
Developer Magic™: WorkShop Pro MPF
User’s Guide

Document Number 007-2603-003

Developer Magic™: WorkShop Pro MPF User’s Guide
Document Number 007-2603-003

CONTRIBUTORS

Written by Marty Itzkowitz, Robert M. Reimann, Carol Geary,
Douglas B. O’Morain, and Leif Wennerberg

Revised by Don Moccia
Illustrated by Martha Levine
Production by Kirsten Pekarek
Engineering contributions by Zaineb Asaf and Marty Itzkowitz
St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© Copyright 1993-1995, 1997, 1998 Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics, the Silicon Graphics logo, IRIS, and IRIX are registered trademarks,
and Developer Magic and Origin2000 are trademarks, of Silicon Graphics, Inc.
MIPSpro is a trademark of MIPS Technologies, Inc.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company, Ltd.

iii

Contents

List of Examples ix

List of Figures xi

List of Tables xv

About This Guide xvii
What This Guide Contains xviii
What You Should Know Before Reading This Guide xviii
Recommended Reading xix
Conventions xx

1. Getting Started With the Parallel Analyzer View 21
Setting Up Your System 21

Required Software 21
Verifying Currently Installed Software 22
Installing WorkShop Pro MPF 22

Running the Parallel Analyzer View: General Features 23
Compiling a Program for Parallel Analyzer View 23

Generating Other Reports 24
OpenMP and PCF Directive Support 24

Reading Files With the Parallel Analyzer View 24
Tutorials 25

iv

Contents

2. Examining Loops, Modifying Source Code 27
Setting Up the omp_demo.f Sample Session 28
Compiling the Sample Code 28
Starting the Parallel Analyzer View Tutorial 29

Restarting the Tutorial 29
Viewing the Parallel Analyzer View Main Window 30

Using the Loop List Display 32
Loop List Information Fields 32
Loop List Icons: The Icon Legend 32
Resizing the Loop List Display 34
Searching the Loop List 34

Sorting and Filtering the Loop List 34
Sorting the Loop List 35
Filtering the Loop List 35

Filtering the Loop List by Parallelization State 36
Filtering the Loop List by Loop Origin 37
Filtering by Loop Origin: Details for Sorting by Subroutine 38

Viewing Detailed Information About Code and Loops 39
Viewing Original and Transformed Source 39

Viewing Original Source 39
Viewing Transformed Source 41

Navigating the Loop List 42
Selecting a Loop for Analysis 42
Using the Loop Information Display 45

Loop Parallelization Controls 45
Additional Loop Information and Controls 46

Using the Transformed Loops View 47
Transformed Loops View Description 47
Selecting Transformed Loops 48

Contents

v

Examples of Simple Loops 50
Simple Parallel Loop 50
Serial Loop 51
Explicitly Parallelized Loop 51
Fused Loops 53
Loop That Is Eliminated 54

Examining Loops With Obstacles to Parallelization 54
Carried Data Dependence 55

Unparallelizable Carried Data Dependence 55
Parallelizable Carried Data Dependence 56
Multi-line Data Dependence 57
Reductions 58

Input/Output Operations 59
Unstructured Control Flow 59
Subroutine Calls 60

Unparallelizable Loop With a Subroutine Call 60
Parallelizable Loop With a Subroutine Call 60

Permutation Vectors 61
Unparallelizable Loop With a Permutation Vector 61
Parallelizable Loop With a Permutation Vector 61

Obstacles to Parallelization Messages 62
Examining Nested Loops 66

Doubly Nested Loop 66
Interchanged Doubly Nested Loop 66
Triply Nested Loop With an Interchange 67

vi

Contents

Modifying Source Files and Compiling 68
Requesting Changes 68

Adding C$OMP PARALLEL DO Directives and Clauses 69
Adding New Assertions or Directives With the Operations Menu 72
Deleting Assertions or Directives 74

Applying Requested Changes 74
Viewing Changes With gdiff 75
Modifying the Source File Further 76
Updating the Source File 76

Examining the Modified Source File 77
Added Assertion 77
Deleted Assertion 78

Examples Using OpenMP Directives 78
Explicitly Parallelized Loops: C$OMP DO 79
Loops With Barriers: C$OMP BARRIER 81
Critical Sections: C$OMP CRITICAL 83
Single-Process Sections: C$OMP SINGLE 83
Parallel Sections: C$OMP SECTIONS 84

Examples Using Data Distribution Directives 84
Distributed Arrays: C$SGI DISTRIBUTE 85
Distributed and Reshaped Arrays: C$SGI DISTRIBUTE_RESHAPE 86
Prefetching Data From Cache: C*$* PREFETCH_REF 88

Exiting From the omp_demo.f Sample Session 88

3. Using WorkShop With Parallel Analyzer View 89
Setting Up the linpackd Sample Session 89

Starting the Parallel Analyzer View 90
Starting the Performance Analyzer 90

Using the Parallel Analyzer With Performance Data 92
Effect of Performance Data on the Source View 93
Sorting the Loop List by Performance Cost 94

Exiting From the linpackd Sample Session 96

Contents

vii

4. Parallel Analyzer View Reference 97
Parallel Analyzer View Main Window 98
Parallel Analyzer View Menu Bar 100

Admin Menu 101
Icon Legend… Option 103
Launch Tool Submenu 104
Project Submenu 105

Views Menu 107
Fileset Menu 108
Update Menu 110
Configuration Menu 111
Operations Menu 112
Help Menu 116
Keyboard Shortcuts 117

Loop List Display 118
Resizing the Loop List 118
Status and Performance Experiment Lines 118
Loop List 119

Loop Display Controls 120
Search Loop List Field 121
Sort Option Button 121
Show Loop Types Option Button 122
Filtering Option Button 123
Loop Display Buttons 124

Loop Information Display 125
Highlight Buttons 125
Loop Parallelization Controls in the Loop Information Display 126

Loop Parallelization Status Option Button 127
MP Scheduling Option Button: Directives for All Loops 129
MP Chunk Size Field 130

Obstacles to Parallelization Information Block 130
Assertions and Directives Information Blocks 131
Compiler Messages 132

viii

Contents

Views Menu Options 132
Parallelization Control View 132

Common Features of the Parallelization Control View 134
C$OMP PARALLEL DO and C$OMP DO Directive Information 134
MP Scheduling Option Button: Clauses for One Loop 138
Variable List Option Buttons 138
Variable List Storage Labeling 139

Transformed Loops View 140
PFA Analysis Parameters View 141
Subroutines and Files View 142

Loop Display Control Button Views 144
Source View and Parallel Analyzer View - Transformed Source 144

A. Examining Loops Containing PCF Directives 147
Setting Up the dummy.f Sample Session 147
Compiling the Sample Code 148
Starting the Parallel Analyzer View 148
Examples Using PCF Directives 149

Explicitly Parallelized Loops: C$PAR PDO 149
Loops With Barriers: C$PAR BARRIER 151
Critical Sections: C$PAR CRITICAL SECTION 153
Single-Process Sections: C$PAR SINGLE PROCESS 153
Parallel Sections: C$PAR PSECTIONS 154

Exiting From the dummy.f Sample Session 154

 Index 155

ix

List of Examples

Example 2-1 Simple Parallel Loop 50
Example 2-2 Serial Loop 51
Example 2-3 Fused Loop 53
Example 2-4 Eliminated Loop 54
Example 2-5 Unparallelizable Carried Data Dependence 55
Example 2-6 Parallelizable Carried Data Dependence 56
Example 2-7 Multi-line Data Dependence 57
Example 2-8 Reduction 58
Example 2-9 Input/Output Operation 59
Example 2-10 Unstructured Control Flow 59
Example 2-11 Unparallelizable Loop With Subroutine Call 60
Example 2-12 Parallelizable Loop With Subroutine Call 60
Example 2-13 Unparallelizable Loop With Permutation Vector 61
Example 2-14 Parallelizable Loop With Permutation Vector 61
Example 2-15 Doubly Nested Loop 66
Example 2-16 Interchanged Doubly Nested Loop 67
Example 2-17 Triply Nested Loop With Interchange 67
Example 2-18 Explicitly Parallelized Loop Using C$OMP DO 79
Example 2-19 Loops Using C$OMP BARRIER 81
Example 2-20 Critical Section Using C$OMP CRITICAL 83
Example 2-21 Single-Process Section Using C$OMP SINGLE 83
Example 2-22 Parallel Sections Using C$OMP SECTIONS 84
Example 2-23 Distributed Array Using C$SGI DISTRIBUTE 86
Example 2-24 Distributed and Reshaped Array Using

C$SGI DISTRIBUTE_RESHAPE 87

x

List of Examples

Example 2-25 Prefetching Data From Cache Using C*$* PREFETCH_REF 88
Example A-1 Explicitly Parallelized Loop Using C$PAR PDO 149
Example A-2 Loops Using C$PAR BARRIER 151
Example A-3 Critical Section Using C$PAR CRITICAL SECTION 153
Example A-4 Single-Process Section Using C$PAR SINGLE PROCESS 153
Example A-5 Parallel Section Using C$PAR PSECTIONS 154

xi

List of Figures

Figure 2-1 Parallel Analyzer View Main Window 31
Figure 2-2 The Icon Legend… Window 33
Figure 2-3 Loop Display Controls 34
Figure 2-4 Show Loop Types Option Button 36
Figure 2-5 Filtering Option Button and Text Field 37
Figure 2-6 Subroutines and Files View 38
Figure 2-7 Filtering Option Button 38
Figure 2-8 Source View 40
Figure 2-9 Transformed Source Window 41
Figure 2-10 Global Effects of Selecting a Loop 44
Figure 2-11 Loop Information Display Without Performance Data 45
Figure 2-12 Highlight Button 46
Figure 2-13 Transformed Loops View for Loop Olid 2 47
Figure 2-14 Transformed Loops in Source Windows 49
Figure 2-15 Explicitly Parallelized Loop 52
Figure 2-16 Source View of C$OMP PARALLEL DO Directive 53
Figure 2-17 Obstacles to Parallelization 56
Figure 2-18 Parallelizable Data Dependence 57
Figure 2-19 Highlighting on Multiple Lines 58
Figure 2-20 Requesting a C$OMP PARALLEL DO Directive 69
Figure 2-21 Parallelization Control View After Choosing

C$OMP PARALLEL DO… 71
Figure 2-22 Effect of Changes on the Loop List 72
Figure 2-23 Adding an Assertion 73
Figure 2-24 Deleting an Assertion 74
Figure 2-25 Run gdiff After Update 75
Figure 2-26 Setting the Checkbox for Run Editor After Update 76

xii

List of Figures

Figure 2-27 Build View of Build Manager 77
Figure 2-28 Loops Explicitly Parallelized Using C$OMP DO 80
Figure 2-29 Loops Using C$OMP BARRIER Synchronization 82
Figure 2-30 C$SGI DISTRIBUTE Directive and Text Field 85
Figure 3-1 Starting the Performance Analyzer 91
Figure 3-2 Parallel Analyzer View — Performance Data Loaded 92
Figure 3-3 Source View for Performance Experiment 93
Figure 3-4 Sort by Performance Cost 94
Figure 3-5 Loop Information Display With Performance Data 95
Figure 4-1 Parallel Analyzer View Main Window 99
Figure 4-2 Parallel Analyzer View Menu Bar and Menus 100
Figure 4-3 Admin Menu 101
Figure 4-4 Output Text File Selection Dialog 102
Figure 4-5 Parallelization Icon Legend (Resized) 103
Figure 4-6 Launch Tool Submenu 104
Figure 4-7 Project Submenu and Windows 106
Figure 4-8 Views Menu 107
Figure 4-9 Fileset Menu 108
Figure 4-10 Update Menu 110
Figure 4-11 Configuration Menu 111
Figure 4-12 Operations Menu and Submenus 112
Figure 4-13 Help Menu 116
Figure 4-14 Loop List Display 118
Figure 4-15 Loop List with Column Headings 119
Figure 4-16 Loop Display Controls 120
Figure 4-17 Sort Option Button 121
Figure 4-18 Show Loop Types Option Button 122
Figure 4-19 Filtering Option Button 123
Figure 4-20 Loop Information Display 125
Figure 4-21 Loop Parallelization Controls 126
Figure 4-22 MP Chunk Size Field Changed 130
Figure 4-23 Obstacles to Parallelization Block 131

List of Figures

xiii

Figure 4-24 Assertion Information Block and Options
(n32 and n64 Compilation) 131

Figure 4-25 Parallelization Control View 133
Figure 4-26 Parallelization Control View With C$OMP PARALLEL

DO Directive 135
Figure 4-27 Parallelization Control View With C$OMP DO Directive 136
Figure 4-28 Transformed Loops View 140
Figure 4-29 PFA Analysis Parameters View 142
Figure 4-30 Subroutines and Files View 143
Figure 4-31 Original and Transformed Source Windows 145
Figure A-1 Explicitly Parallelized Loops Using C$PAR PDO 150
Figure A-2 Loops Using C$PAR BARRIER Synchronization 152

xv

List of Tables

Table 2-1 Major Obstacles to Parallelization Messages 62
Table 2-2 Data Dependence Obstacles to Parallelization 64
Table 4-1 Add Assertion and Add OMP Directive Menu Options 113
Table 4-2 Add OMP Section Menu Options 116
Table 4-3 Parallel Analyzer View Keyboard Shortcuts 117
Table 4-4 Assertions and Directives Accessed From the Loop

Parallelization Controls 128

xvii

About This Guide

Developer Magic: WorkShop Pro MPF is a companion product to the Developer Magic:
WorkShop suite of computer-aided software engineering tools, which use a graphical
interface to help you construct, analyze, and debug software applications.

The WorkShop Pro MPF product helps you better understand the structure and
parallelization of a multiprocessing Fortran 77 application by providing an interactive,
visual comparison of the original source with transformed, parallelized code.

The main program of WorkShop Pro MPF is the Parallel Analyzer View, cvpav, which
reads analysis files generated by the MIPSpro Auto-Parallelizing Fortran 77 compiler. It
displays editable parameters for each DO loop found in the source files—parameters
that are easily customized and explored with the help of the Parallel Analyzer View’s
graphical interface.

The Parallel Analyzer View is integrated with WorkShop 2.0 (and later versions),
allowing you to examine a program’s loops in conjunction with a performance
experiment on either a single or multiprocessor run. When run in this mode, the source
displays are annotated with line-level performance data, and the list of loops may be
sorted in order of performance cost, allowing you to concentrate your attention on the
most compute-intensive loops.

xviii

About This Guide

What This Guide Contains

This guide presents the WorkShop Pro MPF Parallel Analyzer View from a task-oriented
perspective. This guide includes the following chapters:

• Chapter 1, “Getting Started With the Parallel Analyzer View,” tells you how to
install the WorkShop Pro MPF software and run the Parallel Analyzer View.

• Chapter 2, “Examining Loops, Modifying Source Code,” provides a tutorial session
that steps you through the Parallel Analyzer’s basic features using sample Fortran
code.

• Chapter 3, “Using WorkShop With Parallel Analyzer View,” provides a tutorial
session that analyzes the performance of LINPACK, a matrix manipulating
benchmark program.

• Chapter 4, “Parallel Analyzer View Reference,” describes in detail the graphical
user interface of the Parallel Analyzer View.

• Appendix A, “Examining Loops Containing PCF Directives,” repeats the section
“Examples Using OpenMP Directives” on page 78 using PCF instead of OpenMP
directives.

An index completes this guide.

What You Should Know Before Reading This Guide

This guide assumes that you are familiar with principles of Fortran programming and
multiprocessing.

About This Guide

xix

Recommended Reading

These books provide essential background for understanding the MIPSpro
parallelization options. They provide details about parallel programming, and the
directives and assertions you can manipulate with the Parallel Analyzer View:

• MIPSpro Compiling and Performance Tuning Guide (part no. 007-2360-007)

• MIPSpro Fortran 77 Programmer’s Guide (part no. 007-2361-006)

• MIPSpro Auto-Parallelizing Option Programmer’s Guide (part no. 007-3572-002)

• OpenMP Fortran Application Program Interface, Oct 1997 1.0. This document is
available through the OpenMP Architecture Review Board Web site at the following
URL: http://www.openmp.org/

The following manuals, available from Silicon Graphics, may provide useful
supplementary information and are sometimes referenced in this manual:

• Developer Magic: Debugger User’s Guide (part no. 007-2579-003)

• Developer Magic: Performance Analyzer User’s Guide (part no. 007-2581-003)

• Developer Magic: ProDev WorkShop Overview (part no. 007-2582-003)

• IRIX Admin: Software Installation and Licensing (part no. 007-1364-080)

• SpeedShop User’s Guide (part no. 007-3311-002)

The following book is also recommended:

• Practical Parallel Programming, by B.E. Bauer, Academic Press, 1992

xx

About This Guide

Conventions

These are the typographical conventions used in this guide:

• “>”—indicates a path through menus to a menu option. For example, “File > Open”
means “Under the File menu, choose Open.”

• Bold—Option flags, data types, functions, routines, directives, and keywords.

• Italics—Filenames, button names, variables, arrays, and IRIX commands.

• Regular—Menu and window names.

• Fixed-width—Code examples and screen display.

• Bold fixed-width—User input and nonprinting keys such as Ctrl+u.

21

Chapter 1

1. Getting Started With the Parallel Analyzer View

This chapter helps you get the WorkShop Pro MPF Parallel Analyzer View running on
your system. It contains the following sections:

• “Setting Up Your System” on page 21

• “Running the Parallel Analyzer View: General Features” on page 22

• “Tutorials” on page 25

Setting Up Your System

To install the WorkShop Pro MPF software, you should have at least 16 MB of memory;
32 MB improves overall performance.

Required Software

WorkShop Pro MPF requires the following software versions (or later):

• IRIX system software version 6.2

• MIPSpro Auto-Parallelizing Fortran 77, release 7.2.1

• ToolTalk 1.1

• WorkShop 2.0

• Developer Magic 1.1

22

Chapter 1: Getting Started With the Parallel Analyzer View

Verifying Currently Installed Software

To determine what software is installed on your system, enter the following at the shell
prompt:

% versions

If the items mentioned in this section are not installed, consult your sales representative
or (in the US) call the Silicon Graphics Technical Assistance Center at 1-(800)-800-4SGI.
To order additional memory, consult your sales representative or call 1-(800)-800-SGI1.

Installing WorkShop Pro MPF

If you have all the software and memory you need, you can install the Developer Magic:
WorkShop Pro MPF software.

• For general instructions about software installation, consult the man pages inst(1M)
and swmgr(1M), and IRIX Admin: Software Installation and Licensing.

• See also Developer Magic: WorkShop Pro MPF Release Notes for specific installation
instructions.

The executable is cvpav, which is installed in /usr/sbin.

Running the Parallel Analyzer View: General Features

The process of using the Parallel Analyzer View involves two steps:

1. Compiling a program with appropriate options

2. Reading the compiled files with Parallel Analyzer View

Running the Parallel Analyzer View: General Features

23

Compiling a Program for Parallel Analyzer View

Before starting the Parallel Analyzer View to analyze your Fortran source, you need to
run the Auto-Parallelizing Fortran 77 compiler with the appropriate options. For the
tutorials presented in subsequent chapters, Makefiles are provided. You can adapt these
to your specific source or enter the following command:

% f77 -apo keep -O3 sourcefile.f

The compiler generates its usual output files and an analysis file (sourcefile.anl), which the
Parallel Analyzer reads.

The command-line options have the following effects:

-apo keep Saves an *.anl file, which has necessary information for the Parallel
Analyzer View.

-O3 Sets the compiler for aggressive optimization. The optimization focuses
on maximizing code quality even if that requires extensive compile time
or relaxing language rules.

See the MIPSpro Fortran 77 Programmer’s Guide, MIPSpro Compiling and Performance
Tuning Guide, and the f77(1) man page for more information.

Note: cvpav assumes that the -apo keep option was used on each of the Fortran source
files named in an executable or fileset. If this is not the case, a warning message is posted,
and the unprocessed files are marked by an error icon within the Parallel Analyzer’s
Subroutines and Files View. (See “Subroutines and Files View” on page 142.)

Generating Other Reports

While they are not part of the Parallel Analyzer View, other parallelization reports can be
generated using the following command-line options:

-apo list Produces a .l file, a listing of those parts of the program that can run in
parallel and those that cannot.

-mplist Generates the equivalent parallelized program in a .w2f.f file.

These reports are text files that can be used for analysis. For more detailed information,
see MIPSpro Auto-Parallelizing Option Programmer’s Guide.

24

Chapter 1: Getting Started With the Parallel Analyzer View

OpenMP and PCF Directive Support

The MIPSpro Auto-Parallelizing Fortran 77 compiler supports OpenMP directives,
unless you are compiling with the -o32 option. If you put OpenMP directives in your o32
code, they are treated as comments rather than interpreted. For more information on
OpenMP directives, see the following:

• “Examples Using OpenMP Directives” on page 78

• The OpenMP Architecture Review Board Web site at the following URL:
http://www.openmp.org/

Although using OpenMP directives is recommended, MIPSpro Auto-Parallelizing
Fortran 77 still supports PCF directives. For information on analyzing loops containing
PCF directives see Appendix A, “Examining Loops Containing PCF Directives.”

Reading Files With the Parallel Analyzer View

You can run the Parallel Analyzer View on any of the following objects:

• a source file

• an executable

• a list of files

To run the Parallel Analyzer View for one of these cases, enter one of the following
commands:

% cvpav -f sourcefile.f

% cvpav -e executable

% cvpav -F fileset-file

cvpav reads information from all Fortran source files compiled into the application.

The Parallel Analyzer View has several other command line options, as well as several X
resources that you can set. See the man page cvpav(1) for more information.

Note: If you receive a message related to licensing when you start cvpav, refer to Chapter
7 in the WorkShop Pro MPF Release Notes. To access the notes: enter grelnotes through the
command line; choose Products > WorkShopMPF.

Tutorials

25

Tutorials

For a more detailed introduction to the Parallel Analyzer View, follow one of tutorials
provided with the product in the following chapters:

• Chapter 2, “Examining Loops, Modifying Source Code”

• Chapter 3, “Using WorkShop With Parallel Analyzer View”

• Appendix A, “Examining Loops Containing PCF Directives”

27

Chapter 2

2. Examining Loops, Modifying Source Code

This chapter presents an interactive sample session with the Parallel Analyzer View. The
session demonstrates basic features of the Parallel Analyzer View, and illustrates aspects
of parallelization and of the MIPSpro Auto-Parallelizing Fortran 77 compiler.
Specifically, the sample session analyzes demonstration code to illustrate the following:

• Displaying code and basic loop information; these topics are discussed in the first
sections of this chapter:

– “Setting Up the omp_demo.f Sample Session” on page 28

– “Starting the Parallel Analyzer View Tutorial” on page 29

– “Using the Loop List Display” on page 32

– “Sorting and Filtering the Loop List” on page 34

– “Viewing Detailed Information About Code and Loops” on page 39

• Examining specific loops, applying directives and assertions, and modifying and
recompiling; these topics are discussed in the later sections of the chapter:

– “Examples of Simple Loops” on page 50

– “Examining Loops With Obstacles to Parallelization” on page 54

– “Examining Nested Loops” on page 66

– “Modifying Source Files and Compiling” on page 68

– “Examples Using OpenMP Directives” on page 78

– “Examples Using Data Distribution Directives” on page 84

– “Exiting From the omp_demo.f Sample Session” on page 88

The topics are introduced in this chapter by going through the process of starting the
Parallel Analyzer View and stepping through the loops and routines in the sample code.
The chapter is most useful if you perform the operations as they are described.

For more details about the Parallel Analyzer View interface, see Chapter 4, “Parallel
Analyzer View Reference.”

28

Chapter 2: Examining Loops, Modifying Source Code

Setting Up the omp_demo.f Sample Session

To use the sample sessions discussed in this guide, note the following:

• /usr/demos/WorkShopMPF is the demonstration directory

• WorkShopMPF.sw.demos must be installed

The sample session discussed in this chapter uses the following source files in the
directory /usr/demos/WorkShopMPF/omp_tutorial:

• omp_demo.f_orig

• omp_dirs.f_orig

• omp_reshape.f_orig

• omp_dist.f_orig

The source files contain many DO loops, each of which exemplifies an aspect of the
parallelization process.

The directory /usr/demos/WorkShopMPF/omp_tutorial also includes Makefile to compile the
source files.

Compiling the Sample Code

Prepare for the session by opening a shell window and entering the following:

% cd /usr/demos/WorkShopMPF/omp_tutorial
% make

Starting the Parallel Analyzer View Tutorial

29

Doing this creates the following files:

• omp_demo.f: a copy of the demonstration program created by combining the *.f_orig
files, which you can view with the Parallel Analyzer View (or any text editor), and
print

• omp_demo.m: a transformed source file, which you can view with the Parallel
Analyzer View, and print

• omp_demo.l: a listing file

• omp_demo.anl: an analysis file used by the Parallel Analyzer View

For more information about these files, see the MIPSpro Auto-Parallelizing Option
Programmer’s Guide.

Starting the Parallel Analyzer View Tutorial

Once you have the appropriate files from the compiler, start the session by entering the
following command, which opens the main window of the Parallel Analyzer View
loaded with the sample file data (Figure 2-1):

% cvpav -f omp_demo.f

Note: If you receive a message related to licensing, refer to the WorkShop Pro MPF Release
Notes.

Restarting the Tutorial

If at any time during the tutorial you should want to restart from the beginning, do the
following:

• Quit the Parallel Analyzer View by choosing Admin > Exit from the Parallel
Analyzer View menu bar.

• Clean up the tutorial directory by entering the following command:

% make clean

This removes all of the generated files; you can begin again with the make command.

30

Chapter 2: Examining Loops, Modifying Source Code

Viewing the Parallel Analyzer View Main Window

The Parallel Analyzer View main window contains the following components, as shown
in Figure 2-1.

• Main menu bar, which includes the following menus:

– Admin

– Views

– Fileset

– Update

– Configuration

– Operations

– Help

• Loop list display, which consists of the following:

– Status information

– Performance experiment information

– Loop list

• Loop display controls, which are the following:

– Search editable text field

– Sort option button (Sort in Source Order)

– Show loop types option button (Show All Loop Types)

– Filtering option button (No Filtering)

– Source and Transformed Source control buttons

– Next Loop and Previous Loop navigation buttons

• Loop information display

Starting the Parallel Analyzer View Tutorial

31

Figure 2-1 Parallel Analyzer View Main Window

Loop
list
display

Loop
information
display

Loop display
controls

Main menu bar

32

Chapter 2: Examining Loops, Modifying Source Code

Using the Loop List Display

The loop list display summarizes a program’s structure and provides access to source
code. Each line in the loop list contains an icon and a sequence of information fields about
loops and routines in the program.

Loop List Information Fields

Each loop list entry contains the following fields:

• Icon: symbolizes the status of the subroutine or loop

• Nest: the nesting level for the loop

• Loop-ID: the Fortran description of the loop

• Variable: the loop index variable

• Subroutine: the subroutine where the loop is located in the source code

• Lines: lines in the source code in which the loop is located

• Olid: the original loop ID, an internal identifier for the loop created by the compiler

• File: the file where the loop is located in the source code

Loop List Icons: The Icon Legend

The icon at the start of each line summarizes briefly the following information:

• Whether the line refers to a subroutine

• Parallelization status of the loop

• OpenMP control structures

To understand the meaning of the various icons, choose Admin > Icon Legend…. (See
Figure 2-2.) To see examples of the various icons, scroll through the list of loops.

Close the Parallelization Icon Legend window by clicking the Close button in its lower
right corner.

Using the Loop List Display

33

Figure 2-2 The Icon Legend… Window

Loop parallelization icons

Variable usage icons

OpenMP/PCF control structure icons

Subroutine icons

Subroutines and Files View icons

34

Chapter 2: Examining Loops, Modifying Source Code

Resizing the Loop List Display

To resize the loop list display and provide more room in the main window for loop
information, use the adjustment button. The adjustment button is a small square below
the Previous Loop button and just above the vertical scroll bar on the right side of the loop
information display. (See Figure 4-14.) In many of the following figures, the loop list is
resized from its original configuration.

Searching the Loop List

The loop list Search field allows you to find occurrences of any character in the loop list.
You can search for subroutine names, a phrase (such as parallel region), or Olid numbers.
(See Figure 2-3.)

The search is not case sensitive; simply key in the string. To find subsequent occurrences
of the same string, press the Enter key.

Sorting and Filtering the Loop List

This section begins the discussion of the loop display controls option buttons. They allow
you to sort and filter the loop list, and so focus your attention on particular pieces of your
code. As shown in Figure 2-1, the buttons are located in the main window, below the loop
list display. Figure 2-3 shows all of the loop display controls.

Figure 2-3 Loop Display Controls

Option buttons

Sorting and Filtering the Loop List

35

Sorting the Loop List

You can sort the loop list either in the order of the source code, or by performance cost (if
you are running the WorkShop Performance Analyzer). You normally control sorting
with the sort option button, the left-most button below the Search field.

When loops are sorted in source order, the Loop-ID is indented according to the nesting
level of the loop. For the demonstration program, only the last several loops are nested,
so you have to scroll down to see indented Loop-IDs. For example, scroll down the loop
list until you find a loop whose Nest value, as shown in the loop list, is greater than 2.

When loops are sorted by performance cost, using Sort by Perf. Cost option button, the list
is not indented. The sorting option is grayed out in the example because the Performance
Analyzer is not currently running.

Filtering the Loop List

You may want to look at only some of the loops in a large program. The loop list can be
filtered according to two features:

• Parallelization status

• Loop origin

The filter parameters are controlled by the two option buttons to the right of the sort
option button.

36

Chapter 2: Examining Loops, Modifying Source Code

Filtering the Loop List by Parallelization State

Filtering according to parallelization state allows you to focus, for example, on loops that
were not automatically parallelized by the compiler, but that might still run concurrently
if you add appropriate directives.

Filtering is controlled by the show loop types option button centered below the loop list;
the default setting is Show All Loop Types, as shown in Figure 2-4.

Figure 2-4 Show Loop Types Option Button

You can select according to the following states of loop parallelization and processing
(which are displayed when you click the show loop types option button):

• Show All Loop Types: the default

• Show Unparallelizable Loops: loops that are running serially because they could not be
parallelized

• Show Parallelized Loops: loops that were parallelized

• Show Serial Loops: loops that are best run serially

• Show Modified Loops: loops for which modifications have been requested

The second, third, and fourth categories correspond to parallelization icons in the Icon
Legend… window. (See Figure 2-2.) Requesting modifications to loops is described in
“Modifying Source Files and Compiling” on page 68.

To see the effects of these three options, choose them in turn by clicking on the option
button and selecting each option. If you choose the Show Modified Loops option, a message
appears that no loops meet the filter criterion, because you have not requested any
modifications.

Parallelization state options

Sorting and Filtering the Loop List

37

Filtering the Loop List by Loop Origin

Another way to filter is to choose loops that come from a single file or a single subroutine.
These are the basic steps:

1. Open a list of subroutines and files from which to select; to display the list, choose
the Views > Subroutines and Files View option.

2. Choose the filter criterion from the filtering option button, the right-most option
button in the Parallel Analyzer View window. Initially the filter criterion is
No Filtering. You can filter according to source file or subroutine.

To place filtering information in the editable text field that appears above the option
button (Figure 2-5), you can do one of the following:

• Enter the file or subroutine name in the box.

• Choose the file or subroutine of interest in the Subroutines and Files View.

Figure 2-5 Filtering Option Button and Text Field

Filtering option text field

38

Chapter 2: Examining Loops, Modifying Source Code

Filtering by Loop Origin: Details for Sorting by Subroutine

The following procedure describes filtering the loop list by subroutine.

1. Open the Subroutines and Files View by choosing Views > Subroutines and Files
View. The window opens and lists the subroutines and files in the fileset (See
Figure 2-6.)

Figure 2-6 Subroutines and Files View

2. Choose Filter by Subroutine from the filtering option button (Figure 2-7).

Figure 2-7 Filtering Option Button

Double-click the line for the subroutine ompdummy() in the list of the Subroutines and
Files View window. The name appears in the Subroutine filtering option text field
(Figure 2-5), and the loop list is re-created according to the filter criteria.

Function list

Search field

Viewing Detailed Information About Code and Loops

39

You can also try choosing Filter by File with the filtering option button, but this is not very
useful for this single-file example.

When you are done, display all of the loops in the sample source file again by choosing
No Filtering with the option button.

Close the Subroutines and Files View by choosing its Admin > Close option.

Viewing Detailed Information About Code and Loops

This section describes how to examine the following:

• Source code

• Transformed source code

• Details of loop information summarized in the loop list

Viewing Original and Transformed Source

The Parallel Analyzer View gives you views of both your original Fortran source and a
listing that mimics the effect on the source as it is transformed by the Auto-Parallelizing
compiler.

Viewing Original Source

Click the Source button on the lower left corner of the loop display controls to bring up
the Source View window, shown in Figure 2-8.

Colored brackets mark the location of each loop in the file; you can click on a bracket to
choose a loop in the loop list. (See “Selecting a Loop for Analysis” on page 42.)

Note that the bracket colors vary as you scroll up and down the list. These colors
correspond to different parallelization icons and indicate the parallelization status of
each loop. The bracket colors indicate which loops are parallelized, which are
unparallelizable, and which are left serial; the exact correspondence between colors and
icons depends on the color settings of your monitor.

40

Chapter 2: Examining Loops, Modifying Source Code

Figure 2-8 Source View

You can search the source listing by using one of the following:

• The File menu in the Source View

• The keyboard shortcut Ctrl+s when the cursor is in the Source View

Thus, you can locate a loop in the source code, click on its colored bracket in the Source
View, and see more information about the loop in the loop information display.

For more information about the Source View window, see “Source View and Parallel
Analyzer View - Transformed Source” on page 144.

Leave open the Source View window because subsequent steps in this tutorial refer to
the window.

Note: This window may also be used by the WorkShop Debugger and Performance
Analyzer, so it remains open after you close the Parallel Analyzer View.

Loop bracket

Source code

Viewing Detailed Information About Code and Loops

41

Viewing Transformed Source

The compiler transforms loops for optimization and parallelization. The results of these
transformations are not available to you directly, but they are mimicked in a file that you
can examine. Each loop may be rewritten into one or more transformed loops, it may be
combined with others, or it may be optimized away.

Click the Transformed Source button in the loop display controls. (See Figure 2-3.) A
window labeled Parallel Analyzer View — Transformed Source opens as shown in
Figure 2-9.

Figure 2-9 Transformed Source Window

Scroll through the Transformed Source window, and notice that it too has brackets that
mark loops; the color correspondence is the same as for the Source View.

The bracketing color selection for the transformed source does not always distinguish
between serial loops and unparallelizable loops; some unparallelizable loops may have
the bracket color for a serial loop.

Transformed
source code

42

Chapter 2: Examining Loops, Modifying Source Code

For more information on the Transformed Source window, see “Source View and Parallel
Analyzer View - Transformed Source” on page 144.

Leave the Transformed Source window open; subsequent steps in this tutorial refer to the
window. You should have three windows open:

• Parallel Analyzer View

• Source View

• Transformed Source

Navigating the Loop List

You can locate a loop in the main window by one of the following methods:

• Scrolling through the loop list using one of these:

– Scroll bar

– Page Up and Page Down keys (the cursor must be over the loop list)

– Next Loop and Previous Loop buttons

• Searching for the Olid number using the Search field (See “Searching the Loop List”
on page 34.)

Selecting a Loop for Analysis

To get more information about a loop, select it by one of the following methods:

• Double-click the line of text in the loop list (but not the icon).

• Click the loop bracket in either of the source viewing windows.

Viewing Detailed Information About Code and Loops

43

Selecting a loop has a number of effects on the different windows in the Parallel Analyzer
View. (See Figure 2-10.) Not all of the windows in the figure are open at this point in the
tutorial; you can open them from the Views menu.

• Parallel Analyzer View: Information about the selected loop appears in the
previously empty loop information display. (See “Using the Loop Information
Display” on page 45.)

• Source View: The original source code of the loop appears and is highlighted in this
window. (See “Viewing Original Source” on page 39.)

• Transformed Source: The first of the loops into which the original loop was
transformed appears and is highlighted in the window. A bright vertical bar also
appears next to each transformed loop that came from the original loop. (See
“Viewing Transformed Source” on page 41.)

• Transformed Loops View: Shows information about the loop after parallelization.
(See “Using the Transformed Loops View” on page 47.)

• PFA Analysis Parameters View (o32 code only): Shows parameter values for the
selected loop. (See “PFA Analysis Parameters View” on page 141.)

Try scrolling through the loop list and double-clicking various loops, and scrolling
through the source displays and clicking the loop brackets to select loops. Notice that
when you select a loop, a check mark appears to the left of the icon in the loop list,
indicating that you’ve looked at it.

Scroll to the top of the loop list in the main view and double-click the line for the first
loop, Olid 2.

Close the Transformed Loops View and the PFA Analysis Parameters View, if you have
opened them.

44

Chapter 2: Examining Loops, Modifying Source Code

Figure 2-10 Global Effects of Selecting a Loop

Highlighted in loop list

code highlighted

Transformed

view:

Source view:
code highlighted

Loop information display:
updated

Transformed source:

updated

loops

Viewing Detailed Information About Code and Loops

45

Using the Loop Information Display

The loop information display occupies the portion of the main view below the loop
display controls. Initially, the display shows only No loop is selected. After a loop or
subroutine is selected, the display contains detailed information and controls for
requesting changes to your code. (See Figure 2-11.)

Figure 2-11 Loop Information Display Without Performance Data

Loop Parallelization Controls

The first line in the loop information display labels the Loop Parallelization Controls. The
following are the features in this display when no performance information is available:

• On the first line is the loop Olid and the number of transformed loops derived from
the selected loop.

• The next three lines display two option buttons and an editable text field.

– The top button controls the loop’s parallelization status. (See “Loop
Parallelization Status Option Button” on page 127.)

– The bottom button controls the loop’s MP scheduling. (It is shown for all loops,
but is applicable to parallel loops only; for more information see“MP
Scheduling Option Button: Directives for All Loops” on page 129.)

– The MP Chunk size editable text field receives an expression for the scheduling
chunk size. (See “MP Chunk Size Field” on page 130.)

Loop parallelization
MP scheduling MP chunk

Additional

Number of loops transformedstatus menu
menu size input field

information
blocks

46

Chapter 2: Examining Loops, Modifying Source Code

When the Parallel Analyzer View is run with a performance experiment, an additional
block (Figure 3-5) appears above the parallelization controls. It gives performance
information about the loop.

Additional Loop Information and Controls

Up to five blocks of additional information may appear in the loop information display
below the first separator line. These blocks list, when appropriate, the following
information:

• Obstacles to parallelization

• Assertions made

• Directives applied

• Messages

• Questions the compiler asked (o32 only)

Some of these lines may be accompanied by highlight buttons, represented by small light
bulb icons (Figure 2-12). When you click one of these buttons, it highlights the relevant
part of the code in the Source View and the Transformed Source windows.

Figure 2-12 Highlight Button

The loop information display shows directives that apply to an entire subroutine when
you select the line with the subroutine’s name. If you select Olid 1, you see that there are
no global directives in MAIN(). However, if you find subroutine dist1d() you see a
directive that applies to it. (See “Distributed Arrays: C$SGI DISTRIBUTE” on page 85.)

The loop information display shows loop-specific directives when you select a loop. The
lines for assertions and directives may have option buttons accompanying them that
provide capabilities, such as, deleting a directive.

The first loop in the file, Olid 2, has no highlight buttons and one message.

Viewing Detailed Information About Code and Loops

47

Using the Transformed Loops View

To see detailed information about the transformed loops derived from a particular loop,
pull down the Views > Transformed Loops View option (Figure 2-13.).

Figure 2-13 Transformed Loops View for Loop Olid 2

Transformed Loops View Description

The Transformed Loops View contains information about the loop(s) into which the
currently selected original loop was transformed. Each transformed loop has a block of
information associated with it; the blocks are separated by horizontal lines.

The first line in each block contains:

• A parallelization status icon

• A highlight button (it highlights the transformed loop in the Transformed Source
window and the original loop in the Source View)

• The identification number of the transformed loop

48

Chapter 2: Examining Loops, Modifying Source Code

The next two lines describe the transformed loop. The first provides the following
information:

• Whether it is a primary loop or secondary loop (whether it is directly transformed
from the selected original loop, or transformed from a different original loop, but
incorporating some code from the selected original loop)

• Parallelization state

• Whether it is an ordinary loop or interchanged loop

• Nesting level

The second line displays the location of the loop in the transformed source.

Any messages generated by the compiler are below the description lines. To the left of
the message lines are highlight buttons, and left-clicking them highlights in the Source
View the part of the original source that relates to the message. Often it is the first line of
the original loop that is highlighted, since the message refers to the entire loop.

Selecting Transformed Loops

You can also select specific transformed loops. When you click a highlight button in the
Transformed Loop View, the highlighting of the original source typically changes color,
although for loop Olid 2 the highlighted lines do not. (See Figure 2-14.) For loops with
more extensive transformations, the set of highlighted lines is different when you select
from the Transformed Loops View. (For example, see “Fused Loops” on page 53.)

Transformed loops can also be selected by clicking the corresponding loop brackets in the
Transformed Source window.

Viewing Detailed Information About Code and Loops

49

Figure 2-14 Transformed Loops in Source Windows

You may either leave the Transformed Loops View open or close it by pulling down its
File > Close option. When looking at subsequent loops, you might find it useful to see the
information in the Transformed Loops View.

Original

First transformed
loop

source
code

50

Chapter 2: Examining Loops, Modifying Source Code

Examples of Simple Loops

Now that you are familiar with the basic features in the Parallel Analyzer View user
interface, you can start examining, analyzing, and modifying loops.

The loops in this section are the simplest kinds of Fortran loops:

• “Simple Parallel Loop” on page 50

• “Serial Loop” on page 51

• “Explicitly Parallelized Loop” on page 51

• “Fused Loops” on page 53

• “Loop That Is Eliminated” on page 54

Two other sections discuss more complicated loops:

• “Examining Loops With Obstacles to Parallelization” on page 54

• “Examining Nested Loops” on page 66

Note: The loops in the next sections are referred to by their Olid. Changes to the Parallel
Analyzer View, such as, the implementation of updated OpenMP standards, may cause
the Olid you see on your system to differ from that in the tutorial. Example code, which
you can find in the Source View, is included in the tutorial to clarify the discussion.

Simple Parallel Loop

Scroll to the top of the list of loops and select loop Olid 2. This loop is a simple loop:
computations in each iteration are independent of each other. It was transformed by the
compiler to run concurrently. Notice in the Transformed Source window the directives
added by the compiler.

Example 2-1 Simple Parallel Loop

 DO 1000 I = 1, NSIZE
 A(I) = B(I)*C(I)
1000 CONTINUE

 Move to the next loop by clicking the Next Loop button.

Examples of Simple Loops

51

Serial Loop

Olid 3 is a simple loop with too little content to justify running it in parallel. The compiler
determined that the overhead of parallelizing would exceed the benefits; the original
loop and the transformed loop are identical.

Example 2-2 Serial Loop

 DO 1100 I = 1, NSIZE
 A(I) = B(I)*C(I)
1100 CONTINUE

Move to the next loop by clicking the Next Loop button.

Explicitly Parallelized Loop

Loop Olid 4 is parallelized because it contains an explicit C$OMP PARALLEL DO
directive in the source, as is shown in the loop information display (Figure 2-15). The
compiler passes the directive through to the transformed source.

The loop parallelization status option button is set to C$OMP PARALLEL DO… and it is
shown with a highlight button. Clicking the highlight button brings up both the Source
View (Figure 2-16), if it is not already opened, and the Parallelization Control View,
which shows more information about the parallelization directive.

52

Chapter 2: Examining Loops, Modifying Source Code

Figure 2-15 Explicitly Parallelized Loop

If you clicked on the highlight button, close the Parallelization Control View by choosing
its Admin > Close option. (Using this view is discussed in “Adding C$OMP PARALLEL
DO Directives and Clauses” on page 69.)

Explicit directive

Loop parallelization
status option button

Examples of Simple Loops

53

Figure 2-16 Source View of C$OMP PARALLEL DO Directive

Close the Source View by selecting its File > Close option.

Move to the next loop by clicking the Next Loop button.

Fused Loops

Loops Olid 5 and Olid 6 are simple parallel loops that have similar structures. The
compiler combines these loops to decrease overhead. Note that loop Olid 6 is described
as fused in the loop information display and in the Transformed Loops View; it is
incorporated into the parallelized loop Olid 5. If you look at the Transformed Source
window and select Olid 5 and Olid 6, the identical lines of code are highlighted for each
loop.

Example 2-3 Fused Loop

 DO 1300 I = 1, NSIZE
 A(I) = B(I) + C(I)
1300 CONTINUE
 DO 1350 I = 1, NSIZE
 AA(I,NSIZE) = B(I) + C(I)
1350 CONTINUE

Move to the next loop by clicking Next Loop twice.

C$OMP

Loop Olid 4 code

PARALLEL DO

54

Chapter 2: Examining Loops, Modifying Source Code

Loop That Is Eliminated

Loop Olid 7 is an example of a loop that the compiler can eliminate entirely. The compiler
determines that the body is independent of the rest of the loop. It moves the body outside
of the loop, and eliminates the loop. The transformed source is not scrolled and
highlighted when you select Olid 7 because there is no transformed loop derived from
the original loop.

Example 2-4 Eliminated Loop

 DO 1500 I = 1, NSIZE
 XX = 10.0
1500 CONTINUE

Move to the next loop, Olid 8, by clicking the Next Loop button. This loop is discussed in
“Unparallelizable Carried Data Dependence” on page 55.

Examining Loops With Obstacles to Parallelization

There are a number of reasons why a loop may not be parallelized. The loops in the
following parts of this section illustrate some of these reasons, along with variants that
allow parallelization:

• “Carried Data Dependence” on page 55

• “Input/Output Operations” on page 59

• “Unstructured Control Flow” on page 59

• “Subroutine Calls” on page 60

• “Permutation Vectors” on page 61

These loops are a few specific examples of the obstacles to parallelization recognized by
the compiler. The final part of this section, “Obstacles to Parallelization Messages” on
page 62, contains two tables that list all of the messages generated by the compiler that
concern obstacles to parallelization.

Examining Loops With Obstacles to Parallelization

55

Carried Data Dependence

Carried data dependence typically arises when recurrence of a variable occurs in a loop.
Depending on the nature of the recurrence, parallelizing the loop may be impossible. The
following loops illustrate four kinds of data dependence:

• “Unparallelizable Carried Data Dependence” on page 55

• “Parallelizable Carried Data Dependence” on page 56

• “Multi-line Data Dependence” on page 57

• “Reductions” on page 58

Unparallelizable Carried Data Dependence

Loop Olid 8 is a loop that cannot be parallelized because of a data dependence; one
element of an array is used to set another in a recurrence.

Example 2-5 Unparallelizable Carried Data Dependence

 DO 2000 I = 1, NSIZE-1
 A(I) = A(I+1)
2000 CONTINUE

If the loop were nontrivial (if NSIZE were greater than two) and if the loop were run in
parallel, iterations might execute out of order. For example, iteration 4, which sets A(4)
to A(5), might occur after iteration 5, which resets the value of A(5); the computation
would be unpredictable.

The loop information display in Figure 2-17 lists the obstacle to parallelization.

Click the highlight button that accompanies it. Two kinds of highlighting occur in the
Source View:

• The relevant line that has the dependence

• The uses of the variable that obstruct parallelization; only the uses of the variable
within the loop are highlighted

Move to the next loop by clicking Next Loop.

56

Chapter 2: Examining Loops, Modifying Source Code

Figure 2-17 Obstacles to Parallelization

Parallelizable Carried Data Dependence

Loop Olid 9 has a structure similar to loop Olid 8. Despite the similarity however, Olid 9
may be parallelized.

Example 2-6 Parallelizable Carried Data Dependence

C*$*ASSERT DO (CONCURRENT)
 DO 2100 I = 1, NSIZE
 A(I) = A(I+M)
2100 CONTINUE

Note that the array indices differ by offset M. If M is equal to NSIZE and the array is twice
NSIZE, the code is actually copying the upper half of the array into the lower half, a
process that can be run in parallel. The compiler cannot recognize this from the source,
but the code has the assertion C*$* ASSERT DO (CONCURRENT) so the loop is
parallelized.

Obstacle

Examining Loops With Obstacles to Parallelization

57

Click the highlight button (Figure 2-18) to show the assertion in the Source View.

Figure 2-18 Parallelizable Data Dependence

Move to the next loop by clicking the Next Loop button.

Multi-line Data Dependence

Data dependence can involve more than one line of a program. In loop Olid 10, a
dependence similar to that in Olid 9 occurs, but the variable is set and used on different
lines.

Example 2-7 Multi-line Data Dependence

 DO 2200 I = 1, NSIZE-1
 B(I) = A(I)
 A(I+1) = B(I)
2200 CONTINUE

Click the highlight button on the obstacle line.

In the Source View, highlighting shows the dependency variable on the two lines. (See
Figure 2-19.) Of course, real programs, typically, have far more complex dependences
than this.

Move to the next loop by clicking Next Loop.

58

Chapter 2: Examining Loops, Modifying Source Code

Figure 2-19 Highlighting on Multiple Lines

Reductions

Loop Olid 11 shows a data dependence that is called a reduction: the variable responsible
for the data dependence is being accumulated or reduced in some fashion. A reduction
can be a summation, a multiplication, or a minimum or maximum determination. For a
summation, as shown in this loop, the code could accumulate partial sums in each
processor and then add the partial sums at the end.

Example 2-8 Reduction

 DO 2300 I = 1, NSIZE
 X = B(I)*C(I) + X
2300 CONTINUE

However, because floating-point arithmetic is inexact, the order of addition might give
different answers because of roundoff error. This does not imply that the serial execution
answer is correct and the parallel execution answer is incorrect; they are equally valid
within the limits of roundoff error. With the -O3 optimization level, the compiler assumes
it is OK to introduce roundoff error, and it parallelizes the loop. If you do not want a loop
parallelized because of the difference caused by roundoff error, compile with the
-OPT:roundoff=0 or 1 option. (See MIPSpro Auto-Parallelizing Option Programmer’s
Guide.)

Move to the next loop by clicking Next Loop.

Loop highlighting

Dependent variable
and line highlighted

Examining Loops With Obstacles to Parallelization

59

Input/Output Operations

Loop Olid 12 has an input/output (I/O) operation in it. It cannot be parallelized because
the output would appear in a different order depending on the scheduling of the
individual CPUs.

Example 2-9 Input/Output Operation

 DO 2500 I = 1, NSIZE
 print 2599, I, A(I)
2599 format("Element A(",I2,") = ",f10.2)
2500 CONTINUE

Click the button indicating the obstacle, and note the highlighting of the print statement
in the Source View.

Move to the next loop by clicking Next Loop.

Unstructured Control Flow

Loop Olid 13 has an unstructured control flow: the flow is not controlled by nested if

statements. Typically, this problem arises when goto statements are used; if you can get
the branching behavior you need by using nested if statements, the compiler can better
optimize your program.

Example 2-10 Unstructured Control Flow

 DO 2600 I = 1, NSIZE
 A(I) = B(I)*C(I)
 IF (A(I) .EQ. 0) GO TO 2650
2600 CONTINUE

Because the goto statement is essential to the program’s behavior, the compiler cannot
determine how many iterations will take place before exiting the loop. If the compiler
parallelized the loop, one thread might execute iterations past the point where another
has determined to exit.

Click the highlight button in the Obstacles to Parallelization information block in the
loop information display, next to the unstructured control flow message. Note that the
line with the exit from the loop is highlighted in the Source View.

Move to the next loop by clicking Next Loop.

60

Chapter 2: Examining Loops, Modifying Source Code

Subroutine Calls

Unless you make an assertion, a loop with a subroutine call cannot be parallelized; the
compiler cannot determine whether a call has side effects, such as, creating data
dependencies.

Unparallelizable Loop With a Subroutine Call

Loop Olid 14 is unparallelizable because there is a call to a subroutine, RTC(), and there
is no explicit assertion to parallelize.

Example 2-11 Unparallelizable Loop With Subroutine Call

 DO 2700 I = 1, NSIZE
 A(I) = B(I) + RTC()
2700 CONTINUE

Click the highlight button on the obstacle line; note the highlighting of the line containing
the call and the highlighting of the subroutine name.

Move to the next loop by clicking the Next Loop button.

Parallelizable Loop With a Subroutine Call

Although loop Olid 15 has a subroutine call in it similar to that in Olid 14, it can be
parallelized because of the assertion that the call has no side effects that will prevent
concurrent processing.

Example 2-12 Parallelizable Loop With Subroutine Call

C*$*ASSERT CONCURRENT CALL
 DO 2800 I = 1, NSIZE
 A(I) = B(I) + FOO()
2800 CONTINUE

Click the highlight button on the assertion line in the loop information display to
highlight the line in the Source View containing the assertion.

Move to the next loop by clicking Next Loop.

Examining Loops With Obstacles to Parallelization

61

Permutation Vectors

If you specify array index values by values in another array (referred to as a permutation
vector), the compiler cannot determine if the values in the permutation vector are distinct.
If the values are distinct, loop iterations do not depend on each other and the loop can be
parallelized; if they are not, the loop cannot be parallelized. Thus, without an assertion,
a loop with a permutation vector is not parallelized.

Unparallelizable Loop With a Permutation Vector

Loop Olid 16 has a permutation vector, IC(I), and cannot be parallelized.

Example 2-13 Unparallelizable Loop With Permutation Vector

 DO 3200 I = 1, NSIZE-1
 A(IC(I)) = A(IC(I)) + DELTA
3200 CONTINUE

Move to the next loop by clicking the Next Loop button.

Parallelizable Loop With a Permutation Vector

An assertion, C*$* ASSERT PERMUTATION, that the index array, IB(I) is indeed a
permutation vector has been added before loop Olid 17. Therefore, the loop is
parallelized.

Example 2-14 Parallelizable Loop With Permutation Vector

C*$*ASSERT PERMUTATION(ib)
 DO 3300 I = 1, NSIZE
 A(IB(I)) = A(IB(I)) + DELTA
3300 CONTINUE

Move to the next loop, Olid 18, by clicking Next Loop. This loop is discussed in “Doubly
Nested Loop” on page 66.

62

Chapter 2: Examining Loops, Modifying Source Code

Obstacles to Parallelization Messages

All of the messages that can be found in an Obstacles to Parallelization information block
(Figure 2-17) are found in Table 2-1 and Table 2-2. Because they include specific loop and
line information, messages that appear in the loop information display differ slightly
from those in the tables.

The next table contains messages concerning major issues, such as, whether a loop could
have gone parallel, could not have gone parallel, or might be able to go parallel.

Table 2-1 Major Obstacles to Parallelization Messages

Message Comments

Loop doesn’t have parallelization
directive

Auto-parallelization is off.

Loop doesn’t contain a parallelization directive.

Loop is preferred serial; insufficient
work to justify parallelization

Could have been parallelized, but preferred serial.

The compiler determined there was not enough work in
the loop to make parallelization worthwhile.

Loop is preferred serial; parallelizing
inner loop is more efficient

Could have been parallelized, but preferred serial.

The compiler determined that making an inner loop
parallel would lead to faster execution.

Loop has unstructured control flow Might be parallelizable.

There is a goto statement or other unstructured control
flow in the loop.

Loop was created by peeling the last
iteration of a parallel loop

Might be parallelizable.

Loop was created by peeling off the final iteration of
another loop to make that loop go parallel. Compiler
did not try to parallelize this peeled, last iteration.

User directive specifies serial execution
for loop

Might be parallelizable.

Loop has a directive that it should not be parallelized.

Examining Loops With Obstacles to Parallelization

63

Loop can not be parallelized; tiled for
reshaped array instead

Might be parallelizable.

The loop has been tiled because it has reshaped arrays,
or is inside a loop with reshaped arrays. The compiler
does not parallelize such loops.

Loop is nested inside a parallel loop Might be parallelizable.

Loop is inside a parallel loop. Therefore, the compiler
does not consider it to be a candidate for parallelization.

Loop is the serial version of parallel
loop

Might be parallelizable.

The loop is part of the serial version of a parallelized
loop. This may occur when a loop is in a routine called
from a parallelized loop; the called loop is effectively
nested in a parallel loop, so the compiler does not
parallelize it.

Tough upper bounds Could not have gone parallel.

Loop could not be put in standard form, and therefore
could not be analyzed for parallelization.

Standard form is
for (i = lb; i <= ub; i++)

Indirect ref Could not have gone parallel.

Loop contains some complex memory access that is too
difficult to analyze.

Table 2-1 (continued) Major Obstacles to Parallelization Messages

Message Comments

64

Chapter 2: Examining Loops, Modifying Source Code

Table 2-2 lists the Obstacles to Parallelization block messages that deal with dependence
issues, such as, those involving scalars, arrays, missing information, and finalization.

Table 2-2 Data Dependence Obstacles to Parallelization

Messages Comments

Loop has carried dependence on scalar
variable

Problem with scalars.

The loop has a carried dependence on a scalar variable.

Loop scalar variable is aliased
precluding auto parallelization

Problem with scalars.

A scalar variable is aliased with another variable, e.g. a
statement equivalencing a scalar and an array.

Loop can not determine last value for
variable

Problem with scalars.

A variable is used out of the loop, and the compiler
could not determine a unique last value.

Loop carried dependence on array Problem with arrays.

The loop carries an array dependence from one array
member to another array member.

Call inhibits auto parallelization Problem with missing dependence information.

A call in the loop has no dependence information, and
is assumed to create a data dependence.

Input-output statement Problem with missing dependence information.

The compiler does not parallelize loops with input or
output statements.

Insufficient information in array Problem with missing dependence information.

Array has no dependence information.

Insufficient information in reference Problem with missing dependence information.

Unnamed reference has no dependence information.

Loop must finalize value of scalar
before it can go parallel

Problem with finalization.

Value of scalar must be determined to parallelize loop.

Loop must finalize value of array
before it can go parallel

Problem with finalization.

Value of array must be determined to parallelize loop.

Examining Loops With Obstacles to Parallelization

65

Scalar may not be assigned in final
iteration

Problem with finalization.

The compiler needed to finalize the value of a scalar to
parallelize the loop, but it couldn’t because the value is
not always assigned in the last iteration of the loop.

The following code is an example. The variable s poses
a problem; the if statement makes it unclear whether
the variable is set in the last iteration of the loop.

 subroutine fun02(a, b, n, s)
 integer a(n), b(n), s, n
 do i = 1, n
 if (a(i) .gt. 0) then
 s = a(i)
 end if
 b(i) = a(i) + s
 end do
 end

Array may not be assigned in final
iteration

Problem with finalization.

The compiler needed to finalize the value of an array to
parallelize the loop, but it couldn’t because the values
are not always assigned in the last iteration of the loop.

The following is an example. The variable b poses a
problem when the compiler tries to parallelize the i
loop; it is not set in the last iteration.

 subroutine fun04(a, b, n)
 integer i, j, k, n
 integer b(n), a(n,n,n)
 do i = 1, n
 do j = i + 3, n
c*$* no fusion
 do k = 1, n
 b(k) = k
 end do
 do k = 1, n
 a(i,j,k) = a(i,j,k) + b(k)
 end do
 end do
 end do
 end

Table 2-2 (continued) Data Dependence Obstacles to Parallelization

Messages Comments

66

Chapter 2: Examining Loops, Modifying Source Code

Examining Nested Loops

The loops in this section illustrate more complicated situations, involving nested and
interchanged loops.

Doubly Nested Loop

Loop Olid 18 is the outer loop of a pair of loops and it runs in parallel. The inner loop
runs in serial, because the compiler knows that one parallel loop should not be nested
inside another. However, you can force parallelization in this context by inserting a
C$OMP PARALLEL DO directive with the C$SGI&NEST clause. For example, see
“Distributed and Reshaped Arrays: C$SGI DISTRIBUTE_RESHAPE” on page 86.

Example 2-15 Doubly Nested Loop

 DO 4000 I = 1,NSIZE
 DO 4010 J = 1,NSIZE
 AA(J,I) = BB(J, I)
4010 CONTINUE
4000 CONTINUE

Click Next Loop to move to the inner loop, Olid 19.

Note: Notice that when you select the inner loop that the end-of-loop continue statement
is not highlighted. This happens for all interior loops and is a compiler error that disrupts
line numbering in the Parallel Analyzer View. Be careful if you use the Parallel Analyzer
View to insert a directive for an interior loop; check that the directive is properly placed
in your source code.

Click Next Loop again to select the outer loop of the next nested pair.

Interchanged Doubly Nested Loop

The outer loop, Olid 20, is shown in the loop information display as a serial loop inside
a parallel loop. The original interior loop is labelled as parallel, indicating the order of the
loops has been interchanged. This happens because the compiler recognized that the two
loops can be interchanged, and that the CPU cache is likely to be more efficiently used if
the loops are run in the interchanged order. Explanatory messages appear in the loop
information display.

Examining Nested Loops

67

Example 2-16 Interchanged Doubly Nested Loop

 DO 4100 I = 1,NSIZE
 DO 4110 J = 1,NSIZE
 AA(I,J) = BB(I, J)
4110 CONTINUE
4100 CONTINUE

Move to the inner loop, Olid 21, by clicking the Next Loop button.

Click Next Loop once again to move to the following triply-nested loop.

Triply Nested Loop With an Interchange

The order of Olid 22 and Olid 23 has been interchanged. As with the previous nested
loops, the compiler recognizes that cache misses are less likely.

Example 2-17 Triply Nested Loop With Interchange

 DO 5000 I = 1,NSIZE
 DO 5010 J = 1,NSIZE
 CC(I,J) = 0.
 DO 5020 K = 1,NSIZE
 CC(I,J) = CC(I,J) + AA(I,K)* BB(K,J)
5020 CONTINUE
5010 CONTINUE
5000 CONTINUE

Double-click on Olid 22, Olid 23, and Olid 24 in the loop list and note that the loop
information display shows that Olid 22 and Olid 24 are serial loops inside a parallel loop,
Olid 23.

Because the innermost serial loop, Olid 24, depends without recurrence on the indices of
Olid 22 and Olid 23, iterations of loop Olid 22 can run concurrently. The compiler does
not recognize this possibility. This brings us to the subject of the next section, the use of
the Parallel Analyzer View tools to modify the source.

Return to Olid 22, if necessary, by using the Previous Loop button.

68

Chapter 2: Examining Loops, Modifying Source Code

Modifying Source Files and Compiling

So far, the discussion has focused on ways to view the source and parallelization effects.
This section discusses controls that can change the source code by adding directives or
assertions, allowing a subsequent pass of the compiler to do a better job of parallelizing
your code.

You control most of the directives and some of the assertions available from the Parallel
Analyzer View with the Operations menu. (See Table 4-1.)

You control most of the assertions and the more complex directives, C$OMP DO and
C$OMP PARALLEL DO, with the loop parallelization status option button. (See
Figure 2-20.)

There are two steps to modifying source files:

1. Request changes using the Parallel Analyzer View controls, discussed in the next
subsection, “Requesting Changes.”

2. Modify the source and rebuild the program and its analysis files, discussed in
“Applying Requested Changes” on page 74.

Requesting Changes

You request changes by one of the following actions:

• Add or delete assertions and directives using the Operations menu or the Loop
Parallelization Controls.

• Add clauses to or modify directives using the Parallelization Control View.

• Modify the PFA analysis parameters in the PFA Analysis Parameters View (o32
only.)

You can request changes in any order; there are no dependencies implied by the order of
requests.

These are the changes discussed in this section:

• “Adding C$OMP PARALLEL DO Directives and Clauses” on page 69

• “Adding New Assertions or Directives With the Operations Menu” on page 72

• “Deleting Assertions or Directives” on page 74

Modifying Source Files and Compiling

69

Adding C$OMP PARALLEL DO Directives and Clauses

Loop Olid 22, shown in Example 2-17, is a serial loop nested inside a parallel loop. It is
not parallelized, but its iterations could run concurrently.

To add a C$OMP PARALLEL DO directive to Olid 22, do the following:

1. Make sure loop Olid 22 is selected.

2. Click on the loop parallelization status option button (Figure 2-20), and choose
C$OMP PARALLEL DO… to parallelize Olid 22.

This sequence requests a change in the source code, and opens the Parallelization Control
View (Figure 2-21). You can now look at variables in the loop and attach clauses to the
directive, if needed.

Figure 2-20 Requesting a C$OMP PARALLEL DO Directive

Loop

option button
status

parallelization

70

Chapter 2: Examining Loops, Modifying Source Code

Figure 2-21 shows information presented in the Parallelization Control View for a
C$OMP PARALLEL DO directive. (For the C$OMP DO directive, see “Parallelization
Control View” on page 132):

• The selected loop.

• Condition for parallelization editable text field.

• MP scheduling option button.

• MP Chunk size editable text field.

• PRIVATE, SHARED, DEFAULT, FIRSTPRIVATE, LASTPRIVATE, COPYIN,
REDUCTION, AFFINITY, NEST, and ONTO clause windows.

• A list of all the variables in the loop, each with an icon indicating whether the
variable was read, written, or both; these icons are introduced in “Loop List Icons:
The Icon Legend” on page 32.

In the list of variables, each variable has a highlight button to indicate in the Source View
its use within the loop; click some of the buttons to see the variables highlighted in the
source view. After each variable’s name, there is a descriptor of its storage class:
Automatic, Common, or Reference. (See “Variable List Storage Labeling” on page 139.)

You can add clauses to the directive by placing appropriate parameters in the text fields,
or using the options menus.

Modifying Source Files and Compiling

71

Figure 2-21 Parallelization Control View After Choosing C$OMP PARALLEL DO…

Selected loop

MP scheduling

List of variables

Read/write status

Variable typeHighlighting button

Variable name

option button

in the loop

Clauses and
parameter
input fields

72

Chapter 2: Examining Loops, Modifying Source Code

Notice that in the loop list, there is now a red plus sign next to this loop, indicating that
a change has been requested. (See Figure 2-22.)

Figure 2-22 Effect of Changes on the Loop List

Close the Parallelization Control View by using its Admin > Close option.

Adding New Assertions or Directives With the Operations Menu

To add a new assertion to a loop, do the following:

1. Find loop Olid 14 (introduced in Example 2-11) either by scrolling the loop list or by
using the search feature of the loop list. (Go to the Search field and enter 14.)

2. Double-click the highlighted line in the loop list to select the loop.

3. Pull down Operations > Add Assertion > C*$*ASSERT CONCURRENT CALL to
request a new assertion. (See Figure 2-23.)

This adds an assertion, C*$* ASSERT CONCURRENT CALL, that says it is safe to
parallelize the loop despite the call to RTC(), which the compiler thought might be an
obstacle to parallelization. The loop information display shows the new assertion, along
with an Insert option button to indicate the state of the assertion when you modify the
code. (See Figure 2-23.)

Modified loop

Modifying Source Files and Compiling

73

Figure 2-23 Adding an Assertion

The procedure for adding directives is similar. To start, choose Operations >
Add Directive.

Assertion

Menu
selection

74

Chapter 2: Examining Loops, Modifying Source Code

Deleting Assertions or Directives

Move to the next loop, Olid 15 (shown in Example 2-12).

To delete an assertion, follow these steps:

1. Find the assertion C*$* ASSERT CONCURRENT CALL in the loop information
display.

2. Select its Delete option button.

Figure 2-24 shows the state of the assertion in the information display. A similar
procedure is used to delete directives.

Figure 2-24 Deleting an Assertion

From this point, the next non-optional step in the tutorial is at the beginning of
“Updating the Source File” on page 76.

Applying Requested Changes

Now you have requested a set of changes. Using the controls in the Update menu, you
can update the file. These are the main actions that the Parallel Analyzer View performs
during file modification:

1. Generates a sed script to accomplish the following steps.

� Rename the original file to have the suffix .old.

� Run sed on that file to produce a new version of the file, in this case omp_demo.f.

Modifying Source Files and Compiling

75

2. Depending on how you set the two checkboxes in the Update menu, the Parallel
Analyzer View then does one of the following:

� Spawns the WorkShop Build Manager to rerun the compiler on the new version
of the file.

� Opens a gdiff window or an editor, allowing you to examine changes and
further modify the source before running the compiler. When you quit gdiff, the
editing window opens if you have set the checkboxes for both windows. When
you quit these tools, the Parallel Analyzer View spawns the WorkShop Build
Manager.

3. After the build, the Parallel Analyzer View rescans the files and loads the modified
code for further interaction.

Viewing Changes With gdiff

By default, the Parallel Analyzer View does not open a gdiff window. To open a gdiff
window that shows the requested changes to the source file before compiling the
modified code, toggle the checkbox in Update > Run gdiff After Update (Figure 2-25).

Figure 2-25 Run gdiff After Update

If you always wish to see the gdiff window, you can set the resource in your .Xdefaults file:

cvpav*gDiff: True

76

Chapter 2: Examining Loops, Modifying Source Code

Modifying the Source File Further

After running the sed script, to make additional changes before compiling the modified
code, open an editor by toggling the Update > Run Editor After Update checkbox. (See
Figure 2-26.) An xwsh window with vi running in it opens with the source code ready to
be edited.

Figure 2-26 Setting the Checkbox for Run Editor After Update

If you always prefer to run the editor, you can set the resource in your .Xdefaults file:

cvpav*runUserEdit: True

If you prefer a different window shell or a different editor, you can modify the resource
in your .Xdefaults file and change from xwsh or vi as you prefer. The following is the
default command in the .Xdefault, which you can edit for your preference:

cvpav*userEdit: xwsh -e vi %s +%d

In the above command, the +%d tells vi at what line to position itself in the file and is
replaced with 1 by default. (You can omit the +%d parameter if you wish.) The edited
file’s name either replaces any explicit %s, or if the %s is omitted, its filename is
appended to the command.

Updating the Source File

Choose Update > Update All Files to update the source file to include the changes
requested in this tutorial. (See Figure 2-25.) Alternatively, you can use the keyboard
shortcut for this operation, Ctrl+U, with the cursor anywhere in the main view.

If you have set the checkbox and opened the gdiff window or an editor, examine the
changes or edit the file as you wish. When you exit these tools, the Parallel Analyzer
View spawns the WorkShop Build Manager (Figure 2-27).

Modifying Source Files and Compiling

77

Figure 2-27 Build View of Build Manager

Note: If you edited any files, verify when the Build Manager comes up that the directory
shown is the directory in which you are running the sample session; if not, change it.

Click the Build button in the Build Manager window, and the Build Manager reprocesses
the changed file.

Examining the Modified Source File

When the build completes, the Parallel Analyzer View updates to reflect the changes that
were made. You can now examine the new version of the file to see the effect of the
requested changes.

Added Assertion

 Scroll to Olid 14 to see the effect of the assertion request made in “Adding New
Assertions or Directives With the Operations Menu” on page 72. Notice the icon
indicating that loop Olid 14, which previously was unparallelizable because of the call to
RTC(), is now parallel.

Double-click the line and note the new loop information. The source code also has the
assertion that was added.

Move to the next loop by clicking the Next Loop button.

78

Chapter 2: Examining Loops, Modifying Source Code

Deleted Assertion

Note that the assertion in loop Olid 15 is gone, as requested in “Deleting Assertions or
Directives” on page 74, and that the loop no longer runs in parallel. Recall that the loop
previously had the assertion that foo() was not an obstacle to parallelization.

Examples Using OpenMP Directives

This section examines the subroutine ompdummy(), which contains four parallel regions
and a serial section that illustrate the use of OpenMP directives:

• “Explicitly Parallelized Loops: C$OMP DO” on page 79

• “Loops With Barriers: C$OMP BARRIER” on page 81

• “Critical Sections: C$OMP CRITICAL” on page 83

• “Single-Process Sections: C$OMP SINGLE” on page 83

• “Parallel Sections: C$OMP SECTIONS” on page 84

For more information on OpenMP directives, see the OpenMP Architecture Review
Board Web site: http://www.openmp.org.

Go to the first parallel region of ompdummy() by scrolling down the loop list, or using
the Search field and entering parallel.

To select the first parallel region, double-click the highlighted line in the loop list, Olid 92.

Examples Using OpenMP Directives

79

Explicitly Parallelized Loops: C$OMP DO

The first construct in subroutine ompdummy() is a parallel region containing two loops
that are explicitly parallelized with C$OMP DO directives. With this construct in place,
the loops can execute in parallel, that is, the second loop can start before all iterations of
the first complete.

Example 2-18 Explicitly Parallelized Loop Using C$OMP DO

C$OMP PARALLEL SHARED(a,b)
C$OMP DO SCHEDULE(DYNAMIC, 10-2*2)
 DO 6001 I=-100,100
 A(I) = I
6001 CONTINUE
C$OMP DO SCHEDULE(STATIC)
 DO 6002 I=-100,100
 B(I) = 3 * A(I)
6002 CONTINUE
C$OMP END PARALLEL

Notice in Figure 2-28 that the controls in the loop information display are now labelled
Region Controls. The controls now affect the entire region. The Keep option button and the
highlight buttons function the same way they do in the Loop Parallelization Controls.
(See “Loop Parallelization Controls” on page 45.)

80

Chapter 2: Examining Loops, Modifying Source Code

Figure 2-28 Loops Explicitly Parallelized Using C$OMP DO

Click Next Loop twice to step through the two loops. Notice in the Source View that both
loops contain a C$OMP DO directive.

Click Next Loop to step to the second parallel region.

Region Controls

Examples Using OpenMP Directives

81

Loops With Barriers: C$OMP BARRIER

The second parallel region, Olid 95, contains a pair of loops that are identical to the
previous example except for a barrier between them. Because of the barrier, all iterations
of the first C$OMP DO loop must complete before any iteration of the second loop can
begin.

Example 2-19 Loops Using C$OMP BARRIER

C$OMP PARALLEL SHARED(A,B)
C$OMP DO SCHEDULE(STATIC, 10-2*2)
 DO 6003 I=-100,100
 A(I) = I
6003 CONTINUE
C$OMP END DO NOWAIT
C$OMP BARRIER
C$OMP DO SCHEDULE(STATIC)
 DO 6004 I=-100,100
 B(I) = 3 * A(I)
6004 CONTINUE
C$OMP END PARALLEL

Click Next Loop twice to view the barrier region. (See Figure 2-29.)

82

Chapter 2: Examining Loops, Modifying Source Code

Figure 2-29 Loops Using C$OMP BARRIER Synchronization

Click Next Loop twice to go to the third parallel region.

Examples Using OpenMP Directives

83

Critical Sections: C$OMP CRITICAL

Click Next Loop to view the first of the two loops in the third parallel region.This loop
contains a critical section.

Example 2-20 Critical Section Using C$OMP CRITICAL

C$OMP DO
 DO 6005 I=1,100
C$OMP CRITICAL(S3)
 S1 = S1 + I
C$OMP END CRITICAL(S3)
6005 CONTINUE

Click Next Loop to view the critical section. The critical section uses a named locking
variable (S3) to prevent simultaneous updates of S1 from multiple threads. This is a
standard construct for performing a reduction.

Move to the next loop by using Next Loop.

Single-Process Sections: C$OMP SINGLE

This loop has a single-process section, which ensures that only one thread can execute the
statement in the section. Highlighting in the Source View shows the begin and end
directives.

Example 2-21 Single-Process Section Using C$OMP SINGLE

 DO 6006 I=1,100
C$OMP SINGLE
 S2 = S2 + I
C$OMP END SINGLE
6006 CONTINUE

Click Next Loop to view information about the single-process section.

Move to the final parallel region in ompdummy() by clicking the Next Loop button.

84

Chapter 2: Examining Loops, Modifying Source Code

Parallel Sections: C$OMP SECTIONS

The fourth and final parallel region of ompdummy() provides an example of parallel
sections. In this case, there are three parallel subsections, each of which calls a function.
Each function is called exactly once, by a single thread. If there are three or more threads
in the program, each function may be called from a different thread. The compiler treats
this directive as a single-process directive, which guarantees correct semantics.

Example 2-22 Parallel Sections Using C$OMP SECTIONS

C$OMP PARALLEL SHARED(A,C) PRIVATE(I,J)
C$OMP SECTIONS
 call boo
C$OMP SECTION
 call bar
C$OMP SECTION
 call baz
C$OMP END SECTIONS
C$OMP END PARALLEL

Click Next Loop to view the entire C$OMP SECTIONS region.

Click Next Loop to view a C$OMP SECTION region.

Move to the next subroutine by clicking Next Loop twice.

Examples Using Data Distribution Directives

The next series of subroutines illustrate directives that control data distribution and
cache storage. The following three directives are discussed:

• “Distributed Arrays: C$SGI DISTRIBUTE” on page 85

• “Distributed and Reshaped Arrays: C$SGI DISTRIBUTE_RESHAPE” on page 86

• “Prefetching Data From Cache: C*$* PREFETCH_REF” on page 88

Brief descriptions of these directives appear in Table 4-1.

Examples Using Data Distribution Directives

85

Distributed Arrays: C$SGI DISTRIBUTE

When you select the subroutine dst1d(), a directive is listed in the loop information
display that is global to the subroutine. The directive, C$SGI DISTRIBUTE, specifies
placement of array members in distributed, shared memory. (See Figure 2-30.)

Figure 2-30 C$SGI DISTRIBUTE Directive and Text Field

In the editable text field adjacent to the directive name is the argument for the directive,
which in this case distributes the one-dimensional array a(m) among the local memories
of the available processors. To highlight the directive in the Source View, click the
highlight button.

Click Next Loop to move to the parallel loop.

The loop has a C$OMP PARALLEL DO directive (Example 2-23), which works with
C$SGI DISTRIBUTE to ensure that each processor manipulates locally stored data.

86

Chapter 2: Examining Loops, Modifying Source Code

Example 2-23 Distributed Array Using C$SGI DISTRIBUTE

 subroutine dst1d(a)

 parameter (m=10)
 real a(m)
C$DISTRIBUTE a(BLOCK)
C$OMP PARALLEL DO
 do i=1,m
 a(i)= i
 end do

 return

You can highlight the C$OMP PARALLEL DO directive in the Source View with either
of the highlight buttons in the loop information display. If you use the highlight button
in the Loop Parallelization Controls, the Parallelization Control View presents more
information about the directive and allows you to change the C$OMP PARALLEL DO
clauses. In this example, it confirms what you see in the code: that the index variable i is
local.

Click Next Loop again to view the next subroutine.

Distributed and Reshaped Arrays: C$SGI DISTRIBUTE_RESHAPE

When you select the subroutine rshape2d(), the subroutine’s global directive is listed in
the loop information display. The directive, C$SGI DISTRIBUTE_RESHAPE, also
specifies placement of array members in distributed, shared memory. It differs from the
directive C$SGI DISTRIBUTE in that it causes the compiler to reorganize the layout of
the array in memory to guarantee the desired distribution. Furthermore, the unit of
memory allocation is not necessarily a page.

In the text field adjacent to the directive name is the argument for the directive, which in
this case distributes the columns of the two-dimensional array b(m,m) among the local
memories of the available processors. To highlight the directive in the Source View, click
the highlight button.

Click the Next Loop button to move to the parallel loop.

Examples Using Data Distribution Directives

87

The loop has a C$OMP PARALLEL DO directive (Example 2-24), which works with
C$SGI DISTRIBUTE_RESHAPE so that each processor manipulates locally stored
data.

Example 2-24 Distributed and Reshaped Array Using C$SGI DISTRIBUTE_RESHAPE

 subroutine rshape2d(b)
 parameter (m=10)
 real b(m,m)

C$DISTRIBUTE_RESHAPE b(*,BLOCK)
C$OMP PARALLEL DO
C$SGI&NEST (i,j)
 do i=1,m
 do j=1,m
 b(i,j)= i*j
 end do
 end do
 return

If you use the highlight button in the Loop Parallelization Controls, the Parallelization
Control View presents more information. In this example, it confirms what you see in the
code: that the index variable i is local, and that the nested loop can be run in parallel.

If the code had not had the C$SGI&NEST clause, you could have inserted it by
supplying the arguments in the text field in the Parallelization Control View. You can use
the C$SGI&NEST clause to parallelize nested loops only when both loops are fully
parallel and there is no code between either the do-i and do-j statements or the
enddo-i and enddo-j statements. (See Chapter 6 of the MIPSpro Fortran 77 Programmer’s
Guide.)

Click Next Loop to move to the nested loop. Notice that this loop has an icon in the loop
list and in the loop information display indicating that it runs in parallel.

Click Next Loop to view the next subroutine, prfetch().

88

Chapter 2: Examining Loops, Modifying Source Code

Prefetching Data From Cache: C*$* PREFETCH_REF

Click Next Loop to go to the first loop in prfetch(). The compiler switched the order of
execution of the nested loops, Olid 128 and 129. To see this, look at the Transformed
Source view.

Example 2-25 Prefetching Data From Cache Using C*$* PREFETCH_REF

 subroutine prfetch(a, b, n)

 integer*4 a(n, n), b(n, n)
 integer i, j, n

 do i=1, n
 do j=1, n
C*$*PREFETCH_REF = b(i,j), STRIDE=2,2 LEVEL=1,2 KIND=rd, SIZE=4
 a(i,j) = b(i,j)
 end do
 end do

Click Next Loop to move to the nested loop. The list of directives in the loop information
display shows C*$* PREFETCH_REF with a highlight button to locate the directive in
the Source View. The directive allows you to place appropriate portions of the array in
cache.

Exiting From the omp_demo.f Sample Session

This completes the first sample session.

Quit the Parallel Analyzer View by choosing Admin > Exit.

Not all windows opened during the session close when you quit the Parallel Analyzer
View. In particular, the Source View remains open because all the Developer Magic tools
interoperate, and other tools may share the Source View window. (See “Viewing Original
Source” on page 39.) You must close the Source View independently.

To clean up the directory, so that the session can be rerun, enter the following in your
shell window to remove all of the generated files:

% make clean

89

Chapter 3

3. Using WorkShop With Parallel Analyzer View

This is the second sample session, a brief demonstration of the integration of WorkShop
Pro MPF and the WorkShop performance tools. WorkShop must be installed for this
session to work.

This sample session examines LINPACK, a standard benchmark designed to measure
CPU performance in solving dense linear equations. Chapter 3 of the SpeedShop User’s
Guide presents a tutorial analysis of LINPACK.

This tutorial assumes you are already familiar with the basic features of the Parallel
Analyzer View discussed in the previous chapter. You can also consult Chapter 4,
“Parallel Analyzer View Reference,” for more information.

Setting Up the linpackd Sample Session

Start by entering the following commands:

% cd /usr/demos/WorkShopMPF/linpack
% make

This updates the directory by compiling the source program linpackd.f and creating the
necessary files. The performance experiment data is in the file test.linpack.cp.

90

Chapter 3: Using WorkShop With Parallel Analyzer View

Starting the Parallel Analyzer View

Once the directory has been updated, start the demo by typing:

% cvpav -e linpackd

Note that the flag is -e, not -f as in the previous sample session. The main window of the
Parallel Analyzer View opens, showing the list of loops in the program.

Scroll briefly through the loop list and the Source View. (Click the Source button to open
it.) Note that there are many unparallelized loops, but there is no way to know which are
important. Also note that the second line in the main view shows that there is no
performance experiment currently associated with the view.

Starting the Performance Analyzer

Pull down Admin > Launch Tool > Performance Analyzer to start the Performance
Analyzer, as shown in Figure 3-1.

The main window of the Performance Analyzer opens; it is empty. A small window
labeled Experiment: also opens at the same time. This window is used to enter the name
of an experiment. For this session, use the installed prerecorded experiment.

In the Experiment Dir …: text field in the Experiment: window, enter

test.linpack.cpu

Click the OK button. (See Figure 3-1.)

The Performance Analyzer shows a busy cursor and fills its main window with the list
of functions in main(). The Parallel Analyzer recognizes that the Performance Analyzer
is active, and posts a busy cursor with a Loading Performance Data message. When the
message goes away, performance data will have been imported by the Parallel Analyzer.

For more information about the Performance Analyzer and how it affects the user
interface, see Developer Magic: Performance Analyzer User’s Guide.

Setting Up the linpackd Sample Session

91

Figure 3-1 Starting the Performance Analyzer

92

Chapter 3: Using WorkShop With Parallel Analyzer View

Using the Parallel Analyzer With Performance Data

Once performance data has been loaded in the Parallel Analyzer View, several changes
occur in the main window, as shown in Figure 3-2.

Figure 3-2 Parallel Analyzer View — Performance Data Loaded

No longer
grayed

Information
line

Percentage
of CPU usage

Perf. Cost
heading

(inclusive)

Using the Parallel Analyzer With Performance Data

93

• A new column, Perf. Cost, appears in the loop list next to the icon column. The
values in this column are inclusive: each reflects the time spent in the loop and in
any nested loops or functions called from within the loop.

• The Performance experiment line, in the main view below the menu bar, now shows
the name of the performance experiment and the total cost of the run in
milliseconds.

• The Sort by Perf. Cost option of the sort option button is now available.

• In the Source View, three columns appear to the left of the loop brackets. (These
columns may take a few moments to load.) They reflect the measured performance
data:

– Exq Count: the number of times the line has been executed

– Excl Ideal(ms): exclusive, ideal CPU time in milliseconds

– Incl Ideal(ms): inclusive, ideal CPU time in milliseconds

Effect of Performance Data on the Source View

To see the effect of the performance data on the Source View, select Olid 30, which is in
subroutine daxpy(). The Source View appears as shown in Figure 3-3.

Figure 3-3 Source View for Performance Experiment

Exclusive
ideal CPU
time

Inclusive
ideal CPU
time

Execution
count

94

Chapter 3: Using WorkShop With Parallel Analyzer View

Sorting the Loop List by Performance Cost

Choose the Sort by Perf. Cost sort option. Note that the third most expensive loop listed,
Olid 30 of subroutine daxpy(), represents approximately 94% of the total time. (See
Figure 3-4.)

Figure 3-4 Sort by Performance Cost

The first of the high-cost loops, Olid 21 in subroutine dgefa(), contains the second most
expensive loop (Olid 22) nested inside it. This second loop calls daxpy(), which contains
Olid 30—the heart of the LINPACK benchmark. Olid 30 performs the central operation
of scaling a vector and adding it to another vector. It was parallelized by the compiler.
Note the C$OMP PARALLEL DO directive that appears for this loop in the Transformed
Source View.

The loop following daxpy() uses approximately 58% of the CPU time. This loop is the
most frequent caller of dgefa(), and so of Olid 30.

Double-click Olid 30. Note that the loop information display contains a line of text listing
the performance cost of the loop, both in time and as a percentage of the total time. (See
Figure 3-5.)

First loop
Second loop

Third loop

Using the Parallel Analyzer With Performance Data

95

Figure 3-5 Loop Information Display With Performance Data

Performance
cost
information
block

Performance
experiment
line

96

Chapter 3: Using WorkShop With Parallel Analyzer View

Exiting From the linpackd Sample Session

This completes the second sample session.

Close all windows—those that belong to the Parallel Analyzer View as well as those that
belong to the Performance Analyzer and the Source View—by selecting the option
Admin > Project > Exit in the Parallel Analyzer View.

You don’t need to clean up the directory, because you haven’t made any changes in this
session.

If you experiment and do make changes, when you are finished you can clean up the
directory and remove all generated files by entering the following in your shell window:

% make clean

97

Chapter 4

4. Parallel Analyzer View Reference

This chapter describes in detail the function of each window, menu, and display in the
WorkShop Pro MPF Parallel Analyzer View’s user interface. It contains the following
main sections:

• “Parallel Analyzer View Main Window” on page 98

• “Parallel Analyzer View Menu Bar” on page 100

• “Loop List Display” on page 118

• “Loop Display Controls” on page 120

• “Loop Information Display” on page 125

• “Views Menu Options” on page 132

– “Parallelization Control View” on page 132

– “Transformed Loops View” on page 140

– “PFA Analysis Parameters View” on page 141

– “Subroutines and Files View” on page 142

• “Loop Display Control Button Views” on page 144

– “Source View and Parallel Analyzer View - Transformed Source” on page 144

98

Chapter 4: Parallel Analyzer View Reference

Parallel Analyzer View Main Window

The main window is displayed when the Parallel Analyzer View begins. It consists of the
following elements, shown in Figure 4-1:

• Main menu bar, containing these menus:

– Admin: Discussed in “Admin Menu” on page 101.

– Views: See “Views Menu” on page 107.

– Fileset: See discussion in “Fileset Menu” on page 108.

– Update: See “Update Menu” on page 110.

– Configuration: Find in “Configuration Menu” on page 111.

– Operations: See “Operations Menu” on page 112.

– Help: See discussion in “Help Menu” on page 116.

• Loop list display, which has the following members:

– Status information: See “Status and Performance Experiment Lines” on
page 118.

– Performance experiment information: Find in “Status and Performance
Experiment Lines” on page 118.

– Loop list: See “Loop List” on page 119.

• Loop display controls, consisting of the following:

– Search editable text field: See “Search Loop List Field” on page 121.

– Three option buttons displaying default values: Sort in Source Order, Show All
Loop Types, and No Filtering. These buttons are described in “Sort Option
Button” on page 121, “Show Loop Types Option Button” on page 122, and
“Filtering Option Button” on page 123.

– Source and Transformed Source control buttons: See “Loop Display Buttons” on
page 124.

– Next Loop and Previous Loop loop list navigation buttons: See description in
“Loop Display Buttons” on page 124.

• Loop information display: See “Loop Information Display” on page 125.

Parallel Analyzer View Main Window

99

Figure 4-1 Parallel Analyzer View Main Window

Loop
list
display

Loop
information
display

Loop display
controls

Main menu bar

100

Chapter 4: Parallel Analyzer View Reference

Parallel Analyzer View Menu Bar

This section describes the menus found in the menu bar located at the top of the Parallel
Analyzer View main window as shown in Figure 4-2. The menus are discussed in these
sections:

• “Admin Menu” on page 101

• “Views Menu” on page 107

• “Fileset Menu” on page 108

• “Update Menu” on page 110

• “Configuration Menu” on page 111

• “Operations Menu” on page 112

• “Help Menu” on page 116

Figure 4-2 Parallel Analyzer View Menu Bar and Menus

Within each menu, the names of some options are followed by keyboard shortcuts, which
you can use instead of the mouse for faster access to these options. For a summary, see
“Keyboard Shortcuts” on page 117.

Parallel Analyzer View Menu Bar

101

You can tear off a menu from the menu bar, so that it is displayed in its own window with
each menu command visible at all times, by selecting the dashed line at the top of the
menu (the first item in each of the menus). Submenus can also be torn off and displayed
in their own window.

Admin Menu

Figure 4-3 shows the Parallel Analyzer View Admin menu, which contains file-writing
commands, other administrative commands, and commands for launching and
manipulating other WorkShop application views.

Figure 4-3 Admin Menu

The commands in the Admin menu have the following effects:

Save as Text Saves the complete loop information for all files and subroutines in the
current session in a plain ASCII file. Choosing Admin > Save as Text
brings up a File Selection dialog, which lets you choose where to save
the file and what name to call it. (See Figure 4-4.)

The default directory is the one from which you invoked the Parallel
Analyzer View; the default filename is Text.out. The Parallel Analyzer
View asks for confirmation before overwriting an existing file.

102

Chapter 4: Parallel Analyzer View Reference

Figure 4-4 Output Text File Selection Dialog

Icon Legend… Provides an explanation of the graphical icons used in several of the
views. Shortcut: Ctrl+S. See “Icon Legend… Option” on page 103.

Iconify Stows all the open windows belonging to a given invocation of the
Parallel Analyzer View as icons in the style of the window manager you
are using.

Raise Brings all open windows in the current session to the foreground of the
screen, in front of other windows. The command also opens any
previously iconified windows belonging to the invocation of the Parallel
Analyzer View and brings them to the foreground. Shortcut: Ctrl+R.

Launch Tool Opens various WorkShop tools. See “Launch Tool Submenu” on
page 104.

Project Controls project windows. See “Project Submenu” on page 105.

Exit Quits the current session of the Parallel Analyzer View, closing all
windows.

If you have not updated source files and have pending requests for
changes, a dialog box asks if it is OK to discard the changes. Click OK
only if you want to discard any changes; otherwise, click Cancel to
update the files.

Default filename

Parallel Analyzer View Menu Bar

103

Figure 4-5 Parallelization Icon Legend (Resized)

Icon Legend… Option

This Admin menu option opens the Parallelization Icon Legend (Figure 4-5) which
provides the meanings of the icons that appear in various views, such as the following:

• Parallel Analyzer View, shown in Figure 2-1

• Transformed Loops View, shown in Figure 4-28

• Subroutines and Files View, shown in Figure 4-30

• Parallelization Control View, shown in Figure 4-25

104

Chapter 4: Parallel Analyzer View Reference

Launch Tool Submenu

The Admin menu’s Launch Tool submenu contains commands for launching other
WorkShop tools, as well as new sessions of the Parallel Analyzer. (See Figure 4-6.)

To work properly with the other WorkShop tools, the files in the current fileset must have
been loaded into the Parallel Analyzer from an executable. There are two ways to do this:

• Use the -e option on the command line. (See “Running the Parallel Analyzer View:
General Features” on page 22.)

• Choose the Fileset > Add File menu option. (See “Fileset Menu” on page 108.)

If you launch Workshop tools from a session not based on an executable, the tools start
without arguments.

Figure 4-6 Launch Tool Submenu

The following six options launch applications from the Launch Tool submenu:

Build Analyzer
Launches the Build Manager, a utility that lets you compile software
without leaving the WorkShop environment. For more information, see
Appendix B, “Using the Build Manager,” in the Developer Magic:
Debugger User’s Guide.

Debugger
Launches the WorkShop Debugger, a UNIX® source-level debugging
tool that provides special windows for displaying program data and
execution status. For more information, see Chapter 1, “Getting Started
with the WorkShop Debugger,” in the Developer Magic: Debugger User’s
Guide.

Parallel Analyzer
Launches another session of the Parallel Analyzer.

Parallel Analyzer View Menu Bar

105

Performance Analyzer
Launches the Performance Analyzer, a utility that collects performance
data and allows you to analyze the results of a test run. For more
information, see the Developer Magic: Performance Analyzer User’s Guide.

Static Analyzer
Launches the Static Analyzer, a utility that allows you to analyze and
display source code written in C, C++, Fortran, or Ada. For more
information, see the Developer Magic: Static Analyzer User’s Guide.

Tester Launches the Tester, a UNIX-based software quality assurance tool set
for dynamic test coverage over any set of tests. For more information,
see the Developer Magic: Performance Analyzer User’s Guide.

If any of these tools is not installed on your system, the corresponding menu item is
grayed out.

If the file /usr/lib/WorkShop/system.launch is absent (that is, if you are running the Parallel
Analyzer View without WorkShop 2.0 installed), the entire Launch Tool submenu is
grayed out.

Project Submenu

The Project submenu of the Admin menu contains commands that affect all the windows
containing WorkShop or WorkShop Pro MPF applications that have been launched to
manipulate a single executable. The set of windows is a WorkShop project. The Project
submenu and windows that you can open from it are shown in Figure 4-7.

The Project submenu commands are as follows:

Iconify Stows all the windows in the current project as icons, in the style of the
window manager you are using.

Raise Brings all open windows in the current project to the foreground of the
screen, in front of other windows. The command also opens any
previously iconified windows in the current project and brings them to
the foreground.

106

Chapter 4: Parallel Analyzer View Reference

Figure 4-7 Project Submenu and Windows

Admin menu

Project
submenu

Project View

Path Remapping window

Parallel Analyzer View Menu Bar

107

Remap Paths… Lets you modify the set of mappings used to redirect references to
filenames located in your code to their actual locations in your
filesystem. However, if you compile your code on one tree and mount it
on another, you may need to remap the root prefix to access the named
files.

Project View… Launches the WorkShop Project View, a tool that helps you manage
project windows.

Exit Quits the current project, closing all windows, including those of related
open applications. Thus the Source View closes, as well as, for example,
the Parallel Analyzer.

If you have not updated source files and have pending requests for
changes, a dialog box asks if it is OK to discard the changes. Click OK
only if you want to discard any changes; otherwise, click Cancel and
update the files.

Views Menu

The Views menu of the Parallel Analyzer View (Figure 4-8) contains commands for
launching a variety of secondary windows, or views, that provide specific sets of
information about, and tools to apply to, selected loops.

Figure 4-8 Views Menu

The options in the Views menu have the following effects:

Parallelization Control View
Opens a Parallelization Control View for the loop currently selected
from the loop list display. Shortcut: Ctrl+P. For more information on this
view, see “Parallelization Control View” on page 132.

108

Chapter 4: Parallel Analyzer View Reference

Transformed Loops View
Opens a Transformed Loops View for the loop currently selected from
the loop list display. Shortcut: Ctrl+T. For more information on this
view, see “Transformed Loops View” on page 140.

PFA Analysis Parameters View
Opens the PFA Analysis Parameters View, which provides a means of
modifying a variety of PFA parameters. Shortcut: Ctrl+A. This view is
further described in “PFA Analysis Parameters View” on page 141.

Subroutines and Files View
Opens the Subroutines and Files View, which provides a complete list of
subroutine and file names being examined within the current session of
the Parallel Analyzer View. Shortcut: Ctrl+F. This view is further
described in “Subroutines and Files View” on page 142.

Fileset Menu

The Fileset menu (Figure 4-9) contains commands for manipulating the files displayed
by the Parallel Analyzer View. A fileset is a list of source filenames contained in an ASCII
file, each on a separate line.

Figure 4-9 Fileset Menu

The options in the Fileset menu have the following effects:

Rescan All Files
The Parallel Analyzer View checks and updates all the source files
loaded into its current session so they match the versions of those files
in the filesystem. The Parallel Analyzer View rereads only the files it
needs to.

Parallel Analyzer View Menu Bar

109

Delete All Files
Removes all files from the current session of the Parallel Analyzer View.
You can then add new files using the Add File, Add Files from Fileset, or
Add Files from Executable options, described below.

Delete Selected File
Deletes a selected file from the current session of the Parallel Analyzer
View. To select a file for deletion, open the Subroutines and Files View
and double-click the desired filename.

Add File Adds a new source file to the current session of the Parallel Analyzer
View. Selecting this command brings up a File Selection dialog that lets
you select a Fortran source file.

Before you can select a given source file, you must compile it to create
the .anl file needed by the Parallel Analyzer View. (See “Compiling a
Program for Parallel Analyzer View” on page 23.)

If the current session is based on an executable, you cannot add files to
it until you have deleted the executable’s fileset. (See the Add Files
from Executable option, described below.)

Add Files from Fileset
Lets you add a list of new source files to the current session of the
Parallel Analyzer View. Choosing this command brings up a File
Selection dialog as it does for the Add File option. If you select a file
containing a fileset list, all Fortran source files in the list are loaded into
the current session (other files in the list are ignored).

If the current session is based on an executable, you cannot add files to
it until you have deleted the executable’s fileset.

Add Files from Executable
Imports all the Fortran source files listed in the symbol table of a
compiled Fortran application. This command works only if there are no
files in the current session of the Parallel Analyzer View when the
command is selected from the menu. Selecting this command brings up
a File Selection dialog as it does for the Add File option. Other
WorkShop applications can also operate on files imported from an
executable.

110

Chapter 4: Parallel Analyzer View Reference

Update Menu

The Parallel Analyzer View Update menu (Figure 4-10) contains commands for placing
requested changes to directives and assertions in your Fortran source code.

Figure 4-10 Update Menu

The options in the Update menu have the following effects:

Run gdiff After Update
Sets a checkbox that causes a gdiff window to open after you have
updated changes to your source file. This window illustrates in a
graphical manner the differences between the unchanged source and the
newly updated source.

If you always wish to see the gdiff window, you may set the resource in
your .Xdefaults file:

cvpav*gDiff: True

For more information on using gdiff, see the man page for gdiff(1).

Run Editor After Update
Sets a checkbox that opens an xwsh shell window with the vi editor on
the updated source file.

If you always wish to run the editor, you can set the resource in your
.Xdefaults file:

cvpav*runUserEdit: True

If you prefer a different window shell or a different editor, you can
modify the resource in your .Xdefaults file and change from xwsh or vi as
you prefer. The following is the default command in the .Xdefaults,
which you can edit for your preference:

cvpav*userEdit: xwsh -e vi %s +%d

Parallel Analyzer View Menu Bar

111

In the above command, the +%d tells vi at what line to position itself in
the file and is replaced with 1 by default (you can also omit the +%d
parameter if you wish). The edited file’s name either replaces any
explicit %s, or if the %s is omitted, the filename is appended to the
command.

Update All Files
Writes to the appropriate source files all changes to loops requested
during the current session of the Parallel Analyzer View. Shortcut:
Ctrl+U.

Update Selected File
Writes to a selected file changes to loops requested during the current
session of the Parallel Analyzer View. You choose a file for updating by
double-clicking in the Subroutines and Files View the line
corresponding to the desired filename. (See also “Subroutines and Files
View” on page 142.)

Force a Build to start
Performs the Update All Files option and starts a build.

Configuration Menu

The Configuration menu (Figure 4-11) allows you to choose between having the Parallel
Analyzer View use OpenMP or PCF directives.

Figure 4-11 Configuration Menu

The options are the following:

OpenMP Causes the Parallel Analyzer View to use OpenMP directives.

PCF Causes the Parallel Analyzer View to use PCF directives.

112

Chapter 4: Parallel Analyzer View Reference

Operations Menu

The Parallel Analyzer View Operations menu contains commands for adding assertions
and directives to loops, and removing pending changes to source files (Figure 4-12). The
general effects of the Operations menu options are to prepare a set of requested changes
to your source code. For information on how these changes are subsequently performed
see “Update Menu” on page 110.

Figure 4-12 Operations Menu and Submenus

The Operations menu is one of two points in the Parallel Analyzer View where you can
add assertions and directives. The other point is discussed in “Loop Parallelization
Controls in the Loop Information Display” on page 126. These two menus focus on
different aspects of the parallelization task:

• The Operations menu focuses on automatic parallelization directives, which may be
inserted in code by the MIPSpro Auto-Parallelizing Option, and memory
distribution.

• The parallelization controls in the loop information display focus on manual (that
is, not automatic) parallelization controls, which you can insert to further parallelize
your code.

Parallel Analyzer View Menu Bar

113

The assertions and directives you can add from the Operations menu are listed in two
tables. Table 4-1 contains a list of directives and assertions for parallelizing code that can
be added with the Add Assertion and Add OMP Directive menus. Table 4-2 lists
directives that are available from the Add OMP Section menu and are used to
synchronize access to sections of code by threads.

Table 4-1 Add Assertion and Add OMP Directive Menu Options

Option Effect on Compilation For More Information

C*$* ASSERT
CONCURRENT CALL

Ignore dependences in subroutine
calls that would inhibit parallelizing.

MIPSpro
Auto-Parallelizing Option
Programmer’s Guide,
Chapter 3

C*$* ASSERT
PERMUTATION (array_name)

Array array_name is a permutation
array.

MIPSpro
Auto-Parallelizing Option
Programmer’s Guide,
Chapter 3

C*$* CONCURRENTIZE Selectively override
C*$* NOCONCURRENTIZE.
Typically inserted during automatic
parallelization.

MIPSpro
Auto-Parallelizing Option
Programmer’s Guide,
Chapter 3

C*$* NOCONCURRENTIZE Do not parallelize file subroutine
(depending on placement). Typically
inserted during automatic
parallelization.

MIPSpro
Auto-Parallelizing Option
Programmer’s Guide,
Chapter 3

C$SGI DISTRIBUTE
C$SGI REDISTRIBUTE

Distribute array storage among
processors. For Origin2000 systems.

MIPSpro Fortran 77
Programmer’s Guide,
Chapter 6

C*$* PREFETCH_REF Load data into cache. May be used
with nonconcurrent code.

MIPSpro Compiling and
Performance Tuning Guide,
Chapter 4

C$SGI DYNAMIC Allow run-time array redistribution.
For Origin2000 systems.

MIPSpro Fortran 77
Programmer’s Guide,
Chapter 6

C$OMP FLUSH Identifies synchronization points at
which the implementation is
required to provide a consistent
view of memory.

OpenMP Fortran
Application Program
Interface, see
http://www.openmp.org

114

Chapter 4: Parallel Analyzer View Reference

The options in the Operations menu have the following specific effects:

Undo Changes to Loop
Removes pending changes to the currently selected loop. Changes that
have already been written to the source file using the Update menu
commands cannot be undone.

Undo All Changes
Removes pending changes to all the loops in the current fileset. Changes
that have already been written to the source file using the Update menu
commands cannot be undone.

Add Assertion
Opens the Add Assertion menu which allows you to add the following
assertions, which are described in Table 4-1:

• C*$*ASSERT CONCURRENT CALL

• C*$*ASSERT PERMUTATION

Add OMP Directive
Opens the Add OMP Directive menu which allows you to add these
directives, described in Table 4-1:

• C*$* CONCURRENTIZE

• C*$* NOCONCURRENTIZE

• C$SGI DISTRIBUTE (formerly C*$* DISTRIBUTE)

• C$SGI REDISTRIBUTE (formerly C*$* REDISTRIBUTE)

• C*$* PREFETCH_REF

• C$SGI DYNAMIC (formerly C*$* DYNAMIC)

• C$OMP FLUSH

Add OMP Parallel
Allows you to add the C$OMP PARALLEL directive. The directive
defines a parallel region, that is a block of code that is to be executed by
multiple threads in parallel.

Add OMP Barrier
Allows you to add the C$OMP BARRIER synchronization directive.
This directive causes each thread to wait at the designated point until all
have reached it.

Parallel Analyzer View Menu Bar

115

Add OMP Section
Opens the Add OMP Section submenu whose seven options allow you
to add the OpenMP synchronization directives shown below. The
directives are explained in Table 4-2.

• Add OMP Sections: C$OMP SECTIONS

• Add OMP Section: C$OMP SECTION

• Add OMP Critical: C$OMP CRITICAL

• Add OMP Single: C$OMP SINGLE

• Add OMP Atomic: C$OMP ATOMIC

• Add OMP Ordered: C$OMP ORDERED

• Add OMP Master: C$OMP MASTER

To use the Add OMP Section option do the following:

1. Bring up the Source View.

2. Using the mouse, sweep out a range of lines for the new construct.

3. Invoke the appropriate menu item to add the new construct.

When you add a new OMP Section construct, the list is redrawn with the new construct
in place, and the new construct is selected. Brackets defining the new constructs are not
added to the file loop annotations.

Table 4-2 lists the directives that can be added with the Add OMP Section menu. A more
detailed explanation of them can be found in the document OpenMP Fortran Application
Program Interface located at Web site of the OpenMP Architecture Review Board,
http://www.openmp.org.

116

Chapter 4: Parallel Analyzer View Reference

Note: The Parallel Analyzer does not enforce any of the semantic restrictions on how
parallel regions and or sections must be constructed. When you add nested regions or
constructs, be careful that they are properly nested: they must each begin and end on
distinct lines. For example, if you add a parallel region and a nested critical section that
end at the same line, the terminating directives are not in the correct order.

Help Menu

The Help menu contains commands that allow you to access online information and
documentation for the Parallel Analyzer View. (See Figure 4-13.)

Figure 4-13 Help Menu

Table 4-2 Add OMP Section Menu Options

Option Meaning

C$OMP SECTIONS Specifies that the enclosed sections of code are to be divided among
threads in a team.

C$OMP SECTION Delineates a section within C$OMP SECTIONS.

C$OMP CRITICAL Restrict access to enclosed code to one thread at a time.

C$OMP SINGLE Only one thread executes the enclosed code

C$OMP ATOMIC Update memory location atomically, not simultaneously.

C$OMP ORDERED Execute enclosed code in same order as sequential execution.

C$OMP MASTER Specify code to be executed by master thread.

Parallel Analyzer View Menu Bar

117

The options in the Help menu have the following effects:

On Version… Opens a window containing version number information for the
Parallel Analyzer View.

On Window… Invokes the Help Viewer, which displays a descriptive overview of the
current window or view and its graphical user interface.

On Context Invokes context-sensitive help. When you choose this option, the
normal mouse cursor (an arrow) is replaced with a question mark. When
you click on graphical features of the application with the left mouse, or
position the cursor over the feature and press the F1 key, the Help
Viewer displays information on that context.

Index… Invokes the Help Viewer and displays the list of available help topics,
which you can browse alphabetically, hierarchically, or graphically.

Keyboard Shortcuts

 Table 4-3 lists the keyboard shortcuts available in the Parallel Analyzer View:

Table 4-3 Parallel Analyzer View Keyboard Shortcuts

Shortcut Menu Menu Option

Ctrl+S Admin Icon Legend…

Ctrl+R Admin Raise

Ctrl+P Views Parallelization Control View

Ctrl+T Views Transformed Loops View

Ctrl+A Views PFA Analysis Parameters View

Ctrl+F Views Subroutines and Files View

Ctrl+U Update Update All Files

118

Chapter 4: Parallel Analyzer View Reference

Loop List Display

This section describes the loop list display and the various option buttons and fields that
manipulate the information shown in the loop list display, shown in Figure 4-14.

Figure 4-14 Loop List Display

Resizing the Loop List

You can resize the loop list to change the number of loops displayed; use the adjustment
button: a small square below the Previous Loop button.

Status and Performance Experiment Lines

The Status line displays messages about the current status of the loop list, providing
feedback on manipulations of the current fileset.

The Performance experiment line is meaningful if you run the WorkShop Performance
Analyzer. The line displays the name of the current experiment directory and the type of
experiment data, as well as total data for the current caliper setting in the Performance
Analyzer. (See “Launch Tool Submenu” on page 104 for information on invoking the
Performance Analyzer from the Parallel Analyzer View.) If the Performance Analyzer is
not being used, the performance experiment line displays <none>.

Loop list

Status line
Performance

experiment line

Loop list size adjustment

Loop List Display

119

Loop List

The loop list lets you select and manipulate any Fortran DO loop contained in the source
files loaded into the Parallel Analyzer View. Information about the loops is displayed in
columns in the list; the headings of the columns are shown at the top of Figure 4-15 and
described below.

Figure 4-15 Loop List with Column Headings

The columns in the loop list contain the following information about each loop, from left
to right:

• Parallelization icon: Indicates the parallelization status of each loop. The meaning of
each icon is described in the Icon Legend dialog box. (See “Icon Legend… Option”
on page 103.) When a loop is displayed in the loop information display (by
double-clicking the loop’s row), a green check mark is placed to the left of the icon
to indicate that it has been examined. If any changes are made from within the loop
information display, a red plus sign is placed above the check mark.

• Perf. Cost (not shown in Figure 4-15): The performance cost is displayed when the
WorkShop Performance Analyzer is launched on the current fileset. (See “Launch
Tool Submenu” on page 104.) The loops can be sorted by Perf. Cost via the sort
option button. (See “Sort Option Button” on page 121.)

When performance cost is shown, each loop’s execution time is displayed as a
percentage of the total execution time. This percentage includes all nested loops,
subroutines, and function calls.

• Nest: The nesting level of the given loop.

Nesting
Loop

Location

Loop

level

index
identifier

in code
Subroutine

name
variable

FilenameColumn headings

120

Chapter 4: Parallel Analyzer View Reference

• Loop-ID: An ID for each loop in the list display. The ID is displayed indented to the
right to reflect the loop’s nesting level when the list is sorted in source order, and
unindented otherwise.

• Variable: The name of the loop index variable.

• Subroutine: The name of the Fortran subroutine in which the loop occurs.

• Lines: The lines in the source file that make up the body of the loop.

• Olid: Original loop id is a unique internal identifier for the loops generated by the
compiler. Use this value when reporting bugs.

• File: The name of the Fortran source file that contains the loop.

To highlight a loop in the list, click the left mouse anywhere in a loop’s row; typing unique
text from the row into the Search field does the same thing. (See “Search Loop List Field”
on page 121.)

To select a loop, double-click on its row; this will bring up detailed information in the loop
information display below the loop list display. (See “Loop Information Display” on
page 125.) Selecting a loop affects other displays. (See “Selecting a Loop for Analysis” on
page 42.)

Loop Display Controls

The loop display controls are shown in Figure 4-16, and are discussed in the next
sections.

Figure 4-16 Loop Display Controls

Option buttons

Control buttons

Search loop list field

Navigation buttons

Loop Display Controls

121

Search Loop List Field

You can use the search loop list editable text field, shown at the top left of Figure 4-16, to
find a specific loop in the loop list display. The Parallel Analyzer View matches any text
typed into the field to the first instance of that text in the loop list, and highlights the row
of the list in which the text occurs. The search field matches its text against the contents
of each column in the loop list.

As you type into the field, the list highlights the first entry that matches what you have
already typed, scrolling the list if necessary. If you press Enter, the highlight moves to
the next match. If no match is found, the system beeps, and pressing Enter positions the
highlight at the top of the list again.

Sort Option Button

The sort option button is the left-most option button under the loop list search field
shown in Figure 4-16. It controls the order in which the loops are displayed in the loop
list display.

Figure 4-17 Sort Option Button

The choices in the sort option button (Figure 4-17) have the following effects:

Sort in Source Order
Orders the loops as they appear in the source file. This is the default
setting.

Sort by Perf. Cost
Orders the loops by their performance cost (from greatest to least) as
calculated by the Workshop Performance Analyzer. You need to have
invoked the Performance Analyzer from the current session of the
Parallel Analyzer View to make use of this option. See “Launch Tool
Submenu” on page 104 for information on how to open the Performance
Analyzer from the current session of the Parallel Analyzer View.

122

Chapter 4: Parallel Analyzer View Reference

Show Loop Types Option Button

The show loop types option button is the center option button under the loop list search
field shown in Figure 4-16. It controls what kind of loops are displayed for each file and
subroutine in the loop list.

Figure 4-18 Show Loop Types Option Button

The options in the show loop types button (Figure 4-18) have the following effects:

Show All Loop Types
Default setting.

Show Unparallelizable Loops
Show only loops that could not be parallelized, and thereby run serially.

Show Parallelized Loops
Show only loops that are parallelized.

Show Serial Loops
Show only loops that are preferably serial.

Show Modified Loops
Show only loops with pending changes.

Show OMP Directives
Show only loops containing OMP directives.

Loop Display Controls

123

Filtering Option Button

The filtering option button is the right-most option button under the loop list search field
shown in Figure 4-16. It lets you display only those loops contained within a given
subroutine or source file.

Figure 4-19 Filtering Option Button

The button choices have the following effects:

No Filtering The default setting; lists all loops and routines.

Filter by Subroutine
Lets you enter a subroutine name into a filtering editable text field that
appears above the option button. Only loops contained in that
subroutine are displayed in the loop list.

Filter by File Lets you enter a Fortran source filename into a filtering editable text field
that appears above the option button. Only loops contained in that file
are displayed in the loop list.

To place the name of a subroutine or file in the appropriate filter text field, you can
double-click on a line in the Subroutines and Files View. If the appropriate type of
filtering is currently selected, the loop list is rescanned.

124

Chapter 4: Parallel Analyzer View Reference

Loop Display Buttons

The loop display controls (Figure 4-16) include two control buttons:

• Source: Opens the Source View window, with the source file containing the loop
currently selected (double-clicked) in the loop list. The body of the loop is
highlighted within the window. If no loop is selected, the last selected file is loaded;
if no file is selected, the first file in the fileset is loaded.

For more information on the Source View window, see “Source View and Parallel
Analyzer View - Transformed Source” on page 144.

• Transformed Source: Opens a Parallel Analyzer View - Transformed Source window,
with the compiled source file containing the loop currently selected
(double-clicked) in the loop list. The body of the loop is highlighted within the
window. If no loop is selected, the last selected file is loaded; if no file is selected, the
first file in the fileset is loaded.

For more information on the Transformed Source window, see “Source View and
Parallel Analyzer View - Transformed Source” on page 144.

The loop display controls also include two navigation buttons:

• Next Loop: Selects the next loop in the loop list. The information in the loop
information display and all other windows is updated accordingly. If no loop is
currently selected, clicking on the button selects the first loop.

• Previous Loop: Selects the previous loop in the loop list. The information in the loop
information display and all other windows is updated accordingly. If no loop is
currently selected, clicking on the button selects the first loop.

Loop Information Display

125

Loop Information Display

The loop information display provides detailed information on various loop parameters,
and allows you to alter those parameters to incorporate the changes into the Fortran
source. The display is divided into several information blocks displayed in a scrolling list
as shown in Figure 4-20.

Figure 4-20 Loop Information Display

Each of these sections and the information it contains is described in detail below. The
display is empty when no loop has been selected.

Highlight Buttons

A highlight button (light bulb, see Figure 4-20) appears as a shortcut to more information
related to text in the display. Clicking the button does one or both of the following:

• Highlights the loop and the relevant line(s) in a Source View window. (See “Source
View and Parallel Analyzer View - Transformed Source” on page 144.)

• If a directive appears in the options menu next to it, the highlight button presents
details about directive clauses in a Parallelization Control View. (See
“Parallelization Control View” on page 132.)

If directives or assertions with highlight buttons are also listed below the Loop
Parallelization Controls, these buttons highlight the same piece of code as the
corresponding button in the Loop Parallelization Controls, but they do not activate the
Loop Parallelization Control View.

Information Number of transformed loops
block

Highlight button

126

Chapter 4: Parallel Analyzer View Reference

Loop Parallelization Controls in the Loop Information Display

The first line of the Loop Parallelization Controls section shows the Olid of the selected
loop and, on the far right, how many transformed loops were derived from the selected
loop.

Controls for altering the parallelization of the selected loop are shown in Figure 4-21. The
controls in this section allow you to place parallelization assertions and directives in your
code. Recall that you have similar controls available through the Operations menu. (See
“Operations Menu” on page 112.)

Figure 4-21 Loop Parallelization Controls

Status description

Loop parallelization

MP scheduling option

Scheduling description

MP Chunk size editable text field

Number of transformed loops

status option

Loop Information Display

127

Loop Parallelization Status Option Button

The loop parallelization status option button (shown in Figure 4-21) lets you alter a
loop’s parallelization scheme. To the right of the option button is the Loop parallelization
status field, a description of the current loop status as implemented in the transformed
source. A small highlight button appears to the left of this description if the status was
set by a directive.

The loop parallelization status option button choices follow below. The directives and
assertions mentioned in the choices are described in Table 4-4.

Default Always selects the parallelization scheme that the compiler picked for
the selected loop.

Prefer Parallel Adds the assertion C*$*ASSERT DO PREFER (CONCURRENT).

Force Parallel Adds the assertion C*$*ASSERT DO (CONCURRENT).

Prefer Serial Adds the assertion C*$ASSERT DO PREFER (SERIAL).

Force Serial Adds the assertion C*$*ASSERT DO (SERIAL).

C$OMP PARALLEL DO…
Adds the OpenMP directive C$OMP PARALLEL DO. Selecting this
item opens the Parallelization Control View. See “Parallelization Control
View” on page 132 for more information.

C$OMP DO… Launches the Parallelization Control View, which allows you to
manipulate the scheduling clauses for the OpenMP C$OMP DO
directive and to set each of the referenced variables as either
region-default or last-local.

A C$OMP DO must be within a parallel region, although the tool does
not enforce this restriction. If one is added outside of a region, the
compiler reports an error.

128

Chapter 4: Parallel Analyzer View Reference

A menu choice is grayed out if you are looking at a read-only file, if you invoked cvpav
with the -ro True option, or if the loop comes from an included file. So in some cases you
are not allowed to change the menu setting.

Table 4-4 lists the assertions and directives that you control from the loop parallelization
status option button.

Table 4-4 Assertions and Directives Accessed From the Loop Parallelization Controls

Assertion or Directive Effect on Compilation For More Information

C*$* ASSERT DO
(CONCURRENT)

Parallelize the loop; ignore
possible data dependences.

MIPSpro Auto-Parallelizing
Option Programmer’s Guide,
Chapter 3

C*$* ASSERT DO PREFER
(CONCURRENT)

Attempt to parallelize the
selected loop. If not possible,
try each nested loop.

MIPSpro Auto-Parallelizing
Option Programmer’s Guide,
Chapter 3

C*$* ASSERT DO (SERIAL) Do not parallelize the loop. MIPSpro Auto-Parallelizing
Option Programmer’s Guide,
Chapter 3

C*$* ASSERT DO PREFER
(SERIAL)

Do not parallelize the loop. MIPSpro Auto-Parallelizing
Option Programmer’s Guide,
Chapter 3

C$OMP PARALLEL DO Parallelize the loop, ignore
automatic parallelizer.

OpenMP Fortran Application
Program Interface, see
http://www.openmp.org

C$OMP DO Assign each loop iteration to
a different thread, ignore
automatic parallelizer.

OpenMP Fortran Application
Program Interface, see
http://www.openmp.org

Loop Information Display

129

MP Scheduling Option Button: Directives for All Loops

The MP scheduling option button (Figure 4-21) lets you alter a loop’s scheduling scheme
by changing C$MP_SCHEDTYPE modes and values for C$CHUNK. For those modes
that require a chunk size, there is a editable text field to enter the value. (See “MP Chunk
Size Field” on page 130.)

These directives affect the current loop and all subsequent loops in a source file. For more
information, see Chapter 5 in the MIPSpro Fortran 77 Programmer’s Guide. For control over
a single loop, use the C$OMP PARALLEL DO directive clause. (See “MP Scheduling
Option Button: Clauses for One Loop” on page 138.)

The button choices are as follows:

Default Always selects the scheduling scheme that the compiler picked for the
selected loop.

Static Divides iterations of the selected loop among the processors by dividing
them into contiguous pieces and assigning one to each processor.

Dynamic Divides iterations of the selected loop among the processors by dividing
them into pieces of size C$CHUNK. As each processor finishes a piece,
it enters a critical section to grab the next piece. This scheme provides
good load balancing at the price of higher overhead.

Interleaved Divides the iterations into pieces of size C$CHUNK and interleaves the
execution of those pieces among the processors. For example, if there are
four processors and C$CHUNK = 2, then the first processor executes
iterations 1-2, 9-10, 17-18,…; the second processor executes iterations
3-4, 11-12, 19-20,…; and so on.

Guided Self Divides the iterations into pieces. The size of each piece is determined
by the total number of iterations remaining. The idea is to achieve good
load balancing while reducing the number of entries into the critical
section by parceling out relatively large pieces at the start and relatively
small pieces toward the end.

Run-time Lets you specify the scheduling type at run time.

To the right of the MP scheduling option button is the MP scheduling field, a description
of the current loop scheduling scheme as implemented in the transformed source. A
highlight button appears to the left of this description if the scheduling scheme was set
by a directive.

130

Chapter 4: Parallel Analyzer View Reference

MP Chunk Size Field

Below the MP scheduling description is the MP Chunk size editable text field, a field that
allows you to set the C$CHUNK size for the scheduling scheme you select.

When you change an entry in the field, the upper right corner of the field turns down,
indicating the change (Figure 4-22). To toggle back to the original value, left-click the
turned-down corner (changed-entry indicator). The corner unfolds, leaving a fold mark.
If you click again on the fold mark, you can toggle back to the changed value. You can
enter a new value at any time; the field remembers the original value, which is always
displayed after you click on the changed-entry indicator.

Figure 4-22 MP Chunk Size Field Changed

Be aware of the following when you use the MP Chunk size field:

• Your entry should be syntactically correct, although it is not checked.

• Like any other editable text field, the background color changes when you cannot
make edits. This can happen if you are looking at a read-only file, if you invoked
cvpav with the -ro True option, if the loop comes from an included file, or in some
other cases.

Obstacles to Parallelization Information Block

Obstacles to parallelization are listed when the compiler discovers aspects of a loop’s
structure that make it impossible to parallelize. They appear in the loop information
display below the parallelization controls.

Figure 4-23 illustrates a message describing an obstacle. The message has a highlight
button directly to its left to indicate the troublesome line(s) in the Source View window,
and opens the window if necessary. If appropriate, the referenced variable or function
call is highlighted in a contrasting color.

Changed-entry indicator

Loop Information Display

131

Figure 4-23 Obstacles to Parallelization Block

Assertions and Directives Information Blocks

The loop information display lists any assertions and directives for the selected loop
along with highlight buttons. When you left-click the highlight button to the left of an
assertion or directive, the Source View window shows the selected loop with the
assertion or directive highlighted in the code.

Recall that assertions and directives are special Fortran source comments that tell the
compiler how to transform Fortran code for multiprocessing. Directives enable, disable,
or modify features of the compiler when it processes the source. Assertions provide the
compiler with additional information about the source code that can sometimes improve
optimization.

Some assertions or directives appear with an information block option button that allows
you to Keep or Delete it. (If you compile o32, you can also Reverse it.) Figure 4-24 shows an
assertion block and its option button.

Figure 4-24 Assertion Information Block and Options (n32 and n64 Compilation)

Assertions and directives that govern loop parallelization or scheduling do not have
associated option buttons; those functions are controlled by the loop parallelization
status option button and the MP scheduling option button. (See “Loop Parallelization
Controls in the Loop Information Display” on page 126.)

Highlight button

Description of obstacle

132

Chapter 4: Parallel Analyzer View Reference

Compiler Messages

The Loop information display also shows any messages generated by the compiler to
describe aspects of the loops created by transforming original source loops. As an
example, the loop information display in Figure 4-20 shows there are 11 messages
present although only one is shown. Some messages have associated buttons that
highlight sections of the selected loop in the Source View window.

Views Menu Options

The views in this section are launched from the Views menu in the main menu bar of the
Parallel Analyzer View. All of the views discussed in this section contain the following
in their menu bars:

• Admin menu: This menu contains a single Close command that closes the
corresponding view.

• Help menu: This menu provides access to the online help system. (See “Help
Menu” on page 116 for an explanation of the commands in this menu.)

Parallelization Control View

The Parallelization Control View shows parallelization controls (directives and their
clauses), where applicable, and all the variables referenced in the selected loop, OpenMP
construct, or subroutine. It can be opened by either of two ways.

• Selecting the Views > Parallelization Control View option. Figure 4-25 shows the
Parallelization Control View when it is launched from the Views menu with the
Default loop parallelization status option button; this is the display for loops
without directives.

• Selecting C$OMP PARALLEL DO… or C$OMP DO… in the loop parallelization
status option button (Figure 4-26 and Figure 4-27). This approach provides controls
for clauses you can append to these directives.

Views Menu Options

133

Features that appear no matter which method is used to open the Parallelization Control
View are discussed under “Common Features of the Parallelization Control View” on
page 134. Features that appear only when the view is opened from the loop
parallelization status option button with C$OMP PARALLEL DO… or C$OMP DO…
selected are discussed in the following:

• “C$OMP PARALLEL DO and C$OMP DO Directive Information” on page 134

• “MP Scheduling Option Button: Clauses for One Loop” on page 138

• “Variable List Option Buttons” on page 138

Figure 4-25 Parallelization Control View

134

Chapter 4: Parallel Analyzer View Reference

Common Features of the Parallelization Control View

Independently of how you open the Parallelization Control View, these elements appear
in the window (Figure 4-25):

• Selected loop: Contains the Olid of the loop, and the information about the loop
from the Loop-ID and Variable columns of the loop list.

• Directive information section: If a directive is applicable to the loop, this section lists
directive, clauses, and parameter values. (See “C$OMP PARALLEL DO and
C$OMP DO Directive Information” on page 134.)

• Variables Referenced: The listing has two icons for each variable. They allow you to
highlight the variable in the Source View and to determine the variable’s read/write
status; see “Icon Legend… Option” on page 103 for an explanation of these icons.

For discussion of added option buttons that appear if the view is opened from the
loop parallelization status option button when C$OMP PARALLEL DO… or
C$OMP DO… is selected, see “Variable List Option Buttons” on page 138.

• Add Variable: Located at the bottom of the window frame, this button allows you to
add new variables to a loop.

• List to add: Located at the bottom of the window frame, this editable text field
allows you to indicate the variables you wish to add to the loop. You may enter
multiple variables, with each variable name separated by a space or comma.

C$OMP PARALLEL DO and C$OMP DO Directive Information

Option buttons and editable text fields in addition to those described in “Common
Features of the Parallelization Control View” on page 134 are available if you open the
Parallelization Control View from the loop parallelization status option button with
either C$OMP PARALLEL DO… or C$OMP DO… selected. (See Figure 4-26 and
Figure 4-27.)

There are two additional option buttons available:

• MP scheduling option button: This button allows you to alter a loop’s scheduling
scheme by changing the C$MP_SCHEDTYPE clause. See “MP Scheduling Option
Button: Clauses for One Loop” on page 138 for further information. This is the same
button shown in Figure 4-21.

• Synchronization construct option button (C$OMP DO… only): This button allows
you to set the NOWAIT clause at the end of the C$OMP END DO directive to
avoid the implied BARRIER.

Views Menu Options

135

Figure 4-26 Parallelization Control View With C$OMP PARALLEL DO Directive

Selected loop Parallelization condition field

MP scheduling

List of loop variables

Read/write status

Variable type

Highlight button

Variable name

MP scheduling Chunk
size field

Loop parallelization
status options

Clause parameter fields

Variable list options

option button

136

Chapter 4: Parallel Analyzer View Reference

Figure 4-27 Parallelization Control View With C$OMP DO Directive

The following is a list of additional editable text fields that allow you to specify clauses
for the C$OMP PARALLEL DO or C$OMP DO directives. Unless otherwise specified,
the clause descriptions come from the OpenMP Fortran Application Program Interface,
Version 1.0 - Oct 1997 on the OpenMP Web site, http://www.openmp.org.

Selected loop

MP scheduling option button

List of loop variables

Read/write status

Variable type

Highlighting button

Variable name

MP scheduling Chunk size field

Construct

Loop parallelization
status options

Clause parameter

Variable list options

 fields

synchronization
options

Views Menu Options

137

• Condition for parallelization: Allows you to enter a Fortran conditional statement,
for example, NSIZE .GT. 83. (C$OMP PARALLEL DO… only.)

This statement determines the circumstances under which the loop will be
parallelized. The upper right corner of the field changes when you type in the field.
Your entry must be syntactically correct; it is not checked.

• MP Chunk size: Allows you to set the C$CHUNK size for the scheduling scheme
you select. For further information, see “MP Chunk Size Field” on page 130.

• Private: Declares the variables in a list to be PRIVATE to each thread in a team.

• Shared: Makes variables that appear in a list shared among all the threads in a team.
All threads within a team access the same storage area for SHARED data.
(C$OMP PARALLEL DO… only.)

• Default: Allows you to specify a PRIVATE, SHARED, or NONE scope attribute for
all variables in the lexical extent of any parallel region. Variables in
THREADPRIVATE common blocks are not affected by this clause.
(C$OMP PARALLEL DO… only.)

• Firstprivate: Provides a superset of the functionality provided by the PRIVATE
clause.

• Lastprivate: Provides a superset of the functionality provided by the PRIVATE
clause.

• Copyin: Applies only to common blocks that are declared as THREADPRIVATE.
(C$OMP PARALLEL DO… only.)

A COPYIN clause on a parallel region specifies that the data in the master thread of
the team be copied to the thread private copies of the common block at the
beginning of the parallel region.

• Reduction: Performs a reduction on the variables that appear in a list with an
operator (+, *, -, .AND., .OR., .EQV., or .NEQV.), or an intrinsic (MAX, MIN,
IAND, IOR, or IEOR).

• Affinity: Allows you to specify the parameters for the affinity scheduling clause.
The two types of affinity scheduling are described below. (For more details and
syntax, see the MIPSpro Fortran 77 Programmer’s Guide.)

– Data affinity scheduling, which assigns loop iterations to processors according
to data distribution.

– Thread affinity scheduling, which assigns loop iterations to designated
processors.

138

Chapter 4: Parallel Analyzer View Reference

• Nest: Allows you to specify parameters in this clause for concurrent execution of
nested loops. You can use the NEST clause to parallelize nested loops only when
there is no code between either the opening DO statements or the closing ENDDO
statements. For more details and syntax, see the MIPSpro Fortran 77 Programmer’s
Guide.

• Onto: Allows you to specify parameters for this clause to determine explicitly how
processors are assigned to array variables or loop iteration variables. For more
details and syntax, see the MIPSpro Fortran 77 Programmer’s Guide.

MP Scheduling Option Button: Clauses for One Loop

The Parallelization Control View contains an MP scheduling option button if it is opened
from the loop parallelization status option button with either C$OMP PARALLEL DO…
or C$OMP DO… selected.

The options that appear have the same names as those for the MP scheduling option
button in the loop information display, shown in Figure 4-21. However, the option button
in the Parallelization Control View affects the C$MP_SCHEDTYPE and C$CHUNK
clauses in the C$OMP PARALLEL DO directive, and so affects only the currently
selected loop. Recall that the MP scheduling option button in the loop information
display affects the placement of the C$MP_SCHEDTYPE and C$CHUNK directives and
thus all subsequent loops.

Except for this difference in scope, the effects of both option buttons are the same; for a
description, see “MP Scheduling Option Button: Directives for All Loops” on page 129.
For more information, see the MIPSpro Fortran 77 Programmer’s Guide.

Variable List Option Buttons

If the Parallelization Control View is opened from the loop parallelization status option
button when either C$OMP PARALLEL DO… or C$OMP DO… is selected, each variable
listed in the lower portion of the view appears with an option button. The menu allows
you to append a clause to the directive, enabling you to control how the processors
manage the variable. It is an addition to the highlight and read/write icons discussed in
“Common Features of the Parallelization Control View” on page 134.

Note: The highlight button may not indicate in the Source View all the occurrences
relevant to a variable subject to a OpenMP directive; you may need to select the entire
parallel region in which the variable occurs.

Views Menu Options

139

If the view is opened from the loop parallelization status option button when
C$OMP PARALLEL DO… is selected, these are the variable list option button choices
(Figure 4-26):

Default Uses the control established by the compiler.

Shared One copy of the variable is used by all threads of the MP process.

Local Each processor has its own copy of the variable.

Last-local Similar to Local, except the value of the variable after the loop is as the
logically last iteration would have left it.

Reduction A sum, product, minimum, or maximum computation of the variable
can be done partially in each thread and then combined afterwards.

If the view is opened from the loop parallelization status option button when
C$OMP DO… is selected, these are the variable list option button choices (Figure 4-27):

Region-default Uses the control established by the compiler for the parallel region.

Local Each processor has its own copy of the variable.

First-local Similar to Local, except the value of the variable after the loop is as the
logically first iteration would have left it.

Last-local Similar to Local, except the value of the variable after the loop is as the
logically last iteration would have left it.

Variable List Storage Labeling

In parentheses after each variable name in the list of variables is a word indicating the
storage class of the variable. There are three possibilities:

• Automatic: The variable is local to the subroutine, and is allocated on the stack.

• Common: The variable is in a common block.

• Reference: The variable is a formal argument, or dummy variable, local to the
subroutine.

140

Chapter 4: Parallel Analyzer View Reference

Transformed Loops View

The Transformed Loops View contains information about how a loop selected from the
loop list is rewritten by the compiler into one or more transformed loops.

To open this view, choose Views > Transformed Loops View. (See Figure 4-28)

Figure 4-28 Transformed Loops View

Loop identifying information appears on the first line below the window menu, and
below that is an indication of how many transformed loops were created.

Each transformed loop is displayed in its own section of the Transformed Loops View in
an information block.

• The first line in each block for contains:

– A parallelization status icon

– A highlighting button (highlights the loop in the Transformed Source window
and in the original loop in the Source View)

– The Olid number of the transformed loop

Information block
for one loop

Views Menu Options

141

• The next line describes the transformed loop, providing information such as the
following:

– Whether it is a primary loop or secondary loop (whether it is directly transformed
from the selected original loop or transformed from a different original loop,
but incorporates some code from the selected original loop)

– Parallelization state

– Whether it is an ordinary loop or interchanged loop

– Its nesting level

• The last line in the loop’s information block displays the location of the loop in the
transformed source.

Any messages generated by the compiler are below the loop information blocks. To the
left of the message lines are highlight buttons. Left-clicking them highlights in the
Transformed View the part of the original source that relates to the message. Often it is
the first line of the original loop that is highlighted, since the message refers to the entire
loop.

PFA Analysis Parameters View

If you compile with o32, you can use the PFA Analysis Parameters View, which contains
a list of PFA execution parameters accompanied by fields into which you can enter new
values. If you compile with n32 or n64, these parameters have no effect and this view is
not useful.

To open this view, choose Views > PFA Analysis Parameters View in the main window.
(See Figure 4-28.)

When you update a source file, any PFA parameters you alter are changed for that file
(Figure 4-29). When you change a parameter, the upper right corner of the field window
turns down, as discussed in “MP Chunk Size Field” on page 130.

142

Chapter 4: Parallel Analyzer View Reference

Figure 4-29 PFA Analysis Parameters View

A full explanation of the PFA parameters, shown in Figure 4-29, can be found in
Chapter 4, “Customizing PFA Execution,” in the POWER Fortran Accelerator User’s Guide.

Subroutines and Files View

The Subroutines and Files View contains a list from the file(s) in the current session of the
Parallel Analyzer View (Figure 4-30). Below each filename in the list is an indented list of
the Fortran subroutines it contains. Each item in the list is accompanied by icons to
indicate file or subroutine status:

• A green check mark appears to the left of the file or subroutine name if the file has
been scanned correctly or the subroutine has no errors.

• A red plus sign is above the green check mark shows if any changes have been
made to loops in the file using the Parallel Analyzer View.

• A red international not symbol replaces the check mark if an error occurred because
a file could not be scanned or a subroutine had errors.

Changed-entry indicatorLoop description

of parameter

Numeric editable
field with valuetext

Views Menu Options

143

Figure 4-30 Subroutines and Files View

The Search field in the Parallel Analyzer View uses the subroutine and file names listed
in the Subroutines and Files View as a menu for search targets; see “Search Loop List
Field” on page 121.

You can select items in the list for two purposes:

• To save changes to a selected file: click the filename and use the Update > Update
Selected File option at the top of the Parallel Analyzer View main window. (See
“Update Menu” on page 110.)

• To select a file or subroutine for loop list filtering, discussed in “Filtering Option
Button” on page 123, double-click on it. The selected name appears in the filtering
text field; if the item is appropriate for the selected filtering option, the loop list is
rescanned.

At the bottom of the window is a Search editable text field, which you can use to search
the list of files and subroutines.

Search field

File
line

Subroutine
lines

144

Chapter 4: Parallel Analyzer View Reference

Loop Display Control Button Views

These views are summoned by clicking on the Source and Transformed Source loop display
control buttons.

Source View and Parallel Analyzer View - Transformed Source

The Source View window and the Transformed Source window together present views
of the source code before and after compiler optimization (Figure 4-31). The two
windows use the WorkShop Source View interface.

Both the Source View and Transformed Source windows contain bracket annotations in
the left margin that mark the location and nesting level of each loop in the source file.
Clicking on a loop bracket to the left of the code chooses and highlights the
corresponding loop.

In the Transformed Source window, an indicator bar (a vertical line in a different color)
indicates each loop that was transformed from the selected original loop.

If the source windows are invoked from a session linked to the WorkShop Performance
Analyzer (see “Launch Tool Submenu” on page 104), any displayed sources files known
to the Performance Analyzer are annotated with performance data.

Loop Display Control Button Views

145

Figure 4-31 Original and Transformed Source Windows

Note: The File and Display menus shown in the Source View and Transformed Source
windows are standard Source View menus, and are described in the Developer Magic:
Debugger User’s Guide.

Colored bars indicate

First transformed
loop is highlighted

loops transformed
 from selected loop

Original loop

147

Appendix A

A. Examining Loops Containing PCF Directives

The content of this appendix is similar to that of “Examples Using OpenMP Directives”
on page 78, except it uses the older PCF (Parallel Computing Forum) directives instead
of OpenMP directives. For more information on PCF directives, see the MIPSpro Fortran
77 Programmer’s Guide.

Setting Up the dummy.f Sample Session

To use this sample session, note the following:

• /usr/demos/WorkShopMPF is the PCF demonstration directory

• WorkShopMPF.sw.demos must be installed

The sample session discussed in this chapter uses the following source files in the
directory /usr/demos/WorkShopMPF/tutorial:

• dummy.f_orig

• pcf.f_orig

• reshape.f_orig

• dist.f_orig

The source files contain many DO loops, each of which exemplifies an aspect of the
parallelization process.

The directory /usr/demos/WorkShopMPF/tutorial also includes Makefile to compile the
source files.

148

Appendix A: Examining Loops Containing PCF Directives

Compiling the Sample Code

Prepare for the session by opening a shell window and entering the following:

% cd /usr/demos/WorkShopMPF/tutorial
% make

This creates the following files:

• dummy.f: a copy of the demonstration program created by combining the *.f_orig
files, which you can view with the Parallel Analyzer View or a text editor, and print

• dummy.m: a transformed source file, which you can view with the Parallel Analyzer
View, and print

• dummy.l: a listing file

• dummy.anl: an analysis file used by the Parallel Analyzer View

For more information about these files, see the MIPSpro Auto-Parallelizing Option
Programmer’s Guide.

Starting the Parallel Analyzer View

Once you have created the appropriate files with the compiler, start the session by
entering the following command, which opens the main window of the Parallel Analyzer
View loaded with the sample file data:

% cvpav -f dummy.f

Open the Source View window by clicking the Source button after the Parallel Analyzer
View main window opens.

Examples Using PCF Directives

149

Examples Using PCF Directives

This section discusses the subroutine pcfdummy(), which contains four parallel regions
and a single-process section that illustrate the use of PCF directives:

• “Explicitly Parallelized Loops: C$PAR PDO” on page 149

• “Loops With Barriers: C$PAR BARRIER” on page 151

• “Critical Sections: C$PAR CRITICAL SECTION” on page 153

• “Single-Process Sections: C$PAR SINGLE PROCESS” on page 153

• “Parallel Sections: C$PAR PSECTIONS” on page 154

To go to the first explicitly parallelized loop in pcfdummy(), scroll down the loop list to
Olid 92.

Select this loop by double-clicking the highlighted line in the loop list.

Explicitly Parallelized Loops: C$PAR PDO

The first construct in subroutine pcfdummy() is a parallel region, Olid 92, containing two
loops that are explicitly parallelized with C$PAR PDO statements. (See Figure A-1.)
With this construct, the second loop can start before all iterations of the first complete.

Example A-1 Explicitly Parallelized Loop Using C$PAR PDO

C$PAR PARALLEL SHARED(A,B) LOCAL(I)
C$PAR PDO dynamic blocked(10-2*2)
 DO 6001 I=-100,100
 A(I) = I
6001 CONTINUE
C$PAR PDO static
 DO 6002 I=-100,100
 B(I) = 3 * A(I)
6002 CONTINUE
C$PAR END PARALLEL

Notice in the loop information display that the parallel region has controls for the region
as a whole. The Keep option button and the highlight buttons function the same way they
do in the Loop Parallelization Controls. (See “Loop Parallelization Controls” on page 45.)

150

Appendix A: Examining Loops Containing PCF Directives

Click Next Loop twice to step through the two loops. You can see in the Source View that
both loops contain a C$PAR PDO directive.

Click Next Loop to step to the second parallel region.

Figure A-1 Explicitly Parallelized Loops Using C$PAR PDO

Examples Using PCF Directives

151

Loops With Barriers: C$PAR BARRIER

The second parallel region, Olid 95, contains a pair of loops identical to the previous
example, but with a barrier between them. Because of the barrier, all iterations of the first
C$PAR PDO must complete before any iteration of the second loop can begin.

Example A-2 Loops Using C$PAR BARRIER

C$PAR PARALLEL SHARED(A,B) LOCAL(I)
C$PAR PDO interleave blocked(10-2*2)
 DO 6003 I=-100,100
 A(I) = I
6003 CONTINUE
C$PAR END PDO NOWAIT
C$PAR barrier
C$PAR PDO static
 DO 6004 I=-100,100
 B(I) = 3 * A(I)
6004 CONTINUE
C$PAR END PARALLEL

Click Next Loop twice to view the barrier region. (See Figure A-2.)

Click Next Loop twice to go to the third parallel region.

152

Appendix A: Examining Loops Containing PCF Directives

Figure A-2 Loops Using C$PAR BARRIER Synchronization

Examples Using PCF Directives

153

Critical Sections: C$PAR CRITICAL SECTION

Click Next Loop to view the first of the two loops in the third parallel region, Olid 100.
This loop contains a critical section.

Example A-3 Critical Section Using C$PAR CRITICAL SECTION

C$PAR PDO
 DO 6005 I=1,100
C$PAR CRITICAL SECTION (S3)
 S1 = S1 + I
C$PAR END CRITICAL SECTION
6005 CONTINUE

Click Next Loop to view the critical section.

The critical section uses a named locking variable (S3) to prevent simultaneous updates
of S1 from multiple threads. This is a standard construct for performing a reduction.

Move to the next loop by clicking Next Loop.

Single-Process Sections: C$PAR SINGLE PROCESS

Loop Olid 102 has a single-process section, which ensures that only one thread can
execute the statement in the section. Highlighting in the Source View shows the begin
and end directives.

Example A-4 Single-Process Section Using C$PAR SINGLE PROCESS

 DO 6006 I=1,100
C$PAR SINGLE PROCESS
 S2 = S2 + I
C$PAR END SINGLE PROCESS
6006 CONTINUE

Click Next Loop to view information about the single-process section.

Move to the final parallel region in pcfdummy() by clicking Next Loop.

154

Appendix A: Examining Loops Containing PCF Directives

Parallel Sections: C$PAR PSECTIONS

The fourth and final parallel region of pcfdummy(), Olid 104, provides an example of
parallel sections. In this case, there are three parallel subsections, each of which calls a
function. Each function is called exactly once, by a single thread. If there are three or more
threads in the program, each function may be called from a different thread. The
compiler treats this directive as a single-process directive, which guarantees correct
semantics.

Example A-5 Parallel Section Using C$PAR PSECTIONS

C$PAR PARALLEL shared(a,c) local(i,j)
C$PAR PSECTIONS
 call boo
C$PAR SECTION
 call bar
C$PAR SECTION
 call baz
C$PAR END PSECTIONS
C$PAR END PARALLEL

Click Next Loop to view the parallel section.

Exiting From the dummy.f Sample Session

This completes the PCF sample session.

Close the Source View window by choosing its File > Close option.

Quit the Parallel Analyzer View by choosing Admin > Exit.

To clean up the directory, enter the following in your shell window to remove all of the
generated files:

% make clean

155

 Index

A

Add Assertion submenu
in Operations menu, 114

Add File
option in Fileset menu, 109

Add Files from Executable
option in Fileset menu, 109

Add Files from Fileset
option in Fileset menu, 109

adding an assertion, 72
Add OMP Atomic

option in Add OMP Section submenu, 115
Add OMP Barrier

option in Operations menu, 114
Add OMP Critical

option in Add OMP Section submenu, 115
Add OMP Directive

option in Operations menu, 114
Add OMP Master

option in Add OMP Section submenu, 115
Add OMP Ordered

option in Add OMP Section submenu, 115
Add OMP Parallel

option in Operations menu, 114
Add OMP Section

option in Add OMP Section submenu, 115
Add OMP Sections

option in Add OMP Section submenu, 115

Add OMP Section submenu
Add OMP Atomic option, 115
Add OMP Critical option, 115
Add OMP Master option, 115
Add OMP Ordered option, 115
Add OMP Section option, 115
Add OMP Sections option, 115
Add OMP Single option, 115
in Operations menu, 115

Add OMP Single
option in Add OMP Section submenu, 115

Add Variable button
in Parallelization Control View, 134

adjustment button
resize loop list display, 34, 118

Admin menu
Exit option, 102
Iconify option, 102
Icon Legend… option, 102, 103
in Parallel Analyzer View, 101
in Views menu options, 132
Launch Tool submenu, 102, 104
Project submenu, 102
Raise option, 102
Save as Text option, 101

AFFINITY clause, 70
Parallelization Control View and, 137

Affinity field
in Parallelization Control View, 137

analysis files, xvii
apo keep command line option, 23

156

Index

assertions
adding from Loop Parallelization Controls, 126
adding from Operations menu, 112
controlling, 68
deleting, 74

Assertions information block
in loop information display, 131

Automatic storage
variable list storage label, 139

B

barrier
OpenMP, 81
PCF, 151

brackets
colors, 39
loop, 48

bugs, reporting, 120
Build Analyzer

option in Launch Tool submenu, 104
Build Manager, 74

C

C*$* ASSERT CONCURRENT CALL, 60, 113, 114
adding, 72
deleting, 74

C*$* ASSERT DO (CONCURRENT), 56, 128
C*$* ASSERT DO (SERIAL), 128
C*$* ASSERT DO PREFER (CONCURRENT), 128
C*$* ASSERT DO PREFER (SERIAL), 128
C*$* ASSERT PERMUTATION, 61, 113, 114
C*$* CONCURRENTIZE, 113, 114

C*$* NOCONCURRENTIZE, 113, 114
C*$* PREFETCH_REF, 88, 113, 114
cache

prefetching data from, 88
caliper setting in Performance Analyzer, 118
C$CHUNK variable, 129, 130

MP scheduling option button and, 129
Parallelization Control View and, 137

changed-entry indicator, 130
check mark, 119
closing all windows, Project submenu, Exit option,

107
C$MP_SCHEDTYPE variable, 129

MP scheduling option button and, 129
colors, brackets and icons, 39
command line options, 25
Common storage

variable list storage label, 139
C$OMP ATOMIC, 116
C$OMP BARRIER, 81, 114
C$OMP CRITICAL, 83, 116
C$OMP DO, 79, 128
C$OMP DO…

option in loop parallelization status option
button, 127

Parallelization Control View and, 134
C$OMP FLUSH, 113, 114
compiler messages, 132
C$OMP MASTER, 116
C$OMP ORDERED, 116
C$OMP PARALLEL, 114
C$OMP PARALLEL DO, 51, 128

adding, 69
C$SGI&NEST and, 66
C$SGI DISTRIBUTE and, 85

157

Index

C$OMP PARALLEL DO…
option in loop parallelization status option

button, 127
Parallelization Control View and, 134

C$OMP SECTION, 116
C$OMP SECTIONS, 84, 116
C$OMP SINGLE, 83, 116
Condition for parallelization field

in Parallelization Control View, 137
Configuration menu

in Parallel Analyzer View, 111
OpenMP option, 111
PCF option, 111

conventions, font, for manual, xx
COPYIN clause, 70

Parallelization Control View and, 137
THREADPRIVATE directive and, 137

Copyin field
in Parallelization Control View, 137

C$PAR BARRIER, 151
C$PAR CRITICAL SECTION, 153
C$PAR PDO, 149
C$PAR PSECTIONS, 154
C$PAR SINGLE PROCESS, 153
critical section

OpenMP, 83
PCF, 153

C$SGI DISTRIBUTE, 85, 113, 114
C$SGI DYNAMIC, 113, 114
C$SGI REDISTRIBUTE, 113, 114
cvpav

compiling for, 23
installing, 22
opening editor, 76, 110
starting, 24

D

data dependence
carried

parallelizable, 56
unparallelizable, 55

multi-line, 57
daxpy subroutine, linpackd session, 94
Debugger

option in Launch Tool submenu, 104
Default

C$MP_SCHEDTYPE mode, 129
option in loop parallelization status option

button, 127
option in MP scheduling option button, 129
option in variable list option button, 139

DEFAULT clause, 70
Parallelization Control View and, 137

Default field
in Parallelization Control View, 137

Delete All Files
option in Fileset menu, 109

Delete information block option button, 131
Delete Selected File

option in Fileset menu, 109
demonstration

OpenMP, 29
PCF, 148

demonstration directory
OpenMP sample session, 28
PCF sample session, 147

dgefa subroutine, linpackd session, 94
directive information

in Parallelization Control View, 134

158

Index

directives
adding from Loop Parallelization Controls, 126
adding from MP scheduling option menu, 129
adding from Operations menu, 112
controlling, 68
deleting, 74

Directives information block
in loop information display, 131

distributed and reshaped array
C$SGI DISTRIBUTE_RESHAPE, 86

distributed arrays, 85
documentation, xix
dst1d subroutine, omp_demo.f session, 85
Dynamic

C$MP_SCHEDTYPE mode, 129
option in MP scheduling option button, 129

E

Exit
option in Admin menu, 102
option in Project submenu, 107

explicitly parallelized loop
OpenMP, 79
PCF, 149

F

file
update, 74

File loop list field, 120

Fileset menu
Add File option, 109
Add Files from Executable option, 109
Add Files from Fileset option, 109
Delete All Files option, 109
Delete Selected File option, 109
in Parallel Analyzer View, 108
Rescan All Files option, 108

Filter by File
option in filtering option button, 123

Filter by Subroutine
option in filtering option button, 123

filtering
by file, 38
by parallelization state, 36
option menus, 35

filtering option button, 38
Filter by File option, 123
Filter by Subroutine option, 123
in loop display controls, 123
No Filtering option, 123

First-local
option in variable list option button, 139

FIRSTPRIVATE clause, 70
Parallelization Control View and, 137

Firstprivate field
in Parallelization Control View, 137

font conventions, for manual, xx
foo subroutine, omp_demo.f session, 78
Force a Build to start

option in Update menu, 111
Force Parallel

option in loop parallelization status option
button, 127

Force Serial
option in loop parallelization status option

button, 127

159

Index

G

gdiff, 75
Guided Self

option in MP scheduling option button, 129
Scheduling, C$MP_SCHEDTYPE mode, 129

H

Help menu
Index… option, 117
in Parallel Analyzer View, 116
in Views menu options, 132
On Context option, 117
On Version… option, 117
On Window… option, 117

highlight button, 46, 125
directives, 125

highlighting a loop, 120

I

Iconify
option in Admin menu, 102
option in Project submenu, 105

Icon Legend…
dialog box, 103
option in Admin menu, 102, 103

icons
check mark, 43
description, 103
loop list, 32

Index…
option in Help menu, 117

information blocks
Assertions, 131
Directives, 131
Obstacles to Parallelization, 130
option buttons

Delete, 131
Keep, 131
Reverse, 131

input/output operation, 59
Interleaved

C$MP_SCHEDTYPE mode, 129
option in MP scheduling option button, 129

K

Keep information block option button, 131
keyboard shortcuts, 117

L

Last-local
option in variable list option button, 139

LASTPRIVATE clause, 70
Parallelization Control View and, 137

Lastprivate field
in Parallelization Control View, 137

Launch Tool submenu
Build Analyzer option, 104
Debugger option, 104
in Admin menu, 102, 104
Parallel Analyzer option, 104
Performance Analyzer option, 105
Static Analyzer option, 105
Tester option, 105

160

Index

light bulb button, 46
Lines loop list field, 120
LINPACK, 89
List to add field

in Parallelization Control View, 134
Local

option in variable list option button, 139
loop

complex, 66
detailed information, 39
doubly nested, 66
examining simple, 50
explicitly parallelized, 51
fused, 53
information blocks, 46
optimized away, 54
primary, 48
secondary, 48
serial, 51
simple parallel, 50
status, 119
transformed, 48

selecting, 48
with obstacles to parallelization, 54

loop display controls, 120
buttons, 124
control button

Source, 124
Transformed Source, 124

navigation button
Next Loop, 124
Previous Loop, 124

option button
filtering, 123
show loop types, 122
sort, 121

Loop-ID
loop list field, 32, 120

loop information display, 45
in Parallel Analyzer View, 125
Loop Parallelization Controls, 126

loop list, 119
column contents, 119
filtering, 35
in loop list display, 32
sorting, 35

loop list display, 32, 118
loop list, 32

Loop Parallelization Controls, 45
in loop information display, 126
loop parallelization status option button, 127
MP Chunk size field, 130
MP scheduling option button, 129

loop parallelization status option button
C$OMP DO… option, 127
C$OMP PARALLEL DO… option, 51, 69, 127
Default option, 127
Force Parallel option, 127
Force Serial option, 127
in Loop Parallelization Controls, 127
Prefer Parallel option, 127
Prefer Serial option, 127

M

main window
menu bar, 100

make clean
OpenMP sample session, 29, 88
PCF sample session, 154
performance session, 96

memory, required, 21
messages

obstacles to parallelization, 54
modifying source files, 68

161

Index

MP Chunk size field, 70
in Loop Parallelization Controls, 130
in Parallelization Control View, 137

MP scheduling option button
Default option, 129
Dynamic option, 129
Guided Self option, 129
in Loop Parallelization Controls, 129
in Parallelization Control View, 134, 138
Interleaved option, 129
Run-time option, 129
Static option, 129

MP scheduling option menu, 129

N

NEST clause, 70
Parallelization Control View and, 138

nested loops, 66
Nest field

in loop list, 32, 119
in Parallelization Control View, 138

Next Loop navigation button
in loop display controls, 124

No Filtering
option in filtering option button, 123

O

O3
command line option, 23
optimization level, 58

obstacles to parallelization, 54

Obstacles to Parallelization information block
dependence messages, 64
in loop information display, 130
messages, 62

Olid
loop list, 32
loop list field, 120

ompdummy subroutine, omp_demo.f session, 78, 83
On Context

option in Help menu, 117
ONTO clause, 70

Parallelization Control View and, 138
Onto field

in Parallelization Control View, 138
On Version…

option in Help menu, 117
On Window…

option in Help menu, 117
OpenMP

option in Configuration menu, 111
Operations menu

Add Assertion submenu, 114
Add OMP Barrier option, 114
Add OMP Directive option, 114
Add OMP Parallel option, 114
Add OMP Section submenu, 115
in Parallel Analyzer View, 112
Undo All Changes option, 114
Undo Changes to Loop option, 114

original loop ID. See Olid

162

Index

P

Parallel Analyzer
launching, 104
option in Launch Tool submenu, 104

Parallel Analyzer View
Admin menu, 101
compiling for, 23
Configuration menu, 111
Fileset menu, 108
Help menu, 116
installing, 22
loop information display, 125
menu bar, 100
OpenMP support, 24
Operations menu, 112
Source View, 39
starting, 24
Update menu, 110
Views menu, 107

Parallel Analyzer View - Transformed Source, 48
Transformed Source control button and, 144

parallelization
status option menu, 36

Parallelization Control View, 132
Add Variable button, 134
brought up by a highlight button, 86
C$CHUNK variable and, 137
C$OMP DO… button and, 134
C$OMP PARALLEL DO… button and, 134
directive clauses

AFFINITY, 137
COPYIN, 137
DEFAULT, 137
FIRSTPRIVATE, 137
LASTPRIVATE, 137
NEST, 138
ONTO, 138
PRIVATE, 137
REDUCTION, 137
SHARED, 137

directive fields
Affinity, 137
Condition for parallelization, 137
Copyin, 137
Default, 137
Firstprivate, 137
Lastprivate, 137
MP Chunk size field, 137
Nest, 138
Onto, 138
Private, 137
Reduction, 137
Shared, 137

directive information, 134
List to add field, 134
loop status option menu and, 127
MP scheduling option button, 134

one loop clauses, 138
option in Views menu, 107
Selected loop field, 134
Synchronization construct option button, 134
variable list option button, 138

C$OMP DO… option and, 139
C$OMP PARALLEL DO… option and, 139
Default option, 139
First-local option, 139
Last-local option, 139
Local option, 139
Reduction option, 139
Region-default option, 139
Shared option, 139

variable list storage labels
Automatic, 139
Common, 139
Reference, 139

Variables Referenced section, 134
parallelization icon

in loop list, 119
parallel sections

OpenMP, 84
PCF, 154

163

Index

PCF
option in Configuration menu, 111

pcfdummy subroutine, dummy.f session, 149
Perf. Cost loop list field, 119
performance

and memory, 21
cost per loop, 119

Performance Analyzer, 89
launching, 105
option in Launch Tool submenu, 105
Performance experiment line, 118

Performance experiment line, 118
performance session

exiting, 96
starting, 90

permutation vector, 61
parallelizable, 61
unparallelizable, 61

PFA Analysis Parameters View
in Views menu, 141
option in Views menu, 108

plus sign, 119
red, 119

Prefer Parallel
option in loop parallelization status option

button, 127
Prefer Serial

option in loop parallelization status option
button, 127

Previous Loop navigation button
in loop display controls, 124

prfetch subroutine, omp_demo.f session, 88
PRIVATE clause, 70

Parallelization Control View and, 137
Private field

in Parallelization Control View, 137

Project submenu, 105
Exit option, 107
Iconify option, 105
in Admin menu, 102
Project View… option, 107
Raise option, 105
Remap Paths… option, 107

Project View…
option in Project submenu, 107

R

Raise
option in Admin menu, 102
option in Project submenu, 105

recommended reading, xix
recurrence, 55
Reduction

option in variable list option button, 139
reduction, 58
REDUCTION clause, 70

Parallelization Control View and, 137
Reduction field

in Parallelization Control View, 137
Reference storage

variable list storage label, 139
Region-default

option in variable list option button, 139
Remap Paths…

option in Project submenu, 107
Rescan All Files

option in Fileset menu, 108
resize loop list display, 34
Reverse information block option button, 131
round-off, 58

164

Index

rshape2d subroutine, omp_demo.f session, 86
RTC subroutine, omp_demo.f session, 60, 72, 77
Run Editor After Update

option in Update menu, 110
Run gdiff After Update

option in Update menu, 110
Run-time

C$MP_SCHEDTYPE mode, 129
option in MP scheduling option button, 129

S

sample session
analyzing loops, 27
Performance Analyzer, 89

Save as Text
option in Admin menu, 101

Search field
in Subroutines and Files View, 143
loop list, 72

editable text field, 121
searching source code, 40
sed, 74
Selected loop field

in Parallelization Control View, 134
selecting a loop, 42, 120
Shared

option in variable list option button, 139
SHARED clause, 70

Parallelization Control View and, 137
Shared field

in Parallelization Control View, 137
Show All Loop Types

option in show loop types option button, 122

show loop types option button, 36
in loop display controls, 122
Show All Loop Types option, 122
Show Modified Loops option, 122
Show OMP Directives option, 122
Show Parallelized Loops option, 122
Show Serial Loops option, 122
Show Unparallelizable Loops option, 122

Show Modified Loops
option in show loop types option button, 122

Show OMP Directives
option in show loop types option button, 122

Show Parallelized Loops
option in show loop types option button, 122

Show Serial Loops
option in show loop types option button, 122

Show Unparallelizable Loops
option in show loop types option button, 122

single-process section
OpenMP, 83
PCF, 153

software, required, 21
Sort by Perf. Cost

option in sort option button, 121
sorting

by performance cost, 94, 119
Sort in Source Order

option in sort option button, 121
sort option button

in loop display controls, 121
Sort by Perf. Cost option, 121
Sort in Source Order option, 121

Source control button, 39
in loop display controls, 124
Source View, 144

165

Index

source files
examining modified, 77
manipulating fileset, 108
modifying, 68
undoing changes, 112
updating, 74, 76, 110
viewing, 39

Source View, 48
opening, 124
Source control button and, 144

Static
C$MP_SCHEDTYPE mode, 129
option in MP scheduling option button, 129

Static Analyzer
option in Launch Tool submenu, 105

Status line, 118
Subroutine and Files View, 38

keyboard shortcut, 38
subroutine call

parallelizable, 60
unparallelizable, 60

Subroutine loop list field, 120
Subroutines and Files View

filtering text field and, 123
in Views menu, 142
option in Views menu, 108
Search field, 143

Synchronization construct option button
in Parallelization Control View, 134

T

Technical Assistance Center, 22
Tester

option in Launch Tool submenu, 105

transformed
source files, viewing, 41

Transformed Loops View
in Views menu, 140
option in Views menu, 108
using, 47

Transformed Source
window, opening, 124

Transformed Source control button, 41
in loop display controls, 124
in Parallel Analyzer View - Transformed Source,

144
turned-down corner of MP Chunk size field, 130

U

Undo All Changes
option in Operations menu, 114

Undo Changes to Loop
option in Operations menu, 114

unstructured control flow, 59
Update All Files

option in Update menu, 111
Update menu

Force a Build to start option, 111
in Parallel Analyzer View, 110
Run Editor After Update option, 110
Run gdiff After Update option, 110
Update All Files option, 111
Update Selected File option, 111

Update Selected File
option in Update menu, 111

updating files, 74, 75

166

Index

V

Variable
loop list, 32

variable list option buttons
C$OMP DO… option and, 139
C$OMP PARALLEL DO… option and, 139
Default option, 139
First-local option, 139
in Parallelization Control View, 138
Last-local option, 139
Local option, 139
Reduction option, 139
Region-default option, 139
Shared option, 139

variable list storage labels
Automatic, 139
Common, 139
Reference, 139

Variable loop list field, 120
Variables Referenced section

in Parallelization Control View, 134
versions command, 22
vi, 76
viewing source, 39
Views menu

in Parallel Analyzer View, 107
options menus

Admin menu, 132
Help menu, 132

Parallelization Control View option, 107
PFA Analysis Parameters View option, 108
Subroutines and Files View option, 108
Transformed Loops View option, 108

W

windows, closing all, Project submenu, Exit option,
107

WorkShop, 89
Debugger, launching, 104

WorkShop Build Manager, 75, 76

X

.Xdefaults, 76, 110
X resources, 25
xwsh, 76

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2603-003.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

