Running test "/usr/var/tmp/tutorial/test0004" ...

Nothing to copy

cvcov: Running test "/usr/var/tmp/tutorial/test0005" ...
Not enough bytes

cvcov: Running test "/usr/var/tmp/tutorial/test0006" ...

File open error

cvcov: Running test "/usr/var/tmp/tutorial/test0007" ...

Not enough bytes
cvcov: Running test "/usr/var/tmp/tutorial/test0008" ...

File open error

4. Enter cvcov lssum tut_testset to list the summary for the test set.

Example 9, page 136, shows the results of the tests in the new test set with
lssum .

Example 9: Examining the Results of the New Test Set

% cvcov lssum tut_testset

Coverages Covered Total % Coverage Weight

Function 2 2 100.00% 0.400

Source Line 35 35 100.00% 0.200

Branch 9 10 90.00% 0.200
Arc 18 18 100.00% 0.200

Block 39 42 92.86% 0.000

Weighted Sum 98.00% 1.000

5. Enter cvcov lssource main tut_testset to see the coverage for the
individual source lines as shown in Example 10, page 137.

136 007–2581–004

Tester Command Line Interface Tutorial [6]

Example 10: Source with Counts

% cvcov lssource main tut_testset

Counts Source
--

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#define OPEN_ERR 1
#define NOT_ENOUGH_BYTES 2

#define SIZE_0 3

int copy_file();

main (int argc, char *argv[])

9 {

int bytes, status;

9 if(argc < 4){
1 printf("copyn: Insufficient arguments.\n");

1 printf("Usage: copyn f1 f2 bytes\n");

1 exit(1);

}

8 if(argc > 4) {

1 printf("Error: Too many arguments\n");
1 printf("Usage: copyn f1 f2 bytes\n");

1 exit(1);

}

7 bytes = atoi(argv[3]);

7 if((status = copy_file(argv[1], argv[2], bytes)) >0){
6 switch (status) {

case SIZE_0:

1 printf("Nothing to copy\n");

1 break;

case NOT_ENOUGH_BYTES:
2 printf("Not enough bytes\n");

2 break;

case OPEN_ERR:

3 printf("File open error\n");

3 break;

}
6 exit(1);

007–2581–004 137

Developer MagicTM: Performance Analyzer User’s Guide

}

1 }

int copy_file(source, destn, size)

char *source, *destn;

int size;

7 {

char *buf;
int fd1, fd2;

struct stat fstat;

7 if((fd1 = open(source, O_RDONLY)) <= 0){

2 return OPEN_ERR;

}
5 stat(source, &fstat);

5 if(size <= 0){

1 return SIZE_0;

}

4 if(fstat.st_size < size){
2 return NOT_ENOUGH_BYTES;

}

2 if((fd2 = creat(destn, 00777)) <= 0){

1 return OPEN_ERR;

}

1 buf = (char *)malloc(size);

1 read(fd1, buf, size);

1 write(fd2, buf, size);

1 return 0;

0 }

As you look at the source code, notice that all lines are covered.

6. Enter cvcov lssource -asm main tut_testset to see the coverage
for the individual assembly lines.

When we list the assembly code using lssource -asm , we find that not
all blocks and branches are covered at the assembly level. This is due to
compilation with the -g flag, which adds debugging code that can never be
executed.

Enter cvcov lsline tut_testset to see the coverage at the source line
level. Notice that 100% of the lines have been covered.

138 007–2581–004

Tester Command Line Interface Tutorial [6]

6.4 Tutorial #3 - Optimizing a Test Set

Tester lets you look at the individual test coverages in a test set. When you put
together a set of tests, you may want to improve the efficiency of your coverage
by eliminating redundant tests. The lsfun , lsblock , and lsarc commands
all have the -contrib option, which displays coverage result contributions by
individual tests. We will now look at the contributions by tests for the test set
we just ran, tut_testset .

Note: This tutorial needs tut_testset and all its subtests; these were
created in the previous tutorial.

1. Enter cvcov lsfun -contrib -pretty tut_testset to see the
function coverage test contribution.

Example 11, page 139, shows how the test set covers functions. Note that
the subtests are identified by index numbers; use cattest if you need to
map these results back to the test directories.

Example 11: Test Contributions by Function

% cvcov lsfun -contrib -pretty tut_testset
Functions Files Counts

--

main copyn.c 9

copy_file copyn.c 7

Functions Files [0] [1] [2] [3] [4] [5]

main copyn.c 1 1 1 1 1 1

copy_file copyn.c 1 0 0 1 1 1

Functions Files [6] [7] [8]
--

main copyn.c 1 1 1

copy_file copyn.c 1 1 1

At the function level, each test covers both functions except for Tests [1]
and [2]. The information here is not sufficient to tell us if we have
optimized the test set. To do this, we must look at contributions at the arc
and block levels. Tester shows arc and block coverage information by test
when you apply the -contrib flag to lsarc and lsblock , respectively.

2. Enter the following to see the arc coverage test contribution.

% cvcov lsarc -contrib -pretty tut_testset

007–2581–004 139

Developer MagicTM: Performance Analyzer User’s Guide

Example 12, page 140, shows the individual test contributions. Notice that
Tests [5] and [7] have identical coverage to each other; so do Tests [3] and
[8].

We can get additional information by looking at block coverage, confirming
our hypothesis about redundant tests.

Example 12: Arc Coverage Test Contribution Portion of Report

Callers Callees Line Files [0] [1] [2] [3] [4] [5]
--

main copy_file 27 copyn.c 1 0 0 1 1 1

main printf 17 copyn.c 0 1 0 0 0 0

main printf 18 copyn.c 0 1 0 0 0 0

main exit 19 copyn.c 0 1 0 0 0 0
main printf 22 copyn.c 0 0 1 0 0 0

main printf 23 copyn.c 0 0 1 0 0 0

main exit 24 copyn.c 0 0 1 0 0 0

main atoi 26 copyn.c 1 0 0 1 1 1

main printf 30 copyn.c 0 0 0 0 1 0

main printf 33 copyn.c 0 0 0 0 0 1
main printf 36 copyn.c 0 0 0 1 0 0

main exit 39 copyn.c 0 0 0 1 1 1

copy_file _open 50 copyn.c 1 0 0 1 1 1

copy_file _stat 53 copyn.c 1 0 0 0 1 1

copy_file _creat 60 copyn.c 1 0 0 0 0 0
copy_file _malloc 63 copyn.c 1 0 0 0 0 0

copy_file _read 65 copyn.c 1 0 0 0 0 0

copy_file _write 66 copyn.c 1 0 0 0 0 0

Callers Callees Line Files [6] [7] [8]

main copy_file 27 copyn.c 1 1 1

main printf 17 copyn.c 0 0 0

main printf 18 copyn.c 0 0 0

main exit 19 copyn.c 0 0 0

main printf 22 copyn.c 0 0 0
main printf 23 copyn.c 0 0 0

main exit 24 copyn.c 0 0 0

main atoi 26 copyn.c 1 1 1

main printf 30 copyn.c 0 0 0

main printf 33 copyn.c 0 1 0
main printf 36 copyn.c 1 0 1

main exit 39 copyn.c 1 1 1

140 007–2581–004

Tester Command Line Interface Tutorial [6]

copy_file _open 50 copyn.c 1 1 1

copy_file _stat 53 copyn.c 1 1 0

3. Enter the following to see the test contribution to block coverage:

% cvcov lsblock -contrib -pretty tut_testset

If you examine the results, you will see that Tests [5] and [7] and Tests [3]
and [8] are identical.

Now we can try to tune the test set. If we can remove tests with redundant
coverage and still achieve the equivalent overall coverage, then we have
tuned our test set successfully. Since the arcs and blocks covered by Test [7]
are also covered by Test [5], we can remove either one of them without
affecting the overall coverage. The same analysis holds true for Tests [3]
and [8].

4. Delete test0007 and test0008 as shown in Example 13, page 141. Then
rerun the test set and look at its summary.

Note that the coverage is retabulated without actually rerunning the tests.
The test summary shows that overall coverage is unchanged, thus
confirming our hypothesis.

Example 13: Test Set Summary after Removing Tests [8] and [7]

% cvcov deltest test0008 tut_testset

cvcov: Deleted "/usr/var/tmp/tutorial/test0008" from "tut_testset"

% cvcov deltest test0007 tut_testset

cvcov: Deleted "/usr/var/tmp/tutorial/test0007" from "tut_testset"

% cvcov runtest tut_testset

cvcov: Running test "/usr/var/tmp/tutorial/test0000" ...

cvcov: Running test "/usr/var/tmp/tutorial/test0001" ...

cvcov: Running test "/usr/var/tmp/tutorial/test0002" ...

cvcov: Running test "/usr/var/tmp/tutorial/test0003" ...
cvcov: Running test "/usr/var/tmp/tutorial/test0004" ...

cvcov: Running test "/usr/var/tmp/tutorial/test0005" ...

cvcov: Running test "/usr/var/tmp/tutorial/test0006" ...

% cvcov lssum tut_testset
Coverages Covered Total % Coverage Weight

--

Function 2 2 100.00% 0.400

007–2581–004 141

Developer MagicTM: Performance Analyzer User’s Guide

Source Line 35 35 100.00% 0.200

Branch 9 10 90.00% 0.200
Arc 18 18 100.00% 0.200

Block 39 42 92.86% 0.000

Weighted Sum 98.00% 1.000

6.5 Tutorial #4 - Analyzing a Test Group

Test groups are used when you are conducting tests on executables that use a
common dynamically shared object (DSO). The results will be limited to
whatever constraints you set on the DSO and thus will not include branches,
arcs, and other code that lie outside the executables.

Note: This tutorial may be run independently of the previous tutorials.
However, it does use copyn . If you have run the other tutorials previously,
the instrumentation directory ver##1 will be created for the new executable;
otherwise, ver##0 is created when copyn is compiled.

In this tutorial, we will test coverage for a DSO called libc.so.1 , which is
shared by copyn , the executable from the previous tutorials, and a simple
application called printtest . The script tut_make_testgroup is provided
to run this tutorial.

1. Run the script by typing tut_make_testgroup

The tut_make_testgroup script creates the test group and its subtests.
Example 14, page 143, shows the results of running the initial preparation
part of the script using sh -x .

First, the script makes the two applications, printtest and copyn . The
next step is to instrument the programs. The script stores the
instrumentation data for printtest in a subdirectory called
print_instr_dir and the copyn data in copyn_instr_dir .

The script then makes test directories for the applications and names them
print_test0000 and copyn_test0000 , respectively. It makes a test
group called tut_testgroup and adds both tests to it.

The mktgroup command is the only one that we have not used previously
in the tutorials. mktgroup creates the test group. As a final part of the
preparation, the script performs a cattest command to show the contents
of the test group.

142 007–2581–004

Tester Command Line Interface Tutorial [6]

Example 14: Setting up a Test Group

% sh -x tut_make_testgroup

+ make -f Makefile.tutorial all

/usr/bin/cc -g -o printtest printtest.c -lc

+ cvcov runinstr -instr_dir print_instr_dir -instr_file tut_group_instr_file printtest

cvcov: Instrument "printtest" of version "0" succeeded.

+ cvcov runinstr -instr_dir copyn_instr_dir -instr_file tut_group_instr_file copyn

cvcov: Instrument "copyn" of version "0" succeeded.

+ cvcov mktest -cmd printtest 10 2 3 -instr_dir print_instr_dir -testname print_test0000

cvcov: Made test directory: "/usr/var/tmp/tutorial4/print_test0000"

+ cvcov mktest -cmd copyn tut4_instr_file targetfile -instr_dir copyn_instr_dir -testname

copyn_test0000

cvcov: Made test directory: "/usr/var/tmp/tutorial4/copyn_test0000"

+ cvcov mktgroup -des Group sharing libc.so.1 -testname tut_testgroup libc.so.1

cvcov: Made test directory: "/usr/var/tmp/tutorial4/tut_testgroup"

+ cvcov addtest print_test0000 tut_testgroup

cvcov: Added "/usr/var/tmp/tutorial4/print_test0000" to "tut_testgroup"

+ cvcov addtest copyn_test0000 testgroup

cvcov: Added "/usr/var/tmp/tutorial4/copyn_test0000" to "tut_testgroup"

+ cvcov cattest tut_testgroup

Test Info Settings

Test /usr/var/tmp/tutorial4/tut_testgroup

Type group

Description Group sharing libc.so.1

Number of Objects 1

Object List libc.so.1

Number of Subtests 2

Subtest List

[0] /usr/var/tmp/tutorial4/print_test0000

[1] /usr/var/tmp/tutorial4/copyn_test0000

Experiment List

007–2581–004 143

Developer MagicTM: Performance Analyzer User’s Guide

Finally, the script runs the test group and performs the queries shown in
Example 15, page 144.

Example 15: Examining Test Group Results

+ cvcov runtest tut_testgroup

cvcov: Running test "/usr/var/tmp/tutorial4/print_test0000" ...

2
3

10

cvcov: Running test "/usr/var/tmp/tutorial4/copyn_test0000" ...

copyn: Insufficient arguments.

Usage: copyn f1 f2 bytes
+ cvcov lssum tut_testgroup

Coverages Covered Total % Coverage Weight

Function 33 1777 1.86% 0.400

Source Line 438 25525 1.72 0.200

Branch 27 10017 0.27% 0.200
Arc 31 6470 0.48% 0.200

Block 363 27379 1.33% 0.200

Weighted Sum 1.24% 1.000

+ cvcov lsfun -pretty -contrib -pat printf tut_testgroup

Functions Files Counts

printf doprnt.c 5

Functions Files [0] [1]

printf doprnt.c 3 2

+ cvcov lsfun -pretty -contrib -pat sscanf tut_testgroup

Functions Files Counts

sscanf scanf.c 3

Functions Files [0] [1]

sscanf scanf.c 3 0

You can use any of the query commands to look at test group results that we
used in other tutorials. This tutorial is for illustrative purposes only. Notice that
the overall coverage of the C library is poor and that the summary is too
general. It is useful, however, to look at individual functions to see how they
were covered between the two executables. Performing a list function for

144 007–2581–004

Tester Command Line Interface Tutorial [6]

printf indicates that it was adequately convered, three times by printtest
(Test [0]) and twice by copyn (Test [1]). On the other hand, checking sscanf
coverage shows that it was covered three times by Test [0] but not all by Test [1].

007–2581–004 145

Tester Command Line Reference [7]

This chapter describes the cvcov commands. It contains two parts:

• Section 7.1, page 147, describes the command arguments that are common to
more than one command

• Section 7.2, page 149, describes the specifications with descriptions for each
command

A complete description of the cvcov commands, including individual
arguments, is available in the man pages by typing:

man cvcov

7.1 Common cvcov Options

This section contains descriptions of some cvcov flags and variables that are
common to more than one command.

[-ver]

Displays the version of cvcov . Note that there are no other
arguments permitted; you enter: cvcov -ver

[-v versionnumber]

Allows you to specify a version of the instrumentation or
experiment directory other than the most recent, which is the
default.

[-contrib]

Shows the list of tests that contributed to coverage for the
particular query.

[-exe exe_name]

Lets you specify an executable for coverage testing. This is used
when there are multiple executables involved, as in testing
processes created by the fork , exec , or sproc command.

007–2581–004 147

Developer MagicTM: Performance Analyzer User’s Guide

[-instr_dir instr_dir]

Allows you to specify an instrumentation directory other than
the current working directory, which is the default.

[-instr_file instr_file]

Specifies the instrumentation file, which is an ASCII description
of the instrumentation criteria you have selected.

[-list list_file]

Specifies a file containing a list of test names to be made part of
a test set or group. If no -list option is specified, an empty
test set will be created.

[-r]

(Recursion) Lets you specify tests in a hierarchy of
subdirectories.

[-arg]

Displays functions with their arguments.

[-pretty]

Displays output aligned in columns. Without -pretty , the
output is in columns but more condensed.

[-sort]

Sorts the output by the specified criteria, as follows:

function Alphabetically by function

diff By differences in the counting
information for coverage type

caller Alphabetically by calling function

callee Alphabetically by called function

count By counts for current coverage
type

file Alphabetically by file name

type Alphabetically by argument type

148 007–2581–004

Tester Command Line Reference [7]

[-functions]

Displays list of constrained functions.

[-pat func_pattern]

Lets you enter a pattern instead of a complete function name.
The pattern can be of the form func_name , dso_:func_name ,
or ‘dso:*’ .

experiment | test_name

Lets you specify either the experiment subdirectory or the test
directory. The test directory is typically of the form
test<nnnn> , where <nnnn> is a number in a sequence
counting from 0000. You can specify your own name. The test
directory contains all information about a test including the
experiment directory. The experiment directory is typically of
the form exp##<n> , where <n> is a sequential number,
counting from 0.

7.2 cvcov Command Syntax and Description

This section contains the syntax and description for all cvcov commands in the
command line interface. If you need information on command arguments that
are not described in this section, please refer back to Section 7.1, page 147.

The most general command is the help command, as follows:

cvcov help command_name

The help command prints help on the specified command. If the optional
command name is not specified, it prints help for all the commands.

The rest of the commands are divided up into these categories:

• General test commands

– cvcov cattest

– cvcov lsinstr

– cvcov lstest

– cvcov mktest

– cvcov rmtest

007–2581–004 149

Developer MagicTM: Performance Analyzer User’s Guide

– cvcov runinstr

– cvcov runtest

• Coverage analysis commands

– cvcov lssum

– cvcov lsfun

– cvcov lsblock

– cvcov lsbranch

– cvcov lsarc

– cvcov lscall

– cvcov lsline

– cvcov lssource

– cvcov lstrace

– cvcov diff

• Test set commands

– cvcov mktset

– cvcov addtest

– cvcov deltest

– cvcov optimize

• Test group command

– cvcov mktgroup

7.2.1 General Test Commands

The following commands support the creation, inspection, modification, and
deletion of tests:

cvcov cattest [-r] test_name

Describes the test details for a test, test set, or test group.
Example 16, shows the ASCII display for a single test.

150 007–2581–004

Tester Command Line Reference [7]

Example 16: cattest Example

% cvcov cattest test0000

Test Info Settings

Test /disk2/tutorial/tutorial/test0000

Type single

Description

Command Line copyn alphabet targetfile 20

Number of Exes 1
Exe List copyn

Instrument Directory /disk2/tutorial/tutorial/

Experiment List

exp##0

exp##1

Example 17 shows the ASCII report for a test set without recursion.

Example 17: cattest Example without -r

% cvcov cattest tut_testset

Test Info Settings

--
Test /disk2/tutorial/tutorial/tut_testset

Type set

Description full coverage testset

Number of Exes 1

Exe List copyn
Number of Subtests 9

Subtest List

[0] /disk2/tutorial/tutorial/test0000

[1] /disk2/tutorial/tutorial/test0001

[2] /disk2/tutorial/tutorial/test0002

[3] /disk2/tutorial/tutorial/test0003
[4] /disk2/tutorial/tutorial/test0004

[5] /disk2/tutorial/tutorial/test0005

[6] /disk2/tutorial/tutorial/test0006

[7] /disk2/tutorial/tutorial/test0007

[8] /disk2/tutorial/tutorial/test0008
Experiment List

exp##0

Example 18, shows the ASCII report for a nested test set.

007–2581–004 151

Developer MagicTM: Performance Analyzer User’s Guide

Example 18: cattest Example with -r

% cvcov cattest -r tut_testset

Test Info Settings

Test /disk2/tutorial/tutorial/tut_testset

Type set

Description full coverage testset

Number of Exes 1
Exe List copyn

Number of Subtests 9

Subtest List

/disk2/tutorial/tutorial/test0000

/disk2/tutorial/tutorial/test0001
/disk2/tutorial/tutorial/test0002

/disk2/tutorial/tutorial/test0003

/disk2/tutorial/tutorial/test0004

/disk2/tutorial/tutorial/test0005

/disk2/tutorial/tutorial/test0006
/disk2/tutorial/tutorial/test0007

/disk2/tutorial/tutorial/test0008

Experiment List

exp##0

cvcov lsinstr [-exe] exe_name [-functions] [-v versionnumber]
test_name

Displays the instrumentation information for a particular test.
exe_name is the executable targeted for query. The main
program is the default if no executable is specified. The
-functions parameter shows the functions that are included
in the coverage experiment. The versionnumber parameter
allows you to specify the version of the program that was
instrumented. You can specify the test directory using the
test_name parameter. See Example 19.

Example 19: lsinstr Example

% cvcov lsinstr test0000

Instrumentation Info

Executable copyn

Version 0

152 007–2581–004

Tester Command Line Reference [7]

Instrument Directory /x/tmp/carol/

Instrument File tut_instr_file
Criteria RBPA

Instrumented Objects copyn_Instr(2.57X)

libc.so.1_RBP_Instr(1.07X)

Argument Tracing copy_file(size[bounds]) [copyn.c]

cvcov lstest [-r] [test_name...]

Lists the test directories in the current working directory. Note
that the test_name parameter will accept regular expressions for
lstest .

cvcov mktest -cmd cmd_line [-des description] [-instr_dir
directoryname] [-testname test] [exe1 exe2 ...]

Creates a test directory. You specify the program and command
line options for the program to be tested. This includes any
redirection for stdin , stderr , or stdout as run from the
Bourne shell. The -cmd qualifier is mandatory, even if it only
includes the program name. If no executables are specified,
only the main program is tested. Example 20, shows an
example of mktest , followed by cattest to display the
contents of the Test Description File (TDF).

Example 20: Test Description File Examples

% cvcov mktest -cmd "copyn tut_instr_file targetfile"

cvcov: Made test directory: /d/Tester/ tutorial/test0002

% cvcov cattest test0002
Test Info Settings

Test /d/Tester/tutorial/test0002

Type single

Description
Command Line copyn tut_instr_file targetfile

Number of Exes 1

Exe List copyn

Instrument Directory /d/Tester/tutorial

Experiment List

cvcov rmtest [-r] test_name ...

Removes tests and test sets. Note that the test_name parameter
will accept regular expressions for rmtest . It is recommended

007–2581–004 153

Developer MagicTM: Performance Analyzer User’s Guide

to separate the test set directory from its test subdirectories and
the instrument directory. In this way, rmtest will not remove
instrumentation data or subtests if you choose to remove the
test set only.

cvcov runinstr [-instr_dir instr_dir][-instr_file instr_file] [-v
versionnumber] executable

Adds code to the target executable to enable you to capture
coverage data, according to the criteria you specify. The
instrument file is an ASCII description of the instrumentation
criteria for the experiment.You can also specify the version of
the executable and instrument directory.

You can capture basic block counts, function pointer counts,
and branch counts (at the assembly language level). You can
use INCLUDE, EXCLUDE, or CONSTRAIN to modify the set of
functions covered. CONSTRAIN lets you define a set of
functions for the test.

cvcov runtest [-bitcount][-compress][-force] [-keep]
[-sum] [-v versionnumber] [-noarc] [-rmsub] test_name

Runs a test or a set of tests. The -bitcount flag compresses
count data file to be 1-bit-per-count. This option can decrease
the database size up to 32 times, although branch count
information will be lost. The -compress flag compresses the
experiment database using the standard utility compress . The
-force flag forces the test to be run again even if an
experiment is present. It uses WorkShop performance tool
technology to set up the instrumented process, run the process,
and monitor the run, collecting counting information upon exit.
The -keep flag retains all performance data collected in the
experiment. By default, the performance data is not retained,
because it is not required by the coverage tool. The -sum flag
accumulates (sum over) the coverage data into the existing
experiment results. This allows users to run and rerun the same
test and accumulate the results in one place.

The -noarc flag prevents arc information from being saved in
the test database. With the -noarc flag, all arc-related queries
will not work (for example, lsarc and lscall). The -rmsub
flag removes results for individual subtests for a test set or test

154 007–2581–004

Tester Command Line Reference [7]

group. There will be no data to query if you are querying a
subtest. -noarc and -rmsub save disk space.

7.2.2 Coverage Analysis Commands

Once the data has been collected from the test experiments, the user can
analyze the data. There are special commands for the various types of coverage
available.

cvcov lssum [-exe exe_name] [-weight func_factor : line_factor :
branch_factor : arc_factor : block_factor] experiment | test_name

Shows the overall coverage based on the user-defined weighted
average over function, line, block, branch, and arc coverage.
Example 21, shows a typical lssum report.

Example 21: lssum Example

% cvcov lssum test0000

Coverages Covered Total % Coverage Weight

Function 2 2 100.00% 0.400
Source Line 17 35 48.57% 0.200

Branch 0 10 0.00% 0.200

Arc 8 18 44.44% 0.200

Block 19 42 45.24% 0.000

Weighted Sum 58.60% 1.000

cvcov lsfun [-arg] [-bf filter_type block_filter_value] [-blocks]
[-branches] [-contrib] [-exe exe_name] [-ff filter_type
func_filter_value] [-pat func_pattern] [-pretty] [-rf filter_type
branch_filter_value] [-sort count | file | function] experiment | test_name

Lists coverage information for the specified functions in the
program that was tested. Several sorting, matching, and
filtering techniques are available. For example, you can show
the list of functions that have 0 counts (were not covered) in
alphabetical order. You can display arguments with the -arg
flag. Example 22, shows a typical lsfun ASCII report.

Example 22: lsfun Example

% cvcov lsfun -pretty -sort function test0000

Functions Files Counts

007–2581–004 155

Developer MagicTM: Performance Analyzer User’s Guide

copy_file copyn.c 1
main copyn.c 1

Note: C++ inline functions are not counted as functions.

cvcov lsblock [-addr] [-arg] [-contrib] [-exe exe_name] [-pat
func_pattern] [-pretty] [-sort count| file | function] experiment|
test_name

Displays a list of blocks for one or more functions and the
count information associated with each block. Blocks are
identified by the line numbers in which they occur. If there are
multiple blocks in a line, blocks subsequent to the first are
shown in order with an index number in parentheses. Be
careful before listing all blocks in the program, since this can
produce a lot of data. The -addr flag show blocks with the PC
range instead of the source line number range. Example 23
shows a typical lsblock ASCII report.

Example 23: lsblock Example %

cvcov lsblock -pat main -pretty test0000

Blocks Functions Files Counts

13~16 main copyn.c 1
17~17 main copyn.c 0

18~18 main copyn.c 0

19~19 main copyn.c 0

21~21 main copyn.c 1

22~22 main copyn.c 0
23~23 main copyn.c 0

24~24 main copyn.c 0

26~26 main copyn.c 1

26~27 main copyn.c 1

27~27 main copyn.c 1
28~28 main copyn.c 0

28~28(2) main copyn.c 0

28~28(3) main copyn.c 0

28~28(4) main copyn.c 0

30~30 main copyn.c 0

31~31 main copyn.c 0
33~33 main copyn.c 0

34~34 main copyn.c 0

156 007–2581–004

Tester Command Line Reference [7]

36~36 main copyn.c 0

37~37 main copyn.c 0
39~39 main copyn.c 0

41~41 main copyn.c 0

43~43 main copyn.c 1

43~43(2) main copyn.c 0

43~43(3) main copyn.c 1

cvcov lsbranch [-addr] [-arg] [-exe exe_name] [-pat
func_pattern] [-pretty][-sort function | file] experiment | test_name

Lists coverage information for branches in the program,
including the line number at which the branch occurs. Branch
coverage counts assembly language branch instructions that are
both taken and not taken. The -addr flag show blocks with the
PC range instead of the source line number range.

Example 24, shows a typical branch coverage ASCII report. Note that branches
with incomplete or null coverage are highlighted (boldfaced).

Example 24: lsbranch Example

% cvcov lsbranch -pretty -sort function test0000

Line Functions Files Taken Not Taken

50 copy_file copyn.c 1 0

54 copy_file copyn.c 1 0

57 copy_file copyn.c 1 0

60 copy_file copyn.c 1 0

16 main copyn.c 1 0
21 main copyn.c 1 0

27 main copyn.c 1 0

28 main copyn.c 0 0

28(2) main copyn.c 0 0

28(3) main copyn.c 0 0

cvcov lsarc [-arg] [-callee callee_pattern] [-caller caller_pattern]
[-contrib][-exe exe_name] [-pretty][-sort caller | callee| count |
file] experiment | test_name

Shows arc coverage, that is, the number of arcs taken out of the
total possible arcs. An arc is a function caller-callee pair. Both
callee_pattern and caller_pattern can be specified in the same way

007–2581–004 157

Developer MagicTM: Performance Analyzer User’s Guide

as func_pattern (used with the -pat option) as shown under
Section 7.1, page 147.

Example 25, shows a typical lsarc ASCII report.

Example 25: lsarc Example

% cvcov lsarc -callee printf -pretty test0001

Callers Callees Line Files Counts

main printf 17 copyn.c 1

main printf 18 copyn.c 1

main printf 22 copyn.c 0

main printf 23 copyn.c 0

main printf 30 copyn.c 0
main printf 33 copyn.c 0

main printf 36 copyn.c 0

cvcov lscall [-arg] [-exe exe_name][-node func_name] [-pretty]
[-r] experiment | test_name

Lists the call graph for the executable with counts for each
function. The contribution to this coverage by each test is
shown in a separate column. Example 26, shows a typical
lscall ASCII report. N/A means the node is excluded.

Example 26: lscall Example

% cvcov lscall -pretty test0000

Graph Counts

main 1

copy_file 1
_open N/A

_stat... N/A

_creat N/A

_malloc... N/A

_read N/A
_write N/A

printf... N/A

exit... N/A

atoi N/A

A function that has more than one parent and has children is called a subnode.
Using -r will display the subnodes. Subnodes are given their own starting

158 007–2581–004

Tester Command Line Reference [7]

point in the textual call graph. They are identified by a trailing ellipsis (...). For
example, see printf , exit , and malloc in Example 26.

cvcov lsline [-arg] [-exe exe_name] [-pat func_pattern][-pretty]
[-sort function | file] experiment | test_name

Lists the coverage for native source lines. Use -arg to show
arguments for functions. If no executable is specified, the main
program is the default. Use -pretty to provide
column-aligned output. See Example 27.

Example 27: lsline Example

% cvcov lsline -pretty -pat main test0000
Functions Files Covered Total % Coverage

main copyn.c 6 20 30.00%

cvcov lssource [-asm] [-exe exe_name] function experiment test_name

Displays the source annotated with line counts. The -asm
switch displays the assembly level source code annotated with
line counts. Lines with 0 counts are highlighted to show the
absence of coverage. This is useful for mapping to the source
level blocks and branches that were not covered. Lines in
functions that were not included in the test appear without
count annotations.

Example 28, shows a segment of a typical lssource ASCII
report.

Note: lssource requires the code to be compiled with the
-g option.

Example 28: lssource Example

% cvcov lssource main test0000

Counts Source

#include <stdio.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <fcntl.h>

#define OPEN_ERR 1

#define NOT_ENOUGH_BYTES 2

007–2581–004 159

Developer MagicTM: Performance Analyzer User’s Guide

#define SIZE_0 3

int copy_file();

main (int argc, char *argv[])

1 {

int bytes, status;

1 if(argc < 4){

0 printf(‘‘copyn: Insufficient arguments.\n’’);

0 printf(‘‘Usage: copyn f1 f2 bytes\n’’);

0 exit(1);

}
1 if(argc > 4) {

0 printf(‘‘Error: Too many arguments\n’’);

0 printf(‘‘Usage: copyn f1 f2 bytes\n’’);

0 exit(1);

}
1 bytes = atoi(argv[3]);

cvcov lstrace [-exe exe_name] [-pat func_pattern]
[-pretty][-sort function | type] experiment | test_name

Shows the argument tracing information. Example 29, shows a
typical lstrace ASCII report. The Range column shows upper
and lower bounds. A dash (-) means that side of the bound
has not been counted.

Example 29: lstrace Example

% cvcov lstrace -pretty testtrace

Arguments Type Range

main(argc) int -, 4
copy_file(size) int 1, 20

Note: lstrace requires the code to be compiled with the -g option.

160 007–2581–004

Tester Command Line Reference [7]

cvcov diff [-arg] [-exe exe_name] [-functions]
[-pretty][-sort diff | function] experiment1 experiment2

Shows the difference in coverage for different versions of the
same program. Example 30, shows an example of the diff
command applied to two tests (although you should make sure
that the comparison is relevant). Example 31, page 161, shows
diff applied to different instrumentations of the same test.

Example 30: diff between Two Tests

% cvcov diff test0000/exp##0 test0001/exp##0

Experiment 1: test0000/exp##0

Experiment 2: test0001/exp##0

Coverages Exp 1 Exp 2 Differences

--

Function Coverage 2(100.00%) 1(50.00%) 1(50.00%)
Source Line Coverage 17(48.57%) 5(14.29%) 12(34.29%)

Branch Coverage 0(0.00%) 0(0.00%) 0(0.00%)

Arc Coverage 8(44.44%) 3(16.67%) 5(27.78%)

Block Coverage 19(45.24%) 4(9.52%) 15(35.71%)

Example 31: diff between Different Instrumentations of the Same Test

% cvcov diff test0000/exp##0 test0000/exp##1

Experiment 1: test0000/exp##0

Experiment 2: test0000/exp##1

Coverages Exp 1 Exp 2 Differences

--

Function Coverage 2(100.00%) 2(100.00%) 0(0.00%)

Source Line Coverage 17(48.57%) 17(47.22%) 0(1.35%)

Branch Coverage 0(0.00%) 0(0.00%) 0(0.00%)
Arc Coverage 8(44.44%) 8(44.44%) 0(0.00%)

Block Coverage 19(45.24%) 19(44.19%) 0(-1.05%)

7.2.3 Test Set Commands

A test set is a named collection of tests and other test sets. Test sets can be
hierarchical. For example, compiler_language_suite might include
C++_suite , C_suite , and Fortran_suite , where Fortran_suite is a test

007–2581–004 161

Developer MagicTM: Performance Analyzer User’s Guide

set with subdirectories. The following commands support creation, inspection,
modification, and deletion of test sets. Both addtest and deltest are also
used with test groups, described in the next section.

cvcov mktset [-des description] [-list list_file][-testname test]

Makes a test set. If no test name is specified, the command
assigns one automatically.

cvcov addtest test_name test_set_name | test_group

Adds a test or test set to a test set or test group.

cvcov deltest test_name test_set_name | test_group

Removes a test or test set from a test set or test group.

Note: Do not use UNIX commands mv and cp to rename or
copy test sets because they are constructed with absolute files
paths.

cvcov optimize [-blocks][-branches][-cbb filter_type
bb_filter_value][-cbr filter_type br_filter_value] [-exe exe_name] [-pat
func_pattern] [-pretty][-stat] experiment...| test_name ...

Selects the minimum set of tests that give the same coverage or
meet the given coverage criteria as the given set. The -blocks
flag shows block coverage for all the selected tests. The
-branches flag shows branch coverage for all the selected
tests. The -cbb filter_type bb_filter_value gives the basic block
coverage criteria for test selection. The rules are the same as the
flag -bf of the lsfun command. The -cbr filter_type
br_filter_value gives the branch coverage criteria for test
selection. The rules are the same as the flag -rf of lsfun
command. The -exe exe_name option lets you specify which
executable is targeted for test optimization. If no executable is
specified, the main program is the default. The -pat pattern
option lets you specify DSO patterns for calculation of coverage
on test selection. The -pretty flag aligns column output. The
-stat flag prints out block and branch coverage for all the
selected tests. Without this option, cumulative coverages for
block and branch are given. The experiment ...| test_name ...
option lets you specify names of experiments or tests to be
optimized. Example 32, demonstrates how test sets are

162 007–2581–004

Tester Command Line Reference [7]

optimized. In this case, optimizing is applied to all tests
matching the expression test00* .

Example 32: Optimizing Test Sets

% cvcov optimize -pretty -blocks -branches test00*

Test Block Coverage Branch Coverage

test0000 41.54% 0.00%

test0001 7.69% 10.00%

test0002 7.69% 10.00%

test0003 9.23% 20.00%
test0004 9.23% 20.00%

test0005 6.15% 20.00%

test0006 1.54% 10.00%

Total Coverage 83.08% 90.00%

7.2.4 Test Group Commands

A test group is a collection of programs to be tested that have a common
dynamically shared object (DSO). The coverage testing is limited to activity
with the DSO so that the arcs and branches that terminate outside of the DSO
will not be included. See descriptions of addtest and deltest in the
previous section as well as the following command.

cvcov mktgroup [-des description] [-list list_file] [-testname test] target1 target2 ...

This command creates a test group that can contain other tests or test groups.
The targets are either the target libraries or DSOs.

Note: Do not use UNIX commands mv and cp to rename or copy test groups
because they are constructed with absolute files paths.

007–2581–004 163

Tester Graphical User Interface Tutorial [8]

This chapter provides a tutorial for the Tester graphical user interface. It covers
these topics:

• Setting Up the Tutorial, Section 8.1, page 165

• Analyzing a Single Test, Section 8.2, page 166

• Analyzing a Test Setup, Section 8.3, page 178

• Exploring the Graphical User Interface, Section 8.4, page 181

8.1 Setting Up the Tutorial

If you have already set up a tutorial directory for the command line interface
tutorial, you can continue to use it. If you remove the subdirectories, your
directory names will match exactly; if you leave the subdirectories in, you can
add new ones as part of this tutorial.

If you would like the test data built automatically, run the following script:

/usr/demos/WorkShop/Tester/setup_Tester_demo

To set up a tutorial directory from scratch, do the following; otherwise you can
skip the rest of this section.

1. Enter the following:

% cp -r /usr/demos/WorkShop/Tester /usr/tmp/tutorial

% cd /usr/tmp/tutorial
% echo ABCDEFGHIJKLMNOPQRSTUVWXYZ > alphabet

% make -f Makefile.tutorial copyn

This moves some scripts and source files used in the tutorial to
/usr/tmp/tutorial , creates a test file named alphabet , and makes a
simple program, copyn , which copies n bytes from a source file to a target
file.

2. To see how the program works, try a simple test by typing the following at
the command line:

% copyn alphabet targetfile 10
% cat targetfile

007–2581–004 165

Developer MagicTM: Performance Analyzer User’s Guide

ABCDEFGHIJ

You should see the first 10 bytes of alphabet copied to targetfile .

8.2 Tutorial #1 — Analyzing a Single Test

Tutorial #1 discusses the following topics:

• Invoking the graphical user interface.

• Instrumenting an executable.

• Making a test.

• Running a test.

• Analyzing the results of a coverage tes.

These topics are all covered in the following section.

8.2.1 Invoking the Graphical User Interface

You typically call up the graphical user interface from the directory that will
contain your test subdirectories. This section tells you how to invoke the Tester
graphical user interface and describes the main window.

1. Enter cvxcov from the tutorial directory to bring up the Tester main
window.

Figure 58, page 168, shows the main Tester window with all its menus
displayed.

Note: You can also access Tester from the Admin menu in other
WorkShop tools.

2. Observe the features of the Tester window.

The Test Name field is used to display the current test. You can switch to
different tests through this field.

Test results display in the coverage display area. You display the results by
choosing an item from the Queries menu. You also can select the format
of the data from the Views menu.

The Source button lets you bring up the standard Source View window
with Tester annotations. Source View shows the counts for each line

166 007–2581–004

Tester Graphical User Interface Tutorial [8]

included in the test and highlights lines with 0 counts. Lines from excluded
functions display but without count annotations.

The Disassembly button brings up the Disassembly View window for
assembly language source. It operates in a similar fashion to the Source
button.

The Contribution button displays a separate window with the
contributions to the coverage made by each test in a test set or test group.

A sort button lets you sort the test results by such criteria as function,
count, file, type, difference, caller, or callee. The criteria available (shown by
the name of the button) depend on the current query.

The status area displays status messages regarding the test.

The area below the status area will display special query-specific fields
when you make queries.

You can launch other WorkShop applications from the Launch Tool
submenu of the Admin menu. The applications include the Build Analyzer,
Debugger, Parallel Analyzer, Performance Analyzer, and Static Analyzer.

You will find an icon version of the Execution View labeled
cvxcovExec . It is a shell window for viewing test results as they would
appear on the command line.

007–2581–004 167

Developer MagicTM: Performance Analyzer User’s Guide

Admin menu Views menu Queries menu Test menu

Test Name
input field

Coverage
display area

Control buttons

Status area

Figure 58. Main Tester Window

Instrumenting an Executable

The first step in providing test coverage is to define the instrumentation
criteria in an instrumentation file.

168 007–2581–004

Tester Graphical User Interface Tutorial [8]

3. On the command line or from Execution View , enter the following to see
the instrumentation directives in the file tut_instr_file used in the
tutorials:

% cat tut_instr_file

COUNTS -bbcounts -fpcounts -branchcounts

CONSTRAIN main, copy_file

TRACE BOUNDS copy_file(size)

We will be getting all counting information (blocks, functions, source lines,
branches, and arcs) for the two functions specified in the CONSTRAIN
directive, main and copy_file . We will also be tracing the size argument
for the copy_file function.

4. Select Run Instrumentation from the Test menu.

This process inserts code into the target executable that enables coverage
data to be captured. The dialog box shown in Figure 59, page 169, displays
when Run Instrumentation is selected from the Test menu.

Figure 59. Running Instrumentation

5. Enter copyn in the Executable field.

The Executable field is required, as indicated by the red highlight. You
enter the executable in this field.

6. Enter tut_instr_file in the Instrument File field.

007–2581–004 169

Developer MagicTM: Performance Analyzer User’s Guide

The Instrument File field lets you specify an instrumentation file
containing the criteria for instrumenting the executable. In this tutorial, we
use the file tut_instr_file , which was described earlier.

7. Leave the Instrument Dir and Version Number fields as is.

The Instrument Dir field indicates the directory in which the
instrumented programs are stored. A versioned directory is created (the
default is ver## n, where n is 0 the first time and is incremented
automatically if you subsequently change the instrumentation). The version
number n helps you identify the instrumentation version you use in an
experiment. The experiment results directory will have a matching version
number. The instrument directory is the current working directory; it can
be set from the Admin menu.

8. Click OK.

This executes the instrumentation process. If there are no problems, the
dialog box closes and the message Instrumentation succeeded
displays in the status area with the version number created.

Making a Test

A test defines the program and arguments to be run, the instrumentation
criteria, and descriptive information about the test.

9. Select Make Test from the Test menu.

This creates a test directory. Figure 60, page 171, shows the Make Test
window.

You specify the name of the test directory in the Test Name field, in this
case test0000 . The field displays a default directory test< nnnn>, where
nnnn is 0000 the first time and incremented for subsequent tests. You can
edit this field if necessary.

170 007–2581–004

Tester Graphical User Interface Tutorial [8]

Figure 60. Selecting Make Test

10. Enter a description of the test in the Description field.

This is optional, but can help you differentiate between tests you have
created.

11. Enter the executable to be tested with its arguments in the Command Line
field, in this example:

copyn alphabet targetfile 20

This field is mandatory, as indicated by its highlighting.

12. Leave the remaining fields as is.

007–2581–004 171

Developer MagicTM: Performance Analyzer User’s Guide

Tester supplies a default instrumentation directory in the Instrument Dir
field. The Executable List field lets you specify multiple executables
when your main program fork s, exec s, or sproc s other processes.

13. Click OKto perform the make test operation with your selections.

The results of the make test operation display in the status area of the main
Tester window.

Running a Test

To run a test, we use technology from the WorkShop Performance Analyzer.
The instrumented process is set to run, and a monitor process (cvmon)
captures test coverage data by interacting with the WorkShop process
control server (cvpcs).

14. Select Run Test from the Test menu.

The dialog box shown in Figure 61, page 173, displays. You enter the test
directory in the Test Name field. You can also specify a version of the
executable in the Version Number field if you do not want to use the
latest, which is the default. The Force Run toggle forces the test to be run
again even if a test result already exists. The Keep Performance Data
toggle retains all the performance data collected in the experiment. The
Accumulate Results toggle sums over the coverage data into the
existing experiment results. Both No Arc Data and Remove Subtest
Expt toggles retain less data in the experiments and are designed to save
disk space.

172 007–2581–004

Tester Graphical User Interface Tutorial [8]

Figure 61. Run Test Dialog Box

15. Enter test0000 in the Test Name field.

16. Click OKto run the test with your selections.

When the test completes, a status message showing completion displays
and you will have data to be analyzed. You can observe the test as it runs
in Execution View .

Analyzing the Results of a Coverage Test

You can analyze test coverage data in many ways. In this tutorial, we will
illustrate a simple top-down approach. We will start at the top to get a
summary of overall coverage, proceed to the function level, and finally go
to the actual source lines.

Having collected all the coverage data, now you can analyze it. You do this
through the Queries menu in the main Tester window.

17. Enter test0000 in the Test Name field in the main window and select
List Summary from the Queries menu.

This loads the test and changes the main window display as shown in
Figure 62, page 174. The query type (in this case, List Summary) is
indicated above the display area. Column headings identify the data, which
displays in columns in the coverage display area. The status area is

007–2581–004 173

Developer MagicTM: Performance Analyzer User’s Guide

shortened. The query-specific fields (in this case, coverage weighting
factors) that appear below the control buttons and status area are different
for each query type. You can change the numbers and click Apply to
weight the factors differently. The Executable List button brings up the
Target List dialog box. It displays a list of executables used in the
experiment and lets you select different executables for analysis. You can
select other experiments from the experiment menu (Expt).

List Summary shows the coverage data (number of coverage hits, total
possible hits, percentage, and weighting factor) for functions, source lines,
branches, arcs, and blocks. The last coverage item is the weighted average,
obtained by multiplying individual coverage averages by the weighting
factors and summing the products.

Single/test set indicator
Query type

Coverage column headings

Coverage summary

Coverage weighting factors

Executable List
button

Experiment Menu
button

Figure 62. List Summary Query Window

174 007–2581–004

Tester Graphical User Interface Tutorial [8]

18. Select List Functions from the Queries menu.

This query lists the coverage data for functions specified for inclusion in this
test. The default version is shown in Figure 63, with the available options.

Find
string

Display
or enter
function

Number of items
in the list

Sort menu

Include branches
Include blocks

Figure 63. List Functions Query with Options

If there are functions with 0 counts, they will be highlighted. The default
column headings are Functions , Files , and Counts .

19. Click the Blocks and Branches toggles.

The Blocks and Branches toggle buttons let you display these items in
the function list. Figure 64, page 176, shows the display area with Blocks
and Branches enabled.

007–2581–004 175

Developer MagicTM: Performance Analyzer User’s Guide

Figure 64. List Functions Display Area with Blocks and Branches

The Blocks column shows three values. The number of blocks executed
within the function is shown first. The number of blocks covered out of the
total possible for that function is shown inside the parentheses. If you
divide these numbers, you will arrive at the percentage of coverage.

Similarly, the Branches column shows the number of branches covered,
followed by the number covered out of the total possible branches. The
term covered means that the branch has been executed under both true and
false conditions.

20. Select the function main in the display area and click Source .

The Source View window displays with count annotations as shown in
Figure 65, page 177. Lines with 0 counts are highlighted in the display area
and in the vertical scroll bar area. Lines in excluded functions display with
no count annotations.

21. Click the Disassembly button in the main window.

The Disassembly View window displays with count annotations as
shown in Figure 66, page 177. Lines with 0 counts are highlighted in the
display area and in the vertical scroll bar area.

176 007–2581–004

Tester Graphical User Interface Tutorial [8]

Annotation
column

0-count
highlight

Figure 65. Source View with Count Annotations

Annotation
column

0-count
highlight

Figure 66. Disassembly View with Count Annotations

007–2581–004 177

Developer MagicTM: Performance Analyzer User’s Guide

8.3 Tutorial #2 — Analyzing a Test Set

In the second tutorial, we are going to create additional tests with the objective
of achieving 100% overall coverage. From examining the source code, it seems
that the 0-count lines in main and copy_file are due to error-checking code
that is not tested by test0000 .

Note: This tutorial needs test0000 , which was created in the previous
tutorial.

1. Select Make Test from the Test menu.

This displays the Make Test dialog box. It is easy to enter a series of tests.
Using the Apply button in the dialog box instead of the OKbutton
completes the task without closing the dialog box. The Test Name field
supplies an incremented default test name after each test is created.

We are going to create a test set named tut_testset and add to it 8 tests
in addition to test0000 from the previous tutorial. The tests test0001
and test0002 pass too few and too many arguments, respectively.
test0003 attempts to copy from a file named no_file that does not exist.
test0004 attempts to pass 0 bytes, which is illegal. test0005 attempts to
copy 20 bytes from a file called not_enough , which contains only one byte.
In test0006 , we attempt to write to a directory without proper
permission. test0007 tries to pass too many bytes. In test0008 , we
attempt to copy from a file without read permission.

The following steps show the command line target and arguments and
description for the tests in the tutorial. The descriptions are helpful but
optional. Figure 67, page 179, shows the features of the dialog box you will
need for creating these tests.

2. Enter copyn alphabet target in the Command Line field, not
enough arguments in the Description field, and click Apply (or
simply press the Return key) to make test0001 .

3. Enter copyn alphabet target 20 extra_arg in the Command Line
field, too many arguments in the Description field, and click Apply
to make test0002 .

178 007–2581–004

Tester Graphical User Interface Tutorial [8]

Default test name

Test description

Target with
arguments

Apply button

Figure 67. Make Test Dialog Box with Features Used in Tutorial

4. Enter copyn no_file target 20 in the Command Line field, cannot
access file in the Description field, and click Apply to make
test0003 .

5. Enter copyn alphabet target 0 in the Command Line field, pass
bad size arg in the Description field, and click Apply to make
test0004 .

6. Enter copyn not_enough target 20 in the Command Line field, not
enough data in the Description field, and click Apply to make
test0005 .

7. Enter copyn alphabet /usr/bin/target 20 in the Command Line
field, cannot create target executable due to permission
problems in the Description field, and click Apply to make test0006 .

007–2581–004 179

Developer MagicTM: Performance Analyzer User’s Guide

8. Enter copyn alphabet targetfile 200 in the Command Line field,
size arg too big in the Description field, and click Apply to make
test0007 .

9. Enter copyn /usr/etc/snmpd.auth targetfile 20 in the Command
Line field, no read permission on source file in the
Description field, and click Apply to make test0008 .

We now need to create the test set that will contain these tests.

10. Click the Test Set toggle in the Test Type field.

This changes the dialog box as shown in Figure 68, page 180.

Test set toggle

Tests in working
directory Test set list

Test list control
buttons

Figure 68. Make Test Dialog Box for Test Set Type

11. Change the default in the Test Name field to tut_testset .

180 007–2581–004

Tester Graphical User Interface Tutorial [8]

This is the name of the new test set. Now we have to add the tests to the
test set.

12. Select the first test in the Test List field and click Add.

This displays the selected test in the Test Include List field, indicating
that it will be part of the test set after you click OK(or Apply and Close).

13. Repeat the process of selecting a test and clicking Add for each test in the
Test List field. When all tests have been added to the test set, click OK.

This saves the test set as specified and closes the Make Test dialog box.

14. Enter tut_testset in the Test Name field and select Describe Test
from the Queries menu.

This displays the test set information in the display area of the main
window.

15. Select Run Test from the Test menu, enter tut_testset in the Test
Namefield in the Run Test dialog box.

This runs all the tests in the test set.

16. Enter tut_testset in the Test Name field in the main Tester window
and select List Summary from the Queries menu.

This displays a summary of the results for the entire test set.

17. Select List Functions from the Queries menu.

This step serves two purposes. It enables the Source button so that we can
look at counts by source line. It displays the list of functions included in
the test, from which we can select functions to analyze.

18. Click the main function, which is displayed in the function list, and click
the Source button.

This displays the source code, with the counts for each line shown in the
annotations column. Note that the counts are higher now and full coverage
has been achieved at the source level (although not necessarily at the
assembly level).

8.4 Tutorial #3 — Exploring the Graphical User Interface

The rest of this chapter shows you how to use the graphical user interface
(GUI) to analyze test data. The GUI has all the functionality of the command

007–2581–004 181

Developer MagicTM: Performance Analyzer User’s Guide

line interface and in addition shows the function calls, blocks, branches, and
arcs graphically.

For a discussion of applying Tester to test set optimization, refer to Section 6.4,
page 139. To learn more about test groups, see Section 6.5, page 142. Although
these are written for the command line interface, you can use the graphical
interface to follow both tutorials.

1. Enter test0000 in the Test Name field of the main window and press
the Return key.

Since test0000 has incomplete coverage, it is more useful for illustrating
how uncovered items appear.

2. Select List Functions from the Queries menu.

The list of functions displays in the text view format.

3. Select Call Tree View from the Views menu.

The Tester main window changes to call graph format. Figure 69, page 183,
shows a typical call graph. Initially, the call graph displays the main
function and its immediate callees.

182 007–2581–004

Tester Graphical User Interface Tutorial [8]

Call graph display area

Included (and covered)
nodes

Excluded nodes

Display control buttons

Search node field

Graph type controls

Figure 69. Call Graph for List Functions Query

The call graph displays functions as nodes and calls as connecting arrows.
The nodes are annotated by call count information. Functions with 0 counts
are highlighted. Excluded functions when visible appear in the background
color.

The controls for changing the display of the call graph are just below the
display area (see Figure 70, page 184).

007–2581–004 183

Developer MagicTM: Performance Analyzer User’s Guide

Zoom menu

Zoom Out button

Zoom In button

Overview button

Multiple Arcs button

Realign button

Rotate button a11661

Figure 70. Call Graph Display Controls

These facilities are:

Zoom menuicon Shows the current scale of the graph. If
clicked on, a popup menu appears displaying
other available scales. The scaling range is
between 15% and 300% of the nominal (100%)
size.

Zoom Out icon Resets the scale of the graph to the next
(available) smaller size in the range.

Zoom In icon Resets the scale of the graph to the next
(available) larger size in the range.

Overview icon Invokes an overview popup display that
shows a scaled-down representation of the
graph. The nodes appear in the analogous
places on the overview popup, and a white
outline may be used to position the main
graph relative to the popup. Alternatively,
the main graph may be repositioned with its
scroll bars.

Multiple Arcs icon Toggles between single and multiple arc
mode. Multiple arc mode is extremely useful
for the List Arcs query, because it indicates

184 007–2581–004

Tester Graphical User Interface Tutorial [8]

graphically how many of the paths between
two functions were actually used.

Realign icon Redraws the graph, restoring the positions of
any nodes that were repositioned.

Rotate icon Flips the orientation of the graph between
horizontal (calling nodes at the left) and
vertical (calling nodes at the top).

Entering a function in the Search Node field scrolls the display to the
portion of the graph in which the function is located.

There are two buttons controlling the type of graph. Entering a node in the
Func Name field and clicking Butterfly displays the calling and called
functions for that node only (Butterfly mode is the default). Selecting
Full displays the entire call graph (although not all portions may be
visible in the display area).

4. Select List Arcs from the Queries menu.

The List Arcs query displays coverage data for calls made in the test.
Because we were just in call graph mode for the List Functions query,
List Arcs comes up in call graph rather than text mode.

See Figure 71, page 186. To improve legibility, this figure has been scaled
up to 150% and the nodes moved by middle-click-dragging the outlines.
Arcs with 0 counts are highlighted in color. Notice that in List Arcs , the
arcs rather than the nodes are annotated.

007–2581–004 185

Developer MagicTM: Performance Analyzer User’s Guide

Figure 71. Call Graph for List Arcs Query

5. Click the Multiple Arcs button (the third button from the right in the
row of display controls).

This displays each of the potential arcs between the nodes. See Figure 72,
page 187. Arcs labeled N/A connect excluded functions and do not have
call counts.

186 007–2581–004

Tester Graphical User Interface Tutorial [8]

Multiple arcs
button

Figure 72. Call Graph for List Arcs Query — Multiple Arcs

6. Select Text View from the Views menu.

This returns the display area to text mode from call graph mode. See Figure
73, page 188.

The Callers column lists the calling functions. The Callees column lists
the functions called. Line provides the line number where the call
occurred; this is particularly useful if there are multiple arcs between the
caller and callee. The Files column identifies the source code file. Counts
shows the number of times the call was made.

You can sort the data in the List Arcs query by count, file, caller, or callee.

007–2581–004 187

Developer MagicTM: Performance Analyzer User’s Guide

Figure 73. Test Analyzer Queries: List Arcs

7. Select List Blocks from the Queries menu.

The window should be similar to Figure 74, page 189. The data displays in
order of blocks, with the starting and ending line numbers of the block
indicated. Blocks that span multiple lines are labeled sequentially in
parentheses. The count for each block is shown with 0-count blocks
highlighted.

!
Caution: Listing all blocks in a program may be very slow for large
programs. To avoid this problem, limit your List Blocks operation to
a single function.

188 007–2581–004

Tester Graphical User Interface Tutorial [8]

Figure 74. Test Analyzer Queries: List Blocks

You can sort the data for List Blocks by count, file, or function.

8. Select List Branches from the Queries menu.

The List Branches query displays a window similar to Figure 75, page
190.

007–2581–004 189

Developer MagicTM: Performance Analyzer User’s Guide

Figure 75. Test Analyzer Queries: List Branches

The first column shows the line number in which the branch occurs. If
there are multiple branches in a line, they are labeled by order of
appearance within trailing parentheses. The next two columns indicate the
function containing the branch and the file. A branch is considered covered
if it has been executed under both true and false conditions. The Taken
column indicates the number of branches that were executed only under
the true condition. The Not Taken column indicates the number of
branches that were executed only under the false condition.

The List Branches query permits sorting by function or file.

190 007–2581–004

Tester Graphical User Interface Reference [9]

This chapter describes the Tester graphical user interface. It contains these
sections:

• Section 9.1, page 191

• Section 9.2, page 192

• Section 9.3, page 196

• Section 9.4, page 206

• Section 9.5, page 209

• Section 9.6, page 228

When you run cvxcov , the main Tester window opens and an iconized version
of the Execution View appears on your screen. It displays the output and status
of a running program and accepts input. To open a closed Execution View, see
“Clone Execution View” in Section 9.6, page 228.

9.1 Accessing the Tester Graphical Interface

There are two methods of accessing the Tester graphical user interface:

• Type cvxcov at the command line with these optional arguments:
-testname test to load the test; -ver to show the Tester release version;
and -scheme schemename to set a predefined color scheme.

• Select Tester from the Launch Tool submenu in a WorkShop Admin
menu (see Figure 76, page 192). The major WorkShop tools, the Debugger,
Static Analyzer, and Build Manager provide Admin menus from which you
can access Tester.

007–2581–004 191

Developer MagicTM: Performance Analyzer User’s Guide

Figure 76. Accessing Tester from the WorkShop Debugger

9.2 Main Window and Menus

The main window and its menus are shown in Figure 77, page 193.

192 007–2581–004

Tester Graphical User Interface Reference [9]

Admin menu Views menu Queries menu Test menu

Test Name
input field

Coverage
display area

Control area

Status area

Search field

Figure 77. Main Test Analyzer Window

9.2.1 Test Name Input Field

The current test is entered (and displayed) in the Test Name field. You can
switch to a different test, test set, or test group through this field. To the right,
the Type field indicates whether it is a Single Test, Test Set, or Test Group. You

007–2581–004 193

Developer MagicTM: Performance Analyzer User’s Guide

can select a test (test set or test group) from the List Tests dialog box under
the Test menu, to appear in the Test Name field in the main window.

9.2.2 Coverage Display Area

Test results display in the coverage display area. You select the results by
choosing an item from the Queries menu. You can select the format of the
data—text, call tree, or bar chart— from the Views menu. (Note that the Text
View format is available for all queries, whereas the other two views are
limited.)

The Query Type displays under the Test Name field, just over the display. It
is followed on the far right of the window by the Query Size (number of
items in the list). Headings above the display are specific to each query.

9.2.3 Search Field

The Search field lets you look for strings in the coverage data. It uses an
incremental search, that is, as you enter characters, the highlight moves to the
first matching target. When you press the Return key, the highlight moves to
the next occurrence.

9.2.4 Control Area Buttons

The Apply button is a general-purpose button for terminating data entry in text
fields; you can use the Return key equivalently. Both start the query.

The Source button lets you bring up the standard Source View window with
Tester annotations. Source View shows the counts for each line and highlights
lines with 0 counts. By default, Source View is shared with other applications.
For example, if cvstatic performs a search for function A, the results of the
query overwrite Tester query results that are in the shared Source View. To stop
sharing Source View with other applications, set the following resource:

cvsourceNoShare: True

The Disassembly button brings up the Disassembly View window, called
Assembly Source Coverage , which operates at the machine level in a
similar fashion to the Source View . This view is not shared with other
applications.

194 007–2581–004

Tester Graphical User Interface Reference [9]

Note: If a test has very large counts, there may not be enough space in the
Source View and Disassembly View windows to display them. To make
more room, increase the canvasWidth resource in the Cvxcov app-defaults
file, Cvxcov*test*testdata*canvasWidth .

The Contribution button brings up the Test Contribution window with
the contributions made by each test so that you can compare the results. It is
available for the queries List Functions , List Arcs , and List Blocks .
When the tests do not fit on one page, multiple pages are used. Use the
Previous Page and Next Page buttons to display all the tests.

The Sort button lets you sort the test results by criteria such as function, count,
file, type, difference, caller, or callee. The criteria available depend on the
current query.

9.2.5 Status Area and Query-Specific Fields

The status area displays status messages that confirm commands, issue
warnings, and indicate error conditions. When you enter a test name in the
Test Name field, the Func Name field appears (along with other items) in the
status area for use with queries. Entering a function in this field displays the
coverage results limited to that function only.

Additional items display in the area below the status area that change when you
select commands from the Queries menu. These items are specific to the query
selected. Some of these items can be used as defaults (see Section 9.5, page 209).

9.2.6 Main Window Menus

The Admin menu lets you perform general housekeeping concerning saving
files, setting defaults, changing directories, launching other WorkShop
applications, and exiting.

The Test menu lets you create, modify, and run tests, test sets, and test groups.

The Views menu lets you choose one of the following modes:

• Text mode, which displays results numerically in columns

• Graphical mode, which displays the following:

– Functions as nodes (rectangles) annotated by results

– Calls as arcs (connecting arrows)

007–2581–004 195

Developer MagicTM: Performance Analyzer User’s Guide

• Bar graph mode, which displays the summary of a test as a bar graph.

The Queries menu lets you analyze the results of tests. The Help menu is
standard in all tools.

9.3 Test Menu Operations

All operations for running tests are accessed from the Test menu in the main
Tester window. Figure 78, page 197, shows the dialog boxes used to perform
test operations.

The Test menu provides the following selections:

Run
Instrumentation

Instruments the target executable.
Instrumentation adds code to the executable to
collect coverage data. For a more detailed
discussion of instrumentation and instrument
files, see Section 5.2.1, page 115.

196 007–2581–004

Tester Graphical User Interface Reference [9]

Figure 78. Test Menu Commands

The Run Instrumentation dialog box (see
Figure 79, page 198) provides these fields:

• Executable lets you enter the name of the
target.

• Instrumentation File is for entering the
instrumentation file, which is an ASCII

007–2581–004 197

Developer MagicTM: Performance Analyzer User’s Guide

description of the instrumentation criteria for
the experiment.

• Instrumentation Dir lets you enter the
directory in which the instrumentation file is
stored (not necessary if you are using the
current working directory).

• Version Number lets you specify the version
number of the instrumentation directory
(ver##<versionnumber>). If this field is left
blank, the version number increments
automatically.

If you are testing multiple executables (that is,
testing coverage of an executable that fork s,
exec s, or sproc s other processes), then you
need to store these in the same
instrumentation directory. You do this by
entering the same number in the Version
Number field.

Figure 79. Run Instrumentation Dialog Box

Run Test Invokes the executable with selected arguments
and collects the coverage data. The Run Test
dialog box (see Figure 80, page 200) provides
these fields and buttons:

• Test Name is for entering the test name.

198 007–2581–004

Tester Graphical User Interface Reference [9]

• Version Number is for entering the version
number of the directory (ver## <number>)
containing the instrumented executable. If you
are using the most current (highest) version
number, then you can leave the field blank;
otherwise, you need to enter the desired
number.

• Force Run is a toggle that when turned on
causes the test to be run even if results
already exist.

• Keep Performance Data is a toggle that
when turned on retains all the performance
data collected in the experiment.

• Accumulate Results is a toggle that when
turned on accumulates (sums over) the
coverage data into the existing experiment
results.

• No Arc Data prevents arc information from
being collected in the experiment. It cannot be
used with List Arcs or a Call Tree
View . List Summary and Compare Test
will have 0% coverage on arc items. Use it to
save space if you do not need arc data.

• Remove Subtest Expt removes results for
individual subtests for test sets or test groups,
letting you see the top level and taking less
space. There will be no data to query if you
are querying a subtest.

007–2581–004 199

Developer MagicTM: Performance Analyzer User’s Guide

Figure 80. Run Test Dialog Box

Make Test Creates a test directory where the coverage data
is to be stored and stores a TDF (test description
file).

The Make Test dialog box (see Figure 81, page
201) provides these fields for tests, test sets, and
test groups:

• Test Name is for entering the test name.

• Test Type is a toggle for indicating the type
of test: single, test set, or test group (for
dynamically shared objects).

• Description lets you enter a description to
document the test.

200 007–2581–004

Tester Graphical User Interface Reference [9]

Figure 81. Make Test Dialog Box

If you select Single Test , the following fields
are provided:

• Command Line lets you enter the target and
any arguments to be used in the test.

• Instrument Dir is the directory in which
the instrumentation file and related data are
stored (not necessary if current working
directory).

• Executable List is used if you are testing
coverage of an executable that fork s, exec s,
or sproc s other processes and want to include
those processes. You must specify these
executables in the Executable List field.

007–2581–004 201

Developer MagicTM: Performance Analyzer User’s Guide

If you select Test Set , the following fields and
buttons are provided:

• Test List contains all the tests in the
working directory.

• Test Include List (to the right) displays
tests included in the test set or test group.

• Add looks at the selected item in the Test
List or Select field and adds it to the
Test Include List .

• Remove looks at the selected item in the Test
Include List and removes it.

• Select displays the currently selected test.

For a test group (see Figure 82, page 203), the
following field is added to the same fields and
buttons used for a test set:

• Targets lets you enter a list of target DSOs
or shared libraries, separated by spaces.

202 007–2581–004

Tester Graphical User Interface Reference [9]

Tests in
directory

Selected toggle

Tests selected for
inclusion in group

Figure 82. Make Test Dialog Box with Test Group Selected

Delete Test Removes the specified test directory and its
contents. The Delete Test dialog box (see
Figure 83, page 204) provides these fields:

• Test Name is for entering the test name.

• Recursive List is a toggle that when
turned on includes all subtests in the removal
of test sets and test groups.

007–2581–004 203

Developer MagicTM: Performance Analyzer User’s Guide

Figure 83. Delete Test Dialog Box

List Tests Shows you the tests in the current working
directory. The List Tests dialog box (see
Figure 84, page 205) provides these fields:

• Working Dir shows the directory containing
the tests.

• A scrollable list field displays the tests present
in the specified directory. The scroll bars let
you navigate through the tests if they do not
fit completely in the field. Clicking an item
places it in the Select field. Double-clicking
on a test selects and loads it.

• Select displays the test name you type in or
that you clicked in the list. Click OKto load
your selection into the Test Name field of the
main Tester window.

• Close lets you exit without loading a
selection.

204 007–2581–004

Tester Graphical User Interface Reference [9]

Figure 84. List Tests Dialog Box

Modify Test Lets you modify a test set or test group. You
enter the test name in the Test Name field and
press the Return key or click the View button to
load it. The View button changes to Apply , the
Test List field displays tests in the current
working directory, and the Test Include List
field displays the contents of the test set or test
group. You can then add or delete tests, test sets,
or test groups in the current test set or test group,
respectively. The Modify Test dialog box (see
Figure 85, page 206) has these fields:

• Test Name is for entering the test name.

• Test List displays the tests in the current
directory.

• Test Include List displays the subtests
for the test specified in the Test Name field.

• Select displays the test currently selected for
adding or removing. You can enter the test
directly in this field instead of selecting it from
the Test List or Test Include List .

• The Add button lets you add the selected test
to the Test Include List .

007–2581–004 205

Developer MagicTM: Performance Analyzer User’s Guide

• The Remove button lets you delete the
selected test from the Test Include List .

• The Apply button applies the changes you
have selected. (The button name is View until
you load something.)

Figure 85. Modify Test Dialog Box after Loading Tests

9.4 Views Menu Operations

The Views menu has three selections that let you view coverage data in
different forms. The selections are:

Text View Displays the coverage data in text form. The
information displayed depends on which query
you have selected. See Figure 86, page 207.

206 007–2581–004

Tester Graphical User Interface Reference [9]

Column headings

Coverage data

Figure 86. List Functions Query in Text View Format

Call Tree View Displays coverage data graphically, with functions
as nodes (rectangles) and calls as arcs (connecting
arrows). This view is only valid for List
Functions , List Blocks , List Branches ,
and List Arcs . See Figure 87, page 208. It is not
available if you run a test with No Arc Data on.

007–2581–004 207

Developer MagicTM: Performance Analyzer User’s Guide

Included node

Arc

Excluded node

Figure 87. List Functions Query in Call Tree View Format

Bar Graph View Displays a bar chart showing the percentage
covered for functions, lines, blocks, branches, and
arcs. See Figure 88, page 209. This view is only
valid for List Summary , which is described in
detail in Section 9.5, page 209.

208 007–2581–004

Tester Graphical User Interface Reference [9]

Coverage bars

Figure 88. List Summary Query in Bar Graph View Format

9.5 Queries Menu Operations

The Queries menu provides different methods for analyzing the results of
coverage tests. Each type of query displays the coverage data in the coverage
display area in the main Tester window and displays items that are specific to
the query in the area below the status area. When you set these items for a
query, the same values are used by default for subsequent queries until you
change them. You can set these defaults before the first query or as part of any
query. For a single test or test set, all queries except Describe Test have the
fields shown in Figure 90, page 210.

007–2581–004 209

Developer MagicTM: Performance Analyzer User’s Guide

Executable

Button for Target List dialog box
Experiment list

Figure 89. Query-Specific Default Fields for a Test or Test Set

The Executable field displays the executable associated with the current
coverage data. You can switch to a different executable by entering it directly in
this field. You can also switch executables by clicking the Executable List
button, selecting from the list in the Target List dialog box and clicking
Apply in the dialog box.

The experiment menu (Expt) lets you see the results for a different experiment
that uses the same test criteria.

Note: When you are performing queries on a test group, the Executable
field changes to Object field and the Executable List button changes to
Object List as shown in Figure 90, page 210. These items act analogously
except that they operate on dynamically shared objects (DSOs). Refer to
Section 6.5, page 142, for more information on test groups.

Object name

Object list
Experiment list

Figure 90. Query-Specific Default Fields for a DSO Test Group

The Queries menu (see Figure 91, page 211) provides these selections:

210 007–2581–004

Tester Graphical User Interface Reference [9]

Figure 91. Queries Menu

List Summary Shows the overall coverage based on the
user-defined weighted average over function,
source line, branch, arc, and block coverage. The
coverage data appears in the coverage display
area. A typical summary appears in Figure 92,
page 212.

007–2581–004 211

Developer MagicTM: Performance Analyzer User’s Guide

Single/test set/test
group indicator

Coverage summary

Coverage weighting
factor fields

Figure 92. List Summary Query

The Coverages column indicates the type of
coverage. The Covered column shows the
number of functions, source lines, branches, arcs,
and blocks that were executed in this test (or test
set or test group). The Total column indicates
the total number of items that could be executed
for each type of coverage. The % Coverage

212 007–2581–004

Tester Graphical User Interface Reference [9]

column is simply the Covered value divided by
the Total value in each category. The Weight
column indicates the weighting assigned to each
type of coverage. It is used to compute the
Weighted Sum , a user-defined factor that can be
used to judge the effectiveness of the test. The
Weighted Sum is obtained by first multiplying
the individual coverage percentages by the
weighting factors and then summing the
products.

The List Summary command causes the
coverage weighting factor fields to display below
the status area. Use these to adjust the factor
values as desired. They should add up to 1.0.

If you select Bar Graph View from the Views
menu, the summary will be shown in bar graph
format as shown in Figure 88, page 209. The
percentage covered is shown along the vertical
axis; the types of coverage are indicated along the
horizontal axis.

List Functions Displays the coverage data for functions in the
specified test. The Functions column heading
identifies the function, Files shows the source
file containing the function, and Counts displays
the number of times the function was executed in
the test.

List Functions enables the sort menu that lets
you determine the order in which the functions
display. Only the sort criteria appropriate for the
current query are enabled, in this case, Sort By
Func , Sort By Count , and Sort By File as
shown in Figure 93, page 215.

The Search field scrolls the list to the string
entered. The string may occur in any of the
columns. This is an incremental search and is
activated as you enter characters, scrolling to the
first matching occurrence.

007–2581–004 213

Developer MagicTM: Performance Analyzer User’s Guide

Entering a function in the Func Name field
displays the coverage results limited to that
function only in the display area.

The Filters button displays the Filters
dialog box, which lets you enter filter criteria to
display a subset of the coverage results. There are
three types of filters: Function Count , Block
Count (%) , and Branch Count (%) . For blocks
or branch coverage, use the toggles described
below. Following each label is an operator menu
to define the relationship to the limit quantity
entered. Each filter type has a text field for
entering the desired limit. The limits for Block
Count and Branch Count are percentages (of
coverage) and can also be entered using sliders.

Two toggles are available for including branch
and block counts. Both appear as actual counts
followed by parentheses containing the ratio of
counts to total possible.

214 007–2581–004

Tester Graphical User Interface Reference [9]

Display
function

Filters dialog
box

Include branches
Include blocks

Sort menu

Figure 93. List Functions Query with Options

If you select Call Tree View from the Views
menu with a List Functions query, a call
graph displays (see Figure 94, page 216). The call
graph displays coverage data graphically, with
functions as nodes (rectangles) and calls as arcs
(connecting arrows). The nodes are color-coded
according to whether the function was included
and covered in the test, included and not covered,

007–2581–004 215

Developer MagicTM: Performance Analyzer User’s Guide

or excluded from the test. Arcs labeled N/A
connect excluded functions and do not have call
counts.

If you hold down the right mouse button over a
node, the node menu displays, including the
function name, coverage statistics, and standard
node manipulation commands. If you have a
particularly large graph, you may find it useful to
zoom to 15% or 40% and look at the coverage
statistics through the node menu.

Included node

Arc

Excluded node

Color key

Node menu

Figure 94. List Functions Example in Call Tree View Format

List Blocks Displays a list of blocks for one or more functions
and the count information associated with each
block (see Figure 95, page 217). The Block s
column displays the line number in which the
block occurs. If there are multiple blocks in a line,
blocks subsequent to the first are shown in order
with an index number in parentheses. The other
three columns show the function and file
containing the block and the count, that is, the
number of times the block was executed in the
test. Uncovered blocks (those containing 0
counts) are highlighted. Block data can be sorted
by function, file, or count.

216 007–2581–004

Tester Graphical User Interface Reference [9]

Be careful before listing all blocks in the program,
since this can produce a lot of data. Entering a
function in the Func Name field displays the
coverage results limited to that function only in
the display area.

Block coverage
data

Multiple block
line

Figure 95. List Blocks Example

List Branches Lists coverage information for branches in the
program. Branch coverage counts assembly
language branch instructions that are taken and
not taken. See Figure 96, page 219.

007–2581–004 217

Developer MagicTM: Performance Analyzer User’s Guide

The first column shows the line number in which
the branch occurs. If there are multiple branches
in a line, they are labeled by order of appearance
within trailing parentheses. The next two
columns indicate the function containing the
branch and the file. A branch is considered
covered if it has been executed under both true
and false conditions. The Taken column
indicates the number of branches that were
executed only under the true condition. The Not
Taken column indicates the number of branches
that were executed only under the false condition.
Branch coverage can be sorted only by function
and file. Entering a function in the Func Name
field displays the coverage results limited to that
function only in the display area.

218 007–2581–004

Tester Graphical User Interface Reference [9]

Block coverage
data

Multiple branch
line

Figure 96. List Branches Example

List Arcs Shows arc coverage, that is, the number of arcs
taken out of the total possible arcs. An arc is a
call from one function (caller) to another (callee).
See Figure 97, page 220. The caller and callee
functions are identified in the first two columns.
The Line column identifies the line in the caller
function where the call occurs. The file and arc
execution count display in the last two columns.

007–2581–004 219

Developer MagicTM: Performance Analyzer User’s Guide

Arc coverage
data

Figure 97. List Arcs Example

Entering a function in the Func Name field
displays the coverage results limited to that
function only.

The Caller and CalleeFunc Name toggles let
you view the arcs for a single function either as a
caller or callee. You do this by entering the
function name in the field and then clicking the
appropriate toggle, or CallerCallee .

220 007–2581–004

Tester Graphical User Interface Reference [9]

List Argument
Traces

Shows argument tracing information (see Figure
98, page 222). Argument tracing is enabled in the
instrumentation file using the TRACE command
with the MAX, MIN, BOUNDS, and RETURN
options. TRACE lets you monitor argument
values in the functions over all experiments. The
syntax in the file is:

TRACE [RETURN] MAX|MIN|BOUNDSfunction(arg)

where:

• MAX monitors the maximum value of an
argument.

• MIN monitors the minimum value of an
argument.

• BOUNDS monitors both the minimum and
maximum values.

• RETURN monitors the function return values.

007–2581–004 221

Developer MagicTM: Performance Analyzer User’s Guide

Figure 98. List Argument Traces Example

The Arguments column shows the calling
function with its argument. Type indicates the
type of the argument. Range shows the
minimum and maximum values if TRACE
bounds was selected; otherwise, it shows the end
of the range selected with a short line (-)
substituted for the opposite end of the range.

Entering a function in the Func Name field
displays the coverage results limited to that
function only in the display area.

222 007–2581–004

Tester Graphical User Interface Reference [9]

List
Instrumentation

Displays the instrumentation information for a
particular test. See Figure 99, page 224.

Function List toggle shows the functions
that are included in the coverage experiment.

Ver allows you to specify the version of the
program that was instrumented. The latest
version is used by default.

Executable displays the executable associated
with the current coverage data. You can switch to
a different executable by entering it directly in
this field. You can also switch executables by
clicking the Executable List button, selecting
from the list in the dialog box, and clicking
Apply in the dialog box.

007–2581–004 223

Developer MagicTM: Performance Analyzer User’s Guide

Test
description

Figure 99. List Instrumentation Example

List Line Coverage Lists the coverage for each function for native
source lines. Entering a function in the Func
Namefield displays the coverage results limited
to that function only in the display area. See
Figure 100.

224 007–2581–004

Tester Graphical User Interface Reference [9]

Line coverage
data

Function input
field

Figure 100. “List Line Coverage” Example

Describe Test Describes the details of the test, test set, or test
group. When working with test sets and test
groups, it is useful to select the Recursive
List toggle, because it describes the details for
all subtests. See Figure 101, page 226.

007–2581–004 225

Developer MagicTM: Performance Analyzer User’s Guide

Test
description

Recursive
list

Figure 101. Describe Test Example

Compare Test Shows the difference in coverage for the same test
applied to different versions of the same
program. To perform a comparison, you need to
select Compare Test from the Queries menu,
enter experiment directories in the experiment
fields, and click Apply or press Return . The
experiments are entered in the form exp##<n> if
in the same test or in the form
test<nnnn>/exp##<n> when comparing the
results of different tests. See Figure 102, page 227.

226 007–2581–004

Tester Graphical User Interface Reference [9]

Coverage comparison
results

Experiment fields

Function toggle

Experiment menu

Figure 102. Compare Test Example — Coverage Differences

The comparison data displays in the coverage
display area. The basic types of coverage display
in the Coverages column. Result 1 and
Result 2 display the results of the experiments
specified in the Expt1 and Expt2 fields,
respectively. Results are shown as the counts
followed by the coverage percentage in
parentheses. The values in the Result 2 column
are subtracted from those in Result 1 and the
differences are shown in the Differences
column. If you want to view the available
experiments, click the Expt: menu .

007–2581–004 227

Developer MagicTM: Performance Analyzer User’s Guide

You can also compare the differences in function
coverage by clicking the Diff Functions toggle.
Figure 103, page 228, shows a typical function
difference example.

Differences
column

Function
toggle

Figure 103. Compare Test Example — Function Differences

9.6 Admin Menu Operations

The Admin menu is shown in Figure 104, page 229.

228 007–2581–004

Tester Graphical User Interface Reference [9]

Figure 104. Admin Menu

The Admin menu provides these selections:

Save Results Brings up the standard File Browser dialog
box so that you can specify a file in which to save
the results.

Clone Execution
View

Displays an Execution View window. Use this
if you have closed the initial Execution View
window and need a new one. (You need this
window to see the results of Run Test .)

Set Defaults Allows you to change the working directory for
work on tests in other directories. Also, you can
select whether or not to show function
arguments. This is useful when distinguishing
functions that have the same name but different
arguments (for example, C++ constructors and
overloaded functions). See Figure 105, page 229.

Figure 105. “Set Defaults” Dialog Box

007–2581–004 229

Developer MagicTM: Performance Analyzer User’s Guide

“Launch Tool” The Launch Tool submenu contains commands
for launching other WorkShop applications (see
Figure 106, page 230).

Figure 106. Launch Tool Submenu

If any of these tools are not installed on your
system, the corresponding menu item will be
grayed out.

Exit closes all Tester windows.

230 007–2581–004

Glossary [10]

basic block A set of instructions with a single entry point, a
single exit point, and no branches into or out of
the set.

bead A record in an experiment.

blocking Waiting in the kernel for a resource to become
available.

caliper points Markers in the time domain that can be used to
delimit a performance analysis. For instance, you
may want to analyze only the CPU-bound part of
your code.

call stack A software stack of functions and routines used
by the running program. The functions and
routines are listed in the reverse order, from top
to bottom, in which they were called. If function
a is immediately below function b in the stack,
then a was called by b. The function at the
bottom of the stack is the one currently executing.

context switch When system scheduler stops a job from
executing and replaces it with another job.

cord mapping file A file containing a list of functions, their sizes,
and their addresses.

CPU time Process virtual time (see the glossary entry) plus
time spent when the system is running on behalf
of the process, performing such tasks as executing
a system call. This is the time returned in
pcsamp and usertime experiments.

disassembly Assembly language version of the program.

exclusive time The time spent only in the function itself, not
including any functions it might call.

heart beat resource
data

Resource usage data (such as CPU time, wait
time, I/O transfers, and so on) recorded at regular
intervals (one second, by default). The cvperf
usage view graphs are drawn using this data.

007–2581–004 231

Developer MagicTM: Performance Analyzer User’s Guide

inclusive time The total time spent in a function and all the
functions it calls.

instrumenting A method of collecting data by inserting code
into the executable program to count events, such
as the number of times a section of the program
executes.

interlock A feature of the CPU that causes a stall when
resources are not available.

memory leak Making malloc calls without the corresponding
calls to free . The result is, the amount of heap
memory used continues to increase as the process
runs.

memory page The smallest unit of memory handled by the
operating system. It is usually either 4K or 16K
bytes.

page fault A problem resulting in the possible loss of data.
A high page fault rate is an indication of a
memory-bound situation.

PC Program counter. A register that contains the
address of the instruction that is currently
executing.

phase A part of a program that concentrates on a single
activity. Examples are the input phase, the
computation phase, and the output phase.

pollpoint A regular time interval at which performance
data is captured.

process virtual time Time spent when a program is actually running.
This does not include either 1) the time spent
when the program is swapped out and waiting
for a CPU or 2) the time when the operating
system is in control, such as executing a system
call for the program.

profiling A method of collecting data by periodically
examining and recording the program’s program
counter (PC), call stack, and hardware counters
that measure resource consumption.

profiling time This is the same as CPU time.

232 007–2581–004

Glossary [10]

real time The same as wall–clock time.

sample event A point in the program at which the PC or some
resource is sampled.

system time The time during a program’s execution during
which the system has control. It could be
performing I/O or executing a system call.

thrashing Accessing data from different parts of memory,
causing frequent loads of pages of memory into
cache. Using random access on an array might be
an example.

threshold An upper limit. For example, in the Source View,
any line of code that exceeds a threshold of
resource usage is flagged in the display.

total time The same as wall-clock time.

user time The same as CPU time.

virtual address A location in memory as it appears in a program.
For example, a[10] is the virtual address of
element 10 of the array a. Internally, the virtual
address is translated into the computer’s physical
address.

virtual time The same as process virtual time.

wall-clock time The total time a program takes to execute,
including the time it takes waiting for a CPU.
This is real time, not computer time.

working set Executable pages, functions, and instructions that
are actually brought into memory during a phase
or operation of the executable.

007–2581–004 233

Index

A

Accumulate results button, 172
Add button, 202
addtest, 162
Admin menu, 228
app-defaults file, cvxcov resource, 195
Apply button, 194
-arg, 148
automated testing , 122

B

bad frees, 17
bar graph example, 213
Bar graph view, 208
batch testing, 122
Blocks button, 215
BOUNDS, 117

example, 128, 168, 170
Branches button, 215
butterfly, 80
Butterfly button, 80

C

calipers, 56
call graph, 83
call graph controls, 184
call stack data collection, 46
Call stack window, 97
Call tree view, 207
callees, 187

cvcov, 148
List arcs and, 220

callers, 187
cvcov, 148

callers List arcs and, 220
canvasWidth resource, 195
cattest, 150

example, , 129, 151, 153
Chain operation, 80
chain operation, 80
Charts menu, 72
Clone execution view, 229
Command line field, 172

Make test and, 201
command line tutorial, 127
Compare test, 226
compiling, effect on coverage, 112
CONSTRAIN, 116

example, 128, 168, 170
Context switch stripchart, 70
-contrib, 147
Contribution button, 167, 195
control area buttons, 194
Cord analyzer, 21, 105
COUNTS, 116

example, 128, 168, 170
coverage

defined, 111
display area, 194
kinds of, 112

coverage analysis, 120
procedure, 115

coverage display area, 166
coverage testing hierarchy, 125
coverage weighting factor fields, 213
cp, not using with cvcov, 162, 163
CPU time, 36
Custom task, 41
cvcov

addtest, 162
cattest, 150
deltest, 162

007–2581–004 235

Developer MagicTM: Performance Analyzer User’s Guide

diff, 161
help, 127, 149
lsarc, 157
lsblock, 156
lsbranch, 157
lscall, 158
lsfun, 155
lsinstr, 152
lsline, 159
lssource, 159
lssum, 155
lstest, 153
lstrace, 160
mktest, 153
mktgroup, 163
mktset, 162
rmtest, 153
runinstr, 154
runtest, 154

cvsourceNoShare, 194
cvxcov, 166

command-line arguments, 112

D

default instrumentation file, 117
default_instr_file, 117
Delete test dialog box, 203
deltest, 162
Describe test, 225
Description field, 172
diff, 161

example, , 161
Diff functions button, 228
directory

instrumentation, 114
Disassembled source button, 55
Disassembly button, 166, 176
Disassembly view, 166

example, 176
width, 195

DSO, 111, 113, 124

making a test group, 203
test group commands, 163

dynamically shared object See DSO, 111

E

EXCLUDE, 116
-exe, 147
Executable field, 210
Executable list button, 210
Execution View, 173
Execution view, 191, 229
exp##0, 120
experiment results, 113, 114, 120
experiments

Performance analyzer, 33
Expt menu, 210
Expt1 and expt2 fields, 227

F

Filters dialog box, 214
floating point exception trace, 38
Force run button, 172
Func name field, 195
function list, 54, 85
-functions, 149

G

Graph call tree
example, 182

graphical user interface, , 166, 168
reference, 191
tutorial, 165

236 007–2581–004

Index

H

Heap view, 91
Heap view tutorial, 95
help, 127, 149
Hide 0 functions toggle, 55

I

I/O trace, 39
ideal time task, 37
INCLUDE, 116
-instr_dir, 148
-instr_file, 148
Instrument file field, 170
instrumentation, 114

directory, 114
lsinstr, 152
process, 119
tutorial, 128, 168

instrumentation file, 116, 170
BOUNDS, 117
CONSTRAIN, 116
COUNTS, 116
default, 117
EXCLUDE, 116
INCLUDE, 116
List argument traces and, 221
MAX, 117
MIN, 117
RETURN, 117
TRACE, 117

K

Keep performance data button, 172

L

Launch tool submenu, 230

leak experiments, 86
List arcs, 219

column headings, 187
example, 185

List argument traces, 221
List blocks, 216

example, 188
List branches, 217

column headings, 190
example, 189

List Functions
column headings, 175
example, 175

List functions, 213
List instrumentation, 223
List line coverage, 224
List Summary

example, 173
List summary, 211
List tests dialog box, 204
-list, 148
lsarc, 121, 157

example, 158
lsblock, 121, 156

example, , 156
lsbranch, 121, 157

example, 157
lscall, 121, 158

example, 158
lsfun, 121, 155

example, , 130, 155
lsinstr, 152

example, , 152
lsline, 159

example, 159
lssource, 121, 159

example, 130, 159
lssum, 121, 155

example, , 130, 155, 173
lstest, 153
lstrace, 121, 160

example, 160

007–2581–004 237

Developer MagicTM: Performance Analyzer User’s Guide

M

main tester window, , 166, 168
graphical overview, 192
menus, 195

Make source, 80
Make target, 80
Make test, 119

dialog box, 200
example, 170

malloc/free tracing, 48
MAX, 117

example, 128, 169, 170
memory leak experiments, 86
memory leakage, 17
memory leaks, 39
memory problems, 16
MIN, 117
mktest, 119, 153

example, , 129, 153, 170
mktgroup, 163
mktset, 162
Modify test dialog box, 205
Multiple arcs

example, 186
icon, 184

multiple tests, 113, 124
mv, not using with cvcov, 162, 163

N

Next page button, 195
No arc data, 172
Not taken column, 218

O

Object field, test group and, 210
Object list button, test group and, 210
Overview button, 84, 184

P

Page faults stripchart, 70
-pat, 149
PC Sampling, 36
performance analysis theory, , 4
Performance analyzer

experiments, 33
Performance analyzer tasks, 36
Performance analyzer tutorial, 23
Performance panel, 34
Poll and i/O calls stripchart, 71
poll system calls, 71
pollpoint sampling, 49
-pretty, 148
Previous page button, 195
Process Meter, 72
Process size stripchart, 71

Q

Queries menu, 209, 211
introduction, 121

Query size, 194
Query type, 194
query-specific fields, 209

R

-r, 148
Read/write

data size stripchart, 70
Read/Write system calls stripchart, 71
Realign button, 84
realign button, 185
Recursive list button

Delete test and, 204
Describe test and, 225

Remove button, 202
Remove subtest expt, 172

238 007–2581–004

Index

resource usage data, 7
resource, cvsourceNoShare, 194
results directory, 120
RETURN, 117
rmtest, 153
Rotate button, 84
rotate button, 185
Run Instrumentation

example, 169
Run instrumentation

dialog box, 197
Run Test

example, 172
Run test, 120

dialog box, 198
“Run instrumentation”, 119
runinstr, 119, 154

example, 128
runtest, 120, 154

example, 129, 172

S

sample traps, 35
Save results, 229
Scale menu, 72
Search field, 55, 194

List functions and, 213
Select, 202
select system calls, 71
Set defaults, 229
setting up the tutorial, 127, 165
sharing source view with applications, 194
Show function arguments button, 229
Show node button, 55
sort menu, 167, 195

List functions and, 213
-sort, 148
Source button, 55, 166
Source view, 166

width, 195
Source view with leak annotations, , 91

starting tester main window, 166
status area, 167, 195

T

Taken column, 218
target directory, 51
Target list dialog box, 210
Targets, 203
TDF, 119

example, 129
test components, 114
test description file, 119

example, 129
test directory, 119
test group

commands, 163
Test include list, 202
Test list, 202
Test menu, 196
Test name field, 166, 193
test set, 113, 124, 161, 178

making, 202
test0000, 119
testing procedure, 115
tests, contribution button and, 167
Text call tree example, 187
Text view, 206
TRACE, 117

example, 128, 168, 170
List argument traces and, 221

Trace I/O, 39
tracing data, 48
tutorial

command line interface, 127
graphical user interface, 165
set up, 127, 165

Type field, 194

007–2581–004 239

Developer MagicTM: Performance Analyzer User’s Guide

U

unmatched frees, 17
usage model, 115
User vs system time stripchart, 69

V

-v, 147
ver##0, 119

example, 129
-ver, 147
Version number field

Run instrumentation and, 198
Run Test and, 172
”Run executable” and, 170

Views menu, 206

W

working set analysis, 98
Working Set View, 20
Working set view, 101
WorkShop, 230

Z

Zoom in, 84, 184
Zoom menu, 84, 184
Zoom out, 84, 184

240 007–2581–004

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2581-004.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

