
Performance Co-Pilot User’s and
Administrator’s Guide

Document Number: 007-2614-001

Performance Co-Pilot User’s and Administrator’s Guide
Document Number: 007-2614-001

CONTRIBUTORS

Engineering and written contributions by Mark Goodwin, Seppo Keronen, Jonathan
Knispel, Ken McDonell, and Jeff Zurschmeide.

Edited by Christina Cary
Production by Lorrie Williams
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© Copyright 1994, 1995 Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIX, CHALLENGE, Indy
Presenter, and Performance Co-Pilot are trademarks of Silicon Graphics, Inc. UNIX is
a registered trademark in the United States and other countries, licensed exclusively
through
X/Open Company, Ltd. NFS is a trademark of Sun Microsystems, Inc. ORACLE and
ORACLE7 are registered trademarks of Oracle Corporation. Cisco is a registered
trademark of Cisco Systems Inc. Informix is a registered trademark of Informix
Corporation. NetLS and Network License System are trademarks of Apollo
Computer, Inc., a subsidiary of Hewlett-packard Company.

i

Contents

List of Figures xi

List of Tables xiii

About This Guide xv
Information About This Guide xvi

Audience xvi
Additional Resources xvi
Typographical Conventions xvi

1. Introduction to the Performance Co-Pilot 1
Introduction to the Performance Co-Pilot (PCP) 1

PCP Objectives 1
Overview of PCP Components 5

Additional Performance Co-Pilot Features 7
PCP Conceptual Foundations 8

Sources of Performance Metrics and Their Domains 8
Performance Metrics Name Space 10
Descriptions for Performance Metrics 11
Values for Performance Metrics 12

Singular Performance Metrics 12
Set-Valued Performance Metrics 12

Performance Metrics Collection System 13

ii

Contents

PCP Functional Infrastructure 14
Automated Reasoning About Performance 14
Performance Visualization With the PCP 16
PCP Archive Logging 17

PCP Logs and the PMAPI 18
Retrospective Analysis Using PCP Logs 18
Using Archive Logs for Capacity Planning 18
PCP Support for the VCR Paradigm 19

PCP Extensibility 19
PCP Architecture and Operations 19

Local Process Structure 20
Distributed Operation of Performance Metrics Collection 22
PCP Client-Server Architecture 23
Performance Tool and PMCD Interactions 24
PMCD-PMDA Protocols 24
PMCD Startup and Re-Initialization 25
Timeout Handling and Failure Protocols 26

Installing and Configuring the PCP 28
PCP Product Structure 28
Optional PMDA installation 29
PCP License Constraints 29
Maintaining the PMCD Daemon 30
Tailoring the Primary Archive Logger 31
PCP Client Configuration 31

The opsview Tool 31
The pmclient Tool 32

User Interface Terminology 32
Common User Interface Operations 35

Using Scroll Bars 35
Entering and Removing Text in a Field 36
Using Option Buttons 36
Using a File Prompter 37
Using Online Help 38

Contents

iii

Product Support 39

2. PCP Utilities and Tools 41
Common Conventions and Arguments 42

Fetching Metrics From Another Host 42
Fetching Metrics From an Archive Log 42
Alternate Performance Metric Name Spaces 43
Performance Monitor Reporting Frequency and Duration 43
Starting Time for an Archive Log 43
Timezone 44
The VCR Controls in PCP Tools 44

Monitoring System Performance With the PCP 46
The pmkstat Command 46
The pmchart Tool 48

Mouse Controls 51
pmchart Metric Selection 52

The pmval Command 56
The pminfo Command 58

Performance Visualization With the PCP 61
The pmview Tool 62

Creating Custom Visualization Tools With pmview 68
The dkvis Disk Visualization Tool 71
The mpvis Processor Visualization Tool 73
The nfsvis NFS Activity Visualization Tool 74
The memvis Memory Usage Visualization Tool 76

Basic memvis Viewing Modes 79
Program Region Breakdown 80
Additional Information About memvis 83
Command Line Options 84
memvis Runtime Controls 84
memvis Examples 85
The memvis Environment 86
memvis Caveats 86

The opsview ORACLE Parallel Server Visualization Tool 87

iv

Contents

Archive Logging With PCP 89
The pmlogger Command 90

The Primary Instance of pmlogger 90
Other Instances of pmlogger 91
Access Control for pmlogger 92

The pmdumplog Tool 92
The pmlc Tool 93

The Performance Metrics Inference Engine (pmie) 94
Introduction to pmie 94

pmie and the Performance Metrics Collection System 96
A Simple pmie Example 97
More Complex Examples 98

pmie Essentials 100
Basic pmie Syntax 101
pmie Macros 101
Setting Evaluation Frequency 102
pmie Units Syntax 102
pmie Comments Syntax 103

pmie Metric Expressions 103
pmie Arithmetic Expressions 106
pmie Relational Expressions 108
pmie Logical Expressions 109
pmie Action Expressions 110
pmie Rules 111
Caveats and Notes on pmie 112

Performance Metric Wrap-Around 112
pmie Sample Intervals 112
pmie Instance Names 112
pmie Error Detection 113

Changing PCP Metric Values With pmstore 114

3. The Performance Metrics Application Programming Interface (PMAPI)
115
Naming and Identifying Performance Metrics 115

Contents

v

Performance Metric Instances 116
Current PMAPI Context 117
Performance Metric Descriptions 118
Performance Metrics Values 120
General Issues of PMAPI Programming Style and Interaction 123

Variable Length Argument and Results Lists 123
PMAPI Error Handling 124

vi

Contents

PMAPI Procedural Interface 124
PMAPI Name Space Services 124

pmLoadNameSpace 124
pmLookupName 125
pmGetChildren 125
pmNameID 126
pmTrimNameSpace 126
pmTraversePMNS 126

PMAPI Instance Domain Services 127
pmLookupInDom 127
pmNameInDom 127
pmGetInDom 127

PMAPI Description Services 128
pmLookupDesc 128
pmLookupText 128
pmLookupInDomText 129

PMAPI Context Services 129
pmNewContext 131
pmDestroyContext 131
pmDupContext 132
pmUseContext 132
pmWhichContext 132
pmAddProfile 132
pmDelProfile 133
pmSetMode 133
pmReconnectContext 135

PMAPI Metrics Services 136
pmFetch 136
pmFreeResult 137
pmStore 137

PMAPI Archive Services 137
pmGetArchiveLabel 137
pmGetArchiveEnd 138

Contents

vii

pmGetInDomArchive 138
pmLookupInDomArchive 139
pmNameInDomArchive 139
pmFetchArchive 140

PMAPI Ancillary Support Services 140
pmErrStr 140
pmExtractValue 141
pmConvScale 143
pmUnitsStr 143
pmIDStr 144
pmInDomStr 144
pmTypeStr 144
pmAtomStr 144
pmPrintValue 145
pmSortInstances 145

PMAPI Programming Issues and an Example 145
Symbolic Association Between a Metric’s Name and Value 146
Initializing New Metrics 147
Iterative Processing of Values 147
Accommodating Program Evolution 148

4. Extending and Refining the PCP Toolkit 149
PCP Client Development 149

PMAPI Compilation Support 150
The pmgenmap Utility 150
The PMAPI Library (libpcp) 151
Example PMAPI Client 151
The libpcp_lite Library 151

viii

Contents

PMNS Management 152
PMNS Processing Framework 152
PMNS Syntax 153
Example PMNS Specification 155
Using Local Variants of the Name Space (-n Option) in PMNS 155
The pmnscomp Command 156
The pmnsadd and pmnsdel Commands 156

PMDA Development 157
Creating a PMDA 158
Domain Numbering Protocols for PMDA Metrics and Instance Domains
159
Defining the Metadata That Describes the Performance Metrics 162
Creating and Maintaining Instance Domains 162
PMDA Help Text 163
Building a PMDA 164

The DSO Method 164
The Daemon Process Method 164
The Shell Process Method 164

New PMDA Integration With the PMCD 165
Management of Evolution Within a PMDA 165
PMDA Samples 166
PMDA Library Routines 166

5. Troubleshooting the Performance Co-Pilot 167
Performance Metrics Application Programming Interface (PMAPI) Issues
167

Slow PMCD Service 167
Performance Metrics Coordinating Daemon (PMCD) Issues 168

PMCD isn’t reconfiguring after a SIGHUP 168
PMCD Does Not Start 168

Performance Metrics Name Space (PMNS) Issues 169
Performance Metrics Are Unknown 170

Missing and Incomplete Values for Performance Metrics 170
Metric Values Not Available 170

Contents

ix

Archive Logging Issues 171
pmlogger Can’t Write Log 171
Can’t Find Log 171
pmlogger Can’t Start 172

IRIX Metrics and PMCD 173
No IRIX Metrics Available 173

ORACLE Metrics and the ORACLE PMDA 174
PMDA Can’t Connect to ORACLE 176
ORACLE Connection Errors 177
Can’t Find ORACLE Metrics 178

General Utilities Issues 179
Can’t Connect to Remote PMCD 179
Changing pmchart Colors 180

6. Glossary of Acronyms 183

Index I-1

xi

List of Figures

Figure 1-1 Performance Metric Domains as Autonomous Collections
of Data 9

Figure 1-2 A Small Performance Metrics Name Space (PMNS) 11
Figure 1-3 Process Structure for Local Operation 21
Figure 1-4 Process Structure for Distributed Operation 22
Figure 1-5 Window Terms 33
Figure 1-6 More Window Terms 34
Figure 1-7 A Horizontal Scroll Bar 36
Figure 1-8 An Entry Field 36
Figure 1-9 An Option Button and an Option Button Menu 37
Figure 1-10 A File Prompter Window 38
Figure 1-11 A Help Menu and a Help Button 38
Figure 2-1 VCR Controls for the PCP Tools 44
Figure 2-2 The pmchart window 48
Figure 2-3 The pmchart Window With Two Charts Configured 49
Figure 2-4 The Global Control Window With VCR Controls 50
Figure 2-5 The Metric Selection Dialog 52
Figure 2-6 Further Metric Selection 53
Figure 2-7 Selecting a Final Metric 54
Figure 2-8 Selecting a Metric Instance 55
Figure 2-9 A pmview Window 63
Figure 2-10 A pmview Window With a Block Selected 65
Figure 2-11 The VCR Controls Dialog 67
Figure 2-12 A VCR Dialog in Archive Mode 68
Figure 2-13 A Custom pmview Example 70
Figure 2-14 The dkvis window 71
Figure 2-15 The mpvis Window 73

xii

Figure 2-16 The nfsvis Window 75
Figure 2-17 The memvis Window 77
Figure 2-18 The memvis Help Screen 78
Figure 2-19 A memvis Program Region Breakdown 80
Figure 2-20 IRIX Physical Memory Use 82
Figure 2-21 The opsview Window 87
Figure 2-22 A Sampling Time Line 104
Figure 2-23 A Three-Dimensional Parameter Space 105
Figure 3-1 A Structured Result for Performance Metrics From pmFetch

122
Figure 4-1 A Small Performance Metrics Name Space (PMNS) 154
Figure 4-2 PMDA Global Process Architecture 158
Figure 4-3 Changes in a Small Section of the Performance Metrics

Name Space 161

xiii

List of Tables

Table 1-1 PCP Software Packages Required for Servers and Clients 28
Table 3-1 Context Components of PMAPI Functions 129
Table 3-2 PMAPI Type Conversion 142
Table 4-1 PMDA Domains 159
Table 6-1 Performance Co-Pilot Acronyms and Their Meanings 183

xv

About This Guide

This guide describes the Performance Co-Pilot (PCP) software package of
advanced performance management applications for the Silicon Graphics
family of graphical workstations and servers. The Performance Co-Pilot
provides a systems-level suite of tools that cooperate to deliver distributed,
integrated performance monitoring and performance management services
spanning the hardware platform, the operating system, the DBMS, and the
users’ applications.

The following chapters are provided in this Guide:

• Chapter 1, “Introduction to the Performance Co-Pilot,” provides an
introduction to the concepts and structure of the Performance Co-Pilot.
Instructions are provided for installation and configuration.

• Chapter 2, “PCP Utilities and Tools,” details the various software tools
and commands that make up the Performance Co-Pilot product.

• Chapter 3, “The Performance Metrics Application Programming
Interface (PMAPI),” describes the API that allows you to customize and
extend the Performance Co-Pilot with performance monitoring tools of
your own design.

• Chapter 4, “Extending and Refining the PCP Toolkit,” describes
strategies for the design and development of your extensions and
customizations of the Performance Co-Pilot.

• Chapter 5, “Troubleshooting the Performance Co-Pilot,” details
pointers to help troubleshoot common problems.

• Chapter 6, “Glossary of Acronyms,” provides a comprehensive
glossary of terms and acronyms used in this guide, in the reference
pages, and in the Release Notes for the Performance Co-Pilot.

xvi

About This Guide

Information About This Guide

Audience

This guide is written for the system administrator who are directly using and
administering the PCP applications. It is assumed that you have installed
InSight or have access to the IRIX Advanced Site and Server Administration
Guide and the Personal System Administration Guide and are familiar with
their contents.

Additional Resources

The primary resources for system administrators are the IRIX Advanced Site
and Server Administration Guide and the Personal System Administration Guide.
These guides explain the basic tasks and responsibilities of system
administrators. Also, the NFS Administration Guide and the NIS
Administration Guide are useful references if you have the optional NFS
software installed on your system.

The IRIX Reference Pages, available online through the man(1) command,
are always an important resource for system administrators.

Typographical Conventions

As you read this guide, you will notice that special fonts are used for certain
words.

typewriter font

Indicates system output, such as responses to commands
that you enter and the text of messages that appear in
Warning and other informational windows. This font is also
used for examples of the contents of files, filters and filter
components, examples of network addresses, Management
Information Base (MIB) object names, and example
workstation and network names and addresses.

Information About This Guide

xvii

typewriter bold

Indicates text you must enter, such as command lines and
filter expressions. Names of nonprinting keys on the
keyboard, such as the <Enter> key, also appear in
typewriter bold and are surrounded by angle brackets.

bold Designates literal options to commands.

italics Indicates filenames, command names, and manual page
names. Lowercase italic words also represent variables—
text strings that you must specify. References to other
documents, button names, inst(1M) subsystem names, user
IDs, and group names are also in italics.

1

Chapter 1

1. Introduction to the Performance Co-Pilot

This chapter provides a brief overview of the individual software
components of the Performance Co-Pilot (PCP), and other information to
help you use this guide. The following sections are provided in this chapter:

• “Introduction to the Performance Co-Pilot (PCP)” on page 1 provides a
general overview of the Performance Co-Pilot components, and their
capabilities and intended usage.

• “PCP Conceptual Foundations” on page 8 provides a look at the tools
and commands that make up Performance Co-Pilot.

• “Installing and Configuring the PCP” on page 28 discusses the PCP
software packages that must be installed to run the Performance
Co-Pilot on your network.

• “User Interface Terminology” on page 32 provides information about
the style conventions used in creating the PCP tools.

Introduction to the Performance Co-Pilot (PCP)

The following sections provide a short introduction to the concepts and
components of PCP.

PCP Objectives

The PCP provides a range of services that are designed to be used to monitor
and manage system performance. These services are distributed and
scalable to accommodate the most complex system configurations and
performance problems.

The following objectives are met by the Performance Co-Pilot software
product:

2

Chapter 1: Introduction to the Performance Co-Pilot

Target Usage of the PCP
The PCP is targeted at the performance analyst,
benchmarker, engineering developer, database
administrator, capacity planner, or system administrator
with an interest in overall system performance and a need
to quickly isolate and understand performance behavior,
resource utilization, activity levels, and bottlenecks in large
complex systems. Platforms that benefit from this level of
performance analysis include large servers or clusters of
servers, DBMS providers, and video, computing or file
servers.

Empowering the User
To deal efficiently with the dynamic behavior of complex
systems, you need services that filter the “noise” from the
overwhelming stream of performance data, allowing the
performance manager to concentrate on the exceptional
scenarios. The ability to go back and review previous
performance data, performance visualization, and the
automated reasoning about performance data provide the
necessary high bandwidth filtering.

From the PCP end-user’s perspective, the PCP presents an
integrated suite of tools, user interfaces, and services that
support real-time and retrospective performance analysis,
with a bias towards eliminating mundane information and
focusing attention on the exceptional and extraordinary
performance behavior. When this is done, the user can
concentrate upon in-depth analysis or target management
procedures, for the critical system performance problems.

Unification of Domains of Performance Metrics
At the lowest level, performance metrics are collected and
managed in autonomous performance domains such as the
IRIX operating system, a Database Management System, or
an end-user application. These domains support a
multitude of access-control policies, access methods, data
semantics, and multi-version support. All of this detail is
irrelevant to the developer and user of a performance
monitoring tool, and is hidden by the PCP infrastructure.

Introduction to the Performance Co-Pilot (PCP)

3

Uniform Naming and Access to Performance Metrics
Usability and extensibility of performance management
tools mandate a single scheme for naming performance
metrics. The set of defined names constitute a Performance
Metrics Names Space (PMNS). Within the PCP, the PMNS is
adaptive so that it can be extended, re-shaped, and pruned
to meet the needs of particular applications and users.

A single interface is provided to retrieve the values for all
performance metrics.

Distributed Operation
From a purely pragmatic viewpoint, a single workstation
must be able to concurrently monitor the performance of
multiple remote hosts. At the same time, a single host may
be subject to monitoring from multiple remote
workstations.

These requirements suggest a classical “client-server”
architecture, which is exactly what PCP uses to provide
seamless and concurrent access to performance metrics,
independent of their host location.

Dynamic Adaptation to Change
Complex systems are subject to continual changes as
network connections fail and are re-established; nodes are
taken out of service and rebooted; hardware is added and
removed; and software is upgraded, installed, or removed.
Often these changes are asynchronous and remote (perhaps
in another geographic region, or domain of administrative
control).

The distributed nature of the PCP (and the modular
fashion in which performance metrics domains may be
installed, upgraded and configured on a host-by-host
basis) enables the PCP to readily adapt to changes in the
monitored system(s). Variations in the available
performance metrics as a consequence of configuration
changes are handled automatically and become visible to
all clients as soon as the re-configured host is rebooted or
the responsible agent is restarted.

The PCP also detects loss of client-server connections, and
supports subsequent automated client re-connection.

4

Chapter 1: Introduction to the Performance Co-Pilot

Logging and Retrospective Analysis
A range of tools are provided to support adaptive and
flexible logging of performance metrics for archival,
playback, remote diagnosis, and capacity planning. Archive
logs may be accumulated either at the host being
monitored, at a monitoring workstation, or both.

A universal replay mechanism, modeled on a VCR
paradigm, supports “stop, rewind and replay at variable
speed” processing of performance information for both
archived and real-time data.

Unification of real-time access and access to the archive
logs, in conjunction with the VCR services, provides new
and powerful ways to build performance tools and to
review both current and historical performance data.

PCP Extensibility
The PCP encourages the integration of new performance
metrics into the Performance Metrics Name Space (PMNS),
the collection infrastructure and the logging framework.
The guiding principle is “if it is important for monitoring
system performance, and you can measure it, you can easily
integrate it into the PCP framework”.

For many PCP end-users, the most important performance
metrics are not those already supported, but new
performance metrics that characterize the essence of
“good” or “bad” performance at their site, or within their
application environment. An example is an application that
measures the round-trip time for a benign “probe”
transaction against an ORACLE™ database. A source code
implementation of this application is provided in the
distribution, and by using the PCP toolkit and the services
of the PMAPI, the times measured by this application can
easily be integrated into the PCP framework at a site
running ORACLE.

Introduction to the Performance Co-Pilot (PCP)

5

Overview of PCP Components

The PCP is made up of several graphical tools and some related commands.
Each tool or command is documented completely in a reference page. These
reference pages are named for the tools and commands they describe. The
reference pages are accessible through the man(1) command. For example,
the reference page for the tool mpvis(1) is viewed by giving the command:

man mpvis

A list of all tools and commands is provided below as a directory to the
reference pages.

The major component tools of the Performance Co-Pilot are:

dkvis(1) The dkvis tool is a graphical disk device utilization viewer. It
displays a three-dimensional bar chart showing activity in
the disk subsystem.

memvis(1) The memvis tool is a graphical physical memory usage
viewer that displays a bar chart depicting physical memory
use on a per-process, and a per-region-per-process basis.

mpvis(1) The mpvis tool displays a three-dimensional bar chart of
multiprocessor CPU utilization.

nfsvis(1) The nfsvis tool displays a bar chart showing NFS™
(Network File System) client and server request activity, for
systems on which the optional NFS software product has
been installed.

opsview(1) The power of performance visualization is demonstrated by
opsview, an application that provides a high-level view of
the performance of two nodes in an ORACLE Parallel
Server (OPS) configuration, with “drill-down” navigational
links to other visualization tools. Even when OPS is not
installed, the capabilities of opsview may be demonstrated
using platforms not running the ORACLE product.

pmcd(1) The Performance Metrics Collection Daemon. This daemon
must run on each system being monitored, to collect and
export the performance information necessary to monitor
the system.

6

Chapter 1: Introduction to the Performance Co-Pilot

pmchart(1) The pmchart tool displays trends over time for arbitrarily
selected performance metrics from one or more hosts, and
one or more domains of performance metrics.

pmdbg(1) The Performance Co-Pilot tools include internal diagnostic
facilities that may be activated by run-time flags. pmdbg
describes the available diagnostic facilities and the
associated control flags.

pmdumplog(1) The pmdumplog command may be used to dump selected
state and control information from a PCP archive log, as
created by pmlogger.

pmerr(1) The pmerr command translates Performance Co-Pilot error
codes into human-readable error messages.

pmgenmap(1) The pmgenmap command is a program development tool
that generates C declarations and cpp macros to aid the
development of customized programs that use the facilities
of the PCP.

pmie(1) The pmie tool is an inference engine to evaluate predicate-
action rules over the domain of performance metrics, for
performance alarms, automated system management tasks,
dynamic tuning configuration, and so on.

pminfo(1) The pminfo tool displays various types of information about
performance metrics available through the facilities of the
Performance Co-Pilot.

pmlc(1) The pmlc command is used to exercise control over an
instance of the PCP archive logger pmlogger, to modify the
profile of which metrics are logged and how frequently
their values are logged.

pmlogger(1) The pmlogger command is used to create PCP archive logs of
performance metrics over time. Many tools accept these
PCP archive logs as alternative sources of metrics for
retrospective analysis.

pmkstat(1) The pmkstat command provides text-based display of
metrics that summarize system performance at a high level,
suitable for ASCII logs or enquiry over a modem.

Introduction to the Performance Co-Pilot (PCP)

7

pmnsadd(1) The pmnsadd command adds a subtree of new names into a
Performance Metrics Name Space (PMNS), as used by the
components of the Performance Co-Pilot.

pmnsdel(1) The pmnsdel command removes a subtree of names from a
Performance Metrics Name Space (PMNS), as used by the
components of the Performance Co-Pilot.

pmstore(1P) The pmstore command is used to re-initialize counters or to
assign new values to metrics that act as control variables.
The command changes the current values for the specified
instances of a single performance metric.

pmval(1) The pmval command provides text-based display of the
values for arbitrary instances of selected performance
metrics, suitable for ASCII logs or enquiry over a modem.

pmview(1) The pmview tool is a generalized 3D Inventor application
that supports dynamic displays of clusters of related
performance metrics as utilization blocks (or towers) on a
common base plane.

Additional Performance Co-Pilot Features

Platform Support
Performance Co-Pilot supports domains of performance
metrics that include all IRIX Version 5.3 (and later) kernel
instrumentation, process-level resource utilization,
environmental monitors for CHALLENGE™ systems,
ORACLE Version 7 (and later) performance tuning views,
and Cisco® router statistics. The distributed agents support
a large number of distinct performance metrics; over 500 for
IRIX, including 100 per process; 250 for ORACLE 7; plus
assorted metrics for Cisco routers and CHALLENGE
environmental monitors.

Secure Operation
A host-based security model provides optional control over
the execution of PCP service requests from designated
remote hosts and/or workstations.

8

Chapter 1: Introduction to the Performance Co-Pilot

API An exported Performance Metrics API (PMAPI) for
building site-specific or application-specific performance-
related tools; this PMAPI provides access to all of the
services of the underlying PCP infrastructure, and source
for sample programs is provided.

PCP Conceptual Foundations

The following sections provide a detailed overview of the concepts that
underpin the services and facilities of the PCP.

Sources of Performance Metrics and Their Domains

Instrumentation for the purpose of performance monitoring typically
consists of counts of activity or events, attribution of resource consumption,
and service-time or response-time measures. This instrumentation may exist
in one or more of the following functional domains, each with an associated
access method (see Figure 1-1):

• The IRIX kernel. For example, sar data structures, per-process resource
consumption, disk activity, or the memory management
instrumentation.

• A layered system product. For example, the temperature, voltage levels
and fan speeds from the environmental monitor in a Challenge, or the
length of a printer spool queue as reported by lpstat.

• A DBMS product. For example, the V$ views and bstat /estat

summaries of ORACLE, or the tbmonitor statistics from Informix.

• External equipment such as network routers and bridges.

• An application program. For example, measured response time for a
production application running a periodic and benign “probe”
transaction (as often used in service quality agreements), or throughput
in jobs per hour for a batch stream.

PCP Conceptual Foundations

9

Figure 1-1 Performance Metric Domains as Autonomous Collections of Data

For each domain, the set of performance metrics may be viewed as an
abstract data type, with an associated set of methods that may be used to:

• interrogate the meta-data that describes the syntax and semantics of the
performance metrics

• control (enable or disable) the collection of some or all of the metrics

• extract instantiations (current values) for some or all of the metrics

We refer to each such domain as a Performance Metrics Domain (PMD) and
assume that PMDs are functionally, architecturally and administratively
independent and autonomous. Obviously the set of PMDs available on any
host is variable, and changes with time as software and hardware are
installed and removed.

The number of PMDs may be further enlarged in cluster-based or network-
based configurations, where there is potentially an instance of each
Performance Metrics Domain on each node. Hence, the management of
PMDs must be both extensible at a particular host, and distributed across a
number of hosts.

Access Method

Performance

Metric

Domains
IRIX

DBMS End User

End User

Application

A

Application

B

Access Method Access Method Access Method

10

Chapter 1: Introduction to the Performance Co-Pilot

Each PMD on a particular host must be assigned a unique PMD identifier. In
practice, this means unique identifiers shall be assigned globally for each
PMD type. For example, the same identifier would be used for the IRIX PMD
on all hosts.

Performance Metrics Name Space

Internally, each unique performance metric is identified by a Performance
Metric Identifier (PMID) drawn from a universal set of identifiers, including
some that are reserved for site-specific, application-specific and customer-
specific use.

An external name space (the Performance Metrics Name Space, or PMNS)
maps from a hierarchy (or tree) of external names to PMIDs. Each node in
the name space tree is assigned a label that must begin with an alphabet
character, and be followed by zero or more alphanumeric characters or the
underscore ("_") character. The root node of the tree has the special label of
root. A metric name is formed by traversing the tree from the root to a leaf
node with each node label on the path separated by a period. The common
prefix root. is omitted from all names. For example, in the small subsection of
a PMNS shown in Figure 1-2, the following are valid names for performance
metrics;

irix.kernel.percpu.syscall
irix.network.tcp.rcvpack
oracle.demo.all.dbwr.lruscans

PCP Conceptual Foundations

11

Figure 1-2 A Small Performance Metrics Name Space (PMNS)

Although a default PMNS is shipped and updated by the components of the
Performance Co-Pilot, individual users may create their own name space for
metrics of interest, and all tools may use a private PMNS, rather than the
default PMNS.

Descriptions for Performance Metrics

Through the various Performance Metric Domains, the PCP must support a
wide range of formats and semantics for performance metrics. This
"metadata" describing the performance metrics includes

all

oracle

demo

irix

network

tcppercpu

kernel

root

all

... syscall ...

udp

...
rcvpack dbwr

lruscans

...

...

...

...

12

Chapter 1: Introduction to the Performance Co-Pilot

• the internal identifier for the metric

• the format and encoding for the values of the metric

• the semantics of the metric, particularly the interpretation of the values
as free-running counters or instantaneous values

• the dimensionality and scale of the values, in the dimensions of Events,
Space and Time

• an indication if the metric may have one or many associated values

• short and extended help text, describing the metric

For each metric, this metadata is defined within the PMD, and the PCP
arranges for the information to be exported to the performance tools
applications that use the metadata when interpreting the values for
performance metrics.

Values for Performance Metrics

The following types of values apply to the performance metrics.

Singular Performance Metrics

Some performance metrics have a singular value within their PMD. For
example, available memory, or the total number of context switches have
only one value per PMD, but multiple PMDs.

The metadata describing the metric makes this fact known to applications
that process values for these metrics.

Set-Valued Performance Metrics

Some performance metrics have a set of values or instances in each
implementing PMD. For example:

• one value for each disk

• one value for each process

• one value for each CPU

• one value for each activation of a given application

PCP Conceptual Foundations

13

When a metric has multiple instances, the PCP framework does not pollute
the name space with additional metric names; rather, a single metric may
have an associated set of values. These multiple values are associated with
the members of an instance domain, such that each instance has a unique
instance identifier within the associated instance domain. For example, the
"per CPU" instance domain may use the instance identifiers 0, 1, 2, 3, ... to
identify the configured processors in the system.

Internally, instance identifiers are encoded as binary values, but each PMD
also supports equivalent external names for the instance identifiers, and
these names are used at the user interface to the PCP utilities.

Multiple performance metrics may be associated with a single instance
domain.

Each PMD may dynamically establish the instances within an instance
domain; for example, there may be one instance for the metric
irix.kerel.percpu.idle on a workstation, but multiple instances on a
multiprocessor Challenge server. The PCP arranges for information
describing instance domains to be exported from the PMDs to the
applications that require this information.

Applications may also choose to retrieve values for all instances of a
performance metric, or some arbitrary subset of the available instances.

Performance Metrics Collection System

The Performance Co-Pilot provides an infrastructure through the
Performance Metrics Collection System (PMCS). It unifies the autonomous
and distributed PMDs into a cohesive pool of performance data, and
provides the services required to create generalized and powerful
performance tools.

The PMCS provides the framework that underpins the PMAPI, which is
described in Chapter 3, “The Performance Metrics Application
Programming Interface (PMAPI).”.

The PMCS is responsible for the following services on behalf of the
performance tools developed on top of the PMAPI:

14

Chapter 1: Introduction to the Performance Co-Pilot

• Instantiation of all metric values.

• Coordination with the processes and procedures required to control the
description, collection and extraction of performance metric values
from the agents that interface to the Performance Metric Domains
(PMDs).

• Archive logging of performance metric values.

• Support for the seamless rewind and replay functionality of the
PMAPI.

• Communication and coordination with one or more remote PMCS
instances.

• Servicing incoming requests from applications running on a remote
system for local performance metric values and metadata.

PCP Functional Infrastructure

At the highest level, the PCP provides a collection of integrated functions,
upon which the various performance utilities are built. These facilities are
described in the following sections.

Automated Reasoning About Performance

Automated reasoning within the Performance Co-Pilot is provided by the
Performance Metrics Inference Engine, pmie(1), which is an applied artificial
intelligence application.

The pmie tool accepts a set of expressions, and proceeds to periodically
evaluate these against the values of performance metrics from one or more
sources. The facilities are very general, and are designed to accommodate
the automated execution of a mixture of generic and site-specific
performance monitoring and control functions.

PCP Functional Infrastructure

15

The "expressions" may include the following operators and functions:

• Generalized predicate-action pairs, where a predicate is a logical
expression, and the action is arbitrary. Supported actions include:

– execute a sh(1) command or script

– launch a visible alarm with xconfirm(1)

– post an entry to syslog

– echo a message on standard output

• Arithmetic and logical expressions in a C-like syntax.

• Per-expression evaluation frequency, to support both short-term and
long-term monitoring and control functions.

• Full support for the semantic richness of the Performance Metrics
Collection System (PMCS), and exploitation of the metadata to
automate scale conversion and to detect nonsense comparisons in
expressions.

• Aggregation functions of sum, avg, min, and max, that may be applied to
collections of performance metrics values clustered over multiple hosts,
or multiple instances, or multiple consecutive samples in time.

• Universal and existential quantification, to handle expressions of the
form "for every" and "at least one".

• Percentile aggregation to handle statistical outliers, such as "for at least
80% of the hosts,".

• Macro processing to expedite expression definition.

• Transparent operation against either live-feeds of performance metric
values from PMCD instances on one or more hosts, or against archive
logs of previously accumulated performance metric values.

The power of pmie may be harnessed to automate the most common of the
deterministic system management functions that are responses to changes in
system performance, for example, to disable a batch stream if the DBMS
transaction commit response time at the 90th percentile goes over 2 seconds,
or to stop accepting "news" if the average CPU utilization over the past five
minutes is above 75%.

16

Chapter 1: Introduction to the Performance Co-Pilot

At the same time, the power of pmie can be directed towards the exceptional
and sporadic performance problems; for example, if a "network packet
storm" is looming, enable IP header tracing for 10 seconds, and send e-mail
to advise that data has been collected and is awaiting analysis. Or, if
production batch throughput falls below 50 jobs per hour, activate a pager to
the duty systems administrator.

Performance Visualization With the PCP

For the most interesting and complex problems in performance
management, the volume of available information is daunting. Coupled
with the power for automated reasoning that pmie provides is the
considerable potential for human visual processing to absorb, analyze, and
classify large amounts of information.

The Performance Co-Pilot has been developed with an assumption that
being able to draw three dimensional "pictures" of system performance is a
critical requirement, and one that offers vast potential to the human charged
with some aspect of performance monitoring and management.

Building on Silicon Graphics’ technologies of high-performance graphics at
the workstation, OpenGL and OpenInventor, the PCP delivers a range of
utilities, services, and toolkits that are designed to provide both basic
visualization tools and to foster the crafting of tailored tools to meet the
needs of end-user application and operational environments.

Key components to this performance visualization strategy are;

• Time-series strip charts with pmchart(1) that allow performance metrics
from multiple hosts and multiple Performance Metric Domains to be
concurrently displayed on a single correlated time axis.

• Basic three-dimensional models for:

– per-processor CPU utilization with mpvis

– per-disk spindle activity with dkvis

– NFS request traffic with nfsvis

• Visual representation of physical memory allocation on a per-process or
per-region-per-process basis, memvis.

PCP Functional Infrastructure

17

• A generalized, three-dimensional performance model viewer, pmview,
that can easily be configured to draw scenes animated by the values of
arbitrarily selected performance metrics.

• A sample multi-level performance visualization for ORACLE parallel
server configurations, that supports "drill down" navigation and links
several different visualization paradigms.

When combined with the VCR and archive services of the Performance
Co-Pilot, these visualization tools provide both real-time and retrospective
analysis of system performance at many different levels of detail.

PCP Archive Logging

Within the Performance Co-Pilot, the pmlogger utility may be configured to
collect archives of performance metrics. The archive creation process is easy
and very flexible, incorporating the following features:

• Log creation at either the monitored system (typically a server) or the
monitoring system (typically a workstation).

• Concurrent independent logging, both local and remote—the
performance analyst can activate a private pmlogger instance to collect
only the metrics of interest for the problem at hand, independent of
other logging on the workstation or the remote host.

• Independent determination of logging frequency for individual metrics
or metric instances. For example, log the "5 minute" load average every
half hour, the write I/O rate on the DBMS log spindle every 10 seconds,
and aggregate I/O rates on the other disks every minute.

• Dynamic adjustment of what is to be logged, and how frequently. This
may be used to disable logging or to increase the sample interval
during periods of low activity or of chronic high activity (to minimize
logging overhead and intrusion).

• Self-contained logs that include all system configuration and metadata
required to interpret the values in the log. These logs can be kept for
analysis at a much later time, potentially after the hardware and/or
software has been reconfigured, and shipped as discrete, autonomous
files for remote analysis.

18

Chapter 1: Introduction to the Performance Co-Pilot

PCP Logs and the PMAPI

Critical to the success of the PCP archive logging scheme is the fact that the
library routines that provide access to real-time feeds of performance metrics
also provide access to the archive logs.

Live-feeds and archives are literally interchangeable, with a single PMAPI
that preserves the same semantics for both styles of metric source. In this
way, applications and tools developed against the PMAPI can automatically
process either current or historical performance data.

Retrospective Analysis Using PCP Logs

One of the most important applications of the archive logging services
provided by the Performance Co-Pilot is in the area of retrospective analysis.
In many cases, understanding today’s performance problems can be greatly
assisted by using side-by-side comparison with yesterday’s performance.

By routine creation of performance archive logs, you can concurrently replay
pictures of system performance for two or more periods in the past.

Archive logs are also invaluable sources of intelligence when trying to
diagnose what went wrong, such as for a performance post-mortem.

Since the archives can be replayed against the inference engine (pmie is an
application that uses the PMAPI), you can automate the regular, first-level
analysis of system performance by constructing suitable expressions to
capture the essence of common resource saturation problems, then
periodically creating an archive and playing it against the expressions.

Using Archive Logs for Capacity Planning

By collecting performance archives with relatively long sampling periods, or
by reducing the daily archives to produce summary logs, the capacity
planner can collect the base data required for forward projections.You can
estimate resource demands and explore "what if" scenarios by replaying this
data with visualization tools and the inference engine.

PCP Architecture and Operations

19

PCP Support for the VCR Paradigm

At the PMAPI, the Performance Co-Pilot provides all of the services needed
to implement a typical VCR paradigm, namely:

• stop

• rewind

• fast forward

• replay at a variable speed

The applications built over the PMAPI that support a graphical user
interface typically extend this paradigm to include a graphical control panel
that looks, and behaves, in a manner akin to a VCR.

PCP Extensibility

Much of the Performance Co-Pilot potential for attacking difficult
performance problems in production environments comes from the design
philosophy that considers extensibility critically important.

Specifically, the user can tailor the PCP’s services and value in the following
manner:

1. Easy extension of the PMCS and PMNS to accommodate new
performance metrics and new sources of performance metrics.

2. Generalized toolkits that operate on any performance metric.

3. Unrestricted distribution of the PCP components across the network to
place the service where it will do the most good.

4. Dynamic adjustment to changes in system configuration.

PCP Architecture and Operations

This section describes the process architecture and high-level interactions
between those processes, as required to support the services of the PCP.

20

Chapter 1: Introduction to the Performance Co-Pilot

Local Process Structure

Initially, consider the operation of the PMCS where the performance tools
are running on the same host that is providing performance data; that is,
there are no network operations.

Each PMD requires a definition of methods or procedures for controlling the
collection, and extracting the values, for all instances of all performance
metrics maintained in the associated PMD, in addition to exporting the
necessary metadata describing these metrics.

Conceptually, we may consider the aggregation of these methods for a
particular PMD to constitute a Performance Metrics Domain Agent
(PMDA). As we shall see later, the PMDA may be instantiated in one of
several ways, but for the moment think of the PMDA as a server that knows
how to extract values for, and possibly control the collection of, performance
metrics in its own PMD. Further, the PMDA receives and processes requests
on behalf of other processes in the PMCS.

For a variety of reasons (local and remote symmetry, reliable operations,
access control, information hiding, archive logging, cache management, and
so on.) it is prudent to provide a process to coordinate activity within the
PMCS. This process, known as the Performance Metrics Coordination
Daemon (PMCD), must be running on each host with one or more active
PMDAs.

When performance tool applications call down through the PMAPI and
demand services from the PMCS, they interact with the PMCD, which in
turn may then interact with the PMDAs on behalf of the PMAPI clients. Note
that hidden below the PMAPI, the performance tools communicate directly
only with the PMCD.

PCP Architecture and Operations

21

The architecture of this non-distributed deployment is shown in Figure 1-3.

Figure 1-3 Process Structure for Local Operation

The PMCD executes incoming requests with a “service to completion”
model. This simplifies the PMCD (it is single-threaded code, with no
possibility of deadlock), and helps ensure the temporal consistency of all
results returned from a single client request.

PMCD

PMDA PMDA PMDA

Performance

Metric

Domains
IRIX

DBMS End User

Performance

Tool PMAPI

Performance

Tool PMAPI

PMDA

End User

Application

A

Application

B

22

Chapter 1: Introduction to the Performance Co-Pilot

Distributed Operation of Performance Metrics Collection

In the more general multi-host case, the performance tools execute on one
host, while the performance metrics are being collected on one or more
remote hosts.

This distributed structure is a simple extension of the local case in which the
applications (below the PMAPI) establish and maintain direct
communication with the required PMCDs, be they local or remote.

The distributed case is shown in Figure 1-4.

Figure 1-4 Process Structure for Distributed Operation

The relative number of PMDs on each system suggests that the situation
shown in Figure 1-4 corresponds to our most likely assumed scenario: the

PMCD

PMDA PMDA PMDA PMDA

PMCD

PMDA

Local HostRemote Host

PCP Architecture and Operations

23

remote, large, Challenge system is the one you want to monitor, and the
smaller local system is where the performance tools execute and the analysis
of the performance data is performed.

Note that if there is no active PMDA of interest on the local system (a
common situation for workstations), then there is no requirement for a
PMCD to be running on the local system.

In all cases, the applications may establish concurrent connections with
multiple PMCDs, but they maintain a single "current" context across the
PMAPI, so that requests are unambiguously known to require processing in
the context of the PMCS on a particular host. Hence, the dynamic choice of
the correct PMCD is straightforward. Since the code below the PMAPI must
support communication with the local PMCD, minimal additional
functionality is required to support communication with multiple and/or
remote PMCDs.

Responses from a PMCD go directly to the requesting application.

PCP Client-Server Architecture

The Performance Co-Pilot follows a classical client-server architecture. For
each host on which performance is to be monitored, the PMCD and the
associated PMDAs combine to provide an integrated server, delivering
values and metadata describing the performance metrics in response to
incoming requests.

On each monitoring host (usually a workstation), there are one or more
client applications (the performance monitoring tools), each connected to
one or more PMCDs.

Each PMCD can service multiple client connections, and each client can
maintain multiple PMCD connections.

The distributed nature of the PMCS means the same application can easily
monitor system performance for a host next door, or on the other side of the
world, or monitor both hosts at the same time.

24

Chapter 1: Introduction to the Performance Co-Pilot

Performance Tool and PMCD Interactions

Above the PMAPI, the performance tools are unaware of the process
architecture of each PMCS, and hence they remain oblivious to all IPC
activity and distributed operations.

Below the PMAPI, the library routines manage the connection(s) to the local
and/or remote PMCDs as a set of connection-oriented TCP/IP sockets
(AF_INET address family and SOCK_STREAM socket type).

At all times the current context at the PMAPI identifies the correct host, and
hence the socket for communication with the required PMCD.

The PMCDs and their clients (the performance application tools) exchange
typed messages to encode requests and results. These messages or Protocol
Data Units (PDUs) define the complete interface between these processes.
All communication is client-server synchronous, in the sense that each
PMCD is, by default, idle awaiting incoming request PDUs or new
connection requests, and the application’s library routines below the PMAPI
sends one or more request PDUs and then blocks waiting for a response from
the PMCD.

PMCD-PMDA Protocols

As each request PDU arrives at the PMCD, the request parameters may be
used to determine to which PMDA the request (or part thereof) should be
routed.

There are some PMDs (the IRIX kernel instrumentation is the most obvious
candidate) for which we’d like to be able to include the associated PMDA in
the PMCD, and thereby avoid IPC and context switching. For this option to
be attractive, the PMCD-PMDA interactions must be frequent enough to
produce a useful saving. This efficiency is important because this is
happening at the host where the performance data is being collected. These
PMDAs are each implemented as a Dynamic Shared Object (DSO) to which
the PMCD dynamically attaches at startup.

A second class of PMDA would be those implemented as independent
server processes, which block waiting for requests from the local PMCD

PCP Architecture and Operations

25

(their sole client). For these PMDAs, we need an IPC protocol suited to local
process-to-process message passing.

The final style of PMDA is the one required for easy extensibility and
infrequently requested metrics. Typically this may be no more than a shell
command than can be executed to generate a number on standard output;
however, to implement the servicing of continual requests from the PMCD,
we provide a simple text-based protocol and a skeletal PMDA
implementation as a Bourne shell script. This fully functioning example
PMDA is implemented as a generic 400-line script that can easily be adapted
for any PMD where metrics are available via executable shell commands;
that is, it can be extended or cloned easily to support additional performance
metrics or a whole new PMD.

The PMCD supports all three classes of interaction with a PMDA.

Clearly we require a configuration definition to be used in PMCD startup
and PMDA initialization to allow the PMCD to know which PMDs are
available locally, and which is the correct communication protocol to be
used.

PMCD Startup and Re-Initialization

When the PMCD is started, or it receives a SIGHUP signal, it attempts to
confirm the status of all existing PMDA connections, and to try and initiate
connections for any new or previously inactive PMDAs. This implies the
existence of a configuration file (/etc/pmcd.conf) on each host that tells the
PMCD about the local PMDAs.

The configuration file is an ASCII text file that specifies the following
information for each PMDA:

5. The name of the PMD (mostly for documentation in the configuration
file and for PMDA-specific error messages) and the PMD identifier.

6. The communication protocol between the PMDA and the PMCD (DSO,
Socket or Pipe).

7. For communication via the DSO protocol, the name of the DSO and the
name of the initialization routine within the DSO.

26

Chapter 1: Introduction to the Performance Co-Pilot

8. For communication via the Socket protocol, the command line required
to start the PMDA (omitted if the PMDA is expected to be running
already), the IPC protocol, and IPC end-point designation. For example,
the AF_INET and TCP/IP port number, or AF_UNIX and FIFO name in
the UNIX file system.

9. For communication using the Pipe protocol, the format of the PDU
protocol to be used (binary or ASCII) and the command line required to
start the PMDA.

The use of asynchronous re-initialization via SIGHUP provides a
mechanism for PMDAs to be dynamically added and deleted, without
affecting other aspects of the PMCS.

The syntax and semantics of the PMCD configuration file specification
language, and examples are fully described in the pmcd(1) reference page.

Timeout Handling and Failure Protocols

The PCP architecture is extensible. It is easy to incorporate user-written
PMDAs into the PCP. It is also easy for users to incorporate errors into such
PMDAs. Because the communication protocol within the PMCS is
synchronous, a misbehaving PMDA could potentially hang a PMCD. If a
PMCD sent a PDU to the PMDA requesting some information and the
PMDA did not send an appropriate response PDU back (for example,
because it was hung, or in a loop), the PMCD could block indefinitely on a
read from the PMDA.

A similar situation could arise when a PMCD was sending a PDU to a
PMDA. If the PMDA did not read data from the PMCD (presumably due to
some failure in the PMDA), and the PMCD attempted to send a PDU larger
than the kernel buffer used to communicate with the PMDA, the PMCD
would block while writing the PDU.

This kind of failure might even occur in the PDU exchanges between the
PMCD and a client program using the PMAPI. For example, if a SIGSTOP is
sent to a client of the PMCD (such as a PCP application) while it is waiting
for a response from the PMCD, the PMCD is in a similar situation to the one
described above when a PMDA has hung. It may have a large PDU to send,
with no reader emptying the buffer.

PCP Architecture and Operations

27

Unfortunately, with DSO-based PMDAs there is little that can be done in
such situations. The PMCD actually passes control to the DSO by calling a
procedure in the DSO. If the DSO chooses not to return control to the calling
PMCD, there is no way for the PMCD to regain control.

The PMCD uses a "dead-hand" timer implemented as an sproc to detect a
timeout for every non-DSO PDU exchange. The timeout applies to both
sending and reception of PDUs. The timeout is also used in situations when
the PMCD dispatches multiple PDUs to a collection of PMDAs and then uses
the select system call to determine when responses from the PMDAs have
arrived.

If a PDU exchange times out, it is considered to be a protocol failure.

If any kind of protocol failure occurs, the PMCD terminates its connection(s)
with the client or PMDA that was involved. It does this by closing any file
descriptors associated with the client or PMDA and marking the client or
PMDA as no longer connected.

If a client or PMDA terminates prematurely, any file descriptors that it uses
to communicate with PMCD are closed as part of the normal operating
system cleanup for the terminating process. The PMCD notices that the
client or PMDA has terminated the next time a PDU transfer involving the
client or PMDA is attempted, and marks the client or PMDA as
disconnected.

Notice that the PMCD’s timeout policy does not extend to killing a client or
PMDA. There is currently no PCP defined protocol for killing a hung PMDA,
although the usual IRIX service for process termination (such as the kill
command) may be used.

28

Chapter 1: Introduction to the Performance Co-Pilot

Installing and Configuring the PCP

The sections below describe the basic installation and configuration steps
necessary to run the PCP on your network.

PCP Product Structure

There are three software packages shipped as part of Performance Co-Pilot.
These are the client software (pcp_client), which must be installed on the
system that runs the monitoring programs; the shared software, (pcp_share)
which must be installed on all systems; and the server software, (pcp_server)
which must be installed on each system to be monitored. You must install all
three packages on a system if you wish to monitor that system from its own
console.

In a typical deployment, the Performance Co-Pilot would be installed in a
server configuration on one or more hosts, from which the performance
information could then be collected, and in a client configuration on one or
more workstations, from which the performance of the server systems could
then be monitored.

The relationship between the PCP client/server capability and the
installable packages is shown in Table 1-1.

For complete information on the installable software packages, see the
Performance Co-Pilot release notes, available through the relnotes(1) or
grelnotes(1) commands.

Table 1-1 PCP Software Packages Required for Servers and Clients

PCP Mode Performance Required inst Products
Data

Server only producer of information pcp_share and pcp_server

Client only consumer of information pcp_share and pcp_client

Client and Server consumer and producer of
information

pcp_share, pcp_client and
pcp_server

Installing and Configuring the PCP

29

Optional PMDA installation

For hosts that are to act as producers of information (servers, or systems to
be monitored), you may wish to configure some of the optional Performance
Metrics Domain Agents (PMDAs).

These are installed, one directory per PMDA, below /usr/demos/PerfCoPilot/
pmdas. In each directory there is a README file that describes the metrics
provided by the PMDA; a Remove script to un-configure the PMDA, remove
the associated metrics from the PMNS, and restart pmcd(1); and an Install
script to install the PMDA, update the PMNS, and restart pmcd(1).

To guard against potential changes between one version of a PMDA and
another, it is recommended that you always select "Remove" before "Install".

For example, to install the PMDA for the environmental monitor on a
Challenge system, you might enter the following commands as root on the
system to be monitored:

cd /usr/demos/PerfCoPilot/environ
./Remove
./Install

If the user creates additional PMDAs, it is recommended that these follow
the same file naming conventions and configuration procedures as the
optional PMDAs shipped in the standard pcp_server product.

PCP License Constraints

On the monitoring system, all of the display, visualization, and automated
reasoning tools are licensed using "nodelocked" NetLS licenses.

Refer to the Performance Co-Pilot release notes for details.

On the monitored systems, the PMDAs, pmcd(1) and pmlogger(1) instances
may be installed and executed without license constraints.

Some of the PCP maintenance tools for updating the PMNS, interrogating
the PMCS, dumping an archive log, and so on, are not constrained by any
license restrictions.

30

Chapter 1: Introduction to the Performance Co-Pilot

Maintaining the PMCD Daemon

On each system to be monitored, you must be certain that the pmcd(1)
daemon is running. This daemon gathers the statistics that are displayed on
the monitoring system. To start the daemon, issue the following commands
as root on each system to be monitored:

chkconfig pcp on
/etc/init.d/pcp start

These commands instruct the system to start the daemon immediately, and
again whenever the system is booted. It is not necessary to start the daemon
on the monitoring system unless you wish to monitor it as well.

To stop pmcd immediately on any system, give the command:

/etc/init.d/pcp stop

Often, if a daemon is not responding on a monitored system, the problem
can be resolved by stopping and then immediately restarting a fresh instance
of the daemon. If you need to stop and then immediately restart pmcd on a
monitored system, use the start argument provided with the script in /etc/
init.d. The command syntax is:

/etc/init.d/pcp start

On startup pmcd looks for a configuration file named /etc/pmcd.conf. This file
specifies which agents cover which performance metrics domains and how
pmcd should make contact with the agents. An optional section specifying
host-based access controls may follow the agent configuration data. A
comprehensive description of the configuration file syntax and semantics
can be found in the pmcd reference page.

If the configuration is changed, pmcd reconfigures itself when it receives the
SIGHUP signal. Use the command:

killall -HUP pmcd

Installing and Configuring the PCP

31

Tailoring the Primary Archive Logger

On each system for which pmcd(1) is active (each system on which
performance is to be monitored), there is an option to have a distinguished
instance of the archive logger pmlogger(1) (the "primary" logger) launched
each time pmcd is started. This would be typically used to ensure the creation
of the archive logs required for on-going system management and capacity
planning.

Issue the following command as root on each system where you want to
activate pmlogger:

chkconfig pmlogger on

The primary logger launches the next time pmcd is started. If you wish this
to happen immediately, follow up with the command:

/etc/init.d/pcp start

When started in this fashion, the file /etc/config/pmlogger.options provides
command line options for pmlogger, which in turn means that the initial
logging state and configuration is specified in the file /usr/lib/pcp/config/
pmlogger.config. Either or both of these files may be modified to tailor the
primary pmlogger operation to the local requirements.

Refer to the pmlogger reference page for more details.

PCP Client Configuration

The following tools must be configured on each system to be monitored.

The opsview Tool

The opsview tool for monitoring an ORACLE parallel server configuration
must be tailored to match the OPS deployment. This may be done using
Configure, an interactive script, in the opsview distribution directory.

First, make sure that the pcp_share and pcp_server products are installed on
both OPS nodes, and the ORACLE PMDA (see /usr/demos/PerfCoPilot/pmdas/
oracle7) is installed on both nodes. On the monitoring system, ensure that the
pcp_share and pcp_client products are installed.

32

Chapter 1: Introduction to the Performance Co-Pilot

To configure opsview, execute the following commands as root on the
monitoring system:

cd /usr/demos/PerfCoPilot/opsview
./Configure

Note that for systems that do not have OPS installed, opsview still makes an
interesting demonstration of the power of the performance visualization
capabilities of the Performance Co-Pilot. Indeed, opsview can be "configured"
for a default "fake" OPS deployment in which your local workstation
pretends to be both OPS nodes, and you need not even have ORACLE
installed.

The pmclient Tool

To help you develop tailored performance tools using the services of the
PMCS and the functionality of the PMAPI, source code for a simple
performance monitoring tool, pmclient, is shipped in the pcp_client product.

The directory /usr/demos/PerfCoPilot/pmclient contains the required source
and Makefiles to build and install pmclient.

User Interface Terminology

Figure 1-5 and Figure 1-6 show windows labeled with the window terms
used in this guide.

User Interface Terminology

33

Figure 1-5 Window Terms

The mouse buttons have these functions:

left Perform most basic tasks: click buttons, select an entry field
to type into, select menu choices, select items in a display,
select text to modify, and so on.

middle Reposition windows and icons.

right Access popup menus. Popup menus appear when you
press the right mouse button in certain locations on the
screen.

Window menu button

Title bar

Menu bar

Minimize button

Scroll bar

Pulldown menu

Slider

34

Chapter 1: Introduction to the Performance Co-Pilot

Figure 1-6 More Window Terms

This guide uses the following terms to describe the use of the mouse:

press Hold down a mouse button.

drag Move the mouse while a mouse button is pressed.

click Press a mouse button and immediately release it without
moving the mouse.

double-click Press and release a button twice in quick succession without
moving the mouse.

select The term “select” is used in the following ways:

• Click the left mouse button on an item line to
highlight it.

Radio button

Option button

Check box

Entry field

Display area

Button

Common User Interface Operations

35

• Press the left mouse button in an entry field, drag the
cursor across some or all of the text, and release the
mouse button. The text becomes highlighted.

• Press the left mouse button on a menu title in a menu
bar, move the cursor to a menu choice, and release the
mouse button while a menu choice is highlighted.

• To select a traffic line, node, or network in the NetLook
main window, double-click on it.

deselect Click on a highlighted item to turn off the highlighting.

Common User Interface Operations

The graphical PCP tools have a common look-and-feel for consistent
operation and easy switching between tools. This guide assumes that you
are familiar with using the mouse, working with windows, and using
pulldown and rollover menus. These operations are described in the IRIS
Essentials.

The sections below explain how to use additional components of the user
interface that are common to several of the tools.

Using Scroll Bars

You can use scroll bars (see Figure 1-7) to change the area and scale of a
viewing area and to display different lines or portions of lines in a display
area. The size of the slider is proportional to the amount of the total that you
are viewing. You operate scroll bars by pressing the left or middle mouse
button when the cursor is in the scroll bar. There are several ways to operate
the scroll bar:

• Press the left mouse button on the slider, drag the cursor to a new slider
position, and release the button.

• Move the slider incrementally by clicking the triangles at each end of
the scroll bar.

• Move the slider up or down by positioning the cursor in the trough
above or below the slider and clicking the left mouse button.

36

Chapter 1: Introduction to the Performance Co-Pilot

• Move the slider to a specific position by positioning the cursor at that
position and clicking the middle mouse button.

Figure 1-7 A Horizontal Scroll Bar

Entering and Removing Text in a Field

Editing text in the entry fields (see Figure 1-8) is the same as editing text in
the entry fields of other applications:

• Position the text insertion point by moving the mouse to the entry field
and clicking the left mouse button.

• Select (highlight) text by pressing the left mouse button at one end of
the text that you want to select and dragging to the other end.

• Select a word, including a space or punctuation-delimited characters,
by moving the cursor to the word and double-clicking the left mouse
button.

• Select the entire contents of an entry field by moving the cursor over the
entry field and triple-clicking the left mouse button.

• Delete selected (highlighted) text by pressing the <Backspace> key.

• Delete the character to the left of the insertion point by pressing the
<Backspace> key.

Figure 1-8 An Entry Field

Using Option Buttons

Option buttons (on the left in Figure 1-9) let you select a numeric value from
among a predefined set of choices. To use an option button, first press the

Common User Interface Operations

37

option button with the left mouse button. A menu pops up (on the right in
Figure 1-9). Move the cursor to your selection and release the mouse button.

Figure 1-9 An Option Button and an Option Button Menu

Using a File Prompter

File prompter windows (like the one in Figure 1-10) are used to specify
filenames. You can choose a filename by double-clicking a name in the
display area. You can also type the name into the filename entry field and
press <Enter> or click the Accept button to complete your filename selection.
You can change directories to the parent of the current directory by clicking
the Up button, or return to the directory where you started the tool by
clicking the Original button.

38

Chapter 1: Introduction to the Performance Co-Pilot

Figure 1-10 A File Prompter Window

Using Online Help

The PCP provides many online help files to help you as you learn to use the
tools. You access these files from the Help menu in the menu bar of many
PCP windows (shown in Figure 1-11 on top) and from the Help button that
appears in some PCP windows (on the bottom in Figure 1-11).

Figure 1-11 A Help Menu and a Help Button

Product Support

39

When you choose “Help...” from a menu or click a Help button, a Showcase
window appears and displays the first help card.

Some help files contain several cards. Page through these cards using the
<Page Up> and <Page Down> keys in the cluster of six keys just to the right
of the <Backspace> key, or click the left mouse button on the arrows at the
bottom of the pages. Make sure the cursor is in the Help window when you
press these keys.

When you finish reading a help file, you can close the Help window just as
you close any other window, for instance, by double-clicking the Window
menu button in the upper left corner of the window or by selecting “Quit”
from the Window menu.

Product Support

Silicon Graphics provides a comprehensive product support and
maintenance program for its products. For further information, contact the
Technical Assistance Center at 1-800-800-4SGI.

41

Chapter 2

2. PCP Utilities and Tools

This chapter deals with the graphical tools and text-based utilities that make
up the pre-developed portion of the Performance Co-Pilot product. The
major sections in this chapter include:

• “Common Conventions and Arguments” details some basic standards
used in the development of the PCP tools.

• “Monitoring System Performance With the PCP” introduces the
utilities and tools provided to monitor basic system performance. These
include pmkstat, pmchart, pmval, and pminfo.

• “Performance Visualization With the PCP” introduces the tools
provided to display performance statistics in an easily visible format.
These tools include dkvis, memvis, mpvis, nfsvis, opsview, and pmview.

• “Archive Logging With PCP” describes the process of making a log of
selected performance metrics for future review.

• “The Performance Metrics Inference Engine (pmie)” describes the pmie
utility.

• “Changing PCP Metric Values With pmstore” describes the use of the
pmstore utility to arbitrarily set or reset performance metric values.

42

Chapter 2: PCP Utilities and Tools

Common Conventions and Arguments

Many of the utilities provided with the Performance Co-Pilot (PCP) conform
to a common set of naming and syntactic conventions for command line
arguments and options. This section outlines these conventions and their
meaning. The options may be generally assumed to be honored for all
utilities supporting the corresponding functionality.

In all cases, the reference pages for each utility fully describe the supported
command arguments and options.

Fetching Metrics From Another Host

The option -h host is used to direct the utility to make a connection with the
pmcd(1) instance running on host. Once established, this connection serves as
the principal source of performance metrics and metadata.

The default source, in the absence of a -h option, is usually pmcd(1) on the
local host.

Fetching Metrics From an Archive Log

The option -a archive is used to direct the utility to treat the PCP archive log
with the base name archive as the principal source of performance metrics
and metadata.

Archive logs are created with pmlogger(1), and the utilities typically operate
with equal facility for performance information coming from either a real-
time feed from pmcd(1) on some host, or for historical data from an archive
log.

The options -h and -a are mutually exclusive in most cases.

Common Conventions and Arguments

43

Alternate Performance Metric Name Spaces

The Performance Metrics Name Space (PMNS) defines a mapping from a
collection of external names for performance metrics (convenient to the user)
into corresponding internal identifiers (convenient for the underlying
implementation).

A default PMNS is supported, but alternates may be specified using the -n
namespace argument.

Refer to the pmns(4) and pmnscomp(1) reference pages for details of PMNS
structure and creation.

Performance Monitor Reporting Frequency and Duration

Many of the performance monitoring utilities have periodic reporting
patterns.

The -t delta and -s samples options are used to control the sampling
(reporting) frequency, usually expressed as a real number of seconds (delta),
and the number of samples to be reported, respectively. In the absence of the
-s flag, the default behavior is typically for the performance monitoring
utilities to run forever.

Starting Time for an Archive Log

The -S numsec option may be used in conjunction with an archive to request
that display start at the time numsec seconds from the start of the archive.

44

Chapter 2: PCP Utilities and Tools

Timezone

All utilities that report time of day use the local timezone by default.

The -z option forces times to be reported in the timezone of the host that
provided the metric values (the monitored host).

The -Z timezone option may be used to set the TZ variable to a timezone
string, as defined in environ(5), for example,. -Z utc for universal time.

The VCR Controls in PCP Tools

Those utilities with a graphical user interface typically support a set of
standard widgets to control the display, particularly when processing
information from an archive log. The controls are modeled after the controls
on an industry-standard videocassette recorder or tape recorder. Figure 2-1
shows the VCR control panel.

Figure 2-1 VCR Controls for the PCP Tools

Common Conventions and Arguments

45

When invoked from a running tool such as pmchart, the Sampling Control
section of the VCR control can be used to alter the rate at which metric values
are retrieved, and the Replay Rate is insensitive. When the utility is
processing metric values from an archive log, the Update Interval controls
the time interval between successive retrievals, and the Replay Rate controls
the ratio between the log time interval and the real-time pause in the display
- a value of 1.0 replays at a real-time rate equal to the sampling rate; a value
of 2.0 replays at approximately double the sampling rate, and so on.

The Timezone option menu may be used to change the timezone for the
current time display. The UTC timezone is universal and is hence useful
when several archives and/ or live sources of data are being displayed in
multiple instances of the tools, and comparisons between performance
metrics are required to be temporally correlated. Whenever a new source of
metrics is opened, whether an archive or live, the timezone at that source of
metrics is added to the list in the option menu. The default timezone is that
of the local host where the tool is being run.

The VCR Control Buttons in the window are used to view an archive log with
Stop/Rewind/Replay and Fast Forward capability. They may also be used
to pause (stop) and resume (play) the display when metrics are being fetched
from a host.

Most PCP tools may be used to replay a log, but meaningful display requires
the relevant performance metrics to have been included in the archive log
when it was created. The directory /usr/demos/PerfCoPilot/pmlogger is a
repository for useful pmlogger(1) configuration files. These files may be used
to create archive logs that are viewed with the various PCP utilities.

Most three-dimensional display utilities are based on the generalized
pmview(1) utility, and you can obtain a VCR control panel from any tool
based on pmview by using the mouse to click the VCR Play button in the
upper left-hand corner of the tool window (see Figure 2.9). The same VCR
button icon is located in the lower left-hand corner of the pmchart window
(see Figure 2.2), and selecting it also launches the VCR control panel.

For more information on the VCR controls, see the reference pages for
pmview(1) or pmchart(1). For more information on archive logging, see the
section in this chapter titled “Archive Logging With PCP” on page 89 and the
section titled “Metric Values Not Available” in Chapter 5.

46

Chapter 2: PCP Utilities and Tools

Monitoring System Performance With the PCP

The PCP provides a group of commands and tools for measuring system
performance. Each tool is described completely in its own reference page.
The reference pages are accessible through the man(1) command. For
example, the reference page for the tool pmchart(1) is viewed by giving the
command:

man pmchart

The pmkstat Command

The pmkstat command provides a periodic, one-line summary of system
performance. The pmkstat command is intended to monitor system
performance at the highest level, after which other tools may be used to
examine subsystems in which potential performance problems may be
observed in greater detail.

Give the command:

pmkstat
And you see output similar to the following:
hostname load avg: 0.26, interval: 5 sec, Thu Jan 19 12:30:13 1995
runq | memory | system | disks| cpu
mem swp | free page | scall ctxsw intr| rd wr|usr sys idl wt
0 0 16268 0 64 19 2396 0 0 0 1 99 0
0 0 16264 0 142 45 2605 0 8 0 2 97 0
0 0 16268 0 308 62 2532 0 1 1 1 98 0
0 0 16268 0 423 88 2643 0 0 1 1 97 0

An additional line of output is added every five seconds. The update
frequency may be varied using the -t delta option.

The output from pmkstat is directed to standard output, and the columns in
the report are interpreted as follows:

runq Average number of runnable processes in main memory
(mem) and in swap memory (swp) during the interval.

Monitoring System Performance With the PCP

47

memory The free column indicates average free memory during the
interval, in Kilobytes. The page column is the average
number of page out operations per second during the
interval. I/O operations caused by these page-out
operations are included in the write I/O rate.

system System call rate (scall), context switch rate (ctxsw) and
interrupt rate (intr). Rates are expressed as average
operations per second during the interval.

disks Aggregated physical read (rd) and write (wr) rates over all
disks, expressed as physical I/O operations issued per
second during the interval. These rates are independent of
the I/O block size.

cpu Percentage of CPU time spent executing user code (usr),
system and interrupt code (sys), idle loop (idl) and idle
waiting for resources, typically disk I/O (wt).

Like all PCP utilities, real-time sources of metrics and archive logs may be
used interchangeably. For example

pmkstat -a foo -z

uses the archive log foo to produce the following:

Note: timezone set to local timezone of host “tokyo”

tokyo load avg: 1.06, interval: 5 sec, Thu Feb 2 08:42:55 1995
 runq | memory | system | disks | cpu
mem swp| free page| scall ctxsw intr| rd wr|usr sys idl wt
 0 0 4316 0 195 64 2242 32 21 0 3 8 89
 0 0 3976 0 279 86 2143 50 17 0 5 8 87
 1 0 3448 0 186 63 2304 35 14 0 4 9 87
 0 0 4364 0 254 81 2385 35 0 0 4 9 87
 0 0 3696 0 266 92 2374 41 0 0 3 9 88
 0 0 2668 42 237 81 2400 44 2 1 4 7 89
 0 0 4644 100 206 68 2590 25 1 0 3 5 91
 0 0 5384 0 174 63 2296 32 22 0 2 8 89
 0 0 4736 0 189 65 2197 31 28 0 3 8 89
_sample Fetch: End of PMCS log file

For complete information on the usage and syntax of pmkstat, see the pmkstat
reference page.To launch a tutorial, enter these commands in order:

48

Chapter 2: PCP Utilities and Tools

1. cd /usr/demos/PerfCoPilot/Tutorial

2. showcase -v Tutorial.sc

The pmchart Tool

The pmchart utility supports interactive selection and plotting of trends over
time for arbitrarily selected performance metrics from one or more hosts and
one or more domains of performance metrics. When you issue the command

pmchart

you see the window shown in Figure 2-2.

Figure 2-2 The pmchart window

Normally, pmchart operates in “live” mode where performance metrics are
fetched in real time and plotted against a time axis. The user can choose
performance metrics and monitor the current values for these metrics from
any host that is accessible on the network and has the pmcd(1) server
running. In addition, pmchart can also replay archive logs of performance
metrics created by pmlogger(1). It is possible to replay an archive while
pmlogger(1) is creating the archive; when the current end of the archive is
reached a VCR STOP is forced; note however it is not generally possible to
creep forward and replay metrics just behind real-time because pmlogger(1)
uses buffered I/O.

Monitoring System Performance With the PCP

49

The reference page for pmchart explains how to configure charts based on
performance metrics. Once charts have been configured and applied, the
charts are placed in the window, as shown in Figure 2-3.

Figure 2-3 The pmchart Window With Two Charts Configured

All metrics in the Performance Metrics Name Space (PMNS) with numeric
value semantics can be graphed, and metrics from multiple hosts may be
plotted on a common time axis. The pmchart utility examines the semantics
of selected metrics, and where sensible, uses the metadata provided by the
Performance Metrics Collection Subsystem (PMCS) to convert fetched
metric values to a rate before plotting. In the case where different metrics are
plotted in the same chart (for example, against a common Y-axis), pmchart
may also scale metric values where necessary, to produce comparable values
with common units and scale.

By default, pmchart initially allows the user to select metrics to be plotted
from the local host. However, the graphical user interface allows other hosts
or archives to be chosen at any time as alternate sources of performance
metrics.

50

Chapter 2: PCP Utilities and Tools

When replaying archive logs, the user may interactively control the current
replay time, the direction of replay, and the replay rate, using a VCR-like
control panel, as shown in Figure 2-3.

Figure 2-4 The Global Control Window With VCR Controls

This mode of operation is particularly useful for retrospective comparisons
and for post-mortem analysis of performance problems, where a remote
system is not directly accessible or a performance analyst is not available on
site.

Monitoring System Performance With the PCP

51

Mouse Controls

The pmchart tool uses the left and right mouse buttons as follows:

Left Button Apart from interacting with the menus and dialogs, the left
mouse button is also used to select the current chart by
clicking anywhere on the desired chart. At all times, the
current chart has a border drawn around the graph area and
the legend (if visible) is rendered in red.

Middle Mouse The middle mouse button is not used.

Right Mouse The right mouse button is used to display metric values in a
popup dialog. Clicking the right mouse in the graph
drawing area of any chart displays information about the
nearest metric and its value, as plotted, at that point.

52

Chapter 2: PCP Utilities and Tools

pmchart Metric Selection

The Metric Selection dialog window allows interactive navigation of the
Performance Metrics Name Space, giving the user the ability to choose
metrics, change the current host, select metric instances, and then plot
current or archived metric values on a common time axis. This dialog is
shown in Figure 2-5.

Figure 2-5 The Metric Selection Dialog

If you enter a partial metric specification in the path field in the Metric
Selection dialog, you can avoid having to navigate through the PMNS to

Monitoring System Performance With the PCP

53

select the metrics you need. For example, if you enter the path
irix.network.interface, the window changes dynamically, as shown in
Figure 2-6.

Figure 2-6 Further Metric Selection

54

Chapter 2: PCP Utilities and Tools

You can also continue the selection process by clicking the subcategory or
metric you desire, as shown in Figure 2-7.

Figure 2-7 Selecting a Final Metric

Monitoring System Performance With the PCP

55

Finally, you may have to select from several instances of a metric. In the
example shown in the above figures, you are monitoring the Maximum
Transmission Unit on a network interface. On the system being monitored,
there are three network interfaces configured. You must select an interface,
as shown in Figure 2-8.

Figure 2-8 Selecting a Metric Instance

The annotated examples in the pmchart chapter of the Performance Co-Pilot
Tutorial provide a guided illustration to the user’s typical interactions with
pmchart. To launch this chapter of the Tutorial, enter these commands:

1. cd /usr/demos/PerfCoPilot/Tutorial

2. showcase -v Tutorial .sc

Once the showcase application has opened the Tutorial, page down to the
Tutorial “Home” page, select the “Monitoring trends - pmchart” heading,
and work through the examples.

56

Chapter 2: PCP Utilities and Tools

The pmval Command

The pmval command dumps the current values for the named performance
metrics. For example, the command

pmval proc.nprocs

reports the value of the performance metric proc.nprocs once per second (by
default), and produces output similar to this:

metric: proc.nprocs
host: localhost
semantics: instantaneous value
units: none
samples: indefinite
interval: 1.00 sec

 73
 72
 70
 75
 75

In the above example, the number of processes running on the monitored
system is reported once per second.

Where the semantics of the underlying performance metrics indicate that it
would be sensible, pmval reports the rate of change or resource utilization.

Monitoring System Performance With the PCP

57

For example, the command

pmval -h moomba -t 5 -s 4 irix.kernel.percpu.cpu.idle

reports idle processor utilization for each CPU on the remote host moomba,
over four samples, each five seconds apart. This produces output of the
form:

metric: irix.kernel.percpu.cpu.idle
host: moomba
semantics: cumulative counter (converting to rate)
units: millisec (converting to time utilization)
samples: 4
interval: 5.00 sec

 cpu0 cpu1 cpu2 cpu3
 0.8193 0.7933 0.4587 0.8193
 0.7203 0.5822 0.8563 0.7303
 0.6100 0.6360 0.7820 0.7960
 0.8276 0.7037 0.6357 0.6997

Similarly, the command

pmval -t 3 -i dks0d1 irix.disk.dev.read

reports disk I/O read rate for just the disk /dev/dsk/dks0d1 every 3 seconds.
You see output similar to the following:

metric: irix.disk.dev.read
host: localhost
semantics: cumulative counter (converting to rate)
units: count (converting to count / sec)
samples: indefinite
interval: 3.00 sec

 dks0d1
 33.67
 48.71
 52.33
 11.33
 2.333

The -r flag may be used to suppress the rate calculation (for metrics with
counter values) and display the raw values of the metrics.

58

Chapter 2: PCP Utilities and Tools

The pmval command is documented completely in the pmval reference page.
There are annotated examples of the use of pmval in the PCP tutorial (see
page 55).

The pminfo Command

The pminfo command displays various types of information about
performance metrics available through the facilities of the Performance
Co-Pilot.

Without any options, pminfo verifies that the specified metrics exist in the
namespace, and echoes those names. Metrics may be specified as arguments
to pminfo using their full metric names. For example, the command

pminfo hinv.ncpu irix.network.interface.total.bytes

returns the following response:

hinv.ncpu
irix.network.interface.total.bytes

A group of related metrics in the namespace may also be specified. For
example to list all of the hinv metrics you would use the command

pminfo hinv

The response to this command is:

hinv.ncpu
hinv.cpuclock
hinv.dcache
hinv.icache
hinv.secondarycache
hinv.physmem
hinv.pmeminterleave
hinv.ndisk

Monitoring System Performance With the PCP

59

If no metrics are specified, pminfo displays the entire collection of metrics.
This can be useful for searching for metrics, when only part of the full name
is known. For example, the command

pminfo | grep nfs

returns the following response:

irix.nfs.client.badcalls
irix.nfs.client.badcalls
irix.nfs.client.calls
irix.nfs.client.nclget
irix.nfs.client.nclsleep
irix.nfs.client.reqs
irix.nfs.server.badcalls
irix.nfs.server.calls
irix.nfs.server.reqs
irix.nfs.client.badcalls
irix.nfs.client.calls
irix.nfs.client.nclget
irix.nfs.client.nclsleep
irix.nfs.client.reqs
irix.nfs.server.badcalls
irix.nfs.server.calls
irix.nfs.server.reqs

The -d option causes pminfo to display descriptive information about metrics
(refer to the pmLookupDesc(3) reference page for an explanation of this
metadata information). Consider the following command and its response:

pminfo -d proc.nprocs irix.disk.dev.read irix.filesys.free

proc.nprocs
 Data Type: 32-bit int InDom: PM_INDOM_NULL 0xffffffff
 Semantics: instant Units: none
irix.disk.dev.read
 Data Type: 32-bit unsigned int InDom: 1.2 0x400002
 Semantics: counter Units: count
irix.filesys.free
 Data Type: 32-bit int InDom: 1.7 0x400007
 Semantics: instant Units: Kbyte

60

Chapter 2: PCP Utilities and Tools

The -f option to pminfo forces the current value of each named metric to be
fetched and printed. In the example below, all metrics in the group hinv are
selected:

pminfo -f hinv

hinv.ncpu
 value 1
hinv.cpuclock
 value 100
hinv.dcache
 value 8192
hinv.icache
 value 8192
hinv.secondarycache
 value 1048576
hinv.physmem
 value 64
hinv.pmeminterleave
 value 0
hinv.ndisk
 value 1

If the metric has an instance domain, the value associated with each instance
of the metric is printed:

pminfo -f irix.filesys.mountdir
irix.filesys.mountdir
 inst [1 or "/dev/root"] value "/"
 inst [2 or "/dev/usr"] value "/usr"
 inst [3 or "/dev/dsk/dks3d2s2"] value "/proj"
 inst [4 or "/dev/dsk/dks3d3s2"] value "/disk6"
 inst [5 or "/dev/dsk/dks4d3s2"] value "/disk4"
 inst [6 or "/dev/dsk/dks1d3s3"] value "/dist"
 inst [7 or "/dev/dsk/dks1d3s2"] value "/disk3"
 inst [8 or "/dev/dsk/dks1d2s3"] value "/home"
 inst [9 or "/dev/dsk/dks1d2s2"] value "/disk2"

The -t option displays the one-line help text associated with the selected
metrics. The -T option prints the more detailed help text.

Performance Visualization With the PCP

61

The -m option prints the Performance Metric Identifiers (PMIDs) of the
selected metrics. This is useful for finding out which PMDA supplies the
metric. For example, the output below identifies the PMDA supporting
domain 4 (the left-most part of the PMID) as the one supplying information
for the metric environ.extrema.mintemp.

pminfo -m environ.extrema.mintemp
environ.extrema.mintemp PMID: 4.0.3

The -M option prints the PMID as an integer and in hexadecimal as well as
in the dotted notation.

The -v option verifies that metric definitions in the name space correspond
with supported metrics, and checks that a value is available for the metric.
Descriptions and values are fetched, but not printed. Only errors are
reported.

Some instance domains are not enumerable. That is, it is not possible to ask
for all of the instances at once. Only explicit instances may be fetched from
such instance domains. This is because instances in such a domain may have
a very short lifetime or the cost of obtaining all of the instances at once is very
high. The proc metrics are an example of such an instance domain. The -f
option is not able to fetch metrics with non-enumerable instance domains;
however, the -F option tells pminfo to obtain a snapshot of all of the currently
available instances in the instance domain and then to retrieve a value for
each.

Complete information on the pminfo command is found in the pminfo
reference page. There are examples of the use of pminfo in the PCP tutorial
(see page 55).

Performance Visualization With the PCP

Several graphical tools are provided by the Performance Co-Pilot (PCP) to
assist you in visualizing performance on your monitored systems. Each tool
is described completely in its own reference page. The reference pages are
accessible through the man(1) command. For example, the reference page for
the tool mpvis(1) is viewed by giving the command

man mpvis

62

Chapter 2: PCP Utilities and Tools

The pmview Tool

The pmview tool is a generalized 3D Inventor™ application that supports
dynamic displays of clusters of related performance metrics as utilization
blocks (or towers) on a common base plane. The pmview tool is the basis for
the dkvis, mpvis, and nfsvis tools.

The Open Inventor 3D Toolkit is an object-oriented toolkit that simplifies
and abstracts the task of writing graphics programming into a set of easy-to-
use objects. Inventor run-time support is distributed with the IRIX operating
system software.

The pmview command displays performance metrics as multicolored blocks
arranged in a grid on a grey baseplane. The height of each block changes as
the value of its corresponding metric (or metric instance) changes. Labels
identify each metric or group of metric instances as shown in Figure 2-9.

Performance Visualization With the PCP

63

Figure 2-9 A pmview Window

A configuration file is used to specify which metrics and instances should be
displayed, and their colors, positions, textual labels, and so on. The contents
of the configuration file are described in detail below.

Around the outside of the 3D scene is a collection of control icons.
Thumbwheels may be used to rotate the scene around the X and Y axes or to
“dolly” the virtual camera used to view the scene (move it closer or further
away). A slider allows the viewer to zoom in or out. On the right edge is a
collection of buttons that perform various actions on the view of the 3D
scene or change the way the user interacts with it. Above the scene is a
button similar to those on a VCR, and an area where informative text is
displayed and a menu bar.

64

Chapter 2: PCP Utilities and Tools

When the arrow tool (on the right edge of the scene) is selected and the
mouse pointer is moved over one of the blocks in the scene, the name of the
corresponding metric (or instance) is displayed in the information window
along with its value. The value is shown as the raw value (for non-counter
metrics) or the average rate during the most recent update interval (for
counters). In addition, the percentage utilization for the metric is shown in
brackets; this is the percentage of the maximum value, where the maximum
is defined in the configuration file - refer to the reference page for pmview(1)
for details of the configuration file format. As a special case, metrics which
have time-counter semantics (for example, cpu utilization metrics) are
displayed as a percentage of time. This is because a time counter converted
to a rate has no dimensions (it becomes a ratio). The utilization value,
clipped to 100%, is used to normalize the height of the bar for the metric.

 As the mouse pointer is moved over other blocks, the details of the block
appear in the information window.

Clicking a block with the left mouse button selects the block. When a block
is selected, its details are displayed in the information window regardless of
whether or not the mouse pointer is over the block. To deselect the block,
click the left mouse button on the grey base plane underneath the blocks.

Performance Visualization With the PCP

65

Figure 2-10 A pmview Window With a Block Selected

When the hand tool is selected, the mouse may be used to pan, rotate, and
zoom the 3D scene. Dragging the mouse with the left mouse button down
rotates the scene. If the button is released while the mouse is still moving, the
scene continues to spin until either the left or middle mouse buttons is
pressed or another tool is selected. Dragging the mouse with the middle
mouse button down pans the scene. Dragging the mouse with the left and
middle buttons down dollies in and out (moves forward and backward).

Holding down the control key while dragging with the left mouse button
down rolls the scene around an axis perpendicular to the screen. Pressing
and releasing the “s” key, then clicking on an object with the left mouse
button, ‘‘seeks’’ to that object; that is, moves the object to the center of the
viewing area.

66

Chapter 2: PCP Utilities and Tools

The right mouse button brings up a menu of other viewing options. In
addition to various other operations, the Preferences item at the bottom of
the menu may be used to enable stereo viewing.

The escape key toggles between the arrow tool and the hand tool.

Additionally, the following tools are available (from top to bottom as seen on
your pmview window):

• The question mark tool brings up help if you have it installed. To install
online help, use inst(1) to install the inventor_eoe.sw.help package from
your default IRIX distribution. See the Performance Co-Pilot release
notes for more information on prerequisite subsystems.

• The home tool returns you to the original (home) scene orientation. The
home tool with an arrow saves the current scene as the new home scene
orientation.

• The eye tool resizes the scene so that it completely fits in the 3D viewing
area.

• The cross-hairs tool moves an object to the center of the screen (similar to
the “s” key and the hand tool as described above) but works only if the
hand tool is already selected.

• The perspective tool toggles between perspective and orthogonal
projections of the scene.

The menu bar at the top of the window contains the File menu, which allows
you to quit; the Tools menu, for launching related tools for examining
performance metrics; and the Help menu.

Currently, the Tools menu contains items for:

dkvis, mpvis and nfsvis
pmview-based tools for visualizing disk activity, cpu
utilization, and NFS statistics

pmkstat A tool that displays a high-level textual summary of system
performance.

pmchart A tool for graphically displaying and correlating time-series
trends for performance metrics.

Performance Visualization With the PCP

67

pmval A tool that displays the values of performance metrics
textually.

If a block is selected when pmchart is chosen from the Tools menu, pmchart
starts with a graph displaying the metric or instance corresponding to the
selected block. The pmval tool may be used only if a block in the scene has
been selected.

At the top of the window, next to the information window, is the VCR
button. The pmview tool can display data from an archive and can display the
current values of metrics (live data). Clicking on the VCR button brings up
the VCR Controls dialog, as shown in Figure 2-11.

Figure 2-11 The VCR Controls Dialog

For live data, the Sampling Control section of the dialog box is used to
specify how often the 3D scene is updated. The update interval is specified
by the Time Units and the Update Interval. The Playback controls allow you
to pause and resume display of the live data with the Stop and Live buttons,
respectively. The time at which the displayed data was collected is displayed
under the VCR buttons in the dialog box. The Rewind and Fast Fwd buttons
are not available for live operation.

68

Chapter 2: PCP Utilities and Tools

The -a option to pmview indicates that data is to be read from the specified
archive. For example, the following command specifies an archive:

pmview -a tue09dec94.gonzo ...

In archive mode, the Live button on the pmview window becomes a Play
button, the Rewind and Fast Fwd buttons are enabled, and the Replay Rate
may be adjusted to change the rate at which playback occurs, as shown in
Figure 2-12.

Figure 2-12 A VCR Dialog in Archive Mode

If a selection is made from the Tools menu while pmview is in archive mode,
the tool selected is started using the same archive that pmview is using. The
new tool starts displaying data from the same point in time in the archive
that pmview is using.

Creating Custom Visualization Tools With pmview

At startup time, a configuration file is read that specifies

• The geometry for the scene to be displayed by pmview.

• The association between the visual appearance of the “blocks” and
particular performance metrics.

Performance Visualization With the PCP

69

The configuration file specified with the -c option, or else the configuration
is read from the standard input.

The format for this configuration file is as follows:

1. Lines beginning with a “#” are treated as comments, and ignored.

2. Words are delimited by white space (space or tab).

3. Each line specifies a block in the scene in the default orientation,
according to the following parameters (in order):

• An X co-ordinate on the base plane (0 in the top left, increasing
towards the bottom left).

• A Z co-ordinate on the base plane (0 in the top left, increasing
towards the top right).

• A color, encoded as three real numbers in the range 0.0 to 1.0,
representing the saturation of red, green, and blue.

• A scaling or normalization factor. If the performance metric is a
“counter,” then this should be the maximum expected rate of
change in the counter per second; if not, the expected maximum
absolute value of the metric.

• A label to be drawn to the left of the block (preferably short; spaces
are not allowed, and underscores are silently removed). The special
value “-” (hyphen) may be used to suppress the display of any label
associated with this metric.

• An optional hostname, followed by a colon; if missing, the default
host (-h or localhost) or archive (-a) is used as the source of metrics.
As a special case, a hostname containing a “/” (slash) is interpreted
as the name of an archive log.

• The name of a performance metric.

• An optional comma-separated list of instance identifiers; if no
instances are specified, this implies all instances. For every
specified instance of the metric at the selected source, a new block is
created with the same attributes, except the Z coordinate is
increased by one for each successive instance, and the label (if any)
is drawn once to the left of the first instance.

70

Chapter 2: PCP Utilities and Tools

For example, the following specification produces a scene similar to that
shown in Figure 2-13.

1 0 0.0 0.0 0.8 400.0 colour sample.colour
3 0 0.8 0.8 0.0 20.0 pdus sample.pdu
3 2 0.8 0.0 0.0 10.0 - sample.recv_pdu
3 3 0.0 0.8 0.0 10.0 - sample.xmit_pdu
5 0 1.0 1.0 1.0 2000.0 drift sample.drift
5 6 0.8 0.0 0.8 100.0 step sample.step
7 2 0.0 0.8 0.8 10.0 load irix.kernel.all.load

Figure 2-13 A Custom pmview Example

Performance Visualization With the PCP

71

The dkvis Disk Visualization Tool

The dkvis tool is a graphical disk device utilization viewer, displaying a bar
chart showing disk activity. When you give the dkvis command, you see a bar
chart displaying activity on each disk on the monitored system. You see a
window similar to the one shown in Figure 2-14

Figure 2-14 The dkvis window

Each row of blocks on the base plane represents the group of disks connected
to a single disk controller (or host adaptor or SCSI bus). The label for each
row is generated from the characters common to the names of all of the disks
on the controller. For example, in the diagram above, the disks in the row
labelled jag0 (the same row as the selected block for jag0d3) are jag0d1, jag0d2,
jag0d3, jag0d4, jag0d9, jag0d10, jag0d11, jag0d12, and jag0d14.

72

Chapter 2: PCP Utilities and Tools

The command-line options for dkvis are the same as the “common” ones for
pmview. dkvis normally displays the total number of I/O operations per
second (IOPS). The -r option may be used to restrict the display to just the
read operations or -w may be specified for just the writes.

The dkvis command expresses the utilizations in the information window as
percentages of some maximum expected rate (clipped to 100%). The -m flag
allows you to override the default maximum value. This is useful if all of the
utilizations are small compared to the maximum. In such a situation
specifying a smaller maximum has the effect of magnifying the differences
between the blocks. Similarly, if some of the blocks are almost always at full
height, there is a good chance that they are being clipped. A suitable value
for the -m option can be determined by clicking on the blocks in question,
observing the values displayed in the information window for a while, and
adding about 10% to the highest value observed.

Complete information on the dkvis command is available in the dkvis
reference page. The PCP tutorial contains additional examples on the use of
dkvis (see page 55).

Performance Visualization With the PCP

73

The mpvis Processor Visualization Tool

The mpvis tool is a graphical multiprocessor activity viewer, displaying a bar
chart that shows processor activity. When you enter the mpvis command,
you see a bar chart displaying activity on each processor on the monitored
system. You see a window similar to the one shown in Figure 2-15:

Figure 2-15 The mpvis Window

Figure 2-15 shows mpvis monitoring a machine with four CPUs. Notice in
the figure that CPU 0 and CPU 3 are waiting for I/O; CPU 1 is selected and
is spending more than half the time executing user code; and CPU 2 is more
balanced in its work.

The display contains five labeled rows of blocks, which represent the
breakdown of the activity of a single CPU into five states. There is one

74

Chapter 2: PCP Utilities and Tools

column of five blocks for each CPU on the system being monitored. These
five states are:

idle no activity

wait like idle but waiting for I/O

intr processing an interrupt

sys executing in the IRIX kernel

user executing user code

Complete information on the mpvis command is available in the mpvis
reference page.The PCP tutorial contains additional examples on the use of
mpvis (see page 55).

The nfsvis NFS Activity Visualization Tool

The nfsvis tool is a graphical NFS (Network File System) activity viewer,
displaying a bar chart that shows NFS request activity on the monitored
system. NFS is optional software, and may not be present on all systems or
at all sites.

Performance Visualization With the PCP

75

When you give the nfsvis command, you see a bar chart displaying NFS load
on the monitored system. You see a window similar to the one shown in
Figure 2-16:

Figure 2-16 The nfsvis Window

The statistics are broken into two groups: server statistics (requests from
other machines for the NFS server on the machine being monitored) and
client statistics (requests made by the monitored machine to NFS servers on
other machines). The statistics in each of these two groups are the same, save
that the client group is for outgoing requests and the server group is for
incoming requests. Within each group, the requests are further broken down
into requests relating to data within files;, requests for directory operations
(for example, to rename a file); and requests involving other attributes of
files.

76

Chapter 2: PCP Utilities and Tools

Complete information on the nfsvis command is available in the nfsvis
reference page.The PCP tutorial contains additional examples on the use of
nfsvis (see page 55).

The memvis Memory Usage Visualization Tool

The memvis tool is a graphical memory usage viewer. The display is updated
every 0.5 seconds (the update interval may be changed using the -i
command line flag) to provide a real time view of memory use. There are
four basic viewing modes: "Physical Memory Breakdown," "Total Sizes of
Processes," "Resident Sizes of Processes," and "Resident Mappings." In each
of these modes, you can select the memory used by a set of processes or a
detailed breakdown of memory use by a single process.

Performance Visualization With the PCP

77

When you give the command

memvis

you see a window similar to the one shown in Figure 2-17.

Figure 2-17 The memvis Window

If more than one copy of a program is running, the number of copies is
displayed in parentheses after the program name, and any sharing of
physical pages is prorated accordingly.

78

Chapter 2: PCP Utilities and Tools

There is a comprehensive help screen available for memvis by placing the
mouse cursor in the window and pressing the ‘‘h’’ key. When you do so, you
see the screen shown in Figure 2-18.

Figure 2-18 The memvis Help Screen

The section of the window titled Runtime Usage provides concise
information on the immediate graphical manipulations of the memvis
window. For additional information on runtime usage, see “memvis
Runtime Controls.”

Performance Visualization With the PCP

79

Basic memvis Viewing Modes

On startup, memvis displays a bar chart depicting the breakdown of memory
use. Each bar is labeled with the name of the program using the memory
and the number of kilobytes of memory used. If more than one copy of a
program is running, the number of copies is displayed in parentheses after
the program name.

By default, memvis only displays programs that are using more than 500
kilobytes of memory; programs using less than this are lumped together and
labeled "< 500." This threshold is specifiable on the command line and
changeable at run time. Press the down-arrow key to decrease, and the up-
arrow key to increase the threshold.

The memvis command has four different modes of viewing:

Physical Memory Breakdown
The default mode shows the amount of physical memory
being used by each process, the amount of free memory, and
the amount of memory being used by IRIX. The amount of
memory charged to each process is calculated by taking the
pages each process has in memory and pro-rating the sizes
with the number of processes using each page.

Total Sizes of Processes
This mode shows the total sizes of all the processes in the
system. This corresponds to the SZ field of ps(1) output.

Resident Sizes of Processes
This mode shows the resident sizes of all the processes in
the system. This corresponds to the RSS field of ps(1)
output.

Resident Mappings
This mode shows the resident sizes of all mapped objects in
the system. A mapped object can correspond to an
executable file, a dynamic shared object, a memory-mapped
file, or a region attached to a process by rld(1).

Alternately, a list of programs to monitor can be specified on the command
line. In this case, a bar for each of the programs specified appears (as long as
that program is running) and any threshold is ignored.

80

Chapter 2: PCP Utilities and Tools

Program Region Breakdown

If you click on a bar or program name in the main chart memvis displays a
breakdown of the regions within the selected program as shown in Figure 2-
19. Each region is labeled with its type and (if possible) the base name of the
file or device corresponding to that region. If memvis is unable to determine
the base name of the file or device for a region that does correspond to a file
or device, memvis displays the inode number of the file or device.

Figure 2-19 A memvis Program Region Breakdown

Performance Visualization With the PCP

81

The region types are:

Text This region contains executable instructions. These
instructions most likely came from an executable program
file or a dynamic shared object.

Data This region contains program data. Regions marked Data
are usually associated with a particular executable program
file or a dynamic shared object.

Break Data region that is grown with brk(2). This is the region that
contains memory allocated by malloc(3C).

Stack Runtime stack. This region is used for procedure call
frames, and can grow if the program makes deeply nested
procedure calls or calls procedures that allocate large
amounts of stack space for temporary variables.

Shmem A System V shared memory region.

Physical Device
Region corresponds to a physical device other than main
memory, such as a graphics device.

RW Read/Write data without the Copy on Write bit set. This
did not come from an executable program file or a dynamic
shared object, and could be a memory-mapped file.

RO Read only data.

U area & PTEs
The user area and page table entries. The kernel uses this
information to administer a process.

82

Chapter 2: PCP Utilities and Tools

Clicking on the IRIX bar in Physical Memory Breakdown mode causes
memvis to display a breakdown of the memory that it is charging to the
operating system. Separate items include FS Cache, Buffer Data, Heap,
Streams, Zone, BSD Networking, Age Frame Data, Kernel Tables, UNIX
Data Space, UNIX Code Space, Symmon, and Other, as shown in Figure 2-20.

Figure 2-20 IRIX Physical Memory Use

Performance Visualization With the PCP

83

When viewing the breakdown of program memory usage, clicking and
dragging on the shadow bar switches the display to another program.

The first time a particular program is selected within memvis, the program
reads in information about executables and libraries on the system while
displaying a wait message. The memvis tool keeps this information in its
database file ($HOME/.memvis.inodes). If this file does not exist or is older
than /unix, memvis creates it, which can take as long as a minute. If the
database already exists and is newer than /unix, reading it takes only a few
seconds. See “The memvis Environment” for information on customizing
$HOME/.memvis.inodes.

Additional Information About memvis

In addition to the four basic viewing modes and the process region
breakdown, memvis cycles through displays of additional information when
the v key is pressed. This additional information is a subdivision of each bar
in the chart, with the right portion of each bar corresponding to the
additional information. Down the right side of the window, the values
corresponding to the right portion of each bar are displayed.

The following additional information is available:

Private The portion of each bar that is private memory; that is,
memory that is not being shared. This additional
information is available in all modes, except when viewing
the IRIX breakdown.

Shared The portion of each bar that is shared between more than
one process. This is calculated by subtracting the Private
amount from the Physical amount for each bar. Shared is
available in all modes, except when viewing the IRIX
breakdown.

Physical The portion of each bar that is consuming physical memory.
Physical is available in Resident Sizes of Processes and Total
Sizes of Processes modes.

Resident The portion of each bar that is resident in memory (without
taking sharing into account). Resident is available in Total
Sizes of Processes mode.

84

Chapter 2: PCP Utilities and Tools

Command Line Options

The memvis tool has the following command line options:

-i interval Update display every interval milliseconds. The default in
the absence of the -i option is 500.

-m Start using "Resident Mappings" mode.

-p Start using "Physical Memory Breakdown" mode. This is
the default.

-r Start using "Resident Sizes of Processes" mode.

-s Start using "Total Sizes of Processes" mode.

-u Rebuild the inode database $HOME/.memvis.inodes even if it
is not older than /unix.

-t thresh Use thresh kilobytes instead of 500 kilobytes as the starting
display threshold. Programs using less than this amount of
memory in a particular view are not displayed separately,
but rather are lumped together in a single bar.

-d delta Change the display threshold by delta kilobytes when the
up and down arrow keys are pressed. The default is to
change the threshold by 50 kilobytes.

Any command line arguments following the arguments described above are
interpreted as names of programs. If program names are specified, memvis
displays only the memory usage of the programs specified, with all other
programs lumped together in a bar labeled Other. In this case, any threshold
or delta is ignored. This is useful when one is interested in the behavior of a
particular program or set of programs, such as when testing for memory
leaks.

memvis Runtime Controls

Some memvis display parameters can be modified at runtime. The following
keys are hot:

p This key selects "Physical Memory Breakdown" mode

r This key selects "Resident Sizes of Processes" mode

s This key selects "Total Sizes of Processes" mode

Performance Visualization With the PCP

85

v This key cycles through the available additional
information for the current mode. (See “Additional
Information About memvis.”)

up-arrow This key increases the display threshold by 50 kilobytes (by
default) or if the -d option was specified, by delta kilobytes.

down arrow This key decreases the display threshold by the same
amount. When the threshold is decreased to 0, all programs
running are displayed, even those that use no memory
(such as kernel processes).

t This key causes memvis to print statistics about the current
view to the terminal window. The fields in each line are
separated by tab characters to simplify the parsing of the
output by other programs (they are also padded with
spaces). There are three different types of print outs: All
Programs, Resident Mappings, and Program Breakdown.
The mode in use when the t command is entered is printed.

h This key brings up an online help screen, and the space bar
returns from there to viewing memory.

escape This key quits memvis.

In the main view, clicking on a program's bar causes memvis to display a
detailed memory usage chart for that program. In the detailed usage view,
clicking on the shadow bar switches the program being displayed, and
clicking outside the shadow bar or pressing the space bar returns to the main
view.

memvis Examples

The following examples demonstrate typical memvis usage:

memvis -p -t 1000 -d 100

This command brings up memvis in Physical Memory
Breakdown mode, with programs using 1000 kilobytes or
more of memory displayed separately in their own bars.
The up and down arrow keys increase and decrease the
threshold by 100 kilobytes, respectively.

86

Chapter 2: PCP Utilities and Tools

memvis -r xwsh toolchest 4Dwm Xsgi fm

This command brings up memvis in Resident Sizes of
Processes mode. This command directs memvis to display
bars for xwsh(1), toolchest (1), 4Dwm (1), Xsgi (1) and fm(1).
All other programs are combined into a bar labeled Other.

The memvis Environment

The $HOME/.memvis.inodes file created by memvis is a table of files that are
likely to correspond to regions mapped into processes, along with inode
numbers. The memvis tool builds this table if it doesn't exist, if it is older than
/unix, or if the -u option is supplied, and uses it to label the bars when
viewing memory breakdown within a process.

The USAGEPATH environment variable can be used to alter the way
$HOME/.memvis.inodes is built. Set USAGEPATH to a colon-separated list of
directories to recursively search when building the inode database. If
USAGEPATH is not found in the environment, memvis uses the following
default path:

/usr/ToolTalk:/usr/bin:/usr/lib:/usr/local:/usr/Cadmin:
/usr/CaseVision:/usr/sbin:/usr/bsd:/usr/etc:/lib:/sbin:
/bin:/etc:/usr/gfx

The memvis tool gets memory information for processes from the /proc file
system.

memvis Caveats

The totals displayed for the breakdown of a program's regions do not always
add up exactly to the amount of memory in the main view. In Physical
Memory mode, this discrepancy is due to rounding error. In Total Size
mode, this is often due to the inclusion of physical devices in the breakdown.

Beware of shared object amortization. When a program that uses a shared
object (for example, libXm.so) is started, the memory usage of all other
programs that use that shared object can decrease. This is because the
amount of memory charged to each program for shared object usage is
prorated, based on the amount of sharing.

Performance Visualization With the PCP

87

The opsview ORACLE Parallel Server Visualization Tool

The opsview tool demonstrates capabilities of the Performance Metrics
Collection System (PMCS) to drive visualization tools. While the
application is a prototype written specifically to monitor a pair of Challenge
servers running the ORACLE Parallel Server (OPS) software, the utility can
provide an interesting display even for a single workstation.

It is necessary to configure opsview for the particular local system setup.
Enter these commands:

cd /usr/demos/PerfCoPilot/opsview
cat README
./Configure

Once this has been done, the command

opsview

produces a window similar to that shown in Figure 2-21.

Figure 2-21 The opsview Window

88

Chapter 2: PCP Utilities and Tools

On startup, opsview displays a three-dimensional model of two Challenge
servers sharing a common SCSI bus with attached disks, two private
Ethernet connections, and a public Ethernet connection. One of the hosts is
designated as the ‘‘red’’ host (the front panel hostname is ‘‘red’’), the other is
designated ‘‘green’’ (the front panel hostname is ‘‘green’’). These two
primary colors are used to display data about the corresponding hosts as
detailed below.

The opsview application is based on Inventor, like pmview, so many of the
generic scene manipulation operations described for pmview also apply to
opsview.

Briefly, the scene is displayed within an Inventor examiner viewer. This
viewer allows the user to interactively change the view of the object by click-
dragging the left and middle mouse buttons in the 3D window or using the
various controls along the window border (for example, zoom). This
application also allows the user to pick various objects within the scene for
a more detailed view of performance within a subsystem.

Pick mode is entered by selecting the arrow button (the topmost icon in the
right window border). Pick mode is indicated by an arrow-shaped cursor,
and performed by clicking the left mouse button while the cursor is on top
of the scene object to be selected.

The following elements of the scene are driven by live performance data
fetched from the two hosts:

CPU The multi-colored horizontal bar at top front and back (Just
above the host name) faces of both hosts is a thumbnail
display of total CPU utilization. The thumbnail display
follows the gr_osview(1) format. If you select this region the
PCP tool mpvis is launched to provide a more detailed per-
CPU view.

Memory A two-colored rectangular region at the bottom front and
back faces of both hosts is a thumbnail display of physical
memory use. The display follows the memvis(1) format. If
you select this region, the PCP tool memvis is launched,
allowing a very detailed examination of memory use.

Archive Logging With PCP

89

Public-Ethernet
The brightness and color of the Ethernet cable part of the
display is determined by the number of packets processed
by the two hosts. Green or red color is modulated by
packets on the green or red host, respectively. If you select
the Ethernet cable part of the display or its name label, two
instances of gr_osview (one instance for the green host and
one for the red host) are launched to display per-protocol
and per-interface network traffic on the two hosts. The
default startup files for gr_osview are found in
/usr/lib/pcp/config/gr_osview-a.rc and
/usr/lib/pcp/config/gr_osview-b.rc. Alternate startup files for
each host may be specified with the -g option.

Disks Total disk I/O from the red and green machine are
displayed as red and green cylinders, respectively. The
number of I/O operations performed determines the height
of these colored cylinders.

ORACLE If you are running OPS software, you can select the
ORACLE Parallel Server banner text to bring up two
instances of the PCP tool pmchart. This tool allows you to
display interesting OPS performance data from the two
machines. The default startup file for pmchart is found in
/usr/lib/pcp/config/pmchart.rc. An alternate startup file may
be specified with the -p option.

Complete information on opsview is provided in the opsview reference page,
and additional information on ORACLE database servers is provided in the
section of this guide titled “ORACLE Metrics and the ORACLE PMDA” on
page 174.

Archive Logging With PCP

You can direct any of a number of the PCP tools and commands to “replay”
the values for performance metrics from an archive log. The GUI tools
provide the VCR controls described in “Common Conventions and
Arguments” on page 42. You can control the position, replay rate, and
direction within an archive. The non-GUI tools support a variety of

90

Chapter 2: PCP Utilities and Tools

command-line options to affect the starting position, replay rate, and
direction of replay.

In all cases, the archive logs must be created with the pmlogger(1) utility.

Each archive log consists of a number of physical files that support the
descriptions of the metadata and a temporal index, in addition to the values
of selected performance metrics. The collection of files that constitute an
archive log forms an autonomous unit of information that fully describes the
performance data and how to interpret it. Consequently, an archive log may
be shipped from one system to another, and can always be replayed without
access to any other information. This is most useful for remote diagnosis or
retrospective analysis comparing current performance with historical
performance (collected at a time when the system configuration may have
been very different).

The pmlogger Command

The pmlogger command is used to create archive logs of selected metric
values. The usage and syntax of this command are documented in the
pmlogger reference page.

To support the required flexibility and control over what is logged and
when, pmlogger maintains an independent, two-level state for each instance
of each performance metric. At the first (mandatory) level, logging is
allowed to be “on” (with an associated interval between samples), “off,” or
“maybe.” In the latter case, the second (advisory) level logging is allowed to
be “on” (with an associated interval between samples), or “off.” The
mandatory level allows universal specification that some metrics must be
logged or must not be logged. The default state for all metrics when
pmlogger starts is mandatory "maybe" and advisory "off."

The utility pmlc described below provides the interface that allows a user to
interrogate and change the logging state once pmlogger is running.

The Primary Instance of pmlogger

Optionally, each system running a pmcd(1) may also be configured to run a
“primary” logger instance. Like pmcd, this pmlogger instance is launched by
/etc/init.d/pcp, and is configured by the following files.

Archive Logging With PCP

91

/etc/config/pmlogger
Use chkconfig to activate or disable the primary pmlogger
instance.

/etc/config/pmlogger.options
Command line options passed to the primary pmlogger.

/usr/lib/pcp/config/pmlogger.config
Default initial configuration file for the primary pmlogger,
usually named with the -c option in /etc/config/
pmlogger.options.

The syntax for the pmlogger utility is documented in the pmlogger reference
page. However, the following is a simple example configuration file:

log mandatory on once { hinv.ncpu hinv.ndisk }

log mandatory on 1 hour
 irix.kernel.all.load [“1 minute”]

[access]
disallow * : all except enquire;
allow localhost : mandatory, advisory;

The configuration requests pmlogger to record the number of disks initially
in the system, and log the one-minute load average once an hour thereafter.

Other Instances of pmlogger

In addition to any primary pmlogger, a user may choose to create an archive
log with arbitrary choices of performance metrics, instances, and mixtures of
logging frequencies. This would be appropriate to capture detailed
information (both the range of metrics logged and the logging frequency)
about a transient performance problem when it occurs, for capacity planning
or for auditing system performance.

The pmlogger instances may execute locally on the system being monitored,
in which case the disk writes and disk storage must be accommodated on the
monitored system. Or they may also run on the local workstation, but
connect to pmcd on the system being monitored. (This trades off network
traffic at the monitoring system for disk writes and disk storage at the local
system.)

92

Chapter 2: PCP Utilities and Tools

Access Control for pmlogger

When pmlogger starts up, it reads a configuration file. Within this
configuration file is an optional access control section, which allows the user
who launches pmlogger to specify which hosts can send requests to pmlogger.
These requests control the pmlogger state that determines which metrics are
logged and how often.

The pmdumplog Tool

Once an archive log has been created with pmlogger, the most common usage
would be to replay the log with one of the utilities such as pmchart, pmkstat,
pmval, or one of the visualization tools.

However, sometimes it is necessary to characterize the contents of an archive
log, independent of the tool to be used to replay the log. This is the function
of pmdumplog.

Given an existing archive babylon.percpu, the command:

pmdumplog -l babylon.percpu

displays the “label record” that identifies the origin of the archive as follows:

Log Label (Log Format Version 1)

Performance metrics from host babylon, commencing Wed Jan 11
17:50:50.990 1995

Note: Several sample archives are provided as part of the Performance Co-
Pilot Tutorial in the directory /usr/demos/PerfCoPilot/Tutorial/Archives.

To see which metrics have been logged at some time during the life of the
archive tokyo.perdisk, use the command:

pmdumplog -d tokyo.perdisk

This command produces:

Descriptions for Metrics in the Log ...
PMID: 1.18.3 (irix.kernel.all.load)

Data Type: float InDom: 1.5 0x400005
Semantics: instant Units: none

PMID: 1.80.1 (irix.disk.dev.read)

Archive Logging With PCP

93

Data Type: 32-bit unsigned int InDom: 1.2 0x400002
Semantics: counter Units: count

PMID: 1.80.2 (irix.disk.dev.write)
Data Type: 32-bit unsigned int InDom: 1.2 0x400002
Semantics: counter Units: count

PMID: 1.80.7 (irix.disk.dev.total)
Data Type: 32-bit unsigned int InDom: 1.2 0x400002
Semantics: counter Units: count

Other command-line options request reporting of instance domain
information and the dumping of raw values for selected performance
metrics.

The pmdumplog utility is documented in the pmdumplog reference page.

The pmlc Tool

The pmlc command is an interactive utility designed to support interrogation
of, and control over, the internal logging state maintained by a pmlogger
instance.

The particular pmlogger instance is identified by a combination of host (the
host where pmlogger is running, which defaults to the local host) and either
a process ID, or the special “primary” logger designation. For example:

pmlc
pmlc> connect primary
....
pmlc> connect 12345 @far.away.host.com
....

The status command supports interrogation of the current logging status for
one or more metrics.

The log command causes requests to modify the logging status for selected
metrics to be forwarded to a pmlogger instance.

The pmlc utility is documented in the pmlc reference page.

94

Chapter 2: PCP Utilities and Tools

The Performance Metrics Inference Engine (pmie)

The Performance Metrics Inference Engine (pmie) is a tool for defining
certain conditions on monitored systems and specifying actions to take
when those conditions are met. The pmie tool accepts a collection of
arithmetic, logical, and rule expressions, which it evaluates at specified
times on specified host systems. Using pmie, you can access and interpret the
large volume of performance data made available by the Performance
Metrics Collection Subsystem (PMCS) and delivered through the
Performance Metrics Application Programming Interface (PMAPI).

The pmie utility was designed to meet the following requirements:

• Expressive Power: Our first requirement is that the user can
conveniently express the conditions and associated actions needed in
performance analysis practice.

• Ease of Use: The correctness of a set of rules can be difficult to verify.
The language must have clear, simple semantics. Rule debugging
support is essential.

• Robustness: The system must do the right thing with missing or
unexpected performance data.

• Source of Data: The evaluation of the expressions takes place either in
real time from multiple hosts or against archives of stored performance
data.

• Performance: Our final requirement is to achieve the above at a very
small computational cost and with minimum disturbance (probe effect)
of the system being monitored. The PMCS provides for transport of
metrics from a host or hosts being monitored to a separate workstation
performing the analysis. This architecture is right for achieving the
small probe effect.

Introduction to pmie

This section presents and explains some basic examples of pmie usage. The
pmie tool is invoked according to the following syntax:

pmie [-a archives] [-h host] [-i] [-n namespace]
 [-T runtime] [-v] [-Z timezone] [-z] [filename]

The Performance Metrics Inference Engine (pmie)

95

One of the most basic invocations of this tool is the form

pmie filename &

In this form, the expressions to be evaluated are read from filename. In the
absence of a given filename, expressions are read from standard input,
usually your system keyboard.

Given the -i flag, pmie executes in interactive mode, and the user is presented
with a menu of options like this:

Performance Co-Pilot Inference Engine (pmie) V0.0
f [file-name] - load rules
l [rule-name] - list rule(s)
r [period] - run evaluator
s - single step evaluation
q - quit

pmie?

The interactive mode is useful mainly for debugging new rules.

If both the -i flag and a filename are present, the expressions in the given file
are loaded before entering interactive mode.

96

Chapter 2: PCP Utilities and Tools

pmie and the Performance Metrics Collection System

Before you use pmie, you need to familiarize yourself with some
Performance Metrics Collection System (PMCS) basics. This section
provides just enough information to get you started.

The PMCS makes available hundreds of performance metrics, that you can
use when formulating expressions for pmie to evaluate. If you want to find
out which metrics are currently available on your system, use the command:

pminfo

The pminfo command is documented in the pminfo(1) reference page and in
“The pminfo Command.”

Use the pminfo command to find out more about a particular metric. The
next example is a command to fetch (specified with the -f flag) a value for
the metric irix.disk.dev.total from the host (specified with the -h flag) named
moomba. The command

pminfo -f -h moomba irix.disk.dev.total

produces the following response:

irix.disk.dev.total
inst [131329 or “dks1d1”] value 970853
inst [131330 or “dks1d2”] value 53581
inst [131331 or “dks1d3”] value 5353
inst [131332 or “dks1d4”] value 225
inst [131333 or “dks1d5”] value 9674
inst [131334 or “dks1d6”] value 14383
inst [131335 or “dks1d7”] value 5578

This reveals that the metric has seven instances, one for each disk on the
system. The instance names are "dks1d1," "dks1d2," and so on up to
"dks1d7."

Use the following command to request help text (specified with the -T flag)
to read an explanation of the values:

pminfo -T irix.disk.dev.total

You see a response similar to this:

irix.disk.dev.total

The Performance Metrics Inference Engine (pmie)

97

Help:
The cumulative number of transfers to or from
a disk device since boot.

The PMCS provides a cumulative counter of disk transfer operations. You
can confirm this by examining the descriptor (specified with the -D flag) for
the metric, as shown in this command:

pminfo -D -h moomba irix.disk.dev.total

In response, you see output similar to this:

irix.disk.dev.total
Data Type: 32-bit unsigned int InDom: 1.2 0x400002
Semantics: counter Units: count

Because a cumulative counter such as this is not much use in its raw form,
the inference engine automatically converts all such values to rates. That is,
instead of the counter values reported by the pminfo command, pmie reports
the number of disk transfers over a known interval of time. The rate value is
measured in events per second (count/sec).

A Simple pmie Example

The following example directs the inference engine to evaluate and print
values (specified with the -v flag) for the irix.disk.dev.total metric:

pmie -h moomba -v
irix.disk.dev.total;
^D

expr_1: ? ? ? ? ? ? ?

expr_1: 8.7 0 0 0 0 50.51 0

expr_1: 4.5 3 0.1 0.1 0 47 0

expr_1: 5.495 2.198 0.0999 0.1998 0 44.96 0.8991

expr_1: 4.1 1.9 0 0 0 180.8 16.5

expr_1: 4.2 1.9 0 0 0 207.1 6.7

expr_1: 4.8 1.9 0.3 0 0 228.1 3.6

expr_1: 4.493 2.097 0 0 0 224.4 3.095

98

Chapter 2: PCP Utilities and Tools

In the above example output, the values come live from the host (specified
with the -h flag) moomba. Notice that the seven values for the first sample are
unknown (represented by the question marks (?) in the first row of output).
This is because rates can be computed only when at least two samples are
available. The subsequent samples are produced every ten seconds by
default. The second sample reports that during the preceding ten seconds
there were 8.7 transfers per second on one disk and about 50.5 on another
disk, with the remaining disks idle.

Rates are computed using time-stamps delivered by the PMCS. Due to
unavoidable inaccuracy in the actual sampling time (the sample interval is
not exactly 10 seconds), you often see more decimal places in values than
you expect. Notice, however, that these errors do not accumulate but cancel
each other out as subsequent samples come in.

In the above example, the expression to be evaluated was entered on
standard input (the keyboard), followed by the end-of-file character
<Ctrl-D> . Usually it is more convenient to enter expressions into a file (for
example, myrules) and ask pmie to read the file. Use the command syntax:

pmie -v -h moomba myrules

Please refer to the pmie(1) reference page for more command line format and
options information.

More Complex Examples

This section illustrates more complex pmie expressions. The following
arithmetic expression

(irix.disk.dev.write / irix.disk.dev.total) * 100;

computes the percentage of write operations over the total number of disk
transfers. This expression also produces a value for each disk device.

The following logical expression

irix.disk.dev.total > 10 &&
irix.disk.dev.write > irix.disk.dev.read;

tells you for each disk, whether the number of writes exceeds the number of
reads, given that there is some reasonably significant disk activity (more
than 10 transfers/second).

The Performance Metrics Inference Engine (pmie)

99

Finally, the following rule expression

some_inst irix.disk.dev.total > 100 ->
print “high disk i/o”;

prints a message to the standard output (your screen or a designated file)
whenever the total number of transfers for some disk (instance) exceeds 100
transfers per second.

Using pmie to evaluate the above expressions, you see output similar to the
following:

pmie -h moomba -v
irix.disk.dev.total;
(irix.disk.dev.write / irix.disk.dev.total) * 100;
irix.disk.dev.total > 10 &&
 irix.disk.dev.write > irix.disk.dev.read;
some_inst irix.disk.dev.total > 100 ->
 print “high disk i/o”;
^D
expr_1: ? ? ? ? ? ? ?
expr_2: ? ? ? ? ? ? ?
expr_3: ? ? ? ? ? ? ?
expr_4: ?

expr_1: 22.4 30.9 0.4 1.3 0 15.9 0
expr_2: 18.75 6.149 0 0 ? 0 ?
expr_3: false false false false false false false
expr_4: false

expr_1: 9.1 12.3 0.1 0.1 0 50 0
expr_2: 94.51 100 100 100 ? 2 ?
expr_3: false true false false false false false
expr_4: false

expr_1: 4.597 10.99 0 0.0999 0 42.17 0
expr_2: 86.96 95 ? 0 ? 21.09 ?
expr_3: false true false false false false false
expr_4: false

expr_1: 4.599 7.999 0.9997 0.0999 0 40.59 0
expr_2: 97.83 100 100 100 ? 29.06 ?
expr_3: false false false false false false false
expr_4: false

100

Chapter 2: PCP Utilities and Tools

pmie NOTE (Wed Jan 4 09:48:45 1995): high disk i/o
expr_1: 4.3 2 0 0 0 165 15.9
expr_2: 93.02 95 ? ? ? 6.545 0
expr_3: false false false false false false false
expr_4: true

pmie NOTE (Wed Jan 4 09:48:55 1995): high disk i/o
expr_1: 4.8 1.9 0 0 0 198.3 7.7
expr_2: 89.58 100 ? ? ? 3.026 0
expr_3: false false false false false false false
expr_4: true

pmie NOTE (Wed Jan 4 09:49:05 1995): high disk i/o
expr_1: 5.9 1.9 0 0 0 212.1 3.3
expr_2: 79.66 100 ? ? ? 3.112 0
expr_3: false false false false false false false
expr_4: true

^C

The pmie command returned eight samples before the user pressed the
<Ctrl-C> key to interrupt the operation. The first sample contains
unknowns, since all four expressions depend on computing rates. Also
notice that the second expression (expr_2) has an undefined value whenever
a disk is idle; the denominator of the evaluated expression is 0. From the
sixth sample on, the rule condition for the rule expression (expr_4) is satisfied
and a message is printed.

pmie Essentials

This section describes the complete pmie syntax, as well as macro facilities
and the issue of sampling and evaluation frequency.

Complex expressions are built up recursively from simple elements:

1. Performance metric values are obtained from running hosts or archive
files.

2. These raw values are refined into computed values using arithmetic
operators.

3. These computed values are compared using relational operators.

The Performance Metrics Inference Engine (pmie)

101

4. The resulting true/false evaluations are aggregated using Boolean
operators, including very powerful quantifiers.

5. The resulting true/false evaluation can initiate a sequence of actions.

Basic pmie Syntax

The inference engine accepts a sequence of semicolon-terminated
expressions (exprs):

exprs = expr; [exprs]

Sequence of expressions, each terminated by a semicolon.
Any type of expression can appear at the top level:

expr = metric Metric expressions direct pmie to fetch the named
performance metric value(s).

expr = aexpr Arithmetic expressions map numeric values to other
numeric values.

expr = rexpr Relational expressions map numeric values to true/false
values.

expr = lexpr Logical expressions map true/false values to other true/
false values.

expr = act Action expressions have true/false values, but are used
primarily to take the named action, rather than to generate
a value.

expr = rule Rule expressions specify the conditional execution of
actions.

pmie Macros

If fully written out, expressions in pmie tend to be verbose and repetitious.
The use of macros (a shorthand for a piece of syntax) can eliminate repetition
and improve readability and modularity. A macro definition is considered a
kind of naming action:

act = ident = string
Associates the name ident with the given string constant.

Any subsequent occurrence of

$ident

102

Chapter 2: PCP Utilities and Tools

is replaced by the string most recently associated with ident. For example,
given the macro definitions

pmie -v
servers = “:moomba :larry”;
clients = “:splat :wobbly :sandpit”;
all = “$servers $clients”;

you can then use the syntax

sum_host irix.kernel.all.cpu.idle $all;

to compute the total CPU idle time summed over all five server and client
machines specified in the macros.

Setting Evaluation Frequency

A naming action is also used to set the frequency of expression evaluation.

act = ident = num [units]

The name delta is reserved to denote the interval of time separating two
evaluations. You set delta as follows:

delta = num [units];

If present, units must be one of sec, min or hour. If absent, units are assumed
to be seconds (sec).units. For example

delta = 5 min;

has the effect that any subsequent expressions (until delta is changed again)
are scheduled for evaluation at a fixed frequency, once every five minutes.

If not otherwise specified, delta is set to be 10 seconds by default

pmie Units Syntax

You are encouraged to specify the units for numeric constants. The inference
engine converts all numeric values to canonical units (seconds for time, bytes
for space, and events for count). If units are specified they are checked against
metadata in the performance metrics descriptors in the context of the given
expression. The syntax for a units specification is:

The Performance Metrics Inference Engine (pmie)

103

units = unit

units = unit s unit

units = units / unit

unit = byte | Kbyte | Mbyte | Gbyte | Tbyte

unit = nsec | usec | msec | sec | min | hour

unit = count | Kcount | Mcount | Gcount | Tcount

If you do not specify the units for numeric constants, it is assumed that the
constant is in the canonical units of seconds for time, bytes for space, and
events for count. In this case it is also assumed that the dimensionality of the
constant is correct.

Identifiers (ident) and strings (string) have the syntax:

ident = _ | . | A.. Z | a.. z (_ | . | A.. Z | a.. z | 0.. 9)*

ident = ‘ (? | \?)*’

string = “(? | \?)*”

This is, the usual syntax for identifiers, except that you may use the dot
character (.), as used in metric names, and you can make any arbitrary
sequence of characters into an identifier by enclosing the sequence in single
quotes. A string is an arbitrary sequence of characters enclosed in double
quotes. In quoted identifiers and strings, the backslash character (\) escapes
any special meaning that the following character may have.

pmie Comments Syntax

Comments may be embedded anywhere in the source, in the form:

comment = /* text */
C - style comment, with no nesting of comments.

comment = // text
C++ - style comment.

pmie Metric Expressions

A Performance Metrics Name Space (PMNS) provides a means of referring
to a set of performance values sharing common semantics. For instance, the

104

Chapter 2: PCP Utilities and Tools

name irix.disk.dev.read refers to a free running counter of disk read
operations. Three further parameters: (host, instance and sample) are required
to identify a single value for a metric. The expression

irix.disk.dev.read :moomba #dks0d1 @0

refers to the current value (sample time: 0) of the read counter for the disk
named dks0d1 (instance: dks0d1) on the machine named moomba (host:
moomba). The domain of host names is provided by the internet naming
convention. The instance domains are provided by the Performance Metrics
Domain Agents (PMDAs). The sample time domain is defined as the set of
natural numbers 0, 1, 2, and so on. A number refers to one of a sequence of
sampling events, stretching back from the current sample 0 to its predecessor
1, whose predecessor was 2, and so on. This scheme is illustrated by the time-
line figure:

Figure 2-22 A Sampling Time Line

Each sample point is assumed to be separated from its predecessor by a
constant amount of real time, the delta. The current sample point is always
zero. The value of delta may vary from one expression to the next, as you
have specified. For more information on deltas, see “Setting Evaluation
Frequency.”

We can now visualize the three-dimensional parameter space <host, instance,
sample>, as shown in Figure 2-23.

past future

1 0234

now

The Performance Metrics Inference Engine (pmie)

105

Figure 2-23 A Three-Dimensional Parameter Space

A single performance metric value is located by its coordinates in this space.
A one-, two-, or three-dimensional slice of this space can be referred to when
we provide notation for sets of names from the three domains. For example,
the syntax

irix.disk.dev.read :moomba :gonzo @9..0

refers to a 3D aggregate of the values of the last 10 samples of the read
counters on all the disks on the two hosts (moomba and gonzo).

Notice that if no instances are specified explicitly, it is assumed that all
available instances are desired.

More formally, the syntax allows optional hosts, metric instances, and
sample times specifications to follow a metric name. Thus you may use the
syntax:

metric = metric-name [hosts] [insts] [samples]

The hosts specification is a sequence of internet host names, each preceded
by a colon.

hosts = : host-name [hosts]

instance

host

time
sample

106

Chapter 2: PCP Utilities and Tools

The instances specification is a sequence of instance names, each name
preceded by a hash. Recall that you can discover the instance names for a
particular metric, using the pminfo command, see “pmie and the
Performance Metrics Collection System” on page 96..

insts = # inst-name [insts]

Either a single point or an interval of samples may be specified. Only the
natural numbers 0, 1, 2, 3, and so on are valid here. The end points of the
interval may appear in either order.

samples = @number

samples = @number .. number

Where explicit host, instance, and sample times parameters are not given,
default values are assumed. The default for host is localhost, or more
precisely the official hostname for the localhost on the current system. When
no instance is explicitly mentioned, all available instances are implied. The
current value of the metric is commonly required, so this is a good default
for the sample time parameter.

pmie Arithmetic Expressions

Many of the metrics delivered by the PMCS are cumulative counters.
Consider for example, the following metric:

irix.disk.dev.read

A single value for this metric tells you only that a certain number of events
have occurred since boot time, and that information may be invalid if the
counter has exceeded its 32-bit range and started over. You need at least two
values, sampled at known times, to compute the rate at which the I/O
operations are being executed. The syntax is:

(irix.disk.dev.read @0 - irix.disk.dev.read @1) / delta

However, as well as being too verbose, the accuracy of delta as a measure of
actual inter-sample delay is an issue here. The PMCS delivers time stamps
that can solve this problem. For these reasons a built-in, accurate, and
implicit rate operator is provided. That is, the expression

irix.disk.dev.read

The Performance Metrics Inference Engine (pmie)

107

already refers to a rate. You may also call the built-in rate operator explicitly,
as follows:

rate irix.disk.dev.read

But, this statement returns the rate of rate (acceleration) of disk read
operations.

You should recall that our basic expressions do not deliver just single values,
but also one-, two-, and three-dimensional representations. We provide
aggregation operators to collapse values on a chosen dimension. For
example, the statement

avg_inst irix.disk.dev.read $Servers @0..4

yields a two-dimensional matrix of values (five samples per host), where
each value is the average read rate over all disk instances. We can further
reduce this to a single value by summing over the remaining hosts dimension
and then taking the maximum sample:

max_sample sum_host avg_inst irix.disk.dev.read $Servers
@0..4

Numeric constants are provided for pmie as follows:

aexpr = num [units]

Numeric constants are optionally followed by a units
specification. Any value that is legal for a C language double
is legal for a numeric constant expression.

The remaining syntax for arithmetic expressions (aexpr) is as follows:

aexpr = metric
A metric specification, as detailed in “pmie Metric
Expressions” on page 103.

aexpr = (aexpr)

Parentheses can be used for grouping. The default operator
precedence is given by the order of these productions, the
operators that bind more tightly being presented first. All
operators associate to the left.

aexpr = - aexpr | rate aexpr
Two unary arithmetic operators, negation and rate.

108

Chapter 2: PCP Utilities and Tools

aexpr = aexpr * aexpr | aexpr / aexpr

aexpr = aexpr + aexpr | aexpr - aexpr
The usual binary operators, with the usual precedence.

aexpr = sum_dom aexpr | avg_ dom aexpr | max_dom aexpr | min_ dom
aexpr
Aggregation operators, being sum, average, maximum and
minimum.

The aggregation (and later quantification) operators require the domain
(dom) of aggregation to be specified. The three domains are denoted by the
constants:

dom = host | inst | sample

The host, metric instance, and sample time domains.

pmie Relational Expressions

True/false values are derived from the numerical values previously
described. Using relational operators with pmie and the numerical values,
you can arrive at a boolean result. For instance, you may wish to write

irix.disk.dev.read > 50 count/sec

to obtain true/false values, indicating which disks are performing more than
50 read operations per second.

All operators are required to take as arguments constant, singleton, and
matrix valued expressions. So the > operator in this case

irix.disk.dev.read :moomba :larry @0..10 > 500 count/sec

compares each value in the 3D matrix on its left with the single constant
value on its right, producing a 3D matrix of true/false values as the result.

The usual operators are available for relational expressions (rexpr). The
operators are of equal precedence.

rexpr = aexpr == aexp | aexpr != aexpr
rexpr = aexpr > aexpr | aexpr < aexpr
rexpr = aexpr >= aexpr | aexpr <= aexpr

The Performance Metrics Inference Engine (pmie)

109

pmie Logical Expressions

Relational operators can deliver one-, two-, or three-dimensional matrices of
true/false values. Such a structure of true/false values is collapsed into a
smaller dimensional matrix by quantification operators. For example:

all_host some_inst irix.disk.dev.read $Servers > 100 count/
sec

The result here is a single true/false value indicating whether all the server
hosts have at least one disk that is a busy reader.

The syntax for logical expressions (lexpr) provides for true/false valued
constants and relational expressions:

• lexpr = true | false

• lexpr = rexpr

Three quantifiers over the three domains (already defined above) are
provided:

lexpr = all_ dom lexpr
True only if true for all elements of the named domain.

lexpr = some_dom lexpr
True only if true for at least one element of the nominated
domain.

lexpr = number %_dom lexpr
True only if true for at least the specified percentage of
elements of the domain.

The standard boolean operators are supported:

lexpr = ! lexpr

expr = lexpr && lexpr

expr = lexpr || lexpr

Negation (specified by the prefix ! operator) inverts truth values, while
logical AND and logical OR operators function normally.

110

Chapter 2: PCP Utilities and Tools

In addition two special operators are provided:

lexpr = rising lexpr
True when argument value changes from false to true.

lexpr = falling lexpr
True when argument value changes from true to false.

The above logical operators take constant, singleton, and aggregate true/
false values as arguments and deliver true/false values as results. Therefore,

all_host (
 some_inst irix.disk.dev.read $Servers > 100 &&
 some_inst irix.disk.dev.write $Servers > 100
)

tells you whether all server hosts have both a busy reader and a busy writer.

pmie Action Expressions

Actions are logical (true/false) expressions. An action expression evaluates
as true if the action is successfully performed, false if it is not. But actions are
executed for their effect, rather than just their true/false value. The actions
supported by the pmie inference engine are:

act = shell [time] string
The given string is passed to the shell as input. This action
is implemented using the system(3S) call. The actions fail if
the call to system(3S) fails.

act = alarm [time] string
A notifier containing a time stamp, the given message string
and a Cancel button is posted on the current display screen.
Each alarm action first checks if its notifier is already active.
If there is an identical active notifier, a duplicate notifier is
not posted.

act = syslog [time] [facility.level] string
The given message string is written into the system log.

act = print [time] string
A notice containing a time stamp in ctime(3C) format and
the given string is printed out to standard output (stdout).

The Performance Metrics Inference Engine (pmie)

111

The above actions take an optional time parameter, specifying that once an
action is executed, it does not execute again until the given interval of time
has passed. The optional facility.level parameter for syslog is described in the
reference page for logger(1).

Now we can modify the example rule like this:

some_inst irix.disk.dev.total > 100 ->
print 10 min “high disk i/o”;

This prevents it from repeating a message until 10 minutes have passed.

Actions may be composed to form more complex actions as follows:

acts = act

acts = acts & acts
Actions are executed sequentially left to right.

acts = acts | acts
The actions on the left side of the alternate operator (|) are
executed; if they fail, the actions on the right side are
executed.

Note that the && and || operators denote logical AND and OR, whereas the
& and | operators denote sequential and alternate execution of actions.

pmie Rules

Rules have the following syntax:

rule = lexpr -> acts

The semantics are:

• If the rule condition (logical expression lexpr) evaluates true, then
perform the action(s) (acts) that follow, otherwise do not perform the
actions.

• It is required that the rule condition have a singleton truth value; that is,
aggregation and quantification operators have been applied to collapse
any non-singular domains.

112

Chapter 2: PCP Utilities and Tools

As a further example of a rule, consider:

delta = 1 hour;

rising (irix.resource.procovf > 0) ->
syslog “process table overflow, systune suggested”;

The sample interval (delta) is set to one hour here, to avoid excessive load on
the system. A message is written to the system log when the process table
overflow counter exceeds 0.

Caveats and Notes on pmie

Performance Metric Wrap-Around

Performance metrics that are cumulative counters may occasionally
overflow their range and wrap around to 0. When this happens, an
unknown value (printed as ?) is returned as the value of the metric for one
sample (recall that the value returned is normally a rate).

pmie Sample Intervals

The sample interval (delta) should always be long enough, particularly in the
case of rates, to ensure that a meaningful value is computed. Even for
instantaneous values, do not oversample, to avoid unnecessary load on the
system being monitored.

pmie Instance Names

When you specify a metric instance name (#ident) in a pmie expression, this
is compared against the instance name supplied by the Performance Metrics
Collection System (PMCS) as follows:

• If the given and PMCS name are the same, they are considered to
match.

• The first two blank separated tokens are extracted from the PMCS
name. If the given name is the same as either of these tokens, they
match.

The Performance Metrics Inference Engine (pmie)

113

For some metrics, notably the per process (proc.xxx.xxx) metrics, the first
token in the PMCS instance name is impossible to determine at the time you
are writing expressions. The above policy circumvents this problem.

pmie Error Detection

The parser used in the current implementation of pmie is quite fragile in the
face of syntax errors. It is suggested that you check any problem expression
individually in interactive mode:

pmie -i
f
expression
^D
l

If the expression was parsed, its internal representation is shown:

s

The expression is evaluated once and its value printed:

q

Also beware that it is not always possible to detect semantic errors at parse
time. This happens when a performance metric descriptor is not available
from the named host at this time. A warning is issued, and the expression is
put on a wait list. The wait list is checked periodically (about every five
minutes) to see if the metric descriptor has become available. If an error is
detected at this time, a message is printed to the standard error stream
(stderr), and the offending expression is put aside.

114

Chapter 2: PCP Utilities and Tools

Changing PCP Metric Values With pmstore

From time to time you may wish to change the value of a particular metric.
Some metrics are counters that may need to be reset, and some are simply
control variables for agents that collect performance metrics. When you need
to change the value of a metric for any reason, the command to use is
pmstore(1).

The basic syntax of the command is:

pmstore metricname value

There are also command-line flags to further specify the action. For
example, the -i option restricts the change to one or more instances of the
performance metric.

The value may be in one of several forms, according to the following rules.

1. If the metric has an integer type, then value should be an optional
leading hyphen, followed either by decimal digits or “0x” and some
hexadecimal digits. “0X” is also acceptable in lieu of “0x.”

2. If the metric has a floating point type, then value should be in the form
of an integer (described above) or a fixed point number, or a number in
scientific notation.

3. If the metric has a string type, then value is interpreted as a literal string
of ASCII characters.

4. If the metric has an aggregate type, then an attempt is made to interpret
value as an integer, or as a floating point number, or as a string. In the
first two cases, the minimal word length encoding is used; for example,
‘‘123’’ would be interpreted as a 4-byte aggregate, and ‘‘0x100000000’’
would be interpreted as an 8-byte aggregate.

For complete information on pmstore usage and syntax, see the pmstore
reference page.

115

Chapter 3

3. The Performance Metrics Application
Programming Interface (PMAPI)

This chapter describes the Performance Metrics Application Programming
Interface (PMAPI) provided with the Performance Co-Pilot.

The PMAPI provides performance tool developers with access to all of the
distributed services of the Performance Metrics Collection System (PMCS)
of the PCP, and is the interface used by the PCP utilities. The PMAPI is also
relevant to the application developer who creates customized performance
utilities that require access to instantiated performance metrics and the
metadata describing those metrics.

The most common use of performance monitoring utilities is a scenario
where the PCP tools are executed on a workstation (the monitoring system),
while the interesting performance data is collected on a remote system by a
number of PMCS processes. These processes execute on both the monitoring
workstation and one or more server systems. The server systems are the real
object of performance investigations.

In the development of the PMAPI the most important question has been
“how easily and quickly will this API enable the user to build new
performance tools, or exploit existing tools for newly available performance
metrics?” The PMAPI and the standard tools that used the PMAPI have
enjoyed a symbiotic evolution throughout the development of the
Performance Co-Pilot.

Naming and Identifying Performance Metrics

Across all of the supported performance metric domains, there are a large
number of performance metrics Each metric has its own structure and
semantics. The Performance Co-Pilot presents a uniform interface to these

116

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

metrics above the PMAPI, independent of the source of the underlying
metric data.

The PMCS uses an internal identification scheme that unambiguously
associates a single integer with each known performance metric. This
integer is known as the Performance Metric Identifier, or PMID. Above the
PMAPI, a PMID is defined and manipulated with the typedef pmID.

Above the PMAPI, a Performance Metrics Name Space (PMNS) is used to
provide a hierarchic classification of external metric names, and a one-to-one
mapping of external names to internal PMIDs. A more detailed description
of the PMNS can be found in “Performance Metrics Name Space” on page
10 of this guide.

Applications that use the PMAPI may have independent versions of a
PMNS, constructed from an initialization file when the application starts.
Not all PMIDs need be represented in the PMNS of every application. For
example, an application that monitors disk traffic likely uses a name space
that references only the PMIDs for I/O statistics. Other applications require
a stable PMNS that can be assumed to be the same on all systems. The
distributed implementation includes a default PMNS for just this purpose.

Performance Metric Instances

When performance metric values are returned across the PMAPI to a
requesting application, there may be more than one value instance for a
particular metric; for example, independent counts for each CPU, or each
process, or each disk, or each system call type, and so on. This multiplicity
of values is not enumerated in the name space, but rather when performance
metrics are delivered across the PMAPI.

Each performance metric is associated with an instance domain. Each
instance domain is identified by a unique value, as defined by the following
typedef declaration:

typedef unsigned long pmInDom

The special instance domain PM_INDOM_NULL is reserved to indicate that
the metric has a single value (no instances).

Current PMAPI Context

117

Each individual instance, within an instance domain, is represented by an
internal integer instance identifier. The special instance identifier
PM_IN_NULL is reserved for the single value in the null instance domain.
Performance metric values are delivered across the PMAPI as a set of
instance identifier and value pairs.

Internal instance identifiers correspond one to one with external (textual)
descriptions of the members of an instance domain. The syntax of the
external names is more precisely defined to be an arbitrary sequence of
characters, such that the initial sequence of non-space characters serves to
uniquely name an instance, and the optional characters following the first
space serve as additional descriptive text for the instance.

The difficult issue of transient performance metrics (for example, per-
process information, hot-plug replaceable hardware modules, and so on)
means that repeated requests for the same PMID may return different
numbers of values, or some changes in the particular instance identifiers
returned. This means applications need to be aware that metric instantiation
is guaranteed to be valid at the time of collection only.

Current PMAPI Context

When performance metrics are retrieved across the PMAPI, they are
delivered in the context of a particular source of metrics, a point in time, and
a profile of desired instances. This means that the application making the
request has already negotiated across the PMAPI to establish the context in
which the request should be executed.

A metrics source may be the current (and recent) performance data from a
particular host, or an archive log of performance data collected by pmlogger
at some distant host or earlier time. The metrics source is specified when the
PMAPI contest is created by calling the pmNewContext function.

By default, the collection time for a performance metric is the current time
of day, but may be set to some point in the past to request retrieval of
historical performance metrics values or performance metrics metadata (for
example, descriptions of performance metrics, or explanatory text). The
collection time can be manipulated by calling the pmSetMode function.

118

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

The last component of a PMAPI context is an instance profile that may be
used to control which particular instances of a performance metric should be
retrieved. When a new PMAPI context is created, the initial state expresses
an interest in all possible instances, to be collected at the current time. The
instance profile can be manipulated using the functions pmAddProfile and
pmDelProfile.

Performance Metric Descriptions

For each defined performance metric, there is associated metadata, a
Performance Metric Description (pmDesc structure), that describes the
syntax and semantics of the performance metric. The pmDesc structure
provides all of the information required to describe and manipulate a
performance metric through the PMAPI. It has the following declaration:

/* Performance Metric Descriptor */
typedef struct {

pmID pmid; /* unique identifier */
int type; /* base data type (see below) */
pmInDom indom; /* instance domain */
int sem; /* semantics of value (see below) */
pmUnits units; /* dimension and units (see below) */

} pmDesc;

/* pmDesc.type - data type of metric values */
#define PM_TYPE_NOSUPPORT -1 /* not in this version */
#define PM_TYPE_32 0 /* 32-bit signed integer */
#define PM_TYPE_U32 1 /* 32-bit unsigned integer */
#define PM_TYPE_64 2 /* 64-bit signed integer */
#define PM_TYPE_U64 3 /* 64-bit unsigned integer */
#define PM_TYPE_FLOAT 4 /* 32-bit floating point */
#define PM_TYPE_DOUBLE 5 /* 64-bit floating point */
#define PM_TYPE_STRING 6 /* array of char */
#define PM_TYPE_AGGREGATE 7 /* arbitrary binary data */

/* pmDesc.sem - semantics of metric values */
#define PM_SEM_COUNTER 1 /* cumulative counter
 (monotonic increasing) */
#define PM_SEM_INSTANT 3 /* instant. value
 continuous domain */
#define PM_SEM_DISCRETE 4 /* instant. value
 discrete domain */

Performance Metric Descriptions

119

The type field in the pmDesc structure accommodates various encodings of a
metric’s value. If the value of a performance metric is of type
PM_TYPE_AGGREGATE (or indeed PM_TYPE_STRING), the interpretation
of the value is unknown to the PMCS. In these cases, the application using
the value and the Performance Metrics Domain Agent (PMDA) providing
the value must have some common understanding about how the value is
structured and interpreted.

Each value for a performance metric is assumed to be drawn from a set of
values that can be described in terms of their dimensionality and scale by a
compact encoding, as follows:

1. The dimensionality is defined by a power, or index, in each of three
orthogonal dimensions: Space, Time, and Count (dimensionless). For
example, I/O throughput is Space.Time-1, while the running total of
system calls is Count, memory allocation is Space, and average service
time is Time.Count-1.

2. In each dimension we have defined a number of common scale values
that may be used to better encode ranges that might otherwise exhaust
the precision of a 32-bit value.

This information is encoded in the pmUnits data structure, which is
embedded in the pmDesc structure.

/*
 * Encoding for the units (dimensions and
 * scale) for Performance Metric Values
 *
 * For example, a pmUnits struct of
 * { 1, -1, 0, PM_SPACE_MBYTE, PM_TIME_SEC, 0 }
 * represents Mbytes/sec, while
 * { 0, 1, -1, 0, PM_TIME_HOUR, 6 }
 * represents hours/million-events
 */
typedef struct {

int dimSpace:4; /* space dimension */
int dimTime:4; /* time dimension */
int dimCount:4; /* event dimension */
int scaleSpace:4; /* one of PM_SPACE_* below */
int scaleTime:4; /* one of PM_TIME_* below */
int scaleCount:4; /* one of PM_COUNT_* below */

} pmUnits; /* dimensional units and scale of value */
/* pmUnits.scaleSpace */

120

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

#define PM_SPACE_BYTE 0 /* bytes */
#define PM_SPACE_KBYTE 1 /* Kilobytes (1024) */
#define PM_SPACE_MBYTE 2 /* Megabytes (1024^2) */
#define PM_SPACE_GBYTE 3 /* Gigiabytes (1024^3) */
#define PM_SPACE_TBYTE 4 /* Terabytes (1024^4) */

/* pmUnits.scaleTime */
#define PM_TIME_NSEC 0 /* nanoseconds */
#define PM_TIME_USEC 1 /* microseconds */
#define PM_TIME_MSEC 2 /* milliseconds */
#define PM_TIME_SEC 3 /* seconds */
#define PM_TIME_MIN 4 /* minutes */
#define PM_TIME_HOUR 5 /* hours */

/*
 * pmUnits.scaleCount (e.g. count events, syscalls,
 * interrupts, etc.) -- these are simply powers of 10,
 * and not enumerated here.
 * e.g. 6 for 10^6, or -3 for 10^-3
 */
#define PM_COUNT_ONE 0 /* 1 */

Performance Metrics Values

An application may fetch (or store) values for a set of performance metrics,
each with a set of associated instances, using a single pmFetch (or pmStore)
function call. To accommodate this, values are delivered across the PMAPI
in the form of a tree, rooted at a pmResult structure. This encoding is
illustrated in Figure 3-1, and uses the following component data structures:

typedef struct {
int len; /* length in bytes */
char vbuf[1]; /* one or more values */

} pmValueBlock;

typedef struct {
int inst; /* instance identifier */
union {

pmValueBlock *pval; /* pointer to value-block */
long lval; /* long value insitu */

} value;
} pmValue;

typedef struct {

Performance Metrics Values

121

pmID pmid; /* metric identifier */
int numval; /* number of values */
int valfmt; /* value style, insitu or ptr */
pmValue vlist[1]; /* set of instances/values */

} pmValueSet;

/* Result returned by pmFetch() */
typedef struct {

struct timeval timestamp;/* stamped by collector */
int numpmid; /* number of PMIDs */
pmValueSet *vset[1]; /* set of value sets */

} pmResult

122

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

Figure 3-1 A Structured Result for Performance Metrics From pmFetch

The pmResult structure contains a dynamically allocated array of numpmid
pointers to pmValueSets, one pmValueSet per PMID. The pmValueSet structure
in turn contains a dynamically allocated array of numval pmValues. Each
pmValue is an instance identifier and value pair.

The field valfmt in the pmValueSet structure indicates if the values for this
metric are stored in the lval field or held in associated pmValueBlock
structures. The pmValueBlock structure can accommodate arbitrary-sized
binary data, and is suited for “string-valued” metrics and metrics with
aggregated or complex data types.

Along with the metric values, the PMAPI returns a timestamp with each
aggregation of values that serves to identify when the performance metric
values were collected. It typically is not be long before the metrics are

numval

pmValueBlock

pmValueSet

timestamp

pmResult

numpmid

pmValueSet[]

pmid

valfmt

pmValue[]

numval

inst

pmValueSet

pmid

valfmt

pmValue[]

inst

inst

inst

inst value

value

value

value

General Issues of PMAPI Programming Style and Interaction

123

exported across the PMAPI. There is a question of exactly “when” individual
metrics may have been collected, especially given their origin in potentially
different Performance Metric Domains, and variability in the metric
updating frequency at the lowest level of the Performance Metric Domain.
The pragmatic approach is used with the PCP, in which the PMAPI
implementation returns all of the metrics with values that are accurate as of
the timestamp, as much as possible. The inaccuracy this introduces is small,
and the additional burden of accurate individual timestamping for each
returned metric value is neither warranted nor practical (from an
implementation viewpoint).

The PMAPI provides functions to extract, rescale, and print values from the
above structures.

General Issues of PMAPI Programming Style and Interaction

The following sections specify the programming style used in the PMAPI.

Variable Length Argument and Results Lists

All arguments and results involving a “list of something” are encoded as an
array with an associated argument or function value to identify the number
of elements in the array. This encoding scheme avoids both the varargs
approach and sentinel-terminated lists.

Where the size of a result is known at the time of a call, it is the caller’s
responsibility to allocate (and possibly free) the storage, and the called
function assumes the result argument is of an appropriate size.

Where a result is of variable size and that size cannot be known in advance
(for example, pmGetChildren, pmGetInDom, pmNameInDom, pmNameID,
pmLookupText and pmFetch), the underlying implementation uses dynamic
allocation through malloc in the called routine, with the caller responsible for
subsequently calling free to release the storage when no longer required. In
the case of the result from pmFetch, there is a routine (pmFreeResult) to release
the storage, due to the complexity of the data structure and the need to make
multiple calls to free in the correct sequence. As a general rule, if the called
routine returns an error status, then no allocation is done, the pointer to the

124

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

variable sized result is undefined, and free or pmFreeResult should not be
called.

PMAPI Error Handling

Where error conditions may arise, the functions that compose the PMAPI
conform to a single, simple-error notification scheme, as follows:

• The function returns an int.

• Values greater than or equal to zero indicate no error, and perhaps some
positive status: for example, the number of things really processed.

• Values less than zero indicate an error, with a global table of error
conditions and error messages.

PMAPI library routines along the lines of perror are provided to translate
error conditions into error messages.

The error condition is returned as the function value; there is no global error
indicator (unlike errno). This is in attempt to anticipate and accommodate a
programming environment that does not hamper the implementation of
multi-threaded performance tools.

PMAPI Procedural Interface

PMAPI Name Space Services

pmLoadNameSpace

int pmLoadNameSpace(char *filename)

Before requesting any services involving a Performance Metrics Name Space
(PMNS), the application must load the PMNS using pmLoadNameSpace.

The filename argument designates the PMNS of interest. For applications
that do not require a tailored name space, the special value
PM_NS_DEFAULT may be used for filename, to force a default PMNS to be
established.

PMAPI Procedural Interface

125

Externally a PMNS may be stored in either an ASCII format or a binary
format. The utility pmnscomp is used to create the binary format from the
ASCII format.

pmLookupName

int pmLookupName(int numpmid, char *namelist[], pmID
pmidlist[])

Given a list in namelist containing numpmid full pathnames for performance
metrics from a Performance Metrics Name Space (PMNS), pmLookupName
returns the list of associated PMIDs through the pmidlist facility.

The result from pmLookupName is the number of names translated in the
absence of errors, or an error indication. Note that argument definition and
the error protocol guarantee a one to one relationship between the elements
of namelist and pmidlist, such as if both lists contain exactly numpmid
elements.

pmGetChildren

int pmGetChildren(char *name, char ***offspring)

Given a full pathname to a node in the current Performance Metrics Name
Space, as identified by name, return through offspring a list of the relative
names of all of the immediate descendents of name in the current PMNS. As
a special case, if name is an empty string, the immediate descendents of the
root node in the PMNS is returned.

Normally, pmGetChildren returns the number of descendent names
discovered, or a value less than zero for an error. The value zero indicates
that the name is valid, and associated with a leaf node in the PMNS.

The resulting list of pointers (offspring) and the values (relative metric
names) that the pointers reference are allocated by pmGetChildren with a
single call to malloc, and it is the responsibility of the caller to issue a
free(offspring) system call to release the space when it is no longer required.
When the result of pmGetChildren is less than one, offspring is undefined (no
space is allocated, and so calling free is counterproductive).

126

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

pmNameID

int pmNameID(pmID pmid, char **name)

Given a Performance Metric ID through pmid, pmNameID determines the
corresponding metric name, if any, in the Performance Metrics Name Space,
and return this through name.

In the absence of errors, pmNameID returns zero. The name argument is a
null-byte terminated string, allocated by pmNameID using malloc. It is the
caller’s responsibility to free the string when it is no longer required.

pmTrimNameSpace

int pmTrimNameSpace(void)

If the current PMAPI context corresponds to an archive log of performance
metrics (as collected by pmlogger), then the currently loaded Performance
Metrics Name Space is trimmed to exclude metrics for which no description
can be found in the archive. The PMNS is further trimmed to remove empty
subtrees that do not contain any performance metric.

Since the PCP archives usually contain some subset of all metrics named in
the default PMNS, pmTrimNameSpace effectively trims the application’s
PMNS to contain only the names of the metrics in the archive.

Prior to any trimming, the PMNS is restored to the state as of the completion
of the last pmLoadNameSpace operation, so the effects of consecutive calls to
pmTrimNameSpace with archive contexts are not cumulative.

If the current PMAPI context corresponds to a host, rather than an archive,
the PMNS reverts to all names loaded into the PMNS at the completion of
the last pmLoadNameSpace operation. For example, any trimming is undone.

pmTraversePMNS

int pmTraversePMNS(char *name, void (*dometric)(char *))

The routine pmTraversePMNS may be used to perform a depth-first traversal
of the PMNS.

PMAPI Procedural Interface

127

The traversal starts at the node identified by name - if name is a null string,
the traversal starts at the root of the PMNS. Usually name would be the
pathname of a non-leaf node in the PMNS.

For each leaf node (an actual performance metric) found in the traversal, the
user-supplied routine dometric is called with the full pathname of that metric
in the PMNS as the single argument. This argument is null-byte terminated,
and is constructed from a buffer that is managed internally to
pmTraversePMNS. Consequently the value is only valid during the call to
dometric - if the pathname needs to be retained, it should be copied using
strdup(3C) before returning from dometric.

PMAPI Instance Domain Services

pmLookupInDom

int pmLookupInDom(pmInDom indom, char *name)

For the instance domain indom, in the current PMAPI context, locate the
instance with the external identification given by name, and return the
internal instance identifier.

Only the leading non-space characters of name are used to identify the
instance.

pmNameInDom

int pmNameInDom(pmInDom indom, int inst, char **name)

For the instance domain indom, in the current PMAPI context, locate the
instance with the internal instance identifier given by inst, and return the full
external identification through name.

The space for the value of name is allocated in pmNameInDom with malloc,
and it is the responsibility of the caller to free the space when it is no longer
required.

pmGetInDom

int pmGetInDom(pmInDom indom, int **instlist, char
***namelist)

128

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

In the current PMAPI context, locate the description of the instance domain
indom, and return through instlist the internal instance identifiers for all
instances, and through namelist the full external identifiers for all instances.
The number of instances found is returned as the function value (or less than
zero to indicate an error).

The resulting lists of instance identifiers (instlist and namelist), and the names
that the elements of namelist point to, are allocated by pmGetInDom with two
calls to malloc, and it is the responsibility of the caller to free(instlist) and
free(namelist) to release the space when it is no longer required. When the
result of pmGetInDom is less than one, both instlist and namelist are undefined
(no space is allocated, and so calling free is a singularly bad idea).

PMAPI Description Services

pmLookupDesc

int pmLookupDesc(pmID pmid, pmDesc *desc)

Given a Performance Metrics Identifier (PMID) as pmid, return the
associated pmDesc, structure through the parameter desc, from the current
PMAPI context. See “Performance Metric Descriptions” on page 118.

pmLookupText

int pmLookupText(pmID pmid, int level, char **buffer)

Provided the source of metrics from the current PMAPI context is a host,
retrieve descriptive text about the performance metric identified by pmid.

The argument level should be PM_TEXT_ONELINE for a one-line summary,
or PM_TEXT_HELP for a more verbose description, suited to a help dialog.

The space pointed to by buffer is allocated in pmLookupText with malloc, and
it is the responsibility of the caller to free the space when it is no longer
required.

PMAPI Procedural Interface

129

pmLookupInDomText

int pmLookupInDomText(pmInDom indom, int level, char
**buffer)

Provided the source of metrics from the current PMAPI context is a host,
retrieve descriptive text about the performance metrics instance domain
identified by indom.

The argument level should be PM_TEXT_ONELINE for a one-line summary,
or PM_TEXT_HELP for a more verbose description, suited to a help dialog.

The space pointed to by buffer is allocated in pmLookupInDomText with
malloc, and it is the responsibility of the caller to free the space when it is no
longer required.

PMAPI Context Services

The following table shows which of the three components of a PMAPI
context (metrics source, instance profile and collection time) are relevant for
the correct execution of PMAPI functions. Those PMAPI functions not
shown in this table either manipulate the PMAPI context directly, or are
executed independently of the current PMAPI context.

Table 3-1 Context Components of PMAPI Functions

Function Name Metrics Source Instance Profile Collection Time Notes

pmAddProfile yes

pmDelProfile yes

pmDupContext yes yes yes

pmFetch yes yes yes

pmFetchArchive yes yes (5)

pmGetArchiveEnd yes (5)

pmGetArchiveLabel yes (5)

pmGetInDom yes yes (1)

130

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

Notes:

1. A specific instance domain is included in the arguments to these
routines, and the result is independent of the instance profile for any
PMAPI context.

2. The metadata that describes a performance metric is sensitive to the
source of the metrics, but independent of any instance profile, and
independent of the collection time.

3. The text associated with a metric is assumed to be invariant with time
and is definitely insensitive to the current members of the instance
domain. In all cases this information is unavailable from an archive
context (it is not included in the archive logs), and is directly available
from the PMCD in the other cases.

4. This operation is supported only for PMAPI contexts where the source
of the metrics is a host.

5. This operation is supported only for PMAPI contexts where the source
of the metrics is an archive.

pmGetInDomArchive yes (5)

pmLookupDesc yes (2)

pmLookupInDom yes yes (1)

pmLookupInDomArchive yes (5)

pmLookupInDomText yes (4)

pmLookupText yes (3)

pmNameInDom yes yes (1)

pmNameInDomArchive yes (5)

pmSetMode yes

pmStore yes (6)

pmTrimNameSpace yes

Table 3-1 Context Components of PMAPI Functions

Function Name Metrics Source Instance Profile Collection Time Notes

PMAPI Procedural Interface

131

6. This operation is only supported for contexts where the source of the
metrics is a host. Further, the instance identifiers are included in the
argument to the routine, and the effects are immediate upon the current
values of the metrics (retrospective changes are not allowed).
Consequently, from the current PMAPI context, neither the instance
profile nor the collection time influence the result of this routine.

pmNewContext

int pmNewContext(int type, char *name)

The pmNewContext function may be used to establish a new PMAPI context.
The source of the metrics is identified by name, and may be either a host
(where type is PM_CONTEXT_HOST) or an archive file (where type is
PM_CONTEXT_ARCHIVE). The initial instance profile is set up to select all
instances in all instance domains, and the initial collection time is the
“current” time at the time of each request for a host, or the time at the start
of the log for an archive. In the case of an archive, the initial collection time
results in the earliest set of metrics being returned from the archive at the
first pmFetch.

Once established, the association between a PMAPI context and source of
metrics is fixed for the life of the context; however, routines are provided to
independently manipulate both the instance profile and the collection time
components of a context.

The function returns a “handle” that may be used with subsequent calls to
pmUseContext.

This new PMAPI context stays in effect for all subsequent calls across the
PMAPI, until another call to pmNewContext is made, or the context is
explicitly changed with a call to pmDupContext or pmUseContext.

pmDestroyContext

int pmDestroyContext(int handle)

The PMAPI context identified by handle is destroyed. Typically this would
imply terminating a connection to a PMCD or closing an archive file, and
orderly clean-up.

132

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

The PMAPI context must have been previously created using pmNewContext
or pmDupContext.

On success, pmDestroyContext returns zero. If handle was the current PMAPI
context, then the current context becomes undefined. This means the
application must explicitly re-establish a valid PMAPI context with
pmUseContext, or create a new context with pmNewContext or pmDupContext,
before the next PMAPI operation that requires a PMAPI context.

pmDupContext

int pmDupContext(void)

Replicate the current PMAPI context (source, instance profile and collection
time). This routine returns a “handle” for the new context, that may be used
with subsequent calls to pmUseContext.

The newly replicated PMAPI context becomes the current context.

pmUseContext

int pmUseContext(int handle)

Calling pmUseContext causes the current PMAPI context to be set to the
context identified by handle. The value of handle must be one returned from
an earlier call to pmNewContext or pmDupContext.

Below the PMAPI, all contexts used by an application are saved in their most
recently modified state, so pmUseContext restores the context to the state it
was in the last time the context was used, not the state of the context when it
was established.

pmWhichContext

int pmWhichContext(void)

Returns the “handle” for the current PMAPI context (source, instance
profile, and collection time).

pmAddProfile

int pmAddProfile(pmInDom indom, int numinst, int instlist[])

PMAPI Procedural Interface

133

Add new instance specifications to the instance profile of the current PMAPI
context. In the simplest variant, the list of instances identified by the instlist
argument for the indom instance domain are added to the instance profile.
The list of instance identifiers contains numinst values. If indom equals
PM_INDOM_NULL, or numinst is zero, then all instance domains are
selected. If instlist is (int *) 0, then all instances are selected.

To enable all available instances in all domains, use the syntax

pmAddProfile(PM_INDOM_NULL, 0, (int *)0).

pmDelProfile

int pmDelProfile(pmInDom indom, int numinst, int instlist[])

Delete instance specifications from the instance profile of the current PMAPI
context. In the simplest variant, the list of instances identified by the instlist
argument for the indom instance domain is removed from the instance
profile. The list of instance identifiers contains numinst values.

If indom equals PM_INDOM_NULL, then all instance domains are selected
for deletion. If instlist is (int *) 0, then all instances in the selected domains
are removed from the profile.

To disable all available instances in all domains, use the syntax:

pmDelProfile(PM_INDOM_NULL, 0, (int *)0)

pmSetMode

int pmSetMode(int mode, struct timeval *when, int delta)

This routine is used to define the collection time and mode for accessing
performance metrics and meta-data in the current PMAPI context. This
mode affects the semantics of subsequent calls to the following PMAPI
routines; pmFetch, pmFetchArchive, pmLookupDesc, pmGetInDom,
pmLookupInDom and pmNameInDom.

If mode is PM_MODE_LIVE, then all information is returned from the active
pool of performance metrics as of the time that the PMAPI call is made, and
the other two parameters to pmSetMode are ignored. PM_MODE_LIVE is the
default mode when a new PMAPI context of type PM_CONTEXT_HOST is
created.

134

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

If the mode is not PM_MODE_LIVE, then the when parameter defines a time
origin, and all requests for meta-data (metrics descriptions and instance
identifiers from the instance domains) are processed to reflect the state of the
meta-data as of the time origin. For example, we use the last state of this
information at, or before, the time origin.

If the mode is PM_MODE_INTERP then, in the case of pmFetch, the
underlying code uses an interpolation scheme to compute the values of the
metrics from the values recorded for times in the proximity of the time
origin. A mode of PM_MODE_INTERP may be used with either an archive
context, or a host context (in which case the subsequent PMAPI functions are
serviced from the log, for example for VCR-replay).

If the mode is PM_MODE_FORW, then, in the case of pmFetch, the collection
of recorded metric values are scanned forward, until values for at least one
of the requested metrics is located after the time origin. Then all requested
metrics stored in the log or archive at that time are returned with the
corresponding timestamp. A mode of PM_MODE_FORW may be used with
either an archive context, or a host context (in which case the subsequent
PMAPI functions are serviced from the log, for example for VCR-replay).

If the mode is PM_MODE_BACK, then the situation is the same as for
PM_MODE_FORW, except a pmFetch are serviced by scanning the collection
of recorded metrics backward for metrics before the time origin.

For modes other than PM_MODE_LIVE, after each successful pmFetch, the
time origin is reset to the timestamp returned through the pmResult. The
pmSetMode parameter delta defines an additional number of milliseconds
that should be used to adjust the time origin (forward or backward), after the
new time origin from the pmResult has been determined.

Using these mode options, an application can implement replay, playback,
fast forward, or reverse for performance metric values held in the PMCS log
by alternating calls to pmSetMode and pmFetch.

For example, the following code fragment may be used to dump only those
values recorded in an archive in correct temporal sequence, for a selected set
of performance metrics:

pmNewContext(PM_CONTEXT_ARCHIVE, "myarchive");
while (pmFetchArchive(npmid, pmidlist, &result) !=
PM_ERR_EOL) {

PMAPI Procedural Interface

135

/*
* process real metric values as of result->timestamp
*/
pmFreeResult(result);

}

Alternatively, to replay interpolated metrics from the log in reverse
chronological order, at 10-second intervals (of recorded time), the following
code fragment could be used:

struct timeval mytime;

mytime.tv_sec = 0x7fffffff;
pmSetMode(PM_MODE_BACK, &mytime, 0);
pmFetchArchive(&result);
mytime = result->timestamp;
pmSetMode(PM_MODE_INTERP, &mytime, -10000);

while (pmFetch(npmid, pmidlist, &result) != PM_ERR_EOL) {
/*
 * process interpolated metric values as of
 * result->timestamp
 */
pmFreeResult(result);

}

pmReconnectContext

int pmReconnectContext(int handle)

As a consequence of network, host, or Performance Metrics Coordination
Daemon (PMCD) failures, an application’s connection to a PMCD may be
established and then lost.

The routine pmReconnectContext allows an application to request that the
PMAPI context identified by handle should be re-established, provided the
associated PMCD is accessible.

To avoid flooding the system with reconnect requests, pmReconnectContext
attempts a reconnection only after a suitable delay from the previous
attempt. This imposed restriction on the reconnect re-try time interval uses
an exponential back-off so that the initial delay is 5 seconds after the first
unsuccessful attempt, then 10 seconds, then 20 seconds, then 40 seconds, and
then 80 seconds thereafter.

136

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

If the reconnection succeeds, pmReconnectContext returns handle. Note that
even in the case of a successful reconnection, pmReconnectContext does not
change the current PMAPI context.

PMAPI Metrics Services

pmFetch

int pmFetch(int numpmid, pmID pmidlist[], pmResult **result)

The most common operation is likely to be calls to pmFetch, specifying a list
of PMIDs (for example, as constructed by pmLookupName) through pmidlist
and numpmid. The call to pmFetch is executed in the context of a source of
metrics, instance profile, and collection time, previously established by calls
to the routines described in “PMAPI Context Services” on page 129.

The principal result from pmFetch is returned as a tree structured result,
described in the section “Performance Metrics Values” on page 120.

If one value (for example, associated with a particular instance) for a
requested metric is unavailable at the requested time, then there is no
associated pmValue structure in the result. If there are no available values for
a metric, then numval is zero and the associated pmValue[] instance is empty.
(valfmt is undefined in these circumstances, but pmid is correctly set to the
PMID of the metric with no values.)

As an extension of this protocol, if the PMCS is able to provide a reason why
no values are available for a particular metric, this is encoded as a standard
error code in the corresponding numval. Since the error codes are all
negative, values for a requested metric are unavailable if numval is less than
or equal to zero.

The argument definition and the result specifications have been constructed
to ensure that for each PMID in the requested pmidlist there is exactly one
pmValueSet in the result, and that the PMIDs appear in exactly the same
sequence in both pmidlist and result. This makes the number and order of
entries in result completely deterministic, and greatly simplifies the
application programming logic after the call to pmFetch.

PMAPI Procedural Interface

137

The result structure returned by pmFetch is dynamically allocated using one
or more calls to malloc and specialized allocation strategies, and should be
released when no longer required by calling pmFreeResult. Under no
circumstances should free be called directly to release this space.

As common error conditions are encoded in the result data structure, we’d
expect only cataclysmic events to cause an error value to be returned.
Otherwise the value returned by the pmFetch function is zero.

pmFreeResult

void pmFreeResult(pmResult *result)

Release the storage previously allocated for a result by pmFetch.

pmStore

int pmStore(pmResult *request)

In some special cases it may be helpful to modify the current values of
performance metrics in one or more underlying Performance Metric
Domains, for example to reset a counter to zero, or to modify a “metric,”
which is a control variable within a Performance Metric Domain.

The routine pmStore is a lightweight inverse of pmFetch. The caller must build
the pmResult data structure (which could have been returned from an earlier
pmFetch call) and then call pmStore.

It is an error to pass a request to pmStore in which the numval field within any
of the pmValueSet structure has a value less than one.

The current PMAPI context must be one with a host as the source of metrics,
and the current value of the nominated metrics is changed. For example,
pmStore cannot be used to make retrospective changes to information in
either the PMCS logs or an archive.

PMAPI Archive Services

pmGetArchiveLabel

int pmGetArchiveLabel(int handle, pmLogLabel *lp)

138

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

The routine pmGetArchiveLabel may be used to fetch the label record from an
archive log that has already been opened using pmNewContext or
pmDupContext, and thereby associated with the current PMAPI context.

The structure returned through lp is as follows:

/*
 * Label Record at the start of every log file
 */
typedef struct {

int ll_magic; /* PM_LOG_MAGIC or
 log format version no.*/
pid_t ll_pid; /* PID of logger ^/
struct timeval ll_start; /* start of this log */
int ll_seq; /* log sequence no. */
char ll_hostname[MAXHOSTNAMELEN];
 /* name of collection host */
char ll_tz[40]; /* $TZ at collection host */

} pmLogLabel;

pmGetArchiveEnd

int pmGetArchiveEnd(struct timeval *tvp)

Assuming the current PMAPI context is associated with an archive log,
pmGetArchiveEnd attempts to find the logical end of file (after the last
complete record in the archive), and return the last recorded timestamp with
tvp. This timestamp may be passed to pmSetMode to reliably position the
context at the last valid log record, for example in preparation for
subsequent reading in reverse chronological order.

For archive logs that are not concurrently being written, the physical end of
file and the logical end of file are co-incident. However if an archive log is
being written by pmlogger at the same time an application is trying to read
the archive, the logical end of file may be before the physical end of file due
to write buffering that is not aligned with the logical record boundaries.

pmGetInDomArchive

int pmGetInDomArchive(pmInDom indom, int **instlist, char
***namelist)

PMAPI Procedural Interface

139

Provided the current PMAPI context is associated with an archive log,
pmGetInDomArchive scans the union of all the instance domain metadata for
the instance domain indom, and returns through instlist the internal instance
identifiers for all instances, and through namelist the full external identifiers
for all instances.

This routine is a specialized version of the more general PMAPI routine
pmGetInDom.

The number of instances found is returned as the function value (or less than
zero to indicate an error).

The resulting lists of instance identifiers (instlist and namelist), and the names
that the elements of namelist point to, are allocated by pmGetInDomArchive
with two calls to malloc, and it is the responsibility of the caller to free(instlist)
and free(namelist) to release the space when it is no longer required.

When the result of pmGetInDomArchive is less than one, both instlist and
namelist are undefined (no space is allocated, so calling free is a singularly
bad idea).

pmLookupInDomArchive

int pmLookupInDomArchive(pmInDom indom, char *name)

Provided the current PMAPI context is associated with an archive log,
pmLookupInDomArchive scans the union of all the instance domain metadata
for the instance domain indom, locates the first instance with the external
identification given by name, and returns the internal instance identifier.

This routine is a specialized version of the more general PMAPI routine
pmLookupInDom.

Only the leading non-space characters of name are used to identify the
instance.

The pmLookupInDomArchive routine returns a positive instance identifier on
success.

pmNameInDomArchive

int pmNameInDomArchive(pmInDom indom, int inst, char **name)

140

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

Provided the current PMAPI context is associated with an archive log,
pmNameInDomArchive scans the union of all the instance domain metadata
for the instance domain indom, locates the first instance with the internal
instance identifier given by inst, and returns the full external instance
identification through name.

This routine is a specialized version of the more general PMAPI routine
pmNameInDom.

The space for the value of name is allocated in pmNameInDomArchive with
malloc, and it is the responsibility of the caller to free the space when it is no
longer required.

pmFetchArchive

int pmFetchArchive(pmResult **result)

This is a variant of pmFetch that may be used only when the current PMAPI
context is associated with an archive. The result is instantiated with all of the
metrics (and instances) from the next archive record; consequently there is
no notion of a list of desired metrics, and the instance profile is ignored.

It is expected that pmFetchArchive would be used to create utilities that scan
archive logs, and the more common access to the archives would be through
the pmFetch interface.

PMAPI Ancillary Support Services

The routines described in this section provide services that are
complementary to, but not necessarily a part of, the distributed
manipulation of performance metrics delivered by the PMCS.

pmErrStr

char *pmErrStr(int code)

This routine translates an error code into a text string, suitable for generating
a diagnostic message. By convention, all error codes are negative. The small
values are assumed to be negated versions of the UNIX error codes as
defined in <errno.h>, and the strings returned are as per strerror(3C). The

PMAPI Ancillary Support Services

141

large, negative error codes are PMAPI error conditions, and pmErrStr
returns an appropriate PMAPI error string, as determined by code.

The string value is held in a single static buffer, so the returned value is only
valid until the next call to pmErrStr.

pmExtractValue

int pmExtractValue(int valfmt, pmValue *ival, int itype,
pmAtomValue *oval, int otype)

The pmValue structure is embedded within the pmResult structure, which is
used to return one or more performance metrics; see the description of
pmFetch.

All performance metric values may be encoded in a pmAtomValue union,
defined as follows;

/* Generic Union for Value-Type conversions */
typedef union {

_int32_t l; /* 32-bit signed */
_uint32_t ul; /* 32-bit unsigned */
_int64_t ll; /* 64-bit signed */
_uint64_t ull; /* 64-bit unsigned */
float f; /* 32-bit floating point */
double d; /* 64-bit floating point */
char *cp; /* char ptr */
void *vp; /* void ptr */

} pmAtomValue;

The routine pmExtractValue provides a convenient mechanism for extracting
values from the pmValue part of a pmResult structure, optionally converting
the data type, and making the result available to the application
programmer.

The itype argument defines the data type of the input value held in ival
according to the storage format defined by valfmt (see pmFetch). The otype
argument defines the data type of the result to be placed in oval. The value
for itype is typically extracted from a pmDesc structure, following a call to
pmLookupDesc for a particular performance metric.

142

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

Table 3-2 defines the various possibilities for the type conversion. The input
type (itype) is shown vertically, and the output type (otype) is shown
horizontally. The following rules apply:

• Y means the conversion is always acceptable.

• N means the conversion can never be performed (the function returns
PM_ERR_CONV).

• P means the conversion may lose accuracy (but no error status is
returned).

• T means the result may be subject to high-order truncation (in which
case the function returns PM_ERR_TRUNC).

• S means the conversion may be impossible due to the sign of the input
value (in which case the function returns PM_ERR_SIGN).

If an error occurs, oval is set to zero (or NULL). Note that some of the
conversions involving the types PM_TYPE_STRING and
PM_TYPE_AGGREGATE are indeed possible, but are marked N; the
rationale is that pmExtractValue should not attempt to duplicate functionality
already available in the C library through sscanf and sprintf.

In the cases where multiple conversion errors could occur, the first
encountered error is returned, and the order of checking is not defined.

Table 3-2 PMAPI Type Conversion

TYPE 32 U32 64 U64 FLOAT DBLE STRING AGGR

32 Y S Y S P P N N

U32 T Y Y Y P P N N

64 T T,S Y S P P N N

u64 T T T Y P P N N

FLOAT P,T P,T,S P,T P,T,S Y Y N N

DBLE P,T P,T,S P,T P,T,S P Y N N

STRING N N N N N N Y N

AGGR N N N N N N N Y

PMAPI Ancillary Support Services

143

If the output conversion is to one of the pointer types, such as otype
PM_TYPE_STRING or PM_TYPE_AGGREGATE, then the value buffer is
allocated by pmExtractValue using malloc, and it is the caller’s responsibility
to free the space when it is no longer required.

Although this function appears rather complex, it has been constructed to
assist the development of performance tools that convert values, whose type
is only known through the type field in a pmDesc structure, into a canonical
type for local processing.

pmConvScale

int pmConvScale(int type, pmAtomValue *ival, pmUnits *iunit,
pmAtomValue *oval, pmUnits *ounit)

Given a performance metric value pointed to by ival, multiply it by a scale
factor and return the value in oval. The scaling takes place from the units
defined by iunit into the units defined by ounit. Both input and output units
must have the same dimensionality.

The performance metric type for both input and output values is determined
by type, the value for which is typically extracted from a pmDesc structure,
following a call to pmLookupDesc for a particular performance metric.

pmConvScale is most useful when values returned through pmFetch (and
possibly extracted using pmExtractValue) need to be normalized into some
canonical scale and units for the purposes of computation.

pmUnitsStr

char *pmUnitsStr(pmUnits *pu)

As an aid to labeling graphs and tables, or for error messages, pmUnitsStr
takes a dimension and scale specification as per pu, and returns the
corresponding text string.

For example, if *pu was {1, -2, 0, PM_SPACE_MBYTE, PM_TIME_MSEC, 0},
then the result string would be “Mbyte/sec^2”.

The string value is held in a single static buffer, so concurrent calls to
pmUnitsStr may not produce the desired results.

144

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

pmIDStr

char *pmIDStr(pmID pmid)

For use in error and diagnostic messages, return a “human readable” version
of the specified PMID, with each of the domain, cluster, and item subfields
appearing as decimal numbers, separated by periods.

The string value is held in a single static buffer, so concurrent calls to
pmIDStr may not produce the desired results.

pmInDomStr

char *pmInDomStr(pmInDom indom)

For use in error and diagnostic messages, return a “human readable” version
of the specified instance domain identifier, with each of the domain and serial
subfields appearing as decimal numbers, separated by periods.

The string value is held in a single static buffer, so concurrent calls to
pmInDomStr may not produce the desired results.

pmTypeStr

char *pmTypeStr(int type)

Given a performance metric type, produce a terse ASCII equivalent,
appropriate for use in error and diagnostic messages.

Examples are “32” (for PM_TYPE_32), “U64” (for PM_TYPE_U64),
“AGGREGATE” (for PM_TYPE_AGGREGATE), and so on.

The string value is held in a single static buffer, so concurrent calls to
pmTypeStr may not produce the desired results.

pmAtomStr

char *pmAtomStr(pmAtomValue *avp, int type)

Given the pmAtomValue identified by avp, and a performance metric type,
generate the corresponding metric value as a string, suitable for diagnostic
or report output.

PMAPI Programming Issues and an Example

145

The string value is held in a single static buffer, so concurrent calls to
pmAtomStr may not produce the desired results.

pmPrintValue

void pmPrintValue(FILE *f, int valfmt, int type, pmValue
*val, int minwidth)

The value of a single performance metric (as identified by val) is printed on
the standard I/O stream identified by f. The value of the performance metric
is interpreted according to the format of val as defined by valfmt (from a
pmValueSet within a pmResult) and the generic description of the metric’s
type from a pmDesc structure, passed in through type.

The output may be padded to be at least minwidth characters wide.

pmSortInstances

void pmSortInstances(pmResult *result)

The routine pmSortInstances may be used to guarantee that for each
performance metric in the result from pmFetch, the instances are in ascending
instance identifier sequence.

This is most useful when trying to compute rates from two consecutive
pmFetch results.

PMAPI Programming Issues and an Example

The following issues and examples are provided to enable you to create
better custom performance monitoring tools.

The source code for a sample client (pmclient) using the PMAPI, is shipped
as part of the pcp_client.sw.demo subsystem of the Performance Co-Pilot
product. See the pmclient(1) reference page, and the source code, located in
the directory /usr/demos/PerfCoPilot/pmclient.

146

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

Symbolic Association Between a Metric’s Name and Value

A common problem in building specific performance tools is how to
maintain the association between a performance metric’s name, its access
(instantiation) method, and the application program variable that contains
the metric’s value. Generally this results in code that is easily broken by bug
fixes or changes in the underlying data structures. The PMAPI provides a
uniform way of instantiating and accessing the values independent of the
underlying implementation, although it does not solve the name-variable
association problem. However, it does provide a framework within which a
manageable solution may be developed.

Fundamentally, the goal is to be able to name a metric, and reference the
metric’s value in a manner that is independent of the order of operations on
other metrics; for example, to associate the macro BINGO with the name
“irix.sys.statistic.bingo," and then be able to use BINGO to get at the value of
the corresponding metric.

The one-to-one association between the ordinal position of the metric names
is input to pmLookupName and the PMIDs returned by this routine, and the
one-to-one association between the PMIDs input to pmFetch and the values
returned by this routine provide the basis for an automated solution.

The tool pmgenmap takes the specification of a list of metric names and
symbolic tags, in the order they should be passed to pmLookupName and
pmFetch. For example:

one line comment

mystuff {
irix.sys.statistic.bingo BINGO
oracle.latchstats.lru.miss MISSED

}

The above pmgenmap input produces the following C code, suitable for
including with the #include statement:

/*
 * Performance Metrics Name Space Map
 * Built by pmgenmap from the file
 * /usr/people/kenmcd/swa/ptg/src/kstat.pcp/x
 * on Thu Feb 24 20:37:53 EST 1994
 *

PMAPI Programming Issues and an Example

147

 * Do not edit this file!
 */

/* one line comment */

char *mystuff[] = {
#define BINGO 0

“irix.sys.statistic.bingo”,
#define MISSED 1

“oracle.latchstats.lru.miss”,
};

Initializing New Metrics

Using the code generated by pmgenmap, we are now able to easily initialize
the application’s connection to the PMSC as follows:

#define MAX_MID 3

int trip = 0;
int numpmid = sizeof(mystuff)/sizeof(mystuff[0]);
double duration;
pmResult *resp;
pmResult *prev;
pmID pmidlist[MAX_MID];

pmLoadNameSpace(PM_NS_DEFAULT);
pmLookupName(numpmid, mystuff, pmidlist);

At this stage, pmidlist contains the PMID for the two metrics of interest.

Iterative Processing of Values

Assuming the tool is required to report values every five seconds, use code
similar to the following:

while (1) {
pmFetch(numpmid, pmidlist, &resp);
if (trip) {

duration = tv_sub(&resp->timestamp, &prev->timestamp);
/*
 * irix.sys.boring.bozo is an instantaneous value,

148

Chapter 3: The Performance Metrics Application Programming Interface (PMAPI)

 * so report the most recent value
 * oracle.latchstats.lru.miss is a free running
 * counter, so report the rate over the last two
 * samples
 */
printf(“%6d %5.2f\n”,

resp->vset[BOZO]->vlist[0].value.lval,
(resp->vset[MISSED]->vlist[0].value.lval -
prev->vset[MISSED]->vlist[0].value.lval) /
duration);

}

if (trip >= 1)
pmFreeResult(prev);

else
trip++;

prev = resp;

sleep(5);
}

Accommodating Program Evolution

The flexibility provided by the PMAPI and the pmgenmap utility is
demonstrated by the following example; consider the requirement to report
a third metric “irix.sys.boring.new” (an instantaneous value) in the middle
of the two already reported.

Add the line

irix.sys.boring.new NEW

to the middle of the specification file, regenerate the #include file, and amend
the printf statement as follows:

printf(“%6d %6d %5.2f\n”,
resp->vlist[BOZO]->vlist[0].value.lval,
resp->vlist[NEW]->vlist[0].value.lval,
(resp->vlist[MISSED]->vlist[0].value.lval -

prev->vlist[MISSED]->vlist[0].value.lval) /
duration);

149

Chapter 4

4. Extending and Refining the PCP Toolkit

The Performance Co-Pilot (PCP) has been developed to be fully extensible.
The following sections describe various facilities provided to allow you to
extend and customize the PCP for your site.

• “PCP Client Development” on page 149 describes the basic libraries
and tools available to the PCP developer.

• “PMNS Management” on page 152 describes the rules for creating your
own Performance Metrics Name Spaces.

• “PMDA Development” on page 157 describes the rules for creating
your own Performance Metrics Domain Agent software.

PCP Client Development

Application developers are encouraged to create new PCP client
applications to monitor or display performance metrics in a manner that is
particularly relevant to a specific site, application suite, or processing
environment.

These client applications use the routines described in Chapter 3, “The
Performance Metrics Application Programming Interface (PMAPI).” The
PMAPI provides the following services to the PCP clients:

1. Connection to sources of performance metrics that may be on the local
host, or a remote host, or an archive log (previously created with the
pmlogger(1) utility).

2. Name translation services for performance metrics within a
Performance Metrics Name Space (PMNS).

3. Retrieval of metadata describing the performance metrics from the
source of those metrics.

4. Fetching arbitrary groups of performance metrics values.

150

Chapter 4: Extending and Refining the PCP Toolkit

5. Extraction and manipulation of performance metric values.

PMAPI Compilation Support

The PMAPI is designed for programs written in C.

The header file /usr/include/pcp/pmapi.h defines the function prototypes and
data structures used at the PMAPI, so C code using the PMAPI requires the
following statement:

#include <pcp/pmapi.h>

Occasionally, applications may require access to internal routines that
underpin the PMAPI, and in these cases, the header file /usr/include/pcp/
impl.h must also be included after pmapi.h.

The pmgenmap Utility

Given one or more lists of metric names, the pmgenmap(1) utility generates C
declarations and cpp(1) macros suitable for use across the PMAPI. These
generated C constructs simplify the programmer effort required to translate
metric names and manipulate the corresponding values of the metrics.

The input to pmgenmap should consist of one or more lists of metric names
of the form:

listname {
metricname1 symbolname1
metricname2 symbolname2
...

}

The above input generates C and cpp declarations of the form:

char *listname[] = {
#define symbolname1 0

"metricname1",
#define symbolname2 1

"metricname2",
...

};

PCP Client Development

151

The array declarations produced are suitable as parameters to
pmLookupName(3) and the #defined constants may be used to index the vsets
in the pmResult structure returned by a pmFetch(3) call.

For complete documentation of the pmgenmap utility, see the pmgenmap
reference page.

The PMAPI Library (libpcp)

The PMAPI routines are supplied in the DSO /usr/lib/pcp/libpcp.so.

Linking an application with this library and locating it correctly when the
program executes requires the following command line options to cc or ld:

cc ... -L/usr/lib/pcp -rpath /usr/lib/pcp -lpcp

Example PMAPI Client

Installing the pcp_client.sw.demo software package places the source code,
Makefile and installation scripts for a fully functional demonstration PCP
client in the /usr/demos/PerfCoPilot/pmclient directory.

The libpcp_lite Library

The library /usr/lib/pcp/libpcp_lite.so is a special “lightweight” version of /usr/
lib/pcp/libpcp.so. This lightweight library provides efficient access to a
restricted subset of the PCP facilities. When the restrictions do not affect the
PCP client, it may be linked with libpcp_lite instead of libpcp.

The restrictions imposed by libpcp_lite are as follows:

• No access to remote hosts.

• No access to archive logs.

• No support for VCR-mode replay.

• No help text services.

• Metric values may be fetched, but not modified.

152

Chapter 4: Extending and Refining the PCP Toolkit

• Only metrics in the irix and proc domains are supported.

The restrictions are significant; however, they allow an application linked
with libpcp_lite to execute autonomously, without a Performance Metrics
Coordinating Daemon (PMCD), and the overhead associated with inter-
process communication (IPC) and context switching.

PMNS Management

This section describes the syntax, semantics, and processing framework for
the external specification of a PMNS as it might be loaded by the PMAPI
routine pmNameSpace(3). The PMNS specification is a simple ASCII source
file that can be easily edited. For reasons of efficiency, a binary format is also
supported, and the utility pmnscomp(1) may be used to translate the ASCII
source format into the binary format.

PMNS Processing Framework

The PMNS specification is initially passed through cpp(1). This means the
following facilities may be used in the specification:

• C-style comments

• #include directives

• #define directives and macro substitution

• conditional processing via #if, #endif, and so on

When cpp is executed, the “standard” include directories are the current
directory and /usr/pcp/lib/pmns (where some standard macros and default
specifications may be found).

PMNS Management

153

PMNS Syntax

The general syntax for a non-leaf node1 in the PMNS is as follows:

pathname {
name [pmid]
...

}

Here pathname is the full pathname from the root of the PMNS to this non-
leaf node, with each component in the pathname separated by a period (.).
The root node for the PMNS must have the special name root, but the prefix
string “root.” must be omitted from all other pathnames.

Each component in the pathname must begin with an alphabetic character,
and be followed by zero or more alphanumeric characters or the underscore
(_) character. For alphabetic characters in a pathname component, upper and
lower case are distinguished.

For example, refer to the PMNS shown in Figure 4-1. The correct pathname
for the right-most non-leaf node is cpu.util, not root.cpu.util.

Non-leaf nodes in the PMNS may be defined in any order desired.

The descendent nodes are defined by the set of names, relative to the
pathname of their parent non-leaf node. For the descendent nodes, leaf
nodes have a pmid specification, but non-leaf nodes do not.

The syntax for the pmid specification has been chosen to help manage the
allocation of Performance Metric IDs (PMIDs) across disjoint and
autonomous domains of administration and implementation. Each pmid
consists of three integer parts, separated by colons; for example, 14:27:11.
This is intended to mirror the implementation hierarchy of performance
metrics. The first integer identifies the domain in which the performance
metric lies. Within a performance metrics domain, related metrics are often
grouped into clusters. The second integer identifies the cluster and the third
integer the metric within the cluster.

1 A PMNS is tree structured. The leaf nodes are the full performance metric names.

154

Chapter 4: Extending and Refining the PCP Toolkit

Figure 4-1 A Small Performance Metrics Name Space (PMNS)

In practice, at least two of these components are likely to be macros in the
PMNS specification source, and cpp converts the macros to integers. These
macros for the initial components of the pmid are likely to be defined either
in the standard include file <stdpmid> or in the current source file.

For complete documentation of the PMNS and associated utilities, see the
pmns(1), pmnscomp(1), pmnsadd(1), and pmnsdel(1) reference pages.

idlesysuser

cpu

utilsyscallratepacketrate

inout

intrate

 Performance Metric Descriptions

root

 network

PMNS Management

155

Example PMNS Specification

The PMNS specification for Figure 4-1 is as follows:

/*
 * PMNS Specification for Figure 4-1
 */

#include <stdpmid>

root {
network
cpu

}

#define NETWORK 26
network {

intrate IRIX:NETWORK:1
packetrate

}

network.packetrate {
in IRIX:NETWORK:35
out IRIX:NETWORK:36

}

#define CPU 10
cpu {

syscallrate IRIX:CPU:10
util

}

#define USER 20
#define KERNEL 21
#define IDLE 22
cpu.util {

user IRIX:CPU:USER
sys IRIX:CPU:KERNEL
idle IRIX:CPU:IDLE

}

Using Local Variants of the Name Space (-n Option) in
PMNS

All PCP utilities that require a PMNS permit command-line specification of
an alternate name space through the option

156

Chapter 4: Extending and Refining the PCP Toolkit

-n namespace

The utilities described in this section may be used to create and amend either
an alternate name space, or the default PMNS in the directory /usr/lib/pcp/
pmns.

The pmnscomp Command

The pmnscomp(1) command compiles a PMNS in ASCII (plain text) form into
a more efficient binary representation. The pmLoadNameSpace(3) library
function is able to load this binary representation significantly faster than the
equivalent ASCII representation.

The basic syntax for this command is:

pmnscomp [-f] [-n namespace] outfile

By convention, the name of the compiled namespace is that of the root file of
the ASCII namespace, with .bin appended. For example, the root of the
default PMNS is a file named root and the compiled version of the entire
namespace is root.bin. The -n option allows you to specify a non-default
namespace. The -f option forces an overwrite of the outfile if the outfile
already exists.

Complete documentation of the pmnscomp command is found in the
pmnscomp(1) reference page.

The pmnsadd and pmnsdel Commands

The pmnsadd(1) command adds a subtree of new metric names into a PMNS).
The new metric names are specified in a file given as an argument to the
pmnsadd command, and must conform to the syntax for PMNS
specifications, as documented in the pmns(4) reference page.

The pmnsdel(1) command removes a given subtree of names from a PMNS.
The metric names to be deleted are specified on the command line with a
pathname. All metrics to which the given pathname is a prefix are deleted.

PMDA Development

157

Complete documentation on the pmnsadd and pmnsdel commands can be
found in the pmnsadd(1) and pmnsdel(1) reference pages.

PMDA Development

The PCP framework supports modular extension of the range of available
performance metrics through an architecture in which a Performance
Metrics Domain Agent (PMDA) is responsible for all metrics within its
particular application or functional domain. For example, the proc PMDA
is responsible for supplying performance metrics relating to Unix processes.

The generic architecture is as shown in Figure 4-2. The components below
the Performance Metrics Application Programming Interface (PMAPI) are
collectively known as the Performance Metrics Collection Subsystem
(PMCS). The PMCS architecture is distributed, in the sense that the
performance tools may be executing remotely; however, that is an irrelevant
consideration in the context of a PMDA’s behaviour:

As shown in Figure 4-2, the Performance Metrics Coordinating Daemon
(PMCD) acts in a coordinating role, accepting requests from clients, routing
the requests to one or more PMDAs, aggregating the responses from the
PMDAs, and responding to the requesting client.

A PMDA is responsible for a set of performance metrics, in the sense that it
must respond to requests from the PMCD for information about
performance metrics, instance domains, and instantiated values. Requests
from the PMCD are generated on behalf of performance tools that make
requests to the PMCD.

New performance metrics are incorporated into the PMCS by creating a
PMDA, then re-configuring the PMCD to communicate with the new
PMDA.

158

Chapter 4: Extending and Refining the PCP Toolkit

Figure 4-2 PMDA Global Process Architecture

Creating a PMDA

The following work is required to create a new PMDA.

• Determine what metrics are provided and how the metrics’ values are
obtained.

PMCD

PMDA PMDA PMDA

Performance

Metric

Domains
Irix

DBMS End-User

Performance

Tool PMAPI

Performance

Tool PMAPI

PMDA

End-User

Application

A

Application

B

PMDA Development

159

• Allocate data types and instance domains for the metrics.

• Assign pmids to the metrics and add them to the PMNS.

• Create help text for the metrics.

• Write code to supply the metrics and associated information to PMCD.

Domain Numbering Protocols for PMDA Metrics and
Instance Domains

Every performance metric in the PCP framework is assigned a unique
PMID. An initial task when adding new performance metrics is to assign
PMID values.

The PMID is structured as follows:

/*
 * Internally, this is how to decode a PMID!
 */
typedef struct {

int pad:2;
unsigned int domain:8;
unsigned int cluster:12;
unsigned int item:10;

} _pmID_int;

If the new metrics are an extension of an existing PMDA implementation,
then the domain is the same as for other metrics in that PMDA. If a new
PMDA is being developed, the domain should be chosen to be unique
amongst all PMDAs, using the table below as a guideline.

Table 4-1 PMDA Domains

Domain Use

0 Reserved for internal use

1 IRIX kernel metrics

2 PMCD instrumentation and control

3 /proc metrics

160

Chapter 4: Extending and Refining the PCP Toolkit

The remaining components of the PMID are used to guarantee uniqueness
within a PMDA, and the division between cluster and item is entirely
arbitrary. The set of assigned PMIDs within a PMDA may be as sparse or as
dense as required; however, it is an implicit design rule that once assigned,
a PMID is never re-assigned to another metric with different semantics. It is
acceptable for the metric associated with a PMID to be no longer supported
in a later PMDA release.

Refer to the control file /etc/pmcd.conf for a list of the domain values for the
PMDAs currently attached to the PMCD at the local host. The reference
page for pmcd(1) describes the format of this file.

Once the PMIDs have been chosen for the new metrics, they need to be given
external names so that end-user tools can identify the metrics symbolically.
The PCP supports the notion of a hierarchic name space, used to name all
metrics. There is a global (default) name space (the Performance Metrics
Name Space, or PMNS), which spans all possible metrics over the site or
sites of interest. Use the pminfo command to dump the current default name
space, and choose appropriate names for the new metrics.

For new PMDAs, this may (but does not necessarily) require the addition of
new non-terminal nodes in the name space; these may be added arbitrarily

4 Challenge™/Onyx™ environmental monitor
metrics

5 Cisco® router statistics

6 to 31 Reserved for other Silicon Graphics metrics

32 to 39 ORACLE instances

40 to 47 Sybase® instances

48 to 55 Informix® instances

66 to 127 ISV performance metrics

128 to 254 End-user application metrics

255 Reserved for internal use

Table 4-1 PMDA Domains

Domain Use

PMDA Development

161

as desired. For example, see Figure 4-3, where the new performance metrics
are network.packetrate.out, network.packetrate.in and cpu.interface_interrupts.

Figure 4-3 Changes in a Small Section of the Performance Metrics Name Space

To permanently incorporate the association between the PMID and the
default name in the PMNS, perform the following steps:

1. Consult “PMNS Management” on page 152, and then update the file or
files required in the directory /usr/lib/pcp/pmns.

2. Compile the name space with the commands:

cd /usr/lib/pcp/pmns
rm -f root.bin
../pmnscomp -f root

These changes to the PMNS need to be propagated (and perhaps merged
with the existing PMNS) to each server where the new metrics are collected.
The changes are also required on each workstation where PCP tools are

idlesysuser

cpu

utilsyscallratepacketrate

inout

interface_interrupts

new leaf nodes, one per new metric

new non-leaf nodes, to support names of new metrics

 network

162

Chapter 4: Extending and Refining the PCP Toolkit

going to be run to monitor the new metrics. This includes workstations that
examine archive logs containing the new metrics.

Defining the Metadata That Describes the Performance
Metrics

Correct processing of values for a performance metric in the PCP framework
requires the person implementing of a performance metric (the PMDA) to
export metadata that describes the structure and semantics of the metric. The
relevant data structure is pmDesc. For complete information on pmDesc, see
the file /usr/include/pcp/pmapi.h, or “Performance Metric Descriptions” in
Chapter 3.

Specifically, the PMDA must be able to provide the following for each metric
it supports:

• The PMID.

• The basic (atomic) data type including format and size. For example,
32-bit integer, or 64-bit unsigned integer, or an aggregate of binary data
with known length but unknown (within the PMCS) interpretation.

• The value should have a single instance. If not, what is the associated
instance domain? (See “Creating and Maintaining Instance Domains”
immediately below this list.)

• The following value semantics:

– The most recent value for a free-running event counter (possibly
with overflow).

– An instantaneous value. (You cannot determine a “rate” from an
instantaneous value, but interpolation may make sense.)

– A discrete value that is instantaneous, and cannot be interpolated.

• Units and scale. For example, kilobytes per sec, or microseconds per
event, or megabytes.

Creating and Maintaining Instance Domains

Instance domains are sets of identifiers that are used to differentiate between
multiple instances of the same metric. Some metrics are associated with the

PMDA Development

163

special instance domain PM_INDOM_NULL and always have a single
instance. All other instance domains are managed by a single PMDA.
Multiple metrics may be associated with a single instance domain.

The PMDA is responsible for:

• Assigning the domain identifier for any instance domain it requires.
This must be constructed to have the PMDA’s domain identifier in the
high-order (domain) part of the instance domain, but the low-order
(serial) part is arbitrary, provided uniqueness is ensured. The PMDA
may even assign different instance domain identifiers to the same
instance domain over time, provided the assignment is fixed for any
single execution of the PMDA.

• Determining which instances exist within the instance domain. For
some instance domains this can be done at PMDA startup, and remains
static thereafter. Other instance domains may require enumeration of
the current instances each time the PMDA is requested to provide
information about the instance domain.

• Assigning a unique internal value (an integer) and a corresponding
external label (a string) that identifies the instance for each instance
within an instance domain. The internal instance identifier
PM_IN_NULL (defined in /usr/include/pcp/pmapi.h) is reserved and may
not be used.

The interface between the PMDA and the other elements of the PMCS
requires the PMDA to export information about instance domains in
response to specific requests; for example, to enumerate all internal and
external identifiers, to map from an internal identifier to an external
identifier, and vice versa.

PMDA Help Text

For each metric defined within a PMDA, the PMDA developer is strongly
encouraged to provide both one-line and extended help text to describe the
metric, and perhaps provide hints about the expected value ranges.

The help text is prepared as ASCII files, processed with the newhelp(1) utility,
and typically installed in the directory /usr/lib/pcp/help on the system(s)
where the PMDA executes.

164

Chapter 4: Extending and Refining the PCP Toolkit

Further details may be found in the newhelp reference page, and by
consulting the Makefile and the file help in the example PMDA directory, /usr/
demos/PerfCoPilot/pmdas/simple.

Building a PMDA

A PMDA interacts with PMCD across one of several well-defined interfaces
and protocol mechanisms. These implementation options are described in
“Performance Metrics Collection System” in Chapter 1.

It is strongly recommended that code for a new PMDA should be based on
the source of one of the demonstration PMDAs in the
/usr/demos/PerfCoPilot/pmdas directory.

The DSO Method

This method of building a PMDA uses a Dynamic Shared Object that is
attached by PMCD, using dlopen, at initialization time. This is the highest
performance option (there is no context switching and no IPC between the
PMCD and the PMDA), but is operationally intractable in some situations.
(For example, where special access permissions are required to read the
instrumentation behind the performance metrics, or where the performance
metrics are provided by an existing process with a different protocol
interface.) The PMDA effectively executes as part of PMCD, so care is
required when crafting a PMDA this way.

The Daemon Process Method

Functionally, this method may be thought of as a DSO implementation with
a standard wrapper to convert distributed PMCS messages into procedure
calls. (See the file /usr/demos/PerfCoPilot/pmdas/sample/pmda.c.)

The Shell Process Method

This method offers the least performance, but may be well-suited for rapid
prototyping of performance metrics, or for diagnostic metrics that are not
going into production.

PMDA Development

165

Implementation of the ASCII protocols is rather lengthy. The suggested
approach is to take the /usr/demos/PerfCoPilot/pmdas/news/news.agent PMDA
as an illustrative example, and adapt it for the particular metrics of interest.

New PMDA Integration With the PMCD

Once the PMDA has been implemented, it should be installed in /usr/lib/pcp
and its existence made known to PMCD by adding a new line to the options
file /etc/pmcd.conf. Restarting PMCD makes the metrics in the new PMDA
immediately available. The reference page for pmcd(1) describes how to do
this.

Management of Evolution Within a PMDA

Natural evolution of PMDAs, or more particularly the underlying
instrumentation that they provide access to, results in new metrics
appearing and old metrics disappearing. This creates potential problems for
both new and former versions of the PMDA.

The following guidelines are designed to reduce the complexity of PMDA
implementation in the face of evolutionary change, while maintaining as
much semantic coherence and ‘‘the law of least surprise’’ for tools using the
PMAPI and for end-users of those tools.

• Try to support as full a range of metrics as possible in every version of
the PMDA. In this context, “support” means to respond sensibly to
requests, even if the underlying instrumentation is not available.

• If a metric is not supported in a particular version of the underlying
instrumentation, the PMDA should respond to pmLookupDesc requests
with a dummy pmDesc structure in which the type is the special value
PM_TYPE_NOSUPPORT. The values of the fields other than pmid and
type are immaterial, but the following example is typically benign:

pmDesc dummy = {
0, /* pmid, fill this in */
PM_TYPE_NOSUPPORT, /* this is the important part */
PM_INDOM_NULL, /* singular,causes no problems */
0, /* no semantics */
{ 0, 0, 0, 0, 0, 0 } /* no units */

};

166

Chapter 4: Extending and Refining the PCP Toolkit

• If a metric is not supported in a particular version of the underlying
instrumentation, the PMDA should respond to pmFetch requests with a
pmResult in which no values are present for the unsupported metric.
This is marginally friendlier than the other semantically acceptable
option: “illegal PMID” or PM_ERR_PMID.

• The help text should be updated with annotation to describe the
versions of the underlying product, or product configuration option,
for which the metric is available. In this way pmLookupText always
responds correctly.

• The pmStore command should fail with PM_ERR_GENERIC if one tries
to amend an unsupported metric.

• The value extraction, conversion, and printing routines
(pmExtractValue, pmConvScale, pmAtomStr, pmTypeStr, and
pmPrintValue) returns errors or appropriate “Not Supported” strings if
an attempt is made to operate on a value of type
PM_TYPE_NOSUPPORT. If performance tools take note of the type in
the pmDesc structure, they should not try to manipulate values for
unsupported metrics. Even if the tools ignore the type in the metric’s
description, following these development guidelines should ensure
that no value is ever returned, so there is no reason to call the
extraction, conversion, and printing routines.

PMDA Samples

Samples of working PMDA software can be found in the /usr/demos/
PerfCoPilot/pmdas directory. The simple subdirectory contains a relatively
simple example of a PMDA with an instance domain.

PMDA Library Routines

The PCP framework provides run-time library support for many routines
common to the implementation of the PMDAs. Use the source code of the
PMDA samples to understand the functionality of these routines, and how
they may be used.

167

Chapter 5

5. Troubleshooting the Performance Co-Pilot

This chapter outlines the basic troubleshooting strategies for Performance
Co-Pilot. Assorted issues with installation and operation of the Performance
Co-Pilot pieces are presented. For each issue, there are sections describing
symptoms, possible explanations for each symptom, and likely resolutions.

Performance Metrics Application Programming Interface (PMAPI) Issues

The PMAPI (3) reference page documents many of the environmental,
protocol, and style issues common to many of the PMAPI routines. The
reference pages for the specific PMAPI routines are also a primary resource
for troubleshooting.

Further information may be found in the sample client programs in /usr/
demos/PerfCoPilot.

Slow PMCD Service

Symptom: A long pause sometimes occurs when attempting to connect
to PMCD on another machine.

Cause: Some PMAPI routines that attempt to connect to a remote
PMCD on a machine that is booting may block until the
remote machine finishes its initialization.

Resolution: If PMCD_CONNECT_TIMEOUT is set in the environment
to a real number of seconds and if the connection has not
been established after the specified interval has elapsed,
these routines abort and return an error.

PMCD_CONNECT_TIMEOUT may also be required to connect to a PMCD
over a slow network connection, as discussed below.

168

Chapter 5: Troubleshooting the Performance Co-Pilot

Performance Metrics Coordinating Daemon (PMCD) Issues

The following problems are related to the Performance Metrics Co-
ordinating Daemon.

PMCD isn’t reconfiguring after a SIGHUP

Symptom The PMCD does not reconfigure itself after receiving the
SIGHUP signal.

Cause: If there is an error in /etc/pmcd.conf, PMCD does not use the
contents of the file. This can lead to situations in which the
configuration file and PMCD’s internal state do not agree.

Resolution: Always monitor PMCD’s log. For example, use

tail -f /var/tmp/pmcd.log

in another window when reconfiguring PMCD, so that any
errors that occur during the process are visible.

PMCD Does Not Start

Symptom: If the following messages appear in the system log (/usr/
adm/SYSLOG), consider the cause and resolution below:

pcp[27020] Error: OpenRequestSocket(4321) bind:
Address already in use

pcp[27020] Error: pmcd is already running

pcp[27020] Error: pmcd not started due to
errors!

Cause: PMCD is already running or was terminated before it could
clean up properly. The error occurs because the socket it
advertises for clients to connect to is already being used or
has not been cleared out by the kernel.

Resolution: Start PMCD as root (superuser) by typing:

/etc/init.d/pcp start

Any existing PMCD is shut down and a new one is started
in such a way that the symptomatic message should not
appear.

Performance Metrics Name Space (PMNS) Issues

169

If you are starting PMCD this way and the symptomatic
message appears, there has been a problem with the
connection to one of the deceased PMCD’s clients. This
may happen when the network connection to a remote
client’s machine is lost and PMCD is subsequently
terminated. The system may attempt to keep the socket
open for a while to allow the remote client a chance to re-
establish the connection and read any outstanding data.
The only solution in these circumstances is to wait until the
kernel times out the socket and deletes it. The command

netstat -a | grep 4321

displays the status of the socket and any connections. If the
socket is in the FIN_WAIT or TIME_WAIT states, then you
must wait for it to be deleted. Once the command above
produces no output, PMCD may be restarted.

Less commonly, you may have another program running
on your system that uses the same internet port number
(4321) that PMCD uses. In the current version of the
Performance Co-Pilot (PCP) software, this port number is
hard-wired. You must either reconfigure the other
program to use another port, or not use the program, if you
want to use the PCP suite.

Performance Metrics Name Space (PMNS) Issues

The following issues have to do with the matrix of performance metrics.

170

Chapter 5: Troubleshooting the Performance Co-Pilot

Performance Metrics Are Unknown

Symptom: Performance metrics are defined in the ASCII format of a
Performance Metrics Name Space (PMNS), but attempts to
use these metrics in the utilities (such as pmval, pminfo, and
pmchart) produce errors notifying you of:

Unknown metric name

Cause: If you can, always use the binary format of the PMNS rather
than the ASCII format. Changes made to the ASCII format
that are not promulgated to the binary format remain
“invisible.”

Resolution: Recompile the PMNS. Try these commands:

cd <directory where PMNS is defined>

/usr/lib/pcp/pmnscomp -f -n root root.bin

Missing and Incomplete Values for Performance Metrics

The following issues have to do with the information returned for various
performance metrics.

Metric Values Not Available

Symptom: Values for some or all of the instances of a performance
metric are not available.

Cause: This can occur as a consequence of changes in the
installation of modules (for example, a DBMS or an
applications package) that provide the performance
instrumentation underpinning the PMDAs. Changes in the
selection of modules that are installed or operational, along
with changes in the version of this modules, may make
metrics appear and disappear over time.

For archive logs, the collection of metrics to be logged is a
subset of the metrics available, so utilities playing from a
log may not have access to all of the metrics available from
a “live” (PMCD) source.

Archive Logging Issues

171

Resolution: Make sure the underlying instrumentation is available and
the module is active. Ensure the PMDA is running on the
host to be monitored. If necessary, create a new archive log
with a wider range of metrics to be logged.

Archive Logging Issues

The following issues have to do with the creation of logs using pmlogger.

pmlogger Can’t Write Log

Symptom: The pmlogger utility does not start, and complains with a
message of the form:

_pmLogNewFile: ‘‘foo.index'' already exists,
not over-written

Cause: Archive logs are considered sufficiently precious that
pmlogger does not empty or overwrite an existing set of
archive log files. The log “named'' foo actually consists of
the physical file foo.index, foo.meta and at least one file foo.N,
where N is in the range 0, 1, 2, 3, ...

A message similar to the one above is produced when a
new pmlogger instance encounters the first of these files
already in existence.

Resolution: If you are sure, remove all of the parts of the archive log. For
example, use the command:

rm -f foo.*

Then re-run pmlogger.

Can’t Find Log

Symptom: The pmdumplog utility, or any tool that can read an archive
log, complains with a message of the form:

Cannot open archive mylog: No such file or
directory

172

Chapter 5: Troubleshooting the Performance Co-Pilot

Cause: An archive consists of at least three physical files. If the base
name for the archive is mylog, then the archive actually
consists of the physical files mylog.index, mylog.meta, and at
least one file mylog.N, where N is in the range 0, 1, 2, 3, ...

The above message is produced if one or more of the files is
missing.

Resolution: Check which files the utility is trying to open, with the
command:

ls mylog.*

Turn on the internal debug flag DBG_TRACE_LOG(-D
128) to see which files are being inspected by the routine
_pmOpenLog.

Locate the missing files and move them all to the same
directory, or remove all of the files that are part of the
archive, and recreate the archive log.

pmlogger Can’t Start

Symptom: The primary pmlogger cannot be started. A message like the
following appears:

pmlogger: there is already a primary pmlogger
running

Cause: There is either a primary pmlogger already running, or the
previous primary pmlogger was terminated unexpectedly
before it could perform its cleanup operations.

Resolution: If there is already a primary pmlogger running and you wish
to replace it with a new pmlogger, use the show command in
pmlc(1) to determine the process id of the primary pmlogger.
The process id of the primary pmlogger appears in
parentheses after the word “primary”. Send an INT signal
to the process to shut it down (use the kill(1) command). If
the process does not exist, proceed to the manual cleanup
described in the paragraph below. If the process did exist,
it should now be possible to start the new pmlogger.

IRIX Metrics and PMCD

173

If pmlc’s show command displays a process id for a process
that does not exist, a pmlogger process was terminated
before it could clean up. If it was the primary pmlogger, the
corresponding control files must be removed before one
can start a new primary pmlogger. It is a good idea to clean
up any spurious control files even if they aren’t for the
primary pmlogger. The control files are kept in /usr/tmp/
pmlogger. A control file with the process id of the pmlogger
as its name is created when the pmlogger is started. In
addition the primary pmlogger creates a symbolic link
named primary to its control file. For the primary pmlogger,
remove both the symbolic link and the file (corresponding
to its process id) to which the link points. For other
pmloggers, remove just the process id file. Do not remove
any other files in the directory. If the control file for an
active pmlogger is removed, pmlc is not able to contact it.

IRIX Metrics and PMCD

The following issues have to do with the interaction between IRIX and the
PMCD.

No IRIX Metrics Available

Symptom: Some of the IRIX metrics are unavailable.

Cause: PMCD and (therefore the IRIX PMDA) does not have
permission to read /dev/kmem or the kernel currently
running is not the same as the kernel in /unix.

Resolution: Check /usr/tmp/pmcd.log. If there is an error message of the
form:

kmeminit: cannot open "/dev/kmem": ...

PMCD cannot access /dev/kmem. Ensure that /dev/kmem is
readable by group sys and that /usr/lib/pcp/pmcd is installed
setgid sys. Restart PMCD and the problem should be
solved.

174

Chapter 5: Troubleshooting the Performance Co-Pilot

If the running kernel is not the same as the kernel in /unix,
the IRIX PMDA cannot access raw data in the kernel. A
message of the form:

kmeminit: "/unix" is not the namelist for the
running kernel...

appears in /usr/tmp/pmcd.log. The only resolution to this is
to make the running kernel the same as the one in /unix.

If the running kernel was booted from the file system, then
renaming files to make /unix the booted kernel and
restarting PMCD will resolve the problem.

If the running kernel was booted over the network, then
PMCD cannot access the kernel’s symbol table and hence
the metrics extracted by reading /dev/kmem directly are not
available.

ORACLE Metrics and the ORACLE PMDA

Prior to installing any ORACLE PMDAs, read
/usr/demos/PerfCoPilot/pmdas/oracle7/README. It may prove necessary to
run the Install or Remove scripts in that directory to fix problems, so it is a
good idea to review the README again to refresh your memory before
continuing.

There is one complete subtree of ORACLE metrics in the namespace for each
ORACLE database instance for which you have installed an ORACLE
PMDA. One of the first things you should find out is which numeric
instance domain has been assigned to the ORACLE PMDA that is causing
trouble. If the PMDA causing trouble is the one for the xyz database, list the
first few metric identifiers for that PMDA by using the command:

pminfo -m oracle.xyz | head

A number of lines like the following appear:

oracle.xyz.all.logons PMID: 32.1.0

The first number in the dotted triplet is the domain number assigned to the
PMDA. In this case it is 32.

ORACLE Metrics and the ORACLE PMDA

175

There should be a line to start the PMDA in /etc/pmcd.conf. If the ORACLE
instance is called xyz and its domain number is 32, the first two things on the
line are:

ora_xyz 32

If there is no line like that in the file, see the troubleshooting symptom
immediately below. The domain number should also appear immediately
after the -d option for the PMDA.

The log files for ORACLE PMDAs are /usr/tmp/oracle7-*.log where the
wildcard is replaced by the domain number of the PMDA. Thus the log file
for an ORACLE PMDA with domain 32 would be /usr/tmp/oracle7-32.log.
Take care to check the date and time in the log files to ensure that you are not
using an old log file to diagnose problems.

176

Chapter 5: Troubleshooting the Performance Co-Pilot

PMDA Can’t Connect to ORACLE

Symptom: The /usr/adm/SYSLOG file contains the entry:

PMDA unable to connect to ORACLE (invalid
username/password; logon denied)

Cause: The ORACLE database user account has not been created
for the PMDA or the user.

Resolution: When the script /usr/demos/PerfCoPilot/pmdas/oracle7/Install
was run to configure the PMDA, a file was created that
contains the SQL statements that allow the PMDA to
connect to the database and access the performance data.
The file is in the same directory as the Install script. For
example, if the ORACLE database instance was called xyz,
the file is named setup.xyz.sql.

Use sqldba to connect to the same ORACLE database
instance that the PMDA uses, and run the SQL commands
in the file. Send PMCD a reconfiguration request like this:

killall -HUP pmcd

Check the log file for the PMDA again.

If the file creates an ops$... user, make sure that a
corresponding UNIX user exists and that /usr/lib/pcp/
pmdaoracle7 exists, is owned by that UNIX user, and has the
setuid bit set. Become that UNIX user, set
ORACLE_HOME and ORACLE_SID in the environment,
and attempt a default login to the database:

sqlplus /

If instead the file created a normal ORACLE user with a
password (for example, user pcp with password meter), log
in to the database by typing:

sqlplus pcp/meter

In either case, ensure that you use the same
ORACLE_HOME and ORACLE_SID as those specified for
the PMDA in the log file. If either is wrong in the log file,
you should alter them in the command line for the PMDA
in /etc/pmcd.conf.

ORACLE Metrics and the ORACLE PMDA

177

ORACLE Connection Errors

Symptom: /usr/adm/SYSLOG file has errors of form:

Error connecting to ORACLE. ORACLE not
available. smsgsg: shmget() failed...

Cause: This can be caused by a number of things, ranging from
ORACLE being unavailable or misconfigured to incorrect
parameters being specified when using the Install script to
configure the PMDA.

Resolution: Make sure that the ORACLE database instance that the
problematic PMDA utilizes is available. Connect to it using
the command

sqlplus

and try to fetch some data using a database user other than
that of the PMDA. A demonstration user like scott/tiger is
ideal here.

If that works, connect to the database using the same
ORACLE user that the PMDA does. Before doing so, you
should make absolutely certain that the values of
ORACLE_HOME and ORACLE_SID that appear in the
PMDA's log file are correct, then set both in the
environment. The ORACLE user and password for the
PMDA appear on the command line for the PMDA in /etc/
pmcd.conf as the argument to the -c option. For example, if
the flag -c pcp/pcp appears on the command line, you
should enter the command:

sqlplus pcp/pcp

If there is no -c option, the PMDA is using an ops$... logon
and /usr/lib/pcp/pmdaoracle7 will be setuid. In this case you
should become the UNIX user that owns the pmdaoracle7
file (using su or an equivalent command) and use a default
login to sqlplus:

sqlplus /

178

Chapter 5: Troubleshooting the Performance Co-Pilot

Remember to check that ORACLE_HOME and
ORACLE_SID are correct prior to doing this. If sqlplus says
that the login is not permitted because the username or
password is invalid, see the section titled “PMDA Can’t
Connect to ORACLE”.

If sqlplus doesn't let you in, there may be a problem with
your ORACLE database configuration. In particular,
ORACLE does not handle NFS-mounted ORACLE_HOME
directories well, because write permission is required to
update control and or log files in $ORACLE_HOME/dbs.

Once you are in sqlplus, type the command:

describe v$sysstat

A description of the v$sysstat view should appear. If it
does not you should re-run the script to grant the PMDA
access to the performance data from the database (see the
section titled “PMDA Can’t Connect to ORACLE”).

Restart PMCD by becoming root and typing:

/etc/init.d/pcp start

Inspect the log file for the PMDA. If it started successfully
this time, you may need to alter your database startup
routine. See the section below regarding ORACLE metrics
being unavailable when the database or machine is
restarted.

Can’t Find ORACLE Metrics

Symptom: After the machine is rebooted, or after the ORACLE
database is shut down and then restarted, it is not possible
to get any ORACLE metrics.

Cause: If a PMDA is unable to connect to its ORACLE database
instance, it exits. If the PMDA has a connection to the
database and the database is shut down, the PMDA does
not notice until the next request for ORACLE metrics
arrives. This is because a PMDA accesses the ORACLE
database only when a request is made. Thus, if a PMDA is

General Utilities Issues

179

idle while its database is shut down and then brought back
up again, the next request to it fails because it is trying to
use an old connection to the database.

Resolution: As part of the startup procedure for a database, once the
database has started you should use pminfo -f to fetch a
single ORACLE metric from the database that has restarted.
Then, as root, enter this command:

killall -HUP pmcd

This tells PMCD to restart any deceased PMDAs. The fetch
ensures that the ORACLE PMDA for the database tries to
exercise its now-defunct connection and terminates as a
result; this makes PMCD restart with a fresh connection to
the database.

General Utilities Issues

The following issues are more general.

Can’t Connect to Remote PMCD

Symptom: A PCP client tool (such as pmchart, dkvis, or pmlogger)
complains that it is unable to connect to a remote PMCD (or
establish a PMAPI context), but you are sure that PMCD is
active on the remote host.

Cause: To avoid hanging applications for the duration of TCP
timeouts, the PMAPI library implements its own timeout
when trying to establish a connection to a PMCD. If the
connection to the host is over a slow network, then
successful establishment of the connection may not be
possible before the timeout, and the attempt is abandoned.

Resolution: Establish that the PMCD on far-away-host is really alive, by
connecting to its control port (TCP port number 4321):

telnet far-away-host 4321

If the response is

180

Chapter 5: Troubleshooting the Performance Co-Pilot

Unable to connect to remote host: Connection
refused

then PMCD is not running and needs to be restarted on
that host. Enter the command:

/etc/init.d/pcp start

If the response is

Connected to far-away-host

then PMCD is alive and well. Interrupt the telnet session.
Increase the PMAPI timeout by setting the environment
variable PMCD_CONNECT_TIMEOUT to some large
number of seconds (for example, 60) and try the PCP tool
again.

Changing pmchart Colors

Symptom: When using the Indy Presenter™, or making presentations
to a large group, the default pastel color scheme used by
pmchart may be inappropriate.

Cause: These are the default colors for pmchart.

Resolution: Override the defaults using the X11 resources that pmchart
honors. For example, create or add the following entries in
the file $HOME/.xrdb:

PmChart*xrtForegroundColor: "green"
PmChart*xrtBackgroundColor: "black"

PmChart*xrtGraphForegroundColor: "rgb:00/b0/00"
PmChart*xrtGraphBackgroundColor: "black"

PmChart*xrtHeaderForegroundColor: "green"
PmChart*xrtHeaderBackgroundColor: "black"

PmChart*pmDefaultColors: rgb:ff/ff/00 rgb:00/ff/
00 rgb:00/00/ff \
 rgb:ff/ff/00 rgb:00/ff/
ff rgb:ff/00/ff

Now use the command:

xrdb -merge $HOME/.xrdb

General Utilities Issues

181

This changes the default color scheme for pmchart to one
with bright primary colors on a black background.

183

Chapter 6

6. Glossary of Acronyms

This chapter provides a glossary of the acronyms used in the Performance
Co-Pilot documentation, help cards, reference pages, and user interface.

Table 6-1 Performance Co-Pilot Acronyms and Their Meanings

Acronym Meaning

DSO Dynamic Shared Object

IP Internet Protocol

PCP Performance Co-Pilot

PDU Protocol Data Unit

PMAPI Performance Metrics Application
Programming Interface

PMCD Performance Metrics Coordination
Daemon

PMCS Performance Metrics Collection
Subsystem

PMD Performance Metrics Domain

PMDA Performance Metrics Domain Agent

PMID Performance Metric Identifier

PMNS Performance Metrics Name Space

TCP Internet Transmission Control Protocol

185

E

entry fields, using, 36

F

facilities
pmdbg, 6

file prompter windows, using, 37

G

Glossary of Acronyms, 183

I

Installing PCP, 28
instance domains

installing, 162
maintaining, 162

Inventor Toolkit, 62
IP, 183

L

libpcp_lite library, 151
libpcp library, 151

A

Application Programming Interface, 115
archive logging, 17

C

Changing pmchart Colors, 180
colors

pmchart, 180
Configuring PCP, 28
CPU visualization tool, 73
Creating a PMDA, 158
creating instance domains, 162
custom tool creation, 68

D

daemons
pmcd, 5

disk use visualization, 71
dkvis command, 71
dkvis tool, 5
documentation conventions, xvi
DSO, 164, 183
Dynamic Shared Object, 164

Index

186

Index

M

maintaining instance domains, 162
manual pages, xvi
memory visualization tool, 76
memvis command, 76
memvis tool, 5
metadata, 162

definition, 11
metric selection, 52
mpvis command, 73
mpvis tool, 5

N

new tools and pmview, 68
nfsvis command, 74
nfsvis tool, 5
NFS visualizing tool, 74
notification with PCP, 14

O

opsview command, 87
opsview tool, 5, 31
options buttons, using, 36
ORACLE parallel server tool, 87
ORACLE server viewer, 87

P

PCP, 183
additional resources, xvi
archive logging, 4, 17, 89
audience, xvi

client development, 149
client-server architecture, 23
common options, 42
configuring, 28
daemon maintenance, 30
definition, xv
extensibility, 19, 149
infrastructure, 14
installing, 28
license system, 29
log file option, 42
objectives, 1
overview, 1
performance visualization, 16
target usage, 2
tools, 41
tutorial, 55
utilities, 41
VCR controls, 19, 44

PDU, 183
Performance Metric Identifier, 10
performance metrics

possible values, 12
source, 8

Performance Metrics Collection System, 13
Performance Metrics Domain

PMD, 9
performance metric selection, 52
Performance Metrics Inference Engine, 14, 94
Performance Metrics Name Space, 10
PMAPI, 8, 115, 183

argument lists, 123
Compilation Support, 150
current context, 117
error handling, 124
Identifying metrics, 115
Library (libpcp), 151
metric descriptions, 118
metric instances, 116

187

Index

metric values, 120
naming metrics, 115
procedural interface, 124
programming style, 123
results list, 123

PMAPI Description Services, 128
PMAPI Instance Domain Services, 127
PMCD, 183
pmcd daemon, 5
PMCD maintenance, 30
PMCD-PMDA protocols, 24
PMCD startup, 25
pmchart

metric selection, 52
pmchart colors, 180
pmchart command, 48
pmchart tool, 6
pmclient

tool, 32
PMCS, 13, 183
PMD, 9, 183
PMDA, 183
PMDA Development, 157
PMDA Help Text, 163
PMDA Library Routines, 166
PMDA Samples, 166
pmdbg facility, 6
pmdumplog command, 92, 171
pmdumplog tool, 6
pmerr tool, 6
pmgenmap command, 150
pmgenmap tool, 6
pmGetChildren routine, 125
pmGetInDom routine, 127
PMID, 10, 183
pmie command, 94

pmie tool, 6, 14
pminfo command, 58
pminfo tool, 6
pmkstat command, 46
pmkstat tool, 6
pmlc command, 93
pmlc tool, 6
pmLoadNameSpace routine, 124
pmlogger

access control, 92
other instances, 91
primary instance, 31, 90, 172

pmlogger command, 89, 171, 172
pmlogger tool, 6, 17, 31
pmLookupDesc routine, 128
pmLookupInDom routine, 127
pmLookupInDomText routine, 129
pmLookupName routine, 125
pmLookupText routine, 128
pmNameID routine, 126
pmNameInDom routine, 127
PMNS, 10, 183

alternate name spaces, 43
pmnsadd command, 156
pmnsadd tool, 7
pmnscomp command, 156
pmnsdel command, 156
pmnsdel tool, 7
PMNS Management, 152
PMNS Syntax, 153
pmstore command, 114
pmstore tool, 7
pmTraversePMNS routine, 126
pmTrimNameSpace routine, 126
pmval command, 56
pmval tool, 7

188

Index

pmview
creating custom tools, 68
custom tools, 68
window controls, 63

pmview command, 62
pmview tool, 7
processor visualization tool, 73
product support, 39
Programming Interface, 115

R

reference pages, xvi

S

scroll bars, using, 35

T

TCP, 183
tools

dkvis, 5, 71
host specification option, 42
log file option, 42
log start time option, 43
memvis, 5, 76
mpvis, 5, 73
nfsvis, 5, 74
opsview, 5, 31, 87
periodic reporting option, 43
pmchart, 6, 48
pmclient, 32
pmdumplog, 6, 92, 171
pmerr, 6
pmgenmap, 6, 150
pmie, 6, 14, 94

pminfo, 6, 58
pmkstat, 6, 46
pmlc, 6, 93
pmlogger, 6, 17, 31, 89, 171, 172
pmnsadd, 7, 156
pmnscomp, 156
pmnsdel, 7, 156
pmstore, 7, 114
pmval, 7, 56
pmview, 7, 62
timezone option, 44
VCR controls, 44

Troubleshooting
archive logging, 171
general utilities, 179
ORACLE services, 174
pmchart colors, 180
the PMAPI, 167
the PMCD, 167, 168
the PMNS, 169

Tutorial, 55

U

user interface operations, 35-??
user interface terms used in this guide, 32-35

V

VCR controls, 19, 44

W

window terms used in this guide, 32-35

