
Developer Magic™: WorkShop Pro MPF
User’s Guide

Document Number 007-2603-001

Developer Magic™: WorkShop Pro MPF User’s Guide
Document Number 007-2603-001

CONTRIBUTORS

Written by Robert M. Reimann, Carol Geary and Douglas B. O’Morain
Illustrated by Douglas B. O’Morain and Carol Geary
Edited by Nan Schweiger
Production by Laura Cooper
Engineering contributions by Marty Itzkowitz and Suresh Srinivas

© Copyright 1993, 1994, 1995 Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks, and IRIX, CASEVision,
CASEVision/WorkShop, CASEVision/WorkShop Pro MPF, POWER series, and
POWER Fortran Accelerator are trademarks, of Silicon Graphics, Inc. Motif is a
trademark of the Open Systems Foundation.

iii

Contents

Introduction xv
What This Guide Contains xv
What You Should Know Before Reading This Guide xvi
Conventions xvii

1. Getting Started with the Parallel Analyzer View 1
Setting Up Your System 1
Starting the Parallel Analyzer View 2
Tutorials 3

PCF Directive Support 3

2. Analyzing Loops: 32-bit Sample Sessions 5
Setting Up the Dummy Sample Session 6
Using the Loop List Display 7

Sorting the Loop List 9
Filtering the Loop List 10

Filtering by Parallelization Status 10
Filtering by Loop Origin 11

Viewing Source 12
Viewing Original Source 12
Viewing Transformed Source 13

iv

Contents

Viewing Detailed Information about a Loop 14
Selecting a Loop 15
Using the Loop Information Display 17

Parallelization Controls 17
Loop Information Messages 18

Using the PFA Analysis Parameters View 18
Using the Transformed Loops View 19

Transformed Loop Description 20
Selecting Transformed Loops 21

Examining Loops 23
Simple Loops 23

A Simple Parallelizable Loop 23
A Preferably Serial Loop 23
An Explicitly Parallelized Loop 25
A Pair of Fused Loops 26
Loop Unrolling 27
A Loop That Is Optimized Away 28

Loops with Obstacles to Parallelization 28
Loops with Data Dependences 28
Loops with Reductions 31
Loops with Input-output Operations 32
Loops with Premature Exits 32
Loops with Subroutine Calls 32

Loops That Prompt Questions from PFA 33
Loops with Relationships between Variables 33
Permutation Vectors 34

Complex Loops and Loop Nests 34
Doubly-nested Loops and Interchanges 34
Triply-nested Loops and Strip-mining 35

v

Modifying Source Files 36
Asking for Changes 36

Changing the PFA Analysis Parameters 36
Building a Custom DOACROSS Directive 37
Adding a New Assertion 38
Answering a Question 39
Deleting an Existing Assertion 40

Updating the File 41
Examining the Modified File 42

Unroll Change 42
New Custom DOACROSS 43
New Assertion 43
Answered Question 43
Deleted Assertion 43

Examing Subroutines That Use PCF Directives 43
Examining a Subroutine That Contains Syntax Errors 44
Exiting from the Dummy Sample Session 44
Setting Up the linpackd Sample Session 44

Starting the Parallel Analysis View 45
Starting the Performance Analyzer 45
Using the Parallel Analyzer with Performance Data 46

Exiting from the linpackd Sample Session 50
Setting Up the f90 Sample Session 51
Exiting from the f90 Sample Session 52

3. Analyzing Loops: 64-bit Sample Sessions 53
Setting Up the Dummy Sample Session 54
Using the Loop List Display 55

Sorting the Loop List 57
Filtering the Loop List 58

Filtering by Parallelization Status 58
Filtering by Loop Origin 59

vi

Contents

Viewing Source 60
Viewing Original Source 60
Viewing Transformed Source 61

Viewing Detailed Information about a Loop 62
Selecting a Loop 63
Using the Loop Information Display 65

Parallelization Controls 65
Loop Information Messages 66

Using the PFA Analysis Parameters View 66
Using the Transformed Loops View 67

Transformed Loop Description 68
Selecting Transformed Loops 69

Examining Loops 71
Simple Loops 71

Simple Parallel Loops 71
An Explicitly Parallelized Loop 71
Loop Unrolling 73
A Loop That Is Optimized Away 73

Loops with Obstacles to Parallelization 74
Loops with Data Dependences 74
Loops with Reductions 77
Loops with Input-output Operations 78
Loops with Premature Exits 78
Loops with Subroutine Calls 78

Loops That Prompt Questions from PFA 79
Loops with Relationships between Variables 79
Permutation Vectors 80

Complex Loops and Loop Nests 80
Doubly-nested Loops and Interchanges 80

vii

Modifying Source Files 81
Asking for Changes 81

Building a Custom DOACROSS Directive 81
Adding a New Assertion 83
Answering a Question 84
Deleting an Existing Assertion 85

Updating the File 86
Examining the Modified File 87

New Assertion 87
Answered Question 88
Deleted Assertion 88

Examining Subroutines That Use PCF Directives 88
Explicitly Parallelized Loops With C$PAR DO 88
Loops With Barriers 90
Critical Section in a Loop 91
Parallel Sections 91

Examining a Subroutine That Contains Syntax Errors 91
Exiting From the Dummy Sample Session 93
Setting Up the linpackd Sample Session 93

Starting the Parallel Analysis View 93
Starting the Performance Analyzer 94
Using the Parallel Analyzer with Performance Data 95

Exiting from the linpackd Sample Session 99
Setting Up the f90 Sample Session 100
Exiting from the f90 Sample Session 100

viii

Contents

4. Parallel Analyzer View Reference 101
Main View Menu Bar 101

Admin Menu 102
Launch Tool Submenu 104
Project Submenu 106

Views Menu 107
Fileset Menu 108
Operations Menu 109
Update Menu 112
 Help Menu 113
Keyboard Shortcuts 114

Loop List 114
Status and Performance Experiment Lines 115
Loop List Display 115
Loop List Search Field 117
Sort Option Menu 118
Show Loop Types Option Menu 118
Filtering Option Menu 119
Loop List Buttons 119

Loop Information Display 120
Parallelization Controls 121

Loop Status Option Menu 121
MP Scheduling Option Menu 122
MP Scheduling Chunk Size Field 124

Questions 124
Obstacles to Parallelization 125
Assertions and Directives 125
PFA Messages 126

ix

Other Views 126
Parallelization Control View 127

Parallelization Control View MP Scheduling Option Menu 129
Parallelization Control View Variable Option Menus 130
C$DOACROSS Parallelization Control View 130
C$PAR PDO Parallelization Control View 132

Transformed Loops View 134
PFA Analysis Parameters View 135
Subroutines and Files View 136

Original and Transformed Source Windows 138
Icon Legend 139

Icon Legend Buttons 139

Index 141

xi

Figures

Figure 2-1 Parallel Analyzer View Main Window 7
Figure 2-2 Launching the “Icon Legend...” Dialog Box 8
Figure 2-3 Source Order Sort 9
Figure 2-4 Sorting the Loop List by Workload 10
Figure 2-5 Parallelization Status Option Menu 10
Figure 2-6 Subroutines and Files View 11
Figure 2-7 Filer Option Menu 11
Figure 2-8 Filter by File Option Menu and Text Field 12
Figure 2-9 Source View 13
Figure 2-10 Transformed Source Window 14
Figure 2-11 Global Effects of Selecting a Loop 16
Figure 2-12 Loop Information Display 17
Figure 2-13 Highlighting Button 18
Figure 2-14 Views Menu 18
Figure 2-15 PFA Analysis Parameters View 19
Figure 2-16 Transformed Loops View for Loop do-1000 20
Figure 2-17 Transformed Loops in Source Windows 22
Figure 2-18 Second Transformed Loop Highlighting 22
Figure 2-19 Preferably Serial Loop 24
Figure 2-20 Explicitly Parallelized Loop 25
Figure 2-21 Source View of C$DOACROSS Directive 26
Figure 2-22 Fused Loops in Transformed Source Window 27
Figure 2-23 Obstacle to Parallelization 29
Figure 2-24 Parallelizable Data Dependence 30
Figure 2-25 Highlighting on Multiple Lines 31
Figure 2-26 Changing a PFA Analysis Parameter 36
Figure 2-27 Effect of Changes on the Loop List Display 37

xii

Figures

Figure 2-28 DOACROSS Menu 37
Figure 2-29 Parallelization Control View for Loop do-1100 38
Figure 2-30 Adding an Assertion 39
Figure 2-31 Answering a Question 40
Figure 2-32 Deleting an Assertion 41
Figure 2-33 Update All Files 41
Figure 2-34 Setting the Run Editor Toggle 42
Figure 2-35 Starting the Performance Analyzer 46
Figure 2-36 Performance Data — Parallel Analyzer View 47
Figure 2-37 Source View for Performance Experiment 48
Figure 2-38 Sort by Performance Cost 49
Figure 2-39 Loop Information Display with Performance Data 50
Figure 3-1 Parallel Analyzer View Main Window 55
Figure 3-2 Launching the “Icon Legend...” Dialog Box 56
Figure 3-3 Source Order Sort 57
Figure 3-4 Sorting the Loop List by Workload 58
Figure 3-5 Parallelization Status Option Menu 58
Figure 3-6 Subroutines and Files View 59
Figure 3-7 Filter Option Menu 59
Figure 3-8 Filter by File Option Menu and Text Field 60
Figure 3-9 Source View 61
Figure 3-10 Transformed Source Window 62
Figure 3-11 Global Effects of Selecting a Loop 64
Figure 3-12 Loop Information Display 65
Figure 3-13 Highlighting Button 66
Figure 3-14 Views Menu 66
Figure 3-15 PFA Analysis Parameters View 67
Figure 3-16 Transformed Loops View for Loop do-1000 68
Figure 3-17 Transformed Loops in Source Windows 70
Figure 3-18 Second Transformed Loop Highlighting 70
Figure 3-19 Explicitly Parallelized Loop 72
Figure 3-20 Source View of C$DOACROSS Directive 73
Figure 3-21 Obstacle to Parallelization 75

xiii

Figure 3-22 Parallelizable Data Dependence 76
Figure 3-23 Highlighting on Multiple Lines 77
Figure 3-24 DOACROSS Menu 81
Figure 3-25 Parallelization Control View for Loop do-5000 82
Figure 3-26 Effect of Changes on the Loop List Display 82
Figure 3-27 Adding an Assertion 84
Figure 3-28 Answering a Question 85
Figure 3-29 Deleting an Assertion 86
Figure 3-30 Update All Files 86
Figure 3-31 Setting the Run Editor Toggle 87
Figure 3-32 Explicitly Parallelized Loops With C$PAR DO 89
Figure 3-33 Loops With Barrier Synchronization 90
Figure 3-34 Examing Syntax Errors 92
Figure 3-35 Starting the Performance Analyzer 95
Figure 3-36 Performance Data — Parallel Analyzer View 96
Figure 3-37 Source View for Performance Experiment 97
Figure 3-38 Sort by Performance Cost 98
Figure 3-39 Loop Information Display with Performance Data 99
Figure 4-1 Icon for cvpav 101
Figure 4-2 Parallel Analyzer View Menu Bar 102
Figure 4-3 Main View Admin Menu 102
Figure 4-4 Directory and File Browser Window 103
Figure 4-5 Launch Tool Submenu 104
Figure 4-6 Project Submenu Commands 106
Figure 4-7 Views Menu 107
Figure 4-8 Fileset Menu 108
Figure 4-9 Operations Menu and Submenus 110
Figure 4-10 Update Menu 112
Figure 4-11 Viewing the Updated Source in an Editor 112
Figure 4-12 Help Menu 113
Figure 4-13 Loop List Display and Controls 115
Figure 4-14 Column Headings for the Loop List Display 116
Figure 4-15 Sort Option Menu 118

xiv

Figures

Figure 4-16 Show Loop Types Menu 118
Figure 4-17 Filtering Option Menu 119
Figure 4-18 Loop Information Display 120
Figure 4-19 Highlighting Button 121
Figure 4-20 Parallelization Controls 121
Figure 4-21 MP Chunk Size Input Field Changed 124
Figure 4-22 Questions Information Block 125
Figure 4-23 Obstacles Information Block 125
Figure 4-24 Assertion Information Block 126
Figure 4-25 Parallelization Control View 128
Figure 4-26 MP Scheduling Option Menu 129
Figure 4-27 Variable Type Option Menu 130
Figure 4-28 C$DOACROSS Parallelization Control View 131
Figure 4-29 C$PAR PDO Parallelization Control View 133
Figure 4-30 Synchronization Construct Menu 134
Figure 4-31 Transformed Loops View 134
Figure 4-32 PFA Analysis Parameters View 136
Figure 4-33 Subroutines and Files View 137
Figure 4-34 Original and Transformed Loop Source Windows 138
Figure 4-35 Parallelization Icon Legend 140

xv

Introduction

Developer Magic: WorkShop Pro MPF is a companion product to the
Devloper Magic: WorkShop suite of Computer-Aided Software Engineering
(CASE) tools that use a graphical interface to help programmers construct,
analyze, and debug software applications.

The WorkShop Pro MPF Parallel Analyzer View cvpav helps Fortran 77
programmers better understand the structure and parallelization of
multiprocessing applications by providing an interactive, visual comparison
of their original source with transformed, parallelized code. The Parallel
Analyzer View reads analysis files generated by the POWER Fortran
Accelerator™ (PFA) and displays editable parameters for each DO loop
found in the Fortran source files. These parameters are easily customized
and explored with the help of the Parallel Analyzer View’s user-friendly,
Motif™-based graphical interface.

The Parallel Analyzer View’s functionality is integrated with WorkShop 2.0
and later, allowing examination of a program’s loops in conjunction with a
performance experiment on either a uni- or multiprocessor run. When run
in this mode, the source displays are annotated with line-level performance
data, and the list of loops may be sorted in order of performance cost,
allowing you to concentrate your attention on the most compute-intensive
loops.

What This Guide Contains

This guide presents the Parallel Analyzer View from a task-oriented
perspective. The first two chapters are designed to get you up and running
with the Parallel Analyzer View and to familiarize you with its use; the third
chapter is a complete reference of the user interface. Brief descriptions of the
chapters in this guide are listed below:

xvi

Introduction

• Chapter 1, “Getting Started with the Parallel Analyzer View,” tells you
how to install the WorkShopProMPF software and run the Parallel
Analyzer View on your Fortran source files.

• Chapter 2, “Analyzing Loops: 32-bit Sample Sessions,” provides a
tutorial session that steps you through the Parallel Analyzer’s features
using an illustrative piece of sample Fortran code. This chapter is only
applicable for 32-bit code.

• Chapter 3, “Analyzing Loops: 64-bit Sample Sessions,” provides a
tutorial session that steps you through the Parallel Analyzer’s features
using an illustrative piece of sample Fortran code. This chapter is only
applicable for 64-bit code.

• Chapter 4, “Parallel Analyzer View Reference,” describes in detail the
graphical user interface of the Parallel Analyzer View.

What You Should Know Before Reading This Guide

This guide assumes that you’re somewhat familiar with principles of Fortran
programming and multiprocessing.

The following manuals, available from Silicon Graphics™, may provide
useful supplementary information and are sometimes referenced in this
manual:

• WorkShop Environment Guide

• Debugger User’s Guide

• Fortran 77 Programmer’s Guide

• POWER Fortran Accelerator User’s Guide

• Fortran Reference Pages

The following book is also recommended:

• Practical Parallel Programming, by B.E. Bauer, Academic Press, 1992

Conventions

xvii

Conventions

These are the typographical conventions used in this guide:

• Bold— Option flags, data types, and keywords

• Italics— File names, button names, Fortran variables, functions, and
IRIX commands

• Regular— Menu and window names

• “Quoted”— Menu choices

• Fixed-width — Code examples

• Bold fixed-width — User input

xviii

Introduction

1

Chapter 1

1. Getting Started with the Parallel Analyzer View

This chapter is designed to help you get the Parallel Analyzer View up and
running on your system. It contains the following sections:

• “Setting Up Your System”

• “Starting the Parallel Analyzer View”

• “Tutorials”

Setting Up Your System

The main consideration when installing the WorkShopProMPF software is
memory size. At least 16MB is strongly suggested, and 32MB will improve
overall performance.

WorkShopProMPF also requires installation of IRIX™ system software
version 5.0 or greater, ToolTalk 1.1 or greater, and the WorkShop 2.0 or later
Execution Environment. Developer Magic 1.1, WorkShop 2.0 or later, the
Fortran 77 compiler, and PFA 4.0 are also required.

To determine what software is installed on your system, enter the following
at the shell prompt:

% versions

If the items mentioned in this section are not installed, consult your sales
representative or (in the US) call the Silicon Graphics Technical Assistance
Center at 1-(800)-800-4SGI. To order additional memory, consult your sales
representative or call 1-(800)-800-SGI1.

If you have all the software and memory you need, you are ready to install
the CASEVision/WorkShopProMPF software. Consult the IRIS Software
Installation Guide for general instructions on software installation, and the

2

Chapter 1: Getting Started with the Parallel Analyzer View

CASEVision/WorkShopProMPF Release Notes for specific installation
instructions.

After installation, you may proceed to use your WorkShopProMPF.

Starting the Parallel Analyzer View

Before starting up the Parallel Analyzer View on your Fortran source, you
need to run the POWER Fortran Accelerator (PFA 4.0) on it first.

To run PFA 4.0 on a single file, enter:

% /usr/lib/pfa sourcefile.f

As an alternative you may also enter:

% f77 -pfa keep sourcefile.f

PFA will then generate its usual output files (see the POWER Fortran
Accelerator User’s Guide and man page for more information) and an analysis
(*.anl) file, which the Parallel Analyzer reads to generate its views. If you use
the alternative (f77 -pfa keep sourcefile.f), you must specify the keep
option to save the crucial *.anl file.

The Parallel Analyzer View cvpav is also installed in /usr/sbin. To run the
Parallel Analyzer View on the source file, enter:

% cvpav -f sourcefile.f

You can also run the Parallel Analyzer View on an executable Fortran
application or on a specified fileset listed within a text file:

% cvpav -e executable

% cvpav -F fileset-file

cvpav reads information from all Fortran source files compiled into the
application.

Tutorials

3

Note: cvpav assumes that PFA has been run on each of the Fortran source
files named in an executable or fileset. If this is not the case, a warning
message is posted, and the unprocessed files are marked within the Parallel
Analyzer’s Subroutines and Files View (see “C$DOACROSS Parallelization
Control View”) by an error icon.

Note: If you receive a message related to licensing, refer to the NetLS System
Administration Guide or Release Notes for the product.

The Parallel Analyzer View has several other command line options, as well
as several X resources that the user can set. See the cvpav man page for more
information. Enter:

% man cvpav

at the shell prompt to view the cvpav man page.

Tutorials

For more detailed information on the Parallel Analyzer View, you can follow
one of several tutorials provided with the product. This guide contains
detailed descriptions of both 32- and 64-bit tutorials. See either Chapter 2,
“Analyzing Loops: 32-bit Sample Sessions.” or Chapter 3, “Analyzing
Loops: 64-bit Sample Sessions.” for a discussion of the demos provided in
the /usr/demos/WorkShopMPF directories.

PCF Directive Support

PCF directives are supported by the current 32-bit PFA processor, but only
in the 64-bit compiler. If you put them into your code, they will be treated as
comments, rather than properly interpreted. Chapter 3, “Analyzing Loops:
64-bit Sample Sessions” contains 64-bit PCF tutorial information.

4

Chapter 1: Getting Started with the Parallel Analyzer View

5

Chapter 2

2. Analyzing Loops: 32-bit Sample Sessions

This chapter provides three interactive sample sessions that demonstrate
most of the Parallel Analyzer View’s features for the 32-bit version of MPF.
These sessions also demonstrate various aspects of parallelization and the
use of the POWER Fortran Accelerator (PFA).

The sample sessions consist of a step-by-step examination of three sample
programs. The samples sessions cover the following:

• The dummy sample session is designed to show the various types of
FORTRAN loops, how they are transformed by PFA, and how they are
displayed by the Parallel Analyzer View. The sample session begin at
“Setting Up the Dummy Sample Session” on page 6.

• The linpackd sample session briefly illustrates how the Parallel
Analyzer View can be used in conjunction with the WorkShop
Performance Analyzer cvperf. The sample session begin at “Setting Up
the linpackd Sample Session” on page 44.

• The f90 sample session briefly illustrates how to use MPF with
Fortran-90 code. The sample session begin at “Setting Up the f90
Sample Session” on page 51.

To use these sample sessions, the subsystem WorkShopMPF_sw.demos must be
installed.

Note: These sample sessions are applicable for the 32-bit compilers only. For
a discussion of the 64-bit version of the compilers, see Chapter 3, “Analyzing
Loops: 64-bit Sample Sessions.”

6

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Setting Up the Dummy Sample Session

The Parallel Analyzer View comes with a demonstration directory
/usr/demos/WorkShopMPF. It contains a subdirectory tutorial, which contains
a source file called dummy.f_orig and a Makefile. The file contains 27 DO
loops, each of which exemplifies one aspect of the parallelization process. In
that directory, running make creates a scratch copy of the demonstration
program dummy.f and then creates a run of PFA on the copy. PFA produces
a transformed source file dummy.m, a listing file dummy.l, and an “analysis”
file dummy.anl.

Prepare for the session by opening a shell window and entering make in the
/usr/demos/WorkShopMPF/tutorial directory:

% cd /usr/demos/WorkShopMPF/tutorial
% make

Once the demo directory has been prepared, start the session by entering:

% cvpav -f dummy.f

The main window of the Parallel Analyzer View opens, displaying the list of
loops in the source file, dummy.f. Position the view at the upper left of the
screen.

Note: If you receive a message related to licensing, refer to the NetLS License
System Administration Guide or WorkShopProMPF Release Notes.

Figure 2-1 shows the Parallel Analyzer View with an alternative color
scheme. To start a session in these colors, enter cvpav -scheme Potrero -f

dummy.f . The black and white figures in the hard copy version of this guide
were prepared using the Grayscale scheme. Another scheme used in this
book is IndigoMagic.

Using the Loop List Display

7

Figure 2-1 Parallel Analyzer View Main Window

Using the Loop List Display

The loop list display shows information about each loop in the program with
an icon next to it that reflects the parallelization status of the loop. Pull down
the Admin menu and select “Icon Legend...” to bring up a legend dialog box
that explains the meaning of the various icons (see Figure 2-2). Move the
legend dialog box to the side, and scroll through the list of loops to see the
various icons. When you are done, close the legend dialog box by clicking
the Close button in the lower right of the dialog box.

Loop list
search field

List of loops

Loop
list
display

Loop
information
display

Buttons

Option menus

8

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Figure 2-2 Launching the “Icon Legend...” Dialog Box

Parallelization icons

Variable usage icons

Subroutines and Files View icons

Highlighting button

PCF control structure icons

Subroutines icons

Using the Loop List Display

9

The loop list display contains the following items:

Workload a number that is supposed to reflect the amount of work
done in each iteration of the loop

Nest the nesting level for the loop

Loop-ID the FORTRAN description of the loop

Variable the loop index variable

Subroutine, Lines, File
where the loop is located in the source code

Olid the original loop ID; an internal identifier for the loop
(Please refer to this number when reporting bugs.)

Underneath the list display is a search field and a set of option menus and
buttons that control the display of information in the loop list.

Sorting the Loop List

You can sort the list either in the order of the source code, or by loop
workload, or (if you are running a performance experiment on the program
using the WorkShop Performance Analyzer) by performance cost. You
control sorting with the option menu to the left below the list.

When loops are sorted in source order, the Loop-ID is indented according to
the nesting level of the loop; for the demonstration program, only the last
several loops are nested, so you will have to scroll down to see it (see
Figure 2-3).

For other sorting, the list is not indented. Select “Sort by Workload” and
notice the Loop-ID is no longer indented (see Figure 2-4). (The same is true
of “Sort by Perf. Cost”. It is grayed out because there is no performance tool
running at this time.) When you are done, select “Sort in Source Order” once
again.

Figure 2-3 Source Order Sort

10

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Figure 2-4 Sorting the Loop List by Workload

Filtering the Loop List

You may want to look at only some of the loops in large programs. The list
can be filtered in two ways: by parallelization status or by origin of the loop.

Filtering by Parallelization Status

The parallelization status filtering is controlled by an option menu centered
below the list. It initially reads “Show All Loop Types”.

You can filter the list to show only those loops that cannot be parallelized,
those that are parallel, or those that are serial (see Figure 2-5). Try selecting
each of these, and then return to “Show All Loop Types”. It can also filter to
show those loops for which you have requested modifications (requesting
modifications to loops is described later in this section). Since you haven’t
yet requested any modifications, selecting this option will result in a
message saying that no loops meet the filter criterion.

Option
menu

Loop
list

Figure 2-5 Parallelization Status
Option Menu

Using the Loop List Display

11

Filtering by Loop Origin

Another way to filter is to show loops that come from a single file or a single
subroutine:

1. Open the Subroutines and Files View by pulling down the Views menu
and selecting “Subroutines and Files View.” Alternatively, you may use
the keyboard accelerator for this operation by typing <Ctrl>-F with
the cursor anywhere in the main view. A subsidiary view that lists the
subroutines and files that are in the fileset opens (See Figure 2-6.)

Figure 2-6 Subroutines and Files View

2. From the Filter option menu (figure 2-7), select “Filter by File.”

Figure 2-7 Filter Option Menu

3. Double-click the line for the file dummy.f in the function/file list of the
Subroutines and Files View window. The name will appear in the
filtering text field labeled Title: (see Figure 2-8) and the list will be
rescanned. Similarly, you may try selecting “Filter by Subroutine” from
the main view option menu, and double-click the line for subroutine
DUMMY in the Subroutine and Files View.

Function/file list

Search field

12

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Figure 2-8 Filter by File Option Menu and Text Field

For this example, there is only one file and one subroutine, so the filtering is
not very useful, but for large programs with many files and subroutines, it
would be. When you are done, display all of the loops in the sample source
file once again by selecting “No Filtering” from that option menu.

You won’t be needing the Subroutines and Files View further, so close it by
pulling down the Admin menu and selecting “Close.”

Viewing Source

The Parallel Analyzer View gives you access to views of both your original
Fortran source and the source as it is transformed by the POWER Fortran
Accelerator.

Viewing Original Source

Click the Source button to the left side of the main view to bring up the
Source View, as shown in Figure 2-9. This view is the same Source View that
is used in the WorkShop Debugger and Performance Analyzer.

Loop list display

Filtering text field

controls

Viewing Source

13

Figure 2-9 Source View

When the source display opens, position it to the right of the main view. (On
machines with low-resolution screens, the windows will overlap.) Scroll up
and down in the file and observe that the source window displays colored
brackets that mark the location of each loop. These colors match the colors
of the parallelization icons and serve to indicate the parallelization status of
each loop at a glance. The color indicates which loops are parallelized, which
are unparallelizable, and which are left serial.

Viewing Transformed Source

PFA is a source-to-source translator that takes the various loops in the
program and transforms them both for scalar optimization and for
parallelization. Each loop may be rewritten into one, two, or more
transformed loops or may be combined with others or optimized away. The
result of these transformations is a transformed source file that you may
examine.

Loop bracket

Source code

14

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Click the Transformed Source button. Another source window labeled
“Parallel Analyzer View — Transformed Source” opens as shown in
Figure 2-10.

Figure 2-10 Transformed Source Window

Position it below the Source View. Scroll through it, and notice that it, too,
has bracketing marking the loops. The bracketing for the transformed source
cannot always distinguish between serial loops and unparallelizable loops,
so some unparallelizable loops will be displayed as serial (for example, those
with data dependencies).

Viewing Detailed Information about a Loop

Each line in the loop list summarizes some information about a loop. Much
more information is available, and this section will show you how to
examine it.

Transformed source code

Viewing Detailed Information about a Loop

15

Selecting a Loop

To get more information about a loop, you must select it by

• double-clicking the loop line text (but not on its icon)

• clicking the brackets in either of the source windows

• stepping through the list with the Next Loop and Previous Loop buttons

Selecting a loop has a number of effects:

• The previously empty display below the list fills with information on
the selected loop.

• The Source View scrolls to the selected loop and highlights the source
code of the loop.

• The Transformed Source window highlights the first of the loops into
which the original selected loop was transformed and displays a bright
vertical bar next to each transformed loop that came from the original
loop.

If the Transformed Loops View or the PFA Analysis Parameters View is
open, it too will be switched to show the selected loop. We will look at these
views later. See Figure 2-11.

16

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Figure 2-11 Global Effects of Selecting a Loop

In this figure and many of those following, the loop list is resized to reduce
the number of loops displayed. The adjustment button is in the lower right
hand corner of the loop list display, just above the loop information display.
Your screen shows the full list unless you resize it.

Select

Scrolls to
selected
loop

Display fills
with loop
information

Highlights
loop in

Shows
loop
parameters

transformed
source

loop
do-5020

Provides more information
about loops

Viewing Detailed Information about a Loop

17

Try scrolling through the list and double-clicking various loops, and
scrolling through the source displays and clicking the loop brackets to select
loops. Note that when you select each loop, its icon acquires a check mark
showing that you’ve looked at it. When you are done, scroll to the top of the
loop list in the main view and double-click the first loop’s line.

Using the Loop Information Display

The loop information display occupies the lower half of the main view (see
Figure 2-12). It contains detailed information about the currently selected
loop. It consists of a series of lines in several blocks.

Figure 2-12 Loop Information Display

Parallelization Controls

The first line of the display is labeled Parallelization Controls:. On the far
right, the first line shows how many transformed loops were derived from
the selected loop. When the session is run with a performance experiment,
an additional block appears above the Parallelization Controls. It gives
performance information for the loop (shown in Figure 2-39). Since we do
not have an experiment on this program (which does not, in fact, execute),
the performance information is absent.

Parallelization status control

Loop scheduling control

Scheduling chunk size

Additional information
blocks

Number of loops transformed

input fields

18

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Below this are two option menus, the first controlling parallelization status
and the second controlling the loop MP scheduling (it is shown for all loops,
but is applicable to parallel loops only), and a text input field for adding an
expression for the scheduling chunk size. Text labels to the right of the
option menus list the current values for parallelization and scheduling.

Loop Information Messages

Below the first separator line appear up to five blocks of additional
information. These are lists of:

• questions that PFA asked about the loops, if any

• obstacles to parallelization, if any

• assertions made about the loop, if any

• directives applied to the loops, if any

• messages about the loop, if any

Some of these lines may be accompanied by small “light bulb” highlighting
buttons (see Figure 2-13). Each highlights a relevant part of the code in the
Source View when clicked. The lines for assertions, directives, and questions
also may have menus accompanying them. Lines that refer to parallelization
status or PFA parameters will not have menus because they are controlled
using the parallelization status menu or from the PFA Analysis Parameters
View, respectively. You’ll use these features later in the session. The first loop
in the file (which you selected previously) has two messages and no
highlighting buttons.

Using the PFA Analysis Parameters View

The PFA analysis parameters control what kinds of transformations PFA will
make on the program. The values for the selected loop may be changed
using the PFA Analysis Parameters View. To bring it up, pull down the
Views menu and select “PFA Analysis Parameters View” (see Figure 2-14).
Alternatively, you may use the keyboard accelerator for this operation by
typing Ctrl-A with the cursor anywhere in the main view.

Figure 2-13 Highlighting Button

Figure 2-14 Views Menu

Viewing Detailed Information about a Loop

19

Figure 2-15 PFA Analysis Parameters View

A new view comes up, listing each of the parameters with a numeric input
field to the right of each of them. Entering a new numeric value in the input
field will request a change to the loop. Don’t do this now; close the view by
pulling down the View’s Admin menu and selecting “Close.”

Using the Transformed Loops View

You can also see detailed information about the transformed loops coming
from a particular loop (see Figure 2-16). To do so, pull down the Views menu
and select “Transformed Loops View.” Alternatively, you may use the
keyboard accelerator for this operation by typing Ctrl-T with the cursor
anywhere in the main view.

Numeric input fields
Parameters

20

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Figure 2-16 Transformed Loops View for Loop do-1000

When the view opens, position it at the left of the screen, below the main
view. It contains information about the loops into which the currently
selected original loop was transformed. Each transformed loop has a block
of information associated with it, and the blocks are separated by horizontal
lines.

Transformed Loop Description

The first line in each block contains a parallelization status icon, a
highlighting button, and the ID of the transformed loop. (The ID is assigned
by PFA.) The button, if clicked, highlights the transformed loop in the
Transformed Source window and the original loop in the Source View.

The next two lines describe the transformed loop. The first provides
information such as whether it is a primary loop (directly transformed from
the selected original loop) or secondary loop (transformed from a different
original loop but incorporating some code from the selected original loop),
its parallelization state, whether it is an ordinary loop or interchanged loop,
its nesting level, and workload. The second line displays the location of the
loop in the transformed source.

Viewing Detailed Information about a Loop

21

Following the description lines is a list of messages generated by PFA, if any.
To the left of the message lines are buttons, and clicking them will highlight
the part of the original source that relates to the message. Often it is the first
line of the original loop that is shown, since the message refers to the entire
loop.

For the currently selected loop (do-1000), the original loop was transformed
into two loops, one that runs parallelized and one that runs serial. As the
messages state, the original loop was unrolled 4 times, and a cleanup loop
was added. Unrolling is described in “Loop Unrolling” on page 27.

Selecting Transformed Loops

Transformed loops can also be selected. By default, the first of the
transformed loops is selected when the view is brought up, and the
transformed source is highlighted to show it. At the same time, the color
highlighting of the original source changes, although the lines highlighted
have not. See Figure 2-17. You will later see that for loops with more
extensive transformations the highlighted lines will be different (for
example, loops do-1300 and do-1350, the fused loops).

Now click the button for the second transformed loop. The transformed
source will highlight a different region (the cleanup loop), but the original
source will highlight the same lines as before, as shown in Figure 2-18. This
is because when a transformed loop is selected, those lines in the original
source that go into the transformed loop will be highlighted. In this case, the
same lines go into both the transformed loops. Transformed loops may also
be selected by clicking the corresponding loop brackets in the Transformed
Source window.

22

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Figure 2-17 Transformed Loops in Source Windows

Figure 2-18 Second Transformed Loop Highlighting

Original source code

First transformed loop

Second transformed loop

Second transformed loop

Examining Loops

23

You may either leave this window open or close it by selecting the “Close”
command from its File menu.

Examining Loops

Now that you have familiarized yourself with the basic windows in the
Parallel Analyzer View’s user interface, you can start examining and
analyzing loops. First you will look at a few simple loops, next at loops with
obstacles to parallelization, then at loops for which PFA asks questions, and
finally at more complex, nested loops.

Simple Loops

The six loops you will examine in this section are the simplest kind of
Fortran loop.

A Simple Parallelizable Loop

Scroll the list of loops back to the top and select loop do-1000. As the two
messages state, this loop is transformed into two loops, one an unrolled,
parallelized loop, and the second a clean-up loop for unrolling. (Unrolling is
discussed in “Loop Unrolling”.)

Move to loop do-1100 by clicking the Next Loop button.

A Preferably Serial Loop

Loop do-1100 is preferably serial, because the amount of work done is too
little to justify the parallelization overhead. Unlike the previous loop, the
iteration count is known, so the total work can be computed. See Figure 2-19.

24

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Figure 2-19 Preferably Serial Loop

Also note that this loop is unrolled as the previous one was but that no
cleanup loop is needed because the count is known to be a multiple of the
unrolling.

Move to loop do-1200 by clicking the Next Loop button.

Unrolled loop

Loop status
Preferred serial

Examining Loops

25

An Explicitly Parallelized Loop

Loop do-1200 is parallelized because it contains an explicit C$DOACROSS
directive; PFA will pass the directive through in the transformed source but
does nothing further with the loop, as the messages indicate. See Figure 2-20.

Figure 2-20 Explicitly Parallelized Loop

The loop status option menu is set to “C$DOACROSS...”and it is shown with
a highlighting button. Clicking the button will bring up both the Source
View and the Parallelization Control View, which shows more information
about the parallelization directive. If you have clicked on the button, close
the Parallelization Control View by pulling down its Admin menu and
selecting “Close.” You will come back to the use of this view later. See

Explicit
directive

Loop Status
option
menu

26

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

“Building a Custom DOACROSS Directive”. Close the Source View by
pulling down its File menu and selecting “Close.”

The C$DOACROSS directive is displayed with a highlighting button. Click
it, and the Source View comes up. Notice the highlighting of the directive in
the source. See Figure 2-21.

Figure 2-21 Source View of C$DOACROSS Directive

Move to loop do-1300 by clicking the Next Loop button.

A Pair of Fused Loops

Loop do-1300 is the first of two loops that can be fused. That is, the loops
have the same bounds, and the code in the body of the two loops is
independent, so they can be combined to save the loop overhead. Even when
a loop has been fused, the Source View is highlighted to show only the
selected loop, not the other loops that have been fused with it.

Notice that in the Transformed Source window, the highlighted loop has the
bodies of the two original loops interleaved, and replicated for unrolling (see
Figure 2-22). Click the bracket next to the loop in the transformed source.
Now you see that the lines highlighted in the original source come from both
loops. Then click the bracket for the loop below it in the transformed source
(the cleanup loop for unrolling) and see that it, too, highlights source from
both loops.

C$DOACROSS directive

Loop do-1200 code

Examining Loops

27

Figure 2-22 Fused Loops in Transformed Source Window

Move to loop do-1350 by clicking the Next Loop button. Loop do-1350 is the
other half of the fused pair. Its icon indicates that it was fused, and the
highlighting in the transformed source indicates that it was transformed into
the same pair of loops as the previous one.

Move to loop do-1400 by clicking the Next Loop button.

Loop Unrolling

Unrolling is done to reduce the loop overhead relative to the real work of the
loop. The simpler the body of the loop, the more profitable unrolling can be.
In many cases, the loop iteration count is not known, so an additional loop,
called a cleanup loop, is necessary to handle the last few iterations.
Sometimes, the iteration count is known but is not a multiple of the
unrolling; in such cases, PFA will usually explicitly add code for the last few
iterations.

Cleanup loop for

Loops interleaved and
replicated for unrolling

unrolling

28

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Loop do-1400 is the same as the first loop in the program, but a directive
“SCALAR OPTIMIZE(1)” has been added. The loop is not unrolled. By
default, the scalar optimization parameter is set to 3, which allows loop
unrolling.

Move to loop do-1500 by clicking the Next Loop button.

A Loop That Is Optimized Away

Loop do-1500 is an example of a loop so unnecessary that PFA can get rid of
it entirely. First, PFA sees that the body of the loop is independent of the
loop, so it can be promoted out, and the loop eliminated. Then it sees that the
body sets a variable that is not subsequently used, so it can throw that out,
too. The transformed source is not scrolled and highlighted because nothing
is there. Scroll down a few lines from the previous loop, and note the absence
of the code for the loop that was optimized away.

The loop also has a directive controlling scalar optimization, but it is there
only to reset the default for subsequent loops.

Move to loop do-2000 by clicking the Next Loop button.

Loops with Obstacles to Parallelization

There are a number of reasons that a loop may not be parallelized. The
following loops illustrate various of these reasons, along with variants that
allow parallelization. You will step through each of them in turn.

Loops with Data Dependences

Loop do-2000 is an example of a loop that cannot be parallelized because of
a data dependence. In this case, one element of an array is used to set
another. (This construct is called a recurrence.) If the loop were to be
parallelized, the iterations might execute out of order, and iteration 4, which
sets A(4) to A(5), might occur after iteration 5, which would have reset the
value of A(5). Consequently, the program would give the wrong answer. See
Figure 2-23.

Examining Loops

29

Figure 2-23 Obstacle to Parallelization

There is a line listing the obstacle to parallelization; click the button that
accompanies it. Two kinds of highlighting take place. The first is a line
highlight showing the relevant line that has the dependence, and the second
is a symbol (or token) highlight that shows the uses of the variable that is the
obstacle to parallelization. Only the uses of the variable within the loop are
highlighted.

Move to loop do-2100 by clicking the Next Loop button.

Not all loops with similar constructs are unparallelizable. Loop do-2100 is
similar to loop do-2000, but the array elements used differ by an offset, M. If

Obstacle

30

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

M is equal to NSIZE, for example, and the array is twice NSIZE, the code is
actually copying the upper half of the array into the lower half, and there is
no reason why that cannot be run in parallel. PFA cannot recognize this from
the source, but the author has added an assertion that there is no recurrence,
so the loop is parallelized. See Figure 2-24. Click the highlighting button to
show the assertion.

Figure 2-24 Parallelizable Data Dependence

Move to loop do-2200 by clicking the Next Loop button.

Data dependence can involve more than one line of a program. In loop
do-2200, a similar dependence occurs, but the use of the variable occurs on
a different line than its setting. Click the highlight button on the obstacle line,
and note that both lines receive the line highlighting, and the token
highlighting shows the dependency variable on the two lines (see
Figure 2-25). Of course, real programs can, and typically do, have far more
complex dependencies than this.

Assertion

Examining Loops

31

Figure 2-25 Highlighting on Multiple Lines

Move to loop do-2300 by clicking the Next Loop button.

Loops with Reductions

Loop do-2300 shows a data dependence that is called a reduction. In a
reduction, the variable responsible for the data dependence is being
accumulated or “reduced” in some fashion. Reductions can be summation,
multiplication, or a minimum or maximum determination. For summation,
as shown in this loop, PFA could accumulate partial sums in each processor,
and then add the partial sums at the end. However, because floating-point
arithmetic is inexact, the order of addition might give different answers
because of round-off error.

This does not imply that the serial execution answer is “correct” and the
parallel execution answer is “incorrect”; they are equally valid within the
limits of round-off error. Since, by default, PFA assumes it is not OK to
introduce round-off error, the loop is left serial. PFA does, however, have a
parameter to allow you to say that such round-off error is OK.

Move to loop do-2400 by clicking the Next Loop button.

In loop do-2400, the author has added a directive controlling round-off error.
The same loop that was left serial above is now parallelized. Click the button
for the directive, and you can see how it is highlighted in the source. Refer
to the PFA manual for a more detailed explanation of the meaning and use

Line highlighting

Token highlighting
with dependent variable

32

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

of this directive. The round-off setting will be left at this value for the
remainder of the program.

Move to loop do-2500 by clicking the Next Loop button.

Loops with Input-output Operations

Loop do-2500 has an input/output (I/O) operation in it. It cannot be
parallelized, because the output would appear in a different order
depending on the scheduling of the individual CPUs. Click the button
indicating the obstacle, and note the highlighting of the print statement. Also
note that the transformed source shows that this loop is not unrolled, either.
Actually, there is no real obstacle to unrolling, but it is not done because the
cost of performing the I/O operation is so great compared to the loop
iteration overhead that the savings gained are not worth the increase in the
size of the program.

Move to loop do-2600 by clicking the Next Loop button.

Loops with Premature Exits

Loop do-2600 has a premature exit; that is, it cannot be determined at
compilation time how many iterations will take place. If PFA did parallelize
it, one thread might execute iterations past the point where another has
determined to exit the loop.

Click the button indicating the premature exit. Note that the line with the
exit from the loop is highlighted in the source.

Move to loop do-2700 by clicking the Next Loop button.

Loops with Subroutine Calls

Loop do-2700 is also unparallelizable, because there is a call to a routine,
RTC, and PFA cannot determine whether or not that call will have side
effects. Click the obstacle line. Note the highlighting of the line containing
the call and the subroutine name. Also note that the loop is not unrolled, as
the presence of the call inhibits unrolling.

Examining Loops

33

Move to loop do-2800 by clicking the Next Loop button.

Although loop do-2800 has a similar subroutine call in it, it can be
parallelized because the author has asserted that the call has no side effects
that will prevent it from running concurrently. Click the assertion line to
highlight the source line containing the assertion.

When you are done, move to loop do-3000 by clicking the Next Loop button.

Loops That Prompt Questions from PFA

Sometimes PFA can parallelize a loop more efficiently if it knows more
information than it can infer from the source. In these cases, PFA asks
questions that appear in the loop information display for the loop, along
with a menu that allows you to answer the question.

Loops with Relationships between Variables

PFA can sometimes parallelize a loop if it can be told the relationship
between variables in the program. Although you may know such
relationships from the nature of the physical problem the program is dealing
with, PFA cannot safely infer the information just from the code.

Loop do-3000 can be parallelized if it is known that the iterations do not
overlap, but not otherwise. PFA will ask three questions, although for this
type of construct, it actually generates code to determine the relationship at
run time, and the program will execute one of the two sequences depending
on that determination. You can see this by observing that the loop was
transformed into four loops, one pair of unroll/cleanup loops when it can be
parallelized, and a second when it cannot. Look at the transformed source
code for each of these pairs.

For any such questions, the line asking them has an associated option menu
that will allow you to answer. The generated code will be correct even if you
do not answer or do not know. If PFA knows the answer, it can omit the
alternate form and produce a tighter program.

34

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Move to loop do-3100 by clicking the Next Loop button.

In loop do-3100, the author has added an assertion answering the question,
and PFA has generated just one version of the loop, the one that runs in
parallel. The menu next to the questions for the previous loop will generate
such an assertion.

Move to loop do-3200 by clicking the Next Loop button.

Permutation Vectors

Loop do-3200 has a construct known as a permutation vector. In it, an array
is referenced by an index value contained in another array. If the B(I) values
are all distinct, the iterations do not depend on each other, and the loop can
be parallelized; if the same value occurs in more than one B(I), it cannot. PFA
asks the question but leaves the loop serial. Note that both the question and
the data dependence message have associated highlighting buttons.

Move to loop do-3300 by clicking the Next Loop button.

Here an assertion has been added that the index array, B(I), is indeed a
permutation vector, and the loop is parallelized.

Move to loop do-4000 by clicking the Next Loop button.

Complex Loops and Loop Nests

Finally, let’s look at somewhat more complicated, nested loops.

Doubly-nested Loops and Interchanges

Loop do-4000 is the outer loop of a pair of loops; it runs in parallel, and the
inner loop runs in serial: one parallel loop cannot be nested inside another.
Also note that the outer loop is not unrolled, but the inner loop is.

Move to loop do-4010 by clicking the Next Loop button to show the inner
loop, and then click Next Loop again to select the outer loop of the next pair.

Examining Loops

35

Note that this outer loop, loop do-4100, is shown as serial inside a parallel
loop, and the following loop is parallel. How can this be? It happens because
PFA has recognized that the two loops can be interchanged, and
furthermore, that the CPU cache is likely to be more efficiently used if the
loops are run in the interchanged order.

Move to loop do-4110 to show the inner loop, and then click the Next Loop
button once again to move to the following triply-nested loop.

Triply-nested Loops and Strip-mining

The next set of loops is a triply-nested matrix multiply. Just as PFA
optimized a doubly-nested pair of loops by interchanging the loops, it will
do even more to get optimal cache performance by “strip-mining” a
triply-nested loop. In this case, different sections of the matrix will be
executed by different threads, so that the threads will not cause cache
conflicts among themselves.

The outer original loop, do-5000, is interchanged, unrolled, and split into
block and strip loops, in a fairly complicated way; it is transformed into ten
loops. The middle loop has part of its work in a second-level unrolled loop,
and part of it in parallelized third-level loops. The inner loop is shown as
unparallelizable, although it is actually preferably serial. (This is a bug in the
current version of WorkShopProMPF.) Do not be surprised if the code seems
difficult to understand; the strip-mining transformation is very complex and
confusing.

Use the Next Loop button to first step to the middle of the three, loop do-5010,
and then the inner one, loop do-5020. Notice how each of the loops is
transformed into various combinations of loops at different nesting levels.

This brings you to the end of your examination of the loops under analysis.
In the next section, you will find out how to modify your source code using
the Parallel Analyzer.

36

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Modifying Source Files

So far, you’ve ignored the controls that can be used to change the source file
and allow a subsequent pass of PFA to do a better job. Now you will go back
and make changes. There are two steps in modifying source files:

1. Asking for the changes using the Parallel Analyzer View controls.

2. Actually modifying the files and rebuilding the program and its
analysis files.

Asking for Changes

You may ask for changes by answering any of the questions that PFA poses,
by building a DOACROSS for a specific loop, by modifying the analysis
parameters that PFA uses for its processing, or by adding or deleting
assertions or directives. In this sample session, you will request changes to
loops in the order they appear in the file, but they may be requested in any
order.

Changing the PFA Analysis Parameters

Scroll to the top of the loop list and select the first loop, which was unrolled
four times. Pull down the Views menu and select “PFA Analysis Parameters
View” to open the PFA Analysis Parameters View. Locate the line that reads:

Unroll:

Enter 6 into the numeric field next to it (it contains 4 by default). First click
the field and then type <Backspace> followed by 6. This changes the loop
unrolling from 4 to 6. Note the turned-down corner in the text field as shown
in Figure 2-26. Clicking this corner toggles between the old and new values
in the field.

Close the View by pulling down the Admin menu and selecting “Close.”
Notice that a red plus sign now appears in the icon next to the loop,
indicating that a change has been requested for it as shown in Figure 2-27.
Move to loop do-1100 by clicking the Next Loop button.

Figure 2-26 Changing a PFA
Analysis Parameter

Modifying Source Files

37

Figure 2-27 Effect of Changes on the Loop List Display

Building a Custom DOACROSS Directive

Loop do-1100 was left serial because it was too small; sometimes you might
want such a loop parallelized anyway. Go to the Loop Status option menu
(to the left of the loop status icon in the loop information display that reads
“Default”), and select “C$DOACROSS...” as shown in Figure 2-28. This
brings up the Parallelization Control View (see Figure 2-29), showing the
loop that was selected, a parallelized condition input field into which you
can type a condition for parallelization, an MP scheduling option menu, an
MP chunk size input field, and a list of all the variables in the loop, with an
icon indicating whether the variable was read, written, or both. (These icons
are described in the Icon Legend.) Notice that each variable has a
highlighting button that shows its use within the loop.Notice also the red
plus sign next to this loop in the main view.

Dismiss the View by pulling down the Admin menu and selecting “Close.”

Modified loop

Figure 2-28
DOACROSS Menu

38

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Figure 2-29 Parallelization Control View for Loop do-1100

Adding a New Assertion

Now you will add an assertion to a loop. Find the loop with ID do-2700 by
using the search feature of the loop list. Go to the search field, and enter
2700 . You can double-click the highlighted line in the loop list to select the
loop.

You’re going to add a concurrent call assertion. To add the assertion,pull
down the Operations menu, pull down the Add Assertion submenu, and
select “C*$*ASSERT CONCURRENT CALL.”

This adds an assertion that the call to RTC(), which PFA thought to be an
obstacle to parallelization, is actually safe to parallelize. When you add the
assertion, the loop information display updates to show the new assertion,
along with its menu labeled “Insert” as shown in Figure 2-30.

Selected loop

Parallelized condition input field

Scheduling option menu

List of variables in the loop

Read/write status

Variable type

Highlighting button

Variable name

Scheduling chunk size input field

Modifying Source Files

39

Figure 2-30 Adding an Assertion

Answering a Question

Now try answering a question. Put the cursor into the search field,
backspace to remove the previous contents, and enter 3200 into the field.
Select that loop by double-clicking. Loop do-3200 has a question about a
permutation vector. Pull down the option menu next to the question in the
loop information display, and select “Assert True” as shown in Figure 2-31.

Assertion

Menu
selection

40

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Figure 2-31 Answering a Question

Deleting an Existing Assertion

Now let’s delete an existing assertion. Move to loop do-3300 using the Next
Loop button, and go to the “ASSERT PERMUTATION(B)” assertion. Pull
down its option menu and select “Delete”. Figure 2-32 shows the result. The
same procedure can be used for directives.

Selecting Assertion

Loop do-3200

Modifying Source Files

41

Figure 2-32 Deleting an Assertion

Updating the File

Now you have made a set of changes and can update the file. Select “Update
All Files” from the Update menu (see Figure 2-33); alternatively, you may
use the keyboard accelerator for this operation by typing Ctrl-U with the
cursor anywhere in the main view. The Parallel Analyzer View will generate
a sed script to modify the source, rename the original file to one with the
suffix .old, run sed on that file to produce a new version of the file dummy.f,
and then spawn the WorkShop Build Manager to rerun PFA on the new
version of the file.

Figure 2-33 Update All Files

The Parallel Analyzer View can also open a gdiff window showing the
changes, but by default it does not. If you select the toggle labeled “Run gdiff
After Update” from the Update menu, it will do so. If you have selected it,
use the right mouse button to step through the changes, and then quit gdiff.
If you always wish to see the gdiff window, you can set the resource in your
.Xdefaults file:

cvpav*gDiff: True

42

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

The Parallel Analyzer View can also open an editor for you to make
additional changes after running sed. To do so, select the toggle labeled “Run
Editor After Update” in the Update menu (see Figure 2-34). If you do so, an
xwsh window with vi running in it opens after you update the file.

If you always wish to run the editor, you can set the resource in your
.Xdefaults file:

cvpav*runUserEdit: True

If you prefer a different window shell or a different editor, you can change
the resource in your .Xdefaults file, changing the xwsh and/or vi as you
prefer:

cvpav*userEdit: xwsh -e vi %s +%d

The +%d tells vi at what line to position itself in the file and is replaced with
1 by default (you can also omit the +%d parameter if you wish). The edited
file’s name will either replace any explicit %s, or if the %s is omitted, the file
name will be appended to the command.

After you quit from the gdiff window and/or editor (if you have selected
them), the program will spawn the WorkShop Build Manager. When it
comes up, verify that the directory shown is the directory in which you are
running the sample session; if not, change it. Then, click the Build button,
and it will start to reprocess the changed file.

Examining the Modified File

When the build completes, the Parallel Analyzer View will update to reflect
the changes that were made. You will now examine the new version of the
file to see the effect of the changes requested above.

Unroll Change

Click the Next Loop button twice to select the first loop. Notice that loop
do-1000 is now shown as being unrolled six times, not four as it was before.
Also the loop has a directive, implementing the change in unrolling that was
requested.

Figure 2-34 Setting the Run Editor
Toggle

Examing Subroutines That Use PCF Directives

43

Move to loop do-1100 by clicking the Next Loop button.

New Custom DOACROSS

Loop do-1200 previously was serial because it had too little work in it, but is
now parallel because it was explicitly parallelized.

New Assertion

Go to the search field and enter 2700 . Double-click the line and notice that
loop do-2700, which previously was unparallelizable because of the call to
RTC(), is now parallel. It also has the assertion that was added.

Answered Question

Clear the search field, enter 3200 in it, and double-click the selected line.
Notice that loop do-3200 now has an assertion in it, added as a result of your
reply to the question. The loop is also now parallelized.

Move to loop do-3300 by clicking the Next Loop button.

Deleted Assertion

Loop do-3300 previously had the assertion that B was a permutation vector;
note that the assertion is gone, and PFA now asks the question.

Examing Subroutines That Use PCF Directives

PCF directives are not supported by the current 32-bit PFA processor. If you
put them into your code, they will be treated as comments, rather than
properly interpreted. The six loops, do-6001 through do-6006 are processed
ignoring the directives. To see the effect of the directives, see “Examining
Subroutines That Use PCF Directives” in Chapter 3.

44

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Examining a Subroutine That Contains Syntax Errors

The PFA preprocessor does not provide error messages in the analysis file to
show what the syntax errors were, so WorkShopProMP cannot show them.
The routine itself is shown with the error indicator for it, but no highlighting
button and messages will appear. To understand the errors, look at the
listing file, dummy.l, in the directory. More information is provided in the
64-bit tutorial, q.v.

Exiting from the Dummy Sample Session

This completes the first sample session. Quit the Parallel Analyzer View by
pulling down the Admin menu and selecting “Exit.”

To clean up the directory, so that the session can be rerun, enter:

% make clean

in your shell window. All of the generated files will be removed.

Setting Up the linpackd Sample Session

The second sample session is a brief demonstration of the integration of
WorkShopProMPF and the WorkShop performance tools. It requires that
WorkShop also be installed.

Go to the subdirectory linpack in the /usr/demos/WorkShopMPF directory and
run make:

% cd /usr/demos/WorkShopMPF/linpack
% make

This will update the directory by compiling the source program linpackd.f
and creating the necessary files. The performance experiment you will use is
already there. This operation will take a few minutes.

Setting Up the linpackd Sample Session

45

Starting the Parallel Analysis View

Once the directory has been updated, start the demo by typing:

% cvpav -e linpackd

from within the directory (note the flag is -e , not -f as in the previous
sample session). The main window of the Parallel Analysis View will open,
showing the list of loops in the program.

Scroll briefly through the list and bring up the source by clicking the Source
button. Note that there are many unparallelized loops, but there is no way to
know which are important. Also note that the second line in the main view
shows that there is no performance experiment currently associated with the
view.

Starting the Performance Analyzer

Start the Performance Analyzer by pulling down the Admin menu, selecting
the Launch Tool submenu, and selecting “Performance Analyzer,” as shown
in Figure 2-35.

The main window of the Performance Analyzer will open, although it will
be empty. A small window labeled “Experiment:” will also open at the same
time. This window is used to enter the name of an experiment. For this
session, we will use the prerecorded experiment that is installed. Type:

test.linpack.cpu

in the “Experiment Dir:” field in the Experiment: window, and click the OK
button. See Figure 2-35. The Performance Analyzer will show a busy cursor,
fill in its main window with the list of functions, and highlight the function
main().

For more information about the Performance Analyzer and how it affects the
user interface, see the Performance Analyzer User’s Guide.

46

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Figure 2-35 Starting the Performance Analyzer

Using the Parallel Analyzer with Performance Data

At the same time the Performance Analyzer window fills in, the Parallel
Analyzer recognizes that there is now a performance analyzer, and posts a
busy cursor with a message “Loading Performance Data.” When the
message goes away, performance data will have been imported by the

Setting Up the linpackd Sample Session

47

Parallel Analyzer, and a number of changes will have taken place as shown
in Figure 2-36:

Figure 2-36 Performance Data — Parallel Analyzer View

• The second column of the list of loops has changed from reading
“Workload” to reading “Perf. Cost”, and the numbers below it are now
percentages.

• The second line in the view now shows the name of the performance
experiment and shows the total cost of the run. In addition, the sort
menu’s second entry “Sort by Perf. Cost” is no longer grayed-out.

• The Source View now has three additional columns to the left of the
loop brackets that show the performance metrics, including the number
of times the line has been executed and ideal CPU times as shown in
Figure 2-37. The times are exclusive, inclusive, ideal, or CPU time in
milliseconds.

Perf. Cost
heading

No longer
grayed

replaces
Workload

Numbers
are in %

Information
line

48

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

These columns reflect the measured performance data. If you select
loop do-30 of subroutine DAXPY from the main view, the Source View
displays as shown in Figure 2-37.

Figure 2-37 Source View for Performance Experiment

Select the “Sort by Perf. Cost” entry. Note that the top three lines now show
three loops that represent approximately 85%, 82%, and 81% of the total
time. These numbers are inclusive numbers, with each reflecting the time in
the loop and in any nested loops or functions called from within the loop.
See Figure 2-38.

Number of
executions

Exclusive
ideal CPU

Inclusive
ideal CPU

Threshold flags

timetimeof a line

Setting Up the linpackd Sample Session

49

Figure 2-38 Sort by Performance Cost

The first of these loops contains the second loop nested inside it. The second
loop calls the subroutine DAXPY, which contains the third loop. The third
loop is the heart of the linpack benchmark and is already parallel.

Double-click the third loop. Note that the loop information display now
contains an additional line of text listing the performance cost of the loop,
both in time and as a percentage of the total time. See Figure 2-39.

First Loop
Second Loop

Third Loop

50

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Figure 2-39 Loop Information Display with Performance Data

Exiting from the linpackd Sample Session

This completes the second sample session. Quit by selecting the “Exit”
command from the Project submenu of the Admin menu in the Parallel
Analyzer View. All the windows will close.

Performance
cost
information
block

Performance
experiment
line

Setting Up the f90 Sample Session

51

You don’t need to clean the directory, because you haven’t made any
changes in this session. If you do make changes, when you are finished you
can clean up the directory by entering:

% make clean

in your shell window. All generated files will be removed.

Setting Up the f90 Sample Session

The f90 sample session is located in the directory
/usr/demos/WorkShopMPF/cgdriver. Prepare for the session by changing
directories to the demo directory and creating the needed files:

% cd /usr/demos/WorkShopMPF/cgdriver
% make

Once the demo directory has been prepared, start the session by entering:

% cvpav -f cgdriver.f

Notice that the loop list contains Fortran 90 array syntax statements. Double
click on the first statement in CGTEST (b = 0). You can see in the loop
information display that the array-syntax is an implied loop and the
statement was converted from array notation into a serial loop.

Click on the Source button. Notice that in source view, Fortran 90 array
syntax statements (in the subroutine CGTEST) are bracketed in blue (they
are shown as loops). Click on the Transformed Source button to see the
transformation that PFA has performed. You can see that since b is a
3-dimensional array which is initialized to 0, the transformed source
contains 3 nested do loops (each one spanning one dimension).

52

Chapter 2: Analyzing Loops: 32-bit Sample Sessions

Exiting from the f90 Sample Session

This completes the third sample session. Quit the Parallel Analyzer View by
selecting “Exit” from the Admin menu.

To clean up the directory, so that the session can be rerun,
enter:

% make clean

in your shell window. All of the generated files will be removed.

53

Chapter 3

3. Analyzing Loops: 64-bit Sample Sessions

This chapter provides three interactive sample sessions that demonstrate
most of the Parallel Analyzer View’s features for the 64-bit version of MPF.
These sessions also demonstrate various aspects of parallelization and the
use of the POWER Fortran Accelerator (PFA).

The sample sessions consist of a step-by-step examination of three sample
programs. The samples sessions cover the following:

• The dummy sample session is designed to show the various types of
FORTRAN loops, how they are transformed by PFA, and how they are
displayed by the Parallel Analyzer View. (The major difference between
this and the 32-bit dummy sample session is the use of PCF directives.)
The sample session begin at “Setting Up the Dummy Sample Session”
on page 54.

• The linpackd sample session briefly illustrates how the Parallel
Analyzer View can be used in conjunction with the WorkShop
Performance Analyzer cvperf. The sample session begin at “Setting Up
the linpackd Sample Session” on page 93.

• The f90 sample session briefly illustrates how to use MPF with
Fortran-90 code. The sample session begin at “Setting Up the f90
Sample Session” on page 100.

To use these sample sessions, the subsystem WorkShopMPF_sw.demos must be
installed.

Note: These sample sessions are applicable for the 64-bit compilers only. For
a discussion of the 32-bit version of the compilers, see Chapter 2, “Analyzing
Loops: 32-bit Sample Sessions.”

54

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Setting Up the Dummy Sample Session

The Parallel Analyzer View comes with a demonstration directory
/usr/demos/WorkShopMPF. It contains a subdirectory tutorial, which contains
a source file called dummy.f_orig and a Makefile. The file contains 27 DO
loops, each of which exemplifies one aspect of the parallelization process. In
that directory, running make creates a scratch copy of the demonstration
program dummy.f and then creates a run of PFA on the copy. PFA produces
a transformed source file dummy.m, a listing file dummy.l, and an “analysis”
file dummy.anl.

Prepare for the session by opening a shell window and entering make in the
/usr/demos/WorkShopMPF/tutorial directory:

% cd /usr/demos/WorkShopMPF/tutorial 64
% make

You will get a series of make errors concluding with the following:

4 errors 1 warning in file dummy.f
*** Error code 1
smake: 1 error

These errors are in the code intentionally. You will study them later in
“Examining a Subroutine That Contains Syntax Errors” on page 91.

Once the demo directory has been prepared, start the session by entering:

% cvpav -f dummy.f

The main window of the Parallel Analyzer View opens, displaying the list of
loops in the source file, dummy.f. Position the view at the upper left of the
screen.

Note: If you receive a message related to licensing, refer to the NetLS License
System Administration Guide or WorkShopProMPF Release Notes.

Using the Loop List Display

55

Figure 3-1 Parallel Analyzer View Main Window

Using the Loop List Display

The loop list display shows information about each loop in the program with
an icon next to it that reflects the parallelization status of the loop. Pull down
the Admin menu and select “Icon Legend...” to bring up a legend dialog box
that explains the meaning of the various icons (see Figure 3-2). Move the
legend dialog box to the side, and scroll through the list of loops to see the
various icons. When you are done, close the legend dialog box by clicking
the Close button in the lower right of the dialog box.

Loop list
search field

List of loops

Loop
list
display

Loop
information
display

Buttons

Option menus

56

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Figure 3-2 Launching the “Icon Legend...” Dialog Box

Parallelization icons

Variable usage icons

Subroutines and Files View icons

Highlighting button

PCF control structure icons

Subroutines icons

Using the Loop List Display

57

The loop list display contains the following items:

Workload a number that is supposed to reflect the amount of work
done in each iteration of the loop

Nest the nesting level for the loop

Loop-ID the FORTRAN description of the loop

Variable the loop index variable

Subroutine, Lines, File
where the loop is located in the source code

Olid the original loop ID; an internal identifier for the loop
(Please refer to this number when reporting bugs.)

Underneath the list display is a search field and a set of option menus and
buttons that control the display of information in the loop list.

Sorting the Loop List

You can sort the list either in the order of the source code, or by loop
workload, or (if you are running a performance experiment on the program
using the WorkShop Performance Analyzer) by performance cost. You
control sorting with the option menu to the left below the list.

When loops are sorted in source order, the Loop-ID is indented according to
the nesting level of the loop; for the demonstration program, only the last
several loops are nested, so you will have to scroll down to see it (see
Figure 3-3).

For other sorting, the list is not indented. Select “Sort by Workload” and
notice the Loop-ID is no longer indented (see Figure 3-4). (The same is true
of “Sort by Perf. Cost”. It is grayed out because there is no performance tool
running at this time.) When you are done, select “Sort in Source Order” once
again.

Figure 3-3 Source Order Sort

58

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Figure 3-4 Sorting the Loop List by Workload

Filtering the Loop List

You may want to look at only some of the loops in large programs. The list
can be filtered in two ways: by parallelization status or by origin of the loop.

Filtering by Parallelization Status

The parallelization status filtering is controlled by an option menu centered
below the list. It initially reads “Show All Loop Types”.

You can filter the list to show only those loops that cannot be parallelized,
those that are parallel, or those that are serial (see Figure 3-5). Try selecting
each of these, and then return to “Show All Loop Types”. It can also filter to
show those loops for which you have requested modifications (requesting
modifications to loops is described later in this section). Since you haven’t
yet requested any modifications, selecting this option will result in a
message saying that no loops meet the filter criterion.

Option
menu

Loop
list

Figure 3-5 Parallelization Status
Option Menu

Using the Loop List Display

59

Filtering by Loop Origin

Another way to filter is to show loops that come from a single file or a single
subroutine:

1. Open the Subroutines and Files View by pulling down the Views menu
and selecting “Subroutines and Files View.” Alternatively, you may use
the keyboard accelerator for this operation by typing <Ctrl>-F with
the cursor anywhere in the main view. A subsidiary view that lists the
subroutines and files that are in the fileset opens (See Figure 3-6.)

Figure 3-6 Subroutines and Files View

2. From the Filter option menu (figure 3-7), select “Filter by File.”

Figure 3-7 Filter Option Menu

3. Double-click the line for the file dummy.f in the function/file list of the
Subroutines and Files View window. The name will appear in the
filtering text field labeled Title: (see Figure 3-8) and the list will be
rescanned. Similarly, you may try selecting “Filter by Subroutine” from
the main view option menu, and double-click the line for subroutine
DUMMY in the Subroutine and Files View.

Function/file list

Search field

60

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Figure 3-8 Filter by File Option Menu and Text Field

For this example, there is only one file and one subroutine, so the filtering is
not very useful, but for large programs with many files and subroutines, it
would be. When you are done, display all of the loops in the sample source
file once again by selecting “No Filtering” from that option menu.

You won’t be needing the Subroutines and Files View further, so close it by
pulling down the Admin menu and selecting “Close.”

Viewing Source

The Parallel Analyzer View gives you access to views of both your original
Fortran source and the source as it is transformed by the POWER Fortran
Accelerator.

Viewing Original Source

Click the Source button to the left side of the main view to bring up the
Source View, as shown in Figure 3-9. This view is the same Source View that
is used in the WorkShop Debugger and Performance Analyzer.

Loop list display

Filtering text field

controls

Viewing Source

61

Figure 3-9 Source View

When the source display opens, position it to the right of the main view. (On
machines with low-resolution screens, the windows will overlap.) Scroll up
and down in the file and observe that the source window displays colored
brackets that mark the location of each loop. These colors match the colors
of the parallelization icons and serve to indicate the parallelization status of
each loop at a glance. The color indicates which loops are parallelized, which
are unparallelizable, and which are left serial.

Viewing Transformed Source

PFA is a source-to-source translator that takes the various loops in the
program and transforms them both for scalar optimization and for
parallelization. Each loop may be rewritten into one, two, or more
transformed loops or may be combined with others or optimized away. The
result of these transformations is a transformed source file that you may
examine.

Loop bracket

Source code

62

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Click the Transformed Source button. Another source window labeled
“Parallel Analyzer View — Transformed Source” opens as shown in
Figure 3-10.

Figure 3-10 Transformed Source Window

Position it below the Source View. Scroll through it, and notice that it, too,
has bracketing marking the loops. The bracketing for the transformed source
cannot always distinguish between serial loops and unparallelizable loops,
so some unparallelizable loops will be displayed as serial (for example, those
with data dependencies).

Viewing Detailed Information about a Loop

Each line in the loop list summarizes some information about a loop. Much
more information is available, and this section will show you how to
examine it.

Transformed source code

Viewing Detailed Information about a Loop

63

Selecting a Loop

To get more information about a loop, you must select it by

• double-clicking the loop line text (but not on its icon)

• clicking the brackets in either of the source windows

• stepping through the list with the Next Loop and Previous Loop buttons

Selecting a loop has a number of effects:

• The previously empty display below the list fills with information on
the selected loop.

• The Source View scrolls to the selected loop and highlights the source
code of the loop.

• The Transformed Source window highlights the first of the loops into
which the original selected loop was transformed and displays a bright
vertical bar next to each transformed loop that came from the original
loop.

If the Transformed Loops View or the PFA Analysis Parameters View is
open, it too will be switched to show the selected loop. We will look at these
views later. See Figure 3-11.

64

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Figure 3-11 Global Effects of Selecting a Loop

In this figure and many of those following, the loop list is resized to reduce
the number of loops displayed. The adjustment button is in the lower right
hand corner of the loop list display, just above the loop information display.
Your screen shows the full list unless you resize it.

Try scrolling through the list and double-clicking various loops, and
scrolling through the source displays and clicking the loop brackets to select
loops. Note that when you select each loop, its icon acquires a check mark

Select

Scrolls to
selected
loop

Display fills
with loop
information

Highlights
loop in

Shows
loop
parameters

transformed
source

loop
do-5020

Provides more information
about loops

Viewing Detailed Information about a Loop

65

showing that you’ve looked at it. When you are done, scroll to the top of the
loop list in the main view and double-click the first loop’s line.

Using the Loop Information Display

The loop information display occupies the lower half of the main view (see
Figure 3-12). It contains detailed information about the currently selected
loop. It consists of a series of lines in several blocks.

Figure 3-12 Loop Information Display

Parallelization Controls

The first line of the display is labeled Parallelization Controls:. On the far
right, the first line shows how many transformed loops were derived from
the selected loop. When the session is run with a performance experiment,
an additional block appears above the Parallelization Controls. It gives
performance information for the loop (shown in Figure 3-39). Since we do
not have an experiment on this program (which does not, in fact, execute),
the performance information is absent.

Below this are two option menus, the first controlling parallelization status
and the second controlling the loop MP scheduling (it is shown for all loops,
but is applicable to parallel loops only), and a text input field for adding an
expression for the scheduling chunk size. Text labels to the right of the
option menus list the current values for parallelization and scheduling.

Parallelization status control

Loop scheduling control

Scheduling chunk size

Additional information
blocks

Number of loops transformed

input fields

66

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Loop Information Messages

Below the first separator line appear up to five blocks of additional
information. These are lists of:

• questions that PFA asked about the loops, if any

• obstacles to parallelization, if any

• assertions made about the loop, if any

• directives applied to the loops, if any

• messages about the loop, if any

Some of these lines may be accompanied by small “light bulb” highlighting
buttons (see Figure 3-13). Each highlights a relevant part of the code in the
Source View when clicked. The lines for assertions, directives, and questions
also may have menus accompanying them. Lines that refer to parallelization
status or PFA parameters will not have menus because they are controlled
using the parallelization status menu or from the PFA Analysis Parameters
View, respectively. You’ll use these features later in the session. The first loop
in the file (which you selected previously) has no messages and no
highlighting buttons.

Using the PFA Analysis Parameters View

The PFA analysis parameters control what kinds of transformations PFA will
make on the program. The values for the selected loop may be changed
using the PFA Analysis Parameters View. To bring it up, pull down the
Views menu and select “PFA Analysis Parameters View” (see Figure 3-14).
Alternatively, you may use the keyboard accelerator for this operation by
typing Ctrl-A with the cursor anywhere in the main view.

Figure 3-13 Highlighting Button

Figure 3-14 Views Menu

Viewing Detailed Information about a Loop

67

Figure 3-15 PFA Analysis Parameters View

A new view comes up, listing each of the parameters with a numeric input
field to the right of each of them. Entering a new numeric value in the input
field will request a change to the loop. Don’t do this now; close the view by
pulling down the View’s Admin menu and selecting “Close.”

Using the Transformed Loops View

You can also see detailed information about the transformed loops coming
from a particular loop (see Figure 3-16). To do so, pull down the Views menu
and select “Transformed Loops View.” Alternatively, you may use the
keyboard accelerator for this operation by typing Ctrl-T with the cursor
anywhere in the main view.

Numeric input fields
Parameters

68

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Figure 3-16 Transformed Loops View for Loop do-1000

When the view opens, position it at the left of the screen, below the main
view. It contains information about the loops into which the currently
selected original loop was transformed. Each transformed loop has a block
of information associated with it, and the blocks are separated by horizontal
lines.

Transformed Loop Description

The first line in each block contains a parallelization status icon, a
highlighting button, and the ID of the transformed loop. (The ID is assigned
by PFA.) The button, if clicked, highlights the transformed loop in the
Transformed Source window and the original loop in the Source View.

The next two lines describe the transformed loop. The first provides
information such as whether it is a primary loop (directly transformed from
the selected original loop) or secondary loop (transformed from a different
original loop but incorporating some code from the selected original loop),
its parallelization state, whether it is an ordinary loop or interchanged loop,
its nesting level, and workload. The second line displays the location of the
loop in the transformed source.

Viewing Detailed Information about a Loop

69

Following the description lines is a list of messages generated by PFA, if any.
To the left of the message lines are buttons, and clicking them will highlight
the part of the original source that relates to the message. Often it is the first
line of the original loop that is shown, since the message refers to the entire
loop.

Selecting Transformed Loops

Transformed loops can also be selected. When you click the highlight button
in the Transformed Loop View, the color highlighting of the original source
changes, although the lines highlighted have not. See Figure 3-17. You will
later see that for loops with more extensive transformations the highlighted
lines will be different (for example, loops do-1300 and do-1350, the fused
loops).

Now click the button for the second transformed loop. The transformed
source will highlight a different region (the cleanup loop), but the original
source will highlight the same lines as before, as shown in Figure 3-18. This
is because when a transformed loop is selected, those lines in the original
source that go into the transformed loop will be highlighted. In this case, the
same lines go into both the transformed loops. Transformed loops may also
be selected by clicking the corresponding loop brackets in the Transformed
Source window.

70

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Figure 3-17 Transformed Loops in Source Windows

Figure 3-18 Second Transformed Loop Highlighting

Original source code

First transformed loop

Second transformed loop

Examining Loops

71

You may either leave this window open or close it by pulling down its File
menu and selecting the “Close.”

Examining Loops

Now that you have familiarized yourself with the basic windows in the
Parallel Analyzer View’s user interface, you can start examining and
analyzing loops. First you will look at a few simple loops, next at loops with
obstacles to parallelization, then at loops for which PFA asks questions, and
finally at more complex, nested loops.

Simple Loops

The six loops you will examine in this section are the simplest kind of
Fortran loop.

Simple Parallel Loops

Scroll the list of loops back to the top and select loop do-1000. This loop is a
simple parallel loop. Loop do-1100 is also a simple parallel loop.

Move to loop do-1200 by clicking the Next Loop button twice.

An Explicitly Parallelized Loop

Loop do-1200 is parallelized because it contains an explicit C$DOACROSS
directive; PFA will pass the directive through in the transformed source but
does nothing further with the loop, as the messages indicate. See Figure 3-19.

72

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Figure 3-19 Explicitly Parallelized Loop

The loop status option menu is set to “C$DOACROSS...”and it is shown with
a highlighting button. Clicking the button will bring up both the Source
View (Figure 3-20) and the Parallelization Control View, which shows more
information about the parallelization directive. If you have clicked on the
button, close the Parallelization Control View by pulling down its Admin
menu and selecting “Close.” You will come back to the use of this view later.
See “Building a Custom DOACROSS Directive”. Close the Source View by
pulling down its File menu and selecting “Close.”

Explicit
directive

Loop Status
option
menu

Examining Loops

73

Figure 3-20 Source View of C$DOACROSS Directive

Loops do-1300 and do-1350 are simple parallel loops. Move to loop do-1400
by clicking the Next Loop button three times.

Loop Unrolling

Unrolling is done to reduce the loop overhead relative to the real work of the
loop. The simpler the body of the loop, the more profitable unrolling can be.
In many cases, the loop iteration count is not known, so an additional loop,
called a cleanup loop, is necessary to handle the last few iterations.
Sometimes, the iteration count is known but is not a multiple of the
unrolling; in such cases, PFA will usually explicitly add code for the last few
iterations.

Loop do-1400 is the same as the first loop in the program, but a directive
“SCALAR OPTIMIZE(1)” has been added. The loop is not unrolled. By
default, the scalar optimization parameter is set to 3, which allows loop
unrolling.

Move to loop do-1500 by clicking the Next Loop button.

A Loop That Is Optimized Away

Loop do-1500 is an example of a loop so unnecessary that PFA can get rid of
it entirely. First, PFA sees that the body of the loop is independent of the
loop, so it can be promoted out, and the loop eliminated. Then it sees that the

C$DOACROSS directive

Loop do-1200 code

74

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

body sets a variable that is not subsequently used, so it can throw that out,
too. The transformed source is not scrolled and highlighted because nothing
is there. Scroll down a few lines from the previous loop, and note the absence
of the code for the loop that was optimized away.

The loop also has a directive controlling scalar optimization, but it is there
only to reset the default for subsequent loops.

Move to loop do-2000 by clicking the Next Loop button.

Loops with Obstacles to Parallelization

There are a number of reasons that a loop may not be parallelized. The
following loops illustrate various of these reasons, along with variants that
allow parallelization. You will step through each of them in turn.

Loops with Data Dependences

Loop do-2000 is an example of a loop that cannot be parallelized because of
a data dependence. In this case, one element of an array is used to set
another. (This construct is called a recurrence.) If the loop were to be
parallelized, the iterations might execute out of order, and iteration 4, which
sets A(4) to A(5), might occur after iteration 5, which would have reset the
value of A(5). Consequently, the program would give the wrong answer. See
Figure 3-21.

Examining Loops

75

Figure 3-21 Obstacle to Parallelization

There is a line listing the obstacle to parallelization; click the button that
accompanies it. Two kinds of highlighting take place. The first is a line
highlight showing the relevant line that has the dependence, and the second
is a symbol (or token) highlight that shows the uses of the variable that is the
obstacle to parallelization. Only the uses of the variable within the loop are
highlighted.

Move to loop do-2100 by clicking the Next Loop button.

Not all loops with similar constructs are unparallelizable. Loop do-2100 is
similar to loop do-2000, but the array elements used differ by an offset, M. If
M is equal to NSIZE, for example, and the array is twice NSIZE, the code is

Obstacle

76

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

actually copying the upper half of the array into the lower half, and there is
no reason why that cannot be run in parallel. PFA cannot recognize this from
the source, but the author has added an assertion that there is no recurrence,
so the loop is parallelized. See Figure 3-22. Click the highlighting button to
show the assertion.

Figure 3-22 Parallelizable Data Dependence

Move to loop do-2200 by clicking the Next Loop button.

Data dependence can involve more than one line of a program. In loop
do-2200, a similar dependence occurs, but the use of the variable occurs on
a different line than its setting. Click the highlight button on the obstacle line,
and note that both lines receive the line highlighting, and the token
highlighting shows the dependency variable on the two lines (see
Figure 3-23). Of course, real programs can, and typically do, have far more
complex dependencies than this.

Assertion

Examining Loops

77

Figure 3-23 Highlighting on Multiple Lines

Move to loop do-2300 by clicking the Next Loop button.

Loops with Reductions

Loop do-2300 shows a data dependence that is called a reduction. In a
reduction, the variable responsible for the data dependence is being
accumulated or “reduced” in some fashion. Reductions can be summation,
multiplication, or a minimum or maximum determination. For summation,
as shown in this loop, PFA could accumulate partial sums in each processor,
and then add the partial sums at the end. However, because floating-point
arithmetic is inexact, the order of addition might give different answers
because of round-off error.

This does not imply that the serial execution answer is “correct” and the
parallel execution answer is “incorrect”; they are equally valid within the
limits of round-off error. Since, by default, PFA assumes it is not OK to
introduce round-off error, the loop is left serial. PFA does, however, have a
parameter to allow you to say that such round-off error is OK.

Move to loop do-2400 by clicking the Next Loop button.

In loop do-2400, the author has added a directive controlling round-off error.
The same loop that was left serial above is now parallelized. Click the button
for the directive, and you can see how it is highlighted in the source. Refer
to the PFA manual for a more detailed explanation of the meaning and use

Line highlighting

Token highlighting
with dependent variable

78

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

of this directive. The round-off setting will be left at this value for the
remainder of the program.

Move to loop do-2500 by clicking the Next Loop button.

Loops with Input-output Operations

Loop do-2500 has an input/output (I/O) operation in it. It cannot be
parallelized, because the output would appear in a different order
depending on the scheduling of the individual CPUs. Click the button
indicating the obstacle, and note the highlighting of the print statement. Also
note that the transformed source shows that this loop is not unrolled, either.
Actually, there is no real obstacle to unrolling, but it is not done because the
cost of performing the I/O operation is so great compared to the loop
iteration overhead that the savings gained are not worth the increase in the
size of the program.

Move to loop do-2600 by clicking the Next Loop button.

Loops with Premature Exits

Loop do-2600 has a premature exit; that is, it cannot be determined at
compilation time how many iterations will take place. If PFA did parallelize
it, one thread might execute iterations past the point where another has
determined to exit the loop.

Click the button indicating the premature exit. Note that the line with the
exit from the loop is highlighted in the source.

Move to loop do-2700 by clicking the Next Loop button.

Loops with Subroutine Calls

Loop do-2700 is also unparallelizable, because there is a call to a routine,
RTC, and PFA cannot determine whether or not that call will have side
effects. Click the obstacle line. Note the highlighting of the line containing
the call and the subroutine name. Also note that the loop is not unrolled, as
the presence of the call inhibits unrolling.

Examining Loops

79

Move to loop do-2800 by clicking the Next Loop button.

Although loop do-2800 has a similar subroutine call in it, it can be
parallelized because the author has asserted that the call has no side effects
that will prevent it from running concurrently. Click the assertion line to
highlight the source line containing the assertion.

When you are done, move to loop do-3000 by clicking the Next Loop button.

Loops That Prompt Questions from PFA

Sometimes PFA can parallelize a loop more efficiently if it knows more
information than it can infer from the source. In these cases, PFA asks
questions that appear in the loop information display for the loop, along
with a menu that allows you to answer the question.

Loops with Relationships between Variables

PFA can sometimes parallelize a loop if it can be told the relationship
between variables in the program. Although you may know such
relationships from the nature of the physical problem the program is dealing
with, PFA cannot safely infer the information just from the code.

Loop do-3000 can be parallelized if it is known that the iterations do not
overlap, but not otherwise. PFA will ask three questions, although for this
type of construct, it actually generates code to determine the relationship at
run time, and the program will execute one of the two sequences depending
on that determination. You can see this by observing that the loop was
transformed into four loops, one pair of unroll/cleanup loops when it can be
parallelized, and a second when it cannot. Look at the transformed source
code for each of these pairs.

For any such questions, the line asking them has an associated option menu
that will allow you to answer. The generated code will be correct even if you
do not answer or do not know. If PFA knows the answer, it can omit the
alternate form and produce a tighter program.

80

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Move to loop do-3100 by clicking the Next Loop button.

In loop do-3100, the author has added an assertion answering the question,
and PFA has generated just one version of the loop, the one that runs in
parallel. The menu next to the questions for the previous loop will generate
such an assertion.

Move to loop do-3200 by clicking the Next Loop button.

Permutation Vectors

Loop do-3200 has a construct known as a permutation vector. In it, an array
is referenced by an index value contained in another array. If the B(I) values
are all distinct, the iterations do not depend on each other, and the loop can
be parallelized; if the same value occurs in more than one B(I), it cannot. PFA
asks the question but leaves the loop serial. Note that both the question and
the data dependence message have associated highlighting buttons.

Move to loop do-3300 by clicking the Next Loop button.

Here an assertion has been added that the index array, B(I), is indeed a
permutation vector, and the loop is parallelized.

Move to loop do-4000 by clicking the Next Loop button.

Complex Loops and Loop Nests

Finally, let’s look at somewhat more complicated, nested loops.

Doubly-nested Loops and Interchanges

Loop do-4000 is the outer loop of a pair of loops; it runs in parallel, and the
inner loop runs in serial: one parallel loop cannot be nested inside another.
Also note that the outer loop is not unrolled, but the inner loop is.

Move to loop do-4010 by clicking the Next Loop button to show the inner
loop, and then click Next Loop again to select the outer loop of the next pair.

Modifying Source Files

81

Note that this outer loop, loop do-4100, is shown as serial inside a parallel
loop, and the following loop is parallel. How can this be? It happens because
PFA has recognized that the two loops can be interchanged, and
furthermore, that the CPU cache is likely to be more efficiently used if the
loops are run in the interchanged order.

Move to loop do-4110 to show the inner loop, and then click the Next Loop
button once again to move to the following triply-nested loop.

Modifying Source Files

So far, you’ve ignored the controls that can be used to change the source file
and allow a subsequent pass of PFA to do a better job. Now you will go back
and make changes. There are two steps in modifying source files:

1. Asking for the changes using the Parallel Analyzer View controls.

2. Actually modifying the files and rebuilding the program and its
analysis files.

Asking for Changes

You may ask for changes by answering any of the questions that PFA poses,
by building a DOACROSS for a specific loop, by modifying the analysis
parameters that PFA uses for its processing, or by adding or deleting
assertions or directives. In this sample session, you will request changes to
loops in the order they appear in the file, but they may be requested in any
order.

Building a Custom DOACROSS Directive

Loop do-5000 is serial nested inside a parallel loop. If you wanted to change
it to parallel, you would go to the Loop Status option menu (to the left of the
loop status icon in the loop information display that reads “Default”), and
select “C$DOACROSS...” as shown in Figure 3-24. This brings up the
Parallelization Control View (see Figure 3-25), showing the loop that was
selected, a parallelized condition input field into which you can type a
condition for parallelization, an MP scheduling option menu, an MP chunk
size input field, and a list of all the variables in the loop, with an iconFigure 3-24 DOACROSS Menu

82

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

indicating whether the variable was read, written, or both. (These icons are
described in the Icon Legend.)

Figure 3-25 Parallelization Control View for Loop do-5000

Notice that each variable has a highlighting button that shows its use within
the loop.Notice also the red plus sign next to this loop in the main view,
indicating that a change has been requested for it as shown in Figure 3-26.

Close the View by pulling down the Admin menu and selecting “Close.”
Move to loop do-1100 by clicking the Next Loop button.

Figure 3-26 Effect of Changes on the Loop List Display

Selected loop

Parallelized condition input field

Scheduling option menu

List of variables in the loop

Read/write status

Variable type

Highlighting button

Variable name

Scheduling chunk size input field

Modified loop

Modifying Source Files

83

Adding a New Assertion

Now you will add an assertion to a loop. Find the loop with ID do-2700 by
using the search feature of the loop list. Go to the search field, and enter
2700 . Double-click the highlighted line in the loop list to select the loop.

You’re going to add a concurrent call assertion. To add the assertion,pull
down the Operations menu, pull down the Add Assertion submenu, and
select “C*$*ASSERT CONCURRENT CALL.”

This adds an assertion that the call to RTC(), which PFA thought to be an
obstacle to parallelization, is actually safe to parallelize. When you add the
assertion, the loop information display updates to show the new assertion,
along with its menu labeled “Insert” as shown in Figure 3-27.

84

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Figure 3-27 Adding an Assertion

Answering a Question

Now try answering a question. Put the cursor into the search field,
backspace to remove the previous contents, and enter 3200 into the field.
Select that loop by double-clicking. Loop do-3200 has a question about a
permutation vector. Pull down the option menu next to the question in the
loop information display, and select “Assert True” as shown in Figure 3-28.

Assertion

Menu
selection

Modifying Source Files

85

Figure 3-28 Answering a Question

Deleting an Existing Assertion

Now let’s delete an existing assertion. Move to loop do-3300 using the Next
Loop button, and go to the “ASSERT PERMUTATION(B)” assertion. Pull
down its option menu and select “Delete”. Figure 3-29 shows the result. The
same procedure can be used for directives.

Selecting Assertion

Loop do-3200

86

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Figure 3-29 Deleting an Assertion

Updating the File

Now you have made a set of changes and can update the file. Select “Update
All Files” from the Update menu (see Figure 3-30); alternatively, you may
use the keyboard accelerator for this operation by typing Ctrl-U with the
cursor anywhere in the main view. The Parallel Analyzer View will generate
a sed script to modify the source, rename the original file to one with the
suffix .old, run sed on that file to produce a new version of the file dummy.f,
and then spawn the WorkShop Build Manager to rerun PFA on the new
version of the file.

Figure 3-30 Update All Files

The Parallel Analyzer View can also open a gdiff window showing the
changes, but by default it does not. If you select the toggle labeled “Run gdiff
After Update” from the Update menu, it will do so. If you have selected it,
use the right mouse button to step through the changes, and then quit gdiff.
If you always wish to see the gdiff window, you can set the resource in your
.Xdefaults file:

cvpav*gDiff: True

Modifying Source Files

87

The Parallel Analyzer View can also open an editor for you to make
additional changes after running sed. To do so, select the toggle labeled “Run
Editor After Update” in the Update menu (see Figure 3-31). If you do so, an
xwsh window with vi running in it opens after you update the file.

If you always wish to run the editor, you can set the resource in your
.Xdefaults file:

cvpav*runUserEdit: True

If you prefer a different window shell or a different editor, you can change
the resource in your .Xdefaults file, changing the xwsh and/or vi as you
prefer:

cvpav*userEdit: xwsh -e vi %s +%d

The +%d tells vi at what line to position itself in the file and is replaced with
1 by default (you can also omit the +%d parameter if you wish). The edited
file’s name will either replace any explicit %s, or if the %s is omitted, the file
name will be appended to the command.

After you quit from the gdiff window and/or editor (if you have selected
them), the program will spawn the WorkShop Build Manager. When it
comes up, verify that the directory shown is the directory in which you are
running the sample session; if not, change it. Then, click the Build button,
and it will start to reprocess the changed file.

Examining the Modified File

When the build completes, the Parallel Analyzer View will update to reflect
the changes that were made. You will now examine the new version of the
file to see the effect of the changes requested above.

New Assertion

Go to the search field and enter 2700 . Double-click the line and notice that
loop do-2700, which previously was unparallelizable because of the call to
RTC(), is now parallel. It also has the assertion that was added.

Figure 3-31 Setting the Run Editor
Toggle

88

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Answered Question

Clear the search field, enter 3200 in it, and double-click the selected line.
Notice that loop do-3200 now has an assertion in it, added as a result of your
reply to the question. The loop is also now parallelized.

Move to loop do-3300 by clicking the Next Loop button.

Deleted Assertion

Loop do-3300 previously had the assertion that B was a permutation vector;
note that the assertion is gone, and PFA now asks the question.

Now enter parallel in the the Search field of the main view. This takes you
to the first parallel region of PCFDUMMY, the second function in dummy.f.
Double-click that line to begin your examination of the constructs in
PCFDUMMY.

Examining Subroutines That Use PCF Directives

PCFDUMMY contains four parallel regions, each of which illustrates some
of the PCF directives. Click Next Loop to go to do-6001, the first loop of the
first parallel region.

Explicitly Parallelized Loops With C$PAR DO

The first construct in routine PCFDUMMY is a parallel region that contains
two loops that are explicitly parallelized with C$PAR PDO statements. See
Figure 3-32.

Examining Subroutines That Use PCF Directives

89

Figure 3-32 Explicitly Parallelized Loops With C$PAR DO

Notice that the parallel region has controls specific to the region as a whole.
The “Keep/Delete” option menu and the highlight buttons function the
same way they do in the Loop Parallelization Controls.

Click Next Loop twice to step through the two loops. Notice that both loops
contain a C$PAR DO directive.

Click Next Loop to step to the second parallel region.

90

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Loops With Barriers

The second parallel region contains the same two loops, but in this example
there is a barrier between them. Click Next Loop twice to view the barrier
region. See Figure 3-33.

Figure 3-33 Loops With Barrier Synchronization

All iterations of the first C$PAR DO must complete before any iteration of
the second loop can begin. (In the first set of loops, the second could start
before all iterations of the first is completed.)

Click Next Loop twice to go to the third parallel region.

Examining a Subroutine That Contains Syntax Errors

91

Critical Section in a Loop

The third parallel region contains two loops. Click Next Loop to view loop
do-6005. This loop contains a critical section. Click Next Loop to view the
critical section. The critical section uses a named locking variable (S3 in this
case) and uses the lock to prevent simultaneous update of S1 from multiple
threads. This is a standard construct for performing a reduction.

Move to loop do-6006 by clicking the Next Loop button.

Loop do-6006 has a single-process section. It ensures that only one thread
will ever execute the statement in the section. Click Next Loop to view the
single-process section information.

Move to the PCFDUMMY’s final parallel region by clicking the Next Loop
button.

Parallel Sections

The fourth and final parallel region of PCFDUMMY provides an example of
parallel sections. In this case, there are three parallel subsections, each of
which calls a function. Each function will be called exactly once, by a single
thread. If there are three or more threads in the program, each function will
be called from a different thread. Click Next Loop to view each parallel
section and subsection.

When you are finished, scroll to the end of the program in the main view and
double-click the ROUTINE SYNTAXERR line.

Examining a Subroutine That Contains Syntax Errors

The SYNTAXERR routine contains a number of errors in the source code.
During the compilation, the compiler generates error messages for them and
flags the routine as having syntax errors.

The compiler provides error messages for four errors that it has detected in
compiling this routine. Each of the errors has a message, and a highlighting
button to show the error in the source. See Figure 3-34.

92

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Figure 3-34 Examing Syntax Errors

The four syntax errors are caused by two errors in the source code:

• The second DIMENSION statement uses a variable (n) as a dimension.
This can only be correct if the variable is in a COMMON block, or an
input parameter to the subroutine.

• There is a typo in the do statement—a period rather than a comma is
used. This causes the compiler to expect an arithmetic statement to
assign the value of a structure element to a variable, doi. This causes the
next three errors: two for the statement itself, and the third for the
presence of an enddo statement with no do statement.

To view or modify the source to correct these errors, click on the appropriate
highligh button to bring up the Source View.

SYNTAXERR Routine

Syntax Errors

Exiting From the Dummy Sample Session

93

Exiting From the Dummy Sample Session

This completes the first sample session. Quit the Parallel Analyzer View by
selecting “Exit” from the Admin menu.

To clean up the directory, so that the session can be rerun, enter:

% make clean

in your shell window. All of the generated files will be removed.

Setting Up the linpackd Sample Session

The second sample session is a brief demonstration of the integration of
WorkShopProMPF and the WorkShop performance tools. It requires that
WorkShop also be installed.

Go to the subdirectory linpack.mips4 in the /usr/demos/WorkShopMPF
directory and run make:

% cd /usr/demos/WorkShopMPF/linpack.mips4
% make

This will update the directory by compiling the source program linpackd.f
and creating the necessary files. The performance experiment you will use is
already there. This operation will take a few minutes.

Starting the Parallel Analysis View

Once the directory has been updated, start the demo by typing:

% cvpav -e linpackd

from within the directory (note the flag is -e , not -f as in the previous
sample session). The main window of the Parallel Analysis View will open,
showing the list of loops in the program.

94

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Scroll briefly through the list and bring up the source by clicking the Source
button. Note that there are many unparallelized loops, but there is no way to
know which are important. Also note that the second line in the main view
shows that there is no performance experiment currently associated with the
view.

Starting the Performance Analyzer

Start the Performance Analyzer by pulling down the Admin menu, selecting
the Launch Tool submenu, and selecting “Performance Analyzer,” as shown
in Figure 3-35.

The main window of the Performance Analyzer will open, although it will
be empty. A small window labeled “Experiment:” will also open at the same
time. This window is used to enter the name of an experiment. For this
session, we will use the prerecorded experiment that is installed. Type:

test0001

in the “Experiment Dir:” field in the Experiment: window, and click the OK
button. See Figure 3-35. The Performance Analyzer will show a busy cursor,
fill in its main window with the list of functions, and highlight the function
main().

For more information about the Performance Analyzer and how it affects the
user interface, see the Performance Analyzer User’s Guide.

Setting Up the linpackd Sample Session

95

Figure 3-35 Starting the Performance Analyzer

Using the Parallel Analyzer with Performance Data

At the same time the Performance Analyzer window fills in, the Parallel
Analyzer recognizes that there is now a performance analyzer, and posts a
busy cursor with a message “Loading Performance Data.” When the

96

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

message goes away, performance data will have been imported by the
Parallel Analyzer, and a number of changes will have taken place as shown
in Figure 3-36:

Figure 3-36 Performance Data — Parallel Analyzer View

• The second column of the list of loops has changed from reading
“Workload” to reading “Perf. Cost”, and the numbers below it are now
percentages.

• The second line in the view now shows the name of the performance
experiment and shows the total cost of the run. In addition, the sort
menu’s second entry “Sort by Perf. Cost” is no longer grayed-out.

• The Source View now has three additional columns to the left of the
loop brackets that show the performance metrics, including the number
of times the line has been executed and ideal CPU times as shown in
Figure 3-37. The times are exclusive, inclusive, ideal, or CPU time in
milliseconds.

Perf. Cost
heading

No longer
grayed

replaces
Workload

Numbers
are in %

Information
line

Setting Up the linpackd Sample Session

97

These columns reflect the measured performance data. If you select
loop do-50 of subroutine DAXPY from the main view, the Source View
displays as shown in Figure 3-37.

Figure 3-37 Source View for Performance Experiment

Select the “Sort by Perf. Cost” entry. Note that loop do-50 of subroutine
DAXPY represents approximately 92% of the total time. These numbers are
inclusive numbers, with each reflecting the time in the loop and in any
nested loops or functions called from within the loop. See Figure 3-38.

Exclusive
ideal CPU

Threshold flag

time

98

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Figure 3-38 Sort by Performance Cost

The first of these loops contains the second loop nested inside it. The second
loop calls the subroutine DAXPY, which contains the third loop. The third
loop is the heart of the linpack benchmark and is already parallel.

Double-click the third loop. Note that the loop information display now
contains an additional line of text listing the performance cost of the loop,
both in time and as a percentage of the total time. See Figure 3-39.

First Loop
Second Loop

Third Loop

Exiting from the linpackd Sample Session

99

Figure 3-39 Loop Information Display with Performance Data

Exiting from the linpackd Sample Session

This completes the second sample session. Quit by selecting the “Exit”
command from the Project submenu of the Admin menu in the Parallel
Analyzer View. All the windows will close.

You don’t need to clean the directory, because you haven’t made any
changes in this session. If you do make changes, when you are finished you
can clean up the directory by entering:

% make clean

in your shell window. All generated files will be removed.

Performance
cost
information
block

Performance
experiment
line

100

Chapter 3: Analyzing Loops: 64-bit Sample Sessions

Setting Up the f90 Sample Session

The f90 sample session is located in the directory
/usr/demos/WorkShopMPF/cgdriver. Prepare for the session by changing
directories to the demo directory and creating the needed files:

% cd /usr/demos/WorkShopMPF/cgdriver
% make

Once the demo directory has been prepared, start the session by entering:

% cvpav -f cgdriver.f

Notice that the loop list contains Fortran 90 array syntax statements. Double
click on the first statement in CGTEST (b = 0). You can see in the loop
information display that the array-syntax is an implied loop and the
statement was converted from array notation into a serial loop.

Click on the Source button. Notice that in source view, Fortran 90 array
syntax statements (in the subroutine CGTEST) are bracketed in blue (they
are shown as loops). Click on the Transformed Source button to see the
transformation that PFA has performed. You can see that since b is a
3-dimensional array which is initialized to 0, the transformed source
contains 3 nested do loops (each one spanning one dimension).

Exiting from the f90 Sample Session

This completes the third sample session. Quit the Parallel Analyzer View by
selecting “Exit” from the Admin menu.

To clean up the directory, so that the session can be rerun,
enter:

% make clean

in your shell window. All of the generated files will be removed.

101

Chapter 4

4. Parallel Analyzer View Reference

This chapter describes in detail the function of each window, menu, and
display in the WorkShopProMPF Parallel Analyzer View’s user interface.
Figure 4-1 shows the application’s icon.

This chapter contains the following sections:

• “Main View Menu Bar”

• “Loop List”

• “Loop Information Display”

• “Other Views”

• “Original and Transformed Source Windows”

• “C$DOACROSS Parallelization Control View”

• “C$PAR PDO Parallelization Control View”

• “Icon Legend”

Main View Menu Bar

This section describes the menus found in the menu bar of the Parallel
Analyzer View main window as shown in Figure 4-2. By selecting the
dashed line (the first item in each of the menus), you can “tear off” the menu
from the menu bar, so that it is displayed in its own window, with each menu
command visible at all times. Some menus contain submenus, which can
also be torn off and displayed in their own window.

Figure 4-1 Icon
for cvpav

102

Chapter 4: Parallel Analyzer View Reference

Figure 4-2 Parallel Analyzer View Menu Bar

Admin Menu

The Admin menu contains general administrative commands and
commands for launching and manipulating other WorkShop application
views as shown in Figure 4-3. The commands are described as follows:

Figure 4-3 Main View Admin Menu

“Save as Text”
saves the complete loop information for all files and
subroutines in the current session into a plain ASCII file.
Selecting “Save as Text” brings up the directory and file
browser, which lets you select where to save the file and
what name to call it (see Figure 4-4). The default directory is

Main View Menu Bar

103

the same one the Parallel Analyzer View was invoked from
at the shell prompt; the default file name is Text.out. The
Parallel Analyzer View will ask for confirmation before
overwriting an existing file.

Figure 4-4 Directory and File Browser Window

“Generate Trap File”
generates a file for use in conjunction with the WorkShop
Trap Manager. The trap file specifies sample traps at the
entry and exit to each outer loop. See Chapter 3, “A Short
Debugger Tutorial,” in the Debugger User’s Guide for more
information on trap files and the Trap Manager. The default
directory is the same one the Parallel Analyzer View was
invoked from at the shell prompt; the default file name is
cvmpTrapFile. The Parallel Analyzer View will ask for
confirmation before overwriting an existing file.

“Icon Legend...”
opens the Icon Legend dialog box, which provides an
explanation of the graphical icons used in the Parallel
Analyzer View. See “Icon Legend” on page 139. Shortcut:
<Ctrl>-S

Default file name

104

Chapter 4: Parallel Analyzer View Reference

“Iconify” stows all the open windows belonging to a given invocation
of the Parallel Analyzer View as icons, as per the window
manager you are using.

“Raise” brings all open windows in the current session to the
foreground of the screen, in front of other windows. The
command also opens any previously iconified windows
belonging to a given invocation of the Parallel Analyzer
View and brings them to the foreground. Shortcut:
<Ctrl>-R

“Launch Tool” See “Launch Tool Submenu” on page 104.

“Project” See “Project Submenu” on page 106.

“Exit” quits the current session of the Parallel Analyzer View,
closing all windows. If you have made changes to source
files without updating them, a dialog box asks if it is okay
to discard the changes. Click on OK only if you want to
discard any changes you’ve made; otherwise, click on Cancel.

Launch Tool Submenu

The Launch Tool submenu contains commands for launching other
WorkShop applications, as well as new sessions of the Parallel Analyzer (see
Figure 4-5). In order to work properly with the other WorkShop
applications, the files in the current fileset must have been loaded into the
Parallel Analyzer from an executable using either the -e option on the
command line (see “Starting the Parallel Analyzer View” on page 2) or the
“Add Files from Executable” command found in the Fileset menu (see
“Fileset Menu” on page 108). If launched from a session not based on an
executable, the tools will be launched without arguments.

Figure 4-5 Launch Tool Submenu

Main View Menu Bar

105

The applications launchable from the menu are the following:

Build Manager
Launches the Build Manager, a utility that lets you compile
software without leaving the WorkShop environment. See
Appendix B, “Using the Build Manager,” in the Developer
Magic: Debugger User’s Guide for further information.

WorkShop Debugger
Launches the Debugger, a UNIX source-level debugging
tool that provides special windows (views) for displaying
program data and execution status. See Chapter 1, “Getting
Started with the WorkShop Debugger,” in the Developer
Magic: Debugger User’s Guide for further information.

Parallel Analyzer
Launches another session of the parallel analyzer.

Performance Analyzer
Launches the Performance Analyzer, a utility that collects
performance data and allows you to analyze the results of a
test run. See Chapter 1, “Introduction to the Performance
Analyzer,” in the Developer Magic: Performance Analyzer
User’s Guide for further information.

Static Analyzer Launces the Static Analyzer, a utility which allows you to
analyze and display source code written in C, C++, Fortran,
or Ada. See Chapter , “Introduction to the WorkShop Static
Analyzer,” in the Developer Magic: Static Analyzer User’s
Guide for further information.

Tester Launches the Tester, a UNIX-based software quality
assurance toolset for dynamic test coverage over any set of
tests. See Chapter 5, “Using Tester,” in the Developer Magic:
Performance Analyzer User’s Guide for further information.

If any of these tools is not installed on your system, the corresponding menu
item will be grayed out.

If the file /usr/lib/WorkShop/system.launch is absent (that is, if you are running
the Parallel Analyzer View without WorkShop 2.0 installed), the entire
Launch Tool submenu will be grayed out.

106

Chapter 4: Parallel Analyzer View Reference

Project Submenu

The Project submenu contains commands that affect all the windows in a
WorkShop project, that is, all the windows containing WorkShop or
WorkShopProMPF applications that have been launched to manipulate a
single executable as shown in Figure 4-6.

Figure 4-6 Project Submenu Commands

Main view Admin menu

Project
submenu

Project view

Path Remap view

Main View Menu Bar

107

The Project submenu commands are as follows:

“Iconify” stows all the windows in the current project as icons, as per
the window manager you are using.

“Raise” brings all open windows in the current project to the
foreground of the screen, in front of other windows. The
command also opens any previously iconified windows in
the current project and brings them to the foreground.

“Remap Paths...”
lets you modify the set of mappings used to redirect
references to file names located in your code to their actual
locations in your file system. However, if you compile your
code on one tree and mount it on another, you may need to
remap the root prefix to access the named files.

“Project View...” launches the WorkShop Project View, a tool that helps you
manage project windows.

“Exit” quits the current project, closing all windows. If you have
made changes to source files without updating them, a
dialog box asks if it is okay to discard the changes. Click on
OK only if you want to disregard any changes you’ve made;
otherwise, click on Cancel.

Views Menu

The Views menu (see Figure 4-7) contains commands for launching a variety
of secondary windows, or views, the function each of which is described as
follows:

“Parallelization Control View”
opens a Parallelization Control View for the looper
currently selected (double-clicked) from the loop list
display. For more information on this view, see
“Parallelization Control View” on page 127. Shortcut:
<Ctrl>-T

Figure 4-7 Views Menu

108

Chapter 4: Parallel Analyzer View Reference

“Transformed Loops View”
opens a Transformed Loops View for the loop currently
selected (double-clicked) from the loop list display. For
more information on this view, see “Transformed Loops
View” on page 134 Shortcut: <Ctrl>-T

“PFA Analysis Parameters View”
opens the PFA Analysis Parameters View, which provides a
means of modifying a variety of PFA parameters. This view
is further described in “PFA Analysis Parameters View” on
page 135. Shortcut: <Ctrl>-P

“Subroutines and Files View”
opens the Subroutines and Files View, which provides a
complete list of subroutine and file names currently being
examined within the current session of the Parallel
Analyzer View. This view is further described in
“C$DOACROSS Parallelization Control View” on page 130.
Shortcut: <Ctrl>-F

Fileset Menu

The Fileset menu (see Figure 4-8) contains commands for manipulating the
files displayed by the Parallel Analyzer View. The selections are as follows:

“Rescan All Files”
causes the Parallel Analyzer View to check and update all
the source files loaded into its current session to match the
versions of those files in the file system. It will only reread
the files it needs to.

“Delete All Files”
removes all files from the current session of the Parallel
Analyzer View. You can then add new files using the “Add
File”, “Add Files from Fileset”, or “Add Files from
Executable” commands, described below.

“Delete Selected File”
deletes a selected file from the current session of the Parallel
Analyzer View. You can select a file for deletion by

Figure 4-8 Fileset Menu

Main View Menu Bar

109

double-clicking with the left mouse button within the
Subroutines and Files View on the line corresponding to the
desired file name.

“Add File” adds a new source file to the current session of the Parallel
Analyzer View. Selecting this command brings up a file and
directory browser that lets you select a Fortran source file.
Before you can select a given source file, you will need to
run PFA on it. If the current session is based on an
executable (see the “Add Files from Executable” command,
described below), you cannot add files to it until you have
deleted the executable’s fileset.

“Add Files from Fileset”
lets you add a list of new source files to the current session
of the Parallel Analyzer View. A fileset is a list of source file
names contained in an ASCII file, each on a separate line.
Selecting the “Add Files from Fileset” command will bring
up the file and directory browser as it does for the “Add
File” command. If you select a file containing a fileset list, all
Fortran source files in the list are loaded into the current
session (other files in the list are ignored). If the current
session is based on an executable (see “Add Files From
Executable”), you cannot add files to it until you have
deleted the executable’s fileset.

“Add Files from Executable”
imports all the Fortran source files listed in the symbol table
of a compiled Fortran application. This command will only
work if there are no files in the current session of the Parallel
Analyzer View when the command is selected from the
menu. Other WorkShop applications (see “Launch Tool
Submenu” on page 104) will also be able to operate on files
imported from an executable.

Operations Menu

The Operations menu contains commands for undoing changes to source
files and for adding assertions and directives to loops as shown in Figure 4-9.

110

Chapter 4: Parallel Analyzer View Reference

Figure 4-9 Operations Menu and Submenus

“Undo Changes to Loop”
removes any non-updated changes to the currently selected
loop that were made using the option menus in the loop
information display. Changes that have already been
written to the source file using the Update menu commands
cannot be undone.

“Undo All Changes”
removes any non-updated changes to all the loops in the
current fileset. Changes that have already been written to
the source file using the Update menu commands cannot be
undone.

Main View Menu Bar

111

The Add Assertion Submenu
contains a set of PFA assertions that you can select in order
to add them to the currently selected loop. These assertions
are explained in detail in “Appendix C, PFA Assertions” in
the POWER Fortran Accelerator User’s Guide.

The Add Directive Submenu
contains a set of PFA directives that you can select in order
to add them to the currently selected loop. These directives
are explained in detail in “Appendix B, PFA Directives” in
the POWER Fortran Accelerator User’s Guide.

“Add Parallel Region”
allows you to add a parallel region PCF construct.

“Add Barrier Synchronization”
allows you to add a barrier synchronization PCF construct.

The Add Section Submenu
allows you to add a parallel-, critical- or one-
processor-section. To use them, bring up the source on any
loop or construct in the file, and using the mouse, sweep out
a range of lines for the new construct in the Source View.
Then invoke the appropriate menu item to add the new
construct.

When you add a new construct, the list is redrawn with the
new construct in place, and the new construct is selected.
Brackets defining the new constructs are NOT added to the
file loop annotations. The Parallel Analyzer does not
enforce any of the semantic restrictions on how parallel
regions and or sections must be constructed. When you
add nested regions or constructs, be careful that they are
properly nested: they must each begin and end on distinct
lines. For example, if you add a parallel region and a nested
critical section that end at the same line, the terminating
directives will be not be in the correct order.

112

Chapter 4: Parallel Analyzer View Reference

Update Menu

The Update menu (see Figure 4-10) contains commands for managing
changes to PFA directives and assertions made in the Parallel Analyzer View
to your Fortran source code.

“Run gdiff After Update”
sets a toggle switch that will cause a gdiff window to open
after you have updated changes to your source file. This
window graphically illustrates the differences between the
unchanged source and the newly updated source. If you
always wish to see the gdiff window, you may set the
resource in your .Xdefaults file:

cvpav*gDiff: True

See the man page for gdiff(1) for more information on using
gdiff.

“Run Editor After Update”
sets a toggle switch that will cause an xwsh shell window
with the vi editor running it to open the updated source file.
See Figure 4-11.

Figure 4-11 Viewing the Updated Source in an Editor

If you always wish to run the editor, you can set the
resource in your .Xdefaults file:

cvpav*runUserEdit: True

If you prefer a different window shell or a different editor,
you can change the following resource in your .Xdefaults
file, changing the xwsh and/or vi as you prefer:

cvpav*userEdit: xwsh -e vi %s +%d

Figure 4-10 Update Menu

Main View Menu Bar

113

The +%d tells vi at what line to position itself in the file and
is replaced with 1 by default (you can also omit the +%d
parameter if you wish). The edited file’s name will either
replace any explicit %s, or if the %s is omitted, the file
name will be appended to the command.

“Update All Files”
writes all changes made to loops in the current session of
the Parallel Analyzer View to the appropriate source files.
Shortcut: <Ctrl>-U

“Update Selected File”
writes changes made to loops found within a selected file
from the current session of the Parallel Analyzer View. You
can select a file for saving by double-clicking with the left
mouse button within the Subroutines and Files View on the
line corresponding to the desired file name. See
“C$DOACROSS Parallelization Control View” on page 130.

 Help Menu

The Help menu contains commands that allow you to access on-line
information and documentation for the Parallel Analyzer View as shown in
Figure 4-12.

“On Version...”
opens a window containing version number information
for the Parallel Analyzer View.

“On Window...”
invokes the Help Viewer, which displays a descriptive
overview of the current window or view and its graphical
user interface.

“On Context” invokes context-sensitive help. When you select the “On
Context” command, the normal mouse cursor (an arrow) is
replaced with a question mark. When you click on graphical
features of the application with the left mouse or position
the cursor over the feature and press the <F1> key, the Help
Viewer displays information on that context.

Figure 4-12 Help Menu

114

Chapter 4: Parallel Analyzer View Reference

“Index...” invokes the Help Viewer, that displays the list of available
help topics, which you can browse alphabetically,
hierarchically, or graphically.

Keyboard Shortcuts

The following accelarator keys are available through MPF:

Ctrl-S Admin -> Icon Legend...

Ctrl-R Admin -> Raise

Ctrl-P Views -> Parallelization Control View

Ctrl-T Views -> Transformed Loops View

Ctrl-A Views -> PFA Analyzis Parameters View

Ctrl-F Views -> Subroutines and Files View

Ctrl-U Update -> Update All Files

Loop List

This section describes the loop list and the various option menus and fields
that manipulate the information shown in the loop list display as shown in
Figure 4-13.

You may resize the loop list to reduce the number of loops displayed. You
might have noticed that many figures in this manual show the loop list
focused on the selected loop. The adjustment button is in the lower right
hand corner of the loop list display, just above the loop information display.
Your screen shows the full list unless you resize it.

Loop List

115

Figure 4-13 Loop List Display and Controls

Status and Performance Experiment Lines

The status line displays informative messages about the current status of the
loop list, providing feedback on user manipulations of the current fileset.

The performance experiment line displays the name of the current
experiment directory and the type of experiment data derived from the
WorkShop Performance Analyzer (see “Launch Tool Submenu” on page 104
for information on invoking the Performance Analyzer from the Parallel
Analyzer View), as well as total data for the current caliper setting in the
Performance Analyzer. If the Performance Analyzer is not being used, the
performance experiment line displays <none>.

Loop List Display

The loop list display lets you select and manipulate any Fortran DO loop
contained in the source files loaded into the Parallel Analyzer View as part
of the current session. The loops themselves are stacked as rows in the list

Loop list display

Status line

Performance

Loop search field

Option menus

Buttons

experiment line

Column headings

Size adjustment

116

Chapter 4: Parallel Analyzer View Reference

display; information about the loops is displayed in columns, the contents of
which are shown in Figure 4-14 and described below.

Figure 4-14 Column Headings for the Loop List Display

The columns in the loop list display contain the following information about
each loop, from left to right:

parallelization icon
describes the parallelization status of each loop. The
meaning of each of these icons is described in the Icon
Legend dialog box (see “Icon Legend” on page 139). When
a loop is displayed in the loop information display (by
double-clicking with the left mouse button elsewhere in the
loop’s row), a green check mark is placed to the left of the
icon to indicate that it has been examined. If any changes are
made from within the loop information display, a red plus
sign is placed above the check mark.

Workload and Perf. Cost (performance cost)
allow you to gauge loop performance. Workload provides a
means of roughly determining the relative amount of work
done in each iteration of the loop. The loops can be sorted in
the loop list display by the workload value, instead of by
physical ordering in the file. See “Sort Option Menu” on
page 118. Workload is displayed when no performance data
(from the WorkShop Performance Analyzer) is available.

Perf. Cost replaces Workload when the WorkShop
Performance Analyzer is launched on the current fileset
(see “Launch Tool Submenu”). Performance experiment
data from the Performance Analyzer is then listed in place
of workload data. As with Workload, the loops can be
sorted by Perf. Cost via the sort option menu.

Work done

Nesting

Fortran

Loop index Location

Internal

File
level

description

variable name

identifier

namein code

iteration
in each

Fortran
subroutine
name

Loop List

117

When performance cost is shown, each loop’s execution
time is displayed as a percentage of the total execution
time. This percentage includes all nested loops,
subroutines, and function calls.

Nest shows the nesting level of the given loop.

Loop-ID provides an ID for each loop in the list display. The ID is
displayed indented to the right to reflect the loop’s nesting
level when the list is sorted in source order, and unindented
otherwise.

Variable provides the name of the loop index variable.

Subroutine provides the name of the Fortran subroutine in which the
loop occurs.

Lines provides the lines in the source file that comprise the body
of the loop.

Olid provides a unique internal identifier for the loops generated
by PFA. Please use this value when reporting bugs.

File provides the name of the Fortran source file that contains
the loop.

Clicking the left mouse anywhere in a given row highlights that loop in the
list display, and typing text into the Search field (see “Loop List Search Field”
on page 117) will do the same. Double-clicking on a row will bring up
detailed information in the loop information display below the loop list
display (see “Loop Information Display” on page 120).

Loop List Search Field

You can use the loop list search field to find a specific loop in the loop list
display. The field will match any text typed into it to the first instance of that
text in the loop list display, and will highlight the row of the display in which
that text occurs. The search field will match its text against the contents of
each column in the loop list display.

As you type into the field, the list will highlight the first entry that matches
what you have already typed, scrolling the list if necessary. If you type
<Enter> , the highlight will move to the next match. If no match is found, the

118

Chapter 4: Parallel Analyzer View Reference

system will beep, and typing <Enter> will position the highlight at the top
of the list again.

Sort Option Menu

The sort option menu (see Figure 4-15) controls the order in which the loops
are displayed in the loop list display. The choices are as follows:

Sort In Source Order
orders the loops as they appear in the source file. This is the
default setting.

Sort By Performance Cost
orders the loops by their performance cost (from greatest to
least) as calculated by the Workshop Performance Analyzer.
You need to have invoked the Performance Analyzer from
the current session of the Parallel Analyzer View to make
use of this option. See “Launch Tool Submenu” on page 104
for information on how to open the Performance Analyzer
from the current session of the Parallel Analyzer View.

Sort By WorkLoad
orders the loops from largest to smallest workload.

Show Loop Types Option Menu

The show loop types option menu (see Figure 4-16) controls what kind of
loops are displayed for each file and subroutine in the loop list display. The
choices are as follows:

• Show All Loop Types is the default setting.

• Show Unparallelizable Loops shows only loops that could not be
parallelized.

• Show Parallelized Loops shows only loops that are parallelized.

• Show Serial Loops shows only loops that are preferably serial.

• Show Modified Loops shows only loops with pending changes.

Figure 4-15 Sort Option Menu

Figure 4-16 Show Loop Types
Menu

Loop List

119

Filtering Option Menu

The filtering option menu (see Figure 4-17) lets you display only those loops
contained within a given subroutine or source file. The choices are as
follows:

No Filtering is the default setting.

Filter By Subroutine
lets you enter a subroutine name into a filtering text field
that appears above the option menu. Only loops contained
in that subroutine will be displayed in the loop list display.

Filter By File lets you enter a Fortran source file name into a filtering text
field that appears above the option menu. Only loops
contained in that file will be displayed in the loop list
display.

Double-clicking on a line in the Subroutines and Files View will cause the
name of that subroutine or file to be inserted into the appropriate filter text
field. If the appropriate type of filtering is currently selected, the loop list is
rescanned.

Loop List Buttons

The Loop List contains the buttons described below.

Source opens the Original Source window, with the source file
containing the loop currently selected (double-clicked) in
the loop list display. The body of the loop is highlighted
within the window. For more information on the Original
Source window, see “Original and Transformed Source
Windows” on page 138. If no loop is selected, the last
selected file is loaded; if no file is selected, the first file in the
fileset will be loaded.

Transformed Source
opens a Transformed Source window, with the
PFA-processed source file containing the loop currently
selected (double-clicked) in the loop list display. The body
of the loop is highlighted within the window. For more
information on the Transformed Source window, see

Figure 4-17 Filtering Option
Menu

120

Chapter 4: Parallel Analyzer View Reference

“Original and Transformed Source Windows” on page 138.
If no loop is selected, the last selected file is loaded; if no file
is selected, the first file in the fileset will be loaded.

Next Loop selects the next loop in the loop list display. The
information in the loop information display and all other
windows is updated accordingly. If no loop is currently
selected, clicking on the button selects the first loop.

Previous Loop selects the previous loop in the loop list display. The
information in the loop information display and all other
windows is updated accordingly. If no loop is currently
selected, clicking on the button selects the first loop.

Loop Information Display

The loop information display provides detailed information on various loop
parameters and allows you to alter those parameters so that the changes can
be incorporated into the Fortran source. The display is divided into several
information blocks displayed in a scrolling list as shown in Figure 4-18.

Figure 4-18 Loop Information Display

Each of these sections and the information it contains is described in detail
below. This display is empty when no loop has been selected.

Information blocks

Count of transformed loops

Loop Information Display

121

A highlighting button (light bulb, see Figure 4-19 and Figure 4-20) appears
as a shortcut to related information. Clicking the button opens an Original
Source window (if necessary), highlighting the loop and the line that
generated the question.

Parallelization Controls

The first section contains controls for altering the parallelization of the
selected loop that are described below. See Figure 4-20. On the far right, the
first line of the Parallelization Controls section shows how many
transformed loops were derived from the selected loop.

Figure 4-20 Parallelization Controls

Loop Status Option Menu

The loop status option menu lets you alter a loop’s parallelization scheme.
To the right of the option menu is a description of the current loop status as
implemented in the transformed source. A small highlighting button
appears to the left of this description if the status was set by a directive as
shown in Figure 4-20. See Chapter 5, “Fine Tuning for PFA,” in the POWER
Fortran Accelerator User’s Guide for more information on the menu choices.

The menu choices are as follows:

Figure 4-19
Highlighting
Button

Status description

Highlighting button
Loop status
option menu

MP scheduling
option menu

(status sent by directive)

Scheduling description

MP scheduling chunk size input field

Count of transformed loops

122

Chapter 4: Parallel Analyzer View Reference

Default always selects the parallelization scheme that PFA has
picked for the selected loop.

Prefer Parallel adds the assertion C*$*ASSERT DO PREFER
(CONCURRENT), which causes PFA to try to transform the
selected loop into a parallel loop. If this is not possible, PFA
will try to run each nested loop in parallel.

Force Parallel addsan assertion C*$*ASSERT DO (CONCURRENT),
which causes PFA to ignore assumed data dependencies
that would normally be considered obstacles to
parallelization on the selected loop and any nested loops.

Prefer Serial addsthe assertion C*$ASSERT DO PREFER (SERIAL),
which prevents PFA from trying to parallelize the selected
loop.

Force Serial adds the assertion C*$*ASSERT DO (SERIAL), which
prevents PFA from trying to parallelize the selected loop or
any loop that surrounds it.

C$DOACROSS...
adds the directive C$DOACROSS, which tells the Fortran
compiler to generate parallel code for the selected loop
without any interference by PFA. Selecting this item opens
the Custom DOACROSS Dialog box. See “C$DOACROSS
Parallelization Control View” for more information.

C$PAR PDO... launches a Parallel DO Dialog, which allows you to
manipulate the scheduling clauses for the Parallel-DO and
to set each of the referenced variables as either
region-default or last-local. A Parallel-DO must be within a
Parallel Region, although the tool does not enforce this
restriction. If one is added outside of a region, the compiler
will report an error.

A menu choice is grayed out if you are looking at a read-only file, or you
invoked cvpav with the -ro True option, or the loop comes from an included
file. So in some cases you will not be allowed to change the menu setting.

MP Scheduling Option Menu

The MP scheduling option menu lets you alter a loop’s scheduling scheme
by changing the C$MP_SCHEDTYPE and C$CHUNK directives. These

Loop Information Display

123

directives affect the current loop and all subsequent loops in a source file. For
control over a single loop, see “Parallelization Control View MP Scheduling
Option Menu” on page 129.

The menu choices are as follows:

Default always selects the scheduling scheme that PFA has picked
for the selected loop.

Simple divides iterations of the selected loop among the processors
by dividing them into contiguous pieces, and assigns one to
each processor.

Dynamic divides iterations of the selected loop among the processors
by dividing them into pieces of size CHUNK. As each
processor finishes a piece, it enters a critical section to grab
the next piece. This scheme provides good load balancing at
the price of higher overhead.

Interleaved divides the iterations into pieces of size CHUNK and the
execution of those pieces is interleaved among the
processors. For example, if there are four processors and
CHUNK=2, then the first processor executes iterations 1-2,
9-10, 17-18,...; the second processor executes iterations 3-4,
11-12, 19-20,...; and so on.

Guided-Self divides the iterations into pieces. The size of each piece is
determined by the number of total iterations remaining. By
parceling out relatively large pieces to start with and
relatively small pieces toward the end, the idea is to achieve
good load balancing while reducing the number of entries
into the critical section.

Run-time lets the user specify the scheduling type at run-time.

See Section 5.3, “Writing Parallel Fortran,” in the Fortran 77 Programmer’s
Guide for more information on the functions listed above.

To the right of the option menu is a description of the current loop
scheduling scheme as implemented in the transformed source. A small
highlighting button appears to the left of this description if, and only if, the
scheduling scheme was set by a directive.

124

Chapter 4: Parallel Analyzer View Reference

MP Scheduling Chunk Size Field

Below the scheduling description is an input field that allows you to set the
CHUNK size for the scheduling scheme you select. When you change an
entry in the field, the upper right corner of the field will turn down,
indicating the change. To toggle back to the original value, left-click the
turned-down corner (changed-entry indicator). The corner will unfold,
leaving a fold mark. If you click again on the fold mark, you can toggle back
to the changed value. You can enter a new value at any time; the field will
always remember the original value, which will always be displayed after
you click on the changed-entry indicator. See Figure 4-21.

Figure 4-21 MP Chunk Size Input Field Changed

Your entry should be syntactically correct, although it is not checked. The
background color will indicate that you cannot make changes if you are
looking at a read-only file, or you invoked cvpav with the -ro True option, or
the loop comes from an included file; in some cases you will not be allowed
to change the value.

Questions

In some cases, PFA asks one or more questions when it encounters a data
dependence. The Parallel Analyzer View creates option menus allowing you
to answer “Don’t Know”, “Assert False”, or “Assert True” to each question
as shown in Figure 4-22. When you click on the small highlighting button to
the left of a question, an Original Source window opens (if necessary),
highlighting the loop and the line that generated the question. For the
questions, it also highlights a variable name.

Changed-entry indicator

Loop Information Display

125

Figure 4-22 Questions Information Block

Obstacles to Parallelization

Obstacles to parallelization are listed when PFA discovers aspects of a loop’s
structure that make it impossible to parallelize. See Figure 4-23. These are
listed messages describing an obstacle, and each has a corresponding button
directly to its left. When you left-click on one of these buttons, the Parallel
Analyzer View highlights the troublesome line in the Original Source
window, opening the window if necessary. If appropriate, the referenced
variable or function call is highlighted in a contrasting color.

Figure 4-23 Obstacles Information Block

Assertions and Directives

Assertions and directives are special POWER Fortran source comments used
to tell PFA how to transform Fortran code. Directives enable, disable, or
modify features of PFA when it runs on the source. Assertions provide PFA
with additional information about the source code that can sometimes
improve optimization. Figure 4-24 shows an assertion block and its option
menu.

Answer option menu

Highlighting buttons Questions about data dependence

Information block

Highlighting button

Description of obstacle

126

Chapter 4: Parallel Analyzer View Reference

Figure 4-24 Assertion Information Block

The Parallel Analyzer View lists assertions and directives along with buttons
in the loop information display. Some are also listed with an option menu
that allows you to “Keep”, “Delete”, or “Reverse” (if appropriate) the
corresponding assertion or directive. When you left-click the small
highlighting button to the left of an assertion or directive, an Original Source
window shows the selected loop with the assertion or directive highlighted
in the code. Assertions and directives that govern loop parallelization or
scheduling do not have associated option menus; those functions are
controlled by the loop status option menu and the MP scheduling option
menu (see “Parallelization Controls” on page 121).

PFA Messages

PFA sometimes generates messages describing aspects of the loops it creates
by transforming original source loops. The Parallel Analyzer View displays
these messages; some also have associated buttons that highlight sections of
the selected loop in the Original Source window.

Other Views

The views in this section are launched from the Views menu in the main
menu bar of the Parallel Analyzer View. All of the views discussed in this
section contain the following in their menu bars:

Admin menu contains a single “Close” command that closes the
corresponding view

Help menu provides access to the on-line help system (see “Help
Menu” on page 113 for an explanation of the commands in
this menu)

Other Views

127

Parallelization Control View

The Parallelization Control View shows parallelization controls, where
applicable, and all the variables referenced in the selected loop/PCF-
construct/routine. In addition to being raised when ‘‘C$DOACROSS’’ or
‘‘C$PAR PDO’’ is selected for a loop, it can be raised from the Views menus,
and it need not be closed to move from loop to loop. For loops, the variable
list is obtained as in the previous releases, that is, from the analysis file; for
other constructs, the variable list is obtained from the WorkShop Static
Analyzer. If no response is received from the Static Analyzer, a dialog
suggesting that you invoke it is raised. In addition, there is a text field for
you to enter a comma-separated list of variables and an ‘‘Add Variable’’
button.

You can open this view by one of the following:

• pulling down the Views menu of the Parallel Analyzer View and
selecting “Parallelization Control View” (see “Views Menu” on
page 107)

• selecting either “C$DOACROSS...” from the loop status option menu in
the loop information display

• selecting either “C$PAR PDO...” from the loop status option menu in
the loop information display

Figure 4-25 displays the view when it is launched from the Views menu,
with the loop status option menu set to Default .

128

Chapter 4: Parallel Analyzer View Reference

Figure 4-25 Parallelization Control View

Both the C$DOACROSS and C$PAR PDO modes of the Parallelization
Control View contain the following items:

Admin menu Contains only one selection, “Close,” which closes the View.

MP Scheduling menu
Allows you to alter a loop’s scheduling scheme by changing
the C$MP_SCHEDTYPE and C$CHUNK directives. See
“Parallelization Control View MP Scheduling Option
Menu” on page 129 for futher information.

“MP chunk size” text field
Allows you to set the CHUNK size for the scheduling
scheme you select.

Variable Option menus
Allows you to select the variable type. See “Parallelization
Control View Variable Option Menus” on page 130 for
further information.

Add Variable button
Allows you to add new variables to a loop.

Other Views

129

“List to add” text field
Allows you to indicate the variables you wish to add to the
loop. You may enter multiple variables, with each variable
name separated by a space or comma.

For further details on the C$DOACROSS and C$PAR PDO modes of the
Parallelization Control View, see “C$DOACROSS Parallelization Control
View” on page 130 and “C$PAR PDO Parallelization Control View” on
page 132.

Parallelization Control View MP Scheduling Option Menu

The Parallelization Control View contains an MP scheduling option menu
(see Figure 4-26) identical to the one that appears for a selected loop in the
loop information display. This option menu affects the MP_SCHEDTYPE
and CHUNK clauses in the C$DOACROSS directive, which affect only the
currently selected loop.

The menu choices are as follows:

Default always selects the scheduling scheme that PFA has picked
for the selected loop.

Simple divides iterations of the selected loop among the processors
by dividing them into contiguous pieces, and assigns one to
each processor.

Dynamic divides iterations of the selected loop among the processors
by dividing them into pieces of size CHUNK. As each
processor finishes a piece, it enters a critical section to grab
the next piece. This scheme provides good load balancing at
the price of higher overhead.

Interleaved divides the iterations into pieces of size CHUNK and the
execution of those pieces is interleaved among the
processors. For example, if there are four processors and
CHUNK=2, then the first processor executes iterations 1-2,
9-10, 17-18,...; the second processor executes iterations 3-4,
11-12, 19-20,...; and so on.

Guided-Self divides the iterations into pieces. The size of each piece is
determined by the number of total iterations remaining. By
parceling out relatively large pieces to start with and

Figure 4-26 MP Scheduling
Option Menu

130

Chapter 4: Parallel Analyzer View Reference

relatively small pieces toward the end, the idea is to achieve
good load balancing while reducing the number of entries
into the critical section.

Run-time lets the user specify the scheduling type at run-time.

Parallelization Control View Variable Option Menus

Below the MP scheduling option menu is a display area containing each of
the variables found in the selected loop. Each variable name is displayed to
the right of a highlighting button. To the left of each button is a variable
option menu. An icon to the left of the menu displays the read/write status
of the variable; see “Icon Legend” on page 139 for an explanation of these
icons. Clicking on the small highlighting buttons opens an Original Source
window that displays each instance of the variable within the loop in
highlighted form.

An option menu (see Figure 4-27) allows you to select the variable type. The
choices are as follows:

Shared One copy of the variable is used by all threads of the MP
process.

Local Each thread has its own copy of the variable.

Last-local Similar to Local, except the value of the variable after the
loop will be as the logically-last iteration would leave it.

Reduction A sum/product/min/max computation of the variable can
be done partially in each thread and then combined
afterwards.

C$DOACROSS Parallelization Control View

The $DOACROSS Parallelization Control View opens when you select
“C$DOACROSS...” from the loop status option menu in the loop
information display as shown in Figure 4-28.

Figure 4-27 Variable
Type Option Menu

Other Views

131

Figure 4-28 C$DOACROSS Parallelization Control View

The C$DOACROSS Parallelization Control View contains the following
items:

“Condition for parallelization” text field
Allows you to enter a Fortran conditional statement (for
example, NSIZE .GT. 83). This statement determines the
circumstances under which the loop will be parallelized.
The upper right corner of the field changes when you type
in the field. Your entry must be syntactically correct; it is not
checked.

Selected loop

Parallelized condition input field

MP scheduling option menu

List of variables in the loop

Read/write status
Variable type
Highlighting button

Variable name

MP scheduling chunk
size input field

132

Chapter 4: Parallel Analyzer View Reference

MP Scheduling menu
Allows you to alter a loop’s scheduling scheme by changing
the C$MP_SCHEDTYPE and C$CHUNK directives. See
“Parallelization Control View MP Scheduling Option
Menu” on page 129 for futher information.

“MP chunk size” text field
Allows you to set the CHUNK size for the scheduling
scheme you select. See “MP Scheduling Chunk Size Field”
on page 124 for further information.

Variable Option menus
Allows you to select the variable type. See “Parallelization
Control View Variable Option Menus” on page 130 for
further information.

C$PAR PDO Parallelization Control View

The C$PAR PDO Parallelization Control View opens when “C$PAR PDO...”
is selected from the loop status option menu in the loop information display
as shown in Figure 4-29.

Other Views

133

Figure 4-29 C$PAR PDO Parallelization Control View

The C$PAR PDO Parallelization Control View contains the following items:

MP Scheduling menu
Allows you to alter a loop’s scheduling scheme by changing
the C$MP_SCHEDTYPE and C$CHUNK directives. See
“Parallelization Control View MP Scheduling Option
Menu” on page 129 for futher information.

“MP chunk size” text field
Allows you to set the CHUNK size for the scheduling
scheme you select. See “MP Scheduling Chunk Size Field”
on page 124 for further information.

Selected loop

MP scheduling option menu

List of variables in the loop

Read/write status
Variable type
Highlighting button

Variable name

MP scheduling chunk size input field

Construct Synchronization menu

134

Chapter 4: Parallel Analyzer View Reference

Synchronization Construct menu
Allows you to set the synchronization at the end of the
construct to either “Wait” or “No Wait.”

Variable Option menus
Allows you to select the variable type. See “Parallelization
Control View Variable Option Menus” on page 130 for
further information.

Transformed Loops View

The Transformed Loops View (see Figure 4-31) contains information about
how each loop selected from the loop list display is rewritten by PFA into
one or more transformed loops. You can open this view by pulling down the
Views menu of the Parallel Analyzer View and selecting the “Transformed
Loops View” command (see “Views Menu” on page 107).

Figure 4-31 Transformed Loops View

Figure 4-30 Synchronization
Construct Menu

Information block for one loop

Other Views

135

Each transformed loop is displayed in its own section of the scrolling display
within the Transformed Loops View. Each transformed loop has a
highlighting button associated with it. This button is directly to the right of
the parallelization icon describing the loop’s parallelization status.
Left-clicking on this button opens the Transformed Source window (if
necessary), showing the original loop and the selected transformed loop.

The next two lines describe the transformed loop, listing the following
information about it:

• whether it is a primary loop (directly transformed from the selected
original loop) or a secondary loop (transformed from a different original
loop but incorporating some code from the selected original loop)

• its parallelization status

• whether it is an ordinary loop or an interchanged loopits nesting
levelits workloadthe corresponding lines in the transformed source

• the name of the file in which it is located

In addition to this information, each transformed loop also may list one or
more messages, which and are presented with small highlighting buttons to
the left of each message. These are messages from PFA describing some
aspect of the loop transformation. Left-clicking on a message button opens
an Original Source window showing the original, untransformed loop and
highlighting the line of the loop to which the message corresponds.

PFA Analysis Parameters View

The PFA Analysis Parameters View contains a list of PFA execution
parameters accompanied by fields into which you can enter new values for
the parameters. When you update a source file, any PFA parameters you
alter will be changed for that file. See Figure 4-32. For a description of the
changed-entry indicators, see “MP Scheduling Chunk Size Field” on
page 4-124.

136

Chapter 4: Parallel Analyzer View Reference

Figure 4-32 PFA Analysis Parameters View

A full explanation of the PFA parameters listed in this view can be found in
Chapter 4, “Customizing PFA Execution,” in the POWER Fortran Accelerator
User’s Guide.

Subroutines and Files View

The Subroutines and Files View contains a list from the file in the current
session of the Parallel Analyzer View as shown in Figure 4-33. Below each
file listing is an indented list of the Fortran subroutines in each file. You can
select any file or subroutine by left-clicking on it. You can delete or save
changes to a file selected in this view by subsequently selecting the
appropriate item from the Parallel Analyzer View menu bar. If a file has been
scanned correctly or a subroutine has no errors, a green check mark appears
to the left of the file or subroutine listing. If any changes have been made to
loops in the file using the Parallel Analyzer View, a red plus sign is above the

Changed-entry
indicator

Loop description

value of
parameter

Numeric input
field with

Other Views

137

green check mark to the left of the file listing. If a file could not be scanned
or a subroutine had errors, a red international “not” symbol replaces the
check mark, denoting an error.

Figure 4-33 Subroutines and Files View

 If filtering by file or by subroutine is selected from the filtering option menu
in the Parallel Analyzer View (see “Filtering Option Menu” on page 119),
double-clicking on a file or subroutine from the Subroutines and Files view
will automatically insert the name into the appropriate filtering text field; if
that choice is currently selected from the filtering option menu, the loop list
is rescanned.

The Search field matches against subroutine and file names listed in the
Subroutines and Files View. The matching occurs as you type; the first name
in the list that matches what has already been typed is selected. If there is no
match, the system will beep in response.

Search
field

File line

Subroutine
line

138

Chapter 4: Parallel Analyzer View Reference

Original and Transformed Source Windows

The Original Source window and the Transformed Source window together
present a before and after view of the source code. The former is a view of
the source before PFA has run on it, the latter is a view of the source after PFA
has parallelized it as shown in Figure 4-34. The two windows use the
WorkShop Source View interface.

Figure 4-34 Original and Transformed Loop Source Windows

Both the Original Source and Transformed Source windows contain bracket
annotations in the left margin that mark the location and nesting level of
each loop in the source file. Clicking on a loop bracket selects and highlights
the corresponding loop.

In a Transformed Source window, an indicator bar (vertical line in a different
color) indicates each loop that was transformed from the selected original
loop.

Original loop

Indicator bars indicate loops
transformed from selected loop

First transformed loop

Second transformed loop
is not highlighted

is highlighted

Icon Legend

139

If the source windows are invoked from a session linked to the WorkShop
Performance Analyzer (see “Launch Tool Submenu” on page 104), any
displayed sources files known to the Performance Analyzer will be
annotated with performance data.

Icon Legend

The Icon Legend dialog box provides a key explaining the meaning of the
icons that appear in the Parallel Analyzer View, the Transformed Loops
View, the Subroutines and Files View, and Custom DOACROSS Dialog box.
See Figure 4-35.

Icon Legend Buttons

The Icon Legend also contains two buttons, described below.

Close closes the Icon Legend.

Help opens the WorkShop Help Viewer for on-line help in using
the Icon Legend.

140

Chapter 4: Parallel Analyzer View Reference

Figure 4-35 Parallelization Icon Legend

141

Index

A

Add Assertion submenu, 111
Add Directive submenu, 111
Add File command, 109
Add Files from Fileset command, 109
adding an assertion, 38, 83
adjustment button, resize loop list

display, 16, 64, 114
Admin menu

Parallel Analyzer View, 102
analysis files, xv
answering a question, 39, 84
assertion, 30, 76, 125

adding from Operations menu, 109
deleting, 40, 85

B

block loops, 35
brackets

loop, 21, 69
source windows and, 138

bugs, reporting, 117
Build Manager, 41, 86

launching, 105
button

adjust loop list display, 114
highlighting, 121
Next Loop, 120

Previous Loop, 120
Source, 119
Transformed Source, 119

C

cache performance, 35
caliper setting in Performance Analyzer, 115
C$CHUNK and C$MP_SCHEDTYPE directives, 122
C$DOACROSS directive, 26
changed-entry indicator, 124
check mark, 116
CHUNK size, 123, 124, 129
cleanup loop, 21, 27, 73
code generation, 33, 79, 122
colors

brackets and icons, 13, 61
schemes, 6

command line options, 3
concurrent call assertion, 38, 83
conditional statement input field, DOACROSS, 131
conventions, font, for manual, xvii
Custom DOACROSS Dialog, 25, 72

Loop do-1100, 38, 83
loop status option menu and, 122

142

Index

cvpav
man page, 3
opening editor, 42, 87
See also Parallel Analyzer View
starting, 2

D

data dependence, 28, 74
Default, 122, 123, 129
Delete, 126
Delete All Files command, 108
Delete Selected File command, 108
deleting an assertion, 40, 85
demonstration directory, 6, 54
directive, 31, 77, 125

adding from Operations menu, 109
deleting, 40, 85

DOACROSS
custom, 37, 81, 130

DOACROSS..., 122
documentation, recommended reading, xvi
doubly-nested loops, 34, 80
Dynamic, 123, 129

E

Exit command
Admin menu, 104
Project menu, 107

exiting, 50, 99
explicitly parallelized loop, 25, 71

F

f90 support, 32-bit, 51
f90 support, 64-bit, 100
File, 9, 57
file

trap, 103
tutorial, 6, 54
update, 41, 86

fileset, 2
Add Files from Fileset command and, 109

Fileset menu, 108
Filter By File, 119
Filter By Subroutine, 119
filtering

by file, 11, 59
loop list, 10, 58
option menu, 119

Subroutines and Files View and, 137
text field, 12, 60

font conventions, for manual, xvii
Force Parallel, 122
Force Serial, 122
Fortran application, 2
fused loops example, 26

G

gdiff, 41, 86
Generate Trap File command, 103
Guided-Self, 123, 129

143

H

Help menu
Parallel Analyzer View, 113

highlighting
button, 18, 66

highlighting button, 121

I

Icon Legend
command, 103
dialog box, 139

Iconify command
Admin menu, 104
Project submenu, 107

icons, 7, 55
check mark, 17, 64
description, 139
parallelization, 116

Index... command, 114
indicator bar, 138
input-output operation, 32, 78
installation, 1
interchanged loops, 35, 81
Interleaved, 123, 129

K

Keep, 126

L

Last-local, 130
Launch Tool submenu, 104
light bulb button, 18, 66

line highlighting, 29, 30, 75, 76
Lines, 9, 57
Lines, loop list heading, 117
linpack, 44, 93
Local, 130
loop

complex, 34, 80
detailed information, 14, 62
examining

simple, 23, 71
fusing, 26
information blocks, 18, 66
information display, 17, 65, 120
ordinary or interchanged, 135
parallelized, 23
primary or secondary, 135
questions, 33, 79
serial, 23
status, 116
with obstacles to parallelization, 28, 74

loop list display, 114
column headings, 116
using, 7, 55

loop status option menu, 121
Loop-ID, 9, 57, 117

M

main window, 6, 54
menu bar, 101

make clean, 44, 51, 52, 93, 99, 100
memory, 1
Messages, 126

transformed loop, 135
modifying source files, 36, 81
MP scheduling chunk size field, 124
MP scheduling option menu, 122

Custom DOACROSS, 129

144

Index

N

Nest, 9, 57, 117
nested loops, 34, 80

transformed, 135
Next Loop button, 15, 63
No Filtering, 119

O

Obstacle to Parallelization, 125
Olid, 9, 57

loop list heading, 117
On Context command, 113
Operations menu, 109
option menu

answers to questions, 124
assertions and directives, 126
filtering, 119
loop status, 121
MP scheduling, 122
show loop types, 118
variable type, DOACROSS, 130

original loop ID See Olid
Original Source window, 21, 69, 138

opening, 119
questions option menu, 124

P

Parallel Analyzer View, 2
- Original Source, 12, 60
-Transformed Source, 14, 62
menu bar, 101

Parallel Analyzer, launching, 105

parallelization
controls, 17, 65
status option menu, 10, 58

Parallelization Control View
command, 107

Parallelization Icon Legend, 139
Parallization Controls, 121
Perf. Cost See performance, 116
performance, 1

cost per loop, 116
data, 139
information line, 17, 65
tools, 44, 93

Performance Analyzer
launching, 105
performance experiement line, 115
source windows and, 139

performance experiement line, 115
permutation vector, 34, 80
PFA, 2

Add File command and, 109
PFA Analysis Parameters View, 135

changing parameters, 36
command, 108
using, 18, 66

plus sign, 116
Prefer Parallel, 122
Prefer Serial, 122
premature exit, 32, 78
Previous Loop button, 15, 63
primary loop, 135
Project submenu, 106
Project View command, 107

145

Q

question information block, 39, 84
questions, 124

R

Raise command, 104, 107
recurrence, 28, 74
red plus sign, 116
Reduction, 130
reduction, 31, 77
Remap Paths... command, 107
Rescan All Files command, 108
resize loop list display, 114
Reverse, 126
right mouse button, 41, 86
roundoff, 31, 77
Run-time, 123, 130

S

sample sessions, 5, 53
Save As Text command, 102
Search field, 38, 83

Loop List, 117
loop list, 117
Subroutines and Files View, 137

secondary loop, 135
sed, 42, 87
selecting a loop, 15, 63, 117
Shared, 130
show loop types option menu, 118
Simple, 123, 129
sorting

by performance cost, 49, 98, 116
by workload value, 116
Loop List, 9, 57
option menu, 118

Source button, 119
source files

manipulating fileset, 108
modifying, 36, 81
undoing changes, 109
updating, 41, 86, 112
viewing, 12, 60

starting up, 2
performance experiment demo, 45, 93
tutorial, 6, 51, 54, 100

Static Analyzer, launching, 105
status line, 115
strip loops, 35
strip-mining, 35
Subroutine, 9, 57
subroutine calls, 32, 78
Subroutine, loop list heading, 117
Subroutines and Files View, 11, 59, 136

command, 108
Delete Selected File command and, 109
filtering text field and, 119

symbol highlight, 29, 75

T

Technical Assistance Center, 1
Text.out, default file name, 103
Title

filtering text field, 11, 59
token highlighting, 29, 30, 75, 76
transformed

loop, 20, 68
selecting, 21, 69

146

Index

source files, viewing, 13, 61
Transformed Loops View, 134

command, 108
using, 19, 67

Transformed Source, 21, 69
window, opening, 119

Transformed Source button, 119
Transformed Source window, 138
trap file, 103
triply-nested matrix multiply, 35
turned-down corner of field, 124

U

Undo All Changes command, 110
unrolling, 27, 73
updating files, 41, 86
using

loop list display, 7, 55

V

variable type option menu, DOACROSS, 130
Variable, loop index, 117
vi, 42, 87
viewing source, 12, 60
Views menu, 107

other views, 126

W

Workload, 9, 57, 116
sorting by, 10, 58
transformed loop and, 135

WorkShop, 44, 93

Debugger
launching, 105

Trap Manager, 103

X

X resources, 3
.Xdefaults, 42, 87
xwsh, 42, 87

We'd Like to Hear From You

As a user of Silicon Graphics documentation, your comments are important
to us. They help us to better understand your needs and to improve the
quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested
topics to comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please include the title and part number of the document you are
commenting on. The part number for this document is
007-2603-001.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your
comments on the postage-paid card for your country, then detach and mail
it. If your country is not listed, either use the international card and apply the
necessary postage or use electronic mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail
message and mail it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of manual pages) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

