
ProDevTM WorkShop: Performance
Analyzer User’s Guide

007–2581–007

COPYRIGHT
© 1996, 1999–2001 SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner,
in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
IRIX and Silicon Graphics are registered trademarks and Developer Magic, ProDev, and the Silicon Graphics logo are trademarks of SGI.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.
Vampir is a trademark of Pallas, Inc. X/Open is a trademark of X/Open Company Ltd. The X device is a trademark of the Open
Group. OpenMP is a trademark of the OpenMP Architecture Review Board. PostScript is a trademark of Adobe Systems, Inc.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

Record of Revision

Version Description

001 June 1995
Original Printing.

004 June 1998
Revised to relect changes for the ProDev WorkShop 2.7 release,
including the ability to present SpeedShop data within WorkShop.

005 April 1999
Supports the ProDev WorkShop 2.8 release.

006 June 2001
Supports the ProDev WorkShop 2.9 release.

007 November 2001
Supports the ProDev WorkShop 2.9.1 release.

007–2581–007 iii

Contents

About This Guide . xvii

Related Publications . xvii

Obtaining Publications . xviii

Conventions . xviii

Reader Comments . xix

1. Introduction to the Performance Analyzer 1

Performance Analysis Overview 1

Sources of Performance Problems 2

2. Features in the Performance Analyzer 5

The Time Line Display . 7

Resource Usage Graphs . 8

Usage View (Numerical) . 11

I/O View . 12

MPI Stats View (Graphs) . 13

MPI Stats View (Numerical) 15

The Parallel Overhead View . 17

The Function List Area . 17

Call Graph View . 18

Butterfly View . 19

Viewing Source Code with Performance Annotations 21

Viewing Metrics by Machine Instruction 22

Leak View, Malloc View, Malloc Error View, and Heap View 23

007–2581–007 v

Contents

Memory Leakage . 24

Bad Frees . 24

Call Stack View . 26

Working Set View . 26

Cord Analyzer . 27

3. Performance Analyzer Tutorial 29

Tutorial Setup . 30

Changing Window Font Size 31

Analyzing the Performance Data 31

Analyzing Memory Experiments 40

Finding Memory Leaks . 40

Memory Use . 42

4. Setting Up Performance Analysis Experiments 45

Experiment Setup . 45

Selecting a Performance Task . 47

Understanding Predefined Tasks 47

Profiling/PC Sampling . 48

User Time/Callstack Sampling 48

Ideal Time/Pixie . 49

Floating-Point Exception Trace 51

I/O Trace . 51

Memory Leak Trace . 52

R10000 and R12000 Hardware Counters 52

Custom . 53

Setting Sample Traps . 54

Displaying Data from the Parallel Analyzer 55

vi 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

5. Performance Analyzer Reference 57

Selecting Performance Tasks . 57

Specifying a Custom Task . 59

Specifying Data to be Collected 60

Call Stack Profiling . 60

Basic Block Count Sampling 61

PC Profile Counts . 61

Specifying Tracing Data . 62

malloc and free Heap Analysis 63

I/O Operations . 63

Floating-Point Exceptions 63

MPI Stats Trace . 63

Specifying Polling Data . 64

Pollpoint Sampling . 65

Call Stack Profiling . 65

Configuring the Experiment . 66

Specifying the Experiment Directory 67

Other Options . 67

The Performance Analyzer Main Window 68

Task Field . 69

Function List Display and Controls 69

Usage Chart Area . 71

Time Line Area and Controls 72

The Time Line Calipers . 72

Current Event Selection . 72

Time Line Scale Menu . 73

Admin Menu . 73

007–2581–007 vii

Contents

Config Menu . 74

Views Menu . 80

Executable Menu . 82

Thread Menu . 82

Usage View (Graphs) . 83

Charts in the Usage View (Graphs) Window 85

Getting Event Information from the Usage View (Graphs) Window 86

The Process Meter Window . 87

Usage View (Numerical) Window 89

The I/O View Window . 91

The MPI Stats View (Graphs) Window 92

The MPI Stats View (Numerical) Window 94

The Parallel Overhead View Window 94

The Call Graph View Window 95

Special Node Icons . 96

Annotating Nodes and Arcs 97

Filtering Nodes and Arcs . 97

Filtering Nodes through the Display Controls 99

Other Manipulation of the Call Graph 102

Geometric Manipulation through the Control Panel 102

Using the Mouse in the Call Graph View 103

Selecting Nodes from the Function List 103

Butterfly View . 103

Analyzing Memory Problems . 104

Using Malloc Error View, Leak View, and Malloc View 104

Analyzing the Memory Map with Heap View 107

Heap View Window . 108

viii 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Source View malloc Annotations 109

Saving Heap View Data as Text 110

The Call Stack Window . 111

Analyzing Working Sets . 112

Working Set Analysis Overview 112

Working Set View . 114

DSO List Area . 115

DSO Identification Area . 116

Page Display Area . 116

Admin Menu . 117

Cord Analyzer . 117

Working Set Display Area 118

Working Set Identification Area 118

Page Display Area . 119

Function List . 119

Admin Menu . 120

File Menu . 120

Glossary . 123

Index . 129

007–2581–007 ix

Figures

Figure 2-1 Performance Analyzer Main Window 7

Figure 2-2 Typical Performance Analyzer Time Line 8

Figure 2-3 Typical Resource Usage Graphs 10

Figure 2-4 Typical Textual Usage View 12

Figure 2-5 I/O View . 13

Figure 2-6 MPI Statistical Graphs 14

Figure 2-7 MPI Statistical Text 16

Figure 2-8 An Overhead View for an OpenMP Program 17

Figure 2-9 Typical Performance Analyzer Function List Area 18

Figure 2-10 Typical Performance Analyzer Call Graph 19

Figure 2-11 Butterfly View 20

Figure 2-12 Detailed Performance Metrics by Source Line 22

Figure 2-13 Disassembled Code with Stalled Clock Annotations 23

Figure 2-14 Typical Heap View Display Area 25

Figure 2-15 Typical Call Stack 26

Figure 2-16 Working Set View 27

Figure 2-17 Cord Analyzer . 28

Figure 3-1 Performance Analyzer Main Window—arraysum Experiment 33

Figure 3-2 Usage View (Graphs)—arraysum Experiment 34

Figure 3-3 Significant Call Stacks in the arraysum Experiment 35

Figure 3-4 Function List Portion of Performance Analyzer Window 36

Figure 3-5 Butterfly Version of the Call Graph View 37

Figure 3-6 Viewing a Program in the Usage View (Numerical) Window 38

007–2581–007 xi

Contents

Figure 3-7 Source View with Performance Metrics 39

Figure 3-8 Performance Analyzer Window Displaying Results of a Memory Experiment . 41

Figure 4-1 Select Task Submenu 47

Figure 5-1 Runtime Configuration Dialog Box 66

Figure 5-2 Typical Function List Area 70

Figure 5-3 Performance Analyzer Admin Menu 73

Figure 5-4 Experiment Window 74

Figure 5-5 Performance Analyzer Data Display Options 76

Figure 5-6 Performance Analyzer Sort Options 77

Figure 5-7 Performance Analyzer Views Menu 82

Figure 5-8 Usage View (Graphs) Window 84

Figure 5-9 The Process Meter Window with Major Menus Displayed 88

Figure 5-10 The Usage View (Numerical) Window 90

Figure 5-11 The I/O View Window 91

Figure 5-12 Overhead View 94

Figure 5-13 Call Graph View with Display Controls 96

Figure 5-14 Node Menus . 98

Figure 5-15 Chain Dialog Box 99

Figure 5-16 Prune Chains Dialog Box 100

Figure 5-17 Show Important Children Dialog Box 101

Figure 5-18 Show Important Parents Dialog Box 101

Figure 5-19 Call Graph View Controls for Geometric Manipulation 102

Figure 5-20 Malloc Error View Window with an Admin Menu 105

Figure 5-21 Leak View Window with an Admin Menu 106

Figure 5-22 Malloc View Window with Admin Menu 106

Figure 5-23 Source View Window with Memory Analysis Annotations 107

Figure 5-24 Heap View Window 108

xii 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Figure 5-25 Heap View Save Text Dialog Boxes 110

Figure 5-26 Performance Analyzer Call Stack Window 111

Figure 5-27 Working Set Analysis Process 113

Figure 5-28 Working Set View 115

Figure 5-29 The Cord Analyzer Window 119

007–2581–007 xiii

Tables

Table 5-1 Summary of Performance Analyzer Tasks 58

Table 5-2 Basic Block Counts and PC Profile Counts Compared 62

Table 5-3 Call Stack Profiling and PC Profiling Compared 66

Table 5-4 Task Display in Usage Chart Area 71

007–2581–007 xv

About This Guide

This publication documents the ProDev WorkShop Performance Analyzer which runs
on IRIX systems. The Performance Analyzer helps you check your program for
performance and identify areas where performance can be improved. The
Performance Analyzer is part of the WorkShop suite of tools that help you improve
compiler and program performance.

This books contains the following chapters:

• Chapter 1, "Introduction to the Performance Analyzer", page 1, introduces the
Performance Analyzer and describes the types of performance problems you can
encounter.

• Chapter 2, "Features in the Performance Analyzer", page 5, describes the
Performance Analyzer and its various features.

• Chapter 3, "Performance Analyzer Tutorial", page 29, provides a tutorial on how to
use the Performance Analyzer.

• Chapter 4, "Setting Up Performance Analysis Experiments", page 45, describes how
to set up performance analysis experiments and how to set performance tasks.

• Chapter 5, "Performance Analyzer Reference", page 57, is a reference guide to the
Performance Analyzer, with detailed descriptions of the views and windows.

This release of the Performance Analyzer requires the following software levels:

• IRIX 6.2 or higher

• MIPSpro compilers version 7.2.1 or higher

• SpeedShop 1.4

Related Publications
The following documents contain additional information that may be helpful:

• SpeedShop User’s Guide

• C Language Reference Manual

007–2581–007 xvii

About This Guide

• C++ Programmer’s Guide

• MIPSpro Fortran 90 Commands and Directives Reference Manual

• MIPSpro Fortran Language Reference Manual, Volume 1

• MIPSpro Fortran Language Reference Manual, Volume 2

• MIPSpro Fortran Language Reference Manual, Volume 3

• MIPSpro Fortran 77 Language Reference Manual

• MIPSpro Fortran 77 Programmer’s Guide

• ProDev WorkShop: ProMP User’s Guide

• ProDev Workshop: Debugger User’s Guide

• ProDev Workshop: Static Analyzer User’s Guide

• ProDev WorkShop: Overview

Obtaining Publications
SGI maintains publications information at the following World Wide Web site:

http://techpubs.sgi.com/library

The preceding website contains information that allows you to browse documents
online, order documents, and send feedback to SGI.

To order a printed SGI document, call 1–800–627–9307.

Customers outside of the United States and Canada should contact their local service
organization for ordering and documentation information.

Conventions
The following conventions are used throughout this document:

xviii 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that a PV be filed.

• Call our Software Publications Group in Eagan, Minnesota, through the Customer
Service Call Center, using either of the following numbers:

1–800–950–2729 (toll free from the United States and Canada)
+1–651–683–5600

• Send a facsimile of your comments to the attention of Software Publications Group
in Eagan, Minnesota, at fax number +1–651–683–5599.

We value your comments and will respond to them promptly.

007–2581–007 xix

Chapter 1

Introduction to the Performance Analyzer

You can use the Performance Analyzer to check your program for performance
problems. If there are areas in which performance can be improved, it helps you find
those areas and helps you to make the changes.

This chapter provides a brief introduction to the Performance Analyzer tools and
describes how to use them to solve performance problems; it includes the following
sections:

• "Performance Analysis Overview", page 1, provides an overview of the tool and
describes techniques for collecting data.

• "Sources of Performance Problems", page 2, describes some of the common causes
of performance problems.

Chapter 2, "Features in the Performance Analyzer", page 5, describes the features of
the Performance Analyzer in more detail.

Performance Analysis Overview
To conduct performance analysis, you first run an experiment to collect performance
data. Specify the objective of your experiment through a task menu or with the
SpeedShop command ssrun(1). The Performance Analyzer reads the required data
and provides charts, tables, and annotated code to help you analyze the results.

There are three general techniques for collecting performance data:

• Counting. This involves counting the exact number of times each function or basic
block has been executed. This requires instrumenting the program; that is, inserting
code into the executable to collect counts.

• Profiling. The program’s program counter (PC), call stack, and/or resource
consumption are periodically examined and recorded. For a list of resources, see
"Resource Usage Graphs", page 8.

• Tracing. Events that impact performance, such as reads and writes, system calls,
floating-point exceptions, and memory allocations, reallocations, and frees, can be
traced.

007–2581–007 1

1: Introduction to the Performance Analyzer

Sources of Performance Problems
To tune a program’s performance, you must first determine where machine resources
are being used. At any point in a process, there is one limiting resource controlling
the speed of execution. Processes can be slowed down by:

• CPU speed and availability: a CPU-bound process spends its time executing in the
CPU and is limited by CPU speed and availability. To improve the performance of
CPU-bound processes, you may need to streamline your code. This can entail
modifying algorithms, reordering code to avoid interlocks, removing nonessential
steps, blocking to keep data in cache and registers, or using alternative algorithms.

• I/O processing: an I/O-bound process has to wait for input/output (I/O) to
complete. I/O may be limited by disk access speeds or memory caching. To
improve the performance of I/O-bound processes, you can try one of the
following techniques:

– Improve overlap of I/O with computation

– Optimize data usage to minimize disk access

– Use data compression

• Memory size and availability: a program that continuously needs to swap out
pages of memory is called memory-bound. Page thrashing is often due to accessing
virtual memory on a haphazard rather than strategic basis; cache misses result.
Insufficient memory bandwidth could also be the problem.

To fix a memory-bound process, you can try to improve the memory reference
patterns or, if possible, decrease the memory used by the program.

• Bugs: you may find that a bug is causing the performance problem. For example,
you may find that you are reading in the same file twice in different parts of the
program, that floating-point exceptions are slowing down your program, that old
code has not been completely removed, or that you are leaking memory (making
malloc calls without the corresponding calls to free).

• Performance phases: because programs exhibit different behavior during different
phases of operation, you need to identify the limiting resource during each phase.
A program can be I/O-bound while it reads in data, CPU-bound while it performs
computation, and I/O-bound again in its final stage while it writes out data. Once
you’ve identified the limiting resource in a phase, you can perform an in-depth
analysis to find the problem. And after you have solved that problem, you can

2 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

check for other problems within the phase. Performance analysis is an iterative
process.

007–2581–007 3

Chapter 2

Features in the Performance Analyzer

This chapter describes the major windows in the Performance Analyzer toolset. The
main window (see Figure 2-1, page 7) contains the following major areas:

• The function list area, which shows functions with their performance metrics.

• The system resource usage chart, which shows the mode of the program at any
time.

• The time line, which shows when sample events occur in the experiment and
controls the scope of analysis for the Performance Analyzer views.

Supplemental views bring up their own windows. For more information, see the
following subsections:

• The time line display shows the experiment as a set of events over time and
provides caliper markers to let you specify an interval of interest. See "The Time
Line Display", page 7, for more information.

• The Usage View (Graphs) displays process resource usage data, such as what the
program is doing at any time, the amount of data read and written, the memory
size of the program, and so on. The data is presented in the form of graphs. See
"Resource Usage Graphs", page 8.

• The Usage View (Numerical) presents a textual display of the process and
system-wide resource usage data. See "Usage View (Numerical)", page 11.

• The I/O View displays a chart of the number of bytes for each I/O transfer. See
"I/O View", page 12.

• The MPI Stats View (Graphs) displays data in a graphical format for
multiprocessor programs using the Message Passing Interface (MPI). See "MPI
Stats View (Graphs)", page 13.

• The MPI Stats View (Numerical) displays MPI data in text format. See "MPI Stats
View (Numerical)", page 15.

• The Parallel Overhead View displays the unproductive time spent in an MPI,
OpenMP, or pthreads parallel program. See "The Parallel Overhead View", page 17.

• The function list area displays the program’s functions with associated
performance metrics. See "The Function List Area", page 17.

007–2581–007 5

2: Features in the Performance Analyzer

• The Call Graph View presents the target program as nodes and arcs, along with
associated metrics. See "Call Graph View", page 18.

• The Butterfly View presents a selected function along with the functions that
called it and the functions that it called. See "Butterfly View", page 19.

• Source View with performance annotations, see "Viewing Source Code with
Performance Annotations", page 21.

• Disassembled Source with performance annotations, see "Viewing Metrics by
Machine Instruction", page 22.

• Malloc Error View, Leak View, Malloc View, and Heap View, see "Leak View,
Malloc View, Malloc Error View, and Heap View", page 23.

• The Call Stack View shows the path through functions that led to an event. See
"Call Stack View", page 26.

• The Working Set View displays a list of the DSOs in the program, with
information on the efficiency of use of the text (instruction) pages. See "Working
Set View", page 26.

• The cord analyzer lets you explore the working set behavior of an executable or
DOS. See "Cord Analyzer", page 27.

6 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Current performance
task

Function list area

Scrollable legend
for usage chart

Usage chart

Time line area

Figure 2-1 Performance Analyzer Main Window

The Time Line Display
The Performance Analyzer time line can act like a stopwatch to time your program.
The time line shows where each sample event in the experiment occurred. By setting
sample traps at phase boundaries, you can analyze metrics on a phase-by-phase basis.
The simplest metric, time, is easily recognized as the space between events. The

007–2581–007 7

2: Features in the Performance Analyzer

triangular icons are calipers; they let you set the scope of analysis to the interval
between the selected events.

Figure 2-2 shows the time line portion of the Performance Analyzer window with
typical results. Event number 4 is selected; it is labeled according to the caliper
number, third. You can see from the graph that the phase between the selected
event and event number 5 is taking more of the program’s time than any of the other
phases.

Left caliper

Current event marker

Left caliper controls

Right caliper controls

Selected event controls

Time line scale menu

Figure 2-2 Typical Performance Analyzer Time Line

Resource Usage Graphs
The Performance Analyzer lets you look at how different resources are consumed
over time. It produces a number of resource usage graphs that are tied to the time
line (see Figure 2-3, page 10, which shows five of the graphs available). These
resource usage graphs indicate trends and let you pinpoint problems within phases.

Resource usage data refers to items that consume system resources. They include:

• The state of the program at any given time. The states include running in user
mode, running in system mode, waiting in the CPU queue, and so on.

• Page faults.

• Context switches, or when one job is replaced in the CPU by another job.

• The size of reads and writes.

8 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

• Read and write counts.

• Poll and I/O calls. (See the poll(2), ioctl(2), and streamio(7) man pages for
more information on what this chart measures.)

• Total system calls.

• Process signals received.

• Process size in memory.

Resource usage data is recorded periodically: by default, every second. If you
discover inconsistent behavior within a phase, you can change the interval and break
the phase down into smaller phases.

You can analyze resource usage trends in the charts in Usage View (Graphs) and can
view the numerical values in the Usage View (Numerical) window.

007–2581–007 9

2: Features in the Performance Analyzer

System usage

Page faults

Context switches

Reads/writes:
data size

Reads/writes:
number calls

Figure 2-3 Typical Resource Usage Graphs

10 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Usage View (Numerical)

The usage graphs show the patterns; the textual usage views let you view the
aggregate values for the interval specified by the time line calipers. Figure 2-4, page
12, shows a typical Usage View (Numerical) window.

007–2581–007 11

2: Features in the Performance Analyzer

Analysis interval

Process metrics

System-wide
metrics

Figure 2-4 Typical Textual Usage View

I/O View

I/O View helps you determine the problems in an I/O-bound process. It produces a
graph of all I/O system calls and identifies up to 10 files involved in I/O. By

12 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

selecting an event with the left mouse button, you can display the call stack
corresponding to the event in the Call Stack View. See Figure 2-5.

Event identification field

File field

I/O system call chart

Figure 2-5 I/O View

MPI Stats View (Graphs)

If you are running a multiprocessor program that uses the Message Passing Interface
(MPI), the MPI Stats View (Graphs) view can help you tune your program. The
graphs display data from the complete program.

Both the graphs view and the numerical view (see the following section) use data
collected by the MPI library and recorded by SpeedShop. Versions of the MPI library
older than MPT 1.3 do not provide the data needed by these views. The MPI
statistical data is recorded as part of the resource usage data, so the interval between
resource usage samples is also the interval between MPI statistical samples.

The following figure shows the graphs from a large MPI program.

007–2581–007 13

2: Features in the Performance Analyzer

Figure 2-6 MPI Statistical Graphs

14 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

MPI Stats View (Numerical)

The MPI Stats View (Numerical) display gives you MPI data in text format, rather
than graph format. It is a more precise measurement than the MPI Stats View
(Graphs) display. The following figure shows the numeric version of the MPI
statistics.

007–2581–007 15

2: Features in the Performance Analyzer

Figure 2-7 MPI Statistical Text

16 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

The Parallel Overhead View
The Parallel Overhead View displays the overhead (or, unproductive time) spent in
an MPI, OpenMP, or pthreads program. Figure 2-8, page 17 shows the overhead for
an 8–processor OpenMP program. The information is drawn from all eight processors.

Figure 2-8 An Overhead View for an OpenMP Program

The Function List Area
The function list area displays all functions in the source code, annotated by
performance metrics and ranked by the criterion of your choice, such as counts or one
of the time metrics. Figure 2-9 shows an example of the function list, ranked by
inclusive CPU time.

007–2581–007 17

2: Features in the Performance Analyzer

Function name

Performance metrics

Figure 2-9 Typical Performance Analyzer Function List Area

You can configure how functions appear in the function list area by selecting
Preferences... in the Config menu. It lets you select which performance metrics
display, whether they display as percentages or absolute values, and the style of the
function name. The Sort... selection in the Config menu lets you order the functions
in the list by the selected metric. Both selections disable those metric selections that
were not collected in the current experiment.

Call Graph View

In contrast to the function list, which provides the performance metrics for functions,
the call graph puts this information into context by showing you the relationship
between functions. The call graph displays functions as nodes and calls as arcs
(displayed as lines between the nodes). The nodes are annotated with the performance
metrics; the arcs come with counts by default and can include other metrics as well.

In Figure 2-10, for example, the inclusive time spent by the function main is 8.107
seconds. Its exclusive time was 0 seconds, meaning that the time was actually spent
in called functions. The main function can potentially call three functions. The Call
Graph View indicates that in the experiment, main called three functions: getArray,
which consumed 1.972 seconds; sum1, which consumed 3.287 seconds; and sum2,
which consumed 2.848 seconds.

18 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Inclusive time
in getArray

Inclusive time
in main

Inclusive time
in sum2

Figure 2-10 Typical Performance Analyzer Call Graph

Butterfly View

The Butterfly View shows a selected routine in the context of functions that called it
and functions it called. For an illustration, see Figure 2-11.

007–2581–007 19

2: Features in the Performance Analyzer

Figure 2-11 Butterfly View

Select a function to be analyzed by clicking on it in the function list area of the main
Performance Analyzer window. The Butterfly View window displays the function
you click on as the selected function.

20 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

The two main parts of the Butterfly View window identify the immediate parents
and the immediate children of the selected function. In this case, the term immediate
means they either call the selected function directly or are called by it directly.

The columns of data in the illustration show:

• The percentage of the sort key (inclusive time, in the illustration) attributed to
each caller or callee.

• The time the function and any functions it called required to execute.

• The time the function alone (excluding other functions it called) required to
execute.

You can also display the address from which each function was called by selecting the
Show All Arcs Individually from the Config menu.

Viewing Source Code with Performance Annotations
The Performance Analyzer lets you view performance metrics by source line in the
Source View (see Figure 2-12, page 22) or by machine instruction in the Disassembled
Source view. Displaying performance metrics is set in the Preferences dialog box,
accessed from the Display menu in the Source View and Disassembled Source view.
The Performance Analyzer sets thresholds to flag lines that consume more than 90% of
a total resource. These indicators appear in the metrics column and on the scroll bar.

007–2581–007 21

2: Features in the Performance Analyzer

Performance metrics

Source display area

Threshold flags

Figure 2-12 Detailed Performance Metrics by Source Line

Viewing Metrics by Machine Instruction
The Performance Analyzer also lets you view performance metrics by machine
instruction (see Figure 2-13, page 23). You can view any of the performance metrics
that were measured in your experiment. If you ran an Ideal Time/Pixie
experiment, you can get a special three-part annotation that provides information
about stalled instructions.

The bar spanning the top of three columns in this annotation indicates the first
instruction in each basic block. The first column labeled Clock in the annotation
displays the clock number in which the instruction issues relative to the start of a
basic block. If you see clock numbers replaced by quotation marks (“), it means that
multiple instructions were issued in the same cycle. The column labeled Stall shows
how many clocks elapsed during the stall before the instruction was issued. The
column labeled Why shows the reason for the stall. There are three possibilities:

• B - Branch delay

22 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

• F - Function unit delay

• O - Operand has not arrived yet

Yellow bars
indicating
span of
basic block

Figure 2-13 Disassembled Code with Stalled Clock Annotations

Leak View, Malloc View, Malloc Error View, and Heap View
The Performance Analyzer lets you look for memory problems. The Leak View,
Malloc View, Malloc Error View, and Heap View windows address two common
types of memory problems that can inhibit performance:

• Memory leakage, see "Memory Leakage", page 24

• Bad calls to free, see "Bad Frees", page 24.

The difference between these windows lies in the set of data that they collect. Malloc
Error View displays all malloc errors. When you run a memory leak experiment
and problems are found, a dialog box displays suggesting you use Malloc Error View
to see the problems. Leak View shows memory leak errors only. Malloc View shows
each malloc operation whether faulty or not. Heap View displays a map of heap
memory that indicates where both problems and normal memory allocations occur

007–2581–007 23

2: Features in the Performance Analyzer

and can tie allocations to memory addresses. The first two views are better for
focusing on problems; the latter two views show the big picture.

Memory Leakage

Memory leakage occurs when a program dynamically allocates memory and fails to
deallocate that memory when it is through using the space. This causes the program
size to increase continuously as the process runs. A simple indicator of this condition
is the Total Size strip chart on the Usage View (Graphs) window. The strip chart only
indicates the size; it does not show the reasons for an increase.

Leak View displays each memory leak in the executable, its size, the number of times
the leak occurred at that location, and the corresponding call stack (when you select
the leak), and is thus the most appropriate view for focusing on memory leaks.

A region allocated but not freed is not necessarily a leak. If the calipers are not set to
cover the entire experiment, the allocated region may still be in use later in the
experiment. In fact, even when the calipers cover the entire experiment, it is not
necessarily wrong if the program does not explicitly free memory before exiting, since
all memory is freed anyway on program termination.

The best way to look for leaks is to set sample points to bracket a specific operation
that should have no effect on allocated memory. Then any area that is allocated but
not freed is a leak.

Bad Frees

A bad free (also referred to as an anti-leak condition) occurs when a program frees
some structure that it had already freed. In many such cases, a subsequent reference
picks up a meaningless pointer, causing a segmentation violation. Bad calls to free
are indicated in both Malloc Error View and in Heap View. Heap View identifies
redundant calls to free in its memory map display. It helps you find the address of
the freed structure, search for the malloc event that created it, and find the free
event that released it. Hopefully, you can determine why it was prematurely freed or
why a pointer to it was referenced after it had been freed.

Heap View also identifies unmatched calls to free in an information window. An
unmatched free is a free that does not have a corresponding allocation in the same
interval. As with leaks, the caliper settings may cause false indications. An
unmatched free that occurs in any region not starting at the beginning of the
experiment may not be an error. The region may have been allocated before the

24 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

current interval and the unmatched free in the current interval may not be a
problem after all. A segment identified as a bad free is definitely a problem; it has
been freed more than once in the same interval.

A search facility is provided in Heap View that allows the user to find the allocation
and deallocation events for all blocks containing a particular virtual address.

The Heap View window lets you analyze memory allocation and deallocation
between selected sample events in your experiment. Heap View displays a memory
map that indicates calls to malloc and realloc, bad deallocations, and valid
deallocations during the selected period, as shown in Figure 2-14. Clicking an area in
the memory map displays the address.

Figure 2-14 Typical Heap View Display Area

007–2581–007 25

2: Features in the Performance Analyzer

Call Stack View

The Performance Analyzer allows you to recall call stacks at sample events, which
helps you reconstruct the calls leading up to an event so that you can relate the event
back to your code. Figure 2-15 shows a typical call stack. It corresponds to sample
event #3 in an experiment.

Event identification

Call stack at
selected event

Event type

Figure 2-15 Typical Call Stack

Working Set View

Working Set View measures the coverage of the dynamic shared objects (DSOs) that
make up your executable (see Figure 2-16). It indicates instructions, functions, and
pages that were not used when the experiment was run. It shows the coverage results
for each DSO in the DSO list area. Clicking a DSO in the list displays its pages with
color coding to indicate the coverage of the page.

26 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

DSO list area

DSO identification
area

Page display area
(for selected DSO)

Figure 2-16 Working Set View

Cord Analyzer
The cord analyzer is not actually part of the Performance Analyzer and is invoked by
typing sscord at the command line. The cord analyzer (see Figure 2-17) lets you
explore the working set behavior of an executable or dynamic shared library (DSO).
With it you can construct a feedback file for input to cord to generate an executable
with improved working-set behavior.

007–2581–007 27

2: Features in the Performance Analyzer

Status area

Working set
display area

Working set
identification area

Page display area
(for selected working set)

Figure 2-17 Cord Analyzer

28 007–2581–007

Chapter 3

Performance Analyzer Tutorial

This chapter presents a tutorial (in several parts) for using the Performance Analyzer;
it contains these topics:

• "Tutorial Setup", page 30, describes how to compile the program used in the
tutorial and how to set up your windows for use.

• "Analyzing the Performance Data", page 31, steps you through performance
analysis experiments and results.

• "Analyzing Memory Experiments", page 40, steps you through experiments
involving memory leaks and incorrect memory allocations and deallocations.

Note: Because of inherent differences between systems and to concurrent processes
that may be running on your system, your experiments will produce different results
from the ones in this tutorial. However, the basic form of the results should be the
same.

The tutorial is based on a sample program called arraysum. The arraysum program
goes through the following steps:

1. Defines the size of an array (2,000 by 2,000).

2. Creates a 2,000-by-2,000 element array, gets the size of the array, and reads in the
elements.

3. Calculates the array total by adding up elements in each column.

4. Recalculates the array total differently, by adding up elements in each row.

It is more efficient to add the elements in an array row-by-row, as in step 4, than
column-by-column, as in step 3. Because the elements in an array are stored
sequentially by rows, adding the elements by columns potentially causes page faults
and cache misses. The tutorial shows you how you can detect symptoms of problems
like this and then zero in on the problem. The source code is located in
/usr/demos/WorkShop/performance if you want to examine it.

007–2581–007 29

3: Performance Analyzer Tutorial

Tutorial Setup
You need to compile the program first so that you can use it in the tutorial.

1. Change to the /usr/demos/WorkShop/performance directory.

You can run the experiment in this directory or set up your own directory.

2. Compile the arraysum.c file by entering the following:

% make arraysum

This will provide you with an executable for the experiment, if one does not
already exist.

3. From the command line, enter the following:

% cvd arraysum &

The Debugger Main View window is displayed. You need the Debugger to
specify the data to be collected and to run the experiment. If you want to change
the font in a WorkShop window, see "Changing Window Font Size", page 31.

4. Choose User Time/Callstack Sampling from the Select Task submenu in the Perf
menu.

This is a performance task that will return the time your program is actually
running and the time the operating system spends performing services such as
I/O and executing system calls. It includes the time spent in each function.

5. If you want to watch the progress of the experiment, choose Execution View in
the Views menu. Then click Run in the Debugger Main View window.

This starts the experiment. When the status line indicates that the process has
terminated, the experiment has completed. The main Performance Analyzer
window is displayed automatically. The experiment may take 1 to 3 minutes,
depending on your system. The output file will appear in a newly created
directory, named test0000.

You can also generate an experiment using the ssrun(1) command with the
-workshop option, naming the output file on the cvperf(1) command. In the
following example, the output file from ssrun is arraysum.usertime.m2344.

% ssrun -workshop -usertime arraysum

% cvperf arraysum.usertime.m2344

30 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

If you are analyzing your experiment on the same machine you generated it on, you
do not need the -workshop option. If the _SPEEDSHOP_OUTPUT_FILENAME
environment variable is set to a file name, such as my_prog, the experiment file from
the example above would be my_prog.m2345. See the ssrun(1) man page or the
Speedshop User’s Guide for more SpeedShop environment variables.

Changing Window Font Size

If you want to change the font size on a WorkShop window, you can do so in your
.Xresources or .Xdefaults file. Follow this procedure:

1. Enter the editres(1) command to get the names of the WorkShop window
widgets.

2. Add lines such as the following to your .Xresources or .Xdefaults file:

cvmain*fontList: 6x13

cvmain*tabPanel*fontList: fixed

cvmain*popup_optionMenu*fontList: fixed
cvmain*canvasPopup*fontList: 6x13

cvmain*tabLabel.fontList: 6x13

cvmain*help*fontList: 6x13
cvmain*UiOverWindowLabel*fontList: 6x13
cvmp*fontList: 6x13

The first changes the main window font, and the others change fonts more
selectively.

3. Enter the command xrdb(1) to update the windows.

Analyzing the Performance Data
Performance analysis experiments are set up and run in the Debugger window; the
data is analyzed in the main Performance Analyzer window. The Performance
Analyzer can display any data generated by the ssrun(1) command, by any of the
Debugger window performance tasks (which use the ssrun(1) command), or by
pixie(1).

007–2581–007 31

3: Performance Analyzer Tutorial

Note: Again, the timings and displays shown in this tutorial could be quite different
from those on your system. For example, setting caliper points in the time line may
not give you the same results as those shown in the tutorial, because the program will
probably run at a different speed on your system.

1. Examine the main Performance Analyzer window, which is invoked automatically
if you created your experiment file from the cvd window.

The Performance Analyzer window now displays the information from the new
experiment (see Figure 3-1, page 33).

2. Look at the usage chart in the Performance Analyzer window.

The first phase is I/O-intensive. The second phase, during which the calculations
took place, shows high user time.

3. Select Usage View (Graphs) from the Views menu.

The Usage View (Graphs) window displays as in Figure 3-2, page 34. It shows
high read activity and high system calls in the first phase, confirming our
hypothesis that it is I/O-intensive.

32 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Function list
area

Usage chart
area

Time line
area

Event selector
control

Figure 3-1 Performance Analyzer Main Window—arraysum Experiment

007–2581–007 33

3: Performance Analyzer Tutorial

Page faults

Context switches

Size of data
read/written

Counts of data
read/written

Poll and I/O calls

System calls

Process signals

Process size

Figure 3-2 Usage View (Graphs)—arraysum Experiment

As a side note, scroll down to the last chart, which indicates that the maximum
total size of the process is reached at the end of the first phase and does not grow
thereafter.

34 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

4. Select Call Stack View from the Views menu.

The call stack displays for the selected event. An event refers to a sample point
on the time line (or any usage chart).

At this point, no events have been selected so the call stack is empty. To define
events, you can add calls to ssrt_caliper_point to record caliper points in
the source file, set a sample trap from the WorkShop Debugger window, or set
pollpoint calipers on the time line. (For more information on the
ssrt_caliber_point function, see the ssapi(3) man page.) See Figure 3-3 for
an illustration of how the Call Stack View responds when various caliper points
are recorded.

Figure 3-3 Significant Call Stacks in the arraysum Experiment

5. Return to the Performance Analyzer window and pull down the sash to expose
the complete function list (see Figure 3-4).

007–2581–007 35

3: Performance Analyzer Tutorial

This shows the inclusive time (that is, time spent in the function and its called
functions) and exclusive time (time in the function itself only) for each function.
As you can see, more time is spent in sum1 than in sum2.

Figure 3-4 Function List Portion of Performance Analyzer Window

6. Select Call Graph from the Views menu and click on the Butterfly button.

The call graph provides an alternate means of viewing function performance data.
It also shows relationships, that is, which functions call which functions. After the
Butterfly button is clicked, the Call Graph View window appears, as shown in
Figure 3-5, page 37. The Butterfly button takes the selected function (or most
active function if none is selected) and displays it with the functions that call it
and those that it calls.

36 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Figure 3-5 Butterfly Version of the Call Graph View

7. Select Close from the Admin menu in the Call Graph View window to close it.
Return to the main Performance Analyzer window.

8. Select Usage View (Numerical) from the Views menu.

The Usage View (Numerical) window appears as shown in Figure 3-6, page 38.

007–2581–007 37

3: Performance Analyzer Tutorial

Figure 3-6 Viewing a Program in the Usage View (Numerical) Window

9. Return to the main Performance Analyzer window, select sum1 from the function
list, and click Source.

The Source View window displays as shown in Figure 3-7, page 39, scrolled to
sum1, the selected function. The annotation column to the left of the display area

38 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

shows the performance metrics by line. Lines consuming more than 90% of a
particular resource appear with highlighted annotations.

Notice that the line where the total is computed in sum1 is seen to be the culprit,
consuming 2,100 milliseconds. As in the other WorkShop tools, you can make
corrections in Source View, recompile, and try out your changes.

sum1 entry point

Significant time
consumption

Exclusive time
column annotations

Inclusive time
column annotations

Figure 3-7 Source View with Performance Metrics

At this point, one performance problem is found: the sum1 algorithm is
inefficient. As a side exercise, you may want to take a look at the performance
metrics at the assembly level. To do this, return to the main Performance
Analyzer window, select sum1 from the function list, and click Disassembled
Source. The disassembly view displays the assembly language version of the
program with the performance metrics in the annotation column.

10. Close any windows that are still open.

This concludes the tutorial.

007–2581–007 39

3: Performance Analyzer Tutorial

Analyzing Memory Experiments
Memory experiments give you information on what kinds of memory errors are
happening in your program and where they are occurring.

The first tutorial in this section finds memory leaks, situations in which memory
allocations are not matched by deallocations.

The second tutorial in this section ("Memory Use", page 42) analyzes memory use.

Finding Memory Leaks

To look for memory leaks or bad free routines, or to perform other analysis of
memory allocation, run a Performance Analyzer experiment with Memory Leak
Trace specified as the experiment task. You run a memory corruption experiment
like any performance analysis experiment, by clicking Run in the Debugger Main
View. The Performance Analyzer keeps track of each malloc (memory allocation),
realloc (reallocation of memory), and free (deallocating memory). The general
steps in running a memory experiment are as follows:

1. Display the WorkShop Debugger, including the executable file (generic, in this
case, from the /usr/demos/SpeedShop directory) as an argument.

cvd generic &

2. Specify Memory Leak Trace as the experiment task.

Memory Leak Trace is a selection on the Perf menu.

3. Run the experiment.

You run experiments by clicking the Run button.

4. The Performance Analyzer window is displayed automatically with the
experiment information.

The Performance Analyzer window displays results appropriate to the task
selected. Figure 3-8, page 41, shows the Performance Analyzer window after a
memory experiment.

40 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Experiment identifier

Function list showing
leaks by function

Process size
chart legend

Process size chart

Figure 3-8 Performance Analyzer Window Displaying Results of a Memory Experiment

The function list displays inclusive and exclusive bytes leaked and allocated with
malloc per function. Clicking Source brings up the Source View, which displays
the function’s source code annotated with bytes leaked and allocated by malloc.

007–2581–007 41

3: Performance Analyzer Tutorial

You can set other annotations in Source View and the function list by choosing
Preferences... from the Config menu in the Performance Analyzer window and
selecting the desired items.

5. Analyze the results of the experiment in Leak View when doing leak detection
and Malloc Error View when performing broader memory allocation analysis. To
see all memory operations, whether problems or not, use Malloc View. To view
memory problems within the memory map, use Heap View.

Memory Use

In this tutorial, you will run an experiment to analyze memory use. The program
generates memory problems that you can detect using the Performance Analyzer and
the following instructions:

1. Go to the /usr/demos/WorkShop/mallocbug directory. The executable
mallocbug was compiled as follows:

% cc -g -o mallocbug mallocbug.c -lc

2. Invoke the Debugger by typing:

% cvd mallocbug

3. Bring up a list of the performance tasks by selecting Select Task from the Perf
menu.

4. Select Memory Leak Trace from the menu and click Run to begin the experiment.
The program runs quickly and terminates.

5. The Performance Analyzer window appears automatically. A dialog box
indicating malloc errors displays also.

6. Select Malloc View from the Performance Analyzer Views menu.

The Malloc View window displays, indicating two malloc locations.

7. Select Malloc Error View from the Performance Analyzer Views menu.

The Malloc Error View window displays, showing one problem, a bad free, and
its associated call stack. This problem occurred 99 times

8. Select Leak View from the Performance Analyzer Views menu.

42 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

The Leak View window displays, showing one leak and its associated call stack.
This leak occurred 99 times for a total of 99,000 leaked bytes.

9. Double-click the function foo in the call stack area.

The Source View window displays, showing the function’s code, annotated by
the exclusive and inclusive leaks and the exclusive and inclusive calls to malloc.

10. Select Heap View from the Performance Analyzer Views menu.

The Heap View window displays the heap size and other information at the top.
The heap map area of the window shows the heap map as a continuous,
wrapping horizontal rectangle. The rectangle is broken up into color-coded
segments, according to memory use status. The color key at the top of the heap
map area identifies memory usage as malloc, realloc, free, or an error, or bad
free. Notice also that color-coded indicators showing malloc, realloc, and
bad free routines are displayed in the scroll bar trough. At the bottom of the
heap map area are: the Search field, for identifying or finding memory locations;
the Malloc Errors button, for finding memory problems; a Zoom In button
(upward pointing arrow) and a Zoom Out button (downward pointing arrow).

The event list area and the call stack area are at the bottom of the window.
Clicking any event in the heap map area displays the appropriate information in
these fields.

11. Click on any memory block in the heap map.

The beginning memory address appears in theSearch field. The event information
displays in the event list area. The call stack information for the last event
appears in the call stack area.

12. Select other memory blocks to try out this feature.

As you select other blocks, the data at the bottom of the Heap View window
changes.

13. Double-click on a frame in the call stack area.

A Source View window comes up with the corresponding source code displayed.

14. Close the Source View window.

15. Click the Malloc Errors button.

007–2581–007 43

3: Performance Analyzer Tutorial

The data in the Heap View information window changes to display memory
problems. Note that a free may be unmatched within the analysis interval, yet it
may have a corresponding free outside of the interval.

16. Click Close to leave the Heap View window.

17. Select Exit from the Admin menu in any open window to end the experiment.

44 007–2581–007

Chapter 4

Setting Up Performance Analysis Experiments

In performance analysis, you set up the experiment, run the executable file, and
analyze the results. To make the setup easier, the Performance Analyzer provides
predefined tasks that help you establish an objective and ensure that the appropriate
performance data will be collected.

This chapter tells you how to conduct performance tasks and what to notice. The
following topics are discussed in this chapter:

It covers these topics:

• "Experiment Setup", page 45, describes the steps in a standard experiment.

• "Selecting a Performance Task", page 47, explains how to select a task to enable
data collection.

• "Setting Sample Traps", page 54, explains how to define sample traps to record
data when specific conditions occur.

• "Displaying Data from the Parallel Analyzer", page 55, describes how to use other
tools to display data that has been parallelized.

Experiment Setup
Performance tuning typically consists of examining machine resource usage, breaking
down the process into phases, identifying the resource bottleneck within each phase,
and correcting the cause. Generally, you run the first experiment to break your
program down into phases and run subsequent experiments to examine each phase
individually. After you have solved a problem in a phase, you then reexamine
machine resource usage to see if there is a further opportunity for performance
improvement.

Each experiment has these steps:

1. Specify the performance task (see "Selecting a Performance Task", page 47 for
complete details).

The Performance Analyzer provides predefined tasks for conducting experiments.
When you select a task, the Performance Analyzer automatically enables the

007–2581–007 45

4: Setting Up Performance Analysis Experiments

appropriate performance data items for collection. See "Understanding Predefined
Tasks", page 47, for more details about the predefined tasks.

The predefined tasks ensure that only the appropriate data collection is enabled.
Selecting too much data can bog down the experiment and skew the data for
collection. If you need a mix of performance data not available in the predefined
tasks, you can select Custom from the Select Task submenu. It lets you enable
combinations of the data collection options.

2. Specify where to capture the data.

If you want to gather information for the complete program, this step is not
needed. If you want data at specific points in the process, you need to set sample
traps (see "Setting Sample Traps", page 54, for a description of traps or see the
ProDev Workshop: Debugger User’s Guide for an in-depth discussion).

The Performance Analyzer records samples at the beginning and end of the
process automatically. If you want to analyze data within phases, set sample traps
at the beginning of each phase and at intermediate points.

3. Specify the experiment configuration parameters.

This step is not necessary if you use the defaults; if you want to make
configuration changes, select Configs from the Perf menu. The dialog box lets
you specify a number of configuration options, many of which depend on the
experiment you plan to run. The dialog box in Figure 5-1, page 66, shows the
runtime configuration choices, and the options are described in "Configuring the
Experiment", page 66.

4. Run the program to collect the data.

You run the experiment from the WorkShop Debugger window. If you are
running a small experiment to capture resource usage, you may be able to watch
the experiment in real time in the Process Meter. The results are stored in the
designated experiment subdirectory.

5. Analyze the results.

After the experiment completes, you can look at the results in the Performance
Analyzer window and its associated views. Use the calipers to get information
for phases separately.

46 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Selecting a Performance Task
To set up a Performance Analyzer experiment, choose a task from the Select Task
submenu in the Perf menu in the WorkShop Debugger window (see Figure 4-1, page
47). The Performance Analyzer will then automatically enable data collection of the
pertinent performance data items.

Figure 4-1 Select Task Submenu

Selecting a task enables data collection. The mode indicator in the upper right corner
of the WorkShop Debugger window changes from Debug Only to Performance.

Understanding Predefined Tasks

If you are unfamiliar with performance analysis, it is very easy to request more data
collection than you actually need. Doing this can slow down the Performance
Analyzer and skew results. To help you record the data that is appropriate to your
current objective, WorkShop provides predefined combinations of tasks, which are
available in the Select Task submenu in the Perf menu (see Figure 4-1, page 47).
These tasks are described in the following sections. When you select a task, the
required data collection is automatically enabled.

007–2581–007 47

4: Setting Up Performance Analysis Experiments

Profiling/PC Sampling

Use the Profiling/PC Sampling task selection when you are identifying which parts
of your program are using the most CPU time. PC profiling results in a statistical
histogram of the program counter. The exclusive CPU time is presented as follows:

• By function in the function list

• By source line in Source View

• By instruction in Disassembly View

• By machine resource usage data, captured at 1-second intervals and at sample
points

This task gathers data by sampling the program counter (PC) value every 10
milleseconds (ms).

User Time/Callstack Sampling

Use the User Time/Callstack Sampling task selection to tune a CPU-bound phase or
program. It enables you to display the time spent in the CPU by function, source line,
and instruction. This task records the following:

• The call stack every 30 milleseconds (ms)

• Machine resource usage data at 1-second intervals and at sample points

Data is measured by periodically sampling the call stack. The program’s call stack
data is used to do the following:

• Attribute exclusive user time to the function at the bottom of each call stack (that
is, the function being executed at the time of the sample).

• Attribute inclusive user time to all the functions above the one currently being
executed.

The time spent in a procedure is determined by multiplying the number of times an
instruction for that procedure appears in the stack by the average time interval
between call stacks. Call stacks are gathered whether the program was running or
blocked; hence, the time computed represents the total time, both within and outside
the CPU. If the target process was blocked for a long time as a result of an
instruction, that instruction will show up as having a high time.

48 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

User time runs should incur a program execution slowdown of no more than 15%.
Data from a usertime experiment is statistical in nature and shows some variance
from run to run.

Ideal Time/Pixie

Use the Ideal Time/Pixie task selection to tune a CPU-bound phase. The name ideal
time is a historical name first used when processors would execute instructions in a
more linear manner than the current modern processors do. Ideal time experiments
would represent the best possible performance for your program.

The analysis determines the cost on a per-basic block basis; it does not deal with data
dependencies between basic blocks. A basic blocks is a set of instructions with a single
entry point, a single exit point, and no branches into or out of the instructions. It is
useful when used in conjunction with the Profiling/PC Sampling task. Comparing
the two lets you examine actual versus ideal time. The difference is the time spent as
a result of the following:

• Performing load operations, which take a minimum of two cycles if the data is
available in primary cache and much longer if the data has to be accessed from
the swap area, secondary cache, or main memory.

• Performing store operations, which cause the CPU to stall if the write buffer in
the CPU gets filled.

• Waiting for a CPU stalled as a result of data dependencies between basis blocks.

This task records the following:

• Basic block counts

• Counts of branches taken

• Machine resource usage data at 1-second intervals and at sample points

• Function pointer traces with counts

The following results can be displayed in the function list, the Source View, and the
Disassembly View:

• Execution counts.

• Resulting machine instructions.

• A count of resulting loads, stores, and floating-point instructions.

007–2581–007 49

4: Setting Up Performance Analysis Experiments

• An approximation of the time spent with the CPU stalling because of data and
functional unit interlocks. Interlocks are situations caused when resources, such as
data, are not available.

The task requires instrumentation of the target executable. Counter code is inserted at
the beginning of each basic block.

After the instrumented executable runs, the Performance Analyzer multiplies the
number of times a basic block was executed by the number of instructions in it. This
yields the total number of instructions executed as a result of that basic block (and
similarly for other specific kinds of instructions, like loads or stores).

While ideal time creates a complete call graph and points out where the program
spends the most time if the processor was linear in execution of instructions, it is best
to run a PC sampling experiment also and compare the results.

The following is a typical case of why ideal time is not enough to learn about
application performance. Because ideal only knows about instructions executed and
the number of times a cycle has been executed, the loop

DO i=1,size

DO j=1,size
DO k=1,size

u(i,j) = u(i,j) + v(i,k)*w(k,j)

END DO

END DO

END DO

would be the same for ideal as

DO j=1,size

DO i=1,size
u(i,j) = u(i,j) + v(i,k)*w(k,j)

END DO

END DO

END DO

and the same as

DO k=1,size

DO j=1,size

DO i=1,size
u(i,j) = u(i,j) + v(i,k)*w(k,j)

END DO

50 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

END DO
END DO

But if you run it, just by using time or timex, you will see big differences.

Remember that ideal knows nothing about software pipelining, memory, page
faults, caches, etc. only plain instructions executed one after another. It just counts
the number of times each instruction was executed.

So, accessing u(i,j) or u(j,i) is the same for ideal, but it can make a big
difference for the application runtime performance.

Floating-Point Exception Trace

Use the Floating Point Exception Trace task selection when you suspect that large,
unaccounted for periods of time are being spent in floating-point exception handlers.
The task records the call stack at each floating-point exception. The number of
floating-point exceptions is presented as follows:

• By function in the function list

• By source line in the Source View

• By instruction in Disassembly View

To observe the pattern of floating-point exceptions over time, look in the
floating-point exceptions event chart in the Usage View (Graphical) window.

I/O Trace

Use the I/O Trace task selection when your program is being slowed down by I/O
calls, and you want to find the responsible code. This task records call stacks at every
read(2), write(2), readv(2), writev(2), open(2), close(2), pipe(2), dup(2), and
creat(2) system call. It also records file descriptor information and the number of
bytes read or written.

The number of bytes read and written is presented as follows:

• By function in the function list

• By source line in the Source View

• By instruction in the Disassembly View

007–2581–007 51

4: Setting Up Performance Analysis Experiments

Memory Leak Trace

Use the Memory Leak Trace task selection to determine where memory leaks and bad
calls to free may occur in a process. The task records the call stacks, address, and
number of bytes at every malloc, realloc, and free call. The bytes currently
allocated by malloc (that might represent leaks) and the list of double calls to free
are presented in Malloc Error View and the other memory analysis views. The
number of bytes allocated by malloc is presented:

• By function in the function list

• By source line in the Source View

• By instruction in the Disassembly View

R10000 and R12000 Hardware Counters

If you are running your application on a system using either the R10000 or the
R12000 series CPU, you can use the R10k/R12k Hardware Counters task selection
from the WorkShop Debugger window once you have focused in on the source of
your problem. This task gives low-level, detailed information about hardware events.
It counts the following events:

• Graduated instructions. The graduated instruction counter is incremented by the
number of instructions that were graduated on the previous cycle.

• Machine cycles. The counter is incremented on each clock cycle.

• Primary instruction cache misses. This counter is incremented one cycle after an
instruction fetch request is entered into the miss handling table.

• Secondary instruction cache misses. This counter is incremented after the last
16-byte block of a 64-byte primary instruction cache line is written into the
instruction cache.

• Primary data cache misses. This counter is incremented on the cycle after a
primary cache data refill is begun.

• Secondary data cache misses. This counter is incremented on the cycle after the
second 16-byte block of a primary data cache line is written into the data cache.

• TLB (task lookaside buffer) misses. This counter is incremented on the cycle after
the TLB mishandler is invoked.

52 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

• Graduated floating-point instructions. This counter is incremented by the number
of floating-point instructions that graduated on the previous cycle.

• Failed store conditionals.

You can also choose hardware counter profiling based on either PC sampling or call
stack sampling.

You can generate other hardware counter experiments by using the ssrun command.
See the ssrun(1) man page or the SpeedShop User’s Guide for more information.

Custom

Use the Custom task selection when you need to collect a combination of
performance data that is not available through the predefined tasks. Selecting Custom
brings up the same tab panel screen displayed by the Configs... selection (see Figure
5-1, page 66).

The Custom task lets you select and tune the following:

• Sampling data. This includes profiling intervals, counter size, and whether rld(1)
will be involved in data collection.

• Tracing data. This includes malloc and free trace, I/O system call trace, and
floating-point exception trace.

• Recording intervals. This includes the frequency of data recording for usage data
or usage or call stack data at caliper points. You can also specify this with
marching orders. For more information on marching orders, see the ssrun(1) man
page.

• Call stack. This includes sampling intervals and the type of timing.

• Ideal experiments. This specifies whether or not the basic block count data is
collected. It also builds a complete call graph. See "Ideal Time/Pixie", page 49 for
more information.

• Hardware counter specification. This specifies the hardware event you want to
count, the counter overflow value, and the profiling style (PC or call stack).
Hardware counter experiments are possible only on R10000 and R12000 systems.

• Runtime. This specifies the same as those listed for the Configs menu selection.
See "Configuring the Experiment", page 66.

Remember the basic warnings in this chapter about collecting data:

007–2581–007 53

4: Setting Up Performance Analysis Experiments

• Too much data can slow down the experiment.

• Call stack profiling is not compatible with count operations or PC profiling.

• If you combine count operations with PC profiling, the results will be skewed due
to the amount of instrumented code that will be profiled.

Setting Sample Traps
Sample traps allow you to record data when a specified condition occurs. You set
traps from the WorkShop Debugger window: choose either the Trap Manager or the
Source View from the Views menu. For a complete discussion of setting traps, see
ProDev Workshop: Debugger User’s Guide.

Note: In order for trap-based caliper points to work, you must activate the Attach
Debugger toggle on the Runtime tab window. That window is available from the
Configs... menu item on the Perf menu of the WorkShop Debugger window.

You can define sample traps:

• At function entry or exit points

• At source lines

• For events

• Conditionally

• Manually during an experiment

Sample traps at function entry and exit points are preferable to source line traps,
because they are more likely to be preserved as your program evolves. This better
enables you to save a set of traps in the Trap Manager in a file for subsequent reuse.

Manual sample traps are triggered when you click the Sample button in the
WorkShop Debugger. They are particularly useful for applications with graphical
user interfaces. If you have a suspect operation in an experiment, a good technique is
to take a manual sample before and after you perform the operation. You can then
examine the data for that operation.

54 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Displaying Data from the Parallel Analyzer
The Performance Analyzer can also display data that has been parallelized for
execution on a multiprocessor system. It supports Fortran 77, Fortran 90, C, and C++
with either of the following parallelizing models:

• The automatic parallelization performed by the compilers. This is enabled by
including the -apo option on the compiler command line. For more information
on automatic parallelization, see the programmer’s guide for your compiling
system.

• OpenMP, a set of compiler pragmas or directives, library routines, and
environment variables that help you distribute loop iterations and data among
multiple processors. For details about OpenMP, see the programmer’s guide for
your compiling system.

ProDev WorkShop ProMP is a companion product to the WorkShop suite of tools. It
specifically analyzes a program that has been parallelized. It is integrated with
WorkShop to let you examine a program’s loops in conjunction with a performance
experiment on either a single processor or multiprocessor run. For more information,
see the ProDev WorkShop: ProMP User’s Guide.

The cvpav(1) command reads and displays analysis files generated by the MIPSpro
compilers. When you plan to view one of these files in the Performance Analyzer, use
the -e option to cvpav, and specify the program executable as the argument, as
follows:

% cvpav -e a.out

From the Parallel Analyzer user interface, choose the Admin –> Launch Tool –>
Performance Analyzer menu item. Once the new window comes up, choose Excl.
Percentage from the Sort... window under the Config menu. Doing so will list the
loops in order, with the most expensive at the top, allowing you to concentrate your
attention on the most compute-intensive loops.

007–2581–007 55

Chapter 5

Performance Analyzer Reference

This chapter provides detailed descriptions of the Performance Analyzer toolset,
including the following:

• "Selecting Performance Tasks", page 57.

• "Specifying a Custom Task", page 59.

• "Configuring the Experiment", page 66.

• "The Performance Analyzer Main Window", page 68.

• "Usage View (Graphs)", page 83.

• "The Process Meter Window", page 87.

• "Usage View (Numerical) Window", page 89.

• "The I/O View Window", page 91.

• "The MPI Stats View (Graphs) Window", page 92.

• "The MPI Stats View (Numerical) Window", page 94.

• "The Parallel Overhead View Window", page 94.

• "The Call Graph View Window", page 95.

• "Butterfly View", page 103.

• "Analyzing Memory Problems", page 104.

• "The Call Stack Window", page 111.

• "Analyzing Working Sets", page 112.

Selecting Performance Tasks
You choose performance tasks from the Select Task submenu of the Perf menu in
WorkShop Debugger window. You should have an objective in mind before you start
an experiment. The tasks ensure that only the appropriate data collection is enabled.

007–2581–007 57

5: Performance Analyzer Reference

Selecting too much data can slow down the experiment and skew the data for
collection.

The tasks are summarized in Table 5-1, page 58. The Task column identifies the task
as it appears in the Select Task menu of the WorkShop Debugger’s Perf menu. The
Clues column provides an indication of symptoms and situations appropriate for the
task. The Data Collected column indicates performance data set by the task. Note
that call stacks are collected automatically at sample points, poll points, and process
events. The Description column describes the technique used.

Table 5-1 Summary of Performance Analyzer Tasks

Task Clues Data Collected Description

Profiling/PC
Sampling

CPU-bound • PC profile counts
• Fine-grained usage

(1 sec.)
• Call stacks

Tracks CPU time spent in functions, source
code lines, and instructions. Useful for
CPU-bound conditions. CPU time metrics
help you separate CPU-bound from
non-CPU-bound instructions.

User Time/Call-
stack Sampling

Not
CPU-bound

• Fine-grained usage
(1 sec.)

• Call stack profiling
(30 ms)

• Call stacks

Tracks the user time spent by function,
source code line, and instruction.

Ideal Time/Pixie CPU-bound • Basic block counts
• Fine-grained usage

(1 sec.)
• Call stacks

Calculates the ideal time, that is, the time
spent in each basic block with the
assumption of one instruction per machine
cycle. Useful for CPU-bound conditions.
Ideal time metrics also give counts, total
machine instructions, and
loads/stores/floating point instructions. It
is useful to compare ideal time with the
CPU time in an experiment that identifies
high CPU time.

58 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Task Clues Data Collected Description

Floating Point
Exception Trace

High system
time in usage
charts;
presence of
floating point
operations;
NaNs

• FPE exception trace
• Fine-grained usage

(1 sec.)
• Call stacks

Useful when you suspect that time is being
wasted in floating-point exception
handlers. Captures the call stack at each
floating-point exception. Lists
floating-point exceptions by function,
source code line, and instruction.

I/O trace Process
blocking due
to I/O

• I/O system call trace
• Fine-grained usage

(1 sec.)
• Call stacks

Captures call stacks at every I/O-oriented
system call. The file description and
number of bytes are available in I/O View.

Memory Leak
Trace

Swelling in
process size

• malloc/free trace
• Fine-grained usage

(1 sec.)
• Call stacks

Determines memory leaks by capturing the
call stack, address, and size at all malloc,
realloc, and free routines and displays
them in a memory map. Also indicates
double free routines.

R10k/R12k
Hardware
Counters...

Need more
detailed
information

• Wide range of
hardware-level counts

On R10000 and R12000 systems only,
returns low-level information by counting
hardware events in special registers. An
overflow value is assigned to the relevant
counter. The number of overflows is
returned.

Custom... • Call stacks
• User’s choice

Lets you select the performance data to be
collected. Remember that too much data
can skew results.

Specifying a Custom Task
When you choose Custom... from the Select Task submenu in the Perf menu in the
Main View, a dialog box appears. This section provides an explanation of most of the
windows involved in setting up a custom task.

The Custom...Runtime and HWC Spec (the hardware counters) windows are
identical to the Configs...Runtime and HWC Spec windows. For an illustration of
Runtime, see Figure 5-1, page 66. For information on HWC Spec, see "R10000 and
R12000 Hardware Counters", page 52.

007–2581–007 59

5: Performance Analyzer Reference

Specifying Data to be Collected

Data is collected and recorded at every sample point. The following data collection
methods are available:

• Call stack (the CallStack window). See the following section.

• Basic block counts (the Ideal window). See "Basic Block Count Sampling", page 61.

• PC profile counts (the PC Sampling window). See "PC Profile Counts", page 61.

Call Stack Profiling

The Performance Analyzer performs call stack data collection automatically. There is
no instrumentation involved. This corresponds to the SpeedShop usertime
experiment.

The CallStack window lets you choose from real time, virtual time, and profiling time
and specify the sampling interval.

Real time is also known as wall-clock time and total time. It is the total time a program
takes to execute, including the time it takes waiting for a CPU.

Virtual time is also called process virtual time. It is the time spent when a program is
actually running, as opposed to when it is swapped out and waiting for a CPU or
when the operating system is in control, such as performing I/O for the program.

Profiling time is time the process has actually been running on the CPU, whether in
user or system mode. It is the default for the usertime experiment. It is also called
CPU time or user time.

For the sampling interval, you can select one of the following intervals:

• Standard (every 30 milleseconds)

• Fast (every 20 milliseconds)

• Custom (enter your own interval)

Note: The experiment may run slowly in programs with very deep call stacks and
many DSOs. In such cases, increasing the sampling interval will help.

60 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Basic Block Count Sampling

Basic block counts are translated to ideal CPU time (as shown in the SpeedShop
ideal experiment) and are displayed at the function, source line, and machine line
levels. The experiment uses the number of cycles for each instruction and other
resources present within the type of processor being used for the experiment in
calculating ideal CPU time. Actual time usage will be different.

See "Ideal Time/Pixie", page 49 for more information.

Memory loads and stores are assumed to take constant time, so if the program has a
large number of cache misses, the actual execution time will be longer than that
calculated by the ideal experiment.

The end result might be better described as ideal user CPU time.

The Ideal window lets you select the counter size, either 16 or 32 bits, and the option
to use rld(1) profiling.

The data is gathered by first instrumenting the target executable. This involves
dividing the executable into basic blocks consisting of sets of machine instructions
that do not contain branches into or out of them. A few instructions are inserted for
every basic block to increment a counter every time that basic block is executed. The
basic block data is actually generated, and when the instrumented target executable is
run, the data is written out to disk whenever a sample trap fires. Instrumenting an
executable increases its size by a factor of three and greatly modifies its performance
behavior.

!
Caution: Running the instrumented executable causes it to run more slowly. By
instrumenting, you might be changing crucial resources; during analysis, the
instrumented executable might appear to be CPU-bound, whereas the original
executable is I/O-bound.

PC Profile Counts

Enabling PC profile counts causes the Program Counter (PC) of the target executable
to be sampled every 10 milliseconds when it is in the CPU. PC profiling is a
lightweight, high-speed operation done with kernel support. Every 10 milliseconds,
the kernel stops the process if it is in the CPU, increments a counter for the current
value of the PC, and resumes the process. It corresponds to the SpeedShop pcsamp
experiment.

007–2581–007 61

5: Performance Analyzer Reference

PC profile counts are translated to the actual CPU time displayed at the function,
source line, and machine line levels. The actual CPU time is calculated by multiplying
the PC hit count by 10 milliseconds.

A major discrepancy between actual CPU time and ideal CPU time indicates one or
more of the following:

• Cache misses in a single process application.

• Secondary cache invalidations in a multiprocess application run on a
multiprocessor.

Note: This comparison is inaccurate over a single run if you collect both basic block
and PC profile counts simultaneously. In this situation, the ideal CPU time will factor
out the interference caused by instrumenting; the actual CPU time will not.

A comparison between basic block counts and PC profile counts is shown in Table 5-2.

Table 5-2 Basic Block Counts and PC Profile Counts Compared

Basic Block Counts PC Profile Counts

Used to compute ideal CPU time Used to estimate actual CPU time

Data collection by instrumenting Data collection done with the kernel

Slows program down Has minimal impact on program speed

Generates an exact count Approximates counts

Specifying Tracing Data

Tracing data records the time at which an event of the selected type occurred. There
are five types of tracing data:

• malloc and free Heap Analysis, see "malloc and free Heap Analysis", page 63.

• I/O (read, write) Operations, see "I/O Operations", page 63.

• Floating-Point Exceptions, see "Floating-Point Exceptions", page 63.

• Message Passing Interface (MPI) Stats Trace, see "MPI Stats Trace", page 63.

62 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Note: These features should be used with care; enabling tracing data adds substantial
overhead to the target execution and consumes a great deal of disk space.

malloc and free Heap Analysis

Tracing malloc and free allows you to study your program’s use of dynamic
storage and to quickly detect memory leaks (malloc routines without corresponding
free routines) and bad free routines (freeing a previously freed pointer). This data
can be analyzed in the Malloc Error View, Leak View, Malloc View, and Heap View
(see "Analyzing Memory Problems", page 104).

I/O Operations

I/O tracing records every I/O-related system call that is made during the experiment.
It traces read(2), write(2), readv(2), writev(2), open(2), close(2), dup(2),
pipe(2), and creat(2), along with the call stack at the time, and the number of bytes
read or written. This is useful for I/O-bound processes.

Floating-Point Exceptions

Floating-point exception tracing records every instance of a floating-point exception.
This includes problems like underflow and NaN (not a number) values. If your
program has a substantial number of floating-point exceptions, you may be able to
speed it up by correcting the algorithms.

The floating-point exceptions are as follows:

• Overflow

• Underflow

• Divide-by-zero

• Inexact result

• Invalid operand (for example, infinity)

MPI Stats Trace

MPI tracing lets you track message-passing activity in any process of a
multiprocessing job. You can view the results in the Performance Analyzer window

007–2581–007 63

5: Performance Analyzer Reference

with either the MPI Stats View (Graphs) or MPI Stats View (Numerical) selections
from the Views menu. For examples, see "MPI Stats View (Graphs)", page 13 and
"MPI Stats View (Numerical)", page 15.

Unlike other performance tasks, this one cannot be initiated from the Debugger View;
use the SpeedShop ssrun(1) command in combination with the mpirun(1)
command. First, set the MPI_RLD_HACK_OFF environment variable for safety reasons
and then compile the application with the MPI library:

setenv MPI_RLD_HACK_OFF 1

f90 -o comm comm.f -lmpi

Next run the ssrun as part of the mpirun command:

mpirun -np 4 ssrun -mpi comm

For this 4–processor application, five experiment files will be generated: one for each
processor (the IDs begins with f) and one for the master process (the ID begins with
m).

comm.mpi.f3221936

comm.mpi.f3224241

comm.mpi.f3225085

comm.mpi.f3227246

comm.mpi.m3226551

You can view any of the files with cvperf:

cvperf comm.mpi.f3225085

Specifying Polling Data

The following categories of polling data are available by using caliper points:

• Pollpoint Sampling, see "Pollpoint Sampling", page 65.

• Call Stack Profiling, see "Call Stack Profiling", page 65.

Entering a positive nonzero value in their fields turns them on and sets the time
interval at which they will record data.

64 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Pollpoint Sampling

Setting pollpoint sampling on the Runtime tab window sets caliper points that specify
a regular time interval for capturing performance data, including resource usage and
any enabled sampling or tracing functions. Since pollpoint sampling occurs
frequently, it is best used with call stack data only, rather than other profiling data. Its
primary use is to enable you to set boundary points for phases. In subsequent runs,
you can set sample points to collect the profiling data at the phase boundaries.

Call Stack Profiling

Enabling call stack profiling in the CallStack tab window causes the call stack of the
target executable to be sampled at the specified time interval (a minimum of 10
milliseconds) and saved. The call stack continues to be sampled when the program is
not running: that is, while it is internally or externally blocked. Call stack profiling is
used in the User Time/Callstack Sampling task to calculate total times.

You can choose the type of time you want to eventually display: real time, virtual
time, or profiling time. See the glossary for definitions.

By setting the sampling interval to a lower number, you can sample more often and
receive better finer grained results.

Call stack profiling is accomplished by the Performance Analyzer views and not by
the kernel. As a result, it is less accurate than PC profiling. Collecting call stack
profiling data is far more intrusive than collecting PC profile data.

!
Caution: Collecting basic block data causes the text of the executable to be modified.
Therefore, if call stack profiling data is collected along with basic block counts, the
cumulative total time displayed in Usage View (Graphs) is potentially erroneous.

Table 5-3 compares call stack profiling and PC profiling.

007–2581–007 65

5: Performance Analyzer Reference

Table 5-3 Call Stack Profiling and PC Profiling Compared

PC Profiling Call Stack Profiling

Done by kernel Done by Performance Analyzer process

Accurate, nonintrusive Less accurate, more intrusive

Used to compute CPU time Used to compute total time

Configuring the Experiment
To specify the experiment configuration, choose Configs... from the Perf menu. See
Figure 5-1, page 66, for an illustration of the resulting window. While you can access
other tabs, the only ones that are active are the Runtime and General tabs.

Figure 5-1 Runtime Configuration Dialog Box

66 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Specifying the Experiment Directory

The Experiment Directory field lets you specify the directory where you want the
data to be stored. The Performance Analyzer provides a default directory named
test0000 for your first experiment. If you use the default or any other name that
ends in four digits, the four digits are used as a counter and will be incremented
automatically for each subsequent session. Note that the Performance Analyzer does
not remove (or overwrite) experiment directories. You need to remove directories
yourself.

Other Options

The following configuration options are available on the Runtime display:

• The File Basename: specifies the base name of the experiment file (if blank, it is
the name of the executable).

• You can specify whether you want the Performance Analyzer to gather
performance data for any processes launched by one or more of the following:

– exec()

– fork()

– sproc()

– system()

– Follow fork() to exec() processes

• The center column lets you choose the following options:

– Verbose output yields more explanatory information in the Execution View.

– Reuse File Descriptors opens and closes the file descriptors for the output files
every time performance data is to be written. If the target program is using
chdir(), the _SPEEDSHOP_REUSE_FILE_DESCRIPTORS environment
variable is set to the value selected by this configuration option.

– Compress Experiment Data saves disk space.

– Disable Stack Unwind suppresses the stack unwind as is done in the
SpeedShop usertime, totaltime, and other call stack-based experiments.

007–2581–007 67

5: Performance Analyzer Reference

– Disable Signal Handlers disables the normal setting of signal handlers for all
fatal and exit signals.

– Attach Debugger lets you debug the running program.

– Generate Callgraph displays which functions called, and were called by, other
functions.

• CaliperPoint Signal sets the value of the signal sent by the sample button to cause
the process to write out a caliper point. The default value is 40.

• PollPoint Caliper Interval (seconds) specifies the interval at which pollpoint
caliper points are taken.

• AutoLaunch Analyzer launches the Performance Analyzer automatically when the
experiment finishes.

The Performance Analyzer Main Window
The Performance Analyzer main window is used for analysis after the performance
data has been captured. It contains a time line area indicating when events took place
over the span of the experiment, a list of functions with their performance data, and a
resource usage chart. The following sections describe the window:

• "Task Field", page 69.

• "Function List Display and Controls", page 69.

• "Usage Chart Area", page 71.

• "Time Line Area and Controls", page 72.

• "Admin Menu", page 73.

• "Config Menu", page 74.

• "Views Menu", page 80.

• "Executable Menu", page 82.

• "Thread Menu", page 82.

68 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

The Performance Analyzer main window can be invoked from the Launch Tool
submenu in the Debugger Admin menu or from the command line, by typing one of
the following:

cvperf [-exp] directory

cvperf speedshop_exp_files

cvperf [-pixie] pixie.counts_files

The arguments to these commands are as follows:

• directory: a directory containing data from old WorkShop performance experiments.

• speedshop_exp_files: one or more experiment files generated either by the ssrun(1)
command or by using the Select Task ... submenu of the Perf menu on the
WorkShop Debugger window.

• pixie.counts_files: an output file from pixie(1) measuring code execution
frequency. The ideal task generates a pixie.counts_file.

Task Field

The Task field identifies the task for the current experiment and is read-only. See
"Selecting Performance Tasks", page 57, for a summary of the performance tasks.

Function List Display and Controls

The function list area displays the program’s functions with the associated
performance metrics. It also provides buttons for displaying function performance
data in other views. See Figure 5-2.

007–2581–007 69

5: Performance Analyzer Reference

Performance metrics
annotations

Function list
display area

Search field

Hide 0 functions
toggle

Show Node
Source View button
Disassembly View button

Figure 5-2 Typical Function List Area

The main features of the function list are:

• Function list display area: shows all functions in the program annotated with their
associated performance data. The column headings identify the metrics.

You select the performance data to display from the Preferences... selection in the
Config menu. The order of ranking is set by the Sort... selection in the Config
menu. The default order of sorting (depending on availability) is:

1. Inclusive time

2. Exclusive time

3. Counts

• Search field: lets you look for a function in the list and in any active views.

• Hide 0 Functions toggle button: Lets you filter functions with 0 time from the list.

• Show Node button: displays the specified node in the Call Graph View.

70 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

• Source button: displays the Source View window corresponding to the selected
function. The Source View window displays performance metrics in the
annotation column. Source View can also be displayed by double-clicking a
function in the function list or a node or arc (lines between nodes) in the call graph.

• Disassembled Source button: displays the Disassembly View window
corresponding to the selected function. The Disassembly View is annotated with
the performance metrics.

Usage Chart Area

The usage chart area in the Performance Analyzer main window displays the
stripchart most relevant to the current task. The upper subwindow displays the
legend for the stripchart, and the lower subwindow displays the stripchart itself. This
gives you some useful information without having to open the Usage View (Graphs)
window. Table 5-4, shows you the data displayed in the usage chart area for each task.

Table 5-4 Task Display in Usage Chart Area

Task Data in Usage Chart Area

User Time/Callstack Sampling User versus system time

Profiling/PC Sampling User versus system time

Ideal Time/Pixie User versus system time

Floating Point Exception Trace Floating-point exception event chart

I/O Trace read(), write() system calls

Memory Leak Trace Process Size stripchart

R10000 or R12000 Hardware Counters Depends on experiment

Custom task User versus system time, unless one of
the tracing tasks from this list has been
selected

You can expand either subwindow to show more information by dragging the boxes
at the right of the subwindow.

007–2581–007 71

5: Performance Analyzer Reference

Time Line Area and Controls

The time line shows when each sample event in the experiment occurred. Figure 2-2,
page 8, shows the time line portion of the Performance Analyzer window with typical
results.

The Time Line Calipers

The time line calipers let you define an interval for performance analysis. You can set
the calipers in the time line to any two sample event points using the caliper controls
or by dragging them. The calipers appear solid for the current interval. If you drag
them with the mouse (left or middle button), they appear dashed to give you visual
feedback. When you stop dragging a caliper, it appears in outlined form denoting a
tentative and as yet unconfirmed selection.

The following steps show how to set the calipers:

1. Set the left caliper to the sample event at the beginning of the interval.

You can drag the left caliper with the left or middle mouse button or by using the
left caliper control buttons in the control area. Note that calipers always snap to
sample events. (It does not matter whether you start with the left or right caliper.)

2. Set the right caliper to the sample event at the end of the interval. This is similar
to setting the left caliper.

3. Confirm the change by clicking the OK button in the control area.

After you confirm the new position, the solid calipers move to the current position
of the outlined calipers and change the data in all views to reflect the new interval.

Clicking Cancel or clicking with the right mouse button before the change is
confirmed restores the outlined calipers to the solid calipers.

Current Event Selection

If you want to get more information on an event in the time line or in the charts in
the Usage View (Graphs), you can click an event with the left button. The Event field
displays the following:

• Event number

• Description of the trap that triggered the event

72 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

In addition, the Call Stack View window updates to the appropriate times, stack
frames, and event type for the selected event. A black diamond-shaped icon appears
in the time line and charts to indicate the selected event. You can also select an event
using the event controls below the caliper controls; they work in similar fashion to the
caliper controls.

Time Line Scale Menu

The time line scale menu lets you change the number of seconds of the experiment
displayed in the time line area. The Full Scale selection displays the entire
experiment on the time line. The other selections are time values; for example, if you
select 1 min, the length of the time line displayed will span 1 minute.

Admin Menu

The Admin menu and its options are shown in Figure 5-3. The Admin menu has
selections common to the other WorkShop tools. The following selections are different
in the Performance Analyzer:

• Experiment...: lets you change the experiment directory and displays a dialog box
(see Figure 5-4, page 74).

• Save As Text...: records a text file with preference information selected in the view
and displays a dialog box. You can use the default file name or replace it with
another name in the Selection dialog box that displays. You can specify the
number of lines to be saved. The data can be saved as a new file or appended to
an existing one.

Figure 5-3 Performance Analyzer Admin Menu

007–2581–007 73

5: Performance Analyzer Reference

Figure 5-4 Experiment Window

Config Menu

The main purpose of the Config menu in the Performance Analyzer main window is
to let you select the performance metrics for display and for ranking the functions in
the function list. However, your selections also apply elsewhere, such as the Call
Graph View window.

The selections in the Config menu are as follows:

• Preferences...: brings up the Data Display Options window, which lets you select
which metrics display and whether they appear as absolute times and counts or

74 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

percentages. Remember, you can only select the types of metrics that were
collected in the experiment. You can also specify how C++ file names (if
appropriate) are to display:

– Demangled shows the function and its argument types.

– As Is uses the translator-generated C-style name.

– Function shows the function name only.

– Class Function shows the class and function.

For an illustration of the Data Display Options window, see Figure 5-5, page
76.

• Sort...: brings up the Sort Options window, which lets you establish the order in
which the functions appear; this helps you find questionable functions. The
default order of sorting (depending on availability) is:

1. Inclusive time or counts

2. Exclusive time or counts

3. Counts

For an illustration, see Figure 5-6, page 77.

The selections for the Display Data Options window and the Sort Options window
are similar. The difference between the inclusive (Incl.) and exclusive (Excl.)
metrics is that inclusive data includes data from other functions called by the
function, and exclusive data comes only from the function.

007–2581–007 75

5: Performance Analyzer Reference

Figure 5-5 Performance Analyzer Data Display Options

76 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Figure 5-6 Performance Analyzer Sort Options

The toggle buttons in both the Data Display Options and Sort Options windows are
as follows:

• Incl. Percentage, Excl. Percentage: percentage of the total time spent inside and
outside of the CPU (by a function, source line, or instruction).

007–2581–007 77

5: Performance Analyzer Reference

• Incl. Total Time, Excl. Total Time: Ttime spent inside and outside of the CPU (by
a function, source line, or instruction). It is calculated by multiplying the number
of times the PC appears in any call stack by the average time interval between call
stacks.

• Incl. CPU Time, Excl. CPU Time: time spent inside the CPU (by a function,
source line, or instruction). It is calculated by multiplying the number of times a
PC value appears in the profile by 10 ms.

• Incl. Ideal Time, Excl. Ideal Time: theoretical time spent by a function, source
line, or instruction under the assumption of one machine cycle per instruction. It
is useful to compare ideal time with actual.

• Incl. HWC Data, Excl. HWC Data: Number of events measured.

• Incl. Cycles, Excl. Cycles: number of machine cycles.

• Incl. Instr’ns, Excl. Instr’ns: number of instructions.

• Incl. FP operations, Excl. FP operations: number of floating-point operations.

• Incl. Load counts, Excl. Load counts: number of load operations.

• Incl. Store counts, Excl. Store counts: number of store operations.

• Incl. System calls, Excl. System calls: number of system calls.

• Incl. Bytes Read, Excl. Bytes Read: number of bytes in a read operation.

• Incl. Bytes Written, Excl. Bytes Written: number of bytes in a write operation.

• Incl. FP Exceptions, Excl. FP Exceptions: number of floating-point exceptions.

• Incl. Page faults, Excl. Page faults: number of page faults.

• Incl. bytes leaked, Excl. bytes leaked: Number of bytes leaked as a result of calls
to malloc that were not followed by calls to free.

• Incl. bytes malloc’d, Excl. bytes malloc’d: number of bytes allocated in malloc
operations.

• Incl. bytes MPI/Sent, Excl. bytes MPI/Sent: number of bytes of data sent by an
MPI routine.

• Incl. bytes MPI/Recv, Excl. bytes MPI/Recv: number of bytes of data received by
an MPI routine.

78 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

• Incl. MPI Send-Ops, Excl. MPI Send-Ops: number of times an MPI send routine
was executed.

• Incl. MPI Recv-Ops, Excl. MPI Recv-Ops: number of times an MPI receive
routine was executed.

• Incl. MPI Barriers, Excl. MPI Barriers: number of times an MPI_Barrier
routine was executed.

• Address: address of the function.

• Instr’n Coverage: a percentage of instructions (in the line or function) that were
executed at least once.

• Calls: number of times a function is called.

• Pixstats/Cycles-per instr’n: shows how efficient the code is written to avoid stalls
or to take advantage of super scalar operation. A cycles per-instruction count of 1.0
means that an instruction is executed every cycle. A count greater than 1.0 means
some instructions took more than one cycle. A count less that 1.0 means that
sometimes more than one instruction was executed at a given cycle. The R10000
and R12000 processors can potentially execute up to 4 instructions on every cycle.

In the disassembly view, this metric turns into pixstats, which displays basic
block boundaries and the cycle counts distribution for each instruction in the basic
block.

The following options are available on the Data Display Options window only:

• Display Data As:, Times/Counts, Percentages: lets you choose whether you want
to display your performance metrics as times and counts (for instance, the time a
function required to execute) or as percentages (the percentage of the program’s
time a function used). The default is Times/Counts.

• Hide 0 Functions in Function List and Hide 0 Functions in Graph: lets you filter
functions with 0 counts from the list or graph.

• Incl. Percentage: show inclusive percentages on the Call Graph View window.

• Incl. Total Time: show inclusive total time on the Call Graph View window.

• Incl. CPU Time: show inclusive CPU time on the Call Graph View window.

• Incl. Ideal Time: show inclusive ideal time on the Call Graph View window.

007–2581–007 79

5: Performance Analyzer Reference

• Incl. HWC Data: show inclusive hardware counter data on the Call Graph View
window.

• Incl. System calls: show inclusive system calls on the Call Graph View window.

• Incl. Bytes Read: show inclusive bytes read on the Call Graph View window.

• Incl. Bytes Written: show inclusive bytes written on the Call Graph View
window.

• Incl. FP Exceptions: show inclusive floating–point exceptions on the Call Graph
View window.

• Incl. Page faults: show inclusive page faults on the Call Graph View window.

• Incl. bytes leaked: show inclusive bytes leaked as a result of malloc operations
not followed by matching free operations on the Call Graph View window.

• Incl. bytes malloc’d: show inclusive bytes allocated with a malloc operation on
the Call Graph View window.

• Calls: show the number of calls to that function on the Call Graph View window.

The following option is available on the Sort Options window only:

• Alphabetic: sort alphabetically by function name.

Views Menu

The Views menu in the Performance Analyzer (see Figure 5-7, page 82) provides the
following selections for viewing the performance data from an experiment. Each view
displays the data for the time interval bracketed by the calipers in the time line.

• Usage View (Graphs): displays resource usage charts and event charts. See
"Usage View (Graphs)", page 83.

• Usage View (Numerical): displays the aggregate values of resources used. See
"Usage View (Numerical) Window", page 89.

• I/O View: displays I/O events. See "The I/O View Window", page 91.

• MPI Stats View (Graphs): displays MPI information in the form of graphs. See
"The MPI Stats View (Graphs) Window", page 92.

80 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

• MPI Stats View (Numerical): displays MPI information in the form of text. See
"The MPI Stats View (Numerical) Window", page 94.

• Call Graph View: displays a call graph that shows functions and calls and their
associated performance metrics. See "The Call Graph View Window", page 95.

• Butterfly View: displays the callers and callees of the function. See "Butterfly
View", page 103.

• Leak View: displays individual leaks and their associated call stacks. See "Using
Malloc Error View, Leak View, and Malloc View", page 104.

• Malloc View: displays individual malloc routines and their associated call
stacks. See "Using Malloc Error View, Leak View, and Malloc View", page 104.

• Malloc Error View: displays errors involving memory leaks and bad calls to
free, indicating error locations and the total number of errors. See "Using Malloc
Error View, Leak View, and Malloc View", page 104.

• Heap View: displays a map of heap memory showing malloc, realloc, free,
and bad free operations. See "Analyzing the Memory Map with Heap View",
page 107.

• Call Stack View: displays the call stack for the selected event and the
corresponding event type. See "The Call Stack Window", page 111.

• Working Set View: measures the coverage of the DSOs that make up the
executable, noting which were not used. See "Working Set View", page 26.

007–2581–007 81

5: Performance Analyzer Reference

Figure 5-7 Performance Analyzer Views Menu

Executable Menu

If you enabled Track Exec’d Processes for the current experiment, the Executable
menu will be enabled and will contain selections for any execed processes. (The
Track Exec’d Processes selection is in the Performance panel of the Executable
menu.) These selections let you see the performance results for the other executables.

Note: The Executable menu is not enabled by an experiment generated by the Select
Task submenu in the Perf menu of the WorkShop Debugger window, the ssrun(1)
command, or any other method using SpeedShop functionality. It can only be enabled
by experiments generated in older versions of WorkShop.

Thread Menu

If your process forked any processes, the Thread menu is activated and contains
selections corresponding to the different threads. Selecting a thread displays its
performance results.

82 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Note: The Thread menu is not enabled by an experiment generated by the Select
Task submenu in the Perf menu of the WorkShop Debugger window, the ssrun(1)
command, or any other method using SpeedShop functionality. It can only be enabled
by experiments generated in older versions of WorkShop.

Usage View (Graphs)
The Usage View (Graphs) window displays resource usage and event charts
containing the performance data from the experiment. These charts show resource
usage over time and indicate where sample events took place. Sample events are
shown as vertical lines. Figure 5-8, page 84, shows the Usage View (Graphs) window.

007–2581–007 83

5: Performance Analyzer Reference

Figure 5-8 Usage View (Graphs) Window

84 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Charts in the Usage View (Graphs) Window

The available charts in the Usage View (Graphs) Window are as follows:

• User versus system time: shows CPU use. Whenever the system clock ticks, the
process occupying the CPU is charged for the entire ten millisecond interval. The
time is charged either as user or system time, depending on whether the process is
executing in user mode or system mode. The graph provides these annotations to
show how time is spent during an experiment’s process: Running (user mode),
Running (system mode), Running (graphics mode), Waiting (for block I/O),
Waiting (raw I/O, paging), Waiting (for memory), Waiting (in select), Waiting in
CPU queue, Sleep (for resource), Sleep (for stream monitor), and Stopped (job
control).

• Page Faults: shows the number of page faults that occur within a process. Major
faults are those that require a physical read operation to satisfy; minor faults are
those where the necessary page is already in memory but not mapped into the
process address space.

Each major fault in a process takes approximately 10 to 50 milliseconds. A high
page-fault rate is an indication of a memory-bound situation.

• Context Switch: shows the number of voluntary and involuntary context switches
in the life of the process.

Voluntary context switches are attributable to an operation caused by the process
itself, such as a disk access or waiting for user input. These occur when the
process can no longer use the CPU. A high number of voluntary context switches
indicates that the process is spending a lot of time waiting for a resource other
than the CPU.

Involuntary context switches happen when the system scheduler gives the CPU to
another process, even if the target process is able to use it. A high number of
involuntary context switches indicates a CPU contention problem.

• KBytes Read and KBytes Written: shows the number of bytes transferred
between the process and the operating system buffers, network connections, or
physical devices. KBytes Read are transferred into the process address space;
KBytes Written are transferred out of the process address space. A high
byte-transfer rate indicates an I/O-bound process.

• read() calls and write() calls: shows the number of read and write system calls
made by the process.

007–2581–007 85

5: Performance Analyzer Reference

• poll() calls and ioctl() calls: shows the combined number of poll or select system
calls (used in I/O multiplexing) and the number of I/O control system calls made
by the process.

• System Calls: shows the total number of system calls made by the process. This
includes the counts for the calls shown on the other charts.

• Signals: shows the total number of signals received by the process.

• Total Size and Resident Size: shows the total size of the process in pages and the
number of pages resident in memory at the end of the time interval when the data
is read. It is different from the other charts in that it shows the absolute size
measured at the end of the interval and not an incremental count for that interval.

If you see the process total size increasing over time when your program should
be in a steady state, the process most likely has leaks and you should analyze it
using Leak View and Malloc View.

Getting Event Information from the Usage View (Graphs) Window

The charts only indicate trends. To get detailed data, click the relevant area on the
chart; the data displays at the top of the window. The left mouse button displays
event data; the right mouse button displays interval data.

When you click the left mouse button on a sample event in a chart, the following
actions take place:

• The point becomes selected, as indicated by the diamond marker above it. The
marker appears in the time line, resource usage chart, and Usage View (Graphs)
charts if the window is open.

• The current event line at the top of the window identifies the event and displays
its time.

• The call stack that corresponds to this sample point is displayed in the Call Stack
window (see "The Call Stack Window", page 111).

Clicking a graph with the right mouse button displays the values for the interval if a
collection is specified. If a collection is not specified, clicking a graph with the right
mouse button displays the interval bracketed by the nearest sample events.

86 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

The Process Meter Window
The process meter lets you observe resource usage for a running process without
conducting an experiment. To call the process meter, select Process Meter from the
Views menu in the WorkShop Debugger window.

A Process Meter window with data and its menus displayed appears in Figure 5-9,
page 88. The Process Meter window uses the same Admin menu as the WorkShop
Debugger tools.

The Charts menu options display the selected stripcharts in the Process Meter
window.

The Scale menu adjusts the time scale in the stripchart display area such that the time
selected becomes the end value.

You can select which usage charts and event charts display. You can also display
sample point information in the Status field by clicking within the charts.

007–2581–007 87

5: Performance Analyzer Reference

Stripchart area

Status field

Figure 5-9 The Process Meter Window with Major Menus Displayed

88 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Usage View (Numerical) Window
The Usage View (Numerical) window (see Figure 5-10, page 90) shows detailed,
process-specific resource usage information in a textual format for a specified interval.
The interval is defined by the calipers in the time line area of the Performance
Analyzer main window. To display the Usage View (Numerical) window, select
Usage View (Numerical) from the Views menu.

The top of the window identifies the beginning and ending events for the interval.
The middle portion of the window shows resource usage for the target executable.
The bottom panel shows resource usage on a system-wide basis. Data is shown both
as total values and as per-second rates.

007–2581–007 89

5: Performance Analyzer Reference

Analysis
interval

Process
metrics

System-wide
metrics

Figure 5-10 The Usage View (Numerical) Window

90 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

The I/O View Window
The I/O View window helps you determine the problems in an I/O-bound process. It
produces graphs of all I/O system calls for up to 10 files involved in I/O. Clicking an
I/O event with the left mouse button displays information about it in the event
identification field at the top of the I/O View window. See Figure 5-11.

For a list of the system calls traced, see "I/O Trace", page 51.

Event identification field

File field

I/O Sys Call chart

File field

I/O Sys Call chart

File field

I/O Sys Call chart

File field

I/O Sys Call chart

Figure 5-11 The I/O View Window

007–2581–007 91

5: Performance Analyzer Reference

The MPI Stats View (Graphs) Window
The MPI Stats View (Graphs) window displays information on as many as 32 aspects
of an MPI program in graph format. For an illustration of the window, see Figure 2-6,
page 14.

If a graph contains nothing but zeros, it is not displayed.

In the following list of information that may be displayed in the graphs, shared
memory refers to memory in a multiprocessor system that can be accessed by any
processor. The High Performance Parallel Interface (HIPPI) is a network link, often
used to connect computers; it is slower than shared memory transfers but faster than
TCP/IP transfers. TCP/IP is a networking protocol that moves data between two
systems on the Internet.

Collective calls are those that move a message from one processor to multiple
processors or from multiple processors to one processor. MPI_Bcast(3) is a collective
call. A point-to-point call, such as MPI_Send(3) or MPI_Ssend(3), moves a message
from one processor to one processor.

Note: The MPI tracing experiment does not track down communicators, and it does
not trace all collective operations. This may also affect the translation of some events
using ssfilter(1).

The following information can be displayed in the MPI Stats View (Graphs) window.

• Retries in allocating MPI headers per procedure for collective calls

• Retries in allocating MPI headers per host for collective calls.

• Retries in allocating MPI headers per procedure for point–to–point calls

• Retries in allocating MPI headers per host for point–to–point calls

• Retries in allocating MPI buffers per procedure for collective calls

• Retries in allocating MPI buffers per host for collective calls

• Retries in allocating MPI buffers per procedure for point–to–point calls

• Retries in allocating MPI buffers per host for point–to–point calls

• The number of send requests using shared memory for collective calls

• The number of send requests using shared memory for point–to–point calls

92 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

• The number of send requests using a HIPPI bypass for collective calls

• The number of send requests using a HIPPI bypass for point–to–point calls

• The number of send requests using TCP/IP for collective calls

• The number of send requests using TCP/IP for point–to–point calls

• The number of data buffers sent using shared memory for point–to-point calls

• The number of data buffers sent using shared memory for collective calls

• The number of data buffers sent using a HIPPI bypass for point–to-point calls

• The number of data buffers sent using a HIPPI bypass for collective calls

• The number of data buffers sent using TCP/IP for point–to-point calls

• The number of data buffers sent using TCP/IP for collective calls

• The number of message headers sent using shared memory for point–to-point calls

• The number of message headers sent using shared memory for collective calls

• The number of message headers sent using a HIPPI bypass for point–to-point calls

• The number of message headers sent using a HIPPI bypass for collective calls

• The number of message headers sent using TCP/IP for point–to-point calls

• The number of message headers sent using TCP/IP for collective calls

• The total number of bytes sent using shared memory for point–to-point calls

• The total number of bytes sent using shared memory for collective calls

• The total number of bytes sent using a HIPPI bypass for point–to-point calls

• The total number of bytes sent using a HIPPI bypass for collective calls

• The total number of bytes sent using TCP/IP for point–to-point calls

• The total number of bytes sent using TCP/IP for collective calls

007–2581–007 93

5: Performance Analyzer Reference

The MPI Stats View (Numerical) Window
The MPI Stats View (Numerical) window displays the same information as the MPI
Stats View (Graphs) window (see the preceding section), but it presents it in text
form. For an illustration, see Figure 2-7, page 16.

Unlike the MPI Stats View (Graphs) window, this window includes all of the data,
whether or not it is zero.

The Parallel Overhead View Window
The Parallel Overhead View window shows the overhead incurred by a parallel
program. MPI, OpenMP, and pthread parallel programming models are supported.
The following figure illustrates the overhead for the total.f Fortran program,
located in the /usr/demos/WorkShop/mp directory.

Figure 5-12 Overhead View

The following list describes each of the data items for this OpenMP demo. Other
programming models generate slightly different data.

• Parallelization Overhead: The percentage of the total overhead time spent making
the code parallel. In the example, this time is negligible.

94 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

• Load Imbalance: The percentage of the overhead time caused by load imbalance.
Load imbalance means the parallel work is not evenly distributed among the
processors, causing some processors to wait while the others finish their tasks.

• Insufficient Parallelism: The percentage of the overhead time spent in regions of
the code that are not parallel.

• Barrier Loss: The percentage of overhead time consumed by the barrier
mechanism. This is not the time spent waiting at a barrier.

• Synchronization Loss: The percentage of the overhead time consumed by
synchronization mechanisms other than barriers.

• Other Model-specific Overhead: The percentage of the overhead time due to
other operations of the parallel programming model, in this case OpenMP.

Overhead data is collected automatically when you create an experiment file. To see
the total picture, aggregate the experiment files from each processor into a single file,
as follows:

% ssaggregate -e total.usertime* -o userout

Then view the single output file, userout, through cvperf.

The Call Graph View Window
The Call Graph View window displays the functions as nodes, annotated with
performance metrics, and their calls as connecting arcs (see Figure 5-13, page 96).
Bring up the Call Graph View window by selecting Call Graph View from the
Views menu.

007–2581–007 95

5: Performance Analyzer Reference

Display area

Call graph
control area

Figure 5-13 Call Graph View with Display Controls

Since a call graph can get quite complicated, the Performance Analyzer provides
various controls for changing the graph display. The Preferences selection in the
Config menu lets you specify which performance metrics display and also lets you
filter out unused functions and arcs. There are two node menus in the display area;
these let you filter nodes individually or as a selected group. The top row of display
controls is common to all MIPSpro WorkShop graph displays. It lets you change scale,
alignment, and orientation. The bottom row of controls lets you define the form of the
graph. You can view the call graph as a butterfly graph, showing the functions that
call and are called by a single function, or as a chain graph between two functions.

Special Node Icons

Although rare, nodes can be annotated with two types of graphic symbols:

• A right-pointing arrow in a node indicates an indirect call site. It represents a call
through a function pointer. In such a case, the called function cannot be
determined by the current methods.

• A circle in a node indicates a call to a shared library with a data-space jump table.
The node name is the name of the routine called, but the actual target in the
shared library cannot be identified. The table might be switched at run time,
directing calls to different routines.

96 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Annotating Nodes and Arcs

You can specify which performance metrics appear in the call graph, as described in
the following list:

• Node Annotations: to specify the performance metrics that display inside a node,
use the Preferences dialog box in the Config menu from the Performance
Analyzer main view. (For an illustration of the Data Display Options window, see
Figure 5-5, page 76.)

• Arc Annotations: arc annotations are specified by selecting Preferences... from the
Config menu in the Call Graph View window. (For an illustration of the Data
Display Options window, see Figure 5-5, page 76.) You can display the counts on
the arcs (the lines between the functions). You can also display the percentage of
calls to a function broken down by incoming arc. For an explanation of the
performance metric items, see "Config Menu", page 74.

Filtering Nodes and Arcs

You can specify which nodes and arcs appear in the call graph as described in the
following list:

• Call Graph Preferences Filtering Options: the Preferences selection in the Call
Graph View Config menu also lets you hide functions and arcs that have 0 calls.
See Figure 5-5, page 76.

• Node Menu: there are two node menus for filtering nodes in the graph: the Node
menu and the Selected Nodes menu. Both menus are shown in Figure 5-14.

The Node menu lets you filter a single node. It is displayed by holding down the
right mouse button while the cursor is over the node. The name of the selected
node appears at the top of the menu.

007–2581–007 97

5: Performance Analyzer Reference

Selected Nodes menu

Node menu

Figure 5-14 Node Menus

The following list describes the Node menu selections:

– Hide Node: removes the selected node from the call graph display

– Collapse Subgraph: removes the nodes called by the selected node (and
subsequently called nodes) from the call graph display

– Show Immediate Children: displays the functions called by the selected node

– Show Parents: displays all the functions that call the selected node

– Show All Children: displays all the functions and the descendants called by
the selected node

• Selected Nodes Menu: the Selected Nodes menu lets you filter multiple nodes.
You can select multiple nodes by dragging a selection rectangle around them. You
can also Shift-click a node, and it will be selected along with all the nodes that it
calls. Holding down the right mouse button anywhere in the graph, except over a
node, displays the Selected Nodes menu. The following list describes the menu
selections:

– Hide: removes the selected nodes from the call graph display

98 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

– Collapse: removes the nodes called by the selected nodes (and descendant
nodes) from the call graph display

– Expand: displays all the functions (descendants) called by the selected nodes

Filtering Nodes through the Display Controls

The lower row of controls in the Call Graph View panel helps you reduce the
complexity of a busy call graph.

You can perform these display operations:

• Butterfly: Presents the call graph from the perspective of a single node (the target
node), showing only those nodes that call it or are called by it. Functions that call
it are displayed to the left and functions it calls are on the right. Selecting any
node and clicking Butterfly redraws the display with the selected node in the
center. The selected node is displayed and highlighted in the function list.

• Chain: lets you display all paths between a given source node and target node.
The Chain dialog box is shown in Figure 5-15, page 99. You designate the source
function by selecting it or entering it in the Source Node field and clicking the
Make Source button. Similarly, the target function is selected or entered and then
established by clicking the Make Target button. If you want to filter out paths that
go through nodes and arcs with zero counts, click the toggle. After these
selections are made, click OK.

Figure 5-15 Chain Dialog Box

007–2581–007 99

5: Performance Analyzer Reference

• Prune Chains: displays a dialog box that provides two selections for filtering
paths from the call graph (see Figure 5-16).

The Prune Chains button is only activated when a chain mode operation has been
performed. The dialog box selections are:

– The Hide Paths Through toggle removes from view all paths that go through
the specified node. You must have a current node specified. Note that this
operation is irreversible; you will not be able to redisplay the hidden paths
unless you perform the Chain operation again.

– The Hide Paths Not Through toggle removes from view all paths except the
ones that go through the specified node. This operation is irreversible.

Figure 5-16 Prune Chains Dialog Box

• Important Children: lets you focus on a function and its descendants and set
thresholds to filter the descendants. You can filter the descendants either by
percentage of the caller’s time or by percentage of the total time. The Threshold
key field identifies the type of performance time data used as the threshold. See
Figure 5-17.

100 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Figure 5-17 Show Important Children Dialog Box

• Important Parents: Lets you focus on the parents of a function, that is, the
functions that call it. You can set thresholds to filter only those parents making a
significant number of calls, by percentage of the caller’s time, or by percentage of
the total time. The Threshold key field identifies the type of performance time
data used as the threshold. See Figure 5-18.

Figure 5-18 Show Important Parents Dialog Box

007–2581–007 101

5: Performance Analyzer Reference

• Clear Graph: removes all nodes and arcs from the call graph.

Other Manipulation of the Call Graph

The Call Graph View window provides facilities for changing the display of the call
graph without changing the data content.

Geometric Manipulation through the Control Panel

The controls for changing the display of the call graph are in the upper row of the
control panel (see Figure 5-19, page 102).

Zoom menu

Zoom Out button

Zoom In button

Overview button

Realign button

Rotate button

Figure 5-19 Call Graph View Controls for Geometric Manipulation

These controls are:

• Zoom menu button: shows the current scale of the graph. If you click this button,
a pop-up menu appears displaying other available scales. The scaling range is
between 15% and 200% of the normal (100%) size.

• Zoom out button: resets the scale of the graph to the next (available) smaller size
in the range.

• Zoom in button: resets the scale of the graph to the next (available) larger size in
the range.

• Overview button: invokes an overview pop-up display that shows a scaled down
representation of the graph. The nodes appear in the analogous places on the
overview pop-up, and a white outline can be used to position the main graph
relative to the pop-up. Alternatively, the main graph may be repositioned by
using its scroll bars.

102 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

• Realign button: redraws the graph, restoring the positions of any nodes that were
repositioned.

• Rotate button: flips the orientation of the graph between horizontal (calling nodes
at the left) and vertical (calling nodes at the top).

For more information on the graphical controls, see the ProDev WorkShop: Overview
manual.

Using the Mouse in the Call Graph View

You can move an individual node by dragging it using the middle mouse button.
This helps reveal obscured arc annotations.

You can select multiple nodes by dragging a selection rectangle around them.
Shift-clicking a node selects the node along with all the nodes that it calls.

Selecting Nodes from the Function List

You can select functions from the function list of the Performance Analyzer window
to be highlighted in the call graph. Select a node from the list and then click the Show
Node button in the Function List window. The node will be highlighted in the graph.

Butterfly View
The Butterfly View shows a selected function, the functions that called it (the
Immediate Parents), and the functions it calls (the Immediate Children). For an
illustration, see Figure 2-11, page 20.

You can change the selected function by clicking on a new one in the function list
area of the main Performance Analyzer window.

The Attrib.% column shows the percentage of the sort key (inclusive time, in the
illustration) attributed to each caller or callee. The sort key varies according to the
view; on an I/O View, for instance, it is by default inclusive bytes read. You can
change the criteria for what is displayed in the columns and how the list is ordered
by using the Preferences... and Sort... options, both of which are accessed through
the Config menu on the main Performance Analyzer menu.

If you want to save the data as text, select Save As PostScript... from the Admin
menu.

007–2581–007 103

5: Performance Analyzer Reference

Analyzing Memory Problems
The Performance Analyzer provides four tools for analyzing memory problems:
Malloc Error View, Leak View, Malloc View, and Heap View. Setting up and
running a memory analysis experiment is the same for all four tools. After you have
conducted the experiment, you can apply any of these tools.

A memory leak occurs when memory that is allocated in the program in not freed
later. As a result, the size of the program grows unnecessarily.

Using Malloc Error View, Leak View, and Malloc View

After you have run a memory experiment using the Performance Analyzer, you can
analyze the results using Malloc Error View (see Figure 5-20, page 105), Leak View
(see Figure 5-21, page 106), or Malloc View (see Figure 5-22, page 106). Malloc View
is the most general, showing all memory allocation operations. Malloc Error View
shows only those memory operations that caused problems, identifying the cause of
the problem and how many times it occurred. Leak View displays each memory leak
that occurs in your executable, its size, the number of times the leak occurred at that
location during the experiment, and the corresponding call stack (when you select the
leak).

Each of these views has three major areas:

• Identification area: this indicates which operation has been selected from the list.
Malloc View identifies malloc routines, indicating the number of malloc
locations and the size of all malloc operations in bytes. Malloc Error View
identifies leaks and bad free routines, indicating the number of error locations
and how many errors occurred in total. Leak View identifies leaks, indicating the
number of leak locations and the total number of bytes leaked.

• List area: this is a list of the appropriate types of memory operations according to
the type of view. Clicking an item in the list identifies it at the top of the window
and displays its call stack at the bottom of the list. The list displays in order of size.

• Call stack area: this displays the contents of the call stack when the selected
memory operation occurred. Figure 5-23, page 107, shows a typical Source View
window with leak annotations. (You can change the annotations by using the
Preferences... selection in the Performance Analyzer Config menu). Colored
boxes draw attention to high counts.

104 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Note: As an alternative to viewing leaks in Leak View, you can save one or more
memory operations as a text file. Choose Save As Text... from the Admin menu,
select one or more entries, and view them separately in a text file along with their call
stacks. Multiple items are selected by clicking the first and then either dragging the
cursor over the others or shift-clicking the last in the group to be selected.

Identification area

List area

Call stack area

Figure 5-20 Malloc Error View Window with an Admin Menu

007–2581–007 105

5: Performance Analyzer Reference

Identification area

List area

Call stack area

Figure 5-21 Leak View Window with an Admin Menu

Identification area

List area

Call stack area

Figure 5-22 Malloc View Window with Admin Menu

106 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Memory operation
annotations

Source line corresponding
to call stack frame

Annotation
identifiers

Figure 5-23 Source View Window with Memory Analysis Annotations

Analyzing the Memory Map with Heap View

The Heap View window lets you analyze data from experiments based on the
Memory Leak Trace task. The Heap View window provides a memory map that
shows memory problems occurring in the time interval defined by the calipers in the
Performance Analyzer window. The map indicates the following memory block
conditions:

• malloc: reserved memory space

• realloc: reallocated space

• free: open space

• error: bad free space

• unused space

In addition to the Heap View memory map, you can analyze memory leak data using
these other tools:

• If you select a memory problem in the map and bring up the Call Stack window,
it will show you where the selected problem took place and the state of the call
stack at that time.

• The Source View window shows exclusive and inclusive malloc routines and
leaks and the number of bytes used by source line.

007–2581–007 107

5: Performance Analyzer Reference

Heap View Window

A typical Heap View window with its parts labeled appears in Figure 5-24, page 108.

Heap size data

Map key

Heap map

Search field

Event list area

Call stack area

Memory event
indicators

Zoom Out button
Zoom In button

Malloc Errors

Figure 5-24 Heap View Window

The following list describes the major features of a Heap View window:

• Map key: appears at the top of the heap map area to identify blocks by color. The
actual colors depend on your color scheme.

• Heap map: shows heap memory as a continuous, wrapping, horizontal rectangle.
The memory addresses begin at the upper left corner and progress from left to
right, row by row. The rectangle is broken up into color-coded segments according
to memory use status. Clicking a highlighted area in the heap map identifies the

108 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

type of problem, the memory address where it occurred, its size in the event list
area, and the associated call stack in the call stack display area.

Note in Figure 5-24, page 108, that there are only a few problems in the memory
at the lower addresses and many more at the higher addresses.

• Memory event indicators: the events appear color-coded in the scroll bar. Clicking
an indicator with the middle button scrolls the display to the selected problem.

• Search field: provides two functions:

– If you enter a memory address in the field, the corresponding position will be
highlighted in the heap map. If there was a problem at that location, it will be
identified in the event list area. If there is no problem, the event list area
displays the address at the beginning of the memory block and its size.

– If you hold down the left mouse button and position the cursor in the heap
map, the corresponding address will display in the Search field.

• Event list area: displays the events occurring in the selected block. If only one
event was received at the given address, its address is shown by default. If more
than one event is shown, double-clicking an event will display its corresponding
call stack.

• Call stack area: displays the call stack corresponding to the event highlighted in
the event list area.

• Malloc Errors button: causes malloc errors and their addresses to display in the
event list area. You can then enter the address of the malloc error in the Search
field and press the Enter key to see the error’s malloc information and its
associated call stack.

• Zoom in button: an upward-pointing arrow, it redisplays the heap area at twice
the current size of the display. If you reach the limit, an error message displays.

• Zoom out button: a downward-pointing arrow, it redisplays the heap area at half
the current size (to a limit of one pixel per byte). If you reach the limit, an error
message displays.

Source View malloc Annotations

Like Malloc View, if you double-click a line in the call stack area of the Heap View
window, the Source View window displays the portion of code containing the

007–2581–007 109

5: Performance Analyzer Reference

corresponding line. The line is highlighted and indicated by a caret (^), with the
number of bytes used by malloc in the annotation column. See Figure 5-23, page 107.

Saving Heap View Data as Text

Selecting Save As Text... from the Admin menu in Heap View lets you save the heap
information or the event list in a text file. When you first select Save As Text..., a
dialog box displays asking you to specify heap information or the event list. After
you make your selection, the Save Text dialog box displays (see Figure 5-25, page
110). This lets you select the file name in which to save the Heap View data. The
default file name is experiment-filename.out. When you click OK, the data for the
current caliper setting and the list of unmatched free routines, if any, are appended
to the specified file.

Note: The Save As Text... selection in the File menu for the Source View saves the
current file. No file name default is provided, and the file that you name will be
overwritten.

Figure 5-25 Heap View Save Text Dialog Boxes

110 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

The Call Stack Window
The Call Stack window, which is accessed from the Performance Analyzer Views
menu, lets you get call stack information for a sample event selected from one of the
Performance Analyzer views. See Figure 5-26, page 111.

Event identification area

Call stack area

Event type

Figure 5-26 Performance Analyzer Call Stack Window

There are three main areas in the Call Stack window:

• Event identification area: displays the number of the event, its time stamp, and
the time within the experiment. If you have a multiprocessor experiment, the
thread will be indicated here.

• Call stack area: displays the contents of the call stack when the sample event took
place.

• Event type area: highlights the type of event and shows the thread in which it
was defined. It indicates, in parentheses, whether the sample was taken in all
threads or the indicated thread only.

007–2581–007 111

5: Performance Analyzer Reference

Analyzing Working Sets
If you suspect a problem with frequent page faults or instruction cache misses,
conduct a working set analysis to determine if rearranging the order of your functions
will improve performance.

The term working set refers to those executable pages, functions, and instructions that
are actually brought into memory during a phase or operation of the executable. If
more pages are required than can fit in memory at the same time, page thrashing (that
is, swapping in and out of pages) may result, slowing down your program. Strategic
selection of which pages functions appear on can dramatically improve performance
in such cases.

You do this by creating a file containing a list of functions, their sizes, and addresses
called a cord mapping file. The functions should be ordered so as to optimize page
swapping efficiency. This file is then fed into the cord utility, which rearranges the
functions according to the order suggested in the cord mapping file. See the cord(1)
man page for more information.

Working set analysis is appropriate for:

• Programs that run for a long time

• Programs whose operation comes in distinct phases

• Distributed shared objects (DSOs) that are shared among several programs

Working Set Analysis Overview

WorkShop provides two tools to help you conduct working set analysis:

• Working Set View is part of the Performance Analyzer. It displays the working
set of pages for each DSO that you select and indicates the degree to which the
pages are used.

• The cord analyzer, sscord(1), is separate from the Performance Analyzer and is
invoked by typing sscord at the command line. It displays a list of the working
sets that make up a cord mapping file, shows their utilization efficiency, and, most
importantly, computes an optimized ordering to reduce working sets.

Figure 5-27, page 113, presents an overview of the process of conducting working set
analysis.

112 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

cord mapping file

1. Run one or more "Get Ideal Time" Performance
Analyzer experiment(s) and set sample traps to
delineate phases/operations.

2. Run Working Set View in Performance Analyzer
for each caliper-pair setting in each experiment and
save individual working sets and initial version
of cord mapping file.

3. In a text editor, create a working set list with one
.ws file per line, ordered with the most important sets
last.

testnnnn data

file(s).ws

working set list

4. If desired, run the Cord Analyzer (cvcord) and
load the cord mapping file and working set list.
Generate union and/or intersection sets and write out
a new working set list. If you don't need to construct
unions or intersections, go to Step 6.

5. In a text editor edit working set list to
have proper order.

6. Run the Cord Analyzer again to construct cording
feedback, that is, a new optimized cord mapping file.

7. Run cord using the new feedback file to produce
an optimized executable file.

Optimized executable file

Figure 5-27 Working Set Analysis Process

First, conduct one or more Performance Analyzer experiments using the Ideal
Time/Pixie task. Set sample traps at the beginning and end of each operation or
phase that represents a distinct task. You can run additional experiments on the same
executable to collect data for other situations in which it can be used.

007–2581–007 113

5: Performance Analyzer Reference

After you have collected the data for the experiments, run the Performance Analyzer
and select Working Set View. Save the working set for each phase or operation that
you want to improve. Do this by setting the calipers to bracket each phase and select
Save Working Set from the Admin menu.

Select Save Cord Map File to save the cord mapping file (for all runs and caliper
settings). This need only be done once.

The next step is to create the working set list file, which contains all of the working sets
you want to analyze using the cord analyzer. Create the working set list file in a text
editor, specifying one line for each working set and in reverse order of priority, that
is, the most important comes last.

The working set list and the cord mapping file serve as input to the cord analyzer.
The working set list provides the cord analyzer with working sets to be improved.
The cord mapping file provides a list of all the functions in the executable. The cord
analyzer displays the list of working sets and their utilization efficiency. It lets you do
the following:

• Construct gray-code cording feedback (the preferred method).

• Examine the page layout and the efficiency of each working set with respect to the
original ordering of the executable.

• Construct union and intersection sets as desired.

• View the efficiency of a different ordering.

• Construct a new cord mapping file as input to the cord utility.

If you have a new order that you would like to try out, edit your working set list file
in the desired order, submit it to the cord analyzer, and save a new cord mapping file
for input to cord.

Working Set View

The Working Set View measures the coverage of the dynamic shared objects (DSOs)
that make up your executable (see Figure 5-28, page 115). It indicates instructions,
functions, and pages that were not used when the experiment was run. It shows the
coverage results for each DSO in the DSO list area. Clicking a DSO in the list displays
its pages with color-coding to indicate the coverage of the page.

114 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

DSO list area

DSO identification
area

Page display area
(for selected DSO)

Figure 5-28 Working Set View

DSO List Area

The DSO list area displays coverage information for each DSO used by the
executable. It has the following columns:

• Text or DSO Region Name: identifies the DSO.

• Ideal Time: lists the percentage of ideal time for the caliper setting attributed to
the DSO.

007–2581–007 115

5: Performance Analyzer Reference

• Counts of: Instrs. : lists the number of instructions contained in the DSO.

• Counts of: Funcs. : lists the number of functions contained in the DSO.

• Counts of: Pages : lists the number of pages occupied by the DSO.

• % Coverage of: Instrs.: lists the percentage obtained by dividing the number of
instructions used by the total number of instructions in the DSO.

• % Coverage of: Funcs. : lists the percentage obtained by dividing the number of
functions used by the total number of functions in the DSO.

• % Coverage of: Pages : lists the coverage obtained by dividing the number of
pages touched by the total pages in the DSO.

• Avg. Covg. of Touched: Pages: lists the coverage obtained by dividing the
number of instructions executed by the total number of instructions on those
pages touched by the DSO.

• Avg. Covg. of Touched: Funcs: lists the average percentage use of instructions
within used functions.

The Search field lets you perform incremental searches to find DSOs in the DSO list.
(An incremental search goes to the immediately matching target as you enter each
character.)

DSO Identification Area

The DSO identification area shows the address, size, and page information for the
selected DSO. It also displays the address, number of instructions, and coverage for
the page selected in the page display area.

Page Display Area

The page display area at the bottom of the Working Set View window shows all the
pages in the DSO and indicates untouched pages, unused functions, executed
instructions, unused instructions, and table data (related to rld(1)). It also includes a
color legend at the top to indicate how pages are used.

Clicking a page displays its address, number of instructions, and coverage data in the
identification area. Clicking a function in the function list of the main Performance
Analyzer window highlights (using a solid rectangle) the page on which the function
begins. Clicking the left mouse button on a page indicates the first function on the
page by highlighting it in the function list area of the Performance Analyzer window.

116 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

Similarly, clicking the middle button on a page highlights the function at the middle
of the page, and clicking the right button highlights the button at the end of the page.
For all three button clicks, the page containing the beginning of the function becomes
highlighted. Note that left clicks typically highlight the page before the one clicked,
since the function containing the first instruction usually starts on the previous page.

Admin Menu

The Admin menu of the Working Set View window has the following menu
selections:

• Save Working Set: Saves the working set for the selected DSO. You can
incorporate this file into a working set list file to be used as input to the Cord
Analyzer.

• Save Cord Map File: saves all of the functions in the DSOs in a cord mapping file
for input to the Cord Analyzer. This file corresponds to the feedback file discussed
on the cord(1) man page.

• Save Summary Data as Text: saves a text file containing the coverage statistics in
the DSO list area.

• Save Page Data as Text: saves a text file containing the coverage statistics for each
page in the DSO.

• Save All Data as Text: saves a text file containing the coverage statistics in the
DSO list area and for each page in the selected DSO.

• Close: closes the Working Set View window.

Cord Analyzer

The cord analyzer is not actually part of the Performance Analyzer; it is discussed in
this part of the manual because it works in conjunction with the Working Set View.
The cord analyzer lets you explore the working set behavior of an executable or
shared library (DSO). With it you can construct a feedback file for input to the
cord(1) utility to generate an executable with improved working set behavior.

Invoke the cord analyzer at the command line using the following syntax:

sscord -fb fb_file -wsl ws_list_file -ws ws_file -v|-V executable

007–2581–007 117

5: Performance Analyzer Reference

The sscord command accepts the following arguments:

• -fb fb_file: specifies a single text file to use as a feedback file for the executable. It
should have been generated either from a Performance Analyzer experiment on
the executable or DSO, or from the cord analyzer. If no -fb argument is given, the
feedback file name will be generated as executable.fb.

• -wsl ws_list_file: specifies a single text file name as input; the working set list
consists of the working set files whose names appear in the input file. Each file
name should be on a single line.

• -ws ws_file: specifies a single working set file name.

• -v|-V: verbose output. If specified, mismatches between working sets and the
executable or DSO are noted.

• executable: specifies a single executable file name as input.

The Cord Analyzer window is shown in Figure 5-29, page 119, with its major areas
and menus labeled.

Working Set Display Area

The working set display area of the Cord Analyzer window shows all of the working
sets included in the working set list file. It has the following columns:

• Working-set pgs. (util. %): lists the number of pages in the working set and the
percentage of page space that is utilized.

• cord’d set pgs: specifies the minimum number of pages for this set, that is, the
number of pages the working set would occupy if the program or DSO were
reordered optimally for that specific working set.

• Working-set Name: identifies the path for the working set.

Note that when the function list is displayed, double-clicking a function displays a
plus sign (+) in the working set display area to the left of any working sets that
contain the function.

Working Set Identification Area

The working set identification area shows the name of the selected working set. It
also shows the number of pages in the working set list, in the selected working set,

118 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

and in the corded working set, and the number of pages used as tables. It also
provides the address for the selected page, its size, and its coverage as a percentage.

Working set
display area

Working set
identification area

Page display area
(for selected working set)

Figure 5-29 The Cord Analyzer Window

Page Display Area

The page display area at the bottom of the window shows the starting address for the
DSO and its pages, and their use in terms of untouched pages, unused functions,
executed instructions, unused instructions, and table data related to rld(1)). It
includes a color legend at the top to indicate how pages are used.

Function List

The Function List window displays all the functions in the selected working set. It
contains the following columns:

• Use: count of the working sets containing the function.

• Address: starting address for the function.

• Insts.: number of instructions in the function.

• Function (File): name of the function and the file in which it occurs.

007–2581–007 119

5: Performance Analyzer Reference

When the Function List window is displayed, clicking a working set in the working
set display area displays a plus sign (+) in the function list to the left of any functions
that the working set contains. Similarly, double-clicking a function displays a plus
sign in the working set display area to the left of any working sets that contain the
function.

The Search field lets you do incremental searches for a function in the Function List
window.

Admin Menu

The Admin menu contains the standard Admin menu commands in WorkShop views.
It has the Save Working Set List command, which is specific to the cord analyzer. It
saves a new working set list with whatever changes you made to it in the session.

File Menu

The File menu contains the following selections:

• Delete All Working Sets: removes all the working sets from the working set list.
It does not delete any files.

• Delete Selected Working Set: removes the selected working set from the working
set list.

• Add Working Set: includes a new working set in the working set list.

• Add Working Set List from File: adds the working sets from the specified list to
the current working set file.

• Construct Gray-code Cording Feedback: generates an ordering to minimize the
working sets, placing the highest priority set first. It compacts each set and orders
it to minimize the transitions between each set and the one that follows. Gray
code is believed to be superior to weighted ordering, but you might want to
experiment with them both.

• Construct Weighted Cording Feedback: finds as many distinct affinity sets as it
can and orders them to minimize the working sets for their operations in a
weighted priority order.

• Construct Union of Selected Sets: displays a new working set built as a union of
working sets. This is the same as an OR of the working sets.

120 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

• Construct Intersection of Selected Sets: displays a new working set built from
the intersection of the specified working sets. This is the same as an AND of the
working sets.

• Read Feedback File: loads a new cord mapping file into the Cord Analyzer.

007–2581–007 121

Glossary

basic block

A set of instructions with a single entry point, a single exit point, and no branches
into or out of the set.

bead

A record in an experiment file.

blocking

Waiting in the kernel for a resource to become available.

caliper points

Markers in the time domain that can be used to delimit a performance analysis. For
instance, you may want to analyze only the CPU-bound part of your code.

call stack

A software stack of functions and routines used by the running program. The
functions and routines are listed in the reverse order, from top to bottom, in which
they were called. If function a is immediately below function b in the stack, then a
was called by b. The function at the bottom of the stack is the one currently executing.

collective calls

Move a message from one processor to multiple processors or from multiple
processors to one processor.

context switch

When the system scheduler stops a job from executing and replaces it with another
job.

cord mapping file

A file containing a list of functions, their sizes, and their addresses.

007–2581–007 123

Glossary

CPU time

Process virtual time (see the glossary entry) plus time spent when the system is
running on behalf of the process, performing such tasks as executing a system call.
This is the time returned in pcsamp and usertime experiments.

disassembly

Assembly language version of the program.

exclusive time

The time spent only in the function itself, not including any functions it might call.

heartbeat resource data

Resource usage data (such as CPU time, wait time, I/O transfers, and so on) recorded
at regular intervals. The cvperf usage view graphs are drawn using this data.

HIPPI

The High Performance Parallel Interface is a network link, often used to connect
computers. It is slower than shared memory transfers but faster than TCP/IP
transfers.

inclusive time

The total time spent in a function and all the functions it calls.

instrumenting

A method of collecting data by inserting code into the executable program to count
events, such as the number of times a section of the program executes.

interlock

A feature of the CPU that causes a stall when resources are not available.

load imbalance

When the work in a parallel program is not evenly distributed among the processors,
causing some processors to wait while the others finish their tasks.

124 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

memory leak

Making malloc calls without the corresponding calls to free. The result is that the
amount of heap memory used continues to increase as the process runs.

memory page

The smallest unit of memory handled by the operating system. It is usually either 4
or 16 Kbytes.

page fault

A problem resulting in the possible loss of data. A high page fault rate is an
indication of a memory-bound situation.

PC

Program counter. A register that contains the address of the instruction that is
currently executing.

phase

A part of a program that concentrates on a single activity. Examples are the input
phase, the computation phase, and the output phase.

point-to-point call

Moves a message from one processor to another single processor.

pollpoint

A regular time interval at which performance data is captured.

process virtual time

Time spent when a program is actually running. This does not include either 1) the
time spent when the program is swapped out and waiting for a CPU or 2) the time
when the operating system is in control, such as executing a system call for the
program.

007–2581–007 125

Glossary

profiling

A method of collecting data by periodically examining and recording the program’s
program counter (PC), call stack, and hardware counters that measure resource
consumption.

profiling time

This is the same as CPU time.

real time

The same as wall–clock time.

sample event

A point in the program at which the PC or some resource is sampled.

system time

The time during a program’s execution during which the system has control. It could
be performing I/O or executing a system call.

TCP/IP

A networking protocol that moves data between two systems on the Internet.

thrashing

Accessing data from different parts of memory, causing frequent loads of pages of
memory into cache. Using random access on an array might be an example.

threshold

An upper limit. For example, in the Source View, any line of code that exceeds a
threshold of resource usage is flagged in the display.

total time

The same as wall-clock time.

user time

The same as CPU time.

126 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

virtual address

A location in memory as it appears in a program. For example, a[10] is the virtual
address of element 10 of the array a. Internally, the virtual address is translated into
the computer’s physical address.

virtual time

The same as process virtual time.

wall-clock time

The total time a program takes to execute, including the time it takes waiting for a
CPU. This is real time, not computer time.

working set

Executable pages, functions, and instructions that are actually brought into memory
during a phase or operation of the executable.

007–2581–007 127

Index

A

admin menu, 73, 117
analyzing memory problems, 104
analyzing parallelized code, 55
anti-leak condition, 24
APO option, 55

B

bad frees, 24
basic block count sampling, 61
bugs and performance analysis, 2
Butterfly button, 99
butterfly view, 19, 103

C

call graph, 36, 102
call graph manipulation, 102

geometric manipulation, 102
call graph view, 18
call graph view and mouse, 103
call graph view window, 95

arc annotations, 97
call graph filtering options, 97
filtering nodes, 99
node annotations, 97
node menu, 98
selected nodes menu, 98
special node icons, 96

call stack, 35
call stack data collection, 60
call stack profiling, 60, 65
call stack view, 26

call stack window, 111
chain operation, 99
Charts menu, 87
collective calls, 92
config menu, 74
Context switch stripchart, 85
cord analyzer, 27, 117

admin menu, 120
file menu, 120

cord mapping file, 112
CPU time, 48, 60
CPU-bound processes, 2
current event selection, 72
custom tasks, 53, 59
customized task selection, 53

D

Disassembled source button, 71
disassembled source view, 22
DSO identification area, 116
DSO list area, 115

E

environment variable
_SPEEDSHOP_OUTPUT_FILENAME, 31

event information, 86
executable menu, 82
experiment configuration, 66
experiment configuration options, 67
experiment directory, 67

007–2581–007 129

Index

F

features
call stack view, 26
disassembled source, 22
function list area, 17

butterfly view, 19
call graph view, 18

heap view, 24
leak view, 24
malloc error view, 23
malloc view, 23
parallel overhead view, 17
resource usage graphs, 8

I/O view, 12
MPI stats view, 13
numerical MPI stats view, 15
numerical usage view, 11

source view, 21
time line display, 7
working set view, 26

filtering nodes, 99
filtering nodes and arcs, 97
floating-point exception trace, 51
floating-point exceptions, 63
font sizes

in windows, 31
function list, 69, 103, 119
function list area, 5, 17
function list display, 69

H

hardware counters, 52
heap data as text, 110
heap view, 24, 107

memory map, 107
Heap view tutorial, 42
heap view window, 108
Hide 0 functions toggle, 70

I

I/O operations, 63
I/O trace, 51
I/O view, 12
I/O view window, 91
I/O-bound processes, 2
ideal time/pixie, 49
involuntary context switches, 85

L

leak experiments, 40
leak view, 24, 104

M

main window, 68
admin menu, 73
config menu, 74
executable menu, 82
function list display and controls, 69
task field, 69
thread menu, 82
time line area, 72

current event selection, 72
time line calipers, 72
time line scale menu, 73

usage chart, 71
views menu, 80

Make source, 99
Make target, 99
malloc error view, 23, 104
malloc view, 23, 104
malloc/free tracing, 63
memory leak experiments, 40
memory leak trace, 52
memory leakage, 24
memory leaks, 52

130 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

memory problems, 23
memory–bound processes, 2
MPI stats trace, 63
MPI stats view, 13
MPI stats view (numerical), 94
MPI stats view window, 92

N

node menu, 98
numerical MPI stats view, 15
numerical usage view, 11

O

OpenMP, 55
Overview button, 102

P

page display area, 116, 119
Page faults stripchart, 85
page thrashing, 112
parallel overhead view, 17
parallel overhead view window, 94
PC profile counts, 61
PC Sampling, 48
performance analysis, 2

bugs, 2
CPU-bound processes, 2
I/O—bound processes, 2
memory–bound processes, 2
program phases, 5

performance analysis experiments, 45
setting sample traps, 54
setup, 45
steps in experiment, 45

Performance Analyzer
tasks, 48

tutorial, 29
performance analyzer reference

custom tasks, 59
basic block count sampling, 61
call stack profiling, 60, 65
floating-point exceptions, 63
heap analysis, 63
I/O operations, 63
MPI stats trace, 63
PC profile counts, 61
polling data, 64
pollpoint sampling, 65
specifying tracing data, 62

performance tasks, 57
performance data collection

techniques, 1
counting, 1
profiling, 1
tracing, 2

Performance panel, 47
performance tasks, 47, 57

customized, 53
predefined tasks, 47

floating-point exception trace, 51
hardware counters, 52
I/O trace, 51
ideall time/pixie, 49
memory leak trace, 52
profiling/PC sampling, 48
user time/callstack sampling, 48

poll and I/O calls stripchart, 86
poll system calls, 86
polling data, 64
pollpoint sampling, 65
process meter window, 87
Process size stripchart, 86
process virtual time, 60
ProDev WorkShop ProMP, 55
profiling time, 60
profiling/PC sampling, 48
program phases and performance analysis, 5

007–2581–007 131

Index

R

Read/Write
data size stripchart, 85
system calls stripchart, 85

real time, 60
Realign button, 103
resource usage data, 8
resource usage graphs, 8
Rotate button, 103

S

sample traps, 54
sampling interval, 60
scale menu, 87
Search field, 70
select system calls, 86
selected nodes menu, 98
shared memory, 92
show node button, 70
source button, 71
source view, 21
source view annotatons, 109
source view with leak annotations, , 107
specifying tracing data, 62, 63
sscord, 27
system resource usage chart, 5

T

target directory, 67
task field, 69
thread menu, 82
time line, 5
time line area, 72
time line calipers, 72
time line display, 7
time line scale menu, 73
total time, 60

Trace I/O, 51
tracing data, 62
tutorial

analyzing data, 31
analyzing memory experiments, 40
font size, 31
memory leaks, 40
memory use, 42
sample program, 29
setup, 30

U

unmatched frees, 24
usage chart, 71
usage view (graphs), 83
usage view (numerical), 11
usage view charts, 85
usage view window, 89
user time, 60
user time/callstack sampling, 48
user vs system time stripchart, 85

V

view areas, 104
viewing source code, 21

by machine instruction, 22
views menu, 80
voluntary context switches, 85

W

wall-clock time, 60
working set analysis, 112
working set analysis process, 112
working set display area, 118
working set identification area, 118

132 007–2581–007

ProDevTM WorkShop: Performance Analyzer User’s Guide

working set list file, 114
working set view, 26, 114

Z

Zoom in, 102

Zoom menu, 102
Zoom out, 102

007–2581–007 133

