
Developer Magic™: WorkShop Pro MPF
User’s Guide

Document Number 007-2603-002

Developer Magic™: WorkShop Pro MPF User’s Guide
Document Number 007-2603-002

CONTRIBUTORS

Written by Marty Itzkowitz, Robert M. Reimann, Carol Geary and
Douglas B. O’Morain

Revised by Leif Wennerberg
Illustrated by Douglas B. O’Morain, Carol Geary, and Leif Wennerberg
Production by Kirsten Pekarek
Engineering contributions by Marty Itzkowitz, and Zaineb Asaf

© Copyright 1993, 1994, 1995, 1997 Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks, and IRIX, Developer Magic,
IRIX, Origin2000, POWER series, and POWER Fortran Accelerator are trademarks,
of Silicon Graphics, Inc. MIPSpro is a trademark of MIPS Technologies, Inc. UNIX is
a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd.

iii

Contents

List of Figures ix

List of Tables xi

About This Guide xiii
What This Guide Contains xiv
What You Should Know Before Reading This Guide xiv
Recommended Reading xiv
Conventions xv

1. Getting Started With the Parallel Analyzer View 1
Setting Up Your System 1

Required Software 1
Verifying Currently Installed Software 2
Installing WorkShop Pro MPF 2

Running the Parallel Analyzer View: General Features 2
Compiling a Program for Parallel Analyzer View 3
PCF Directive Support 3
Reading Files With the Parallel Analyzer View 4

Tutorials 4

2. Examining Loops, Modifying Source Code 5
Setting Up the dummy.f Sample Session 6
Restarting the Tutorial 6
Compiling the Sample Code 7
Starting the Parallel Analyzer View 7

iv

Contents

Using the Loop List Display 10
Loop List Information Fields 10
Loop List Icons: The Icon Legend 10
Resizing the Loop List Display 12
Searching the Loop List Display 12

Sorting and Filtering the Loop List 12
Sorting the Loop List 13
Filtering the Loop List 13

Filtering the Loop List by Parallelization State 14
Filtering the Loop List by Loop Origin: 15
Filtering by Loop Origin: Details for Sorting by Subroutine 16

Viewing Detailed Information About Code and Loops 17
Viewing Original and Transformed Source 17

Viewing Original Source 17
Viewing Transformed Source 19

Navigating the Loop List 20
Selecting a Loop for Analysis 21
Using the Loop Information Display 23

Loop Parallelization Controls 23
Additional Loop Information and Controls 24

Using the Transformed Loops View 25
Transformed Loops View Description 25
Selecting Transformed Loops 26

Examples of Simple Loops 28
Simple Parallel Loop 28
Serial Loop 28
Explicitly Parallelized Loop 29
Fused Loops 30
Loop That Is Optimized Away 30

Contents

v

Examples of Loops With Obstacles to Parallelization 31
Carried Data Dependence 35

Unparallelizable Carried Data Dependence 36
Parallelizable Carried Data Dependence 37
Multi-line Data Dependence 38
Reductions 38

Input-Output Operations 39
Unstructured Control Flows 39
Subroutine Calls 39

Unparallelizable Loop With a Subroutine Call 40
Parallelizable Loop With a Subroutine Call 40

Permutation Vectors 40
Unparallelizable Loop With a Permutation Vector 40
Parallelizable Loop With a Permutation Vector 40

Examples of Nested Loops 41
Doubly Nested Loop 41
Interchanged Doubly Nested Loop 41
Triply Nested Loop With an Interchange 42

Modifying Source Files and Compiling 42
Requesting Changes 42

Directives and Assertions 43
Adding a C$DOACROSS Directive and Clauses 43
Adding a New Assertion or Directive With the Operations Menu 46
Deleting an Assertion or a Directive 48

Applying Requested Changes 48
Viewing Changes With gdiff 49
Modifying the Source File Further 49
Updating the Source File 50

Examining the Modified Source File 51
New Assertion 51
Deleted Assertion 51

vi

Contents

Examples With PCF Directives 52
Explicitly Parallelized Loops: C$PAR PDO 52
Loops With Barriers: C$PAR BARRIER 54
Critical Sections: C$PAR CRITICAL SECTION 55
Single-Process Sections: C$PAR SINGLE PROCESS 55
Parallel Sections: C$PAR PSECTIONS 55

Examples With Data Distribution Directives 56
Distributed Arrays: C$DISTRIBUTE 56
Distributed and Reshaped Arrays: C$DISTRIBUTE_RESHAPE 57
Prefetching Data From Cache: C*$*PREFETCH_REF 58

Exiting From the dummy.f Sample Session 58

3. Using WorkShop With Parallel Analyzer View 59
Setting Up the linpackd Sample Session 59

Starting the Parallel Analyzer View 60
Starting the Performance Analyzer 60

Using the Parallel Analyzer With Performance Data 62
Effect of Performance Data on the Source View 63
Sorting the Loop List by Performance Cost 64

Exiting From the linpackd Sample Session 65

4. Parallel Analyzer View Reference 67
Main View Menu Bar 68

Admin Menu 69
Launch Tool Submenu 71
Project Submenu 73

Views Menu 75
Fileset Menu 76
Operations Menu 77
Update Menu 80
Help Menu 82
Keyboard Shortcuts 83

Contents

vii

Loop List 84
Resizing the Loop List 84
Status and Performance Experiment Lines 84
Loop List Display 85
Loop List Search Field 86
Sort Option Menu 87
Show Loop Types Option Menu 87
Filtering Option Menu 88
Loop List Buttons 89

Loop Information Display 90
Highlighting Buttons 90
Loop Parallelization Controls in the Loop Information Display 91

Loop Parallelization Status Option Menu 92
MP Scheduling Option Menu: Directives for All Loops 94
MP Scheduling Chunk Size Field 95

Obstacles to Parallelization Display 95
Assertions and Directives Display 96
Compiler Messages 97

Other Views 97
Parallelization Control View 97

Common Features of the Parallelization Control View 98
Adding C$DOACROSS... or C$PAR PDO... Clauses 99
Parallelization Control View MP Scheduling Option Menu: Clauses for One
Loop 103
Parallelization Control View Variable List: Option Menus 103
Parallelization Control View Variable List: Storage Labeling 104

Transformed Loops View 105
PFA Analysis Parameters View 106
Subroutines and Files View 108
Source View and Transformed Source Windows 109

Icon Legend 110

 Index 113

ix

List of Figures

Figure 2-1 Parallel Analyzer View Main Window 9
Figure 2-2 The “Icon Legend...” Window 11
Figure 2-3 Loop Display Controls 12
Figure 2-4 Parallelization-State Filter Options 14
Figure 2-5 Filter by Subroutine Option Menu and Text Field 15
Figure 2-6 Subroutines and Files View 16
Figure 2-7 Filter Option Menu 16
Figure 2-8 Source View 18
Figure 2-9 Transformed Source Window 19
Figure 2-10 Global Effects of Selecting a Loop (Olid 27) 22
Figure 2-11 Loop Information Display Without Performance Data 23
Figure 2-12 Highlighting Button 24
Figure 2-13 Transformed Loops View for Loop Olid 2 25
Figure 2-14 Transformed Loops in Source Windows 27
Figure 2-15 Explicitly Parallelized Loop 29
Figure 2-16 Source View of C$DOACROSS Directive 30
Figure 2-17 Obstacle to Parallelization 36
Figure 2-18 Parallelizable Data Dependence 37
Figure 2-19 Highlighting on Multiple Lines 38
Figure 2-20 Requesting a C$DOACROSS for Olid 22 44
Figure 2-21 Parallelization Control View for Loop Olid 22 After

Choosing “C$DOACROSS...” 45
Figure 2-22 Effect of Changes on the Loop List Display 46
Figure 2-23 Adding an Assertion 47
Figure 2-24 Deleting an Assertion 48
Figure 2-25 Setting the Run Editor Toggle 49
Figure 2-26 Update All Files 50
Figure 2-27 Explicitly Parallelized Loops With C$PAR PDO 53
Figure 2-28 Loops With Barrier Synchronization 54

x

List of Figures

Figure 3-1 Starting the Performance Analyzer 61
Figure 3-2 Performance Data — Parallel Analyzer View 62
Figure 3-3 Source View for Performance Experiment 63
Figure 3-4 Sort by Performance Cost 64
Figure 3-5 Loop Information Display With Performance Data 65
Figure 4-1 Parallel Analyzer View Menu Bar and Pulldown Menus 68
Figure 4-2 Main View Admin Menu 69
Figure 4-3 Directory and File Browser Window 70
Figure 4-4 Launch Tool Submenu 71
Figure 4-5 Project Submenu Commands 74
Figure 4-6 Views Menu 75
Figure 4-7 Fileset Menu 76
Figure 4-8 Operations Menu and Submenus 79
Figure 4-9 Update Menu 80
Figure 4-10 Help Menu 82
Figure 4-11 Loop List Display and Controls 84
Figure 4-12 Column Headings for the Loop List Display 85
Figure 4-13 Sort Option Menu 87
Figure 4-14 Show Loop Types Menu 87
Figure 4-15 Loop Filtering Option Menu 88
Figure 4-16 Loop Information Display 90
Figure 4-17 Parallelization Controls 91
Figure 4-18 MP Chunk Size Input Field Changed 95
Figure 4-19 Obstacles Information Block 96
Figure 4-20 Assertion Information Block and Options for n32 and

n64 Compilation 96
Figure 4-21 Parallelization Control View Without Applicable Directive 98
Figure 4-22 C$DOACROSS Parallelization Control View 100
Figure 4-23 C$PAR PDO Parallelization Control View 101
Figure 4-24 Transformed Loops View 105
Figure 4-25 PFA Analysis Parameters View 107
Figure 4-26 Subroutines and Files View 108
Figure 4-27 Original and Transformed Loop Source Windows 110
Figure 4-28 Parallelization Icon Legend 111

xi

List of Tables

Table 2-1 Obstacles to Parallelization Messages 31
Table 4-1 Assertions and Directives in the Operations Menu 78
Table 4-2 Keyboard Shortcuts 83
Table 4-3 Assertions Accessed From the Loop Parallelization Controls 93
Table 4-4 Directives Accessed From the Loop Parallelization Controls 93

xiii

About This Guide

Developer Magic™: WorkShop Pro MPF is a companion product to the Developer Magic:
WorkShop suite of computer-aided software engineering tools that use a graphical
interface to help you construct, analyze, and debug software applications.

The WorkShop Pro MPF product helps you better understand the structure and
parallelization of a multiprocessing Fortran 77 application by providing an interactive,
visual comparison of the original source with transformed, parallelized code.

The main program of WorkShop Pro MPF is the Parallel Analyzer View, cvpav, which
reads analysis files generated by the MIPSpro™ Auto-Parallel Fortran77 compiler. It
displays editable parameters for each DO loop found in the source files— parameters
that are easily customized and explored with the help of the Parallel Analyzer View’s
graphical interface.

The Parallel Analyzer View is integrated with WorkShop 2.0 (and later versions),
allowing you to examine a program’s loops in conjunction with a performance
experiment on either a uni- or multiprocessor run. When run in this mode, the source
displays are annotated with line-level performance data, and the list of loops may be
sorted in order of performance cost, allowing you to concentrate your attention on the
most compute-intensive loops.

xiv

About This Guide

What This Guide Contains

This guide presents the WorkShop Pro MPF Parallel Analyzer View from a task-oriented
perspective. This guide includes the following chapters:

• Chapter 1, “Getting Started With the Parallel Analyzer View,” tells you how to
install the WorkShopProMPF software and run the Parallel Analyzer View.

• Chapter 2, “Examining Loops, Modifying Source Code,” provides a tutorial session
that steps you through the Parallel Analyzer’s basic features using sample Fortran
code.

• Chapter 3, “Using WorkShop With Parallel Analyzer View,” provides a tutorial
sessions that analyzes the performance of linpackd, a matrix manipulating
benchmark program.

• Chapter 4, “Parallel Analyzer View Reference,” describes in detail the graphical
user interface of the Parallel Analyzer View.

An index completes this guide.

What You Should Know Before Reading This Guide

This guide assumes that you are familiar with principles of Fortran programming and
multiprocessing.

Recommended Reading

These books provide essential background for understanding the MIPSpro
parallelization option; they provide details about parallel programming and the
directives and assertions you can manipulate with the Parallel Analyzer View:

• MIPSpro Compiling and Performance Tuning Guide (part no. 007-2360-007,
http://techpubs.engr.sgi.com/lib/makepage.cgi?007-2360-006)

• MIPSpro Fortran 77 Programmer’s Guide (part no. 007-2361-005,
http://techpubs.engr.sgi.com/lib/makepage.cgi?007-2361-002)

• MIPSpro Automatic Parallelizer Programmer’s Guide (part no. 007-3572-001,
http://techpubs.engr.sgi.com/lib/makepage.cgi?007-3572-001)

About This Guide

xv

The following manuals, available from Silicon Graphics™, may provide useful
supplementary information and are sometimes referenced in this manual:

• Developer Magic: Debugger User’s Guide (part no. 007-2579-003,
http://techpubs.engr.sgi.com/lib/makepage.cgi?007-2579-003)

• Developer Magic: Performance Analyzer User’s Guide (part no. 007-2581-003,
http://techpubs.engr.sgi.com/lib/makepage.cgi?007-2581-003)

• Developer Magic: ProDev WorkShop Overview (part no. 007-2582-003,
http://techpubs.engr.sgi.com/lib/makepage.cgi?007-2582-003)

• IRIX Admin: Software Installation and Licensing (part no. 007-1364-060,
http://techpubs.engr.sgi.com/lib/makepage.cgi?007-1364-060)

• SpeedShop User’s Guide (part no. 007-3311-001,
http://techpubs.engr.sgi.com/lib/makepage.cgi?007-3311-001)

The following book is also recommended:

• Practical Parallel Programming, by B.E. Bauer, Academic Press, 1992

Conventions

These are the typographical conventions used in this guide:

• Bold—Option flags, data types, functions, routines, directives, and keywords

• Italics—Filenames, button names, variables, arrays, and IRIX commands

• Regular—Menu and window names

• “Quoted”—Menu choices

• Fixed-width —Code examples and screen display

• Bold fixed-width —User input and nonprinting keys such as Ctrl+u

xvi

About This Guide

1

Chapter 1

1. Getting Started With the Parallel Analyzer View

This chapter helps you get the WorkShop Pro MPF Parallel Analyzer View running on
your system. It contains the following sections:

• “Setting Up Your System” on page 1

• “Running the Parallel Analyzer View: General Features” on page 2

• “Tutorials” on page 4

Setting Up Your System

To install the WorkShopProMPF software, you should have at least 16 MB of memory; 32
MB improves overall performance.

Required Software

WorkShopProMPF requires that you have the following software installed:

• IRIX™ system software version 6.2 or greater

• MIPSpro Auto-Parallel Fortran77 7.2 compiler

• ToolTalk 1.1 or greater

• WorkShop 2.0 or later Execution Environment

• Developer Magic 1.1

2

Chapter 1: Getting Started With the Parallel Analyzer View

Verifying Currently Installed Software

To determine what software is installed on your system, enter the following at the shell
prompt:

% versions

If the items mentioned in this section are not installed, consult your sales representative
or (in the US) call the Silicon Graphics Technical Assistance Center at 1-(800)-800-4SGI.
To order additional memory, consult your sales representative or call 1-(800)-800-SGI1.

Installing WorkShop Pro MPF

If you have all the software and memory you need, you can install the Developer Magic:
WorkShop Pro MPF software:

• For general instructions about software installation, consult the man pages for inst
or swmgr, and IRIX Admin: Software Installation and Licensing.

• See also Developer Magic: WorkShop Pro MPF Release Notes for specific installation
instructions.

The executable is cvpav, which is installed in /usr/sbin.

Running the Parallel Analyzer View: General Features

The process of using the Parallel Analyzer View involves two steps:

1. Compiling a program with appropriate options

2. Reading the compiled files with Parallel Analyzer View

Running the Parallel Analyzer View: General Features

3

Compiling a Program for Parallel Analyzer View

Before starting the Parallel Analyzer View on your Fortran source, you need to run the
Auto-Parallel Fortran77 compiler with the appropriate options. For the tutorials
presented in subsequent chapters, Makefiles are provided. You can adapt these to your
specific source or enter the following command:

% f77 -pfa keep -O3 sourcefile.f

The compiler generates its usual output files and an analysis file (sourcefile.anl), which the
Parallel Analyzer reads.

The command line options have these effects (see the MIPSpro Fortran 77 Programmer’s
Guide, MIPSpro Automatic Parallelizer Programmer’s Guide, and the f77 man page for more
information):

-pfa keep Saves an *.anl file, which has necessary information for the Parallel
Analyzer View.

-O3 Sets the compiler for aggressive optimization. The optimization focuses
on maximizing code quality even if that requires extensive compile time
or relaxing language rules.

Note: cvpav assumes that the -pfa keep option was used on each of the Fortran source
files named in an executable or fileset. If this is not the case, a warning message is posted,
and the unprocessed files are marked by an error icon within the Parallel Analyzer’s
Subroutines and Files View (see “Subroutines and Files View” on page 108).

PCF Directive Support

The MIPSpro Auto-Parallel Fortran77 compiler supports PCF directives, unless you are
compiling with the -o32 option. If you put PCF directives in your o32 code, they are
treated as comments rather than interpreted. For more information on PCF directives, see
the following:

• “Examples With PCF Directives” on page 52

• MIPSpro Fortran 77 Programmer’s Guide, particularly Chapter 5

4

Chapter 1: Getting Started With the Parallel Analyzer View

Reading Files With the Parallel Analyzer View

You can run the Parallel Analyzer View on any of the following objects:

• a source file

• an executable

• a list of files

To run the Parallel Analyzer View for one of these cases, enter one of the following
commands:

% cvpav -f sourcefile.f

% cvpav -e executable

% cvpav -F fileset-file

cvpav reads information from all Fortran source files compiled into the application.

The Parallel Analyzer View has several other command line options, as well as several X
resources that you can set. See the man page cvpav(1) for more information.

Note: If you receive a message related to licensing when you start cvpav, refer to Chapter
7 in the WorkShop Pro MPF Release Notes. To access the notes, enter grelnotes at the
command line, and choose WorkShopMPF from the Products pulldown menu.

Tutorials

For a more detailed introduction to the Parallel Analyzer View, you can follow one of
tutorials provided with the product, discussed in the following chapters:

• Chapter 2, “Examining Loops, Modifying Source Code”

• Chapter 3, “Using WorkShop With Parallel Analyzer View”

5

Chapter 2

2. Examining Loops, Modifying Source Code

This chapter presents an interactive sample session with the Parallel Analyzer View. The
session demonstrates basic features of the Parallel Analyzer View and illustrates aspects
of parallelization and of the MIPSpro Auto-Parallel Fortran77 compiler. Specifically, the
sample session analyzes dummy code to illustrate the following:

• Displaying code and basic loop information; these topics are discussed in the first
sections of this chapter:

– “Setting Up the dummy.f Sample Session” on page 6

– “Starting the Parallel Analyzer View” on page 7

– “Using the Loop List Display” on page 10

– “Sorting and Filtering the Loop List” on page 12

– “Viewing Detailed Information About Code and Loops” on page 17

• Examining specific loops, applying directives and assertions, and modifying and
recompiling; these topics are discussed in the later sections of the chapter:

– “Examples of Simple Loops” on page 28

– “Examples of Loops With Obstacles to Parallelization” on page 31

– “Examples of Nested Loops” on page 41

– “Modifying Source Files and Compiling” on page 42

– “Examples With PCF Directives” on page 52

– “Examples With Data Distribution Directives” on page 56

– “Exiting From the dummy.f Sample Session” on page 58

The topics are introduced in this chapter as you go through the process of starting the
Parallel Analyzer View and stepping through the loops and routines in the sample code.
The chapter is most useful if you perform the operations as they are described.

For more details about the Parallel Analyzer View interface, see Chapter 4, “Parallel
Analyzer View Reference.”

6

Chapter 2: Examining Loops, Modifying Source Code

Setting Up the dummy.f Sample Session

To use the sample sessions discussed in this guide, note the following:

• /usr/demos/WorkShopMPF is the demonstration directory

• WorkShopMPF.sw.demos must be installed

The sample session discussed in this chapter uses the following source files in the
directory /usr/demos/WorkShopMPF/tutorial:

• dummy.f_orig

• pcf.f_orig

• reshape.f_orig

• dist.f_orig

The source files contain many DO loops, each of which exemplifies an aspect of the
parallelization process.

The directory /usr/demos/WorkShopMPF/tutorial also includes a Makefile to compile the
source files.

Restarting the Tutorial

If at any time during the tutorial you should want to restart from the beginning, do the
following:

• Quit the Parallel Analyzer View.

• Clean up the tutorial directory; enter the following command:

% make clean

This removes all of the generated files; you can begin again with the make command.

Compiling the Sample Code

7

Compiling the Sample Code

Prepare for the session by opening a shell window and entering make in the
/usr/demos/WorkShopMPF/tutorial directory:

% cd /usr/demos/WorkShopMPF/tutorial
% make

This creates the following files:

• dummy.f, a copy of the demonstration program created by combining the *.f_orig
files, which you can view with the Parallel Analyzer View, or any text editor, and
print

• dummy.m, a transformed source file, which you can view with the Parallel Analyzer
View and print

• dummy.l, a listing file

• dummy.anl, an analysis file used by the Parallel Analyzer View

For more information about these files, see the MIPSpro Automatic Parallelizer
Programmer’s Guide.

Starting the Parallel Analyzer View

Once you have the appropriate files from the compiler, start the session by entering the
following command, which opens the main window of the Parallel Analyzer View
loaded with the sample file data (see Figure 2-1):

% cvpav -f dummy.f

Note: If you receive a message related to licensing, refer to the WorkShop Pro MPF Release
Notes.

8

Chapter 2: Examining Loops, Modifying Source Code

The main window contains the following (from the top of the window to the bottom, see
Figure 2-1):

• X window menu

• status and performance experiment information

• loop list display

• loop list search field, Search:

• option menus; these are the default option values for selecting loops for display:

– “Sort in Source Order”

– “Show All Loop Types”

– “No Filtering”

• control buttons for displaying loop code:

– Source

– Transformed Source

• loop list navigation buttons:

– Next Loop

– Previous Loop

• loop information display

Starting the Parallel Analyzer View

9

Figure 2-1 Parallel Analyzer View Main Window

Loop
list
display

Loop
information
display

Loop display
controls

10

Chapter 2: Examining Loops, Modifying Source Code

Using the Loop List Display

The loop list display summarizes a program’s structure and provides access to source
code. Each line in the display contains an icon and a sequence of information fields about
each loop and routine in the program.

Loop List Information Fields

Each loop list display entry contains the following fields:

An Icon the status of the routine or loop (see “Loop List Icons: The Icon Legend”
on page 10)

Nest the nesting level for the loop

Loop-ID the Fortran description of the loop

Variable the loop index variable

Subroutine, Lines, File
where the loop is located in the source code

Olid the original loop ID, created by the compiler; an internal identifier for
the loop (refer to this number when reporting bugs)

Loop List Icons: The Icon Legend

The icon at the start of each line summarizes briefly the following information:

• whether the line refers to a subroutine

• parallelization status of the loop

• PCF control structures

To understand the meaning of the various icons, pull down the Admin menu and choose
“Icon Legend...” (see Figure 2-2).

To see examples of the various icons, scroll through the list of loops. When you are done,
close the icon legend dialog box by clicking the Close button in the lower right of the
dialog box.

Using the Loop List Display

11

Figure 2-2 The “Icon Legend...” Window

Parallelization icons

Variable usage icons

Subroutines and Files View icons

Highlighting button

PCF control structure icons

Subroutine icons

12

Chapter 2: Examining Loops, Modifying Source Code

Resizing the Loop List Display

To resize the loop list display and provide more room in the main window for loop
information, use the adjustment button: a small square below the button that says
“Previous Loop.” The adjustment button is just above the vertical scroll bar on the right
side of the loop information display. In many of the following figures, the loop list is
resized from its original configuration.

Searching the Loop List Display

The loop list Search field allows you to find occurrences of any character in the loop list.
For example, you can search for subroutine names; a phrase (such as “parallel region”);
or Olid numbers (see Figure 2-3).

The search is not case sensitive; simply key in the string. To find subsequent occurrences
of the same string, press the Enter key.

Sorting and Filtering the Loop List

This section begins the discussion of loop list display controls that allow you to sort and
filter the loop list, and so focus your attention on particular pieces of your code. The
options menus are located in the main window, below the loop list display (see
Figure 2-1). Figure 2-3 shows the display controls.

Figure 2-3 Loop Display Controls

Option menus

Sorting and Filtering the Loop List

13

Sorting the Loop List

You can sort the loop list either in the order of the source code or by performance cost (if
you are running a performance experiment on the program using the WorkShop
Performance Analyzer). You normally control sorting with the left-most option menu,
below the Search field.

When loops are sorted in source order, the Loop-ID is indented according to the nesting
level of the loop; for the demonstration program, only the last several loops are nested,
so you have to scroll down to see indented Loop-IDs. For example, scroll down the loop
list to Olid 18 and 19 (or use the Search field).

When loops are sorted by performance cost, by using “Sort by Perf. Cost” menu option,
the list is not indented. The sorting option is grayed out in the example because no
performance tool is currently running.

Filtering the Loop List

You may want to look at only some of the loops in a large program. The loop list can be
filtered according to two features:

• parallelization status

• loop origin

The filter parameters are controlled by the two option popup menus to the right of the
sort option menu button.

14

Chapter 2: Examining Loops, Modifying Source Code

Filtering the Loop List by Parallelization State

Filtering according to parallelization state allows you to focus, for example, on loops that
were not automatically parallelized by the compiler, but that might still run concurrently
if you add appropriate directives.

Filtering is controlled by the option popup menu centered below the loop list; the default
setting reads “Show All Loop Types,” as in Figure 2-4.

Figure 2-4 Parallelization-State Filter Options

You can select according to the following states of loop parallelization and processing
(which are listed when you click on the parallelization state menu option button):

• “Show All Loop Types”: the default

• “Show Unparallelizable Loops”: loops that could not be parallelized, running
serially as a result

• “Show Parallelized Loops”

• “Show Serial Loops”: loops that are best run serially

• “Show Modified Loops”: loops for which modifications have been requested

The second, third, and fourth categories correspond to parallelization icons in the “Icon
Legend...” window (see Figure 2-2). Requesting modifications to loops is described in
“Modifying Source Files and Compiling” on page 42.

To see the effects of the first three options, choose them in turn by clicking on the popup
menu button and then clicking on each option. If you choose the “Show Modified Loops”
option, a message appears that no loops meet the filter criterion, because you have not
requested any modifications yet.

Parallelization State Options

Sorting and Filtering the Loop List

15

Filtering the Loop List by Loop Origin:

Another way to filter is to choose loops that come from a single file or a single subroutine.
These are the basic steps:

1. Open a list of subroutines and files from which to select; to display the list, choose
the “Subroutines and Files View” option from the Views pulldown menu.

2. Choose the filter criterion from the right-most option menu in the Parallel Analyzer
View window; this filter option menu initially reads “No Filtering.” You can filter
according to source file or subroutine.

3. To place filtering information in the text box that appears above the option menu
(see Figure 2-5), you can do one of the following:

■ Enter the file or routine name in the box.

■ Choose the file or subroutine of interest in the Subroutines and Files View.

Figure 2-5 Filter by Subroutine Option Menu and Text Field

Filtering text field

16

Chapter 2: Examining Loops, Modifying Source Code

Filtering by Loop Origin: Details for Sorting by Subroutine

The following procedure describes filtering the loop list by subroutine.

1. Open the Subroutines and Files View by pulling down the Views menu and
choosing “Subroutines and Files View”; the window opens and lists the subroutines
and files in the fileset (See Figure 2-6.)

Figure 2-6 Subroutines and Files View

2. From the filter option popup menu, choose “Filter by Subroutine” (Figure 2-7).

Figure 2-7 Filter Option Menu

3. Double-click the line for the routine pcfdummy in the list of the Subroutines and
Files View window. The name appears in the filtering text field labeled Subroutine:
(see Figure 2-5) and the loop list is re-created according to the filter criteria.

Function/file list

Search field

Viewing Detailed Information About Code and Loops

17

You can also try choosing “Filter by File” from the filter option menu, but for this
single-file example, this is not too useful.

When you are done, display all of the loops in the sample source file again by choosing
“No Filtering” from the option menu.

There is no further need for the Subroutines and Files View, so close it by pulling down
the Admin menu and choosing “Close.”

Viewing Detailed Information About Code and Loops

This section describes how to examine the following:

• source

• transformed source

• details of loop information that is summarized in the loop list

Viewing Original and Transformed Source

The Parallel Analyzer View gives you access to views of both your original Fortran
source and a listing that mimics the effect on the source as it is transformed by the
Auto-Parallel compiler.

Viewing Original Source

To bring up the Source View window shown in Figure 2-8, click the Source button on the
lower left corner of the loop list display controls (for example, see Figure 2-5).

Colored brackets mark the location of each loop in the file; you can click on a bracket to
choose a loop in the loop list (see “Selecting a Loop for Analysis” on page 21).

Note that the bracket colors vary as you scroll up and down the listing. These colors
correspond to different parallelization icons and indicate at a glance the parallelization
status of each loop. The bracket colors indicate which loops are parallelized, which are
unparallelizable, and which are left serial; the exact correspondence between colors and
icons depends on color settings of your monitor.

18

Chapter 2: Examining Loops, Modifying Source Code

Figure 2-8 Source View

You can search the source listing by using one of the following:

• the File pulldown menu in the Source View

• the keyboard shortcut Ctrl+s when the cursor is in the Source View.

Thus, you can locate a loop in the source code and click on its colored bracket in the
Source View; more information about the loop appears in the loop information display.

Leave the Source View window open and place it conveniently on your screen;
subsequent steps in this tutorial refer to the window.

Note: This window may also be used by the WorkShop Debugger and Performance
Analyzer, so it remains open after you close the Parallel Analyzer View.

For more information about the Source View window, see “Source View and
Transformed Source Windows” on page 109.

Loop bracket

Source code

Viewing Detailed Information About Code and Loops

19

Viewing Transformed Source

The compiler transforms loops for optimization and parallelization. The results of these
transformations are not available to you directly, but they are mimicked in a file that you
can examine. Each loop may be rewritten into one or more transformed loops, or it may
be combined with others, or optimized away.

Click the Transformed Source button in the loop list controls (see Figure 2-3). A window
labeled “Parallel Analyzer View — Transformed Source” opens as shown in Figure 2-9.

Figure 2-9 Transformed Source Window

Scroll through the Transformed Source window, and notice that it too has brackets that
mark loops; the color correspondence is the same as for the Source View.

The bracketing color selection for the transformed source cannot always distinguish
between serial loops and unparallelizable loops; some unparallelizable loops may have
the bracket color for a serial loop.

Transformed
source code

20

Chapter 2: Examining Loops, Modifying Source Code

For more information on the Transformed Source window, see “Source View and
Transformed Source Windows” on page 109.

Leave the Transformed Source window open and place it conveniently on your screen;
subsequent steps in this tutorial refer to the window. You should have three windows
open:

• Parallel Analyzer View

• Source View

• Transformed Source

Navigating the Loop List

You can locate a loop in the main window by one of the following methods:

• Scroll, using

– scroll bar

– Page Up and Page Down keys (the cursor must be over the loop list)

– Next Loop and Previous Loop buttons

• Search for the Olid number using the Search field (see “Searching the Loop List
Display” on page 12)

Viewing Detailed Information About Code and Loops

21

Selecting a Loop for Analysis

To get more information about a loop, first select it by one of the following methods:

• double-click the line of text in the loop list (but not the icon)

• click the loop bracket in either of the source viewing windows

Selecting a loop has a number of effects on the different windows in the Parallel Analyzer
View (see Figure 2-10). Not all of the windows in Figure 2-10 are open at this point in the
tutorial; you can open the remaining windows from the Views menu:

• Loop information display: information on the selected loop appears in the
previously empty display below the loop list (see “Using the Loop Information
Display” on page 23).

• Source View: the original source code of the loop appears and is highlighted in the
window (see “Viewing Original Source” on page 17).

• Transformed Source: the first of the loops into which the original loop was
transformed appears and is highlighted in the window. A bright vertical bar also
appears next to each transformed loop that came from the original loop (see
“Viewing Transformed Source” on page 19).

• Transformed Loops View: shows information about the loop after parallelization
(see “Using the Transformed Loops View” on page 25).

• PFA Analysis Parameters View (relevant only for o32 code): shows parameter
values for the selected loop (see “PFA Analysis Parameters View” on page 106).

Try scrolling through the loop list and double-clicking various loops, and scrolling
through the source displays and clicking the loop brackets to select loops. Notice that
when you select a loop, a check mark appears to the left of the icon, indicating that you’ve
looked at it.

When you are done, scroll to the top of the loop list in the main view and double-click
the line for the first loop, Olid 2. Close the Transformed Loops View and the PFA
Analysis Parameters View, if you have opened them.

22

Chapter 2: Examining Loops, Modifying Source Code

Figure 2-10 Global Effects of Selecting a Loop (Olid 27)

Highlighted in loop list

Code highlighted:

Transforned-loop

PFA parameters updated
(o32 only)

information
updated

Transformed Source

Source View

Loop information
display updated

Viewing Detailed Information About Code and Loops

23

Using the Loop Information Display

The loop information display occupies the portion of the main view below the loop list
display controls (see Figure 2-10). Initially, the display shows only “No loop is selected.”
After a loop or routine is selected, the display contains detailed information and includes
controls for requesting changes to your code (see Figure 2-11).

Figure 2-11 Loop Information Display Without Performance Data

Loop Parallelization Controls

The first line in the loop information display labels the Loop Parallelization Controls. The
following are the features in this display when no performance information is available:

• On the first line is the loop Olid and to the far right is the number of transformed
loops derived from the selected loop.

• The next three lines display two option menu buttons and a text input field:

– The top menu button controls parallelization status (for more information see
“Loop Parallelization Status Option Menu” on page 92)

– The bottom menu button controls the loop MP scheduling (it is shown for all
loops, but is applicable to parallel loops only; for more information see“MP
Scheduling Option Menu: Directives for All Loops” on page 94)

– The text input field is for an expression for the scheduling chunk size (for more
information see “MP Scheduling Chunk Size Field” on page 95)

Parallelization

Loop scheduling

Scheduling chunk

Additional

Number of loops transformed

status control

control

size input field

information
blocks

24

Chapter 2: Examining Loops, Modifying Source Code

When the Parallel Analyzer View is run with a performance experiment, an additional
block appears above the parallelization controls. It gives performance information about
the loop (shown in Figure 3-5).

Additional Loop Information and Controls

Up to five blocks of additional information may appear in the loop information display
below the first separator line. These blocks list, if appropriate, the following information:

• obstacles to parallelization

• assertions made

• directives applied

• messages

• questions that the compiler asked (o32 only)

Some of these lines may be accompanied by small “light bulb” highlighting buttons (see
Figure 2-12). When you click one of these buttons, it highlights the relevant part of the
code in the Source View and the Transformed Source window.

Figure 2-12 Highlighting Button

The loop information display shows directives that apply to an entire routine when you
select the line with the routine’s name. If you select Olid 1, you see that there are no such
global directives in MAIN. However, if you select Olid 40, you see a directive that
applies to the subroutine dist1d (see “Distributed Arrays: C$DISTRIBUTE” on page 56).

The loop information display shows loop-specific directives when you select a loop. The
lines for assertions and directives may have menus accompanying them that provide
options; for example, you can delete a directive.

The first loop in the file, Olid 2, has no highlighting buttons and one message.

Viewing Detailed Information About Code and Loops

25

Using the Transformed Loops View

To see detailed information about the transformed loops derived from a particular loop,
pull down the Views menu and choose “Transformed Loops View” (see Figure 2-13).

Figure 2-13 Transformed Loops View for Loop Olid 2

Transformed Loops View Description

The Transformed Loops View contains information about the loop(s) into which the
currently selected, original loop was transformed. Each transformed loop has a block of
information associated with it; the blocks are separated by horizontal lines.

The first line in each block contains:

• a parallelization status icon

• a highlighting button (if clicked, it highlights the transformed loop in the
Transformed Source window and in the original loop in the Source View)

• the identification number of the transformed loop

26

Chapter 2: Examining Loops, Modifying Source Code

The next two lines describe the transformed loop. The first provides the following
information:

• whether it is a primary loop or secondary loop, that is, directly transformed from the
selected original loop or transformed from a different original loop, but
incorporating some code from the selected original loop

• parallelization state

• whether it is an ordinary loop or interchanged loop

• its nesting level

The second line displays the location of the loop in the transformed source.

Any messages generated by the compiler are below the description lines. To the left of
the message lines are highlight buttons, and left-clicking them highlights in the Source
View the part of the original source that relates to the message. Often it is the first line of
the original loop that is highlighted, since the message refers to the entire loop.

Selecting Transformed Loops

You can also select specific transformed loops. When you click a highlight button in the
Transformed Loop View, the highlighting of the original source typically changes color,
although for loop Olid 2 the highlighted lines do not (see Figure 2-14). You will see later
that for loops with more extensive transformations, the set of highlighted lines is
different when you select from the Transformed Loops View (for example, loops Olid 5
and Olid 6; see “Fused Loops” on page 30).

Transformed loops can also be selected by clicking the corresponding loop brackets in the
Transformed Source window.

Viewing Detailed Information About Code and Loops

27

Figure 2-14 Transformed Loops in Source Windows

You may either leave the Transformed Loops View open or close it by pulling down its
File menu and choosing “Close.” When looking at subsequent loops, you might find it
useful to see the information in the Transformed Loops View.

Original source code

First transformed
loop

28

Chapter 2: Examining Loops, Modifying Source Code

Examples of Simple Loops

Now that you have familiarized yourself with the basic window features in the Parallel
Analyzer View user interface, you can start examining, analyzing, and modifying loops.

The loops you examine in this section are the simplest kinds of Fortran loops:

• “Simple Parallel Loop” on page 28

• “Serial Loop” on page 28

• “Explicitly Parallelized Loop” on page 29

• “Fused Loops” on page 30

• “Loop That Is Optimized Away” on page 30

The next two sections discuss more complicated situations:

• “Examples of Loops With Obstacles to Parallelization” on page 31

• “Examples of Nested Loops” on page 41

Simple Parallel Loop

Scroll to the top of the list of loops and select loop Olid 2. This loop is a simple loop:
computations in each iteration are independent of each other. It was transformed by the
compiler to run concurrently; notice in the Transformed Source window the directives
added by the compiler.

Move to the next loop by clicking the Next Loop button.

Serial Loop

Olid 3 is a simple loop with too little work to run in parallel. That is, the compiler
determined that the overhead of parallelizing would exceed the benefits; the original
loop and the transformed loop are identical.

Move to the next loop by clicking the Next Loop button.

Examples of Simple Loops

29

Explicitly Parallelized Loop

Loop Olid 4 is parallelized because it contains an explicit C$DOACROSS directive in the
source; the compiler passes the directive through to the transformed source. See
Figure 2-15.

Figure 2-15 Explicitly Parallelized Loop

The loop status option menu is set to “C$DOACROSS...” and it is shown with a
highlighting button. Clicking the highlighting button brings up both the Source View, if
it is not already opened (Figure 2-16), and the Parallelization Control View, which shows
more information about the parallelization directive.

If you clicked on the highlight button, close the Parallelization Control View by pulling
down its Admin menu and choosing “Close.” You will come back to the use of this view
later (see “Adding a C$DOACROSS Directive and Clauses” on page 43; for more
information, see “Parallelization Control View” on page 97). Close the Source View by
pulling down its File menu and choosing “Close.”

Explicit directive

Loop status option menu

30

Chapter 2: Examining Loops, Modifying Source Code

Figure 2-16 Source View of C$DOACROSS Directive

Fused Loops

Loops Olid 5 and Olid 6 are simple parallel loops that have similar structure. The
compiler combines these to decrease overhead. Note that loop Olid 6 is described as
fused in the loop information display and in the Transformed Loops View; it is
incorporated into the parallelized loop Olid 5. If you look at the Transformed Source
window while selecting Olid 5 and Olid 6, the identical lines of code are highlighted for
each loop.

Move to the next loop by clicking the Next Loop button twice.

Loop That Is Optimized Away

Loop Olid 7 is an example of a loop that the compiler could get rid of entirely; the
compiler saw that the body of the loop is independent of the loop, so it was moved out,
and the loop eliminated. The transformed source is not scrolled and highlighted when
you select Olid 7 because there is no transformed loop derived from the original loop.

Move to the next loop by clicking the Next Loop button.

C$DOACROSS directive

Loop Olid 4 code

Examples of Loops With Obstacles to Parallelization

31

Examples of Loops With Obstacles to Parallelization

There are a number of reasons why a loop may not be parallelized. The following loops
illustrate some of these reasons, along with variants that allow parallelization:

• “Carried Data Dependence” on page 35

• “Input-Output Operations” on page 39

• “Unstructured Control Flows” on page 39

• “Subroutine Calls” on page 39

• “Permutation Vectors” on page 40

These loops are a few specific examples of the obstacles to parallelization recognized by
the compiler.

Table 2-1 lists all of the Obstacles to Parallelization messages generated by the compiler.
The messages that appear in the loop information display differ slightly from those in the
table, because they include specific loop and line information.

Table 2-1 Obstacles to Parallelization Messages

Message Comments

Loop is preferred serial; insufficient work
to justify parallelization

Fundamental obstruction:
could have been parallelized, but preferred serial.

The compiler determined there was not enough work
in the loop to make parallelization worthwhile

Loop is preferred serial; parallelizing
inner loop is more efficient

Fundamental obstruction:
could have been parallelized, but preferred serial.

The compiler determined that making an inner loop
parallel would lead to faster execution.

Loop has unstructured control flow Fundamental obstruction:
might be parallelizable.

There is a goto statement or other unstructured
control flow in the loop.

32

Chapter 2: Examining Loops, Modifying Source Code

Loop was created by peeling the last
iteration of a parallel loop

Fundamental obstruction:
might be parallelizable.

The loop was created by peeling off the final iteration
of another loop to make that loop go parallel. The
compiler did not try to parallelize this peeled, last
iteration.

User directive specifies serial execution
for loop

Fundamental obstruction:
might be parallelizable.

The loop has a directive that indicates it not be
parallelized.

Loop can not be parallelized; tiled for
reshaped array instead

Fundamental obstruction:
might be parallelizable.

The loop has been tiled because it has reshaped
arrays, or is inside a loop with reshaped arrays. The
compiler does not parallelize such loops.

Loop is nested inside a parallel loop Fundamental obstruction:
might be parallelizable.

The loop is inside a parallel loop, and therefore is not
considered to be a candidate for parallelization by the
compiler.

Loop is the serial version of parallel loop Fundamental obstruction:
might be parallelizable.

The loop is part of the serial version of a parallelized
loop. This may occur, for example, when a loop is in
a routine called from a parallelized loop; the called
loop is effectively nested in a parallel loop, so the
compiler does not parallelize it.

Loop has carried dependence on scalar
variable

Data dependence problem:
problem with scalars.

The loop has a carried dependence on a scalar
variable.

Table 2-1 (continued) Obstacles to Parallelization Messages

Message Comments

Examples of Loops With Obstacles to Parallelization

33

Loop scalar variable is aliased precluding
auto parallelization

Data dependence problem:
problem with scalars.

A scalar variable is aliased with another variable, for
example, when you have a statement equivalencing a
scalar and an array.

Loop can not determine last value for
variable

Data dependence problem:
problem with scalars.

A variable is used out of the loop, and the compiler
could not determine a unique last value.

Loop carried dependence on array Data dependence problem:
problem with arrays.

The loop carries an array dependence from one array
member to another array member.

Call inhibits auto parallelization Data dependence problem:
problem with missing dependence information.

A call in the loop has no dependence information,
and is assumed to create a data dependence.

Input-output statement Data dependence problem:
problem with missing dependence information.

The compiler does not parallelize loops with input or
output statement.

Table 2-1 (continued) Obstacles to Parallelization Messages

Message Comments

34

Chapter 2: Examining Loops, Modifying Source Code

Scalar may not be assigned in final
iteration

Data dependence problem:
problem with finalization.

The compiler needed to finalize the value of a scalar
to parallelize the loop, but it couldn’t because the
value is not always assigned in the last iteration of the
loop.

The following code is an example. The variable s
poses a problem; the if statement makes it unclear
whether the variable is set in the last iteration of the
loop.

 subroutine fun02(a, b, n, s)
 integer a(n), b(n), s, n
 do i = 1, n
 if (a(i) .gt. 0) then
 s = a(i)
 end if
 b(i) = a(i) + s
 end do
 end

Table 2-1 (continued) Obstacles to Parallelization Messages

Message Comments

Examples of Loops With Obstacles to Parallelization

35

Carried Data Dependence

Carried data dependence typically arises when a recurrence occurs in a loop. Depending
on the nature of the recurrence, parallelizing the loop may be impossible. The following
loops illustrate three kinds of data dependence:

• “Unparallelizable Carried Data Dependence” on page 36

• “Parallelizable Carried Data Dependence” on page 37

• “Multi-line Data Dependence” on page 38

• “Reductions” on page 38

Array may not be assigned in final
iteration

Data dependence problem:
problem with finalization.

The compiler needed to finalize the value of an array
to parallelize the loop, but it couldn’t because the
values are not always assigned in the last iteration of
the loop.

The following is an example. The variable b poses a
problem when the compiler tries to parallelize the i
loop; it is not set in the last iteration.

 subroutine fun04(a, b, n)
 integer i, j, k, n
 integer b(n), a(n,n,n)
 do i = 1, n
 do j = i + 3, n
c*$* no fusion
 do k = 1, n
 b(k) = k
 end do
 do k = 1, n
 a(i,j,k) = a(i,j,k) + b(k)
 end do
 end do
 end do
 end

Table 2-1 (continued) Obstacles to Parallelization Messages

Message Comments

36

Chapter 2: Examining Loops, Modifying Source Code

Unparallelizable Carried Data Dependence

Loop Olid 8 is a loop that cannot be parallelized because of a data dependence; one
element of an array is used to set another in a recurrence. If the loop were non-trivial, that
is if NSIZE were greater than two, and if the loop were run in parallel, iterations might
execute out of order. For example iteration 4, which sets A(4) to A(5), might occur after
iteration 5, which would have reset the value of A(5); the computation would be
unpredictable.

Figure 2-17 Obstacle to Parallelization

In the lower panel of Figure 2-17 (which should match your display) there is a line listing
the obstacle to parallelization; click the button that accompanies it. Two kinds of
highlighting occur in the Source View:

• the relevant line that has the dependence

• the uses of the variable that obstruct parallelization; only the uses of the variable
within the loop are highlighted

Move to the next loop by clicking the Next Loop button.

Obstacle

Examples of Loops With Obstacles to Parallelization

37

Parallelizable Carried Data Dependence

Loop Olid 9 has similar structure to loop Olid 8. Despite the similarity however, Olid 9
may be parallelized. Note that the array indices differ by an offset M that may be greater
than one; if M is equal to NSIZE, for example, and the array is twice NSIZE, the code is
actually copying the upper half of the array into the lower half, a process that can be run
in parallel. The compiler cannot recognize this from the source, but the code has the
assertion C*$*ASSERT DO (CONCURRENT) so the loop is parallelized. See
Figure 2-18. Click the highlighting button to show the assertion in the Source View.

Figure 2-18 Parallelizable Data Dependence

Move to the next loop by clicking the Next Loop button.

38

Chapter 2: Examining Loops, Modifying Source Code

Multi-line Data Dependence

Data dependence can involve more than one line of a program. In loop Olid 10, a
dependence similar to that in Olid 9 occurs, but the use of the variable occurs on a
different line than its setting. Click the highlight button on the obstacle line, and note in
the Source View that highlighting shows the dependency variable on the two lines (see
Figure 2-19). Of course, real programs can, and typically do, have far more complex
dependencies than this.

Move to the next loop by clicking the Next Loop button.

Figure 2-19 Highlighting on Multiple Lines

Reductions

Loop Olid 11 shows a data dependence that is called a reduction: the variable responsible
for the data dependence is being accumulated or “reduced” in some fashion. Reductions
can be summation, multiplication, or a minimum or maximum determination. For
summation, as shown in this loop, the code could accumulate partial sums in each
processor, and then add the partial sums at the end.

However, because floating-point arithmetic is inexact, the order of addition might give
different answers because of round-off error. This does not imply that the serial execution
answer is “correct” and the parallel execution answer is “incorrect”; they are equally
valid within the limits of round-off error. With the -O3 optimization level, the compiler
assumes it is OK to introduce round-off error; the loop is parallelized. If you do not want
a loop parallelized because of the change in round-off error, compile with the
-OPT:roundoff=0 or 1 option (see MIPSpro Automatic Parallelizer Programmer’s Guide).

Move to the next loop by clicking the Next Loop button.

Loop highlighting

Dependent variable
and line highlighted

Examples of Loops With Obstacles to Parallelization

39

Input-Output Operations

Loop Olid 12 has an input/output (I/O) operation in it. It cannot be parallelized, because
the output would appear in a different order depending on the scheduling of the
individual CPUs.

Click the button indicating the obstacle, and note the highlighting of the print statement
in the Source View.

Move to the next loop by clicking the Next Loop button.

Unstructured Control Flows

Loop Olid 13 has an unstructured control flow, that is, the flow is not controlled by
nested if statements. Typically, this problem arises when using goto statements; if you
can get the branching behavior you need by using nested if statements, the compiler can
better optimize your program.

For Olid 13, the compiler cannot determine how many iterations will take place before
exiting the loop; the goto statement is essential to the program’s behavior. If the compiler
parallelized the loop, one thread might execute iterations past the point where another
has determined to exit.

Click the highlight button in the Obstacles to Parallelization section of the loop
information display where the message says, “unstructured control flow.” Note that the
line with the exit from the loop is highlighted in the Source View.

Move to the next loop by clicking the Next Loop button.

Subroutine Calls

Unless you make an assertion, a loop with a subroutine call cannot be parallelized; the
compiler cannot determine whether a call has side effects: for example, creating data
dependencies.

40

Chapter 2: Examining Loops, Modifying Source Code

Unparallelizable Loop With a Subroutine Call

Loop Olid 14 is unparallelizable because there is a call to a routine, RTC(), and there is
no explicit assertion to parallelize. Click the highlight button on the obstacle line; note
the highlighting of the line containing the call and the highlighting of the subroutine
name.

Move to the next loop by clicking the Next Loop button.

Parallelizable Loop With a Subroutine Call

Although loop Olid 15 has a subroutine call in it similar to that in Olid 14, it can be
parallelized because of an assertion that the call has no side effects that will prevent
concurrent processing. Click the highlight button on the assertion line in the loop
information display to highlight the line in the Source View containing the assertion.

Move to the next loop by clicking the Next Loop button.

Permutation Vectors

If you specify array index values by values of another array (which is referred to as a
permutation vector), the compiler cannot determine if the values of the permutation
vector are distinct. If the values are distinct, loop iterations do not depend on each other
and the loop can be parallelized; if not, the loop cannot be parallelized. Thus, without an
assertion, a loop with a permutation vector is not parallelized.

Unparallelizable Loop With a Permutation Vector

Loop Olid 16 has a permutation vector, IC(I), and cannot be parallelized.

Move to the next loop by clicking the Next Loop button.

Parallelizable Loop With a Permutation Vector

An assertion has been added before loop Olid 17 that the index array, IB(I), is indeed a
permutation vector, and the loop is parallelized.

Move to the next loop by clicking the Next Loop button.

Examples of Nested Loops

41

Examples of Nested Loops

The following loops illustrate somewhat more complicated situations: nested loops.

Doubly Nested Loop

Loop Olid 18 is the outer loop of a pair of loops; it runs in parallel, and the inner loop
runs in serial: the compiler knows that one parallel loop should not be nested inside
another. However, you can force parallelization in this context by inserting a
C$DOACROSS directive with the NEST clause; for example, see “Distributed and
Reshaped Arrays: C$DISTRIBUTE_RESHAPE” on page 57.

Move to the inner loop Olid 19 by clicking the Next Loop button, and then click Next Loop
again to select the outer loop of the next nested pair.

Note: Notice that when you select the inner loop that the end-of-loop continue statement
is not highlighted. This happens for all interior loops and is a compiler error that disrupts
line numbering in the Parallel Analyzer View. Be careful if you use the Parallel Analyzer
View to insert a directive for an interior loop; check that the directive is properly placed
in your source code.

Interchanged Doubly Nested Loop

Note that the outer loop, loop Olid 20, is shown in the information display as serial
inside a parallel loop, and the original interior loop is indicated to be parallel: the order
of the loops has been interchanged. This happens because the compiler recognized that
the two loops can be interchanged, and furthermore, that the CPU cache is likely to be
more efficiently used if the loops are run in the interchanged order. Explanatory
messages appear in the loop information display.

Move to the inner loop, Olid 21, by clicking the Next Loop button, and then click the Next
Loop button once again to move to the following triply nested loop.

42

Chapter 2: Examining Loops, Modifying Source Code

Triply Nested Loop With an Interchange

The order of Olid 22 and Olid 23 has been interchanged: as for the previous nested loops,
the compiler recognizes that cache misses are less likely. As you double-click on Olid 22,
Olid 23, and Olid 24 in the loop list, note that the loop information display shows that
Olid 22 and Olid 24 are serial loops inside a parallel loop, Olid 23.

But iterations of loop Olid 22 can run concurrently: the innermost serial loop Olid 24
depends without recurrence on the indices of Olid 22 and Olid 23. The compiler does not
recognize this possibility: this is a good context to illustrate the use of the Parallel
Analyzer View tools to modify the source, which is the subject of the next section.

Modifying Source Files and Compiling

This section discusses controls that change the source file by adding directives or
assertions and allow a subsequent pass of the compiler to do a better job of parallelizing
your code. So far, the discussion has focused on ways to view the source and
parallelization effects.

There are two steps to modifying source files:

1. Request changes using the Parallel Analyzer View controls, discussed in the next
subsection, “Requesting Changes.”

2. Modify the source and rebuild the program and its analysis files, discussed in
“Applying Requested Changes” on page 48.

Requesting Changes

You request changes by one of the following actions:

• Add or delete assertions or directives using the Operations menu or the Loop
Parallelization Controls.

• Add or modify clauses to directives using the Parallelization Control View.

• Modify the PFA analysis parameters in the PFA Analysis Parameters View (o32
only).

You can request changes in any order; there are no dependencies implied by the order of
requests.

Modifying Source Files and Compiling

43

These are the topics discussed in this section:

• “Directives and Assertions” on page 43

• “Adding a C$DOACROSS Directive and Clauses” on page 43

• “Adding a New Assertion or Directive With the Operations Menu” on page 46

• “Deleting an Assertion or a Directive” on page 48

Directives and Assertions

You control most of the directives and some assertions available from the Parallel
Analyzer View with the Operations menu (see Table 4-1).

You control most of the assertions and the more complex directives (see Table 4-3 and
Table 4-4), C$DOACROSS and C$PAR PDO, with the Loop Status Option menu (see
Figure 2-20).

Adding a C$DOACROSS Directive and Clauses

Loop Olid 22 is a serial loop nested inside a parallel loop, but its iterations could run
concurrently. To parallelize Olid 22, do the following:

1. Click on the Loop Status Option menu, which is the first Loop Parallelization
Control in the loop information display. It is between the loop icon and the text
“Loop parallelization status” and initially reads “Default” (see, for example,
Figure 2-18).

2. Choose “C$DOACROSS...” This requests a change in the source code, and opens the
Parallelization Control View (see Figure 2-21), which allows you to look at variables
in the loop and to attach clauses to the directive, if needed. The loop information
display should appear as in Figure 2-20.

44

Chapter 2: Examining Loops, Modifying Source Code

Figure 2-20 Requesting a C$DOACROSS for Olid 22

Figure 2-21 shows information presented in the Parallelization Control View (for details,
see “Parallelization Control View” on page 97):

• the selected loop

• “Condition for parallelization” text field (“C$DOACROSS...” only)

• MP Scheduling menu

• MP chunk size text field

• Synchronization Construct menu (“C$PAR PDO...” only)

• AFFINITY, NEST, and ONTO clause windows

• a list of all the variables in the loop, each with an icon indicating whether the
variable was read, written, or both; these icons are described in the Icon Legend

In the list of variables, each variable has a highlighting button to indicate in the
Source View its use within the loop; click on some of the buttons to see the variables
highlighted in the source view.

After each variable’s name, there is a descriptor of its storage class: Automatic,
Common, or Reference (see “Parallelization Control View Variable List: Storage
Labeling” on page 104).

Loop Status
Option Menu

Modifying Source Files and Compiling

45

Figure 2-21 Parallelization Control View for Loop Olid 22 After Choosing “C$DOACROSS...”

You can add clauses to the directive by placing appropriate parameters in the text boxes,
or using the options menus.

Notice that in the loop list display, there is now a red plus sign next to this loop,
indicating that a change has been requested (see Figure 2-22).

Selected loop

MP scheduling

List of variables

Read/write status

Variable type

Highlighting button

Variable name

option menu

in the loop

Clauses and
parameter
input fields

46

Chapter 2: Examining Loops, Modifying Source Code

Figure 2-22 Effect of Changes on the Loop List Display

Close the Parallelization Control View; it is no longer needed.

Adding a New Assertion or Directive With the Operations Menu

Now you can add an assertion to a loop.

Find the loop Olid 14. You can do this either by scrolling the loop list display or by using
the search feature of the loop list (go to the Search field, and enter 14) . Double-click the
highlighted line in the loop list to select the loop.

To request a new assertion

1. Pull down the Operations menu

2. Choose the Add Assertion submenu

For this example, choose “C*$*ASSERT CONCURRENT CALL” (see Figure 2-23). This
adds an assertion that it is safe to parallelize the loop despite the call to RTC(), which the
compiler thought might be an obstacle to parallelization.

After you choose “C*$*ASSERT CONCURRENT CALL,” the loop information display
shows the new assertion, along with a menu labeled “Insert” to indicate the state of the
assertion when you modify the code (see Figure 2-23).

The procedure for adding directives is similar; start by choosing the Add Directive
submenu of the Operations menu.

Modified loop

Modifying Source Files and Compiling

47

Figure 2-23 Adding an Assertion

Assertion

Menu
selection

48

Chapter 2: Examining Loops, Modifying Source Code

Deleting an Assertion or a Directive

Move to the next loop, Olid 15, and note “ASSERT CONCURRENT CALL” in the loop
information display. Pull down its option menu and choose “Delete.” Figure 2-24 shows
the state of the assertion in the information display. The same procedure can be used to
delete directives.

Figure 2-24 Deleting an Assertion

Applying Requested Changes

Now you have requested a set of changes and can update the file, using the controls in
the Update menu. These are the main actions that the Parallel Analyzer View performs
during file modification:

1. Generates a sed script for the following steps.

2. Renames the original file to have the suffix .old.

3. Runs sed on that file to produce a new version of the file, in this case dummy.f.

4. Depending on how you set the two toggles in the Update menu, the Parallel
Analyzer View then does one of the following:

• Spawns the WorkShop Build Manager to rerun the compiler on the new version
of the file.

• Opens a gdiff window or an editor, allowing you to examine changes and
further modify the source before running the compiler. When you quit gdiff, the
editing window opens if you have set the toggles for both windows. When you
quit these tools, the Parallel Analyzer View spawns the WorkShop Build
Manager.

5. After the build, the Parallel Analyzer View rescans the files and loads the modified
code for further interaction.

Modifying Source Files and Compiling

49

Viewing Changes With gdiff

To open a gdiff window that shows the requested changes to the source file before
compiling the modified code, choose the toggle labeled “Run gdiff After Update” from
the Update menu.

By default, the Parallel Analyzer View does not open a gdiff window. If you always wish
to see the gdiff window, you can set the resource in your .Xdefaults file:

cvpav*gDiff: True

Modifying the Source File Further

To open an editor and make additional changes after the sed script runs and before
compiling the modified code, choose the toggle labeled “Run Editor After Update” in the
Update menu (see Figure 2-25). An xwsh window with vi running in it opens with the
source code ready to be edited.

Figure 2-25 Setting the Run Editor Toggle

If you always prefer to run the editor, you can set the resource in your .Xdefaults file:

cvpav*runUserEdit: True

If you prefer a different window shell or a different editor, you can modify the resource
in your .Xdefaults file and change from xwsh or vi as you prefer. The following is the
default command in the .Xdefault, which you can edit for your preference:

cvpav*userEdit: xwsh -e vi %s +%d

In the above command, the +%d tells vi at what line to position itself in the file and is
replaced with 1 by default (you can also omit the +%d parameter if you wish). The edited
file’s name either replaces any explicit %s, or if the %s is omitted, the filename is
appended to the command.

50

Chapter 2: Examining Loops, Modifying Source Code

Updating the Source File

To update the source file to include requested changes, choose “Update All Files” from
the Update menu (see Figure 2-26); alternatively, you can use the keyboard shortcut for
this operation, Ctrl+U , with the cursor anywhere in the main view.

Figure 2-26 Update All Files

If you have set the toggle and opened the gdiff window or an editor, examine the changes
or edit the file as you wish. When you exit these tools, the Parallel Analyzer View spawns
the WorkShop Build Manager.

Note: If you edited any files, verify when the Build Manager comes up that the directory
shown is the directory in which you are running the sample session; if not, change it.

Then, click the Build button in the Build Manager window, and the Build Manager
reprocesses the changed file.

Modifying Source Files and Compiling

51

Examining the Modified Source File

When the build completes, the Parallel Analyzer View updates to reflect the changes that
were made. You can now examine the new version of the file to see the effect of the
requested changes.

New Assertion

To see the effect of the assertion request in “Adding a New Assertion or Directive With
the Operations Menu” on page 46, scroll to Olid 14 or use the Search field. Notice the icon
indicating that loop Olid 14, which previously was unparallelizable because of the call
to RTC(), is now parallel. Double-click the line and note the new loop information. The
source code also has the assertion that was added.

Move to the next loop by clicking the Next Loop button.

Deleted Assertion

Note that the assertion in loop Olid 15 is gone as requested in “Deleting an Assertion or
a Directive” on page 48, and the loop no longer runs in parallel. Recall that the loop
previously had the assertion that foo() was not an obstacle to parallelization.

52

Chapter 2: Examining Loops, Modifying Source Code

Examples With PCF Directives

This section discusses examining the subroutine pcfdummy, which contains four parallel
regions that illustrate the use of PCF directives:

• “Explicitly Parallelized Loops: C$PAR PDO” on page 52

• “Loops With Barriers: C$PAR BARRIER” on page 54

• “Critical Sections: C$PAR CRITICAL SECTION” on page 55

• “Single-Process Sections: C$PAR SINGLE PROCESS” on page 55

• “Parallel Sections: C$PAR PSECTIONS” on page 55

For more information on PCF directives, see Chapter 5 of the MIPSpro Fortran 77
Programmer’s Guide.

To go to the first parallel region of pcfdummy, scroll down the loop list, or use the Search
field (enter parallel).

To select the first parallel region, double-click the highlighted line in the loop list

Explicitly Parallelized Loops: C$PAR PDO

The first construct in routine pcfdummy is a parallel region, Olid 26, containing two
loops that are explicitly parallelized with C$PAR PDO statements (see Figure 2-27). With
this construct, the second loop can start before all iterations of the first complete.

Examples With PCF Directives

53

Figure 2-27 Explicitly Parallelized Loops With C$PAR PDO

Notice in Figure 2-27 that the parallel region has controls specific to the region as a whole.
The “Keep/Delete” option menu and the highlight buttons function the same way they
do in the Loop Parallelization Controls (see “Loop Parallelization Controls” on page 23).

Click Next Loop twice to step through the two loops. Notice in the Source View that both
loops contain a C$PAR PDO directive.

Click Next Loop to step to the second parallel region.

54

Chapter 2: Examining Loops, Modifying Source Code

Loops With Barriers: C$PAR BARRIER

The second parallel region, Olid 29, contains an identical pair of loops, but with a barrier
between them. Click Next Loop twice to view the barrier region (see Figure 2-28).

Figure 2-28 Loops With Barrier Synchronization

All iterations of the first C$PAR PDO must complete before any iteration of the second
loop can begin.

Click Next Loop twice to go to the third parallel region.

Examples With PCF Directives

55

Critical Sections: C$PAR CRITICAL SECTION

To view the first of the two loops in the third parallel region, Olid 33, click Next Loop. This
loop contains a critical section. Click Next Loop to view the critical section.

The critical section uses a named locking variable (S3 in this case) and uses the lock to
prevent simultaneous update of S1 from multiple threads. This is a standard construct
for performing a reduction.

Move to the next loop by clicking the Next Loop button.

Single-Process Sections: C$PAR SINGLE PROCESS

Loop Olid 36 has a single-process section, which ensures that only one thread can
execute the statement in the section. Highlighting shows the begin and end directives.
Click Next Loop to view information about the single-process section.

Move to pcfdummy’s final parallel region by clicking the Next Loop button.

Parallel Sections: C$PAR PSECTIONS

The fourth and final parallel region of pcfdummy, Olid 38, provides an example of
parallel sections. In this case, there are three parallel subsections, each of which calls a
function. Each function is called exactly once, by a single thread. If there are three or more
threads in the program, each function may be called from a different thread. The
compiler treats this directive as a single-process directive, which guarantees correct
semantics.

Click Next Loop to view the parallel section.

Click Next Loop again to view the next subroutine.

56

Chapter 2: Examining Loops, Modifying Source Code

Examples With Data Distribution Directives

The last series of subroutines illustrate directives that control data distribution and cache
storage:

• “Distributed Arrays: C$DISTRIBUTE” on page 56

• “Distributed and Reshaped Arrays: C$DISTRIBUTE_RESHAPE” on page 57

• “Prefetching Data From Cache: C*$*PREFETCH_REF” on page 58

Brief descriptions of these directives appear in Table 4-1. For more details about these
directives, see the MIPSpro Fortran 77 Programmer’s Guide, Chapter 6; and MIPSpro
Compiling and Performance Tuning Guide, Chapter 4 (for C*$*PREFETCH_REF).

Distributed Arrays: C$DISTRIBUTE

Note that when you select the subroutine dst1d, which is Olid 40, a directive is listed in
the loop information display that is global to the routine; the directive C$DISTRIBUTE
specifies placement of array members in distributed, shared memory.

In the text box adjacent to the directive name is the argument for the directive, which in
this case distributes the one-dimensional array a(m) among the local memories of the
available processors. To highlight the directive in the Source View, click on the highlight
button.

Click on the Next Loop button to move to the parallel loop, Olid 41.

The loop has a C$DOACROSS directive, which works with the C$DISTRIBUTE
directive so that each processor manipulates locally stored data.

You can highlight the C$DOACROSS directive in the Source View with either of the
highlight buttons in the loop information display. If you use the highlight button in the
Loop Parallelization Controls, the Parallelization Control View presents more
information about the directive and allows you to make changes to C$DOACROSS
clauses; in this example, it confirms what you see in the code: that the index variable i is
local.

Click Next Loop again to view the next subroutine.

Examples With Data Distribution Directives

57

Distributed and Reshaped Arrays: C$DISTRIBUTE_RESHAPE

When you select the subroutine rshape2d, which is Olid 42, the routine’s global directive
is listed in the loop information display. The directive C$DISTRIBUTE_RESHAPE also
specifies placement of array members in distributed, shared memory; it differs from
C$DISTRIBUTE mainly in that the unit of memory allocation is not necessarily a page.

In the text box adjacent to the directive name is the argument for the directive, which in
this case distributes the columns of the two-dimensional array b(m,m) among the local
memories of the available processors. To highlight the directive in the Source View, click
the highlight button.

Click the Next Loop button to move to the parallel loop, Olid 43.

The loop has a C$DOACROSS directive, which works with the
C$DISTRIBUTE_RESHAPE directive so that each processor manipulates locally stored
data.

If you use the highlight button in the Loop Parallelization Controls, the Parallelization
Control View presents more information; in this example, it confirms what you see in the
code: that the index variable i is local, and that the nested loop can be run in parallel.

If the code had not had the NEST clause, you could have inserted it by supplying the
arguments in the text field in the Parallelization Control View. Recall that you can use the
NEST clause to parallelize nested loops only when there is no code between either the
do-i and do-j statements or the enddo-i and enddo-j statements (see Chapter 6 of the
MIPSpro Fortran 77 Programmer’s Guide).

Click the Next Loop button to move to the nested loop, Olid 44.

Notice that this loop has an icon in the loop list and in the loop information display
indicating that it runs in parallel.

Click Next Loop again to view the next subroutine; click again to go to the first loop in the
subroutine prfetch, Olid 46.

58

Chapter 2: Examining Loops, Modifying Source Code

Prefetching Data From Cache: C*$*PREFETCH_REF

As for the nested loops Olid 20 and 21, the compiler switched the order of execution of
the nested loops Olid 46 and 47; to see this, look at the Transformed Source view.

Click on the Next Loop button to move to the nested loop, Olid 47.

The list of directives in the loop information display shows C*$*PREFETCH_REF, with
a highlight button to locate the directive in the Source View. The directive allows you to
place appropriate portions of the array in cache.

Exiting From the dummy.f Sample Session

This completes the first sample session. Quit the Parallel Analyzer View by choosing
“Exit” from the Admin menu.

Not all windows opened during the session close when you quit. In particular, the Source
View remains open. This is because all the Developer Magic tools interoperate, and other
tools may share the Source View window (see “Viewing Original Source” on page 17).
You close the Source View independently.

To clean up the directory, so that the session can be rerun, enter the following in your
shell window and remove all of the generated files:

% make clean

59

Chapter 3

3. Using WorkShop With Parallel Analyzer View

The second sample session is a brief demonstration of the integration of WorkShop Pro
MPF and the WorkShop performance tools. WorkShop must be installed for this session
to work.

This sample session examines linpack, a standard benchmark designed to measure CPU
performance in solving dense linear equations. Chapter 3 of the SpeedShop User’s Guide
presents a tutorial analysis of linpack.

This tutorial assumes you are already familiar with the basic features of the Parallel
Analyzer View discussed in the previous chapter. You can also consult Chapter 4,
“Parallel Analyzer View Reference,” for more information.

Setting Up the linpackd Sample Session

Go to /usr/demos/WorkShopMPF/linpackdirectory and run make:

% cd /usr/demos/WorkShopMPF/linpack
% make

This updates the directory by compiling the source program linpackd.f and creating the
necessary files. The performance experiment data is in the directory, in the file
test.linpack.cp.

60

Chapter 3: Using WorkShop With Parallel Analyzer View

Starting the Parallel Analyzer View

Once the directory has been updated, start the demo by typing:

% cvpav -e linpackd

Note that the flag is -e, not -f as in the previous sample session. The main window of the
Parallel Analyzer View opens, showing the list of loops in the program. Scroll briefly
through the list and the Source View (by clicking the Source button in the main view).
Note that there are many unparallelized loops, but there is no way to know which are
important. Also note that the second line in the main view shows that there is no
performance experiment currently associated with the view.

Starting the Performance Analyzer

Start the Performance Analyzer by pulling down the Admin menu, choosing the Launch
Tool submenu, and choosing “Performance Analyzer,” as shown in Figure 3-1.

The main window of the Performance Analyzer opens; it is empty. A small window
labeled “Experiment:” also opens at the same time. This window is used to enter the
name of an experiment. For this session, use the installed prerecorded experiment. Enter:

test.linpack.cpu

in the “Experiment Dir:” field in the Experiment: window, and click the OK button. See
Figure 3-1. The Performance Analyzer shows a busy cursor and fills its main window
with the list of functions in main.

The Parallel Analyzer recognizes that the Performance Analyzer is active, and posts a
busy cursor with a message “Loading Performance Data.” When the message goes away,
performance data will have been imported by the Parallel Analyzer, and a number of
changes will have taken place as shown in Figure 3-2.

For more information about the Performance Analyzer and how it affects the user
interface, see Developer Magic: Performance Analyzer User’s Guide.

Setting Up the linpackd Sample Session

61

Figure 3-1 Starting the Performance Analyzer

62

Chapter 3: Using WorkShop With Parallel Analyzer View

Using the Parallel Analyzer With Performance Data

Once performance data has been loaded in the Parallel Analyzer View, several changes
occur in the main window, as shown in Figure 3-2:

Figure 3-2 Performance Data — Parallel Analyzer View

No longer
grayed

Information
line

Percentage
of CPU usage

Perf. Cost
heading

(inclusive)

Using the Parallel Analyzer With Performance Data

63

• A new column titled“Perf. Cost” appears in the list of loop next to the icon column.
The numbers in this column are inclusive: each reflects the time in the loop and in
any nested loops or functions called from within the loop.

• The second line in the view, below the menu bar, now shows the name of the
performance experiment and shows the total cost of the run in milliseconds.

• The sort menu’s second option, “Sort by Perf. Cost,” is active.

• In the Source View, three additional columns appear to the left of the loop brackets;
they reflect the measured performance data (these columns may take a few
moments to load):

– the number of times the line has been executed

– exclusive, ideal CPU time in milliseconds

– inclusive, ideal CPU time in milliseconds

Effect of Performance Data on the Source View

To see the effect of the performance data on the Source View, select Olid 25, which is in
subroutine daxpy; the Source View appears as shown in Figure 3-3.

Figure 3-3 Source View for Performance Experiment

Exclusive
ideal CPU
time

Inclusive
ideal CPU
time

Execution
count

64

Chapter 3: Using WorkShop With Parallel Analyzer View

Sorting the Loop List by Performance Cost

Choose the “Sort by Perf. Cost” entry. Note that the third most expensive loop listed,
Olid 25 of subroutine daxpy, represents approximately 92% of the total time (see
Figure 3-4).

Figure 3-4 Sort by Performance Cost

The first of the high-cost loops (Olid 16 in subroutine dgefa) contains the second loop
nested inside it (Olid 17). The second loop calls daxpy, which contains Olid 25—the heart
of the linpack benchmark; Olid 25 performs the central operation of scaling a vector and
adding it to another vector. Olid 25 was parallelized by the compiler; note the
C$DOACROSS directive that appears for this loop in the Transformed Source View.

The loop following Olid 25, loop dgefa, uses approximately 58% of the CPU time. This
loop is the most frequent caller of dgefa, and so of Olid 25.

Double-click Olid 25. Note that the loop information display contains a line of text listing
the performance cost of the loop, both in time and as a percentage of the total time (see
Figure 3-5).

First Loop
Second Loop

Third Loop

Exiting From the linpackd Sample Session

65

Figure 3-5 Loop Information Display With Performance Data

Exiting From the linpackd Sample Session

This completes the second sample session. To close all windows, those that belong to the
Parallel Analyzer View as well as those that belong to the Performance Analyzer and the
Source View, quit by selecting the “Exit” command from the Project submenu of the
Admin menu in the Parallel Analyzer View.

You don’t need to clean the directory, because you haven’t made any changes in this
session. If you experiment and make changes, when you are finished you can clean up
the directory and remove all generated files by entering the following in your shell
window:

% make clean

Performance
cost
information
block

Performance
experiment
line

67

Chapter 4

4. Parallel Analyzer View Reference

This chapter describes in detail the function of each window, menu, and display in the
WorkShop Pro MPF Parallel Analyzer View’s user interface.

This chapter contains the following main sections:

• “Main View Menu Bar” on page 68

• “Loop List” on page 84

• “Loop Information Display” on page 90

• “Other Views” on page 97

– “Parallelization Control View” on page 97

– “Transformed Loops View” on page 105

– “PFA Analysis Parameters View” on page 106

– “Subroutines and Files View”

– “Source View and Transformed Source Windows” on page 109

• “Icon Legend” on page 110

68

Chapter 4: Parallel Analyzer View Reference

Main View Menu Bar

This section describes the menus found in the menu bar located at the top of the Parallel
Analyzer View main window as shown in Figure 4-1.

Within each menu, the names of some options are followed by keyboard shortcuts, which
you can use instead of the mouse for faster access to these options. For a summary, see
“Keyboard Shortcuts” on page 83.

You can “tear off” a menu from the menu bar, so that it is displayed in its own window
with each menu command visible at all times, by selecting the dashed line at the top of
the menu (the first item in each of the menus). Submenus can also be torn off and
displayed in their own window.

Figure 4-1 Parallel Analyzer View Menu Bar and Pulldown Menus

Main View Menu Bar

69

Admin Menu

Figure 4-2 shows the Admin menu, which contains file-writing commands, other
administrative commands, and commands for launching and manipulating other
WorkShop application views.

Figure 4-2 Main View Admin Menu

The commands in the Admin menu have the following effects:

Save as Text Saves the complete loop information for all files and subroutines in the
current session in a plain ASCII file. Choosing “Save as Text” brings up
the directory and file browser, which lets you choose where to save the
file and what name to call it (see Figure 4-3).

The default directory is the one from which you invoked the Parallel
Analyzer View; the default filename is Text.out. The Parallel Analyzer
View asks for confirmation before overwriting an existing file.

70

Chapter 4: Parallel Analyzer View Reference

Figure 4-3 Directory and File Browser Window

Icon Legend... Opens the Icon Legend window, which provides an explanation of the
graphical icons used in the Parallel Analyzer View. See “Icon Legend”
on page 110. Shortcut: Ctrl+S

Iconify Stows all the open windows belonging to a given invocation of the
Parallel Analyzer View as icons in the style of the window manager you
are using.

Raise Brings all open windows in the current session to the foreground of the
screen, in front of other windows. The command also opens any
previously iconified windows belonging to the invocation of the Parallel
Analyzer View and brings them to the foreground. Shortcut: Ctrl+R

Launch Tool See “Launch Tool Submenu” on page 71.

Project See “Project Submenu” on page 73.

Exit Quits the current session of the Parallel Analyzer View, closing all
windows.

If you have not updated source files and have pending requests for
changes, a dialog box asks if it is OK to discard the changes. Click OK
only if you want to discard any changes; otherwise, click Cancel and
update the files.

Default filename

Main View Menu Bar

71

Launch Tool Submenu

The Launch Tool submenu contains commands for launching other WorkShop tools, as
well as new sessions of the Parallel Analyzer (see Figure 4-4).

To work properly with the other WorkShop tools, the files in the current fileset must have
been loaded into the Parallel Analyzer from an executable; there are two ways to do this:

• Use the -e option on the command line (see “Running the Parallel Analyzer View:
General Features” on page 2)

• Use the “Add Files from Executable” command found in the Fileset menu (see
“Fileset Menu” on page 76).

If you launch Workshop tools from a session not based on an executable, the tools start
without arguments.

Figure 4-4 Launch Tool Submenu

72

Chapter 4: Parallel Analyzer View Reference

The following applications can be launched from the Launch Tool menu:

Build Manager
Launches the Build Manager, a utility that lets you compile software
without leaving the WorkShop environment. For more information, see
Appendix B, “Using the Build Manager,” in the Developer Magic:
Debugger User’s Guide.

WorkShop Debugger
Launches the Debugger, a UNIX® source-level debugging tool that
provides special windows for displaying program data and execution
status. For more information, see Chapter 1, “Getting Started with the
WorkShop Debugger,” in the Developer Magic: Debugger User’s Guide.

Parallel Analyzer
Launches another session of the parallel analyzer.

Performance Analyzer
Launches the Performance Analyzer, a utility that collects performance
data and allows you to analyze the results of a test run. For more
information, see Chapter 1, “Introduction to the Performance Analyzer,”
in the Developer Magic: Performance Analyzer User’s Guide.

Static Analyzer Launces the Static Analyzer, a utility that allows you to analyze and
display source code written in C, C++, Fortran, or Ada. For more
information, see Chapter 1, “Introduction to the WorkShop Static
Analyzer,” in the Developer Magic: Static Analyzer User’s Guide

Tester Launches the Tester, a UNIX-based software quality assurance tool set
for dynamic test coverage over any set of tests. For more information,
see Chapter 5, “Using Tester,” in the Developer Magic: Performance
Analyzer User’s Guide.

If any of these tools is not installed on your system, the corresponding menu item is
grayed out.

If the file /usr/lib/WorkShop/system.launch is absent (that is, if you are running the Parallel
Analyzer View without WorkShop 2.0 installed), the entire Launch Tool submenu is
grayed out.

Main View Menu Bar

73

Project Submenu

The Project submenu contains commands that affect all the windows containing
WorkShop or WorkShop Pro MPF applications that have been launched to manipulate a
single executable. The set of windows is a WorkShop project. The Project submenu and
windows that you can open from it are shown in Figure 4-5.

The Project submenu commands are as follows:

Iconify Stows all the windows in the current project as icons, in the style of the
window manager you are using.

Raise Brings all open windows in the current project to the foreground of the
screen, in front of other windows. The command also opens any
previously iconified windows in the current project and brings them to
the foreground.

Remap Paths...
Lets you modify the set of mappings used to redirect references to
filenames located in your code to their actual locations in your
filesystem. However, if you compile your code on one tree and mount it
on another, you may need to remap the root prefix to access the named
files.

Project View... Launches the WorkShop Project View, a tool that helps you manage
project windows.

Exit Quits the current project, closing all windows, including those of related
open applications. Thus the Source View closes, as well as, for example,
the Parallel Analyzer.

If you have not updated source files and have pending requests for changes, a dialog box
asks if it is OK to discard the changes. Click OK only if you want to discard any changes;
otherwise, click Cancel and update the files.

74

Chapter 4: Parallel Analyzer View Reference

Figure 4-5 Project Submenu Commands

Main view Admin menu

Project
submenu

Project view

Path Remap view

Main View Menu Bar

75

Views Menu

The Views menu (see Figure 4-6) contains commands for launching a variety of
secondary windows, or views, that provide specific sets of information about, and tools
to apply to, selected loops.

Figure 4-6 Views Menu

The options in the Views menu have the following effects:

Parallelization Control View
Opens a Parallelization Control View for the loop currently selected
from the loop list display. For more information on this view, see
“Parallelization Control View” on page 97. Shortcut: Ctrl+P

Transformed Loops View
Opens a Transformed Loops View for the loop currently selected from
the loop list display. For more information on this view, see
“Transformed Loops View” on page 105. Shortcut: Ctrl+T

PFA Analysis Parameters View
Opens the PFA Analysis Parameters View, which provides a means of
modifying a variety of PFA parameters. This view is further described in
“PFA Analysis Parameters View” on page 106. Shortcut: Ctrl+A

Subroutines and Files View
Opens the Subroutines and Files View, which provides a complete list of
subroutine and file names being examined within the current session of
the Parallel Analyzer View. This view is further described in
“Subroutines and Files View” on page 108. Shortcut: Ctrl+F

76

Chapter 4: Parallel Analyzer View Reference

Fileset Menu

The Fileset menu (see Figure 4-7) contains commands for manipulating the files
displayed by the Parallel Analyzer View. A fileset is a list of source filenames contained
in an ASCII file, each on a separate line.

Figure 4-7 Fileset Menu

The options in the Fileset menu have the following effects:

Rescan All Files
The Parallel Analyzer View checks and updates all the source files
loaded into its current session so they match the versions of those files
in the filesystem. The Parallel Analyzer View only rereads the files it
needs to.

Delete All Files
Removes all files from the current session of the Parallel Analyzer View.
You can then add new files using the “Add File,”“Add Files from
Fileset,” or “Add Files from Executable” commands, described below.

Delete Selected File
Deletes a selected file from the current session of the Parallel Analyzer
View. To select a file for deletion, open the Subroutines and Files View
and double-click the desired filename.

Add File Adds a new source file to the current session of the Parallel Analyzer
View. Selecting this command brings up a file and directory browser that
lets you select a Fortran source file.

Before you can select a given source file, you must compile it to create
the .anl file needed by the Parallel Analyzer View (see “Compiling a
Program for Parallel Analyzer View” on page 3).

If the current session is based on an executable (see the “Add Files from
Executable” command, described below), you cannot add files to it
until you have deleted the executable’s fileset.

Main View Menu Bar

77

Add Files from Fileset
Lets you add a list of new source files to the current session of the
Parallel Analyzer View. Choosing this command brings up the file and
directory browser as it does for the “Add File” command. If you select a
file containing a fileset list, all Fortran source files in the list are loaded
into the current session (other files in the list are ignored).

If the current session is based on an executable (see “Add Files From
Executable”), you cannot add files to it until you have deleted the
executable’s fileset.

Add Files from Executable
Imports all the Fortran source files listed in the symbol table of a
compiled Fortran application. This command works only if there are no
files in the current session of the Parallel Analyzer View when the
command is selected from the menu. Selecting this command brings up
the file and directory browser as it does for the “Add File” command.
Other WorkShop applications can also operate on files imported from an
executable.

Operations Menu

The Operations menu contains commands for adding assertions and directives to loops
and removing pending changes to source files (see Figure 4-8). The general effects of the
Operations menu options are to prepare a set of requested changes to your source code.
For information on how these changes are subsequently performed see the “Update
Menu” on page 80.

The assertions and directives you can add from the Operations menu are listed in
Table 4-1; the manuals where you can find more information are also listed.

The Operations menu is one of two points in the Parallel Analyzer View where you can
add assertions and directives. The other is discussed in “Loop Parallelization Controls in
the Loop Information Display” on page 91. These two menus focus on different aspects
of the parallelization task:

• The Operations menu focuses on automatic parallelization directives, which may be
inserted in code by the automatic parallelizer, and memory distribution.

• The parallelization controls in the Loop information display focus on “manual”
parallelization controls, which you can insert to further parallelize your code.

78

Chapter 4: Parallel Analyzer View Reference

Table 4-1 Assertions and Directives in the Operations Menu

Assertion or Directive Effect on Compilation For More Information

C*$*ASSERT_CONCURRENT CALL Ignore possible dependencies due
to subroutine calls. Typically
inserted during automatic
parallelization.

MIPSpro Automatic
Parallelizer
Programmer’s Guide,
Chapter 3

C*$*ASSERT PERMUTATION The indexing array is a
permutation. Typically inserted
during automatic parallelization.

MIPSpro Automatic
Parallelizer
Programmer’s Guide,
Chapter 3

C*$*CONCURRENTIZE Overrides
C*$*NOCONCURRENTIZE.Typic
ally inserted during automatic
parallelization.

MIPSpro Automatic
Parallelizer
Programmer’s Guide,
Chapter 3

C*$*NOCONCURRENTIZE Do not parallelize file subroutine
(depending on placement).
Typically inserted during
automatic parallelization.

MIPSpro Automatic
Parallelizer
Programmer’s Guide,
Chapter 3

C$DISTRIBUTE and
C$REDISTRIBUTE

Distribute array storage among
processors. For Origin2000
systems.

MIPSpro Fortran 77
Programmer’s Guide,
Chapter 6

C*$*PREFETCH_REF Load data into cache. May be used
with nonconcurrent code.

MIPSpro Compiling
and Performance
Tuning Guide, Chapter
4

C$DYNAMIC Allow run-time array
redistribution. For Origin2000
systems.

MIPSpro Fortran 77
Programmer’s Guide,
Chapter 6

C$COPYIN Copy COMMON block into local
thread.

MIPSpro Fortran 77
Programmer’s Guide,
Chapter 5

Main View Menu Bar

79

Figure 4-8 Operations Menu and Submenus

The options in the Operations have the following specific effects:

Undo Changes to Loop
Removes pending changes to the currently selected loop. Changes that
have already been written to the source file using the Update menu
commands cannot be undone.

Undo All Changes
Removes pending changes to all the loops in the current fileset. Changes
that have already been written to the source file using the Update menu
commands cannot be undone.

Add Assertion submenu
Contains a set of assertions that you can add to the currently selected
loop.

Add Directive submenu
Contains a set of directives to add to the currently selected loop.

80

Chapter 4: Parallel Analyzer View Reference

Add Parallel Region
Allows you to add a parallel region PCF construct.

Add Barrier Synchronization
Allows you to add a barrier synchronization PCF construct.

Add Section submenu
Allows you to add a parallel-, critical- or one-processor section. To use
them, bring up in the Source View, and using the mouse, sweep out a
range of lines for the new construct. Then invoke the appropriate menu
item to add the new construct.

When you add a new construct, the list is redrawn with the new
construct in place, and the new construct is selected. Brackets defining
the new constructs are not added to the file loop annotations.

Note: The Parallel Analyzer does not enforce any of the semantic
restrictions on how parallel regions and or sections must be constructed.
When you add nested regions or constructs, be careful that they are
properly nested: they must each begin and end on distinct lines. For
example, if you add a parallel region and a nested critical section that
end at the same line, the terminating directives are not in the correct
order.

Update Menu

The Update menu (see Figure 4-9) contains commands for placing in your Fortran source
code requested changes to directives and assertions that you made with the Parallel
Analyzer View.

Figure 4-9 Update Menu

Main View Menu Bar

81

The options in the Update menu have the following effects:

Run gdiff After Update
Sets a toggle switch that causes a gdiff window to open after you have
updated changes to your source file. This window graphically illustrates
the differences between the unchanged source and the newly updated
source.

If you always wish to see the gdiff window, you may set the resource in
your .Xdefaults file:

cvpav*gDiff: True

For more information on using gdiff, see the man page for gdiff(1).

Run Editor After Update
Sets a toggle switch that opens xwsh shell window with the vi editor on
the updated source file.

If you always wish to run the editor, you can set the resource in your
.Xdefaults file:

cvpav*runUserEdit: True

If you prefer a different window shell or a different editor, you can
modify the resource in your .Xdefaults file and change from xwsh or vi as
you prefer. The following is the default command in the .Xdefault,
which you can edit for your preference:

cvpav*userEdit: xwsh -e vi %s +%d

In the above command, the +%d tells vi at what line to position itself in
the file and is replaced with 1 by default (you can also omit the +%d
parameter if you wish). The edited file’s name either replaces any
explicit %s, or if the %s is omitted, the filename is appended to the
command.

Update All Files
Writes to the appropriate source files all changes to loops requested
during the current session of the Parallel Analyzer View. Shortcut:
Ctrl+U .

Update Selected File
Writes to a selected file changes to loops requested during the current
session of the Parallel Analyzer View. You choose a file for updating by
double-clicking in the Subroutines and Files View the line
corresponding to the desired filename (see also “Subroutines and Files
View” on page 108).

82

Chapter 4: Parallel Analyzer View Reference

Help Menu

The Help menu contains commands that allow you to access online information and
documentation for the Parallel Analyzer View (see Figure 4-10).

Figure 4-10 Help Menu

The options in the Help menu have the following effects:

“On Version...”
Opens a window containing version number information for the
Parallel Analyzer View.

“On Window...”
Invokes the Help Viewer, which displays a descriptive overview of the
current window or view and its graphical user interface.

“On Context” Invokes context-sensitive help. When you choose the “On Context”
command, the normal mouse cursor (an arrow) is replaced with a
question mark. When you click on graphical features of the application
with the left mouse or position the cursor over the feature and press the
F1 key, the Help Viewer displays information on that context.

“Index...” Invokes the Help Viewer and displays the list of available help topics,
which you can browse alphabetically, hierarchically, or graphically.

Main View Menu Bar

83

Keyboard Shortcuts

 Table 4-2 lists the keyboard shortcuts that work in the Parallel Analyzer View:

Table 4-2 Keyboard Shortcuts

Keyboard
Shortcut

Menu Submenu

Ctrl+S Admin Icon Legend...

Ctrl+R Admin Raise

Ctrl+P Views Parallelization
Control View

Ctrl+T Views Transformed
Loops View

Ctrl+A Views PFA Analysis
Parameters View

Ctrl+F Views PFA Analysis
Parameters View

Ctrl+U Update Update All Files

84

Chapter 4: Parallel Analyzer View Reference

Loop List

This section describes the loop list and the various option menus and fields that
manipulate the information shown in the loop list display, shown in Figure 4-11.

Figure 4-11 Loop List Display and Controls

Resizing the Loop List

You can resize the loop list to change the number of loops displayed; use the adjustment
button: a small square below the Previous Loop button.

Status and Performance Experiment Lines

The status line displays messages about the current status of the loop list, providing
feedback on manipulations of the current fileset.

 The performance experiment line is meaningful if you run the WorkShop Performance
Analyzer. The line displays the name of the current experiment directory and the type of
experiment data, as well as total data for the current caliper setting in the Performance
Analyzer (see “Launch Tool Submenu” on page 71 for information on invoking the
Performance Analyzer from the Parallel Analyzer View). If the Performance Analyzer is
not being used, the performance experiment line displays <none>.

Loop list display

Status line

Performance

Loop list search field

Option menus

Buttons:

experiment line

Column headings

Loop list size adjustment

source views
loop-list navigation

Loop List

85

Loop List Display

The loop list display lets you select and manipulate any Fortran DO loop contained in
the source files loaded into the Parallel Analyzer View. Information about the loops is
displayed in columns in the list display; the headings of the columns are shown in
Figure 4-12 and described below.

Figure 4-12 Column Headings for the Loop List Display

The columns in the loop list display contain the following information about each loop,
from left to right:

Parallelization icon
Indicates the parallelization status of each loop. The meaning of each of
these icons is described in the Icon Legend dialog box (see “Icon
Legend” on page 110). When a loop is displayed in the loop information
display (by double-clicking the loop’s row), a green check mark is
placed to the left of the icon to indicate that it has been examined. If any
changes are made from within the loop information display, a red plus
sign is placed above the check mark.

Perf. Cost (performance cost)
Displayed when the WorkShop Performance Analyzer is launched on
the current fileset (see “Launch Tool Submenu” on page 71). The loops
can be sorted by Perf. Cost via the sort option menu (see “Sort Option
Menu” on page 87).

When performance cost is shown, each loop’s execution time is
displayed as a percentage of the total execution time. This percentage
includes all nested loops, subroutines, and function calls.

Nest The nesting level of the given loop.

Nesting

Loop

Location

Loop

level

index
identifier

in code

Subroutine
namevariable

Filename

86

Chapter 4: Parallel Analyzer View Reference

Loop-ID An ID for each loop in the list display. The ID is displayed indented to
the right to reflect the loop’s nesting level when the list is sorted in
source order, and unindented otherwise.

Variable The name of the loop index variable.

Subroutine The name of the Fortran subroutine in which the loop occurs.

Lines The lines in the source file that make up the body of the loop.

Olid A unique internal identifier for the loops generated by the compiler. Use
this value when reporting bugs.

File The name of the Fortran source file that contains the loop.

To highlight a loop in the list display, click the left mouse anywhere in a loop’s row; typing
unique text from the row into the Search field (see “Loop List Search Field” on page 86)
does the same thing.

To select a loop, double-click on its row; this will bring up detailed information in the loop
information display below the loop list display (see “Loop Information Display” on
page 90). Selecting a loop affects other displays (see “Selecting a Loop for Analysis” on
page 21).

Loop List Search Field

You can use the loop list search field to find a specific loop in the loop list display. For the
location of the search field, see Figure 4-11. The field matches any text typed into it to the
first instance of that text in the loop list display, and highlights the row of the display in
which the text occurs. The search field matches its text against the contents of each
column in the loop list display.

As you type into the field, the list highlights the first entry that matches what you have
already typed, scrolling the list if necessary. If you type Enter , the highlight moves to the
next match. If no match is found, the system beeps, and typing Enter positions the
highlight at the top of the list again.

Loop List

87

Sort Option Menu

The sort option menu is the left-most option menu under the loop list search field shown
in Figure 4-11. It controls the order in which the loops are displayed in the loop list
display.

Figure 4-13 Sort Option Menu

The choices in the sort option menu (see Figure 4-13) have the following effects:

Sort In Source Order
Orders the loops as they appear in the source file. This is the default
setting.

Sort By Performance Cost
Orders the loops by their performance cost (from greatest to least) as
calculated by the Workshop Performance Analyzer. You need to have
invoked the Performance Analyzer from the current session of the
Parallel Analyzer View to make use of this option. See “Launch Tool
Submenu” on page 71 for information on how to open the Performance
Analyzer from the current session of the Parallel Analyzer View.

Show Loop Types Option Menu

The show loop types option menu is the center option menu under the loop list search
field shown in Figure 4-11. It controls what kind of loops are displayed for each file and
subroutine in the loop list display.

Figure 4-14 Show Loop Types Menu

88

Chapter 4: Parallel Analyzer View Reference

The options in the show loop types menu (see Figure 4-14) have the following effects:

Show All Loop Types
Default setting

Show Unparallelizable Loops
Show only loops that could not be parallelized (runs serially as a result)

Show Parallelized Loops
Show only loops that are parallelized

Show Serial Loops
Show only loops that are preferably serial

Show Modified Loops
Show only loops with pending changes

Filtering Option Menu

The filtering option menu is the right-most option menu under the loop list search field
shown in Figure 4-11. It lets you display only those loops contained within a given
subroutine or source file.

Figure 4-15 Loop Filtering Option Menu

The menu choices have the following effects:

No Filtering The default setting; lists all loops and routines.

Filter By Subroutine
Lets you enter a subroutine name into a filtering text field that appears
above the option menu. Only loops contained in that subroutine are
displayed in the loop list display.

Filter By File Lets you enter a Fortran source filename into a filtering text field that
appears above the option menu. Only loops contained in that file are
displayed in the loop list display.

To place the name of a subroutine or file in the appropriate filter text field, you can
double-click on a line in the Subroutines and Files View. If the appropriate type of
filtering is currently selected, the loop list is rescanned.

Loop List

89

Loop List Buttons

The loop list window contains these display control buttons:

Source Opens the Source View window, with the source file containing the loop
currently selected (double-clicked) in the loop list display. The body of
the loop is highlighted within the window. If no loop is selected, the last
selected file is loaded; if no file is selected, the first file in the fileset is
loaded.

For more information on the Source View window, see “Source View
and Transformed Source Windows” on page 109.

Transformed Source
Opens a Transformed Source window, with the compiled source file
containing the loop currently selected (double-clicked) in the loop list
display. The body of the loop is highlighted within the window. If no
loop is selected, the last selected file is loaded; if no file is selected, the
first file in the fileset is loaded.

For more information on the Transformed Source window, see “Source
View and Transformed Source Windows” on page 109.

Next Loop Selects the next loop in the loop list display. The information in the loop
information display and all other windows is updated accordingly. If no
loop is currently selected, clicking on the button selects the first loop.

Previous Loop Selects the previous loop in the loop list display. The information in the
loop information display and all other windows is updated accordingly.
If no loop is currently selected, clicking on the button selects the first
loop.

90

Chapter 4: Parallel Analyzer View Reference

Loop Information Display

The loop information display provides detailed information on various loop parameters
and allows you to alter those parameters so that the changes can be incorporated into the
Fortran source. The display is divided into several information blocks displayed in a
scrolling list as shown in Figure 4-16.

Figure 4-16 Loop Information Display

Each of these sections and the information it contains is described in detail below. The
display is empty when no loop has been selected.

Highlighting Buttons

A highlighting button (light bulb, see Figure 4-17) appears as a shortcut to more
information related to text in the display. Clicking the button does one or both of the
following:

• highlights the loop and the relevant line(s) in a Source View window (see “Source
View and Transformed Source Windows” on page 109)

• if a directive appears in the options menu next to the highlight button, presents
details about directive clauses in a Parallelization Control View (see “Parallelization
Control View” on page 97).

If directives or assertions with highlight buttons are also listed below the Loop
Parallelization Controls, these buttons highlight the same piece of code as the
corresponding button in the Loop Parallelization Controls, but they do not activate the
Loop Parallelization Control View.

Information

Number of transformed loops

blocks

Loop Information Display

91

Loop Parallelization Controls in the Loop Information Display

The first line of the Loop Parallelization Controls section shows the Olid of the selected
loop and, on the far right, how many transformed loops were derived from the selected
loop.

Controls for altering the parallelization of the selected loop are under the text “Loop
Parallelization Controls.” These sections in the loop information display contain controls
that allow you to place parallelization assertions and directives in your code (see
Figure 4-17). Recall that you have other controls available through the Operations menu
(see “Operations Menu” on page 77).

Figure 4-17 Parallelization Controls

Status description

Highlighting button

Loop parallelization

MP scheduling
option menu

(status sent by directive)

Scheduling description MP scheduling chunk size input field

Number of transformed loops

status option menu

92

Chapter 4: Parallel Analyzer View Reference

Loop Parallelization Status Option Menu

The loop status option menu lets you alter a loop’s parallelization scheme. To the right of
the option menu is a description of the current loop status as implemented in the
transformed source. A small highlighting button appears to the left of this description if
the status was set by a directive (shown in Figure 4-17).

The menu choices are as follows:

Default Always selects the parallelization scheme that the compiler picked for
the selected loop.

Prefer Parallel Adds the assertion C*$*ASSERT DO PREFER (CONCURRENT).

Force Parallel Adds the assertion C*$*ASSERT DO (CONCURRENT).

Prefer Serial Adds the assertion C*$ASSERT DO PREFER (SERIAL).

Force Serial Adds the assertion C*$*ASSERT DO (SERIAL).

C$DOACROSS...
Adds the directive C$DOACROSS. Selecting this item opens the
Parallelization Control View. See “Parallelization Control View” on
page 97 for more information.

C$PAR PDO... Launches the Parallelization Control View, which allows you to
manipulate the PCF scheduling clauses for the Parallel-DO and to set
each of the referenced variables as either region-default or last-local.

A Parallel-DO must be within a Parallel Region, although the tool does
not enforce this restriction. If one is added outside of a region, the
compiler reports an error.

A menu choice is grayed out if you are looking at a read-only file, you invoked cvpav with
the -ro True option, or the loop comes from an included file. So in some cases you are not
allowed to change the menu setting.

Loop Information Display

93

Table 4-3 lists the assertions that you control from the Loop Parallelization Controls. For
more information about these directives, see Chapter 3 in the MIPSpro Automatic
Parallelizer Programmer’s Guide.

Table 4-4 lists the directives that you control from the Loop Parallelization Controls. For
more information, see Chapter 5 in the MIPSpro Fortran 77 Programmer’s Guide

Table 4-3 Assertions Accessed From the Loop Parallelization Controls

Assertion or Directive Effect on Compilation Menu Option

C*$*ASSERT DO PREFER
(CONCURRENT)

Attempt to parallelize the
selected loop. If not
possible, try each nested
loop.

Prefer Parallel

C*$*ASSERT DO
(CONCURRENT)

Parallelize the loop;
ignore possible data
dependencies.

Force Parallel

C*$*ASSERT DO PREFER
(SERIAL)

Do not parallelize the
loop.

Prefer Serial

C*$*ASSERT DO (SERIAL) Do not parallelize the
loop.

Force Serial

Table 4-4 Directives Accessed From the Loop Parallelization Controls

Assertion or Directive Effect on Compilation Menu Option

C$DOACROSS Parallelize the loop,
ignore automatic
parallelizer.

C$DOACROSS... (opens dialog box
to control effects of the directive)

C$PAR PDO Assign each loop
iteration to a different
thread, ignore automatic
parallelizer.

C$PAR PDO... (opens dialog box to
control effects of the directive)

94

Chapter 4: Parallel Analyzer View Reference

MP Scheduling Option Menu: Directives for All Loops

The MP scheduling option menu lets you alter a loop’s scheduling scheme by changing
C$MP_SCHEDTYPE modes and values for C$CHUNK. For those modes that require a
chunk size, there is a field to enter the value (see “MP Scheduling Chunk Size Field” on
page 95.

These directives affect the current loop and all subsequent loops in a source file. For more
information, see Chapter 5 in the MIPSpro Fortran 77 Programmer’s Guide. For control over
a single loop, use the C$DOACROSS directive clauses MP_SCHEDTYPE and CHUNK
(see “Parallelization Control View MP Scheduling Option Menu: Clauses for One Loop”
on page 103).

The menu choices are as follows:

Default Always selects the scheduling scheme that the compiler picked for the
selected loop.

Static Divides iterations of the selected loop among the processors by dividing
them into contiguous pieces, and assigns one to each processor.

Dynamic Divides iterations of the selected loop among the processors by dividing
them into pieces of size CHUNK. As each processor finishes a piece, it
enters a critical section to grab the next piece. This scheme provides
good load balancing at the price of higher overhead.

Interleaved Divides the iterations into pieces of size CHUNK and the execution of
those pieces is interleaved among the processors. For example, if there
are four processors and CHUNK=2, then the first processor executes
iterations 1-2, 9-10, 17-18,...; the second processor executes iterations 3-4,
11-12, 19-20,...; and so on.

Guided Self Divides the iterations into pieces. The size of each piece is determined
by the total number of iterations remaining. By parceling out relatively
large pieces at the start and relatively small pieces toward the end, the
idea is to achieve good load balancing while reducing the number of
entries into the critical section.

Run-time Lets you specify the scheduling type at run time.

To the right of the option menu is a description of the current loop scheduling scheme as
implemented in the transformed source. A highlighting button appears to the left of this
description if, and only if, the scheduling scheme was set by a directive.

Loop Information Display

95

MP Scheduling Chunk Size Field

Below the scheduling description is an input field that allows you to set the C$CHUNK
size for the scheduling scheme you select.

When you change an entry in the field, the upper right corner of the field turns down,
indicating the change (see Figure 4-18).

To toggle back to the original value, left-click the turned-down corner (changed-entry
indicator). The corner unfolds, leaving a fold mark. If you click again on the fold mark,
you can toggle back to the changed value. You can enter a new value at any time; the field
remembers the original value, which is always displayed after you click on the
changed-entry indicator.

Figure 4-18 MP Chunk Size Input Field Changed

Be aware of the following when you use the chunk size field:

• Your entry should be syntactically correct, although it is not checked.

• The background color indicates that you cannot make changes if you are looking at
a read-only file, if you invoked cvpav with the -ro True option, or the loop comes
from an included file; in some other cases you are not allowed to change the value.

Obstacles to Parallelization Display

Obstacles to parallelization are listed when the compiler discovers aspects of a loop’s
structure that make it impossible to parallelize. They appear in the loop information
display below the parallelization controls.

Figure 4-19 illustrates a set of messages describing an obstacle. Each message has a
highlight button directly to its left to indicate the troublesome line(s) in the Source View
window, opening the window if necessary. If appropriate, the referenced variable or
function call is highlighted in a contrasting color.

Changed-entry indicator

96

Chapter 4: Parallel Analyzer View Reference

Figure 4-19 Obstacles Information Block

Assertions and Directives Display

The loop information display lists any assertions and directives for the selected loop
along with highlight buttons. When you left-click the highlight button to the left of an
assertion or directive, the Source View window shows the selected loop with the
assertion or directive highlighted in the code.

Recall that assertions and directives are special Fortran source comments that tell the
compiler how to transform Fortran code for multiprocessing. Directives enable, disable,
or modify features of the compiler when it runs on the source. Assertions provide the
compiler with additional information about the source code that can sometimes improve
optimization.

When appropriate, an assertion or directive appears with an option menu that allows
you to “Keep”, “Delete”, or (if you compile o32) “Reverse” it. Figure 4-20 shows an
assertion block and its option menu.

Figure 4-20 Assertion Information Block and Options for n32 and n64 Compilation

Assertions and directives that govern loop parallelization or scheduling do not have
associated option menus; those functions are controlled by the loop status option menu
and the MP scheduling option menu (see “Loop Parallelization Controls in the Loop
Information Display” on page 91).

Highlighting button

Description of obstacle

Other Views

97

Compiler Messages

The Loop information display also shows any messages generated by the compiler to
describe aspects of the loops created by transforming original source loops. Some
messages have associated buttons that highlight sections of the selected loop in the
Source View window.

Other Views

The views in this section are launched from the Views menu in the main menu bar of the
Parallel Analyzer View. All of the views discussed in this section contain the following
in their menu bars:

Admin menu Contains a single “Close” command that closes the corresponding view

Help menu Provides access to the online help system (see “Help Menu” on page 82
for an explanation of the commands in this menu)

Parallelization Control View

The Parallelization Control View shows parallelization controls (directives and their
clauses), where applicable, and all the variables referenced in the selected loop, PCF
construct, or routine. It can be opened from one of the following:

• The Views menus, which gives basic information about the loop (see “Views Menu”
on page 75).

• The Loop parallelization controls option menu when ‘‘C$DOACROSS...’’ or
‘‘C$PAR PDO...’’ is selected. This provides controls for clauses you can append to
these directives.

Figure 4-21 shows the view when it is launched from the Views menu with the loop
status option menu set to “Default”; this is the display for loops without directives.

98

Chapter 4: Parallel Analyzer View Reference

Features that appear when the view is opened from the loop parallelization controls
option menu when ‘‘C$DOACROSS...’’ or ‘‘C$PAR PDO...’’ is selected are discussed in
the following:

• “Adding C$DOACROSS... or C$PAR PDO... Clauses” on page 99.

• “Parallelization Control View MP Scheduling Option Menu: Clauses for One Loop”
on page 103

• “Parallelization Control View Variable List: Option Menus” on page 103

Figure 4-21 Parallelization Control View Without Applicable Directive

Common Features of the Parallelization Control View

Independent of where you are when open the Parallelization Control View, these
elements appear in the window (see Figure 4-21):

Admin menu Contains only one selection, “Close.”

Selected loop Contains the Olid of the loop, and the inforation about the loop from the
Loop-ID and Variable columns of the loop information display.

Directive Information
If a directive is applicable to the loop, lists directive, clauses, and
parameter values (see Figure 4-22 and Figure 4-23).

Other Views

99

Variables Referenced list
The listing has two icons for each variable; they allow you to highlight
the variable in the Source View and to determine the variable’s
read/write status; see “Icon Legend” on page 110 (or pull down the Icon
Legend from the Admin menu in the Parallel Analyzer View) for an
explanation of these icons.

For discussion of added option menus that appear if the view is opened
from the loop parallelization controls option menu when
‘‘C$DOACROSS...’’ or ‘‘C$PAR PDO...’’ is selected, see “Parallelization
Control View Variable List: Option Menus” on page 103.

Add Variable button
Located at the bottom of the window frame, this button allows you to
add new variables to a loop.

“List to add” text field
Located at the bottom of the window frame, this field allows you to
indicate the variables you wish to add to the loop. You may enter
multiple variables, with each variable name separated by a space or
comma.

Adding C$DOACROSS... or C$PAR PDO... Clauses

Fields that allow you to specify clauses for C$DOACROSS or C$PAR PDO directives
appear in addition to the fields described in “Common Features of the Parallelization
Control View” on page 98, if you open the Parallelization Control View from the loop
parallelization controls option menu when either ‘‘C$DOACROSS...’’ or ‘‘C$PAR PDO...’’
is selected (see Figure 4-22 and Figure 4-23).

Most of the clauses are the same for these two modes of access. However, notice that in
the upper portions of the windows, Figure 4-22 and Figure 4-23 have one unique clause
that does not appear in the other figure: “Condition for parallelization” appears when
you open the view from “C$DOACROSS...” (Figure 4-22) and “Synchronization at end
of construct” when you open from “C$PAR PDO...” (Figure 4-23).

100

Chapter 4: Parallel Analyzer View Reference

Figure 4-22 C$DOACROSS Parallelization Control View

Selected loop

Parallelized condition

MP scheduling option menu

List of variables in the loop

Read/write status
Variable type
Highlighting button

Variable name

MP scheduling chunk
size input field

input field

Loop parallelization
status option menu

Clauses and parameter fields

Other Views

101

Figure 4-23 C$PAR PDO Parallelization Control View

Selected loop

MP scheduling option menu

List of variables in the loop

Read/write status
Variable type
Highlighting button

Variable name

MP scheduling chunk size input field

Construct Synchronization menu

Loop parallelization
status option menu

Clauses and parameter fields

102

Chapter 4: Parallel Analyzer View Reference

These are the fields that appear in addition to those discussed in “Common Features of
the Parallelization Control View” on page 98:

“Condition for parallelization” text field (“C$DOACROSS...” only)
Allows you to enter a Fortran conditional statement (for example, NSIZE

.GT. 83). This statement determines the circumstances under which the
loop will be parallelized. The upper right corner of the field changes
when you type in the field. Your entry must be syntactically correct; it is
not checked.

MP Scheduling menu
Allows you to alter a loop’s scheduling scheme by changing the
MP_SCHEDTYPE clause. See “Parallelization Control View MP
Scheduling Option Menu: Clauses for One Loop” on page 103 for
further information.

“MP chunk size” text field
Allows you to set the CHUNK size for the scheduling scheme you select.
For further information, see “MP Scheduling Chunk Size Field” on
page 95.

Synchronization Construct menu (“C$PAR PDO...” only)
Allows you to set the C$PAR END PDO directive at the end of the
construct to either “Wait” or “No Wait.”

AFFINITY Allows you to specify the parameters for the affinity scheduling clause.

There are two types of affinity scheduling (for more details and syntax,
see Chapter 6 of the MIPSpro Fortran 77 Programmer’s Guide):

• Data affinity scheduling, which assigns loop iterations to processors
 according to data distribution.

• Thread affinity scheduling, which assigns loop iterations to
 designated processors.

NEST Allows you to specify parameters in this clause for concurrent execution
of nested loops. Recall that you can use the NEST clause to parallelize
nested loops only when there is no code between either the opening DO
statements or the closing ENDDO statements . For more details and
syntax, see Chapter 6 of the MIPSpro Fortran 77 Programmer’s Guide.

ONTO Allows you to specify parameters for this clause to determine explicitly
how processors are assigned to array variables or loop iteration
variables. For more details and syntax, see Chapter 6 of the MIPSpro
Fortran 77 Programmer’s Guide.

Other Views

103

Parallelization Control View MP Scheduling Option Menu: Clauses for One Loop

The Parallelization Control View contains an MP scheduling option menu if it is opened
from the loop parallelization controls option menu with either ‘‘C$DOACROSS...’’ or
‘‘C$PAR PDO...’’ selected.

The options that appear have the same names as those for the MP scheduling options in
the loop information display, discussed in “MP Scheduling Option Menu: Directives for
All Loops” on page 94. However, the option menu in the parallelization control view
affects the MP_SCHEDTYPE and CHUNK clauses in the C$DOACROSS directive, and
so affects only the currently selected loop. Recall that the MP scheduling option menu in
the loop information display affects the placement of the C$MP_SCHETYPE and
C$CHUNK directives and thus all subsequent loops.

Except for this difference in scope, the effects of both option menus are the same; for a
description, see “MP Scheduling Option Menu: Directives for All Loops” on page 94. For
more information, see Chapter 5 in the MIPSpro Fortran 77 Programmer’s Guide.

Parallelization Control View Variable List: Option Menus

If the Parallelization Control View is opened from the loop parallelization controls option
menu when either ‘‘C$DOACROSS...’’ or ‘‘C$PAR PDO...’’ is selected, each variable
listed in the lower portion of the view appears with an option menu. The menu allows
you to append a clause to the directive, allowing you to control how the processors
manage the variable. It is an addition to the highlight and read/write icons discussed in
“Common Features of the Parallelization Control View” on page 98. The variable option
menu is between the highlight button and the read/write icon.

Note: The highlight button may not indicate in the Source View all the occurrences
relevant to a variable subject to a PCF directive; you may need to select the entire parallel
region in which the variable occurs.

104

Chapter 4: Parallel Analyzer View Reference

Depending on which directive is relevant, the menus are as follows:

• If the view is opened from the loop parallelization controls option menu when
‘‘C$DOACROSS...’’ is selected, these are the options:

Default Uses the control established by the compiler.

Shared One copy of the variable is used by all threads of the MP process.

Local Each processor has its own copy of the variable.

Last-local Similar to Local, except the value of the variable after the loop is as
the logically last iteration would have left it.

Reduction A sum, product, min, or max computation of the variable can be
done partially in each thread and then combined afterwards.

• If the view is opened from the loop parallelization controls option menu when
‘‘C$PAR PDO...’’ is selected, these are the options:

Region-default Uses the control established by the compiler for the parallel region.

Local Each processor has its own copy of the variable.

Last-local Similar to Local, except the value of the variable after the loop is as
the logically last iteration would have left it.

Parallelization Control View Variable List: Storage Labeling

In parantheses after each variable name in the list of variables is a word indicating the
storage class of the variable. There are three possiblities:

Automatic The variable is local to the routine, and is allocated on the stack.

Common The variable is in a common block.

Reference The variable is a formal argument, or dummy variable, local to the
subroutine.

Other Views

105

Transformed Loops View

The Transformed Loops View contains information about how a loop selected from the
loop list display is rewritten by the compiler into one or more transformed loops (see
Figure 4-24).

To open this view, pull down the Views menu of the Parallel Analyzer View and choose
“Transformed Loops View” (see “Views Menu” on page 75).

Figure 4-24 Transformed Loops View

Loop identifying information appears on the first line below the window menu, and
below that is an indication of how many transformed loops were created.

Information block
for one loop

106

Chapter 4: Parallel Analyzer View Reference

Each transformed loop is displayed in its own section of the Transformed Loops View in
an information block.

• The first line in each block for contains:

– a parallelization status icon

– a highlighting button (if clicked, highlights the transformed loop in the
Transformed Source window and in the original loop in the Source View)

– the Olid number of the transformed loop

• The next line describes the transformed loop, providing information such as the
following:

– whether it is a primary loop or secondary loop, that is, directly transformed from
the selected original loop or transformed from a different original loop, but
incorporating some code from the selected original loop

– parallelization state

– whether it is an ordinary loop or interchanged loop

– its nesting level

• The last line in the loop’s information block displays the location of the loop in the
transformed source.

Any messages generated by the compiler are below the loop information blocks. To the
left of the message lines are highlight buttons, and left-clicking them highlights in the
Source View the part of the original source that relates to the message. Often it is the first
line of the original loop that is highlighted, since the message refers to the entire loop.

PFA Analysis Parameters View

If you compile with o32, you can use the PFA Analysis Parameters View, which contains
a list of PFA execution parameters accompanied by fields into which you can enter new
values. If you compile with n32 or n64, these parameters have no effect and this view is
not useful.

Other Views

107

To open the PFA Analysis Parameters View, choose it from the View menu in the main
window (see Figure 4-24).

When you update a source file, any PFA parameters you alter are changed for that file
(see Figure 4-25). When you change a parameter, the upper right corner of the field
window “turns down,” as discussed in “MP Scheduling Chunk Size Field” on page 95.

Figure 4-25 PFA Analysis Parameters View

A full explanation of the PFA parameters listed in this view can be found in Chapter 4,
“Customizing PFA Execution,” in the POWER Fortran Accelerator User’s Guide.

Changed-entry
indicator

Loop description

value of
parameter

Numeric input
field with

108

Chapter 4: Parallel Analyzer View Reference

Subroutines and Files View

The Subroutines and Files View contains a list from the file(s) in the current session of the
Parallel Analyzer View (see Figure 4-26). Below each filename in the list is an indented
list of the Fortran subroutines it contains. Each item in the list is accompanied by icons to
indicate file or subroutine status:

• A green check mark appears to the left of the file or subroutine name if the file has
been scanned correctly or the subroutine has no errors.

• A red plus sign is above the green check mark shows if any changes have been
made to loops in the file using the Parallel Analyzer View.

• A red international “not” symbol replaces the check mark if an error occurred
because a file could not be scanned or a subroutine had errors.

Figure 4-26 Subroutines and Files View

Search field

File
line

Subroutine
line

Other Views

109

The Search field in the Parallel Analyzer View uses the subroutine and file names listed
in the Subroutines and Files View as a menu for search targets; see “Loop List Search
Field” on page 86.

You can select items in the list for two purposes:

• To save changes to a selected file: click the filename and use the Update menu at the
top of the Parallel Analyzer View main window to choose the option “Update
Selected File” (see “Update Menu” on page 80).

• To select a file or subroutine for loop list filtering (see “Filtering Option Menu” on
page 88): double-click on it. The selected name appears in the filtering text field; if
the item is appropriate for the selected filtering option, the loop list is rescanned.

At the bottom of the window is a Search field, which you can use to search the list of files
and subroutines.

Source View and Transformed Source Windows

The Source View window and the Transformed Source window together present views
of the source code before and after compiler optimization (see Figure 4-27). The two
windows use the WorkShop Source View interface.

Both the Source View and Transformed Source windows contain bracket annotations in
the left margin that mark the location and nesting level of each loop in the source file.
Clicking on a loop bracket to the left of the code chooses and highlights the
corresponding loop.

In the Transformed Source window, an indicator bar (vertical line in a different color)
indicates each loop that was transformed from the selected original loop.

If the source windows are invoked from a session linked to the WorkShop Performance
Analyzer (see “Launch Tool Submenu” on page 71), any displayed sources files known
to the Performance Analyzer are annotated with performance data.

110

Chapter 4: Parallel Analyzer View Reference

Figure 4-27 Original and Transformed Loop Source Windows

Icon Legend

The Icon Legend window is a key to the meanings of the icons that appear in the Parallel
Analyzer View, the Transformed Loops View, the Subroutines and Files View, and
Custom DOACROSS Dialog box. See Figure 4-28.

Original loop

Colored bars indicate loops
transformed from selected loop

First transformed
loop is highlighted

Icon Legend

111

Figure 4-28 Parallelization Icon Legend

113

 Index

A

Add Assertion submenu, 79
Add Directive submenu, 79
Add File command, 76
Add Files from Executable command, 77
Add Files from Fileset command, 77
adding an assertion, 46
adjustment button, resize loop list display, 12, 84
Admin menu, Parallel Analyzer View, 69
AFFINITY, 102
analysis files, xiii
assertions, 37, 43, 96

adding from Operations menu, 77
adding from Parallelization Controls menu, 91
deleting, 48

B

brackets
colors, 17
loop, 26
source windows and, 109

bugs, reporting, 86
Build Manager, 48

launching, 72
button

adjust loop list display, 84
highlighting, 90
Next Loop, 89
Previous Loop, 89
Source, 89
Transformed Source, 89

C

C*$*ASSERT_CONCURRENT CALL, 78
C*$*ASSERT DO (CONCURRENT), 93
C*$*ASSERT DO (SERIAL), 93
C*$*ASSERT DO PREFER (CONCURRENT), 93
C*$*ASSERT DO PREFER (SERIAL), 93
C*$*ASSERT PERMUTATION, 78
C*$*CONCURRENTIZE, 78
C*$*NOCONCURRENTIZE, 78
C*$*PREFETCH_REF, 78
caliper setting in Performance Analyzer, 84
C$CHUNK, 94, 95
C$COPYIN, 78
C$DISTRIBUTE, 56, 78
C$DISTRIBUTE_RESHAPE, 57
C$DOACROSS, 56, 93

clauses, 99
NEST, 57

C$DOACROSS..., 43, 92
C$DYNAMIC, 78
changed-entry indicator, 95
check mark, 85
CHUNK, 102
CHUNK size, 95, 103
closing all windows, Project menu, “Exit”, 73
C$MP_SCHEDTYPE, 94
colors, brackets and icons, 17
command line options, 4
compiling for Parallel Analyzer View, 3

114

Index

concurrent call assertion, 46
conditional statement input field, DOACROSS, 102
conventions, font, for manual, xv
C$PAR END PDO, 102
C$PAR PDO, 52, 93

clauses, 99
C$PAR PDO..., 92
C$REDISTRIBUTE, 78
Custom DOACROSS Dialog, 29
cvpav

compiling for, 3
opening editor, 49, 81
starting, 4

D

data dependence, 36
Default, 92

C$MP SCHEDTYPE mode, 94
DOACROSS MP_SCHEDTYPE, 103

default directory for file writing, 69
Delete, 96
Delete All Files command, 76
Delete Selected File command, 76
deleting an assertion, 48
demonstration directory, 6
directives, 43, 96

adding from MP scheduling option menu, 94
adding from Operations menu, 77
adding from Parallelization Controls menu, 91
deleting, 48

DOACROSS, custom, 43
documentation, recommended reading, xiv
doubly nested loops, 41
Dynamic

C$MP SCHEDTYPE mode, 94
DOACROSS MP_SCHEDTYPE, 103

E

Exit command
Admin menu, 70
Project menu, 73

exiting, 65
explicitly parallelized loop, 29

F

File, 10
filtering text field, 16

file
update, 48

fileset, Add Files from Fileset command, 77
Fileset menu, 76
Filter By File, 88
Filter By Subroutine, 88
filtering

by file, 16
by parallelization state, 14
option menu, 88

Subroutines and Files View and, 109
option menus, 13

font conventions, for manual, xv
Force Parallel, 92
Force Serial, 92

G

gdiff, 49
Guided-Self, 103

Scheduling, C$MP SCHEDTYPE mode, 94

115

Index

H

Help menu, Parallel Analyzer View, 82
highlighting a loop, 86
highlighting button, 24

Directives, 90
Loop parallelization status, 90

I

Iconify command
Admin menu, 70
Project submenu, 73

Icon Legend
command, 70
dialog box, 110

icons, 10
check mark, 21
description, 110
parallelization, 85

Index... command, 82
indicator bar, 109
input-output operation, 39
installation, 1
interchanged loops, 41
Interleaved

C$MP SCHEDTYPE mode, 94
DOACROSS MP_SCHEDTYPE, 103

K

Keep, 96

L

Last-local, Parallelization Control View
C$DOACROSS LASTLOCAL, 104
C$PDO LASTLOCAL, 104

Launch Tool submenu, 71
light bulb button, 24
line highlighting, 36, 38
Lines, 10
Lines, loop list heading, 86
linpack, 59
Local, Parallelization Control View

C$DOACROSS LOCAL, 104
C$PDO LOCAL, 104

loop
complex, 41
detailed information, 17
examining simple, 28
information blocks, 24
information display, 23, 90
ordinary or interchanged, 106
primary or secondary, 106
status, 85
with obstacles to parallelization, 31

Loop-ID, 10, 86
Loop List

filtering, 13
sorting, 13

loop list display, 10, 84
column headings, 85

Loop Status Menu, 43
loop status option menu, 92

116

Index

M

main window, 7
menu bar, 68

make clean, 6, 58, 65
memory, 1
Messages, 97

transformed loop, 106
messages

obstacles to parallelization, 31
modifying source files, 42
MP_SCHEDTYPE, 102
MP scheduling chunk size field, 95
MP scheduling option menu, 94

Custom DOACROSS, 103

N

NEST, 102
Nest, 10, 85
nested loops, 41

transformed, 106
No Filtering, 88

O

obstacles to parallelization, 31
Obstacle to Parallelization, 95
Olid, 10

loop list heading, 86
On Context command, 82
ONTO, 102
Operations menu, 77

option menu
assertions and directives, 96
filtering, 88
loop status, 92
MP scheduling, 94
show loop types, 87
variable type, Parallelization Control View

DOACROSS, 103
original loop ID. SeeOlid
Original Source window, 26

P

Paralellization Controls, 91
Parallel Analyzer, launching, 72
Parallel Analyzer View

menu bar, 68
Source View, 17

parallelization
controls, 23
status option menu, 14

Parallelization Control View
brought up by a highlight button, 56
command, 75
DOACROSS variable option menu, 103
loop status option menu and, 92

Parallelization Icon Legend, 110
Perf. Cost. See performance
performance, 1

cost per loop, 85
data, 109
information line, 23

Performance Analyzer, 59
launching, 72
performance experiment line, 84
source windows and, 109

117

Index

performance experiment demo, 60
performance experiment line, 84
permutation vector, 40
PFA Analysis Parameters View, 106

command, 75
plus sign, 85
Prefer Parallel, 92
Prefer Serial, 92
premature exit, 39
primary loop, 106
Project submenu, 73
Project View command, 73

R

Raise command, 70, 73
recurrence, 36
red plus sign, 85
reduction, 38
Reduction, Parallelization Control View,

C$DOACROSS REDUCTION, 104
Remap Paths... command, 73
Rescan All Files command, 76
resize loop list display, 12, 84
Reverse, 96
round-off, 38
Run-time

C$MP SCHEDTYPE mode, 94
DOACROSS MP_SCHEDTYPE, 103

S

sample session
analyzing loops, 5
Performance Analyzer, 59

Save As Text command, 69
Search field

Loop List, 46, 86
Subroutines and Files View, 109

searching source code, 18
secondary loop, 106
selecting a loop, 21, 86
Shared, Parallelization Control View C$DOACROSS

SHARE, 104
show loop types option menu, 87
sorting

by performance cost, 64, 85
option menu, 87

Source button, 89
source files

manipulating fileset, 76
modifying, 42
undoing changes, 77
updating, 48, 80
viewing, 17

Source View window, 109
opening, 89

Static (or Simple)
C$MP SCHEDTYPE mode, 94
DOACROSS MP_SCHEDTYPE, 103

Static Analyzer, launching, 72
status line, 84
storage classes for variables, 104
Subroutine, 10
Subroutine, loop list heading, 86
Subroutine and Files View, 16

keyboard shortcut, 16
subroutine calls, 40
Subroutines and Files View, 108

command, 75
Delete Selected File command and, 76
filtering text field and, 88

118

Index

T

Technical Assistance Center, 2
Text.out, default file name, 69
token highlighting, 38
transformed

loop, 26, 106
selecting, 26

source files, viewing, 19
Transformed Loops View, 105

command, 75
using, 25

Transformed Source, 26
window, opening, 89

Transformed Source button, 89
Transformed Source window, 109
turned-down corner of field, 95

U

Undo All Changes command, 79
updating files, 48, 49

V

Variable, 10
storage class, 104

Variable, loop index, 86
variable highlighting, 36
vi, 49
viewing source, 17
Views menu, 75

other views, 97

W

windows, closing all, Project menu, “Exit”, 73
WorkShop, 59

Debugger, launching, 72

X

.Xdefaults, 49, 81
X resources, 4
xwsh, 49, 81

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2603-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

