
Performance Co-PilotTM User’s and
Administrator’s Guide

007–2614–004

CONTRIBUTORS

Engineering and written contributions by Mark Goodwin, Ken McDonell, Heidi Muehlebach, Ivan Rayner, Nathan Scott, Timothy
Shimmin, and Bill Tuthill.

© 1992–1999, Silicon Graphics, Inc. All Rights Reserved

This document or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of
Silicon Graphics, Inc.

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR
52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre
Pkwy., Mountain View, CA 94043-1351.

Silicon Graphics, Challenge, Indy, IRIS, IRIX, OpenGL, and WebFORCE are registered trademarks and ChallengeArray, Inventor,
IRIS FailSafe, IRIS InSight, IRIS Inventor, IRIS Showcase, MineSet, Open Inventor, Origin, Performance Co-Pilot, and SGI are
trademarks of Silicon Graphics, Inc. Indy Presenter is a trademark, used under license in the U.S. and owned by Silicon Graphics,
Inc. in other countries worldwide.

Cisco is a trademark of Cisco Systems, Inc. FLEXlm is a trademark of GLOBEtrotter Software. Informix is a trademark of
Informix Corporation. NFS is a trademark of Sun Microsystems, Inc. Oracle and Oracle7 are trademarks of Oracle Corporation.
PostScript is a trademark of Adobe Systems, Inc. Sybase is a trademark of Sybase, Inc. UNIX is a registered trademark in the
United States and other countries, licensed exclusively through X/Open Company, Ltd.

New Features

Performance Co-PilotTM User’s and Administrator’s Guide 007–2614–004

This guide contains the following new or changed information for the Performance Co-Pilot release 2.1:

• The cron scripts for performing PCP housekeeping task have been renamed:

New Name Old Name

pmlogger_check cron.pmcheck

pmlogger_daily cron.pmdaily

pmlogger_merge cron.logmerge

pmsnap cron.pmsnap

• A set of parameterized pmie rules have been developed which are applicable to most systems. A new
utility, pmieconf, allows these rules to be enabled or disabled, or the parameters and thresholds
adjusted for a specific system (see Section 6.7, page 143).

• Extra support for running pmie as a daemon has been added (see Section 6.9, page 150).

• A new tool to convert arbitrary time-stamped data streams to PCP archive logs, called pmimport, has
been added. pmimport currently supports the conversion of sar/sadc data files from the IRIX
operating systems 6.2, 6.3, 6.4 and 6.5, and UNICOS 9.0.

• The new sendmail PMDA exports mail traffic statistics as collected by sendmail.

• To enable additional quality of service and availability monitoring with the shping PMDA, new utilities
have been added to check the status of HIPPI interfaces on a system (hipprobe) and to interrogate the
Auto-FS daemon (autofsd_probe).

• A new visualization utility, xlv_vis, has been added which displays a three-dimension bar chart of
XLV volume activity.

• As an aid to creating pmlogger configuration files, pmlogconf is a new tool that allows selection of
groups of commonly desired metrics and customization of pmloggger configurations from a simple
interactive dialog.

• New capabilities have been added to assist in the estimation of PCP archive sizes. This is achieved using
the -r option for pmlogger and the -s option for pmdumplog.

• Some metrics have been added to the hotproc PMDA. The metric hotproc.control.config exports
the parsed one line representation of the configuration predicate and the metrics,
hotproc.predicate.*, export the values of the variables used in the predicate.

• pmchart has been updated as follows:

– Dynamic views are now supported where the view specification is computed by an application (most
often /bin/sh) at the time the view is instantiated.

– The menus have been slightly rearranged.

– A new -C option allows pmchart to parse a configuration checking for errors and to exit.

– pmie has been enhanced as follows:

• Actions may now have an arbitrary number of quoted arguments.

• Metrics with dynamic instance domains are now supported.

• The language has been extended to allow two new operators: match_inst and nomatch_inst

• Macro expansion can now occur anywhere in the pmie rule specifications.

– mlogsummary has been extended with a -B option to display the distribution of values across a PCP
archive in a given number of bins, with a -p option to adjust floating point precision and the -I
option now reports when the minimum and maximum occurred.

– The pcp startup script, /etc/init.d/pcp, now starts pmlogger up in the background.

• Figures and examples have been updated to reflect the new PCP names and paths.

In addition, miscellaneous editing changes were made throughout the document.

Record of Revision

Version Description

004 July 1999
Revised to support the Performance Co-Pilot release 2.1 for Silicon Graphics
systems running the IRIX 6.2, 6.3, 6.4, and 6.5 operating systems.

007–2614–004 i

Contents

Page

About This Guide xv

What This Guide Contains . xv

Audience for This Guide . xvi

Additional Resources . xvi

Man Pages . xvi

Release Notes . xvii

SGI Web Sites . xvii

Obtaining Publications . xviii

Conventions Used in This Guide xviii

Reader Comments . xix

Introduction to Performance Co-Pilot [1] 1

Objectives . 1

PCP Target Usage . 1

Empowering the PCP User . 1

Unification of Performance Metric Domains 2

Uniform Naming and Access to Performance Metrics 2

PCP Distributed Operation . 2

Dynamic Adaptation to Change 3

Logging and Retrospective Analysis 3

Automated Operational Support 3

PCP Extensibility . 4

Additional PCP Features . 4

Overview of Component Software 5

Performance Monitoring and Visualization 6

007–2614–004 iii

Performance Co-PilotTM User’s and Administrator’s Guide

Page

Collecting, Transporting, and Archiving Performance Information 9

Operational and Infrastructure Support 10

Application and Agent Development 12

Conceptual Foundations . 13

Performance Metrics . 13

Performance Metric Instances . 13

Current Metric Context . 14

Sources of Performance Metrics and Their Domains 14

Distributed Collection . 16

Performance Metrics Name Space 17

Distributed PMNS . 19

Descriptions for Performance Metrics 19

Values for Performance Metrics 20

Single-Valued Performance Metrics 20

Set-Valued Performance Metrics 20

Collector and Monitor Roles . 21

Performance Metrics Collection System 22

Retrospective Sources of Performance Metrics 22

Product Extensibility . 23

Installing and Configuring Performance Co-Pilot [2] 25

Product Structure . 25

Optional Software . 26

License Constraints . 27

Using pmbrand to Query PCP License Capabilities 27

Performance Metrics Collection Daemon (PMCD) 27

Starting and Stopping the PMCD 28

Restarting an Unresponsive PMCD 28

PMCD Diagnostics and Error Messages 29

iv 007–2614–004

Contents

Page

PMCD Options and Configuration Files 29

The pmcd.options File . 29

The pmcd.conf File . 30

Controlling Access to PMCD with pmcd.conf 33

Managing Optional PMDAs . 34

PMDA Installation . 34

Installation on a PCP Collection Host 35

Example 1: PMNS Installation Output 35

PMDA Removal . 36

Removal on a PCP Collection Host 37

Troubleshooting . 37

Performance Metrics Name Space 37

Missing and Incomplete Values for Performance Metrics 38

Metric Values Not Available 38

IRIX Metrics and the PMCD . 38

No IRIX Metrics Available . 39

Cannot Connect to Remote PMCD 40

PMCD Not Reconfiguring after SIGHUP 41

PMCD Does Not Start . 41

Common Conventions and Arguments [3] 43

PerfTools Icon Catalog . 43

Alternate Metric Source Options . 44

Fetching Metrics from Another Host 45

Fetching Metrics from an Archive Log 45

General PCP Tool Options . 45

Common Directories and File Locations 46

Alternate Performance Metric Name Spaces 47

Time Duration and Control . 47

Performance Monitor Reporting Frequency and Duration 47

007–2614–004 v

Performance Co-PilotTM User’s and Administrator’s Guide

Page

Time Window Options . 48

Time Zone Options . 50

PCP Live Time Control . 51

Creating a PCP Archive . 52

PCP Archive Time Control . 52

File Menu . 54

Options Menu . 54

PCP Environment Variables . 55

Running PCP Tools through a Firewall 59

The pmsocks Command . 59

Transient Problems with Performance Metric Values 60

Performance Metric Wraparound 60

Time Dilation and Time Skew . 60

Monitoring System Performance [4] 61

The pmchart Tool . 62

Mouse Controls . 64

pmchart Select Performance View 65

Displaying Horizontal Lines . 67

pmchart Metric Selection . 67

Creating a PCP Archive from a pmchart Session 75

Changing pmchart Colors . 77

Other Chart Customizations . 78

Time Control . 79

Taking Snapshots of pmchart Displays and Value Dialogs 79

More Information . 80

The pmgadgets Command . 81

Example 2: Specification File for pmgadgets 82

The pmkstat Command . 84

The pmdumptext Command . 86

vi 007–2614–004

Contents

Page

The pmval Command . 86

The pmem Command . 88

The pminfo Command . 89

The pmstore Command . 93

System Performance Visualization Tools [5] 95

Overview of Visualization Tools . 95

The dkvis Disk Visualization Tool 97

The mpvis Processor Visualization Tool 99

The osvis System Visualization Tool 101

The oview Origin Visualization Tool 103

The nfsvis NFS Activity Visualization Tool 104

The pmview Tool . 107

pmview Menus . 111

Creating Custom Visualization Tools with pmview 112

Example 3: mpvis Configuration File 113

Example 4: Specification File for pmview 114

Performance Metrics Inference Engine [6] 117

Introduction to pmie . 117

Basic pmie Usage . 120

pmie and the Performance Metrics Collection System 120

Simple pmie Example . 121

Complex pmie Examples . 122

Specification Language for pmie . 124

Basic pmie Syntax . 125

Lexical Elements . 125

Comments . 126

Macros . 126

007–2614–004 vii

Performance Co-PilotTM User’s and Administrator’s Guide

Page

Units . 126

Setting Evaluation Frequency . 127

pmie Metric Expressions . 127

pmie Rate Conversion . 130

pmie Arithmetic Expressions . 131

pmie Logical Expressions . 131

Logical Constants . 131

Relational Expressions . 131

Boolean Expressions . 132

Quantification Operators . 132

pmie Rule Expressions . 134

pmie Intrinsic Operators . 137

Arithmetic Aggregation . 137

The rate Operator . 138

Transitional Operators . 138

pmie Examples . 139

Example 5: Monitoring CPU Utilization 139

Example 6: Monitoring Disk Activity 140

Developing and Debugging pmie Rules 141

Caveats and Notes on pmie . 141

Performance Metrics Wraparound 141

pmie Sample Intervals . 142

pmie Instance Names . 142

pmie Error Detection . 142

Creating pmie Rules with pmieconf 143

Procedure 1: Display pmieconf Rules 144

Procedure 2: Modify pmieconf Rules and Generate a pmie File 144

Creating pmie Rules with pmrules 146

viii 007–2614–004

Contents

Page

Procedure 3: Creating pmie Rules 146

Management of pmie Processes . 150

Procedure 4: Add a New pmie Instance to the pmie Daemon Management Framework . 150

Procedure 5: Add a pmie crontab Entry 152

Global Files and Directories . 152

pmie Instances and Their Progress 153

Archive Logging [7] 155

Introduction to Archive Logging . 155

Archive Logs and the PMAPI . 156

Retrospective Analysis Using Archive Logs 156

Snapshots from PCP Archive Logs 157

Using Archive Logs for Capacity Planning 157

Using Archive Logs with Performance Visualization Tools 158

Coordination between pmlogger and PCP tools 158

Administering PCP Archive Logs Using cron Scripts 158

Archive Log File Management 159

Basename Conventions . 159

Log Volumes . 159

Basenames for Managed Archive Log Files 160

Directory Organization for Archive Log Files 160

Configuration of pmlogger 162

PCP Archive Contents . 162

Cookbook for Archive Logging . 163

Primary Logger . 163

Other Logger Configurations . 164

Archive Log Administration . 165

Making Snapshot Images from Archive Logs 166

007–2614–004 ix

Performance Co-PilotTM User’s and Administrator’s Guide

Page

Other Archive Logging Features and Services 167

PCP Archive Folios . 168

Manipulating Archive Logs with pmlogextract 168

Primary Logger . 169

Using pmlc . 169

Archive Logging Troubleshooting 170

pmlogger Cannot Write Log . 171

Cannot Find Log . 171

Primary pmlogger Cannot Start 172

Identifying an Active pmlogger Process 173

Illegal Label Record . 174

Empty Archive Log Files or pmlogger Exits Immediately 174

Performance Co-Pilot Deployment Strategies [8] 177

Basic Deployment . 178

PCP Collector Deployment . 180

Principal Server Deployment . 180

Quality of Service Measurement 181

PCP Archive Logger Deployment 183

Deployment Options . 183

Resource Demands for the Deployment Options 184

Operational Management . 185

Exporting PCP Archive Logs . 185

PCP Inference Engine Deployment 185

Deployment Options . 186

Resource Demands for the Deployment Options 187

Operational Management . 188

x 007–2614–004

Contents

Page

Customizing and Extending PCP Services [9] 189

PMDA Customization . 189

Customizing the Summary PMDA 189

Procedure 6: Customizing the Summary PMDA 190

PCP Tool Customization . 193

Stripchart Customization . 193

Archive Logging Customization 194

Inference Engine Customization 195

Snapshot Customization . 197

Icon Control Panel Customization 197

3D Visualization Customization 198

PMNS Management . 198

PMNS Processing Framework . 198

PMNS Syntax . 198

Example 7: PMNS Specification 200

PMDA Development . 201

PCP Tool Development . 201

Appendix A Acronyms 203

Index 205

Figures
Figure 1. Performance Metric Domains as Autonomous Collections of Data 15

Figure 2. Process Structure for Distributed Operation 17

Figure 3. Small Performance Metrics Name Space (PMNS) 18

Figure 4. Architecture for Retrospective Analysis 23

Figure 5. PerfTools Icon Catalog Group 44

Figure 6. pmtime PCP Live Time Control Dialog 51

007–2614–004 xi

Performance Co-PilotTM User’s and Administrator’s Guide

Page

Figure 7. pmtime PCP Archive Time Control Dialog 53

Figure 8. pmtime Archive Time Bounds Dialog 55

Figure 9. pmchart Performance Co-Pilot Chart Window 62

Figure 10. Two Charts and Metrics from Three Hosts in pmchart 63

Figure 11. pmchart Select Performance View Dialog 65

Figure 12. pmchart Metric Selection Dialog 68

Figure 13. Further Metric Selection 70

Figure 14. Selecting a Leaf Node in the PMNS (Performance Metric) 72

Figure 15. Metric Information Dialog 73

Figure 16. Selecting a Metric Instance 74

Figure 17. pmchart Display When Recording 76

Figure 18. Archive Recording Session-pmchart Dialog 77

Figure 19. Representative pmgadgets Display Using pmgsys 81

Figure 20. Customized pmgadgets Display 84

Figure 21. pmgadgets Dialog . 84

Figure 22. dkvis Total Disk I/O Rate Window 98

Figure 23. mpvis CPU Utilization Window 100

Figure 24. osvis High-Level Activity Window 102

Figure 25. oview Window . 104

Figure 26. nfsvis NFS Client V2 & Server V2 Request Traffic Window . . . 106

Figure 27. pmview Window with a Block Selected 110

Figure 28. Custom pmview Scene 116

Figure 29. Sampling Time Line . 128

Figure 30. Three-Dimensional Parameter Space 129

Figure 31. pmrules Import template(s) from file Dialog 147

Figure 32. pmrules Main Dialog after Template Selection 148

Figure 33. pmrules Edit template Dialog 149

xii 007–2614–004

Contents

Page

Figure 34. Archive Log Directory Structure 161

Figure 35. PCP Deployment for a Single System 178

Figure 36. Basic PCP Deployment for Two Systems 179

Figure 37. General PCP Deployment for Multiple Systems 180

Figure 38. PCP Deployment to Measure Client-Server Quality of Service 182

Figure 39. Designated PCP Archive Site 184

Figure 40. PCP Management Site Deployment 187

Figure 41. Small Performance Metrics Name Space (PMNS) 199

Tables
Table 1. Sample Instance Identifiers for Disk Statistics 21

Table 2. Physical Filenames for Components of a PCP Archive Log 45

Table 3. Filenames for PCP Archive Log Components (archive.*) 159

Table 4. Performance Co-Pilot Acronyms and Their Meanings 203

007–2614–004 xiii

About This Guide

This guide describes the Performance Co-Pilot (PCP) software package of
advanced performance tools for the SGI family of graphical workstations and
servers.

The Performance Co-Pilot User’s and Administrator’s Guide documents both the
PCP features that are embedded in the IRIX operating system and those that are
in the Performance Co-Pilot (PCP) software package, which users purchase
separately.

The Performance Co-Pilot IRIX Base Software Administrator’s Guide documents the
PCP features that are embedded in the IRIX operating system. This manual is a
subset of the Performance Co-Pilot User’s and Administrator’s Guide.

Performance Co-Pilot provides a systems-level suite of tools that cooperate to
deliver integrated performance monitoring and performance management
services spanning the hardware platforms, operating systems, service layers,
database management systems, and user applications.

“About This Guide” includes short descriptions of the chapters in this book,
directs you to additional sources of information, and explains typographical
conventions.

What This Guide Contains

This guide contains the following chapters:

• Chapter 1, page 1, provides an introduction, a brief overview of the software
components, and conceptual foundations of the PCP product.

• Chapter 2, page 25, describes the basic installation and configuration steps
necessary to get PCP running on your systems.

• Chapter 3, page 43, summarizes user interface components that are common
to most of the graphical tools and text-based utilities that constitute the PCP
monitor software.

• Chapter 4, page 61, describes the basic interactive performance monitoring
tools available in PCP, including pmchart, pmgadgets, pmkstat,
pmdumptext, pmval, pmem, pminfo, and pmstore.

007–2614–004 xv

Performance Co-PilotTM User’s and Administrator’s Guide

• Chapter 5, page 95, discusses the various 3D visualization tools that are
provided to enable high-level monitoring, management, and diagnosis for
performance problems.

• Chapter 6, page 117, introduces the automated reasoning facilities of PCP
that provide both real-time and retrospective filtering of performance data to
identify adverse performance scenarios and raise alarms.

• Chapter 7, page 155, covers the PCP services and utilities that support
archive logging for capturing accurate historical performance records.

• Chapter 8, page 177, presents the various options for deploying PCP
functionality across systems spanning the enterprise.

• Chapter 9, page 189, describes the procedures necessary to ensure that the
PCP configuration is customized in ways that maximize the coverage and
quality of performance monitoring and management services.

• Appendix A, page 203, provides a comprehensive list of the acronyms used
in this guide, in the man pages, and in the release notes for Performance
Co-Pilot.

Audience for This Guide

This guide is written for the system administrator or performance analyst who
is directly using and administering PCP applications. It is assumed that you
have installed IRIS InSight for viewing online books, or have access to the IRIX
Admin manual set, including IRIX Admin: System Configuration and Operation,
and the Personal System Administration Guide as hard copy documents.

Additional Resources

The Performance Co-Pilot Programmer’s Guide is a companion document intended
for application developers who wish to use the PCP framework and services for
exporting additional collections of performance metrics, or for delivering new
or customized applications to enhance performance management.

Additional resources include man pages, release notes, and SGI web sites.

Man Pages

The IRIX man pages provide concise reference information on the use of IRIX
commands, subroutines, and system resources. There is usually a man page for

xvi 007–2614–004

About This Guide

each PCP command or subroutine. To see a list of all the PCP man pages, enter
the following command:

man -k performance

To see a particular man page, supply its name to the man command, for
example:

man pcp

The man pages are divided into the following seven sections:

(1) General commands

(2) System calls and error numbers

(3) Library subroutines

(4) File formats

(5) Miscellaneous

(6) Demos and games

(7) Special files

When referring to man pages, this guide follows a standard UNIX convention:
the section number in parentheses follows the item. For example, PMDA(3) refers
to the man page in section 3 for the pmda command.

Release Notes

Release notes provide specific information about the current release, available
online through the relnotes(1) command. Exceptions to the printed and
online documentation are found in the release notes. The grelnotes
command provides a graphical interface to the release notes of all products
installed on your system.

SGI Web Sites

The following Web sites are accessible to everyone with general Internet access:

http://www.sgi.com

The SGI general Web site, with search capability.

http://www.sgi.com/software

Links to Performance Co-Pilot product information.

007–2614–004 xvii

Performance Co-PilotTM User’s and Administrator’s Guide

http://techpubs.sgi.com

The SGI Technical Publications Library.

Obtaining Publications

To order a document, call +1 651 683 5907. SGI employees may send e-mail to
orderdsk@sgi.com.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions Used in This Guide

These type conventions and symbols are used in this guide:

Italics Italic typeface denotes variable entries and words
or concepts being defined.

Fixed-width type This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
keys, messages, error messages, prompts,
onscreen text, and programming language
structures.

Bold fixed-width
type

This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

ALL CAPS All capital letters denote environment variables,
operator names, directives, defined constants, and
macros in C programs.

() Parentheses that follow function names surround
function arguments or are empty if the function
has no arguments; parentheses that follow IRIX
commands surround man page section numbers.

[] Brackets surround optional syntax statement
arguments.

The pound character is the IRIX shell prompt for
the superuser (root).

xviii 007–2614–004

About This Guide

% The percent character is the IRIX shell prompt for
users other than the superuser.

>> Two greater than characters denote the Command
Monitor prompt.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. Be sure to include the title and part number of
the document with your comments.

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Send a fax to the attention of “Technical Publications” at: +1 650 932 0801.

• Use the Feedback option on the Technical Publications Library World Wide
Web page:

http://techpubs.sgi.com

• Call the Technical Publications Group, through the Technical Assistance
Center, at: 1 800 800 4SGI.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy.
Mountain View, California 94043–1351

We value your comments and will respond to them promptly.

007–2614–004 xix

Introduction to Performance Co-Pilot [1]

This chapter provides an introduction to Performance Co-Pilot (PCP), an
overview of its individual components, and conceptual information to help you
use this product.

The following sections are included:

• Section 1.1, page 1, covers the intended purposes of PCP.

• Section 1.2, page 5, describes PCP tools and agents.

• Section 1.3, page 13, discusses the design theories behind PCP.

1.1 Objectives

Performance Co-Pilot (PCP) provides a range of services that may be used to
monitor and manage system performance. These services are distributed and
scalable to accommodate the most complex system configurations and
performance problems.

1.1.1 PCP Target Usage

PCP is targeted at the performance analyst, benchmarker, capacity planner,
developer, database administrator, or system administrator with an interest in
overall system performance and a need to quickly isolate and understand
performance behavior, resource utilization, activity levels, and bottlenecks in
complex systems. Platforms that can benefit from this level of performance
analysis include large servers, server clusters, or multiserver sites delivering
database management systems (DBMS), compute, Web, file, or video services.

1.1.2 Empowering the PCP User

To deal efficiently with the dynamic behavior of complex systems, performance
analysts need to filter out noise from the overwhelming stream of performance
data, and focus on exceptional scenarios. Visualization of current and historical
performance data, and automated reasoning about performance data, effectively
provide this filtering.

From the PCP end user’s perspective, PCP presents an integrated suite of tools,
user interfaces, and services that support real-time and retrospective

007–2614–004 1

Performance Co-PilotTM User’s and Administrator’s Guide

performance analysis, with a bias towards eliminating mundane information
and focusing attention on the exceptional and extraordinary performance
behaviors. When this is done, the user can concentrate on in-depth analysis or
target management procedures for those critical system performance problems.

1.1.3 Unification of Performance Metric Domains

At the lowest level, performance metrics are collected and managed in
autonomous performance domains such as the IRIX operating system, a
database management system, a layered service, or an end-user application.
These domains feature a multitude of access control policies, access methods,
data semantics, and multiversion support. All this detail is irrelevant to the
developer or user of a performance monitoring tool, and is hidden by the PCP
infrastructure.

Performance Metrics Domain Agents (PMDAs) within PCP encapsulate the
knowledge about, and export performance information from, autonomous
performance domains.

1.1.4 Uniform Naming and Access to Performance Metrics

Usability and extensibility of performance management tools mandate a single
scheme for naming performance metrics. The set of defined names constitutes a
Performance Metrics Name Space (PMNS). Within PCP, the PMNS is adaptive
so it can be extended, reshaped, and pruned to meet the needs of particular
applications and users.

PCP provides a single interface to name and retrieve values for all performance
metrics, independently of their source or location.

1.1.5 PCP Distributed Operation

From a purely pragmatic viewpoint, a single workstation must be able to
monitor the concurrent performance of multiple remote hosts. At the same time,
a single host may be subject to monitoring from multiple remote workstations.

These requirements suggest a classic client-server architecture, which is exactly
what PCP uses to provide concurrent and multiconnected access to
performance metrics, independent of their host location.

2 007–2614–004

Introduction to Performance Co-Pilot [1]

1.1.6 Dynamic Adaptation to Change

Complex systems are subject to continual changes as network connections fail
and are reestablished; nodes are taken out of service and rebooted; hardware is
added and removed; and software is upgraded, installed, or removed. Often
these changes are asynchronous and remote (perhaps in another geographic
region or domain of administrative control).

The distributed nature of the PCP (and the modular fashion in which
performance metrics domains can be installed, upgraded, and configured on
different hosts) enables PCP to adapt concurrently to changes in the monitored
system(s). Variations in the available performance metrics as a consequence of
configuration changes are handled automatically and become visible to all
clients as soon as the reconfigured host is rebooted or the responsible agent is
restarted.

PCP also detects loss of client-server connections, and most clients support
subsequent automated reconnection.

1.1.7 Logging and Retrospective Analysis

A range of tools is provided to support flexible, adaptive logging of
performance metrics for archive, playback, remote diagnosis, and capacity
planning. PCP archive logs may be accumulated either at the host being
monitored, at a monitoring workstation, or both.

A universal replay mechanism, modeled on VCR controls, supports play, step,
rewind, fast forward at variable speed processing of archived performance data.

Most PCP applications are able to process archive logs and real-time
performance data with equal facility. Unification of real-time access and access
to the archive logs, in conjunction with VCR-like viewing controls, provides
new and powerful ways to build performance tools and to review both current
and historical performance data.

1.1.8 Automated Operational Support

For operational and production environments, PCP provides a framework with
scripts to customize in order to automate the execution of ongoing tasks such as
these:

• Centralized archive logging for multiple remote hosts

• Archive log rotation, consolidation, and culling

007–2614–004 3

Performance Co-PilotTM User’s and Administrator’s Guide

• Web-based publishing of charts showing snapshots of performance activity
levels in the recent past

• Flexible alarm monitoring: parameterized rules to address common critical
performance scenarios and facilities to customize and refine this monitoring

• Retrospective performance audits covering the recent past; for example, daily
or weekly checks for performance regressions or quality of service problems

1.1.9 PCP Extensibility

PCP permits the integration of new performance metrics into the Performance
Metrics Name Space (PMNS), the collection infrastructure, and the logging
framework. The guiding principle is, “if it is important for monitoring system
performance, and you can measure it, you can easily integrate it into the PCP
framework.”

For many PCP customers, the most important performance metrics are not
those already supported, but new performance metrics that characterize the
essence of good or bad performance at their site, or within their particular
application environment.

One example is an application that measures the round-trip time for a benign
“probe” transaction against some mission-critical application.

For application developers, a library is provided to support easy-to-use
insertion of trace and monitoring points within an application, and the
automatic export of resultant performance data into the PCP framework. Other
libraries and tools aid the development of customized and fully featured
Performance Metrics Domain Agents (PMDAs).

Extensive source code examples are provided in the distribution, and by using
the PCP toolkit and interfaces, these customized measures of performance or
quality of service can be easily and seamlessly integrated into the PCP
framework.

1.1.10 Additional PCP Features

The following PCP features are available:

Metric coverage

The core PCP modules support export of performance metrics
that include all IRIX 6.2 (and later) kernel instrumentation,

4 007–2614–004

Introduction to Performance Co-Pilot [1]

hardware instrumentation, process-level resource utilization,
and activity in the PCP collection infrastructure.

The supplied agents support over 1000 distinct performance
metrics, many of which can have multiple values, for example,
per disk, per CPU, or per process.

Additional metrics in the layered PCP product

The PCP product extends the core modules with performance
metrics that cover customizable summaries of performance
metrics, sendmail activity and queue lengths, response time
for arbitrary command execution as a quality of service
measure, a dynamic subset of processes that are interesting
according to user-defined criteria, environmental monitors for
Challenge systems, Cisco router statistics, and application
instrumentation services.

Add-on products

Additional PCP products extend the scope of performance
metrics and tools to cover the following layered services:

• World Wide Web (WWW) serving

• Oracle DBMS deployments

• HPC and array environments

• SGI IRIS FailSafe platforms

The add-on products share the basic PCP operational model,
APIs, architectural deployment, and protocols. Additional
documentation is provided with each add-on product to
describe specific installation, operation, and functional details.

1.2 Overview of Component Software

Performance Co-Pilot (PCP) is composed of text-based tools, graphical tools,
and related commands. Each tool or command is fully documented by a man
page. These man pages are named after the tools or commands they describe,
and are accessible through the man command. For example, to see the
pminfo(1) man page for the pminfo command, enter this command:

man pminfo

007–2614–004 5

Performance Co-PilotTM User’s and Administrator’s Guide

Many PCP tools and commands are accessible from an Icon Catalog on the
IRIX desktop, grouped under PerfTools. In the Toolchest Find menu,
choose PerfTools; an Icon Catalog appears, containing clickable PCP
programs. To bring up a Web-based introduction to Performance Co-Pilot, click
the AboutPCP icon.

A list of PCP tools and commands, grouped by functionality, is provided in the
following four sections.

1.2.1 Performance Monitoring and Visualization

The following tools provide the principal services for the PCP end-user with an
interest in monitoring, visualizing, or processing performance information
collected either in real time or from PCP archive logs:

dkvis Displays a three-dimension bar chart showing
activity in the disk subsystem. It is a front-end
wrapper for pmview.

mpvis Displays a three-dimension bar chart of
multiprocessor CPU utilization. It is a front-end
wrapper for pmview.

nfsvis Displays a three-dimension bar chart showing
NFS (Network File System) client and server
request activity, for systems on which the
optional NFS software product has been installed.
It is a front-end wrapper for pmview.

nodevis Visualizes SGI Origin node statistics on platforms
that support this hardware.

osvis Displays three-dimension bar charts covering
many aspects of system performance, including
disk use, job load, memory, CPU activity, and
network I/O. It is a front-end wrapper for
pmview.

oview Visualizes the performance of SGI Origin systems,
showing a dynamic display of Origin node
topology and performance.

pmchart Displays trends over time for arbitrarily selected
performance metrics from one or more hosts, or
from one or more performance metric domains.

6 007–2614–004

Introduction to Performance Co-Pilot [1]

pmdumpmineset Is a wrapper for pmdumptext that produces data
files suitable for importing into the MineSet data
mining product.

pmdumptext Outputs the values of performance metrics
collected live or from a PCP archive, as ASCII
text.

pmem Reports per-process memory usage statistics.
Both virtual size and prorated physical memory
usage are reported.

pmgadgets Creates a small window containing a collection of
graphical gadgets of assorted type and style,
driven by performance metrics supplied by the
PCP framework. Any numeric metric can be used
to animate a gadget. This command is not
normally invoked directly by users.

pmgcisco Monitors interface throughput for Cisco routers
using the pmgadgets tool.

pmgevctr Uses pmgadgets to display an animated gadget
that reports activity in the CPU and memory
subsystems along with selected the R10K/R12K
event counters and SGI Origin router metrics.

pmgshping Monitors service quality and availability as
measured by the shping PMDA using the
pmgadgets tool.

pmgsys Determines the hardware configuration of a
remote or local system, constructs a suitable
specification for a system-level visual monitor,
and launches the pmgadgets tool to animate the
monitor using IRIX performance metrics.

pmie Evaluates predicate-action rules over performance
metrics domain, for performance alarms,
automated system management tasks, dynamic
tuning configuration, and so on. It is an inference
engine.

pmieconf Creates parameterized rules to be used with
Performance Co-Pilot inference engine (pmie).

007–2614–004 7

Performance Co-PilotTM User’s and Administrator’s Guide

pminfo Displays information about arbitrary performance
metrics available from PCP, including help text
with -T.

pmkstat Provides a text-based display of metrics that
summarize system performance at a high level,
suitable for ASCII logs or inquiry over a modem.

pmlogsummary Calculates and reports various statistical
summaries of the performance metric values from
a PCP archive.

pmprobe Probes for performance metric availability, values,
and instances.

pmsocks Allows the execution of PCP tools through a
network firewall system provided sockd services
are supported.

pmtime Provides a graphical user interface for PCP
applications requiring time control. This
command is not normally invoked directly by
users.

pmval Provides a text-based display of the values for
arbitrary instances of a selected performance
metric, suitable for ASCII logs or inquiry over a
modem.

pmview Supports dynamic displays of clusters of related
performance metrics as groups of utilization
blocks (or towers) on a common base plane. The
pmview tool is a generalized three-dimension
(3-D) Open Inventor application. This command
is not normally invoked directly by users.

psmon Selects a subset of the actively running processes
and launches either pmchart or pmlogger to
collect per-process metrics for those processes.

routervis Visualizes SGI Origin router utilization on
platforms that support this hardware.

xbowvis Visualizes the Crossbow (XBow) packet and error
rates on platforms that support this hardware. It
is a front-end wrapper for pmview.

8 007–2614–004

Introduction to Performance Co-Pilot [1]

xlv_vis Visualizes XLV volume activity and performance.

1.2.2 Collecting, Transporting, and Archiving Performance Information

PCP provides the following tools to support real-time data collection, network
transport, and archive log creation services for performance data:

mkaf Aggregates an arbitrary collection of PCP archive
logs into a “folio” to be used with pmafm.

mkpmemarch Creates a PCP archive suitable for use with the
pmem tool.

pmafm Interrogates, manages, and replays an archive
folio as created by mkaf, or the periodic archive
log management scripts, or the record mode of
other PCP tools.

pmcd Is the Performance Metrics Collection Daemon
(PMCD). This daemon must run on each system
being monitored, to collect and export the
performance information necessary to monitor
the system.

pmcd_wait Waits for pmcd to be ready to accept client
connections.

pmdacisco Extracts performance metrics from one or more
Cisco routers. It is a Performance Metrics Domain
Agent (PMDA).

pmdahotproc Exports performance metrics from an instance
domain of processes restricted to an interesting or
“hot” set. It is a PMDA.

pmdamailq Exports performance metrics describing the
current state of items in the sendmail queue. It
is a PMDA.

pmdasendmail Exports mail activity statistics from sendmail. It
is a PMDA.

pmdashping Exports performance metrics for the availability
and quality of service (response-time) for
arbitrary shell commands. It is a PMDA.

pmdasummary Derives performance metrics values from values
made available by other PMDAs. It is a PMDA.

007–2614–004 9

Performance Co-PilotTM User’s and Administrator’s Guide

pmdatrace Exports transaction performance metrics from
application processes that use the pcp_trace
library. It is a PMDA.

pmdumplog Displays selected state information, control data,
and metric values from a PCP archive log created
by pmlogger.

pmimport Converts arbitrary time-stamped data into a PCP
archive. Shipped configurations enable SAR data
files from sadc to be translated into PCP archives.

pmlc Exercises control over an instance of the PCP
archive logger pmlogger, to modify the profile of
which metrics are logged and/or how frequently
their values are logged.

pmlogcheck Performs integrity check for PCP archives.

pmlogconf Creates or modifies pmlogger configuration files
for most common logging scenarios. It is an
interactive script.

pmlogger Creates PCP archive logs of performance metrics
over time. Many tools accept these PCP archive
logs as alternative sources of metrics for
retrospective analysis.

pmlogextract Reads one or more PCP archive logs and creates a
temporally merged and reduced PCP archive log
as output.

pmtrace Provides a simple command line interface to the
trace PMDA and its associated pcp_trace
library.

1.2.3 Operational and Infrastructure Support

PCP provides the following tools to support the PCP infrastructure and assist
operational procedures for PCP deployment in a production environment:

autofsd_probe Probes the availability of the AutoFS
mount/unmount daemon. It is used by the
shping PMDA.

dkmap Creates a map of disk real estate usage.

10 007–2614–004

Introduction to Performance Co-Pilot [1]

dkping Opens the named disk for reading and checks for
a response.

dkprobe Initializes disk performance metrics at boot time
for some IRIX versions. It may be called from
/etc/init.d/pcp.

hipprobe Probes the state of the configured HIPPI
interfaces. Used by the shping PMDA.

memclaim Allocates and holds physical memory, simulating
a reduction in physical memory.

pmbrand Manages the “branded” file of valid PCP licenses.

pcp Summarizes that state of a PCP installation.

pmdate Displays the current date and/or time, with an
optional offset.

pmdbg Describes the available facilities and associated
control flags. PCP tools include internal
diagnostic and debugging facilities that may be
activated by run-time flags.

pmerr Translates PCP error codes into human-readable
error messages.

pmhostname Reports hostname as returned by
gethostbyname. Used in assorted PCP
management scripts.

pmie_check Administration of the Performance Co-Pilot
inference engine (pmie).

pmlaunch Contains metrics specification formats and a set
of scripts for use by tools that are launching, and
being launched by, other tools with no knowledge
of each other. It is a configuration directory.

pmlock Attempts to acquire an exclusive lock by creating
a file with a mode of 0.

pmlogger_* Allows you to create a customized regime of
administration and management for PCP archive
log files. The pmlogger_check,
pmlogger_daily, and pmlogger_merge
scripts are intended for periodic execution via the
cron command.

007–2614–004 11

Performance Co-PilotTM User’s and Administrator’s Guide

pmnsmerge Merges multiple PMNS files together, as used by
the components of the PCP.

pmnewlog Performs archive log rotation by stopping and
restarting an instance of pmlogger.

pmnsadd Adds a subtree of new names into a PMNS, as
used by the components of PCP.

pmnscomp Compiles a PMNS in ASCII format into a more
efficient binary representation.

pmnsdel Removes a subtree of names from a PMNS, as
used by the components of the PCP.

pmpost Appends the text message to the end of the PCP
notice board file (/var/adm/pcplog/NOTICES).

pmrun Is a graphical utility for launching PCP
commands with optional arguments from the
IRIX desktop.

pmsnap Creates performance snapshots suitable for Web
publishing from PCP archives using pmsnap. The
pmsnap script is intended for periodic execution
via the cron command.

pmstore Reinitializes counters or assigns new values to
metrics that act as control variables. The
command changes the current values for the
specified instances of a single performance metric.

1.2.4 Application and Agent Development

The following PCP tools aid the development of new programs to consume
performance data, and new agents to export performance data within the PCP
framework:

chkhelp Checks the consistency of performance metrics
help database files.

dbpmda Allows PMDA behavior to be exercised and
tested. It is an interactive debugger for PMDAs.

newhelp Generates the database files for one or more
source files of PCP help text.

12 007–2614–004

Introduction to Performance Co-Pilot [1]

PMAPI Defines a procedural interface for developing PCP
client applications. It is the Performance Metrics
Application Programming Interface (PMAPI).

pmclient Is a simple client that uses the PMAPI to report
some high-level system performance metrics. The
source code for pmclient is included in the
distribution.

PMDA Is a library used by many shipped PMDAs to
communicate with a pmcd process. It can expedite
the development of new and custom PMDAs.

pmgenmap Generates C declarations and cpp macros to aid
the development of customized programs that
use the facilities of PCP. It is a program
development tool.

1.3 Conceptual Foundations

The following sections provide a detailed overview of concepts that underpin
Performance Co-Pilot (PCP).

1.3.1 Performance Metrics

Across all of the supported performance metric domains, there are a large
number of performance metrics. Each metric has its own structure and
semantics. PCP presents a uniform interface to these metrics, independent of
the underlying metric data source.

The Performance Metrics Name Space (PMNS) provides a hierarchical
classification of external metric names, and a mapping from external names to
internal metric identifiers. See Section 1.3.6, page 17 for a description of the
PMNS.

1.3.2 Performance Metric Instances

When performance metric values are returned to a requesting application, there
may be more than one value instance for a particular metric; for example,
independent counts for each CPU, process, disk, or local filesystem. Internal
instance identifiers correspond one to one with external (textual) descriptions of
the members of an instance domain.

007–2614–004 13

Performance Co-PilotTM User’s and Administrator’s Guide

Transient performance metrics (such as per-process information, per-XLV
volume, and so on) cause repeated requests for the same metric to return
different numbers of values, or changes in the particular instance identifiers
returned. These changes are expected and fully supported by the PCP
infrastructure; however, metric instantiation is guaranteed to be valid only at
the time of collection.

1.3.3 Current Metric Context

When performance metrics are retrieved, they are delivered in the context of a
particular source of metrics, a point in time, and a profile of desired instances.
This means that the application making the request has already negotiated to
establish the context in which the request should be executed.

A metric source may be the current performance data from a particular host (a
live or real-time source), or an archive log of performance data collected by
pmlogger at some distant host or at an earlier time (a retrospective or archive
source).

By default, the collection time for a performance metric is the current time of
day for real-time sources, or current point within an archive source. For
archives, the collection time may be reset to an arbitrary time within the bounds
of the archive log.

Note: Performance Co-Pilot 2.x, and IRIX release 6.5, were developed to be
completely Year 2000 compliant.

1.3.4 Sources of Performance Metrics and Their Domains

Instrumentation for the purpose of performance monitoring typically consists of
counts of activity or events, attribution of resource consumption, and
service-time or response-time measures. This instrumentation may exist in one
or more of the functional domains as shown in Figure 1.

14 007–2614–004

Introduction to Performance Co-Pilot [1]

Access method

Performance

metric

domains

IRIX
DBMS Layered

End-user

service

XYZ

application

ABC

Access method Access method Access method

a12189

Figure 1. Performance Metric Domains as Autonomous Collections of Data

Each domain has an associated access method:

• The IRIX kernel, including sar data structures, per-process resource
consumption, network statistics, disk activity, or memory management
instrumentation.

• A DBMS such as the V$ views and bstat/estat summaries for Oracle, the
tbmonitor statistics for Informix, or the sp_monitor procedures for
Sybase.

• A layered software service such as activity logs for a World Wide Web
server or an NNTP news server.

• An application program such as measured response time for a production
application running a periodic and benign probe transaction (as often
required in service quality agreements), or rate of computation and
throughput in jobs per hour for a batch stream.

• A layered system product such as the temperature, voltage levels, and fan
speeds from the environmental monitor in a Challenge system, or the length
of the mail queue as reported by mqueue.

• External equipment such as network routers and bridges.

For each domain, the set of performance metrics may be viewed as an abstract
data type, with an associated set of methods that may be used to perform the
following tasks:

• Interrogate the metadata that describes the syntax and semantics of the
performance metrics

007–2614–004 15

Performance Co-PilotTM User’s and Administrator’s Guide

• Control (enable or disable) the collection of some or all of the metrics

• Extract instantiations (current values) for some or all of the metrics

We refer to each functional domain as a performance metrics domain and
assume that domains are functionally, architecturally, and administratively
independent and autonomous. Obviously the set of performance metrics
domains available on any host is variable, and changes with time as software
and hardware are installed and removed.

The number of performance metrics domains may be further enlarged in
cluster-based or network-based configurations, where there is potentially an
instance of each performance metrics domain on each node. Hence, the
management of performance metrics domains must be both extensible at a
particular host and distributed across a number of hosts.

Each performance metrics domain on a particular host must be assigned a
unique Performance Metrics Domain Identifier (PMDI). In practice, this means
unique identifiers are assigned globally for each performance metrics domain
type. For example, the same identifier would be used for the IRIX performance
metrics domain on all hosts.

1.3.5 Distributed Collection

The performance metrics collection architecture is distributed, in the sense that
any performance tool may be executing remotely. However, a PMDA must run
on the system for which it is collecting performance measurements. In most
cases, connecting these tools together on the collection host is the responsibility
of the pmcd process, as shown in Figure 2.

16 007–2614–004

Introduction to Performance Co-Pilot [1]

pmcd

PMDA PMDA PMDA PMDA

pmcd

PMDA

Local HostRemote Host

Monitor Monitor Monitor

a12190

Figure 2. Process Structure for Distributed Operation

The host running the monitoring tools does not require any collection tools,
including pmcd, because all requests for metrics are sent to the pmcd process on
the collector host. These requests are then forwarded to the appropriate
PMDAs, which respond with metric descriptions, help text, and most
importantly, metric values.

The connections between monitor clients and pmcd processes are managed in
libpcp, below the PMAPI level; see the PMAPI(3) man page. Connections
between PMDAs and pmcd are managed by the PMDA routines; see the
PMDA(3) man page. There can be multiple monitor clients and multiple PMDAs
on the one host, but there may be at most one pmcd process.

1.3.6 Performance Metrics Name Space

Internally, each unique performance metric is identified by a Performance Metric
Identifier (PMID) drawn from a universal set of identifiers, including some that
are reserved for site-specific, application-specific, and customer-specific use.

007–2614–004 17

Performance Co-PilotTM User’s and Administrator’s Guide

An external name space (the Performance Metrics Name Space, or PMNS) maps
from a hierarchy (or tree) of external names to PMIDs.

Each node in the name space tree is assigned a label that must begin with an
alphabet character, and be followed by zero or more alphanumeric characters or
the underscore (_) character. The root node of the tree has the special label of
root.

A metric name is formed by traversing the tree from the root to a leaf node
with each node label on the path separated by a period. The common prefix
root. is omitted from all names. For example, Figure 3 shows the nodes in a
small subsection of a PMNS.

recv

hw

routernetwork

tcppercpu

kernel

root

all

... syscall ...

udp

...
rcvpack total_util...

...

...
a12191

Figure 3. Small Performance Metrics Name Space (PMNS)

In this subsection, the following are valid names for performance metrics:

kernel.percpu.syscall

network.tcp.rcvpack

hw.router.recv.total_util

18 007–2614–004

Introduction to Performance Co-Pilot [1]

Although a default PMNS is shipped and updated by the components of PCP,
individual users may create their own name space for metrics of interest, and
all tools may use a private PMNS, rather than the default PMNS.

1.3.6.1 Distributed PMNS

In Performance Co-Pilot 1.x releases, the PMNS was local to the application that
referred to PCP metrics by name. As of Performance Co-Pilot release 2.0, PMNS
operations are directed to the host or archive that is the source of the desired
performance metrics.

Distributed PMNS necessitated changes to PCP protocols between client
applications and pmcd, and to the internal format of PCP archive files.
Performance Co-Pilot release 2.x is compatible with earlier releases, so new PCP
components operate correctly with either new or old PCP components. For
example, connections to the PCP 1.x pmcd, or attempts to process a PCP archive
created by a Performance Co-Pilot 1.x pmlogger, revert to using the local
PMNS.

1.3.7 Descriptions for Performance Metrics

Through the various performance metric domains, the PCP must support a
wide range of formats and semantics for performance metrics. This metadata
describing the performance metrics includes the following:

• The internal identifier (Performance Metric Identifier or PMID) for the metric

• The format and encoding for the values of the metric, for example, an
unsigned 32-bit integer or a string or a 64-bit IEEE format floating point
number

• The semantics of the metric, particularly the interpretation of the values as
free-running counters or instantaneous values

• The dimensionality of the values, in the dimensions of events, space, and
time

• The scale of values; for example, bytes, kilobytes (Kbyte), or megabytes
(Mbyte) for the space dimension

• An indication if the metric may have one or many associated values

• Short (and extended) help text describing the metric

007–2614–004 19

Performance Co-PilotTM User’s and Administrator’s Guide

For each metric, this metadata is defined within the associated PMDA, and PCP
arranges for the information to be exported to the performance tools
applications that use the metadata when interpreting the values for
performance metrics.

1.3.8 Values for Performance Metrics

The following sections describe two types of performance metrics, single-valued
and set-valued.

1.3.8.1 Single-Valued Performance Metrics

Some performance metrics have a singular value within their performance
metric domains. For example, available memory (or the total number of context
switches) has only one value per performance metric domain, that is, one value
per host. The metadata describing the metric makes this fact known to
applications that process values for these metrics.

1.3.8.2 Set-Valued Performance Metrics

Some performance metrics have a set of values or instances in each
implementing performance metric domain. For example, one value for each
disk, one value for each process, one value for each CPU, or one value for each
activation of a given application.

When a metric has multiple instances, the PCP framework does not pollute the
name space with additional metric names; rather, a single metric may have an
associated set of values. These multiple values are associated with the members
of an instance domain, such that each instance has a unique instance identifier
within the associated instance domain. For example, the “per CPU” instance
domain may use the instance identifiers 0, 1, 2, 3, and so on to identify the
configured processors in the system.

Internally, instance identifiers are encoded as binary values, but each
performance metric domain also supports corresponding strings as external
names for the instance identifiers, and these names are used at the user
interface to the PCP utilities.

For example, the performance metric disk.dev.total counts I/O operations
for each disk spindle, and the associated instance domain contains one member
for each disk spindle. On a system with five specific disks, one value would be
associated with each of the external and internal instance identifier pairs shown
in Table 1.

20 007–2614–004

Introduction to Performance Co-Pilot [1]

Table 1. Sample Instance Identifiers for Disk Statistics

External Instance Identifier Internal Instance Identifiers

dks1d1 131329

dks1d2 131330

dks1d3 131331

dks3d1 131841

dks3d2 131842

Multiple performance metrics may be associated with a single instance domain.

Each performance metric domain may dynamically establish the instances
within an instance domain. For example, there may be one instance for the
metric kernel.percpu.idle on a workstation, but multiple instances on a
multiprocessor server. Even more dynamic is filesys.free, where the values
report the amount of free space per file system, and the number of values tracks
the mounting and unmounting of local filesystems.

PCP arranges for information describing instance domains to be exported from
the performance metric domains to the applications that require this
information. Applications may also choose to retrieve values for all instances of
a performance metric, or some arbitrary subset of the available instances.

1.3.9 Collector and Monitor Roles

Hosts supporting PCP services are broadly classified into two categories:

Collector Hosts that have pmcd and one or more
Performance Metric Domain Agents (PMDAs)
running to collect and export performance metrics

Monitor Hosts that import performance metrics from one
or more collector hosts to be consumed by tools
to monitor, manage, or record the performance of
the collector hosts

Each PCP enabled host can operate as a collector, a monitor, or both.

007–2614–004 21

Performance Co-PilotTM User’s and Administrator’s Guide

1.3.10 Performance Metrics Collection System

PCP provides an infrastructure through the Performance Metrics Collection
System (PMCS). It unifies the autonomous and distributed PMDAs into a
cohesive pool of performance data, and provides the services required to create
generalized and powerful performance tools.

The PMCS provides the framework that underpins the PMAPI, which is
described in the Performance Co-Pilot Programmer’s Guide. The PMCS is
responsible for the following services on behalf of the performance tools
developed on top of the PMAPI:

• Distributed namespace services

• Instance domain services

• Coordination with the processes and procedures required to control the
description, collection, and extraction of performance metric values from
agents that interface to the performance metric domains

• Servicing incoming requests for local performance metric values and
metadata from applications running either locally or on a remote system

1.3.11 Retrospective Sources of Performance Metrics

The PMCS described in the previous section is used when PMAPI clients are
requesting performance metrics from a real-time or live source.

The PMAPI also supports delivery of performance metrics from a historical
source in the form of a PCP archive log. Archive logs are created using the
pmlogger utility, and are replayed in an architecture as shown in Figure 4.

22 007–2614–004

Introduction to Performance Co-Pilot [1]

Monitor

PCP Archive Log PCP Archive Log

PMAPI

a12192

Figure 4. Architecture for Retrospective Analysis

The PMAPI has been designed to minimize the differences required for an
application to process performance data from an archive or from a real-time
source. As a result, most PCP tools support live and retrospective monitoring
with equal facility.

1.3.12 Product Extensibility

Much of the PCP product’s potential for attacking difficult performance
problems in production environments comes from the design philosophy that
considers extensibility to be critically important.

The performance analyst can take advantage of the PCP infrastructure to
deploy value-added performance monitoring tools and services. Here are some
examples:

• Easy extension of the PMCS and PMNS to accommodate new performance
metrics and new sources of performance metrics, in particular using the
interfaces of a special-purpose library to develop new PMDAs (see the
PMDA(3) man page)

007–2614–004 23

Performance Co-PilotTM User’s and Administrator’s Guide

• Use of libraries (libpcp_pmda and libpcp_trace) to aid in the
development of new PMDAs to export performance metrics from local
applications

• Operation on any performance metric using generalized toolkits

• Distribution of PCP components such as collectors across the network,
placing the service where it can do the most good

• Dynamic adjustment to changes in system configuration

• Flexible customization built into the design of all PCP tools

• Creation of new monitor applications, using the routines described in the
PMAPI(3) man page

24 007–2614–004

Installing and Configuring Performance
Co-Pilot [2]

The sections in this chapter describe the basic installation and configuration
steps necessary to run Performance Co-Pilot (PCP) on your systems. The
following major sections are included:

• Section 2.1 describes the main packages of PCP software and how they must
be installed on each system.

• Section 2.2, page 26, describes the additional options available for PCP.

• Section 2.3, page 27, describes the licensing issues necessary to operate PCP
in a distributed computing environment.

• Section 2.4, page 27, describes the fundamentals of maintaining the
performance data collector.

• Section 2.5, page 34, describes the basics of installing a new Performance
Metric Domain Agent to collect metric data and pass it to the PMCD.

• Section 2.6, page 37, offers advice on problems involving the PMCD.

2.1 Product Structure

In a typical deployment, Performance Co-Pilot (PCP) would be installed in a
collector configuration on one or more hosts, from which the performance
information could then be collected, and in a monitor configuration on one or
more workstations, from which the performance of the server systems could
then be monitored.

PCP is packaged into a number of basic subsystem types that reflect the
functional role of the product components. These subsystems may be installed
using the inst or swmgr command:

Core The pcp_eoe.sw.eoe and pcp.sw.base
subsystems must be installed on every PCP
enabled host, that is, on both PCP monitor and
PCP collection systems.

Monitor The pcp_eoe.sw.monitor and
pcp.sw.monitor subsystems must be installed

007–2614–004 25

Performance Co-PilotTM User’s and Administrator’s Guide

on every PCP monitor host. Subsystems
pcp_eoe.books.help and pcp.books.help
should be installed to provide help support for
the GUI monitoring tools; see the sgihelp(1)
man page.

Collector No additional installation is required because the
Performance Metrics Collection Daemon (pmcd) is
in the pcp_eoe.sw.eoe subsystem.

Demo The pcp.sw.demo subsystems provide source
code for example applications and PMDAs that
serve as templates for developing new modules
to extend the PCP coverage of performance
metrics or the capabilities of monitoring tools.

Other The other pcp.sw.* subsystems provide the
support for the optional PMDAs, and when
required, need to be installed on the PCP
collector host, and subsequently configured
before they become active.

Gift The pcp_gifts.sw.* subsystems provide
optional applications and services that may be
individually installed as required.

Documentation The pcp.man.* and pcp.books.* subsystems
provide release notes, man pages, interactive
tutorials, and IRIS InSight books, and may be
installed as needed.

For complete information on the installable software packages, see the
Performance Co-Pilot release notes, available through the relnotes(1) or
grelnotes(1) commands.

2.2 Optional Software

The capabilities of your Performance Co-Pilot (PCP) installation may be
extended with added performance metrics or visual tools that are available as
add-on products, sold separately from the base Performance Co-Pilot product.

For example, PCP add-on products support the following:

• World Wide Web (WWW) serving

26 007–2614–004

Installing and Configuring Performance Co-Pilot [2]

• Oracle DBMS deployments

• HPC and array environments

• SGI IRIS FailSafe platforms

2.3 License Constraints

On Performance Co-Pilot (PCP) monitoring systems, all of the display,
visualization, and automated reasoning tools are licensed using “nodelocked”
FLEXlm licenses. On PCP collection systems, the Performance Metrics
Collection Daemon (PMCD) is also licensed using “nodelocked” FLEXlm
licenses. Refer to the PCP release notes for details.

The other PCP tools and services (for example, the Performance Metrics
Domain Agents (PMDAs) or pmlogger) may be installed and executed without
license constraints.

Some of the PCP maintenance tools for updating the Performance Metrics
Name Space (PMNS), interrogating the Performance Metrics Collection System
(PMCS), dumping an archive log, and so on, are not constrained by any license
restrictions.

2.3.1 Using pmbrand to Query PCP License Capabilities

The pmbrand command manages the /var/pcp/pmns/Brand file, which
contains binary information about PCP capabilities enabled by the various valid
licenses on the system. If you are unsure of the license status for a particular
host, pmbrand verifies and prints the current license information on that
system, producing output similar to the following:

/usr/pcp/bin/pmbrand -l

Licenses for system 690794d70

PCP Collector
PCP Monitor

2.4 Performance Metrics Collection Daemon (PMCD)

On each Performance Co-Pilot (PCP) collection system, you must be certain that
the pmcd daemon is running. This daemon coordinates the gathering and
exporting of performance statistics in response to requests from the PCP
monitoring tools.

007–2614–004 27

Performance Co-PilotTM User’s and Administrator’s Guide

2.4.1 Starting and Stopping the PMCD

To start the daemon, enter the following commands as root on each PCP
collection system:

chkconfig pmcd on
/etc/init.d/pcp start

These commands instruct the system to start the daemon immediately, and
again whenever the system is booted. It is not necessary to start the daemon on
the monitoring system unless you wish to collect performance information from
it as well.

To stop pmcd immediately on a PCP collection system, enter the command

/etc/init.d/pcp stop

2.4.2 Restarting an Unresponsive PMCD

Often, if a daemon is not responding on a PCP collection system, the problem
can be resolved by stopping and then immediately restarting a fresh instance of
the daemon. If you need to stop and then immediately restart pmcd on a PCP
collection system, use the start argument provided with the script in
/etc/init.d. The command syntax is

/etc/init.d/pcp start

On startup, pmcd looks for a configuration file named /etc/pmcd.conf. This
file specifies which agents cover which performance metrics domains and how
pmcd should make contact with the agents. A comprehensive description of the
configuration file syntax and semantics can be found in the pmcd(1) man page.

If the configuration is changed, pmcd reconfigures itself when it receives the
SIGHUP signal. Use the following command to send the SIGHUP signal to the
daemon:

killall -HUP pmcd

This is also useful when one of the PMDAs managed by pmcd has failed or has
been terminated by pmcd. Upon receipt of the SIGHUP signal, pmcd restarts
any PMDA that is configured but inactive.

28 007–2614–004

Installing and Configuring Performance Co-Pilot [2]

2.4.3 PMCD Diagnostics and Error Messages

If there is a problem with pmcd, the first place to investigate should be the
pmcd.log file. By default, this file is in the /var/adm/pcplog directory,
although setting the PCPLOGDIR environment variable before running
/etc/init.d/pcp allows the file to be relocated.

2.4.4 PMCD Options and Configuration Files

There are two files that control PMCD operation. These are the
/etc/pmcd.conf and /etc/config/pmcd.options files. The
pmcd.options file contains the command line options used with PMCD; it is
read when the daemon is invoked by /etc/init.d/pcp. The pmcd.conf file
contains configuration information regarding domain agents and the metrics
that they monitor. These configuration files are described in the following
sections.

2.4.4.1 The pmcd.options File

Command line options for the PMCD are stored in the
/etc/config/pmcd.options file. The PMCD can be invoked directly from a
shell prompt, or it can be invoked by /etc/init.d/pcp as part of the boot
process. It is usual and normal to invoke it using /etc/init.d/pcp,
reserving shell invocation for debugging purposes.

The PMCD accepts certain command line options to control its execution, and
these options are placed in the pmcd.options file when /etc/init.d/pcp is
being used to start the daemon. The following options are available:

-f Causes the PMCD to be run in the foreground.
The PMCD is usually run in the background, as
are most daemons.

-i address For hosts with more than one network interface,
this option specifies the interface on which this
instance of the PMCD accepts connections.
Multiple -i options may be specified. The
default in the absence of any -i option is for
PMCD to accept connections on all interfaces.

-l file Specifies a log file. If no -l option is specified,
the log file name is pmcd.log and it is created in
the directory /var/adm/pcplog or in a
directory as specified by the PCPLOGDIR
environment variable.

007–2614–004 29

Performance Co-PilotTM User’s and Administrator’s Guide

-t seconds Specifies the amount of time, in seconds, before
PMCD times out on Protocol Data Unit (PDU)
exchanges with PMDAs. If no time out is
specified, the default is five seconds. Setting time
out to zero disables time outs.

The time out may be dynamically modified by
storing the number of seconds into the metric
pmcd.control.timeout using pmstore.

-T mask Specifies whether connection and PDU tracing are
turned on for debugging purposes.

See the pmcd(1) man page for complete information on these options.

The default pmcd.options file shipped with PCP is similar to the following:

command line options to pmcd, uncomment/edit lines as required
longer timeout delay for slow agents

-t 10

suppress timeouts

-t 0

make log go someplace else

-l /some/place/else
enable event tracing (1 for connections, 2 for PDUs, 3 for both)

-T 3

The most commonly used options have been placed in this file for your
convenience. To uncomment and use an option, simply remove the pound sign
(#) at the beginning of the line with the option you wish to use. Restart pmcd
for the change to take effect; that is, as superuser, enter the command:

/etc/init.d/pcp start

2.4.4.2 The pmcd.conf File

When the PMCD is invoked, it reads its configuration file, which is
/etc/pmcd.conf. This file contains entries that specify the PMDAs
(Performance Metrics Domain Agents) used by this instance of the PMCD and
which metrics are covered by these PMDAs. Also, you may specify access
control rules in this file for the various hosts on your network. This file is
described completely in the pmcd(1) man page.

With standard PCP operation (even if you have not created and added your
own PMDAs), you might need to edit this file in order to add any access

30 007–2614–004

Installing and Configuring Performance Co-Pilot [2]

control you wish to impose. If you do not add access control rules, all access
for all operations is granted to all hosts. The default pmcd.conf file shipped
with PCP is similar to the following:

Name Id IPC IPC Params File/Cmd

irix 1 dso irix_init libirixpmda.so

pmcd 2 dso pmcd_init pmda_pmcd.so

proc 3 dso proc_init pmda_proc.so

Note: Because the PMCD runs with root privilege, you must be very careful
not to configure PMDAs in this file if you are not sure of their action. Pay
close attention that permissions on this file are not inadvertently downgraded
to allow public write access.

Each entry in this configuration file contains rules that specify how to connect
the PMCD to a particular PMDA and which metrics the PMDA monitors. A
PMDA may be attached as a Dynamic Shared Object (DSO) or by using a socket
or a pair of pipes. The distinction between these attachment methods is
described below.

An entry in the pmcd.conf file looks like this:

label_name domain_number type path

The label_name field specifies a name for the PMDA. The domain_number is an
integer value that specifies a domain of metrics for the PMDA. The type field
indicates the type of entry (DSO, socket, or pipe). The path field is for
additional information, and varies according to the type of entry.

The following rules are common to DSO, socket, and pipe syntax:

label_name An alphanumeric string identifying the agent.

domain_number An unsigned integer specifying the agent’s
domain.

DSO entries follow this syntax:

label_name domain_number dso entry-point path

The following rules apply to the DSO syntax:

dso The entry type.

entry-point The name of an initialization function called
when the DSO is loaded.

007–2614–004 31

Performance Co-PilotTM User’s and Administrator’s Guide

path Designates the location of the DSO. If path begins
with a slash (/), it is taken as an absolute path
specifying the DSO; otherwise, the DSO is located
in one of the directories /usr/pcp/lib or
/var/pcp/lib.

Socket entries in the pmcd.conf file follow this syntax:

label_name domain_number socket addr_family address command
[args]

The following rules apply to the socket syntax:

socket The entry type.

addr_family Specifies if the socket is AF_INET or AF_UNIX. If
the socket is INET, the word inet appears in this
place. If the socket is UNIX, the word unix
appears in this place.

address Specifies the address of the socket. For INET
sockets, this is a port number or port name. For
UNIX sockets, this is the name of the PMDA’s
socket on the local host.

command Specifies a command to start the PMDA when the
PMCD is invoked and reads the configuration file.

args Optional arguments for command.

Pipe entries in the pmcd.conf file follow this syntax:

label_name domain_number pipe protocol command [args]

The following rules apply to the pipe syntax:

pipe The entry type.

protocol Specifies whether a text-based or a binary PCP
protocol should be used over the pipes. Values
for this parameter may be “text” and “binary.”
The text-based protocol is provided for backwards
compatibility, but otherwise its use is discouraged.

command Specifies a command to start the PMDA when the
PMCD is invoked and reads the configuration file.

32 007–2614–004

Installing and Configuring Performance Co-Pilot [2]

args Optional arguments for command.

2.4.4.3 Controlling Access to PMCD with pmcd.conf

You can place this option extension in the pmcd.conf file to control system
access to performance metric data. To add an access control section, begin by
placing the following line at the end of your pmcd.conf file:

[access]

Below this line, you can add entries of the following forms:

allow hostlist : operations ; disallow hostlist : operations ;

The hostlist is a comma-separated list of host identifiers; the following rules
apply:

• Host names must be in the local system’s /etc/hosts file or known to the
local DNS (domain name service).

• IP addresses may be given in the usual four-field numeric notation. Subnet
addresses may be specified using three or fewer numeric components and
an asterisk as a wild card for the last component in the address.

For example, the following hostlist entries are all valid:

whizkid
gate-wheeler.eng.com

123.101.27.44

localhost

155.116.24.*

192.*

*

The operations field can be any of the following:

• A comma-separated list of the operation types described below.

• The word all to allow or disallow all operations as specified in the first field.

• The words all except and a list of operations. This entry allows or disallows
all operations as specified in the first field except those listed.

The operations that can be allowed or disallowed are as follows:

007–2614–004 33

Performance Co-PilotTM User’s and Administrator’s Guide

fetch Allows retrieval of information from the PMCD. This may be
information about a metric (such as a description, instance
domain, or help text) or an actual value for a metric.

store Allows the PMCD to store metric values in PMDAs that permit
store operations. Be cautious in allowing this operation, because
it may be a security opening in large networks, although the
PMDAs shipped with the PCP product typically reject store
operations, except for selected performance metrics where the
effect is benign.

For example, here is a sample access control portion of an /etc/pmcd.conf
file:

allow whizkid : all ;

allow 192.127.4.* : fetch ;

disallow gate-inet : store ;

Complete information on access control syntax rules in the pmcd.conf file can
be found in the pmcd(1) man page.

2.5 Managing Optional PMDAs

Some Performance Metrics Domain Agents (PMDAs) shipped with Performance
Co-Pilot (PCP) are designed to be installed and activated on every collector
host, for example, irix, pmcd, and proc.

Other PMDAs are designed for optional activation and require some user action
to make them operational. In some cases these PMDAs expect local site
customization to reflect the operational environment, the system configuration,
or the production workload. This customization is typically supported by
interactive installation scripts for each PMDA.

Each PMDA has its own directory located below /usr/pcp/pmdas or
/var/pcp/pmdas. In each directory, a README file describes the metrics
provided by the PMDA; a Remove script to unconfigure the PMDA, remove the
associated metrics from the PMNS, and restart the pmcd daemon; and an
Install script to install the PMDA, update the PMNS, and restart the pmcd
daemon.

2.5.1 PMDA Installation

To install a PMDA you must perform a collector installation for each host on
which the PMDA is required to export performance metrics. Because the PMNS

34 007–2614–004

Installing and Configuring Performance Co-Pilot [2]

is distributed as of PCP release 2.0, it is no longer necessary to install PMDAs
with their associated PMNS on PCP monitor hosts.

2.5.1.1 Installation on a PCP Collection Host

You need to update the PMNS, configure the PMDA, and notify PMCD. The
Install script for each PMDA automates these operations, as follows:

1. Log in as root (the superuser).

2. Move to the PMDA’s directory. For example:

cd /var/pcp/pmdas/cisco

3. In the unlikely event that you wish to use a non-default Performance
Metrics Domain (PMD) assignment, determine the current PMD assignment:

cat domain.h

Check that there is no conflict in the PMDs as defined in
/var/pcp/pmns/stdpmid and the other PMDAs currently in use (listed
in /etc/pmcd.conf). Edit domain.h to assign the new domain number if
there is a conflict.

4. Enter the following command:

./Install

You may be prompted to enter some local parameters or configuration
options. The script applies all required changes to the control files and to the
PMNS, and then notifies PMCD. Example 1 is illustrative of the interactions:

Example 1: PMNS Installation Output

You will need to choose an appropriate configuration for
installation of the ‘‘cisco’’ Performance Metrics Domain Agent (PMDA).

collector collect performance statistics on this system

monitor allow this system to monitor local and/or remote systems

both collector and monitor configuration for this system

Please enter c(ollector) or m(onitor) or b(oth) [b] collector

Cisco hostname or IP address? [return to quit] wanmelb

A user-level password may be required for Cisco ‘‘show int’’ command.

007–2614–004 35

Performance Co-PilotTM User’s and Administrator’s Guide

If you are unsure, try the command

$ telnet wanmelb
and if the prompt ‘‘Password:’’ appears, a user-level password is

required; otherwise answer the next question with an empty line.

User-level Cisco password? ********

Probing Cisco for list of interfaces ...

Enter interfaces to monitor, one per line in the format

tX where ‘‘t’’ is a type and one of ‘‘e’’ (Ethernet), or ‘‘f’’ (Fddi), or

‘‘s’’ (Serial), or ‘‘a’’ (ATM), and ‘‘X’’ is an interface identifier

which is either an integer (e.g. 4000 Series routers) or two

integers separated by a slash (e.g. 7000 Series routers).

The currently unselected interfaces for the Cisco ‘‘wanmelb’’ are:

e0 s0 s1

Enter ‘‘quit’’ to terminate the interface selection process.

Interface? [e0] s0

The currently unselected interfaces for the Cisco ‘‘wanmelb’’ are:

e0 s1

Enter ‘‘quit’’ to terminate the interface selection process.

Interface? [e0] s1

The currently unselected interfaces for the Cisco ‘‘wanmelb’’ are:

e0

Enter ‘‘quit’’ to terminate the interface selection process.

Interface? [e0] quit

Cisco hostname or IP address? [return to quit]

Updating the Performance Metrics Name Space (PMNS) ...

Installing pmchart view(s) ...

Terminate PMDA if already installed ...

Installing files ...
Updating the PMCD control file, and notifying PMCD ...

Check cisco metrics have appeared ... 5 metrics and 10 values

2.5.2 PMDA Removal

To remove a PMDA, you must perform a collector removal for each host on
which the PMDA is currently installed. Because the PMNS is distributed as of

36 007–2614–004

Installing and Configuring Performance Co-Pilot [2]

PCP release 2.0, it is no longer necessary to remove PMDAs or their associated
PMNS on PCP monitor hosts.

2.5.2.1 Removal on a PCP Collection Host

You need to update the PMNS, unconfigure the PMDA, and notify PMCD. The
Remove script for each PMDA automates these operations, as follows:

1. Log in as root (the superuser).

2. Move to the PMDA’s directory. For example:

cd /var/pcp/pmdas/environ

3. Enter the following command:

./Remove

The following output illustrates the result:

Culling the Performance Metrics Name Space ...

environ ... done

Updating the PMCD control file, and notifying PMCD ...

Removing files ...

Check environ metrics have gone away ... OK

2.6 Troubleshooting

The following sections offer troubleshooting advice on the Performance Metrics
Name Space (PMNS), missing and incomplete values for performance metrics,
and IRIX metrics and the PMCD.

Advice for troubleshooting the archive logging system is provided in Chapter 7,
page 155.

2.6.1 Performance Metrics Name Space

To display the PMNS, use the pminfo command; see the pminfo(1) man page.

The PMNS at the collection host is updated whenever a PMDA is installed or
removed, and may also be updated when new versions of the PCP or PCP
add-on products are installed. During these operations, the ASCII version of
the PMNS is typically updated, then the binary version is regenerated.

007–2614–004 37

Performance Co-PilotTM User’s and Administrator’s Guide

2.6.2 Missing and Incomplete Values for Performance Metrics

Missing or incomplete performance metric values are the result of their
unavailability.

2.6.2.1 Metric Values Not Available

The following symptom has a known cause and resolution:

Symptom: Values for some or all of the instances of a
performance metric are not available.

Cause: This can occur as a consequence of changes in the
installation of modules (for example, a DBMS or
an applications package) that provide the
performance instrumentation underpinning the
PMDAs. Changes in the selection of modules that
are installed or operational, along with changes in
the version of these modules, may make metrics
appear and disappear over time.

In simple terms, the PMNS contains a metric
name, but when that metric is requested, no
PMDA at the collection host supports the metric.

For archive logs, the collection of metrics to be
logged is a subset of the metrics available, so
utilities replaying from a PCP archive log may
not have access to all of the metrics available
from a live (PMCD) source.

Resolution: Make sure the underlying instrumentation is
available and the module is active. Ensure that
the PMDA is running on the host to be
monitored. If necessary, create a new archive log
with a wider range of metrics to be logged.

2.6.3 IRIX Metrics and the PMCD

The following issues involve the IRIX operating system and the PMCD:

• No IRIX metrics available

• Cannot connect to remote PMCD

• PMCD not reconfiguring after hang-up

38 007–2614–004

Installing and Configuring Performance Co-Pilot [2]

• PMCD does not start

2.6.3.1 No IRIX Metrics Available

The following symptom has a known cause and resolution:

Symptom: Some of the IRIX metrics are unavailable.

Cause: PMCD (and therefore the IRIX PMDA) does not
have permission to read /dev/kmem, or the
running kernel is not the same as the kernel in
/unix.

Resolution: Check /var/adm/pcplog/pmcd.log. An error
message of the following form means that PMCD
cannot access /dev/kmem.

kmeminit: cannot open "/dev/kmem": ...

Ensure that /dev/kmem is readable by group
sys. For example, you should see something
similar to this:

ls -lg /dev/kmem

crw-r----- 1 sys 1, 1 May 28 15:16 /dev/kmem

Restart PMCD after correcting the group and/or
file permissions, and the problem should be
solved.

If the running kernel is not the same as the kernel
in /unix, the IRIX PMDA cannot access raw data
in the kernel. A message like this appears in
/var/adm/pcplog/pmcd.log:

kmeminit: "/unix" is not namelist for the running kernel

The only resolution to this is to make the running
kernel the same as the one in /unix. If the
running kernel was booted from the filesystem,
then renaming files to make /unix the booted
kernel and restarting PMCD should resolve the
problem. If the running kernel was booted over
the network, then PMCD cannot access the
kernel’s symbol table and hence the metrics

007–2614–004 39

Performance Co-PilotTM User’s and Administrator’s Guide

extracted by reading /dev/kmem directly are not
available.

2.6.3.2 Cannot Connect to Remote PMCD

The following symptom has a known cause and resolution:

Symptom: A PCP client tool (such as pmchart, dkvis, or
pmlogger) complains that it is unable to connect
to a remote PMCD (or establish a PMAPI
context), but you are sure that PMCD is active on
the remote host.

Cause: To avoid hanging applications for the duration of
TCP time outs, the PMAPI library implements its
own time out when trying to establish a
connection to a PMCD. If the connection to the
host is over a slow network, then successful
establishment of the connection may not be
possible before the time out, and the attempt is
abandoned.

Resolution: Establish that the PMCD on far-away-host is really
alive, by connecting to its control port (TCP port
number 4321 by default):

telnet far-away-host 4321

This response indicates the PMCD is not running
and needs restarting:

Unable to connect to remote host: Connection refused

To restart the PMCD on that host, enter the
following command:

/etc/init.d/pcp start

This response indicates the PMCD is running:

Connected to far-away-host

Interrupt the telnet session, increase the PMAPI
timeout by setting the PMCD_CONNECT_TIMEOUT

40 007–2614–004

Installing and Configuring Performance Co-Pilot [2]

environment variable to some number of seconds
(60 for instance), and try the PCP tool again.

2.6.3.3 PMCD Not Reconfiguring after SIGHUP

The following symptom has a known cause and resolution:

Symptom PMCD does not reconfigure itself after receiving
the SIGHUP signal.

Cause: If there is a syntax error in /etc/pmcd.conf,
PMCD does not use the contents of the file. This
can lead to situations in which the configuration
file and PMCD’s internal state do not agree.

Resolution: Always monitor PMCD’s log. For example, use
the following command in another window when
reconfiguring PMCD, to watch errors occur:

tail -f /var/adm/pcplog/pmcd.log

2.6.3.4 PMCD Does Not Start

The following symptom has a known cause and resolution:

Symptom: If the following messages appear in the PMCD
log (/var/adm/pcplog/pmcd.log), consider
the cause and resolution:

pcp[27020] Error: OpenRequestSocket(4321) bind: Address already in

use

pcp[27020] Error: pmcd is already running

pcp[27020] Error: pmcd not started due to errors!

Cause: PMCD is already running or was terminated
before it could clean up properly. The error
occurs because the socket it advertises for client
connections is already being used or has not been
cleared by the kernel.

007–2614–004 41

Performance Co-PilotTM User’s and Administrator’s Guide

Resolution: Start PMCD as root (superuser) by typing:

/etc/init.d/pcp start

Any existing PMCD is shut down, and a new one
is started in such a way that the symptomatic
message should not appear.

If you are starting PMCD this way and the
symptomatic message appears, a problem has
occurred with the connection to one of the
deceased PMCD’s clients.

This could happen when the network connection
to a remote client is lost and PMCD is
subsequently terminated. The system may
attempt to keep the socket open for a time to
allow the remote client a chance to reestablish the
connection and read any outstanding data.

The only solution in these circumstances is to
wait until the socket times out and the kernel
deletes it. This netstat command displays the
status of the socket and any connections:

netstat -a | grep 4321

If the socket is in the FIN_WAIT or TIME_WAIT
state, then you must wait for it to be deleted.
Once the command above produces no output,
PMCD may be restarted. Less commonly, you
may have another program running on your
system that uses the same internet port number
(4321) that PMCD uses.

Refer to the PCPIntro(1) man page for a
description of how to override the default PMCD
port assignment using the PMCD_PORT
environment variable.

42 007–2614–004

Common Conventions and Arguments [3]

This chapter deals with the user interface components that are common to most
of the graphical tools and text-based utilities that make up the monitor portion
of Performance Co-Pilot (PCP). These are the major sections in this chapter:

• Section 3.1, page 43, shows a picture of the PerfTools icons.

• Section 3.2, page 44, details some basic standards used in the development
of PCP tools.

• Section 3.3, page 45, details other options to use with PCP tools.

• Section 3.4, page 47, describes the time control dialog and time-related
command line options available for use with PCP tools.

• Section 3.5, page 55, describes the environment variables supported by PCP
tools.

• Section 3.6, page 59, describes how to execute PCP tools that must retrieve
performance data from pmcd on the other side of a TCP/IP security firewall.

• Section 3.7, page 60, covers some uncommon scenarios that may
compromise performance metric integrity over the short term.

Many of the utilities provided with PCP conform to a common set of naming
and syntactic conventions for command line arguments and options. This
section outlines these conventions and their meaning. The options may be
generally assumed to be honored for all utilities supporting the corresponding
functionality.

In all cases, the man pages for each utility fully describe the supported
command arguments and options.

Command line options are also relevant when starting PCP applications from
the desktop using the Alt double-click method. This technique launches the
pmrun program to collect additional arguments to pass along when starting a
PCP application.

3.1 PerfTools Icon Catalog

The conventions and arguments described in this chapter are common to all
tools and utilities in the PerfTools Icon Catalog group, shown in Figure 5.

007–2614–004 43

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 5. PerfTools Icon Catalog Group

3.2 Alternate Metric Source Options

The default source of performance metrics is from pmcd on the local host. This
section describes how to obtain metrics from sources other than the default.

44 007–2614–004

Common Conventions and Arguments [3]

3.2.1 Fetching Metrics from Another Host

The option -h host directs any PCP utility (such as pmchart or dkvis) to
make a connection with the pmcd instance running on host. Once established,
this connection serves as the principal real-time source of performance metrics
and metadata.

3.2.2 Fetching Metrics from an Archive Log

The option -a archive directs the utility to treat the PCP archive logs with base
name archive as the principal source of performance metrics and metadata.

PCP archive logs are created with pmlogger. Most PCP utilities operate with
equal facility for performance information coming from either a real-time feed
via pmcd on some host, or for historical data from a PCP archive log. For more
information on archive logs and their use, see Chapter 7, page 155.

The base name (archive) of the PCP archive log used with the -a option
implies the existence of the files created automatically by pmlogger, as listed
in Table 2.

Table 2. Physical Filenames for Components of a PCP Archive Log

Filename Contents

archive.index Temporal index for rapid access to archive contents

archive.meta Metadata descriptions for performance metrics and
instance domains appearing in the archive

archive.N Volumes of performance metrics values, for N = 0,1,2,...

Some tools are able to concurrently process multiple PCP archive logs (for
example, for retrospective analysis of performance across multiple hosts), and
accept either multiple -a options or a comma separated list of archive names
following the -a option.

Note: The -h and -a options are mutually exclusive in all cases.

3.3 General PCP Tool Options

The following sections provide information relevant to most of the PCP tools. It
is presented here in a single place for convenience.

007–2614–004 45

Performance Co-PilotTM User’s and Administrator’s Guide

3.3.1 Common Directories and File Locations

The following files and directories are used by the PCP tools as repositories for
option and configuration files and for binaries:

/etc/pmcd.conf Configuration file for Performance Metrics
Collection Daemon (PMCD).

/usr/etc/pmcd The PMCD binary.

/etc/config/ The pmcd.options file contains command line
options for pmcd .The pmlogger.options file
contains command line options for pmlogger
launched from /etc/init.d/pcp.

/etc/init.d/pcp The PMCD startup script.

/usr/sbin Contains PCP tools such as pmkstat, pminfo,
and oview.

/usr/pcp Shareable PCP-specific files and repository
directories.

/var/pcp Non-shareable (that is, per-host) PCP specific files
and repository directories. There are some
symbolic links from the /usr/pcp directory
hierarchy pointing into the /var/pcp directory
hierarchy.

/usr/pcp/bin Contains PCP tools that are typically not executed
directly by the end user such as pmbrand,
pmnscomp, and pmlogger.

/usr/pcp/lib Contains miscellaneous PCP libraries and
executables.

/var/pcp/pmdas Contains Performance Metric Domain Agents,
one directory per PMDA.

/usr/pcp/pmdas An alternate repository for some PMDAs. Certain
entries here are symbolic links into
/var/pcp/pmdas.

/var/pcp/config Contains configuration files for PCP tools,
typically with one directory per tool.

/usr/pcp/demos Contains demonstration data files and example
programs.

/var/pcp/Tutorial Contains a PCP Tutorial, in HTML format.

46 007–2614–004

Common Conventions and Arguments [3]

/var/adm/pcplog By default contains diagnostic and trace log files
generated by pmcd and PMDAs. Also, the PCP
archive logs are managed in one directory per
logged host below here.

/var/pcp/pmns Contains files and scripts for the Performance
Metrics Name Space.

3.3.2 Alternate Performance Metric Name Spaces

The Performance Metrics Name Space (PMNS) defines a mapping from a
collection of external names for performance metrics (convenient to the user)
into corresponding internal identifiers (convenient for the underlying
implementation).

The distributed PMNS used in PCP 2.x avoids most requirements for an
alternate PMNS, because clients’ PMNS operations are supported at the
Performance Metrics Collection Daemon (PMCD) or by means of PMNS data in
a PCP archive log. The distributed PMNS is the default, but alternates may be
specified using the -n namespace argument to the PCP tools. When a PMNS is
maintained on a host, it is likely to reside in the /var/pcp/pmns directory.

Refer to the pmns(4) and pmnscomp(1) man pages for details of PMNS structure
and creation.

3.4 Time Duration and Control

The periodic nature of sampling performance metrics and refreshing the
displays of the PCP tools makes specification and control of the temporal
domain a common operation. In the following sections, the services and
conventions for specifying time positions and intervals are described.

3.4.1 Performance Monitor Reporting Frequency and Duration

Many of the performance monitoring utilities have periodic reporting patterns.
The -t interval and -s samples options are used to control the sampling
(reporting) interval, usually expressed as a real number of seconds (interval),
and the number of samples to be reported, respectively. In the absence of the -s
flag, the default behavior is for the performance monitoring utilities to run until
they are explicitly stopped.

007–2614–004 47

Performance Co-PilotTM User’s and Administrator’s Guide

The interval argument may also be expressed in terms of minutes, hours, or
days, as described in the PCPIntro(1) man page.

3.4.2 Time Window Options

The following options may be used with most PCP tools (typically when the
source of the performance metrics is a PCP archive log) to tailor the beginning
and end points of a display, the sample origin, and the sample time alignment
to your convenience.

The -S, -T, -O and -A command line options are used by PCP applications to
define a time window of interest.

-S duration The start option may be used to request that the
display start at the nominated time. By default,
the first sample of performance data is retrieved
immediately in real-time mode, or coincides with
the first sample of data in a PCP archive log in
archive mode. For archive mode, the -S option
may be used to specify a later time for the start of
sampling. By default, if duration is an integer, the
units are assumed to be seconds.

To specify an offset from the beginning of a PCP
archive (in archive mode) simply specify the
offset as the duration. For example, the following
entry retrieves the first sample of data at exactly
30 minutes from the beginning of a PCP archive.

-S 30min

To specify an offset from the end of a PCP
archive, prefix the duration with a minus sign. In
this case, the first sample time precedes the end
of archived data by the given duration. For
example, the following entry retrieves the first
sample exactly one hour preceding the last
sample in a PCP archive.

-S -1hour

To specify the calendar date and time (local time
in the reporting time zone) for the first sample,
use the ctime syntax preceded by an “at” sign

48 007–2614–004

Common Conventions and Arguments [3]

(@). For example, the following entry specifies
the date and time to be used.

-S ’@ Mon Mar 4 13:07:47 1996’

Note that this format corresponds to the output
format of the date command for easy “cut and
paste.” However, be sure to enclose the string in
quotes so it is preserved as a single argument for
the PCP tool.

For more complete information on the date and
time syntax, see the PCPIntro(1) man page.

-T duration The terminate option may be used to request that
the display stop at the time designated by
duration. By default, the PCP tools keep sampling
performance data indefinitely (in real-time mode)
or until the end of a PCP archive (in archive
mode). The -T option may be used to specify an
earlier time to terminate sampling.

The interpretation for the duration argument in a
-T option is the same as for the -S option, except
for an unsigned time interval that is interpreted as
being an offset from the start of the time window
as defined by the default (now for real time, else
start of archive) or by a -S option. For example,
these options define a time window that spans 45
minutes, after an initial offset (or delay) of 1 hour:

-S 1hour -T 45mins

-O duration By default, samples are fetched from the start
time (see the description of the -S option) to the
terminate time (see the description of the -T
option). The offset -O option allows the
specification of a time between the start time and
the terminate time where the tool should position
its initial sample time. This option is useful when
initial attention is focused at some point within a
larger time window of interest, or when one PCP
tool wishes to launch another PCP tool with a
common current point of time within a shared
time window.

007–2614–004 49

Performance Co-PilotTM User’s and Administrator’s Guide

The duration argument accepted by -O conforms
to the same syntax and semantics as the duration
argument for -T. For example, these options
specify that the initial position should be the end
of the time window:

-O -0

This is most useful with pmchart(1) to display
the tail-end of the history up to the end of the
time window.

-A alignment By default, performance data samples do not
necessarily happen at any natural unit of
measured time. The -A switch may be used to
force the initial sample to be on the specified
alignment. For example, these three options
specify alignment on seconds, half hours, and
whole hours:

-A 1sec

-A 30min

-A 1hour

The -A option advances the time to achieve the
desired alignment as soon as possible after the
start of the time window, whether this is the
default window, or one specified with some
combination of -A and -O command line options.

Obviously the time window may be overspecified by using multiple options
from the set -t, -s, -S, -T, -A, and -O. Similarly, the time window may shrink
to nothing by injudicious choice of options.

In all cases, the parsing of these options applies heuristics guided by the
principal of “least surprise”; the time window is always well-defined (with the
end never earlier than the start), but may shrink to nothing in the extreme.

3.4.3 Time Zone Options

All utilities that report time of day use the local time zone by default. The
following time zone options are available:

-z Forces times to be reported in the time zone of
the host that provided the metric values (the PCP

50 007–2614–004

Common Conventions and Arguments [3]

collector host). When used in conjunction with
-a and multiple archives, the convention is to use
the time zone from the first named archive.

-Z timezone Sets the TZ variable to a time zone string, as
defined in environ(5) , for example, -Z UTC for
universal time.

3.4.4 PCP Live Time Control

The pmtime PCP Live Time Control dialog, shown in Figure 6, is invoked
through the PCP tools when you select the Show Time Control option from
the Options menu of most PCP tools. The dialog may also be exposed by
selecting the “time control state” button at the bottom left-hand corner of the
pmchart display or the top left-hand corner of a 3D performance scene
displayed with the pmview or oview tools.

For more information on the “time control state” button, see the pmview(1),
pmchart(1), oview(1), or pmtime(1) man page.

If the PCP tool is displaying performance metrics from a real-time source, the
pmtime dialog looks similar to that shown in Figure 6.

Figure 6. pmtime PCP Live Time Control Dialog

This dialog can be used to set the sample interval and units; the latter may be
in milliseconds, seconds, minutes, hours, days, or weeks.

007–2614–004 51

Performance Co-PilotTM User’s and Administrator’s Guide

To change the units, select the measurement of time you want from the
Options menu (labelled Seconds in Figure 6).

To change the interval, enter the new value in the Interval text box, and press
Enter. All PCP tools attached to the pmtime control dialog are notified of the
new interval, and will update their displays immediately to reflect the new
sampling rate.

3.4.5 Creating a PCP Archive

The ability to start and stop recording of performance activity is available from
the pmchart, pmview, and oview windows using the File -> Record
option from the menu bar. See Section 4.1.5, page 75, for information about the
pmchart interface.

Alternatively use pmlogger directly, as described in Chapter 7, page 155.

3.4.6 PCP Archive Time Control

The ability to provide retrospective performance analysis in the PCP framework
is provided by making the monitor tools able to deal interchangeably with
real-time sources of performance metrics and PCP archive logs. For more
information on archive logging, see Chapter 7, page 155.

When a PCP tool is displaying performance metrics from a PCP archive log,
and the pmtime Archive Time Control dialog is exposed, it looks similar
to that shown in Figure 7.

52 007–2614–004

Common Conventions and Arguments [3]

Figure 7. pmtime PCP Archive Time Control Dialog

As with the live pmtime dialog, the user may change the update interval;
however, a number of other controls are available:

• The VCR Controls option menu may be used to change the mode of time
advance between Normal, Step, and Fast.

– In Normal mode, the time advances with the elapsed time per sample
being equal to the current Interval (divided by Speed).

– In Step mode, each selection of one of the direction buttons advances
the time by the current Interval.

– In Fast mode, the time advances by the Interval without any added
delay.

• The Speed text box and associated thumb wheel may be used to make the
rate of time advance in Normal mode either slower (Speed < 1) or faster
(Speed > 1) than real time.

• The Position text box shows the current time within the PCP archive log.
The Position may be changed either by advancing the time using the VCR
Controls buttons (Play, Step, Rewind, Fast Fwd, or Stop), or by

007–2614–004 53

Performance Co-PilotTM User’s and Administrator’s Guide

modifying the Position text box (and pressing Enter), or by moving the
slider below the Position text box.

• The VCR Controls motion buttons allow time to be advanced forward or
backward, or stopped.

The menus of pmtime Archive Time Control provide the following
additional features:

3.4.6.1 File Menu

The File menu supports the following option:

Hide Hides the dialog; the PCP tools provide their own
menu options or time control icon that may be
used to reexpose the pmtime dialog.

3.4.6.2 Options Menu

The Options menu supports three options:

Timezone Selects an alternative time zone for all displayed
dates and times; all PCP tools attached to the
pmtime control are notified of the new time zone.

Because the UTC time zone is universal, it is
useful when several archives or live sources of
data are being displayed in multiple instances of
the tools, and comparisons between performance
metrics are required to be temporally correlated.
Whenever a new source of metrics is opened,
whether an archive or live, the time zone at that
source of metrics is added to the list in the
Options menu. The default time zone is that of
the local host where the tool is being run.

Show Bounds... Exposes the Archive Time Bounds dialog,
shown in Figure 8. This dialog shows the current
time window that defines the earliest and latest
time for which performance may be displayed
from the current archives.

54 007–2614–004

Common Conventions and Arguments [3]

Figure 8. pmtime Archive Time Bounds Dialog

Detail For output fields, selectively includes or excludes
the year in the date or milliseconds in time. The
year is shown by default, milliseconds are not.

3.5 PCP Environment Variables

The following environment variables are recognized by PCP (these definitions
are also available on the PCPIntro(1) man page):

PCP_COUNTER_WRAP

Many of the performance metrics exported from PCP agents
expect that counters increase monotonically. Under some
circumstances, one value of a metric may be smaller than the
previously fetched value. This can happen when a counter of
finite precision overflows, when the PCP agent has been reset
or restarted, or when the PCP agent exports values from an
underlying instrumentation that is subject to asynchronous
discontinuity.

If set, the PCP_COUNTER_WRAP environment variable indicates
that all such cases of a decreasing counter should be treated as
a counter overflow; and hence the values are assumed to have

007–2614–004 55

Performance Co-PilotTM User’s and Administrator’s Guide

wrapped once in the interval between consecutive samples.
Counter wrapping was the default in versions before the PCP
1.3 release.

PCP_LICENSE_NOWARNING

Many of the PMAPI client programs require that a valid
software license be present on the host on which the client is
running (the license is node-locked). In the case that such a
valid license is present, but is due to expire within the next 30
days, a message or popup notifier appears informing the user
of this condition. These warnings can be disabled by setting
this variable in the environment.

PCP_LOGDIR

Many PCP utilities create diagnostic and trace log files, and the
default locations are below the /var/adm/pcplog directory.
Setting the PCP_LOGDIR variable overrides the default
directory. If PCP_LOGDIR is unset, the PCP_LOGDIR variable is
treated as an alias and used if set, to provide backwards
compatibility with earlier PCP releases.

PCP_STDERR

Specifies whether pmprintf() error messages are sent to
standard error, an xconfirm dialog box, or to a named file; see
the pmprintf(3) man page. Messages go to standard error if
PCP_STDERR is unset or set without a value. If this variable is
set to DISPLAY, then messages go to an xconfirm dialog box;
see the xconfirm(1) man page. Otherwise, the value of
PCP_STDERR is assumed to be the name of an output file.

PCP_TRACE_HOST

The pmdatrace library routines use this variable when
connecting to the trace PMDA to determine on which host it
is running; see the pmdatrace(3) man page.

PCP_TRACE_PORT

This variable is used by both the trace PMDA and client
programs using the pmdatrace library to obtain the Internet
port through which the client programs and the PMDA
communicate; see the pmdatrace(3) man page.

56 007–2614–004

Common Conventions and Arguments [3]

PCP_TRACE_TIMEOUT

When pmdatrace client programs are connecting to the trace
PMDA, this variable can be set to specify how long the clients
should wait before cancelling their attempt to connect with the
PMDA; see the pmdatrace(3) man page.

PMCD_CONNECT_TIMEOUT

When attempting to connect to a remote pmcd on a system that
is booting or at the other end of a slow network link, some
PMAPI routines could potentially block for a long time until
the remote system responds. These routines abort and return an
error if the connection has not been established after some
specified interval has elapsed. The default interval is 5 seconds.
This may be modified by setting this variable in the
environment to a larger number of seconds for the desired time
out. This is most useful in cases where the remote host is at the
end of a slow network, requiring longer latencies to establish
the connection correctly.

PMCD_PORT

This TCP/IP port is used by pmcd to create the socket for
incoming connections and requests. The default is port number
4321, which you may override by setting this variable to a
different port number. If a non-default port is in effect when
pmcd is started, then every monitoring application connecting
to that pmcd must also have this variable set in its environment
before attempting a connection.

PMCD_RECONNECT_TIMEOUT

When a monitor or client application loses its connection to a
pmcd, the connection may be reestablished by calling the
pmReconnectContext() PMAPI function. However, attempts
to reconnect are controlled by a back-off strategy to avoid
flooding the network with reconnection requests. By default,
the back-off delays are 5, 10, 20, 40, and 80 seconds for
consecutive reconnection requests from a client (the last delay is
repeated for any further attempts after the last delay in the list).
Setting this environment variable to a comma-separated list of
positive integers redefines the back-off delays. For example,
setting the delays to 1,2 will back off for 1 second, then back
off every 2 seconds thereafter.

007–2614–004 57

Performance Co-PilotTM User’s and Administrator’s Guide

PMCD_REQUEST_TIMEOUT

For monitor or client applications connected to pmcd, there is a
possibility of the application hanging on a request for
performance metrics or metadata or help text. These delays
may become severe if the system running pmcd crashes or the
network connection is lost or the network link is very slow. By
setting this environment variable to a real number of seconds,
requests to pmcd timeout after the specified number of seconds.
The default behavior is to wait 10 seconds for a response from
every pmcd for all applications.

PMDA_PATH

This environment variable may be used to modify the search
path used by pmcd and pmNewContext() (for
PM_CONTEXT_LOCAL contexts) when searching for a daemon or
DSO PMDA. The syntax follows the syntax for shell PATH: a
colon-separated list of directories. The default search path is
/var/pcp/lib:/usr/pcp/lib.

PM_LAUNCH_PATH

A launching tool searches for its script in the directory specified
by this variable, rather than /var/pcp/config/pmlaunch;
see the pmlaunch(5) man page.

PMLOGGER_PORT

This environment variable may be used to change the base
TCP/IP port number used by pmlogger to create the socket to
which pmlc instances try to connect. The default base port
number is 4330. If used, this variable should be set in the
environment before pmlogger is executed. If pmlc and
pmlogger are on different hosts, then obviously
PMLOGGER_PORT must be set to the same value in both places.

PMNS_DEFAULT

If set, this value is interpreted as the full pathname to be used
as the default PMNS for pmLoadNameSpace(). Otherwise, the

58 007–2614–004

Common Conventions and Arguments [3]

default PMNS is located at /var/pcp/pmns/root for base
PCP installations.

3.6 Running PCP Tools through a Firewall

In some production environments, the Performance Co-Pilot (PCP) monitoring
hosts are on one side of a TCP/IP firewall, and the PCP collector hosts may be
on the other side.

If the firewall service is being provided by a product that supports the sockd
(SOCKS) protocols for packet forwarding through the firewall, then the PCP
tool pmsocks may be used; see the pmsocks(1) man page. Otherwise it is
necessary to arrange for packet forwarding to be enabled for those TCP/IP
ports used by PCP, namely 4321 (or the value of the PMCD_PORT environment
variable) for connections to pmcd and a finite range of consecutive port
numbers starting at 4330 (or the value of the PMLOGGER_PORT environment
variable) to allow pmlc connections to pmlogger instances.

3.6.1 The pmsocks Command

The pmsocks command and its related files and scripts allow PCP clients
running on hosts located on the internal side of a TCP/IP sockd firewall
system to monitor remote hosts on the other side of the firewall system. The
basic syntax is as follows, where tool is an arbitrary PCP application, typically a
monitoring tool:

pmsocks tool args

The pmsocks script prepares the necessary environment variables and then
executes the PCP tool specified in tool across the firewall. For example, this
command runs dkvis with metrics fetched from remotehost on the other side of
the firewall:

pmsocks dkvis -h remotehost

The configuration file is/etc/pcp_socks.conf, and the network-specific
information in this file is set to correspond with your network. Complete
information on this customization can be found in the pmsocks(1) man page.

007–2614–004 59

Performance Co-PilotTM User’s and Administrator’s Guide

3.7 Transient Problems with Performance Metric Values

Sometimes the values for a performance metric as reported by a PCP tool
appear to be incorrect. This is typically caused by transient conditions such as
metric wraparound or time skew, described below. These conditions result from
design decisions that are biased in favor of lightweight protocols and minimal
resource demands for PCP components.

In all cases, these events are expected to occur infrequently, and should not
persist beyond a few samples.

3.7.1 Performance Metric Wraparound

Performance metrics are usually expressed as numbers with finite precision. For
metrics that are cumulative counters of events or resource consumption, the
value of the metric may occasionally overflow the specified range and
wraparound to zero.

Because the value of these counter metrics is computed from the rate of change
with respect to the previous sample, this may result in a transient condition
where the rate of change is an unknown value. If the PCP_COUNTER_WRAP
environment variable is set, this condition is treated as an overflow, and
speculative rate calculations are made. In either case, the correct rate calculation
for the metric returns with the next sample.

3.7.2 Time Dilation and Time Skew

If a PMDA is tardy in returning results, or the PCP monitoring tool is
connected to pmcd via a slow or congested network, an error might be
introduced in rate calculations due to a difference between the time the metric
was sampled and the time pmcd sends the result to the monitoring tool.

In practice, these errors are usually so small as to be insignificant, and the
errors are self-correcting (not cumulative) over consecutive samples.

A related problem may occur when the system time is not synchronized
between multiple hosts, and the time stamps for the results returned from pmcd
reflect the skew in the system times. In this case, it is recommended that either
timeslave or timed be used to keep the system clocks on the collector
systems synchronized; see the timed(1M) man page.

60 007–2614–004

Monitoring System Performance [4]

This chapter describes the performance monitoring tools available in
Performance Co-Pilot (PCP). This product provides a group of commands and
tools for measuring system performance. Each tool is described completely by
its own man page. The man pages are accessible through the man command.
For example, the man page for the tool pmchart is viewed by entering the
following command:

man pmchart

The following major sections are covered in this chapter:

• Section 4.1, page 62, describes pmchart, a useful charting tool that
graphically monitors system performance.

• Section 4.2, page 81, presents pmgadgets, a graphical tool that displays
system performance in a small area.

• Section 4.3, page 84, discusses pmkstat, a utility that provides a periodic
one-line summary of system performance.

• Section 4.4, page 86, discusses pmdumptext, a utility that shows the current
values for named performance metrics.

• Section 4.5, page 86, describes pmval, a utility that displays performance
metrics in ASCII tables.

• Section 4.6, page 88, discusses pmem, a utility that reports per-process
memory usage statistics.

• Section 4.7, page 89, describes pminfo, a utility that displays information
about performance metrics.

• Section 4.8, page 93, describes the use of the pmstore utility to arbitrarily
set or reset selected performance metric values.

Further monitoring tools covering performance visualization and automated
reasoning about performance are described in Chapter 5 and Chapter 6.

The following sections describe the various graphical and text-based PCP tools
used to monitor local or remote system performance.

007–2614–004 61

Performance Co-PilotTM User’s and Administrator’s Guide

4.1 The pmchart Tool

The pmchart utility supports interactive selection and plotting of trends over
time for arbitrarily selected performance metrics from one or more hosts and
one or more domains of performance metrics. First, you enter the following
command:

pmchart

You then see the Performance Co-Pilot Chart window shown in Figure 9.

Figure 9. pmchart Performance Co-Pilot Chart Window

Normally, pmchart operates in live mode where performance metrics are
fetched in real time and plotted against a time axis. The user can choose
performance metrics and monitor the current values for these metrics from any
host that is accessible on the network and has the pmcd server running.

When launched with the -a command line option, pmchart can also replay
PCP archive logs of performance metrics created by pmlogger.

The man page for pmchart explains how to configure charts based on
performance metrics, using either the Open View option of the File menu or
the New Plot option of the File menu. Once charts have been configured and
applied, the charts are placed in an expanded Performance Co-Pilot
Chart window, as shown in Figure 10.

62 007–2614–004

Monitoring System Performance [4]

Figure 10. Two Charts and Metrics from Three Hosts in pmchart

All metrics in the Performance Metrics Name Space (PMNS) with numeric
value semantics can be graphed. By default, pmchart initially allows the user
to select metrics to be plotted from the local host. However, the graphical user
interface allows other hosts or archives to be chosen at any time as alternate
sources of performance metrics and all metrics (independent of their source) are
plotted on a common time axis.

For horizontal lines at major tick marks, see Section 4.1.3, page 67.

007–2614–004 63

Performance Co-PilotTM User’s and Administrator’s Guide

The -h command line option nominates an alternate default host to be used in
preference to the local host.

The -a command line option may be used to start pmchart processing
performance metrics from one or more PCP archive logs. The first named
archive becomes the default source of performance metrics. This mode is
particularly useful for retrospective comparisons and for postmortem analysis
of performance problems, where a remote system is not directly accessible or a
performance analyst is not available on site.

The pmchart utility examines the semantics of selected metrics, and where
sensible, uses the metadata provided by the Performance Metrics Collection
Subsystem (PMCS) to convert fetched metric values to a rate before plotting. In
the case where different metrics are plotted in the same chart (for example,
against a common Y-axis), the metrics must have the same dimension (taking
into account any automatic rate conversion), but pmchart may scale metric
values where necessary, to produce comparable values with common units and
scale.

When replaying archive logs, the user may interactively control the current
replay time, direction of replay, and replay rate, using the PCP time control
dialog, as described in the Section 3.4.

4.1.1 Mouse Controls

The pmchart tool uses the mouse buttons as follows:

Left The primary mouse button may be used to select
the current chart by clicking anywhere in a
specific chart. The current chart always has a
border drawn around the graph area and its
legend of metric names rendered in red. The
Edit menu contains a variety of choices that
operate only on the current chart. This mouse
button also interacts with menus and dialog
boxes in the usual manner.

Middle The middle mouse button is unused.

Right The secondary mouse button may be used to
display metric values in a dialog box. Click this
mouse button in the graph drawing area of any
chart to display information about the nearest
metric and its value at that point as plotted. The
Metric Value Information dialog box

64 007–2614–004

Monitoring System Performance [4]

remains visible until you dismiss it, and can be
refreshed with new metric values by clicking this
mouse button again, or updated automatically
using the Show most Recent toggle button.

4.1.2 pmchart Select Performance View

A view in pmchart is a predefined collection of charts, typically constructed to
display some common performance scenario. Default views are included in the
PCP distribution, others are part of the various PCP add-on products, and
others may be created by the pmchart end user. The Open View... option in
the File menu launches a Select Performance View dialog box similar to
Figure 11.

Figure 11. pmchart Select Performance View Dialog

007–2614–004 65

Performance Co-PilotTM User’s and Administrator’s Guide

You may use this dialog to select one of the available views. The default PCP
views include the following:

BufferCache Cumulative amount of data read and written
between system buffers and user memory or
block devices.

CPU Processor utilization (user, system, memory break,
interrupt, I/O wait, and idle time) aggregated
over all CPUs.

CrayLinks Usage of CrayLink node connectors, if this
hardware is present.

Disk Cumulative number of read and write transfers
for all disk devices.

DiskCntrls Cumulative number of read and write transfers
for all drives attached to each disk controller on
the system.

FileSystem Percentage of each filesystem in use (percent full).

LoadAvg System load averaged over intervals of 1, 5, and
15 minutes.

Memory Memory used by the kernel, filesystems, user
processes, and free space.

NetBytes Network interface activity—octets transmitted on
various interfaces.

NetConnDrop TCP drops, connection drops, timeout drops, and
TCP accepts.

NetPackets Rate of TCP and UDP packets received and sent.

NetTCPcongestion TCP packets retransmitted, retransmit timeouts,
and TCP packets sent.

NFS Client and server NFS operation rates.

Overview Composite charts of CPU, LoadAvg, Memory,
Disk, and NetBytes.

Paging Page-in and page-out rates from the virtual
memory subsystem.

PMCD Message rates and CPU time used by pmcd or
associated PMDAs.

66 007–2614–004

Monitoring System Performance [4]

Swap System swap space allocated, reserved, and
unused.

Syscalls Rate of exec, fork, read, write, and total
system calls.

You can create your own custom views using the metric selection facilities, and
save your views for later using the Save View... option of the File menu.

4.1.3 Displaying Horizontal Lines

You can have pmchart display horizontal lines, usually in a lighter background
color, at major tick marks by calling pmchart with the following arguments
(quotes required):

% pmchart -xrm "PmChart*xrtYGridUseDefault: True"

For greater convenience, you can place the following line in your
$HOME/.Xresources file, to have pmchart always display horizontal lines:

PmChart*xrtYGridUseDefault: True

4.1.4 pmchart Metric Selection

The pmchart Metric Selection window, shown in Figure 12, allows
interactive navigation of the Performance Metrics Name Space (PMNS) to create
new chart configurations.

007–2614–004 67

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 12. pmchart Metric Selection Dialog

68 007–2614–004

Monitoring System Performance [4]

You can choose metrics, display information about metrics, change the current
host or archive, select metric instances, and plot metric values on a common
time axis. You bring up this window by choosing New Plot... from the
File menu of pmchart.

Metric selection proceeds by navigating through the tree-structured PMNS. If
you enter a partial metric specification in the Path field in the Metric
Selection dialog, you can avoid having to navigate through the PMNS for
the metrics you need. For example, if you enter network.interface, the
window changes dynamically, as shown in Figure 13.

007–2614–004 69

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 13. Further Metric Selection

70 007–2614–004

Monitoring System Performance [4]

You can continue the selection process by choosing non-leaf nodes from the
Nodes list, and finally a leaf node from the Metrics list. At this stage, the
Path corresponds to a leaf node in the PMNS, as shown in Figure 14.

007–2614–004 71

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 14. Selecting a Leaf Node in the PMNS (Performance Metric)

72 007–2614–004

Monitoring System Performance [4]

Once a metric has been selected, the Info button in the Metric Selection
dialog launches the Metric Information dialog, as shown in Figure 15.

Figure 15. Metric Information Dialog

This dialog displays the name, unit, and semantics for the currently selected
metric, along with the verbose help text that describes the metric, and
optionally a description of the underlying instance domain.

Finally, you may have to select from several instances of a metric. In the
example shown in Figure 15, you wish to monitor the input packet rate for
some network interface(s). For the current source of performance metrics, there
are two network interfaces configured. You must select one or more instances,
as shown in Figure 16.

007–2614–004 73

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 16. Selecting a Metric Instance

74 007–2614–004

Monitoring System Performance [4]

You can select multiple instances either by clicking and dragging up and down
the list with the left mouse button, or by selecting the first instance and then
using the Shift key (or Ctrl key) with the left mouse button to select one or
more other instances.

4.1.5 Creating a PCP Archive from a pmchart Session

From the File menu of pmchart when running in live mode, the Record
(Stop Recording) option may be used to start (or stop) the creation of a PCP
archive log. The archive log is created using pmlogger and includes the
update interval and all of the performance metrics in the current pmchart
configuration when recording begins.

Note: Any changes made to the pmchart configuration after recording has
been started will not be reflected in the archive log. For these to take effect,
the recording must be stopped and restarted (thereby creating a second PCP
archive log).

When recording is started, a File Chooser dialog is launched, and the user
must provide the name of a new file to be used as the PCP archive folio for the
new archive (see Section 7.4.1). The recording session produces multiple files in
the same directory as the archive folio.

If necessary, pmchart creates directories on the path to the named archive folio.

It is often convenient to maintain one directory for each new folio, or else one
directory for each group of folios related by collector host(s), service type, or
chart selection.

When recording is active, a small red indicator appears in the time control
button, as shown at the bottom left of Figure 17.

007–2614–004 75

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 17. pmchart Display When Recording

If you choose File > Stop Recording, logging stops immediately. The red
light in the lower left turns gray.

To start recording again, chose File > Record and specify a new archive
folio name.

If you exit pmchart by choosing File > Quit, an Archive Recording
Session-pmchart dialog similar to that shown in Figure 18 appears to
remind you where the archive folio was created, and to confirm that recording
should be terminated.

76 007–2614–004

Monitoring System Performance [4]

Figure 18. Archive Recording Session-pmchart Dialog

If you select Yes, recording stops immediately.

If you select No, recording continues. This is a useful way to continue archive
logging without keeping pmchart active.

4.1.6 Changing pmchart Colors

When using a video projector, or when making presentations to a large group,
or as a result of personal preference, the default pastel color scheme used by
pmchart may be inappropriate.

007–2614–004 77

Performance Co-PilotTM User’s and Administrator’s Guide

The Colors option in the Edit menu allows arbitrary changes to the colors of
individual charts. For more global changes, you can override the defaults using
the X11 resources that pmchart honors.

For example, create or add the following entries in the $HOME/.xrdb file:

PmChart*xrtForegroundColor: "green"

PmChart*xrtBackgroundColor: "black"

PmChart*xrtGraphForegroundColor: "rgb:00/b0/00"

PmChart*xrtGraphBackgroundColor: "black"

PmChart*xrtHeaderForegroundColor: "green"

PmChart*xrtHeaderBackgroundColor: "black"
PmChart*pmDefaultColors: rgb:ff/ff/00 rgb:00/ff/00 rgb:00/00/ff \

rgb:ff/ff/00 rgb:00/ff/ff rgb:ff/00/ff

Use the following command to change the default color scheme for pmchart to
one with bright primary colors on a black background:

xrdb -merge $HOME/.xrdb

4.1.7 Other Chart Customizations

The pmchart Edit menu provides options and a dialog that you may use to
change and customize the display as follows:

Chart Style Choose from line, bar, stacked bar, area plot, and
utilization

Chart Title and
Legend...

Change the chart title, and enable or disable the
legend annotation at the top of each chart

Y-Axis Scaling... Fix the maximum and minimum values of the
range on the Y-axis, or allow pmchart to adjust
the range dynamically to reflect currently
displayed values

Colors... Customize plot colors

Delete Select all charts, a complete chart, or individual
plots from a chart

The pmchart Options menu provides another option for customizing the
display:

78 007–2614–004

Monitoring System Performance [4]

Visible Points... Use the slider to change the number of values
along the time axis

4.1.8 Time Control

The Options menu provides access to the PCP Time Control Dialog (as
described in the Section 3.4, page 47).

Show Time Control Exposes the dialog for the controlling pmtime
instance, thereby allowing users to change the
sampling interval.

Selecting the Time Control button in the lower
left corner of the main pmchart window also
exposes the Time Control dialog. If the current
source of performance metrics is one or more
PCP archive logs, this same dialog may be used
for temporal navigation within the archive(s).

New Time Control Detaches pmchart from the controlling pmtime
instance and launches a new pmtime instance,
initially dedicated to this pmchart.

Launch New Pmchart Starts a new pmchart, with shared pmtime
control.

4.1.9 Taking Snapshots of pmchart Displays and Value Dialogs

The Print option in the File menu enables the current pmchart display to
be printed in a variety of PostScript styles. The output can be saved in a file or
sent directly to a printer.

The -o option for pmchart also provides the facility to produce Graphics
Interchange Format (GIF) image snapshots of the pmchart display.

It is often convenient to publish performance summary information for the
users of a particular computing environment. The pmchart tool, in
combination with the pmsnap script and its associated control files, can be used
to produce high-quality performance summary snapshot images in GIF format.
These images can be incorporated into Web pages, reports, e-mail, or
presentation material.

The following files and utilities are included in support of this feature:

007–2614–004 79

Performance Co-PilotTM User’s and Administrator’s Guide

/var/pcp/config/pmsnap/Summary

This file contains a summary of the performance metrics used
in the example snapshot.

/var/pcp/config/pmsnap/Summary.html

An example HTML page suitable for publishing images from
the Summary pmsnap example via a Web server.

/var/pcp/config/pmsnap/control

This file controls the snapshot parameters.

/var/pcp/config/pmlogger/config.Summary

This configuration file specifies an archive log suitable for use
with any pmview -type tool, and the example Summary
snapshot configuration.

/usr/pcp/bin/pmsnap

The pmsnap script is designed to be periodically run by the
cron command to process the control file
/var/pcp/config/pmsnap/control and generate snapshot
images according to the specifications therein. The pmsnap(1)
man page describes the command line options for selecting the
control lines to process, the default directory for the output
files, the X display to use, and other parameters.

Instructions for configuring pmsnap are in the man page. There is also a
verbose comment at the head of the control file. The pmchart(1) man page is
also useful.

4.1.10 More Information

The annotated examples in the pmchart chapter of the PCP Tutorial provide a
guided illustration to a typical user’s interactions with pmchart. The PCP
Tutorial can be optionally installed as the pcp.man.tutorial subsystem. To
view the pmchart chapter of the tutorial, open the following URL with your
Web browser:

file:/var/pcp/Tutorial/pmchart.html

80 007–2614–004

Monitoring System Performance [4]

4.2 The pmgadgets Command

The pmgadgets tool creates a small window containing a collection of
graphical gadgets driven by performance metrics supplied by the PCP
framework. Any numeric metric supported by PCP can be displayed.

Note: In the current PCP release, pmgadgets is constrained to process
performance metrics from real-time sources (and not PCP archive logs),
although metrics from several different hosts may be displayed
simultaneously in the same window.

The layout of the gadgets and the performance metrics that lie behind them are
specified in a configuration file, and pmgadgets is typically run on an existing
configuration file or in conjunction with an application that automatically
generates a configuration file. For example, pmgsys generates a configuration
file for various IRIX performance metrics and feeds it to pmgadgets. The
resulting display depends on the host configuration, but the display shown in
Figure 19 is representative of a system with four CPUs, eleven disks on three
controllers, and four network interfaces.

Figure 19. Representative pmgadgets Display Using pmgsys

Other pmgadget front end tools such as pmgcluster, pmgevctr, pmgcisco,
and pmgshping are not described in this chapter. For information about these
tools, see the pmgcluster(1), pmgevctr(1), pmgcisco(1), and pmgshping(1)
man pages

The pmgadgets tool displays much the same information as pmchart, but
more compactly, and without so many historical graphs.

The pmgadgets specification language provides the ability to define the
following gadgets and components:

_bar Displays a single performance metric value as a
rectangle. This rectangle is filled from left to right

007–2614–004 81

Performance Co-PilotTM User’s and Administrator’s Guide

or bottom to top in proportion to the ratio of the
metric’s value to some maximum.

_multibar Is similar to the bar gadget, but displays several
performance metrics at the same time (same as
stacked bar). Each is allocated a color and the
gadget’s rectangle is filled with an amount of
each color proportional to the ratio of the
corresponding performance metric’s contribution
to a maximum value.

_bargraph Displays a simple xload style strip chart of a
performance metric’s values over time.

_led Is a circular gadget whose color is modulated
using the value of a single performance metric.

_line Is a solid rectangle, not modulated by any
performance metric, useful for highlighting
connectivity between gadgets.

_label Provides textual annotation in the display.

_actions Provides customized menus of “drill-down”
actions that may be associated with any gadget.
Using the right mouse button over a visible
gadget causes any associated action menu to pop
up.

_colorlist Provides a list of X11 color specifications.

_legend Provides the association between color and range
of performance metric values for use in a _led
gadget.

Each visible gadget must be assigned a Cartesian position in the pmgadgets
display.

By way of an example, the pmgadgets specification shown in Example 2
includes CPU, disk, and load average information from two hosts, and
produces a customized pmgadgets display like the one shown in Figure 20.

Example 2: Specification File for pmgadgets

_colourlist cpuColours (blue3 red3 yellow3 cyan3 green3)

_legend diskLegend (
_default green3

15 yellow

82 007–2614–004

Monitoring System Performance [4]

40 orange

75 red
)

host moomba

_label 70 12 "moomba"

_multibar 5 5 30 6

_metrics (

moomba:kernel.all.cpu.user
moomba:kernel.all.cpu.sys

moomba:kernel.all.cpu.intr

moomba:kernel.all.cpu.wait.total

moomba:kernel.all.cpu.idle

)
_maximum 0.0

_colourlist cpuColours

_bargraph 40 5 25 20

_metric moomba:kernel.all.load["1 minute"]

_max 1.0
_led 12 16 6 6

_metric moomba:disk.all.read _legend diskLegend

_led 25 16 6 6

_metric moomba:disk.all.write _legend diskLegend

host gonzo

_label 70 39 "gonzo"
_multibar 5 32 30 6

_metrics (

gonzo:kernel.all.cpu.user

gonzo:kernel.all.cpu.sys

gonzo:kernel.all.cpu.intr
gonzo:kernel.all.cpu.wait.total

gonzo:kernel.all.cpu.idle

)

_maximum 0.0

_colourlist cpuColours
_bargraph 40 32 25 20

_metric gonzo:kernel.all.load["1 minute"]

_max 1.0

_led 12 43 6 6

_metric gonzo:disk.all.read _legend diskLegend

_led 25 43 6 6
_metric gonzo:disk.all.write _legend diskLegend

007–2614–004 83

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 20. Customized pmgadgets Display

In addition to the drill-down capabilities of pmgadgets, positioning the cursor
over a gadget and entering a space character causes an information dialog to be
exposed. This dialog tracks the current values of the performance metrics that
are associated with the gadget as illustrated by the pmgadgets information
dialog in Figure 21.

Figure 21. pmgadgets Dialog

The pmgadgets(1) man page provides a complete description of the gadget
specification language and the user interface controls of pmgadgets.

4.3 The pmkstat Command

The pmkstat command provides a periodic, one-line summary of system
performance. This command is intended to monitor system performance at the
highest level, after which other tools may be used for examining subsystems to
observe potential performance problems in greater detail. After entering the

84 007–2614–004

Monitoring System Performance [4]

pmkstat command, you see output similar to the following, with successive
lines appearing periodically:

pmkstat
hostname load avg: 0.26, interval: 5 sec, Thu Jan 19 12:30:13 1995

runq | memory | system | disks| cpu

mem swp | free page | scall ctxsw intr| rd wr|usr sys idl wt

0 0 16268 0 64 19 2396 0 0 0 1 99 0

0 0 16264 0 142 45 2605 0 8 0 2 97 0

0 0 16268 0 308 62 2532 0 1 1 1 98 0
0 0 16268 0 423 88 2643 0 0 1 1 97 0

An additional line of output is added every five seconds. The update interval
may be varied using the -t interval option.

The output from pmkstat is directed to standard output, and the columns in
the report are interpreted as follows:

runq Average number of runnable processes in main
memory (mem) and in swap memory (swp) during
the interval.

memory The free column indicates average free memory
during the interval, in kilobytes. The page
column is the average number of page-out
operations per second during the interval. I/O
operations caused by these page-out operations
are included in the disk write I/O rate.

system System call rate (scall), context switch rate
(ctxsw), and interrupt rate (intr). Rates are
expressed as average operations per second
during the interval.

disks Aggregated physical read (rd) and write (wr)
rates over all disks, expressed as physical I/O
operations issued per second during the interval.
These rates are independent of the I/O block size.

cpu Percentage of CPU time spent executing user
code (usr), system and interrupt code (sys), idle
loop (idl) and idle waiting for resources (wt),
typically disk I/O.

As with most PCP utilities, real-time metric, and archive logs are
interchangeable.

007–2614–004 85

Performance Co-PilotTM User’s and Administrator’s Guide

For example, the following command uses the PCP archive log foo and the time
zone of the host (tokyo) from which performance metrics in the archive were
collected:

pmkstat -a foo -z

Note: timezone set to local timezone of host "tokyo"

tokyo load avg: 1.06, interval: 5 sec, Thu Feb 2 08:42:55 1995

runq | memory | system | disks | cpu

mem swp| free page| scall ctxsw intr| rd wr|usr sys idl wt

0 0 4316 0 195 64 2242 32 21 0 3 8 89
0 0 3976 0 279 86 2143 50 17 0 5 8 87

1 0 3448 0 186 63 2304 35 14 0 4 9 87

0 0 4364 0 254 81 2385 35 0 0 4 9 87

0 0 3696 0 266 92 2374 41 0 0 3 9 88

0 0 2668 42 237 81 2400 44 2 1 4 7 89
0 0 4644 100 206 68 2590 25 1 0 3 5 91

0 0 5384 0 174 63 2296 32 22 0 2 8 89

0 0 4736 0 189 65 2197 31 28 0 3 8 89

pmFetch: End of PCP archive log

For complete information on pmkstat usage and command line options, see
the pmkstat(1) man page.

4.4 The pmdumptext Command

The pmdumptext command displays performance metrics in ASCII tables,
suitable for export into databases or report generators. It is a flexible command.
For example, the following command provides continuous memory statistics on
a host named serv:

pmdumptext -imu -h serv -f ‘%H:%M:%S’ mem.util

Metric kernel fs_ctl _dirty _clean free user

Units b b b b b b
20:14:28 99.14M 6.03M 0.85M 98.42M 0.17G 0.16G

See the pmdumptext(1) man page for more information.

4.5 The pmval Command

The pmval command dumps the current values for the named performance
metrics. For example, the following command reports the value of performance

86 007–2614–004

Monitoring System Performance [4]

metric proc.nprocs once per second (by default), and produces output
similar to this:

pmval proc.nprocs
metric: proc.nprocs

host: localhost

semantics: instantaneous value

units: none

samples: indefinite

interval: 1.00 sec
73

72

70

75

75

In this example, the number of running processes was reported once per second.

Where the semantics of the underlying performance metrics indicate that it
would be sensible, pmval reports the rate of change or resource utilization.

For example, the following command reports idle processor utilization for each
of four CPUs on the remote host moomba, each five seconds apart, producing
output of this form:

pmval -h moomba -t 5sec -s 4 kernel.percpu.cpu.idle

metric: kernel.percpu.cpu.idle

host: moomba

semantics: cumulative counter (converting to rate)
units: millisec (converting to time utilization)

samples: 4

interval: 5.00 sec

cpu0 cpu1 cpu2 cpu3

0.8193 0.7933 0.4587 0.8193
0.7203 0.5822 0.8563 0.7303

0.6100 0.6360 0.7820 0.7960

0.8276 0.7037 0.6357 0.6997

Similarly, the following command reports disk I/O read rate every minute for
just the disk /dev/dsk/dks0d1, and produces output similar to the following:

pmval -t 1min -i dks0d1 disk.dev.read

metric: disk.dev.read

host: localhost
semantics: cumulative counter (converting to rate)

007–2614–004 87

Performance Co-PilotTM User’s and Administrator’s Guide

units: count (converting to count / sec)

samples: indefinite
interval: 60.00 sec

dks0d1

33.67

48.71

52.33

11.33
2.333

The -r flag may be used to suppress the rate calculation (for metrics with
counter semantics) and display the raw values of the metrics.

When used in conjunction with a PCP archive, the -g option may be used to
associate a PCP time control dialog (see Section 3.4) with the execution of
pmval to support temporal navigation within the archive. In the example
below, manipulation of the time within the archive is achieved by the exchange
of time control messages between pmval and pmtime.

pmval -g -a /var/adm/pcplog/myserver/960801

The pmval command is documented by the pmval(1) man page, and annotated
examples of the use of pmval are in the PCP Tutorial.

4.6 The pmem Command

The pmem command reports per-process memory usage statistics within the
PCP framework.

Both virtual size and prorated physical memory usage are reported. The virtual
memory usage statistics represent the total virtual size of each process,
irrespective of how many pages are valid (resident). Prorated physical memory
statistics indicate real memory usage (only valid pages are counted) and are
prorated on a per-page basis between all processes that reference each page.
Thus the prorated physical memory counts reflect the real memory demands for
individual processes in the context of the current process mix.

The output of pmem can be very large. Here is an abbreviated example of pmem
output:

Host: gonzo Configured: 65536 Free:18380 Tue Jul 9 16:45:08 1996
pid ppid user vtxt ptxt vdat pdat vshm pshm command

1 0 root 232 144 84 76 0 0 /etc/init

832 827 root 3204 1013 5796 3096 0 0 /usr/bin/X11/Xsg

88 007–2614–004

Monitoring System Performance [4]

221 1 root 1424 54 156 84 0 0 /usr/lib/saf/sad

838 827 root 2948 36 268 75 0 0 /usr/bin/X11/xdm
86 1 root 1264 32 144 76 0 0 /usr/etc/syslogd

182 1 root 1476 129 596 387 0 0 /usr/etc/rpcbind

827 1 root 2948 13 252 22 0 0 /usr/bin/X11/xdm

172 1 root 1276 52 148 100 0 0 /usr/etc/routed

Total vtxt ptxt vdat pdat vshm pshm 77 user processes

121M 36256 0 = 157M virtual
13982 20194 0 = 34176 physical

The columns report the following information:

pid Process ID number.

ppid Parent process ID number.

user Login name of the process owner.

vtxt Total virtual memory used by text (executable
code) regions mapped by the process.

ptxt Prorated physical memory used by text regions.

vdat Total virtual memory used by all non-executable
regions, excluding shared memory regions. This
includes initialized data, bss, and stack but not
shared memory regions.

pdat Prorated physical memory used by all data
regions (data, bss, and stack but not shared
memory regions).

vshm Total virtual memory used by all shared memory
regions.

pshm Prorated physical memory used by shared
memory regions.

command The command and arguments.

For complete information on pmem usage and command line options, see the
pmem(1) man page.

4.7 The pminfo Command

The pminfo command displays various types of information about
performance metrics available through the Performance Co-Pilot (PCP) facilities.

007–2614–004 89

Performance Co-PilotTM User’s and Administrator’s Guide

The -T option is extremely useful; it provides help text about performance
metrics:

pminfo -T mem.util.fs_dirty
mem.util.fs_dirty

Help:

The amount of memory in Kbytes that is holding file system data.

The -t option displays the one-line help text associated with the selected
metrics. The -T option prints more verbose help text.

Without any options, pminfo verifies that the specified metrics exist in the
name space, and echoes those names. Metrics may be specified as arguments to
pminfo using their full metric names. For example, this command returns the
following response:

pminfo hinv.ncpu network.interface.total.bytes

hinv.ncpu

network.interface.total.bytes

A group of related metrics in the name space may also be specified. For
example, to list all of the hinv metrics you would use this command:

pminfo hinv

hinv.ncpu

hinv.cpuclock
hinv.dcache

hinv.icache

hinv.secondarycache

hinv.physmem

hinv.pmeminterleave
hinv.ndisk

If no metrics are specified, pminfo displays the entire collection of metrics.
This can be useful for searching for metrics, when only part of the full name is
known. For example, this command returns the following response:

pminfo | grep nfs

nfs.client.badcalls

nfs.client.badcalls

nfs.client.calls
nfs.client.nclget

nfs.client.nclsleep

nfs.client.reqs

nfs.server.badcalls

90 007–2614–004

Monitoring System Performance [4]

nfs.server.calls

nfs.server.reqs
nfs.client.badcalls

nfs.client.calls

nfs.client.nclget

nfs.client.nclsleep

nfs.client.reqs

nfs.server.badcalls
nfs.server.calls

nfs.server.reqs

The -d option causes pminfo to display descriptive information about metrics
(refer to the pmLookupDesc(3) man page for an explanation of this metadata
information). The following command and response show use of the -d option:

pminfo -d proc.nprocs disk.dev.read filesys.free

proc.nprocs
Data Type: 32-bit int InDom: PM_INDOM_NULL 0xffffffff

Semantics: instant Units: none

disk.dev.read

Data Type: 32-bit unsigned int InDom: 1.2 0x400002

Semantics: counter Units: count
filesys.free

Data Type: 32-bit int InDom: 1.7 0x400007

Semantics: instant Units: Kbyte

The -f option to pminfo forces the current value of each named metric to be
fetched and printed. In the example below, all metrics in the group hinv are
selected:

pminfo -f hinv

hinv.ncpu
value 1

hinv.cpuclock

value 100

hinv.dcache

value 8192
hinv.icache

value 8192

hinv.secondarycache

value 1048576

hinv.physmem

value 64
hinv.pmeminterleave

007–2614–004 91

Performance Co-PilotTM User’s and Administrator’s Guide

value 0

hinv.ndisk
value 1

The -h option directs pminfo to retrieve information from the specified host. If
the metric has an instance domain, the value associated with each instance of
the metric is printed:

pminfo -h babylon.engr.sgi.com -f filesys.mountdir

filesys.mountdir

inst [1 or "/dev/root"] value "/"

inst [2 or "/dev/dsk/dks1d3s7"] value "/usr2"
inst [3 or "/dev/dsk/dks3d1s7"] value "/dbv"

inst [4 or "/dev/dsk/dks3d4s7"] value "/dbv/d4"

inst [5 or "/dev/dsk/dks3d2s7"] value "/dbv/d2"

inst [6 or "/dev/dsk/dks3d3s7"] value "/dbv/d3"

inst [7 or "/dev/dsk/dks2d4s7"] value "/vicepb"
inst [8 or "/dev/dsk/xlv/build9"] value "/build9"

inst [9 or "/dev/dsk/xlv/build8"] value "/build8"

inst [10 or "/dev/dsk/xlv/lv9.xfs"] value "/lv9"

inst [11 or "/dev/dsk/dks2d5s7"] value "/usenet"

inst [12 or "/dev/dsk/xlv/work"] value "/usr/work"
inst [13 or "/dev/dsk/xlv/build10"] value "/build10"

inst [14 or "/dev/dsk/xlv/dist"] value "/usr/dist"

inst [15 or "/dev/dsk/xlv/people"] value "/usr/people"

inst [16 or "/dev/dsk/xlv/build12"] value "/build12"

inst [17 or "/dev/dsk/xlv/build11"] value "/build11"

The -m option prints the Performance Metric Identifiers (PMIDs) of the selected
metrics. This is useful for finding out which PMDA supplies the metric. For
example, the output below identifies the PMDA supporting domain 4 (the
leftmost part of the PMID) as the one supplying information for the metric
environ.extrema.mintemp:

pminfo -m environ.extrema.mintemp

environ.extrema.mintemp PMID: 4.0.3

The -v option verifies that metric definitions in the name space correspond
with supported metrics, and checks that a value is available for the metric.
Descriptions and values are fetched, but not printed. Only errors are reported.

Some instance domains are not enumerable. That is, it is not possible to ask for
all of the instances at once. Only explicit instances may be fetched from such
instance domains. This is because instances in such a domain may have a very
short lifetime or the cost of obtaining all of the instances at once is very high.

92 007–2614–004

Monitoring System Performance [4]

The proc metrics are an example of such an instance domain. The -f option is
not able to fetch metrics with non-enumerable instance domains; however, the
-F option tells pminfo to obtain a snapshot of all of the currently available
instances in the instance domain and then to retrieve a value for each.

Complete information on the pminfo command is found in the pminfo(1) man
page. There are examples of the use of pminfo in the PCP Tutorial.

4.8 The pmstore Command

From time to time you may wish to change the value of a particular metric.
Some metrics are counters that may need to be reset, and some are simply
control variables for agents that collect performance metrics. When you need to
change the value of a metric for any reason, the command to use is pmstore.

Note: For obvious reasons, the ability to arbitrarily change the value of a
performance metric is not supported. Rather, the PMCS selectively allows
some metrics to be modified in a very controlled fashion.

The basic syntax of the command is as follows:

pmstore metricname value

There are also command line flags to further specify the action. For example,
the -i option restricts the change to one or more instances of the performance
metric.

The value may be in one of several forms, according to the following rules:

1. If the metric has an integer type, then value should consist of an optional
leading hyphen, followed either by decimal digits or “0x” and some
hexadecimal digits; “0X” is also acceptable instead of “0x.”

2. If the metric has a floating point type, then value should be in the form of
an integer (described above), a fixed point number, or a number in scientific
notation.

3. If the metric has a string type, then value is interpreted as a literal string of
ASCII characters.

4. If the metric has an aggregate type, then an attempt is made to interpret
value as an integer, a floating point number, or a string. In the first two
cases, the minimal word length encoding is used; for example, “123” would
be interpreted as a four-byte aggregate, and “0x100000000” would be
interpreted as an eight-byte aggregate.

007–2614–004 93

Performance Co-PilotTM User’s and Administrator’s Guide

The following example illustrates the use of pmstore to enable performance
metrics collection in the txmon PMDA (see /usr/pcp/pmdas/txmon for the
source code of the txmon PMDA). When the metric txmon.control.level has the
value 0, no performance metrics are collected. Values greater than 0 enable
progressively more verbose instrumentation.

pminfo -f txmon.count

txmon.count

No value(s) available!

pmstore txmon.control.level 1
txmon.control.level old value=0 new value=1

pminfo -f txmon.count

txmon.count

inst [0 or "ord-entry"] value 23

inst [1 or "ord-enq"] value 11
inst [2 or "ord-ship"] value 10

inst [3 or "part-recv"] value 3

inst [4 or "part-enq"] value 2

inst [5 or "part-used"] value 1

inst [6 or "b-o-m"] value 0

For complete information on pmstore usage and syntax, see the pmstore(1)
man page.

94 007–2614–004

System Performance Visualization Tools [5]

Several 3D graphical tools are provided with Performance Co-Pilot to assist you
in visualizing performance on monitored systems. These tools are implemented
with and require Inventor, a 3D graphics facility. Each tool is completely
described by its own man page, accessible through the man command. For
example, the man page for the pmview tool can be viewed by giving the
following command:

man pmview

The following major sections are covered in this chapter:

• Section 5.1, page 95, provides background motivation and places the current
chapter in the context of other PCP tools.

• Section 5.2, page 97, describes the graphical disk activity visualization tool,
dkvis.

• Section 5.3, page 99, describes the graphical multiprocessor visualization and
comparison tool, mpvis.

• Section 5.4, page 101, describes the operating system activity visualization
tool, osvis.

• Section 5.5, page 103, describes the Origin visualization tool, oview.

• Section 5.6, page 104, describes the graphical NFS activity visualization tool,
nfsvis.

• Section 5.7, page 107, describes the graphical performance visualization tool,
pmview, on which the other visualization tools are based.

Other PCP visualization tools, such as nodevis, routervis, txmonvis, and
xbowvis, are not described in this chapter. See the nodevis(1), routervis(1),
txmonvis(1), and xbowvis(1) man pages for information about these pmview
based tools.

5.1 Overview of Visualization Tools

For the most interesting and complex problems in performance management,
the volume of available information is daunting. One approach to dealing with
the volume and complexity of the information is to employ automated
reasoning. Refer to Chapter 6, for a complete description of the pmie tool that

007–2614–004 95

Performance Co-PilotTM User’s and Administrator’s Guide

provides this capability. Another approach is to harness the considerable
potential for human visual processing to absorb, analyze, and classify large
amounts of information.

Performance Co-Pilot has been developed with an assumption that being able
to draw three-dimension pictures of system performance is a critical monitoring
requirement, and one that offers vast potential for increased insight and
understanding for the person charged with some aspect of performance
monitoring and management.

Building on SGI technologies of high-performance 3D graphics at the
workstation, OpenGL and Open Inventor, PCP delivers a range of utilities,
services, and toolkits that are designed both to provide basic visualization tools
and to foster the local customization of value-added tools to meet the needs of
end-user application and operational environments.

Key components to this performance visualization strategy are as follows:

• Time-series strip charts with pmchart (described in Chapter 4) that allow
performance metrics from multiple hosts and multiple Performance Metric
Domains to be concurrently displayed on a single correlated time axis.

Predefined chart configurations for common performance scenarios are
provided.

• Basic three-dimension models for the following:

– Per-processor CPU utilization with mpvis

– Per-disk spindle activity with dkvis

– NFS request traffic with nfsvis

– Additional scenes provided with the optional PCP add-on products

• A generalized, three-dimension performance model viewer, pmview, that
can easily be configured to draw scenes animated by the values of arbitrarily
selected performance metrics. Tools like mpvis, dkvis, and nfsvis are
front-ends that create scene descriptions to be displayed and animated with
pmview.

• Icon-sized stripcharts, meters, and indicator LEDs that may be combined
into a desktop control and indicator panel using pmgadgets; see Section 4.2.

The pmgsys command provides a standard layout for important IRIX
performance metrics using pmgadgets. The color or height of each gadget

96 007–2614–004

System Performance Visualization Tools [5]

is modulated by user-selected performance metrics from one or more PCP
sources.

• opsview, a sample multilevel performance visualization for Oracle parallel
server configurations, supports drill-down navigation and links several
different visualization paradigms.

When combined with the VCR and archive services of Performance Co-Pilot,
these visualization tools provide both real-time and retrospective analysis of
system performance at many different levels of detail.

5.2 The dkvis Disk Visualization Tool

The dkvis tool is a graphical disk device utilization viewer, displaying a bar
chart showing disk activity. When you give the dkvis command, you see a bar
chart displaying activity on each disk on the monitored system. You see a
Total Disk I/O Rate for Host host window similar to the one shown in
Figure 22.

007–2614–004 97

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 22. dkvis Total Disk I/O Rate Window

98 007–2614–004

System Performance Visualization Tools [5]

Each row of blocks on the base plane represents the group of disks connected to
a single disk controller (or host adaptor or SCSI bus). The label for each row is
generated from the characters common to the names of all of the disks on the
controller. For example, in Figure 22, the disks in the row labeled dks56 (the
same row as the selected block for dks56d2) are dks56d1, dks56d2,
dks56d3, and dks56d4.

The dkvis implementation uses the generalized 3D performance viewer
pmview as described in Section 5.7. Hence, the command line options for
dkvis include the common ones for pmview.

dkvis normally displays the total number of I/O operations per second (IOPS).
The -r option may be used to restrict the display to just the read operations or
-w may be specified for just the writes.

The dkvis command expresses the utilizations in the information window as
percentages of some maximum expected rate (clipped to 100%). The -m flag
allows you to override the default maximum value. This is useful if all of the
utilizations are small compared to the maximum. In such a situation, specifying
a smaller maximum has the effect of magnifying the differences between the
blocks. Similarly, if some of the blocks are almost always at full height, there is
a good chance that they are being clipped.

A suitable value for the -m option can be determined by clicking the blocks in
question, observing the values displayed in the information window for a while,
and adding about 10% to the highest value observed. Interactive adjustment of
the block height is available via the scale thumb wheel in the pmview viewer.

Complete information on the dkvis command is available in the dkvis(1) man
page. The PCP Tutorial contains additional examples on the use of dkvis.

5.3 The mpvis Processor Visualization Tool

The mpvis tool is a graphical multiprocessor activity viewer, displaying a bar
chart that shows processor activity. When you enter the mpvis command, you
see a bar chart displaying activity on each processor on the monitored system.
You see a CPU Utilization for Host host window similar to the one
shown in Figure 23.

007–2614–004 99

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 23. mpvis CPU Utilization Window

This figure shows mpvis monitoring a machine with four CPUs. CPU is
spending 80% of its time processing user code and about 20% of its time

100 007–2614–004

System Performance Visualization Tools [5]

executing system code. Another CPU is executing user code for close to 90% of
the time. The remaining two CPUs are idle.

The display contains five labeled rows of blocks, which represent the
breakdown of the activity of a single CPU into five states. There is one column
of five blocks for each CPU on the system being monitored. These five states
are as follows:

idle No activity

wait Like idle but waiting for I/O

intr Processing an interrupt

sys Executing in the IRIX kernel

user Executing user code

The mpvis implementation uses the generalized 3D performance viewer
pmview as described in Section 5.7. Hence, the command line options for
mpvis include the common ones for pmview.

Complete information on the mpvis command is available in the mpvis(1) man
page. The PCP Tutorial contains additional examples on the use of mpvis.

5.4 The osvis System Visualization Tool

The osvis tool displays a high-level overview of performance statistics
collected from the PCP infrastructure. The display is modulated by the values
of performance metrics retrieved from the target host or from the PCP archive
log identified with the -a option. Figure 24 shows a sample osvis
High-Level Activity for Host host display.

007–2614–004 101

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 24. osvis High-Level Activity Window

As in all pmview scenes, when the mouse is moved over one of the bars, the
current value and metric information for that bar are shown in the text box near

102 007–2614–004

System Performance Visualization Tools [5]

the top of the display. The height and color of the bars is proportional to the
performance metric values relative to the maximum expected activity.

The bars in the osvis scene represent the following information:

Disk The first stack is the rate of disk read and write
operations aggregated over all disk spindles. The
second bar is the average time the disks are busy,
which approximates average time utilization of
all disks.

Load The three bars represent average load for the past
1, 5, and 15 minutes, normalized by twice the
number of CPUs on the machine.

Mem The stack shows memory utilization by breaking
down real memory into kernel, file system, and
user usage. The memory utilization metrics
(mem.util) may not be available on all hosts, so
this may only show the amount of free memory
as a single bar on some hosts.

CPU This bar shows CPU utilization, aggregated over
all CPUs.

Disk Controllers The average time the disks were busy on each
disk controller, which approximates the average
time utilization of all disks on each controller.

Network Input The first two rows of bars show the input byte
rate and the input packet rate for each network
interface, except loopback and slip interfaces.

Network Output The first two rows of bars show the output byte
rate and the packet rate for each network
interface, except loopback and slip interfaces.

5.5 The oview Origin Visualization Tool

The oview tool displays a dynamic display of Origin system topology and
performance, as shown in Figure 25. It displays performance information about
CPUs, nodes, and routers in Origin systems connected in various
configurations; see the oview(1) man page for details.

007–2614–004 103

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 25. oview Window

5.6 The nfsvis NFS Activity Visualization Tool

The nfsvis tool is a graphical NFS (Network File System) activity viewer,
displaying a bar chart that shows NFS request activity on the monitored system.
NFS is optional software, and may not be present on all systems or at all sites.

104 007–2614–004

System Performance Visualization Tools [5]

When you run the nfsvis command, you see a bar chart displaying NFS load
on the monitored system. You see a NFS Client V2 & Server V2 Request
Traffic for host host window similar to the one shown in Figure 26.

007–2614–004 105

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 26. nfsvis NFS Client V2 & Server V2 Request Traffic Window

106 007–2614–004

System Performance Visualization Tools [5]

The statistics are broken into two groups:

Client Requests made by the monitored machine to NFS
servers on other machines

Server Requests from other machines for the NFS server
on the machine being monitored

The statistics in each of these two groups are the same, except that the client
group is for outgoing requests and the server group is for incoming requests.
Within each group, the requests are further broken down into three categories:

• Requests relating to data within files

• Requests for directory operations (for example, to rename a file)

• Requests involving other attributes of files

The nfsvis implementation uses the generalized 3D performance viewer
pmview as described in Section 5.7. Hence, the command line options for
nfsvis include the common ones for pmview.

Complete information on the nfsvis command is available in the nfsvis(1)
man page. The PCP Tutorial contains additional examples on the use of
nfsvis.

5.7 The pmview Tool

The pmview tool is a generalized three-dimension Open Inventor application
that supports dynamic displays of clusters of related performance metrics as
utilization blocks (or towers) on a common base plane. The pmview tool is the
basis for dkvis, mpvis, osvis, and nfsvis, all discussed above, as well as
nodevis, routervis, txmonvis, and xbowvis. It is also used by a range of
related tools that are specific to PCP add-on products. The pmview tool may
also be used to construct customized 3D performance displays.

Open Inventor is an object-oriented toolkit that simplifies and abstracts the task
of writing graphics applications into a set of easy-to-use objects. Inventor
run-time support is distributed with IRIX system software in the
inventor_eoe.sw product image.

The pmview command displays performance metrics as colored blocks
arranged in a grid on a grey base plane. The height of each block changes as
the value of its corresponding metric (or metric instance) changes. Labels may
be added to the scene to help identify groups of metrics, as shown in Figure 22,
Figure 23, Figure 24, and Figure 26.

007–2614–004 107

Performance Co-PilotTM User’s and Administrator’s Guide

A configuration file is used to specify the position, color, and scale of metrics
and metric instances in the scene. Metric values that exceed the associated
scaling factor are displayed at the maximum height and change color to white.
If a metric is unavailable, the bar height is minimized, and the bar color
changes to grey.

Normally, pmview operates in live mode where performance metrics are
fetched in real time. The user can view metrics from other accessible Internet
hosts that are running the PCP collector daemon, pmcd. The pmview tool can
also replay archives of performance metrics collected by pmlogger.

All metrics in the PMNS with numeric value semantics from multiple hosts or
archives may be visualized. The pmview tool examines the semantics of the
metrics and, where sensible, converts the fetched metric values to a rate before
scaling.

The pmview tool window contains a menu bar, time and scale controls, metric
and time values, and an examiner window; see the ivview command, which
displays the 3D scene.

The left, right, and bottom edges of the examiner viewer window contain a
variety of thumb wheels and buttons that allow the user to adjust the
visualization of the 3D scene. The Rotx and Roty thumb wheels allow the user
to rotate the scene about the X and Y axes, respectively. The Dolly thumb
wheel moves the virtual camera closer to or further from the scene, allowing
the user to examine specific parts in detail or view the entire scene.

On the right edge of the viewer are eight buttons that affect the way the user
can interact with the scene:

• The pointer button changes the cursor to a pointer that allows blocks in
the scene to be selected. The Esc key can also be used to toggle between the
pointer and hand cursors.

• The hand button changes the cursor to a hand that can be used to rotate,
translate, and examine the scene via Dolly, using a combination of mouse
buttons and movement.

The left mouse button can be used to rotate the scene in the direction of the
mouse. Releasing the mouse button before the mouse has stopped moving
causes the scene to continue rotating until a mouse button is pressed again.

The middle mouse button can be used to pan the scene. By pressing both
left and middle buttons, the mouse can be used as a virtual camera.

108 007–2614–004

System Performance Visualization Tools [5]

• The question mark button displays SGI Help for the examiner viewer.
To install online help, use inst to install the inventor_eoe.sw.help
package from your IRIX system software distribution. See the Performance
Co-Pilot release notes for more information on prerequisite subsystems.

• The home button changes the scene back to its original position, or the
position set by the home pointer button.

• The home pointer button sets the new home position of the scene to be
the scene currently in view.

• The eye button resizes the scene so that it completely fits into the 3D
viewing area.

• The cross-hairs button moves the scene so that the object under the
cursor is in the center of the viewing area. Change the hand cursor and
press the cross-hairs button. The cursor changes to a target. Select the
block to be centered and the scene rotates and translates appropriately.

• The perspective box button switches between perspective and
orthogonal projections.

Pressing the right mouse button within the scene displays a menu of options
that affect how the 3D scene is drawn. The options include drawing the blocks
as wireframes and turning on stereo viewing.

When the pointer cursor is active, more information about the 3D scene can be
obtained. Text describing the metric represented by the block beneath the
cursor displays in the top text box of the pmview window. This text displays
the source, name, and instance of the performance metric, and the value, units,
and percentage of the expected minimum the value represents.

Clicking the left mouse button on a block highlights the block with a red
wireframe, as shown in Figure 27. The metric description text box is now fixed
on that metric and the values continue to be updated as new metrics are
fetched. This allows other actions to be performed with the mouse while
examining a single metric in detail at the same time. Click the left mouse
button on the space surrounding the scene to remove the selection.

007–2614–004 109

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 27. pmview Window with a Block Selected

Multiple blocks may also be selected by either Shift clicking with the left mouse
button or by clicking on a base plane. Shift clicking toggles the selection status
of a particular block and leaves the selection status of other blocks unaltered.
Clicking on the base plane selects all blocks belonging to the base plane.
Whenever multiple blocks are selected, no accompanying text is displayed in the
text box. However, multiple block selection affects the launching of other tools
because all metrics on the base plane are considered to be selected as a group.

110 007–2614–004

System Performance Visualization Tools [5]

5.7.1 pmview Menus

There are four menus in pmview tools:

File Records, saves, and prints scenes

Options Accesses the time controls

Launch Starts other tools

Help Obtains online help

The Launch menu consists of a list of tools that operate on the current selection
of metrics. How the tool is invoked depends on the type of tool. Tools that
operate on any metric (such as pmchart, pmval, and pmdumptext) use the
metrics selected directly as input. Thus pmchart displays all the selected
metrics in a chart, pmval is invoked within winterm for each metric, and
pmdumptext displays multiple metrics in one winterm. Other tools use what
metrics are pertinent. If no metric is pertinent or selected, only the source of the
metrics is used, that is, the monitored host or archive. For each Launch menu
item there is an associated launch script. The launch scripts generally know the
relationship between routers, nodes, and CPUs. Thus if CPUs are selected in
mpvis and if nodevis is launched, only the nodes that have the selected CPUs
attached are displayed.

Some launchable tools are listed below:

dkvis, mpvis,
nfsvis, and osvis

pmview-based tools for visualizing disk activity,
CPUs, NFS, and the OS (operating system).

pcp Brings up a window that summarizes the PCP
installation.

pmdumptext Brings up a window that shows the performance
metrics as text.

pmchart A tool for graphically displaying and correlating
time-series trends of performance metrics. See
Section 4.1, page 62, for details.

pmgsys A miniature IRIX performance metrics viewer,
available only in live mode, not in archive mode.

pmkstat A text-based tool that displays, at intervals, a
high-level summary of system performance.

pmval A tool that displays the values of performance
metrics textually. Only one metric (with one or
more instances) may be selected to successfully

007–2614–004 111

Performance Co-PilotTM User’s and Administrator’s Guide

launch this tool. See Section 4.5, page 86, for
details.

In addition to the menu options for time controls, the current direction and
mode of the time controls is shown in a button in the top-left corner of the
pmview window (refer to Section 3.4 for a complete description of the time
control services). Pressing this button displays the time control dialog.

Below this button is a thumb wheel and an editable text box to specify a scale
multiplier that is applied to all values in the scene. Spinning the thumb wheel
to the right, or incrementing the value in the text field, increases the scaling and
raises the height of the bars. Conversely, spinning the thumb wheel to the left
or decrementing the text field decreases the scaling and lowers the height of the
bars.

The button beside the thumb wheel resets the scale to one. This is especially
useful when the scale specified in the configuration file reduces the usefulness
of the visualization as a consequence of the bars being either too low or beyond
the maximum scale height.

5.7.2 Creating Custom Visualization Tools with pmview

At startup time, a configuration file is read that specifies the following:

• Geometry for the scene to be displayed by pmview

• Associations between the visual appearance of “blocks” and performance
metrics

The scene is based on a grid that can contain a variety of objects and can resize
itself to accommodate objects of varying sizes. To distinguish this configuration
file format from an earlier (still supported) format, configuration files must
begin with the following line:

pmview Version 2.1

All lines beginning with a # character are treated as comments and ignored.
Spaces, tabs, and newlines are treated as white space to allow multiple
statements on the same line. The simplest configuration file consists of a single
object that may represent one or more metrics and metric instances.

The configuration file consists of two sections: global parameters and color lists,
and the object definitions. The global parameters control the size of the objects
in the scene. For example, a scaling factor of 1.2 can be applied to all objects
with the following line:

112 007–2614–004

System Performance Visualization Tools [5]

_scale 1.2

Groups of colors may be associated with a name and referenced later in the file.
Colors may be X(1 color names, X(1) numerical colors, or three real values
representing the saturation of red, green, and blue, respectively. The following
color list contains three identical colors:

_colorlist cpu (red rgbi:1.0/0.0/0.0 1.0 0.0 0.0)

The mpvis configuration file (which can be generated with the -V option) looks
like Example 3, page 113:

Example 3: mpvis Configuration File

pmview Version 2.1

#

mpvis

#

_gridSpace 120

_colorlist cpu (green2 cyan2 yellow2 red2 blue2)
_grid 0 0 _hide (# outer grid

_baseLabel ‘‘CPU Utilization for Host wired\ncpu0 only’’

_bar _groupByInst (

_metrics (

kernel.percpu.cpu.idle[cpu0] 1000 ‘‘idle’’
kernel.percpu.cpu.wait.total[cpu0] 1000 ‘‘wait’’

kernel.percpu.cpu.intr[cpu0] 1000 ‘‘intr’’

kernel.percpu.cpu.sys[cpu0] 1000 ‘‘sys’’

kernel.percpu.cpu.user[cpu0] 1000 ‘‘user’’

)
_colorlist cpu

_baseLabel ‘‘CPU Utilization for Host wired\ncpu0 only’’

)

)

Multiple objects can be visualized using a _grid object, which may contain
multiple objects (including more _grid objects). The _grid object resizes
columns and rows to accommodate the largest contained object. Objects can
occupy multiple grid squares and can be aligned with a particular edge or
corner of a grid square. The _bar object has a single bar for each metric
instance and labels for each metric. The scale height for each metric instance is
1000 in the units of the metric (milliseconds utilization per second).

007–2614–004 113

Performance Co-PilotTM User’s and Administrator’s Guide

The specification file shown in Example 4, page 114, produces a scene like the
one shown in Figure 28. The file has a grid, labels, bars, and a stack utilization
object.

Example 4: Specification File for pmview

pmview Version 2.1

_colorlist cpu_colors (blue2 red2 yellow2 cyan2 green2)
_colorlist disk_colors (purple2 yellow2)

_colorlist memory_colors (rgbi:1.0/1.0/0.0 rgbi:0.0/1.0/1.0 rgbi:1.0/0.0/0.0

rgbi:1.0/0.0/1.0 rgbi:0.0/0.0/1.0 rgbi:0.0/1.0/0.0)

_grid hide (

_label 3 1 _west _down _large ‘‘CPU’’
_stack 4 1 _west _utilmod (

_metrics (

kernel.all.cpu.user 1000

kernel.all.cpu.sys 1000

kernel.all.cpu.intr 1000

kernel.all.cpu.wait.total 1000
kernel.all.cpu.idle 1000

)

_colorlist cpu_colors

_baseLabel ‘‘CPU Utilization’’

)
_label 3 3 _west _down _large ‘‘Load’’

_bar 4 3 2 1 _west (

_metrics (

kernel.all.load[15] 2

kernel.all.load[5] 2
kernel.all.load[1] 2

)

_metriclabels _away (‘‘15’’ ‘‘5’’ ‘‘1’’)

_colorlist (blue2 blue2 blue2)

_baseLabel ‘‘Average System Load over last 1, 5 and 15 minutes\nNormalized to 2’’

)
_label 0 1 _west _down _large ‘‘Mem’’

_stack 1 1 _west _utilmod (

_metrics (

mem.util.kernel 1

mem.util.fs_ctl 1
mem.util.fs_dirty 1

mem.util.fs_clean 1

mem.util.user 1

114 007–2614–004

System Performance Visualization Tools [5]

)

_colorlist memory_colors
_baseLabel ‘‘Physical Memory Utilization’’

)

_label 0 3 _down _large ‘‘Disk’’

_stack 1 3 _west _cylinder (

_metrics (

disk.all.read 100
disk.all.write 100

)

_colorlist disk_colors

_baseLabel ‘‘Disk Operations\nNormalized to 100 I/Os per second’’

)
)

007–2614–004 115

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 28. Custom pmview Scene

To assist in the creation of front-end tools, a file containing shell procedures for
generating usage information and parsing pmview command line options is
located at /var/pcp/lib/pmview-args. The dkvis, mpvis, nfsvis, and
osvis tools are all shell scripts that use these shell procedures to generate a
configuration file for pmview.

116 007–2614–004

Performance Metrics Inference Engine [6]

The Performance Metrics Inference Engine (pmie) is a tool that provides
automated monitoring of, and reasoning about, system performance within the
Performance Co-Pilot (PCP) framework.

The following major sections in this chapter are as follows:

• Section 6.1, page 117, provides an introduction to the concepts and design of
pmie.

• Section 6.2, page 120, describes the basic syntax and usage of pmie.

• Section 6.3, page 124, discusses the complete pmie rule specification
language.

• Section 6.4, page 139, provides an example, covering several common
performance scenarios.

• Section 6.5, page 141, presents some tips and techniques for pmie rule
development.

• Section 6.6, page 141, presents some important information on using pmie.

• Section 6.7, page 143, describes how to use the pmieconf command to
generate pmie rules.

• Section 6.8, page 146, provides a brief description of how to use the
pmrules GUI for creating pmie rules from parameterized templates.

• Section 6.9, page 150, provides support for running pmie as a daemon.

6.1 Introduction to pmie

Automated reasoning within Performance Co-Pilot (PCP) is provided by the
Performance Metrics Inference Engine, (pmie), which is an applied artificial
intelligence application.

The pmie tool accepts expressions describing adverse performance scenarios,
and periodically evaluates these against streams of performance metric values
from one or more sources. When an expression is found to be true, pmie is able
to execute arbitrary actions to alert or notify the system administrator of the
occurrence of an adverse performance scenario. These facilities are very general,

007–2614–004 117

Performance Co-PilotTM User’s and Administrator’s Guide

and are designed to accommodate the automated execution of a mixture of
generic and site-specific performance monitoring and control functions.

The stream of performance metrics to be evaluated may be from one or more
hosts, or from one or more PCP archive logs. In the latter case, pmie may be
used to retrospectively identify adverse performance conditions.

Using pmie, you can filter, interpret, and reason about the large volume of
performance data made available by the Performance Metrics Collection System
(PMCS) and delivered through the Performance Metrics Application
Programming Interface (PMAPI).

Typical pmie uses include the following:

• Automated real-time monitoring of a host, a set of hosts, or client-server
pairs of hosts to raise operational alarms when poor performance is detected
in a production environment

• Nightly processing of archive logs to detect and report performance
regressions, or quantify quality of service for service agreements or
management reports, or produce advance warning of pending performance
problems

• Strategic performance management, for example, detection of abnormal, but
not chronic, system behavior, trend analysis, and capacity planning

The pmie expressions are described in a language with expressive power and
operational flexibility. It includes the following operators and functions:

• Generalized predicate-action pairs, where a predicate is a logical expression
over the available performance metrics, and the action is arbitrary.
Predefined actions include the following:

– Launch a visible alarm with xconfirm; see the xconfirm(1) man page.

– Post an entry to the system log /var/adm/SYSLOG; see the syslog(3C)
man page.

– Post an entry to the PCP noticeboard file /var/adm/pcplog/NOTICES.

– Execute a shell command or script, for example, to send e-mail, initiate a
pager call, warn the help desk, and so on.

– Echo a message on standard output; useful for scripts that generate
reports from retrospective processing of PCP archive logs.

• Arithmetic and logical expressions in a C-like syntax.

118 007–2614–004

Performance Metrics Inference Engine [6]

• Expression groups may have an independent evaluation frequency, to
support both short-term and long-term monitoring.

• Canonical scale and rate conversion of performance metric values to provide
sensible expression evaluation.

• Aggregation functions of sum, avg, min, and max, that may be applied to
collections of performance metrics values clustered over multiple hosts, or
multiple instances, or multiple consecutive samples in time.

• Universal and existential quantification, to handle expressions of the form
“for every....” and “at least one...”.

• Percentile aggregation to handle statistical outliers, such as “for at least 80%
of the last 20 samples, ...”.

• Macro processing to expedite repeated use of common subexpressions or
specification components.

• Transparent operation against either live-feeds of performance metric values
from pmcd on one or more hosts, or against PCP archive logs of previously
accumulated performance metric values.

The power of pmie may be harnessed to automate the most common of the
deterministic system management functions that are responses to changes in
system performance. For example, disable a batch stream if the DBMS
transaction commit response time at the ninetieth percentile goes over two
seconds, or stop accepting news and send e-mail to the sysadmin alias if free
space in the news file system falls below five percent.

Moreover, the power of pmie can be directed towards the exceptional and
sporadic performance problems. For example, if a network packet storm is
expected, enable IP header tracing for ten seconds, and send e-mail to advise
that data has been collected and is awaiting analysis. Or, if production batch
throughput falls below 50 jobs per hour, activate a pager to the systems
administrator on duty.

Obviously, pmie customization is required to produce meaningful filtering and
actions in each production environment. The pmieconf tool provides a
convenient customization method, allowing the user to generate parameterized
pmie rules for some of the more common performance scenarios.

007–2614–004 119

Performance Co-PilotTM User’s and Administrator’s Guide

6.2 Basic pmie Usage

This section presents and explains some basic examples of pmie usage. The
pmie tool accepts the common PCP command line arguments, as described in
Chapter 3, page 43. In addition, pmie accepts the following command line
arguments:

-d Enables interactive debug mode.

-v Verbose mode: expression values are displayed.

-V Verbose mode: annotated expression values are displayed.

-W When-verbose mode: when a condition is true, the satisfying
expression bindings are displayed.

One of the most basic invocations of this tool is this form:

pmie filename

In this form, the expressions to be evaluated are read from filename. In the
absence of a given filename, expressions are read from standard input,
usually your system keyboard.

6.2.1 pmie and the Performance Metrics Collection System

Before you use pmie, familiarize yourself with some Performance Metrics
Collection System (PMCS) basics. It is strongly recommended that you
familiarize yourself with the concepts from the Section 1.3, page 13. The
discussion in this section serves as a very brief review of these concepts.

The PMCS makes available hundreds of performance metrics that you can use
when formulating expressions for pmie to evaluate. If you want to find out
which metrics are currently available on your system, use this command:

pminfo

Use the pmie command line arguments to find out more about a particular
metric. For example, to fetch new metric values from host moomba, use the -f
flag:

pminfo -f -h moomba disk.dev.total

This produces the following response:

disk.dev.total

inst [131329 or "dks1d1"] value 970853

inst [131330 or "dks1d2"] value 53581

120 007–2614–004

Performance Metrics Inference Engine [6]

inst [131331 or "dks1d3"] value 5353

inst [131332 or "dks1d4"] value 225
inst [131333 or "dks1d5"] value 9674

inst [131334 or "dks1d6"] value 14383

inst [131335 or "dks1d7"] value 5578

This reveals that on the host moomba, the metric disk.dev.total has seven
instances, one for each disk on the system. The instance names are dks1d1,
dks1d2, and so on up to dks1d7.

Use the following command to request help text (specified with the -T flag) to
provide more information about performance metrics:

pminfo -T network.interface.in.packets

The metadata associated with a performance metric is used by pmie to
determine how the value should be interpreted. You can examine the descriptor
that encodes the metadata by using the -d flag for pminfo, as shown in this
command:

pminfo -d -h somehost mem.freemem kernel.percpu.syscall

In response, you see output similar to this:

mem.freemem

Data Type: 32-bit unsigned int InDom: PM_INDOM_NULL 0xffffffff

Semantics: instant Units: Kbyte

kernel.percpu.syscall
Data Type: 32-bit unsigned int InDom: 1.1 0x400001

Semantics: counter Units: count

Note: A cumulative counter such as kernel.percpu.syscall is
automatically converted by pmie into a rate (measured in events per second,
or count/second), while instantaneous values such as mem.freemem are not
subjected to rate conversion. Metrics with an instance domain (InDom in the
pminfo output) of PM_INDOM_NULL are singular and always produce one
value per source. However, a metric like kernel.percpu.syscall has an
instance domain, and may produce multiple values per source (in this case, it
is one value for each configured CPU).

6.2.2 Simple pmie Example

The following pmie example directs the inference engine to evaluate and print
values (specified with the -v flag) for a single performance metric (the simplest

007–2614–004 121

Performance Co-PilotTM User’s and Administrator’s Guide

possible expression), in this case disk.dev.total, collected from the local
pmcd:

pmie -v
iops = disk.dev.total;

Ctrl+D

iops: ? ?

iops: 14.4 0

iops: 25.9 0.112

iops: 12.2 0
iops: 12.3 64.1

iops: 8.594 52.17

iops: 2.001 71.64

On this system, there are two disk spindles, hence two values of the expression
iops per sample. Notice that the values for the first sample are unknown
(represented by the question marks [?] in the first line of output), because rates
can be computed only when at least two samples are available. The subsequent
samples are produced every ten seconds by default. The second sample reports
that during the preceding ten seconds there was an average of 14.4 transfers per
second on one disk and no transfers on the other disk.

Rates are computed using time stamps delivered by the PMCS. Due to
unavoidable inaccuracy in the actual sampling time (the sample interval is not
exactly 10 seconds), you may see more decimal places in values than you
expect. Notice, however, that these errors do not accumulate but cancel each
other out over subsequent samples.

In the above example, the expression to be evaluated was enter (the keyboard),
followed by the end-of-file character [Ctrl+D]. Usually, it is more convenient to
enter expressions into a file (for example, myrules) and ask pmie to read the
file. Use this command syntax:

pmie -v myrules

Please refer to the pmie(1) man page for a complete description of pmie
command line options.

6.2.3 Complex pmie Examples

This section illustrates more complex pmie expressions of the specification
language. The next section provides a complete description of the pmie
specification language.

122 007–2614–004

Performance Metrics Inference Engine [6]

The following arithmetic expression computes the percentage of write
operations over the total number of disk transfers.

(disk.all.write / disk.all.total) * 100;

The disk.all metrics are singular, so this expression produces exactly one
value per sample, independent of the number of disk devices.

Note: If there is no disk activity, disk.all.total will be zero and pmie
evaluates this expression to be not a number. When -v is used, any such
values are displayed as question marks.

The following logical expression has the value true or false for each disk:

disk.dev.total > 10 &&

disk.dev.write > disk.dev.read;

The value is true if the number of writes exceeds the number of reads, and if
there is significant disk activity (more than 10 transfers per second).

The previous examples did not specify any action to be performed in the event
that an expression evaluates to true. The default action is to do nothing, other
than report the value of the expression if the -v option was used. The
following example demonstrates a simple action:

some_inst disk.dev.total > 60 ->

print "[%i] high disk i/o ";

This prints a message to the standard output whenever the total number of
transfers for some disk (some_inst) exceeds 60 transfers per second. The %i
(instance) in the message is replaced with the name(s) of the disk(s) that caused
the logical expression to be true.

Using pmie to evaluate the above expressions every 3 seconds, you see output
similar to the following:

pmie -v -t 3sec

pct_wrt = (disk.all.write / disk.all.total) * 100;

busy_wrt = disk.dev.total > 10 &&

disk.dev.write > disk.dev.read;

busy = some_inst disk.dev.total > 60 ->

print "[%i] high disk i/o ";
Ctrl+D

pct_wrt: ?

busy_wrt: ? ?

busy: ?

007–2614–004 123

Performance Co-PilotTM User’s and Administrator’s Guide

pct_wrt: 18.43
busy_wrt: false false

busy: false

Mon Aug 5 14:56:08 1996: [dks0d2] high disk i/o

pct_wrt: 10.83

busy_wrt: false false
busy: true

pct_wrt: 19.85

busy_wrt: true false

busy: false

pct_wrt: ?

busy_wrt: false false

busy: false

Mon Aug 5 14:56:17 1996: [dks0d1] high disk i/o [dks0d2] high disk i/o

pct_wrt: 14.8

busy_wrt: false false

busy: true

The first sample contains unknowns, since all expressions depend on computing
rates. Also notice that the expression pct_wrt may have an undefined value
whenever all disks are idle, as the denominator of the expression is zero. If one
or more disks is busy, the expression busy is true, and the message from the
print in the action part of the rule appears (before the -v values).

6.3 Specification Language for pmie

This section describes the complete syntax of the pmie specification language,
as well as macro facilities and the issue of sampling and evaluation frequency.
The reader with a preference for learning by example may choose to skip this
section and go straight to the examples in Section 6.4, page 139.

Complex expressions are built up recursively from simple elements:

1. Performance metric values are obtained from pmcd for real-time sources,
otherwise from PCP archive logs.

2. Metrics values may be combined using arithmetic operators to produce
arithmetic expressions.

124 007–2614–004

Performance Metrics Inference Engine [6]

3. Arithmetic expressions may be compared using relational operators to
produce logical expressions.

4. Logical expressions may be combined using Boolean operators, including
powerful quantifiers.

5. Aggregation operators may be used to compute summary expressions, for
either arithmetic or logical operands.

6. The final logical expression may be used to initiate a sequence of actions.

6.3.1 Basic pmie Syntax

The pmie rule specification language supports a number of basic syntactic
elements.

6.3.1.1 Lexical Elements

All pmie expressions are composed of the following lexical elements:

Identifier Begins with an alphabetic character (either upper
or lowercase), followed by zero or more letters,
the numeric digits, and the special characters
period (.) and underscore (_), as shown in the
following example:

x, disk.dev.total and my_stuff

As a special case, an arbitrary sequence of letters
enclosed by apostrophes (’) is also interpreted as
an identifier; for example:

’vms$slow_response’

Keyword The aggregate operators, units, and predefined
actions are represented by keywords; for example,
some_inst, print, and hour.

Numeric constant Any likely representation of a decimal integer or
floating point number; for example, 124, 0.05, and
-45.67

007–2614–004 125

Performance Co-PilotTM User’s and Administrator’s Guide

String constant An arbitrary sequence of characters, enclosed by
double quotation marks ("x").

Within quotes of any sort, the backslash (/) may be used as an escape character
as shown in the following example:

"A \"gentle\" reminder"

6.3.1.2 Comments

Comments may be embedded anywhere in the source, in either of these forms:

/* text */ Comment, optionally spanning multiple lines,
with no nesting of comments.

// text Comment from here to the end of the line.

6.3.1.3 Macros

When they are fully specified, expressions in pmie tend to be verbose and
repetitious. The use of macros can reduce repetition and improve readability
and modularity. Any statement of the following form associates the macro
name identifier with the given string constant.

identifier = "string";

Any subsequent occurrence of the macro name identifier is replaced by the
string most recently associated with a macro definition for identifier.

$identifier

For example, start with the following macro definition:

disk = "disk.all";

You can then use the following syntax:

pct_wrt = ($disk.write / $disk.total) * 100;

Note: Macro expansion is performed before syntactic parsing; so macros may
only be assigned constant string values.

6.3.1.4 Units

The inference engine converts all numeric values to canonical units (seconds for
time, bytes for space, and events for count). To avoid surprises, you are
encouraged to specify the units for numeric constants. If units are specified,

126 007–2614–004

Performance Metrics Inference Engine [6]

they are checked for dimension compatibility against the metadata for the
associated performance metrics.

The syntax for a units specification is a sequence of one or more of the
following keywords separated by either a space or a slash (/), to denote per:
byte, KByte, MByte, GByte, TByte, nsec, nanosecond, usec,
microsecond, msec, millisecond, sec, second, min, minute, hour,
count, Kcount, Mcount, Gcount, or Tcount. Plural forms are also accepted.

The following are examples of units usage:

disk.dev.blktotal > 1 Mbyte / second;

mem.freemem < 500 Kbyte;

Note: If you do not specify the units for numeric constants, it is assumed
that the constant is in the canonical units of seconds for time, bytes for space,
and events for count, and the dimensionality of the constant is assumed to be
correct. Thus, in the following expression, the 500 is interpreted as 500 bytes.

mem.freemem < 500

6.3.2 Setting Evaluation Frequency

The identifier name delta is reserved to denote the interval of time between
consecutive evaluations of one or more expressions. Set delta as follows:

delta = number [units];

If present, units must be one of the time units described in the preceding
section. If absent, units are assumed to be seconds. For example,

delta = 5 min;

has the effect that any subsequent expressions (up to the next expression that
assigns a value to delta) are scheduled for evaluation at a fixed frequency,
once every five minutes.

The default value for delta may be specified using the -t command line option,
otherwise delta is initially set to be 10 seconds.

6.3.3 pmie Metric Expressions

A Performance Metrics Name Space (PMNS) provides a means of naming
performance metrics, for example, disk.dev.read. The Performance Metrics
Collection System (PMCS) allows an application to retrieve one or more values

007–2614–004 127

Performance Co-PilotTM User’s and Administrator’s Guide

for a performance metric from a designated source (a collector host running
pmcd, or a PCP archive log). To specify a single value for some performance
metric requires the metric name to be associated with all three of the following:

• A particular host (or source of metrics values)

• A particular instance (for metrics with multiple values)

• A sample time

The permissible values for hosts are the range of valid hostnames as provided
by Internet naming conventions.

The names for instances are provided by the Performance Metrics Domain
Agents (PMDA) for the instance domain associated with the chosen
performance metric.

The sample time specification is defined as the set of natural numbers 0, 1, 2,
and so on. A number refers to one of a sequence of sampling events, from the
current sample 0 to its predecessor 1, whose predecessor was 2, and so on. This
scheme is illustrated by the time line shown in Figure 29.

past future

1 0234

now

a12217

Figure 29. Sampling Time Line

Each sample point is assumed to be separated from its predecessor by a
constant amount of real time, the delta. The most recent sample point is always
zero. The value of delta may vary from one expression to the next, but is fixed
for each expression; for more information on the sampling interval, see Section
6.3.2, page 127.

For pmie, a metrics expression is the name of a metric, optionally qualified by a
host, instance and sample time specification. Special characters introduce the
qualifiers: colon (:) for hosts, hash or pound sign (#) for instances, and at (@)
for sample times. The following expression refers to the previous value (@1) of
the counter for the disk read operations associated with the disk instance
#dks0d1 on the host moomba.

disk.dev.read :moomba #dks0d1 @1

128 007–2614–004

Performance Metrics Inference Engine [6]

In fact, this expression defines a point in the three-dimensional parameter space
of {host} x {instance} x {sample time} as shown in Figure 30.

instance

host

time
sample

a12218

Figure 30. Three-Dimensional Parameter Space

A metric expression may also identify sets of values corresponding to one-,
two-, or three-dimension slices of this space, according to the following rules:

1. A metric expression consists of a PCP metric name, followed by optional
host specifications, followed by optional instance specifications, and finally,
optional sample time specifications.

2. A host specification consists of one or more host names, each prefixed by a
colon (:). For example: :indy :far.away.domain.com :localhost

3. A missing host specification implies the default pmie source of metrics, as
defined by a -h option on the command line, or the first named archive in
a -a option on the command line, or pmcd on the local host.

4. An instance specification consists of one or more instance names, each
prefixed by a hash or pound (#) sign. For example: #ec0 #ec2

Recall that you can discover the instance names for a particular metric,
using the pminfo command. See Section 6.2.1, page 120.

Within the pmie grammar, an instance name is an identifier. If the instance
name contains characters other than alphanumeric characters, enclose the
instance name in single quotes; for example, #’/dev/root’
#’/dev/usr’

007–2614–004 129

Performance Co-PilotTM User’s and Administrator’s Guide

5. A missing instance specification implies all instances for the associated
performance metric from each associated pmie source of metrics.

6. A sample time specification consists of either a single time or a range of
times. A single time is represented as an at (@) followed by a natural
number. A range of times is an at (@), followed by a natural number,
followed by two periods (..) followed by a second natural number. The
ordering of the end points in a range is immaterial. For example, @0..9
specifies the last 10 sample times.

7. A missing sample time specification implies the most recent sample time.

The following metric expression refers to a three-dimension set of values, with
two hosts in one dimension, five sample times in another, and the number of
instances in the third dimension being determined by the number of configured
disk spindles on the two hosts.

disk.dev.read :foo :bar @0..4

6.3.4 pmie Rate Conversion

Many of the metrics delivered by the PMCS are cumulative counters. Consider
the following metric:

disk.all.total

A single value for this metric tells you only that a certain number of disk I/O
operations have occurred since boot time, and that information may be invalid
if the counter has exceeded its 32-bit range and wrapped. You need at least two
values, sampled at known times, to compute the recent rate at which the I/O
operations are being executed. The required syntax would be this:

(disk.all.total @0 - disk.all.total @1) / delta

The accuracy of delta as a measure of actual inter-sample delay is an issue.
pmie requests samples, at intervals of approximately delta, while the results
exported to the PMCS are time stamped with the high-resolution system clock
time when the samples were exported. For these reasons, a built-in and implicit
rate conversion using accurate time stamps is provided by pmie for
performance metrics that have counter semantics. For example, the following
expression is unconditionally converted to a rate by pmie.

disk.all.total

130 007–2614–004

Performance Metrics Inference Engine [6]

6.3.5 pmie Arithmetic Expressions

Within pmie, simple arithmetic expressions are constructed from metrics
expressions (see Section 6.3.3, page 127) and numeric constants, using all of the
arithmetic operators and precedence rules of the C programming language.

All pmie arithmetic is performed in double precision.

Section 6.3.8, page 137, describes additional operators that may be used for
aggregate operations to reduce the dimensionality of an arithmetic expression.

6.3.6 pmie Logical Expressions

A number of logical expression types are supported:

• Logical constants

• Relational expressions

• Boolean expressions

• Quantification operators

6.3.6.1 Logical Constants

Like in the C programming language, pmie interprets an arithmetic value of
zero to be false, and all other arithmetic values are considered true.

6.3.6.2 Relational Expressions

Relational expressions are the simplest form of logical expression, in which
values may be derived from arithmetic expressions using pmie relational
operators. For example, the following is a relational expression that is true or
false, depending on the aggregate total of disk read operations per second being
greater than 50.

disk.all.read > 50 count/sec

All of the relational logical operators and precedence rules of the C
programming language are supported in pmie.

As described in Section 6.3.3, page 127, arithmetic expressions in pmie may
assume set values. The relational operators are also required to take constant,
singleton, and set-valued expressions as arguments. The result has the same
dimensionality as the operands. Suppose the following rule is given:

007–2614–004 131

Performance Co-PilotTM User’s and Administrator’s Guide

hosts = ":gonzo";

intfs = "#ec0 #ec2";
all_intf = network.interface.in.packets

$hosts $intfs @0..2 > 300 count/sec;

Then the execution of pmie may proceed as follows:

pmie -V uag.11

all_intf:

gonzo: [ec0] ? ? ?

gonzo: [ec2] ? ? ?

all_intf:
gonzo: [ec0] false ? ?

gonzo: [ec2] false ? ?

all_intf:

gonzo: [ec0] true false ?

gonzo: [ec2] false false ?
all_intf:

gonzo: [ec0] true true false

gonzo: [ec2] false false false

At each sample, the relational operator greater than (>) produces six truth
values for the cross-product of the instance and sample time dimensions.

Section 6.3.6.4, page 132, describes additional logical operators that may be
used to reduce the dimensionality of a relational expression.

6.3.6.3 Boolean Expressions

The regular Boolean operators from the C programming language are
supported: conjunction (&&), disjunction (||) and negation (!).

As with the relational operators, the Boolean operators accommodate set-valued
operands, and set-valued results.

6.3.6.4 Quantification Operators

Boolean and relational operators may accept set-valued operands and produce
set-valued results. In many cases, rules that are appropriate for performance
management require a set of truth values to be reduced along one or more of
the dimensions of hosts, instances, and sample times described in Section 6.3.3,
page 127. The pmie quantification operators perform this function.

Each quantification operator takes a one-, two-, or three-dimension set of truth
values as an operand, and reduces it to a set of smaller dimension, by

132 007–2614–004

Performance Metrics Inference Engine [6]

quantification along a single dimension. For example, suppose the expression in
the previous example is simplified and prefixed by some_sample, to produce
the following expression:

intfs = "#ec0 #ec2";

all_intf = some_sample network.interface.in.packets

$intfs @0..2 > 300 count/sec;

Then the expression result is reduced from six values to two (one per interface
instance), such that the result for a particular instance will be false unless the
relational expression for the same interface instance is true for at least one of
the preceding three sample times.

There are existential, universal, and percentile quantification operators in each
of the host, instance, and sample time dimensions to produce the nine operators
as follows:

some_host True if the expression is true for at least one host
for the same instance and sample time.

all_host True if the expression is true for every host for the
same instance and sample time.

N%_host True if the expression is true for at least N% of
the hosts for the same instance and sample time.

some_inst True if the expression is true for at least one
instance for the same host and sample time.

all_instance True if the expression is true for every instance for
the same host and sample time.

N%_instance True if the expression is true for at least N% of
the instances for the same host and sample time.

some_sample time True if the expression is true for at least one
sample time for the same host and instance.

all_sample time True if the expression is true for every sample time
for the same host and instance.

N%_sample time True if the expression is true for at least N% of
the sample times for the same host and instance.

These operators may be nested. For example, the following expression answers
the question: “Are all hosts experiencing at least 20% of their disks busy either
reading or writing?”

007–2614–004 133

Performance Co-PilotTM User’s and Administrator’s Guide

Servers = ":moomba :babylon";

all_host (
20%_inst disk.dev.read $Servers > 40 ||

20%_inst disk.dev.write $Servers > 40

);

The following expression uses different syntax to encode the same semantics:

all_host (

20%_inst (

disk.dev.read $Servers > 40 ||

disk.dev.write $Servers > 40
)

);

Note: To avoid confusion over precedence and scope for the quantification
operators, use explicit parentheses.

Two additional quantification operators are available for the instance dimension
only, namely match_inst and nomatch_inst, that take a regular expression
and a boolean expression. The result is the boolean AND of the expression and
the result of matching (or not matching) the associated instance name against
the regular expression.

For example, this rule evaluates error rates on various 10BaseT Ethernet
network interfaces (such as ecN, etN, or efN):

some_inst

match_inst "^(ec|et|ef)"

network.interface.total.errors > 10 count/sec

-> syslog "Ethernet errors:" " %i"

6.3.7 pmie Rule Expressions

Rule expressions for pmie have the following syntax:

lexpr -> actions ;

The semantics are as follows:

• If the logical expression lexpr evaluates true, then perform the actions that
follow. Otherwise, do not perform the actions.

• It is required that lexpr has a singular truth value. Aggregation and
quantification operators must have been applied to reduce multiple truth
values to a single value.

134 007–2614–004

Performance Metrics Inference Engine [6]

• When executed, an action completes with a success/failure status.

• One or more actions may appear; consecutive actions are separated by
operators that control the execution of subsequent actions, as follows:

action-1& Always execute subsequent actions (serial
execution).

action-1 | If action-1 fails, execute subsequent actions,
otherwise skip the subsequent actions
(alternation).

An action is composed of a keyword to identify the action method, an optional
time specification, and one or more arguments.

A time specification uses the same syntax as a valid time interval that may be
assigned to delta, as described in Section 6.3.2, page 127. If the action is executed
and the time specification is present, pmie will suppress any subsequent
execution of this action until the wall clock time has advanced by time.

The arguments are passed directly to the action method.

The following action methods are provided:

shell The single argument is passed to the shell for
execution. This action is implemented using
system in the background. The action does not
wait for the system call to return, and succeeds
unless the fork fails.

alarm A notifier containing a time stamp, a single
argument as a message, and a Cancel button is
posted on the current display screen (as identified
by the DISPLAY environment variable). Each
alarm action first checks if its notifier is already
active. If there is an identical active notifier, a
duplicate notifier is not posted. The action
succeeds unless the fork fails.

syslog A message is written into the system log as a
priority (see the -p option for pmlogger);" to: "A
message is written into the system log. If the first
word of the first argument is -p, the second word
is interpreted as the priority (see the syslog(3)
man page)"; the message tag is pcp-pmie. The
remaining argument is the message to be written

007–2614–004 135

Performance Co-PilotTM User’s and Administrator’s Guide

to the system log. The action succeeds unless the
fork fails.

print A message containing a time stamp in ctime
format and the argument is displayed out to
standard output (stdout). This action always
succeeds.

Within the argument passed to an action method, the following expansions are
supported to allow some of the context from the logical expression on the left to
appear to be embedded in the argument:

%h The value of a host that makes the expression true.

%i The value of an instance that makes the expression true.

%v The value of a performance metric from the logical expression.

Some ambiguity may occur in respect to which host, instance, or performance
metric is bound to a %-token. In most cases, the leftmost binding in the
top-level subexpression is used. You may need to use pmie in the interactive
debugging mode (specify the -d command line option) in conjunction with the
-W command line option to discover which subexpressions contributes to the
%-token bindings.

The following example illustrates some of the options when constructing rule
expressions:

some_inst (disk.dev.total > 60)

-> syslog 10 mins "[%i] busy, %v IOPS " &

shell 1 hour "echo \

’Disk %i is REALLY busy. Running at %v I/Os per second’ \
| Mail -s ’pmie alarm’ sysadm";

In this case, %v and %i are both associated with the instances for the metric
disk.dev.total that make the expression true. If more than one instance
makes the expression true (more than one disk is busy), then the argument is
formed by concatenating the result from each %-token binding. For example,
the text added to /var/adm/SYSLOG might be as follows:

Aug 6 08:12:44 5B:gonzo pcp-pmie[3371]:
[dks0d1] busy, 3.7 IOPS [dks0d2] busy, 0.3 IOPS

Note: When pmie is processing performance metrics from a PCP archive log,
the actions will be processed in the expected manner; however, the action
methods are modified to report a textual facsimile of the action on the
standard output. For example, consider the following rule:

136 007–2614–004

Performance Metrics Inference Engine [6]

delta = 2 sec; // more often for demonstration purposes

percpu = "kernel.percpu";
// Unusual usr-sys split when some CPU is more than 20% in usr mode

// and sys mode is at least 1.5 times usr mode

//

cpu_usr_sys = some_inst (

$percpu.cpu.sys > $percpu.cpu.user * 1.5 &&

$percpu.cpu.user > 0.2
) -> alarm "Unusual sys time: " "%i ";

When evaluated against an archive, the following output is generated (the
alarm action produces a message on standard output):

pmafm /tmp/f4 pmie cpu.head cpu.00

alarm Wed Aug 7 14:54:48 1996: Unusual sys time: cpu0

alarm Wed Aug 7 14:54:50 1996: Unusual sys time: cpu0

alarm Wed Aug 7 14:54:52 1996: Unusual sys time: cpu0
alarm Wed Aug 7 14:55:02 1996: Unusual sys time: cpu0

alarm Wed Aug 7 14:55:06 1996: Unusual sys time: cpu0

6.3.8 pmie Intrinsic Operators

The following sections describe some other useful intrinsic operators for pmie.
These operators are divided into three groups:

• Arithmetic aggregation

• The rate operator

• Transitional operators

6.3.8.1 Arithmetic Aggregation

For set-valued arithmetic expressions, the following operators reduce the
dimensionality of the result by arithmetic aggregation along one of the host,
instance, or sample time dimensions. For example, to aggregate in the host
dimension, the following operators are provided:

avg_host Computes the average value across all instances
for the same host and sample time

sum_host Computes the total value across all instances for
the same host and sample time

007–2614–004 137

Performance Co-PilotTM User’s and Administrator’s Guide

count_host Computes the number of values across all
instances for the same host and sample time

min_host Comutes the minimum value across all instances
for the same host and sample time

max_host Computes the maximum value across all instances
for the same host and sample time

Ten additional operators correspond to the forms *_inst and *_sample.

The following example illustrates the use of an aggregate operator in
combination with an existential operator to answer the question “Does some
host currently have two or more busy processors?”

// note ’’ to escape - in host name

poke = ":moomba :’mac-larry’ :bitbucket";

some_host (
count_inst (kernel.percpu.cpu.user $poke +

kernel.percpu.cpu.sys $poke > 0.7) >= 2

)

-> alarm "2 or more busy CPUs";

6.3.8.2 The rate Operator

The rate operator computes the rate of change of an arithmetic expression as
shown in the following example:

rate mem.freemem

It returns the rate of change for the mem.freemem performance metric; that is,
the rate at which free physical memory is being allocated or released.

The rate intrinsic operator is most useful for metrics with instantaneous value
semantics. For metrics with counter semantics, pmie already performs an
implicit rate calculation (see the Section 6.3.4, page 130) and the rate operator
would produce the second derivative with respect to time, which is less likely
to be useful.

6.3.8.3 Transitional Operators

In some cases, an action needs to be triggered when an expression changes
from true to false or vice versa. The following operators take a logical
expression as an operand, and return a logical expression:

138 007–2614–004

Performance Metrics Inference Engine [6]

rising Has the value true when the operand transitions
from false to true in consecutive samples.

falling Has the value false when the operand
transitions from true to false in consecutive
samples.

6.4 pmie Examples

The examples presented in this section are task-oriented and use the full power
of the pmie specification language as described in Section 6.3, page 124.

Source code for the pmie examples in this chapter, and many more examples, is
provided in the PCP subsystem pcp.sw.demo, and when installed may be
found in /var/pcp/demos/pmie. Example 5, page 139, and Example 6, page
140, illustrate monitoring CPU utilization and disk activity.

Example 5: Monitoring CPU Utilization

// Some Common Performance Monitoring Scenarios

//
// The CPU Group

//

delta = 2 sec; // more often for demonstration purposes

// common prefixes

//
percpu = "kernel.percpu";

all = "kernel.all";

// Unusual usr-sys split when some CPU is more than 20% in usr mode

// and sys mode is at least 1.5 times usr mode

//
cpu_usr_sys =

some_inst (

$percpu.cpu.sys > $percpu.cpu.user * 1.5 &&

$percpu.cpu.user > 0.2

)

-> alarm "Unusual sys time: " "%i ";
// Over all CPUs, syscall_rate > 1000 * no_of_cpus

//

cpu_syscall =

$all.syscall > 1000 count/sec * hinv.ncpu

-> print "high aggregate syscalls: %v";
// Sustained high syscall rate on a single CPU

007–2614–004 139

Performance Co-PilotTM User’s and Administrator’s Guide

//

delta = 30 sec;
percpu_syscall =

some_inst (

$percpu.syscall > 2000 count/sec

)

-> syslog "Sustained syscalls per second? " "[%i] %v ";

// the 1 minute load average exceeds 5 * number of CPUs on any host
hosts = ":gonzo :moomba"; // change as required

delta = 1 minute; // no need to evaluate more often than this

high_load =

some_host (

$all.load $hosts #’1 minute’ > 5 * hinv.ncpu
)

-> alarm "High Load Average? " "%h: %v ";

Example 6: Monitoring Disk Activity

// Some Common Performance Monitoring Scenarios
//

// The Disk Group

//

delta = 15 sec; // often enough for disks?

// common prefixes
//

disk = "disk";

// Any disk performing more than 40 I/Os per second, sustained over

// at least 30 seconds is probably busy

//
delta = 30 seconds;

disk_busy =

some_inst (

$disk.dev.total > 40 count/sec

)

] -> shell "Mail -s ’Heavy systained disk traffic’ sysadm";
// Try and catch bursts of activity ... more than 60 I/Os per second

// for at least 25% of 8 consecutive 3 second samples

//

delta = 3 sec;

disk_burst =
some_inst (

25%_sample (

$disk.dev.total @0..7 > 60 count/sec

140 007–2614–004

Performance Metrics Inference Engine [6]

)

)
-> alarm "Disk Burst? " "%i ";

// any SCSI disk controller performing more than 3 Mbytes per

// second is busy

// Note: the obscure 512 is to convert blocks/sec to byte/sec,

// and pmie handles the rest of the scale conversion

//
some_inst $disk.ctl.blktotal * 512 > 3 Mbyte/sec

-> alarm "Busy Disk Controller: " "%i ";

6.5 Developing and Debugging pmie Rules

Given the -d command line option, pmie executes in interactive mode, and the
user is presented with a menu of options:

pmie debugger commands

f [file-name] - load expressions from given file or stdin
l [expr-name] - list named expression or all expressions

r [interval] - run for given or default interval

S time-spec - set start time for run

T time-spec - set default interval for run command

v [expr-name] - print subexpression for %h, %i and %v bindings
h or ? - print this menu of commands

q - quit

pmie>

If both the -d option and a filename are present, the expressions in the given
file are loaded before entering interactive mode. Interactive mode is useful for
debugging new rules.

6.6 Caveats and Notes on pmie

The following sections provide important information for users of pmie.

6.6.1 Performance Metrics Wraparound

Performance metrics that are cumulative counters may occasionally overflow
their range and wraparound to 0. When this happens, an unknown value
(printed as ?) is returned as the value of the metric for one sample (recall that
the value returned is normally a rate). You can have PCP interpolate a value

007–2614–004 141

Performance Co-PilotTM User’s and Administrator’s Guide

based on expected rate of change by setting the PCP_COUNTER_WRAP
environment variable.

6.6.2 pmie Sample Intervals

The sample interval (delta) should always be long enough, particularly in the
case of rates, to ensure that a meaningful value is computed. Interval may vary
according to the metric and your needs. A reasonable minimum is in the range
of ten seconds or several minutes. Although the PMCS supports sampling rates
up to hundreds of times per second, using small sample intervals creates
unnecessary load on the monitored system.

6.6.3 pmie Instance Names

When you specify a metric instance name (#identifier) in a pmie expression, it is
compared against the instance name supplied by the PMCS as follows:

• If the given instance name and the PMCS name are the same, they are
considered to match.

• Otherwise, the first two space separated tokens are extracted from the PMCS
name. If the given instance name is the same as either of these tokens, they
are considered a match.

For some metrics, notably the per process (proc.xxx.xxx) metrics, the first
token in the PMCS instance name is impossible to determine at the time you
are writing pmie expressions. The above policy circumvents this problem.

6.6.4 pmie Error Detection

The parser used in pmie is currently not robust in handling syntax errors. It is
suggested that you check any problematic expressions individually in
interactive mode:

pmie -v -d

pmie> f

expression
Ctrl+D

If the expression was parsed, its internal representation is shown:

pmie> l

The expression is evaluated twice and its value printed:

142 007–2614–004

Performance Metrics Inference Engine [6]

pmie> r 10sec

Then quit:

pmie> q

It is not always possible to detect semantic errors at parse time. This happens
when a performance metric descriptor is not available from the named host at
this time. A warning is issued, and the expression is put on a wait list. The
wait list is checked periodically (about every five minutes) to see if the metric
descriptor has become available. If an error is detected at this time, a message
is printed to the standard error stream (stderr) and the offending expression
is put aside.

6.7 Creating pmie Rules with pmieconf

The pmieconf tool is a command line utility that is designed to aid the
specification of pmie rules from parameterized versions of the rules. pmieconf
is used to displaying and modify variables or parameters controlling the details
of the generated pmie rules.

pmieconf reads two different forms of supplied input files and produces a
localized pmie configuration file as its output.

The first input form is a generalized pmie rule file such as those found below
/var/pcp/config/pmieconf/*/*. These files contain the generalized rules
which pmieconf is able to manipulate. Each of the rules can be enabled or
disabled, or the individual variables associated with each rule can be edited.

The second form is an actual pmie configuration file (that is, a file which can be
interpreted by pmie, conforming to the pmie syntax described in Section 6.3,
page 124). This file is both input to and output from pmieconf.

The input version of the file contains any changed variables or rule states from
previous invocations of pmieconf, and the output version contains both the
changes in state (for any subsequent pmieconf sessions) and the generated
pmie syntax. The pmieconf state is embedded within a pmie comment block
at the head of the output file and is not interpreted by pmie itself.

pmieconf is an integral part of the pmie daemon management process
described Section 6.9, page 150. Procedure 1, page 144, and Procedure 2, page
144, introduce the pmieconf tool through a series of typical operations.

007–2614–004 143

Performance Co-PilotTM User’s and Administrator’s Guide

Procedure 1: Display pmieconf Rules

1. Start pmieconf interactively.

$ pmieconf -f /tmp/pmiefile

Updates will be made to /tmp/pmiefile

pmieconf>

2. List the set of available pmieconf rules by using the rules command.

3. List the set of rule groups using the groups command.

4. List only the enabled rules, using the rules enabled command.

5. List a single rule:

pmieconf> list memory.swap_low

rule: memory.swap_low [Low free swap space]

help: There is only threshold percent swap space remaining - the system
may soon run out of virtual memory. Reduce the number and size of

the running programs or add more swap(1) space before it

completely

runs out.

predicate =
some_host (

(100 * (swap.free $hosts$ / swap.length $hosts$))

< $threshold$

&& swap.length $hosts$ > 0 // ensure swap in use

)

vars: enabled = no
threshold = 10%

pmieconf>

6. List one rule variable:

pmieconf> list memory.swap_low threshold

rule: memory.swap_low [Low free swap space]

threshold = 10%

pmieconf>

Procedure 2: Modify pmieconf Rules and Generate a pmie File

1. Lower the threshold for the memory.swap_low rule, and also change the
pmie sample interval affecting just this rule. The delta variable is special in

144 007–2614–004

Performance Metrics Inference Engine [6]

that it is not associated with any particular rule; it has been defined as a
global pmieconf variable. Global variables can be displayed using the
list global command to pmieconf, and can be modified either globally
or local to a specific rule.

pmieconf> modify memory.swap_low threshold 5

pmieconf> modify memory.swap_low delta "1 sec"

pmieconf>

2. Disable all of the rules except for the memory.swap_low rule so that you
can see the effects of your change in isolation.

This produces a relatively simple pmie configuration file:

pmieconf> disable all

pmieconf> enable memory.swap_low

pmieconf> status
verbose: off

enabled rules: 1 of 35

pmie configuration file: /tmp/pmiefile

pmie processes (PIDs) using this file: (none found)

pmieconf> quit

You can also use the status command to verify that only one rule is
enabled at the end of this step.

3. Run pmie with the new configuration file. Use a text editor to view the
newly generated pmie configuration file (/tmp/pmiefile), and then run
the command:

$ pmie -T "1.5 sec" -v -l /tmp/log /tmp/pmiefile

memory.swap_low: false

memory.swap_low: false

$ cat /tmp/log

Log for pmie on moomba started Mon Jun 21 16:26:06 1999

pmie: PID = 21847, default host = moomba

007–2614–004 145

Performance Co-PilotTM User’s and Administrator’s Guide

[Mon Jun 21 16:26:07] pmie(21847) Info: evaluator exiting

Log finished Mon Jun 21 16:26:07 1999

$

4. Notice that both of the pmieconf files used in the previous step are simple
text files, as described in the pmieconf(4) man page:

$ file /tmp/pmiefile

/tmp/pmiefile: PCP pmie config (V.1)

$ file /var/pcp/config/pmieconf/memory/swap_low

/var/pcp/config/pmieconf/memory/swap_low: PCP pmieconf rules (V.1)

6.8 Creating pmie Rules with pmrules

The GUI tool pmrules may be used to generate pmie rules from templates that
are shipped with PCP. These templates are parameterized versions of rules
describing common performance scenarios suited for pmie monitoring.

Procedure 3: Creating pmie Rules

1. Start pmrules, and choose Import... from the Template menu.

2. Click the Choose File... button in the “Import template(s) from file”
dialog.

Sample templates are installed in the directory
/var/pcp/config/pmrules.

3. Double-click the pcp directory in the pmrules directory browser window.

An Import template(s) from file dialog appears, as shown in
Figure 31.

146 007–2614–004

Performance Metrics Inference Engine [6]

Figure 31. pmrules Import template(s) from file Dialog

4. Select the desired templates, click OK, and return to the pmrules main
window, which appears similar to the one shown in Figure 32.

007–2614–004 147

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 32. pmrules Main Dialog after Template Selection

5. Double-click the desired template, and the pmrules Edit template
dialog displays, similar to the one shown in Figure 33.

At this point, you can customize the template by assigning values to the
threshold, delta, and holdoff Parameters text boxes, then either
selecting one of the predefined Actions, or specifying your own custom
user action.

148 007–2614–004

Performance Metrics Inference Engine [6]

Figure 33. pmrules Edit template Dialog

007–2614–004 149

Performance Co-PilotTM User’s and Administrator’s Guide

6. When you are finished customizing the template, click OK and return to the
main pmrules window.

7. Choose Save As from the File menu, and provide a new name for your
private copy of the pmrules template file.

Two files are saved. The first one takes the given filename and is your
private copy of the pmrules template file. The second file takes the given
filename with the suffix .pmie appended and contains the pmie rules—this
second file should be given as an argument to pmie.

You can also create new templates for other performance problems. These can
then be included in the template collection available to pmrules, and then
used to customize instances of the pmie rules for particular hosts.

See the pmrules(1) man page for a complete description of the capabilities of
the pmrules tool.

6.9 Management of pmie Processes

The pmie process can be run as a daemon as part of the system startup
sequence, and can thus be used to perform automated, live performance
monitoring of a running system. To do this, run these commands (as superuser):

chkconfig pmie on

/etc/init.d/pmie start

By default, these enable a single pmie process monitoring the local host, with
the default set of pmieconf rules enabled (for more information about
pmieconf, see Section 6.7, page 143). Procedure 4, page 150, illustrates how
you can use these commands to start any number of pmie processes to monitor
local or remote machines.

Procedure 4: Add a New pmie Instance to the pmie Daemon Management
Framework

1. Use a text editor (as superuser) to edit the pmie control file
/var/pcp/config/pmie/control. Notice the default entry toward the
end of the file, which looks like this:

#Host S? Log File Arguments

LOCALHOSTNAME n /var/adm/pmielog/LOCALHOSTNAME/pmie.log -c config.default

150 007–2614–004

Performance Metrics Inference Engine [6]

This entry is used to enable a local pmie process. Add a new entry for a
remote host on your local network (for example, moomba), by using your
pmie configuration file (see Section 6.7, page 143):

#Host S? Log File Arguments

moomba n /var/adm/pmielog/moomba/pmie.log -c /tmp/pmiefile

2. Enable pmie daemon management:

chkconfig pmie on

This simple step allows pmie to be started as part of your machine’s boot
process.

3. Start the two pmie daemons. At the end of this step, you should see two
new pmie processes monitoring the local and remote hosts:

/etc/init.d/pmie start
Performance Co-Pilot starting inference engine(s) ...

Wait a few moments while the startup scripts run. The pmie start script
uses the pmie_check script to do most of its work.

Verify that the pmie processes have started using the pmie metrics
exported by the pmcd PMDA (wobbly is the local host):

pminfo -f pmcd.pmie.pmcd_host

pmcd.pmie.pmcd_host
inst [23150 or "23150"] value "wobbly.melbourne.sgi.com"

inst [23204 or "23204"] value "moomba.melbourne.sgi.com"

If a remote host is not up at the time when pmie is started, the pmie process
may exit. pmie processes may also exit if the local machine is starved of
memory resources. To counter these adverse cases, it can be useful to have a
crontab entry running. Adding an entry as shown in Procedure 5, page 152,
ensures that if one of the configured pmie processes exits, it is automatically
restarted.

007–2614–004 151

Performance Co-PilotTM User’s and Administrator’s Guide

Procedure 5: Add a pmie crontab Entry

1. Merge the sample pmie crontab entry with your root crontab entry.
The /var/pcp/config/pmie/crontab file holds this sample entry:

$ cat /var/pcp/config/pmie/crontab

#

standard Performance Co-Pilot crontab entries for a PCP site

with one or more pmie instances running
#

every 30 minutes, check pmie instances are running

25,55 * * * * /usr/pcp/bin/pmie_check

2. Use the crontab command and a text editor to append the sample pmie
crontab entry to root crontab file. This procedure runs the
pmie_check script once every thirty minutes to verify that the pmie
instances are running. If they are not, the procedure restarts them and
sends e-mail to root indicating which instances needed restarting.

6.9.1 Global Files and Directories

The following global files and directories influence the behavior of pmie and
the pmie management scripts:

/etc/config/pmie

Controls the pmie daemon facility. Enable it using this
command:

chkconfig pmie on

/var/pcp/demos/pmie/*

Contains sample pmie rules that may be used as a basis for
developing local rules.

/var/pcp/config/pmie/config.default

Is the default pmie configuration file that is used when the
pmie daemon facility is enabled.

/var/pcp/config/pmieconf/*/*

Contains the pmieconf rule definitions in its subdirectories.

152 007–2614–004

Performance Metrics Inference Engine [6]

/var/pcp/config/pmie/control

Defines which PCP collector hosts require a daemon pmie to be
launched on the local host, where the configuration file comes
from, where the pmie log file should be created, and pmie
startup options.

/var/pcp/config/pmlogger/crontab

Contains prototype crontab entries that may be merged with
the crontab entries for root to schedule the periodic execution
of the pmie_check script, for verifying that pmie instances are
running.

/var/adm/pmielog/

Contains the pmie log files for the host. These files are created
by the default behavior of the /etc/init.d/pmie startup
scripts.

6.9.2 pmie Instances and Their Progress

The pmcd PMDA exports information about executing pmie instances and their
progress in terms of rule evaluations and action execution rates.

pmie_check This command is similar to
the pmlogger support script,
pmlogger_check.

/etc/init.d/pmie This control file supports the
starting and stopping of
multiple pmie instances that
are monitoring one or more
hosts.

/var/tmp/pmie The statistics that pmie
gathers are maintained in
binary data structure files.
These files are in the
/var/tmp/pmie directory.

pmcd.pmie metrics If pmie is running on a
system with a PCP collector
deployment, the pmcd PMDA
exports these metrics via the
pmcd.pmie group of metrics.

007–2614–004 153

Archive Logging [7]

Performance monitoring and management in complex systems demands the
ability to accurately capture performance characteristics for subsequent review,
analysis, and comparison. Performance Co-Pilot (PCP) provides extensive
support for the creation and management of archive logs that capture a
user-specified profile of performance information to support retrospective
performance analysis.

The following major sections are included in this chapter:

• Section 7.1, page 155, presents the concepts and issues involved with
creating and using archive logs.

• Section 7.2, page 158, describes the interaction of the PCP tools with archive
logs.

• Section 7.3, page 163, shows some shortcuts for setting up useful PCP
archive logs.

• Section 7.4, page 167, provides information about other archive logging
features and sevices.

• Section 7.5, page 170, presents helpful directions if your archive logging
implementation is not functioning correctly.

7.1 Introduction to Archive Logging

Within the Performance Co-Pilot, the pmlogger utility may be configured to
collect archives of performance metrics. The archive creation process is easy
and very flexible, incorporating the following features:

• Archive log creation at either a PCP collector (typically a server) or a PCP
monitor system (typically a workstation), or at some designated PCP archive
logger host.

• Concurrent independent logging, both local and remote. The performance
analyst can activate a private pmlogger instance to collect only the metrics
of interest for the problem at hand, independent of other logging on the
workstation or remote host.

• Record mode in various GUI monitoring tools to create archives as needed
from the current visualization.

007–2614–004 155

Performance Co-PilotTM User’s and Administrator’s Guide

• Independent determination of logging frequency for individual metrics or
metric instances. For example, you could log the “5 minute” load average
every half hour, the write I/O rate on the DBMS log spindle every 10
seconds, and aggregate I/O rates on the other disks every minute.

• Dynamic adjustment of what is to be logged, and how frequently, via pmlc.
This feature may be used to disable logging or to increase the sample
interval during periods of low activity or chronic high activity (to minimize
logging overhead and intrusion). A local pmlc may interrogate and control
a remote pmlogger, subject to the access control restrictions implemented
by pmlogger.

• Self-contained logs that include all system configuration and metadata
required to interpret the values in the log. These logs can be kept for
analysis at a much later time, potentially after the hardware or software has
been reconfigured and the logs have been stored as discrete, autonomous
files for remote analysis.

• cron-based scripts to expedite the operational management, for example,
log rotation, consolidation, and culling.

• Archive folios as a convenient aggregation of multiple archive logs. Archive
folios may be created with the mkafm utility and processed with the pmafm
tool.

7.1.1 Archive Logs and the PMAPI

Critical to the success of the PCP archive logging scheme is the fact that the
library routines providing access to real-time feeds of performance metrics also
provide access to the archive logs.

Live feeds (or real-time) sources of performance metrics and archives are
literally interchangeable, with a single Performance Metrics Application
Programming Interface (PMAPI) that preserves the same semantics for both
styles of metric source. In this way, applications and tools developed against
the PMAPI can automatically process either live or historical performance data.

The only restriction is that both live and historical data cannot be monitored
simultaneously with the same invocation of a visualization tool.

7.1.2 Retrospective Analysis Using Archive Logs

One of the most important applications of archive logging services provided by
PCP is in the area of retrospective analysis. In many cases, understanding

156 007–2614–004

Archive Logging [7]

today’s performance problems can be assisted by side-by-side comparisons with
yesterday’s performance. With routine creation of performance archive logs,
you can concurrently replay pictures of system performance for two or more
periods in the past.

Archive logs are also an invaluable source of intelligence when trying to
diagnose what went wrong, as in a performance postmortem. Because the PCP
archive logs are entirely self-contained, this analysis can be performed off-site if
necessary.

Each archive log contains metric values from only one host. However, many
PCP tools can simultaneously visualize values from multiple archives collected
from different hosts.

The archives can be replayed against the inference engine (pmie is an
application that uses the PMAPI). This allows you to automate the regular,
first-level analysis of system performance.

Such analysis can be performed by constructing suitable expressions to capture
the essence of common resource saturation problems, then periodically creating
an archive and playing it against the expressions. For example, you may wish
to create a daily performance audit (run by the cron command) to detect
performance regressions.

For more about pmie, see Chapter 6.

7.1.3 Snapshots from PCP Archive Logs

Periodic snapshot images of recent performance, activity levels, and resource
utilization can be extracted from the PCP archive logs and published via a
World Wide Web (WWW) server. These are high-quality images generated from
pmchart that provide an excellent vehicle for publishing performance
summary information for users, system and network administrators, or
managers. The pmsnap services may be used to automate snapshots. For
additional information, see the pmsnap(1) man page.

7.1.4 Using Archive Logs for Capacity Planning

By collecting performance archives with relatively long sampling periods, or by
reducing the daily archives to produce summary logs, the capacity planner can
collect the base data required for forward projections, and can estimate resource
demands and explore “what if” scenarios by replaying data using visualization
tools and the inference engine.

007–2614–004 157

Performance Co-PilotTM User’s and Administrator’s Guide

7.2 Using Archive Logs with Performance Visualization Tools

Most PCP tools default to real-time display of current values for performance
metrics from PCP collector host(s). However, most PCP tools also have the
capability to display values for performance metrics retrieved from PCP archive
log(s). The following sections describe plans, steps, and general issues
involving archive logs and the PCP tools.

7.2.1 Coordination between pmlogger and PCP tools

Most commonly, a PCP tool would be invoked with the -a option to process an
archive log some time after pmlogger had finished creating the archive.
However, a tool such as oview that uses a Time Control dialog (see Section 3.4)
stops when the end of archive is reached, but could resume if more data is
written to the PCP archive log.

Note: pmlogger uses buffered I/O to write the archive log so that the end
of the archive may be aligned with an I/O buffer boundary, rather than with
a logical archive log record. If such an archive was read by a PCP tool, it
would appear truncated and might confuse the tool. These problems may be
avoided by sending pmlogger a SIGUSR1 signal, or by using the flush
command of pmlc to force pmlogger to flush its output buffers.

7.2.2 Administering PCP Archive Logs Using cron Scripts

The IRIX operating system supports the standard cron process scheduling
system. Complete information on the cron command is available in the
appropriate man page and in IRIX Admin: System Configuration and Operation.

Performance Co-Pilot supplies shell scripts to use the cron functionality to help
manage your archive logs. The following scripts are supplied:

Script Description

pmlogger_daily Performs a daily housecleaning of archive logs
and notices.

pmlogger_merge Merges archive logs and is called by
pmlogger_daily.

pmlogger_check Checks to see that all desired pmlogger
processes are running on your system, and
invokes any that are missing for any reason.

158 007–2614–004

Archive Logging [7]

pmsnap Generates graphic image snapshots of pmchart
performance charts at regular intervals.

The configuration files used by these scripts can be edited to suit your
particular needs, and are generally controlled by the
/var/pcp/config/pmlogger/control file (pmsnap has an additional
control file). Complete information on these scripts is available in the
pmlogger_daily(1) and pmsnap(1) man pages.

7.2.3 Archive Log File Management

Performance Co-Pilot archive log files can occupy a great deal of disk space,
and management of archive logs can be a large task in itself. The following
sections provide information to assist you in PCP archive log file management.

7.2.3.1 Basename Conventions

When a PCP archive is created by pmlogger, an archive basename must be
specified and several physical files are created, as shown in Table 3.

Table 3. Filenames for PCP Archive Log Components (archive.*)

Filename Contents

archive.index Temporal index for rapid access to archive contents.

archive.meta Metadata descriptions for performance metrics and
instance domains appearing in the archive.

archive.N Volumes of performance metrics values, for N = 0,1,2,...

7.2.3.2 Log Volumes

A single PCP archive may be partitioned into a number of volumes. These
volumes may expedite management of the archive; however, the metadata file
and at least one volume must be present before a PCP tool can process the
archive.

You can control the size of an archive log volume by using the -v command
line option to pmlogger. This option specifies how large a volume should
become before pmlogger starts a new volume. Archive log volumes retain the
same base filename as other files in the archive log, and are differentiated by a

007–2614–004 159

Performance Co-PilotTM User’s and Administrator’s Guide

numeric suffix that is incremented with each volume change. For example, you
might have a log volume sequence that looks like this:

netserver.log.0
netserver.log.1

netserver.log.2

You can also cause an existing log to be closed and a new one to be opened by
sending a SIGHUP signal to pmlogger, or by using the pmlc command to
change the pmlogger instructions dynamically, without interrupting pmlogger
operation. Complete information on log volumes is found in the pmlogger(1)
man page.

7.2.3.3 Basenames for Managed Archive Log Files

The PCP archive management tools support a consistent scheme for selecting
the basenames for the files in a collection of archives and for mapping these
files to a suitable directory hierarchy.

Once configured, the PCP tools that manage archive logs employ a consistent
scheme for selecting the basename for an archive each time pmlogger is
launched, namely the current date and time in the format
YYYYMMDD.HH.MM. Typically, at the end of each day, all archives for a
particular host on that day would be merged to produce a single archive with a
basename constructed from the date, namely YYYYMMDD. The
pmlogger_daily script performs this action and a number of other routine
housekeeping chores.

7.2.3.4 Directory Organization for Archive Log Files

If you are using a deployment of PCP tools and daemons to collect metrics
from a variety of hosts and storing them all at a central location, you should
develop an organized strategy for storing and naming your log files.

Note: There are many possible configurations of pmlogger, as described in
Section 8.3. The directory organization described in this section is
recommended for any system on which pmlogger is configured for
permanent execution (as opposed to short-term executions, for example, as
launched from pmchart to record some performance data of current interest).

Typically, the IRIX filesystem structure can be used to reflect the number of
hosts for which a pmlogger instance is expected to be running locally,
obviating the need for lengthy and cumbersome filenames. It makes
considerable sense to place all logs for a particular host in a separate directory

160 007–2614–004

Archive Logging [7]

named after that host. Because each instance of pmlogger can only log metrics
fetched from a single host, this also simplifies some of the archive log
management and administration tasks.

For example, consider the filesystem and naming structure shown in Figure 34.

Basename 19960805

Basename 19960804

Basename 19960803

Basename 19960805

Basename 19960804

Root Directory for PCP Archives

default: /var/adm/pcplog

PCP Archives from host 1

default: /var/adm/pcplog/one

PCP Archives from host 2

default: /var/adm/pcplog/two

a12222

Figure 34. Archive Log Directory Structure

The specification of where to place the archive log files for particular pmlogger
instances is encoded in the configuration file
/var/pcp/config/pmlogger/control, and this file should be customized
on each host running an instance of pmlogger.

If many archives are being created, and the associated PCP collector systems
form peer classes based upon service type (for example, Web servers, DBMS
servers, NFS servers, and so on), then it may be appropriate to introduce
another layer into the directory structure, or use symbolic links to group
together hosts providing similar service types.

007–2614–004 161

Performance Co-PilotTM User’s and Administrator’s Guide

7.2.3.5 Configuration of pmlogger

The configuration files used by pmlogger describe which metrics are to be
logged. Groups of metrics may be logged at different intervals to other groups
of metrics. Two states, mandatory and advisory, also apply to each group of
metrics, defining whether metrics definitely should be logged or not logged, or
whether a later advisory definition may change that state.

The mandatory state takes precedence if it is on or off, causing any subsequent
request for a change in advisory state to have no effect. If the mandatory state
is maybe, then the advisory state determines if login is enabled or not.

The mandatory states are on, off, and maybe. The advisory states, which only
affect metrics that are mandatory maybe, are on and off. Therefore, a metric
that is mandatory maybe in one definition and advisory on in another
definition would be logged at the advisory interval. Metrics that are not
specified in the pmlogger configuration file are mandatory maybe and
advisory off by default and are not logged.

A complete description of the pmlogger configuration format can be found on
the pmlogger(1) man page.

7.2.3.6 PCP Archive Contents

Once a PCP archive log has been created, the pmdumplog utility may be used
to display various information about the contents of the archive. For example,
start with the following command:

pmdumplog -l /var/adm/pcplog/www.sgi.com/960731

It might produce the following output:

Log Label (Log Format Version 1)

Performance metrics from host www.sgi.com

commencing Wed Jul 31 00:16:34.941 1996
ending Thu Aug 1 00:18:01.468 1996

The simplest way to discover what performance metrics are contained within
an archive is to use pminfo; for example:

pminfo -a /var/adm/pcplog/www.sgi.com/960731 network.mbuf
network.mbuf.alloc

network.mbuf.typealloc

network.mbuf.clustalloc

network.mbuf.clustfree
network.mbuf.failed

162 007–2614–004

Archive Logging [7]

network.mbuf.waited

network.mbuf.drained

7.3 Cookbook for Archive Logging

The following sections present a checklist of tasks that may be performed to
enable PCP archive logging with minimal effort. For a complete explanation,
refer to the other sections in this chapter and the man pages for pmlogger and
related tools.

7.3.1 Primary Logger

Assume you wish to activate primary archive logging on the PCP collector host
pluto. Execute all of the following tasks while logged into pluto as the
superuser (root).

1. Create the directory to hold the archive logs:

mkdir /var/adm/pcplog/pluto

2. Choose a suitable pmlogger configuration file. Here are some examples:

• The default configuration:
/var/pcp/config/pmlogger/config.default.

• A broad summary configuration, sufficient to be used with dkvis,
mpvis, nfsvis, and pmkstat:
/var/pcp/config/pmlogger/config.Summary.

• One of the other config.* files in the /var/pcp/config/pmlogger
directory, tailored for an application, a PCP add-on product, a pmchart
view, or a PCP monitor tool.

Copy the chosen configuration file to
/var/adm/pcplog/pluto/config.default (possibly after some
customization).

3. Edit /var/pcp/config/pmlogger/control. Using the line for the
“local primary logger” as a template, add the following line to the file:

pluto y n /var/adm/pcplog/pluto -c config.keep

4. Make sure pmcd and pmlogger are enabled and running:

007–2614–004 163

Performance Co-PilotTM User’s and Administrator’s Guide

chkconfig pmcd on

chkconfig pmlogger on
/etc/init.d/pcp start

Performance Co-Pilot PMCD started (logfile is /pmcd.log)

Performance Co-Pilot Primary Logger started

5. Verify that the primary pmlogger instance is running:

pmlc

pmlc> connect primary

pmlc> status

pmlogger [primary] on host pluto is logging metrics from host pluto
log started Thu Aug 8 14:33:01 1996 (times in local time)

last log entry Thu Aug 8 14:34:11 1996

current time Thu Aug 8 14:36:54 1996

log volume 0

log size 284

6. Verify that the archive files are being created in the correct place:

ls /var/adm/pcplog/pluto
960808.14.33.0

960808.14.33.index

960808.14.33.meta

Latest

pmlogger.log

7.3.2 Other Logger Configurations

Assume you wish to create archive logs on the local host for performance
metrics collected from the remote host bert. Execute all of the following tasks
while logged into the local host as the superuser (root).

1. Create the directory to hold the archive logs:

mkdir /var/adm/pcplog/bert

2. Choose a suitable pmlogger configuration file. Here are three examples:

• The default configuration:
/var/pcp/config/pmlogger/config.default.

• A broad summary configuration, sufficient to be used with dkvis,
mpvis, nfsvis, and pmkstat:
/var/pcp/config/pmlogger/config.Summary.

164 007–2614–004

Archive Logging [7]

• One of the other config.* files in the /var/pcp/config/pmlogger
directory, tailored for an application, a PCP add-on product, a pmchart
view, or a PCP monitor tool.

Copy the chosen configuration file to
/var/adm/pcplog/bert/config.default (possibly after some
customization).

3. Edit /var/pcp/config/pmlogger/control. Using the line for remote
as a template, add the following line to the file:

bert n n /var/adm/pcplog/bert -c ./config.default

4. Start pmlogger:

/usr/pcp/bin/pmlogger_check

Restarting pmlogger for host "bert" done

5. Verify that the pmlogger instance is running:

pmlc

pmlc> show loggers
The following pmloggers are running on bert:

primary (19144)

pmlc> connect 19144

pmlc> status

pmlogger [19144] on host ernie is logging metrics from host bert

log started Thu Aug 8 10:10:10 1996 (times in local time)
last log entry Thu Aug 8 14:50:54 1996

current time Thu Aug 8 14:55:48 1996

log volume 0

log size 256

7.3.3 Archive Log Administration

Assume the local host has been set up to create archive logs of performance
metrics collected from one or more hosts (which may be either the local host or
a remote host).

To activate the maintenance and housekeeping scripts for a collection of archive
logs, execute the following tasks while logged into the local host as the
superuser (root):

1. Augment the crontab file for root. For example:

crontab -l >/tmp/foo

007–2614–004 165

Performance Co-PilotTM User’s and Administrator’s Guide

2. Edit /tmp/foo, adding lines similar to those from
/var/pcp/config/pmlogger/crontab for pmlogger_daily and
pmlogger_check; for example:

daily processing of archive logs

10 0 * * * /usr/pcp/bin/pmlogger_daily

every 30 minutes, check pmlogger instances are running

25,55 * * * * /usr/pcp/bin/pmlogger_check

3. Make these changes permanent with this command:

crontab </tmp/foo

7.3.4 Making Snapshot Images from Archive Logs

You may also choose to enable periodic snapshot images of performance data to
be produced from the archive logs using the facilities of pmsnap; instructions
for this operation can be found in Section 4.1.9, page 79 and in the man page
for pmsnap(1).

Assume the local host has been set up to create archive logs of performance
metrics collected from the host oscar (which may be either the local host or a
remote host). Execute all of the following tasks while logged into the local host
as the superuser (root).

1. Make sure the optional subsystem pcp.sw.monitor has been installed.

2. Use the /var/pcp/config/pmsnap/Summary snapshot as an example
(you may wish to customize this later).

3. Ensure that the pmlogger that is collecting performance metrics from the
host oscar includes all of the metrics named in the
/var/pcp/config/pmlogger/config.Summary configuration file (you
may wish to simply use this as the configuration file for this pmlogger
instance). If necessary, reconfigure this pmlogger instance as follows:

kill -INT PID-of-pmlogger-instance

Edit the configuration file as required. Restart pmlogger with this
command:

/usr/pcp/bin/pmlogger_check

4. Check the two Summary lines in the
/var/pcp/config/pmsnap/control file. You must replace
LOCATHOSTNAME with oscar in both lines (unless oscar is the local host,

166 007–2614–004

Archive Logging [7]

in which case the change is optional), and you may wish to change the
directory for the output files (the default is
/var/www/htdocs/snapshots).

5. Augment the crontab file for root to allow pmsnap to be run
periodically. For example:

crontab -l >/tmp/foo

6. Edit /tmp/foo, adding lines similar to those from
/var/pcp/config/pmlogger/crontab for pmsnap; for example:

every 30 minutes, generate performance snapshot images

30,0 * * * * /usr/pcp/bin/pmsnap -d :0

The snapshots are produced using pmchart, and this tool requires
connection to an X server. If the local host is not running an X server, then
you must locate a system with an active X server, and ensure that this X
server will accept connections from remote X clients; see the xhost(1) man
page for details. If this host is grover, then replace -d :0 in the line
above with -d grover:0

Other options for gaining access to an active X server are discussed in the
pmsnap(1) man page.

7. Make these changes permanent with this command:

crontab </tmp/foo

8. After 30 minutes or so (time enough for the cron command to complete),
check that the GIF files have been created:

ls -l /var/www/htdocs/snapshots

9. Create a Web page that includes the images. A sample file of HTML source
is provided in /var/pcp/config/pmsnap/Summary.html.

7.4 Other Archive Logging Features and Services

Other archive logging features and services include PCP archive folios,
manipulating archive logs, primary logger, and using pmlc.

007–2614–004 167

Performance Co-PilotTM User’s and Administrator’s Guide

7.4.1 PCP Archive Folios

A collection of one or more PCP archive logs may be combined with a control
file to produce a PCP archive folio. Archive folios are created using either mkaf
or the interactive record mode services of various PCP GUI monitoring tools.

The automated archive log management services also create an archive folio
named Latest for each managed pmlogger instance, to provide a symbolic
name to the most recent archive log. With reference to Figure 34, this would
mean the creation of the folios /var/adm/pcplog/one/Latest and
/var/adm/pcplog/two/Latest.

The pmafm utility is completely described in the pmafm(1) man page, and
provides the interactive commands (single commands may also be executed
from the command line) for the following services:

• Checking the integrity of the archives in the folio.

• Displaying information about the component archives.

• Executing PCP tools with their source of performance metrics assigned
concurrently to all of the component archives (where the tool supports this),
or serially executing the PCP tool once per component archive.

• If the folio was created by a single PCP monitoring tool, replaying all of the
archives in the folio with that monitoring tool.

• Restricting the processing to particular archives, or the archives associated
with particular hosts.

7.4.2 Manipulating Archive Logs with pmlogextract

The pmlogextract tool takes a number of PCP archive logs from a single host
and performs the following tasks:

• Merges the archives into a single log, while maintaining the correct time
stamps for all values

• Extracts all metric values within a temporal window that could encompass
several archive logs

• Extracts only a configurable subset of metrics from the archive logs

See the pmlogextract(1) man page for full information on this command. It
replaces functionality of the pmlogmerge tool as of PCP release 2.0.

168 007–2614–004

Archive Logging [7]

7.4.3 Primary Logger

On each system for which pmcd is active (each PCP collector system), there is
an option to have a distinguished instance of the archive logger pmlogger (the
“primary” logger) launched each time pmcd is started. This may be used to
ensure the creation of minimalist archive logs required for ongoing system
management and capacity planning in the event of failure of a system where a
remote pmlogger may be running, or because the preferred archive logger
deployment is to activate pmlogger on each PCP collector system.

Run the following command as superuser on each PCP collector system where
you want to activate the primary pmlogger:

chkconfig pmlogger on

The primary logger launches the next time pmcd is started. If you wish this to
happen immediately, follow up with this command:

/etc/init.d/pcp start

When it is started in this fashion, the /etc/config/pmlogger.options file
provides command line options for pmlogger. In the default setup, this in turn
means that the initial logging state and configuration is specified in the file
/var/pcp/config/pmlogger/config.default. Either one or both of these
files may be modified to tailor pmlogger operation to the local requirements.

7.4.4 Using pmlc

You may tailor pmlogger dynamically with the pmlc command. Normally, the
pmlogger configuration is read at startup. If you choose to modify the config
file to change the parameters under which pmlogger operates, you must stop
and restart the program for your changes to have effect. Alternatively, you may
change parameters whenever required by using the pmlc interface.

To run the pmlc tool, enter:

pmlc

By default, pmlc acts on the primary instance of pmlogger on the current host.
See the pmlc(1) man page for a description of command line options. When it
is invoked, pmlc presents you with a prompt:

pmlc>

You may obtain a listing of the available commands by entering a question
mark (?) and pressing Enter. You see output similar to the following:

007–2614–004 169

Performance Co-PilotTM User’s and Administrator’s Guide

show loggers [@<host>] display <pid>s of running pmloggers

connect _logger_id [@<host>] connect to designated pmlogger
status information about connected pmlogger

query metric-list show logging state of metrics

new volume start a new log volume

flush flush the log buffers to disk

log { mandatory | advisory } on <interval> _metric-list

log { mandatory | advisory } off _metric-list
log mandatory maybe _metric-list

timezone local|logger|’<timezone>’ change reporting timezone

help print this help message

quit exit from pmlc

_logger_id is primary | <pid> | port <n>
_metric-list is _metric-spec | { _metric-spec ... }

_metric-spec is <metric-name> | <metric-name> [<instance> ...]

Here is an example:

pmlc

pmlc> show loggers @babylon

The following pmloggers are running on babylon:

primary (1892)
pmlc> connect 1892 @babylon

pmlc> log advisory on 2 secs disk.dev.read

pmlc> query disk.dev

disk.dev.read

adv on nl 5 min [131073 or ‘‘dks0d1’’]

adv on nl 5 min [131074 or ‘‘dks0d2’’]
pmlc> quit

Note: Any changes to the set of logged metrics made via pmlc are not saved,
and are lost the next time pmlogger is started with the same configuration
file. Permanent changes are made by modifying the pmlogger configuration
file(s).

Refer to the pmlc(1) and pmlogger(1) man pages for complete details.

7.5 Archive Logging Troubleshooting

The following issues concern the creation and use of logs using pmlogger.

170 007–2614–004

Archive Logging [7]

7.5.1 pmlogger Cannot Write Log

Symptom: The pmlogger utility does not start, and you see
this message:

_pmLogNewFile: ‘‘foo.index’’ already exists, not over-written

Cause: Archive logs are considered sufficiently precious
that pmlogger does not empty or overwrite an
existing set of archive log files. The log named
foo actually consists of the physical file
foo.index, foo.meta, and at least one file
foo.N, where N is in the range 0, 1, 2, 3, and so
on.

A message similar to the one above is produced
when a new pmlogger instance encounters one
of these files already in existence.

Resolution: If you are sure, remove all of the parts of the
archive log. For example, use the following
command:

rm -f foo.*

Then rerun pmlogger.

7.5.2 Cannot Find Log

Symptom: The pmdumplog utility, or any tool that can read
an archive log, displays this message:

Cannot open archive mylog: No such file or directory

Cause: An archive consists of at least three physical files.
If the base name for the archive is mylog, then
the archive actually consists of the physical files
mylog.index, mylog.meta, and at least one
file mylog.N, where N is in the range 0, 1, 2, 3,
and so on.

The above message is produced if one or more of
the files is missing.

007–2614–004 171

Performance Co-PilotTM User’s and Administrator’s Guide

Resolution: Use this command to check which files the utility
is trying to open:

ls mylog.*

Turn on the internal debug flag DBG_TRACE_LOG
(-D 128) to see which files are being inspected by
the _pmOpenLog routine as shown in the
following example:

pmdumplog -D 128 -l mylog

Locate the missing files and move them all to the
same directory, or remove all of the files that are
part of the archive, and recreate the archive log.

7.5.3 Primary pmlogger Cannot Start

Symptom: The primary pmlogger cannot be started. A
message like the following appears:

pmlogger: there is already a primary pmlogger running

Cause: There is either a primary pmlogger already
running, or the previous primary pmlogger was
terminated unexpectedly before it could perform
its cleanup operations.

Resolution: If there is already a primary pmlogger running
and you wish to replace it with a new pmlogger,
use the show command in pmlc to determine the
process ID of the primary pmlogger. The
process ID of the primary pmlogger appears in
parentheses after the word “primary.” Send an
SIGINT signal to the process to shut it down (use
the kill command). If the process does not
exist, proceed to the manual cleanup described in
the paragraph below. If the process did exist, it
should now be possible to start the new
pmlogger.

If pmlc’s show command displays a process ID
for a process that does not exist, a pmlogger
process was terminated before it could clean up.
If it was the primary pmlogger, the

172 007–2614–004

Archive Logging [7]

corresponding control files must be removed
before one can start a new primary pmlogger. It
is a good idea to clean up any spurious control
files even if they are not for the primary
pmlogger.

The control files are kept in
/var/tmp/pmlogger. A control file with the
process ID of the pmlogger as its name is
created when the pmlogger is started. In
addition, the primary pmlogger creates a
symbolic link named primary to its control file.

For the primary pmlogger, remove both the
symbolic link and the file (corresponding to its
process ID) to which the link points. For other
pmloggers, remove just the process ID file. Do
not remove any other files in the directory. If the
control file for an active pmlogger is removed,
pmlc is not able to contact it.

7.5.4 Identifying an Active pmlogger Process

Symptom: You have a PCP archive log that is demonstrably
growing, but do not know the identify of the
associated pmlogger process.

Cause: The PID is not obvious from the log, or the
archive name may not be obvious from the
output of the ps command.

Resolution: If the archive basename is foo, run the following
commands:

pmdumplog -l foo
Log Label (Log Format Version 1)
Performance metrics from host gonzo

commencing Wed Aug 7 00:10:09.214 1996

ending Wed Aug 7 16:10:09.155 1996

pminfo -a foo -f pmcd.pmlogger
pmcd.pmlogger.host

inst [10728 or "10728"] value "gonzo.melbourne.sgi.com"

pmcd.pmlogger.port

inst [10728 or "10728"] value 4331

007–2614–004 173

Performance Co-PilotTM User’s and Administrator’s Guide

pmcd.pmlogger.archive

inst [10728 or "10728"] value "/usr/var/adm/pcplog/gonzo/foo"

All of the information describing the creator of
the archive is revealed and, in particular, the
instance identifier for the pmcd metrics (10728 in
the example above) is the PID of the pmlogger
instance, which may be used to control the
process via pmlc.

7.5.5 Illegal Label Record

Symptom: PCP tools report:

Illegal label record at start of PCP archive log file.

Cause: Either you are attempting to read a Version 2
archive with a PCP 1.x tool, or the archive log has
become corrupted.

Resolution: By default, pmlogger in PCP release 2.0 and
later generates Version 2 archives that PCP 1.0 to
1.3 tools cannot interpret. If you must use older
tools, pass the -V1 option to pmlogger, forcing
it to generate Version 1 archives.

If the PCP tools are from PCP 2.0 or later, then
the archive log may have been corrupted, which
can be verified using pmlogcheck. Refer to the
pmlogcheck(1) man page.

7.5.6 Empty Archive Log Files or pmlogger Exits Immediately

Symptom: Archive log files are zero size, requested metrics
are not being logged, or pmlogger exits
immediately with no error messages.

Cause: Either pmlogger encountered errors in the
configuration file or has not flushed its output
buffers yet or some (or all) metrics specified in
the pmlogger configuration file have had their
state changed to advisory off or mandatory off
via pmlc. It is also possible that the logging
interval specified in the pmlogger configuration
file for some or all of the metrics is longer than

174 007–2614–004

Archive Logging [7]

the period of time you have been waiting since
pmlogger started.

Resolution: If pmlogger exits immediately with no error
messages, check the pmlogger.log file in the
directory pmlogger was started in for any error
messages. If pmlogger has not yet flushed its
buffers, enter the following command:

killall -SIGUSR1 pmlogger

Otherwise, use the status command for pmlc to
interrogate the internal pmlogger state of
specific metrics.

007–2614–004 175

Performance Co-Pilot Deployment
Strategies [8]

Performance Co-Pilot is a coordinated suite of tools and utilities allowing you
to monitor performance and make automated judgments and initiate actions
based on those judgments. PCP is designed to be fully configurable for custom
implementation and deployed to meet specific needs in a variety of operational
environments.

Because each enterprise and site is different and PCP represents a new way of
visualizing performance information, some discussion of deployment strategies
is useful.

The most common use of performance monitoring utilities is a scenario where
the PCP tools are executed on a workstation (the PCP monitoring system),
while the interesting performance data is collected on remote systems (PCP
collector systems) by a number of processes, specifically the Performance
Metrics Collection Daemon (PMCD) and the associated Performance Metric
Domain Agents (PMDAs). These processes can execute on both the monitoring
system and one or more collector systems, or only on collector systems.
However, collector systems are the real object of performance investigations.

The material in this chapter covers the following areas:

• Section 8.1, page 178, presents the spectrum of deployment architectures at
the highest level.

• Section 8.2, page 180, describes alternative deployments for PMCD and the
PMDAs.

• Section 8.3, page 183, covers alternative deployments for the pmlogger tool.

• Section 8.4, page 185, presents the options that are available for deploying
the pmie tool.

The options shown in this chapter are merely suggestions. They are not
comprehensive, and are intended to demonstrate some possible ways of
deploying the PCP tools for specific network topologies and purposes. You are
encouraged to use them as the basis for planning your own deployment,
consistent with your needs.

007–2614–004 177

Performance Co-PilotTM User’s and Administrator’s Guide

8.1 Basic Deployment

In the simplest PCP deployment, one system is configured as both a collector
and a monitor, as shown in Figure 35. Because the PCP monitor tools make
extensive use of visualization, this suggests the single system would be
configured with a graphics head.

PMCD

PMDAs

Monitor Tool

Monitor Tool

Monitor and Collector System

a12223

Figure 35. PCP Deployment for a Single System

However, most PCP deployments involve at least two systems. For example, the
setup shown in Figure 36 would be representative of many common scenarios.

178 007–2614–004

Performance Co-Pilot Deployment Strategies [8]

PMCD

PMDAs

Collector System Monitor Tool

Monitor Tool

Monitor System

a12224

Figure 36. Basic PCP Deployment for Two Systems

But the most common site configuration would include a mixture of systems
configured as PCP collectors, as PCP monitors, and as both PCP monitors and
collectors, as shown in Figure 37.

With one or more PCP collector systems and one or more PCP monitor systems,
there are a number of decisions that need to be made regarding the deployment
of PCP services across multiple hosts. For example, in Figure 37 there are
several ways in which both the inference engine (pmie) and the PCP archive
logger (pmlogger) could be deployed. These options are discussed in the
following sections of this chapter.

007–2614–004 179

Performance Co-PilotTM User’s and Administrator’s Guide

Collector System

Monitor Tool

Monitor Tool

Monitor System

PMCD

PMDAs
Collector System

PMCD

PMDAs
Collector System

PMCD

PMDAs

Monitor Tool

Monitor Tool

Monitor System

a12225

Figure 37. General PCP Deployment for Multiple Systems

8.2 PCP Collector Deployment

Each PCP collector system must have an active pmcd and, typically, a number
of PMDAs installed.

8.2.1 Principal Server Deployment

The first hosts selected as PCP collector systems are likely to provide some class
of service deemed to be critical to the information processing activities of the
enterprise. These hosts include the following:

• A server running a DBMS

• A World Wide Web server for an Internet or Intranet

• An NFS file server

• A video server

• A supercomputing server

180 007–2614–004

Performance Co-Pilot Deployment Strategies [8]

• An infrastructure service provider, for example, print, Usenet news, DNS,
gateway, firewall, packet router, or mail services

• A system running a mission-critical application

Your objective may be to improve quality of service on a system functioning as
a server for many clients. You wish to identify and repair critical performance
bottlenecks and deficiencies in order to maintain maximum performance for
clients of the server.

For some of these services, the PCP base product or the PCP add-on products
provide the necessary collector components. Others would require customized
PMDA development, as described in the companion Performance Co-Pilot
Programmer’s Guide.

8.2.2 Quality of Service Measurement

Applications and services with a client-server architecture need to monitor
performance at both the server side and the client side.

The arrangement in Figure 38 illustrates one way of measuring quality of
service for client-server applications.

007–2614–004 181

Performance Co-PilotTM User’s and Administrator’s Guide

PMCD

PMDAs

Application Server System

Monitor Tool

PCP Monitor System

App Server

PMCD

PMDA

Application Client System

Client App

a12226

Figure 38. PCP Deployment to Measure Client-Server Quality of Service

The configuration of the PCP collector components on the Application Server
System is standard. The new facility is the deployment of some PCP collector
components on the Application Client System; this uses a customized PMDA
and a generalization of the ICMP “ping” tool as follows:

• The Client App is specially developed to periodically make typical
requests of the App Server, and to measure the response time for these
requests (this is an application-specific “ping”).

• The PMDA on the Application Client System captures the response time
measurements from the Client App and exports these into the PCP
framework.

At the PCP monitor system, the performance of the system running the App
Server and the end-user quality of service measurements from the system
where the Client App is running can be monitored concurrently.

182 007–2614–004

Performance Co-Pilot Deployment Strategies [8]

PCP add-on products implement a number of examples of this architecture,
including the shping PMDA for IP-based services, the webping PMDA for
Web servers, and the oraping PMDA for an Oracle DBMS.

For each of these PMDAs, the full source code is distributed with the associated
PCP product to encourage adaptation of the agents to the local application
environment.

It is possible to exploit this arrangement even further, with these methods:

• Creating new instances of the Client App and PMDA to measure service
quality for your own mission-critical services.

• Deploying the Client App and associated PCP collector components in a
number of strategic hosts allows the quality of service over the enterprise’s
network to be monitored. For example, service can be monitored on the
Application Server System, on the same LAN segment as the Application
Server System, on the other side of a firewall system, or out in the WAN.

8.3 PCP Archive Logger Deployment

PCP archive logs are created by the pmlogger utility, as discussed in Chapter
7. They provide a critical capability to perform retrospective performance
analysis, for example, to detect performance regressions, for problem analysis,
or to support capacity planning. The following sections discuss the options and
trade-offs for pmlogger deployment.

8.3.1 Deployment Options

The issue is relatively simple and reduces to “On which host(s) should
pmlogger be running?” The options are these:

• Run pmlogger on each PCP collector system to capture local performance
data.

• Run pmlogger on some of the PCP monitor systems to capture
performance data from remote PCP collector systems.

• As an extension of the previous option, designate one system to act as the
PCP archive site to run all pmlogger instances. This arrangement is shown
in Figure 39.

007–2614–004 183

Performance Co-PilotTM User’s and Administrator’s Guide

PCP Archive Log

pmlogger

PCP Archive Log

pmlogger

Collector System

PMCD

PMDAs

Collector System

PMCD

PMDAs

PCP Archive Site

a12227

Figure 39. Designated PCP Archive Site

8.3.2 Resource Demands for the Deployment Options

The pmlogger process is very lightweight in terms of computational demand;
so most of the (small) CPU cost associated with extracting performance metrics
at the PCP collector system involves PMCD and the PMDAs, which are
independent of the host on which pmlogger is running.

A local pmlogger consumes disk bandwidth and disk space on the PCP
collector system. A remote pmlogger consumes disk space on the site where it
is running and network bandwidth between that host and the PCP collector
host.

The archive logs typically grow at the rate of between 500 kilobytes (KB) and 10
megabytes (MB) per day, depending on how many performance metrics are
logged and the choice of sampling frequencies. There are some advantages in
minimizing the number of hosts over which the disk resources for PCP archive
logs must be allocated; however, the aggregate requirement is independent of
where the pmlogger instances are running.

184 007–2614–004

Performance Co-Pilot Deployment Strategies [8]

8.3.3 Operational Management

There is an initial administrative cost associated with configuring each
pmlogger instance, and an ongoing administrative investment to monitor these
configurations, perform regular housekeeping (such as rotation, compression,
and culling of PCP archive log files), and execute periodic tasks to process the
archives (such as nightly performance regression checking with pmie, or using
pmchart to publish recent activity charts on the Web).

Many of these tasks are handled by the supplied pmlogger administrative
tools and scripts, as described in Section 7.2.3. However, the necessity and
importance of these tasks favor a centralized pmlogger deployment, as shown
in Figure 39.

Note: The pmlogger utility is not subject to any PCP license restrictions, and
may be installed and used on any host.

8.3.4 Exporting PCP Archive Logs

Collecting PCP archive logs is of little value unless the logs are processed as
part of the ongoing performance monitoring and management functions. This
processing typically involves the use of the tools on a PCP monitor system, and
hence the archive logs may need to be read on a host different from the one
they were created on.

NFS mounting is obviously an option, but the PCP tools support random access
and both forward and backward temporal motion within an archive log. If an
archive is to be subjected to intensive and interactive processing, it may be more
efficient to copy the files of the archive log to the PCP monitor system first.

Note: Each PCP archive log consists of at least three separate files (see
Section 7.2.3 for details). You must have concurrent access to all of these files
before a PCP tool is able to process an archive log correctly.

8.4 PCP Inference Engine Deployment

The pmie utility supports automated reasoning about system performance, as
discussed in Chapter 6, and plays a key role in monitoring system performance
for both real-time and retrospective analysis, with the performance data being
retrieved respectively from a PCP collector system and a PCP archive log.

The following sections discuss the options and trade-offs for pmie deployment.

007–2614–004 185

Performance Co-PilotTM User’s and Administrator’s Guide

8.4.1 Deployment Options

The issue is relatively simple and reduces to “On which host(s) should pmie be
running?” You must consider both real-time and retrospective uses, and the
options are as follows:

• For real-time analysis, run pmie on each PCP collector system to monitor
local system performance.

• For real-time analysis, run pmie on some of the PCP monitor systems to
monitor the performance of remote PCP collector systems.

• For retrospective analysis, run pmie on the systems where the PCP archive
logs reside. The problem then reduces to pmlogger deployment as
discussed in Section 8.3.

• As an example of the “distributed management with centralized control”
philosophy, designate some system to act as the PCP Management Site to run
all pmlogger and pmie instances. This arrangement is shown in Figure 40.

One pmie instance is capable of monitoring multiple PCP collector systems; for
example, to evaluate some universal rules that apply to all hosts. At the same
time a single PCP collector system may be monitored by multiple pmie
instances; for example, for site-specific and universal rule evaluation, or to
support both tactical performance management (operations) and strategic
performance management (capacity planning). Both situations are depicted in
Figure 40.

186 007–2614–004

Performance Co-Pilot Deployment Strategies [8]

PCP Archive Log

pmlogger

PCP Archive Log

pmlogger

Collector System A

PMCD

PMDAs

Collector System B

PMCD

PMDAs

PCP Management Site

pmie

pmie Rules
pmie

pmie Rules

a12228

Figure 40. PCP Management Site Deployment

8.4.2 Resource Demands for the Deployment Options

Depending on the complexity of the rule sets, the number of hosts being
monitored, and the evaluation frequency, pmie may consume CPU cycles
significantly above the resources required to simply fetch the values of the
performance metrics. If this becomes significant, then real-time deployment of
pmie away from the PCP collector systems should be considered in order to
avoid the “you’re part of the problem, not the solution” scenario in terms of
CPU utilization on a heavily loaded server.

007–2614–004 187

Performance Co-PilotTM User’s and Administrator’s Guide

8.4.3 Operational Management

An initial administrative cost is associated with configuring each pmie instance,
particularly in the development of the rule sets that accurately capture and
classify “good” versus “bad” performance in your environment. These rule sets
almost always involve some site-specific knowledge, particularly in respect to
the “normal” levels of activity and resource consumption. The pmieconf tool
(see Section 6.7, page 143) may be used to help develop localized rules based
upon parameterized templates covering many common performance scenarios.
In complex environments, customizing these rules may occur over an extended
period and require considerable performance analysis insight.

One of the functions of pmie provides for continual detection of adverse
performance and the automatic generation of alarms (visible, audible, e-mail,
pager, and so on). Uncontrolled deployment of this alarm initiating capability
throughout the enterprise may cause havoc.

These considerations favor a centralized pmie deployment at a small number of
PCP monitor sites, or in a PCP Management Site as shown in Figure 40.

However, it is most likely that knowledgeable users with specific needs may
find a local deployment of pmie most useful to track some particular class of
service difficulty or resource utilization. In these cases, the alarm propagation is
unlikely to be required or is confined to the system on which pmie is running.

Configuration and management of a number of pmie instances is made much
easier with the scripts and control files described in Section 6.9, page 150.

188 007–2614–004

Customizing and Extending PCP Services [9]

Performance Co-Pilot (PCP) has been developed to be fully extensible. The
following sections summarize the various facilities provided to allow you to
extend and customize PCP for your site:

• Section 9.1, page 189, describes the general process of installing and
removing a PMDA at both a PCP collector and/or a PCP monitor host. It
also describes the procedure for customizing the summary PMDA to export
derived metrics formed by aggregation of base PCP metrics from one or
more collector hosts.

• Section 9.2, page 193, describes the various options available for customizing
and extending the basic PCP tools.

• Section 9.3, page 198, covers the concepts and tools provided for updating
the PMNS (Performance Metrics Name Space).

• Section 9.4, page 201, details where to find further information to assist in
the development of new PMDAs to extend the range of performance metrics
available through the PCP infrastructure.

• Section 9.5, page 201, outlines how new tools may be developed to process
performance data from the PCP infrastructure.

9.1 PMDA Customization

The generic procedures for installing and activating the optional PMDAs have
been described in Section 2.5, page 34. In some cases, these procedures prompt
the user for information based upon the local system or network configuration,
application deployment, or processing profile to customize the PMDA and
hence the performance metrics it exports.

The summary PMDA is a special case that warrants further discussion.

9.1.1 Customizing the Summary PMDA

The summary PMDA exports performance metrics derived from performance
metrics made available by other PMDAs. It is described completely in the
pmdasummary(1) man page.

The summary PMDA consists of two processes:

007–2614–004 189

Performance Co-PilotTM User’s and Administrator’s Guide

pmie process Periodically samples the base metrics and
compute values for the derived metrics. This
dedicated instance of the PCP pmie inference
engine is launched with special command line
arguments by the main process. See Section 6.1,
page 117, for a complete discussion of the pmie
feature set.

main process Reads and buffers the values computed by the
pmie process and makes them available to the
Performance Metrics Collection Daemon (PMCD).

All of the metrics exported by the summary PMDA have a singular instance
and the values are instantaneous; the exported value is the correct value as of
the last time the corresponding expression was evaluated by the pmie process.

The summary PMDA resides in the /usr/pcp/pmdas/summary directory and
may be installed with a default configuration by following the steps described
in Section 2.5.1, page 34.

Alternatively, you may customize the summary PMDA to export your own
derived performance metrics by following the steps in Procedure 6:

Procedure 6: Customizing the Summary PMDA

1. Check that the symbolic constant SYSSUMMARY is defined in the
/var/pcp/pmns/stdpmid file. If it is not, perform the postinstall update
of this file, as superuser:

cd /var/pcp/pmns

./Make.stdpmid

2. Choose Performance Metric Name Space (PMNS) names for the new
metrics. These must begin with summary and follow the rules described in
the pmns(4) man page. For example, you might use
summary.fs.cache_write and summary.fs.cache_hit.

3. Edit the pmns file in the /usr/pcp/pmdas/summary directory to add the
new metric names in the format described in the pmns(4) man page. You
must choose a unique Performance Metric Identifier (PMID) for each metric.
In the pmns file, these appear as SYSSUMMARY:0:x. The value of x is
arbitrary in the range 0 to 1023 and unique in this file. Refer to Section 9.3,
page 198, for a further explanation of the rules governing PMNS updates.

For example:

190 007–2614–004

Customizing and Extending PCP Services [9]

summary {

cpu
disk

netif

fs /*new*/

}

summary.fs {

cache_write SYSSUMMARY:0:10
cache_hit SYSSUMMARY:0:11

}

4. Use the local test PMNS root and validate that the PMNS changes are
correct.

For example, enter this command:

pminfo -n root -m summary.fs

You see output similar to the following:

summary.fs.cache_write PMID: 27.0.10

summary.fs.cache_hit PMID: 27.0.11

5. Edit the /usr/pcp/pmdas/summary/expr.pmie file to add new pmie
expressions. If the name to the left of the assignment operator (=) is one of
the PMNS names, then the pmie expression to the right will be evaluated
and returned by the summary PMDA. The expression must return a
numeric value. Additional description of the pmie expression syntax may
be found in Section 6.3, page 124.

For example, consider this expression:

// filesystem buffer cache hit percentages

prefix = "kernel.all.io"; // macro, not exported

summary.fs.cache_write =
100 - 100 * $prefix.bwrite / $prefix.lwrite;

summary.fs.cache_hit =

100 - 100 * $prefix.bread / $prefix.lread;

6. Run pmie in debug mode to verify that the expressions are being evaluated
correctly, and the values make sense.

For example, enter this command:

pmie -t 2sec -v expr.pmie

You see output similar to the following:

007–2614–004 191

Performance Co-PilotTM User’s and Administrator’s Guide

summary.fs.cache_write: ?

summary.fs.cache_hit: ?
summary.fs.cache_write: 45.83

summary.fs.cache_hit: 83.2

summary.fs.cache_write: 39.22

summary.fs.cache_hit: 84.51

7. Install the new PMDA.

From the /usr/pcp/pmdas/summary directory, use this command:

./Install

You see the following output:

You need to choose an appropriate configuration for installation of

the ‘‘summary’’ Performance Metrics Domain Agent (PMDA).

collector collect performance statistics on this system

monitor allow this system to monitor local and/or remote systems

both collector and monitor configuration for this system

Please enter c(ollector) or m(onitor) or b(oth) [b] both
Interval between summary expression evaluation (seconds)? [10] 10

Updating the Performance Metrics Name Space...

Installing pmchart view(s) ...

Terminate PMDA if already installed ...

Installing files ..

Updating the PMCD control file, and notifying PMCD ...
Wait 15 seconds for the agent to initialize ...

Check summary metrics have appeared ... 8 metrics and 8 values

8. Check the metrics.

For example, enter this command:

pmval -t 5sec -s 8 summary.fs.cache_write

You see a response similar to the following:

metric: summary.fs.cache_write

host: localhost

semantics: instantaneous value

units: none

samples: 8
interval: 5.00 sec

192 007–2614–004

Customizing and Extending PCP Services [9]

63.60132158590308

62.71878646441073
62.71878646441073

58.73968492123031

58.73968492123031

65.33822758259046

65.33822758259046

72.6099706744868

Note that the values are being sampled here by pmval every 5 seconds, but
pmie is passing only new values to the summary PMDA every 10 seconds.
Both rates could be changed to suit the dynamics of your new metrics.

9. You may now create pmchart views, pmview scenes, and pmlogger
configurations to monitor and archive your new performance metrics.

9.2 PCP Tool Customization

Performance Co-Pilot (PCP) has been designed and implemented with a
philosophy that embraces the notion of toolkits and encourages extensibility.

In most cases, the PCP tools provide orthogonal services, based on external
configuration files. It is the creation of new and modified configuration files
that enables PCP users to customize tools quickly and meet the needs of the
local environment, in many cases allowing personal preferences to be
established for individual users on the same PCP monitor system.

The material in this section is intended to act as a checklist of pointers to
detailed documentation found elsewhere in this guide, in the man pages, and in
the files that are made available as part of the PCP installation.

9.2.1 Stripchart Customization

The PCP tool pmchart produces stripchart displays of performance metrics.
Refer to Section 4.1, page 62, for an extensive description of the capabilities of
pmchart.

Customization is centered on PCP views that may be created interactively and
saved via the Save View option in the File menu.

When pmchart is loading a view, the following directories are searched:

. The current directory.

$HOME/.pcp Views for each user.

007–2614–004 193

Performance Co-PilotTM User’s and Administrator’s Guide

/var/pcp/config/pmchart The system-wide catalog of
views. Any view installed
here becomes visible to every
pmchart user.

The X11 application resources for pmchart are in
/usr/lib/X11/app-defaults/PmChart, and these may be edited to
customize the appearance of the display. The default update interval and other
attributes are described in the pmchart(1) man page.

9.2.2 Archive Logging Customization

The PCP archive logger is presented in Chapter 7, page 155, and documented in
the pmlogger(1) man page.

The following global files and directories influence the behavior of pmlogger:

/etc/config/pmlogger

Enable/disable state for the primary logger facility using this
command:

chkconfig pmlogger on

/etc/config/pmlogger.options

Command line options passed to the primary logger if it is
launched from /etc/init.d/pcp.

/var/pcp/config/pmlogger/config.default

The default pmlogger configuration file that is used for the
primary logger when this facility is enabled.

/var/pcp/config/pmlogger/config.view.*

Every pmchart view also provides a pmlogger configuration
file that includes each of the performance metrics used in the
view, for example,
/var/pcp/config/pmlogger/config.LoadAvg for the
LoadAvg view.

/var/pcp/config/pmlogger/config.*

Every PCP tool with a fixed group of performance metrics
contributes a pmlogger configuration file that includes each of

194 007–2614–004

Customizing and Extending PCP Services [9]

the performance metrics used in the tool, for example,
/var/pcp/config/pmlogger/config.dkvis for dkvis.

/var/pcp/config/pmlogger/control

Defines which PCP collector hosts require pmlogger to be
launched on the local host, where the configuration file comes
from, where the archive log files should be created, and
pmlogger startup options.

/var/pcp/config/pmlogger/crontab

Prototype crontab entries that may be merged with the
crontab entries for root to schedule the periodic execution of
the archive log management scripts, for example,
pmlogger.daily.

/var/adm/pcplog/somehost

The default behavior of the archive log management scripts
create archive log files for the host somehost in this directory.

/var/adm/pcplog/somehost/Latest

A PCP archive folio for the most recent archive for the host
somehost. This folio is created and maintained by the
cron-driven periodic archive log management scripts, for
example, pmlogger.check. Archive folios may be processed
with the pmafm tool.

9.2.3 Inference Engine Customization

The PCP inference engine is presented in Chapter 6, page 117, and documented
in the pmie(1) man page.

The following global files and directories influence the behavior of pmie:

/etc/config/pmie

Controls the pmie daemon facility. Enable using this command:

chkconfig pmie on

/var/pcp/demos/pmie/*

Example pmie rules that may be used as a basis for developing
local rules.

007–2614–004 195

Performance Co-PilotTM User’s and Administrator’s Guide

/var/pcp/config/pmie/config.default

The default pmie configuration file that is used when the pmie
daemon facility is enabled.

/var/pcp/config/pmieconf/*/*

Each pmieconf rule definition can be found below one of these
subdirectories.

/var/pcp/config/pmie/control

Defines which PCP collector hosts require a daemon pmie to be
launched on the local host, where the configuration file comes
from, where the pmie log file should be created, and pmie
startup options.

/var/pcp/config/pmlogger/crontab

Prototype crontab entries that may be merged with the
crontab entries for root to schedule the periodic execution of
the pmie_check script, for verifying that pmie instances are
running.

/var/adm/pmielog/

The default behavior of the /etc/init.d/pmie startup scripts
create pmie log files for the host in this directory.

The pmcd PMDA exports information about executing pmie instances and their
progress in terms of rule evaluations and action execution rates.

pmie_check This command is similar to the pmlogger
support script, pmlogger_check.

/etc/init.d/pmie This control file supports the starting and
stopping of multiple pmie instances that are
monitoring one or more hosts.

/var/tmp/pmie The statistics that pmie gathers are maintained in
binary data structure files. These files are in the
/var/tmp/pmie directory.

196 007–2614–004

Customizing and Extending PCP Services [9]

pmcd.pmie metrics If pmie is running on a system with a PCP
collector deployment, the pmcd PMDA exports
these metrics via the pmcd.pmie group of
metrics.

9.2.4 Snapshot Customization

The PCP snapshot production facility is presented in Section 7.3.4, page 166,
and documented in the pmsnap(1) man page.

The following global files and directories influence the behavior of pmsnap:

/var/pcp/config/pmsnap/control

Defines how to produce a snapshot, including the output
filename, the PCP archive folio name to be used as input, the
pmchart configuration file, and command line arguments to
pmchart

/var/pcp/config/pmsnap/Summary

A pmchart configuration file to produce a sample summary
snapshot in conjunction with pmsnap

/var/pcp/config/pmlogger/config.Summary

A pmlogger configuration file that can produce an archive
containing performance metrics required by the sample
summary snapshot

/var/pcp/config/pmlogger/crontab

Prototype crontab entries that may be merged with the
crontab entries for root schedule the periodic execution of
the archive log management scripts, for example, pmsnap

/var/pcp/config/pmsnap/Summary.html

An example HTML page suitable for publishing images from
the pmsnap examples via a Web server

9.2.5 Icon Control Panel Customization

The gadget specification language of pmgadgets supports the creation of
arbitrary gadget layouts and bindings to hosts and performance metrics. See
Section 4.2, page 81, and the pmgadgets(1) man page.

007–2614–004 197

Performance Co-PilotTM User’s and Administrator’s Guide

9.2.6 3D Visualization Customization

The 3D scene specification language of pmview supports the creation of block
layouts and bindings to hosts and performance metrics. See Chapter 5 and the
pmview(1) man page.

9.3 PMNS Management

This section describes the syntax, semantics, and processing framework for the
external specification of a Performance Metrics Name Space (PMNS) as it might
be loaded by the PMAPI routine pmLoadNameSpace; see the
pmLoadNameSpace(3) man page.

The PMNS specification is a simple ASCII source file that can be edited easily.
For reasons of efficiency, a binary format is also supported; the utility
pmnscomp translates the ASCII source format into binary format; see the
pmnscomp(1) man page.

9.3.1 PMNS Processing Framework

The PMNS specification is initially passed through cpp. This means the
following facilities may be used in the specification:

• C-style comments

• #include directives

• #define directives and macro substitution

• Conditional processing with #if, #endif, and so on

When cpp is executed, the standard include directories are the current directory
and /var/pcp/pmns, where some standard macros and default specifications
may be found.

9.3.2 PMNS Syntax

Every PMNS is tree structured. The paths to the leaf nodes are the performance
metric names. The general syntax for a non-leaf node in PMNS is as follows:

pathname {

name [pmid]

...
}

198 007–2614–004

Customizing and Extending PCP Services [9]

Here pathname is the full pathname from the root of the PMNS to this non-leaf
node, with each component in the path separated by a period. The root node
for the PMNS has the special name root, but the prefix string root. must be
omitted from all other pathnames.

For example, refer to the PMNS shown in Figure 41. The correct pathname for
the rightmost non-leaf node is cpu.util, not root.cpu.util.

idlesysuser

cpu

utilsyscallratepacketrate

inout

intrate

root

 network

a12229

Figure 41. Small Performance Metrics Name Space (PMNS)

Each component in the pathname must begin with an alphabetic character and
be followed by zero or more alphanumeric characters or the underscore (_)
character. For alphabetic characters in a component, uppercase and lowercase
are significant.

Non-leaf nodes in the PMNS may be defined in any order desired. The
descendent nodes are defined by the set of names, relative to the pathname of
their parent non-leaf node. For descendent nodes, leaf nodes have a pmid
specification, but non-leaf nodes do not.

The syntax for the pmid specification was chosen to help manage the allocation
of Performance Metric IDs (PMIDs) across disjoint and autonomous domains of
administration and implementation. Each pmid consists of three integers
separated by colons, for example, 14:27:11. This is intended to mirror the
implementation hierarchy of performance metrics. The first integer identifies

007–2614–004 199

Performance Co-PilotTM User’s and Administrator’s Guide

the domain in which the performance metric lies. Within a domain, related
metrics are often grouped into clusters. The second integer identifies the cluster,
and the third integer, the metric within the cluster.

The PMNS specification for Figure 41 is shown in Example 7, page 200:

Example 7: PMNS Specification

/*

* PMNS Specification
*/

#include <stdpmid>

root {

network

cpu
}

#define NETWORK 26

network {

intrate ‘:NETWORK:1

packetrate

}
network.packetrate {

in IRIX:NETWORK:35

out IRIX:NETWORK:36

}

#define CPU 10
cpu {

syscallrate IRIX:CPU:10

util

}

#define USER 20

#define KERNEL 21
#define IDLE 22

cpu.util {

user IRIX:CPU:USER

sys IRIX:CPU:KERNEL

idle IRIX:CPU:IDLE
}

For complete documentation of the PMNS and associated utilities, see the
pmns(4), pmnscomp(1), pmnsadd(1), pmnsdel(1), and pmnsmerge(1) man
pages.

200 007–2614–004

Customizing and Extending PCP Services [9]

9.4 PMDA Development

Performance Co-Pilot (PCP) is designed to be extensible at the collector site.

Application developers are encouraged to create new PMDAs to export
performance metrics from the applications and service layers that are
particularly relevant to a specific site, application suite, or processing
environment.

These PMDAs use the routines of the libpcp_pmda library, which is discussed
in detail by the Performance Co-Pilot Programmer’s Guide.

Source code for several PMDAs (simple, trivial, and txmon) is provided in the
pcp.sw.demo subsystem. When it is installed, all of the relevant files reside in
directories (one per PMDA) below the /var/pcp/pmdas directory.

9.5 PCP Tool Development

Performance Co-Pilot (PCP) is designed to be extensible at the monitor site.

Application developers are encouraged to create new PCP client applications to
monitor or display performance metrics in a manner that is particularly
relevant to a specific site, application suite, or processing environment.

Client applications use the routines of the PMAPI (performance metrics
application programming interface) described in the Performance Co-Pilot
Programmer’s Guide.

Source code for a sample PMAPI client (pmclient) is provided in the
pcp.sw.demo subsystem, and when installed all of the relevant files reside in
/var/pcp/demos/pmclient.

007–2614–004 201

Acronyms [A]

This appendix provides a list of the acronyms used in the Performance Co-Pilot
(PCP) documentation, help cards, man pages, and user interface.

Table 4. Performance Co-Pilot Acronyms and Their Meanings

Acronym Meaning

API Application Programming Interface

DBMS Database Management System

DNS Domain Name Service

DSO Dynamic Shared Object

IP Internet Protocol

PCP Performance Co-Pilot

PDU Protocol Data Unit

PMAPI Performance Metrics Application Programming
Interface

PMCD Performance Metrics Collection Daemon

PMCS Performance Metrics Collection Subsystem

PMD Performance Metrics Domain

PMDA Performance Metrics Domain Agent

PMID Performance Metric Identifier

PMNS Performance Metrics Name Space

TCP/IP Transmission Control Protocol/Internet Protocol

007–2614–004 203

Index

2D and text-based tools, 61
3D visualization, 198
64-bit IEEE format, 19

A

AboutPCP icon, 6
Acronyms, 203
_actions customized menus, 82
active pmlogger process, 173
Adaptation, 3
Add-on PCP products, 26
Add-on Products, 5
Agent development, 12
Application and agent development, 12
Application Development, 12
Application programs, 15
Archive creation, 52, 75
Archive logging, 155
Archive logs

administration, 165
archive time control, 52
capacity planning, 157
collection time, 14
contents, 162
creation tools, 9
customization, 3, 194
Directory organization, 160
export, 185
fetching metrics, 45
file management, 159
folios, 168
introduction, 155
locating, 171
logging cookbook, 163
managed file basenames, 160
physical filenames, 45
PMAPI, 156

retrospective analysis, 156
Snaphot image creation, 166
snapshots, 157
troubleshooting, 170
usage description, 155
visualization tools, 158

Arithmetic aggregation, 137
Arithmetic expressions, 131
Array environments, 5
Audits, 4
autofsd_probe tool, 10
Automated operational support, 3
avg_host operator, 137

B

_bar gadget, 81, 113
_bargraph gadget, 82
Basename conventions, 159
Boolean expressions, 132

C

Capacity planning, 157
Caveats, 141
Centralized archive logging, 3
Challenge systems, 4, 15
Chart customizations

color, 77
other, 78
See also "pmchart tool", 78

chkhelp tool, 12
Client-server architecture, 2
Collection host

distributed collection, 16
PMDA removal, 37

007–2614–004 205

Performance Co-PilotTM User’s and Administrator’s Guide

role, 21
collection host

PDMA installation, 35
Collection time, 14
Collector configuration, 25
Collector subsystems

collector, 26
_colorlist component, 82
Colors, 77
Comments, 126
Common directories, 46
Component software, 5
Conceptual foundations, 13
config.* files, 163
Configuring PCP, 25
Conventions, 43
Cookbook, 163
Core subsystems, 25
count_host operator, 138
CPU visualization tool, 100
CrayLink node connectors, 66
cron based scripts, 156
cron scheduling system, 158
Crossbow (XBow) packet, 8
ctime function, 136
Customization

archive logs, 194
inference engine, 195
PCP services, 189
snapshots, 197
tool creation, 112

Customizations
pmchart tool, 78

D

Data collection tools, 9
DBMS, 15
dbpmda tool, 12
Debugging tools, 11
delta, 127
Demo subsystems, 26

Deployment strategies
basic deployment, 178
description, 177
options, 183

/dev/kmem file, 39
Diagnostic tools, 11
Disk use visualization, 97
DISPLAY variable, 135
Distributed collection, 16
Distributed PMNS, 19
dkmap tool, 11
dkping tool, 11
dkprobe tool, 11
dkview tool

pmview front-end, 96
dkvis tool, 97

brief description, 6, 95
fetching metrics, 45
launchable tool, 111
PCP Tutorial, 99
pmsocks script, 59
pmview configuration file, 116
pmview options, 99
pmview tool, 107
remote PMCD, 40
summary configuration, 163, 164

Documentation subsystems, 26
Domains, 2
DSO, 203
Duration , 47
Dynamic adaptation, 3

E

environ man page, 51
Environment variables, 55
Error detection, 142
/etc/config/ file, 46
/etc/config/pmlogger.options file, 169
/etc/pcp_socks.conf file, 59
/etc/pmcd.conf file, 35, 41, 46

206 007–2614–004

Index

Evaluation frequency, 127
exec system call, 67
Extensibility, 4, 189
External equipment, 15

F

Fetching metrics, 45
File locations, 46
File menu, 65, 75, 111
Firewalls, 59
FLEXlm licenses, 27
flush command, 158
Folios, 168
fork system call, 67
Functional domains, 14

G

Gadgets, 81
Gift subsystems, 26
Glossary, 203
Graphical gadgets, 81
_grid gadget, 113

H

Help menu, 111
hipprobe tool, 11
Horizontal lines, 67
HPC environments, 5

I

Icon control panel , 197
Illegal label record, 174
Inference engine, 195
Informix, 15
Infrastructure support tools, 10

inst command, 25, 109
*_inst operator, 138
Installing PCP, 25
Instance domains, 20, 22
Instance identifiers, 20
Intrinsic operators, 137
Inventor, 95
Inventor Toolkit, 107
inventor_eoe.sw product image, 107
inventor_eoe.sw.help package, 109
IP, 203
IRIS FailSafe platforms, 5

K

kill command, 172

L

_label gadget, 82
Launch menu, 111
Layered software services, 15
Layered system products, 15
_led gadget, 82
_legend component, 82
Lexical elements, 125
libpcp_pmda library, 24
libpcp_trace library, 24
_line gadget, 82
Live time control, 51
Log volumes, 159
logger command, 135
Logger configurations, 164
Logging

See "Archive logs", 3
Logical constants, 131
Logical expressions, 131

007–2614–004 207

Performance Co-PilotTM User’s and Administrator’s Guide

M

Macros, 126
man command

pmview tool, 95
usage, 61

max_host operator, 138
memclaim tool, 11
Metadata, 19
Metric coverage, 4
Metric domains, 2
Metric selection, 68
Metric wraparound, 141
min_host operator, 138
MineSet data mining product, 7
mkaf tool, 9
mkafm utility, 156
mkpmemarch tool, 9
Monitor, 21
Monitor configuration, 25
Monitor subsystems, 25
Monitoring system performance, 61
Mouse controls, 64
mpview tool, 96
mpvis tool

bar charts, 100
brief description, 6, 95
configuration file, 113
Launch menu, 111
launchable tool, 111
PCP Tutorial, 101
pmview configuration file, 116
pmview options, 101
summary configuration, 163, 164

_multibar gadget, 82

N

Namespace services, 22
Naming scheme, 2
netstat command, 42
Network routers and bridges, 15

Network transportation tools , 9
newhelp tool, 12
NFS visualizing tool, 104
nfsvis tool

brief description, 6
description, 104
launchable tool, 111
NFS request , 96
PCP Tutorial, 107
pmview configuration file, 116
pmview tool, 107
summary configuration, 163, 164

nfview tool, 96
nfvis tool

brief description, 95
pmview options, 107

NNTP news servers, 15
nodevis tool, 6, 95

Launch menu, 111
pmview tool, 107

Notification, 117

O

Objectives, 1
Open Inventor, 96, 107
Open View..., 65
OpenGL, 96
Operational support tools, 10
Operators, 132
opsview tool, 97
Optional software, 26
Options menu, 52, 111
Oracle

access method, 15
DBMS deployments, 5

OS visualizing tool, 102
osvis tool

brief description, 6, 95
description, 102
launchable tool, 111

208 007–2614–004

Index

pmview configuration file, 116
pmview tool, 107

Other subsystems, 26
Overview, 1
oview tool, 103

archive creation, 52
brief description, 6, 95
record mode, 155
time control, 51

P

pcmd.options file, 29
PCP, 203

archive logger deployment, 183
collector deployment, 180
extensibility, 23
See "Performance Co-Pilot", 1
tool customization, 193
tool development, 201
tutorial, 80

pcp directory, 146
PCP extensibility, 189
pcp tool, 11, 12

launchable tool, 111
PCP Tutorial, 46

dkvis tool, 99
mpvis tool, 101
nfsvis tool, 107
pminfo command, 93
pmstore command, 94
pmval command, 88

pcp.books.* , 26
pcp.books.help subsystem, 25
pcp.man.*, 26
pcp.man.tutorial, 80
pcp.sw.* subsystems, 26
pcp.sw.base subsystem, 25
pcp.sw.demo file, 139
pcp.sw.demo subsystem, 26
pcp.sw.monitor subsystem, 25
PCP_COUNTER_WRAP variable, 60

PCP_COUNTER_WRAP variable, 55, 141
pcp_eoe.books.help subsystem, 25
pcp_eoe.sw.eoe subsystem, 25, 26
pcp_eoe.sw.monitor subsystem, 25
pcp_gifts.sw.* subsystems, 26
PCP_LICENCE_NOWARNING variable, 56
PCP_LOGDIR variable, 56
PCP_STDERR variable, 56
PCP_TRACE_HOST variable, 56
PCP_TRACE_PORT variable, 56
PCP_TRACE_TIMEOUT variable, 57
PCPIntro, 48
PCPIntro command, 42
PDMA

collection host, 37
collection host installation, 35
installation, 34
managing optional, 34

PDU, 203
PDU‘, 30
Performance Co-Pilot

archive folios, 168
archive logging, 3
configuring, 25
conventions, 43
daemon maintenance, 27
distributed operation, 2, 3
environment variables, 55
extensibility, 4
features, 4
installing, 25
introduction, 1
license system, 27
log file option, 45
naming conventions, 43
objectives, 1
real-time access, 3
target usage, 1
tool summaries, 6, 9, 10, 12
users, 1

Performance Metric Domain Agent
collectors, 21

007–2614–004 209

Performance Co-PilotTM User’s and Administrator’s Guide

Performance Metric Domain Agents, 177
no license constraints, 27
removal, 36
unification, 2
/var/pcp/pmdas file, 46

Performance Metric Identifier
description, 17
metadata, 19
PMNS names, 190

Performance Metric Identifiers , 92
Performance Metric Name Space

names, 190
Performance metric wraparound, 60, 141
Performance metrics

access, 2
concept, 13
descriptions, 19
instances, 20
methods, 15
missing and incomplete values, 38
name space, 18
possible values, 20
retrospective sources, 22
selection, 68
sources, 14
unification, 2

Performance Metrics Application Programming
Interface, 156

brief description, 13
current context, 14
identifying metrics, 13
metric instances, 13
naming metrics, 13
pmie capabilities, 118

Performance Metrics Collection Daemon, 177, 190
brief description, 9
/etc/pmcd.conf file, 46
maintenance, 27
restarting daemon, 28
starting and stopping, 28

Performance Metrics Collection System
description, 22
license constraints, 27

metric expressions, 127
pmie capabilities, 118

Performance Metrics Collection Systems, 120
Performance Metrics Domain Agent

brief description, 9
distributed collection, 17
instance names, 128
libraries, 4

Performance Metrics Domain Identifier, 16
Performance Metrics Inference Engine, 117
Performance Metrics Name Space

brief description, 13
defined names, 2
description, 17
distributed product, 19
files and scripts, 47
license constraints, 27
management, 198
metric expressions, 127
pmchartMetricsSelection, 68
syntax, 198

Performance monitoring, 6, 61
Performance views

pmchart, 65
predefined views, 65

Performance visualization tools, 158
PerfTools icon catalog, 43
PM_INDOM_NULL, 121
PM_LAUNCH_PATH variable, 58
pmafm tool

archive folios, 156
brief description, 9
interactive commands, 168

PMAPI, 203
See "Performance Metrics Application

Programming Interface", 13
pmbrand tool

brief description, 11
license capabilities, 27
license query, 27
/usr/pcp/bin, 46

PMCD, 203

210 007–2614–004

Index

configuration files, 29
diagnostics, 29
error messages, 29
not starting, 41
options, 29
remote connection, 40
See "Performance Metrics Collection

Daemon", 9, 27
pmcd tool

collector host, 127
daemon description, 9
distributed collection, 16, 17
fetching metrics, 45
monitoring usage, 62
other Internet hosts, 108
PMCD_CONNECT_TIMEOUT variable, 57
PMCD_PORT variable, 57
PMCD_RECONNECT_TIMEOUT variable, 57
PMCD_REQUEST_TIMEOUT variable, 58
real-time sources, 124
TCP/IP firewall, 59
time dilation, 60

pmcd.conf
controlling system access, 33
file, 30

pmcd.options file, 46
PMCD_CONNECT_TIMEOUT variable, 40, 57
PMCD_PORT variable, 42, 57, 59
PMCD_RECONNECT_TIMEOUT variable, 57
PMCD_REQUEST_TIMEOUT variable, 58
pmcd_wait tool, 9
pmchart tool

archive creation, 52, 75
brief description, 6
colors, 77
config.* files, 163
fetching metrics, 45
horizontal lines, 67
launchable tool, 111
man example, 61
metric selection, 68
monitoring usage, 62
pmchart comparison, 81

record mode, 155, 168
remote PMCD, 40
short-term executions, 160
snapshots, 157
time control, 51, 79
time-series strip charts, 96
Tutorial for PCP, 80

pmclient tool, 13
PMCS, 203

See "Performance Metrics Collection
System", 22

PMD, 203
PMDA, 203

customizing, 189
development, , 201
See "Performance Metric Domain Agents", 2
See "Performance Metrics Domain Agent", 4

PMDA_PATH variable, 58
pmdacisco tool, 9
pmdahotproc tool, 9
pmdamailq tool, 9
pmdasendmail tool, 9
pmdasummary tool, 9
pmdate tool, 11
pmdatrace tool, 10, 56
pmdbg facility, 11
PMDI

See "Performance Metrics Domain
Identifier", 16

pmdumplog tool
Archive log contents, 162
brief description, 10
troubleshooting, 171

pmdumpmineset tool, 7
pmdumptext tool, 86

brief description, 7
launchable tool, 111

pmem command, 88
pmem tool, 7
pmerr tool, 11
pmgadget tool

specification file, 82

007–2614–004 211

Performance Co-PilotTM User’s and Administrator’s Guide

pmgadgets tool
brief description, 7
description, 81
desktop panel, 96
pmgcisco monitoring, 7
pmgevctr display, 7
pmgshping monitoring, 7

pmgcisco tool, 7
pmgenmap tool, 13
pmgevctr tool

brief description, 7
pmgshping tool, 7
pmgsys tool

brief description, 7
configuration file, 81
launchable tool, 111
standard layout, 96

pmhostname tool, 11
PMID, 203

Performance Metric Identifiers , 92
See "Performance Metric Identifier", 17

pmie tool, 11
arithmetic aggregation, 137
arithmetic expressions, 131
automated reasoning, 95, 117
basic examples, 120
brief description, 7
caveats and notes, 141
customization, 119
debugging rules, 141
developing rules, 141
error detection, 142
examples, 121, 122
global files and directories, 152
instance names, 142
intrinsic operators, 137
language, 118, 124
logical expressions, 131
metric expressions, 127
Performance Metrics Inference Engine, 117
pmieconf rules, 7, 143
procedures, 143, 150
process management, 150

rate conversion, 130
rate operator, 138
real examples, 139
rule creation, 146
sample intervals, 142
setting evaluation frequency, 127
syntax, 125
transitional operators, 138

pmieconf rules
pmie tool, 143

pmieconf tool, 7
customization, 119

pmimport tool, 10
pminfo tool

brief description, 8
description, 89
displaying the PMNS, 37
PCP Tutorial, 93
pmie arguments, 120

pmkstat command, 84
pmkstat tool

brief description, 8
launchable tool, 111
summary configuration, 163, 164

pmlaunch tool, 11
/pmlaunch tool, 58
pmlc tool, 169

brief description, 10
dynamic adjustment, 156
flush command, 158
PMLOGGER_PORT variable, 58
show command, 172
SIGHUP signal, 160
TCP/IP firewall, 59

pmLoadNameSpace() default, 58
pmlock tool, 11
pmlogcheck tool, 10
pmlogconf tool, 10
pmlogextract tool, 10, 168
pmlogger

configuration, 162
PCP tool coordination, 158

212 007–2614–004

Index

pmlogger tool, 46, 58, 155
archive creation, 52, 75
archive log creation, 45
brief description, 10
configuration, 169
cookbook tasks, 163
current metric context, 14
distributed PMNS, 19
folios, 168
locating log, 171
monitoring usage, 62
mouse controls, 64
no license constraints, 27
pmlc control, 156
primary instance, 172, 169
remote PMCD, 40
start-up, 172
TCP/IP firewall, 59
writing log, 171

pmlogger_check script, 11, 158
pmlogger_daily script, 11, 158
pmlogger_merge script, 11, 158
PMLOGGER_PORT variable, 58, 59
pmlogmerge tool, 169
pmlogsummary tool, 8
pmnewlog tool, 12
PMNS, 203

alternate name spaces, 47
See "Performance Metrics Name Space", 2
troubleshooting, 37

PMNS_DEFAULT variable, 58
pmnsadd tool, 12
pmnscomp tool, 46

alternate name spaces, 47
brief description, 12

pmnsdel tool, 12
pmpost tool, 12
pmprintf command

error messages, 56
pmprobe tool, 8
pmrules tool

pmie rules, 117
rule creation, 146

pmrun command, 43
pmrun tool, 12
pmsnap tool

brief description, 11
script usage, 158
usage instructions, 80

pmsnaptool, 12
pmsocks command

firewall usage, 59
pmsocks tool

brief description, 8
TCP/IP firewall, 59

pmstore command, 93
pmstore tool

brief description, 12
PCP Tutorial, 94
setting metric values, 61

pmtime Archive Time Control dialog, 52
pmtime PCP Live Time Control dialog, 51
pmtime tool

brief description, 8
time control, 51, 79
Timezone option, 54

pmtrace tool, 10
pmval command, 86
pmval tool

brief description, 8
Launch menu, 111
launchable tool, 111

pmview
Custom tools, 112
new tools, 112

pmview tool
animated scenes, 96
archive creation, 52
brief description, 8
config.* files, 165
menus, 111
record mode, 155, 168
related tools, 95, 96, 107
time control, 51
usage, 107

007–2614–004 213

Performance Co-PilotTM User’s and Administrator’s Guide

pmvis tool, 95
Primary logger, 163, 169
Processor visualization tool, 100
psmon tool, 8

Q

Quality of service measurement, 181
Quantification operators, 132

R

Rate conversion, 130
rate operator, 138
read system call, 67
Relational expressions, 131
Release notes, 26, 109
Reporting frequency, 47
Retrospective analysis, 156
Roles

collector, 21, 25
monitor, 21, 25

routervis tool, 8
pmview tool, 107
related tools, 95

Rule creation, 146
Rule expressions, 134

S

Sample intervals, 142
*_sample operator, 138
sar data structures, 15
Scripts, 11, 158
service management, 181
Set-valued performance metrics, 20
sgihelp command, 25
show command, 172
SIGHUP signal, 41, 160
SIGINT signal, 172

SIGUSR1 signal, 158
Single-valued performance metrics, 20
Snaphot image creation, 166
Snapshots, 79, 157, 197
SOCKS protocols, 59
Software, 5, 26
Specification file, 82
Stripchart displays, 193
Subsystems, 25
sum_host operator, 137
swmgr command, 25
Sybase, 15
Syntax, 198
syslog function

system log, 118

T

Target usage, 1
TCP, 40, 203
TCP/IP, 57, 59
Time control, 51, 52, 79
Time dilation, 60
Time duration, 47
Time window options, 48
Time-series strip charts, 96
Time-zone options, 50
%-token, 136
Tool customization, 193
Tool development, 201
Tool options, 45
Tools

autofsd_probe, 10
chkhelp, 12
dbpmda, 12
dkmap, 11
dkping, 11
dkprobe, 11
dkvis, 6, 97
hipprobe, 11
host specification option, 45

214 007–2614–004

Index

log file option, 45
memclaim, 11
mkaf, 9
mkpmemarch, 9
mpvis, 6, 100
newhelp, 12
nfsvis, 6, 104
nodevis, 6
opsview tool, 97
osvis, 6, 102
oview, 6, 103
pcp, 11, 12
periodic reporting option, 47
pmafm, 9
pmbrand, 11
pmcd, 9
pmcd_wait, 9
pmchart, 6, 62
pmclient, 13
pmdacisco, 9
pmdahotproc, 9
pmdamailq, 9
pmdasendmail, 9
pmdashping, 9
pmdasummary, 9
pmdate, 11
pmdatrace, 10
pmdbg, 11
pmdumplog, 10
pmdumpmineset, 7
pmdumptext, 7, 86
pmem, 7, 88
pmerr, 11
pmgadgets, 7
pmgcisco, 7
pmgenmap, 13
pmgevctr, 7
pmgsys, 7
pmgsys tool, 96
pmhostname, 11
pmie, 7, 11, 117
pmieconf, 7
pmimport, 10

pminfo, 8, 89
pmkstat, 8, 84
pmlaunch, 11
pmlc, 10, 169
pmlock, 11
pmlogcheck, 10
pmlogconf, 10
pmlogextract, 10, 168
pmlogger, 10, 155, 172, 169, 171
pmlogmerge, 169
pmlogsummary, 8
pmnewlog, 12
pmnsadd, 12
pmnscomp, 12
pmnsdel, 12
pmpost, 12
pmprobe, 8
pmrun, 12
pmshping, 7
pmsnap, 12
pmsocks, 8
pmstore, 12, 93
pmtime, 8
pmtrace, 10
pmval, 8, 86
pmview, 8, 107
psmon, 8
routervis, 8
time-zone option, 50
xbowvis, 8
xlv_vis, 9

Transient problems, 60
Transitional operators, 138
Troubleshooting

archive logging, 170
general utilities, 40
IRIX metrics, 38
no IRIX metrics available, 39
PMCD, 37, 38
pmchart colors, 77
PMNS, 77

Tutorial for PCP, 80

007–2614–004 215

Performance Co-PilotTM User’s and Administrator’s Guide

txmonvis tool, 95
pmview tool, 107

U

Uniform naming, 2
Units, 126
User interface components, 43
/usr/etc/pmcd file, 46
/usr/pcp/bin file, 46
/usr/pcp/demos file, 46
/usr/pcp/lib file, 46
/usr/pcp/pmdas, 46

V

/var/adm/pcplog directory, 56
/var/adm/pcplog file, 47
/var/adm/pcplog/NOTICES file, 12, 118
/var/adm/pcplog/pluto/config.default file, 163
/var/adm/pcplog/pmcd.log file, 39, 41
/var/adm/SYSLOG file, 118, 136
/var/pcp file, 46
/var/pcp/config file, 46
/var/pcp/config/pmlaunch file, 58
/var/pcp/config/pmlogger directory, 165
/var/pcp/config/pmlogger file, 163
/var/pcp/config/pmlogger/config.default

file, 163, 164, 169
/var/pcp/config/pmlogger/control file, 159,

161, 163
/var/pcp/config/pmrules directory, 146
/var/pcp/config/pmsnap/control file, 80
/var/pcp/demos/pmie file, 139

/var/pcp/lib/pmview-args file, 116
/var/pcp/lib:/usr/pcp/lib directory, 58
/var/pcp/pmdas file, 46
/var/pcp/pmns file, 47
/var/pcp/pmns/Brand file, 27
/var/pcp/pmns/root file, 58
/var/pcp/pmns/stdpmid file, 35
/var/tmp/pmlogger file, 173
Visualization, 6, 61, 95

W

Web server , 26
Web-based publishing, 4
Window options, 48
World Wide Web, 5, 15
write system call, 67

X

xbowvis tool
brief description, 8
pmview tool, 107
related tools, 95

xconfirm command
error messages, 56
visible alarm, 118

xlv_vis tool, 9

Y

Year 2000 compliance, 14

216 007–2614–004

