
Developer Magic™: ProDev WorkShop
and MegaDev Overview

Document Number 007-2582-001

Developer Magic™: ProDev WorkShop and MegaDev Overview
Document Number 007-2582-001

CONTRIBUTORS

Written and illustrated by John C. Stearns
Production by Laura Cooper
Engineering contributions by Lia Adams, Jim Ambras, Trevor Bechtel, Wes Embry,

Alan Foster, Christine Hanna, David Henke, Marty Itzkowitz, Mahadevan Iyer,
Lisa Kvarda, Stuart Liroff, Song Liang, Allan McNaughton, Michey Mehta, Sudhir
Mohan, Ashok Mouli, Anil Pal, Andrew Palay, Tom Quiggle, Kim Rachmeler, Jack
Repenning, Paul Sanville, Ravi Shankar, John Templeton, Michele Chambers
Turner, Shankar Unni, Mike Yang, Jun Yu, and Doug Young.

© Copyright 1995 Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics is a registered trademark, and Developer Magic, IRIX IM, Indy,
POWER Onyx, IRIS ViewKit, Power Fortran Accelerator, OpenGL, Open Inventor,
ShowCase, IRIS Inventor, and Graphics Library are trademarks of Silicon Graphics,
Inc. ClearCase is a trademark of Atria Software, Inc. UNIX is a registered trademark
in the United States and other countries, licensed exclusively through X/Open
Company, Ltd. X Window System is a trademark of the Massachusetts Institute of
Technology. OSF/Motif is a registered trademark of the Open Software Foundation.
PostScript is a registered trademark of Adobe Systems, Inc.

iii

Contents

List of Figures v

List of Tables vii

ProDev WorkShop and MegaDev Overview 1
Using the ProDev WorkShop Debugger 3

Debugger User Model 4
Where to Find Debugger Information 10

Navigating Through Code With the Static Analyzer and C++ Browser 12
Static Analyzer User Model 13
Where to Find Static Analyzer Information 16
C++ Browser User Model 16

Pinpointing Performance Problems With the Performance Analyzer 19
Performance Analyzer User Model 19
Where to Find Performance Analyzer Information 26

Determining the Thoroughness of Test Coverage With Tester 27
Tester User Model 27
Where to Finder Tester Information 30

Recompiling Within the ProDev WorkShop Environment With Build
Manager 30
Making Quick Changes With Fix and Continue 31

Fix and Continue User Model 31
Where to Find Fix and Continue Information 34

Debugging IRIX IM Programs 34
Features of the IRIX IM Analyzer 35
Where to Find IRIX IM Analyzer Information 39

Building Application Interfaces With RapidApp 40
RapidApp User Model 41
Where to Find RapidApp Information 43

iv

Contents

v

List of Figures

Figure 1 Major Areas of the Main View Window 4
Figure 2 Typical Debugger Views Accessible at a Breakpoint 6
Figure 3 Array Visualizer 8
Figure 4 Machine-Level Debugger Views 9
Figure 5 Main Static Analyzer Window 12
Figure 6 Queries Available from the Static Analyzer Queries

Submenus 15
Figure 7 C++ Browser Class View Window with Query Menus 17
Figure 8 Performance Panel With Task Menu Displayed 20
Figure 9 Performance Analyzer Main Window 22
Figure 10 Usage View (Graphs) Window: Lower Graphs 23
Figure 11 Malloc Error View 24
Figure 12 Major Areas of the Main Tester Window 29
Figure 13 Using Fix+Continue 32
Figure 14 The IRIX IM Analyzer Window 35
Figure 15 IRIX IM Analyzer Widget Tree Examiner 36
Figure 16 IRIX IM Analyzer Trace Examiner 38
Figure 17 RapidApp Window Displaying Container Palette 40
Figure 18 Creating a Widget 42

vi

vii

List of Tables

Table 1 Where to Find Debugger Information in the
CASEVision/WorkShop User’s Guide 10

Table 2 Where to Find Static Analyzer Information in the
CASEVision/WorkShop User’s Guide 16

Table 3 Where to Find C++ Browser Information in the
CASEVision/WorkShop MegaDev User’s Guide 18

Table 4 Performance Analyzer Views and Data 25
Table 5 Where to Find Performance Analyzer Information in the

CASEVision/WorkShop User’s Guide 26
Table 6 Tester Command Line Interface Summary 28
Table 7 Where to Find Tester Information in the

CASEVision/WorkShop User’s Guide 30
Table 8 Where to Find Fix and Continue Information in the

CASEVision/WorkShop MegaDev User’s Guide 34
Table 9 Where to Find IRIX IM Analyzer information in the

Developer Magic: IRIX IM Analyzer User’s Guide 39
Table 10 Where to Find RapidApp Information in the Developer

Magic: RapidApp User’s Guide 43

1

0. ProDev WorkShop and MegaDev Overview

Welcome to ProDev WorkShop and MegaDev, two major components in the
Developer Magic software development environment. ProDev WorkShop
contains the core software development tools; MegaDev contains advanced
features for the development of C and C++ applications. These powerful,
highly visual tools help you understand your program’s structure and
operation so that you can diagnose very difficult, traditionally
time-consuming problems in a short amount of time. With them, you can
develop applications for the entire Silicon Graphics product line, from
Indy to POWER Onyx workstations.

Note: In the past, the software development environment was called
CASEVision; that name has been replaced by Developer Magic. In
addition to ProDev WorkShop and MegaDev, the Developer Magic
environment includes ProMPF—a special module for multi-process Fortran
programming—and IDO (IRIX Development Option)—the base compiler
and libraries. Some of the documentation may still use the CASEVision
name; those documents will be updated soon.

The ProDev WorkShop core tools provide:

• Comprehensive control over the debugging process—You can set
simple breakpoints with the click of a mouse button or define complex
conditions for your traps. ProDev WorkShop’s fast data watch points
with kernel support are especially adept at tracking memory corruption
problems.

• Visual debugging environment for examining data in your active
program—ProDev WorkShop provides convenient, graphical views of
variables, expressions, large arrays, and data structures. If you prefer a
tty-style interface, you can always dump values directly using
WorkShop’s Debugger command line.

• Powerful static analysis for understanding your program—You can
view the structure of your program and relationships such as call trees,
function lists, class hierarchies, and file dependencies. And you can get
this information whether or not the program can be compiled.

2

ProDev WorkShop and MegaDev Overview

• The ability to collect performance and coverage information during
test runs—ProDev WorkShop’s Performance Analyzer lets you see
where your program spends its time and pinpoint performance bugs,
including those due to memory problems. The Tester tool shows you
which source lines and basic blocks are covered in your tests.

• Convenient recompiling from within the ProDev WorkShop
environment—WorkShop’s standard build tools let you view file
dependencies and compiler requirements and fix compile errors
conveniently.

The MegaDev tools provide:

• Quick recompiles for simple changes—The Fix and Continue tool lets
you make simple changes without having to go through a major
recompile and relinking, dramatically reducing the number of
edit-compile-debug cycles.

• Ability to analyze structures and relationships in C++ code—The C++
Browser provides global graphical and textual views of interclass
relationships, including inheritance, containment, and interactions
within a set of classes.

• Specialized debugging for IRIX IM applications—MegaDev’s IRIX
IM Analyzer lets you solve the special problems in IRIX IM application
development. You can look at object data, set breakpoints at the object
or X protocol level, trace X and widget events, and tune performance.

• Rapid application development—The RapidApp tool lets you create
graphical interfaces for C++ applications quickly and easily. RapidApp
lets you build graphical interfaces by dragging and dropping interface
elements (based on IRIX IM widgets and IRIS ViewKit-style
components) onto a template window.

This overview gives you a broad exposure to the ProDev WorkShop and
MegaDev tools as well as pointers to the documentation for getting detailed
information. The overview is organized as follows:

• “Using the ProDev WorkShop Debugger”

• “Navigating Through Code With the Static Analyzer and C++
Browser”

• “Pinpointing Performance Problems With the Performance Analyzer”

Using the ProDev WorkShop Debugger

3

• “Determining the Thoroughness of Test Coverage With Tester”

• “Recompiling Within the ProDev WorkShop Environment With Build
Manager”

• “Making Quick Changes With Fix and Continue”

• “Debugging X/Motif Programs”

• “Building Application Interfaces With RapidApp”

In addition to the ProDev WorkShop and MegaDev tools, you can separately
purchase:

• Developer Magic Pro MPF—a visual code parallelization tool used
with the Power Fortran Accelerator to help balance parallel loops in
Fortran applications

• Developer Magic ClearCase—a toolset for version control,
configuration management, and process control for software
organizations

Note: If you use ClearCase, SCCS, or RCS, you can check source files
directly into or out of ProDev WorkShop and MegaDev.

• Developer Magic Tracker—an application builder for creating change
control and change tracking systems. It can be integrated with
ClearCase.

Using the ProDev WorkShop Debugger

The Debugger is a UNIX source-level debugging tool that provides special
windows (views) for displaying program data and execution state as the
program executes. The Debugger lets you set various types of breakpoints
and watch points where you can conveniently view data such as variables,
expressions, structures, large arrays, call stacks, and machine-level values.
The WorkShop Debugger goes far beyond the capabilities of dbx. It includes
fast data watchpoints and other types of traps; graphical views for
displaying local variables, source-level expressions, array variables, and
data structures; and debugging at the machine level.

4

ProDev WorkShop and MegaDev Overview

Debugger User Model

All WorkShop activities can be accessed from the Main View window, which
is illustrated in Figure 1.

Figure 1 Major Areas of the Main View Window

The basic model for using the Debugger is to:

1. Invoke the Debugger by typing:

cvd [-pid pid] [-host host] [executable [corefile]] [&]

Control panel,

Source code

Debugger command

Annotation column,

Provides access

Permits simple static

Lets you manipulate
source files and launch

Lets you show or hide
items in the annotation
column

Lets you perform
one-time expression
evaluation

Lets you specify
all trap types

Provides alternative

Provides access
to the online
help system

Provides general-purpose
options

to the data viewing
windows

analysis queries

options for execution
control

for controlling

display area,

for viewing or

line, for using the

recompiles

command line interface

program execution

for viewing
or editing code

setting traps

Lets you make minor
changes easily
(separate purchase)

Using the ProDev WorkShop Debugger

5

The -pid option lets you attach the Debugger to a running process.
You can use this to determine why a live process is in an infinite loop or
is otherwise hung.

The argument executable is the name of the executable file for the
process you want to run. It is optional; you can invoke the Debugger
first and specify the executable later.

The corefile option lets you invoke the Debugger and specify a core file
(with its executable) to try to determine why a program crashed.

The -host option lets you specify a remote host on which the target
executable will be run; the Debugger runs locally. This option is useful
if:

• you don’t want the Debugger windows to interfere with the
application you are debugging.

• you are supporting an application remotely.

• you don’t want to use the Debugger on the target system for
another reason.

2. Set stop traps, that is, breakpoints, in the source code.

Simple traps are set by clicking the left mouse button in the annotation
column to the left of the source code display or by using the Traps
menu. More complex traps, including watch points, can be set and
managed from the Trap Manager, Signal Panel, and Syscall Panel,
which can be accessed from the Views menu. You can also set traps by
typing them at the Debugger command line in Main View. You can stop
a process at any time by clicking the Stop button in the Main View
control area.

3. Start the program by clicking the Run button in Main View.

4. When the process stops at a breakpoint or other stopping point of
interest, you can examine the data in the Debugger view windows
(accessed from the Views menu).

You can display view windows at any time; they update automatically
each time the program stops. Figure 2 shows four typical Debugger
views and indicates how you access them from the Views menu.

6

ProDev WorkShop and MegaDev Overview

Figure 2 Typical Debugger Views Accessible at a Breakpoint

PC (program counter)

Lets you trace through the call stack

Lets you enter expressions (including
global variables) for evaluation

Lets you display or change data structures and

Lets you view or reset local

Views menu

dereference pointers

variables

at breakpoint

Using the ProDev WorkShop Debugger

7

Figure 3 shows the Array Visualizer, a powerful view for examining
data in arrays of up to 100 x 100 elements. You can look for problem
areas in a 3D rendering of the array, click on the area of interest, and
view the numerical values in a spreadsheet format. In Figure 3, the hue
option has been set so that the values appear in a color spectrum from
blue (lowest) to red (highest) with out-of-range anomalies appearing in
gray. Note the high point coming out of the 3D image; it demonstrates
how anomalies in large arrays stand out.

If you need to debug your program at the machine level, you can use
Register View, Disassembly View, and Memory View, as shown in
Figure 4. These are accessed from the Views menu in the Debugger
Main View as well.

5. Use the control options in Main View to continue execution (see
Figure 1).

From any breakpoint, you have these options:

� The Continue button runs the program until the next breakpoint.

� The “Continue To” selection in the PC menu proceeds to a specified
source line. Placing the cursor in a line specifies it.

� The “Jump To” selection in the PC menu goes to a specified line (by
the cursor), skipping over any intermediate code.

� The Step Into button continues execution by one step or a number
specified by holding down the right mouse button over the Step
Into button and selecting the number from the dialog box. The
process then continues the specified number of source lines and
enters any called functions.

� The Step Over button similarly proceeds a specified number of lines
but executes intermediate functions without stepping into them.

� The Return button executes the remaining instructions in a function
and stops on return from that function.

6. Check out the source code that needs to be fixed.

If you find a bug and are using an integrated source control program
such as ClearCase, RCS, or SCCS, you can check out the source code
from Main View (or Source View, an alternate editing window).

Choose “Check Out” from the Versioning submenu in the Source menu.

8

ProDev WorkShop and MegaDev Overview

Figure 3 Array Visualizer

Array specification field

Row and column selection controls

3D viewing area

Data selection pointer

Anomaly standing out in 3D view

Spreadsheet browsing area

Cell corresponding to data anomaly. If
you click the data in the 3D viewing area,
the corresponding cell will be selected.

Currently selected cell

Using the ProDev WorkShop Debugger

9

Figure 4 Machine-Level Debugger Views

Register View, for viewing or changing the contents of registers

Memory View, for viewing or changing the contents of memory addresses

Disassembly View, for viewing
or changing machine-level
code

10

ProDev WorkShop and MegaDev Overview

7. Fix any problems in your code using the source code display area in
Main View, Source View, or the editor of your choice.

Both Main View and Source View let you do simple editing and
annotate the code with trap indicators. Source View also lets you
display test data from the Performance Analyzer and Tester in the
annotation column. If you prefer to view source code in a text editor
other than Source View, add the line

*editorCommand: editor

to your .Xdefaults file, where editor is the command for the editor you
wish to use.

8. Recompile using Build Manager.

Build Manager has two windows: Build View and Build Analyzer.
Build View lets you compile, view compile error lists, and access the
offending code in Source View or an editor of your choice. Build
Analyzer lets you view build dependencies and recompilation
requirements, and access source files. Build View uses the UNIX make
facility as its default build software. Although Build Analyzer
determines dependencies using make, you can substitute the build
software of your choice, any make that runs on Silicon Graphics
platforms.

Where to Find Debugger Information

To find out more about the Debugger, refer to Table 1.

Table 1 Where to Find Debugger Information in the CASEVision/WorkShop
User’s Guide

Topic See ...

General Debugger information Chapter 1, “Getting Started with the WorkShop Debugger”

Debugger tutorial Chapter 2, “A Short Debugger Tutorial”

Debugger interaction with source files Chapter 3, “Debugger: Managing Source Files”

Managing windows while performing multiple tasks Chapter 4, “Debugger: CASEVision Project Session
Management”

Comprehensive trap information Chapter 5, “Debugger: Setting Traps in WorkShop”

Using the ProDev WorkShop Debugger

11

Controlling execution in a process (stepping, jumping, etc.) Chapter 6, “Debugger: Controlling Process Execution”

Examining Debugger data in general at the source level Chapter 7, “Examining Debugger Data”

Tracing through the call stack “Tracing through Call Stack View” on page 98

Entering expressions to be evaluated at stopping points “Evaluating Expressions” on page 101

Viewing or changing the values of variables “Examining Variable Values” on page 109

Examining data in arrays using the 3D or spreadsheet format “Examining Array Variables” on page 111

Determining the data structures of variables “Looking at Data Structures” on page 126

Using the Debugger command line “Examining Data at the Command Line” on page 137

Examining debugger data at the machine level Chapter 8, “Machine-level Debugging”

Using the debugger to trap memory allocation problems Chapter 9, “Debugger: Detecting Heap Corruption”

Debugging multiprocess programs Chapter 10, “Multiple Process Debugging”

Table 1 (continued) Where to Find Debugger Information in the
CASEVision/WorkShop User’s Guide

Topic See ...

12

ProDev WorkShop and MegaDev Overview

Navigating Through Code With the Static Analyzer and C++ Browser

The ProDev WorkShop Static Analyzer is a source code analysis and
navigation tool for analyzing source code written in C, C++, or Fortran. (The
C++ Browser has additional features for C++ and is described in “C++
Browser User Model” on page 16.) The Static Analyzer shows you the code’s
structure (graphically or in text format) including information on function
calls, definitions of variables, file dependencies, macro locations, class
hierarchies, file dependencies, and many other structural details for
understanding your code. In addition, you can make specific queries, such
as showing everywhere a function is used. You can even analyze programs
that don’t compile, a particularly nice feature for those porting code.

The Static Analyzer works by reading through source code files that you
specify and creating a database of functions, macros, variables, files, and (for
C++) classes and methods and their relationships. The main Static Analyzer
window with a typical call graph is illustrated in Figure 5.

Figure 5 Main Static Analyzer Window

Display area, for showing the results

Provides options for specifying
and building the database of
files to be analyzed, for accessing
other tools, and for other tasks

Lets you select the format of
the data display: text, call tree,
class tree, or file dependency

Lets you review or repeat
prior tasks in this session

Lets you define the type of
information to display

Task identification label

of your queries in the format you select

Graphic controls for manipulating
the display of graphical views

Query target field, for entering
the target in specific queries

Navigating Through Code With the Static Analyzer and C++ Browser

13

Static Analyzer User Model

Follow these steps for using the Static Analyzer:

1. Invoke the Static Analyzer, either by typing cvstatic or by selecting
“Static Analyzer” from the Launch submenu in any ProDev WorkShop
Admin menu (preferably from the directory where your source is
located).

2. Decide which files are to be analyzed.

You designate which files are to be analyzed in a special file called a
fileset. A fileset is a regular ASCII file with a format of one entry per line,
each line separated from the next by a carriage return. The entries can
be regular expressions, filenames, or included directories preceded by
the designator -I.

To specify a fileset, you can

• create the fileset manually using a text editor

• use the Fileset Editor, which is accessed from the Admin menu in
the Static Analyzer window

• let the Static Analyzer create the fileset automatically at startup by
defaulting to the files in the current directory that match the
expression *.[cCfF]

• let the Static Analyzer create the fileset automatically at startup
from the command line by typing cvstatic with the -executable
flag and designating an executable

• use the compiler to create a fileset (and database) by adding the
-sa,<dbdirectory> option to your makefile

Note: Many programs are so big that a query covering the entire scope
is useless due to its size and complexity. There are two ways to keep the
scope of your analysis at a manageable size: (1) Limit the number of files
to be analyzed or (2) avoid queries that begin with “List All ...”.

3. Decide how you are going to build the database.

Before you can specify a fileset, you need to decide how you are going
to build the database. You can choose to create the database in scanner
mode (the default), which is fast but not sensitive to any specific
programming language, or in parser mode, which uses the compiler and
is slower but more thorough. Use scanner mode for large programs or

14

ProDev WorkShop and MegaDev Overview

for programs that do not compile. Scanner mode is particularly suited
to porting situations. Parser mode is better when you have code that
compiles and you need to determine language-specific relationships,
particularly in Fortran and C++.

4. Build the database.

5. Perform your queries.

Queries are selected from the Queries menu in the Static Analyzer. They
fall into 10 categories, as shown in Figure 6. Remember that the “List
All ...” queries can produce overwhelming results for large programs.

6. View (and save) the results.

The Static Analyzer has four ways of presenting data, which are
selected from the Views menu:

• “Text View” displays query results in a text format. In addition to
listing the queried items, it indicates the source filename and line
number, and includes the actual source line.

• “Call Tree View” applies to function queries. It presents the data in
a graphical format with nodes (rectangles) representing functions
and arcs (arrows) representing calls to functions.

• “Class Tree View” applies to C++ class queries. It presents a class
inheritance tree with nodes representing classes and arcs
representing parent-child class relationships.

• “File Dependency View” applies to file queries. It presents a graph,
with nodes representing files and arcs representing include
relationships.

If you want to save a query in a graphical view, you can save a
PostScript version by selecting “Save Query...” from the Admin menu
and print it out at your leisure.

7. Access the source code.

Double-clicking any node in a graph or item in Text View brings up the
Source View window containing the corresponding source code.
Double-clicking any arc (arrow) displays Source View with the
corresponding call site or file inclusion.

Navigating Through Code With the Static Analyzer and C++ Browser

15

Figure 6 Queries Available from the Static Analyzer Queries Submenus

General submenu

Macros submenu Variables submenu

Functions

Files

Classes

Methods

Common

Types

Directories

Blocks

Queries menu

submenu

submenu

submenu

submenu

submenu

submenu

submenu

16

ProDev WorkShop and MegaDev Overview

Where to Find Static Analyzer Information

To find out more about the Static Analyzer, refer to Table 2.

C++ Browser User Model

The C++ Browser user model is similar to the Static Analyzer user model.
After you build the database (which must be done in parser mode), you
access the C++ Browser by selecting “C++ Browser” from the Static
Analyzer Admin menu.

The C++ Browser lets you display different sets of information about classes,
class members, and interclass relationships through these three views:

• Class View— displays member and class information in an expandable,
hierarchical outline format with the members of the current class in the
left pane and related classes on the right (see Figure 7). Clicking the
diamond-shaped icons next to the headings in the list hides or displays
the associated information.

Table 2 Where to Find Static Analyzer Information in the
CASEVision/WorkShop User’s Guide

Topic See ...

General Static Analyzer description Chapter 12, “Introduction to the
WorkShop Static Analyzer”

Static Analyzer tutorial Chapter 13, “A Sample Session with the
Static Analyzer”

Specifying a fileset “Fileset Specifications” on page 238

Building a database using scanner mode “Scanner Mode” on page 247

Building a database using parser mode “Parser Mode” on page 248

Performing queries Chapter 15, “Static Analyzer: Queries”

Static Analyzer viewing formats Chapter 16, “Static Analyzer: Views”

Strategies for analyzing large programs Chapter 17, “Static Analyzer: Working
on Large Programming Projects”

Navigating Through Code With the Static Analyzer and C++ Browser

17

Like the Static Analyzer, you have numerous queries available through
the Query menu. In addition, if you select an item in either of the Class
View lists and hold down the right mouse button, you can access the
Queries menu specific to that type of item, that is, methods, data
members, classes, and so on.

Figure 7 C++ Browser Class View Window with Query Menus

Current class
member list Related class list

Main Queries menu
and submenus

Method-specific
Queries menu

18

ProDev WorkShop and MegaDev Overview

You can also create man pages describing classes by selecting “Generate
man pages...” from the Class View Admin menu. You simply specify an
individual class or all of them and the C++ Browser fills in the man
page template for you.

• Class Graph—displays the class hierarchy for the current class in the
Class View window with nodes as classes and arcs as parent-child
relationships. Class Graph can show four types of relationships:
inheritance, containment, interaction, and friends. You can display all
classes, limit the scope of classes derived from the current class, or get a
butterfly view showing the immediate base and derived classes of the
current class.

• Call Graph—displays the calling relationships of methods and virtual
methods selected from Class View with options for customizing the
display of the graph.

To find out more about the C++ Browser, refer to Table 3.

Table 3 Where to Find C++ Browser Information in the
CASEVision/WorkShop MegaDev User’s Guide

Topic See ...

General C++ Browser description Chapter 5, “Getting Started with the C++
Browser”

C++ Browser tutorial Chapter 6, “Using the C++ Browser: A
Sample Session”

Class View “Using the Class View Outline Lists” on
page 83 and “Class View Window” on
page 117

Viewing graph data “Class Graph and Call Graph Displays”
on page 147

Call Graph “Using the Call Graph Window” on
page 107 and “Call Graph Window” on
page 156

Class Graph “Using the Class Graph Window” on
page 101 and “Class Graph Window” on
page 154

Pinpointing Performance Problems With the Performance Analyzer

19

Pinpointing Performance Problems With the Performance Analyzer

The ProDev WorkShop Performance Analyzer helps you understand how
your program performs so that you can correct any problems. In
performance analysis, you run experiments to capture performance data
and see how long each phase or part of your program takes to run. You can
then determine if the performance of the phase is slowed down by the CPU,
I/O activity, memory, or a bug and attempt to speed it up.

A menu of predefined tasks is provided to help you set up your experiments.
With the Performance Analyzer views, you can conveniently analyze the
data. These views show CPU utilization and process resource usage (such as
context switches, page faults, and working set size), I/O activity, and
memory usage (to capture such problems as memory leaks, bad allocations,
and heap corruption).

The Performance Analyzer has three general techniques for collecting
performance data:

• Counting—It can count the exact number of times each function and/or
basic block has been executed. This requires instrumenting the program,
that is, inserting code into the executable to collect counts.

• Profiling—It can periodically examine and record the program’s PC
(program counter), call stack, and resource consumption.

• Tracing—It can trace events that affect performance, such as reads and
writes, system calls, page faults, floating point exceptions, and mallocs,
reallocs, and frees.

Performance Analyzer User Model

1. Set up a general experiment to determine areas for improvement in
your program.

To set up a performance experiment, select “Performance Task...” from
the Admin menu in the Debugger Main View or type cvspeed at the
command line. The Performance Panel window is displayed; it
provides a task menu from which you select predefined experiment
tasks (see Figure 8). At this point, you probably haven’t formed a

20

ProDev WorkShop and MegaDev Overview

hypothesis yet about where the performance problems lie. If this is the
case, select the “Determine bottlenecks, identify phases” task. This is
useful for determining the general problem areas within the program.

Figure 8 Performance Panel With Task Menu Displayed

2. Start the program by clicking the Run button in Main View.

This runs the experiment and collects the performance data, which is
written to a directory test0000 (or a name of your choice); test0000 is the
identification for your experiment.

Tracks total time spent by function, source code

Tracks total time spent by function, source

Tracks CPU time spent by function, source

Tracks ideal time spent by function, source code

Tracks system calls during experiment

Tracks page faults during experiment

Tracks mallocs, reallocs, and frees

Tracks CPU time spent by source code

Lets you specify performance data to be collected

Tracks I/O activity at every read and write

line, and instruction with samples at 1-second

code line, and instruction at specified sample traps

code line, and instruction at specified sample traps

line, and instruction at specified sample traps

during experiment

line and instruction at specified sample traps

Tracks floating point exceptions during
experiment

intervals

Pinpointing Performance Problems With the Performance Analyzer

21

3. Analyze the results in the Performance Analyzer window and the
Usage View (Graphs) window.

After the experiment has finished, you can display the results in the
Performance Analyzer window by selecting “Performance Analyzer” from
the Launch submenu in any ProDev WorkShop Admin menu or by typing
cvperf -exp experimentname. The results from a typical performance analysis
experiment appear in Figure 9, the main Performance Analyzer window,
and Figure 10, which shows a subset of the graphs in the Usage Views
(Graphs) window. You should be able to determine where the phases of
execution occur so that you can set sample traps between them. Sample traps
collect performance data at specified times and events in the experiment.

22

ProDev WorkShop and MegaDev Overview

Figure 9 Performance Analyzer Main Window

Function list area displays functions

Usage chart area indicates

Time line area indicates where samples

Caliper and sample point

with their performance data from the
experiment, time spent in the function

general resource usage during
the experiment

were taken. The calipers let you limit the

experiment. Double-clicking a sample
point displays the call stack that occurred
there.

including its called functions, and time
spent in the function excluding calls

scope of the analysis to a portion of the

selector controls

Pinpointing Performance Problems With the Performance Analyzer

23

Figure 10 Usage View (Graphs) Window: Lower Graphs

Context switch

Reads/writes: data size

Reads/writes: counts

Poll and I/O calls

Total system calls

Process signals

Process size

Current event identification

Page faults

24

ProDev WorkShop and MegaDev Overview

4. Set sample traps at the start and end of each phase.

Setting sample traps between phases isolates the data to be analyzed on
a phase-by-phase basis. Sample traps are set by selecting “Sample”,
“Sample at Function Entry”, or “Sample at Function Exit” from the Set
Trap submenu in the Traps menu in the Debugger Main View or
through the Traps Manager.

5. Select your next experiment from the Task Menu in the Performance
Panel and run it by clicking the Run button in the Main View window.

You need to form a hypothesis about the performance problem and
select an appropriate task (see Figure 8) for your next experiment.
There are trade-offs in selecting tasks—experiments can collect huge
amounts of data and may perturb the results in some cases. The
strategies for selecting tasks are discussed in detail in Chapter 20,
“Setting Up Performance Analysis Experiments,” in the
CASEVision/WorkShop User’s Guide.

6. Analyze the results using the Performance Analyzer main window, its
views, or Source View with performance data annotations displayed.

A typical Performance Analyzer view, Malloc Error View, is shown in
Figure 11. The Performance Analyzer provides results in the windows
listed in Table 4.

Figure 11 Malloc Error View

malloc identification area, for identifying
the malloc selected in the list below and
showing the number of errors

malloc list area, for displaying all the
malloc errors and allowing you to
select them to view the call stack

Call stack area, for viewing the call
stack corresponding to the selected
malloc error

Pinpointing Performance Problems With the Performance Analyzer

25

Table 4 Performance Analyzer Views and Data

Performance Analyzer Window Data Provided

Performance Analyzer main window Function list with performance data, usage chart showing general resource usage
over time, and time line for setting scope on data

Call Stack View Call stack recorded when selected event occurred

Usage View (Graphs) Specific resource usage over time, shown as graphs

Usage View (Numerical) Specific resource usage for selected (by caliper) time interval, shown as numerical
values

Call Graph View A graph showing functions that were called during the time interval, annotated by
the performance data collected

I/O View A graph showing I/O activity over time during the time interval

Malloc View A list of all mallocs, their sizes and number of occurrences, and, if selected, their
corresponding call stack within the selected time interval

Malloc Error View A list of malloc errors, their number of occurrences, and if selected, their
corresponding call stack within the time interval

Leak View A list of specific leaks, their sizes and number of occurrences, and if selected, their
corresponding call stack within the time interval

Heap View A generalized view of heap memory within the time interval

Source View The ProDev WorkShop text editor window showing source code annotated by
performance data collected

Working Set View The instruction coverage of dynamic shared objects (DSOs) that make up the
executable, showing instructions, functions, and pages that were not used within the
time interval

Cord Analyzer The Cord Analyzer is not actually part of the Performance Analyzer, but it works
with data from Performance Analyzer experiments. It lets you try out different
ordering of functions to see the effect on performance.

26

ProDev WorkShop and MegaDev Overview

Where to Find Performance Analyzer Information

To find out more about the Performance Analyzer, refer to Table 5.

Table 5 Where to Find Performance Analyzer Information in the
CASEVision/WorkShop User’s Guide

Topic See ...

General Performance Analyzer information Chapter 18, “Introduction to the Performance Analyzer”

Performance analysis theory “Sources of Performance Problems” on page 312

General Performance Analyzer tutorial Chapter 19, “Performance Analyzer Tutorial”

Memory leak tutorial “Memory Experiment Tutorial” on page 415

Setting up performance analysis experiments including task
selection

Chapter 20, “Setting Up Performance Analysis Experiments”
for details and “The Performance Panel” on page 362 for a
summary

Setting sample traps “Setting Traps in Main View and Source View” on page 73 and
“Setting Traps in Trap Manager” on page 76

Performance Analyzer main window “The Performance Analyzer Main Window” on page 374

Usage View (Graphs) window “Usage View (Graphs)” on page 387

Watching an experiment without collecting data in the Process
Meter

“Process Meter” on page 393

Usage View (Numerical) window “Usage View (Numerical)” on page 393

Tracing I/O calls using the I/O View window “I/O View” on page 396

Call Graph View window “Call Graph View” on page 397

Finding memory problems “Analyzing Memory Problems” on page 405

Specifying performance annotations for Source View and Call
Graph View

“Config Menu” on page 382

Call Stack View window “Call Stack” on page 418

Improving working set behavior “Analyzing Working Sets” on page 419

Determining the Thoroughness of Test Coverage With Tester

27

Determining the Thoroughness of Test Coverage With Tester

Tester is a software quality assurance toolset for measuring dynamic
coverage over a set of tests. It tracks the execution of functions, individual
source lines, arcs, blocks, and branches.

Tester User Model

This section describes the user model for designing a single test. After you
have your instrumentation file and test directories set up, you can automate
your testing and create larger test sets. Tester has both a command line
interface (see Table 6) and a graphical user interface (see Figure 12).

1. Plan your test.

2. Create (or reuse) an instrumentation file.

The instrumentation file defines the coverage data you wish to collect
in this test.

3. Apply the instrument file to the target executable(s).

This creates a special executable for testing purposes that collects data
as it runs.

4. Create a test directory to collect the data files.

5. Run the instrumented version of the executable to collect the coverage
data.

6. Analyze the results.

Tester produces a wide variety of column-based reports. Most are
available in both interfaces: command line and graphical. The reports
can show source and assembly line coverage; coverage of functions; arc
coverage, that is, coverage of function calls; call graphs indicating caller
and callee functions and their counts; basic block counts; count
information for assembly language branches; summaries of overall
coverage; and argument tracing.

28

ProDev WorkShop and MegaDev Overview

Table 6 Tester Command Line Interface Summary

Command Category Command Name Description

general cvcov cattest Describes the test details for a test, test set, or test group

cvcov lsinstr Displays the instrumentation information for a particular test

cvcov lstest Lists the test directories in the current working directory

cvcov mktest Creates a test directory

cvcov rmtest Removes tests and test sets

cvcov runinstr Adds code to the target executable to enable you to capture coverage data, according
to the criteria you specify

cvcov runtest Runs a test or a set of tests

coverage analysis cvcov lssum Shows the overall coverage based on the user-defined weighted average over
function, line, block, branch, and arc coverage

cvcov lsfun Lists coverage information for the specified functions in the program that was tested

cvcov lsblock Displays a list of blocks for one or more functions and the count information
associated with each block

cvcov lsbranch Lists coverage information for branches in the program, including the line number at
which the branch occurs

cvcov lsarc Shows arc coverage, that is, the number of arcs taken out of the total possible arcs

cvcov lscall Lists the call graph for the executable with counts for each function

cvcov lsline Lists the coverage for native source lines

cvcov lssource Displays the source annotated with line counts

cvcov lstrace Shows the argument tracing information

cvcov diff Shows the difference in coverage for different versions of the same program

test set cvcov mktset Makes a test set

cvcov addtest Adds a test or test set to a test set or test group

cvcov deltest Removes a test or test set from a test set or test group

Determining the Thoroughness of Test Coverage With Tester

29

Figure 12 Major Areas of the Main Tester Window

cvcov optimize Selects the minimum set of tests that give the same coverage or meet the given
coverage criteria as the given set

test group cvcov mktgroup Creates a test group that can contain other tests or test groups; targets are either the
target libraries or DSOs

Table 6 (continued) Tester Command Line Interface Summary

Command Category Command Name Description

Provides general-purpose
options, such as “Launch
Tool”

Lets you select the format
of the data display: text,
call tree, or bar graph

Lets you define the type
of report to display

Lets you set up a
coverage test or
set of tests

Test identification area

Coverage results area

Control area

Query-specific fields area

Coverage categories
Number of successful covers
Number of possible covers
Cover %
Weighting for testing purposes

30

ProDev WorkShop and MegaDev Overview

Where to Finder Tester Information

To find out more information about Tester, refer to Table 7.

Recompiling Within the ProDev WorkShop Environment With Build Manager

The Build Manager lets you view file dependencies and compiler
requirements, fix compile errors conveniently, and compile software without
leaving the WorkShop environment. It provides two views:

• Build View—for compiling, viewing compile error lists, and accessing
the code containing the errors in Source View (the ProDev WorkShop
editor) or an editor of your choice.

• Build Analyzer—for viewing build dependencies and recompilation
requirements and accessing source files.

For more information on Build Manager, see Chapter 11, “Using the Build
Manager,” in the CASEVision/WorkShop User’s Guide.

Table 7 Where to Find Tester Information in the CASEVision/WorkShop User’s
Guide

Topic See ...

General Tester information “Tester Overview” on page 435

Automated testing “Automated Testing” on page 446

Command line interface tutorial Chapter 23, “Tester Command Line
Interface Tutorial”

Graphical user interface tutorial Chapter 25, “Tester Graphical User
Interface Tutorial”

Command line interface details Chapter 24, “Tester Command Line
Reference”

Graphical user interface details Chapter 26, “Tester Graphical User
Interface Reference”

Making Quick Changes With Fix and Continue

31

Making Quick Changes With Fix and Continue

Fix and Continue is part of the Developer Magic MegaDev module. The Fix
and Continue feature lets you make minor changes to your code from within
WorkShop without having to recompile and link the entire system. You issue
Fix and Continue commands in the Debugger Main View window, either by
selecting them from the Fix+Continue menu or typing them in directly in the
Debugger command line area.

With Fix and Continue, you can edit a function, parse the new function, and
continue execution of the program being debugged. Fix and Continue
enables you to speed up your development cycle significantly. For example,
a program that takes 5 minutes to rebuild through a conventional compile
might take 45 seconds using Fix and Continue.

Fix and Continue lets you:

• Redefine existing function definitions

• Disable, reenable, save, and delete redefinitions

• Set breakpoints in and single-step within redefined code

• View the status of changes

• Examine differences between original and redefined functions

Figure 13 shows you the WorkShop Main View during a Fix and Continue
session and explains how to use the Fix and Continue menu.

Fix and Continue User Model

1. Invoke the Debugger as you normally would by typing:

cvd [-pid pid] [-host host] [executable [corefile]] [&]

See “Debugger User Model” on page 4.

2. Navigate to the function to be changed.

You can get to the function numerous ways, by selecting “Search...”
from the Source menu, typing func functionname at the Debugger
command line, or simply scrolling to the location. If you did not use
func functionname, you need to place the cursor inside the function.

32

ProDev WorkShop and MegaDev Overview

Figure 13 Using Fix+Continue

Function to be edited
appears highlighted,
with line numbers in
decimal format

Turns on edit mode, highlighting the current
function and changing the line number display
Lets you make Fix+Continue edits using
an external editor
Lets you try out your change
Returns from Fix+Continue edit mode
to read-only
Displays the difference between the edited
and original source code in side-by-side
window panes
Lets you toggle between enabling the edited
and compiled versions of the selected code
Cancels all edits
Saves the current fixes to a file
Saves all changes from current session to
the appropriate files
Lets you display the Fix+Continue status,
message, and build environment windows
Allows you to set preferences including the
external editor command, the difference tool,
and behavior related to the changes

Making Quick Changes With Fix and Continue

33

3. Select “Edit” from the Fix+Continue menu.

This turns on edit mode, highlighting the function source code. If line
numbers are displayed, those in the selected function appear with a
two-part number separated by a decimal point. The left part represents
the starting line number of the function in the source file before
selecting “Edit”. The right part renumbers the source within the
function to make it easier to keep track of added new lines.

4. Make your changes to the source code.

You can do this directly in Main View or you can use a preferred editor
by selecting “External Edit” from the Fix+Continue menu.

5. Try out your changes.

Selecting “Parse And Load” adds your changes to the executable you
are debugging. The changed function will get executed the next time it
is invoked. If you stopped in the edited function, the Debugger will let
you continue from the corresponding line in the new function, barring
certain restrictions.

6. If the changes are satisfactory, save them for later compiling.

“Save File+Fixes As ...” saves the fixes in your current file. “Update All
Files...” saves all fixes in your current session.

At any point, you can make comparisons with your old code. “Show
Difference” displays the old and new source code in a side-by-side format.
“Edited<-->Compiled” lets you toggle between the old and new executables
making it easy to verify or demonstrate your bug fix.

34

ProDev WorkShop and MegaDev Overview

Where to Find Fix and Continue Information

To find out more information about Fix and Continue, refer to Table 8.

Debugging IRIX IM Programs

The IRIX IM Analyzer provides special debugging support for IRIX IM
applications and is available from the WorkShop Views menu. The IRIX IM
Analyzer operates in a number of modes (referred to as examiners) for
examining different types of IRIX IM objects. The IRIX IM Analyzer provides
information unavailable through conventional debuggers. It also lets you set
widget-level breakpoints and collect X event history.

When you first invoke the IRIX IM Analyzer, it comes up in its Widget
Examiner mode. You can switch to the other examiners through the
Examiner menu or by clicking the tabs at the bottom of the window (See
Figure 14).

Table 8 Where to Find Fix and Continue Information in the
CASEVision/WorkShop MegaDev User’s Guide

Topic See ...

General information Chapter 2, “Getting Started with Fix and
Continue”

Fix and Continue tutorial Chapter 3, “Using Fix and Continue: A
Sample Session”

Detailed command information Chapter 4, “Fix and Continue Reference”

Debugging IRIX IM Programs

35

Figure 14 The IRIX IM Analyzer Window

Features of the IRIX IM Analyzer

The IRIX IM Analyzer provides the following types of examiners:

• Widget examiner—identifies a widget’s ID, name, class, and parent,
and displays its definitions.

• Widget tree examiner—displays the widget hierarchy (see Figure 15).
The widgets can be displayed by name, class, or ID by selecting from

Examiner menu lets you
select different types of

Data display area shows

Examiner tabs provide a
quick way to select examiners

data appropriate to the type

data for examination.

of examiner.

36

ProDev WorkShop and MegaDev Overview

the widget display menu. Double-clicking a widget node switches to
the widget examiner and displays the data for the selected widget.

Figure 15 IRIX IM Analyzer Widget Tree Examiner

• Breakpoints examiner—lets you set breakpoints at the widget and
widget class level. You can set breakpoints at

– callback functions

– widget events

– resource changes caused

– timeout callback functions

– input callback functions

– widget state changes

– X events

– X requests

widget display menu

Debugging IRIX IM Programs

37

• Trace examiner—lets you trace the execution of your application and
collect the following types of data:

– X Server Events

– X Server Requests

– widget event dispatch information

– widget resource changes

– widget state changes

– Xt callbacks

Figure 16 is a typical example of the trace examiner. The events appear
in a list. Double-clicking an event displays its details.

• Callback examiner—comes up automatically when the process stops in
a callback. It displays

– the callstack frame for the callback function

– widget information

– the callback data structure

• Window examiner—identifies the window, its parent and any children,
and displays window attribute information

• Event examiner—displays the event structure for a given XEvent
pointer

• Graphics context (GC) examiner—displays the X graphics context
attributes for a given GC pointer

• Pixmap examiner—displays the basic attributes of an X pixmap,
including size and depth, and can provide an ASCII display of small
pixmaps, using the units digit of the pixel values

• widget class examiner—displays the widget class attributes for a given
widget class pointer

38

ProDev WorkShop and MegaDev Overview

Figure 16 IRIX IM Analyzer Trace Examiner

Event list

Selected event
details

Debugging IRIX IM Programs

39

Where to Find IRIX IM Analyzer Information

To find out more information about the IRIX IM Analyzer, refer to Table 9.

Table 9 Where to Find IRIX IM Analyzer information in the Developer Magic:
IRIX IM Analyzer User’s Guide

Topic See ...

General information Chapter 1, “Getting Started With the
IRIX IM Analyzer”

IRIX IM Analyzer tutorial Chapter 2, “Using the IRIX IM Analyzer:
A Sample Session”

General reference information Chapter 3, “IRIX IM Analyzer
Reference”

Setting breakpoints to capture
widget-level information

“Breakpoints Examiner”

Tracing widget-level data through the
execution of a program

“Trace Examiner”

Getting information on a specified
widget

“Widget Examiner”

Displaying a graph of the widget
hierarchy

“Tree Examiner”

Getting information on a specified
callback

“Callback Examiner”

Getting information on a specified
window

“Window Examiner”

Getting information on a specified X
event

“Event Examiner”

Getting information on a specified
graphics context

“Graphics Context Examiner”

Getting information on a specified
pixmap

“Pixmap Examiner”

40

ProDev WorkShop and MegaDev Overview

Building Application Interfaces With RapidApp

RapidApp is a simple, interactive tool for creating application interfaces. It’s
integrated with the other WorkShop tools to provide a complete
environment for developing object-oriented applications quickly and easily.
RapidApp generates C++ code, with interface classes based on the IRIS
ViewKit toolkit and IRIX IM. RapidApp also includes predefined interface
components that allow you to conveniently use other Developer Magic
libraries such as OpenGL and Open Inventor. Applications produced by
RapidApp are automatically integrated into the Indigo Magic Desktop
environment, letting you take advantage of Silicon Graphics’ interface and
desktop technology.

Working with RapidApp is similar to using a drawing tool such as
Showcase. A typical RapidApp window is shown in Figure 17. RapidApp
lets you create interface elements by clicking icons representing widgets or
components in the palette area, positioning them in a template window, and
setting their resources in the editing area.

Figure 17 RapidApp Window Displaying Container Palette

Palette area
Resource

Object

editing area

information

Palette selection
tabs

Building Application Interfaces With RapidApp

41

RapidApp User Model

RapidApp users should be familiar with IRIX IM, IRIS ViewKit, and C++
programming. Here’s the basic user model:

1. Invoke RapidApp by typing rapidapp in the directory in which you
wish to build your application.

The RapidApp window is displayed as shown in Figure 17. There are
six palettes of icon widgets available. The number of palettes and icons
available will increase over time as new, useful widgets are developed.
The palettes and icons are:

• Container palette—provides container widgets, that is, widgets
that can hold other widgets

• Controls palette—provides miscellaneous widgets, typically for
controls, fields, and so on.

• Windows palette—provides simple or special-purpose windows
and window-oriented controls, such as menu bars and pulldown
menus

• ViewKit palette—provides ViewKit components, that is,
prepackaged assemblies of widgets from the ViewKit libraries

• Inventor palette—provides viewers, editors, and drawing areas
compatible with IRIS Inventor

The process is then one of selecting containers, populating them with
widgets, and assembling them into elements of your user interface.

2. Select a container widget.

A rubber-band box appears, representing the initial default size of the
widget. Use the mouse to drag it to a working area on your desktop (or
inside another container). After you’ve positioned the new container
widget, you can adjust its size by dragging the corners.

3. Edit the widget’s resources.

Customize the widget for your application. RapidApp changes the
resource editing area according to the type of widget you are working
with. It displays text fields for string resources, radio buttons for
Booleans, and menus for resources with multiple values. Figure 18

42

ProDev WorkShop and MegaDev Overview

illustrates the creation of a drawing area container widget. The drawing
area icon has been selected from the container palette, the new widget
has been placed, and the resource editing area has changed accordingly.

Figure 18 Creating a Widget

4. Select “Play Mode” from the View menu.

This lets you try out the interface design. When you are through trying
it out, go back to working on the interface by selecting “Build Mode”
from the View menu.

5. Perform any further edits on the widget.

6. Repeat steps 2-5 until your window (or application) is complete.

7. Select “Generate C++” from the Project menu.

This produces the source code (including Makefile) necessary to
implement the interface you have designed. It also displays the Builder
information window, a shell that displays RapidApp status messages.

Selected widget icon

Resulting

Resulting widget

resource
editor

Building Application Interfaces With RapidApp

43

8. Select “Edit File ...” from the Project menu to make any necessary
adjustments to the source code.

A file selection dialog box displays showing the contents of the
directory containing the generated source files. When you choose a file,
it will appear in your default editor.

9. Select “Build Application” from the Project menu to compile the new
program.

The WorkShop Build View displays and starts a compile going and lets
you view any compile errors (see “Recompiling Within the ProDev
WorkShop Environment With Build Manager” on page 30).

10. Use the other ProDev WorkShop and MegaDev tools, if necessary, to fix
any coding problems.

RapidApp is fully integrated with the rest of the Developer Magic
environment so that the full range of tools and libraries are at your
disposal for completing your application.

Where to Find RapidApp Information

To find out more information about RapidApp, refer to Table 10.

Table 10 Where to Find RapidApp Information in the Developer Magic:
RapidApp User’s Guide

Topic See ...

Understanding the RapidApp window “The RapidApp Interface” in Chapter 1

Using RapidApp “Basic Interaction Techniques” in
Chapter 1 and “Advanced Techniques
and Features” in Chapter 3

General tutorial “A Simple Example: A Calculator” in
Chapter 1

Inventor tutorial “Example: A Simple Inventor Program”
in Chapter 4

OpenGl tutorial “Example: Using the OpenGL Widget”
in Chapter 4

44

ProDev WorkShop and MegaDev Overview

Windows “Choosing and Using Windows” in
Chapter 3

Containers “Choosing and Using Containers” in
Chapter 3

Generating software code Chapter 2, “Creating Applications with
RapidApp”

Applying the other ProDev tools to
RapidApp applications

“Integration with WorkShop for
Building and Debugging” in Chapter 2

RapidApp reference information Appendix C, “Quick Reference”

Table 10 (continued) Where to Find RapidApp Information in the
Developer Magic: RapidApp User’s Guide

Topic See ...

We'd Like to Hear From You

As a user of Silicon Graphics documentation, your comments are important
to us. They help us to better understand your needs and to improve the
quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested
topics to comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please include the title and part number of the document you are
commenting on. The part number for this document is
007-2582-001.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your
comments on the postage-paid card for your country, then detach and mail
it. If your country is not listed, either use the international card and apply the
necessary postage or use electronic mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail
message and mail it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of manual pages) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

