
Performance Co-PilotTM User’s and
Administrator’s Guide

007–2614–005 Version 2.2

CONTRIBUTORS

Production by Diane Ciardelli
Engineering and written contributions by David Chatterton, Michael Gigante, Mark Goodwin, Tony Kavadias, Seppo Keronen,
Johnathon Knispel, Ken McDonell, Max Matveev, Ania Milewska, Daniel Moore, Heidi Muehlebach, Ivan Rayner, Nathan Scott,
Timothy Shimmin, and Bill Tuthill

COPYRIGHT
© 1992–1999, 2001 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated
elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Challenge, IRIS, IRIX, and OpenGL are registered trademarks and IRIS InSight, MineSet, NUMAlink, Open Inventor, Origin,
Performance Co-Pilot, SGI, and the SGI logo are trademarks of Silicon Graphics, Inc.

BROCADE is a trademark of Brocade Communications Systems, Inc. Cisco is a trademark of Cisco Systems, Inc. FLEXlm is a
trademark of GLOBEtrotter Software. Netscape is a trademark of Netscape Communications Corporation. PostScript is a trademark of
Adobe Systems, Inc. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company, Ltd.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

New Features in This Guide

This guide contains the following new or changed information for the Performance
Co-Pilot release 2.2.

• The optional add-on products PCP_Web and PCP_HPC have been subsumed into
the core PCP product. As a result, there are a significant number of new tools and
Performance Metrics Domain Agents (PMDAs) in this release.

• Support for the SGI 3000 server series has also been added with a new
visualization specific to these systems in the oview program.

• New Web-server performance monitoring and visualization tools include the
following:

Tool Description

pmgweb pmgadgets front end

weblogvis Traffic monitoring

webping and webpingvis Web service monitoring

webvis System overview tailored for
Web servers

• Two new PMDAs provide the metric collection for the performance monitoring
and visualization tools:

pmdawebping
pmdaweblog

• The monitoring and visualization tools for High Performance Computing (HPC)
are composed of the following:

Tool Description

arrayvis, arraytop, and ashtop Array services

mpivis and mpimon MPI applications

procvis Processes across a collection of
hosts

007–2614–005 iii

New Features in This Guide

clustervis and pmgcluster Clusters of hosts

• New PMDAs from PCP_HPC include the following:

pmdaarray
pmdampi
pmdadmf
pmdaash
pmdahippi

• pmdabrocade, a new PMDA to extract traffic data from a BRACADE SAN
switch, has been released.

• pmchart has been updated with a collection of Views:

Tool Description

Web.Alarms, Web.Allservers,
Web.Perserver.Bytes,
Web.Perserver.Requests,
Web.Requests, and Web.Response

Monitoring Web servers

DMF.Active.Admin,
DMF.Active.User, DMF.Avg.Allreqs,
DMF.Avg.Migrations,
DMF.Avg.Throughput,
DMF.LongAvg.Filesizes, and
DMF.ShortAvg.Filesizes

Data Management Facility
(DMF)

HIPPIBypass, HIPPIBytes, and
HIPPIPackets

HIPPI connections

• The pmchart View CrayLinks has been renamed NUMAlinks.

In addition, miscellaneous editing changes were made throughout the document.

iv 007–2614–005

Record of Revision

Version Description

004 July 1999
Revised to support the Performance Co-Pilot release 2.1 for SGI
systems running the IRIX 6.2, 6.3, 6.4, and 6.5 operating systems.

005 March 2001
Revised to support the Performance Co-Pilot release 2.2 for SGI
systems running the IRIX 6.2, 6.3, 6.4, and 6.5.11 and later operating
systems.

007–2614–005 v

Contents

About This Guide . xxv

What This Guide Contains . xxv

Audience for This Guide . xxvi

Related Resources . xxvi

Man Pages . xxvii

Release Notes . xxviii

SGI Web Sites . xxviii

Obtaining Publications . xxviii

Conventions . xxix

Reader Comments . xxx

1. Introduction to Performance Co-Pilot 1

Objectives . 1

PCP Target Usage . 1

Empowering the PCP User 1

Unification of Performance Metric Domains 2

Uniform Naming and Access to Performance Metrics 2

PCP Distributed Operation 2

Dynamic Adaptation to Change 3

Logging and Retrospective Analysis 3

Automated Operational Support 3

PCP Extensibility . 4

Metric Coverage . 4

Overview of Component Software 5

007–2614–005 vii

Contents

Performance Monitoring and Visualization 5

Collecting, Transporting, and Archiving Performance Information 9

Operational and Infrastructure Support 11

Application and Agent Development 13

Conceptual Foundations . 14

Performance Metrics . 14

Performance Metric Instances 14

Current Metric Context . 15

Sources of Performance Metrics and Their Domains 15

Distributed Collection . 17

Performance Metrics Name Space 18

Performance Metrics Name Space Diagram 18

Distributed PMNS . 20

Descriptions for Performance Metrics 20

Values for Performance Metrics 21

Single-Valued Performance Metrics 21

Set-Valued Performance Metrics 21

Collector and Monitor Roles 23

Performance Metrics Collection System 23

Retrospective Sources of Performance Metrics 23

Product Extensibility . 24

2. Installing and Configuring Performance Co-Pilot 27

Product Structure . 27

License Constraints . 28

Performance Metrics Collection Daemon (PMCD) 29

Starting and Stopping the PMCD 29

Restarting an Unresponsive PMCD 30

viii 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

PMCD Diagnostics and Error Messages 30

PMCD Options and Configuration Files 30

The pmcd.options File 31

The pmcd.conf File . 32

Controlling Access to PMCD with pmcd.conf 34

Managing Optional PMDAs . 36

PMDA Installation on a PCP Collector Host 36

PMDA Removal on a PCP Collector Host 38

Troubleshooting . 39

Performance Metrics Name Space 39

Missing and Incomplete Values for Performance Metrics 39

Metric Values Not Available 39

IRIX Metrics and the PMCD 40

No IRIX Metrics Available 40

Cannot Connect to Remote PMCD 41

PMCD Not Reconfiguring after SIGHUP 42

PMCD Does Not Start . 42

3. Common Conventions and Arguments 45

PerfTools Icon Catalog . 46

Alternate Metrics Source Options 46

Fetching Metrics from Another Host 47

Fetching Metrics from an Archive Log 47

General PCP Tool Options . 48

Common Directories and File Locations 48

Alternate Performance Metric Name Spaces 49

Time Duration and Control . 49

Performance Monitor Reporting Frequency and Duration 50

007–2614–005 ix

Contents

Time Window Options . 50

Timezone Options . 53

PCP Live Time Control . 53

Creating a PCP Archive . 54

PCP Archive Time Control . 54

File Menu . 56

Options Menu . 56

PCP Environment Variables . 57

Running PCP Tools through a Firewall 61

The pmsocks Command . 61

Transient Problems with Performance Metric Values 62

Performance Metric Wraparound 62

Time Dilation and Time Skew 62

4. Monitoring System Performance 63

The pmchart Tool . 64

Mouse Controls . 66

pmchart Select Performance View 67

Displaying Horizontal Lines 70

pmchart Metric Selection . 70

Creating a PCP Archive from a pmchart Session 78

Changing pmchart Colors 80

Other Chart Customizations 81

Time Control . 82

Taking Snapshots of pmchart Displays and Value Dialogs 82

More Information . 83

The pmgadgets Command . 84

The pmkstat Command . 87

The pmdumptext Command . 89

x 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

The pmval Command . 89

The pmem Command . 91

The pminfo Command . 92

The pmstore Command . 96

5. System Performance Visualization Tools 99

Overview of Visualization Tools 100

The dkvis Disk Visualization Tool 101

The mpvis Processor Visualization Tool 103

The osvis System Visualization Tool 105

The oview Origin Visualization Tool 107

The nfsvis NFS Activity Visualization Tool 110

The mpivis MPI Function Activity Visualization Tool 112

The weblogvis Visualization Tool 114

The pmview Tool . 118

pmview Menus . 122

Creating Custom Visualization Tools with pmview 123

6. Performance Metrics Inference Engine 129

Introduction to pmie . 129

Basic pmie Usage . 132

pmie and the Performance Metrics Collection Subsystem 132

Simple pmie Usage . 134

Complex pmie Examples . 135

Specification Language for pmie 137

Basic pmie Syntax . 137

Lexical Elements . 137

Comments . 138

007–2614–005 xi

Contents

Macros . 138

Units . 139

Setting Evaluation Frequency 139

pmie Metric Expressions . 140

pmie Rate Conversion . 142

pmie Arithmetic Expressions 143

pmie Logical Expressions . 143

Logical Constants . 144

Relational Expressions . 144

Boolean Expressions . 145

Quantification Operators 145

pmie Rule Expressions . 147

pmie Intrinsic Operators . 150

Arithmetic Aggregation . 150

The rate Operator . 151

Transitional Operators . 151

pmie Examples . 151

Developing and Debugging pmie Rules 154

Caveats and Notes on pmie . 154

Performance Metrics Wraparound 154

pmie Sample Intervals . 154

pmie Instance Names . 155

pmie Error Detection . 155

Creating pmie Rules with pmieconf 156

Creating pmie Rules with pmrules 159

Management of pmie Processes 163

Global Files and Directories 165

xii 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

pmie Instances and Their Progress 166

7. Archive Logging . 169

Introduction to Archive Logging 169

Archive Logs and the PMAPI 170

Retrospective Analysis Using Archive Logs 170

Snapshots from PCP Archive Logs 171

Using Archive Logs for Capacity Planning 171

Using Archive Logs with Performance Visualization Tools 172

Coordination between pmlogger and PCP tools 172

Administering PCP Archive Logs Using cron Scripts 172

Archive Log File Management 173

Basename Conventions . 173

Log Volumes . 173

Basenames for Managed Archive Log Files 174

Directory Organization for Archive Log Files 174

Configuration of pmlogger 176

PCP Archive Contents . 176

Cookbook for Archive Logging 177

Primary Logger . 177

Other Logger Configurations 179

Archive Log Administration 180

Making Snapshot Images from Archive Logs 180

Other Archive Logging Features and Services 182

PCP Archive Folios . 182

Manipulating Archive Logs with pmlogextract 183

Primary Logger . 183

007–2614–005 xiii

Contents

Using pmlc . 184

Archive Logging Troubleshooting 185

pmlogger Cannot Write Log 185

Cannot Find Log . 186

Primary pmlogger Cannot Start 187

Identifying an Active pmlogger Process 188

Illegal Label Record . 188

Empty Archive Log Files or pmlogger Exits Immediately 189

8. Performance Co-Pilot Deployment Strategies 191

Basic Deployment . 192

PCP Collector Deployment . 195

Principal Server Deployment 195

Quality of Service Measurement 196

PCP Archive Logger Deployment 197

Deployment Options . 197

Resource Demands for the Deployment Options 198

Operational Management . 199

Exporting PCP Archive Logs 199

PCP Inference Engine Deployment 200

Deployment Options . 200

Resource Demands for the Deployment Options 202

Operational Management . 202

9. Customizing and Extending PCP Services 203

PMDA Customization . 203

Customizing the Summary PMDA 203

xiv 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

PCP Tool Customization . 207

Stripchart Customization . 208

Archive Logging Customization 208

Inference Engine Customization 210

Snapshot Customization . 211

Icon Control Panel Customization 212

3D Visualization Customization 212

PMNS Management . 212

PMNS Processing Framework 212

PMNS Syntax . 213

PMDA Development . 215

PCP Tool Development . 216

Appendix A. Acronyms 217

Index . 219

007–2614–005 xv

Figures

Figure 1-1 Performance Metric Domains as Autonomous Collections of Data 15

Figure 1-2 Process Structure for Distributed Operation 17

Figure 1-3 Small Performance Metrics Name Space (PMNS) 19

Figure 1-4 Architecture for Retrospective Analysis 24

Figure 3-1 PerfTools Icon Catalog Group 46

Figure 3-2 pmtime PCP Live Time Control Dialog 54

Figure 3-3 pmtime PCP Archive Time Control Dialog 55

Figure 3-4 pmtime Archive Time Bounds Dialog 57

Figure 4-1 pmchart Performance Co-Pilot Chart Window 64

Figure 4-2 Two Charts and Metrics from Three Hosts in pmchart 65

Figure 4-3 pmchart Select Performance View Dialog 68

Figure 4-4 pmchart Metric Selection Dialog 71

Figure 4-5 Further Metric Selection 73

Figure 4-6 Selecting a Leaf Node in the PMNS (Performance Metric) 75

Figure 4-7 Metric Information Dialog 76

Figure 4-8 Selecting a Metric Instance 77

Figure 4-9 pmchart Display When Recording 79

Figure 4-10 Archive Recording Session-pmchart Dialog 80

Figure 4-11 Representative pmgadgets Display Using pmgsys 84

Figure 4-12 Customized pmgadgets Display 87

Figure 4-13 pmgadgets Dialog 87

Figure 5-1 dkvis Total Disk I/O Rate Window 102

Figure 5-2 mpvis CPU Utilization Window 104

007–2614–005 xvii

Contents

Figure 5-3 osvis High-Level Activity Window 106

Figure 5-4 oview View of an SGI 2000 Series System 108

Figure 5-5 oview View of an SGI 3000 Series System 109

Figure 5-6 nfsvis NFS Client V2 & Server V2 Request Traffic Window 111

Figure 5-7 mpivis MPI Activity Window 113

Figure 5-8 weblogvis Display of Request Rate Classified by Request Size 115

Figure 5-9 weblogvis Display Request Rate Classified by Request Type 117

Figure 5-10 pmview Window with a Block Selected 121

Figure 5-11 Custom pmview Scene 127

Figure 6-1 Sampling Time Line 140

Figure 6-2 Three-Dimensional Parameter Space 141

Figure 6-3 pmrules Import template(s) from file Dialog 160

Figure 6-4 pmrules Main Dialog after Template Selection 161

Figure 6-5 pmrules Edit template Dialog 162

Figure 7-1 Archive Log Directory Structure 175

Figure 8-1 PCP Deployment for a Single System 192

Figure 8-2 Basic PCP Deployment for Two Systems 193

Figure 8-3 General PCP Deployment for Multiple Systems 194

Figure 8-4 PCP Deployment to Measure Client-Server Quality of Service 196

Figure 8-5 Designated PCP Archive Site 198

Figure 8-6 PCP Management Site Deployment 201

Figure 9-1 Small Performance Metrics Name Space (PMNS) 213

xviii 007–2614–005

Tables

Table 1-1 Sample Instance Identifiers for Disk Statistics 22

Table 3-1 Physical Filenames for Components of a PCP Archive Log 47

Table 7-1 Filenames for PCP Archive Log Components (archive.*) 173

Table A-1 Performance Co-Pilot Acronyms and Their Meanings 217

007–2614–005 xix

Examples

Example 2-1 PMNS Installation Output 37

Example 4-1 Specification File for pmgadgets 85

Example 5-1 mpvis Configuration File 124

Example 5-2 Specification File for pmview 125

Example 6-1 pmie with the -f Option 132

Example 6-2 pmie with the -d and -h Options 133

Example 6-3 pmie with the -v Option 134

Example 6-4 pmie Output Printed 135

Example 6-5 Relational Expressions 144

Example 6-6 Rule Expression Options 149

Example 6-7 /var/adm/SYSLOG Text 149

Example 6-8 Standard Output 149

Example 6-9 Monitoring CPU Utilization 152

Example 6-10 Monitoring Disk Activity 153

Example 7-1 Using pminfo to Obtain Archive Information 177

Example 7-2 Listing Available Commands 184

Example 9-1 PMNS Specification 214

007–2614–005 xxi

Procedures

Procedure 6-1 Display pmieconf Rules 156

Procedure 6-2 Modify pmieconf Rules and Generate a pmie File 157

Procedure 6-3 Creating pmie Rules 159

Procedure 6-4 Add a New pmie Instance to the pmie Daemon Management Framework 163

Procedure 6-5 Add a pmie crontab Entry 165

Procedure 7-1 Creating Archive Logs 179

Procedure 9-1 Customizing the Summary PMDA 204

007–2614–005 xxiii

About This Guide

This guide describes the Performance Co-Pilot (PCP) software package of advanced
performance tools for the SGI family of graphical workstations and servers.

The Performance Co-Pilot User’s and Administrator’s Guide documents both the PCP
features that are embedded in the IRIX operating system and those that are in the
Performance Co-Pilot (PCP) software package, which users purchase separately.

The Performance Co-Pilot IRIX Base Software Administrator’s Guide documents the PCP
features that are embedded in the IRIX operating system. This manual is a subset of
the Performance Co-Pilot User’s and Administrator’s Guide.

PCP provides a systems-level suite of tools that cooperate to deliver integrated
performance monitoring and performance management services spanning the
hardware platforms, operating systems, service layers, Database Management Systems
(DBMSs), and user applications.

“About This Guide” includes short descriptions of the chapters in this book, directs
you to additional sources of information, and explains typographical conventions.

What This Guide Contains
This guide contains the following chapters:

• Chapter 1, page 1, provides an introduction, a brief overview of the software
components, and conceptual foundations of the PCP product.

• Chapter 2, page 27, describes the basic installation and configuration steps
necessary to get PCP running on your systems.

• Chapter 3, page 45, summarizes user interface components that are common to
most of the graphical tools and text-based utilities that constitute the PCP monitor
software.

• Chapter 4, page 63, describes the basic interactive performance monitoring tools
available in PCP, including pmchart, pmgadgets, pmkstat, pmdumptext,
pmval, pmem, pminfo, and pmstore.

007–2614–005 xxv

About This Guide

• Chapter 5, page 99, discusses the various three-dimensional (3D) visualization
tools that are provided to enable high-level monitoring, management, and
diagnosis for performance problems.

• Chapter 6, page 129, introduces the automated reasoning facilities of PCP that
provide both real-time and retrospective filtering of performance data to identify
adverse performance scenarios and raise alarms.

• Chapter 7, page 169, covers the PCP services and utilities that support archive
logging for capturing accurate historical performance records.

• Chapter 8, page 191, presents the various options for deploying PCP functionality
across systems spanning the enterprise.

• Chapter 9, page 203, describes the procedures necessary to ensure that the PCP
configuration is customized in ways that maximize the coverage and quality of
performance monitoring and management services.

• Appendix A, page 217, provides a comprehensive list of the acronyms used in this
guide, in the man pages, and in the release notes for Performance Co-Pilot.

Audience for This Guide
This guide is written for the system administrator or performance analyst who is
directly using and administering PCP applications. It is assumed that you have
installed IRIS InSight for viewing online books, or have access to the IRIX Admin
manual set, including IRIX Admin: System Configuration and Operation, and the
Personal System Administration Guide as hard–copy documents.

Related Resources
The Performance Co-Pilot Programmer’s Guide, a companion document to the
Performance Co-Pilot User’s and Administrator’s Guide, is intended for application
developers who want to use the PCP framework and services for exporting additional
collections of performance metrics, or for delivering new or customized applications
to enhance performance management.

xxvi 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

IRIX Admin: System Configuration and Operation describes how to perform general
system configuration and operation tasks under the IRIX operating system used with
SGI workstations and servers. The Personal System Administration Guide provides
similar information for graphics workstations.

Additional resources include man pages, release notes, and SGI Web sites.

Man Pages

The IRIX man pages provide concise reference information on the use of IRIX
commands, subroutines, and system resources. There is usually a man page for each
PCP command or subroutine. To see a list of all the PCP man pages, enter the
following command:

man -k performance

To see a particular man page, supply its name to the man command, for example:

man pcp

The man pages are divided into the following seven sections:

(1) General commands

(2) System calls and error numbers

(3) Library subroutines

(4) File formats

(5) Miscellaneous

(6) Demos and games

(7) Special files

When referring to man pages, this guide follows a standard UNIX convention: the
section number in parentheses follows the item. For example, pmda(3) refers to the
man page in section 3 for the pmda command.

007–2614–005 xxvii

About This Guide

Release Notes

Release notes provide specific information about the current product release, available
online through the relnotes command. Exceptions to the printed and online
documentation are found in the release notes. The grelnotes command provides a
graphical interface to the release notes of all products installed on your system. For
additional information, see the relnotes(1) and grelnotes(1) man pages.

SGI Web Sites

The following Web sites are accessible to everyone with general Internet access:

URL Description

http://www.sgi.com The SGI general Web site, with
search capability

http://www.sgi.com/software Links to Performance Co-Pilot
product information

http://oss.sgi.com/projects/pcp Some parts of the PCP
infrastructure that have also been
released as open source

Obtaining Publications
To obtain SGI documentation, go to the SGI Technical Publications Library at
http://techpubs.sgi.com.

xxviii 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

ALL CAPS All capital letters denote environment variables,
operator names, directives, defined constants, and
macros in C programs.

() Parentheses that follow function names surround
function arguments or are empty if the function has no
arguments; parentheses that follow IRIX commands
surround man page section numbers.

007–2614–005 xxix

About This Guide

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

xxx 007–2614–005

Chapter 1

Introduction to Performance Co-Pilot

This chapter provides an introduction to Performance Co-Pilot (PCP), an overview of
its individual components, and conceptual information to help you use this product.

The following sections are included:

• Section 1.1 covers the intended purposes of PCP.

• Section 1.2, page 5, describes PCP tools and agents.

• Section 1.3, page 14, discusses the design theories behind PCP.

1.1 Objectives
Performance Co-Pilot (PCP) provides a range of services that may be used to monitor
and manage system performance. These services are distributed and scalable to
accommodate the most complex system configurations and performance problems.

1.1.1 PCP Target Usage

PCP is targeted at the performance analyst, benchmarker, capacity planner, developer,
database administrator, or system administrator with an interest in overall system
performance and a need to quickly isolate and understand performance behavior,
resource utilization, activity levels, and bottlenecks in complex systems. Platforms
that can benefit from this level of performance analysis include large servers, server
clusters, or multiserver sites delivering Database Management Systems (DBMS),
compute, Web, file, or video services.

1.1.2 Empowering the PCP User

To deal efficiently with the dynamic behavior of complex systems, performance
analysts need to filter out noise from the overwhelming stream of performance data,
and focus on exceptional scenarios. Visualization of current and historical
performance data, and automated reasoning about performance data, effectively
provide this filtering.

From the PCP end user’s perspective, PCP presents an integrated suite of tools, user
interfaces, and services that support real-time and retrospective performance analysis,

007–2614–005 1

1: Introduction to Performance Co-Pilot

with a bias towards eliminating mundane information and focusing attention on the
exceptional and extraordinary performance behaviors. When this is done, the user
can concentrate on in-depth analysis or target management procedures for those
critical system performance problems.

1.1.3 Unification of Performance Metric Domains

At the lowest level, performance metrics are collected and managed in autonomous
performance domains such as the IRIX operating system, a DBMS, a layered service,
or an end-user application. These domains feature a multitude of access control
policies, access methods, data semantics, and multiversion support. All this detail is
irrelevant to the developer or user of a performance monitoring tool, and is hidden
by the PCP infrastructure.

Performance Metrics Domain Agents (PMDAs) within PCP encapsulate the knowledge
about, and export performance information from, autonomous performance domains.

1.1.4 Uniform Naming and Access to Performance Metrics

Usability and extensibility of performance management tools mandate a single scheme
for naming performance metrics. The set of defined names constitutes a Performance
Metrics Name Space (PMNS). Within PCP, the PMNS is adaptive so it can be extended,
reshaped, and pruned to meet the needs of particular applications and users.

PCP provides a single interface to name and retrieve values for all performance
metrics, independently of their source or location.

1.1.5 PCP Distributed Operation

From a purely pragmatic viewpoint, a single workstation must be able to monitor the
concurrent performance of multiple remote hosts. At the same time, a single host
may be subject to monitoring from multiple remote workstations.

These requirements suggest a classic client-server architecture, which is exactly what
PCP uses to provide concurrent and multiconnected access to performance metrics,
independent of their host location.

2 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

1.1.6 Dynamic Adaptation to Change

Complex systems are subject to continual changes as network connections fail and are
reestablished; nodes are taken out of service and rebooted; hardware is added and
removed; and software is upgraded, installed, or removed. Often these changes are
asynchronous and remote (perhaps in another geographic region or domain of
administrative control).

The distributed nature of the PCP (and the modular fashion in which performance
metrics domains can be installed, upgraded, and configured on different hosts)
enables PCP to adapt concurrently to changes in the monitored system(s). Variations
in the available performance metrics as a consequence of configuration changes are
handled automatically and become visible to all clients as soon as the reconfigured
host is rebooted or the responsible agent is restarted.

PCP also detects loss of client-server connections, and most clients support
subsequent automated reconnection.

1.1.7 Logging and Retrospective Analysis

A range of tools is provided to support flexible, adaptive logging of performance
metrics for archive, playback, remote diagnosis, and capacity planning. PCP archive
logs may be accumulated either at the host being monitored, at a monitoring
workstation, or both.

A universal replay mechanism, modeled on VCR controls, supports play, step,
rewind, fast forward at variable speed processing of archived performance data.

Most PCP applications are able to process archive logs and real-time performance
data with equal facility. Unification of real-time access and access to the archive logs,
in conjunction with VCR-like viewing controls, provides new and powerful ways to
build performance tools and to review both current and historical performance data.

1.1.8 Automated Operational Support

For operational and production environments, PCP provides a framework with scripts
to customize in order to automate the execution of ongoing tasks such as these:

• Centralized archive logging for multiple remote hosts

• Archive log rotation, consolidation, and culling

007–2614–005 3

1: Introduction to Performance Co-Pilot

• WWW-based publishing of charts showing snapshots of performance activity
levels in the recent past

• Flexible alarm monitoring: parameterized rules to address common critical
performance scenarios and facilities to customize and refine this monitoring

• Retrospective performance audits covering the recent past; for example, daily or
weekly checks for performance regressions or quality of service problems

1.1.9 PCP Extensibility

PCP permits the integration of new performance metrics into the PMNS, the
collection infrastructure, and the logging framework. The guiding principle is, “if it is
important for monitoring system performance, and you can measure it, you can easily
integrate it into the PCP framework.”

For many PCP customers, the most important performance metrics are not those
already supported, but new performance metrics that characterize the essence of good
or bad performance at their site, or within their particular application environment.

One example is an application that measures the round-trip time for a benign “probe”
transaction against some mission-critical application.

For application developers, a library is provided to support easy-to-use insertion of
trace and monitoring points within an application, and the automatic export of
resultant performance data into the PCP framework. Other libraries and tools aid the
development of customized and fully featured Performance Metrics Domain Agents
(PMDAs).

Extensive source code examples are provided in the distribution, and by using the
PCP toolkit and interfaces, these customized measures of performance or quality of
service can be easily and seamlessly integrated into the PCP framework.

1.1.10 Metric Coverage

The core PCP modules support export of performance metrics that include all IRIX
6.2 and 6.5.x kernel instrumentation, hardware instrumentation, process-level resource
utilization, and activity in the PCP collection infrastructure.

The supplied agents support over 1000 distinct performance metrics, many of which
can have multiple values, for example, per disk, per CPU, or per process.

4 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

1.2 Overview of Component Software
Performance Co-Pilot (PCP) is composed of text-based tools, graphical tools, and
related commands. Each tool or command is fully documented by a man page. These
man pages are named after the tools or commands they describe, and are accessible
through the man command. For example, to see the pminfo(1) man page for the
pminfo command, enter this command:

man pminfo

Many PCP tools and commands are accessible from an Icon Catalog on the IRIX
desktop, grouped under PerfTools. In the Toolchest Find menu, choose PerfTools; an
Icon Catalog appears, containing clickable PCP programs. To bring up a Web-based
introduction to Performance Co-Pilot, click the AboutPCP icon.

A list of PCP tools and commands, grouped by functionality, is provided in the
following four sections.

1.2.1 Performance Monitoring and Visualization

The following tools provide the principal services for the PCP end-user with an
interest in monitoring, visualizing, or processing performance information collected
either in real time or from PCP archive logs:

arraytop Displays the active local and global array sessions for
all hosts in the SGI array arrayname.

arrayvis Displays a three-dimensional (3D) bar chart of CPU,
memory, disk, and network utilization for the hosts
within the array arrayname.

ashtop Displays the top processes in the array session ash on
all machines in the array named arrayname.

clustervis Displays a set of 3D bargraphs that show user-mode
CPU utilization and network traffic for a collection of
hosts. It is a front-end wrapper for pmview.

dkvis Displays a 3D bar chart showing activity in the disk
subsystem. It is a front-end wrapper for pmview.

mpvis Displays a 3D bar chart of multiprocessor CPU
utilization. It is a front-end wrapper for pmview.

007–2614–005 5

1: Introduction to Performance Co-Pilot

mpimon Is a script that launches either pmlogger or pmchart
to collect MPI function and communication metrics. It
is for an instrumented Message Passing Interface (MPI)
application.

mpivis Displays a set of 3D bargraphs that show Message
Passing Inferface (MPI) performance metrics for a
collection of hosts. It is a front-end wrapper for
pmview.

nfsvis Displays a 3D bar chart showing Network File System
(NFS) client and server request activity, for systems on
which the optional NFS software product has been
installed. It is a front-end wrapper for pmview.

nodevis Visualizes SGI Origin node statistics on platforms that
support this hardware.

osvis Displays 3D bar charts covering many aspects of
system performance, including disk use, job load,
memory, CPU activity, and network I/O. It is a
front-end wrapper for pmview.

oview Visualizes the performance of SGI 3000 series and SGI
2000 series of systems, showing a dynamic display of
node topology and performance.

pmchart Displays trends over time for arbitrarily selected
performance metrics from one or more hosts, or from
one or more performance metric domains.

pmdumpmineset Is a wrapper for pmdumptext that produces data files
suitable for importing into the MineSet data mining
product.

pmdumptext Outputs the values of performance metrics collected
live or from a PCP archive, as ASCII text.

pmem Reports per-process memory usage statistics. Both
virtual size and prorated physical memory usage are
reported.

pmgadgets Creates a small window containing a collection of
graphical gadgets of assorted type and style, driven by
performance metrics supplied by the PCP framework.
Any numeric metric can be used to animate a gadget.

6 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

This command is not normally invoked directly by
users.

pmgcisco Monitors interface throughput for Cisco routers using
the pmgadgets tool.

pmgcluster Is a miniature operating system performance monitor
for multiple hosts. It builds a specification for the
pmgadgets tool, which displays a miniature visual
overview of CPU, memory, disk, and network activity
for a collection of hosts.

pmgevctr Uses pmgadgets to display an animated gadget that
reports activity in the CPU and memory subsystems
along with selected the R10K/R12K event counters and
SGI Origin router metrics.

pmgshping Monitors service quality and availability as measured
by the shping PMDA using the pmgadgets tool.

pmgsys Determines the hardware configuration of a remote or
local system, constructs a suitable specification for a
system-level visual monitor, and launches the
pmgadgets tool to animate the monitor using IRIX
performance metrics.

pmgweb Is a miniature Web-server performance monitor for
multiple hosts. It builds a specification for the
pmgadgets tool, which displays a miniature visual
overview of a range of Web-server performance metrics
including requests per second, bytes transferred, and
network errors.

pmie Evaluates predicate-action rules over performance
metrics domain, for performance alarms, automated
system management tasks, dynamic tuning
configuration, and so on. It is an inference engine.

pmieconf Creates parameterized rules to be used with the PCP
inference engine (pmie).

pminfo Displays information about arbitrary performance
metrics available from PCP, including help text with -T.

007–2614–005 7

1: Introduction to Performance Co-Pilot

pmkstat Provides a text-based display of metrics that summarize
system performance at a high level, suitable for ASCII
logs or inquiry over a modem.

pmlogsummary Calculates and reports various statistical summaries of
the performance metric values from a PCP archive.

pmprobe Probes for performance metric availability, values, and
instances.

pmsocks Allows the execution of PCP tools through a network
firewall system provided sockd services are supported.

pmtime Provides a graphical user interface for PCP applications
requiring time control. This command is not normally
invoked directly by users.

pmval Provides a text-based display of the values for arbitrary
instances of a selected performance metric, suitable for
ASCII logs or inquiry over a modem.

pmview Supports dynamic displays of clusters of related
performance metrics as groups of utilization blocks (or
towers) on a common base plane. The pmview tool is a
generalized three-dimensional (3D) Open Inventor
application. This command is not normally invoked
directly by users.

procvis Displays a set of 3D bargraphs showing the CPU
utilization of an individual process. It is a front-end
wrapper for pmview.

psmon Selects a subset of the actively running processes and
launches either pmchart or pmlogger to collect
per-process metrics for those processes.

routervis Visualizes SGI Origin router utilization on platforms
that support this hardware.

webvis Displays a set of 3D bargraphs that show system-level
Web-server activity. The display includes a histogram
of Web-page request size, network metrics, CPU,
memory, network, and disk utilization. It is a front-end
wrapper for pmview.

8 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

weblogvis Displays a set of three-dimensional (3D) bargraphs that
show the requests received by a Web server as
determined from activity within the server’s log files. It
shows a histogram of request rates, total requests, and
idle time. It is a front-end wrapper for pmview.

webpingvis Displays a set of 3D bargraphs that show Web-server
response times for a collection of hosts. It is a front-end
wrapper for pmview.

xbowvis Visualizes the Crossbow (XBow) packet and error rates
on platforms that support this hardware. It is a
front-end wrapper for pmview.

xlv_vis Visualizes XLV volume activity and performance.

1.2.2 Collecting, Transporting, and Archiving Performance Information

PCP provides the following tools to support real-time data collection, network
transport, and archive log creation services for performance data:

mkaf Aggregates an arbitrary collection of PCP archive logs
into a folio to be used with pmafm.

mkpmemarch Creates a PCP archive suitable for use with the pmem
tool.

pmafm Interrogates, manages, and replays an archive folio as
created by mkaf, or the periodic archive log
management scripts, or the record mode of other PCP
tools.

pmcd Is the Performance Metrics Collection Daemon (PMCD).
This daemon must run on each system being
monitored, to collect and export the performance
information necessary to monitor the system.

pmcd_wait Waits for pmcd to be ready to accept client connections.

pmdaarray Uses pmie to collect, aggregate, and summarize
performance metrics across all of the hosts of an SGI
array.

pmdaash Extracts array session performance metrics. These
metrics represent the IRIX process accounting records,

007–2614–005 9

1: Introduction to Performance Co-Pilot

aggregated according to the Array Session Handle
(ash) for each process.

pmdabrocade Measures the bytes read and written across each port of
a Brocade fiber channel switch.

pmdadmf Extracts performance metrics from the Data Migration
Facility (DMF) logfiles.

pmdahippi Extracts performance metrics from the HIPPI network
interface.

pmdahotproc Exports performance metrics from an instance domain
of processes restricted to an interesting or “hot” set. It
is a PMDA.

pmdamailq Exports performance metrics describing the current
state of items in the sendmail queue. It is a PMDA.

pmdacisco Extracts performance metrics from one or more Cisco
routers. It is a Performance Metrics Domain Agent
(PMDA).

pmdampi Exports metrics from MPI applications linked with the
pcp_mpi shared library. The metrics include counts
and accumulated time for selected MPI functions and
statistics on MPI buffer usage.

pmdasendmail Exports mail activity statistics from sendmail. It is a
PMDA.

pmdashping Exports performance metrics for the availability and
quality of service (response-time) for arbitrary shell
commands. It is a PMDA.

pmdasummary Derives performance metrics values from values made
available by other PMDAs. It is a PMDA.

pmdatrace Exports transaction performance metrics from
application processes that use the pcp_trace library.
It is a PMDA.

pmdaweblog Scans Web-server logs to extract metrics characterizing.

pmdawebping Makes requests for selected Universal Resource
Locations (URLs) from Web servers and returns metrics
on the response time and status of the requests.

10 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

pmdumplog Displays selected state information, control data, and
metric values from a PCP archive log created by
pmlogger.

pmimport Converts arbitrary time-stamped data into a PCP
archive. Shipped configurations enable SAR data files
from sadc to be translated into PCP archives.

pmlc Exercises control over an instance of the PCP archive
logger pmlogger, to modify the profile of which
metrics are logged and/or how frequently their values
are logged.

pmlogcheck Performs integrity check for PCP archives.

pmlogconf Creates or modifies pmlogger configuration files for
most common logging scenarios. It is an interactive
script.

pmlogextract Reads one or more PCP archive logs and creates a
temporally merged and reduced PCP archive log as
output.

pmlogger Creates PCP archive logs of performance metrics over
time. Many tools accept these PCP archive logs as
alternative sources of metrics for retrospective analysis.

pmtrace Provides a simple command line interface to the trace
PMDA and its associated pcp_trace library.

webping Sends one or more HTTP requests every interval
(default is 5) seconds, reporting on timings to connect
and receive the HTML header and body.

1.2.3 Operational and Infrastructure Support

PCP provides the following tools to support the PCP infrastructure and assist
operational procedures for PCP deployment in a production environment:

autofsd_probe Probes the availability of the AutoFS mount/unmount
daemon. It is used by the shping PMDA.

dkmap Creates a map of disk real estate usage.

dkping Opens the named disk for reading and checks for a
response.

007–2614–005 11

1: Introduction to Performance Co-Pilot

dkprobe Initializes disk performance metrics at boot time for
some IRIX versions. It may be called from
/etc/init.d/pcp.

hipprobe Probes the state of the configured HIPPI interfaces.
Used by the shping PMDA.

memclaim Allocates and holds physical memory, simulating a
reduction in physical memory.

pcp Summarizes that state of a PCP installation.

pmbrand Manages the “branded” file of valid PCP licenses.

pmdate Displays the current date and/or time, with an optional
offset.

pmdbg Describes the available facilities and associated control
flags. PCP tools include internal diagnostic and
debugging facilities that may be activated by run-time
flags.

pmerr Translates PCP error codes into human-readable error
messages.

pmhostname Reports hostname as returned by gethostbyname.
Used in assorted PCP management scripts.

pmie_check Administration of the Performance Co-Pilot inference
engine (pmie).

pmlaunch Contains metrics specification formats and a set of
scripts for use by tools that are launching, and being
launched by, other tools with no knowledge of each
other. It is a configuration directory.

pmlock Attempts to acquire an exclusive lock by creating a file
with a mode of 0.

pmlogger_* Allows you to create a customized regime of
administration and management for PCP archive log
files. The pmlogger_check, pmlogger_daily, and
pmlogger_merge scripts are intended for periodic
execution via the cron command.

pmnewlog Performs archive log rotation by stopping and
restarting an instance of pmlogger.

12 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

pmnsadd Adds a subtree of new names into a PMNS, as used by
the components of PCP.

pmnscomp Compiles a PMNS in ASCII format into a more efficient
binary representation.

pmnsdel Removes a subtree of names from a PMNS, as used by
the components of the PCP.

pmnsmerge Merges multiple PMNS files together, as used by the
components of PCP.

pmpost Appends the text message to the end of the PCP notice
board file (/var/adm/pcplog/NOTICES).

pmrun Is a graphical utility for launching PCP commands with
optional arguments from the IRIX desktop.

pmsnap Creates performance snapshots suitable for Web
publishing from PCP archives using pmsnap. The
pmsnap script is intended for periodic execution via the
cron command.

pmstore Reinitializes counters or assigns new values to metrics
that act as control variables. The command changes the
current values for the specified instances of a single
performance metric.

1.2.4 Application and Agent Development

The following PCP tools aid the development of new programs to consume
performance data, and new agents to export performance data within the PCP
framework:

chkhelp Checks the consistency of performance metrics help
database files.

dbpmda Allows PMDA behavior to be exercised and tested. It is
an interactive debugger for PMDAs.

newhelp Generates the database files for one or more source files
of PCP help text.

pmapi Defines a procedural interface for developing PCP
client applications. It is the Performance Metrics
Application Programming Interface (PMAPI).

007–2614–005 13

1: Introduction to Performance Co-Pilot

pmclient Is a simple client that uses the PMAPI to report some
high-level system performance metrics. The source
code for pmclient is included in the distribution.

pmda Is a library used by many shipped PMDAs to
communicate with a pmcd process. It can expedite the
development of new and custom PMDAs.

pmgenmap Generates C declarations and cpp macros to aid the
development of customized programs that use the
facilities of PCP. It is a program development tool.

1.3 Conceptual Foundations
The following sections provide a detailed overview of concepts that underpin
Performance Co-Pilot (PCP).

1.3.1 Performance Metrics

Across all of the supported performance metric domains, there are a large number of
performance metrics. Each metric has its own structure and semantics. PCP presents a
uniform interface to these metrics, independent of the underlying metric data source.

The Performance Metrics Name Space (PMNS) provides a hierarchical classification of
external metric names, and a mapping from external names to internal metric
identifiers. See Section 1.3.6, page 18, for a description of the PMNS.

1.3.2 Performance Metric Instances

When performance metric values are returned to a requesting application, there may
be more than one value instance for a particular metric; for example, independent
counts for each CPU, process, disk, or local filesystem. Internal instance identifiers
correspond one to one with external (textual) descriptions of the members of an
instance domain.

Transient performance metrics (such as per-process information, per-XLV volume, and
so on) cause repeated requests for the same metric to return different numbers of
values, or changes in the particular instance identifiers returned. These changes are
expected and fully supported by the PCP infrastructure; however, metric instantiation
is guaranteed to be valid only at the time of collection.

14 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

1.3.3 Current Metric Context

When performance metrics are retrieved, they are delivered in the context of a
particular source of metrics, a point in time, and a profile of desired instances. This
means that the application making the request has already negotiated to establish the
context in which the request should be executed.

A metric source may be the current performance data from a particular host (a live or
real-time source), or an archive log of performance data collected by pmlogger at
some distant host or at an earlier time (a retrospective or archive source).

By default, the collection time for a performance metric is the current time of day for
real-time sources, or current point within an archive source. For archives, the
collection time may be reset to an arbitrary time within the bounds of the archive log.

Note: Performance Co-Pilot 2.x, and IRIX release 6.5, were developed to be
completely Year 2000 compliant.

1.3.4 Sources of Performance Metrics and Their Domains

Instrumentation for the purpose of performance monitoring typically consists of
counts of activity or events, attribution of resource consumption, and service-time or
response-time measures. This instrumentation may exist in one or more of the
functional domains as shown in Figure 1-1.

Access method

Performance

metric

domains

IRIX
DBMS Layered

End-user

service

XYZ

application

ABC

Access method Access method Access method

a12189

Figure 1-1 Performance Metric Domains as Autonomous Collections of Data

007–2614–005 15

1: Introduction to Performance Co-Pilot

Each domain has an associated access method:

• The IRIX kernel, including sar data structures, per-process resource consumption,
network statistics, disk activity, or memory management instrumentation.

• A layered software service such as activity logs for a World Wide Web server or an
NNTP news server.

• An application program such as measured response time for a production
application running a periodic and benign probe transaction (as often required in
service quality agreements), or rate of computation and throughput in jobs per
hour for a batch stream.

• A layered system product such as the temperature, voltage levels, and fan speeds
from the environmental monitor in a Challenge system, or the length of the mail
queue as reported by mqueue.

• External equipment such as network routers and bridges.

For each domain, the set of performance metrics may be viewed as an abstract data
type, with an associated set of methods that may be used to perform the following
tasks:

• Interrogate the metadata that describes the syntax and semantics of the
performance metrics

• Control (enable or disable) the collection of some or all of the metrics

• Extract instantiations (current values) for some or all of the metrics

We refer to each functional domain as a performance metrics domain and assume that
domains are functionally, architecturally, and administratively independent and
autonomous. Obviously the set of performance metrics domains available on any host
is variable, and changes with time as software and hardware are installed and
removed.

The number of performance metrics domains may be further enlarged in
cluster-based or network-based configurations, where there is potentially an instance
of each performance metrics domain on each node. Hence, the management of
performance metrics domains must be both extensible at a particular host and
distributed across a number of hosts.

16 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Each performance metrics domain on a particular host must be assigned a unique
Performance Metric Identifier (PMID). In practice, this means unique identifiers are
assigned globally for each performance metrics domain type. For example, the same
identifier would be used for the IRIX performance metrics domain on all hosts.

1.3.5 Distributed Collection

The performance metrics collection architecture is distributed, in the sense that any
performance tool may be executing remotely. However, a PMDA must run on the
system for which it is collecting performance measurements. In most cases,
connecting these tools together on the collector host is the responsibility of the PMCD
process, as shown in Figure 1-2.

pmcd

PMDA PMDA PMDA PMDA

pmcd

PMDA

Local HostRemote Host

Monitor Monitor Monitor

a12190

Figure 1-2 Process Structure for Distributed Operation

007–2614–005 17

1: Introduction to Performance Co-Pilot

The host running the monitoring tools does not require any collection tools, including
pmcd, because all requests for metrics are sent to the pmcd process on the collector
host. These requests are then forwarded to the appropriate PMDAs, which respond
with metric descriptions, help text, and most importantly, metric values.

The connections between monitor clients and pmcd processes are managed in
libpcp, below the PMAPI level; see the pmapi(3) man page. Connections between
PMDAs and pmcd are managed by the PMDA routines; see the pmda(3) man page.
There can be multiple monitor clients and multiple PMDAs on the one host, but there
may be at most one pmcd process.

1.3.6 Performance Metrics Name Space

Internally, each unique performance metric is identified by a Performance Metric
Identifier (PMID) drawn from a universal set of identifiers, including some that are
reserved for site-specific, application-specific, and customer-specific use.

An external name space called Performance Metrics Name Space (PMNS) maps from
a hierarchy (or tree) of external names to PMIDs.

1.3.6.1 Performance Metrics Name Space Diagram

Each node in the PMNS tree is assigned a label that must begin with an alphabet
character, and be followed by zero or more alphanumeric characters or the underscore
(_) character. The root node of the tree has the special label of root.

18 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

A metric name is formed by traversing the tree from the root to a leaf node with each
node label on the path separated by a period. The common prefix root. is omitted
from all names. For example, Figure 1-3 shows the nodes in a small subsection of a
PMNS.

recv

hw

routernetwork

tcppercpu

kernel

root

all

... syscall ...

udp

...
rcvpack total_util...

...

...
a12191

Figure 1-3 Small Performance Metrics Name Space (PMNS)

In this subsection, the following are valid names for performance metrics:

kernel.percpu.syscall

network.tcp.rcvpack
hw.router.recv.total_util

Although a default PMNS is shipped and updated by the components of PCP,
individual users may create their own Name Space for metrics of interest, and all
tools may use a private PMNS, rather than the default PMNS.

007–2614–005 19

1: Introduction to Performance Co-Pilot

1.3.6.2 Distributed PMNS

In Performance Co-Pilot 1.x releases, the PMNS was local to the application that
referred to PCP metrics by name. As of Performance Co-Pilot release 2.0, PMNS
operations are directed to the host or archive that is the source of the desired
performance metrics.

Distributed PMNS necessitated changes to PCP protocols between client applications
and pmcd, and to the internal format of PCP archive files. Performance Co-Pilot
release 2.2 is compatible with earlier releases, so new PCP components operate
correctly with either new or old PCP components. For example, connections to the
PCP 1.x PMCD, or attempts to process a PCP archive created by a Performance
Co-Pilot 1.x pmlogger, revert to using the local PMNS.

1.3.7 Descriptions for Performance Metrics

Through the various performance metric domains, the PCP must support a wide
range of formats and semantics for performance metrics. This metadata describing the
performance metrics includes the following:

• The internal identifier, Performance Metric Identifier (PMID), for the metric

• The format and encoding for the values of the metric, for example, an unsigned
32-bit integer or a string or a 64-bit IEEE format floating point number

• The semantics of the metric, particularly the interpretation of the values as
free-running counters or instantaneous values

• The dimensionality of the values, in the dimensions of events, space, and time

• The scale of values; for example, bytes, kilobytes (KB), or megabytes (MB) for the
space dimension

• An indication if the metric may have one or many associated values

• Short (and extended) help text describing the metric

For each metric, this metadata is defined within the associated PMDA, and PCP
arranges for the information to be exported to the performance tools applications that
use the metadata when interpreting the values for performance metrics.

20 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

1.3.8 Values for Performance Metrics

The following sections describe two types of performance metrics, single-valued and
set-valued.

1.3.8.1 Single-Valued Performance Metrics

Some performance metrics have a singular value within their performance metric
domains. For example, available memory (or the total number of context switches)
has only one value per performance metric domain, that is, one value per host. The
metadata describing the metric makes this fact known to applications that process
values for these metrics.

1.3.8.2 Set-Valued Performance Metrics

Some performance metrics have a set of values or instances in each implementing
performance metric domain. For example, one value for each disk, one value for each
process, one value for each CPU, or one value for each activation of a given
application.

When a metric has multiple instances, the PCP framework does not pollute the Name
Space with additional metric names; rather, a single metric may have an associated
set of values. These multiple values are associated with the members of an instance
domain, such that each instance has a unique instance identifier within the associated
instance domain. For example, the “per CPU” instance domain may use the instance
identifiers 0, 1, 2, 3, and so on to identify the configured processors in the system.

Internally, instance identifiers are encoded as binary values, but each performance
metric domain also supports corresponding strings as external names for the instance
identifiers, and these names are used at the user interface to the PCP utilities.

007–2614–005 21

1: Introduction to Performance Co-Pilot

For example, the performance metric disk.dev.total counts I/O operations for
each disk spindle, and the associated instance domain contains one member for each
disk spindle. On a system with five specific disks, one value would be associated
with each of the external and internal instance identifier pairs shown in Table 1-1.

Table 1-1 Sample Instance Identifiers for Disk Statistics

External Instance Identifier Internal Instance Identifier

dks1d1 131329

dks1d2 131330

dks1d3 131331

dks3d1 131841

dks3d2 131842

Multiple performance metrics may be associated with a single instance domain.

Each performance metric domain may dynamically establish the instances within an
instance domain. For example, there may be one instance for the metric
kernel.percpu.idle on a workstation, but multiple instances on a multiprocessor
server. Even more dynamic is filesys.free, where the values report the amount of
free space per file system, and the number of values tracks the mounting and
unmounting of local filesystems.

PCP arranges for information describing instance domains to be exported from the
performance metric domains to the applications that require this information.
Applications may also choose to retrieve values for all instances of a performance
metric, or some arbitrary subset of the available instances.

22 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

1.3.9 Collector and Monitor Roles

Hosts supporting PCP services are broadly classified into two categories:

Collector Hosts that have pmcd and one or more performance
metric domain agents (PMDAs) running to collect and
export performance metrics

Monitor Hosts that import performance metrics from one or
more collector hosts to be consumed by tools to monitor,
manage, or record the performance of the collector hosts

Each PCP enabled host can operate as a collector, a monitor, or both.

1.3.10 Performance Metrics Collection System

PCP provides an infrastructure through the Performance Metrics Collection
Subsystem (PMCS). It unifies the autonomous and distributed PMDAs into a cohesive
pool of performance data, and provides the services required to create generalized
and powerful performance tools.

The PMCS provides the framework that underpins the PMAPI, which is described in
the Performance Co-Pilot Programmer’s Guide. The PMCS is responsible for the
following services on behalf of the performance tools developed on top of the PMAPI:

• Distributed Name Space services

• Instance domain services

• Coordination with the processes and procedures required to control the
description, collection, and extraction of performance metric values from agents
that interface to the performance metric domains

• Servicing incoming requests for local performance metric values and metadata
from applications running either locally or on a remote system

1.3.11 Retrospective Sources of Performance Metrics

The PMCS described in the previous section is used when PMAPI clients are
requesting performance metrics from a real-time or live source.

The PMAPI also supports delivery of performance metrics from a historical source in
the form of a PCP archive log. Archive logs are created using the pmlogger utility,
and are replayed in an architecture as shown in Figure 1-4.

007–2614–005 23

1: Introduction to Performance Co-Pilot

Monitor

PCP Archive Log PCP Archive Log

PMAPI

a12192

Figure 1-4 Architecture for Retrospective Analysis

The PMAPI has been designed to minimize the differences required for an application
to process performance data from an archive or from a real-time source. As a result,
most PCP tools support live and retrospective monitoring with equal facility.

1.3.12 Product Extensibility

Much of the PCP product’s potential for attacking difficult performance problems in
production environments comes from the design philosophy that considers
extensibility to be critically important.

The performance analyst can take advantage of the PCP infrastructure to deploy
value-added performance monitoring tools and services. Here are some examples:

• Easy extension of the PMCS and PMNS to accommodate new performance metrics
and new sources of performance metrics, in particular using the interfaces of a
special-purpose library to develop new PMDAs (see the pmda(3) man page)

• Use of libraries (libpcp_pmda and libpcp_trace) to aid in the development of
new PMDAs to export performance metrics from local applications

24 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

• Operation on any performance metric using generalized toolkits

• Distribution of PCP components such as collectors across the network, placing the
service where it can do the most good

• Dynamic adjustment to changes in system configuration

• Flexible customization built into the design of all PCP tools

• Creation of new monitor applications, using the routines described in the
pmapi(3) man page

007–2614–005 25

Chapter 2

Installing and Configuring Performance Co-Pilot

The sections in this chapter describe the basic installation and configuration steps
necessary to run Performance Co-Pilot (PCP) on your systems. The following major
sections are included:

• Section 2.1 describes the main packages of PCP software and how they must be
installed on each system.

• Section 2.2, page 28, describes the licensing issues necessary to operate PCP in a
distributed computing environment.

• Section 2.3, page 29, describes the fundamentals of maintaining the performance
data collector.

• Section 2.4, page 36, describes the basics of installing a new Performance Metrics
Domain Agent (PMDA) to collect metric data and pass it to the PMCD.

• Section 2.5, page 39, offers advice on problems involving the PMCD.

2.1 Product Structure
In a typical deployment, Performance Co-Pilot (PCP) would be installed in a collector
configuration on one or more hosts, from which the performance information could
then be collected, and in a monitor configuration on one or more workstations, from
which the performance of the server systems could then be monitored.

PCP is packaged into a number of basic subsystem types that reflect the functional
role of the product components. These subsystems may be installed using the inst
or swmgr command:

Core The pcp_eoe.sw.eoe and pcp.sw.base subsystems
must be installed on every PCP enabled host, that is, on
both PCP monitor and PCP collection systems.

Monitor The pcp_eoe.sw.monitor and pcp.sw.monitor
subsystems must be installed on every PCP monitor
host. Subsystems pcp_eoe.books.help and
pcp.books.help should be installed to provide help
support for the GUI monitoring tools; see the
sgihelp(1) man page.

007–2614–005 27

2: Installing and Configuring Performance Co-Pilot

Collector No additional installation is required because the
Performance Metrics Collection Daemon (pmcd) is in
the pcp_eoe.sw.eoe subsystem.

Demo The pcp.sw.demo subsystems provide source code for
example applications and PMDAs that serve as
templates for developing new modules to extend the
PCP coverage of performance metrics or the capabilities
of monitoring tools.

Other The other pcp.sw.* subsystems provide the support
for the optional PMDAs, and when required, need to be
installed on the PCP collector host, and subsequently
configured before they become active.

Gift The pcp_gifts.sw.* subsystems provide optional
applications and services that may be individually
installed as required.

Documentation The pcp.man.* and pcp.books.* subsystems
provide release notes, man pages, interactive tutorials,
and IRIS InSight books, and may be installed as needed.

For complete information on the installable software packages, see the Performance
Co-Pilot release notes. For additional information, see the relnotes(1) or
grelnotes(1) man pages.

2.2 License Constraints
On Performance Co-Pilot (PCP) monitoring systems, all of the display, visualization,
and automated reasoning tools are licensed using “nodelocked” FLEXlm licenses. On
PCP collection systems, the Performance Metrics Collection Daemon (PMCD) is also
licensed using “nodelocked” FLEXlm licenses. Refer to the PCP release notes for
details.

The other PCP tools and services (for example, the Performance Metrics Domain
Agents (PMDAs) or pmlogger) may be installed and executed without license
constraints.

Some of the PCP maintenance tools for updating the Performance Metrics Name
Space (PMNS), interrogating the Performance Metrics Collection Subsystem (PMCS),
dumping an archive log, and so on, are not constrained by any license restrictions.

28 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

The pmbrand command manages the /var/pcp/pmns/Brand file, which contains
binary information about PCP capabilities enabled by the various valid licenses on
the system. If you are unsure of the license status for a particular host, pmbrand
verifies and prints the current license information on that system, producing output
similar to the following:

/usr/pcp/bin/pmbrand -l

Licenses for system 690794d70

PCP Collector
PCP Monitor

2.3 Performance Metrics Collection Daemon (PMCD)
On each Performance Co-Pilot (PCP) collection system, you must be certain that the
pmcd daemon is running. This daemon coordinates the gathering and exporting of
performance statistics in response to requests from the PCP monitoring tools.

2.3.1 Starting and Stopping the PMCD

To start the daemon, enter the following commands as root on each PCP collection
system:

chkconfig pmcd on
/etc/init.d/pcp start

These commands instruct the system to start the daemon immediately, and again
whenever the system is booted. It is not necessary to start the daemon on the
monitoring system unless you wish to collect performance information from it as well.

To stop pmcd immediately on a PCP collection system, enter the following command:

/etc/init.d/pcp stop

007–2614–005 29

2: Installing and Configuring Performance Co-Pilot

2.3.2 Restarting an Unresponsive PMCD

Often, if a daemon is not responding on a PCP collection system, the problem can be
resolved by stopping and then immediately restarting a fresh instance of the daemon.
If you need to stop and then immediately restart PMCD on a PCP collection system,
use the start argument provided with the script in /etc/init.d. The command
syntax is, as follows:

/etc/init.d/pcp start

On startup, pmcd looks for a configuration file named /etc/pmcd.conf. This file
specifies which agents cover which performance metrics domains and how PMCD
should make contact with the agents. A comprehensive description of the
configuration file syntax and semantics can be found in the pmcd(1) man page.

If the configuration is changed, pmcd reconfigures itself when it receives the SIGHUP
signal. Use the following command to send the SIGHUP signal to the daemon:

killall -HUP pmcd

This is also useful when one of the PMDAs managed by pmcd has failed or has been
terminated by pmcd. Upon receipt of the SIGHUP signal, pmcd restarts any PMDA
that is configured but inactive.

2.3.3 PMCD Diagnostics and Error Messages

If there is a problem with pmcd, the first place to investigate should be the pmcd.log
file. By default, this file is in the /var/adm/pcplog directory, although setting the
PCPLOGDIR environment variable before running /etc/init.d/pcp allows the file
to be relocated.

2.3.4 PMCD Options and Configuration Files

There are two files that control PMCD operation. These are the /etc/pmcd.conf
and /etc/config/pmcd.options files. The pmcd.options file contains the
command line options used with PMCD; it is read when the daemon is invoked by
/etc/init.d/pcp. The pmcd.conf file contains configuration information
regarding domain agents and the metrics that they monitor. These configuration files
are described in the following sections.

30 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

2.3.4.1 The pmcd.options File

Command line options for the PMCD are stored in the
/etc/config/pmcd.options file. The PMCD can be invoked directly from a shell
prompt, or it can be invoked by /etc/init.d/pcp as part of the boot process. It is
usual and normal to invoke it using /etc/init.d/pcp, reserving shell invocation
for debugging purposes.

The PMCD accepts certain command line options to control its execution, and these
options are placed in the pmcd.options file when /etc/init.d/pcp is being used
to start the daemon. The following options are available:

-f Causes the PMCD to be run in the foreground. The
PMCD is usually run in the background, as are most
daemons.

-i address For hosts with more than one network interface, this
option specifies the interface on which this instance of
the PMCD accepts connections. Multiple -i options
may be specified. The default in the absence of any -i
option is for PMCD to accept connections on all
interfaces.

-l file Specifies a log file. If no -l option is specified, the log
file name is pmcd.log and it is created in the directory
/var/adm/pcplog or in a directory as specified by the
PCPLOGDIR environment variable.

-t seconds Specifies the amount of time, in seconds, before PMCD
times out on protocol data unit (PDU) exchanges with
PMDAs. If no time out is specified, the default is five
seconds. Setting time out to zero disables time outs.

The time out may be dynamically modified by storing
the number of seconds into the metric
pmcd.control.timeout using pmstore.

-T mask Specifies whether connection and PDU tracing are
turned on for debugging purposes.

See the pmcd(1) man page for complete information on these options.

The default pmcd.options file shipped with PCP is similar to the following:

command line options to pmcd, uncomment/edit lines as required

longer timeout delay for slow agents

007–2614–005 31

2: Installing and Configuring Performance Co-Pilot

-t 10
suppress timeouts

-t 0

make log go someplace else

-l /some/place/else

enable event tracing (1 for connections, 2 for PDUs, 3 for both)
-T 3

The most commonly used options have been placed in this file for your convenience.
To uncomment and use an option, simply remove the pound sign (#) at the beginning
of the line with the option you wish to use. Restart pmcd for the change to take effect;
that is, as superuser, enter the command:

/etc/init.d/pcp start

2.3.4.2 The pmcd.conf File

When the PMCD is invoked, it reads its configuration file, which is
/etc/pmcd.conf. This file contains entries that specify the PMDAs used by this
instance of the PMCD and which metrics are covered by these PMDAs. Also, you
may specify access control rules in this file for the various hosts on your network.
This file is described completely in the pmcd(1) man page.

With standard PCP operation (even if you have not created and added your own
PMDAs), you might need to edit this file in order to add any access control you wish
to impose. If you do not add access control rules, all access for all operations is
granted to all hosts. The default pmcd.conf file shipped with PCP is similar to the
following:

Name Id IPC IPC Params File/Cmd

irix 1 dso irix_init libirixpmda.so

pmcd 2 dso pmcd_init pmda_pmcd.so
proc 3 dso proc_init pmda_proc.so

Note: Because the PMCD runs with root privilege, you must be very careful not to
configure PMDAs in this file if you are not sure of their action. Pay close attention
that permissions on this file are not inadvertently downgraded to allow public write
access.

32 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Each entry in this configuration file contains rules that specify how to connect the
PMCD to a particular PMDA and which metrics the PMDA monitors. A PMDA may
be attached as a Dynamic Shared Object (DSO) or by using a socket or a pair of pipes.
The distinction between these attachment methods is described below.

An entry in the pmcd.conf file looks like this:

label_name domain_number type path

The label_name field specifies a name for the PMDA. The domain_number is an integer
value that specifies a domain of metrics for the PMDA. The type field indicates the
type of entry (DSO, socket, or pipe). The path field is for additional information, and
varies according to the type of entry.

The following rules are common to DSO, socket, and pipe syntax:

label_name An alphanumeric string identifying the agent.

domain_number An unsigned integer specifying the agent’s domain.

DSO entries follow this syntax:

label_name domain_number dso entry-point path

The following rules apply to the DSO syntax:

dso The entry type.

entry-point The name of an initialization function called when the
DSO is loaded.

path Designates the location of the DSO. If path begins with
a slash (/), it is taken as an absolute path specifying the
DSO; otherwise, the DSO is located in one of the
directories /usr/pcp/lib or /var/pcp/lib.

Socket entries in the pmcd.conf file follow this syntax:

label_name domain_number socket addr_family address command [args]

The following rules apply to the socket syntax:

socket The entry type.

007–2614–005 33

2: Installing and Configuring Performance Co-Pilot

addr_family Specifies if the socket is AF_INET or AF_UNIX. If the
socket is INET, the word inet appears in this place. If
the socket is UNIX, the word unix appears in this place.

address Specifies the address of the socket. For INET sockets,
this is a port number or port name. For UNIX sockets,
this is the name of the PMDA’s socket on the local host.

command Specifies a command to start the PMDA when the
PMCD is invoked and reads the configuration file.

args Optional arguments for command.

Pipe entries in the pmcd.conf file follow this syntax:

label_name domain_number pipe protocol command [args]

The following rules apply to the pipe syntax:

pipe The entry type.

protocol Specifies whether a text-based or a binary PCP protocol
should be used over the pipes. Values for this
parameter may be “text” and “binary.” The text-based
protocol is provided for backwards compatibility, but
otherwise its use is discouraged.

command Specifies a command to start the PMDA when the
PMCD is invoked and reads the configuration file.

args Optional arguments for command.

2.3.4.3 Controlling Access to PMCD with pmcd.conf

You can place this option extension in the pmcd.conf file to control system access to
performance metric data. To add an access control section, begin by placing the
following line at the end of your pmcd.conf file:

[access]

Below this line, you can add entries of the following forms:

allow hostlist : operations ; disallow hostlist : operations ;

The hostlist is a comma-separated list of host identifiers; the following rules apply:

34 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

• Host names must be in the local system’s /etc/hosts file or known to the local
DNS (domain name service).

• IP addresses may be given in the usual four-field numeric notation. Subnet
addresses may be specified using three or fewer numeric components and an
asterisk as a wild card for the last component in the address.

For example, the following hostlist entries are all valid:

whizkid

gate-wheeler.eng.com

123.101.27.44

localhost
155.116.24.*

192.*

*

The operations field can be any of the following:

• A comma-separated list of the operation types described below.

• The word all to allow or disallow all operations as specified in the first field.

• The words all except and a list of operations. This entry allows or disallows all
operations as specified in the first field except those listed.

The operations that can be allowed or disallowed are as follows:

fetch Allows retrieval of information from the PMCD. This may be
information about a metric (such as a description, instance domain, or
help text) or an actual value for a metric.

store Allows the PMCD to store metric values in PMDAs that permit store
operations. Be cautious in allowing this operation, because it may be a
security opening in large networks, although the PMDAs shipped with
the PCP product typically reject store operations, except for selected
performance metrics where the effect is benign.

For example, here is a sample access control portion of an /etc/pmcd.conf file:

allow whizkid : all ;
allow 192.127.4.* : fetch ;

disallow gate-inet : store ;

Complete information on access control syntax rules in the pmcd.conf file can be
found in the pmcd(1) man page.

007–2614–005 35

2: Installing and Configuring Performance Co-Pilot

2.4 Managing Optional PMDAs
Some Performance Metrics Domain Agents (PMDAs) shipped with Performance
Co-Pilot (PCP) are designed to be installed and activated on every collector host, for
example, irix, pmcd, and proc.

Other PMDAs are designed for optional activation and require some user action to
make them operational. In some cases these PMDAs expect local site customization to
reflect the operational environment, the system configuration, or the production
workload. This customization is typically supported by interactive installation scripts
for each PMDA.

Each PMDA has its own directory located below /usr/pcp/pmdas or
/var/pcp/pmdas. In each directory, a README file describes the metrics provided by
the PMDA; a Remove script to unconfigure the PMDA, remove the associated metrics
from the PMNS, and restart the pmcd daemon; and an Install script to install the
PMDA, update the PMNS, and restart the PMCD daemon.

2.4.1 PMDA Installation on a PCP Collector Host

To install a PMDA you must perform a collector installation for each host on which
the PMDA is required to export performance metrics. Because the PMNS is
distributed as of PCP release 2.0, it is no longer necessary to install PMDAs with their
associated PMNS on PCP monitor hosts.

You need to update the PMNS, configure the PMDA, and notify PMCD. The
Install script for each PMDA automates these operations, as follows:

1. Log in as root (the superuser).

2. Move to the PMDA’s directory as shown in the following example:

cd /var/pcp/pmdas/cisco

3. In the unlikely event that you wish to use a non-default Performance Metrics
Domain (PMD) assignment, determine the current PMD assignment:

cat domain.h

Check that there is no conflict in the PMDs as defined in
/var/pcp/pmns/stdpmid and the other PMDAs currently in use (listed in
/etc/pmcd.conf). Edit domain.h to assign the new domain number if there is
a conflict.

36 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

4. Enter the following command:

./Install

You may be prompted to enter some local parameters or configuration options.
The script applies all required changes to the control files and to the PMNS, and
then notifies PMCD. Example 2-1 is illustrative of the interactions:

Example 2-1 PMNS Installation Output

You will need to choose an appropriate configuration for

installation of the ‘‘cisco’’ Performance Metrics Domain Agent (PMDA).

collector collect performance statistics on this system

monitor allow this system to monitor local and/or remote systems

both collector and monitor configuration for this system

Please enter c(ollector) or m(onitor) or b(oth) [b] collector

Cisco hostname or IP address? [return to quit] wanmelb

A user-level password may be required for Cisco ‘‘show int’’ command.

If you are unsure, try the command

$ telnet wanmelb

and if the prompt ‘‘Password:’’ appears, a user-level password is

required; otherwise answer the next question with an empty line.

User-level Cisco password? ********

Probing Cisco for list of interfaces ...

Enter interfaces to monitor, one per line in the format

tX where ‘‘t’’ is a type and one of ‘‘e’’ (Ethernet), or ‘‘f’’ (Fddi), or
‘‘s’’ (Serial), or ‘‘a’’ (ATM), and ‘‘X’’ is an interface identifier

which is either an integer (e.g. 4000 Series routers) or two

integers separated by a slash (e.g. 7000 Series routers).

The currently unselected interfaces for the Cisco ‘‘wanmelb’’ are:
e0 s0 s1

Enter ‘‘quit’’ to terminate the interface selection process.

Interface? [e0] s0

The currently unselected interfaces for the Cisco ‘‘wanmelb’’ are:

007–2614–005 37

2: Installing and Configuring Performance Co-Pilot

e0 s1
Enter ‘‘quit’’ to terminate the interface selection process.

Interface? [e0] s1

The currently unselected interfaces for the Cisco ‘‘wanmelb’’ are:

e0
Enter ‘‘quit’’ to terminate the interface selection process.

Interface? [e0] quit

Cisco hostname or IP address? [return to quit]

Updating the Performance Metrics Name Space (PMNS) ...

Installing pmchart view(s) ...
Terminate PMDA if already installed ...

Installing files ...

Updating the PMCD control file, and notifying PMCD ...

Check cisco metrics have appeared ... 5 metrics and 10 values

2.4.2 PMDA Removal on a PCP Collector Host

To remove a PMDA, you must perform a collector removal for each host on which the
PMDA is currently installed. Because PMNS is distributed as of PCP release 2.0, it is
no longer necessary to remove PMDAs or their associated PMNS on PCP monitor
hosts.

You need to update the PMNS, unconfigure the PMDA, and notify PMCD. The
Remove script for each PMDA automates these operations, as follows:

1. Log in as root (the superuser).

2. Move to the PMDA’s directory as shown in the following example:

cd /var/pcp/pmdas/environ

3. Enter the following command:

./Remove

The following output illustrates the result:

Culling the Performance Metrics Name Space ...

environ ... done
Updating the PMCD control file, and notifying PMCD ...

38 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Removing files ...
Check environ metrics have gone away ... OK

2.5 Troubleshooting
The following sections offer troubleshooting advice on the Performance Metrics Name
Space (PMNS), missing and incomplete values for performance metrics, and IRIX
metrics and the PMCD.

Advice for troubleshooting the archive logging system is provided in Chapter 7, page
169.

2.5.1 Performance Metrics Name Space

To display the PMNS, use the pminfo command; see the pminfo(1) man page.

The PMNS at the collector host is updated whenever a PMDA is installed or
removed, and may also be updated when new versions of the PCP or PCP add-on
products are installed. During these operations, the ASCII version of the PMNS is
typically updated, then the binary version is regenerated.

2.5.2 Missing and Incomplete Values for Performance Metrics

Missing or incomplete performance metric values are the result of their unavailability.

2.5.2.1 Metric Values Not Available

The following symptom has a known cause and resolution:

Symptom: Values for some or all of the instances of a performance
metric are not available.

Cause: This can occur as a consequence of changes in the
installation of modules (for example, a DBMS or an
applications package) that provide the performance
instrumentation underpinning the PMDAs. Changes in
the selection of modules that are installed or
operational, along with changes in the version of these
modules, may make metrics appear and disappear over
time.

007–2614–005 39

2: Installing and Configuring Performance Co-Pilot

In simple terms, the PMNS contains a metric name, but
when that metric is requested, no PMDA at the
collector host supports the metric.

For archive logs, the collection of metrics to be logged
is a subset of the metrics available, so utilities replaying
from a PCP archive log may not have access to all of
the metrics available from a live (PMCD) source.

Resolution: Make sure the underlying instrumentation is available
and the module is active. Ensure that the PMDA is
running on the host to be monitored. If necessary,
create a new archive log with a wider range of metrics
to be logged.

2.5.3 IRIX Metrics and the PMCD

The following issues involve the IRIX operating system and the PMCD:

• No IRIX metrics available

• Cannot connect to remote PMCD

• PMCD not reconfiguring after hang-up

• PMCD does not start

2.5.3.1 No IRIX Metrics Available

The following symptom has a known cause and resolution:

Symptom: Some of the IRIX metrics are unavailable.

Cause: PMCD (and therefore the IRIX PMDA) does not have
permission to read /dev/kmem, or the running kernel
is not the same as the kernel in /unix.

Resolution: Check /var/adm/pcplog/pmcd.log. An error
message of the following form means that PMCD
cannot access /dev/kmem.

kmeminit: cannot open "/dev/kmem": ...

Ensure that /dev/kmem is readable by group sys. For
example, you should see something similar to this:

40 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

ls -lg /dev/kmem
crw-r----- 1 sys 1, 1 May 28 15:16 /dev/kmem

Restart PMCD after correcting the group and/or file
permissions, and the problem should be solved.

If the running kernel is not the same as the kernel in
/unix, the IRIX PMDA cannot access raw data in the
kernel. A message like this appears in
/var/adm/pcplog/pmcd.log:

kmeminit: "/unix" is not namelist for the running kernel

The only resolution to this is to make the running kernel
the same as the one in /unix. If the running kernel
was booted from the filesystem, then renaming files to
make /unix the booted kernel and restarting PMCD
should resolve the problem. If the running kernel was
booted over the network, then PMCD cannot access the
kernel’s symbol table and hence the metrics extracted
by reading /dev/kmem directly are not available.

2.5.3.2 Cannot Connect to Remote PMCD

The following symptom has a known cause and resolution:

Symptom: A PCP client tool (such as pmchart, dkvis, or
pmlogger) complains that it is unable to connect to a
remote PMCD (or establish a PMAPI context), but you
are sure that PMCD is active on the remote host.

Cause: To avoid hanging applications for the duration of
TCP/IP time outs, the PMAPI library implements its
own time out when trying to establish a connection to a
PMCD. If the connection to the host is over a slow
network, then successful establishment of the
connection may not be possible before the time out, and
the attempt is abandoned.

Resolution: Establish that the PMCD on far-away-host is really alive,
by connecting to its control port (TCP port number 4321
by default):

telnet far-away-host 4321

007–2614–005 41

2: Installing and Configuring Performance Co-Pilot

This response indicates the PMCD is not running and
needs restarting:

Unable to connect to remote host: Connection refused

To restart the PMCD on that host, enter the following
command:

/etc/init.d/pcp start

This response indicates the PMCD is running:

Connected to far-away-host

Interrupt the telnet session, increase the PMAPI time
out by setting the PMCD_CONNECT_TIMEOUT
environment variable to some number of seconds (60
for instance), and try the PCP tool again.

2.5.3.3 PMCD Not Reconfiguring after SIGHUP

The following symptom has a known cause and resolution:

Symptom PMCD does not reconfigure itself after receiving the
SIGHUP signal.

Cause: If there is a syntax error in /etc/pmcd.conf, PMCD
does not use the contents of the file. This can lead to
situations in which the configuration file and PMCD’s
internal state do not agree.

Resolution: Always monitor PMCD’s log. For example, use the
following command in another window when
reconfiguring PMCD, to watch errors occur:

tail -f /var/adm/pcplog/pmcd.log

2.5.3.4 PMCD Does Not Start

The following symptom has a known cause and resolution:

Symptom: If the following messages appear in the PMCD log
(/var/adm/pcplog/pmcd.log), consider the cause
and resolution:

42 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

pcp[27020] Error: OpenRequestSocket(4321) bind: Address already in
use

pcp[27020] Error: pmcd is already running

pcp[27020] Error: pmcd not started due to errors!

Cause: PMCD is already running or was terminated before it
could clean up properly. The error occurs because the
socket it advertises for client connections is already
being used or has not been cleared by the kernel.

Resolution: Start PMCD as root (superuser) by typing:

/etc/init.d/pcp start

Any existing PMCD is shut down, and a new one is
started in such a way that the symptomatic message
should not appear.

If you are starting PMCD this way and the symptomatic
message appears, a problem has occurred with the
connection to one of the deceased PMCD’s clients.

This could happen when the network connection to a
remote client is lost and PMCD is subsequently
terminated. The system may attempt to keep the socket
open for a time to allow the remote client a chance to
reestablish the connection and read any outstanding
data.

The only solution in these circumstances is to wait until
the socket times out and the kernel deletes it. This
netstat command displays the status of the socket
and any connections:

netstat -a | grep 4321

If the socket is in the FIN_WAIT or TIME_WAIT state,
then you must wait for it to be deleted. Once the
command above produces no output, PMCD may be
restarted. Less commonly, you may have another
program running on your system that uses the same
Internet port number (4321) that PMCD uses.

007–2614–005 43

2: Installing and Configuring Performance Co-Pilot

Refer to the PCPIntro(1) man page for a description of
how to override the default PMCD port assignment
using the PMCD_PORT environment variable.

44 007–2614–005

Chapter 3

Common Conventions and Arguments

This chapter deals with the user interface components that are common to most of the
graphical tools and text-based utilities that make up the monitor portion of
Performance Co-Pilot (PCP). These are the major sections in this chapter:

• Section 3.1, page 46, shows a picture of the PerfTools icons.

• Section 3.2, page 46, details some basic standards used in the development of PCP
tools.

• Section 3.3, page 48, details other options to use with PCP tools.

• Section 3.4, page 49, describes the time control dialog and time-related command
line options available for use with PCP tools.

• Section 3.5, page 57, describes the environment variables supported by PCP tools.

• Section 3.6, page 61, describes how to execute PCP tools that must retrieve
performance data from the Performance Metrics Collection Daemon (PMCD) on
the other side of a TCP/IP security firewall.

• Section 3.7, page 62, covers some uncommon scenarios that may compromise
performance metric integrity over the short term.

Many of the utilities provided with PCP conform to a common set of naming and
syntactic conventions for command line arguments and options. This section outlines
these conventions and their meaning. The options may be generally assumed to be
honored for all utilities supporting the corresponding functionality.

In all cases, the man pages for each utility fully describe the supported command
arguments and options.

Command line options are also relevant when starting PCP applications from the
desktop using the Alt double-click method. This technique launches the pmrun
program to collect additional arguments to pass along when starting a PCP
application.

007–2614–005 45

3: Common Conventions and Arguments

3.1 PerfTools Icon Catalog

The conventions and arguments described in this chapter are common to all tools and
utilities in the PerfTools Icon Catalog group, shown in Figure 3-1.

Figure 3-1 PerfTools Icon Catalog Group

3.2 Alternate Metrics Source Options
The default source of performance metrics is from PMCD on the local host. This
section describes how to obtain metrics from sources other than the default.

46 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

3.2.1 Fetching Metrics from Another Host

The option -h host directs any PCP utility (such as pmchart or dkvis) to make a
connection with the PMCD instance running on host. Once established, this connection
serves as the principal real-time source of performance metrics and metadata.

3.2.2 Fetching Metrics from an Archive Log

The option -a archive directs the utility to treat the PCP archive logs with base name
archive as the principal source of performance metrics and metadata.

PCP archive logs are created with pmlogger. Most PCP utilities operate with equal
facility for performance information coming from either a real-time feed via PMCD
on some host, or for historical data from a PCP archive log. For more information on
archive logs and their use, see Chapter 7, page 169.

The base name (archive) of the PCP archive log used with the -a option implies the
existence of the files created automatically by pmlogger, as listed in Table 3-1.

Table 3-1 Physical Filenames for Components of a PCP Archive Log

Filename Contents

archive.index Temporal index for rapid access to archive contents

archive.meta Metadata descriptions for performance metrics and instance
domains appearing in the archive

archive.N Volumes of performance metrics values, for N = 0,1,2,...

Some tools are able to concurrently process multiple PCP archive logs (for example,
for retrospective analysis of performance across multiple hosts), and accept either
multiple -a options or a comma separated list of archive names following the -a
option.

Note: The -h and -a options are mutually exclusive in all cases.

007–2614–005 47

3: Common Conventions and Arguments

3.3 General PCP Tool Options
The following sections provide information relevant to most of the PCP tools. It is
presented here in a single place for convenience.

3.3.1 Common Directories and File Locations

The following files and directories are used by the PCP tools as repositories for option
and configuration files and for binaries:

/etc/pcp.env Script to set PCP run-time environment variables.

/etc/pcp.conf PCP configuration and environment file.

/etc/pmcd.conf Configuration file for Performance Metrics Collection
Daemon (PMCD). Sets environment variables, including
PATH.

/usr/etc/pmcd The PMCD binary.

/etc/config/
pmcd.options

Command line options for PMCD.

/etc/config/
pmlogger.options

Command line options for pmlogger launched from /
etc/init.d/pcp.

/etc/init.d/pcp The PMCD startup script.

/usr/sbin Directory containing PCP tools such as pmkstat,
pminfo, and oview.

/usr/pcp Directory containing shareable PCP-specific files and
repository directories.

/var/pcp Directory containing non-shareable (that is, per-host)
PCP specific files and repository directories. There are
some symbolic links from the /usr/pcp directory
hierarchy pointing into the /var/pcp directory
hierarchy.

/usr/pcp/bin PCP tools that are typically not executed directly by the
end user such as pmbrand, pmnscomp, and pmlogger.

/usr/pcp/lib Miscellaneous PCP libraries and executables.

/var/pcp/pmdas Performance Metric Domain Agents (PMDAs), one
directory per PMDA.

48 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

/usr/pcp/pmdas An alternate repository for some PMDAs. Certain
entries here are symbolic links into /var/pcp/pmdas.

/var/pcp/config Configuration files for PCP tools, typically with one
directory per tool.

/usr/pcp/demos Demonstration data files and example programs.

/var/pcp/Tutorial PCP Tutorial, in HTML format.

/var/adm/pcplog By default, diagnostic and trace log files generated by
PMCD and PMDAs. Also, the PCP archive logs are
managed in one directory per logged host below here.

/var/pcp/pmns Files and scripts for the Performance Metrics Name
Space (PMNS).

3.3.2 Alternate Performance Metric Name Spaces

The Performance Metrics Name Space (PMNS) defines a mapping from a collection of
external names for performance metrics (convenient to the user) into corresponding
internal identifiers (convenient for the underlying implementation).

The distributed PMNS used in PCP 2.x avoids most requirements for an alternate
PMNS, because clients’ PMNS operations are supported at the Performance Metrics
Collection Daemon (PMCD) or by means of PMNS data in a PCP archive log. The
distributed PMNS is the default, but alternates may be specified using the -n
namespace argument to the PCP tools. When a PMNS is maintained on a host, it is
likely to reside in the /var/pcp/pmns directory.

Refer to the pmns(4) and pmnscomp(1) man pages for details of PMNS structure and
creation.

3.4 Time Duration and Control
The periodic nature of sampling performance metrics and refreshing the displays of
the PCP tools makes specification and control of the temporal domain a common
operation. In the following sections, the services and conventions for specifying time
positions and intervals are described.

007–2614–005 49

3: Common Conventions and Arguments

3.4.1 Performance Monitor Reporting Frequency and Duration

Many of the performance monitoring utilities have periodic reporting patterns. The
-t interval and -s samples options are used to control the sampling (reporting)
interval, usually expressed as a real number of seconds (interval), and the number of
samples to be reported, respectively. In the absence of the -s flag, the default behavior
is for the performance monitoring utilities to run until they are explicitly stopped.

The interval argument may also be expressed in terms of minutes, hours, or days, as
described in the PCPIntro(1) man page.

3.4.2 Time Window Options

The following options may be used with most PCP tools (typically when the source of
the performance metrics is a PCP archive log) to tailor the beginning and end points
of a display, the sample origin, and the sample time alignment to your convenience.

The -S, -T, -O and -A command line options are used by PCP applications to define
a time window of interest.

-S duration The start option may be used to request that the display
start at the nominated time. By default, the first sample
of performance data is retrieved immediately in
real-time mode, or coincides with the first sample of
data in a PCP archive log in archive mode. For archive
mode, the -S option may be used to specify a later time
for the start of sampling. By default, if duration is an
integer, the units are assumed to be seconds.

To specify an offset from the beginning of a PCP
archive (in archive mode) simply specify the offset as
the duration. For example, the following entry retrieves
the first sample of data at exactly 30 minutes from the
beginning of a PCP archive.

-S 30min

To specify an offset from the end of a PCP archive,
prefix the duration with a minus sign. In this case, the
first sample time precedes the end of archived data by
the given duration. For example, the following entry

50 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

retrieves the first sample exactly one hour preceding
the last sample in a PCP archive.

-S -1hour

To specify the calendar date and time (local time in the
reporting timezone) for the first sample, use the ctime
syntax preceded by an “at” sign (@). For example, the
following entry specifies the date and time to be used.

-S ’@ Mon Mar 4 13:07:47 1996’

Note that this format corresponds to the output format
of the date command for easy “cut and paste.”
However, be sure to enclose the string in quotes so it is
preserved as a single argument for the PCP tool.

For more complete information on the date and time
syntax, see the PCPIntro(1) man page.

-T duration The terminate option may be used to request that the
display stop at the time designated by duration. By
default, the PCP tools keep sampling performance data
indefinitely (in real-time mode) or until the end of a
PCP archive (in archive mode). The -T option may be
used to specify an earlier time to terminate sampling.

The interpretation for the duration argument in a -T
option is the same as for the -S option, except for an
unsigned time interval that is interpreted as being an
offset from the start of the time window as defined by
the default (now for real time, else start of archive) or
by a -S option. For example, these options define a
time window that spans 45 minutes, after an initial
offset (or delay) of 1 hour:

-S 1hour -T 45mins

-O duration By default, samples are fetched from the start time (see
the description of the -S option) to the terminate time
(see the description of the -T option). The offset -O
option allows the specification of a time between the
start time and the terminate time where the tool should
position its initial sample time. This option is useful

007–2614–005 51

3: Common Conventions and Arguments

when initial attention is focused at some point within a
larger time window of interest, or when one PCP tool
wishes to launch another PCP tool with a common
current point of time within a shared time window.

The duration argument accepted by -O conforms to the
same syntax and semantics as the duration argument for
-T. For example, these options specify that the initial
position should be the end of the time window:

-O -0

This is most useful with the pmchart command to
display the tail-end of the history up to the end of the
time window.

-A alignment By default, performance data samples do not
necessarily happen at any natural unit of measured
time. The -A switch may be used to force the initial
sample to be on the specified alignment. For example,
these three options specify alignment on seconds, half
hours, and whole hours:

-A 1sec
-A 30min

-A 1hour

The -A option advances the time to achieve the desired
alignment as soon as possible after the start of the time
window, whether this is the default window, or one
specified with some combination of -A and -O
command line options.

Obviously the time window may be overspecified by using multiple options from the
set -t, -s, -S, -T, -A, and -O. Similarly, the time window may shrink to nothing by
injudicious choice of options.

In all cases, the parsing of these options applies heuristics guided by the principal of
“least surprise”; the time window is always well-defined (with the end never earlier
than the start), but may shrink to nothing in the extreme.

52 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

3.4.3 Timezone Options

All utilities that report time of day use the local timezone by default. The following
timezone options are available:

-z Forces times to be reported in the timezone of the host
that provided the metric values (the PCP collector host).
When used in conjunction with -a and multiple
archives, the convention is to use the timezone from the
first named archive.

-Z timezone Sets the TZ variable to a timezone string, as defined in
environ(5) , for example, -Z UTC for universal time.

3.4.4 PCP Live Time Control

The pmtime PCP Live Time Control dialog, shown in Figure 3-2, is invoked through
the PCP tools when you select the Show Time Control option from the Options
menu of most PCP tools. The dialog may also be exposed by selecting the “time
control state” button at the bottom left-hand corner of the pmchart display or the top
left-hand corner of a three-dimensional (3D) performance scene displayed with the
pmview or oview tools.

For more information on the “time control state” button, see the pmview(1),
pmchart(1), oview(1), or pmtime(1) man page.

If the PCP tool is displaying performance metrics from a real-time source, the pmtime
dialog looks similar to that shown in Figure 3-2.

007–2614–005 53

3: Common Conventions and Arguments

Figure 3-2 pmtime PCP Live Time Control Dialog

This dialog can be used to set the sample interval and units; the latter may be in
milliseconds, seconds, minutes, hours, days, or weeks.

To change the units, select the measurement of time you want from the Options
menu (labelled Seconds in Figure 3-2).

To change the interval, enter the new value in the Interval text box, and press Enter.
All PCP tools attached to the pmtime control dialog are notified of the new interval,
and will update their displays immediately to reflect the new sampling rate.

3.4.5 Creating a PCP Archive

The ability to start and stop recording of performance activity is available from the
pmchart, pmview, and oview windows using the File -> Record option from the
menu bar. See Section 4.1.5, page 78, for information about the pmchart interface.

Alternatively use pmlogger directly, as described in Chapter 7, page 169.

3.4.6 PCP Archive Time Control

The ability to provide retrospective performance analysis in the PCP framework is
provided by making the monitor tools able to deal interchangeably with real-time
sources of performance metrics and PCP archive logs. For more information on
archive logging, see Chapter 7, page 169.

54 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

When a PCP tool is displaying performance metrics from a PCP archive log, and the
pmtime Archive Time Control dialog is exposed, it looks similar to that shown in
Figure 3-3.

Figure 3-3 pmtime PCP Archive Time Control Dialog

As with the live pmtime dialog, the user may change the update interval; however, a
number of other controls are available:

• The VCR Controls option menu may be used to change the mode of time advance
between Normal, Step, and Fast.

– In Normal mode, the time advances with the elapsed time per sample being
equal to the current Interval (divided by Speed).

– In Step mode, each selection of one of the direction buttons advances the time
by the current Interval.

– In Fast mode, the time advances by the Interval without any added delay.

• The Speed text box and associated thumb wheel may be used to make the rate of
time advance in Normal mode either slower (Speed < 1) or faster (Speed > 1)
than real time.

007–2614–005 55

3: Common Conventions and Arguments

• The Position text box shows the current time within the PCP archive log. The
Position may be changed either by advancing the time using the VCR Controls
buttons (Play, Step, Rewind, Fast Fwd, or Stop), or by modifying the Position
text box (and pressing Enter), or by moving the slider below the Position text box.

• The VCR Controls motion buttons allow time to be advanced forward or
backward, or stopped.

The menus of pmtime Archive Time Control provide the following additional
features:

3.4.6.1 File Menu

The File menu supports the following option:

Hide Hides the dialog; the PCP tools provide their own
menu options or time control icon that may be used to
re-expose the pmtime dialog.

3.4.6.2 Options Menu

The Options menu supports three options:

Timezone Selects an alternative timezone for all displayed dates
and times; all PCP tools attached to the pmtime control
are notified of the new timezone.

Because the UTC timezone is universal, it is useful
when several archives or live sources of data are being
displayed in multiple instances of the tools, and
comparisons between performance metrics are required
to be temporally correlated. Whenever a new source of
metrics is opened, whether an archive or live, the
timezone at that source of metrics is added to the list in
the Options menu. The default timezone is that of the
local host where the tool is being run.

Show Bounds... Exposes the Archive Time Bounds dialog, shown in
Figure 3-4. This dialog shows the current time window
that defines the earliest and latest time for which
performance may be displayed from the current
archives.

56 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 3-4 pmtime Archive Time Bounds Dialog

Detail For output fields, selectively includes or excludes the
year in the date or milliseconds in time. The year is
shown by default, milliseconds are not.

3.5 PCP Environment Variables
When you are using PCP tools and utilities and are calling PCP library functions, a
standard set of defined environment variables are available in the /etc/pcp.conf
file. These variables are generally used to specify the location of various PCP pieces
in the file system and may be loaded into shell scripts by sourcing the /etc/
pcp.env shell script. They may also be queried by C and C++ programs using the
__pmGetConfig library function. If a variable is already defined in the environment,
the values in the pcp.conf file do not override those values; that is, the values in
pcp.conf serve only as installation defaults. For additional information, see the
/etc/pcp.conf(4), /etc/pcp.env(4), and __pmGetConfig man pages.

The following environment variables are recognized by PCP (these definitions are also
available on the PCPIntro(1) man page):

007–2614–005 57

3: Common Conventions and Arguments

PCP_COUNTER_WRAP

Many of the performance metrics exported from PCP agents expect
that counters increase monotonically. Under some circumstances, one
value of a metric may be smaller than the previously fetched value.
This can happen when a counter of finite precision overflows, when
the PCP agent has been reset or restarted, or when the PCP agent
exports values from an underlying instrumentation that is subject to
asynchronous discontinuity.

If set, the PCP_COUNTER_WRAP environment variable indicates that
all such cases of a decreasing counter should be treated as a counter
overflow; and hence the values are assumed to have wrapped once in
the interval between consecutive samples. Counter wrapping was the
default in versions before the PCP release 1.3.

PCP_LICENSE_NOWARNING

Many of the PMAPI client programs require that a valid software
license be present on the host on which the client is running (the
license is node-locked). In the case that such a valid license is present,
but is due to expire within the next 30 days, a message or pop-up
notifier appears informing the user of this condition. These warnings
can be disabled by setting this variable in the environment.

PCP_STDERR

Specifies whether pmprintf() error messages are sent to standard
error, an xconfirm dialog box, or to a named file; see the
pmprintf(3) man page. Messages go to standard error if
PCP_STDERR is unset or set without a value. If this variable is set to
DISPLAY, then messages go to an xconfirm dialog box; see the
xconfirm(1) man page. Otherwise, the value of PCP_STDERR is
assumed to be the name of an output file.

PCP_TRACE_HOST

The pmdatrace library routines use this variable when connecting to
the trace PMDA to determine on which host it is running; see the
pmdatrace(3) man page.

58 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

PCP_TRACE_PORT

This variable is used by both the trace PMDA and client programs
using the pmdatrace library to obtain the Internet port through
which the client programs and the PMDA communicate; see the
pmdatrace(3) man page.

PCP_TRACE_TIMEOUT

When pmdatrace client programs are connecting to the trace
PMDA, this variable can be set to specify how long the clients should
wait before cancelling their attempt to connect with the PMDA; see
the pmdatrace(3) man page.

PMCD_CONNECT_TIMEOUT

When attempting to connect to a remote PMCD on a system that is
booting or at the other end of a slow network link, some PMAPI
routines could potentially block for a long time until the remote
system responds. These routines abort and return an error if the
connection has not been established after some specified interval has
elapsed. The default interval is 5 seconds. This may be modified by
setting this variable in the environment to a larger number of seconds
for the desired time out. This is most useful in cases where the
remote host is at the end of a slow network, requiring longer latencies
to establish the connection correctly.

PMCD_PORT

This TCP/IP port is used by PMCD to create the socket for incoming
connections and requests. The default is port number 4321, which
you may override by setting this variable to a different port number.
If a non-default port is in effect when PMCD is started, then every
monitoring application connecting to that PMCD must also have this
variable set in its environment before attempting a connection.

PMCD_RECONNECT_TIMEOUT

When a monitor or client application loses its connection to a PMCD,
the connection may be reestablished by calling the
pmReconnectContext() PMAPI function. However, attempts to
reconnect are controlled by a back-off strategy to avoid flooding the
network with reconnection requests. By default, the back-off delays
are 5, 10, 20, 40, and 80 seconds for consecutive reconnection requests

007–2614–005 59

3: Common Conventions and Arguments

from a client (the last delay is repeated for any further attempts after
the last delay in the list). Setting this environment variable to a
comma-separated list of positive integers redefines the back-off
delays. For example, setting the delays to 1,2 will back off for 1
second, then back off every 2 seconds thereafter.

PMCD_REQUEST_TIMEOUT

For monitor or client applications connected to PMCD, there is a
possibility of the application hanging on a request for performance
metrics or metadata or help text. These delays may become severe if
the system running PMCD crashes or the network connection is lost
or the network link is very slow. By setting this environment variable
to a real number of seconds, requests to PMCD timeout after the
specified number of seconds. The default behavior is to wait 10
seconds for a response from every PMCD for all applications.

PMDA_PATH

This environment variable may be used to modify the search path
used by PMCD and pmNewContext() (for PM_CONTEXT_LOCAL
contexts) when searching for a daemon or DSO PMDA. The syntax
follows the syntax for shell PATH: a colon-separated list of directories.
The default search path is /var/pcp/lib:/usr/pcp/lib.

PM_LAUNCH_PATH

A launching tool searches for its script in the directory specified by
this variable, rather than /var/pcp/config/pmlaunch; see the
pmlaunch(5) man page.

PMLOGGER_PORT

This environment variable may be used to change the base TCP/IP
port number used by pmlogger to create the socket to which pmlc
instances try to connect. The default base port number is 4330. If
used, this variable should be set in the environment before pmlogger
is executed. If pmlc and pmlogger are on different hosts, then
obviously PMLOGGER_PORT must be set to the same value in both
places.

60 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

PMNS_DEFAULT

If set, this value is interpreted as the full pathname to be used as the
default PMNS for pmLoadNameSpace(). Otherwise, the default
PMNS is located at /var/pcp/pmns/root for base PCP installations.

3.6 Running PCP Tools through a Firewall
In some production environments, the Performance Co-Pilot (PCP) monitoring hosts
are on one side of a TCP/IP firewall, and the PCP collector hosts may be on the other
side.

If the firewall service is being provided by a product that supports the sockd
(SOCKS) protocols for packet forwarding through the firewall, then the PCP tool
pmsocks may be used; see the pmsocks(1) man page. Otherwise, it is necessary to
arrange for packet forwarding to be enabled for those TCP/IP ports used by PCP,
namely 4321 (or the value of the PMCD_PORT environment variable) for connections to
PMCD and a finite range of consecutive port numbers starting at 4330 (or the value of
the PMLOGGER_PORT environment variable) to allow pmlc connections to pmlogger
instances.

3.6.1 The pmsocks Command

The pmsocks command and its related files and scripts allow PCP clients running on
hosts located on the internal side of a TCP/IP sockd firewall system to monitor
remote hosts on the other side of the firewall system. The basic syntax is as follows,
where tool is an arbitrary PCP application, typically a monitoring tool:

pmsocks tool args

The pmsocks script prepares the necessary environment variables and then executes
the PCP tool specified in tool across the firewall. For example, this command runs
dkvis with metrics fetched from remotehost on the other side of the firewall:

pmsocks dkvis -h remotehost

The configuration file is/etc/pcp_socks.conf, and the network-specific
information in this file is set to correspond with your network. Complete information
on this customization can be found in the pmsocks(1) man page.

007–2614–005 61

3: Common Conventions and Arguments

3.7 Transient Problems with Performance Metric Values
Sometimes the values for a performance metric as reported by a PCP tool appear to
be incorrect. This is typically caused by transient conditions such as metric
wraparound or time skew, described below. These conditions result from design
decisions that are biased in favor of lightweight protocols and minimal resource
demands for PCP components.

In all cases, these events are expected to occur infrequently, and should not persist
beyond a few samples.

3.7.1 Performance Metric Wraparound

Performance metrics are usually expressed as numbers with finite precision. For
metrics that are cumulative counters of events or resource consumption, the value of
the metric may occasionally overflow the specified range and wraparound to zero.

Because the value of these counter metrics is computed from the rate of change with
respect to the previous sample, this may result in a transient condition where the rate
of change is an unknown value. If the PCP_COUNTER_WRAP environment variable is
set, this condition is treated as an overflow, and speculative rate calculations are made.
In either case, the correct rate calculation for the metric returns with the next sample.

3.7.2 Time Dilation and Time Skew

If a PMDA is tardy in returning results, or the PCP monitoring tool is connected to
PMCD via a slow or congested network, an error might be introduced in rate
calculations due to a difference between the time the metric was sampled and the
time PMCD sends the result to the monitoring tool.

In practice, these errors are usually so small as to be insignificant, and the errors are
self-correcting (not cumulative) over consecutive samples.

A related problem may occur when the system time is not synchronized between
multiple hosts, and the time stamps for the results returned from PMCD reflect the
skew in the system times. In this case, it is recommended that either timeslave or
timed be used to keep the system clocks on the collector systems synchronized; see
the timed(1M) man page.

62 007–2614–005

Chapter 4

Monitoring System Performance

This chapter describes the performance monitoring tools available in Performance
Co-Pilot (PCP). This product provides a group of commands and tools for measuring
system performance. Each tool is described completely by its own man page. The
man pages are accessible through the man command. For example, the man page for
the tool pmchart is viewed by entering the following command:

man pmchart

The following major sections are covered in this chapter:

• Section 4.1, page 64, describes pmchart, a useful charting tool that graphically
monitors system performance.

• Section 4.2, page 84, presents pmgadgets, a graphical tool that displays system
performance in a small area.

• Section 4.3, page 87, discusses pmkstat, a utility that provides a periodic one-line
summary of system performance.

• Section 4.4, page 89, discusses pmdumptext, a utility that shows the current
values for named performance metrics.

• Section 4.5, page 89, describes pmval, a utility that displays performance metrics
in ASCII tables.

• Section 4.6, page 91, discusses pmem, a utility that reports per-process memory
usage statistics.

• Section 4.7, page 92, describes pminfo, a utility that displays information about
performance metrics.

• Section 4.8, page 96, describes the use of the pmstore utility to arbitrarily set or
reset selected performance metric values.

Further monitoring tools covering performance visualization and automated
reasoning about performance are described in Chapter 5 and Chapter 6.

The following sections describe the various graphical and text-based PCP tools used
to monitor local or remote system performance.

007–2614–005 63

4: Monitoring System Performance

4.1 The pmchart Tool
The pmchart utility supports interactive selection and plotting of trends over time
for arbitrarily selected performance metrics from one or more hosts and one or more
domains of performance metrics. First, you enter the following command:

pmchart

You then see the Performance Co-Pilot Chart window shown in Figure 4-1.

Figure 4-1 pmchart Performance Co-Pilot Chart Window

Normally, pmchart operates in live mode where performance metrics are fetched in
real time and plotted against a time axis. The user can choose performance metrics
and monitor the current values for these metrics from any host that is accessible on
the network and has the PMCD server running.

When launched with the -a command line option, pmchart can also replay PCP
archive logs of performance metrics created by pmlogger.

The man page for pmchart explains how to configure charts based on performance
metrics, using either the Open View option of the File menu or the New Plot option
of the File menu. Once charts have been configured and applied, the charts are
placed in an expanded Performance Co-Pilot Chart window, as shown in Figure 4-2.

64 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 4-2 Two Charts and Metrics from Three Hosts in pmchart

All metrics in the Performance Metrics Name Space (PMNS) with numeric value
semantics can be graphed. By default, pmchart initially allows the user to select
metrics to be plotted from the local host. However, the graphical user interface allows
other hosts or archives to be chosen at any time as alternate sources of performance
metrics and all metrics (independent of their source) are plotted on a common time
axis.

007–2614–005 65

4: Monitoring System Performance

For horizontal lines at major tick marks, see Section 4.1.3, page 70.

The -h command line option nominates an alternate default host to be used in
preference to the local host.

The -a command line option may be used to start pmchart processing performance
metrics from one or more PCP archive logs. The first named archive becomes the
default source of performance metrics. This mode is particularly useful for
retrospective comparisons and for postmortem analysis of performance problems,
where a remote system is not directly accessible or a performance analyst is not
available on site.

The pmchart utility examines the semantics of selected metrics, and where sensible,
uses the metadata provided by the Performance Metrics Collection Subsystem (PMCS)
to convert fetched metric values to a rate before plotting. In the case where different
metrics are plotted in the same chart (for example, against a common Y-axis), the
metrics must have the same dimension (taking into account any automatic rate
conversion), but pmchart may scale metric values where necessary, to produce
comparable values with common units and scale.

When replaying archive logs, the user may interactively control the current replay
time, direction of replay, and replay rate, using the PCP time control dialog, as
described in the Section 3.4.

4.1.1 Mouse Controls

The pmchart tool uses the mouse buttons as follows:

Left The primary mouse button may be used to select the
current chart by clicking anywhere in a specific chart.
The current chart always has a border drawn around
the graph area and its legend of metric names rendered
in red. The Edit menu contains a variety of choices that
operate only on the current chart. This mouse button
also interacts with menus and dialog boxes in the usual
manner.

Middle The middle mouse button is unused.

Right The secondary mouse button may be used to display
metric values in a dialog box. Click this mouse button
in the graph drawing area of any chart to display
information about the nearest metric and its value at
that point as plotted. The Metric Value Information

66 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

dialog box remains visible until you dismiss it, and can
be refreshed with new metric values by clicking this
mouse button again, or updated automatically using
the Show most Recent toggle button.

4.1.2 pmchart Select Performance View

A view in pmchart is a predefined collection of charts, typically constructed to
display some common performance scenario. Default views are included in the PCP
distribution, others are part of the various PCP add-on products, and others may be
created by the pmchart end user. The Open View... option in the File menu
launches a Select Performance View dialog box similar to Figure 4-3.

007–2614–005 67

4: Monitoring System Performance

Figure 4-3 pmchart Select Performance View Dialog

You may use this dialog to select one of the available views. The default PCP views
include the following:

BufferCache Cumulative amount of data read and written between
system buffers and user memory or block devices.

68 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

CPU Processor utilization (user, system, memory break,
interrupt, I/O wait, and idle time) aggregated over all
CPUs.

NUMAlinks Usage of NUMAlink node connectors, if this hardware
is present.

Disk Cumulative number of read and write transfers for all
disk devices.

DiskCntrls Cumulative number of read and write transfers for all
drives attached to each disk controller on the system.

FileSystem Percentage of each filesystem in use (percent full).

LoadAvg System load averaged over intervals of 1, 5, and 15
minutes.

Memory Memory used by the kernel, filesystems, user processes,
and free space.

NetBytes Network interface activity—octets transmitted on
various interfaces.

NetConnDrop TCP drops, connection drops, timeout drops, and TCP
accepts.

NetPackets Rate of TCP and UDP packets received and sent.

NetTCPcongestion TCP packets retransmitted, retransmit timeouts, and
TCP packets sent.

NFS2, NFS3 Client and server NFS operation rates.

Overview Composite charts of CPU, LoadAvg, Memory, Disk, and
NetBytes.

Paging Page-in and page-out rates from the virtual memory
subsystem.

PMCD Message rates and CPU time used by PMCD or
associated PMDAs.

Swap System swap space allocated, reserved, and unused.

Syscalls Rate of exec, fork, read, write, and total system
calls.

You can create your own custom views using the metric selection facilities, and save
your views for later using the Save View... option of the File menu.

007–2614–005 69

4: Monitoring System Performance

4.1.3 Displaying Horizontal Lines

You can have pmchart display horizontal lines, usually in a lighter background color,
at major tick marks by calling pmchart with the following arguments (quotes
required):

% pmchart -xrm "PmChart*xrtYGridUseDefault: True"

For greater convenience, you can place the following line in your
$HOME/.Xresources file, to have pmchart always display horizontal lines:

PmChart*xrtYGridUseDefault: True

4.1.4 pmchart Metric Selection

The pmchart Metric Selection window, shown in Figure 4-4, allows interactive
navigation of the Performance Metrics Name Space (PMNS) to create new chart
configurations.

70 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 4-4 pmchart Metric Selection Dialog

007–2614–005 71

4: Monitoring System Performance

You can choose metrics, display information about metrics, change the current host or
archive, select metric instances, and plot metric values on a common time axis. You
bring up this window by choosing New Plot... from the File menu of pmchart.

Metric selection proceeds by navigating through the tree-structured PMNS. If you
enter a partial metric specification in the Path field in the Metric Selection dialog,
you can avoid having to navigate through the PMNS for the metrics you need. For
example, if you enter network.interface, the window changes dynamically, as
shown in Figure 4-5.

72 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 4-5 Further Metric Selection

007–2614–005 73

4: Monitoring System Performance

You can continue the selection process by choosing non-leaf nodes from the Nodes
list, and finally a leaf node from the Metrics list. At this stage, the Path corresponds
to a leaf node in the PMNS, as shown in Figure 4-6.

74 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 4-6 Selecting a Leaf Node in the PMNS (Performance Metric)

007–2614–005 75

4: Monitoring System Performance

Once a metric has been selected, the Info button in the Metric Selection dialog
launches the Metric Information dialog, as shown in Figure 4-7.

Figure 4-7 Metric Information Dialog

This dialog displays the name, unit, and semantics for the currently selected metric,
along with the verbose help text that describes the metric, and optionally a
description of the underlying instance domain.

Finally, you may have to select from several instances of a metric. In the example
shown in Figure 4-7, you wish to monitor the input packet rate for some network
interface(s). For the current source of performance metrics, there are two network
interfaces configured. You must select one or more instances, as shown in Figure 4-8.

76 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 4-8 Selecting a Metric Instance

007–2614–005 77

4: Monitoring System Performance

You can select multiple instances either by clicking and dragging up and down the list
with the left mouse button, or by selecting the first instance and then using the Shift
key (or Ctrl key) with the left mouse button to select one or more other instances.

4.1.5 Creating a PCP Archive from a pmchart Session

From the File menu of pmchart when running in live mode, the Record (Stop
Recording) option may be used to start (or stop) the creation of a PCP archive log.
The archive log is created using pmlogger and includes the update interval and all of
the performance metrics in the current pmchart configuration when recording begins.

Note: Any changes made to the pmchart configuration after recording has been
started will not be reflected in the archive log. For these to take effect, the recording
must be stopped and restarted (thereby creating a second PCP archive log).

When recording is started, a File Chooser dialog is launched, and the user must
provide the name of a new file to be used as the PCP archive folio for the new
archive (see Section 7.4.1). The recording session produces multiple files in the same
directory as the archive folio.

If necessary, pmchart creates directories on the path to the named archive folio.

It is often convenient to maintain one directory for each new folio, or else one
directory for each group of folios related by collector host(s), service type, or chart
selection.

When recording is active, a small red indicator appears in the time control button, as
shown at the bottom left of Figure 4-9.

78 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 4-9 pmchart Display When Recording

If you choose File > Stop Recording, logging stops immediately. The red light in the
lower left turns gray.

To start recording again, chose File > Record and specify a new archive folio name.

If you exit pmchart by choosing File > Quit, an Archive Recording Session-pmchart
dialog similar to that shown in Figure 4-10 appears to remind you where the archive
folio was created, and to confirm that recording should be terminated.

007–2614–005 79

4: Monitoring System Performance

Figure 4-10 Archive Recording Session-pmchart Dialog

If you select Yes, recording stops immediately.

If you select No, recording continues. This is a useful way to continue archive
logging without keeping pmchart active.

4.1.6 Changing pmchart Colors

When using a video projector, or when making presentations to a large group, or as a
result of personal preference, the default pastel color scheme used by pmchart may
be inappropriate.

80 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

The Colors option in the Edit menu allows arbitrary changes to the colors of
individual charts. For more global changes, you can override the defaults using the
X11 resources that pmchart honors.

For example, create or add the following entries in the $HOME/.xrdb file:

PmChart*xrtForegroundColor: "green"

PmChart*xrtBackgroundColor: "black"

PmChart*xrtGraphForegroundColor: "rgb:00/b0/00"

PmChart*xrtGraphBackgroundColor: "black"

PmChart*xrtHeaderForegroundColor: "green"
PmChart*xrtHeaderBackgroundColor: "black"

PmChart*pmDefaultColors: rgb:ff/ff/00 rgb:00/ff/00 rgb:00/00/ff \

rgb:ff/ff/00 rgb:00/ff/ff rgb:ff/00/ff

Use the following command to change the default color scheme for pmchart to one
with bright primary colors on a black background:

xrdb -merge $HOME/.xrdb

4.1.7 Other Chart Customizations

The pmchart Edit menu provides options and a dialog that you may use to change
and customize the display as follows:

Chart Style Chooses from line, bar, stacked bar, area plot, and
utilization.

Chart Title and
Legend...

Changes the chart title, and enable or disable the
legend annotation at the top of each chart.

Y-Axis Scaling... Fixes the maximum and minimum values of the range
on the Y-axis, or allow pmchart to adjust the range
dynamically to reflect currently displayed values.

Colors... Customizes plot colors.

Delete Selects all charts, a complete chart, or individual plots
from a chart.

007–2614–005 81

4: Monitoring System Performance

The pmchart Options menu provides another option for customizing the display:

Visible Points... Uses the slider to change the number of values along
the time axis.

4.1.8 Time Control

The Options menu provides access to the PCP Time Control Dialog (as described in
the Section 3.4, page 49).

Show Time Control Exposes the dialog for the controlling pmtime instance,
thereby allowing users to change the sampling interval.

Selecting the Time Control button in the lower left
corner of the main pmchart window also exposes the
Time Control dialog. If the current source of
performance metrics is one or more PCP archive logs,
this same dialog may be used for temporal navigation
within the archive(s).

New Time Control Detaches pmchart from the controlling pmtime
instance and launches a new pmtime instance, initially
dedicated to this pmchart.

Launch New Pmchart Starts a new pmchart, with shared pmtime control.

4.1.9 Taking Snapshots of pmchart Displays and Value Dialogs

The Print option in the File menu enables the current pmchart display to be printed
in a variety of PostScript styles. The output can be saved in a file or sent directly to a
printer.

The -o option for pmchart also provides the facility to produce Graphics
Interchange Format (GIF) image snapshots of the pmchart display.

It is often convenient to publish performance summary information for the users of a
particular computing environment. The pmchart tool, in combination with the
pmsnap script and its associated control files, can be used to produce high-quality
performance summary snapshot images in GIF format. These images can be
incorporated into Web pages, reports, e-mail, or presentation material.

The following files and utilities are included in support of this feature:

82 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

/var/pcp/config/pmsnap/Summary

This file contains a summary of the performance metrics used in the
example snapshot.

/var/pcp/config/pmsnap/Summary.html

An example HTML page suitable for publishing images from the
Summary pmsnap example via a Web server.

/var/pcp/config/pmsnap/control

This file controls the snapshot parameters.

/var/pcp/config/pmlogger/config.Summary

This configuration file specifies an archive log suitable for use with
any pmview-type tool, and the example Summary snapshot
configuration.

/usr/pcp/bin/pmsnap

The pmsnap script is designed to be periodically run by the cron
command to process the control file
/var/pcp/config/pmsnap/control and generate snapshot
images according to the specifications therein. The pmsnap(1) man
page describes the command line options for selecting the control
lines to process, the default directory for the output files, the X
display to use, and other parameters.

Instructions for configuring pmsnap are in the man page. There is also a verbose
comment at the head of the control file. The pmchart(1) man page is also useful.

4.1.10 More Information

The annotated examples in the pmchart chapter of the PCP Tutorial provide a guided
illustration to a typical user’s interactions with pmchart. The PCP Tutorial can be
optionally installed as the pcp.man.tutorial subsystem. To view the pmchart
chapter of the tutorial, open the following URL with your Web browser:

file:/var/pcp/Tutorial/pmchart.html

007–2614–005 83

4: Monitoring System Performance

4.2 The pmgadgets Command
The pmgadgets tool creates a small window containing a collection of graphical
gadgets driven by performance metrics supplied by the PCP framework. Any
numeric metric supported by PCP can be displayed.

Note: In the current PCP release, pmgadgets is constrained to process performance
metrics from real-time sources (and not PCP archive logs), although metrics from
several different hosts may be displayed simultaneously in the same window.

The layout of the gadgets and the performance metrics that lie behind them are
specified in a configuration file, and pmgadgets is typically run on an existing
configuration file or in conjunction with an application that automatically generates a
configuration file. For example, pmgsys generates a configuration file for various
IRIX performance metrics and feeds it to pmgadgets. The resulting display depends
on the host configuration, but the display shown in Figure 4-11 is representative of a
system with four CPUs, eleven disks on three controllers, and four network interfaces.

Figure 4-11 Representative pmgadgets Display Using pmgsys

Other pmgadget front end tools such as pmgcluster, pmgevctr, pmgcisco, and
pmgshping are not described in this chapter. For information about these tools, see
the pmgcluster(1), pmgevctr(1), pmgcisco(1), and pmgshping(1) man pages.

The pmgadgets tool displays much the same information as pmchart, but more
compactly, and with less historical information.

The pmgadgets specification language provides the ability to define the following
gadgets and components:

_bar Displays a single performance metric value as a
rectangle. This rectangle is filled from left to right or

84 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

bottom to top in proportion to the ratio of the metric’s
value to some maximum.

_multibar Is similar to the bar gadget, but displays several
performance metrics at the same time (same as stacked
bar). Each is allocated a color and the gadget’s
rectangle is filled with an amount of each color
proportional to the ratio of the corresponding
performance metric’s contribution to a maximum value.

_bargraph Displays a simple xload style strip chart of a
performance metric’s values over time.

_led Is a circular gadget whose color is modulated using the
value of a single performance metric.

_line Is a solid rectangle, not modulated by any performance
metric, useful for highlighting connectivity between
gadgets.

_label Provides textual annotation in the display.

_actions Provides customized menus of “drill-down” actions
that may be associated with any gadget. Using the
right mouse button over a visible gadget causes any
associated action menu to pop up.

_colorlist Provides a list of X11 color specifications.

_legend Provides the association between color and range of
performance metric values for use in a _led gadget.

Each visible gadget must be assigned a Cartesian position in the pmgadgets display.

By way of an example, the pmgadgets specification shown in Example 4-1 includes
CPU, disk, and load average information from two hosts, and produces a customized
pmgadgets display like the one shown in Figure 4-12.

Example 4-1 Specification File for pmgadgets

_colourlist cpuColours (blue3 red3 yellow3 cyan3 green3)

_legend diskLegend (

_default green3
15 yellow

40 orange

75 red

007–2614–005 85

4: Monitoring System Performance

)
host moomba

_label 70 12 "moomba"

_multibar 5 5 30 6

_metrics (

moomba:kernel.all.cpu.user
moomba:kernel.all.cpu.sys

moomba:kernel.all.cpu.intr

moomba:kernel.all.cpu.wait.total

moomba:kernel.all.cpu.idle

)

_maximum 0.0
_colourlist cpuColours

_bargraph 40 5 25 20

_metric moomba:kernel.all.load["1 minute"]

_max 1.0

_led 12 16 6 6
_metric moomba:disk.all.read _legend diskLegend

_led 25 16 6 6

_metric moomba:disk.all.write _legend diskLegend

host gonzo

_label 70 39 "gonzo"

_multibar 5 32 30 6
_metrics (

gonzo:kernel.all.cpu.user

gonzo:kernel.all.cpu.sys

gonzo:kernel.all.cpu.intr

gonzo:kernel.all.cpu.wait.total
gonzo:kernel.all.cpu.idle

)

_maximum 0.0

_colourlist cpuColours

_bargraph 40 32 25 20
_metric gonzo:kernel.all.load["1 minute"]

_max 1.0

_led 12 43 6 6

_metric gonzo:disk.all.read _legend diskLegend

_led 25 43 6 6

_metric gonzo:disk.all.write _legend diskLegend

86 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 4-12 Customized pmgadgets Display

In addition to the drill-down capabilities of pmgadgets, positioning the cursor over a
gadget and entering a space character causes an information dialog to be exposed.
This dialog tracks the current values of the performance metrics that are associated
with the gadget as illustrated by the pmgadgets information dialog in Figure 4-13.

Figure 4-13 pmgadgets Dialog

The pmgadgets(1) man page provides a complete description of the gadget
specification language and the user interface controls of pmgadgets.

4.3 The pmkstat Command
The pmkstat command provides a periodic, one-line summary of system
performance. This command is intended to monitor system performance at the
highest level, after which other tools may be used for examining subsystems to
observe potential performance problems in greater detail. After entering the pmkstat

007–2614–005 87

4: Monitoring System Performance

command, you see output similar to the following, with successive lines appearing
periodically:

pmkstat

hostname load avg: 0.26, interval: 5 sec, Thu Jan 19 12:30:13 1995

runq | memory | system | disks| cpu

mem swp | free page | scall ctxsw intr| rd wr|usr sys idl wt

0 0 16268 0 64 19 2396 0 0 0 1 99 0

0 0 16264 0 142 45 2605 0 8 0 2 97 0
0 0 16268 0 308 62 2532 0 1 1 1 98 0

0 0 16268 0 423 88 2643 0 0 1 1 97 0

An additional line of output is added every five seconds. The update interval may be
varied using the -t interval option.

The output from pmkstat is directed to standard output, and the columns in the
report are interpreted as follows:

runq Average number of runnable processes in main memory
(mem) and in swap memory (swp) during the interval.

memory The free column indicates average free memory
during the interval, in kilobytes. The page column is
the average number of page-out operations per second
during the interval. I/O operations caused by these
page-out operations are included in the disk write I/O
rate.

system System call rate (scall), context switch rate (ctxsw),
and interrupt rate (intr). Rates are expressed as
average operations per second during the interval.

disks Aggregated physical read (rd) and write (wr) rates over
all disks, expressed as physical I/O operations issued
per second during the interval. These rates are
independent of the I/O block size.

cpu Percentage of CPU time spent executing user code
(usr), system and interrupt code (sys), idle loop (idl)
and idle waiting for resources (wt), typically disk I/O.

As with most PCP utilities, real-time metric, and archive logs are interchangeable.

For example, the following command uses the PCP archive log foo and the timezone
of the host (tokyo) from which performance metrics in the archive were collected:

88 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

pmkstat -a foo -z
Note: timezone set to local timezone of host "tokyo"

tokyo load avg: 1.06, interval: 5 sec, Thu Feb 2 08:42:55 1995

runq | memory | system | disks | cpu

mem swp| free page| scall ctxsw intr| rd wr|usr sys idl wt

0 0 4316 0 195 64 2242 32 21 0 3 8 89
0 0 3976 0 279 86 2143 50 17 0 5 8 87

1 0 3448 0 186 63 2304 35 14 0 4 9 87

0 0 4364 0 254 81 2385 35 0 0 4 9 87

0 0 3696 0 266 92 2374 41 0 0 3 9 88

0 0 2668 42 237 81 2400 44 2 1 4 7 89

0 0 4644 100 206 68 2590 25 1 0 3 5 91
0 0 5384 0 174 63 2296 32 22 0 2 8 89

0 0 4736 0 189 65 2197 31 28 0 3 8 89

pmFetch: End of PCP archive log

For complete information on pmkstat usage and command line options, see the
pmkstat(1) man page.

4.4 The pmdumptext Command
The pmdumptext command displays performance metrics in ASCII tables, suitable for
export into databases or report generators. It is a flexible command. For example, the
following command provides continuous memory statistics on a host named serv:

pmdumptext -imu -h serv -f ‘%H:%M:%S’ mem.util
Metric kernel fs_ctl _dirty _clean free user

Units b b b b b b

20:14:28 99.14M 6.03M 0.85M 98.42M 0.17G 0.16G

See the pmdumptext(1) man page for more information.

4.5 The pmval Command
The pmval command dumps the current values for the named performance metrics.
For example, the following command reports the value of performance metric
proc.nprocs once per second (by default), and produces output similar to this:

pmval proc.nprocs

metric: proc.nprocs

007–2614–005 89

4: Monitoring System Performance

host: localhost
semantics: instantaneous value

units: none

samples: indefinite

interval: 1.00 sec

73
72

70

75

75

In this example, the number of running processes was reported once per second.

Where the semantics of the underlying performance metrics indicate that it would be
sensible, pmval reports the rate of change or resource utilization.

For example, the following command reports idle processor utilization for each of
four CPUs on the remote host moomba, each five seconds apart, producing output of
this form:

pmval -h moomba -t 5sec -s 4 kernel.percpu.cpu.idle

metric: kernel.percpu.cpu.idle

host: moomba

semantics: cumulative counter (converting to rate)

units: millisec (converting to time utilization)

samples: 4
interval: 5.00 sec

cpu0 cpu1 cpu2 cpu3

0.8193 0.7933 0.4587 0.8193

0.7203 0.5822 0.8563 0.7303

0.6100 0.6360 0.7820 0.7960
0.8276 0.7037 0.6357 0.6997

Similarly, the following command reports disk I/O read rate every minute for just the
disk /dev/dsk/dks0d1, and produces output similar to the following:

pmval -t 1min -i dks0d1 disk.dev.read

metric: disk.dev.read

host: localhost

semantics: cumulative counter (converting to rate)

units: count (converting to count / sec)
samples: indefinite

interval: 60.00 sec

90 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

dks0d1
33.67

48.71

52.33

11.33

2.333

The -r flag may be used to suppress the rate calculation (for metrics with counter
semantics) and display the raw values of the metrics.

When used in conjunction with a PCP archive, the -g option may be used to associate
a PCP time control dialog (see Section 3.4) with the execution of pmval to support
temporal navigation within the archive. In the example below, manipulation of the
time within the archive is achieved by the exchange of time control messages between
pmval and pmtime.

pmval -g -a /var/adm/pcplog/myserver/960801

The pmval command is documented by the pmval(1) man page, and annotated
examples of the use of pmval are in the PCP Tutorial.

4.6 The pmem Command
The pmem command reports per-process memory usage statistics within the PCP
framework.

Both virtual size and prorated physical memory usage are reported. The virtual
memory usage statistics represent the total virtual size of each process, irrespective of
how many pages are valid (resident). Prorated physical memory statistics indicate
real memory usage (only valid pages are counted) and are prorated on a per-page
basis between all processes that reference each page. Thus the prorated physical
memory counts reflect the real memory demands for individual processes in the
context of the current process mix.

The output of pmem can be very large. Here is an abbreviated example of pmem
output:

Host: gonzo Configured: 65536 Free:18380 Tue Jul 9 16:45:08 1996

pid ppid user vtxt ptxt vdat pdat vshm pshm command

1 0 root 232 144 84 76 0 0 /etc/init

832 827 root 3204 1013 5796 3096 0 0 /usr/bin/X11/Xsg

221 1 root 1424 54 156 84 0 0 /usr/lib/saf/sad

007–2614–005 91

4: Monitoring System Performance

838 827 root 2948 36 268 75 0 0 /usr/bin/X11/xdm
86 1 root 1264 32 144 76 0 0 /usr/etc/syslogd

182 1 root 1476 129 596 387 0 0 /usr/etc/rpcbind

827 1 root 2948 13 252 22 0 0 /usr/bin/X11/xdm

172 1 root 1276 52 148 100 0 0 /usr/etc/routed

Total vtxt ptxt vdat pdat vshm pshm 77 user processes
121M 36256 0 = 157M virtual

13982 20194 0 = 34176 physical

The columns report the following information:

pid Process ID number.

ppid Parent process ID number.

user Login name of the process owner.

vtxt Total virtual memory used by text (executable code)
regions mapped by the process.

ptxt Prorated physical memory used by text regions.

vdat Total virtual memory used by all non-executable
regions, excluding shared memory regions. This
includes initialized data, bss, and stack but not shared
memory regions.

pdat Prorated physical memory used by all data regions
(data, bss, and stack but not shared memory regions).

vshm Total virtual memory used by all shared memory
regions.

pshm Prorated physical memory used by shared memory
regions.

command The command and arguments.

For complete information on pmem usage and command line options, see the pmem(1)
man page.

4.7 The pminfo Command
The pminfo command displays various types of information about performance
metrics available through the Performance Co-Pilot (PCP) facilities.

92 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

The -T option is extremely useful; it provides help text about performance metrics:

pminfo -T mem.util.fs_dirty
mem.util.fs_dirty

Help:

The amount of memory in Kbytes that is holding file system data.

The -t option displays the one-line help text associated with the selected metrics.
The -T option prints more verbose help text.

Without any options, pminfo verifies that the specified metrics exist in the Name
Space, and echoes those names. Metrics may be specified as arguments to pminfo
using their full metric names. For example, this command returns the following
response:

pminfo hinv.ncpu network.interface.total.bytes

hinv.ncpu

network.interface.total.bytes

A group of related metrics in the Name Space may also be specified. For example, to
list all of the hinv metrics you would use this command:

pminfo hinv

hinv.ncpu

hinv.cpuclock
hinv.dcache

hinv.icache

hinv.secondarycache

hinv.physmem

hinv.pmeminterleave
hinv.ndisk

If no metrics are specified, pminfo displays the entire collection of metrics. This can
be useful for searching for metrics, when only part of the full name is known. For
example, this command returns the following response:

pminfo | grep nfs

nfs.client.badcalls

nfs.client.badcalls
nfs.client.calls

nfs.client.nclget

nfs.client.nclsleep

nfs.client.reqs

nfs.server.badcalls

007–2614–005 93

4: Monitoring System Performance

nfs.server.calls
nfs.server.reqs

nfs.client.badcalls

nfs.client.calls

nfs.client.nclget

nfs.client.nclsleep
nfs.client.reqs

nfs.server.badcalls

nfs.server.calls

nfs.server.reqs

The -d option causes pminfo to display descriptive information about metrics (refer
to the pmLookupDesc(3) man page for an explanation of this metadata information).
The following command and response show use of the -d option:

pminfo -d proc.nprocs disk.dev.read filesys.free
proc.nprocs

Data Type: 32-bit int InDom: PM_INDOM_NULL 0xffffffff

Semantics: instant Units: none

disk.dev.read

Data Type: 32-bit unsigned int InDom: 1.2 0x400002
Semantics: counter Units: count

filesys.free

Data Type: 32-bit int InDom: 1.7 0x400007

Semantics: instant Units: Kbyte

The -f option to pminfo forces the current value of each named metric to be fetched
and printed. In the example below, all metrics in the group hinv are selected:

pminfo -f hinv

hinv.ncpu
value 1

hinv.cpuclock

value 100

hinv.dcache

value 8192
hinv.icache

value 8192

hinv.secondarycache

value 1048576

hinv.physmem

value 64

94 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

hinv.pmeminterleave
value 0

hinv.ndisk

value 1

The -h option directs pminfo to retrieve information from the specified host. If the
metric has an instance domain, the value associated with each instance of the metric
is printed:

pminfo -h babylon.engr.sgi.com -f filesys.mountdir

filesys.mountdir
inst [1 or "/dev/root"] value "/"

inst [2 or "/dev/dsk/dks1d3s7"] value "/usr2"

inst [3 or "/dev/dsk/dks3d1s7"] value "/dbv"

inst [4 or "/dev/dsk/dks3d4s7"] value "/dbv/d4"

inst [5 or "/dev/dsk/dks3d2s7"] value "/dbv/d2"
inst [6 or "/dev/dsk/dks3d3s7"] value "/dbv/d3"

inst [7 or "/dev/dsk/dks2d4s7"] value "/vicepb"

inst [8 or "/dev/dsk/xlv/build9"] value "/build9"

inst [9 or "/dev/dsk/xlv/build8"] value "/build8"

inst [10 or "/dev/dsk/xlv/lv9.xfs"] value "/lv9"
inst [11 or "/dev/dsk/dks2d5s7"] value "/usenet"

inst [12 or "/dev/dsk/xlv/work"] value "/usr/work"

inst [13 or "/dev/dsk/xlv/build10"] value "/build10"

inst [14 or "/dev/dsk/xlv/dist"] value "/usr/dist"

inst [15 or "/dev/dsk/xlv/people"] value "/usr/people"

inst [16 or "/dev/dsk/xlv/build12"] value "/build12"
inst [17 or "/dev/dsk/xlv/build11"] value "/build11"

The -m option prints the Performance Metric Identifiers (PMIDs) of the selected
metrics. This is useful for finding out which PMDA supplies the metric. For example,
the output below identifies the PMDA supporting domain 4 (the leftmost part of the
PMID) as the one supplying information for the metric environ.extrema.mintemp:

pminfo -m environ.extrema.mintemp

environ.extrema.mintemp PMID: 4.0.3

The -v option verifies that metric definitions in the PMNS correspond with
supported metrics, and checks that a value is available for the metric. Descriptions
and values are fetched, but not printed. Only errors are reported.

Some instance domains are not enumerable. That is, it is not possible to ask for all of
the instances at once. Only explicit instances may be fetched from such instance

007–2614–005 95

4: Monitoring System Performance

domains. This is because instances in such a domain may have a very short lifetime
or the cost of obtaining all of the instances at once is very high. The proc metrics are
an example of such an instance domain. The -f option is not able to fetch metrics
with non-enumerable instance domains; however, the -F option tells pminfo to
obtain a snapshot of all of the currently available instances in the instance domain
and then to retrieve a value for each.

Complete information on the pminfo command is found in the pminfo(1) man page.
There are examples of the use of pminfo in the PCP Tutorial.

4.8 The pmstore Command
From time to time you may wish to change the value of a particular metric. Some
metrics are counters that may need to be reset, and some are simply control variables
for agents that collect performance metrics. When you need to change the value of a
metric for any reason, the command to use is pmstore.

Note: For obvious reasons, the ability to arbitrarily change the value of a performance
metric is not supported. Rather, the PMCS selectively allows some metrics to be
modified in a very controlled fashion.

The basic syntax of the command is as follows:

pmstore metricname value

There are also command line flags to further specify the action. For example, the -i
option restricts the change to one or more instances of the performance metric.

The value may be in one of several forms, according to the following rules:

1. If the metric has an integer type, then value should consist of an optional leading
hyphen, followed either by decimal digits or “0x” and some hexadecimal digits;
“0X” is also acceptable instead of “0x.”

2. If the metric has a floating point type, then value should be in the form of an
integer (described above), a fixed point number, or a number in scientific notation.

3. If the metric has a string type, then value is interpreted as a literal string of ASCII
characters.

4. If the metric has an aggregate type, then an attempt is made to interpret value as
an integer, a floating point number, or a string. In the first two cases, the minimal

96 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

word length encoding is used; for example, “123” would be interpreted as a
four-byte aggregate, and “0x100000000” would be interpreted as an eight-byte
aggregate.

The following example illustrates the use of pmstore to enable performance metrics
collection in the txmon PMDA (see /usr/pcp/pmdas/txmon for the source code of
the txmon PMDA). When the metric txmon.control.level has the value 0, no
performance metrics are collected. Values greater than 0 enable progressively more
verbose instrumentation.

pminfo -f txmon.count
txmon.count

No value(s) available!

pmstore txmon.control.level 1

txmon.control.level old value=0 new value=1

pminfo -f txmon.count
txmon.count

inst [0 or "ord-entry"] value 23

inst [1 or "ord-enq"] value 11

inst [2 or "ord-ship"] value 10

inst [3 or "part-recv"] value 3
inst [4 or "part-enq"] value 2

inst [5 or "part-used"] value 1

inst [6 or "b-o-m"] value 0

For complete information on pmstore usage and syntax, see the pmstore(1) man
page.

007–2614–005 97

Chapter 5

System Performance Visualization Tools

Several three-dimensional (3D) graphical tools are provided with Performance
Co-Pilot (PCP) to assist you in visualizing performance on monitored systems. These
tools are implemented with and require Open Inventor, a 3D graphics facility. Each
tool is completely described by its own man page, accessible through the man
command. For example, the man page for the pmview tool can be viewed by giving
the following command:

man pmview

The following major sections are covered in this chapter:

• Section 5.1, page 100, describes the graphical disk activity visualization tool,
dkvis.

• Section 5.3, page 103, describes the graphical multiprocessor visualization and
comparison tool, mpvis.

• Section 5.4, page 105, describes the operating system activity visualization tool,
osvis.

• Section 5.5, page 107, describes the visualization tool, oview.

• Section 5.6, page 110, describes the graphical NFS activity visualization tool,
nfsvis.

• Section 5.7, page 112, describes the Message Passing Interface (MPI) visualization
tool, mpivis.

• Section 5.8, page 114, describes the tool that displays data extracted from
Web-server log files, weblogvis.

• Section 5.9, page 118, describes the graphical performance visualization tool,
pmview, on which the other visualization tools are based.

Other PCP visualization tools, such as arrayvis, clustervis, nodevis, procvis,
routervis, txmonvis, weblogvis, webpingvis, webvis, and xbowvis, are not
described in this chapter. See the arrayvis(1), clustervis(1), nodevis(1),
procvis(1), routervis(1), txmonvis(1), weblogvis(1), webpingvis(1),
webvis(1), and xbowvis(1) man pages for information about these pmview based
tools.

007–2614–005 99

5: System Performance Visualization Tools

5.1 Overview of Visualization Tools
For the most interesting and complex problems in performance management, the
volume of available information is daunting. One approach to dealing with the
volume and complexity of the information is to employ automated reasoning. Refer
to Chapter 6 for a complete description of the pmie tool that provides this capability.
Another approach is to harness the considerable potential for human visual
processing to absorb, analyze, and classify large amounts of information.

PCP has been developed with an assumption that being able to draw three-dimension
pictures of system performance is a critical monitoring requirement, and one that
offers vast potential for increased insight and understanding for the person charged
with some aspect of performance monitoring and management.

Building on SGI technologies of high-performance 3D graphics at the workstation,
OpenGL and Open Inventor, PCP delivers a range of utilities, services, and toolkits
that are designed both to provide basic visualization tools and to foster the local
customization of value-added tools to meet the needs of end-user application and
operational environments.

Key components to this performance visualization strategy are as follows:

• Time-series strip charts with pmchart (described in Chapter 4) that allow
performance metrics from multiple hosts and multiple Performance Metric
Domains (PMDs) to be concurrently displayed on a single correlated time axis.

Predefined chart configurations for common performance scenarios are provided.

• Basic three-dimension models for the following:

– Per-processor CPU utilization with mpvis

– Per-disk spindle activity with dkvis

– NFS request traffic with nfsvis

– MPI function activity with mpivis

• A generalized, three-dimension performance model viewer, pmview, that can
easily be configured to draw scenes animated by the values of arbitrarily selected
performance metrics. Tools like dkvis, mpivis, mpvis, and nfsvis are
front-ends that create scene descriptions to be displayed and animated with
pmview.

100 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

• Icon-sized stripcharts, meters, and indicator LEDs that may be combined into a
desktop control and indicator panel using pmgadgets; see Section 4.2.

The pmgsys command provides a standard layout for important IRIX
performance metrics using pmgadgets. The color or height of each gadget is
modulated by user-selected performance metrics from one or more PCP sources.

When combined with the VCR and PCP archive services, these visualization tools
provide both real-time and retrospective analysis of system performance at many
different levels of detail.

5.2 The dkvis Disk Visualization Tool
The dkvis tool is a graphical disk device utilization viewer, displaying a bar chart
showing disk activity. When you give the dkvis command, you see a bar chart
displaying activity on each disk on the monitored system. You see a Total Disk I/O
Rate for Host host window similar to the one shown in Figure 5-1.

007–2614–005 101

5: System Performance Visualization Tools

Figure 5-1 dkvis Total Disk I/O Rate Window

102 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Each row of blocks on the base plane represents the group of disks connected to a
single disk controller (or host adaptor or SCSI bus). The label for each row is
generated from the characters common to the names of all of the disks on the
controller. For example, in Figure 5-1, the disks in the row labeled dks56 (the same
row as the selected block for dks56d2) are dks56d1, dks56d2, dks56d3, and
dks56d4.

The dkvis implementation uses the generalized 3D performance viewer pmview as
described in Section 5.9. Hence, the command line options for dkvis include the
common ones for pmview.

dkvis normally displays the total number of I/O operations per second (IOPS). The
-r option may be used to restrict the display to just the read operations or -w may be
specified for just the writes.

The dkvis command expresses the utilizations in the information window as
percentages of some maximum expected rate (clipped to 100%). The -m flag allows
you to override the default maximum value. This is useful if all of the utilizations are
small compared to the maximum. In such a situation, specifying a smaller maximum
has the effect of magnifying the differences between the blocks. Similarly, if some of
the blocks are almost always at full height, there is a good chance that they are being
clipped.

A suitable value for the -m option can be determined by clicking the blocks in
question, observing the values displayed in the information window for a while, and
adding about 10% to the highest value observed. Interactive adjustment of the block
height is available via the scale thumb wheel in the pmview viewer.

Complete information on the dkvis command is available in the dkvis(1) man page.
The PCP Tutorial contains additional examples on the use of dkvis.

5.3 The mpvis Processor Visualization Tool
The mpvis tool is a graphical multiprocessor activity viewer, displaying a bar chart
that shows processor activity. When you enter the mpvis command, you see a bar
chart displaying activity on each processor on the monitored system. You see a CPU
Utilization for Host host window similar to the one shown in Figure 5-2.

007–2614–005 103

5: System Performance Visualization Tools

Figure 5-2 mpvis CPU Utilization Window

104 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

This figure shows mpvis monitoring a machine with four CPUs. CPU is spending
80% of its time processing user code and about 20% of its time executing system code.
Another CPU is executing user code for close to 90% of the time. The remaining two
CPUs are idle.

The display contains five labeled rows of blocks, which represent the breakdown of
the activity of a single CPU into five states. There is one column of five blocks for
each CPU on the system being monitored. These five states are as follows:

idle No activity

wait Like idle but waiting for I/O

intr Processing an interrupt

sys Executing in the IRIX kernel

user Executing user code

The mpvis implementation uses the generalized 3D performance viewer pmview as
described in Section 5.9. Hence, the command line options for mpvis include the
common ones for pmview.

Complete information on the mpvis command is available in the mpvis(1) man page.
The PCP Tutorial contains additional examples on the use of mpvis.

5.4 The osvis System Visualization Tool
The osvis tool displays a high-level overview of performance statistics collected
from the PCP infrastructure. The display is modulated by the values of performance
metrics retrieved from the target host or from the PCP archive log identified with the
-a option. Figure 5-3 shows a sample osvis High-Level Activity for Host host
display.

007–2614–005 105

5: System Performance Visualization Tools

Figure 5-3 osvis High-Level Activity Window

106 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

As in all pmview scenes, when the mouse is moved over one of the bars, the current
value and metric information for that bar are shown in the text box near the top of
the display. The height and color of the bars is proportional to the performance
metric values relative to the maximum expected activity.

The bars in the osvis scene represent the following information:

Disk The first stack is the rate of disk read and write
operations aggregated over all disk spindles. The
second bar is the average time the disks are busy, which
approximates average time utilization of all disks.

Load The three bars represent average load for the past 1, 5,
and 15 minutes, normalized by twice the number of
CPUs on the machine.

Mem The stack shows memory utilization by breaking down
real memory into kernel, file system, and user usage.

CPU This bar shows CPU utilization, aggregated over all
CPUs.

Disk Controllers The average time the disks were busy on each disk
controller, which approximates the average time
utilization of all disks on each controller.

Network Input The first two rows of bars show the input byte rate and
the input packet rate for each network interface, except
loopback and slip interfaces.

Network Output The first two rows of bars show the output byte rate
and the packet rate for each network interface, except
loopback and slip interfaces.

5.5 The oview Origin Visualization Tool
The oview tool displays the topology of SGI 3000 series and SGI 2000 series of
systems with dynamic updates for performance information about CPUs, nodes, and
routers. It behaves differently and produces different views for SGI 3000 series and
SGI 2000 series of systems. See the oview(1) man page for details.

Figure 5-4 shows a view of an SGI 2000 series system as generated by the oview tool.

007–2614–005 107

5: System Performance Visualization Tools

Figure 5-4 oview View of an SGI 2000 Series System

108 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 5-5 shows a view of an SGI 3000 series system. Systems with up-to 128 CPUs
can be displayed.

Figure 5-5 oview View of an SGI 3000 Series System

007–2614–005 109

5: System Performance Visualization Tools

5.6 The nfsvis NFS Activity Visualization Tool
The nfsvis tool is a graphical NFS (Network File System) activity viewer, displaying
a bar chart that shows NFS request activity on the monitored system. NFS is optional
software, and may not be present on all systems or at all sites.

When you run the nfsvis command, you see a bar chart displaying NFS load on the
monitored system. You see a NFS Client V2 & Server V2 Request Traffic for host
host window similar to the one shown in Figure 5-6.

110 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 5-6 nfsvis NFS Client V2 & Server V2 Request Traffic Window

007–2614–005 111

5: System Performance Visualization Tools

The statistics are broken into two groups:

Client Requests made by the monitored machine to NFS
servers on other machines

Server Requests from other machines for the NFS server on the
machine being monitored

The statistics in each of these two groups are the same, except that the client group is
for outgoing requests and the server group is for incoming requests. Within each
group, the requests are further broken down into three categories:

• Requests relating to data within files

• Requests for directory operations (for example, to rename a file)

• Requests involving other attributes of files

The nfsvis implementation uses the generalized 3D performance viewer pmview as
described in Section 5.9. Hence, the command line options for nfsvis include the
common ones for pmview.

Complete information on the nfsvis command is available in the nfsvis(1) man
page. The PCP Tutorial contains additional examples on the use of nfsvis.

5.7 The mpivis MPI Function Activity Visualization Tool
The mpivis tool displays a 3D bar chart for the rate of elapsed time used by a
particular set of MPI functions for an MPI application. Figure 5-7 shows a sample
mpivis MPI Activity for ASH ash on Host host display.

112 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 5-7 mpivis MPI Activity Window
007–2614–005 113

5: System Performance Visualization Tools

This mpivis display was produced with the following control file:

label MPI function color

#

send MPI_Send blue

recv MPI_Recv orange

bcast MPI_Bcast burlywood
barrier MPI_Barrier violet

allreduce MPI_Allreduce turquoise

From Figure 5-7, you can see that the MPI application has 4 ranks and that the
MPI_Allreduce and MPI_Barrier functions have recently consumed some time, as
opposed to MPI_Bcast, MPI_Recv, and MPI_Send. The other category, which is
always yellow, shows that some other MPI functions are also active. Ranks 0 and 1
have consumed about half as much time in MPI_Allreduce and MPI_Barrier than
ranks 2 and 3. The chart prisms of ranks 2 and 3 of MPI_Barrier have turned white.
This indicates that they have surpassed the maximum default value of 300
milliseconds per second.

The state row of cylinders at the back does not grow; its color changes to indicate the
currently executing MPI function at the last update of the metrics. In Figure 5-7, the
state is green, which is a reserved color for applications.

5.8 The weblogvis Visualization Tool
The weblogvis tool displays a 3D bar chart of data extracted from Web-server log
files.

For each server, weblogvis displays idle time, total activity, and the activity
classified by the size of the resultant request. The activity is, by default, the request
rate (requests per second) as shown in Figure 5-8, but optionally a data rate (bytes per
second) can be requested as shown in Figure 5-9. If the server logs report caching
statistics, the bar displays are shown as a stack of values representing cached and
non-cached results. Two examples of suitable caching log files are the Netscape
common extended log format and the Squid default log file format.

114 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 5-8 weblogvis Display of Request Rate Classified by Request Size
007–2614–005 115

5: System Performance Visualization Tools

Figure 5-8 shows a host with four servers, one without cache statistics, two using the
common extended log format, and one Squid server. The scene is comprised of three
objects:

Idle time per server This is a single-value bar representing the number of
seconds that the log file has been unaltered.

Total activity rates per
server

For servers that report extended statistics (local1,
proxy1, and squid1), the total is composed of three
stacked values representing the activity rates satisfied
by the browser cache (yellow), by the proxy cache
(blue) or by a remote server (red). For server logs
without the extended data (cern1), the single value
(red) represents the total activity rate.

Activity rates per
server classified by
request size

For servers that report extended statistics, each bar is
composed of two stacked values, representing the
activity rates for that request size, that are satisfied by
the proxy cache (blue) or by a remote server (color
coded based on the request size). For server logs
without the extended data, the single color–coded value
represents the activity rate for that request size.

Figure 5-9 shows the same host with an alternate type of display. It shows the activity
rates classified by the request type instead of the request size.

116 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 5-9 weblogvis Display Request Rate Classified by Request Type
007–2614–005 117

5: System Performance Visualization Tools

5.9 The pmview Tool
The pmview tool is a generalized 3D Open Inventor application that supports
dynamic displays of clusters of related performance metrics as utilization blocks (or
towers) on a common base plane. The pmview tool is the basis for dkvis, mpvis,
osvis, nfsvis, mpivis, and weblogvis all discussed in this chapter, as well as
arrayvis, clustervis, nodevis, procvis, routervis, txmonvis,
webpingvis, webvis, and xbowvis. The pmview tool may also be used to
construct customized 3D performance displays.

A closely related tool to pmview is pmview+. It has the same capabilities as pmview,
as well as the support for showing interconnects between the bases of pmview grids.
It was written to support oview in its display of SGI 3000 servers.

Open Inventor is an object-oriented toolkit that simplifies and abstracts the task of
writing graphics applications into a set of easy-to-use objects. Its run-time support is
distributed with IRIX system software in the inventor_eoe.sw product image.

The pmview command displays performance metrics as colored blocks arranged in a
grid on a grey base plane. The height of each block changes as the value of its
corresponding metric (or metric instance) changes. Labels may be added to the scene
to help identify groups of metrics, as shown in Figure 5-1, Figure 5-2, Figure 5-3, and
Figure 5-6.

A configuration file is used to specify the position, color, and scale of metrics and
metric instances in the scene. Metric values that exceed the associated scaling factor
are displayed at the maximum height and change color to white. If a metric is
unavailable, the bar height is minimized, and the bar color changes to grey.

Normally, pmview operates in live mode where performance metrics are fetched in
real time. The user can view metrics from other accessible Internet hosts that are
running the PCP collector daemon, pmcd. The pmview tool can also replay archives
of performance metrics collected by pmlogger.

All metrics in the PMNS with numeric value semantics from multiple hosts or
archives may be visualized. The pmview tool examines the semantics of the metrics
and, where sensible, converts the fetched metric values to a rate before scaling.

The pmview tool window contains a menu bar, time and scale controls, metric and
time values, and an examiner window; see the ivview command, which displays the
3D scene.

The left, right, and bottom edges of the examiner viewer window contain a variety of
thumb wheels and buttons that allow the user to adjust the visualization of the 3D

118 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

scene. The Rotx and Roty thumb wheels allow the user to rotate the scene about the
X and Y axes, respectively. The Dolly thumb wheel moves the virtual camera closer
to or further from the scene, allowing the user to examine specific parts in detail or
view the entire scene.

On the right edge of the viewer are eight buttons that affect the way the user can
interact with the scene:

• The pointer button changes the cursor to a pointer that allows blocks in the scene
to be selected. The Esc key can also be used to toggle between the pointer and
hand cursors.

• The hand button changes the cursor to a hand that can be used to rotate, translate,
and examine the scene via Dolly, using a combination of mouse buttons and
movement.

The left mouse button can be used to rotate the scene in the direction of the
mouse. Releasing the mouse button before the mouse has stopped moving causes
the scene to continue rotating until a mouse button is pressed again.

The middle mouse button can be used to pan the scene. By pressing both left and
middle buttons, the mouse can be used as a virtual camera.

• The question mark button displays SGI Help for the examiner viewer. To install
online help, use inst to install the inventor_eoe.sw.help package from your
IRIX system software distribution. See the Performance Co-Pilot release notes for
more information on prerequisite subsystems.

• The home button changes the scene back to its original position, or the position
set by the home pointer button.

• The home pointer button sets the new home position of the scene to be the scene
currently in view.

• The eye button resizes the scene so that it completely fits into the 3D viewing area.

• The cross-hairs button moves the scene so that the object under the cursor is in
the center of the viewing area. Change the hand cursor and press the cross-hairs
button. The cursor changes to a target. Select the block to be centered and the
scene rotates and translates appropriately.

• The perspective box button switches between perspective and orthogonal
projections.

007–2614–005 119

5: System Performance Visualization Tools

Pressing the right mouse button within the scene displays a menu of options that
affect how the 3D scene is drawn. The options include drawing the blocks as
wireframes and turning on stereo viewing.

When the pointer cursor is active, more information about the 3D scene can be
obtained. Text describing the metric represented by the block beneath the cursor
displays in the top text box of the pmview window. This text displays the source,
name, and instance of the performance metric, and the value, units, and percentage of
the expected minimum the value represents.

Clicking the left mouse button on a block highlights the block with a red wireframe,
as shown in Figure 5-10. The metric description text box is now fixed on that metric
and the values continue to be updated as new metrics are fetched. This allows other
actions to be performed with the mouse while examining a single metric in detail at
the same time. Click the left mouse button on the space surrounding the scene to
remove the selection.

120 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 5-10 pmview Window with a Block Selected

Multiple blocks may also be selected by either Shift clicking with the left mouse
button or by clicking on a base plane. Shift clicking toggles the selection status of a
particular block and leaves the selection status of other blocks unaltered. Clicking on
the base plane selects all blocks belonging to the base plane. Whenever multiple
blocks are selected, no accompanying text is displayed in the text box. However,
multiple block selection affects the launching of other tools because all metrics on the
base plane are considered to be selected as a group.

007–2614–005 121

5: System Performance Visualization Tools

5.9.1 pmview Menus

There are four menus in pmview tools:

File Records, saves, and prints scenes

Options Accesses the time controls

Launch Starts other tools

Help Obtains online help

The Launch menu consists of a list of tools that operate on the current selection of
metrics. How the tool is invoked depends on the type of tool. Tools that operate on
any metric (such as pmchart, pmval, and pmdumptext) use the metrics selected
directly as input. Thus pmchart displays all the selected metrics in a chart, pmval is
invoked within winterm for each metric, and pmdumptext displays multiple metrics
in one winterm. Other tools use what metrics are pertinent. If no metric is pertinent
or selected, only the source of the metrics is used, that is, the monitored host or
archive. For each Launch menu item there is an associated launch script. The launch
scripts generally know the relationship between routers, nodes, and CPUs. Thus if
CPUs are selected in mpvis and if nodevis is launched, only the nodes that have the
selected CPUs attached are displayed.

Some launchable tools are listed below:

dkvis, mpvis,
nfsvis, and osvis

pmview-based tools for visualizing disk activity, CPUs,
NFS, and the OS (operating system).

pcp Brings up a window that summarizes the PCP
installation.

pmdumptext Brings up a window that shows the performance
metrics as text.

pmchart A tool for graphically displaying and correlating
time-series trends of performance metrics. See Section
4.1, page 64, for details.

pmgsys A miniature IRIX performance metrics viewer, available
only in live mode, not in archive mode.

pmkstat A text-based tool that displays, at intervals, a high-level
summary of system performance.

pmval A tool that displays the values of performance metrics
textually. Only one metric (with one or more instances)

122 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

may be selected to successfully launch this tool. See
Section 4.5, page 89, for details.

In addition to the menu options for time controls, the current direction and mode of
the time controls is shown in a button in the top-left corner of the pmview window
(refer to Section 3.4 for a complete description of the time control services). Pressing
this button displays the time control dialog.

Below this button is a thumb wheel and an editable text box to specify a scale
multiplier that is applied to all values in the scene. Spinning the thumb wheel to the
right, or incrementing the value in the text field, increases the scaling and raises the
height of the bars. Conversely, spinning the thumb wheel to the left or decrementing
the text field decreases the scaling and lowers the height of the bars.

The button beside the thumb wheel resets the scale to one. This is especially useful
when the scale specified in the configuration file reduces the usefulness of the
visualization as a consequence of the bars being either too low or beyond the
maximum scale height.

5.9.2 Creating Custom Visualization Tools with pmview

At startup time, a configuration file is read that specifies the following:

• Geometry for the scene to be displayed by pmview

• Associations between the visual appearance of “blocks” and performance metrics

The scene is based on a grid that can contain a variety of objects and can resize itself
to accommodate objects of varying sizes. To distinguish this configuration file format
from an earlier (still supported) format, configuration files must begin with the
following line:

pmview Version 2.1

All lines beginning with a # character are treated as comments and ignored. Spaces,
tabs, and newlines are treated as white space to allow multiple statements on the
same line. The simplest configuration file consists of a single object that may
represent one or more metrics and metric instances.

The configuration file consists of two sections: global parameters and color lists, and
the object definitions. The global parameters control the size of the objects in the
scene. For example, a scaling factor of 1.2 can be applied to all objects with the
following line:

007–2614–005 123

5: System Performance Visualization Tools

_scale 1.2

Groups of colors may be associated with a name and referenced later in the file.
Colors may be X(1) color names, X(1) numerical colors, or three real values
representing the saturation of red, green, and blue, respectively. The following color
list contains three identical colors:

_colorlist cpu (red rgbi:1.0/0.0/0.0 1.0 0.0 0.0)

The mpvis configuration file (which can be generated with the -V option) looks like
Example 5-1:

Example 5-1 mpvis Configuration File

pmview Version 2.1 "mpvis" "-V" "-C"

#

mpvis

#
ncpus = 1

nrows = 1

ncols = 1

#

List:
cpu0

_gridSpace 120

_colorlist cpu (green2 cyan2 yellow2 red2 blue2)

_grid 0 0 _hide (# outer grid

_baseLabel "SGI PCP : CPU Utilization for Host ha1.melbourne.sgi.com\ncpu0 only"
_bar _groupByInst (

_metrics (

kernel.percpu.cpu.idle[cpu0] 1000 "idle"

kernel.percpu.cpu.wait.total[cpu0] 1000 "wait"

kernel.percpu.cpu.intr[cpu0] 1000 "intr"
kernel.percpu.cpu.sys[cpu0] 1000 "sys"

kernel.percpu.cpu.user[cpu0] 1000 "user"

)

_colorlist cpu

_baseLabel "SGI PCP : CPU Utilization for Host ha1.melbourne.sgi.com\ncpu0 only"
)

)

124 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Multiple objects can be visualized using a _grid object, which may contain multiple
objects (including more _grid objects). The _grid object resizes columns and rows
to accommodate the largest contained object. Objects can occupy multiple grid
squares and can be aligned with a particular edge or corner of a grid square. The
_bar object has a single bar for each metric instance and labels for each metric. The
scale height for each metric instance is 1000 in the units of the metric (milliseconds
utilization per second).

The specification file shown in Example 5-2 produces a scene like the one shown in
Figure 5-11. The file has a grid, labels, bars, and a stack utilization object.

Example 5-2 Specification File for pmview

pmview Version 2.1
_colorlist cpu_colors (blue2 red2 yellow2 cyan2 green2)

_colorlist disk_colors (purple2 yellow2)

_colorlist memory_colors (rgbi:1.0/1.0/0.0 rgbi:0.0/1.0/1.0 rgbi:1.0/0.0/0.0

rgbi:1.0/0.0/1.0 rgbi:0.0/0.0/1.0 rgbi:0.0/1.0/0.0)

_grid hide (
_label 3 1 _west _down _large ‘‘CPU’’

_stack 4 1 _west _utilmod (

_metrics (

kernel.all.cpu.user 1000

kernel.all.cpu.sys 1000
kernel.all.cpu.intr 1000

kernel.all.cpu.wait.total 1000

kernel.all.cpu.idle 1000

)

_colorlist cpu_colors

_baseLabel ‘‘CPU Utilization’’
)

_label 3 3 _west _down _large ‘‘Load’’

_bar 4 3 2 1 _west (

_metrics (

kernel.all.load[15] 2
kernel.all.load[5] 2

kernel.all.load[1] 2

)

_metriclabels _away (‘‘15’’ ‘‘5’’ ‘‘1’’)

_colorlist (blue2 blue2 blue2)
_baseLabel ‘‘Average System Load over last 1, 5 and 15 minutes\nNormalized to 2’’

)

007–2614–005 125

5: System Performance Visualization Tools

_label 0 1 _west _down _large ‘‘Mem’’
_stack 1 1 _west _utilmod (

_metrics (

mem.util.kernel 1

mem.util.fs_ctl 1

mem.util.fs_dirty 1
mem.util.fs_clean 1

mem.util.user 1

)

_colorlist memory_colors

_baseLabel ‘‘Physical Memory Utilization’’

)
_label 0 3 _down _large ‘‘Disk’’

_stack 1 3 _west _cylinder (

_metrics (

disk.all.read 100

disk.all.write 100
)

_colorlist disk_colors

_baseLabel ‘‘Disk Operations\nNormalized to 100 I/Os per second’’

)

)

126 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Figure 5-11 Custom pmview Scene

To assist in the creation of front-end tools, a file containing shell procedures for
generating usage information and parsing pmview command line options is located at
/usr/pcp/lib/pmview-args. The dkvis, mpvis, nfsvis, and osvis tools are
all shell scripts that use these shell procedures to generate a configuration file for
pmview.

007–2614–005 127

Chapter 6

Performance Metrics Inference Engine

The Performance Metrics Inference Engine (pmie) is a tool that provides automated
monitoring of, and reasoning about, system performance within the Performance
Co-Pilot (PCP) framework.

The following major sections in this chapter are as follows:

• Section 6.1, page 129, provides an introduction to the concepts and design of pmie.

• Section 6.2, page 132, describes the basic syntax and usage of pmie.

• Section 6.3, page 137, discusses the complete pmie rule specification language.

• Section 6.4, page 151, provides an example, covering several common performance
scenarios.

• Section 6.5, page 154, presents some tips and techniques for pmie rule
development.

• Section 6.6, page 154, presents some important information on using pmie.

• Section 6.7, page 156, describes how to use the pmieconf command to generate
pmie rules.

• Section 6.8, page 159, provides a brief description of how to use the pmrules GUI
for creating pmie rules from parameterized templates.

• Section 6.9, page 163, provides support for running pmie as a daemon.

6.1 Introduction to pmie

Automated reasoning within Performance Co-Pilot (PCP) is provided by the
Performance Metrics Inference Engine, (pmie), which is an applied artificial
intelligence application.

The pmie tool accepts expressions describing adverse performance scenarios, and
periodically evaluates these against streams of performance metric values from one or
more sources. When an expression is found to be true, pmie is able to execute
arbitrary actions to alert or notify the system administrator of the occurrence of an
adverse performance scenario. These facilities are very general, and are designed to

007–2614–005 129

6: Performance Metrics Inference Engine

accommodate the automated execution of a mixture of generic and site-specific
performance monitoring and control functions.

The stream of performance metrics to be evaluated may be from one or more hosts, or
from one or more PCP archive logs. In the latter case, pmie may be used to
retrospectively identify adverse performance conditions.

Using pmie, you can filter, interpret, and reason about the large volume of
performance data made available by the Performance Metrics Collection Subsystem
(PMCS) and delivered through the Performance Metrics Application Programming
Interface (PMAPI).

Typical pmie uses include the following:

• Automated real-time monitoring of a host, a set of hosts, or client-server pairs of
hosts to raise operational alarms when poor performance is detected in a
production environment

• Nightly processing of archive logs to detect and report performance regressions, or
quantify quality of service for service agreements or management reports, or
produce advance warning of pending performance problems

• Strategic performance management, for example, detection of abnormal, but not
chronic, system behavior, trend analysis, and capacity planning

The pmie expressions are described in a language with expressive power and
operational flexibility. It includes the following operators and functions:

• Generalized predicate-action pairs, where a predicate is a logical expression over
the available performance metrics, and the action is arbitrary. Predefined actions
include the following:

– Launch a visible alarm with xconfirm; see the xconfirm(1) man page.

– Post an entry to the system log /var/adm/SYSLOG; see the syslog(3C) man
page.

– Post an entry to the PCP noticeboard file /var/adm/pcplog/NOTICES.

– Execute a shell command or script, for example, to send e-mail, initiate a pager
call, warn the help desk, and so on.

– Echo a message on standard output; useful for scripts that generate reports
from retrospective processing of PCP archive logs.

• Arithmetic and logical expressions in a C-like syntax.

130 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

• Expression groups may have an independent evaluation frequency, to support
both short-term and long-term monitoring.

• Canonical scale and rate conversion of performance metric values to provide
sensible expression evaluation.

• Aggregation functions of sum, avg, min, and max, that may be applied to
collections of performance metrics values clustered over multiple hosts, or
multiple instances, or multiple consecutive samples in time.

• Universal and existential quantification, to handle expressions of the form “for
every....” and “at least one...”.

• Percentile aggregation to handle statistical outliers, such as “for at least 80% of the
last 20 samples, ...”.

• Macro processing to expedite repeated use of common subexpressions or
specification components.

• Transparent operation against either live-feeds of performance metric values from
PMCD on one or more hosts, or against PCP archive logs of previously
accumulated performance metric values.

The power of pmie may be harnessed to automate the most common of the
deterministic system management functions that are responses to changes in system
performance. For example, disable a batch stream if the DBMS transaction commit
response time at the ninetieth percentile goes over two seconds, or stop accepting
news and send e-mail to the sysadmin alias if free space in the news file system falls
below five percent.

Moreover, the power of pmie can be directed towards the exceptional and sporadic
performance problems. For example, if a network packet storm is expected, enable IP
header tracing for ten seconds, and send e-mail to advise that data has been collected
and is awaiting analysis. Or, if production batch throughput falls below 50 jobs per
hour, activate a pager to the systems administrator on duty.

Obviously, pmie customization is required to produce meaningful filtering and
actions in each production environment. The pmieconf tool provides a convenient
customization method, allowing the user to generate parameterized pmie rules for
some of the more common performance scenarios.

007–2614–005 131

6: Performance Metrics Inference Engine

6.2 Basic pmie Usage
This section presents and explains some basic examples of pmie usage. The pmie
tool accepts the common PCP command line arguments, as described in Chapter 3,
page 45. In addition, pmie accepts the following command line arguments:

-d Enables interactive debug mode.

-v Verbose mode: expression values are displayed.

-V Verbose mode: annotated expression values are displayed.

-W When-verbose mode: when a condition is true, the satisfying expression
bindings are displayed.

One of the most basic invocations of this tool is this form:

pmie filename

In this form, the expressions to be evaluated are read from filename. In the absence of
a given filename, expressions are read from standard input, usually your system
keyboard.

6.2.1 pmie and the Performance Metrics Collection Subsystem

Before you use pmie, familiarize yourself with some Performance Metrics Collection
System (PMCS) basics. It is strongly recommended that you familiarize yourself with
the concepts from the Section 1.3, page 14. The discussion in this section serves as a
very brief review of these concepts.

The PMCS makes available hundreds of performance metrics that you can use when
formulating expressions for pmie to evaluate. If you want to find out which metrics
are currently available on your system, use this command:

pminfo

Use the pmie command line arguments to find out more about a particular metric. In
Example 6-1, to fetch new metric values from host moomba, you use the -f flag:

Example 6-1 pmie with the -f Option

pminfo -f -h moomba disk.dev.total

This produces the following response:

disk.dev.total

inst [131329 or "dks1d1"] value 970853

132 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

inst [131330 or "dks1d2"] value 53581
inst [131331 or "dks1d3"] value 5353

inst [131332 or "dks1d4"] value 225

inst [131333 or "dks1d5"] value 9674

inst [131334 or "dks1d6"] value 14383

inst [131335 or "dks1d7"] value 5578

This reveals that on the host moomba, the metric disk.dev.total has seven
instances, one for each disk on the system. The instance names are dks1d1, dks1d2,
and so on up to dks1d7.

Use the following command to request help text (specified with the -T flag) to
provide more information about performance metrics:

pminfo -T network.interface.in.packets

The metadata associated with a performance metric is used by pmie to determine
how the value should be interpreted. You can examine the descriptor that encodes
the metadata by using the -d flag for pminfo, as shown in Example 6-2:

Example 6-2 pmie with the -d and -h Options

pminfo -d -h somehost mem.freemem kernel.percpu.syscall

In response, you see output similar to this:

mem.freemem

Data Type: 32-bit unsigned int InDom: PM_INDOM_NULL 0xffffffff

Semantics: instant Units: Kbyte

kernel.percpu.syscall
Data Type: 32-bit unsigned int InDom: 1.1 0x400001

Semantics: counter Units: count

Note: A cumulative counter such as kernel.percpu.syscall is automatically
converted by pmie into a rate (measured in events per second, or count/second),
while instantaneous values such as mem.freemem are not subjected to rate
conversion. Metrics with an instance domain (InDom in the pminfo output) of
PM_INDOM_NULL are singular and always produce one value per source. However, a
metric like kernel.percpu.syscall has an instance domain, and may produce
multiple values per source (in this case, it is one value for each configured CPU).

007–2614–005 133

6: Performance Metrics Inference Engine

6.2.2 Simple pmie Usage

Example 6-3 directs the inference engine to evaluate and print values (specified with
the -v flag) for a single performance metric (the simplest possible expression), in this
case disk.dev.total, collected from the local PMCD:

Example 6-3 pmie with the -v Option

pmie -v

iops = disk.dev.total;

Ctrl+D

iops: ? ?

iops: 14.4 0

iops: 25.9 0.112
iops: 12.2 0

iops: 12.3 64.1

iops: 8.594 52.17

iops: 2.001 71.64

On this system, there are two disk spindles, hence two values of the expression iops
per sample. Notice that the values for the first sample are unknown (represented by
the question marks [?] in the first line of output), because rates can be computed only
when at least two samples are available. The subsequent samples are produced every
ten seconds by default. The second sample reports that during the preceding ten
seconds there was an average of 14.4 transfers per second on one disk and no
transfers on the other disk.

Rates are computed using time stamps delivered by the PMCS. Due to unavoidable
inaccuracy in the actual sampling time (the sample interval is not exactly 10 seconds),
you may see more decimal places in values than you expect. Notice, however, that
these errors do not accumulate but cancel each other out over subsequent samples.

In Example 6-3, the expression to be evaluated was enter (the keyboard), followed by
the end-of-file character [Ctrl+D]. Usually, it is more convenient to enter expressions
into a file (for example, myrules) and ask pmie to read the file. Use this command
syntax:

pmie -v myrules

Please refer to the pmie(1) man page for a complete description of pmie command
line options.

134 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

6.2.3 Complex pmie Examples

This section illustrates more complex pmie expressions of the specification language.
Section 6.3, page 137, provides a complete description of the pmie specification
language.

The following arithmetic expression computes the percentage of write operations over
the total number of disk transfers.

(disk.all.write / disk.all.total) * 100;

The disk.all metrics are singular, so this expression produces exactly one value per
sample, independent of the number of disk devices.

Note: If there is no disk activity, disk.all.total will be zero and pmie evaluates
this expression to be not a number. When -v is used, any such values are displayed
as question marks.

The following logical expression has the value true or false for each disk:

disk.dev.total > 10 &&

disk.dev.write > disk.dev.read;

The value is true if the number of writes exceeds the number of reads, and if there is
significant disk activity (more than 10 transfers per second). Example 6-4
demonstrates a simple action:

Example 6-4 pmie Output Printed

some_inst disk.dev.total > 60 ->

print "[%i] high disk i/o ";

This prints a message to the standard output whenever the total number of transfers
for some disk (some_inst) exceeds 60 transfers per second. The %i (instance) in the
message is replaced with the name(s) of the disk(s) that caused the logical expression
to be true.

Using pmie to evaluate the above expressions every 3 seconds, you see output similar
to the following:

pmie -v -t 3sec
pct_wrt = (disk.all.write / disk.all.total) * 100;

busy_wrt = disk.dev.total > 10 &&

disk.dev.write > disk.dev.read;

007–2614–005 135

6: Performance Metrics Inference Engine

busy = some_inst disk.dev.total > 60 ->
print "[%i] high disk i/o ";

Ctrl+D

pct_wrt: ?

busy_wrt: ? ?

busy: ?

pct_wrt: 18.43

busy_wrt: false false

busy: false

Mon Aug 5 14:56:08 1996: [dks0d2] high disk i/o
pct_wrt: 10.83

busy_wrt: false false

busy: true

pct_wrt: 19.85
busy_wrt: true false

busy: false

pct_wrt: ?

busy_wrt: false false

busy: false

Mon Aug 5 14:56:17 1996: [dks0d1] high disk i/o [dks0d2] high disk i/o

pct_wrt: 14.8

busy_wrt: false false

busy: true

The first sample contains unknowns, since all expressions depend on computing
rates. Also notice that the expression pct_wrt may have an undefined value
whenever all disks are idle, as the denominator of the expression is zero. If one or
more disks is busy, the expression busy is true, and the message from the print in
the action part of the rule appears (before the -v values).

136 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

6.3 Specification Language for pmie
This section describes the complete syntax of the pmie specification language, as well
as macro facilities and the issue of sampling and evaluation frequency. The reader
with a preference for learning by example may choose to skip this section and go
straight to the examples in Section 6.4, page 151.

Complex expressions are built up recursively from simple elements:

1. Performance metric values are obtained from PMCD for real-time sources,
otherwise from PCP archive logs.

2. Metrics values may be combined using arithmetic operators to produce arithmetic
expressions.

3. Arithmetic expressions may be compared using relational operators to produce
logical expressions.

4. Logical expressions may be combined using Boolean operators, including
powerful quantifiers.

5. Aggregation operators may be used to compute summary expressions, for either
arithmetic or logical operands.

6. The final logical expression may be used to initiate a sequence of actions.

6.3.1 Basic pmie Syntax

The pmie rule specification language supports a number of basic syntactic elements.

6.3.1.1 Lexical Elements

All pmie expressions are composed of the following lexical elements:

Identifier Begins with an alphabetic character (either upper or
lowercase), followed by zero or more letters, the
numeric digits, and the special characters period (.)
and underscore (_), as shown in the following example:

x, disk.dev.total and my_stuff

007–2614–005 137

6: Performance Metrics Inference Engine

As a special case, an arbitrary sequence of letters
enclosed by apostrophes (’) is also interpreted as an
identifier; for example:

’vms$slow_response’

Keyword The aggregate operators, units, and predefined actions
are represented by keywords; for example, some_inst,
print, and hour.

Numeric constant Any likely representation of a decimal integer or
floating point number; for example, 124, 0.05, and -45.67

String constant An arbitrary sequence of characters, enclosed by double
quotation marks ("x").

Within quotes of any sort, the backslash (/) may be used as an escape character as
shown in the following example:

"A \"gentle\" reminder"

6.3.1.2 Comments

Comments may be embedded anywhere in the source, in either of these forms:

/* text */ Comment, optionally spanning multiple lines, with no
nesting of comments.

// text Comment from here to the end of the line.

6.3.1.3 Macros

When they are fully specified, expressions in pmie tend to be verbose and repetitious.
The use of macros can reduce repetition and improve readability and modularity.
Any statement of the following form associates the macro name identifier with
the given string constant.

identifier = "string";

Any subsequent occurrence of the macro name identifier is replaced by the string
most recently associated with a macro definition for identifier.

$identifier

For example, start with the following macro definition:

138 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

disk = "disk.all";

You can then use the following syntax:

pct_wrt = ($disk.write / $disk.total) * 100;

Note: Macro expansion is performed before syntactic parsing; so macros may only be
assigned constant string values.

6.3.1.4 Units

The inference engine converts all numeric values to canonical units (seconds for time,
bytes for space, and events for count). To avoid surprises, you are encouraged to
specify the units for numeric constants. If units are specified, they are checked for
dimension compatibility against the metadata for the associated performance metrics.

The syntax for a units specification is a sequence of one or more of the following
keywords separated by either a space or a slash (/), to denote per: byte, KByte,
MByte, GByte, TByte, nsec, nanosecond, usec, microsecond, msec,
millisecond, sec, second, min, minute, hour, count, Kcount, Mcount,
Gcount, or Tcount. Plural forms are also accepted.

The following are examples of units usage:

disk.dev.blktotal > 1 Mbyte / second;

mem.freemem < 500 Kbyte;

Note: If you do not specify the units for numeric constants, it is assumed that the
constant is in the canonical units of seconds for time, bytes for space, and events for
count, and the dimensionality of the constant is assumed to be correct. Thus, in the
following expression, the 500 is interpreted as 500 bytes.

mem.freemem < 500

6.3.2 Setting Evaluation Frequency

The identifier name delta is reserved to denote the interval of time between
consecutive evaluations of one or more expressions. Set delta as follows:

delta = number [units];

007–2614–005 139

6: Performance Metrics Inference Engine

If present, units must be one of the time units described in the preceding section. If
absent, units are assumed to be seconds. For example, the following expression
has the effect that any subsequent expressions (up to the next expression that assigns
a value to delta) are scheduled for evaluation at a fixed frequency, once every five
minutes.

delta = 5 min;

The default value for delta may be specified using the -t command line option;
otherwise delta is initially set to be 10 seconds.

6.3.3 pmie Metric Expressions

A Performance Metrics Name Space (PMNS) provides a means of naming
performance metrics, for example, disk.dev.read. The Performance Metrics
Collection System (PMCS) allows an application to retrieve one or more values for a
performance metric from a designated source (a collector host running PMCD, or a
PCP archive log). To specify a single value for some performance metric requires the
metric name to be associated with all three of the following:

• A particular host (or source of metrics values)

• A particular instance (for metrics with multiple values)

• A sample time

The permissible values for hosts are the range of valid hostnames as provided by
Internet naming conventions.

The names for instances are provided by the Performance Metrics Domain Agents
(PMDA) for the instance domain associated with the chosen performance metric.

The sample time specification is defined as the set of natural numbers 0, 1, 2, and so
on. A number refers to one of a sequence of sampling events, from the current
sample 0 to its predecessor 1, whose predecessor was 2, and so on. This scheme is
illustrated by the time line shown in Figure 6-1.

past future

1 0234

now

a12217

Figure 6-1 Sampling Time Line

140 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Each sample point is assumed to be separated from its predecessor by a constant
amount of real time, the delta. The most recent sample point is always zero. The
value of delta may vary from one expression to the next, but is fixed for each
expression; for more information on the sampling interval, see Section 6.3.2, page 139.

For pmie, a metrics expression is the name of a metric, optionally qualified by a host,
instance and sample time specification. Special characters introduce the qualifiers:
colon (:) for hosts, hash or pound sign (#) for instances, and at (@) for sample times.
The following expression refers to the previous value (@1) of the counter for the disk
read operations associated with the disk instance #dks0d1 on the host moomba.

disk.dev.read :moomba #dks0d1 @1

In fact, this expression defines a point in the three-dimensional (3D) parameter space
of {host} x {instance} x {sample time} as shown in Figure 6-2.

instance

host

time
sample

a12218

Figure 6-2 Three-Dimensional Parameter Space

A metric expression may also identify sets of values corresponding to one-, two-, or
three-dimensional slices of this space, according to the following rules:

1. A metric expression consists of a PCP metric name, followed by optional host
specifications, followed by optional instance specifications, and finally, optional
sample time specifications.

2. A host specification consists of one or more host names, each prefixed by a colon
(:). For example: :indy :far.away.domain.com :localhost

007–2614–005 141

6: Performance Metrics Inference Engine

3. A missing host specification implies the default pmie source of metrics, as
defined by a -h option on the command line, or the first named archive in an -a
option on the command line, or PMCD on the local host.

4. An instance specification consists of one or more instance names, each prefixed by
a hash or pound (#) sign. For example: #ec0 #ec2

Recall that you can discover the instance names for a particular metric, using the
pminfo command. See Section 6.2.1, page 132.

Within the pmie grammar, an instance name is an identifier. If the instance name
contains characters other than alphanumeric characters, enclose the instance name
in single quotes; for example, #’/dev/root’ #’/dev/usr’

5. A missing instance specification implies all instances for the associated
performance metric from each associated pmie source of metrics.

6. A sample time specification consists of either a single time or a range of times. A
single time is represented as an at (@) followed by a natural number. A range of
times is an at (@), followed by a natural number, followed by two periods (..)
followed by a second natural number. The ordering of the end points in a range
is immaterial. For example, @0..9 specifies the last 10 sample times.

7. A missing sample time specification implies the most recent sample time.

The following metric expression refers to a three-dimensional set of values, with two
hosts in one dimension, five sample times in another, and the number of instances in
the third dimension being determined by the number of configured disk spindles on
the two hosts.

disk.dev.read :foo :bar @0..4

6.3.4 pmie Rate Conversion

Many of the metrics delivered by the PMCS are cumulative counters. Consider the
following metric:

disk.all.total

142 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

A single value for this metric tells you only that a certain number of disk I/O
operations have occurred since boot time, and that information may be invalid if the
counter has exceeded its 32-bit range and wrapped. You need at least two values,
sampled at known times, to compute the recent rate at which the I/O operations are
being executed. The required syntax would be this:

(disk.all.total @0 - disk.all.total @1) / delta

The accuracy of delta as a measure of actual inter-sample delay is an issue. pmie
requests samples, at intervals of approximately delta, while the results exported to
the PMCS are time stamped with the high-resolution system clock time when the
samples were exported. For these reasons, a built-in and implicit rate conversion
using accurate time stamps is provided by pmie for performance metrics that have
counter semantics. For example, the following expression is unconditionally
converted to a rate by pmie.

disk.all.total

6.3.5 pmie Arithmetic Expressions

Within pmie, simple arithmetic expressions are constructed from metrics expressions
(see Section 6.3.3, page 140) and numeric constants, using all of the arithmetic
operators and precedence rules of the C programming language.

All pmie arithmetic is performed in double precision.

Section 6.3.8, page 150, describes additional operators that may be used for aggregate
operations to reduce the dimensionality of an arithmetic expression.

6.3.6 pmie Logical Expressions

A number of logical expression types are supported:

• Logical constants

• Relational expressions

• Boolean expressions

• Quantification operators

007–2614–005 143

6: Performance Metrics Inference Engine

6.3.6.1 Logical Constants

Like in the C programming language, pmie interprets an arithmetic value of zero to
be false, and all other arithmetic values are considered true.

6.3.6.2 Relational Expressions

Relational expressions are the simplest form of logical expression, in which values
may be derived from arithmetic expressions using pmie relational operators. For
example, the following is a relational expression that is true or false, depending on
the aggregate total of disk read operations per second being greater than 50.

disk.all.read > 50 count/sec

All of the relational logical operators and precedence rules of the C programming
language are supported in pmie.

As described in Section 6.3.3, page 140, arithmetic expressions in pmie may assume
set values. The relational operators are also required to take constant, singleton, and
set-valued expressions as arguments. The result has the same dimensionality as the
operands. Suppose the rule in Example 6-5 is given:

Example 6-5 Relational Expressions

hosts = ":gonzo";

intfs = "#ec0 #ec2";
all_intf = network.interface.in.packets

$hosts $intfs @0..2 > 300 count/sec;

Then the execution of pmie may proceed as follows:

pmie -V uag.11

all_intf:

gonzo: [ec0] ? ? ?

gonzo: [ec2] ? ? ?

all_intf:
gonzo: [ec0] false ? ?

gonzo: [ec2] false ? ?

all_intf:

gonzo: [ec0] true false ?

gonzo: [ec2] false false ?
all_intf:

gonzo: [ec0] true true false

gonzo: [ec2] false false false

144 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

At each sample, the relational operator greater than (>) produces six truth values for
the cross-product of the instance and sample time dimensions.

Section 6.3.6.4, page 145, describes additional logical operators that may be used to
reduce the dimensionality of a relational expression.

6.3.6.3 Boolean Expressions

The regular Boolean operators from the C programming language are supported:
conjunction (&&), disjunction (||) and negation (!).

As with the relational operators, the Boolean operators accommodate set-valued
operands, and set-valued results.

6.3.6.4 Quantification Operators

Boolean and relational operators may accept set-valued operands and produce
set-valued results. In many cases, rules that are appropriate for performance
management require a set of truth values to be reduced along one or more of the
dimensions of hosts, instances, and sample times described in Section 6.3.3, page 140.
The pmie quantification operators perform this function.

Each quantification operator takes a one-, two-, or three-dimension set of truth values
as an operand, and reduces it to a set of smaller dimension, by quantification along a
single dimension. For example, suppose the expression in the previous example is
simplified and prefixed by some_sample, to produce the following expression:

intfs = "#ec0 #ec2";

all_intf = some_sample network.interface.in.packets

$intfs @0..2 > 300 count/sec;

Then the expression result is reduced from six values to two (one per interface
instance), such that the result for a particular instance will be false unless the
relational expression for the same interface instance is true for at least one of the
preceding three sample times.

There are existential, universal, and percentile quantification operators in each of the
host, instance, and sample time dimensions to produce the nine operators as follows:

some_host True if the expression is true for at least one host for the
same instance and sample time.

all_host True if the expression is true for every host for the same
instance and sample time.

007–2614–005 145

6: Performance Metrics Inference Engine

N%_host True if the expression is true for at least N% of the hosts
for the same instance and sample time.

some_inst True if the expression is true for at least one instance for
the same host and sample time.

all_instance True if the expression is true for every instance for the
same host and sample time.

N%_instance True if the expression is true for at least N% of the
instances for the same host and sample time.

some_sample time True if the expression is true for at least one sample time
for the same host and instance.

all_sample time True if the expression is true for every sample time for
the same host and instance.

N%_sample time True if the expression is true for at least N% of the
sample times for the same host and instance.

These operators may be nested. For example, the following expression answers the
question: “Are all hosts experiencing at least 20% of their disks busy either reading or
writing?”

Servers = ":moomba :babylon";
all_host (

20%_inst disk.dev.read $Servers > 40 ||

20%_inst disk.dev.write $Servers > 40

);

The following expression uses different syntax to encode the same semantics:

all_host (

20%_inst (

disk.dev.read $Servers > 40 ||
disk.dev.write $Servers > 40

)

);

Note: To avoid confusion over precedence and scope for the quantification operators,
use explicit parentheses.

Two additional quantification operators are available for the instance dimension only,
namely match_inst and nomatch_inst, that take a regular expression and a

146 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

boolean expression. The result is the boolean AND of the expression and the result of
matching (or not matching) the associated instance name against the regular
expression.

For example, this rule evaluates error rates on various 10BaseT Ethernet network
interfaces (such as ecN, etN, or efN):

some_inst

match_inst "^(ec|et|ef)"

network.interface.total.errors > 10 count/sec

-> syslog "Ethernet errors:" " %i"

6.3.7 pmie Rule Expressions

Rule expressions for pmie have the following syntax:

lexpr -> actions ;

The semantics are as follows:

• If the logical expression lexpr evaluates true, then perform the actions that
follow. Otherwise, do not perform the actions.

• It is required that lexpr has a singular truth value. Aggregation and
quantification operators must have been applied to reduce multiple truth values to
a single value.

• When executed, an action completes with a success/failure status.

• One or more actions may appear; consecutive actions are separated by operators
that control the execution of subsequent actions, as follows:

action-1 & Always execute subsequent actions (serial
execution).

action-1 | If action-1 fails, execute subsequent actions,
otherwise skip the subsequent actions (alternation).

An action is composed of a keyword to identify the action method, an optional time
specification, and one or more arguments.

A time specification uses the same syntax as a valid time interval that may be
assigned to delta, as described in Section 6.3.2, page 139. If the action is executed
and the time specification is present, pmie will suppress any subsequent execution of
this action until the wall clock time has advanced by time.

007–2614–005 147

6: Performance Metrics Inference Engine

The arguments are passed directly to the action method.

The following action methods are provided:

shell The single argument is passed to the shell for
execution. This action is implemented using system in
the background. The action does not wait for the system
call to return, and succeeds unless the fork fails.

alarm A notifier containing a time stamp, a single argument as
a message, and a Cancel button is posted on the
current display screen (as identified by the DISPLAY
environment variable). Each alarm action first checks if
its notifier is already active. If there is an identical
active notifier, a duplicate notifier is not posted. The
action succeeds unless the fork fails.

syslog A message is written into the system log as a priority
(see the -p option for pmlogger);" to: "A message is
written into the system log. If the first word of the first
argument is -p, the second word is interpreted as the
priority (see the syslog(3) man page)"; the message
tag is pcp-pmie. The remaining argument is the
message to be written to the system log. The action
succeeds unless the fork fails.

print A message containing a time stamp in ctime format
and the argument is displayed out to standard output
(stdout). This action always succeeds.

Within the argument passed to an action method, the following expansions are
supported to allow some of the context from the logical expression on the left to
appear to be embedded in the argument:

%h The value of a host that makes the expression true.

%i The value of an instance that makes the expression true.

%v The value of a performance metric from the logical expression.

Some ambiguity may occur in respect to which host, instance, or performance metric
is bound to a %-token. In most cases, the leftmost binding in the top-level
subexpression is used. You may need to use pmie in the interactive debugging mode
(specify the -d command line option) in conjunction with the -W command line
option to discover which subexpressions contributes to the %-token bindings.

Example 6-6 illustrates some of the options when constructing rule expressions:

148 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Example 6-6 Rule Expression Options

some_inst (disk.dev.total > 60)
-> syslog 10 mins "[%i] busy, %v IOPS " &

shell 1 hour "echo \

’Disk %i is REALLY busy. Running at %v I/Os per second’ \

| Mail -s ’pmie alarm’ sysadm";

In this case, %v and %i are both associated with the instances for the metric
disk.dev.total that make the expression true. If more than one instance makes
the expression true (more than one disk is busy), then the argument is formed by
concatenating the result from each %-token binding. The text added to
/var/adm/SYSLOG might be as shown in Example 6-7:

Example 6-7 /var/adm/SYSLOG Text

Aug 6 08:12:44 5B:gonzo pcp-pmie[3371]:

[dks0d1] busy, 3.7 IOPS [dks0d2] busy, 0.3 IOPS

Note: When pmie is processing performance metrics from a PCP archive log, the
actions will be processed in the expected manner; however, the action methods are
modified to report a textual facsimile of the action on the standard output.

Consider the rule in Example 6-8:

Example 6-8 Standard Output

delta = 2 sec; // more often for demonstration purposes

percpu = "kernel.percpu";
// Unusual usr-sys split when some CPU is more than 20% in usr mode

// and sys mode is at least 1.5 times usr mode

//

cpu_usr_sys = some_inst (

$percpu.cpu.sys > $percpu.cpu.user * 1.5 &&

$percpu.cpu.user > 0.2
) -> alarm "Unusual sys time: " "%i ";

When evaluated against an archive, the following output is generated (the alarm
action produces a message on standard output):

pmafm /tmp/f4 pmie cpu.head cpu.00

alarm Wed Aug 7 14:54:48 1996: Unusual sys time: cpu0

alarm Wed Aug 7 14:54:50 1996: Unusual sys time: cpu0

007–2614–005 149

6: Performance Metrics Inference Engine

alarm Wed Aug 7 14:54:52 1996: Unusual sys time: cpu0
alarm Wed Aug 7 14:55:02 1996: Unusual sys time: cpu0

alarm Wed Aug 7 14:55:06 1996: Unusual sys time: cpu0

6.3.8 pmie Intrinsic Operators

The following sections describe some other useful intrinsic operators for pmie. These
operators are divided into three groups:

• Arithmetic aggregation

• The rate operator

• Transitional operators

6.3.8.1 Arithmetic Aggregation

For set-valued arithmetic expressions, the following operators reduce the
dimensionality of the result by arithmetic aggregation along one of the host, instance,
or sample time dimensions. For example, to aggregate in the host dimension, the
following operators are provided:

avg_host Computes the average value across all instances for the
same host and sample time

sum_host Computes the total value across all instances for the
same host and sample time

count_host Computes the number of values across all instances for
the same host and sample time

min_host Computes the minimum value across all instances for
the same host and sample time

max_host Computes the maximum value across all instances for
the same host and sample time

Ten additional operators correspond to the forms *_inst and *_sample.

The following example illustrates the use of an aggregate operator in combination
with an existential operator to answer the question “Does some host currently have
two or more busy processors?”

// note ’’ to escape - in host name

poke = ":moomba :’mac-larry’ :bitbucket";

150 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

some_host (
count_inst (kernel.percpu.cpu.user $poke +

kernel.percpu.cpu.sys $poke > 0.7) >= 2

)

-> alarm "2 or more busy CPUs";

6.3.8.2 The rate Operator

The rate operator computes the rate of change of an arithmetic expression as shown
in the following example:

rate mem.freemem

It returns the rate of change for the mem.freemem performance metric; that is, the
rate at which free physical memory is being allocated or released.

The rate intrinsic operator is most useful for metrics with instantaneous value
semantics. For metrics with counter semantics, pmie already performs an implicit
rate calculation (see the Section 6.3.4, page 142) and the rate operator would
produce the second derivative with respect to time, which is less likely to be useful.

6.3.8.3 Transitional Operators

In some cases, an action needs to be triggered when an expression changes from true
to false or vice versa. The following operators take a logical expression as an
operand, and return a logical expression:

rising Has the value true when the operand transitions from
false to true in consecutive samples.

falling Has the value false when the operand transitions
from true to false in consecutive samples.

6.4 pmie Examples
The examples presented in this section are task-oriented and use the full power of the
pmie specification language as described in Section 6.3, page 137.

Source code for the pmie examples in this chapter, and many more examples, is
provided in the PCP subsystem pcp.sw.demo, and when installed may be found in
/var/pcp/demos/pmie. Example 6-9 and Example 6-10 illustrate monitoring CPU
utilization and disk activity.

007–2614–005 151

6: Performance Metrics Inference Engine

Example 6-9 Monitoring CPU Utilization

// Some Common Performance Monitoring Scenarios
//

// The CPU Group

//

delta = 2 sec; // more often for demonstration purposes

// common prefixes

//
percpu = "kernel.percpu";

all = "kernel.all";

// Unusual usr-sys split when some CPU is more than 20% in usr mode

// and sys mode is at least 1.5 times usr mode

//
cpu_usr_sys =

some_inst (

$percpu.cpu.sys > $percpu.cpu.user * 1.5 &&

$percpu.cpu.user > 0.2

)
-> alarm "Unusual sys time: " "%i ";

// Over all CPUs, syscall_rate > 1000 * no_of_cpus

//

cpu_syscall =

$all.syscall > 1000 count/sec * hinv.ncpu

-> print "high aggregate syscalls: %v";
// Sustained high syscall rate on a single CPU

//

delta = 30 sec;

percpu_syscall =

some_inst (
$percpu.syscall > 2000 count/sec

)

-> syslog "Sustained syscalls per second? " "[%i] %v ";

// the 1 minute load average exceeds 5 * number of CPUs on any host

hosts = ":gonzo :moomba"; // change as required
delta = 1 minute; // no need to evaluate more often than this

high_load =

some_host (

$all.load $hosts #’1 minute’ > 5 * hinv.ncpu

)

-> alarm "High Load Average? " "%h: %v ";

152 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Example 6-10 Monitoring Disk Activity

// Some Common Performance Monitoring Scenarios
//

// The Disk Group

//

delta = 15 sec; // often enough for disks?

// common prefixes

//
disk = "disk";

// Any disk performing more than 40 I/Os per second, sustained over

// at least 30 seconds is probably busy

//

delta = 30 seconds;
disk_busy =

some_inst (

$disk.dev.total > 40 count/sec

)

] -> shell "Mail -s ’Heavy systained disk traffic’ sysadm";
// Try and catch bursts of activity ... more than 60 I/Os per second

// for at least 25% of 8 consecutive 3 second samples

//

delta = 3 sec;

disk_burst =

some_inst (
25%_sample (

$disk.dev.total @0..7 > 60 count/sec

)

)

-> alarm "Disk Burst? " "%i ";
// any SCSI disk controller performing more than 3 Mbytes per

// second is busy

// Note: the obscure 512 is to convert blocks/sec to byte/sec,

// and pmie handles the rest of the scale conversion

//
some_inst $disk.ctl.blktotal * 512 > 3 Mbyte/sec

-> alarm "Busy Disk Controller: " "%i ";

007–2614–005 153

6: Performance Metrics Inference Engine

6.5 Developing and Debugging pmie Rules
Given the -d command line option, pmie executes in interactive mode, and the user
is presented with a menu of options:

pmie debugger commands

f [file-name] - load expressions from given file or stdin
l [expr-name] - list named expression or all expressions

r [interval] - run for given or default interval

S time-spec - set start time for run

T time-spec - set default interval for run command

v [expr-name] - print subexpression for %h, %i and %v bindings
h or ? - print this menu of commands

q - quit

pmie>

If both the -d option and a filename are present, the expressions in the given file are
loaded before entering interactive mode. Interactive mode is useful for debugging
new rules.

6.6 Caveats and Notes on pmie

The following sections provide important information for users of pmie.

6.6.1 Performance Metrics Wraparound

Performance metrics that are cumulative counters may occasionally overflow their
range and wraparound to 0. When this happens, an unknown value (printed as ?) is
returned as the value of the metric for one sample (recall that the value returned is
normally a rate). You can have PCP interpolate a value based on expected rate of
change by setting the PCP_COUNTER_WRAP environment variable.

6.6.2 pmie Sample Intervals

The sample interval (delta) should always be long enough, particularly in the case
of rates, to ensure that a meaningful value is computed. Interval may vary according
to the metric and your needs. A reasonable minimum is in the range of ten seconds
or several minutes. Although the PMCS supports sampling rates up to hundreds of

154 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

times per second, using small sample intervals creates unnecessary load on the
monitored system.

6.6.3 pmie Instance Names

When you specify a metric instance name (#identifier) in a pmie expression, it is
compared against the instance name supplied by the PMCS as follows:

• If the given instance name and the PMCS name are the same, they are considered
to match.

• Otherwise, the first two space separated tokens are extracted from the PMCS
name. If the given instance name is the same as either of these tokens, they are
considered a match.

For some metrics, notably the per process (proc.xxx.xxx) metrics, the first token in
the PMCS instance name is impossible to determine at the time you are writing pmie
expressions. The above policy circumvents this problem.

6.6.4 pmie Error Detection

The parser used in pmie is currently not robust in handling syntax errors. It is
suggested that you check any problematic expressions individually in interactive
mode:

pmie -v -d

pmie> f

expression
Ctrl+D

If the expression was parsed, its internal representation is shown:

pmie> l

The expression is evaluated twice and its value printed:

pmie> r 10sec

Then quit:

pmie> q

It is not always possible to detect semantic errors at parse time. This happens when a
performance metric descriptor is not available from the named host at this time. A

007–2614–005 155

6: Performance Metrics Inference Engine

warning is issued, and the expression is put on a wait list. The wait list is checked
periodically (about every five minutes) to see if the metric descriptor has become
available. If an error is detected at this time, a message is printed to the standard
error stream (stderr) and the offending expression is put aside.

6.7 Creating pmie Rules with pmieconf

The pmieconf tool is a command line utility that is designed to aid the specification
of pmie rules from parameterized versions of the rules. pmieconf is used to display
and modify variables or parameters controlling the details of the generated pmie
rules.

pmieconf reads two different forms of supplied input files and produces a localized
pmie configuration file as its output.

The first input form is a generalized pmie rule file such as those found below
/var/pcp/config/pmieconf/*/*. These files contain the generalized rules which
pmieconf is able to manipulate. Each of the rules can be enabled or disabled, or the
individual variables associated with each rule can be edited.

The second form is an actual pmie configuration file (that is, a file which can be
interpreted by pmie, conforming to the pmie syntax described in Section 6.3, page
137). This file is both input to and output from pmieconf.

The input version of the file contains any changed variables or rule states from
previous invocations of pmieconf, and the output version contains both the changes
in state (for any subsequent pmieconf sessions) and the generated pmie syntax. The
pmieconf state is embedded within a pmie comment block at the head of the output
file and is not interpreted by pmie itself.

pmieconf is an integral part of the pmie daemon management process described in
Section 6.9, page 163. Procedure 6-1 and Procedure 6-2 introduce the pmieconf tool
through a series of typical operations.

Procedure 6-1 Display pmieconf Rules

1. Start pmieconf interactively.

$ pmieconf -f /tmp/pmiefile

Updates will be made to /tmp/pmiefile

pmieconf>

156 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

2. List the set of available pmieconf rules by using the rules command.

3. List the set of rule groups using the groups command.

4. List only the enabled rules, using the rules enabled command.

5. List a single rule:

pmieconf> list memory.swap_low

rule: memory.swap_low [Low free swap space]
help: There is only threshold percent swap space remaining - the system

may soon run out of virtual memory. Reduce the number and size of

the running programs or add more swap(1) space before it

completely

runs out.
predicate =

some_host (

(100 * (swap.free $hosts$ / swap.length $hosts$))

< $threshold$

&& swap.length $hosts$ > 0 // ensure swap in use
)

vars: enabled = no

threshold = 10%

pmieconf>

6. List one rule variable:

pmieconf> list memory.swap_low threshold

rule: memory.swap_low [Low free swap space]
threshold = 10%

pmieconf>

Procedure 6-2 Modify pmieconf Rules and Generate a pmie File

1. Lower the threshold for the memory.swap_low rule, and also change the pmie
sample interval affecting just this rule. The delta variable is special in that it is
not associated with any particular rule; it has been defined as a global pmieconf
variable. Global variables can be displayed using the list global command to
pmieconf, and can be modified either globally or local to a specific rule.

pmieconf> modify memory.swap_low threshold 5

007–2614–005 157

6: Performance Metrics Inference Engine

pmieconf> modify memory.swap_low delta "1 sec"

pmieconf>

2. Disable all of the rules except for the memory.swap_low rule so that you can see
the effects of your change in isolation.

This produces a relatively simple pmie configuration file:

pmieconf> disable all

pmieconf> enable memory.swap_low

pmieconf> status

verbose: off

enabled rules: 1 of 35

pmie configuration file: /tmp/pmiefile

pmie processes (PIDs) using this file: (none found)

pmieconf> quit

You can also use the status command to verify that only one rule is enabled at
the end of this step.

3. Run pmie with the new configuration file. Use a text editor to view the newly
generated pmie configuration file (/tmp/pmiefile), and then run the command:

$ pmie -T "1.5 sec" -v -l /tmp/log /tmp/pmiefile

memory.swap_low: false

memory.swap_low: false

$ cat /tmp/log

Log for pmie on moomba started Mon Jun 21 16:26:06 1999

pmie: PID = 21847, default host = moomba

[Mon Jun 21 16:26:07] pmie(21847) Info: evaluator exiting

Log finished Mon Jun 21 16:26:07 1999

$

158 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

4. Notice that both of the pmieconf files used in the previous step are simple text
files, as described in the pmieconf(4) man page:

$ file /tmp/pmiefile

/tmp/pmiefile: PCP pmie config (V.1)

$ file /var/pcp/config/pmieconf/memory/swap_low

/var/pcp/config/pmieconf/memory/swap_low: PCP pmieconf rules (V.1)

6.8 Creating pmie Rules with pmrules

The GUI tool pmrules may be used to generate pmie rules from templates that are
shipped with PCP as shown in Procedure 6-3. These templates are parameterized
versions of rules describing common performance scenarios suited for pmie
monitoring.

Procedure 6-3 Creating pmie Rules

1. Start pmrules, and choose Import... from the Template menu.

2. Click the Choose File... button in the “Import template(s) from file” dialog.

Sample templates are installed in the directory /var/pcp/config/pmrules.

3. Double-click the pcp directory in the pmrules directory browser window.

An Import template(s) from file dialog appears, as shown in Figure 6-3.

007–2614–005 159

6: Performance Metrics Inference Engine

Figure 6-3 pmrules Import template(s) from file Dialog

160 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

4. Select the desired templates, click OK, and return to the pmrules main window,
which appears similar to the one shown in Figure 6-4.

Figure 6-4 pmrules Main Dialog after Template Selection

5. Double-click the desired template, and the pmrules Edit template dialog
displays, similar to the one shown in Figure 6-5.

At this point, you can customize the template by assigning values to the
threshold, delta, and holdoff Parameters text boxes, then either selecting one of
the predefined Actions, or specifying your own custom user action.

007–2614–005 161

6: Performance Metrics Inference Engine

Figure 6-5 pmrules Edit template Dialog

162 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

6. When you are finished customizing the template, click OK and return to the main
pmrules window.

7. Choose Save As from the File menu, and provide a new name for your private
copy of the pmrules template file.

Two files are saved. The first one takes the given filename and is your private
copy of the pmrules template file. The second file takes the given filename with
the suffix .pmie appended and contains the pmie rules—this second file should
be given as an argument to pmie.

You can also create new templates for other performance problems. These can then be
included in the template collection available to pmrules, and then used to customize
instances of the pmie rules for particular hosts.

See the pmrules(1) man page for a complete description of the capabilities of the
pmrules tool.

6.9 Management of pmie Processes
The pmie process can be run as a daemon as part of the system startup sequence, and
can thus be used to perform automated, live performance monitoring of a running
system. To do this, run these commands (as superuser):

chkconfig pmie on

/etc/init.d/pmie start

By default, these enable a single pmie process monitoring the local host, with the
default set of pmieconf rules enabled (for more information about pmieconf, see
Section 6.7). Procedure 6-4 illustrates how you can use these commands to start any
number of pmie processes to monitor local or remote machines.

Procedure 6-4 Add a New pmie Instance to the pmie Daemon Management Framework

1. Use a text editor (as superuser) to edit the pmie control file
/var/pcp/config/pmie/control. Notice the default entry toward the end of
the file, which looks like this:

#Host S? Log File Arguments
LOCALHOSTNAME n /var/adm/pmielog/LOCALHOSTNAME/pmie.log -c config.default

007–2614–005 163

6: Performance Metrics Inference Engine

This entry is used to enable a local pmie process. Add a new entry for a remote
host on your local network (for example, moomba), by using your pmie
configuration file (see Section 6.7, page 156):

#Host S? Log File Arguments

moomba n /var/adm/pmielog/moomba/pmie.log -c /tmp/pmiefile

2. Enable pmie daemon management:

chkconfig pmie on

This simple step allows pmie to be started as part of your machine’s boot process.

3. Start the two pmie daemons. At the end of this step, you should see two new
pmie processes monitoring the local and remote hosts:

/etc/init.d/pmie start
Performance Co-Pilot starting inference engine(s) ...

Wait a few moments while the startup scripts run. The pmie start script uses the
pmie_check script to do most of its work.

Verify that the pmie processes have started using the pmie metrics exported by
the PMCD PMDA (wobbly is the local host):

pminfo -f pmcd.pmie.pmcd_host

pmcd.pmie.pmcd_host
inst [23150 or "23150"] value "wobbly.melbourne.sgi.com"

inst [23204 or "23204"] value "moomba.melbourne.sgi.com"

164 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

If a remote host is not up at the time when pmie is started, the pmie process may
exit. pmie processes may also exit if the local machine is starved of memory
resources. To counter these adverse cases, it can be useful to have a crontab entry
running. Adding an entry as shown in Procedure 6-5, ensures that if one of the
configured pmie processes exits, it is automatically restarted.

Procedure 6-5 Add a pmie crontab Entry

1. Merge the sample pmie crontab entry with your root crontab entry. The
/var/pcp/config/pmie/crontab file holds this sample entry:

$ cat /var/pcp/config/pmie/crontab

#

standard Performance Co-Pilot crontab entries for a PCP site

with one or more pmie instances running

#
every 30 minutes, check pmie instances are running

25,55 * * * * /usr/pcp/bin/pmie_check

2. Use the crontab command and a text editor to append the sample pmie
crontab entry to root crontab file. This procedure runs the pmie_check
script once every thirty minutes to verify that the pmie instances are running. If
they are not, the procedure restarts them and sends e-mail to root indicating
which instances needed restarting.

6.9.1 Global Files and Directories

The following global files and directories influence the behavior of pmie and the
pmie management scripts:

/etc/config/pmie

Controls the pmie daemon facility. Enable it using this command:

chkconfig pmie on

/var/pcp/demos/pmie/*

Contains sample pmie rules that may be used as a basis for
developing local rules.

007–2614–005 165

6: Performance Metrics Inference Engine

/var/pcp/config/pmie/config.default

Is the default pmie configuration file that is used when the pmie
daemon facility is enabled.

/var/pcp/config/pmieconf/*/*

Contains the pmieconf rule definitions in its subdirectories.

/var/pcp/config/pmie/control

Defines which PCP collector hosts require a daemon pmie to be
launched on the local host, where the configuration file comes from,
where the pmie log file should be created, and pmie startup options.

/var/pcp/config/pmlogger/crontab

Contains prototype crontab entries that may be merged with the
crontab entries for root to schedule the periodic execution of the
pmie_check script, for verifying that pmie instances are running.

/var/adm/pmielog/

Contains the pmie log files for the host. These files are created by the
default behavior of the /etc/init.d/pmie startup scripts.

6.9.2 pmie Instances and Their Progress

The PMCD PMDA exports information about executing pmie instances and their
progress in terms of rule evaluations and action execution rates.

pmie_check This command is similar to the
pmlogger support script,
pmlogger_check.

/etc/init.d/pmie This control file supports the
starting and stopping of multiple
pmie instances that are monitoring
one or more hosts.

/var/tmp/pmie The statistics that pmie gathers are
maintained in binary data structure
files. These files are in the
/var/tmp/pmie directory.

166 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

pmcd.pmie metrics If pmie is running on a system
with a PCP collector deployment,
the PMCD PMDA exports these
metrics via the pmcd.pmie group
of metrics.

007–2614–005 167

Chapter 7

Archive Logging

Performance monitoring and management in complex systems demands the ability to
accurately capture performance characteristics for subsequent review, analysis, and
comparison. Performance Co-Pilot (PCP) provides extensive support for the creation
and management of archive logs that capture a user-specified profile of performance
information to support retrospective performance analysis.

The following major sections are included in this chapter:

• Section 7.1, page 169, presents the concepts and issues involved with creating and
using archive logs.

• Section 7.2, page 172, describes the interaction of the PCP tools with archive logs.

• Section 7.3, page 177, shows some shortcuts for setting up useful PCP archive logs.

• Section 7.4, page 182, provides information about other archive logging features
and sevices.

• Section 7.5, page 185, presents helpful directions if your archive logging
implementation is not functioning correctly.

7.1 Introduction to Archive Logging
Within the PCP, the pmlogger utility may be configured to collect archives of
performance metrics. The archive creation process is easy and very flexible,
incorporating the following features:

• Archive log creation at either a PCP collector (typically a server) or a PCP monitor
system (typically a workstation), or at some designated PCP archive logger host.

• Concurrent independent logging, both local and remote. The performance analyst
can activate a private pmlogger instance to collect only the metrics of interest for
the problem at hand, independent of other logging on the workstation or remote
host.

• Record mode in various GUI monitoring tools to create archives as needed from
the current visualization.

007–2614–005 169

7: Archive Logging

• Independent determination of logging frequency for individual metrics or metric
instances. For example, you could log the “5 minute” load average every half
hour, the write I/O rate on the DBMS log spindle every 10 seconds, and aggregate
I/O rates on the other disks every minute.

• Dynamic adjustment of what is to be logged, and how frequently, via pmlc. This
feature may be used to disable logging or to increase the sample interval during
periods of low activity or chronic high activity (to minimize logging overhead and
intrusion). A local pmlc may interrogate and control a remote pmlogger, subject
to the access control restrictions implemented by pmlogger.

• Self-contained logs that include all system configuration and metadata required to
interpret the values in the log. These logs can be kept for analysis at a much later
time, potentially after the hardware or software has been reconfigured and the
logs have been stored as discrete, autonomous files for remote analysis.

• cron-based scripts to expedite the operational management, for example, log
rotation, consolidation, and culling.

• Archive folios as a convenient aggregation of multiple archive logs. Archive folios
may be created with the mkaf utility and processed with the pmafm tool.

7.1.1 Archive Logs and the PMAPI

Critical to the success of the PCP archive logging scheme is the fact that the library
routines providing access to real-time feeds of performance metrics also provide
access to the archive logs.

Live feeds (or real-time) sources of performance metrics and archives are literally
interchangeable, with a single Performance Metrics Application Programming
Interface (PMAPI) that preserves the same semantics for both styles of metric source.
In this way, applications and tools developed against the PMAPI can automatically
process either live or historical performance data.

The only restriction is that both live and historical data cannot be monitored
simultaneously with the same invocation of a visualization tool.

7.1.2 Retrospective Analysis Using Archive Logs

One of the most important applications of archive logging services provided by PCP
is in the area of retrospective analysis. In many cases, understanding today’s
performance problems can be assisted by side-by-side comparisons with yesterday’s

170 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

performance. With routine creation of performance archive logs, you can concurrently
replay pictures of system performance for two or more periods in the past.

Archive logs are also an invaluable source of intelligence when trying to diagnose
what went wrong, as in a performance postmortem. Because the PCP archive logs are
entirely self-contained, this analysis can be performed off-site if necessary.

Each archive log contains metric values from only one host. However, many PCP
tools can simultaneously visualize values from multiple archives collected from
different hosts.

The archives can be replayed against the inference engine (pmie is an application that
uses the PMAPI). This allows you to automate the regular, first-level analysis of
system performance.

Such analysis can be performed by constructing suitable expressions to capture the
essence of common resource saturation problems, then periodically creating an archive
and playing it against the expressions. For example, you may wish to create a daily
performance audit (run by the cron command) to detect performance regressions.

For more about pmie, see Chapter 6.

7.1.3 Snapshots from PCP Archive Logs

Periodic snapshot images of recent performance, activity levels, and resource
utilization can be extracted from the PCP archive logs and published via a World
Wide Web (WWW) server. These are high-quality images generated from pmchart
that provide an excellent vehicle for publishing performance summary information for
users, system and network administrators, or managers. The pmsnap services may be
used to automate snapshots. For additional information, see the pmsnap(1) man page.

7.1.4 Using Archive Logs for Capacity Planning

By collecting performance archives with relatively long sampling periods, or by
reducing the daily archives to produce summary logs, the capacity planner can collect
the base data required for forward projections, and can estimate resource demands
and explore “what if” scenarios by replaying data using visualization tools and the
inference engine.

007–2614–005 171

7: Archive Logging

7.2 Using Archive Logs with Performance Visualization Tools
Most PCP tools default to real-time display of current values for performance metrics
from PCP collector host(s). However, most PCP tools also have the capability to
display values for performance metrics retrieved from PCP archive log(s). The
following sections describe plans, steps, and general issues involving archive logs and
the PCP tools.

7.2.1 Coordination between pmlogger and PCP tools

Most commonly, a PCP tool would be invoked with the -a option to process an
archive log some time after pmlogger had finished creating the archive. However, a
tool such as oview that uses a Time Control dialog (see Section 3.4, page 49) stops
when the end of archive is reached, but could resume if more data is written to the
PCP archive log.

Note: pmlogger uses buffered I/O to write the archive log so that the end of the
archive may be aligned with an I/O buffer boundary, rather than with a logical
archive log record. If such an archive was read by a PCP tool, it would appear
truncated and might confuse the tool. These problems may be avoided by sending
pmlogger a SIGUSR1 signal, or by using the flush command of pmlc to force
pmlogger to flush its output buffers.

7.2.2 Administering PCP Archive Logs Using cron Scripts

The IRIX operating system supports the standard cron process scheduling system.
Complete information on the cron command is available in the appropriate man
page and in IRIX Admin: System Configuration and Operation.

PCP supplies shell scripts to use the cron functionality to help manage your archive
logs. The following scripts are supplied:

Script Description

pmlogger_daily Performs a daily housecleaning of archive logs and
notices.

pmlogger_merge Merges archive logs and is called by pmlogger_daily.

172 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

pmlogger_check Checks to see that all desired pmlogger processes are
running on your system, and invokes any that are
missing for any reason.

pmsnap Generates graphic image snapshots of pmchart
performance charts at regular intervals.

The configuration files used by these scripts can be edited to suit your particular
needs, and are generally controlled by the /var/pcp/config/pmlogger/control
file (pmsnap has an additional control file). Complete information on these scripts is
available in the pmlogger_daily(1) and pmsnap(1) man pages.

7.2.3 Archive Log File Management

PCP archive log files can occupy a great deal of disk space, and management of
archive logs can be a large task in itself. The following sections provide information
to assist you in PCP archive log file management.

7.2.3.1 Basename Conventions

When a PCP archive is created by pmlogger, an archive basename must be specified
and several physical files are created, as shown in Table 7-1.

Table 7-1 Filenames for PCP Archive Log Components (archive.*)

Filename Contents

archive.index Temporal index for rapid access to archive contents.

archive.meta Metadata descriptions for performance metrics and instance
domains appearing in the archive.

archive.N Volumes of performance metrics values, for N = 0,1,2,...

7.2.3.2 Log Volumes

A single PCP archive may be partitioned into a number of volumes. These volumes
may expedite management of the archive; however, the metadata file and at least one
volume must be present before a PCP tool can process the archive.

007–2614–005 173

7: Archive Logging

You can control the size of an archive log volume by using the -v command line
option to pmlogger. This option specifies how large a volume should become before
pmlogger starts a new volume. Archive log volumes retain the same base filename
as other files in the archive log, and are differentiated by a numeric suffix that is
incremented with each volume change. For example, you might have a log volume
sequence that looks like this:

netserver.log.0

netserver.log.1
netserver.log.2

You can also cause an existing log to be closed and a new one to be opened by
sending a SIGHUP signal to pmlogger, or by using the pmlc command to change the
pmlogger instructions dynamically, without interrupting pmlogger operation.
Complete information on log volumes is found in the pmlogger(1) man page.

7.2.3.3 Basenames for Managed Archive Log Files

The PCP archive management tools support a consistent scheme for selecting the
basenames for the files in a collection of archives and for mapping these files to a
suitable directory hierarchy.

Once configured, the PCP tools that manage archive logs employ a consistent scheme
for selecting the basename for an archive each time pmlogger is launched, namely
the current date and time in the format YYYYMMDD.HH.MM. Typically, at the end
of each day, all archives for a particular host on that day would be merged to produce
a single archive with a basename constructed from the date, namely YYYYMMDD.
The pmlogger_daily script performs this action and a number of other routine
housekeeping chores.

7.2.3.4 Directory Organization for Archive Log Files

If you are using a deployment of PCP tools and daemons to collect metrics from a
variety of hosts and storing them all at a central location, you should develop an
organized strategy for storing and naming your log files.

Note: There are many possible configurations of pmlogger, as described in Section
8.3, page 197. The directory organization described in this section is recommended for
any system on which pmlogger is configured for permanent execution (as opposed
to short-term executions, for example, as launched from pmchart to record some
performance data of current interest).

174 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Typically, the IRIX filesystem structure can be used to reflect the number of hosts for
which a pmlogger instance is expected to be running locally, obviating the need for
lengthy and cumbersome filenames. It makes considerable sense to place all logs for a
particular host in a separate directory named after that host. Because each instance of
pmlogger can only log metrics fetched from a single host, this also simplifies some
of the archive log management and administration tasks.

For example, consider the filesystem and naming structure shown in Figure 7-1.

Basename 19960805

Basename 19960804

Basename 19960803

Basename 19960805

Basename 19960804

Root Directory for PCP Archives

default: /var/adm/pcplog

PCP Archives from host 1

default: /var/adm/pcplog/one

PCP Archives from host 2

default: /var/adm/pcplog/two

a12222

Figure 7-1 Archive Log Directory Structure

The specification of where to place the archive log files for particular pmlogger
instances is encoded in the configuration file
/var/pcp/config/pmlogger/control, and this file should be customized on
each host running an instance of pmlogger.

007–2614–005 175

7: Archive Logging

If many archives are being created, and the associated PCP collector systems form
peer classes based upon service type (for example, Web servers, DBMS servers, NFS
servers, and so on), then it may be appropriate to introduce another layer into the
directory structure, or use symbolic links to group together hosts providing similar
service types.

7.2.3.5 Configuration of pmlogger

The configuration files used by pmlogger describe which metrics are to be logged.
Groups of metrics may be logged at different intervals to other groups of metrics.
Two states, mandatory and advisory, also apply to each group of metrics, defining
whether metrics definitely should be logged or not logged, or whether a later
advisory definition may change that state.

The mandatory state takes precedence if it is on or off, causing any subsequent
request for a change in advisory state to have no effect. If the mandatory state is
maybe, then the advisory state determines if logging is enabled or not.

The mandatory states are on, off, and maybe. The advisory states, which only affect
metrics that are mandatory maybe, are on and off. Therefore, a metric that is
mandatory maybe in one definition and advisory on in another definition would be
logged at the advisory interval. Metrics that are not specified in the pmlogger
configuration file are mandatory maybe and advisory off by default and are not
logged.

A complete description of the pmlogger configuration format can be found on the
pmlogger(1) man page.

7.2.3.6 PCP Archive Contents

Once a PCP archive log has been created, the pmdumplog utility may be used to
display various information about the contents of the archive. For example, start with
the following command:

pmdumplog -l /var/adm/pcplog/www.sgi.com/960731

It might produce the following output:

Log Label (Log Format Version 1)

Performance metrics from host www.sgi.com
commencing Wed Jul 31 00:16:34.941 1996

ending Thu Aug 1 00:18:01.468 1996

176 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

The simplest way to discover what performance metrics are contained within an
archive is to use pminfo as shown in Example 7-1:

Example 7-1 Using pminfo to Obtain Archive Information

pminfo -a /var/adm/pcplog/www.sgi.com/960731 network.mbuf
network.mbuf.alloc

network.mbuf.typealloc

network.mbuf.clustalloc

network.mbuf.clustfree

network.mbuf.failed
network.mbuf.waited

network.mbuf.drained

7.3 Cookbook for Archive Logging
The following sections present a checklist of tasks that may be performed to enable
PCP archive logging with minimal effort. For a complete explanation, refer to the
other sections in this chapter and the man pages for pmlogger and related tools.

7.3.1 Primary Logger

Assume you wish to activate primary archive logging on the PCP collector host
pluto. Execute all of the following tasks while logged into pluto as the superuser
(root).

1. Create the directory to hold the archive logs:

mkdir /var/adm/pcplog/pluto

2. Choose a suitable pmlogger configuration file. Here are some examples:

• The default configuration:
/var/pcp/config/pmlogger/config.default.

• A broad summary configuration, sufficient to be used with dkvis, mpvis,
nfsvis, and pmkstat: /var/pcp/config/pmlogger/config.Summary.

• One of the other config.* files in the /var/pcp/config/pmlogger
directory, tailored for an application, a PCP add-on product, a pmchart view,
or a PCP monitor tool.

007–2614–005 177

7: Archive Logging

Copy the chosen configuration file to /var/adm/pcplog/pluto/
config.default (possibly after some customization).

3. Edit /var/pcp/config/pmlogger/control. Using the line for the “local
primary logger” as a template, add the following line to the file:

pluto y n /var/adm/pcplog/pluto -c config.default

4. Make sure PMCD and pmlogger are enabled and running:

chkconfig pmcd on

chkconfig pmlogger on

/etc/init.d/pcp start

Performance Co-Pilot PMCD started (logfile is /pmcd.log)

Performance Co-Pilot Primary Logger started

5. Verify that the primary pmlogger instance is running:

pmlc
pmlc> connect primary

pmlc> status

pmlogger [primary] on host pluto is logging metrics from host pluto

log started Thu Aug 8 14:33:01 1996 (times in local time)

last log entry Thu Aug 8 14:34:11 1996

current time Thu Aug 8 14:36:54 1996
log volume 0

log size 284

6. Verify that the archive files are being created in the correct place:

ls /var/adm/pcplog/pluto

960808.14.33.0

960808.14.33.index

960808.14.33.meta
Latest

pmlogger.log

178 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

7.3.2 Other Logger Configurations

Assume you wish to create archive logs on the local host for performance metrics
collected from the remote host bert. Execute all of the following tasks while logged
into the local host as the superuser (root).

Procedure 7-1 Creating Archive Logs

1. Create the directory to hold the archive logs:

mkdir /var/adm/pcplog/bert

2. Choose a suitable pmlogger configuration file. Here are three examples:

• The default configuration:
/var/pcp/config/pmlogger/config.default.

• A broad summary configuration, sufficient to be used with dkvis, mpvis,
nfsvis, and pmkstat: /var/pcp/config/pmlogger/config.Summary.

• One of the other config.* files in the /var/pcp/config/pmlogger
directory, tailored for an application, a PCP add-on product, a pmchart view,
or a PCP monitor tool.

Copy the chosen configuration file to
/var/adm/pcplog/bert/config.default (possibly after some
customization).

3. Edit /var/pcp/config/pmlogger/control. Using the line for remote as a
template, add the following line to the file:

bert n n /var/adm/pcplog/bert -c ./config.default

4. Start pmlogger:

/usr/pcp/bin/pmlogger_check

Restarting pmlogger for host "bert" done

5. Verify that the pmlogger instance is running:

pmlc

pmlc> show loggers
The following pmloggers are running on bert:

primary (19144)

pmlc> connect 19144

pmlc> status

007–2614–005 179

7: Archive Logging

pmlogger [19144] on host ernie is logging metrics from host bert
log started Thu Aug 8 10:10:10 1996 (times in local time)

last log entry Thu Aug 8 14:50:54 1996

current time Thu Aug 8 14:55:48 1996

log volume 0

log size 256

To create archive logs on the local host for performance metrics collected from
multiple remote hosts, repeat the steps in Procedure 7-1 for each remote host.

7.3.3 Archive Log Administration

Assume the local host has been set up to create archive logs of performance metrics
collected from one or more hosts (which may be either the local host or a remote host).

To activate the maintenance and housekeeping scripts for a collection of archive logs,
execute the following tasks while logged into the local host as the superuser (root):

1. Augment the crontab file for root. For example:

crontab -l >/tmp/foo

2. Edit /tmp/foo, adding lines similar to those from
/var/pcp/config/pmlogger/crontab for pmlogger_daily and
pmlogger_check; for example:

daily processing of archive logs

10 0 * * * /usr/pcp/bin/pmlogger_daily

every 30 minutes, check pmlogger instances are running

25,55 * * * * /usr/pcp/bin/pmlogger_check

3. Make these changes permanent with this command:

crontab </tmp/foo

7.3.4 Making Snapshot Images from Archive Logs

You may also choose to enable periodic snapshot images of performance data to be
produced from the archive logs using the facilities of pmsnap; instructions for this
operation can be found in Section 4.1.9, page 82, and in the pmsnap(1) man page.

Assume the local host has been set up to create archive logs of performance metrics
collected from the host oscar (which may be either the local host or a remote host).

180 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Execute all of the following tasks while logged into the local host as the superuser
(root).

1. Make sure the optional subsystem pcp.sw.monitor has been installed.

2. Use the /var/pcp/config/pmsnap/Summary snapshot as an example (you
may wish to customize this later).

3. Ensure that the pmlogger that is collecting performance metrics from the host
oscar includes all of the metrics named in the
/var/pcp/config/pmlogger/config.Summary configuration file (you may
wish to simply use this as the configuration file for this pmlogger instance). If
necessary, reconfigure this pmlogger instance as follows:

kill -INT PID-of-pmlogger-instance

Edit the configuration file as required. Restart pmlogger with this command:

/usr/pcp/bin/pmlogger_check

4. Check the two Summary lines in the /var/pcp/config/pmsnap/control file.
You must replace LOCALHOSTNAME with oscar in both lines (unless oscar is the
local host, in which case the change is optional), and you may wish to change the
directory for the output files (the default is /var/www/htdocs/snapshots).

5. Augment the crontab file for root to allow pmsnap to be run periodically. For
example:

crontab -l >/tmp/foo

6. Edit /tmp/foo, adding lines similar to those from
/var/pcp/config/pmlogger/crontab for pmsnap; for example:

every 30 minutes, generate performance snapshot images

30,0 * * * * /usr/pcp/bin/pmsnap -d :0

The snapshots are produced using pmchart, and this tool requires connection to
an X server. If the local host is not running an X server, then you must locate a
system with an active X server, and ensure that this X server will accept
connections from remote X clients; see the xhost(1) man page for details. If this
host is grover, then replace -d :0 in the line above with -d grover:0

Other options for gaining access to an active X server are discussed in the
pmsnap(1) man page.

007–2614–005 181

7: Archive Logging

7. Make these changes permanent with this command:

crontab </tmp/foo

8. After 30 minutes or so (time enough for the cron command to complete), check
that the GIF files have been created:

ls -l /var/www/htdocs/snapshots

9. Create a Web page that includes the images. A sample file of HTML source is
provided in /var/pcp/config/pmsnap/Summary.html.

7.4 Other Archive Logging Features and Services
Other archive logging features and services include PCP archive folios, manipulating
archive logs, primary logger, and using pmlc.

7.4.1 PCP Archive Folios

A collection of one or more PCP archive logs may be combined with a control file to
produce a PCP archive folio. Archive folios are created using either mkaf or the
interactive record mode services of various PCP GUI monitoring tools.

The automated archive log management services also create an archive folio named
Latest for each managed pmlogger instance, to provide a symbolic name to the
most recent archive log. With reference to Figure 7-1, this would mean the creation of
the folios /var/adm/pcplog/one/Latest and /var/adm/pcplog/two/Latest.

The pmafm utility is completely described in the pmafm(1) man page, and provides
the interactive commands (single commands may also be executed from the
command line) for the following services:

• Checking the integrity of the archives in the folio.

• Displaying information about the component archives.

• Executing PCP tools with their source of performance metrics assigned
concurrently to all of the component archives (where the tool supports this), or
serially executing the PCP tool once per component archive.

• If the folio was created by a single PCP monitoring tool, replaying all of the
archives in the folio with that monitoring tool.

182 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

• Restricting the processing to particular archives, or the archives associated with
particular hosts.

7.4.2 Manipulating Archive Logs with pmlogextract

The pmlogextract tool takes a number of PCP archive logs from a single host and
performs the following tasks:

• Merges the archives into a single log, while maintaining the correct time stamps
for all values.

• Extracts all metric values within a temporal window that could encompass several
archive logs.

• Extracts only a configurable subset of metrics from the archive logs.

See the pmlogextract(1) man page for full information on this command. It
replaces functionality of the pmlogmerge tool as of PCP release 2.0.

7.4.3 Primary Logger

On each system for which PMCD is active (each PCP collector system), there is an
option to have a distinguished instance of the archive logger pmlogger (the
“primary” logger) launched each time PMCD is started. This may be used to ensure
the creation of minimalist archive logs required for ongoing system management and
capacity planning in the event of failure of a system where a remote pmlogger may
be running, or because the preferred archive logger deployment is to activate
pmlogger on each PCP collector system.

Run the following command as superuser on each PCP collector system where you
want to activate the primary pmlogger:

chkconfig pmlogger on

The primary logger launches the next time PMCD is started. If you wish this to
happen immediately, follow up with this command:

/etc/init.d/pcp start

When it is started in this fashion, the /etc/config/pmlogger.options file
provides command line options for pmlogger. In the default setup, this in turn
means that the initial logging state and configuration is specified in the file

007–2614–005 183

7: Archive Logging

/var/pcp/config/pmlogger/config.default. Either one or both of these files
may be modified to tailor pmlogger operation to the local requirements.

7.4.4 Using pmlc

You may tailor pmlogger dynamically with the pmlc command. Normally, the
pmlogger configuration is read at startup. If you choose to modify the config file
to change the parameters under which pmlogger operates, you must stop and restart
the program for your changes to have effect. Alternatively, you may change
parameters whenever required by using the pmlc interface.

To run the pmlc tool, enter:

pmlc

By default, pmlc acts on the primary instance of pmlogger on the current host. See
the pmlc(1) man page for a description of command line options. When it is invoked,
pmlc presents you with a prompt:

pmlc>

You may obtain a listing of the available commands by entering a question mark (?)
and pressing Enter. You see output similar to that in Example 7-2:

Example 7-2 Listing Available Commands

show loggers [@<host>] display <pid>s of running pmloggers

connect _logger_id [@<host>] connect to designated pmlogger

status information about connected pmlogger

query metric-list show logging state of metrics

new volume start a new log volume

flush flush the log buffers to disk
log { mandatory | advisory } on <interval> _metric-list

log { mandatory | advisory } off _metric-list

log mandatory maybe _metric-list

timezone local|logger|’<timezone>’ change reporting timezone

help print this help message
quit exit from pmlc

_logger_id is primary | <pid> | port <n>

_metric-list is _metric-spec | { _metric-spec ... }

_metric-spec is <metric-name> | <metric-name> [<instance> ...]

Here is an example:

184 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

pmlc
pmlc> show loggers @babylon

The following pmloggers are running on babylon:

primary (1892)

pmlc> connect 1892 @babylon

pmlc> log advisory on 2 secs disk.dev.read
pmlc> query disk.dev

disk.dev.read

adv on nl 5 min [131073 or ‘‘dks0d1’’]

adv on nl 5 min [131074 or ‘‘dks0d2’’]

pmlc> quit

Note: Any changes to the set of logged metrics made via pmlc are not saved, and are
lost the next time pmlogger is started with the same configuration file. Permanent
changes are made by modifying the pmlogger configuration file(s).

Refer to the pmlc(1) and pmlogger(1) man pages for complete details.

7.5 Archive Logging Troubleshooting
The following issues concern the creation and use of logs using pmlogger.

7.5.1 pmlogger Cannot Write Log

Symptom: The pmlogger utility does not start, and you see this
message:

_pmLogNewFile: ‘‘foo.index’’ already exists, not over-written

Cause: Archive logs are considered sufficiently precious that
pmlogger does not empty or overwrite an existing set
of archive log files. The log named foo actually
consists of the physical file foo.index, foo.meta,
and at least one file foo.N, where N is in the range 0, 1,
2, 3, and so on.

A message similar to the one above is produced when a
new pmlogger instance encounters one of these files
already in existence.

007–2614–005 185

7: Archive Logging

Resolution: If you are sure, remove all of the parts of the archive
log. For example, use the following command:

rm -f foo.*

Then rerun pmlogger.

7.5.2 Cannot Find Log

Symptom: The pmdumplog utility, or any tool that can read an
archive log, displays this message:

Cannot open archive mylog: No such file or directory

Cause: An archive consists of at least three physical files. If the
base name for the archive is mylog, then the archive
actually consists of the physical files mylog.index,
mylog.meta, and at least one file mylog.N, where N
is in the range 0, 1, 2, 3, and so on.

The above message is produced if one or more of the
files is missing.

Resolution: Use this command to check which files the utility is
trying to open:

ls mylog.*

Turn on the internal debug flag DBG_TRACE_LOG (-D
128) to see which files are being inspected by the
_pmOpenLog routine as shown in the following
example:

pmdumplog -D 128 -l mylog

Locate the missing files and move them all to the same
directory, or remove all of the files that are part of the
archive, and recreate the archive log.

186 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

7.5.3 Primary pmlogger Cannot Start

Symptom: The primary pmlogger cannot be started. A message
like the following appears:

pmlogger: there is already a primary pmlogger running

Cause: There is either a primary pmlogger already running,
or the previous primary pmlogger was terminated
unexpectedly before it could perform its cleanup
operations.

Resolution: If there is already a primary pmlogger running and
you wish to replace it with a new pmlogger, use the
show command in pmlc to determine the process ID of
the primary pmlogger. The process ID of the primary
pmlogger appears in parentheses after the word
“primary.” Send an SIGINT signal to the process to
shut it down (use the kill command). If the process
does not exist, proceed to the manual cleanup described
in the paragraph below. If the process did exist, it
should now be possible to start the new pmlogger.

If pmlc’s show command displays a process ID for a
process that does not exist, a pmlogger process was
terminated before it could clean up. If it was the
primary pmlogger, the corresponding control files
must be removed before one can start a new primary
pmlogger. It is a good idea to clean up any spurious
control files even if they are not for the primary
pmlogger.

The control files are kept in /var/tmp/pmlogger. A
control file with the process ID of the pmlogger as its
name is created when the pmlogger is started. In
addition, the primary pmlogger creates a symbolic link
named primary to its control file.

For the primary pmlogger, remove both the symbolic
link and the file (corresponding to its process ID) to
which the link points. For other pmloggers, remove
just the process ID file. Do not remove any other files

007–2614–005 187

7: Archive Logging

in the directory. If the control file for an active
pmlogger is removed, pmlc is not able to contact it.

7.5.4 Identifying an Active pmlogger Process

Symptom: You have a PCP archive log that is demonstrably
growing, but do not know the identify of the associated
pmlogger process.

Cause: The PID is not obvious from the log, or the archive
name may not be obvious from the output of the ps
command.

Resolution: If the archive basename is foo, run the following
commands:

pmdumplog -l foo

Log Label (Log Format Version 1)
Performance metrics from host gonzo

commencing Wed Aug 7 00:10:09.214 1996

ending Wed Aug 7 16:10:09.155 1996

pminfo -a foo -f pmcd.pmlogger

pmcd.pmlogger.host

inst [10728 or "10728"] value "gonzo.melbourne.sgi.com"

pmcd.pmlogger.port
inst [10728 or "10728"] value 4331

pmcd.pmlogger.archive

inst [10728 or "10728"] value "/usr/var/adm/pcplog/gonzo/foo"

All of the information describing the creator of the
archive is revealed and, in particular, the instance
identifier for the PMCD metrics (10728 in the example
above) is the PID of the pmlogger instance, which may
be used to control the process via pmlc.

7.5.5 Illegal Label Record

Symptom: PCP tools report:

Illegal label record at start of PCP archive log file.

188 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

Cause: Either you are attempting to read a Version 2 archive
with a PCP 1.x tool, or the archive log has become
corrupted.

Resolution: By default, pmlogger in PCP release 2.0 and later
generates Version 2 archives that PCP 1.0 to 1.3 tools
cannot interpret. If you must use older tools, pass the
-V 1 option to pmlogger, forcing it to generate
Version 1 archives.

If the PCP tools are from PCP release 2.0 or later, then
the archive log may have been corrupted, which can be
verified using pmlogcheck. Refer to the
pmlogcheck(1) man page.

7.5.6 Empty Archive Log Files or pmlogger Exits Immediately

Symptom: Archive log files are zero size, requested metrics are not
being logged, or pmlogger exits immediately with no
error messages.

Cause: Either pmlogger encountered errors in the
configuration file or has not flushed its output buffers
yet or some (or all) metrics specified in the pmlogger
configuration file have had their state changed to
advisory off or mandatory off via pmlc. It is also
possible that the logging interval specified in the
pmlogger configuration file for some or all of the
metrics is longer than the period of time you have been
waiting since pmlogger started.

Resolution: If pmlogger exits immediately with no error messages,
check the pmlogger.log file in the directory
pmlogger was started in for any error messages. If
pmlogger has not yet flushed its buffers, enter the
following command:

killall -SIGUSR1 pmlogger

Otherwise, use the status command for pmlc to
interrogate the internal pmlogger state of specific
metrics.

007–2614–005 189

Chapter 8

Performance Co-Pilot Deployment Strategies

Performance Co-Pilot (PCP) is a coordinated suite of tools and utilities allowing you
to monitor performance and make automated judgments and initiate actions based on
those judgments. PCP is designed to be fully configurable for custom implementation
and deployed to meet specific needs in a variety of operational environments.

Because each enterprise and site is different and PCP represents a new way of
visualizing performance information, some discussion of deployment strategies is
useful.

The most common use of performance monitoring utilities is a scenario where the
PCP tools are executed on a workstation (the PCP monitoring system), while the
interesting performance data is collected on remote systems (PCP collector systems)
by a number of processes, specifically the Performance Metrics Collection Daemon
(PMCD) and the associated Performance Metrics Domain Agents (PMDAs). These
processes can execute on both the monitoring system and one or more collector
systems, or only on collector systems. However, collector systems are the real objects
of performance investigations.

The material in this chapter covers the following areas:

• Section 8.1, page 192, presents the spectrum of deployment architectures at the
highest level.

• Section 8.2, page 195, describes alternative deployments for PMCD and the
PMDAs.

• Section 8.3, page 197, covers alternative deployments for the pmlogger tool.

• Section 8.4, page 200, presents the options that are available for deploying the
pmie tool.

007–2614–005 191

8: Performance Co-Pilot Deployment Strategies

The options shown in this chapter are merely suggestions. They are not
comprehensive, and are intended to demonstrate some possible ways of deploying
the PCP tools for specific network topologies and purposes. You are encouraged to
use them as the basis for planning your own deployment, consistent with your needs.

8.1 Basic Deployment
In the simplest PCP deployment, one system is configured as both a collector and a
monitor, as shown in Figure 8-1. Because the PCP monitor tools make extensive use
of visualization, this suggests the single system would be configured with a graphics
head.

PMCD

PMDAs

Monitor Tool

Monitor Tool

Monitor and Collector System

a12223

Figure 8-1 PCP Deployment for a Single System

192 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

However, most PCP deployments involve at least two systems. For example, the
setup shown in Figure 8-2 would be representative of many common scenarios.

PMCD

PMDAs

Collector System Monitor Tool

Monitor Tool

Monitor System

a12224

Figure 8-2 Basic PCP Deployment for Two Systems

But the most common site configuration would include a mixture of systems
configured as PCP collectors, as PCP monitors, and as both PCP monitors and
collectors, as shown in Figure 8-3.

007–2614–005 193

8: Performance Co-Pilot Deployment Strategies

With one or more PCP collector systems and one or more PCP monitor systems, there
are a number of decisions that need to be made regarding the deployment of PCP
services across multiple hosts. For example, in Figure 8-3 there are several ways in
which both the inference engine (pmie) and the PCP archive logger (pmlogger) could
be deployed. These options are discussed in the following sections of this chapter.

Collector System

Monitor Tool

Monitor Tool

Monitor System

PMCD

PMDAs
Collector System

PMCD

PMDAs
Collector System

PMCD

PMDAs

Monitor Tool

Monitor Tool

Monitor System

a12225

Figure 8-3 General PCP Deployment for Multiple Systems

194 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

8.2 PCP Collector Deployment
Each PCP collector system must have an active pmcd and, typically, a number of
PMDAs installed.

8.2.1 Principal Server Deployment

The first hosts selected as PCP collector systems are likely to provide some class of
service deemed to be critical to the information processing activities of the enterprise.
These hosts include the following:

• A server running a DBMS

• A World Wide Web server for an Internet or Intranet

• An NFS file server

• A video server

• A supercomputing server

• An infrastructure service provider, for example, print, Usenet news, DNS, gateway,
firewall, packet router, or mail services

• A system running a mission-critical application

Your objective may be to improve quality of service on a system functioning as a
server for many clients. You wish to identify and repair critical performance
bottlenecks and deficiencies in order to maintain maximum performance for clients of
the server.

For some of these services, the PCP base product or the PCP add-on products provide
the necessary collector components. Others would require customized PMDA
development, as described in the companion Performance Co-Pilot Programmer’s Guide.

007–2614–005 195

8: Performance Co-Pilot Deployment Strategies

8.2.2 Quality of Service Measurement

Applications and services with a client-server architecture need to monitor
performance at both the server side and the client side.

The arrangement in Figure 8-4 illustrates one way of measuring quality of service for
client-server applications.

PMCD

PMDAs

Application Server System

Monitor Tool

PCP Monitor System

App Server

PMCD

PMDA

Application Client System

Client App

a12226

Figure 8-4 PCP Deployment to Measure Client-Server Quality of Service

The configuration of the PCP collector components on the Application Server System
is standard. The new facility is the deployment of some PCP collector components on
the Application Client System; this uses a customized PMDA and a generalization of
the ICMP “ping” tool as follows:

196 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

• The Client App is specially developed to periodically make typical requests of
the App Server, and to measure the response time for these requests (this is an
application-specific “ping”).

• The PMDA on the Application Client System captures the response time
measurements from the Client App and exports these into the PCP framework.

At the PCP monitor system, the performance of the system running the App Server
and the end-user quality of service measurements from the system where the Client
App is running can be monitored concurrently.

PCP add-on products implement a number of examples of this architecture, including
the shping PMDA for IP-based services and the webping PMDA for Web servers.

For each of these PMDAs, the full source code is distributed with the associated PCP
product to encourage adaptation of the agents to the local application environment.

It is possible to exploit this arrangement even further, with these methods:

• Creating new instances of the Client App and PMDA to measure service quality
for your own mission-critical services.

• Deploying the Client App and associated PCP collector components in a
number of strategic hosts allows the quality of service over the enterprise’s
network to be monitored. For example, service can be monitored on the
Application Server System, on the same LAN segment as the Application Server
System, on the other side of a firewall system, or out in the WAN.

8.3 PCP Archive Logger Deployment
PCP archive logs are created by the pmlogger utility, as discussed in Chapter 7.
They provide a critical capability to perform retrospective performance analysis, for
example, to detect performance regressions, for problem analysis, or to support
capacity planning. The following sections discuss the options and trade-offs for
pmlogger deployment.

8.3.1 Deployment Options

The issue is relatively simple and reduces to “On which host(s) should pmlogger be
running?” The options are these:

• Run pmlogger on each PCP collector system to capture local performance data.

007–2614–005 197

8: Performance Co-Pilot Deployment Strategies

• Run pmlogger on some of the PCP monitor systems to capture performance data
from remote PCP collector systems.

• As an extension of the previous option, designate one system to act as the PCP
archive site to run all pmlogger instances. This arrangement is shown in Figure
8-5.

PCP Archive Log

pmlogger

PCP Archive Log

pmlogger

Collector System

PMCD

PMDAs

Collector System

PMCD

PMDAs

PCP Archive Site

a12227

Figure 8-5 Designated PCP Archive Site

8.3.2 Resource Demands for the Deployment Options

The pmlogger process is very lightweight in terms of computational demand; so
most of the (small) CPU cost associated with extracting performance metrics at the
PCP collector system involves PMCD and the PMDAs, which are independent of the
host on which pmlogger is running.

A local pmlogger consumes disk bandwidth and disk space on the PCP collector
system. A remote pmlogger consumes disk space on the site where it is running and
network bandwidth between that host and the PCP collector host.

198 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

The archive logs typically grow at the rate of between 500 kilobytes (KB) and 10
megabytes (MB) per day, depending on how many performance metrics are logged
and the choice of sampling frequencies. There are some advantages in minimizing the
number of hosts over which the disk resources for PCP archive logs must be
allocated; however, the aggregate requirement is independent of where the pmlogger
instances are running.

8.3.3 Operational Management

There is an initial administrative cost associated with configuring each pmlogger
instance, and an ongoing administrative investment to monitor these configurations,
perform regular housekeeping (such as rotation, compression, and culling of PCP
archive log files), and execute periodic tasks to process the archives (such as nightly
performance regression checking with pmie, or using pmchart to publish recent
activity charts on the Web).

Many of these tasks are handled by the supplied pmlogger administrative tools and
scripts, as described in Section 7.2.3. However, the necessity and importance of these
tasks favor a centralized pmlogger deployment, as shown in Figure 8-5.

Note: The pmlogger utility is not subject to any PCP license restrictions, and may be
installed and used on any host.

8.3.4 Exporting PCP Archive Logs

Collecting PCP archive logs is of little value unless the logs are processed as part of
the ongoing performance monitoring and management functions. This processing
typically involves the use of the tools on a PCP monitor system, and hence the archive
logs may need to be read on a host different from the one they were created on.

NFS mounting is obviously an option, but the PCP tools support random access and
both forward and backward temporal motion within an archive log. If an archive is to
be subjected to intensive and interactive processing, it may be more efficient to copy
the files of the archive log to the PCP monitor system first.

Note: Each PCP archive log consists of at least three separate files (see Section 7.2.3
for details). You must have concurrent access to all of these files before a PCP tool is
able to process an archive log correctly.

007–2614–005 199

8: Performance Co-Pilot Deployment Strategies

8.4 PCP Inference Engine Deployment
The pmie utility supports automated reasoning about system performance, as
discussed in Chapter 6, and plays a key role in monitoring system performance for
both real-time and retrospective analysis, with the performance data being retrieved
respectively from a PCP collector system and a PCP archive log.

The following sections discuss the options and trade-offs for pmie deployment.

8.4.1 Deployment Options

The issue is relatively simple and reduces to “On which host(s) should pmie be
running?” You must consider both real-time and retrospective uses, and the options
are as follows:

• For real-time analysis, run pmie on each PCP collector system to monitor local
system performance.

• For real-time analysis, run pmie on some of the PCP monitor systems to monitor
the performance of remote PCP collector systems.

• For retrospective analysis, run pmie on the systems where the PCP archive logs
reside. The problem then reduces to pmlogger deployment as discussed in
Section 8.3.

• As an example of the “distributed management with centralized control”
philosophy, designate some system to act as the PCP Management Site to run all
pmlogger and pmie instances. This arrangement is shown in Figure 8-6.

200 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

One pmie instance is capable of monitoring multiple PCP collector systems; for
example, to evaluate some universal rules that apply to all hosts. At the same time a
single PCP collector system may be monitored by multiple pmie instances; for
example, for site-specific and universal rule evaluation, or to support both tactical
performance management (operations) and strategic performance management
(capacity planning). Both situations are depicted in Figure 8-6.

PCP Archive Log

pmlogger

PCP Archive Log

pmlogger

Collector System A

PMCD

PMDAs

Collector System B

PMCD

PMDAs

PCP Management Site

pmie

pmie Rules
pmie

pmie Rules

a12228

Figure 8-6 PCP Management Site Deployment

007–2614–005 201

8: Performance Co-Pilot Deployment Strategies

8.4.2 Resource Demands for the Deployment Options

Depending on the complexity of the rule sets, the number of hosts being monitored,
and the evaluation frequency, pmie may consume CPU cycles significantly above the
resources required to simply fetch the values of the performance metrics. If this
becomes significant, then real-time deployment of pmie away from the PCP collector
systems should be considered in order to avoid the “you’re part of the problem, not
the solution” scenario in terms of CPU utilization on a heavily loaded server.

8.4.3 Operational Management

An initial administrative cost is associated with configuring each pmie instance,
particularly in the development of the rule sets that accurately capture and classify
“good” versus “bad” performance in your environment. These rule sets almost
always involve some site-specific knowledge, particularly in respect to the “normal”
levels of activity and resource consumption. The pmieconf tool (see Section 6.7, page
156) may be used to help develop localized rules based upon parameterized
templates covering many common performance scenarios. In complex environments,
customizing these rules may occur over an extended period and require considerable
performance analysis insight.

One of the functions of pmie provides for continual detection of adverse performance
and the automatic generation of alarms (visible, audible, e-mail, pager, and so on).
Uncontrolled deployment of this alarm initiating capability throughout the enterprise
may cause havoc.

These considerations favor a centralized pmie deployment at a small number of PCP
monitor sites, or in a PCP Management Site as shown in Figure 8-6.

However, it is most likely that knowledgeable users with specific needs may find a
local deployment of pmie most useful to track some particular class of service
difficulty or resource utilization. In these cases, the alarm propagation is unlikely to
be required or is confined to the system on which pmie is running.

Configuration and management of a number of pmie instances is made much easier
with the scripts and control files described in Section 6.9, page 163.

202 007–2614–005

Chapter 9

Customizing and Extending PCP Services

Performance Co-Pilot (PCP) has been developed to be fully extensible. The following
sections summarize the various facilities provided to allow you to extend and
customize PCP for your site:

• Section 9.1, page 203, describes the general process of installing and removing a
PMDA at both a PCP collector and/or a PCP monitor host. It also describes the
procedure for customizing the summary PMDA to export derived metrics formed
by aggregation of base PCP metrics from one or more collector hosts.

• Section 9.2, page 207, describes the various options available for customizing and
extending the basic PCP tools.

• Section 9.3, page 212, covers the concepts and tools provided for updating the
PMNS (Performance Metrics Name Space).

• Section 9.4, page 215, details where to find further information to assist in the
development of new PMDAs to extend the range of performance metrics available
through the PCP infrastructure.

• Section 9.5, page 216, outlines how new tools may be developed to process
performance data from the PCP infrastructure.

9.1 PMDA Customization
The generic procedures for installing and activating the optional PMDAs have been
described in Section 2.4, page 36. In some cases, these procedures prompt the user for
information based upon the local system or network configuration, application
deployment, or processing profile to customize the PMDA and hence the performance
metrics it exports.

The summary PMDA is a special case that warrants further discussion.

9.1.1 Customizing the Summary PMDA

The summary PMDA exports performance metrics derived from performance metrics
made available by other PMDAs. It is described completely in the pmdasummary(1)
man page.

007–2614–005 203

9: Customizing and Extending PCP Services

The summary PMDA consists of two processes:

pmie process Periodically samples the base metrics and compute
values for the derived metrics. This dedicated instance
of the PCP pmie inference engine is launched with
special command line arguments by the main process.
See Section 6.1, page 129, for a complete discussion of
the pmie feature set.

main process Reads and buffers the values computed by the pmie
process and makes them available to the Performance
Metrics Collection Daemon (PMCD).

All of the metrics exported by the summary PMDA have a singular instance and the
values are instantaneous; the exported value is the correct value as of the last time the
corresponding expression was evaluated by the pmie process.

The summary PMDA resides in the /usr/pcp/pmdas/summary directory and may
be installed with a default configuration by following the steps described in Section
2.4.1, page 36.

Alternatively, you may customize the summary PMDA to export your own derived
performance metrics by following the steps in Procedure 9-1:

Procedure 9-1 Customizing the Summary PMDA

1. Check that the symbolic constant SYSSUMMARY is defined in the
/var/pcp/pmns/stdpmid file. If it is not, perform the postinstall update of this
file, as superuser:

cd /var/pcp/pmns
./Make.stdpmid

2. Choose Performance Metric Name Space (PMNS) names for the new metrics.
These must begin with summary and follow the rules described in the pmns(4)
man page. For example, you might use summary.fs.cache_write and
summary.fs.cache_hit.

3. Edit the pmns file in the /usr/pcp/pmdas/summary directory to add the new
metric names in the format described in the pmns(4) man page. You must choose
a unique performance metric identifier (PMID) for each metric. In the pmns file,
these appear as SYSSUMMARY:0:x. The value of x is arbitrary in the range 0 to
1023 and unique in this file. Refer to Section 9.3, page 212, for a further
explanation of the rules governing PMNS updates.

204 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

For example:

summary {
cpu

disk

netif

fs /*new*/

}

summary.fs {
cache_write SYSSUMMARY:0:10

cache_hit SYSSUMMARY:0:11

}

4. Use the local test PMNS root and validate that the PMNS changes are correct.

For example, enter this command:

pminfo -n root -m summary.fs

You see output similar to the following:

summary.fs.cache_write PMID: 27.0.10

summary.fs.cache_hit PMID: 27.0.11

5. Edit the /usr/pcp/pmdas/summary/expr.pmie file to add new pmie
expressions. If the name to the left of the assignment operator (=) is one of the
PMNS names, then the pmie expression to the right will be evaluated and
returned by the summary PMDA. The expression must return a numeric value.
Additional description of the pmie expression syntax may be found in Section
6.3, page 137.

For example, consider this expression:

// filesystem buffer cache hit percentages

prefix = "kernel.all.io"; // macro, not exported

summary.fs.cache_write =
100 - 100 * $prefix.bwrite / $prefix.lwrite;

summary.fs.cache_hit =

100 - 100 * $prefix.bread / $prefix.lread;

007–2614–005 205

9: Customizing and Extending PCP Services

6. Run pmie in debug mode to verify that the expressions are being evaluated
correctly, and the values make sense.

For example, enter this command:

pmie -t 2sec -v expr.pmie

You see output similar to the following:

summary.fs.cache_write: ?
summary.fs.cache_hit: ?

summary.fs.cache_write: 45.83

summary.fs.cache_hit: 83.2

summary.fs.cache_write: 39.22

summary.fs.cache_hit: 84.51

7. Install the new PMDA.

From the /usr/pcp/pmdas/summary directory, use this command:

./Install

You see the following output:

You need to choose an appropriate configuration for installation of

the ‘‘summary’’ Performance Metrics Domain Agent (PMDA).

collector collect performance statistics on this system

monitor allow this system to monitor local and/or remote systems

both collector and monitor configuration for this system

Please enter c(ollector) or m(onitor) or b(oth) [b] both

Interval between summary expression evaluation (seconds)? [10] 10

Updating the Performance Metrics Name Space...

Installing pmchart view(s) ...

Terminate PMDA if already installed ...
Installing files ..

Updating the PMCD control file, and notifying PMCD ...

Wait 15 seconds for the agent to initialize ...

Check summary metrics have appeared ... 8 metrics and 8 values

206 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

8. Check the metrics.

For example, enter this command:

pmval -t 5sec -s 8 summary.fs.cache_write

You see a response similar to the following:

metric: summary.fs.cache_write

host: localhost
semantics: instantaneous value

units: none

samples: 8

interval: 5.00 sec

63.60132158590308
62.71878646441073

62.71878646441073

58.73968492123031

58.73968492123031

65.33822758259046
65.33822758259046

72.6099706744868

Note that the values are being sampled here by pmval every 5 seconds, but pmie
is passing only new values to the summary PMDA every 10 seconds. Both rates
could be changed to suit the dynamics of your new metrics.

9. You may now create pmchart views, pmview scenes, and pmlogger
configurations to monitor and archive your new performance metrics.

9.2 PCP Tool Customization
Performance Co-Pilot (PCP) has been designed and implemented with a philosophy
that embraces the notion of toolkits and encourages extensibility.

In most cases, the PCP tools provide orthogonal services, based on external
configuration files. It is the creation of new and modified configuration files that
enables PCP users to customize tools quickly and meet the needs of the local
environment, in many cases allowing personal preferences to be established for
individual users on the same PCP monitor system.

007–2614–005 207

9: Customizing and Extending PCP Services

The material in this section is intended to act as a checklist of pointers to detailed
documentation found elsewhere in this guide, in the man pages, and in the files that
are made available as part of the PCP installation.

9.2.1 Stripchart Customization

The PCP tool pmchart produces stripchart displays of performance metrics. Refer to
Section 4.1, page 64, for an extensive description of the capabilities of pmchart.

Customization is centered on PCP views that may be created interactively and saved
via the Save View option in the File menu.

When pmchart is loading a view, the following directories are searched:

. The current directory.

$HOME/.pcp Views for each user.

/var/pcp/config/pmchart The system-wide catalog of views.
Any view installed here becomes
visible to every pmchart user.

The X11 application resources for pmchart are in
/usr/lib/X11/app-defaults/PmChart, and these may be edited to customize
the appearance of the display. The default update interval and other attributes are
described in the pmchart(1) man page.

9.2.2 Archive Logging Customization

The PCP archive logger is presented in Chapter 7, page 169, and documented in the
pmlogger(1) man page.

The following global files and directories influence the behavior of pmlogger:

/etc/config/pmlogger

Enable/disable state for the primary logger facility using this
command:

chkconfig pmlogger on

/etc/config/pmlogger.options

Command line options passed to the primary logger if it is launched
from /etc/init.d/pcp.

208 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

/var/pcp/config/pmlogger/config.default

The default pmlogger configuration file that is used for the primary
logger when this facility is enabled.

/var/pcp/config/pmlogger/config.view.*

Every pmchart view also provides a pmlogger configuration file
that includes each of the performance metrics used in the view, for
example, /var/pcp/config/pmlogger/config.LoadAvg for the
LoadAvg view.

/var/pcp/config/pmlogger/config.*

Every PCP tool with a fixed group of performance metrics contributes
a pmlogger configuration file that includes each of the performance
metrics used in the tool, for example,
/var/pcp/config/pmlogger/config.dkvis for dkvis.

/var/pcp/config/pmlogger/control

Defines which PCP collector hosts require pmlogger to be launched
on the local host, where the configuration file comes from, where the
archive log files should be created, and pmlogger startup options.

/var/pcp/config/pmlogger/crontab

Prototype crontab entries that may be merged with the crontab
entries for root to schedule the periodic execution of the archive log
management scripts, for example, pmlogger_daily.

/var/adm/pcplog/somehost

The default behavior of the archive log management scripts create
archive log files for the host somehost in this directory.

/var/adm/pcplog/somehost/Latest

A PCP archive folio for the most recent archive for the host somehost.
This folio is created and maintained by the cron-driven periodic
archive log management scripts, for example, pmlogger_check.
Archive folios may be processed with the pmafm tool.

007–2614–005 209

9: Customizing and Extending PCP Services

9.2.3 Inference Engine Customization

The PCP inference engine is presented in Chapter 6, page 129, and documented in the
pmie(1) man page.

The following global files and directories influence the behavior of pmie:

/etc/config/pmie

Controls the pmie daemon facility. Enable using this command:

chkconfig pmie on

/var/pcp/demos/pmie/*

Example pmie rules that may be used as a basis for developing local
rules.

/var/pcp/config/pmie/config.default

The pmie configuration file that is used for monitoring the local host
when the pmie daemon facility is enabled in the default
configuration. This file is created using pmieconf the first time the
daemon facility is activated.

/var/pcp/config/pmieconf/*/*

Each pmieconf rule definition can be found below one of these
subdirectories.

/var/pcp/config/pmie/control

Defines which PCP collector hosts require a daemon pmie to be
launched on the local host, where the configuration file comes from,
where the pmie log file should be created, and pmie startup options.

/var/pcp/config/pmlogger/crontab

Prototype crontab entries that may be merged with the crontab
entries for root to schedule the periodic execution of the pmie_check
script, for verifying that pmie instances are running.

/var/adm/pmielog/

The default behavior of the /etc/init.d/pmie startup scripts
create pmie log files for the host in this directory.

210 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

The PMCD PMDA exports information about executing pmie instances and their
progress in terms of rule evaluations and action execution rates.

pmie_check This command is similar to the pmlogger support
script, pmlogger_check.

/etc/init.d/pmie This control file supports the starting and stopping of
multiple pmie instances that are monitoring one or
more hosts.

/var/tmp/pmie The statistics that pmie gathers are maintained in
binary data structure files. These files are in the
/var/tmp/pmie directory.

pmcd.pmie metrics If pmie is running on a system with a PCP collector
deployment, the pmcd PMDA exports these metrics via
the pmcd.pmie group of metrics.

9.2.4 Snapshot Customization

The PCP snapshot production facility is presented in Section 7.3.4, page 180, and
documented in the pmsnap(1) man page.

The following global files and directories influence the behavior of pmsnap:

/var/pcp/config/pmsnap/control

Defines how to produce a snapshot, including the output filename,
the PCP archive folio name to be used as input, the pmchart
configuration file, and command line arguments to pmchart.

/var/pcp/config/pmsnap/Summary

A pmchart configuration file to produce a sample summary snapshot
in conjunction with pmsnap.

/var/pcp/config/pmlogger/config.Summary

A pmlogger configuration file that can produce an archive containing
performance metrics required by the sample summary snapshot.

/var/pcp/config/pmlogger/crontab

Prototype crontab entries that may be merged with the crontab
entries for root schedule the periodic execution of the archive log
management scripts, for example, pmsnap.

007–2614–005 211

9: Customizing and Extending PCP Services

/var/pcp/config/pmsnap/Summary.html

An example HTML page suitable for publishing images from the
pmsnap examples via a Web server.

9.2.5 Icon Control Panel Customization

The gadget specification language of pmgadgets supports the creation of arbitrary
gadget layouts and bindings to hosts and performance metrics. See Section 4.2, page
84, and the pmgadgets(1) man page.

9.2.6 3D Visualization Customization

The 3D scene specification language of pmview supports the creation of block layouts
and bindings to hosts and performance metrics. See Chapter 5 and the pmview(1)
man page.

9.3 PMNS Management
This section describes the syntax, semantics, and processing framework for the
external specification of a Performance Metrics Name Space (PMNS) as it might be
loaded by the PMAPI routine pmLoadNameSpace; see the pmLoadNameSpace(3)
man page.

The PMNS specification is a simple ASCII source file that can be edited easily. For
reasons of efficiency, a binary format is also supported; the utility pmnscomp
translates the ASCII source format into binary format; see the pmnscomp(1) man page.

9.3.1 PMNS Processing Framework

The PMNS specification is initially passed through cpp. This means the following
facilities may be used in the specification:

• C-style comments

• #include directives

• #define directives and macro substitution

• Conditional processing with #if, #endif, and so on

212 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

When cpp is executed, the standard include directories are the current directory and
/var/pcp/pmns, where some standard macros and default specifications may be
found.

9.3.2 PMNS Syntax

Every PMNS is tree structured. The paths to the leaf nodes are the performance
metric names. The general syntax for a non-leaf node in PMNS is as follows:

pathname {
name [pmid]

...

}

Here pathname is the full pathname from the root of the PMNS to this non-leaf
node, with each component in the path separated by a period. The root node for the
PMNS has the special name root, but the prefix string root. must be omitted from
all other pathnames.

For example, refer to the PMNS shown in Figure 9-1. The correct pathname for the
rightmost non-leaf node is cpu.util, not root.cpu.util.

idlesysuser

cpu

utilsyscallratepacketrate

inout

intrate

root

 network

a12229

Figure 9-1 Small Performance Metrics Name Space (PMNS)

007–2614–005 213

9: Customizing and Extending PCP Services

Each component in the pathname must begin with an alphabetic character and be
followed by zero or more alphanumeric characters or the underscore (_) character.
For alphabetic characters in a component, uppercase and lowercase are significant.

Non-leaf nodes in the PMNS may be defined in any order desired. The descendent
nodes are defined by the set of names, relative to the pathname of their parent
non-leaf node. For descendent nodes, leaf nodes have a pmid specification, but
non-leaf nodes do not.

The syntax for the pmid specification was chosen to help manage the allocation of
Performance Metric IDs (PMIDs) across disjoint and autonomous domains of
administration and implementation. Each pmid consists of three integers separated
by colons, for example, 14:27:11. This is intended to mirror the implementation
hierarchy of performance metrics. The first integer identifies the domain in which the
performance metric lies. Within a domain, related metrics are often grouped into
clusters. The second integer identifies the cluster, and the third integer, the metric
within the cluster.

The PMNS specification for Figure 9-1 is shown in Example 9-1:

Example 9-1 PMNS Specification

/*
* PMNS Specification

*/

#include <stdpmid>

root {

network

cpu
}

#define NETWORK 26

network {

intrate ‘IRIX:NETWORK:1

packetrate
}

network.packetrate {

in IRIX:NETWORK:35

out IRIX:NETWORK:36

}
#define CPU 10

cpu {

syscallrate IRIX:CPU:10

util

214 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

}
#define USER 20

#define KERNEL 21

#define IDLE 22

cpu.util {

user IRIX:CPU:USER
sys IRIX:CPU:KERNEL

idle IRIX:CPU:IDLE

}

For complete documentation of the PMNS and associated utilities, see the pmns(4),
pmnscomp(1), pmnsadd(1), pmnsdel(1), and pmnsmerge(1) man pages.

9.4 PMDA Development
Performance Co-Pilot (PCP) is designed to be extensible at the collector site.

Application developers are encouraged to create new PMDAs to export performance
metrics from the applications and service layers that are particularly relevant to a
specific site, application suite, or processing environment.

These PMDAs use the routines of the libpcp_pmda library, which is discussed in
detail by the Performance Co-Pilot Programmer’s Guide.

Source code for several PMDAs (simple, trivial, and txmon) is provided in the
pcp.sw.demo subsystem. When it is installed, all of the relevant files reside in
directories (one per PMDA) below the /var/pcp/pmdas directory.

007–2614–005 215

9: Customizing and Extending PCP Services

9.5 PCP Tool Development
Performance Co-Pilot (PCP) is designed to be extensible at the monitor site.

Application developers are encouraged to create new PCP client applications to
monitor or display performance metrics in a manner that is particularly relevant to a
specific site, application suite, or processing environment.

Client applications use the routines of the PMAPI (performance metrics application
programming interface) described in the Performance Co-Pilot Programmer’s Guide.

Source code for a sample PMAPI client (pmclient) is provided in the pcp.sw.demo
subsystem, and when installed all of the relevant files reside in
/var/pcp/demos/pmclient.

216 007–2614–005

Appendix A

Acronyms

Table A-1 provides a list of the acronyms used in the Performance Co-Pilot (PCP)
documentation, help cards, man pages, and user interface.

Table A-1 Performance Co-Pilot Acronyms and Their Meanings

Acronym Meaning

API Application Programming Interface

DBMS Database Management System

DNS Domain Name Service

DSO Dynamic Shared Object

I/O Input/Output

IPC Interprocess Communication

PCP Performance Co-Pilot

PDU Protocol data unit

PMAPI Performance Metrics Application Programming Interface

PMCD Performance Metrics Collection Daemon

PMCS Performance Metrics Collection Subsystem

PMD Performance Metrics Domain

PMDA Performance Metrics Domain Agent

PMID Performance Metric Identifier

PMNS Performance Metrics Name Space

TCP/IP Transmission Control Protocol/Internet Protocol

007–2614–005 217

Index

2D tools 63
3D visualization 212
64-bit IEEE format 20

A

acronyms 217
_actions customized menus 85
active pmlogger process 188
adaptation 3
application programs 13, 16
archive logs

administration 180
analysis 3
archive time control 54
capacity planning 171
collection time 15
contents 176
creation 9, 54, 78
customization 3, 208
export 199
fetching metrics 47
file management 173
folios 182
physical filenames 47
PMAPI 170
retrospective analysis 170
snapshots 171, 180
troubleshooting 185
usage 169

arithmetic aggregation 150
arithmetic expressions 143
arraytop tool 5
arrayvis tool 5, 99, 118
ashtop tool 5
audience 1

audits 4
autofsd_probe tool 11
automated operational support 3
avg_host operator 150

B

_bar gadget 84, 125
_bargraph gadget 85
basename conventions 173
Boolean expressions 145

C

capacity planning 171
caveats 154
centralized archive logging 3
Challenge systems 4, 16
chart customizations 80

See also "pmchart tool" 81
chkhelp tool 13
client-server architecture 2
clustervis tool 5, 99, 118
collection time 15
collector hosts 17, 23, 36
collector subsystem 28
_colorlist component 85
colors 80
comments 138
common directories 48
component software 5
conceptual foundations 14
config.* files 177
configuring PCP 27
conventions 45

007–2614–005 219

Index

cookbook 177
core subsystems 27
count_host operator 150
CPU visualization tool 104
cron scripts 170, 172
crossbow (XBow) packet 9
customization

archive logs 208
inference engine 210
PCP services 203
pmchart tool 81
pmgadgets 85
snapshots 211

D

data collection tools 9
dbpmda tool 13
debugging tools 12
demo subsystems 28
deployment strategies 191
/dev/kmem file 40
diagnostic tools 12
disk use visualization 101
DISPLAY variable 148
distributed collection 17
distributed PMNS 20
dkmap tool 11
dkping tool 11, 12
dkprobe tool 12
dkvis tool

brief description 5
description 101
fetching metrics 47
pmsocks script 61
pmview tool 118, 127
remote PMCD 41
summary configuration 177, 179

documentation subsystems 28
domains 2
DSO 217

duration 50
dynamic adaptation 3

E

environ man page 53
environment variables 57
error detection 155
/etc/config/pmcd.options file 48
/etc/config/pmlogger.options file 48, 183
/etc/init.d/pcp file 48
/etc/pcp.conf file 48, 57
/etc/pcp.env file 48, 57
/etc/pcp_socks.conf file 61
/etc/pmcd.conf file 36, 42, 48
evaluation frequency 139
exec system call 69
extensibility 4, 203
external equipment 16

F

fetching metrics 47
file locations 48
File menu 67, 78, 122
firewalls 61
FLEXlm licenses 28
flush command 172
folios 182
fork system call 69
functional domains 15

G

gadgets 84
gift subsystems 28
glossary 217
graphical gadgets 84

220 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

_grid gadget 125

H

Help menu 122
hipprobe tool 12
horizontal lines 70

I

I/O 217
Icon control panel 212
illegal label record 188
inference engine 210
infrastructure support tools 11
inst command 27, 119
*_inst operator 150
installing PCP 27
instance domain services 23
intrinsic operators 150
inventor_eoe.sw product image 118
inventor_eoe.sw.help package 119
IPC 217

K

kill command 187

L

_label gadget 85
Launch menu 122
layered software services 16
_led gadget 85
_legend component 85
lexical elements 137
libpcp_pmda library 24
libpcp_trace library 24

_line gadget 85
live time control 53
log volumes 173
logging

See "archive logs" 3
logical constants 144
logical expressions 143

M

macros 138
man command

pmview tool 99
usage 63

max_host operator 150
memclaim tool 12
Message Passing Interface

See "MPI" 6
metadata 20
metric domains 2
metric selection 71
metric wraparound 154
min_host operator 150
MineSet data mining product 6
mkaf tool 9, 170
mkpmemarch tool 9
monitor configuration 27
monitor hosts 23
monitor subsystems 27
monitoring system performance 63
mouse controls 66
mpimon tool 6
mpivis tool 6

brief description 99
description 112
pmview tool 118

mpvis tool
brief description 5, 99
configuration file 124
description 104

007–2614–005 221

Index

Launch menu 122
pmview tool 118, 127
summary configuration 177, 179

_multibar gadget 85

N

naming scheme 2
netstat command 43
Network File System

See "NFS" 6
network routers and bridges 16
network transportation tools 9
newhelp tool 13
NFS 6, 110
nfsvis tool

brief description 6, 99
description 110
Launch menu 122
NFS request 100
pmview tool 118, 127
summary configuration 177, 179

NNTP news servers 16
nodevis tool 6, 99, 118
NUMAlink node connectors 69

O

objectives 1
Open Inventor 99, 100, 118
OpenGL 100
operational support tools 11
operators 145
Options menu 54, 122
osvis tool

brief description 6, 99
description 106
Launch menu 122
pmview tool 118, 127

overview 1

oview tool
archive creation 54
brief description 6, 99
description 107
record mode 169
time control 53

P

pcmd.options file 31
PCP

acronym 217
archive logger deployment 197
collector deployment 195
configuring and installing 27
conventions 45
distributed operation 2
environment variables 57
extensibility 4, 24
features 1
license system 28
log file option 47
naming conventions 45
tool customization 207
tool development 216
tool summaries 5, 9, 11, 13

pcp tool 12, 13, 122
PCP Tutorial

dkvis tool 103
mpvis tool 105
nfsvis tool 112
pmchart tool 83
pminfo command 96
pmval command 91
Web manual 49

pcp.books.* subsystem 28
pcp.books.help subsystem 27
pcp.man.* subsystem 28
pcp.man.tutorial

See "PCP Tutorial" 83

222 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

pcp.sw.* subsystems 28
pcp.sw.base subsystem 27
pcp.sw.demo subsystems 28, 151
pcp.sw.monitor subsystem 27
PCP_COUNTER_WRAP variable . . 58, 62, 154
pcp_eoe.books.help subsystem 27
pcp_eoe.sw.eoe subsystem 27, 28
pcp_eoe.sw.monitor subsystem 27
pcp_gifts.sw.* subsystems 28
PCP_LICENCE_NOWARNING variable . . . 58
PCP_STDERR variable 58
PCP_TRACE_HOST variable 58
PCP_TRACE_PORT variable 59
PCP_TRACE_TIMEOUT variable 59
PCPIntro command 44, 50
PDU 31, 217
Performance Co-Pilot

See "PCP" 1
Performance Metric Identifier

See "PMID" 17
performance metric wraparound 62, 154
performance metrics

concept 14
descriptions 20
methods 16
missing and incomplete values 39
PMNS 18
retrospective sources 23
selection 71
sources 15

Performance Metrics Application Programming
Interface

See "PMAPI" 13
Performance Metrics Collection Daemon

See "PMCD" 9, 29
Performance Metrics Collection Subsystem

See "PMCS" 23
Performance Metrics Domain

See "PMD" 36
Performance Metrics Domain Agent

See "PMDA" 2
Performance Metrics Inference Engine

See "pmie tool" 129
Performance Metrics Name Space

See "PMNS" 2
performance monitoring 5, 63
performance views 67
performance visualization tools 172
PerfTools icon catalog 46
PM_INDOM_NULL 133
PM_LAUNCH_PATH variable 60
pmafm tool

archive folios 170
brief description 9
interactive commands 182

PMAPI
acronym 217
archive logs 170
brief description 13
naming metrics 14
pmie capabilities 130

pmbrand tool
brief description 12
license capabilities 29

PMCD
acronym 217
brief description 9
collector host 140
configuration files 30
diagnostics and error messages 30
distributed collection 17, 18
/etc/pmcd.conf file 48
maintenance 29
monitoring utilities 191
not starting 42
other Internet hosts 118
PMCD_CONNECT_TIMEOUT variable . . . 59
PMCD_PORT variable 59
PMCD_RECONNECT_TIMEOUT variable . 59
PMCD_REQUEST_TIMEOUT variable . . . 60
remote connection 41
starting and stopping 29
TCP/IP firewall 61

007–2614–005 223

Index

pmcd tool
See "PMCD" 9

pmcd.conf file 32, 34
PMCD_CONNECT_TIMEOUT variable . . 42, 59
PMCD_PORT variable 44, 59, 61
PMCD_RECONNECT_TIMEOUT variable . . 59
PMCD_REQUEST_TIMEOUT variable 60
pmcd_wait tool 9
pmchart tool

archive creation 54, 78
brief description 6
colors 80
config.* files 177
fetching metrics 47
horizontal lines 70
Launch menu 122
man example 63
metric selection 71
monitoring usage 64
pmchart comparison 84
record mode 169, 182
remote PMCD 41
short-term executions 174
snapshots 171
time control 53, 82
time-series strip charts 100

pmclient tool 13, 14
PMCS

acronym 217
description 23
license constraints 28
metric expressions 140
pmie capabilities 130
pmie tool 132

PMD 36, 217
PMDA

acronym 217
collectors 23
customizing 203
development 215
installation 36
instance names 140

libraries 4
managing optional agents 36
monitoring utilities 191
no license constraints 28
removal 38
unification 2

pmda tool
See "PMDA" 14

PMDA_PATH variable 60
pmdaarray tool 9
pmdaash tool 9
pmdabrocade tool 10
pmdacisco tool 10
pmdadmf tool 10
pmdahippi tool 10
pmdahotproc tool 10
pmdamailq tool 10
pmdampi tool 10
pmdasendmail tool 10
pmdasummary tool 10
pmdate tool 12
pmdatrace tool 10, 58
pmdaweblog tool 10
pmdawebping tool 10
pmdbg facility 12
pmdumplog tool

archive log contents 176
brief description 11
troubleshooting 186

pmdumpmineset tool 6
pmdumptext tool

brief description 6
description 89
Launch menu 122

pmem tool 6, 91
pmerr tool 12
pmgadgets tool

brief description 6
description 84
desktop panel 101
pmgcisco monitoring 7

224 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

pmgevctr display 7
pmgshping monitoring 7

pmgcisco tool 7
pmgcluster tool 7
pmgenmap tool 14
__pmGetConfig function 57
pmgevctr tool 7
pmgshping tool 7
pmgsys tool

brief description 7
configuration file 84
Launch menu 122
standard layout 101

pmgweb tool 7
pmhostname tool 12
PMID

acronym 217
description 17, 18
PMNS names 204
printing 95

pmie tool
arithmetic aggregation 150
arithmetic expressions 143
automated reasoning 100, 129
basic examples 132
brief description 7, 12
customization 131
developing rules 154
error detection 155
examples 134, 135
global files and directories 165
instance names 155
intrinsic operators 150
language 130, 137
logical expressions 143
metric expressions 140
performance metrics inference engine . . 129
pmieconf rules 7, 156
procedures 156, 163
rate conversion 142
rate operator 151
real examples 151

rule creation 159
sample intervals 154
setting evaluation frequency 139
syntax 137
%-token 148
transitional operators 151

pmieconf tool
brief description 7
customization 131
rules 156

pmimport tool 11
pminfo tool

brief description 7
description 92
displaying the PMNS 39
PCP Tutorial 96
pmie arguments 132

pmkstat tool
brief description 8
description 87
Launch menu 122
summary configuration 177, 179

pmlaunch tool 12, 60
pmlc tool

brief description 11
description 184
dynamic adjustment 170
flush command 172
PMLOGGER_PORT variable 60
show command 187
SIGHUP signal 174
TCP/IP firewall 61

pmLoadNameSpace() default 61
pmlock tool 12
pmlogcheck tool 11
pmlogconf tool 11
pmlogextract tool 11, 183
pmlogger tool 60, 148

archive creation 78
archive logs 47, 54, 169
brief description 11

007–2614–005 225

Index

configuration 184
cookbook tasks 177
current metric context 15
distributed PMNS 20
folios 182
monitoring usage 64
mouse controls 66
no license constraints 28
PCP tool coordination 172
pmlc control 170
primary instance 183
remote PMCD 41
TCP/IP firewall 61
troubleshooting 185

pmlogger_check script 12, 172
pmlogger_daily script 12, 172
pmlogger_merge script 12, 172
PMLOGGER_PORT variable 60, 61
pmlogmerge tool 183
pmlogsummary tool 8
pmnewlog tool 12
PMNS

acronym 217
brief description 14
defined names 2
description 18
distributed product 20
license constraints 28
management 212
metric expressions 140
names 204
pmchart Metrics Selection 71
PMNS 49
services 23
syntax 213
troubleshooting 39

PMNS_DEFAULT variable 61
pmnsadd tool 13
pmnscomp tool

brief description 13
PMNS 49

pmnsdel tool 13

pmpost tool 13
pmprintf tool 58
pmprobe tool 8
pmrules tool

pmie rules 129
rule creation 159

pmrun tool 13, 45
pmsnap tool

brief description 12
script usage 172
usage instructions 83

pmsnaptool 13
pmsocks tool

brief description 8
TCP/IP firewall 61

pmstore tool
brief description 13
description 96
setting metric values 63

pmtime Archive Time Control dialog 55
pmtime PCP Live Time Control dialog 53
pmtime tool

brief description 8
time control 53, 82
timezone option 56

pmtrace tool 11
pmval tool

brief description 8
description 89
Launch menu 122

pmview tool
animated scenes 100
archive creation 54
brief description 8
config.* files 179
custom tools 123
menus 122
record mode 169, 182
related tools 99, 100, 118
time control 53
usage 118

226 007–2614–005

Performance Co-PilotTM User’s and Administrator’s Guide

primary archive 177
primary logger 183
processor visualization tool 104
procvis tool 8, 99, 118
protocol data units

See "PDU" 31
psmon tool 8

Q

quantification operators 145

R

rate conversion 142
rate operator 151
read system call 69
relational expressions 144
release notes 28, 119
reporting frequency 50
retrospective analysis 170
roles

collector 23, 27
monitor 23, 27

routervis tool
brief description 8
pmview tool 118
related tools 99

rule creation 159
rule expressions 147

S

sample intervals 154
*_sample operator 150
sar data structures 16
scripts 12, 172
service management 196
set-valued performance metrics 21

sgihelp command 27
show command 187
SIGHUP signal 42, 174
SIGINT signal 187
SIGUSR1 signal 172
single-valued performance metrics 21
snaphot image creation 180
snapshots 82, 171, 180, 211
SOCKS protocols 61
software 5
specification file 85
stripchart displays 208
subsystems 27, 28
sum_host operator 150
swmgr command 27
syntax 213
syslog function 130, 148

T

target usage 1
TCP/IP

acronym 217
collector and monitor hosts 61
remote PMCD 41
sockets 59

text-based tools 63
three-dimensional

See "3D tools" 99
time control 53, 54, 82
time dilation 62
time duration 49
time window options 50
time-series strip charts 100
time-stamped message 148
timezone options 53
tool customization 207
tool development 216
tool options 48, 129
transient problems 62

007–2614–005 227

Index

transitional operators 151
troubleshooting

archive logging 185
general utilities 41
IRIX metrics 40
PMCD 39, 40
pmchart colors 80

tutorial for PCP
See "PCP Tutorial" 83

txmonvis tool 99, 118

U

uniform naming 2
units 139
user interface components 45
/usr/etc/pmcd file 48
/usr/pcp/pmdas 49

V

/var/adm/pcplog/NOTICES file 13, 130
/var/adm/pcplog/pluto/config.default file . 178
/var/adm/pcplog/pmcd.log file 40, 42
/var/adm/SYSLOG file 130, 149
/var/pcp/config/pmlaunch file 60
/var/pcp/config/pmlogger directory . . . 179
/var/pcp/config/pmlogger file 177
/var/pcp/config/pmlogger/config.default file

183, 177, 179
/var/pcp/config/pmlogger/control file 173, 175,

178
/var/pcp/config/pmsnap/control file 83

/var/pcp/demos/pmie file 151
/var/pcp/lib/pmview-args file 127
/var/pcp/pmns/Brand file 29
/var/pcp/pmns/root file 61
/var/pcp/pmns/stdpmid file 36
/var/tmp/pmlogger file 187

W

weblogvis tool 9, 99
webping tool 11
webpingvis tool 9, 99
webvis tool 8, 99
window options 50
write system call 69

X

xbowvis tool
brief description 9
pmview tool 118
related tools 99

xconfirm command
error messages 58
visible alarm 130

xlv_vis tool 9

Y

year 2000 compliance 15

228 007–2614–005

