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About This Guide

This guide tells you, a programmer using MIPSpro™ Fortran 90 or MIPSpro
POWER Fortran 90, about the implementation details of these Silicon
Graphics, Inc. compilers and their run-time support. This edition describes
the products only for POWER CHALLENGE systems using IRIX 6.1.

What this Guide Contains

Here is an overview of the material in this book.

• Chapter 1 covers the phases of compilation and linking, and how to set
up the run-time environment for a program.

• Chapter 2 tells how MIPSpro Fortran 90 implements the features that
are defined as processor dependent in the language standard.

• Chapter 3 describes the programming interface between Fortran 90 and
other languages, especially C and C++.

• Chapter 4 describes the scalar optimizations that are unique to the
Fortran 90 compiler, and how you control and apply them.

• Chapter 5 describes the optimization support for function inlining and
interprocedural analysis.

• Chapter 6 tells how to use special comments called directives to control
optimization at a statement level.

• Chapter 7 describes the optimization features for parallelization and
multiprocessors.

• Chapter 8 tells how to debug and run a parallelized program.

• Appendix A lists the run-time error codes that can occur.

• Appendix B covers some problems that can arise when converting
Fortran 77 modules to Fortran 90.
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About This Guide

Additional Reading

You should be aware of the following books that can be useful in your work
with Fortran 90.

• The Fortran 90 Handbook by Adams, Brainerd, et. al. (McGraw-Hill 1992;
ISBN 0-07-000406-4) is the recommended reference manual for the
Fortran 90 language. This guide is designed to supplement the Fortran
90 Handbook.

For each point at which the Fortran 90 Handbook mentions a processor
dependency, this Guide has a heading explaining the Silicon Graphics
implementation of that feature. In many cases, the paragraph number
in the Fortran 90 Handbook is given following the heading.

• The MIPS Compiling and Performance Tuning Guide describes the
common features of Silicon Graphics, Inc. compilers, including such
points as:

– an overview of the compiler system

– the profiling and optimization facilities of the compiler system

– a general discussion of performance tuning

– the object file utilities, archiver, debugger, and other tools

• The MIPSpro Porting and Transition Guide describes the important
differences between 32-bit and 64-bit systems, including

– an overview of the 64-bit compiler system

– language implementation differences

– porting source code to the 64-bit system

– compilation and run-time issues

• The MIPSpro Assembly Language Programmer's Guide describes the use of
assembly language, and documents the standard instruction sequences
used by all Silicon Graphics, Inc. compilers to call subroutines.

• The CASEVision™/WorkShop User’s Guide introduces you to a powerful
suite of tools for debugging and performance tuning.

• The dbx User's Guide lists the commands of the dbx debugger.
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Internet Resources for Fortran 90 Users

The following sites point to resources of great value to users of Fortran 90.

• The Fortran Market™ is a World Wide Web (WWW) site that maintains
links to, and information about, Fortran products, services,
organizations, and consultants, and a directory of free software in
Fortran 77 and Fortran 90.

http://www.swcp.com:80/fortran/

• The Center for Scientific Computing in Finland maintains a WWW
page with an extensive directory to software archives worldwide.

http://www.csc.fi/math_topics/FTP/index.html

Conventions Used in This Guide

These are the typographical conventions used in this guide.

Purpose Example

Names of Fortran keywords and
procedures, and names defined in
example code

A function such as AINT must be named
in an INTRINSIC statement. The module
NEW_TYPE defines type TAX_PAYER.

Names of commands and options
entered on the IRIX command line

The compiler driver is f90. Use elfdump -t
to list external names in an object file.

Titles of manuals Refer to the dbx User's Guide.

A term defined in the hypertext glossary This is a processor dependency.

Filenames and pathnames The compiler automatically includes
libftn90.so, libftn.so, and libm.so from
/usr/lib64.

Full lines of example code or commands,
including variable elements you supply

f90 -g -mips4 sourcename.f

Exact quotes of computer output off end of record
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Chapter 1

1. Compiling, Linking, and Running

This chapter describes how you compile Fortran 90 source modules, link
them into executable units (programs or dynamic shared objects), and run
them. These are the main sections:

• “Using the Driver” on page 2 gives an overview of the operation of the
f90 compiler driver.

• “Linking” on page 4 gives an overview of static and dynamic linking
and the creation of dynamic shared objects (DSOs) from Fortran 90.

• “Driver Options” on page 10 summarizes the many f90 options in
groups of related options.

• “Execution Environment” on page 18 describes how you set up and
execute a program, including memory allocation and file disposition.
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Chapter 1: Compiling, Linking, and Running

Using the Driver

A Fortran 90 source module is converted from text to executable code in
several phases. The phases are called and controlled by the f90 command,
which is conventionally called the driver for the compiler because it “drives”
the phases through their execution. The phases of compilation are shown in
Figure 1-1.

Figure 1-1 Compilation Phases

1. The first step of compilation is the cpp macro preprocessor. If you
specify the -nocpp driver option, this step is skipped and the source file
passes directly to the front end.

2. The Fortran 90 front end parses the syntax of the source text, reduces it
to simpler forms, and detects syntax errors. This phase also writes a
module.kmo file for each MODULE statement, and reads a module.kmo
file for each USE statement.

Source file

(.f90, .f)

Macro

processor

(CPP)

Object
file
(.o)

Library

files

(.a, .so) Executable

(a.out, .so)

Fortran 90

front end
Parallel

optimizer

(optional

step)

Optimized

code

generator

Linker
(ld)

Module
file

(.kmo)

F90 Driver
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3. The processed program can pass through the Parallel Optimizer if
MIPSpro POWER Fortran 90 is installed.

4. The processed, parallelized program is converted to optimized machine
language code in the code generator. If you specify the -c driver option,
the machine code is written to a name.o file and the compilation ends.

5. The linker combines one or more object files into an executable. The
executable is named a.out by default, but you can specify another name
with the -o driver option.

Using Macro Processing

The cpp macro preprocessor can be used to include standard header files, to
generate sequences of code, and to make parts of a program conditional on
defined values. The following names are predefined by the driver (you can
see their definitions using the -show driver option):

Tip: The name LANGUAGE_FORTRAN (with and without a leading
underscore) is defined by both Fortran drivers. Use it to control statements
that are applicable to any Fortran program. LANGUAGE_FORTRAN77 is
defined only by the f77 driver, while the f90 driver defines
LANGUAGE_FORTRAN90. Use these names to generate code unique to
one version of the language.

_ABI64=3 or 4 _COMPILER_VERSION=602

__DSO__ __host_mips

_LANGUAGE_FORTRAN LANGUAGE_FORTRAN

_LANGUAGE_FORTRAN90 LANGUAGE_FORTRAN90

_MIPSEB _MIPS_ISA=3 or 4

_MIPS_FPSET=32 _MIPS_SZINT=32 or 64

_MIPS_SIM=_ABI64 _MIPS_SZLONG=64

_MIPS_SZPTR=64 _PIC

__sgi _SYSTYPE_SVR4

_SVR4_SOURCE __unix
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Chapter 1: Compiling, Linking, and Running

Linking

To link is to combine object files, resolving the connections between names
that are defined in one file but called from another. Linking is discussed in
greater detail in the MIPS Compiling and Performance Tuning Guide.

Object Files

The object files that are linked come from one of these sources:

• Fortran 90 source files, compiled in this use of the driver

• Object files, previously compiled and saved as name.o files

• Archives of object files built with the ar command

• Dynamic shared objects (DSOs) built by the linker

• Library files, included by default or named with the -l driver option

A DSO is normally stored in a file with the suffix .so. The building of DSOs
is described under “Creating Dynamic Shared Objects” on page 7.

Archives are collections of object files in a single file, normally given a suffix
of .a. The use of the archive-builder ar is covered in the MIPS Compiling and
Performance Tuning Guide.

Any kind of object file—compiled .o, DSO .so, or archive .ar—can be specified
as an input file on the f90 command line.

Specifying the Location of Libraries

You specify the name of a library indirectly, using the -L and -l driver
options. The compiler adds the prefix lib to the name specified with -l, and
searches for libname.so or libname.a in the directories where libraries are kept.
For example, if you specify -lblas, the driver searches for a file libblas.so or
libblas.a. If you specify -L/usr/f90/objects, the driver searches that directory
when looking for library files.
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The end result is that the library (which is simply a DSO or archive file) is
included in the link phase of the compile. You can achieve the same result by
giving the full name of the library as an input to f90.

The driver searches for libraries first in directories named by the -L option,
and then in /usr/lib64 and in /usr/lib64/mips4t.

The driver includes certain libraries by default:

• libftn90.so and libftn.so, Fortran run-time support

• libm.so, the math library

• libc.so, the C run-time library

Some libraries that are often included using the -l option are libfpe for
floating-point exceptions, libfGL, the Fortran bindings to Open GL, and
libblas, the BLAS math procedures.

Static and Dynamic Linking

When the object code of a procedure is included as part of the executable file,
it is statically linked; that is, the connection between the call and the entry
point is permanently fixed in the executable file. Procedures defined in
object files and archive files are always statically linked.

When the object code of a procedure is found in a DSO, the procedure is
dynamically linked; that is, only the names of the procedure and the DSO are
included in the executable program file. When the executable program is
loaded, the DSO is also loaded, and the linkage between the call and the
procedure is resolved at that time.

Most run-time libraries distributed with Fortran 90 are in DSO form, so the
Fortran run-time support code and intrinsic procedures are dynamically
linked.
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Chapter 1: Compiling, Linking, and Running

Linking Multiple-File Programs

A large program is normally divided into many source files, each compiled
separately. These files may all be written in Fortran 90; or some of them may
be written in a different language—Fortran 77 or C, for example.

Exactly one of these files must be a main module. In Fortran 90 or Fortran 77,
a main program is one that contains a PROGRAM statement. In C or C++, a
main module contains a main() function definition.

To compile and link a multiple-file program, first compile each file using the
-o driver option to produce an object file for that source file. Then compile all
the .o files, using the driver for the language of the main module. (Any of the
MIPSpro compiler drivers can perform the link step for any combination of
object files.)

For example, imagine a program consisting of these files:

• A main module in Fortran 90 named master.f90

• A module of procedures in Fortran 77 named procs.f

• A module containing C functions, named funcs.c

This program could be compiled into an executable named master using the
commands shown in Example 1-1.

Example 1-1 Compiling and Linking a Multiple-File Program

f90 -O3 -64 -c master.f90
f77 -O3 -64 -c procs.f
cc -O3 -64 -c funcs.c
f90 -o master master.o procs.o funcs.o

You perform the final step using the language for the main program because
that driver includes the appropriate program-setup procedure and library
code by default.
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Creating Dynamic Shared Objects

The concepts and use of dynamic shared objects (DSOs) are covered in the
MIPS Compiling and Performance Tuning Guide, and in the dso(5) and rld(1)
reference pages. For example, the MIPS Compiling and Performance Tuning
Guide covers details of how different versions of DSOs are created and used.

You can create a DSO based on one or more Fortran 90 source files, provided
that they are not main program files. Then other Fortran 90 programs can
link dynamically to the procedures in that DSO.

Note: The concept of a DSO and the concept of a Fortran 90 MODULE are
quite distinct and should not be confused. You can link the object files from
one or more MODULEs to form a DSO. This is a good method of packaging
the object code of MODULEs. However, the compiler does not do this by
default. A source file that defines one or more MODULEs is compiled to a
single object file. You can statically link this file with other object files that
need it, or you can link it to form a DSO.

The source of a small MODULE is displayed in Example B-12 on page 198.
Suppose this source is stored in a file dgrtrig.f90. It can be converted into a
DSO using the commands shown in Example 1-2.

Example 1-2 Compiling and Linking a DSO

f90 -O3 -64 -c dgrtrig.f90
ld -shared -64 dgrtrig.o -o dgrtrig.so

The compilation step produces the object file dgrtrig.o, which could be
statically linked with any other program. (The compilation also produces a
file DEGREE_TRIG.kmo, containing a summary of the module; this file is
used to compile a USE DEGREE_TRIG statement that appears in any later
compile.) The ld command in Example 1-2 produces the DSO, dgrtrig.so.
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Linking With DSOs

When a program uses a procedure that is defined in a DSO, you must take
two steps.

1. Include the DSO as input when the program is linked.

2. Store the DSO where it can be found by the loader when the program is
executed.

Linking a DSO as an Object File

You can simply name the DSO as an input file on the driver command line.
The short program in Example 1-3 uses the module that is converted to a
DSO in Example 1-2.

Example 1-3 Program That Uses a Module

use degree_trig
print *,"sin",dgr,dsind(45.0_8)

end

Suppose that the DSO dgrtrig.so is in the current directory. Then the program
in Example 1-3 could be compiled as follows:

f90 -g -64 -o usedgr usedgr.f90 dgrtrig.so

While compiling the program, the compiler reads DEGREE_TRIG.kmo to
learn the public names in the module. While linking the program, the linker
resolves external references using entry point information in dgrtrig.so, but
does not include the DSO contents in the executable file.

Tip: If you specify the full path to a DSO when linking, the path is recorded
in the executable file and the loader does not need to search for the DSO
when loading the program.
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Linking a DSO as a Library

Another way to present object files to the linker is to include them as
libraries. In order to do this,

• The DSO must have a name that begins with the letters lib.

• The DSO must be stored in a directory where the linker searches for
library files.

For example, suppose that dgrtrig.so has been renamed to libdgr.so and stored
in a directory /usr/local/f90/objects. Now the program in Example 1-3 can be
compiled as follows:

f90 -g -64 -L/usr/local/f90/objects \
-ldgr -o usedgr usedgr.f90

The -L option causes the linker to search for all needed libraries first in the
specified directory. The -ldgr option tells it to include libdgr.so from that
directory. Again, the linker resolves the external references from the contents
of the DSO, but does not include the DSO in the executable file.

Loading DSOs at Execution Time

When a program that uses a DSO is loaded, the DSO files that it was linked
with must be loaded also. (If they have already been loaded for use by some
other program, they are not loaded again but simply shared.) In order to find
them, the loader searches directories named in the LD_LIBRARY_PATH
environment variable as well as other directories and environment variables
documented in the rld(1) reference page.

Ordinarily you store the DSOs you create in one of the default directories, or
in a directory named in LD_LIBRARY_PATH. For more about how DSOs are
loaded, see the MIPS Compiling and Performance Tuning Guide.
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Driver Options

This section contains an overview of the Fortran–specific driver options. The
f90(1) reference page has a complete description of the compiler options.
This discussion only covers the relationships between some of the options.
In addition, you should review:

• the MIPS Compiling and Performance Tuning Guide for a discussion of the
compiler options that are common to all MIPSpro compilers

• the pfa(1) and fopt(1) reference pages for options related to the parallel
optimizer

• the ld(1) reference page for a description of the linker options

• chapters 5-7 of this Guide for options related to optimization features

Tip: The command f90 -help lists all compiler options for quick reference.
Use the -show option to have the compiler display the exact default and
nondefault options passed to each phase.

Compiling Low-Performance Programs

When you are compiling a program that does not have high performance
requirements, you need only a very few compiler options. Examples of such
programs include

• test cases used to explore algorithms or Fortran language features

• programs that are principally interactive

• programs you will execute under a debugger

In these cases you need only specify -g for debugging, the target machine
architecture, and the word-length. For example, to compile a single source
file to execute under dbx on a Power Challenge XL, you could use the
following commands:

f90 -g3 -O0 -o testcase testcase.f
dbx testcase
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A program compiled in this way will take little advantage of the
performance features of the machine. In particular, its speed when doing
heavy floating-point calculations will be far slower than the machine is
capable of. For simple programs, that is usually not relevant.

Specifying Source File Format

The options summarized in Table 1-1 tell the compiler how to treat the
program source file.

Note: The Silicon Graphics Fortran 77 compiler supports a -dlines option
that permits comment lines to begin with a “D” in column 1. This option is
not supported by Fortran 90, and such comments will cause syntax errors.

Controlling the Macro Preprocessor

The options summarized in Table 1-2 direct the operation of the cpp
preprocessor.

Table 1-1 Compile Options for Source File Format

Options Purpose

-bytereclen Always treat the RECL= specifier in OPEN as a
count of bytes, including unformatted direct I/O

-fixedform, -col72, -col120,
-extend_source, -noextend_source

Specify fixed-format input and set margin
columns of source lines.

-freeform Specify free-form input and Fortran 90 syntax.

Table 1-2 Compile Options to Control cpp

Options Purpose

-nocpp Do not run cpp; pass source directly to
front end.

-A:assertion Add a cpp assertion.
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Specifying Compiler Input Files

The options summarized in Table 1-3 tell the compiler what input files to
use.

Note: The -I option is used to specify search locations for three kinds of
included files:

• files included by the macro preprocessor from a #include statement

• files included by the compiler front end from an INCLUDE statement

• module (.kmo) files included by the compiler from a USE statement

-Dname, -Dname=def, -Uname Define and undefine names to the C
preprocessor.

-M, -Mupdate, -Mtarget filename Run only the C preprocessor, requesting
makefile-dependency output.

Table 1-3  Compile Options That Select Input Files

Options Purpose

-I, -Idir Specify location of all types of source
inclusions—see note.

-nostdinc Do not search for include files in default
directories (search only directories given
with -I options).

-Ldir Specify location of library files.

-lname Include libname in the link.

-nostdlib Do not search for libraries in default
directories (search only directories given
with -L options).

-objectlist filename Read filename for a list of object files to
include in the link.

Table 1-2 (continued) Compile Options to Control cpp

Options Purpose
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Specifying Compiler Output Files

The options summarized in Table 1-4 tell the compiler what output files to
generate.

Specifying Target Machine Features

The options summarized in Table 1-5 are used to specify the characteristics
of the machine where the compiled program will be used. The TARG and
TENV options are discussed in the MIPS Compiling and Performance Tuning
Guide.

Table 1-4 Compile Options That Select Output Files

Options Purpose

-c Generate a single object file for each input file; do not
link.

-E, -P Run only the macro preprocessor and write its output to
standard output (-E) or to source.i (-P).

-keep Retain compiler intermediate and work files
(debugging compiler problems only).

-listing Request a listing file.

-LIST:listoption [,...] Specify detailed options regarding the listing file.

-o Specify name of output executable or DSO file.

-S Write the generated object code in assembly-language
form as source.s; do not link.

Table 1-5 Compile Options for Target Machine Features

Options Purpose

-n32, -n64 Specify the binary format. -n64 (64-bit addressing) is the
default.
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Specifying Memory Allocation and Alignment

The options summarized in Table 1-6 tell the compiler how to allocate
memory and how to align variables in it. These options can have a strong
effect on both program size and program speed.

-TARG:option,... Specify certain details of the target CPU. Most of these
options have correct default values based on the preceding
options.

-TENV:option,... Specify certain details of the software environment in which
the source module will execute. Most of these options have
correct default values based on other, more general values.

Table 1-6 Compile Options for Memory Allocation and Alignment

Options Purpose

-align8, -align16,
-align32, -align64

Align all variables size n on n-byte address boundaries.

-d8, -d16 Specify the size of DOUBLE and DOUBLE COMPLEX
variables.

-i2, -i4, -i8 Specify the size of INTEGER and LOGICAL variables.

-r4, -r8 Specify the size of REAL and COMPLEX variables.

-static Allocate all local variables statically, not dynamically on
the stack.

-Gsize, -xgot Specify use of the global option table.

Table 1-5 (continued) Compile Options for Target Machine Features

Options Purpose
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Specifying Debugging and Profiling

The options summarized in Table 1-7 direct the compiler to include more or
less extra information in the object file for debugging or profiling.

For more information on debugging and profiling, see the MIPS Compiling
and Performance Tuning Guide.

Specifying Optimization Levels

The MIPSpro Fortran 90 compiler contains three optimizer phases. One is
part of the compiler “back end”; that is, it operates on the generated code,
after all syntax analysis and source transformations are complete. The use of
this standard optimizer, which is common to all MIPSpro compilers, is
discussed in the MIPS Compiling and Performance Tuning Guide.

In addition, two phases of accelerators, one for scalar optimization and one
for parallel array optimization, can be applied to the output of the front end.
These optimizing phases are available only with the optional POWER
Fortran 90 product. The options of the scalar optimizer are detailed in the
fopt(1) reference page. The options of the parallel optimizer are detailed in
the pfa(1) reference page.

Table 1-7 Compile Options for Debugging and Profiling

Options Purpose

-g0, -g2, -g3, -g Leave more or less symbol-table information in the
object file for use with dbx or Workshop Pro cvd.

-p Cause profiling to be enabled when the program is
loaded.
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The options summarized in Table 1-8 are used to communicate to the
different optimization phases.

The GCM, OPT, and SWP options are discussed in detail in the MIPS
Compiling and Performance Tuning Guide.

For the options that can follow -sopt, refer to the fopt(1) reference page. For
the options that can follow -WK, refer to the pfa(1) reference page. For
examples of -WK, see Table 1-9.

When you use -O to specify the optimization level, the compiler assumes
default options for the accelerator phases. These defaults are listed in
Table 1-9. Remember, to see all options that are passed to a compiler phase,
use the -show option.

Table 1-8 Compile Options for Optimization Control

Options Purpose

-O, -O0, -O1,
-O2, -O3

Select basic level of optimization, setting defaults for all
optimization phases.

-GCM:option,... Specify details of global code motion performed by the
back-end optimizer.

-OPT:option,... Specify miscellaneous details of optimization.

-SWP:option,... Specify details of pipelining done by back-end
optimizer.

-sopt[,option,...] Request execution of the scalar optimizer, and pass
options to it.

-mp, -pfa, -pfalist, -pfakeep Request automatic parallelization (POWER Fortran 90
only), and optionally retain its work files.

-WK,option,... Pass options to the parallelizing optimizer.

Table 1-9 Defaults for Optimization Levels

Optimization Level Power Fortran Defaults Passed

-O0 –WK,–roundoff=0,–scalaropt=0,–optimize=0

-O1 –WK,–roundoff=0,–scalaropt=0,–optimize=0
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In addition to optimizing options, the compiler system provides other
options that can improve the performance of your programs:

• Two linker options, –Gsize and –bestG, control the size of the global data
area, which can produce significant performance improvements. See
Chapter 2 of the Compiling, Debugging, and Performance Tuning Guide
and the ld(1) reference page for more information.

• The –jmpopt option permits the linker to fill certain instruction delay
slots not filled by the compiler front end. This option can improve the
performance of smaller programs that do not require large blocks of
virtual memory. See the ld(1) reference page for more information.

Controlling Compiler Execution

The options summarized in Table 1-10 control the execution of the compiler
phases.

-O2 –WK,–roundoff=0,–scalaropt=0,–optimize=0

-O3 –WK,–roundoff=2,–scalaropt=3,–optimize=5

-sopt –WK,–roundoff=0,–scalaropt=3,–optimize=5

Table 1-10 Compile Options for Compiler Phase Control

Options Purpose

-E, -P, -M Execute only the C preprocessor.

-nocpp Do not execute the C preprocessor.

-fe Stop compilation immediately after the front-end runs
(for compiler debugging only).

-sopt, -pfa Run the parallelizing optimizer phase.

-S, -c Stop compilation after the back-end runs, saving the
output as assembly source (-S) or object code (-c).

Table 1-9 (continued) Defaults for Optimization Levels

Optimization Level Power Fortran Defaults Passed
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The -Yc and -Wc options take a single letter c to specify which compiler
phase is meant. The letters are as follows:

For examples of using -W, see Table 1-9.

Execution Environment

The execution environment of a Fortran 90 program includes its
command-line arguments; the memory it can allocate; the files it uses; and
the policies for handling execution errors.

Executing a Program

To execute a program, invoke it by name as a command. In the command
environment where this happens, the run-time loader rld must be able to
find all needed DSOs (see “Loading DSOs at Execution Time” on page 9).

A program can recover the command-line arguments using the getarg
subroutine and iargc function (see the getarg(3f) reference page). The
program in Example 1-4 lists its arguments using these functions.

-Yc,path Load the compiler phase specified by c from the
specified path.

-Wc,option,... Pass the specified list of options to the compiler phase
specified by c.

p cpp

f front-end

b back-end

a assembler

l linker

K parallel optimizer, and Fortran 90 front end parser

Table 1-10 (continued) Compile Options for Compiler Phase Control

Options Purpose
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Example 1-4 Program That Lists Command Arguments

external getarg, iargc
integer iargc
character(80) anarg
do j = 1, iargc()

call getarg(j,anarg)
write (6,"(i3,' = ',a)") j, anarg

end do
end ! program

Program and Memory Size Limits

In general, a program may use as much memory as necessary. There are
some limits on individual allocations to 2 gigabytes (2,048 megabytes); and
IRIX places global limits on run-time use of stack and allocated memory.

Allocatable Sizes

There is no limit on the size of a variable created with the ALLOCATE
statement, other than the IRIX limit on total data space and total swap space.

Static and Common Sizes

When compiling with the -static flag, global data is allocated as part of the
compiled object (.o) file. The total size of any single .o file may not exceed
2 GB. However, the total size of an executable program or a DSO linked from
multiple .o files is not restricted.

An individual common block may not exceed 2 GB. However, you can
declare multiple common blocks, each having that size.

Local Variable (Stack Frame) Sizes

An array allocated on the process stack (that is, as a local variable of a
procedure) must not exceed 2 GB, but the total of all local variables can
exceed that limit. The subroutine in Example 1-5 has several gigabytes of
local space.
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Example 1-5 Subroutine With Large Local Variable Space

subroutine bloat(arg)
integer arg
integer, parameter :: ndim = 16380
integer(8) xmat(ndim,ndim), ymat(ndim,ndim), &

zmat(ndim,ndim)
xmat = arg
return

end

However, there is no limit on the size of an array that is passed as an
argument. The function in Example 1-6 takes a 34 GB argument. An
argument of this size could be created with ALLOCATE.

Example 1-6 Function Taking a Large Argument

function bigarg(rodan)
integer rodan(8589934592_8)
bigarg = rodan(4294967296_8)

end

Checking and Setting IRIX Limits

No user can have a stack larger than the current IRIX stack allocation limit
nor can allocate total data memory greater than the IRIX data limit. Both
these limits can be examined using the sh or csh command limit.

% limit stacksize
stacksize 512000 kbytes
% limit datasize
datasize unlimited

Note: There is no warning or diagnostic message when a program exceeds
the data or stack limit. The program ends with a segmentation fault.

You can use the limit command to set a smaller or larger limit, up to a system
maximum. The system maximum (rlimit_data_max or rlimit_stack_max) is set
using the systune command (refer to the systune(1) reference page).
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Limits of Swap Storage

Regardless of the amount of space that a user is permitted by the IRIX limits,
the total of all writable virtual memory for all processes in the system cannot
exceed the virtual swap allocation. The total of all virtual memory actually
written into cannot exceed the actual swap allocation. Thus a program that
allocates a very large array may not be able to start running because it
exceeds the size of virtual swap. A program may be able to allocate a very
large array (which is not larger than the virtual swap allocation), but then
may terminate while assigning values into the array because it has exceeded
the size of actual swap space.

The current swap allocations can be checked and changed using the swap
command; refer to the swap(1) reference page.

Connecting Files

This section covers the details of using files at runtime.

Preconnected Files

Table 1-11 shows the standard preconnected files at program start.

All other units are also preconnected when execution begins. Unit n is
connected to a file named fort.n. These files need not exist, nor will they be
created unless their units are used without first executing an OPEN with an
explicit filename. The default connection is for sequentially formatted I/O.

Table 1-11 Preconnected Files

Unit # Unit

5 Standard input

6 Standard output

0 Standard error
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Filename Syntax

In the FILE= argument of OPEN or INQUIRE, you may specify any valid
IRIX path or filename. The string is case-sensitive. If the string begins with a
dot or a slash, it is treated as an absolute path; otherwise it is interpreted in
the context of the current working directory. (You can change the current
working directory dynamically using the chdir() function; see “Support for
IRIX Kernel Functions” on page 27.)

Three predefined filenames are supported. When one of the following names
is specified, the file is opened to the system I/O stream shown:

By using these names you can associate an arbitrary unit number to a
standard stream. However, if you access a stream alternately through
different unit numbers, the results are unpredictable.

File Positions

The I/O system positions a file at start of file for both input and output. The
execution of an OPEN statement followed by a WRITE on an existing file
causes the file to be overwritten, erasing any data in the file.

In a program called from a parent process, units 0, 5, and 6 remain where
they were positioned by the parent process.

Default File Status and Action

When the parameter STATUS="UNKNOWN" is specified in an OPEN
statement, the following occurs:

• If the file does not exist, it is created and positioned at start of file.

• If the file exists, it is opened and positioned at start of file.

When a file is opened without specifying the ACTION= argument, the
default action is READWRITE.

SYS$INPUT standard input (same as logical unit 5)

SYS$OUTPUT standard output (same as logical unit 6)

SYS$ERROR standard error (same as logical unit 0)
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Run-Time Error Handling

When the Fortran 90 run-time system detects an error that is not handled by
the program, the following action takes place:

• A message describing the error is written to the standard error unit
(unit 0). See Appendix A, “Run-Time Error Codes,” for a list of the error
messages.

• A core file is produced if the f77_dump_flag environment variable is set
(the variable has the same name for both Fortran 77 and Fortran 90).

You can use dbx to locate the point of failure in the core file. To invoke dbx
using the core file, enter this command:

% dbx executable-file

where executable-file is the name of the executable program. The dbx
command where displays a stack trace showing the procedures that were
active when the error took place.

Tip: When a program ends with a segmentation fault, a likely cause is that
a memory size limit was exceeded. See “Program and Memory Size Limits”
on page 19.

Floating Point Exceptions

The library libfpe provides two methods for handling floating point
exceptions.

Note: Owing to the different architecture of the MIPS R8000 and R10000
processors, library libfpe is not available with the current compiler. It will be
provided in a future release. When porting Fortran 77 programs that depend
on trapping exceptions using the facilities in libfpe, you will have to
temporarily change the programs to do without it.

The library provides the subroutine handle_sigfpes and the environment
variable TRAP_FPE. Both methods provide mechanisms for handling and
classifying floating point exceptions, and for substituting new values. They
also provide mechanisms to count, trace, exit, or abort on enabled
exceptions. See the handle_sigfpes(3F) reference page for more information
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2. Implementation Details

This chapter documents the relationship of MIPSpro Fortran 90 to the ANSI
standard for the Fortran 90 language. It includes these main topics:

• “Conformance to the Fortran 90 Language Standard” on page 25
documents the standard compliance and the extensions supported.

• “Support for IRIX Kernel Functions” on page 27 documents the IRIX
functions that are available as library routines to a Fortran program.

• “Processor-Dependent Features” on page 35 documents how this
compiler implements features the standard calls processor-dependent.

Conformance to the Fortran 90 Language Standard

MIPSpro Fortran 90 is a complete implementation of ANSI Fortran 90. It
supports all of the language features as defined by the standard, and allows
only minor syntactic extensions beyond the standard.

MIPSpro Fortran 90 does not support such common language extensions as
HPF (High Performance Fortran) directives. Language extensions present in
Cray™ and DEC™ Fortran 90 compilers are also not supported.

The version of MIPSpro Fortran 90 and MIPSpro Power Fortran 90
described in this book support only Silicon Graphics, Inc. Power Challenge
and Power Indigo2 systems (that is, systems based on the MIPS R8000
processor) running IRIX 6.0.x. The compiler generates only 64-bit
executables.
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Support for Multiprocessing

MIPSpro Fortran 90 supports multiprocessing with user-inserted parallel
directives. These directives follow the recently adopted PCF (Parallel
Computing Forum) X3H5 guidelines. (See “Using PCF Directives” on
page 162.)

MIPSpro POWER Fortran 90 is an extended version of MIPSpro Fortran 90
that supports the same language and directives, but adds automatic
optimization for multiprocessing. This compiler analyzes a serial program
for potential parallelization and when possible, generates an executable that
can utilize multiple processors when executed in a Silicon Graphics, Inc.
computer that has multiple CPUs in sufficient numbers.

Syntax Extensions

The following nonstandard syntax features are accepted by the compiler in
order to make it simpler to port programs from Fortran 77.

• Asterisk notation can be used to signify precision of a numeric type. For
example, INTEGER*8 is taken as INTEGER(8). (See “Differences in
Scalar Declarations” on page 189.)

• When writing a quad-precision literal floating point number, “Q” can
be used as the exponent delimiter. For example, 1Q6 is taken as 1E6_16.
(See “Differences in Scalar Declarations” on page 189.)

• Hollerith-form character literal values are accepted in integer
expressions. (See “Character and Hollerith Literals” on page 192.)

• A numeric variable can be specified as the filename value in an OPEN
statement. (See “Numeric Variable for FILE” on page 207.)

• Special format modes are permitted in the OPEN statement. (See
“Special File Formats” on page 209.)

None of these extensions adds functionality to the language; they only make
it easier to port existing programs that depend on Fortran 77 extensions.
Because they are nonportable, you should avoid using them when writing
new code.
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Support for IRIX Kernel Functions

Some commonly-used IRIX system functions have been made available to
Fortran programs. System functions are facilities that are provided by the
IRIX system kernel directly, as opposed to functions that are supplied by
library code. For an overview of system functions, see the intro(2) reference
page.

Table 2-1 summarizes the functions in the Fortran run-time library. In
general, the  interface routine has the same name as the system function
when called from a C program.

For details on any function, use the command man; for example, to get
details on the fcntl() function, use man fcntl. This can yield as many as three
reference pages with the same name; for example, man chmod produces
chmod(1) for the user command, chmod(2) for the C function, and chmod(3f)
describing the Fortran interface.

Table 2-1 Summary of System Interface Library Routines

Function Purpose

abort abnormal termination

access determine accessibility of a file

acct enable/disable process accounting

alarm execute a subroutine after a specified time

barrier perform barrier operations

blockproc block processes

brk change data segment space allocation

chdir change default directory

chmod change access mode of a file

chown change ownership of a file

chroot change root directory for a command

close close a file descriptor
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creat create or rewrite a file

ctime return system time

dtime return elapsed execution time

dup duplicate an open file descriptor

etime return elapsed execution time

exit terminate process with status

fcntl file control

fdate return date and time in an ASCII string

fgetc get a character from a logical unit

fork create a copy of this process

fputc write a character to a Fortran logical unit

free_barrier free barrier

fseek reposition a file on a logical unit

fseek64 reposition a file on a logical unit for 64-bit architecture

fstat get file status

fstat64 get file status—64-bit integers

ftell reposition a file on a logical unit

ftell64 reposition a file on a logical unit for 64-bit architecture

gerror get system error message text

getarg return command line arguments

getc get a character from a logical unit

getcwd get pathname of current working directory

getdents read directory entries

getegid get effective group ID

Table 2-1 (continued) Summary of System Interface Library Routines

Function Purpose
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gethostid get unique identifier of current host

getenv get value of environment variables

geteuid get effective user ID

getgid get user or group ID of the caller

gethostname get current host ID

getlog get user’s login name

getpgrp get process group ID

getpid get process ID

getppid get parent process ID

getsockopt get options on sockets

getuid get user or group ID of caller

gmtime return system time

iargc return number of command line arguments

idate return date or time in numerical form

ierrno get system error message number

ioctl control device

isatty determine if unit is associated with tty

itime return date or time in numerical form

kill send a signal to a process

link make a link to an existing file

loc return the address of an object

lseek move read/write file pointer

lseek64 move read/write file pointer for 64-bit architecture

lstat get file status

Table 2-1 (continued) Summary of System Interface Library Routines

Function Purpose
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lstat64 get file status—64-bit integers

ltime return system time

m_fork create parallel processes

m_get_myid get task ID

m_get_numprocs get number of subtasks

m_kill_procs kill process

m_lock set global lock

m_next return value of counter

m_park_procs suspend child processes

m_rcle_procs resume child processes

m_set_procs set number of subtasks

m_sync synchronize all threads

m_unlock unset a global lock

mkdir make a directory

mknod make a directory/file

mount mount a filesystem

new_barrier initialize a barrier structure

nice lower priority of a process

open open a file

oserror get/set system error

pause suspend process until signal

perror write system error message to stderr (unit 0)

pipe create an interprocess channel

plock lock process, test, or data in memory

Table 2-1 (continued) Summary of System Interface Library Routines

Function Purpose
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prctl control processes

profil execution-time profile

ptrace process trace

putc write a character to a Fortran logical unit

putenv set environment variable

qsort quick sort

read read from a file descriptor

readlink read value of symbolic link

rename change the name of a file

rmdir remove a directory

sbrk change data segment space allocation

schedctl call to scheduler control

send send a message to a socket

setblockproccnt set semaphore count

setgid set group ID

sethostid set current host ID

setoserror set system error

setpgrp set process group ID

setsockopt set options on sockets

setuid set user ID

sginap put process to sleep

sginap64 put process to sleep in 64-bit environment

shmat attach shared memory

shmdt detach shared memory

Table 2-1 (continued) Summary of System Interface Library Routines

Function Purpose
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sighold raise priority and hold signal

sigignore ignore signal

signal change the action for a signal

sigpause suspend until receive signal

sigrelse release signal and lower priority

sigset specify system signal handling

sleep suspend execution for an interval

socket create an endpoint for communication TCP

sproc create a new share group process

stat get file status

stat64 get file status—64-bit integers

stime set time

symlink make symbolic link

sync update superblock

sysmp control multiprocessing

sysmp64 control multiprocessing in 64-bit environment

system issue a shell command

taskblock block tasks

taskcreate create a new task

taskctl control task

taskdestroy kill task

tasksetblockcnt set task semaphore count

taskunblock unblock task

time return system time (available as both function and subroutine)

Table 2-1 (continued) Summary of System Interface Library Routines

Function Purpose
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ttynam find name of terminal port

uadmin administrative control

ulimit get and set user limits

ulimit64 get and set user limits in 64-bit architecture

umask get and set file creation mask

umount dismount a filesystem

unblockproc unblock processes

unlink remove a directory entry

uscalloc shared memory allocator

uscalloc64 shared memory allocator in 64-bit environment

uscas compare and swap operator (default integer arguments)

uscas32 compare and swap operator (INTEGER(4) arguments)

uscasinfo compare and swap information word of shared arena

usclosepollsema detach file descriptor from a pollable semaphore

usclrerror disable messages from shared arena (usinit reference page)

usclrtrace disable tracing in shared arena (usinit reference page)

usconfig semaphore and lock configuration operations

uscpsema acquire a semaphore

uscsetlock unconditionally set lock

usctllock lock control operations

usctlsema semaphore control operations

usdetach release shared arena

usdumplock dump lock information

usdumpsema dump semaphore information

Table 2-1 (continued) Summary of System Interface Library Routines

Function Purpose
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usfree user shared memory allocation

usfreelock free a lock

usfreepollsema free a pollable semaphore

usfreesema free a semaphore

usgetinfo exchange information through an arena

usinit semaphore and lock initialize routine

usinitlock initialize a lock

usinitsema initialize a semaphore

usmalloc allocate shared memory

usmalloc64 allocate shared memory in 64-bit environment

usmallopt control allocation algorithm

usnewlock allocate and initialize a lock

usnewpollsema allocate and initialize a pollable semaphore

usnewsema allocate and initialize a semaphore

usopenpollsem attach a file descriptor to a pollable semaphore

uspsema acquire a semaphore

usputinfo exchange information through an arena

usrealloc user share memory allocation

usrealloc64 user share memory allocation in 64-bit environment

usseterror enable messages from memory arena (usinit reference page)

ussetlock set lock

ussettrace start tracing in memory arena (usinit reference page)

ustestlock test lock

ustestsema return value of semaphore

Table 2-1 (continued) Summary of System Interface Library Routines

Function Purpose
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Processor-Dependent Features

The Fortran 90 language standard leaves some details of language semantics
to be defined by the compiler. The Fortran 90 language standard and the
Fortran 90 Handbook (see “Additional Reading” on page xxiv) refer to each
such detail as a processor dependency.

For each point at which the Fortran 90 Handbook mentions a processor
dependency, this Guide has a heading explaining the Silicon Graphics
implementation of that feature. In many cases, the paragraph number in the
Fortran 90 Handbook is given following the heading.

Note: The behavior of processor-dependent features is by definition
nonportable. Fortran 90 systems from other vendors may not behave the
same way. Furthermore, future implementations of Silicon Graphics, Inc.
Fortran 90 may behave differently in subtle ways. You should never base the
correctness of a program on the behavior of a processor dependency.

Standard and Intrinsic Modules

(This topic amplifies topic 1.7 in the Fortran 90 Handbook.)

No standard or intrinsic modules are shipped with MIPSpro Fortran 90. One
module has been proposed as a standard to ISO (ISO/IEC 1539-2:1994(E)). It
is a module that implements varying-length strings of characters. The
Fortran 90 source of an exemplary implementation of this module is
available on the World Wide Web. See the sources mentioned under
“Internet Resources for Fortran 90 Users” on page xxv.

usunsetlock unset lock

usvsema free a resource to a semaphore

uswsetlock set lock

wait wait for a process to terminate

write write to a file

Table 2-1 (continued) Summary of System Interface Library Routines

Function Purpose
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Supported Data Types

(This topic amplifies topics 2.9, 3.1, 4.1, 4.3, and 13.3 in the Fortran 90
Handbook.)

MIPSpro Fortran 90 supports the following data types:

• INTEGER with kind-parameters of 1, 2, 4, and 8

• REAL with kind-parameters of 4, 8, and 16

DOUBLE PRECISION is a synonym for REAL(8)

• COMPLEX with kind-parameters of 4, 8, and 16

DOUBLE COMPLEX is a synonym for COMPLEX(8)

• LOGICAL with kind-parameters of 1, 2, 4, and 8

• CHARACTER

Except for COMPLEX, the supported kind-parameters (1, 2, 4, 8 and 16)
represent the size of a scalar value in bytes and the default alignment of one
scalar item in memory. For COMPLEX, the kind-parameter represents the
size and alignment of each of the components of the number. (This can be
slightly confusing when migrating from Fortran 77. In Fortran 77, a complex
number composed of two REAL*8 numbers is a COMPLEX*16 variable. But
in Fortran 90, a complex number composed of two REAL(8) numbers is a
COMPLEX(8) variable.).

Numeric Precision

(This topic amplifies topics 4.2.2, 4.3, and 5.1 in the Fortran 90 Handbook.)

INTEGER and LOGICAL values are stored as signed binary integers with
the size and alignment specified by the kind-parameter. The possible integer
values are:

INTEGER(1) –128…127

INTEGER(2) –32,768…32,767

INTEGER(4)  –231…231 –1

INTEGER(8) –263…263 –1
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REAL(4) and REAL(8) values are stored in IEEE 754 format. REAL(16)
values are not stored in IEEE 754 form, but rather are stored as the diffference
between two values (see the math(3m) reference page). COMPLEX values
consist of two REAL values of the specified kind in adjacent locations. The
precisions supported are shown in Table 2-2.

Character Values and Literals

(This topic amplifies topics 3.3, 4.3, and 5.1 in the Fortran 90 Handbook.)

The CHARACTER type supports only 8-bit ASCII values. Any 8-bit value
can be stored in a CHARACTER variable using the CHAR intrinsic function.
Only one kind-parameter is supported for CHARACTER data: the
parameter 1, signifying 8-bit ASCII. For example, the lines

CHARACTER(80,1) MSG
MSG = 1_"Enter File Name"

show the declaration of a CHARACTER variable with an explicit kind and
the assignment of a literal with an explicit kind.

Literal character values are represented in a source expression using the
standard Fortran 90 syntax as described in section 4.3.5.4 of the MIPSpro
Fortran 90 Handbook. Any character that can be entered from the keyboard
can be contained within a literal string, with the exception of the ASCII
newline character (control-J, 10 decimal), which signals the end of the line
and the end of the logical statement.

Table 2-2 Floating-Point Precision

Data Type Exponent Fraction Approximate
Minimum

Approximate
Maximum

REAL(4) 8 bits 24 bits 1.17e-38 3.4e+38

REAL(8) 11 bits 53 bits 2.22e-308 1.797e+308

REAL(16) 11 bits 107 bits 1.805e-276 1.797e+308
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INCLUDE Processing

(This topic amplifies topic 3.5 in the Fortran 90 Handbook.)

The Fortran 90 INCLUDE statement causes a specified file to be read by the
compiler. When the argument of INCLUDE specifies an absolute path—that
is, if it begins with a slash or a dot—the specified file is included.

INCLUDE "../hdrs/header1"

When the argument of INCLUDE specifies only a filename or a relative
pathname, the compiler searches for the specified file in directories specified
by the -I option and in standard locations for included files (see “Specifying
Compiler Input Files” on page 12).

INCLUDE "hdrs/header1"

There is a limit of 98 on the depth of nesting included files. That is, the
compiler supports a total of 99 source files concurrently open: the original
source file and up to 98 included files.

Assumed-Shape and Deferred-Shape Arrays

(This topic amplifies topics 5.2, 5.3, and 12.5.3 in the Fortran 90 Handbook.)

Fortran 90 supports arrays whose actual shape is not known until run time.
Assumed-shape arrays are dummy arguments whose shape is not declared
in the procedure—they take the shape of the actual parameter passed.
Deferred-shape arrays are array variables with the POINTER or
ALLOCATABLE attribute—their shapes are specified when memory is
allocated for them.

When a program accesses an element of an assumed-shape or
deferred-shape array, the access is not direct, but indirect through a
descriptor block in memory. As a result, two to four times as many machine
instructions are needed to retrieve an element from one of these arrays than
from an array of declared size.

In addition, there is no interface for passing an assumed-shape or
deferred-shape array as an argument to a function written in C (as discussed
in “Unsupported Array Parameters” on page 52).
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Treatment of the SAVE Attribute

(This topic amplifies topic 5.6.4 in the Fortran 90 Handbook.)

The SAVE attribute is implemented in different ways for different types of
variables. This topic describes the one implementation of the compiler.
However, this information is subject to change in future implementations. It
would be unwise to write code that depended directly on this information.

Global Variables

Variables declared at the global level of a source unit, but not within a
MODULE, are typically allocated as part of the main procedure stack frame.
This stack frame persists throughout the program execution.

When SAVE is specified for a global variable, the variable is allocated instead
in a block storage section—either .bss or .sbss, depending on its length. This
segment persists throughout the program. A side-effect of allocation in block
storage is that these sections are initialized to binary zero when they are
created at program load time. (Clearly, to rely on this effect would be to make
your program nonportable.) For more information on the management of
block storage sections, see the MIPSpro Assembly Language Programmer's
Guide.

MODULE Global Variables

Variables declared at the outer level of a MODULE are typically allocated as
COMMON segments whose names are formed from the module name. This
ensures that only one instance of a module variable exists in the executable
program, no matter how many object files refer to that module in a USE
statement.

The use of SAVE with MODULE variables does not change this typical
allocation, since common segments persist throughout the execution of the
program.



40

Chapter 2: Implementation Details

Procedure Local Variables

Variables declared local to any procedure are allocated as part of the
procedure’s stack frame. They are released when the procedure returns.

Note: This means that in the current implementation, any function can be
called recursively. However, Silicon Graphics can change the
implementation of local variables in a future implementation. Always
specify RECURSIVE with a function that you intend to be recursive.

A local variable with the SAVE attribute is not allocated in the procedure
stack frame, but rather in a block storage segment. This means that there is
only one fixed instance of the variable for the procedure. It retains its most
recent value from one call of the procedure to another, or from one level of a
recursive function to the next.

If different procedures have local variables with the same name and the
SAVE attribute, each procedure has a unique block-storage allocation for its
variable.

Nonstandard Intrinsic Procedures

(This topic amplifies topic 5.7.2 in the Fortran 90 Handbook.)

MIPSpro Fortran 90 does not provide any intrinsic functions or subroutines
other than the ones standardized in Fortran 90. For information on porting a
Fortran 77 program that relies on nonstandard intrinsics, see “Differences in
Intrinsic Functions” on page 196.

MIPSpro Fortran 90 does provide a large number of library functions for
access to IRIX kernel functions (see “Support for IRIX Kernel Functions” on
page 27). These are not “intrinsic” since their names are not recognized
automatically by the compiler.
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Status From ALLOCATE and DEALLOCATE

(This topic amplifies topic 6.5.1 in the Fortran 90 Handbook.)

The status returned from ALLOCATE or DEALLOCATE is 0 when the
operation is performed, and 1 when it fails.

When the operation fails owing to a logical error such as deallocating a
variable that has not been allocated, no other information is available. When
an failure is due to a system condition such as a lack of memory, the system
error number is recorded. You can retrieve the system error number with the
ierrno() function, or display an error message on unit 0 using perror() (see
the perror(3f) reference page).

Example 2-1 Displaying a Message on Allocation Failure
ALLOCATE (AV(SZ),STAT=STAT)
IF (0 /= STAT) THEN

IF (0 /= IERRNO()) THEN
CALL PERROR("Allocating vector")

ELSE
WRITE (6,*)"Unknown error allocating vector"

END IF
END IF

Partial Evaluation of Array Constructors

The MIPSpro Fortran 90 Handbook notes that the Fortran 90 standard permits
the processor to skip the evaluation of parts of an array constructor under
certain conditions. It is true that, in certain limited cases, MIPSpro Fortran 90
does omit evaluation of zero-sized array constructor elements. However, the
rules for when this is done are complex and subject to change. Furthermore,
the standard does not specify the order in which expressions and
sub-expressions within a constructor are evaluated.

In general, you should assume that any expression within an array
constructor will be evaluated. You should never write code that relies on the
compiler not evaluating a constructor expression, or on its evaluating the
constructor in any particular order.
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Status From I/O Statements

(This topic amplifies topic 9.2.2 in the Fortran 90 Handbook.)

The values left in an IOSTAT variable following input are as follows:

• end of file produces -1

• end of record (nonadvancing input) produces -2

Processor-Dependent Error Codes

(This topic amplifies topic 9.2.3 in the Fortran 90 Handbook.)

For all I/O status values greater than zero (error codes), see Appendix A,
“Run-Time Error Codes” on page 179. Regarding a specific case mentioned
in the MIPSpro Fortran 90 Handbook, a request for input beyond the record
size when PAD="NO" causes return of an I/O status code of 177, if an
IOSTAT variable is supplied.

Default Output Record Lengths

(This topic amplifies topic 9.5.5 in the Fortran 90 Handbook.)

When a file is opened for sequential output and no specific RECL= argument
is given, there is no maximum record length. The length of each record is
determined by the data written to it.

The value of the RECL= specifier is interpreted as a count of bytes for
formatted I/O and for sequential unformatted I/O. The value returned by
INQUIRE(IOLENGTH) is always in terms of bytes.

In the single case of unformatted direct I/O, RECL= is interpreted as a count
of 32-bit words (this behavior is for compatibility with some heritage
Fortran 77 programs). You can change this behavior, forcing RECL= to be
interpreted as a byte count in every case, by specifying the -bytereclen driver
option (see “Specifying Source File Format” on page 11).



Processor-Dependent Features

43

Implementation of Sign Edit Codes

(This topic amplifies topic 10.9.4 in the Fortran 90 Handbook.)

The treatment of the Sign edit code "S" is processor dependent. MIPSpro
Fortran 90 does not display a positive sign for "S" editing.

Arguments to the Main Program

(This topic amplifies topic 11.2.1 in the Fortran 90 Handbook.)

Although according to the Fortran 90 standard a main program has no
provision for receiving arguments, the main program is invoked from the
IRIX command line, and it can access the command-line arguments using
the getarg() library function (see the getarg(3) reference page). That function
may not be available in systems from other vendors.

Implementation of MODULE and USE

(This topic amplifies topic 2.1 and 11.6.6 in the Fortran 90 Handbook.)

MIPSpro Fortran 90 implements the MODULE statement automatically.
When the compiler front-end encounters a MODULE statement, it checks
the syntax of the contents of the module that follow.

When the syntax is valid, the compiler writes a .kmo file in the current
directory. This is a small, printable file containing a summary of the
accessible identifiers declared in the module. The name of the file is the name
given in the MODULE statement, in uppercase letters.

When the compiler encounters a USE statement, it searches for a
modname.kmo file (see “Specifying Compiler Input Files” on page 12 for the
search path). The contents of the file establish the names provided in that
module.

As a result of these rules, a MODULE must be compiled before any USE
statement for the module can be compiled.
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The object code contained in a MODULE is generated when the MODULE is
compiled. Procedures defined within the MODULE are named
modname$procname_ in the object file; that is, the names are qualified by the
module name. In other respects, these procedures generate code no different
from that of other procedures in the same object file. The object code of a
MODULE is stored and linked just like any other unit of object code.
Compiled modules are not stored in any special location or format. (For
hints on converting a MODULE to a DSO, see “Creating Dynamic Shared
Objects” on page 7.)

To prepare and distribute a functional package based on a MODULE,

1. compile the module source, yielding a .kmo file and an object file

2. optionally, link the object file as a DSO

3. distribute only the .kmo and the object file (or DSO)

Using this approach, you do not have to distribute the source code of the
module, only the summary .kmo file. The binding between accessible names
in the module and the code that uses them is established at link time (or at
load time for a DSO). As a result, you can distribute updated object files and
the client programs do not have to be recompiled—as long as the names and
data types of the accessible names are not changed.

Use of the Keyword RECURSIVE

(This topic amplifies topic 12.1.3 in the Fortran 90 Handbook.)

The current release of MIPSpro Fortran 90 allocates procedure local
variables on the process stack (see “Treatment of the SAVE Attribute” on
page 39). However, this is not a defined programming interface. You should
always use the keyword RECURSIVE for any function that can be called
recursively.
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Array References in Statement Functions

(This topic amplifies topic 12.3.4 in the Fortran 90 Handbook.)

The Fortran 90 Handbook indicates (section 12.3.4, rule 2) that there is
ambiguity in the language standard regarding the use of array arguments to
intrinsic functions (within the context of a statement function). MIPSpro
Fortran 90 does not permit the use of array arguments to intrinsics within a
statement function.

Implementation of RANDOM_NUMBER

(This topic amplifies topic A.83 in the Fortran 90 Handbook.)

The pseudorandom number generator used to implement the
RANDOM_NUMBER function was originally described in “Toward a
Universal Random Number Generator” by George Marsaglia and Arif
Zaman (Florida State University Report: FSU-SCRI-87-50 (1987)). It was later
modified by F. James and published in “A Review of Pseudo-Random
Number Generators.” It is thought to be the best available random
generator. It passes all tests for random number generators and has a period
of 2144.

The algorithm is a combination of a Fibonacci sequence (with lags of 97 and
33, and operation “subtraction plus one, modulo one”) and an arithmetic
sequence using subtraction.

The RANDOM_SEED function takes two seed integers,

• 0 <= ij <= 31328

• 0 <= kl <= 30081

A change in either ij or kl produces a new sequence of length approximately
1030. For example, if several groups are working on parts of the same
calculation, each group could be assigned its own ij seed number, leaving it
with 30,081 choices for kl.
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To test the random generator, use the code shown in Example 2-2.

Example 2-2 Test of RANDOM_NUMBER

integer seed(2)
real first20k(20000), next6(6)
seed(1) = 1802
seed(2) = 9373
call random_seed(put=seed(1:2))
call random_number(harvest=first20k)
call random_number(harvest=next6)
do j=1,6

write (6,"(F10.1)") (4096*4096*next6(j))
end do

end

The output from this test should be the following numbers:

 6533892.0
14220222.0
 7275067.0
 6172232.0
 8354498.0
10633180.0
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3. Linkage to Other Languages

Occasionally it is not possible to implement all of an application in
Fortran 90. You may need to call external procedures written in C, C++, or
some other language—or you may need to call a Fortran 90 procedure from
one of those languages. This chapter focuses on the interface between
Fortran and the most common other language, C.

External and Public Names

(This topic amplifies topic 3.1.1 in the Fortran 90 Handbook.)

When your Fortran 90 program defines the body of a procedure, the
compiler places the name of the procedure, as a character string, in the object
module it generates. This is a public name, which is accessible to other
modules.

When your Fortran 90 program declares a procedure as EXTERNAL, the
compiler places the name of the procedure, as a character string, in the
generated object module. This is an external name, which is needed by the
module but not defined in it. Names of common blocks and names of data
and procedures declared within modules are also external names. (You can
display the public and external names defined in a module using the nm
utility, as discussed in the MIPS Compiling and Performance Tuning Guide.)

It is up to the IRIX linker, ld, to resolve each reference to an external name by
finding that same name as a public name in some other module. This is the
main job of the linker.
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How Fortran 90 Handles External and Public Names

The Fortran compiler forces all input source text (other than the contents of
character literals) to lowercase as the first step of compilation. As a result, it
changes the names of procedures and named common blocks while it
translates the source file. As recorded in the object file, these names are
changed in two ways from the way you may have written them:

• They are converted to all lowercase letters

• They are normally extended with a final underscore (_) character

The following declarations produce the identifiers matrix_, mixedcase_, and
cblk_  in the object file:

SUBROUTINE MATRIX
external function MixedCase()
COMMON /CBLK/a,b,c

These changes cause no problem when linking modules compiled by
Fortran 90 or Fortran 77, since the same convention is used for both the
public and external names. Therefore the names match and the linker can
resolve them.

The names of procedures defined within a MODULE are qualified with the
module name, also in lowercase. If SUBROUTINE MATMUL is defined in
MODULE MATRIX, its public name string is matrix$matmul_ ; that is, the
module name, ‘$,’ the procedure name, and an underscore.

Note: Some Fortran 77 compilers from Silicon Graphics support the -U
compiler option, telling the compiler to not force all uppercase input to
lowercase. As a byproduct, it becomes possible to put mixed-case public
names in the object file. This driver option is not supported by MIPSpro
Fortran 90.

Note: Some Fortran 77 compilers from Silicon Graphics take the use of the
‘$’ character as the final letter of a procedure name as a signal to suppress the
underscore in the public name. However, the ‘$’ is not allowed at any
position of a name in MIPSpro Fortran 90. There is no way to suppress the
final underscore in an external name.
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Naming Fortran Subprograms From C

In order to call a Fortran 90 subprogram from a C module you must spell the
name the way the Fortran compiler spells it—using all lowercase letters and
a trailing underscore. A subprogram declared as follows:

SUBROUTINE HYPOT()

must be declared in a C function as follows (lowercase with a trailing
underscore):

extern int hypot_()

Note: Since the public name of a procedure in a MODULE contains a “$”
character, and since C does not allow “$” in identifiers, it is not possible to
call directly from a C program to a MODULE procedure.

Naming C Functions From Fortran

The public names of C functions can have uppercase or mixed-case names,
and they have terminal underscores only when the programmer writes them
that way. However, there is no way by which you can make the MIPSpro
Fortran 90 compiler generate an external name containing uppercase letters
or lacking an underscore. As a result, you cannot link a Fortran 90 module to
some procedures in other languages. The linker reports an unresolved name.

In order to call a C function from a Fortran program, you must ensure that
the C function’s name is spelled the way the Fortran compiler expects it to
be. When you control the name of the C function, the simplest solution is to
give it a name that consists of lowercase letters with a terminal underscore.
For example, the following C function:

int fromfort_() {...}

could be declared in a Fortran program as follows:

external fromfort

When you do not control the name of a C function, you must supply a
function name that Fortran 90 can call. The only solution is to write a C
function that takes the same arguments, but that has a name composed of
lowercase letters and ending in an underscore. This C function can then call
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the function whose name contains mixed-case letters. You can write such a
“wrapper” function manually, or you can use the mkf2c utility to do it
automatically (see “Making C Wrappers With mkf2c” on page 64).

Correspondence of Fortran and C Data Types

When you exchange data values between Fortran 90 and C, either as
parameters, as function results, or as elements of common blocks, you must
make sure that the two languages agree on the size, alignment, and subscript
of each data value.

Corresponding Scalar Types

The correspondence between Fortran and C scalar data types is shown in
Table 3-1. This table assumes the default precisions. Use of compiler options
such as -i2 or -r8 affects the meaning of the words LOGICAL, INTEGER, and
REAL.

Table 3-1 Corresponding Fortran and C Data Types

Fortran Data Type Corresponding C Type

BYTE, INTEGER(1), LOGICAL(1) signed char

CHARACTER(1) unsigned char

INTEGER(2), LOGICAL(2) short

INTEGERa, INTEGER(4),
LOGICALa, LOGICAL(4)

int or long

INTEGER(8), LOGICAL(8) long long

REALa, REAL(4) float

DOUBLE PRECISION, REAL(8) double

REAL(16) long double

COMPLEXa, COMPLEX(kind=4) typedef struct{float real, imag; } cpxk4;

DOUBLE COMPLEX,
COMPLEX(kind=8)

typedef struct{double real, imag;} cpxk8;
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Corresponding Character Types

The Fortran CHARACTER(1) data type corresponds to the C type unsigned
char. However, the two languages differ in the treatment of strings of
characters.

A Fortran CHARACTER(n) (for n>1) variable contains exactly n characters
at all times. When a shorter character expression is assigned to it, it is
padded on the right with spaces to reach n characters.

A C vector of characters is normally sized 1 greater than the longest string
assigned to it. It may contain fewer meaningful characters than its size
allows, and the end of meaningful data is marked by a null byte. There is no
null byte at the end of a Fortran string (except by chance memory
alignment).

Since there is no terminal null byte, most of the string library functions
familiar to C programmers (strcpy(), strcat(), strcmp(), and so on) cannot be
used with Fortran string values. The strncpy(), strncmp(), bcopy(), and
bcmp() functions can be used because they depend on a count rather than a
delimiter.

Corresponding Array Elements

Fortran and C use different arrangements for the elements of an array in
memory. Fortran uses column-major order (when iterating sequentially
through memory, the leftmost subscript varies fastest), whereas C uses
row-major order (the rightmost subscript varies fastest to generate
sequential storage locations). In addition, Fortran array indices are by
default origin-1, and can be declared as any origin, while C indices are
always origin-0.

a. Assuming default kind-parameter

COMPLEX(kind=16) typedef struct{long double re, im;} cpxk16;

CHARACTER(n) (n>1) typedef char fstr_n[n];

Table 3-1 (continued) Corresponding Fortran and C Data Types

Fortran Data Type Corresponding C Type
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To use a Fortran array in C,

1. reverse the order of dimension limits when declaring the array

2. reverse the sequence of subscript variables in a subscript expression

3. adjust the subscripts to origin-0 (usually, decrement by 1)

The correspondence between Fortran and C subscript values is depicted in
Figure 3-1. You derive the C subscripts for a given element by decrementing
the Fortran subscripts and using them in reverse order; for example, Fortran
(99,9) corresponds to C [8][98].

Figure 3-1 Correspondence Between Fortran and C Subscripts

Note: A Fortran array can be declared with some other lower bound than
the default of 1. If the Fortran subscript is origin-0, no adjustment is needed.
If the Fortran lower bound is greater than 1, the C subscript is adjusted by
that amount.

Unsupported Array Parameters

Fortran 90 supports assumed-shape and deferred-shape arrays (see
“Assumed-Shape and Deferred-Shape Arrays” on page 38) as well as array
slices. You cannot pass any of these types of array to a non-Fortran
procedure. The reason is that Fortran 90 represents such arrays in memory

x,y

y+1,x+1

y−1,x−1

x,y

or

C

Fortran
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using a descriptor record containing indirect pointers and other data. The
format of this record is not part of the published programming interface to
MIPSpro Fortran 90, as it is subject to change.

If you attempt to pass an assumed-shape or deferred-shape array, or an array
slice, to a non-Fortran function, the function does not receive the address of
array elements in memory as it would when an array is passed. Instead it
receives the address of a descriptive record of undocumented contents,
resulting in unpredictable behavior.

How Fortran Passes Subprogram Parameters

The MIPSpro Fortran 90 compiler generates code to pass parameters
according to simple, uniform rules; and it generates subprogram code that
expects parameters to be passed according to these rules. When calling
non-Fortran functions, you must know how parameters will be passed; and
when calling Fortran subprograms from other languages, you must cause
the other language to pass parameters correctly.

Note: You should be aware that all compilers for a given version of IRIX use
identical conventions for passing parameters. These conventions are
documented at the machine instruction level in the MIPSpro Assembly
Language Programmer's Guide, which also details the differences in the
conventions used in different releases.

Normal Treatment of Parameters

Every parameter passed to a subprogram, regardless of its data type, is
passed as the address of the actual parameter value in memory. This simple
rule is extended for two special cases:

• The length of each CHARACTER(n) parameter (for n>1) is passed as an
additional INTEGER(4) value, following the explicit parameters.

• When a function returns type CHARACTER(n) (for n>1), the address of
the space to receive the result is passed as the first parameter to the
function, and the length of the result space is passed as the second
parameter, preceding all explicit parameters.
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Example 3-1 Example Subroutine Call

COMPLEX(8) cp8
CHARACTER(16) creal, cimag
EXTERNAL CPXASC
CALL CPXASC(creal,cimag,cp8)

The code generated from the CALL in Example 3-1 prepares the following
five argument values:

1. The address of creal

2. The address of cimag

3. The address of cp8

4. The length of creal, an integer value of 16

5. The length of cimag, an integer value of 16

Example 3-2 Example Function Call

CHARACTER(8) symbl,picksym
CHARACTER(100) sentence
INTEGER nsym
symbl = picksym(sentence,nsym)

The code generated from the function call in Example 3-2 prepares the
following five argument values:

1. The address of temporary space to hold the function result (after the
function call, the contents of the temporary are copied to variable symbl)

2. The length of symbl, an integer value of 8

3. The address of sentence, the first explicit parameter

4. The addrss of nsym, the second explicit parameter

5. The length of sentence, an integer value of 100
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Calling Fortran From C

There are two types of callable Fortran subprograms: subroutines and
functions. In C terminology, both types of subprogram are external
functions. The difference is the use of the function return value from each.

Calling Fortran Subroutines From C

From the standpoint of a C module, a Fortran subroutine is an external
function returning int. The integer return value is normally ignored by a C
caller (it is the alternate return statement number, if any).

Example 3-3 shows a simple Fortran 90 subroutine that takes adds arrays of
complex numbers.

Example 3-3 Example Fortran Subroutine With COMPLEX Parameters

SUBROUTINE ADDC32(Z,A,B,N)
COMPLEX(32) Z(1),A(1),B(1)
INTEGER N,I
DO 10 I = 1,N
    Z(I) = A(I) + B(I)
10 CONTINUE
RETURN
END

Example 3-4 shows a sketch of how the Fortran 90 subroutine could be
called from C.

Example 3-4 C Declaration and Call With COMPLEX Parameters

typedef struct{long double real, imag;} cpx32;
extern int
  addc32_(cpx32*pz,cpx32*pa,cpx32*pb,int*pn);
cpx32 z[MAXARRAY], a[MAXARRAY], b[MAXARRAY];
...
    int n = MAXARRAY;
    (void)addc32_(&z, &a, &b, &n);

The Fortran subroutine in Example 3-3 is named in Example 3-4 using
lowercase letters and a terminal underscore—the way the Fortran 90
compiler spells the public name in the object file. The subroutine is declared
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as returning an integer. This return value is ignored but, for clarity, the actual
call is cast to void to show that the return value is ignored intentionally, not
by accident.

The trivial subroutine in Example 3-5 takes adjustable-length character
parameters.

Example 3-5 Example Fortran Subroutine With String Parameters

SUBROUTINE PRT(BEF,VAL,AFT)
CHARACTER*(*)BEF,AFT
REAL VAL
PRINT *,BEF,VAL,AFT
RETURN
END

The C program in Example 3-6 prepares CHARACTER*16 values and passes
them to the subroutine in Example 3-5.

Example 3-6 C Program that Passes String Parameters

typedef char fstr_16[16];
extern int
   prt_(fstr_16*pbef, float*pval, fstr_16*paft,
                int lbef, int laft);
main()
{
    float val = 2.1828e0;
    fstr_16 bef,aft;
    strncpy(bef,”Before..........”,sizeof(bef));
    strncpy(aft,”...........After”,sizeof(aft));
    (void)prt_(bef,&val,aft,sizeof(bef),sizeof(aft));
}

Observe that the subroutine call requires five parameters: the addresses of
the three explicit parameters, and the lengths of the two string parameters.
In Example 3-6, the string length parameters are generated using sizeof(),
which returns the memory size of the typedef fstr_16.

When the Fortran code does not require a specific length of string, the C code
that calls it can pass an ordinary C character vector, as shown in
Example 3-7. In this example, the string length parameter length values are
calculated dynamically using strlen().
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Example 3-7 C Program That Passes Different String Lengths

extern int
prt_(char*pbef, float*pval, char*paft, int lbef, int laft);
main()
{
        float val = 2.1828e0;
        char *bef = "Start:";
        char *aft = ":End";
        (void)prt_(bef,&val,aft,strlen(bef),strlen(aft));
}

Calling Fortran Functions From C

A Fortran function returns a scalar value as its explicit result. This
corresponds exactly to the C concept of a function with an explicit return
value. When the Fortran function returns any type shown in Table 3-1 other
than CHARACTER(n) (n>1), you can call the function from C and handle its
return value exactly as if it were a C function returning that data type.

The trivial function shown in Example 3-8 accepts and returns COMPLEX(8)
values.

Example 3-8 Fortran Function Returning COMPLEX(8)

COMPLEX(kind=8) FUNCTION FSUB8(INP)
COMPLEX(kind=8) INP
FSUB8 = INP
END

Although a COMPLEX value is declared as a structure in C, it can be used as
the return type of a function.  The C program in Example 3-9 shows how the
function in Example 3-8 is declared and called.
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Example 3-9 C Program That Receives COMPLEX Return Value

typedef  struct{ double real, imag; } cpx8;
extern cpx8 fsub8_( cpx8 * inp );
main()
{
    cpx8 inp = { -3.333, -5.555 };
    cpx8 oup = { 0.0, 0.0 };
    printf("testing fsub8...");
    oup = fsub8_( &inp );
    if ( inp.real == oup.real && inp.imag == oup.imag )
        printf("Ok\n");
    else
        printf("Nope\n");
}

Observe that the parameters to a function, like the parameters to a
subroutine, are passed as pointers, but the value returned is a value, not a
pointer to a value.

Note: In IRIX 5.3 and earlier 32-bit systems, you can not call a Fortran
function that returns COMPLEX (although you can call one that returns any
other arithmetic scalar type). The register conventions used by 32-bit
compilers prior to IRIX 6.0 do not permit returning a structure value from a
Fortran function to a C caller.

Example 3-10 Fortran Function Returning CHARACTER(16)

FUNCTION FS16(J,K,S)
CHARACTER(16) S
INTEGER J,K
FS16 = S(J:K)

RETURN
END

The function in Example 3-10 has a CHARACTER(16) return value. When a
Fortran function returns a CHARACTER*n (n>1) value, the returned value
is not the explicit result of the function. Instead, you must pass the address
and length of the result area as the first two parameters of the function,
preceding the explicit parameters. This is demonstrated in Example 3-11.
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Example 3-11 C Program That Receives CHARACTER(16) Return

typedef char fstr_16[16];
extern void
fs16_ (fstr_16 *pz,int lz,int *pj,int *pk,fstr_16*ps,int ls);
main()
{
    char work[64];
    fstr_16 inp,oup;
    int j=7;
    int k=11;
    strncpy(inp,"0123456789abcdef",sizeof(inp));
    fs16_ ( oup, sizeof(oup), &j, &k, inp, sizeof(inp) );
    strncpy(work,oup,sizeof(oup));
    work[sizeof(oup)] = '\0';
    printf("FS16 returns <%s>\n",work);
}

In Example 3-11, the address and length of the function result are the first
two parameters of the function. (Since type fstr_16 is an array, its name, oup,
evaluates to the address of its first element.) The next three parameters are
the addresses of the three named parameters. The final parameter is the
length of the string parameter.

Calling C From Fortran

In general, you can call units of C code from Fortran as if they were written
in Fortran, provided that the C modules follow the Fortran conventions for
passing parameters (see “How Fortran Passes Subprogram Parameters” on
page 53). When the C function expects parameters passed using other
conventions, you normally need to build a “wrapper” for the C function
using the mkf2c command.

Normal Calls to C Functions

The C function in Example 3-12 is written to use the Fortran conventions for
its name (lowercase with final underscore) and for parameter passing.
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Example 3-12 C Function Written to be Called from Fortran

/*
|| C functions to export the facilities of strtoll()
|| to Fortran 77 programs.  Effective Fortran declaration:
||
|| INTEGER*8 FUNCTION ISCAN(S,J)
|| CHARACTER*(*) S
|| INTEGER J
||
|| String S(J:) is scanned for the next signed long value
|| as specified by strtoll(3c) for a "base" argument of 0
|| (meaning that octal and hex literals are accepted).
||
|| The converted long long is the function value, and J is
|| updated to the nonspace character following the last
|| converted character, or to 1+LEN(S).
||
|| Note: if this routine is called when S(J:J) is neither
|| whitespace nor the initial of a valid numeric literal,
|| it returns 0 and does not advance J.
*/
#include <ctype.h> /* for isspace() */
long long iscan_(char *ps, int *pj, int ls)
{

int  scanPos, scanLen;
long long ret = 0;
char wrk[1024];
char *endpt;
/* when J>LEN(S), do nothing, return 0 */
if (ls >= *pj)
{

/* convert J to origin-0, permit J=0 */
scanPos = (0 < *pj)? *pj-1 : 0 ;

/* calculate effective length of S(J:) */
scanLen = ls - scanPos;

/* copy S(J:) and append a null for strtoll() */
strncpy(wrk,(ps+scanPos),scanLen);
wrk[scanLen] = ‘\0’;

/* scan for the integer */
ret = strtoll(wrk, &endpt, 0);
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/*
|| Advance over any whitespace following the number.
|| Trailing spaces are common at the end of Fortran
|| fixed-length char vars.
*/
while(isspace(*endpt)) { ++endpt; }
*pj = (endpt - wrk)+scanPos+1;

}
return ret;

}

The program in Example 3-13 demonstrates a call to the function in
Example 3-12.

Example 3-13 Fortran Program to Call a C Function

EXTERNAL ISCAN
INTEGER(8) ISCAN
INTEGER(8) RET
INTEGER J,K
CHARACTER(50) INP
INP = '1 -99 3141592 0xfff 033 '
J = 0
DO WHILE (J .LT. LEN(INP))
    K = J
    RET = ISCAN(INP,J)
    PRINT *, K,': ',RET,' -->',J
END DO
END

Using Fortran COMMON in C Code

A C function can refer to the contents of a COMMON block defined in a
Fortran program. The name of the block as given in the COMMON
statement is altered as described in “How Fortran 90 Handles External and
Public Names” on page 48 (that is, forced to lowercase and extended with an
underscore). The name of the “blank common” is _BLNK__ (one leading
underscore and two final ones).
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In order to refer to the contents of a common block, take these steps:

• Declare a C structure whose fields have the appropriate data types to
match the successive elements of the Fortran common block. (See
Table 3-1 for corresponding data types.)

• Declare the common block name as an external structure of that type.

A sketch of the method is shown in Example 3-14.

Example 3-14 Common Block Usage in Fortran and C

      INTEGER STKTOP,STKLEN,STACK(100)
      COMMON /WITHC/STKTOP,STKLEN,STACK

struct fstack {
    int stktop, stklen;
    int stack[100];
}
extern fstack withc_;
int peektop_()
{
    if (withc_.stktop) /* stack not empty */
        return withc_.stack[withc_.stktop-1];
    else...
}

There are two important restrictions on this capability.

First, you cannot map a common block that contains pointer-based
variables. The data object that represents a pointer-based variable is not
documented, so you cannot know what kind of C data type to use at that
point in the C structure declaration.

Second, if the common block contains a variable of Fortran 90 derived type
(a structure), you must be sure that the derived type is declared with the
SEQUENCE attribute. Otherwise, you cannot be sure that its fields will
appear in the expected sequence in memory.
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Using Fortran Arrays in C Code

As described under “Corresponding Array Elements” on page 51, a C
program must take special steps to access arrays created in Fortran. The
Fortran fragment in Example 3-15 prepares a matrix in a common block,
then calls a C subroutine to modify the array.

Example 3-15 Fortran Program Sharing an Array in Common with C

INTEGER IMAT(10,100),R,C
COMMON /WITHC/IMAT
R = 74
C = 6
CALL CSUB(C,R,746)
PRINT *,IMAT(6,74)
END

The C function in Example 3-16 stores its third argument in the common
array using the subscripts passed in the first two arguments. In the C
function, the order of the dimensions of the array are reversed, so the
subscript values are reversed to match, and decremented by 1 to provide
0-origin indexing.

Example 3-16 C Subroutine to Modify a Common Array

extern struct { int imat[100][10]; } withc_;
int csub_(int *pc, int *pr, int *pval)
{
    withc_.imat[*pr-1][*pc-1] = *pval;
    return 0; /* all Fortran subrtns return int */
}

Calls to C Using %LOC and %VAL

Using the special intrinsic functions %VAL and %LOC you can pass
parameters in ways other than the standard Fortran conventions described
under ‘“How Fortran Passes Subprogram Parameters” on page 53.
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Using %VAL

%VAL is used in parameter lists to cause parameters to be passed by value
rather than by reference. Suppose that you need to call a C function having
the following prototype:

int takesint_ (int p1, char *p2, int len)

The first argument to this function is an integer value (not the address of an
integer value in memory). You could call this function from Fortran 90 code
similar to that in Example 3-17.

Example 3-17 Fortran Call Using %VAL

character(80) sentence
integer(4) j
call takesint(%VAL(j),sentence)

The use of %VAL(j) causes the contents of j to be passed, rather than the
address of j.

Using %LOC

%LOC returns the address of its argument. It can be used with %VAL to
prevent passing the lengths of character values as hidden parameters. In
other words, the argument %LOC(%VAL(char_var)) passes only the address
of char_var; it does not pass the implicit length argument.

Making C Wrappers With mkf2c

The program mkf2c provides an alternate interface for C routines called by
Fortran. (Some details of mkf2c are covered in the mkf2c(1) reference page.)

The mkf2c program reads a file of C function prototype declarations and
generates an assembly language module. This module contains one callable
entry point for each C function. The entry point, or “wrapper,” accepts
parameters in the Fortran calling convention, and passes the same values to
the C function using the C conventions.
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A simple case of using a function as input to mkf2c is

simplefunc (int a, double df)
{ /* function body ignored */ }

For this function, mkf2c (with no options) generates a wrapper function
named simple_ (truncated to 6 characters, made lowercase, with an
underscore appended). The wrapper function expects two parameters, an
integer and a REAL*8, passed according to Fortran conventions; that is, by
reference. The code of the wrapper loads the values of the parameters into
registers using C conventions for passing parameters by value, and calls
simplefunc().

Parameter Assumptions by mkf2c

Since mkf2c processes only the C source, not the Fortran source, it treats the
Fortran parameters based on the data types specified in the C function
header. These treatments are summarized in Table 3-2.

Table 3-2 How mkf2c Treats Function Arguments

Data Type in C Prototype Treatment by Generated Wrapper Code

unsigned char Load CHARACTER(1) from memory to register,
no sign extension.

char Load CHARACTER(1) from memory to register;
sign extension only when -signed is specified.

unsigned short, unsigned int Load INTEGER(2) or INTEGER(4) from
memory to register, no sign extension.

short Load INTEGER(2) from memory to register with
sign extension.

int, long Load INTEGER(4) from memory to register with
sign extension.

long long Load INTEGER(8) from memory to register with
sign extension.

float Load REAL(4) from memory to register,
extending to double unless -f is specified.

double Load REAL(8) from memory to register.
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Character String Treatment by mkf2c

In Table 3-2, notice the different treatments for an argument declared as a
character array and one declared as a character address (even though these
two declarations are semantically the same in C).

When the C function expects a character address, mkf2c generates the code
to dynamically allocate memory and to copy the Fortran character value, for
its specified length, to memory. This creates a null-terminated string. In this
case,

• the address passed to C points to allocated memory

• the length of the value is not passed as an implicit argument

• there is a terminating null byte in the value

• changes in the string are not reflected back to Fortran

A character array is passed by mkf2c as a Fortran CHARACTER*n value. In
this case,

• the address prepared by Fortran is passed to the C function

• the length of the value is passed as an implicit argument (see “Normal
Treatment of Parameters” on page 53)

• the character array contains no terminating null byte

• changes in the array by the C function are visible to Fortran

long double Load REAL(16) from memory to register.

char name[], name[n] Pass address of CHARACTER(n) and pass
length as integer parameter as Fortran does.

char * Copy CHARACTER(n) value into allocated
space, append null byte, pass address of copy.

Table 3-2 (continued) How mkf2c Treats Function Arguments

Data Type in C Prototype Treatment by Generated Wrapper Code
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Since the C function cannot declare the extra string-length parameter (if it
declared the parameter, mkf2c would process it as an explicit argument), the
C programmer has a choice of ways to access the string length. When the
Fortran program always passes character values of the same size, the length
parameter can simply be ignored. If its value is needed, the varargs macro
can be used to retrieve it.

Suppose the C function prototype is specified as follows:

void func1 (char carr1[],int i, char *str, char carr2[]);

In this case, mkf2c passes a total of six parameters to C. The fifth parameter
is the length of the Fortran value corresponding to carr1. The sixth is the
length of carr2. The C function can use the varargs macros to retrieve these
hidden parameters. mkf2c ignores the varargs macro va_alist appearing at the
end of the parameter name list.

When func1 is changed to use varargs, the C source file is as shown in
Example 3-18.

Example 3-18 C Function Using varargs

#include "varargs.h"
void
func1 (char carr1[],int i,char *str,char carr2[],va_alist);
{}

The C routine would retrieve the lengths of carr1 and carr2, placing them in
the local variables carr1_len and carr2_len, using code like the fragment
shown in Example 3-19.

Example 3-19 C Code to Retrieve Hidden Parameters

va_list ap;
int carr1_len, carr2_len;
va_start(ap);
carr1_len = va_arg (ap, int)
carr2_len = va_arg (ap, int)
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Restrictions of mkf2c

When it does not recognize the data type specified in the C function, mkf2c
issues a warning message and generates code to simply pass the pointer set
up by Fortran. It does this in the following cases:

• any nonstandard data type name, for example a data type that might be
declared using typedef or a data type defined as a macro

• any structure argument

• any argument with multiple indirection (two or more asterisks, for
example char**)

Since mkf2c does not support structure-valued arguments, it does not
support passing COMPLEX*n values or derived types. Nor does mkf2c have
any means of passing assumed-shape or deferred-shape arrays.

Using mkf2c and extcentry

mkf2c understands only a limited subset of the C grammar. This subset
includes common C syntax for function entry point, C-style comments, and
function bodies. However, it does not include constructs such as typedefs,
external function declarations, or C preprocessor directives. The presence of
these things in the input to mkf2c can confuse it.

To ensure that only the constructs understood by mkf2c are included in
wrapper input, you need to place special comments around each function
for which Fortran-to-C wrappers are to be generated (see example below).

Once these special comments, /* CENTRY */ and /* ENDCENTRY */, are
placed around the code, use the program excentry(1) before mkf2c to generate
the input file for mkf2c.
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Example 3-20 illustrates the use of extcentry. It shows the C file foo.c
containing the function foo, which is to be made Fortran callable.

Example 3-20 Source File for Use With extcentry

typedef unsigned short grunt [4];
struct {
   long 1,11;
   char *str;
} bar;
main ()
{
   int kappa =7;
   foo (kappa,bar.str);
}
/* CENTRY */
foo (integer, cstring)
int integer;
char *cstring;
{
   if (integer==1) printf("%s",cstring);
} /* ENDCENTRY */

The special comments /* CENTRY */ and /* ENDCENTRY */ surround the
section that is to be made Fortran callable. To generate the assembly
language wrapper foowrp.s from the above file foo.c, use the following set of
commands:

% extcentry foo.c foowrp.fc

% mkf2c foowrp.fc foowrp.s

The programs mkf2c and extcentry are found in the directory /usr/bin.
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Makefile Considerations

make(1) contains default rules to help automate the control of wrapper
generation. The following example of a makefile illustrates the use of these
rules. In the example below, an executable object file is created from the files
main.f (a Fortran main program) and callc.c:

test:  main.o callc.o
   f90 -o test main.o callc.o
callc.o: callc.fc
clean:
   rm -f *.o test *.fc

In this program, main calls a C routine in callc.c. The extension .fc has been
adopted for Fortran-to-call-C wrapper source files. The wrappers created
from callc.fc will be assembled and combined with the binary created from
callc.c. Also, the dependency of callc.o on callc.fc will cause callc.fc to be
recreated from callc.c whenever the C source file changes. (The programmer
is responsible for placing the special comments for extcentry in the C source
as required.)

Note: Options to mkf2c can be specified when make is invoked by setting the
make variable F2CFLAGS. Also, do not create a .fc file for the modules that
need to have wrappers created. These files are both created and removed by
make in response to the file.o:file.fc dependency.

The makefile above controls the generation of wrappers and Fortran objects.
You can add modules to the executable object file in one of the following
ways:

• If the file is a native C file whose routines are not to be called from
Fortran using a wrapper interface, or if it is a native Fortran file, add the
.o specification of the final make target and dependencies.

• If the file is a C file containing routines to be called from Fortran using a
wrapper interface, the comments for extcentry must be placed in the C
source, and the .o file placed in the target list. In addition, the
dependency of the .o file on the .fc file must be placed in the makefile.
This dependency is illustrated in the example makefile above, where
callf.o depends on callf.fc.
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Calling Assembly Language From Fortran

You can write modules in MIPS assembly language, following the guidelines
in the MIPSpro Assembly Language Programmer's Guide. Procedures in these
modules can be called from Fortran. There is only one special consideration.

Operating in assembly language, you can change the operating mode of the
CPU, and in particular you can change the rounding mode. When running
Fortran 90 programs that contain quad-precision operations, you must run
the compiler in round-to-nearest mode. Because this mode is the default,
you usually do not need to be concerned with setting it. You usually need to
set this mode when writing programs that call your own assembly routines.
Refer to the swapRM manual page for further details.
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4. Controlling Scalar Optimization

All MIPSpro compilers share a common optimizer phase, controlled by the
use of the -On driver option. MIPSpro Fortran 90 also has source-level scalar
optimization, controlled with source assertions and the -WK driver option.

Use of the common optimizer with any language is documented in the MIPS
Compiling and Performance Tuning Guide. This chapter covers optimizer
features that are unique to Fortran 77 and Fortran 90, and the use of
source-level scalar optimizations, that is, optimizations that are equally
effective on uniprocessor and multiprocessor machines.

Advanced source-level optimizations are described in Chapter 5 and
Chapter 6. The parallel-optimization features unique to Power Fortran 90
are introduced in Chapter 7.

Overview of Scalar Optimization

You can use the compiler to perform various scalar optimizations by
specifying any of the options listed in Table 4-1 on the command line.
Specify the options in a comma-separated list with no intervening blanks,
following the –WK option, as follows:

% f90 f77options -WK, option[ , option] ... file

The -WK option passes its arguments to the optimization phases that are
invoked by the Fortran front end.

Defaults are set for the options in Table 4-1 by the -On option. These defaults
are reflected in the pfa(1) and fopt(1) reference pages, and are usually
correct. You use specific values of these options only when dealing with
special performance-tuning issues unique to your application.
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You can manage many of the optimizations listed in Table 4-1 using compiler
directives (see Chapter 6, “Using Directives and Assertions”).

Table 4-1 Optimization Options

Long Name Short Name Default Value

–aggressive=letter –ag=letter option off

–arclimit=integer –arclm=integer 5000

–[no]assume=list –[n]as=list CEL

–cacheline=integer –chl=integer 4

–cachesize=integer –chs=integer 256

–[no]directives=list –[n]dr=list ackpv

–dpregisters=integer –dpr=integer 16

–each_invariant_if_growth=integer –eiifg=integer 20

–fpregisters=integer –fpr=integer 16

–fuse –fuse option on with –scalaropt=2
or –optimize=5

–max_invariant_if_growth=integer –miifg=integer 500

–optimize=integer –o=integer depends on –O option

–recursion –rc option on

–roundoff=integer –r=integer depends on –O option

–scalaropt=integer –so=integer depends on –O option

–setassociativity=integer –sasc=integer 1

–unroll=integer –ur=integer 4

–unroll2=weight –ur2=weight 100
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Controlling the Optimization Level

Controlling Scalar Optimizations

The –scalaropt=n option (or –so=n) controls the level of scalar optimizations
that the compiler performs. Valid values for n are:

There is no default value for -scalaropt. If you do not specify it, this option can
still be in effect through the –O option.

Optimization level can also be influenced with a directive in the source file;
see “Setting Optimization Level” on page 105.

Controlling General Optimizations

The –optimize=n option (or –o=n) sets the optimization level. Each
optimization level is cumulative (that is, level 5 performs everything up to
and including level 5). You can also modify the optimization level on a

0 Disables all scalar optimizations.

1 Enables simple scalar optimizations—dead code elimination,
global forward substitution of variables, and conversion of
IF-GOTO to IF-THEN-ELSE.

2 Enables the full range of scalar optimizations—floating of
invariant IF statements out of loops, array expansion, loop
fusion, loop peeling, induction variable recognition, and loop
rerolling and unrolling (if –roundoff is greater than zero; see
“Controlling Variations in Round Off” on page 81

3 Enables memory management transformations if –roundoff=3
(see “Performing Memory Management Transformations” on
page 68). Performs dead-code elimination during output
conversion.
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loop-by-loop basis by using a directive within the source file (see “Setting
Optimization Level” on page 105). Valid values for n are:

Although higher optimization levels increase performance, they also
increase compilation time. There is no default value for this option. If you do
not specify it, this option can still be in effect through the –O option.

The output of following example is described for –optimize=1, –optimize=2,
and –optimize=5 to illustrate the range of this option. (This example also uses
-pfa and –minconcurrent=0.)

    ASUM = 0.0
    DO 10 I = 1,M
       DO 10 J = 1,N
         ASUM = ASUM + A(I,J)
         C(I,J) = A(I,J) + 2.0
10  CONTINUE

At –optimize=1, the compiler sees the summation in ASUM as an intractable
data dependence between iterations and does not try to optimize the loop.
At –optimize=2 (perform lifetime analysis and do not interchange around
reduction) the compiler is able to recognize the reduction and automatically
introduce a reduction parallelization:

0 Disables optimization.

1 Performs only simple optimizations. Enables induction
variable recognition.

2 Performs lifetime analysis to determine when last-value
assignment of scalars is necessary.

3 Recognizes triangular loops and attempts loop
interchanging to improve memory referencing. Uses
special case data dependence tests. Also, recognizes
special index sets called wraparound variables.

4 Generates two versions of a loop, if necessary, to break a
data dependence arc.

5 Enables array expansion and loop fusion.
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      ASUM = 0.
C$DOACROSS SHARE(M,N,A,C),LOCAL(I,J),REDUCTION(ASUM)
      DO 3 I=1,M
        DO 2 J=1,N
          ASUM = ASUM + A(I,J)
          C(I,J) = 2. + A(I,J)
      2 CONTINUE
      3 CONTINUE

Reduction and other parallelizations are discussed in Chapter 7; see
especially “Using the REDUCTION Clause” on page 126 and “Dealing With
Reduction” on page 143.

Specifying –optimize=5 (loop interchange around reduction to improve
memory referencing) produces the following:

      ASUM = 0.
C$DOACROSS SHARE(N,M,A,C),LOCAL(J,I),REDUCTION(ASUM)
     DO 3 J=1,N
     DO 2 I=1,M
          ASUM = ASUM + A(I,J)
          C(I,J) = 2. + A(I,J)
    2 CONTINUE
    3 CONTINUE

Controlling Global Assumptions

The –assume=list option (or –as=list) controls certain global assumptions of a
program. You can also control most of these assumptions with various
assertions (see “Using Assertions” on page 109). The default is –assume=cel.

The list can contain the following letters:

a Assumes procedure argument aliasing is used, meaning that
different dummy arguments could refer to the same object. This
practice is forbidden by the Fortran 77 and Fortran 90 standards.
This option provides a method of dealing with programs that
use argument aliasing anyway.

b Assumes array subscripts may go outside the declared array
bounds.
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By default, the compiler assumes that a program conforms to the Fortran 90
standard, that is, –assume=el, and includes –asssume=c to simplify some
analysis and inlining. When your program conforms strictly to language
standards, you can specify the –noassume option.

The following command compiles the Fortran program source.f90, assuming
it allows subscripts out of bounds:

% f90 -WK,-assume=b source.f

Specifying Recursion

The –recursion (or –rc) option tells the compiler that subroutines and
functions in the source program can be called recursively (that is, a
subroutine or function calls itself, or it calls another routine that calls it). The
presence of recursion affects storage allocation decisions.

This option is enabled by default. To disable it, specify –norecursion (or –nrc).
You can control this assumption on a procedure basis by using a directive
within the source file (see “Ignoring Data Dependence Conflicts” on
page 112).

Unsafe transformations can occur unless the –recursion option is enabled for
each recursive routine that the compiler processes.

c Places constants used in subroutine or function calls in
temporary variables.

e Assumes that two or more variable names defined in
EQUIVALENCE statements may be used to refer to the same
memory location inside one DO loop nest.

l Uses temporary variables within an optimized loop and assigns
the last value to the original scalar, if the compiler determines
that the scalar can be reused before it is assigned.



Enabling Loop Fusion

79

Setting the Listing Level

If you request one, the optimization phases will produce a listing showing
how your source text was modified. This enables you to check line by line to
see which loops were unrolled, how temporary variables were inserted, and
so on. The basic option for receiving a listing is -listoptions=letters (or
-lo=letters) The letters that can be given include:

For example, the command

f90 ...options... -O5 -WK,-lo=CT testmodule.f90

produces a file named testmodule.L containing a listing of the calling tree as
deduced by the optimizer, and an annotated listing of the modified program.

Enabling Loop Fusion

The –fuse option enables loop fusion, an optimization that transforms two
adjacent loops into a single loop. The use of data-dependence tests allows
fusion of more loops than is possible with standard techniques. You must
also specify –scalaropt=2 or –optimize=5 to enable loop fusion.

Setting Invariant IF Floating Limits

When a loop contains an IF statement whose condition cannot change from
one iteration to another (a loop-invariant if), the compiler performs the same
test for every iteration. The code can often be made more efficient by floating
the IF statement out of the loop and putting the THEN and ELSE sections
into their own loops. This process is called invariant IF floating.

C display calling tree

N display program unit names as processed

O annotated listing of original program

S summary statistics

T annotated listing of output program
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The –each_invariant_if_growth and the –max_invariant_if_growth options
control limits on invariant IF floating. This process generally involves
duplicating the body of the loop, which can increase the amount of code
considerably.

The –each_invariant_if_growth=n option (or –eiifg=n) controls the rewriting of
IF statements nested within loops. This option specifies a limit on the
number of executable statements in a nested IF statement. If the number of
statements in the loop exceeds this limit, the compiler does not rewrite the
code. If there are fewer statements, the compiler improves execution speed
by interchanging the loop and IF statements. This process becomes
complicated when there is other code in the loop, since a copy of the other
code must be included in both the THEN and ELSE loops.

Valid values for n are from 0 to 100; the default is 20. The code in Example 4-1
illustrates a loop-invariant IF.

Example 4-1 Skeleton of a Loop Containing an Invariant IF

DO I = ...
    section-1
    IF ( ) THEN
      section-2
    ELSE
      section-3
    ENDIF
    section-4
ENDDO

Under Invariant-IF Floating, Example 4-1 is modified to Example 4-2.

Example 4-2 Skeleton of Code With Invariant IF Floated Out

IF ( ) THEN
    DO I = ...
      section-1
      section-2
      section-4
    ENDDO
ELSE
    DO I = ...
      section-1
      section-3
      section-4
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    ENDDO
ENDIF

When sections 1 and 4 are large, the extra code generated can cost a program
more time, through cache contention, extra paging, and so on, than it gains
from the reduced number of Boolean expressions. The
–each_invariant_if_growth option provides a maximum size (in number of
lines of executable code) of the duplicate sections, above which the compiler
will try to float an invariant IF statement outside a loop.

You can limit the total amount of additional code generated in a program
unit through invariant IF floating by specifying the –max_invariant_if_growth
option. This option (or –miifg=n) specifies an upper bound on the total
number of additional lines of code the compiler can generate in each
program unit through invariant-IF floating. This limit is applied on a
per-subroutine basis. For example, if a subroutine is 400 lines long and
–miifg=500, the compiler can add at most 100 lines in the process of invariant
IF floating. The default for n is 500.

Note: Other compiler optimizations can add or delete lines, so the final
number of lines might differ from the value specified with –miifg.

Both limits can be controlled on a loop-by-loop basis with a directive within
the source (see “Setting Invariant IF Floating Limits” on page 103).

Controlling Variations in Round Off

The –roundoff=n option (or –r=n) controls the amount of variation in
roundoff error produced by optimization. If an arithmetic reduction is
accumulated in a different order than is used in the scalar program, the
roundoff error is accumulated differently and the final result might differ
from the output of the original program. Although the difference is usually
insignificant, certain restructuring transformations performed by the
compiler must be disabled to obtain exactly the same answers as the scalar
program.
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The values you can specify for n are cumulative. For example, –roundoff=3
performs what is described for level 3 in addition to what is listed for the
previous levels. Valid values for n are:

Consider the code fragment in Example 4-3.

Example 4-3 Code Fragment With Summation

       ASUM = 0.0
       DO 10 I = 1,M
         DO 10 J = 1,N
             ASUM = ASUM + A(I,J)
             C(I,J) = A(I,J) + 2.0
  10   CONTINUE

When –roundoff=1, the compiler does not transform the summation
reduction. The compiler distributes the loop, as shown in Example 4-4.

0 Suppresses any transformations that change roundoff error.

1 Performs expression simplification (which might generate
various overflow or underflow errors) for expressions with
operands between binary and unary operators, expressions
that are inside trigonometric intrinsic functions returning
integer values, and after forward substitution. Enables
strength reduction. Performs intrinsic function simplification
for max and min. Enables code floating if –scalaropt is at least 1.
Allows loop interchanging around serial arithmetic
reductions, if –optimize is at least 4.   Allows loop rerolling, if
–scalaropt is at least 2.

2 Allows loop interchanging around arithmetic reductions if
–optimize is at least 4. For example, the floating point
expression A/B/C is computed as A/(B*C).

3 Recognizes REAL (float) induction variables if –scalaropt
greater than 2 or –optimize is at least 1. Enables sum reductions.
Enables memory management optimizations if –scalaropt=3
(see “Performing Memory Management Transformations” on
page 87 for details about memory management
transformations).
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Example 4-4 Code Fragment Distributed

      ASUM = 0.
        DO 2 J=1,N
      DO 2 I=1,M
          ASUM = ASUM + A(I,J)
  2       CONTINUE
          DO 3 J=1,N
          DO 3 I=1,M
          C(I,J) = A(I,J) + 2.
    3     CONTINUE

When –roundoff=2 and –optimize=5 (reduction variable identification and
loop interchange around arithmetic reduction), Example 4-3 is transformed
as shown in Example 4-5.

Example 4-5 Code Fragment Transformed with -roundoff=2

               ASUM = 0.
                  DO 10 J=1,N
                DO 2 I=1,M
                    ASUM = ASUM + A(I,J)
                    C(I,J) = A(I,J) + 2.
              2 CONTINUE
           10  CONTINUE

When –roundoff=3 and –optimize=5, the compiler recognizes REAL induction
variables. Example 4-6 shows such a loop.

Example 4-6 Code Fragment With REAL Induction Variable

          ASUM = 0.0
          X = 0.0
          DO 10 I = 1,N
             ASUM = ASUM + A(I)*COS(X)
             X  =  X + 0.01
    10    CONTINUE

When –roundoff=3 and –optimize=5, this loop is transformed in the way
shown in Example 4-7.
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Example 4-7 Transformed Loop With REAL Induction Variable

          ASUM = 0.
          X = 0.
          DO 10 I=1,N
            ASUM = ASUM + A(I) * COS ((I - 1) * 0.01)
    10    CONTINUE

Using Vector Intrinsic Functions

The nine intrinsic functions ASIN, ACOS, ATAN, COS, EXP, LOG, SIN,
TAN, and SQRT have a scalar (element by element) version and a special
version optimized for vectors. When you use -O3 optimization, the compiler
uses the vector versions if it can. On the MIPS R8000 and R10000 processors,
the vector function is significantly faster than the scalar version, but has a
few restrictions on its use.

Finding Vector Intrinsics

To apply the vector intrinsics, the compiler searches for loops of the
following form:

real a(10000), b(10000)
do j = 1, 1000

b(2*j) = sin(a(3*j))
enddo

The compiler can recognize the eight functions ASIN, ACOS, ATAN, COS,
EXP, LOG, SIN, and TAN when they are applied between elements of named
variables in a loop (SQRT is not recognized automatically). The compiler
automatically replaces the loop with a single call to a special, vectorized
version of the function.

The compiler cannot use the vector intrinsic when the input is based on a
temporary result or when the output replaces the input. In the following
example, only certain functions can be vectorized:

real a(400,400), b(400,400), c(400,400), d( 400,400 )
call xx(a,b,c,d)
do j = 100,300,2

do i = 100, 300,3
a(i,j) = 1.23*i + a(i,j)
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b(i,j) = sin(a(i,j) + 1.0)
a(i,j) = log(a(i,j))
c(i,j) = sin(c(i,j)) / cos(d(i,j))
d(i+30,j-10) = tan( d(j,i) )

enddo
enddo
call xx(a,b,c,d)
end

In the preceding function,

• the first SIN call is applied to a temporary value and cannot be
vectorized

• the LOG call can be vectorized

• results from the second SIN call and first COS call are used in
temporary expressions and cannot be vectorized

• the TAN call can be vectorized

Limitations of the Vector Intrinsics

The vector intrinsics are limited in the following ways:

• The SQRT function is not used automatically in the current release.

• The single-precision COS, SIN, and TAN functions are valid only for
arguments whose absolute value is less than or equal to 2**28.

• The double-precision COS, SIN, and TAN functions are valid only for
arguments whose absolute value is less than or equal to PI*219.

The vector functions assume that the input and output arrays either coincide
completely, or do not overlap. They do not check for partial overlap, and will
produce unpredictable results if it occurs.

Disabling Vector Intrinsics

If you need to disable use of vector intrinsics while still compiling at -O3
level, you can do so. Specify the option -OPT:vector_intrinsics=OFF.

f90 -64 -mips4 -O3 -OPT:vector_intrinsics=OFF trig.f
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Calling Vector Intrinsic Functions Directly

The MIPSpro Fortran 77 Programmer’s Guide gives a method of calling the
vector intrinsic functions directly. This method cannot be used from
Fortran 90 (because the C functions that implement vector intrinsics do not
have names ending in an underscore). However, you can write a “wrapper”
in C or in Fortran 77 that calls the vector functions, and call this from
Fortran 90.

Using Aggressive Optimization

The –aggressive=letter option (or –ag=letter) performs optimizations that are
normally forbidden. In order to use this option, your program must be a
single file so that the compiler can analyze all of it simultaneously.

The only available value for letter is a, which instructs the compiler to add
padding to Fortran COMMON blocks. This optimization provides favorable
alignments of the virtual addresses. This option does not have a default
value.

% f90 -WK,-ag=a program.f

Unfortunately, it is not always possible to add padding to a COMMON.
Fortran allows different routines to have different definitions of COMMON.
Therefore, when using this option the entire program must be in a single
source file, so the compiler can check for equivalent COMMON definitions.

Controlling Internal Table Size

The –arclimit=integer option (or –arclm=integer) sets the size of the internal
table that the compiler uses to store data dependence information. The
default value for integer is 5000.

The compiler dynamically allocates the dependence data structure on a
loop-nest-by-loop-nest basis. If a loop contains too many dependence
relationships and cannot be represented in the dependence data structure,
the compiler will stop analyzing the loop. Increasing the value of –arclimit
allows the compiler to analyze larger loops.
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Note: Most users do not need to change this value. Also, the number of data
dependencies (and the time required to do the analysis) is potentially
nonlinear in the length of the loop. Very long loops (several hundred lines)
may be impossible to analyze regardless of the value of –arclimit.

Performing Memory Management Transformations

Memory management transformations are based on information about the
characteristics of the hardware memory and cache.

The compiler recognizes the following memory management command line
options when specified with the -WK option:

The –cacheline=n option (or –chl=n) specifies the width of the memory
channel, in bytes, between the cache and main memory. The default value
for n is 4. The correct value for the Power Challenge and Power Indigo2
systems is 128.

The –cachesize=n option (or –chs=n) specifies the size of the data cache, in
kilobytes, for which to optimize. The default value for n is 256 kilobytes. You
can obtain the cache size for a given machine with the hinv(1) command.

The –setassociativity=n option (or –sasc=n) provides information on the
mapping of physical addresses in main memory to cache pages. The default
value for integer, 1, says that a datum in main memory can be put in only one
place in the cache. If this cache page is already in use, its contents must be
rewritten or flushed so that the newly-accessed page can be copied into the
cache. The recommended value is 1 for all machines except the POWER
CHALLENGE and POWER Onyx series, where you should set it to 4.

-cacheline Specifies the width of the memory channel between
cache and main memory.

-cachesize Specifies the data cache size.

-fpregisters Specifies number of available floating-point registers.

-dpregisters Specifies number of available double precision registers.

-setassociativity Specifies which memory management transformation to
use.



88

Chapter 4: Controlling Scalar Optimization

The –dpregisters=n option (or –dpr=n) specifies the number of
double-precision registers each CPU has. The –fpregisters=n option (or
–fpr=n) specifies the number of single precision (that is, ordinary floating
point) registers each CPU has.

You should specify the same value for both –dpregisters and –fpregisters. The
default values for n are 16 for both options. When compiled in 32-bit mode,
Silicon Graphics recommends that you do not specify 16, although that is
what the hardware supports. It is better to specify a smaller value such as 12,
to provide extra registers in case the compiler needs them. In 64-bit mode,
where the hardware supports 32 registers, specify 28.
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5. Inlining and Interprocedural Analysis

This chapter contains the following sections:

• “Overview Inlining and IPA” defines inlining and interprocedural
analysis (IPA) and summarizes the driver options that control these
processes.

• “Specifying Functions for Inlining or IPA” explains how to specify
which function calls will be inlined or analyzed.

• “Specifying Occurrences for Inlining and IPA” explains how to manage
the depth and time cost of inlining and IPA.

• “Conditions That Prevent Inlining and IPA” lists several conditions that
prevent inlining and interprocedural analysis.

Overview Inlining and IPA

Inlining is the process of replacing a function reference with a copy of the
code of the function. This eliminates the overhead of the function call, and
can assist other optimizations by making more evident the relationships
between the function arguments and returned value, and the surrounding
code. However, it also expands the size of the generated object code.

Interprocedural analysis (IPA) is the process of inspecting called functions to
get information on relationships between arguments, returned values, and
global data. IPA can provide many of the benefits of inlining without
replacing the function reference.
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You can control inlining and IPA from the command line and also by using
directives in your source code. The driver options for inlining and IPA are
summarized in Table 5-1. As with all special optimizations, you specify them
as sub-options of the –WK option.

Table 5-1 Inlining and IPA Options

Long Option Name Short Option Name Default Value

–inline[=list] –inl[=list] option off

–ipa[=list] –ipa[=list] option off

–inline_and _copy –inlc option off

–inline_looplevel=integer –inll=integer 2

–ipa_looplevel=integer –ipall=integer 2

–inline_depth=integer –ind=integer 2

–inline_man –inm option off

–ipa_man –ipam option off

–inline_from_files=list –inff=list option off

–ipa_from_files=list –ipaff=list option off

–inline_from_libraries=list –infl=list option off

–ipa_from_libraries=list –ipa=list option off

–inline_create=name –incr=[=name] option off

–ipa_create=name] –ipacr=[=name] option off
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Specifying Functions for Inlining or IPA

To request inlining of all eligible function calls, specify -inline. To request
analysis of all eligible function calls, specify -ipa. However, full inlining or
full IPA can be time-consuming and may not yield good results.

Often there are specific functions that are particularly good candidates for
inlining or IPA, either because of their contents or because of their frequency
of use. You can use the -inline and -ipa options to specify these functions.
When you do, calls to other functions are not analyzed.

The –inline=list option (or –inl=list) specifies a list of functions that should be
expanded inline. The –ipa=list option specifies a list of routines that should
be analyzed. The names in list are separated by colons.

The following command performs inline expansion on the two routines
saxpy and daxpy from the file foo.f:

f90 -WK,-inline=saxpy:daxpy foo.f

The compiler looks for the routines in the current source file, unless you
specify an –inline_from or –ipa_from option. Refer to “Specifying Where to
Search for Routines” on page 91 for details.

Specifying Where to Search for Routines

In order to copy or to analyze a function, the compiler must have access to
the text of the function body. If you do not specify otherwise, the compiler
searches for the function in the current source file.

The options listed in Table 5-2 tell the compiler where to search for the
routines specified with the –inline or –ipa options. If you do not specify either
option, the compiler searches the current source file by default.

Table 5-2 Inlining and IPA Search Command Line Options

Long Option Name Short Option Name

–inline_from_files=list –inff=list

–ipa_from_files=list –ipaff=list
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In each case, list consists of names of files or directories separated by colons.
When you specify a directory, the compiler uses all appropriate files in that
directory. For example

f90 ... -WK,-inline_from_files=subs.f90:../common

Note: These options by themselves do not initiate inlining or IPA. They only
specify where to look for the routines. Use them in conjunction with the
appropriate –inline or –ipa option.

If you specify a nonexistent file or directory, the compiler issues an error. If
you specify multiple –inline_from or –ipa_from options, the compiler
concatenates their lists. All lists are searched in the order that they appear on
the command line.

The compiler recognizes two special abbreviations when specified in list:

•  “-” means current source file (as listed on the command line or
specified in an –input=file command line option)

•  “.” means the current working directory

The following command specifies inline expansion on the current source file,
calc.f90, followed by subs.f90.

% f90 -WK,-inline,-inline_from_files=-:subs.f90 calc.f90

When executed, the compiler searches the current source file calc.f and input.f
for all eligible routines to expand. (It searches for all eligible routines because
the –inline option was specified without a list.)

The compiler resolves routine name references by a searching for them in the
order that they appear in –inline_from/–ipa_from options on the command
line. Libraries are searched in their original lexical order.

–inline_from_libraries=list –infl=list

–ipa_from_libraries=list –ipafl=list

Table 5-2 (continued) Inlining and IPA Search Command Line Options

Long Option Name Short Option Name
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The compiler recognizes the type of file from its extension, or lack of one, as
described in Table 5-3. (The creation and use of libraries is the subject of the
next topic.)

Creating Libraries of Inline Functions

Normally, inlining or IPA is done directly from a Fortran source file.
However, when the same set of functions is called from many different
programs, it is more efficient to create a pre-analyzed library of the routines.

Use the –inline_create=name option (or –incr=name) to create a library of
prepared function texts for later use. The –ipa_create=name option (or
–ipacr=name) is the analogous option for IPA. The created library contains
preprocessed information about the functions in a source file. The compiler
can use this quickly for inlining or for IPA.

Note: Libraries created for inlining contain complete information and can be
used for both inlining and IPA. Libraries created for IPA contain only
summary information and can be used only for IPA.

The compiler assigns name to the library file it creates. Since the compiler
recognizes input libraries by their file suffix, you should specify the file
suffix .klib, for example: prog.klib.

Table 5-3 Filename Extensions

Extension Type of File

.f, .F, .for, .FOR Fixed-format source (Fortran 77 or Fortran 90)

.f90, .F90 Free-format source

.i Fortran source run through cpp

.klib Library created with –inline_create or –ipa_create option

Other Directory
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Creating a library is done separately from compiling. Create a library using
the –inline_create option (or the –ipa_create option for IPA only). For example,
the following command line creates a library called prog.klib based on the
functions in source program prog.f90:

f90 ... -WK,-inline_create=prog.klib prog.f90

When you specify this option the compiler creates only the library; it does
not compile the source program. The following command compiles samp.f90,
taking information about all eligible functions from prog.klib.

f90 ... -WK,-inl,-inlf=prog.klib samp.f90

When creating a library, you can specify only one –inline_create (–ipa_create)
option. Therefore, you can create only one library at a time. The compiler
overwrites any existing file with the same name as the library.

If you do not specify the –inline (–ipa) option along with the –inline_create
(–ipa_create) option, the compiler includes all routines from the inlining
universe in the library, if possible. If you specify –inline=list or –ipa=list, the
compiler includes only the named routines in the library.

Tip: You do not have to generate your inlining or IPA library from the same
source that will actually be linked into the running program. This capability
can cause errors if misused, but it can also be useful. For example, you can
write a library of hand-optimized assembly language routines, then
construct an IPA library using Fortran routines that mimic the behavior of
the assembly code. Thus, you can do parallelism analysis with IPA correctly,
yet actually call the hand-optimized assembly routines.

Using the Inline-and-Copy Option

The –inline_and_copy (or –inlc) option functions like the –inline option, except
that the compiler copies the unoptimized text of a routine into the
transformed code file each time the routine is called or referenced. Use this
option when inlining routines that are called from the file in which they are
located. This option has no special effect when the routines being inlined are
being taken from a library or separate source file.
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When a routine has been inlined everywhere it is used, leaving it
unoptimized saves compilation time. When a program involves multiple
source files, the unoptimized routine is still available in case another source
file contains a reference to it.

Note: The –inline_and_copy algorithm assumes that all CALLs and
references to the routine precede the routine itself in the source file. If the
routine is referenced after the text of the routine and the compiler cannot
inline that particular call site, it invokes the unoptimized version of the
routine.

Specifying Occurrences for Inlining and IPA

The loop level, depth, and manual options allow you to specify specific
instances of the routines specified with the –inline or –ipa options to process.

Using Loop Level

The –inline_looplevel=integer (or –inll=integer) and –ipa_looplevel=integer (or
–ipall=integer) options enable you to limit inlining and interprocedural
analysis to routines that are referenced in deeply nested loops, where the
reduced call overhead or enhanced optimization is multiplied.

Because inlining increases the size of the code, the extra paging and cache
contention can actually slow down a program. Restricting inlining to
routines used in DO loops multiplies the benefits of eliminating subroutine
and function call overhead for a given amount of code space expansion. (If
inlining appears to have slowed an application code, try using IPA, which
has little effect on code space and the number of temporary variables.)

To determine which loops are most deeply nested, the compiler constructs a
call graph to account for nesting of loops farther up the call chain. integer is
defined relative to the most deeply nested leaf of the call graph. For example,
if you specify 1 for integer, the compiler expands calls in only the most deeply
nested loop. If you specify 2, the compiler expands routines in the deepest
and second-deepest nested loops. Specifying a large number for integer
enables inlining or IPA at any nesting level up to and including the integer
value. If you do not specify –inline/ipa_looplevel, the loop level is 2.
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Consider the code skeleton in Example 5-1.

Example 5-1 Skeleton of Nested Loops

PROGRAM MAIN
  ..
 CALL A    ------> SUBROUTINE A

  ..
 DO
  DO
   CALL B -----> SUBROUTINE B
  ENDDO             DO
 ENDDO                DO
                       CALL C -------> SUBROUTINE C
                      ENDDO
                    ENDDO

The CALL B is inside a doubly-nested loop and therefore, is more profitable
for the compiler to expand than the CALL A. The CALL C is quadruply
nested, so inlining C yields the greatest gain of the three.

For –inline_looplevel=1, only the functions called in the most deeply-nested
call sites are inlined (the call to C in Example 5-1). –inline_looplevel=2 inlines
only routines called at the most deeply nested level and one loop less deeply
nested. –inline_looplevel=3 would be required to inline subroutine B, because
its call is two loops less nested than the call to subroutine C. A value of 3 or
greater causes the compiler to inline C into B, and then to inline the new B
into the main program.

The calling tree written to the listing file includes the nesting depth level of
each call in each program unit and the aggregate nesting depth (the sum of
the nesting depths for each call site, starting from the main program). You
can use this information to identify the best routines for inlining. (See
“Setting the Listing Level” on page 79.)

A routine that passes the –inline_looplevel test is inlined everywhere it is
used, even places that are not in deeply nested loops. If some, but not all,
invocations of a routine are to be expanded, use the C*$* INLINE or C*$* IPA
directives just before each CALL/reference to be expanded (refer to
“Fine-Tuning Inlining and IPA” on page 107).
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Depth of Nested Inlining

When a routine is expanded inline, it can contain references to other
routines. The compiler must decide whether to recursively expand these
references (which might themselves contain yet other references, and so on).

The –inline_depth=integer option (or –ind=integer) restricts the depth to which
the compiler continues to attempt inlining already inlined routines. Valid
values for integer are:

Recursive inlining can be quite expensive in compilation time. Exercise
discretion in its use.

Note: There is no corresponding –ipa_depth option.

Enabling Manual Control

The –inline_man (or –inm) option enables recognition of the C*$* INLINE
directive. This directive, described in “Fine-Tuning Inlining and IPA” on
page 107, allows you to select individual instances of routines to be inlined.
The –ipa_man (or –ipam) option is the analogous option for the C*$* IPA
directive.

Conditions That Prevent Inlining and IPA

This section lists conditions that prevent the compiler from inlining and
analyzing subroutines and functions, whether from a library or source file.
Many constructs that prevent inlining will also stop or restrict
interprocedural analysis.

1-10 Specifies a depth to which inlining is limited. The default is 2.

0 Uses the default value (2).

-1 Limits inline expansion to only those routines that do not
reference other routines (that is, only leaf routines are inlined).
The compiler does not support any other negative values.
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These are the conditions that inhibit inlining:

• Dummy and actual parameters are mismatched in type or class.

• Dummy parameters are missing.

• Actual parameters are missing and the corresponding dummy
parameters are arrays.

• An actual parameter is a non-scalar expression (for example, A+B,
where A and B are arrays).

• The number of actual parameters differs from the number of dummy
parameters.

• The size of an array actual parameter differs from the array dummy
parameter and the arrays cannot be made linear.

• The calling routine and called routine have mismatched COMMON
declarations.

• The called routine has EQUIVALENCE statements (some of these can
be handled).

• The called routine contains NAMELIST statements.

• The called routine has dynamic arrays.

• The CALL to be expanded has alternate return parameters.

Inlining is also inhibited when the routine to be inlined

• is too long (the limit is about 600 lines)

• contains a SAVE statement

• contains variables that are live-on-entry, even if they are not in explicit
SAVE statements

• contains a DATA statement (DATA implies SAVE) and the variable is
live on entry

• contains a CALL with a subroutine or function name as an argument

• contains a C*$*INLINE directive

• contains unsubscripted array references in I/O statements

• contains POINTER statements
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6. Using Directives and Assertions

This chapter contains the following sections:

• “Overview of Directives” explains the concept of directives and
assertions and how they are coded.

• “Using Directives” summarizes all the directives, and describes the use
of each.

• “Overview of Assertions” summarizes the supported assertions and
describes how you can use them to inform the compiler.
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Overview of Directives

The optimizations described in Chapter 4, “Controlling Scalar
Optimization,” and in Chapter 5, “Inlining and Interprocedural Analysis”
are controlled by driver options. However, you can use specially-formatted
comment lines called directives and assertions to control these optimizations
over small units of program code. In this way, you can save time by having
the compiler apply optimizations to only the segments of code that can
benefit (such as deeply nested loops), or you can prevent the compiler from
modifying code that should be left unchanged.

A directive is a statement that tells the compiler to treat the following source
text in a particular way, for instance, by applying or not applying inlining to
it. An assertion is a statement that tells the compiler something about the
following source text, for example that it does or does not use equivalenced
identifiers to access the same memory location. Both directives and
assertions are written as specially-formatted comment lines. Because they
are syntactically comments, directives and assertions are automatically
ignored by any compiler that does not support them.

Note: In free-format source, a directive or assertion begins with the two
characters “!$.” In fixed-format source, a directive or assertions begins with
“C$.” In either case, the directive must begin in the first column of the source
line in order to be recognized.

Recognizing Directives and Assertions

By default, the compiler recognizes all Silicon Graphics directives and
assertions. You can use the –WK,–directives driver option to selectively
enable/disable certain directives and assertions.
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The –directives=list option (or –dr=list) specifies which type of directives to
accept. list can contain any combination of the following letters:

The default value for list is acksv. For example, –WK,–directives=k enables
Silicon Graphics directives only, whereas –WK,–directives=kas enables Silicon
Graphics directives and assertions and Sequent directives. To disable all of
the above options, enter –nodirectives or –directives (without any values for
list) on the command line.

In addition to specifying –WK,–directives=a in list, you can control whether
the compiler accepts assertions using the C*$* ASSERTIONS and C*$*
NOASSERTIONS directives (see “Using Assertions” on page 109).

Using Directives

Directives enable, disable, or modify a feature of the compiler. Essentially,
directives are driver options specified within the input file instead of on the
command line. Unlike driver options, directives have no default setting. To
invoke a directive, you must either toggle it on or set a desired value for its
level.

Directives and Driver Options

Directives allow you to enable, disable, or modify a feature of the compiler
in addition to, or instead of, driver options. Directives placed on the first line
of the input file are called global directives. The compiler interprets them as
if they appeared at the top of each program unit in the file. Use global
directives to ensure that the program is compiled with the correct driver
options. Directives appearing anywhere else in the file apply only until the
end of the current program unit. The compiler resets the value of the

a Accept Silicon Graphics C*$* ASSERT assertions.

c Accept Cray™ CDIR$ directives.

k Accept Silicon Graphics C*$* and C$PAR directives.

s Accepts directives based on the PCF (Parallel Computing Forum)
X3H5 guidelines.

v Accepts VAST™ CVD$ directives.
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directive to the global value at the start of the next program unit. (Set the
global value using a driver option or a global directive.)

Some driver options act like global directives. Other driver options override
directives. Many directives have corresponding driver options. If you
specify conflicting settings to the driver and a directive, the compiler
chooses the most restrictive setting. For Boolean options, if either the
directive or the driver has the option turned off, it is considered off. For
options that require a numeric value, the compiler uses the minimum of the
driver setting and the directive setting.

Supported Directives

Table 6-1 lists the directives supported by the compiler. In addition to the
standard Silicon Graphics directives, the compiler supports the Cray and
VAST directives listed in the table. The compiler maps these directives to
corresponding Silicon Graphics assertions (see “Overview of Assertions” on
page 108 for details.)

Table 6-1 Directives Summary

Directive Compatibility

C*$*ARCLIMIT(n) Silicon Graphics

C*$*[NO]ASSERTIONS Silicon Graphics

C*$* EACH_INVARIANT_IF_GROWTH(n) Silicon Graphics

C*$* [NO]INLINE Silicon Graphics

C*$* [NO]IPA Silicon Graphics

C*$* MAX_INVARIANT_IF_GROWTH(n) Silicon Graphics

C*$* OPTIMIZE(n) Silicon Graphics

C*$* ROUNDOFF(n) Silicon Graphics

C*$* SCALAR OPTIMIZE(n) Silicon Graphics

C*$* UNROLL(integer[,weight]) Silicon Graphics

CDIR$ NO RECURRENCE Cray



Using Directives

103

Keep in mind that directives begin with “C” (the comment marker) in fixed
format source, and with “!” free-format source; but they always begin in
column 1 in either case.

Controlling Internal Table Size

The C*$* ARCLIMIT(integer) directive sets the minimum size of the internal
table that the compiler uses for data dependence analysis. The greater the
value for integer, the more information the compiler can keep on complex
loop nests. The maximum value and default value for integer is 5000.

When you specify this directive globally, it has the same effect as the –arclimit
driver option (refer to “Controlling Internal Table Size” on page 86 for
details).

Setting Invariant IF Floating Limits

The C*$* EACH_INVARIANT_IF_GROWTH and the C*$*
MAX_INVARIANT_IF_GROWTH directives control limits on the floating of
invariant IF statements. This process generally involves duplicating the
body of the loop, which can increase the amount of code considerably. Refer
to “Setting Invariant IF Floating Limits” on page 79 for details about
invariant IF floating.

The C*$* EACH_INVARIANT_IF_GROWTH(integer) directive limits the
total number of additional lines of code generated through invariant IF
floating in a loop. You can control this limit globally with the
–each_invariant_if_growth driver option (see “Setting Invariant IF Floating
Limits” on page 79).

CVD$ [NO] DEPCHK VAST

CVD$ [NO]LSTVAL VAST

Table 6-1 (continued) Directives Summary

Directive Compatibility
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You can limit the maximum amount of additional code generated in a
program unit through invariant IF floating with the C*$*
MAX_INVARIANT_IF_GROWTH(integer) directive. Use the
–max_invariant_if_growth driver option to control this limit globally (see
“Setting Invariant IF Floating Limits” on page 79).

These directives are in effect until the end of the routine or until reset by a
succeeding directive of the same type. Examine the loop in Example 6-1.

Example 6-1 Using Invariant-IF Directives

!*$*EACH_INVARIANT_IF_GROWTH( integer)
!*$*MAX_INVARIANT_IF_GROWTH( integer)

DO I = ...
!*$*EACH_INVARIANT_IF_GROWTH( integer)
!*$*MAX_INVARIANT_IF_GROWTH( integer)

DO J = ...
!*$*EACH_INVARIANT_IF_GROWTH( integer)
!*$*MAX_INVARIANT_IF_GROWTH( integer)

DO K = ...
section-1
IF ( ) THEN

section-2
ELSE

section-3
ENDIF

section-4
ENDDO

ENDDO
ENDDO

In floating the invariant IF out of the loop nest, the compiler honors the
constraints set by the innermost directives first. If those constraints are
satisfied, the invariant IF is floated from the inner loop. The middle pair of
directives is tested and the invariant IF is floated from the middle loop as
long as the restrictions established by these directives are not violated. The
process of floating continues as long as the directive constraints are satisfied.
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Setting Optimization Level

The C*$* OPTIMIZE(integer) directive sets the optimization level in the same
way as the –optimize driver option. As you increase integer, the compiler
performs more optimizations, and therefore takes longer to compile. Valid
values for integer are:

Setting Variations in Round Off

The C*$* ROUNDOFF(integer) directive controls the amount of variation in
round off error produced by optimization in the same way as the –roundoff
driver option. Valid values for integer are:

0 Disables optimization.

1 Performs only simple optimizations. Enables induction
variable recognition.

2 Performs lifetime analysis to determine when last-value
assignment of scalars is necessary.

3 Recognizes triangular loops and attempts loop
interchanging to improve memory referencing. Uses
special case data dependence tests. Also, recognizes
special index sets called wraparound variables.

4 Generates two versions of a loop, if necessary, to break a
data dependence arc.

5 Enables array expansion and loop fusion.

0 Suppresses any transformations that change roundoff error.

1 Alter loops only if the order of computation remains the same.

2 Allows loop interchanging around arithmetic reductions if
–optimize is at least 4. For example, the floating point expression
A/B/C is computed as A/(B*C).

3 Recognizes REAL (float) induction variables if –scalaropt
greater than 2 or –optimize is at least 1. Enables sum reductions.
Enables memory management optimizations if –scalaropt=3
(see “Performing Memory Management Transformations” on
page 87 for details about memory management
transformations).
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Controlling Scalar Optimizations

The C*$* SCALAR OPTIMIZE(integer) directive controls the amount of
standard scalar optimizations that the compiler performs. Unlike the
–WK,–scalaropt driver option, the C*$* SCALAR OPTIMIZE directive sets the
level of loop-based optimizations (such as loop fusion) only, and not
straight-code optimizations (such as dead-code elimination). Valid values
for integer are:

0 Suppresses any transformations that change roundoff error.

1 Performs expression simplification (which might generate
various overflow or underflow errors) for expressions with
operands between binary and unary operators, expressions
that are inside trigonometric intrinsic functions returning
integer values, and after forward substitution. Enables strength
reduction. Performs intrinsic function simplification for max
and min. Enables code floating if –scalaropt is at least 1. Allows
loop interchanging around serial arithmetic reductions, if
–optimize is at least 4. Allows loop rerolling, if –scalaropt is at
least 2.

2 Allows loop interchanging around arithmetic reductions if
–optimize is at least 4. For example, the floating point expression
A/B/C is computed as A/(B*C).

3 Recognizes REAL (float) induction variables if –scalaropt
greater than 2 or –optimize is at least 1. Enables sum reductions.
Enables memory management optimizations if –scalaropt=3
(see “Performing Memory Management Transformations” on
page 87 for details about memory management
transformations).
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Fine-Tuning Inlining and IPA

Chapter 5, “Inlining and Interprocedural Analysis,” explains how to use
inlining and IPA on an entire program. You can fine-tune inlining and IPA
using the C*$*[NO] INLINE and C*$*[NO] IPA directives.

The compiler ignores these directives by default. They are enabled when you
specify any inlining or IPA driver option, respectively, on the command line.
The –inline_manual and –ipa_manual driver options enable these directives
without activating the automatic inlining/algorithms.

The C*$* [NO] INLINE directive behaves like the –inline driver option, but
allows you to specify which occurrences of a routine are actually inlined. The
format for this directive is

C*$*[NO]INLINE [( name[, name ... ])] [HERE|ROUTINE|GLOBAL]

The possible options are:

If you do not specify HERE, ROUTINE, or GLOBAL, the directive applies
only to the next statement.

The C*$*NOINLINE form overrides the –inline driver option and so allows
you to selectively disable inlining of the named routines at specific points.

name Specifies the routines to be inlined. If you do not specify a
name, this directive will affect all routines in the program.

HERE Applies the INLINE directive only to the next line;
occurrences of the named routines on that next line are
inlined.

ROUTINE Inlines the named routines everywhere they appear in the
current routine.

GLOBAL Inlines the named routines throughout the source file.
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In Example 6-2, the C*$*INLINE directive inlines the first call to beta but not
the second.

Example 6-2 Using Directives to Control Inlining

       do i =1,n
!*$*INLINE (beta) HERE
          call beta (i,1)
       enddo
       call beta (n, 2)

Using the specifier ROUTINE rather than HERE in the example would inline
both calls. This routine must be compiled with the –inline_man driver option
for the compiler to recognize the C*$* INLINE directive.

The C*$* [NO] IPA directive is the analogous directive for interprocedural
analysis. The format for this directive is

C*$*[NO]IPA [( name [, name...])]  [HERE|ROUTINE|GLOBAL]

Overview of Assertions

Assertions provide the compiler with additional information about the
source program. Sometimes assertions can improve optimization results.

Assertions can be unsafe because the compiler cannot verify the accuracy of
the information provided. If you specify an incorrect assertion, the
compiler-generated code might produce different results than the original
serial program. If you suspect unsafe assertions are causing problems, use
the –WK,–nodirectives driver option or the C*$* NO ASSERTIONS directive
to tell the compiler to ignore all assertions.
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Table 6-2 lists the supported assertions and the scope of their effect.

Using Assertions

As with a directive, the compiler treats an assertion as a global assertion if it
comes before all comments and statements in the file. That is, the compiler
treats the assertion as if it were repeated at the top of each program unit in
the file.

Some assertions (such as C*$* ASSERT RELATION) include variable names.
If you specify them as global assertions, a program uses them only when
those variable names appear in COMMON blocks or are dummy argument
names to the subprogram. You cannot use global assertions to make
relational assertions about variables that are local to a subprogram.

Many assertions, like directives, are active until another assertion resets
them or the end of the program unit or file. Other assertions are active within
a program unit, regardless of where they appear in that program unit.

Certain Cray and VAST directives function like Silicon Graphics assertions.
The compiler maps these directives to the corresponding assertions. These
directives are described along with the related assertions later in this
chapter.

Table 6-2 Assertions and Their Duration

Assertion Scope

C*$* ASSERT [NO] ARGUMENT ALIASING Until reset

C*$* ASSERT [NO] BOUNDS VIOLATIONS Until reset

C*$* ASSERT [NO] EQUIVALENCE HAZARD Until reset

C*$* ASSERT NO RECURRENCE Next loop

C*$* ASSERT RELATION (name.xx. name) Next loop

C*$* ASSERT [NO] TEMPORARIES FOR CONSTANT
ARGUMENTS

Next loop
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There is no guarantee that a specified assertion will have an effect. The
compiler notes the information provided by the assertion and uses the
information if it will help.

The C*$*[NO]ASSERTIONS directive instructs the compiler to accept or
ignore assertions. The C*$* NO ASSERTIONS version is in effect until the
next C*$* ASSERTIONS directive or the end of the program unit.

If you specify the –directives driver option without the assertions parameter
(that is, a), the compiler will ignore assertions regardless of whether or not
the file contains the C*$* ASSERTIONS directive. Refer to “Recognizing
Directives and Assertions” on page 100 for details on the –directives driver
option.

Assertions About Data Dependence

In order to perform optimizations, the compiler must analyze the dependence
relations between variables. Without full information on the dependence
relations, the compiler cannot safely change the source in any way that
would alter the order of execution.

In many cases the compiler can infer dependences from the source text. But
in some cases there is not enough information. You can add information with
assertions.

Known and Assumed Dependence

When the compiler can detect a possible dependence between two variables,
but cannot determine the exact nature of the dependence, it creates an
assumed dependence. The loop in Example 6-3 illustrates simple forward
dependence.

Example 6-3 Loop Containing Only Forward Dependence

DO 10 i=2,n
10 X(i) = X(i) + X(i-1) * 0.5
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In this example, the compiler can determine that between X(i) and X(i-1)
there is a forward dependence, and that the distance is one. With this
information the compiler could, for example, do loop unrolling. The loop in
Example 6-4 is similar, but has an assumed dependence as well.

Example 6-4 Loop Containing Forward and Assumed Dependence

DO 10 i=2,n
10 X(i) = X(i) + X(i-1) * X(m)

The compiler cannot be sure if there is a dependence between X(i) and X(m).
If it is always true that m>n, there is no dependence, and the code in
Example 6-4 can be unrolled, or parallelized, the same as the code in
Example 6-3. However, if under some (or all) circumstances, 1≤m<n, then for
some iterations of the loop X(m) will be different than in other iterations. It
is no longer safe to unroll the loop or to parallelize it.

When assumed dependence blocks an optimization, you can supply
information using an assertion of the true relation, or you can assert there are
no dependences.

Asserting a Relationship

The assertion C*$* ASSERT RELATION(name.xx.name) specifies the
relationship between two variables or between a variable and a constant.
name is the variable or constant, and xx is any of the following: GT, GE, EQ,
NE, LT, or LE. This assertion applies only to the next DO statement.

The C*$* ASSERT RELATION assertion includes one or two variable names.
When specified globally, this assertion will only be used when the names
appear in COMMON blocks or are dummy arguments to a subprogram. You
cannot use global assertions to make relational assertions about variables
that are local to a subprogram.

This assertion can be used to eliminate the assumed dependence in
Example 6-4. If you know that m is always greater than n (and hence there is
no dependence between X(i) and X(m)), you can use the assertion as shown
in Example 6-5.
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Example 6-5 Asserting a Relationship

C*$* ASSERT RELATION (M .GT. N)
DO 10 i=2,n

10  X(i) = X(i) + X(i-1) * X(m)

With this extra information the compiler can unroll or parallelize this loop.

Note: Many relationships of this type can be cheaply tested for at run time.
The compiler attempts to answer questions of this sort by generating an IF
statement that explicitly tests the relationship at run time. Occasionally, the
compiler needs assistance, or you might want to squeeze that last bit of
performance out of some critical loop by asserting some relationship rather
than repeatedly checking it at run time.

Ignoring Data Dependence Conflicts

The assertion C*$* ASSERT NO RECURRENCE(variable) tells the compiler
to ignore all data dependence conflicts caused by variable in the DO loop that
follows it. For example, the following code tells the compiler to ignore all
dependence arcs caused by the variable X in the loop:

This assertion can be used to eliminate the assumed dependence in
Example 6-4. When you know that there is no dependences on X(m), you can
tell the compiler so using this assertion, as shown in Example 6-6.

Example 6-6 Loop with Dependences Denied

C*$* ASSERT NO RECURRENCE (X)
DO 10 i=2,n

10 X(i) = X(i) + X(i-1) * X(m)

The assertion shown in Example 6-6 causes the compiler to ignore the
assumed dependence, and also any other dependences involving X—
including the real dependence between X(i) and X(i-1). The name M could
be used instead, so as to retain information about the real dependence.

The C*$* ASSERT NO RECURRENCE assertion applies only to the next DO
loop. It cannot be specified as a global assertion.
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In addition to the C*$* ASSERT NO RECURRENCE assertion, the compiler
supports the Cray CDIR$ NORECURRENCE assertion and the VAST CVD$
NODEPCHK directive, which perform the same function.

Assertions About Aliasing

The compiler can deal with two kinds of aliasing. An alias is a situation in
which the same memory location is accessible under two or more different
and apparently unrelated names.

Using Equivalenced Variables

The C*$* ASSERT [NO] EQUIVALENCE HAZARD assertion tells the
compiler that your code does not use equivalenced variables to refer to the
same memory location inside one loop nest. Normally, EQUIVALENCE
statements allow your code to use different variable names to refer to the
same storage location. The –WK,-assume=e driver option acts like the global
C*$* ASSERT EQUIVALENCE HAZARD assertion (see “Controlling Global
Assumptions” on page 77). The C*$* ASSERT EQUIVALENCE HAZARD
assertion is active until you reset it or until the end of the program.

In Example 6-7, if arrays E and F are equivalenced, but you know that the
loop does not access overlapping sections, the use of C*$* ASSERT NO
EQUIVALENCE HAZARD allows the compiler to parallelize the loop.

Example 6-7 Asserting Nonequivalence

EQUIVALENCE ( E(1), F(101) )
C*$* ASSERT NO EQUIVALENCE HAZARD

DO 10 I = 1,N
E(I+1) = B(I)
C(I) = F(I)

10 CONTINUE
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Under optimization, Example 6-7 is converted to Example 6-8. (The
C$DOACROSS directive is covered in Chapter 7.)

Example 6-8 Result of Asserting Nonequivalence

EQUIVALENCE (E(1), F(101))
C*$* ASSERT NO EQUIVALENCE HAZARD
C$DOACROSS SHARE(N,E,B,C,F),LOCAL(I)

DO 10 I=1,N
E(I+1) = B(I)
C(I) = F(I)

10 CONTINUE

Using Argument Aliasing

The C*$* ASSERT [NO] ARGUMENT ALIASING assertion allows the
compiler to make assumptions about procedure dummy arguments. It is
possible to call a procedure, specifying the same variable or array element in
two or more positions of the argument list. Within the procedure, two or
more dummy argument names, which apparently refer to different memory
locations, actually refer to the same location.

In addition, when a procedure accesses a global variable, and you pass the
same variable as an argument, an alias is created. In this case, the global
variable can be thought of as an implicit argument.

According to the Fortran 77 standard, you can alias a dummy variable only
if you do not modify (that is, write to) the aliased variable under either
name.
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The subroutine in Example 6-9 violates the standard, because variable A is
aliased in the subroutine (through dummy arguments C and D) and variable
X is aliased (through global name X and dummy argument E).

Example 6-9 Two Kinds of Argument Aliasing

COMMON X,Y
REAL A,B
CALL SUB (A, A, X)
...
SUBROUTINE SUB(C,D,E)
COMMON X,Y
X =  ...
C =  ...
END

The driver option –assume=a acts like a global C*$* ASSERT ARGUMENT
ALIASING assertion (see “Controlling Global Assumptions” on page 77). A
C*$* ARGUMENT ALIASING assertion is active until it is reset or until the
next routine begins.

Asserting Array Bounds Violations

The C*$* ASSERT [NO] BOUNDS VIOLATIONS assertion indicates that
array subscript bounds may be violated during execution. If your program
does not violate array subscript bounds, do not specify this assertion. When
specified, this assertion is active until reset or until the end of the program.
For formal parameters, the compiler treats a declared last dimension of (1)
the same as (*).

The –WK,–assert=b driver option acts like a global C*$* ASSERT BOUNDS
VIOLATIONS assertion.

In Example 6-10 the compiler assumes the first loop nest conforms to the
standard, and it therefore can optimize both loops. For example, the loops
can be interchanged to improve memory referencing because no A(I,J) will
overwrite an A(I',J+1).

In the second nest, the assertion warns the compiler that the loop limit of the
first array index (I) might violate the declared array bounds. The compiler
plays it safe and optimizes only the rightmost array index.



116

Chapter 6: Using Directives and Assertions

Example 6-10 Asserting Array Bounds Safety

DO 100 I = 1,M
DO 100 J = 1,N

A(I,J) = A(I,J) + B (I,J)
100 CONTINUE
C*$*ASSERT BOUNDS VIOLATIONS

DO 200 I = 1,M
DO 200 J = 1,N

A(I,J) = A(I,J) + B (I,J)
200 CONTINUE

Note: The compiler always assumes that array references are within the
array in order to make the rightmost index concurrentizable.

After optimization, the code of Example 6-10 is converted to the form shown
in Example 6-11.

Example 6-11 Result of Asserting Array Bounds Safety

!$DOACROSS SHARE(N,M,A,B),LOCAL(J,I)
DO J=1,N

DO I=1,M
A(I,J) = A(I,J) + B (I,J)

END DO
!*$*ASSERT BOUNDS VIOLATIONS

DO I=1,M
!$DOACROSS SHARE(N,I,A,B),LOCAL(J)

DO J=1,N
A(I,J) = A(I,J) + B (I,J)

END DO
END DO

Asserting Safety of Constant Arguments

Sometimes the compiler does not perform certain transformations when
their effects on the rest of the program are unclear. For example, usually the
IF-to-intrinsic transformation changes code like that in Example 6-12.

Example 6-12 Code Using Intrinsic Equivalent

SUBROUTINE X(I,N)
IF (I .LT. N) I = N

END
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The compiler recognizes the equivalence to intrinsic MAX, as in
Example 6-13.

Example 6-13 IF-to-Intrinsic Conversion

SUBROUTINE X(I,N)
I = MAX(I,N)

END

Suppose the actual parameter passed as I is a constant, such as the following,

CALL X(1,N)

In that case, it would appear that the value of the constant 1 was being
reassigned. In order to avoid this possibility, without additional information
the compiler does not perform transformations within the subroutine.

Most compilers automatically put constant actual arguments into temporary
variables to protect against this case. The C*$*ASSERT TEMPORARIES FOR
CONSTANT ARGUMENTS assertion or the –WK,–assume=c driver option
(the default) informs the compiler that constant parameters are protected.
The NO version directs the compiler to avoid transformations that might
change the values of constant parameters.
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7. Optimizing for Multiprocessors

This chapter contains these sections:

• “Overview of Parallel Optimization” provides an overview of parallel
processing and a preview of this chapter.

• “Parallel Execution” discusses the fundamentals of parallel execution.

• “Writing Simple Parallel Loops” explains how to use the
C$DOACROSS directive to parallelize single DO loops.

• “Analyzing Data Dependencies for Multiprocessing” describes how to
analyze loops to determine whether they can be parallelized.

• “Breaking Data Dependencies” explains how to rewrite a loop with
data dependencies so that some or all of the loop can run in parallel.

• “Adjusting the Work Quantum” describes how to determine whether
the work performed in a loop is greater than the overhead associated
with multiprocessing the loop.

• “Cache Effects” explains how to write loops that account for the effect
of cache memory on performance.

• “Run-Time Control of Multiprocessing” tells of library functions and
environment variables that give explicit run-time control over the
degree of multiprocessing.

• “DOACROSS Implementation” discusses how multiprocessing is
implemented in a DOACROSS routine.

• “Using PCF Directives” describes how to use the PCF directives to take
advantage of a general model of parallelism.
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Overview of Parallel Optimization

Using MIPSpro POWER Fortran 90—an extended version of MIPSpro
Fortran 90 with extra features for optimization—you can compile your
program so that, when you run it in a Silicon Graphics multiprocessor with
available CPUs, your program will recruit the power of additional CPUs to
work in parallel on the data. You request parallel optimization in one of two
ways.

Automatic Parallelization

If you specify the -pfa driver option (see “Specifying Optimization Levels”
on page 15), the compiler analyzes the program and attempts to parallelize
every loop. You can see the result in the listing file (see “Setting the Listing
Level” on page 79). In some cases the compiler will needlessly parallelize
loops that do not contain enough work to justify parallel execution; and in
other cases the compiler will not be able to parallelize loops owing to data
dependencies.

Explicit Parallelization

You can also direct the compiler to parallelize specific loops, or specific
procedures, or show it how to handle specific data dependencies. You do this
by omitting the -pfa driver option, and instead writing directives in the
program.

You have the choice of two different models for explicit parallelization:

• A simple model is based on the use of the DOACROSS directive. With it
you enable specified DO-loops to execute in parallel, so that multiple
iterations of the loop execute concurrently.

• A more general model is based on the Parallel Computing Forum (PCF)
directives. With them, you can parallelize both looping and nonlooping
sections of code, and you can specify critical sections and single-process
sections of code.
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This chapter discusses techniques for analyzing your program and
converting it to multiprocessing operations. Chapter 8, “Compiling and
Debugging Parallel Fortran,” gives compilation and debugging instructions
for parallel processing.

Parallel Execution

The basic idea of parallel optimization is that you can distribute parts of the
program’s work to two or more independent threads. Each thread executes
asynchronously on a different CPU. By doing more than one piece of work
at a time, your program finishes sooner than if all the work were done by one
process on one CPU.

Process Structure

The processes that participate in the parallel execution of a program are
arranged in a master/slave organization. The original process, created when
the program is first loaded, is the master. It creates zero or more slave
processes to assist it. The master process and each of the slave processes are
called a thread of execution, or simply a thread.

Note: The term “thread” is used here as a convenient term for an
independent executable entity within a program. Do not assume that it
means any particular implementation of threads, for example “POSIX
threads.”

When the master process reaches a parallelized section of the program—
which is usually a loop—the master assigns some of the work to each slave.
The slaves and master execute concurrently, each on a different part of the
loop or different section of code. As each slave completes its portion of the
loop, it waits for further signals from the master, while the master resumes
normal execution.

By default, the number of threads is set equal to the number of CPUs on the
particular machine.You can control the number of threads used, either by
setting environment variables before running the program, or from within
the program by calling library routines.
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Program Design

For multiprocessing to work correctly, the code executed by one thread must
not depend on results produced by another thread. This is because you
cannot predict the timing relationship between one thread and another. In
particular, when a loop is parallelized, each iteration of the loop must
produce the same answer regardless of when any other iteration of the loop
is executed. Not all loops have this property. Loops without it cannot be
correctly executed in parallel. (The same is true of loop unrolling. See
“Assertions About Data Dependence” on page 110.)

In the more general model of parallel execution, you specify sections of code
that can run in parallel. When there are data dependencies between them,
you can resolve these by delimiting a critical section that can be executed by
only one process at a time.

Dynamic Scheduling

Since a long-running program spends most of its time within loops, parallel
optimization focuses on the DO loop. The compiler tries to arrange it so that
different iterations of the DO loop execute in parallel on multiple CPUs. For
example, suppose a DO loop consisting of 20000 iterations will run on a
machine with four available CPUs. Using the SIMPLE scheduling method
(described in following topics), the first 5000 iterations run on one CPU, the
next 5000 on another, and so on. The total execution time of that loop will be
1/4th the time for the nonparallel loop, plus the overhead time it takes to
recruit, initialize, and release the added CPUs.

The multiprocessing code adjusts itself at run time to the number of CPUs
actually present on the machine. Thus, if a 200-iteration loop is moved to a
machine with only two available CPUs, it is automatically scheduled as two
blocks of 100 iterations each, without any need to recompile or relink. In fact,
multiprocessing code can be run on single-processor machines.

Parallel Directives

You control the parallelization of your program by writing directives in it.
You have a choice of two families of directives (or you can mix them in the
same program).
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To provide compatibility for existing parallel programs, Silicon Graphics
supports the directives for parallelism used by Sequent Computer
Corporation. These directives allow you to parallelize specified DO-loops,
while leaving the details to the Fortran compiler. To use this model, see
“Writing Simple Parallel Loops” on page 123.

You can also use the proposed Parallel Computing Forum (PCF) standard
(ANSI-X3H5 91-0023-B Fortran language binding) directives. With these
directives you can specify more general kinds of parallelization, and you can
coordinate between the threads. To use the PCF model, see “Using PCF
Directives” on page 162. (The section “Writing Simple Parallel Loops” has
important conceptual material you should read first.)

The directives are compiled with your source program. In addition, you
manage parallel execution at run time using environment variables that are
tested by the run-time library. Also, there are a number of special library
routines that permit more direct, run-time control over the parallel execution
(refer to “Run-Time Control of Multiprocessing” on page 153 for more
information.)

Writing Simple Parallel Loops

Six multiprocessing directives are used to parallelize specified loops:

C$DOACROSS Specify multiprocessing parameters

C$& Continue a C$DOACROSS directive to multiple
lines

C$ Identify a line of code executed only when
multiprocessing is active.

C$MP_SCHEDTYPE Specify the way a loop is divided across CPUs

C$CHUNK Specify the units of work into which a loop is
divided.

C$COPYIN Load a local copy of a COMMON block from the
master process’s version.
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Note: In fixed-format source, directives start with “C,” as comments must.
In free-format source, they start with “!” instead, but are otherwise the same.
In all cases, directives must start in the first column to be recognized (see
“Recognizing Directives and Assertions” on page 100).

When you compile a program with MIPSpro Fortran 90 (without the
“Power” option), directives related to multiprocessing are treated as
comments. This allows the identical source to be compiled with a
single-processing compiler or by Fortran without the multiprocessing
option.

The C$COPYIN directive is described under “Using Local COMMON
Blocks” on page 158. The other directives are described in the topics that
follow.

Syntax of C$DOACROSS

The essential compiler directive for multiprocessing is C$DOACROSS. This
directive marks a DO loop to be run in parallel, and specifies the details of
how that loop is to be executed. The directive applies only to the following
statement, which must be a DO loop. The C$DOACROSS directive has the
form

C$DOACROSS [clause [ [,] clause ...]

where valid values for each optional clause are

IF ( logical_expression)
{LOCAL | PRIVATE} ( item[, item ...] )
{SHARED | SHARE} ( item[, item ...])
{LASTLOCAL | LAST LOCAL} ( item[, item ...])
REDUCTION (item[, item ...])
MP_SCHEDTYPE=mode
{CHUNK=integer_expression | BLOCKED( integer_expression)}

The preferred form of the directive (as generated by WorkShop Pro MPF)
uses the optional commas between clauses. The C$& directive can be used
to extend C$DOACROSS to multiple lines, so each clause can be written on
one line.

!$DOACROSS IF (N.GT.10000), CHUNK=100,
!$& MP_SCHEDTYPE=DYNAMIC
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Using the IF Clause

You use the IF clause to decide at run time whether the loop is actually
executed in parallel. The logical expression is tested at run-time. If its value
is .TRUE., the loop is executed in parallel. If the expression is .FALSE., the
loop is executed serially. Typically, the expression tests the number of times
the loop will execute to be sure there is enough work in the loop to justify the
overhead of parallel execution (see “Adjusting the Work Quantum” on
page 146). In some cases, it tests the number of threads available (see “Using
mp_numthreads and mp_set_numthreads” on page 155).

Using the LOCAL, LASTLOCAL, and SHARE Clauses

The LOCAL, SHARE, and LASTLOCAL clauses specify lists of variables
that need special treatment when used within the loop controlled by
C$DOACROSS. Only the names of variables can appear in these clauses. An
array variable is listed by name only, without any subscripts. Names of
variables in COMMON blocks can not appear in a LOCAL list (but see
“Using Local COMMON Blocks” on page 158). A variable can appear in
only one of these clauses.

The LOCAL, SHARE, LASTLOCAL and REDUCTION lists are discussed at
more length under “Analyzing Data Dependencies for Multiprocessing” on
page 134.

Using the LOCAL Clause

The LOCAL clause gives a list of variables that can be localized to each slave
thread. Each iteration of the loop receives a private, uninitialized copy of a
LOCAL variable. You should specify a variable as LOCAL when its value is
calculated and used in the course of a single iteration of the loop and its
value does not depend on any other iteration of the loop.

PRIVATE is a synonym for LOCAL, but LOCAL is preferred.
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Using the LASTLOCAL Clause

The LASTLOCAL clause, like the LOCAL clause, specifies variables that can
be localized to each iteration of the loop. In addition, the compiler generates
code to copy the final value of the variable from the local copy of whichever
slave process executes the logically-final iteration, and saves this value in the
named variable for use in the serial code following the loop.

The loop iteration variable is given the LASTLOCAL attribute by default.
However, if you do not need the value of the iteration variable after the loop,
you can save a little time by specifying it as LOCAL instead.

The phrase LAST LOCAL is a synonym for LASTLOCAL, but LASTLOCAL
is preferred.

Using the SHARE Clause

The SHARE clause specifies variables that must be common to all slave
processes. When a variable is declared as SHARE, all iterations of the loop
can safely share a single copy of the variable. You should declare a variable
SHARE when:

• it is not modified in the loop

• it is an array in which each iteration of the loop accesses a different
element

All variables except the loop-iteration variable are SHARE by default. The
word SHARED is a synonym for SHARE, but SHARE is preferred.

Using the REDUCTION Clause

The REDUCTION clause specifies variables involved in a reduction
operation. In a reduction operation, the compiler keeps local copies of the
variables but combines them when it exits the loop. For an example and
more discussion, see “Dealing With Reduction” on page 143. For the
relationship between reduction analysis and optimization levels, see
“Controlling General Optimizations” on page 75.
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An element of the REDUCTION list must be a scalar variable and cannot be
an array. However, it can be an individual element of an array specified by
subscript.

One element of an array can be used in a reduction operation, while other
elements of the array are used in other ways. To allow for this, if an element
of an array appears in the REDUCTION list, the entire array can also appear
in the SHARE list.

The four types of reductions supported are sum, product, min, and max.
Sum and product reductions are recognized through the use of the + and *
operators. The min and max reductions are recognized through the use of
the MIN and MAX intrinsic functions.

The compiler confirms that the reduction expression is legal by making some
simple checks. The compiler does not, however, check all statements in the
DO loop for illegal reductions. You must ensure that the reduction variable
is used correctly in a reduction operation.

Using the CHUNK and MP_SCHEDTYPE Clauses

The CHUNK and MP_SCHEDTYPE clauses affect the way the compiler
divides the work among the slave threads. These clauses do not affect the
correctness of the loop. They are useful for tuning the performance of critical
loops. See “Balancing the Load With Interleaving” on page 151 for more
details.

For the MP_SCHEDTYPE=mode clause, mode can have one of the following
five values:

SIMPLE or
STATIC

Divide the loop by the available CPUs and give each
slave thread a contiguous group of iterations.

GSS or GUIDED Dynamically vary the amount of work per thread,
allocating smaller units as the loop approaches the end.

RUNTIME Use environment variables to manage scheduling.

DYNAMIC Slave threads compete for CHUNK-sized assignments.

INTERLEAVE or
INTERLEAVED

Parcel out CHUNK-sized assignments to CPUs in
rotation.
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SIMPLE scheduling is the default unless CHUNK is specified; then
DYNAMIC is the default. You can use different modes in different loops.

The CHUNK clause supplements the DYNAMIC and INTERLEAVE modes
only. Instead of the CHUNK option, you can specify the –WK,–chunk=n
driver option.

Using MP_SCHEDTYPE=SIMPLE

The simple scheduling method (MP_SCHEDTYPE=SIMPLE) divides the
iterations of the loop among processes by dividing iterations into as many
contiguous pieces as there are slave threads, assigning one piece to each
process. The SIMPLE method has the lowest overhead, since each slave
thread receives one assignment of work, after which it is finished. Use it
when every loop iteration takes the same amount of time. When some
iterations take longer than others, one slave can fall behind. The completion
time of the loop is the completion of the most heavily-loaded CPU.

STATIC is a synonym for SIMPLE, but SIMPLE is preferred.

Using MP_SCHEDTYPE=GSS

The Guided Self-Scheduling algorithm (GSS) divides the iterations of the
loop into pieces whose size varies depending on the number of iterations
remaining. The initial pieces are not sufficient to finish the loop. When a
slave thread finishes its piece, it returns for another piece of work.

By parceling out relatively large pieces to start with and relatively small
pieces toward the end, the system can achieve good load balancing while
reducing the number of slave entries into the critical section. Use GSS when
there are relatively few slave CPUs and they are shared with other programs.

GUIDED is a synonym for GSS, but GSS is preferred.
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Using MP_SCHEDTYPE=DYNAMIC

In dynamic scheduling, the iterations of the loop are broken into pieces of the
size specified with the CHUNK clause. (CHUNK=1 is the default.)

As each slave process finishes a piece, it enters a critical section to take the
next available piece. The smaller the CHUNK, the more of these entries that
will occur, increasing overhead.

Using MP_SCHEDTYPE=INTERLEAVE

The interleave method breaks the iterations into pieces of the size specified
by the CHUNK option, and execution of those pieces is interleaved among
the processes. For example, if there are four processes and CHUNK=2, then
the first process will execute iterations 1–2, 9–10, 17–18, …; the second
process will execute iterations 3–4, 11–12, 19–20,…; and so on. Although this
is more complex than the simple method, it is still a fixed schedule with only
a single scheduling decision. (This scheduling type is discussed further
under “Balancing the Load With Interleaving” on page 151.)

INTERLEAVED (with a final “D”) is a synonym for INTERLEAVE, but the
latter is preferred.

Using MP_SCHEDTYPE=RUNTIME

You can defer the choice of the scheduling method until run time using
MP_SCHEDTYPE=RUNTIME. In this case, the scheduling routine examines
values in environment variables to select one of the other methods. See
“Environment Variables for RUNTIME Scheduling” on page 158 for more
details. Use this when you want to experiment with the performance of
different scheduling types without recompiling.
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C$DOACROSS Examples

Example 7-1 shows a simple loop marked for parallel execution. The default
scheduling is SIMPLE. By default, variable I is LASTLOCAL while A and B
are SHARE.

Example 7-1 Simple Parallel Loop

C$DOACROSS
DO 10 I = 1, 100

A(I) = B(I)
10 CONTINUE

If you know that the value of I is not required following the loop, it can be
made LOCAL. Example 7-2 shows the loop with the use of the variables
specified.

Example 7-2 Simple Parallel Loop With LOCAL, SHARE

C$DOACROSS LOCAL(I), SHARE(A, B)
DO 10 I = 1, 100

A(I) = B(I)
10 CONTINUE

The loop in Example 7-3 uses a variable X that is set and used locally to each
iteration of the loop. Time will be saved by making this variable LOCAL as
shown, so that each slave thread has its own copy. Since the loop variable I
is not used after the loop, it is marked LOCAL also. This loop illustrates a
parallel call to a function, SQRT. For more discussion, see “Parallel
Procedure Calls” on page 133.

Example 7-3 Parallel Loop With LOCAL and Function Call

C$DOACROSS LOCAL(I, X)
DO 10 I = 1, N

X = SQRT(A(I))
B(I) = X*C(I) + X*D(I)

10 CONTINUE

In the loop shown in Example 7-4, the final values of I and X are needed after
the loop completes. This gives a reason for the use of LASTLOCAL. Also,
Example 7-4 illustrates the use of the C$& directive to continue the directive.
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Example 7-4 Parallel Loop With LASTLOCAL

C$DOACROSS LOCAL(Y,J), LASTLOCAL(I,X),
C$& SHARE(M,K,N,ITOP,A,B,C,D)

DO 10 I = M, K, N
X = D(I)**2
Y = X + X
DO 20 J = I, ITOP

A(I,J) = A(I,J) + B(I,J) * C(I,J) *X + Y
20 CONTINUE
10 CONTINUE

PRINT*, I, X

Note that in Example 7-4, J is listed as LOCAL. It is important to see that the
inner loop using J is not a parallel loop (it has no C$DOACROSS directive).
Each slave thread executes all the iterations for this inner loop within each
iteration of the outer loop that it handles.

The variable J would be SHARE by default, but this would produce incorrect
results. As multiple slave threads attempted to execute copies of the inner
loop, they would interfere with each other’s assignments to J. Hence it is
important to specify J as LOCAL so that each slave has an independent copy.

Using C$

The C$ directive is considered a comment line except when multiprocessing.
A line beginning with C$ is treated as a conditionally compiled Fortran
statement. The rest of the line contains a standard Fortran statement. The
statement is compiled only if multiprocessing is turned on. In this case, the
“C$” or “!$” prefix is treated as blanks. You can use these directives to insert
debugging statements, or to insert arbitrary code into the multiprocessed
version. In Example 7-5, a diagnostic PRINT statement executes only when
the program executes in multiprocessing mode.

Example 7-5 Use of “C$” Conditional Code

!$    PRINT *,'BEGIN MULTIPROCESSED LOOP'
!$DOACROSS LOCAL(I), SHARE(A,B)

DO I = 1, 100
CALL COMPUTE(A, B, I)

END DO
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Using C$MP_SCHEDTYPE and C$CHUNK

The C$MP_SCHEDTYPE=mode directive acts as default MP_SCHEDTYPE
clause for following C$DOACROSS directives. The mode value is any of the
modes listed in the section called “Using the CHUNK and MP_SCHEDTYPE
Clauses” on page 127. Any following C$DOACROSS directive that does not
have an explicit MP_SCHEDTYPE clause is given the value specified in the
last directive prior to the line, rather than the normal default.

The C$CHUNK=integer_expression directive affects the CHUNK clause of a
C$DOACROSS in the same way that the C$MP_SCHEDTYPE directive
affects the MP_SCHEDTYPE clause for all C$DOACROSS directives in
scope. Both directives are in effect from the place they occur in the source
until another corresponding directive is encountered or the end of the
procedure is reached.

You can also invoke this functionality from the command line during a
compile. The –mp_schedtype=schedule_type and –chunk=integer command line
options have the effect of implicitly putting the corresponding directives as
the first lines in the file.

Nesting C$DOACROSS

The compiler does not support direct nesting of C$DOACROSS loops. For
example, the following is illegal and generates a compilation error:

!$DOACROSS LOCAL(I)
DO I = 1, N

!$DOACROSS LOCAL(J)
DO J = 1, N

A(I,J) = B(I,J)
END DO

END DO

However, a different form of nesting is allowed. A procedure that uses
C$DOACROSS can be called from within a parallel region. This can be
useful if a single procedure is called from several different places, sometimes
from within a parallel loop and sometimes not.
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Nesting in this way does not increase the parallelism. When the first
C$DOACROSS loop is encountered, that loop is run in parallel. This fully
occupies all the slave threads. If, in the parallel loop, a call is made to a
routine that itself has a C$DOACROSS, that inner loop is executed serially.

Parallel Procedure Calls

It is possible to use functions and subroutines (intrinsic or user-defined)
within a parallel loop. However, it is up to you to make sure that parallel
invocations of a procedure do not interfere with one another. Intrinsic
functions such as SQRT return a value that depends only on the input
arguments; they do not modify global data and they do not use static
storage. We say that such a function has no side effects.

Except for RANDOM_SEED and RANDOM_NUMBER, the standard
Fortran 90 intrinsic functions have no side effects and can safely be called
from a parallel loop. For the most part, the Fortran library functions listed in
“Support for IRIX Kernel Functions” on page 27 do have side effects and can
not safely be included in a parallel loop.

For user-written procedures, it is the responsibility of the programmer to
ensure that the routines can be correctly multiprocessed.

Caution: Do not use the –static option when compiling routines called
within a parallel loop. This converts procedure local variables into static
variables which cannot be used in parallel threads.

Tip: You cannot call RANDOM_NUMBER within a parallel loop because
the slave threads, running concurrently within the function, would interfere
with each other updating the seed values. Repeated or nonrandom values
could be returned. In order to use random numbers in a parallel loop, first
create an array containing one number for each iteration of the loop. Then
treat that array as SHARE within the loop. Example 7-6 illustrates the
technique.
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Example 7-6 Loop Using Random Numbers

RANDOM_NUMBER(HARVEST = R(1:N))
!$DOACROSS LOCAL(I) SHARE(X,R)

DO I = 1,N
X(I) = PERTURB(X(I),R(I))

END DO

Analyzing Data Dependencies for Multiprocessing

The essential condition required to parallelize a loop correctly is that each
iteration of the loop must be independent of all other iterations. If a loop
meets this condition, then the order in which the iterations of the loop
execute is not important. They can be executed backward or even at the same
time, and the answer is still the same.

This property is captured by the notion of data independence. For a loop to be
data-independent, no iterations of the loop can write a value into a memory
location that is read or written by any other iteration of that loop. It is all
right if the same iteration reads or writes a memory location repeatedly, as
long as no other iterations do. It is all right if many iterations read the same
location, as long as none of them write to it.

In a Fortran program, memory locations are represented by variable names.
So, to determine if a particular loop can be run in parallel, examine the way
variables are used in the loop. Because data dependence occurs only when
memory locations are modified, pay particular attention to variables that
appear on the left-hand side of assignment statements. If a variable is not
modified, there is no data dependence associated with it. (Remember that a
variable can be modified through the action of a procedure call.)

The Fortran compiler supports four kinds of variable usage within a parallel
loop: SHARE, LOCAL, LASTLOCAL, and REDUCTION. The basic
meanings of these keywords are discussed under “Using the LOCAL,
LASTLOCAL, and SHARE Clauses” on page 125 and “Using the
REDUCTION Clause” on page 126.

It is often difficult to analyze loops for data dependence information. Each
use of each variable must be examined to see if it fulfills the criteria for
LOCAL, LASTLOCAL, SHARE, or REDUCTION. If all of the uses of all
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variables conform, the loop can be parallelized. If not, the loop cannot be
parallelized as it stands, but possibly can be rewritten into an equivalent
parallel form (see “Breaking Data Dependencies” on page 139).

MIPSpro Power Fortran 90 analyzes loops for data dependence and
automatically inserts the required C$DOACROSS directives when it
determines that a loop has data independence. When Power Fortran 90
cannot determine whether the loop is independent, it produces a listing file
detailing where the problems lie. You can use directives to specify the use of
variables, assisting the compiler (see “Assertions About Data Dependence”
on page 110).

Simple Independence

The loop in Example 7-7 demonstrates simple data independence.

Example 7-7 Loop With Data Independence

DO 10 I = 1,N
10 A(I) = X + B(I)*C(I)

Each iteration writes to a different location in A, and none of the variables
appearing on the right-hand side is modified. This loop can be correctly run
in parallel. All the variables are SHARE except for I, which is either LOCAL
or LASTLOCAL, depending on whether its last value is used later.

Simple Dependence

The loop in Example 7-8 refers to A(I) on the left-hand side and A(I-1) on the
right. This means that one iteration of the loop writes to a location in A and
the next iteration reads from that same location. Because different iterations
of the loop read and write the same memory location, this loop cannot be run
in parallel.

Example 7-8 Loop With Stride-1 Dependence

DO 20 I = 2,N
20 A(I) = B(I) - A(I-1)
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The loop in Example 7-9 looks like the one in Example 7-8. The difference is
that the stride of the DO loop (the fixed increment between each iteration) is
now 2 rather than 1. Now A(I) is always an even-numbered element of A,
while A(I-1) is always an odd-numbered element that never receives an
assignment under the expression A(I). None of the data locations on the
right-hand side is ever the same as any of the data locations written to on the
left-hand side. There is no dependence. The loop can be run in parallel.
Arrays A and B can be declared SHARE, while variable I should be declared
LOCAL or LASTLOCAL.

Example 7-9 Loop With Stride-2 Dependence

DO 20 I = 2,N,2
20 A(I) = B(I) - A(I-1)

Complicated Independence

At first glance, the loop in Example 7-10 looks like it cannot be run in parallel
because it uses both W(I) and W(I-K). Closer inspection reveals that because
the value of I varies between K+1 and 2*K, the value of I-K goes from 1 to K.
This means that the W(I-K) term varies from W(1) up to W(K), while the W(I)
term varies from W(K+1) up to W(2*K). So W(I-K) in any iteration of the loop
is never the same memory location as W(I) in any other iterations. Because
there is no data overlap, there are no data dependencies. This loop can be run
in parallel. Variables W, B, and K can be declared SHARE, while variable I
should be declared LOCAL or LASTLOCAL.

Example 7-10 Loop With Apparent Dependence

DO I = K+1, 2*K
   W(I) = W(I) + B(I,K) * W(I-K)
END DO

This example points out a general rule: the more complex the expression
used to index an array, the harder it is to analyze. If the arrays in a loop are
indexed only by the loop index variable, the analysis is usually
straightforward, though tedious. Fortunately, in practice most array
indexing expressions are simple.



Analyzing Data Dependencies for Multiprocessing

137

An Inconsequential Data Dependence

There is a data dependence in Example 7-11 because it is possible that at
some point I will be the same as INDEX, so there will be a data location that
is being read and written by different iterations of the loop.

Example 7-11 Loop With Inconsequential Dependence

INDEX = SELECT(N)
DO I = 1, N
   A(I) = A(INDEX)
END DO

In this special case, you can ignore the dependence. You know that when I
and INDEX are equal, the value written into A(I) is exactly the same as the
value that is already there. The fact that some iterations of the loop read the
value before it is written and some after it is written is not important,
because they all get the same value. Therefore, this loop can be parallelized.
Array A can be declared SHARE, while variable I should be declared
LOCAL or LASTLOCAL.

Use of Local Variable

In Example 7-12, each iteration of the loop reads and writes the variable X.
However, no loop iteration ever needs the value of X from any other
iteration. X is used as a temporary variable; its value does not survive from
one iteration to the next. This loop can be parallelized by declaring X to be a
LOCAL variable within the loop.

Example 7-12 Loop With Local Variable Use

DO I = 1, N
X = A(I)*A(I) + B(I)
B(I) = X + B(I)*X

END DO

Note that B(I) is both read and written by the loop. This is not a problem
because each iteration has a different value for I, so each iteration uses a
different B(I). The same B(I) is allowed to be read and written as long as it is
done by the same iteration of the loop. The loop can be run in parallel.
Arrays A and B can be declared SHARE, while variable I should be declared
LOCAL or LASTLOCAL.
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Rewritable Data Dependence

In Example 7-13, the value of INDX survives the loop iteration and is carried
into the next iteration. This loop cannot be parallelized as it is written.

Example 7-13 Loop With Dependence

INDX = 0
DO I = 1, N

INDX = INDX + I
A(I) = B(I) + C(INDX)

END DO

Making INDX a LOCAL variable does not work because you need the value
of INDX computed in the previous iteration. It is possible to rewrite this loop
to make it parallel (see “Breaking Data Dependencies” on page 139).

Exit Branch

The loop in Example 7-14 contains an exit branch; that is, under certain
conditions the flow of control exits the loop. The Fortran compiler cannot
parallelize loops containing exit branches. While one slave thread might
discover the exit condition, other slave threads working on later iterations
would continue to run.

Example 7-14 Loop With Exit Branch

DO I = 1, N
IF (A(I) .LT. EPSILON) GOTO 320
A(I) = A(I) * B(I)

END DO
320 CONTINUE
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Local Array

In Example 7-15, each iteration of the loop uses the same locations in the D
array.

Example 7-15 Loop With Local Array Use

DO I = 1, N
   D(1) = A(I,1) - A(J,1)
   D(2) = A(I,2) - A(J,2)
   D(3) = A(I,3) - A(J,3)
   TOTAL_DISTANCE(I,J) = SQRT(D(1)**2 + D(2)**2 + D(3)**2)
END DO

However, closer inspection reveals that the entire D array is being used as a
temporary. This can be multiprocessed by declaring D to be LOCAL. The
compiler allows arrays (even multidimensional arrays) to be LOCAL
variables with one restriction: the size of the array must be known at compile
time. The dimension bounds must be constants; the LOCAL array cannot
have been declared using a variable or the asterisk syntax. Arrays
TOTAL_DISTANCE and A can be declared SHARE, while array D and
variable I should be declared LOCAL or LASTLOCAL.

Breaking Data Dependencies

Many loops that have data dependencies can be rewritten so that some or all
of the loop can be run in parallel. The essential idea is to locate the
expressions in the loop that cannot be made parallel and try to find another
way to express them that does not depend on any other iteration of the loop.
If this is not possible, try to pull the statements out of the loop and into a
separate loop, allowing the remainder of the original loop to be run in
parallel.

The first step is to analyze the loop to discover the data dependencies (see
“Analyzing Data Dependencies for Multiprocessing” on page 134). You can
use WorkShop Pro MPF with MIPSpro Fortran 90 to identify the problem
areas.
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Sometimes the dependencies in a loop cannot be broken, and you must
either accept the serial execution rate or try to discover a new parallel
method of solving the problem. The rest of this section is devoted to a series
of examples on how to deal with common situations. These are by no means
exhaustive but cover some situations that happen in practice.

Value Derived From Iteration Count

Example 7-16 is the same as  Example 7-13 on page 138. INDX has a value
derived from the iteration count. The programmer, almost by instinct, has
written code to build this value incrementally—this is obviously the
“efficient” way to do it in serial code. However, because each value of INDX
depends on the value in a previous iteration, the loop cannot be paralellized.

Example 7-16 Loop With Dependence

INDX = 0
DO I = 1, N

INDX = INDX + I
A(I) = B(I) + C(INDX)

END DO

In fact, INDX can be derived directly from the current iteration number
without reference to preceding iterations. As shown in Example 7-17, this
can be done using code that would be “inefficient” in a serial program, since
it does an “unnecessary” multiply and divide in each loop.

Example 7-17 Loop With Dependence Removed

!$DOACROSS LOCAL (I, INDX)
DO I  = 1, N

INDX = (I*(I+1))/2
A(I) = B(I) + C(INDX)

END DO

As a result, INDX can be designated a LOCAL variable, and the loop can
now be multiprocessed.
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Indirect Indexing

The loop in Example 7-18 cannot be parallelized. It is the final statement that
causes problems.

Example 7-18 Loop With Indirect Indexing

DO 100 I = 1, N
IX = INDEXX(I)
IY = INDEXY(I)
XFORCE(I) = XFORCE(I) + NEWXFORCE(IX)
YFORCE(I) = YFORCE(I) + NEWYFORCE(IY)
IXX = IXOFFSET(IX)
IYY = IYOFFSET(IY)
TOTAL(IXX, IYY) = TOTAL(IXX, IYY) + EPSILON

100 CONTINUE

The indexes IXX and IYY are computed in a complex way and depend on the
values from the IXOFFSET and IYOFFSET arrays. It cannot be said that
TOTAL(IXX,IYY) in one iteration of the loop will always be different from
TOTAL(IXX,IYY) in every other iteration of the loop.

Example 7-19 shows that the assignment to TOTAL can be pulled out into a
separate loop by expanding IXX and IYY into arrays that retain intermediate
values.

Example 7-19 Loop With Dependency Split to Other Loop

!$DOACROSS LOCAL(IX, IY, I)
DO I  = 1, N

IX = INDEXX(I)
IY = INDEXY(I)
XFORCE(I) = XFORCE(I) + NEWXFORCE(IX)
YFORCE(I) = YFORCE(I) + NEWYFORCE(IY)
IXX(I) = IXOFFSET(IX)
IYY(I) = IYOFFSET(IY)

END DO
DO 100 I = 1, N

TOTAL(IXX(I),IYY(I)) = TOTAL(IXX(I), IYY(I)) + EPSILON
100 CONTINUE
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Here, IXX and IYY have been turned into arrays to hold all the values
computed by the first loop. The first loop (containing most of the work) can
now be run in parallel. Only the second loop must still be run serially. This
will be true if IXOFFSET or IYOFFSET are permutation vectors.

Tip: Temporary arrays such as IXX and IYY in Example 7-19 can be
ALLOCATABLE, allocated just before needed and released after.

Before we leave this example, note that if we were certain that the value for
IXX was always different in every iteration of the loop, then the original loop
could be run in parallel. It could also be run in parallel if IYY was always
different. If IXX (or IYY) is always different in every iteration, then
TOTAL(IXX,IYY) is never the same location in any iteration of the loop, and
so there is no data conflict.

This sort of knowledge is, of course, program-specific and should always be
used with great care. It may be true for a particular data set, but to run the
original code in parallel as it stands, you need to be sure it will always be true
for all possible input data sets—and you need to document the dependence
on this assertion, so that future program maintenance does not make it
invalid.

Dealing With Recurrence

Example 7-20 shows a simple example of recurrence, which exists when a
value computed in one iteration is immediately used by another iteration.

Example 7-20 Loop With Recurrence Relation

DO I = 1,N
   X(I) = X(I-1) + Y(I)
END DO

There is no good way of running this loop in parallel. If this type of construct
appears in a critical loop, try pulling the statement(s) out of the loop as in the
previous example. Sometimes an inner loop encloses the recurrence; in that
case, try to parallelize the outer loop.
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Dealing With Reduction

The operation in Example 7-21 is known as a reduction. Reductions occur
when the elements of an array of values are combined and reduced to a
single value. This example is a sum reduction because the combining
operation is addition.

Example 7-21 Loop With a Sum Reduction

ASUM  = 0.0
DO I = 1,N

ASUM = ASUM + A(I)
END DO

Since the value of ASUM is carried from one loop iteration to the next, this
loop cannot be parallelized. However, because this example merely sums the
elements of A(I), we can rewrite it to accumulate multiple, independent
subtotals. Then we can do much of the work in parallel. This approach is
shown in Example 7-22. (The mp_numthreads library call is discussed
under “Using mp_numthreads and mp_set_numthreads” on page 155.)

Example 7-22 Loop With Partitioned Sum Reduction

NUM_THREADS = MP_NUMTHREADS()
! IPIECE_SIZE = N/NUM_THREADS rounded up

IPIECE_SIZE = (N + (NUM_THREADS -1)) / NUM_THREADS
DO K = 1, NUM_THREADS

PARTIAL_ASUM(K) = 0.0
! The first thread does 1 through IPIECE_SIZE, the second
! does IPIECE_SIZE + 1 through 2*IPIECE_SIZE, and so on.
! If M is not evenly divisible by num_threads, the MIN
! expression makes the last piece small.

I_START = K*IPIECE_SIZE - IPIECE_SIZE +1
I_FINISH = MIN(K*IPIECE_SIZE,N)
DO I = I_START, I_FINISH

PARTIAL_ASUM(K) = PARTIAL_ASUM(K) + A(I)
END DO

   END DO
! Finally, add up the partial sums

ASUM = 0.0
DO I = 1, NUM_THREADS

ASUM = ASUM + PARTIAL_ASUM(I)
END DO
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The outer loop on K can be run in parallel. The array pieces for the partial
sums are contiguous; that is, each inner loop processes a span of elements of
A(I) that are adjacent in memory. This results in good cache utilization.

The approach illustrated in Example 7-22 is needed so often that automatic
support is provided by the REDUCTION clause of C$DOACROSS. All of
Example 7-22 can be reduced to the simple code of Example 7-23.

Example 7-23 Loop With Automatic Partitioned Reduction

ASUM = 0.0
!$DOACROSS LOCAL (I), REDUCTION (ASUM)

DO I = 1, N
ASUM = ASUM + A(I)

END DO

Types of Reductions

You can use the REDUCTION clause to automatically partition reductions
based on four types of reduction operations:

Multiple reductions are supported in a single loop, as shown in
Example 7-24.

Example 7-24 Loop With Four Reductions

!$DOACROSS LOCAL(I),REDUCTION(BG_SUM,BG_PROD,BG_MIN,BG_MAX)
DO I = 1,N

BG_SUM  = BG_SUM + A(I)
BG_PROD = BG_PROD * A(I)
BG_MIN  = MIN(BG_MIN, A(I))
BG_MAX  = MAX(BG_MAX, A(I)

END DO

The compiler recognizes the type of reduction based on the operator or
intrinsic function used. The number of available threads is calculated at
runtime, and the arrays of partial values are allocated automatically.

sum S = S+A(I)

product P = P*A(I)

min L = MIN(L,A(I))

max M = MAX(M,A(I))
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Note: A partitioned reduction may not produce results identical to the serial
reduction. Because computer arithmetic has limited precision, round-off
errors accumulate in different ways when you sum the values in a different
order. The final answer can differ, usually only in the last few decimal places.
Either answer is “correct.” If the difference is significant, neither answer is
trustworthy.

Inner Reduction

One further example of a reduction transformation is noteworthy. Consider
the nested loops in Example 7-25.

Example 7-25 Reduction Nested in Outer Loop

DO I = 1, N
TOTAL = 0.0
DO J = 1, M

TOTAL = TOTAL + A(J,I)
END DO
B(I) = C(I) * TOTAL

END DO

The inner loop could be parallelized with a REDUCTION clause, and this
would be a reasonable optimization in the case provided that N is small and
M is large.

However, first consider the outer loop. The variable TOTAL fulfills the
criteria for a LOCAL variable in the outer loop: the value of TOTAL in each
iteration of the outer loop does not depend on the value of TOTAL in any
other iteration of the outer loop. The outer loop can be parallelized, as shown
in Example 7-26.

Example 7-26 Parallel Outer Loop With Inner Reduction

!$DOACROSS LOCAL(I,J,TOTAL) SHARE(A)
DO I = 1, N

TOTAL = 0.0
DO J = 1, M

TOTAL = TOTAL + A(J,I)
END DO
B(I) = C(I) * TOTAL

END DO
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Iterations of the outer loop are performed in parallel. Each one has its own
copy of I, J, and TOTAL, and executes the inner loop serially.

Coding Reductions Manually

When you have a reduction that is not a simple sum, product, MIN or MAX
operation, it cannot be parallelized automatically. However, you can apply
the technique shown in Example 7-22. The idea of partitioning an array to
permit parallel computation, and then combining the partial results, is an
important technique for breaking data dependence. This situation turns up
again and again in various contexts and guises.

Tip: If multiple CPUs are not available, a program such as Example 7-22 will
waste time in overhead operations. You can write two versions of a
reduction, one serial and one parallel, and encapsulate them in subroutines.
Then you can dynamically choose which to execute using the C$ directive
(see “Using C$” on page 131).

Adjusting the Work Quantum

A certain amount of overhead is needed to initialize a parallel loop. If the
work done in the loop is small, the parallel loop can actually run slower. To
avoid this, make the amount of work inside the multiprocessed region as
large as possible.

Using a Loop Interchange

In the nested loops of Example 7-27 you could choose to parallelize the J loop
or the I loop. In general, try to parallelize the outermost DO loop because it
encloses the most work. However, you cannot parallelize the K loop in
Example 7-27 because different iterations of the K loop read and write the
same values of A(I,J).
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Example 7-27 Nested Loops

DO K = 1, N
DO I = 1, N

DO J = 1, N
A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO
END DO

END DO

In this example, the I loop is the outermost one that can be parallelized.
However, using the technique called loop interchange, you can reorder the
loops to make this one the outermost, as shown in Example 7-28.

Example 7-28 Nested Loops, Interchanged

!$DOACROSS LOCAL(I, J, K) SHARE(A, B, C)
DO I = 1, N

DO K = 1, N
DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)
END DO

END DO
END DO

Now the parallelizable loop encloses more work and shows better
performance. In practice, relatively few loops can be reordered in this way.
However, it does occasionally happen that several loops in a nest of loops are
candidates for parallelization. In such a case, it is usually best to parallelize
the outermost one.

Conditional Parallelism

Occasionally, the only loop available to be parallelized has a fairly small
amount of work. It may be worthwhile to force certain loops to run without
parallelism or to select between a parallel version and a serial version, on the
basis of the length of the loop.

The first loop in Example 7-29 can never execute more thanfour iterations. It
is not worth parallelizing such a loop unless there is an extraordinary
amount of work in the body of the loop.
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Example 7-29 Loop Not Worth Parallelizing

J = (N/4) * 4
DO I = J+1, N

A(I) = A(I) + X*B(I)
END DO
DO I = 1, J, 4

A(I) = A(I) + X*B(I)
A(I+1) = A(I+1) + X*B(I+1)
A(I+2) = A(I+2) + X*B(I+2)
A(I+3) = A(I+3) + X*B(I+3)

END DO

The second loop in Example 7-29 has been optimized using manual loop
unrolling of order four. Even so, this loop is worth parallelizing if N is big
enough. In general, the overhead of initiating a parallel loop is roughly
equivalent to 1,000 floating-point operations. Let F be the approximate
number of floating-point operations in the loop, and let P be the number of
available CPUs. If parallelization is to save time, the approximate inequality
F-F/P>1000 must hold.

The revision in Example 7-30 uses the IF clause on the DOACROSS directive
to test if time can be saved by parallelization.

Example 7-30 Loop With Conditional Parallelization

J = (N/4) * 4
DO I = J+1, N

A(I) = A(I) + X*B(I)
END DO

!$DOACROSS LOCAL(I),
!$ IF ((J*8)-(J*8/MP_NUMTHREADS()).GE.1000)

DO I = 1, J, 4 ! 8 flops per iter.
A(I) = A(I) + X*B(I)
A(I+1) = A(I+1) + X*B(I+1)
A(I+2) = A(I+2) + X*B(I+2)
A(I+3) = A(I+3) + X*B(I+3)

END DO
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Cache Effects

The cache memory of current Silicon Graphics systems has a major effect on
performance. A CPU runs at or near its theoretical maximum speed only
when all data and instructions are present in the cache. Whenever the CPU
must fetch data from main memory, execution slows.

The technique for the best cache performance in Fortran is quite simple:
make the loop step through the array in the same way that the array is laid
out in memory. This means stepping through the array:

• without skipping any elements (with a “stride” of 1)

• with the leftmost subscript varying the fastest

Note that this optimization does not depend on multiprocessing, nor is it
required in order for multiprocessing to work correctly. However, when you
divide work between multiple CPUs, it is easy to introduce nonsequential
array access. Always try to divide work so that each slave thread works on
a contiguous span of array elements.

Parallelizing a Matrix Multiply

The loops in Example 7-31 are the same as in Example 7-28 on page 147. In
order to get the most work into the outer loop, the I loop was interchanged
with the K loop.

Example 7-31 Nested Loops, Interchanged

!$DOACROSS LOCAL(I, J, K) SHARE(A, B, C)
DO I = 1, N

DO K = 1, N
DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)
END DO

END DO
END DO

Unfortunately, to get the best cache performance, the I loop should be
innermost. This is because I is the leftmost index in the references to arrays
A and B. As the example stands, the innermost statement touches elements
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of A with a stride of J, and elements of B with a stride of K, resulting in
unnecessarily frequent cache misses.

At the same time, to get the best multiprocessing performance, the
outermost loop should be parallelized. In this case, you can perform one
additional loop interchange of the I and J loops, and get the best of both
optimizations. This is illustrated in Example 7-32.

Example 7-32 Nested Loops Interchanged for Cache Performance

!$DOACROSS LOCAL(I, J, K)
DO J = 1, N

DO K = 1, N
DO I = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)
END DO

END DO
END DO

Trade-Offs Between Optimizations

Sometimes you must choose between the possible optimizations and their
costs. The loop in Example 7-33 can be parallelized on I but not on J.

Example 7-33 Vector Reduction

DO J = 1, N
DO I = 1, M

A(I) = A(I) + B(J)*C(I,J)
END DO

END DO

As shown in Example 7-34, you could interchange the loops to put I on the
outside, thus getting a bigger work quantum.

Example 7-34 Parallelized Vector Reduction

!$DOACROSS LOCAL(I,J)
DO I = 1, M

DO J = 1, N
A(I) = A(I) + B(J)*C(I,J)

END DO
END DO
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However, putting J on the inside means that the loop steps through the C
array with a stride of I—the second subscript varies the fastest. Supposing
that C is, in total, much larger than the cache, all of C will be pumped
through the cache, I times.

Another approach is to forego the loop interchange, and to parallelize only
the inner loop. The inner loop can be seen as a sum reduction into A(I). The
result is shown in Example 7-35.

Example 7-35 Vector Reduction With Parallel Inner Loop

DO J = 1, N
!$DOACROSS LOCAL(I) REDUCTION( A(I) )

DO I = 1, M
A(I) = A(I) + B(J)*C(I,J)

END DO
END DO

However, this approach entails initiating parallel execution J times; so M
needs to be large for this approach to show any improvement.

You must trade off the various possible optimizations to find the
combination that is right for the particular job.

Balancing the Load With Interleaving

When the Fortran compiler divides a loop into pieces, by default it uses the
simple method of separating the iterations into contiguous blocks of equal
size for each process. However, some iterations can take significantly longer
to complete than other iterations. This can be the natural result of the
algorithm used.

At the end of a parallel region, the program has to wait for all slave threads
to complete their tasks. If the work is not divided evenly, time is wasted
waiting for the slowest process to finish.
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Example 7-36 Loop With Iterations of Different Lengths

DO I = 1, N
DO J = 1, I

A(J, I) = A(J, I) + B(J)*C(I)
END DO

END DO

The code segment in Example 7-36 can be parallelized on the outer loop.
Because the inner loop goes from 1 to I, the first iterations of the outer loop
will end long before the last iterations of the outer loop. In this example, this
is easy to predict, so you can change the program as shown in Example 7-37.
(See also “Using mp_numthreads and mp_set_numthreads” on page 155.)

Example 7-37 Loop With Balanced Iterations

NUM_THREADS = MP_NUMTHREADS()
!$DOACROSS LOCAL(I, J, K)

DO K = 1, NUM_THREADS
DO I = K, N, NUM_THREADS

DO J = 1, I
A(J, I) = A(J, I) + B(J)*C(I)

END DO
END DO

END DO

In this rewritten version, instead of breaking up the I loop into contiguous
blocks, it has been broken into interleaved blocks. Thus, each execution
thread receives some small values of I and some large values of I, so that each
slave thread has about the same amount of work to do. Interleaving usually,
but not always, cures a load balancing problem.

You can use the MP_SCHEDTYPE clause to automatically perform this
desirable transformation.

C$DOACROSS LOCAL (I,J), MP_SCHEDTYPE=INTERLEAVE
DO 20 I = 1, N

DO 10 J = 1, I
A (J,I) = A(J,I) + B(J)*C(J)

10 CONTINUE
20 CONTINUE
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Note that interleaving can cause poor cache performance because the array
is no longer stepped through at a stride of 1. You can improve performance
somewhat by adding a CHUNK=integer_expression clause. Usually 4 or 8 is
a good value for integer_expression. Each small chunk has stride 1 to improve
cache performance, while the chunks are interleaved to improve load
balancing.

Interleaving is one possible scheduling mode. Both interleaving and the
SIMPLE scheduling method are examples of fixed schedules; the iterations
are assigned to processes by a single decision made when the loop is entered.
For more complex loops, it may be desirable to use DYNAMIC or GSS
schedules.

 Comparing the output from pixie or from prof allows you to see how well the
load is being balanced so you can compare the different methods of dividing
the load. Refer to the discussion of the MP_SCHEDTYPE clause in “Using
the CHUNK and MP_SCHEDTYPE Clauses” on page 127 for more
information.

Even when the load is perfectly balanced, iterations may still take varying
amounts of time to finish because of random factors. One process may take
a page fault, another may be interrupted to let a different program run, and
so on. Because of these unpredictable events, some time can be spent waiting
for the last processes to complete, even with near-perfect balance.

Run-Time Control of Multiprocessing

A number of features are provided so that you can control the use of
multiprocessing at runtime. This section provides a brief explanation of
these features, which are documented in the mp(3f) reference page.

Using mp_block and mp_unblock

The mp_block library function puts the slave threads into a blocked state
using the IRIX system function blockproc. The slave threads stay blocked
until a call is made to mp_unblock. These routines are useful if the job has
bursts of parallelism separated by long stretches of single processing, as with
an interactive program. You can block the slave processes so they consume
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CPU cycles only as needed, thus freeing the machine for other users. The
Fortran system automatically unblocks the slaves on entering a parallel
region should you neglect to do so.

Using mp_setup, mp_create, and mp_destroy

The mp_setup, mp_create, and mp_destroy library calls create and destroy
threads of execution. This can be useful if the job has only one parallel
portion or if the parallel parts are widely scattered. When you destroy the
extra execution threads, they cannot consume system resources, but they
must be re-created when needed. Frequent creation of threads can degrade
performance. The mp_block and mp_unblock routines should be used in
almost all cases.

The mp_setup library call takes no arguments. It creates the default number
of processes as defined by previous calls to mp_set_numthreads (see “Using
mp_numthreads and mp_set_numthreads” on page 155), by the
environment variable MP_SET_NUMTHREADS (see “Environment
Variables for Scheduling Control” on page 156), or by the number of CPUs
on the current hardware platform. mp_setup is called automatically when
the first parallel loop is entered to initialize the slave threads.

The mp_create call takes a single integer argument, the total number of
execution threads desired. Note that the total number of threads includes the
master thread. Thus, mp_create(n) creates one thread less than the value of
its argument. mp_destroy takes no arguments—it destroys all the slave
execution threads, leaving the master untouched.

When the slave threads end, they generate a SIGCLD signal. If your program
has changed the signal handler to catch SIGCLD, it must be prepared to deal
with this signal when mp_destroy is executed. This signal also occurs when
the program exits; mp_destroy is called as part of normal cleanup when a
parallel Fortran job terminates.

Using mp_blocktime

The Fortran slave threads wait by “spinning” (repetitive testing of a lock)
until there is work to do. This makes them immediately available when a
parallel region is reached. However, spinning consumes CPU resources.
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After a certain maximum amount of spinning, the slaves block themselves
through blockproc. Once the slaves are blocked, it requires a system call to
unblockproc to activate the slaves again (refer to the unblockproc(2) reference
page for details). This slows the startup of a parallel loop.

This trade-off between response time and CPU usage can be adjusted with
the mp_blocktime call. mp_blocktime takes a single integer argument that
specifies the number of times to spin before blocking. By default, it is set to
10,000,000; this takes roughly one second. If called with an argument of 0, the
slave threads will not block themselves no matter how much time has
passed. Explicit calls to mp_block, however, do still block the threads.

This automatic blocking is transparent to the program. Blocked threads are
automatically unblocked when a parallel region is reached.

Using mp_numthreads and mp_set_numthreads

Occasionally, you may want to know how many execution threads are
available (for example, in order to call mp_setup, or for a test in a
C$DOACROSS IF expression). The mp_numthreads function takes no
arguments. It returns the total number of execution threads available for this
job. The count includes the master thread.

The mp_set_numthreads subroutine takes a single-integer argument and
changes the default number of threads to the specified value. A subsequent
call to mp_setup will use the specified value rather than the original
defaults.

Note: This call has an effect only when mp_setup is called. If the slave
threads have already been created, this call will not change their number. To
change the number of threads, use mp_destroy, then mp_set_numthreads,
then mp_setup.

Using mp_my_threadnum

The mp_my_threadnum function takes no arguments. It returns a number
indicating the number of thread executing the call. If there are n execution
threads, the function call returns a value between zero and n – 1. The master
thread is always thread zero. This function can be useful when parallelizing
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certain kinds of loops. Most of the time, the loop index variable can be used
for the same purpose. Occasionally, the loop index may not be accessible, as,
for example, when an external routine is called from within the parallel loop.
This routine provides a mechanism for those cases.

Environment Variables for Scheduling Control

The MP_SET_NUMTHREADS, MP_BLOCKTIME, and MP_SETUP
environment variables act as an implicit call to the corresponding routines of
the same name, but they take effect at program start-up time.

For example, the csh command

% setenv MP_SET_NUMTHREADS 2

causes the program to create two threads regardless of the number of CPUs
actually on the machine, just like the source statement

CALL MP_SET_NUMTHREADS(2)

Similarly, the sh commands

% set MP_BLOCKTIME 0
% export MP_BLOCKTIME

prevent the slave threads from autoblocking, just as does the statement

call mp_blocktime (0)

For compatibility with older releases, the environment variable
NUM_THREADS is supported as a synonym for MP_SET_NUMTHREADS.

To help support networks with several multiprocessors and several CPUs,
the environment variable MP_SET_NUMTHREADS also accepts an
expression involving integers +, –, min, max, and the special symbol all,
which stands for “the number of CPUs on the current machine.”

For example, the following command selects the number of threads to be
two fewer than the total number of CPUs (but always at least one):

% setenv MP_SET_NUMTHREADS max(1,all-2)
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Environment Variables for Load-Sensitive Scheduling

In an environment with long running jobs and varying workloads, it may be
preferable to vary the number of threads during execution of some jobs.

If the environment variable MP_SUGNUMTHD has a non-null value when
the program starts, the run-time library creates an additional, asynchronous
process that periodically wakes up and monitors the system load. When idle
processors exist, this process increases the number of threads, up to the
maximum set by MP_SET_NUMTHREADS. When the system load
increases, the process decreases the number of threads, possibly to as few as
one. When MP_SUGNUMTHD has no value, this feature is disabled and
multithreading works as before.

The environment variables MP_SUGNUMTHD_MIN and
MP_SUGNUMTHD_MAX are used to limit this feature as desired. When
MP_SUGNUMTHD_MIN is set to an integer value between 1 and
MP_SET_NUMTHREADS, the process will not decrease the number of
threads below that value.

When MP_SUGNUMTHD_MAX is set to an integer value between the
minimum number of threads and MP_SET_NUMTHREADS, the process
does not increase the number of threads above that value.

If you set any value in the environment variable
MP_SUGNUMTHD_VERBOSE, informational messages are written to
stderr whenever the process changes the number of threads in use.

Calls to mp_numthreads and mp_set_numthreads are taken as a sign that
the application depends on the number of threads in use. The number in use
is frozen upon either of these calls; and if MP_SUGNUMTHD_VERBOSE is
set, a message to that effect is written to stderr.
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Environment Variables for RUNTIME Scheduling

These environment variables specify the type of scheduling to use on
DOACROSS loops that have their scheduling type set to RUNTIME. For
example, the following csh commands cause loops with the RUNTIME
scheduling type to be executed as interleaved loops with a chunk size of 4:

% setenv MP_SCHEDTYPE INTERLEAVE
% setenv CHUNK 4

The defaults are the same as on the C$DOACROSS directive: if neither
variable is set, SIMPLE scheduling is assumed; if MP_SCHEDTYPE is set but
CHUNK is not set, a CHUNK of 1 is assumed. If CHUNK is set, but
MP_SCHEDTYPE is not, DYNAMIC scheduling is assumed.

Using mp_setlock, mp_unsetlock, mp_barrier

The mp_setlock, mp_unsetlock, and mp_barrier subroutines provide
convenient (although limited) access to the locking and barrier functions
provided by the IRIX functions ussetlock, usunsetlock, and barrier. These
subroutines are convenient because you do not need to initialize them; calls
such as usconfig and usinit are done automatically. The limitation is that
there is only one lock and one barrier. For most programs, this amount is
sufficient. If your program requires more complex or flexible locking
facilities, use the ussetlock family of subroutines directly.

Using Local COMMON Blocks

Variables in COMMON blocks are static, and if there is an assignment to a
static variable within a loop, the loop can’t be parallelized.

A special ld option allows named COMMON blocks to be local to a process.
Each process in the parallel job gets its own private copy of the common
block. This can be helpful in converting certain types of loops into parallel
form.

Only a named COMMON can be made process-local (blank COMMON may
not be made local). The COMMON block must not be initialized by
executable code, not by DATA statements.
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To create a local COMMON block, give the special loader directive –Xlocal
followed by a list of COMMON block names. Note that the external name of
a COMMON block known to the loader has a trailing underscore and is not
surrounded by slashes. For example, the command

% f90 –mp a.out –Xlocal foo_

makes the COMMON block /FOO/ a local COMMON block in the resulting
a.out file. You can specify multiple –Xlocal options if necessary.

It is occasionally desirable to be able to copy values from the master thread’s
version of the COMMON block into the slave thread’s version. The special
directive C$COPYIN allows this. It has the form

C$COPYIN item [, item …]

Each item must be a member of a localized COMMON block. It can be a
variable, an array, an individual element of an array, or the entire COMMON
block.

For example,

!$COPYIN x,y, /foo/, a(i)

propagates the values for x and y, all the values in the COMMON block FOO,
and the ith element of array a. All these items must be members of local
COMMON blocks. Note that this directive is translated into executable code,
so in this example i is evaluated at the time this statement is executed.

Compatibility With sproc

The parallelism used in Fortran is implemented using the IRIX system call
sproc. It is not a good idea to attempt to use both parallel loops and explicit
sproc calls. It is possible, but there are several restrictions:

• Any explicit threads you create may not execute $DOACROSS loops.
Only the original thread is allowed to do this.

• The calls to routines like mp_block and mp_destroy apply only to the
threads created by mp_create or to those automatically created when
the Fortran job starts; they have no effect on any user-created threads.
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• Calls to routines such as m_get_numprocs do not apply to threads
created explicitly. However, the Fortran-created slave threads are
ordinary subprocesses; so using the system function kill with the
arguments 0 and a signal number (for example, kill (0,9)) to signal all
members of the process group will kill the threads used to execute
C$DOACROSS.

• If you choose to intercept the SIGCLD signal, you must be prepared to
receive this signal when the threads used for the C$DOACROSS loops
exit; this occurs when mp_destroy is called or at program termination.

• Note in particular that m_fork is implemented using sproc, so it is not
legal to m_fork a family of processes that each subsequently executes
C$DOACROSS loops. Only the original thread can execute
C$DOACROSS loops.

DOACROSS Implementation

This section discusses how multiprocessing is implemented in a loop
controlled by C$DOACROSS. This information is useful when you use a
debugger or interpret the results of an execution profile.

Loop Transformation

When the Fortran compiler encounters a C$DOACROSS directive, it puts
the body of the corresponding DO loop into a separate subroutine and
replaces the loop with a call to a special library routine __mp_parallel_do.

The newly created routine is named by appending .pregion to the name of
the original routine, followed by the number of the parallel loop in the
routine, where 0 is the first loop. For example, the first parallel loop in a
routine named foo is named foo.pregion0, the second parallel loop is
foo.pregion1, and so on.

If a loop occurs in the main routine and if that routine has not been given a
name by the PROGRAM statement, its name is assumed to be main. Any
variables declared to be local in the original C$DOACROSS statement are
declared as local variables in the created routine. References to SHARE
variables are resolved by referring back to the original routine.
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Because the created routine is now just a DO loop, the routine uses
subroutine arguments to specify which part of the loop a particular process
is to execute. The created routine has three arguments: the starting value for
the index, the number of times to execute the loop, and a special flag word.

Consider the subroutine in Example 7-38.

Example 7-38 Subroutine With Parallel Loop

SUBROUTINE EXAMPLE(A, B, C, N)
REAL A(*), B(*), C(*)

!$DOACROSS LOCAL(I,X)
DO I = 1, N

X = A(I)*B(I)
C(I) = X + X**2

END DO
C(N) = A(1) + B(2)
RETURN

END

The compiler generates the new subroutine shown in Example 7-39 to
contain the parallelized loop code. The name of the generated routine is
derived from the containing subroutine, EXAMPLE.

Example 7-39 Generated “pregion” Subroutine

SUBROUTINE EXAMPLE.pregion0( _LOCAL_START, _LOCAL_NTRIP, &
_THREADINFO)

INTEGER*4 _LOCAL_START
INTEGER*4 _LOCAL_NTRIP
INTEGER*4 _THREADINFO
INTEGER*4 I
REAL X
INTEGER*4 _DUMMY
I = _LOCAL_START
DO _DUMMY = 1,_LOCAL_NTRIP

X = A(I)*B(I)
C(I) = X + X**2
I = I + 1

END DO
END
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Executing Created Routines

The set of processes that cooperate to execute the parallel Fortran job are
members of a process share group created by sproc, anIRIX system call. The
process share group is created by special startup routines that are used only
when the executable is linked with the –mp option, which enables
multiprocessing.

The first process is the master process. It executes all the nonparallel portions
of the code. The other processes are slave processes; they are controlled by
the routine mp_slave_control. When they are inactive, they wait in the
special routine __mp_slave_wait_for_work.

The __mp_parallel_do routine divides the work and signals the slaves. The
master process then calls the created routine to do its share of the work.
When a slave is signaled, it wakes up from the wait loop, calculates which
iterations of the spooled DO loop it is to execute, and then calls the routine
with the appropriate arguments. When the routine returns, the slave reports
that it has finished and returns to __mp_slave_wait_for_work.

When the master completes its execution of its portion of the spooled
routine, it waits in the special routine mp_wait_for_loop_completion until
all the slaves have completed processing. The master then returns to the
main routine and continues execution.

Using PCF Directives

The compiler supports a more general model of parallelism, in addition to
the simple loop-level parallelism offered by the C$DOACROSS directive.
This model is based on the work done by the Parallel Computing Forum
(PCF), which itself formed the basis for the proposed ANSI-X3H5 standard.
The compiler supports this model through compiler directives, rather than
extensions to the source language.

The main concept in this model is the parallel section, which can be any
arbitrary section of code (not just a DO loop). Within the parallel region, you
designate work-sharing constructs to specify how the work is divided among
separate threads. The parallel region can also contain a critical section
construct, where exactly one process executes at a time.
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The master thread executes the user program until it reaches a parallel
region. It then spawns one or more slave threads that begin executing code
at the beginning of a parallel region. Each thread executes all the code in the
region until a work-sharing construct is encountered. Each thread then
executes some portion of the work sharing construct, and resumes executing
the parallel region code. At the end of the parallel region, all the threads
synchronize, and the master thread continues execution of the user program.

The PCF directives, summarized in Table 7-1, implement the general model
of parallelism. They look like Fortran comments: always starting in column
one, and beginning with a “C$PAR” in fixed-form source or “!$PAR”’ in
free-form source.

The compiler recognizes these directives when multiprocessing is enabled
with either the –mp or -pfa driver option. If multiprocessing is not enabled,
the compiler treats these statements as comments.

Table 7-1 Summary of PCF Directives

Directive Description

C$PAR BARRIER Ensures that each process waits until all
processes reach the barrier before
proceeding.

C$PAR CRITICAL SECTION

C$PAR END CRITICAL SECTION

Ensures that the enclosed block of code is
executed by only one process at a time by
using a lock variable.

C$PAR PARALLEL

C$PAR END PARALLEL

Encloses a parallel region, which includes
work-sharing constructs and critical sections.

C$PAR PARALLEL DO Precedes a single DO loop for which separate
iterations are executed by different processes.
This directive is equivalent to the
C$DOACROSS directive.

C$PAR PDO

C$PAR END PDO

Separate iterations of the enclosed loop are
executed by different processes. This
directive must be inside a parallel region.

C$PAR PSECTION[S]

C$PAR END PSECTION[S]

Parcels out each block of code in turn to a
process.
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C$PAR &

Occasionally, the clauses in PCF directives are longer than one line. You can
use the C$PAR & directive to continue a directive onto multiple lines. For
example,

!$PAR PARALLEL local(i,j)
!$PAR& shared(a,n,index_x,index_y,cur_max,
!$PAR& big_max,bmax_x,bmax_y)

Parallel Region

A parallel region encloses any number of PCF constructs (described in
“Using PCF Directives” on page 162). It signifies the boundary within which
slave threads execute. Slave threads are created at entry to the region if
necessary. A user program can contain any number of parallel regions. The
syntax of the parallel region is

C$PAR PARALLEL [ clause [[,] clause]...]
code

C$PAR END PARALLEL

where valid clauses are

IF ( logical_expression )
{LOCAL | PRIVATE}( item [, item ...])
{SHARED | SHARE}( item [, item ...])

C$PAR SECTION Signifies a starting line for an individual
section within a parallel section.

C$PAR SINGLE PROCESS

C$PAR END SINGLE PROCESS

Ensures that the enclosed block of code is
executed by exactly one process.

C$PAR & Continues a PCF directive onto multiple
lines.

Table 7-1 (continued) Summary of PCF Directives

Directive Description
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The IF, LOCAL, and SHARED clauses have the same meaning as in the
C$DOACROSS directive (refer to “Writing Simple Parallel Loops” on
page 123).

Note: The preferred form of the directive uses no commas between the
clauses. The SHARED keyword is preferred over SHARE, and LOCAL is
preferred over PRIVATE.

In Example 7-40, all threads enter the parallel region and call the subroutine
named foo, passing the number of the thread executing the call.

Example 7-40 Subroutine With Parallel Region

subroutine ex1(index)
integer i

!$PAR PARALLEL LOCAL(i)
i = mp_my_threadnum()
call foo(i)

!$PAR END PARALLEL
end

PCF Work-Sharing Constructs

The principal PCF constructs are the work-sharing constructs. (The other
types are critical sections and barriers.) The work-sharing constructs direct
the application of slave threads to code. The work-sharing constructs are:

• parallel DO

• PDO

• parallel sections

• single process

All master and slave threads synchronize at the bottom of any work-sharing
construct. None of the threads continue past the end of the construct until
they all have completed execution within that construct.

If specified, the PDO, parallel section, and single process constructs must
appear inside of a parallel region, which creates the threads. The parallel DO
construct cannot. Specifying a parallel DO construct inside of a parallel
region produces a syntax error.
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Parallel DO

The parallel DO construct is the same as the C$DOACROSS directive—it
calls for parallelizing the single DO loop that immediately follows it.

Conceptually, parallel DO is the same as a parallel region containing exactly
one PDO construct and no other code. Each thread inside the enclosing
parallel region executes separate iterations of the loop within the parallel DO
construct. The syntax of the parallel DO construct is

C$PAR PARALLEL DO [ clause [[,] clause]...]

“Syntax of C$DOACROSS” on page 124 describes valid values for clause.
The only difference is in the MP_SCHEDTYPE=mode clause. For the C$PAR
PARALLEL DO directive, the keyword MP_SCHEDTYPE= is optional; you
can simply specify mode.

PDO

PDO is a generalization of parallel DO to loops of any kind. Each thread
inside the enclosing parallel region executes a separate iteration of the loop
within the PDO construct. The syntax of the PDO construct, which can only
be specified within a parallel region, is

C$PAR PDO [ clause [[,] clause]...]
        code
[C$PAR END PDO [NOWAIT]]

where valid values for clause are

{LOCAL | PRIVATE} ( item[, item ...])
{LASTLOCAL | LAST LOCAL} ( item[, item ...]
(ORDERED)
sched
chunk

LOCAL, LASTLOCAL, sched, and chunk have the same meaning as in the
C$DOACROSS directive (refer to “Writing Simple Parallel Loops” on page
123). Note in particular that it is legal to declare a data item as LOCAL in a
PDO even if it was declared as SHARED in the enclosing parallel region. The
(ORDERED) clause is equivalent to a sched clause of DYNAMIC and a chunk
clause of 1. The parentheses are required.
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LASTLOCAL is preferred over LAST LOCAL and LOCAL is preferred over
PRIVATE.

The END PDO directive is optional. If specified, this directive must appear
immediately after the end of a loop. The optional NOWAIT clause specifies
that each process should proceed directly to the code immediately following
the directive. If you do not specify NOWAIT, the processes will wait until all
have reached the directive before proceeding.

Example 7-41 shows an example of the PDO construct.

Example 7-41 Simple PDO Structure

subroutine ex2(a,n)
real a(n)

!$PAR PARALLEL local(i) shared(a)
!$PAR PDO

do i = 1, n
a(i) = a(i) + 1.0

enddo
!$PAR END PARALLEL
end

The effect of this example could be achieved with a parallel DO or with a
C$DOACROSS directive. In fact, the compiler recognizes this as a special
case and generates the same (more efficient) code as for a C$ DOACROSS
directive.

Parallel Sections

The PCF parallel sections construct is a parallel version of the Fortran 90
SELECT statement. Each block of code is parcelled out in turn to a separate
thread. The syntax of the parallel sections construct is

C$PAR PSECTION[S] [ clause]
code

[C$PAR SECTION
      code] ...
C$PAR END PSECTION[S] [NOWAIT]

The only valid value for clause is

{LOCAL | PRIVATE} ( item [, item])
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LOCAL is preferred over PRIVATE and has the same meaning as for the
C$DOACROSS directive (refer to “Syntax of C$DOACROSS” on page 124).
Note in particular that it is legal to declare a data item as LOCAL in a parallel
sections construct even if it was declared as SHARED in the enclosing
parallel region.

The optional NOWAIT clause specifies that each process should proceed
directly to the code immediately following the directive. If you do not
specify NOWAIT, the processes will wait until all have reached the END
PSECTION directive before proceeding.

Parallel sections must appear within a parallel region. They can contain
critical section constructs (described in “Critical Sections” on page 170) but
cannot contain any of the following types of constructs:

• PDO

• parallel DO or C$ DOACROSS

• single process

Each section is executed in parallel, depending on the number of processes
available. The code blocks are assigned to threads one at a time, in the order
specified. Each code block is executed by only one thread.

Example 7-42 illustrates parallel sections. The first thread to enter the
parallel sections construct executes the first section; the second thread
executes the second section; and a third thread, if one exists, executes the
third section. If the parallel region is executed by only two threads,
whichever thread first finishes its section executes the remaining section.

Example 7-42 Parallel Sections

subroutine ex3(a,n1,b,n2,c,n3)
real a(n1), b(n2), c(n3)

!$PAR PARALLEL local(i) shared(a,b,c)
!$PAR PSECTIONS
!$PAR SECTION

do i = 1, n1
a(i) = 0.0

end do
!$PAR SECTION

do i = 1, n2
b(i) = 0.5
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enddo
!$PAR SECTION

call normalize(c,n3)
do i = 1, n3

c(i) = c(i) + 1.0
enddo

!$PAR END PSECTION
!$PAR END PARALLEL
end

This example has only three sections, so if more than three threads are in the
parallel region, the fourth and higher threads wait at the C$PAR END
PSECTION directive until all threads are finished.

This example uses DO loops, but a parallel section can contain any code—
provide it has no data dependency on other sections. Be aware of the
significant overhead of a parallel construct. Make sure the amount of work
performed is enough to outweigh the extra overhead.

The sections within a parallel sections construct are assigned to threads one
at a time, from the top down. There is no other implied ordering to the
operations within the sections. In particular, a later section cannot depend on
the results of an earlier section, unless some form of explicit synchronization
is used. If there is such explicit synchronization, you must be sure that the
lexical ordering of the blocks is a legal order of execution.

Single Process

The single process construct, which can only be specified within a parallel
region, ensures that a block of code is executed by exactly one process. The
syntax of the single process construct is

C$PAR SINGLE PROCESS [ clause]
code

C$PAR END SINGLE PROCESS [NOWAIT]

The only valid value for clause is

{LOCAL | PRIVATE} ( item [, item])
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LOCAL is preferred over PRIVATE and has the same meaning as for the C$
DOACROSS directive (refer to “Syntax of C$DOACROSS” on page 124).
Note in particular that it is legal to declare a data item as LOCAL in a single
process construct even if it was declared as SHARED in the enclosing
parallel region.

The optional NOWAIT clause specifies that each process should proceed
directly to the code immediately following the directive. If you do not
specify NOWAIT, the processes will wait until all have reached the directive
before proceeding.

This construct is semantically equivalent to a parallel sections construct with
only one section. The single process construct provides a more descriptive
syntax.The first thread to reach the single process section executes the code
in that block. All other threads wait at the end of the section until the code
has been executed.

Critical Sections

The critical section construct protects a block of code with a lock so that it is
executed by only one thread at a time. Another process arriving at the critical
section must wait until the current process has finished it. Threads do not
synchronize at the bottom of a critical section, as they do at the end of a
work-sharing construct.

The critical section construct can appear anywhere in a program, inside and
outside a parallel region and even within a C$ DOACROSS loop. The syntax
of the critical section construct is

C$PAR CRITICAL SECTION [ ( lock_variable ) ]
 code

C$PAR END CRITICAL SECTION

The lock_variable is an optional integer variable that must be initialized to
zero. The parenthesis are required around its name. If you do not specify
lock_variable, the compiler automatically supplies one.

Multiple critical section constructs inside the same parallel region are
normally independent of each other. However, if they use the same explicit
lock_variable, they are linked and only one process can execute in any of the
linked critical sections at one time.
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Barrier Constructs

A barrier construct ensures that each process waits until all processes reach
the barrier before proceeding. There is an implicit barrier at the end of each
work-sharing construct (unless NOWAIT is specified). The syntax of the
barrier construct is

C$PAR BARRIER

Restrictions

The three work-sharing constructs, PDO, PSECTION, and SINGLE
PROCESS, must be executed by all the threads executing in the parallel
region (or none of the threads). The following is illegal:

!$PAR PARALLEL
if (mp_my_threadnum() .gt. 5) then

!$PAR SINGLE PROCESS
many_processes = .true.

!$PAR END SINGLE PROCESS
endif

This code will hang forever when run with enough processes. One or more
process will be stuck at the C$PAR END SINGLE PROCESS directive
waiting for all the threads to arrive. But threads with numbers less than 6
never take the appropriate branch, and never encounter the construct.

However, the following kind of simple looping is supported:

!$PAR PARALLEL local(i,j) shared(a)
do i= 1,n

!$PAR PDO
do j = 2,n

...

The distinction here is that all of the threads encounter the work-sharing
construct, they all complete it, and they all loop around and encounter it
again.
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Note that this restriction does not apply to the critical section construct,
which operates on one thread at a time without regard to any other threads.

Parallel regions cannot be lexically nested inside of other parallel regions,
nor can work-sharing constructs be nested. However, as an aid to writing
library code, you can call an external routine that contains a parallel region
even from within a parallel region. In this case, only the first region is
actually run in parallel. Therefore, you can create a parallelized routine
without accounting for whether it will be called from within an already
parallelized routine.

A Few Words About Efficiency

The more general PCF constructs are typically slower than the special case
parallelism offered by the C$DOACROSS directive. They are slower because
of the extra synchronization required. When a C$DOACROSS loop executes,
there is a synchronization point at entry and another at exit. When a parallel
region executes, there is a synchronization point at entry to the region,
another at each entry to a work-sharing construct, another at each exit from
a work-sharing construct, and one at exit from the region. Thus, several
separate C$DOACROSS loops typically execute faster than a single parallel
region with several PDO constructs. Limit your use of the parallel region
construct to those few cases that actually need it.
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8. Compiling and Debugging Parallel Fortran

This chapter gives instructions on how to compile and debug a parallel
Fortran program. It contains the following sections:

• “Compiling and Running” explains how to compile and run a parallel
Fortran program.

• “Profiling a Parallel Fortran Program” describes how to use the system
profiler, prof, to examine execution profiles.

• “Debugging Parallel Fortran” presents some standard techniques for
debugging a parallel Fortran program.

This chapter assumes you have read Chapter 7, “Optimizing for
Multiprocessors,” and have reviewed the techniques and vocabulary for
parallel processing in the IRIX environment.

Compiling and Running

After you have written a program for parallel processing, you should first
debug your program in a single-processor environment by compiling it
without parallel optimization. You can also debug your program using the
CASEvision/WorkShop debugger, which is sold as a separate product. After
your program has executed successfully on a single processor, you can
compile it for multiprocessing.

To turn on multiprocessing, use the driver option –mp. This option causes
the compiler to generate multiprocessing code for the particular files being
compiled. When linking, you can combine object files produced with and
without the –mp option. When you use either f90 or ld to link a program
containing any object files compiled with –mp, you must again use –mp so
that the correct libraries are linked.
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Using the –static Option

The -static driver option causes procedure local variables to be allocated
statically, not on the process stack as normal. However, the multiprocessing
implementation demands some use of the stack to allow multiple threads of
execution to execute the same code simultaneously. Therefore, parallel code
regions are effectively compiled with the –automatic option, even if the
routine enclosing them is compiled with –static.

This means that SHARE variables in a parallel section behave with –static
semantics, but that LOCAL variables in a parallel section do not (see “Using
the LOCAL, LASTLOCAL, and SHARE Clauses” on page 125).

Finally, if a parallel region calls an external procedure, that procedure cannot
be compiled with –static. As noted under “Parallel Procedure Calls” on
page 133, to call a procedure that uses static variables from multiple,
concurrent threads would create race conditions and incorrect results. You
can mix static and multiprocessed object files in the same executable; the
restriction is that static variables cannot be modified from within a parallel
section.

Examples of Compiling

The following examples illustrate compiling code using –mp. The following
command line

% f90 –mp foo.f

compiles and links the Fortran program foo.f into a multiprocessor
executable.

In this example

% f90 –c –mp –O2 snark.f

the Fortran routines in the file snark.f are compiled with multiprocess code
generation enabled. The optimizer is also used. A standard snark.o binary is
produced, which must be linked:

% f90 –mp –o boojum snark.o bellman.o
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Here, the –mp option signals the linker to use the Fortran multiprocessing
library. The file bellman.o need not have been compiled with the –mp option,
although it could have been.

After linking, the resulting executable can be run like any standard
executable. Creating multiple execution threads, and running,
synchronizing, and terminating them, are all handled automatically.

When an executable has been linked with –mp, the Fortran initialization
routines determine how many parallel threads of execution to create. This
determination occurs each time the program starts; the number of threads is
not compiled into the code. The default is to use whichever is less: 4, or the
number of processors that are on the machine. (This number will be the
value returned by the system call sysmp(MP_NAPROCS); see the sysmp(2)
reference page.) You can override the default using environment variable
MP_SET_NUMTHREADS or using a library call, as discussed under
“Run-Time Control of Multiprocessing” on page 153.

Profiling a Parallel Fortran Program

After converting a program, you need to examine execution profiles to judge
the effectiveness of the transformation. Good execution profiles of the
program are crucial to help you focus on the loops consuming the most time.

IRIX provides profiling tools that can be used on Fortran parallel programs.
Both pixie (see the pixie(1) reference page) and pc-sample profiling can be
used. On jobs that use multiple threads, both methods create a separate
profile data file for each thread. You can use the standard profile analyzer
prof (see the prof(1) reference page) to examine this output. The MIPS
Compiling and Performance Tuning Guide has details about using prof and pixie.

The profile of a Fortran parallel job is different from a standard profile. As
mentioned in “DOACROSS Implementation” on page 160, to produce a
parallel program, the compiler pulls the parallel DO loops out into separate
subroutines, one routine for each loop. Each of these loops is shown as a
separate procedure in the profile. Comparing the amount of time spent in
each loop by the various threads shows how well the workload is balanced.
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In addition to the loops, the profile shows the special routines that actually
do the multiprocessing. The __mp_parallel_do routine is the synchronizer
and controller. Slave threads wait for work in the routine
__mp_slave_wait_for_work. The less time they wait, the more time they
work. This gives a rough estimate of how parallel the program is.

Debugging Parallel Fortran

This section presents some techniques to assist in debugging a parallel
program.

General Debugging Hints

• Debugging a multiprocessed program is much more difficult than
debugging a single-processor program. Therefore you should do as
much debugging as possible on the single-processor version.

• Try to isolate the problem as much as possible. Ideally, try to reduce the
problem to a single C$DOACROSS loop or PCF parallel section.

• Before debugging a multiprocessed program, change the order of the
iterations on the parallel DO loop on a single-processor version. If the
loop can be multiprocessed, then the iterations can execute in any order
and produce the same answer. If the loop cannot be multiprocessed,
changing the order frequently causes the single-processor version to
fail, and standard single-process debugging techniques can be used to
find the problem.

Example 8-1 contains a bug: the two references to a have the indexes in
reverse order. If the indexes were in the same order (if both were a(i,j) or both
were a(j,i)), the loop could be multiprocessed. As written, there is a data
dependency, so the C$DOACROSS is a mistake.

Example 8-1 Erroneous C$DOACROSS

!$doacross local(i,j)
do i = 1, n

do j = 1, n
a(i,j) = a(j,i) + x*b(i)

end do
end do
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Because a (correct) multiprocessed loop can execute its iterations in any
order, the example could be rewritten as shown in Example 8-2.

Example 8-2 Corrected use of C$DOACROSS

!$doacross local(i,j)
      do i = n, 1, –1
         do j = 1, n
            a(i,j) = a(j,i) + x*b(i)
         end do
      end do

This loop no longer gives the same answer as the original even when
compiled without the –mp option. This reduces the problem to a normal
debugging problem. When a multiprocessed loop gives the wrong answer,
make the following checks.

• Check the LOCAL variables when the code runs correctly as a single
process but fails when multiprocessed. Carefully check any scalar
variables that appear in the left-hand side of an assignment statement
in the loop to be sure they are all declared LOCAL. Be sure to include
the index of any loop nested inside the parallel loop.

A related problem occurs when you need the final value of a variable
but the variable is declared LOCAL rather than LASTLOCAL. If the use
of the final value happens several hundred lines farther down, or if the
variable is in a COMMON block and the final value is used in a
completely separate routine, a variable can look as if it is LOCAL when
in fact it should be LASTLOCAL. To combat this problem, simply
declare all the LOCAL variables LASTLOCAL when debugging a loop.

• Check for EQUIVALENCE problems. Two variables of different names
may in fact refer to the same storage location if they are associated
through an EQUIVALENCE.

• Check for the use of uninitialized variables. Some programs assume
uninitialized variables have the value 0. This works with the –static
option, but without it, uninitialized values assume the value left on the
stack. When compiling with –mp, the program executes differently and
the stack contents are different. You should suspect this type of problem
when a program compiled with –mp and run on a single processor
gives a different result when it is compiled without –mp. One way to
track down a problem of this type is to compile suspected routines with
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–static. If an uninitialized variable is the problem, it should be fixed by
initializing the variable rather than by continuing to compile –static.

• Try compiling with the –C option for range checking on array
references. If arrays are indexed out of bounds, a memory location may
be referenced in unexpected ways. This is particularly true of adjacent
arrays in a COMMON block.

• If the analysis of the loop was incorrect, one or more arrays that are
SHARE may have data dependencies. This sort of error is seen only
when running multiprocessed code. When stepping through the code
in the debugger, the program executes correctly. In fact, this sort of error
often is seen only intermittently, with the program working correctly
most of the time.

• The most likely candidates for this error are arrays with complicated
subscripts. If the array subscripts are simply the index variables of a
DO loop, the analysis is probably correct. If the subscripts are more
involved, they are a good choice to examine first.

• If you suspect this type of error, as a final resort print out all the values
of all the subscripts on each iteration through the loop. Then use uniq()
(see the uniq(1) reference page) to look for duplicates. If duplicates are
found, then there is a data dependency.
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A. Run-Time Error Codes

The error codes listed on Table A-1 can be detected by the Fortran 90
run-time support. These codes are all in the range 100-199. In addition, the
run-time code can return IRIX error codes in the range of 1-99. IRIX error
codes are documented in the intro(2) reference page.

When the run-time library detects an error, the following things can occur:

• If the error is detected in an I/O statement that specifies an IOSTAT
variable, the code is stored in the variable.

• If the error is detected in an I/O statement that specifies an ERR label,
control passes to that label.

• When the error is not in an I/O statement, or when neither the IOSTAT
nor ERR clause is given, the error message is displayed on the standard
error file and the program terminates.

When the program is terminated by an error, a core file is produced if the
f77_dump_flag environment variable is defined and set to y. The core file can
be used with dbx to inspect the state of the program at termination.

PERROR and related procedures described in the perror(3f) reference page
are used to display error messages.

Note: Some error codes in Table A-1 are returned by the Fortran 77 run-time
libraries, but are not returned by Fortran 90. Such codes are marked with
(F77) at the end of the explanation.

In most cases these codes are related to I/O features that are not supported
by Fortran 90, such as indexed I/O. They are retained in Table A-1 because
you may find them coded in Fortran 77 source programs you are porting to
Fortran 90.
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Table A-1 Run-Time Error Messages

Number Message/Cause

100 error in format

Illegal characters in the FORMAT in the latest I/O statement.

101 out of space for I/O unit table

Out of virtual space that can be allocated for the I/O unit table.

102 formatted io not allowed

Cannot do formatted I/O on logical units opened for unformatted I/O.

103 unformatted io not allowed

Cannot do unformatted I/O on logical units opened for formatted I/O.

104 direct io not allowed

Cannot do direct I/O on sequential file.

105 sequential io not allowed

Cannot do sequential I/O on this file.

106 can’t backspace file

Cannot perform BACKSPACE/REWIND on file.

107 null file name

Filename specification in OPEN statement is null.

108 can’t stat file

Cannot get descriptive information about this file from file system.

109 file already connected

The specified filename has already been opened as a different logical
unit.

110 off end of record

Attempt to do I/O beyond the end of the record.

111 truncation failed in endfile

An error occurred while closing the file.

112 incomprehensible list input

Input  data for list-directed read contains invalid character for its data
type.
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113 out of free space

Cannot allocate virtual memory space on the system.

114 unit not connected

Attempt to do I/O on unit that has not been opened or cannot be
opened.

115 read unexpected character

Unexpected character encountered in formatted or directed read.

116 blank logical input field

Invalid character encountered for logical value.

117 bad variable type

Specified type for the namelist element is invalid. This error is most
likely caused by incompatible versions of the front end and the run-time
I/O library.

118 bad namelist name

The specified namelist name cannot be found in the input data file.

119 variable not in namelist

The namelist variable name in the input data file does not belong to the
specified namelist.

120 no end record

$END is not found at the end of the namelist input data file.

121 namelist subscript out of range

The array subscript of the character substring value in the input data file
exceeds the range for that array or character string.

122 negative repeat count

The repeat count in the input data file is less than or equal to zero.

123 illegal operation for unit

You cannot set your own buffer on direct unformatted files.

124 off beginning of record

Format edit descriptor causes positioning to go off the beginning of the
record.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause
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125 no * after repeat count

An asterisk (*) is expected after an integer repeat count.

126 'new' file exists

The file is opened as new but already exists.

127 can’t find 'old' file

The file is opened as old but does not exist.

130 illegal argument

Invalid value in the I/O control list.

131 duplicate key value on write

Cannot write a key that already exists. (F77)

132 indexed file not open

Cannot perform indexed I/O on an unopened file. (F77)

133 bad isam argument

The indexed I/O library function receives a bad argument because of a
corrupted index file or bad run-time I/O libraries. (F77)

134 bad key description

The key description is invalid. (F77)

135 too many open indexed files

Cannot have more than 32 open indexed files. (F77)

136 corrupted isam file

The indexed file format is not recognizable. This error is usually caused
by a corrupted file. (F77)

137 isam file not opened for exclusive access

Cannot obtain lock on the indexed file. (F77)

138 record locked

The record has already been locked by another process. (F77)

138 key already exists

The key specification in the OPEN statement has already been specified.
(F77)

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause
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140 cannot delete primary key

DELETE cannot be executed on a primary key. (F77)

141 beginning or end of file reached

The index for the specified key points beyond the length of the indexed
data file. This error is probably because of corrupted ISAM files or a bad
indexed I/O run-time library. (F77)

142 cannot find requested record

The requested key for indexed READ does not exist. (F77)

143 current record not defined

Cannot execute REWRITE, UNLOCK, or DELETE before doing a READ
to define the current record. (F77)

144 isam file is exclusively locked

The indexed file has been exclusively locked by another process. (F77)

145 filename too long

The filename exceeds 128 characters.

147 record too long

Indexed record is too long to read. (F77)

148 key structure does not match file structure

Mismatch between the key specifications in the OPEN statement and the
indexed file. (F77)

149 direct access on an indexed file not allowed

Cannot have direct-access I/O on an indexed file. (F77)

150 keyed access on a sequential file not allowed

Cannot use keyed access together with sequential organization. (F77)

151 keyed access on a relative file not allowed

Cannot use keyed access together with relative organization. (Note 1)

152 append access on an indexed file not allowed

Cannot use append access together with indexed organization. (F77)

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause
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153 must specify record length

A record length specification is required when opening a direct or keyed
access file.

154 key field value type does not match key type

The type of the given key value does not match the type specified in the
OPEN statement for that key. (F77)

155 character key field value length too long

The length of the character key value exceeds the length specification for
that key. (F77)

156 fixed record on sequential file not allowed

RECORDTYPE='fixed' cannot be used with a sequential file. (F77)

157 variable records allowed only on unformatted
sequential file

RECORDTYPE='variable' can be used only with an unformatted
sequential file. (F77)

158 stream records allowed only on formatted sequential
file

RECORDTYPE='stream_lf' can be used only with a formatted sequential
file. (F77)

159 maximum number of records in direct access file
exceeded

The specified record is bigger than the MAXREC= value used in the
OPEN statement.

160 attempt to write to a read-only file

User does not have write permission on the file.

161 must specify key descriptions

Must specify all the keys when opening an indexed file. (F77)

162 carriage control not allowed for unformatted units

CARRIAGECONTROL can be used only on a formatted file. (F77)

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause
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163 indexed files only

Indexed I/O can be done only on logical units that have been opened for
indexed (keyed) access. (F77)

164 cannot use on indexed file

Illegal I/O operation on an indexed (keyed) file. (F77)

165 cannot use on indexed or append file

Illegal I/O operation on an indexed (keyed) or append file. (F77)

167 invalid code in format specification

Unknown code is encountered in format specification.

168 invalid record number in direct access file

The specified record number is less than 1.

169 cannot have endfile record on non-sequential file

Cannot have an endfile on a direct- or keyed-access file.

170 cannot position within current file

Cannot perform fseek() on a file opened for sequential unformatted I/O.

171 cannot have sequential records on direct access file

Cannot do sequential formatted I/O on a file opened for direct access.

173 cannot read from stdout

Attempt to read from stdout (unit 6).

174 cannot write to stdin

Attempt to write to stdin (unit 0).

176 illegal specifier

The I/O control list contains an invalid value for one of the I/O
specifiers; for example, ACCESS='INDEXED'.

177 end-of-record condition occurs with PAD=NO

The iolist contains more items than the record can supply, and the
PAD=YES specifier was not given.

178 EOR= specifier requires ADVANCE=NO

An EOR label can be given only with nonadvancing sequential I/O.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause
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179 SIZE= specifier requires ADVANCE=NO

The number of characters read is only meaningful with nonadvancing
sequential I/O.

180 attempt to read from a writeonly file

User does not have read permission on the file.

181 direct unformatted io not allowed

Direct unformatted file cannot be used with this I/O operation.

182 cannot open a directory

The name specified in FILE= must be the name of a file, not a directory.

183 subscript out of bounds

The exit status returned when a program compiled with the –C option
has an array subscript that is out of range.

184 function not declared as varargs

Variable arguments used in a call to a subroutine not declared in a
$VARARGS directive (refer to the varargs(3f) reference page)

185 internal error

Internal run-time library error.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause
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B. Converting From Fortran 77

A correct, standard-conforming Fortran 77 program is also a correct,
standard-conforming Fortran 90 program. However, the Silicon Graphics,
Inc. (SGI) implementations of Fortran 77 permit some nonstandard features
that are not supported by Fortran 90.

This appendix lists the problems you may encounter when converting some
nonstandard Fortran 77 source features to Fortran 90. The following main
topics are covered:

• “Differences in Source Format” on page 188 covers the use of fixed-
versus free-form source and mixed-case letters in source files.

• “Differences in Data Declaration” on page 189 discusses syntax
differences in declaring literals, scalar variables, and structures.

• “Differences in Intrinsic Procedures” on page 196 discusses the
conversion of extended intrinsics, and the use of unsupported specific
names.

• “Differences in I/O Processing” on page 201 documents the many
special I/O features not supported in Fortran 90

Note: This appendix addresses conversion to Fortran 90. You do not need this
information when writing new Fortran 90 code. Also, since Fortran 77 object
modules can be linked with Fortran 90 object modules, it is always an option
to leave all of a program (or specific modules of it) in Fortran 77.

Tip: Refer to “Internet Resources for Fortran 90 Users” on page xxv; at least
one Fortran 77 to Fortran 90 source conversion program is available on the
network.
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Differences in Source Format

Fortran 77 supports two source formats, 72-column and 120-column. Both
forms are accepted by Fortran 90. Specify either the -col72 (or -fixedform)
option, or the -col120 option. If you specify neither, Fortran 90 expects any
source file with the suffix .f to have the -col72 format. (See “Specifying Source
File Format” on page 11.)

Fortran 90 supports free-form source input. Specify -freeform to force an
input file to be treated as free-form source. Fortran 90 assumes -freeform for
input files with the suffix .f90.

Since MIPSpro Fortran 90 supports only 8-bit ASCII characters (see
“Character Values and Literals” on page 37), there is no question of
overflowing the maximum source line length due to nondefault character
literals (section 3.3.1 in the MIPSpro Fortran 90 Handbook).

MIPSpro Fortran 90 extends the Fortran 90 standard by accepting up to 99
continuation lines.

No Fortran 77 compiler supports Fortran 90 style free-form source, so do not
use it for any module that must be backward-compatible.

Letter Case in Source Files

Letter case is ignored in Fortran source input. SGI Fortran compilers remove
the difference between lowercase and uppercase by converting all input text
(except for literal character constants) to lowercase before processing it. This
is the same in Fortran 90 and Fortran 77.

The only visible result of this policy is that the names of external procedures
are always in lowercase when they are recorded in the object file. Other
languages, such as C, permit mixed-case input, and therefore can have
mixed-case entry-point names in their object files. Mixed-case entry point
names cannot be linked with Fortran object files.
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Some (not all) SGI Fortran 77 compilers support a compile option -U,
specifying that input text should not be forced to lowercase. This has the
effect of allowing mixed-case external names to appear in object files. The -U
option is not supported by Fortran 90. It is not possible to link directly from
a Fortran 90 program to a procedure with a mixed-case name.

Differences in Data Declaration

There are a number of small differences in the syntax of data declaration.
Most can be converted by simple text changes.

Differences in Scalar Declarations

In Fortran 77, you can specify the precision of a numeric variable by
appending an asterisk and a size to the basic type; for example, REAL*16 or
LOGICAL*8.

In Fortran 90, the comparable way of specifying precision is by use of the
“kind” parameter in the declaration. However, the SGI implementation of
Fortran 90 does permit the use of the asterisk-length notation from
Fortran 77. In Example B-1, the declarations in each pair are equivalent.

Example B-1 Syntax of Numeric Precision

INTEGER (KIND=8) eight_byte_int
INTEGER*8 eight_byte_int
REAL (16) quad_real
REAL*16 quad_real

Note: The use of asterisk-length for numeric precision is nonportable, and
should not be used in new Fortran 90 code.

Asterisk-length syntax can readily be converted using a tool such as awk or
sed. The sed command file in Example B-2 converts asterisk-length
declarations to “kind” declarations.
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Example B-2 Program to Convert Asterisk Notation

s/INTEGER\*\([248]\)/integer (kind=\1)/
s/LOGICAL\*\([248]\)/logical (kind=\1)/
s/REAL\*\([48]\)/real (kind=\1)/
s/REAL\*16/real (kind=16)/
s/COMPLEX\*8/complex (kind=4)/
s/COMPLEX\*16/complex (kind=8)/
s/COMPLEX\*32/complex (kind=16)/

The use of “kind=” is optional. In programs where the keywords might have
different letter cases, the search patterns need to allow for mixed case, as in
Example B-3.

Example B-3 Conversion Allowing for Mixed-Case Keywords

 s/[Rr][Ee][Aa][Ll]\*\([48]\)/real(\1)/

Differences in the Syntax of Literals

Literal values are written differently in some cases.

Binary, Octal, and Hexadecimal Literals

Fortran 77 supports a variety of syntax forms when integer literal values are
expressed in bases other than decimal. Some of these are supported by
Fortran 90 and some are not, as shown in Table B-1.

Table B-1 Forms of Integer Literal Values

Number Base Example of Form Supported

2 (binary) B"00100111" Yes

8 (octal) O"33" Yes

16 (hexadecimal) X"1B", X"1b" No

16 (Hexadecimal) Z"1B", Z'1b' Yes

16 (Hexadecimal) $1B No
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Of these forms, the use of prefix dollar-sign for hexadecimal is very
common. In Fortran 90, this form causes a syntax error message
(“Unexpected symbol”). It is relatively simple to change this form of
constant to the supported form using a tool such as sed or perl. For example,
the sed command in Example B-4 converts hexadecimal literals.

Example B-4 Conversion of $-Form Literal to “Z” Form

sed 's/\$\([A-F0-9][A-F0-9]*\)/Z"\1"/g'

Conversion of the unsupported “X” form to the “Z” form is equally simple.

Floating-Point Literals

The Fortran 77 syntax for real and double-precision literal values—that is,
the use of exponent “E” to mean single-precision and “D” to mean
double-precision—is accepted by Fortran 90. Use of these literals is shown in
Example B-5.

Example B-5 Syntax for Precision of Floating-Point Literals

real (kind=4) r4
real (kind=8) r8
r4 = 1.665E-2
r8 = 2.468D12

Some SGI Fortran 77 compilers accept the use of exponent-letter “Q” to
mean a quad-precision floating-point constant. This usage is also accepted
by SGI Fortran 90. In Example B-6, the first assignment uses the Fortran 90
syntax of appending a kind-parameter to the constant, while the second uses
the Fortran 77 syntax of an exponent letter of “Q.” The two assignments are
effectively the same.

Example B-6 Equivalent Syntax for Quad-Precision Literals

real (kind=16) rp,rq
rp = 1.234567890123456789E7_16
rq = 1.234567890123456789Q7

Note: The “Q” exponent is a nonportable extension of Fortran 90. When
writing new programs, write literal values with a _16 suffix. “Q” notation
can be converted to standard form using sed, as shown in Example B-7.
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Example B-7 Conversion of Q-Exponent Literal to Suffix-16

sed 's/\([.0-9][.0-9]*\)[qQ]\([+-]*[0-9][0-9]*\)/\1e\2_16/g'

Character and Hollerith Literals

The syntax of character literal values is standard Fortran 90. Specific rules
are listed under “Character Values and Literals” on page 37. There is only
one difference from literal syntax in SGI Fortran 77: the backslash is not
supported as an escape character. The backslash in a character literal is
treated as a character.

Hollerith literals are not defined in the Fortran 90 standard. (Hollerith
literals were not part of the Fortran 77 standard, either). However, Hollerith
literals can be used with SGI Fortran 77 and Fortran 90. Example B-8 shows
the use of a Hollerith literal.

Example B-8 Hollerith Literal Use

integer (8) symbl
symbl = 8Hundefind

Note: Be aware that the use of a Hollerith literal in Fortran 90 is highly
nonportable. Hollerith literals may not be supported in future versions of
Fortran 90. Whenever possible, convert them to character literals stored in
character variables.

The use of the Hollerith edit descriptor in a FORMAT statement is a separate
issue. The Hollerith edit descriptor (nH) for FORMAT is defined in the
Fortran 90 standard as an obsolescent feature. The compiler issues a warning
when it processes a FORMAT statement containing a Hollerith edit code. In
contrast, the use of a Hollerith literal in an expression is not defined in the
standard at all, and the current compiler processes it without a message.

Differences in Pointer Data

SGI Fortran 77 supports the POINTER statement as a way of declaring two
associated names: a name for a pointer, and a name for the variable
addressed by the pointer. Whenever the program refers to the addressed
variable, the compiler inserts code to load the variable’s address from the
associated pointer variable.
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Only the pointer variable is defined as part of the program image. It can be
treated as an integer in expressions. It is usually assigned a value (an integer
that represents a memory address) from one of two sources:

• a value returned by the malloc() system function, pointing to a
dynamic allocation of memory

• an address returned by the LOC% function, pointing to another Fortran
variable

Fortran 90 supports dynamic allocation and pointer-based variables, but the
syntax for these features is completely different from that of Fortran 77. One
fundamental difference is that, in Fortran 90, there is only one name for an
pointer-based variable. This name normally stands for the addressed
variable. In the context of a special pointer-assignment statement, the name
stands for the pointer that addresses the variable.

There is no straightforward, source-level change you can make to convert a
program using POINTER statements to Fortran 90. One reason is that the
POINTER mechanism is used for two or more distinct purposes. In order to
convert a program, you must determine why it uses POINTER.

• Often the reason is simply to permit dynamic memory allocation and
reallocation of variables. In this case, you can rewrite the code to use
Fortran 90 allocatable variables. Pointers are not necessary; the
compiler generates code to allocate memory automatically.

For details on allocatable variables, see the Fortran 90 Handbook, sections
5.3.3 and 6.5.1.

• When the reason is to permit general addressing, in which one name
refers to different data objects at different times—for example, to
navigate through a binary tree or similar dynamic structure—then you
can rewrite the code to use the Fortran 90 POINTER data attribute and
pointer assignment.

For details on pointers in Fortran 90, see the Fortran 90 Handbook,
sections 5.4 and 7.5.3.

Occasionally the reason for POINTER use is to manipulate or interrogate
general memory addresses, or to do hardware-dependent system
programming. Such programs are best left in Fortran 77.
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Differences in Declaration of Structures

SGI Fortran 77 compilers accepted the nonstandard STRUCTURE, UNION,
and RECORD statements as a way of declaring structures composed of
heterogenous data fields. These statements are not supported by Fortran 90.
Most of the same purposes are served using Fortran 90 derived types.

Basic Structure Declarations

Example B-9 shows a typical structure declaration and its use in Fortran 77.

Example B-9 Fortran 77 Program Using a Structure

structure /weather/
integer*1 month /08/, day /10/, year /89/
character*20 clouds
real rainfall

end structure
record /weather/ latest
latest.clouds = 'overcast'
latest.rainfall = 3.12
print *, latest.clouds, latest.rainfall
end

A comparable Fortran 90 program is shown in Example B-10.

Example B-10 Fortran 90 Program Using a Structure

type weather
integer (1) :: month = 04, day = 18, year = 95
character (20) clouds
real rainfall

end type weather
type (weather) latest
latest = weather(04,18,95,'overcast',3.12)
print *, latest%clouds, latest%rainfall
end

The programs are fundamentally alike. Each declares a structure composed
of named fields, then defines and initializes a variable holding one instance
of the structure, and finally accesses the fields of the variable.
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Compare Example B-9 and Example B-10 and note the following syntactic
differences:

• The Fortran 90 structure opens with TYPE name instead of
STRUCTURE /name/.

• The structure closes with END TYPE name instead of END
STRUCTURE.

• The Fortran 90 syntax for initial field values is assignment with the
equals sign (the same syntax is used to give initial values to any
variable). The Fortran 77 syntax for initial field values is similar to the
DATA statement.

• The Fortran 90 definition of a structure variable opens with
TYPE (name) instead of RECORD /name/.

• Fortran 90 supports the use of a structure constructor to allow
assigning all fields of a structure in one statement.

• In Fortran 90, you access a field using structure%field instead of using
structure. field.

The syntactic differences could be converted using a tool such as awk or perl.

Equivalenced and Common Structures

There is an important semantic difference between Fortran 77 structures and
Fortran 90 structures. In Fortran 77, fields within a structure are always
placed in memory in the order they are declared. This is not necessarily true
in Fortran 90. By default, the compiler can choose to reorder the fields in
memory.

If you use the EQUIVALENCE or COMMON statement in order to set up a
storage association between the fields of a structure and other data, you
must specify the SEQUENCE statement within the structure declaration.
This forces the compiler to keep the fields in their declared order, in memory.
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Unions

SGI Fortran 77 compilers support the UNION statement as a way of
declaring multiple data types for fields within a structure. The declaration in
Example B-11 allows a field to be treated as either a COMPLEX or a pair of
REAL values.

Example B-11 Fortran 77 UNION Declaration

structure /cxre/
union

map
complex cx

end map
map

real re, im
end map

end union
end structure

The UNION statement is not supported by Fortran 90. If it is essential to
treat a field under different types at different times, you can set up a storage
association through the EQUIVALENCE statement.

Differences in Intrinsic Procedures

There are differences in the intrinsic procedures available in SGI Fortran 77
and in Fortran 90. The latter supports fewer specific intrinsic functions and
some Fortran 77 extended intrinsics need to be converted.

Differences in Intrinsic Functions

Both Fortran 77 and Fortran 90 support a set of intrinsic functions. Both
languages distinguish between generic functions and specific functions. A
generic function accept various data types as input. A specific function requires
arguments of specific types. In fact, the compiler converts a call on a generic
function into a call on the specific function that is appropriate for the type of
argument.
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In general, Fortran 90 provides a broader range of generic functions, but
supports fewer specific intrinsic functions than SGI Fortran 77. The
Fortran 90 standard deliberately defines few specific names.

Where a Fortran 77 program uses generic functions, no conversion is
needed. Where it uses specific functions by name, it may need to be changed.

Specific Intrinsic Functions for Data Type Conversion

SGI Fortran 77 has a large number of specific functions for data type
conversion. For example, the generic function INT returns the integer value
of its argument. However, there are also specific functions based on the type
of argument and the type of result required, for example JINT, KINT, IIDINT,
KIDINT, IIQINT, and so on.

Fortran 90 supports only the generic names for conversion functions, such as
INT, REAL, and CMPLX. However, each of these accepts an optional second
argument that specifies the desired result type.

For example, the Fortran 77 function IIQINT(r), which converts REAL(16) to
INTEGER(2), can be replaced by INT(r,KIND=2). The function QCMPLX(r,i),
which converts to quad-complex, can be replaced by CMPLX(r,i,KIND=16).

Calls to the specific data conversion functions of Fortran 77 must be
converted in this way, using generic functions with KIND parameters as
needed.

Specific Intrinsic Functions for Transcendentals

SGI Fortran 77 supports a number of specific intrinsic names that are used to
apply transcendental functions on arguments of particular data types. For
example, the CQSIN function returns the sine of a quad-precision complex
number.
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Fortran 90 supports the generic SIN function and only two specific names,
CSIN (complex) and DSIN (double precision). When you find one of the
unsupported specific names used, you must determine why it was used.

• If it was used only to be specific about the data type of the argument or
result, replace it with the generic name.

• If it is being passed as an argument to another function, you must either
leave the module in Fortran 77, or supply a Fortran 90 function of the
same name that performs that function.

Degree-Oriented Trigonometric Functions

SGI Fortran 77 supports a set of intrinsic functions to do trigonometric
functions in degree values instead of radian values; for example, DCOSD
returns the cosine as a double-precision value in degrees.

Fortran 90 does not supply these degree-oriented functions. If you find one
used, you must convert the program from using an intrinsic to using an
external function that does the same operation. Degree-oriented functions
may be found at some Internet sites (see “Internet Resources for Fortran 90
Users” on page xxv). Example B-12 displays a skeleton for a MODULE of
functions.

Example B-12 Skeleton of a Module of Trigonometric Functions

module degree_trig
real(16), parameter :: &

quadpi = 3.141592653589793238462643383279502884197Q0
real(16), parameter :: dgr_to_rad = (quadpi/180Q0)
intrinsic cos, sin, tan

contains
function sind(dgr_argument)
real(4) sind, dgr_argument

sind = sin(dgr_to_rad * dgr_argument)
end function

function cosd(dgr_argument)
real(4) cosd, dgr_argument

cosd = cos(dgr_to_rad * dgr_argument)
end function
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function tand(dgr_argument)
real(4) tand, dgr_argument

tand = tan(dgr_to_rad * dgr_argument)
end function

function dsind(dgr_argument)
real(8) dsind, dgr_argument

dsind = sin(dgr_to_rad * dgr_argument)
end function

function dcosd(dgr_argument)
real(8) dcosd, dgr_argument

dcosd = cos(dgr_to_rad * dgr_argument)
end function

function dtand(dgr_argument)
real(8) dtand, dgr_argument

dtand = tan(dgr_to_rad * dgr_argument)
end function

end ! module

Tip: Some programmers find it a pleasant exercise to write their own version
of CQSIN or DCOSD, but you can save time by using a version that is
already written. Refer to “Internet Resources for Fortran 90 Users” on
page xxv for pointers to available, public-domain software libraries.

Converting Extended Intrinsic Procedures

SGI Fortran 77 supports several nonstandard intrinsic subroutines and
functions. In Fortran 90, the purposes of most of these procedures are served
by standard intrinsic procedures. The correspondence is summarized in
Table B-2.

Table B-2 Corresponding Intrinsic Procedures

Fortran 77 Intrinsic Name Fortran 90 Intrinsic Name

DATE DATE_AND_TIME

ERRSNS None, see “Converting Calls to ERRSNS”

EXIT STOP statement; also see “Converting Calls to EXIT”
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Converting Calls to ERRSNS

The ERRSNS subroutine returns the last I/O error code and the associated
unit number. There is no direct conversion for this function. The last error
code alone can be retrieved in either of two ways:

• The ierrno() function (see the perror(3f) reference page) returns the most
recent error code from any operation.

• The INQUIRE statement with an IOSTAT= clause returns the error code
associated with a specified unit or file.

However, if the program depends on the ability to recall the unit number
along with the error code, you must revise its logic.

Converting Calls to EXIT

The EXIT function terminates execution. So does the STOP statement. The
difference between them is that CALL EXIT allows you to end the program
with a negative integer return code. STOP accepts only positive integers or
character strings.

There is no direct conversion for EXIT. However, a C function like the one
shown in Example B-13 can serve the same purpose.

Example B-13 Substitute for EXIT

extern void
exit_ (int *exitstatus)
{

f_exit();
exit(exitstatus ? (int)*exitstatus : 0);

}

IDATE DATE_AND_TIME

MVBITS MVBITS (same function, now standard)

RAN RANDOM_NUMBER and RANDOM_SEED

Table B-2 (continued) Corresponding Intrinsic Procedures

Fortran 77 Intrinsic Name Fortran 90 Intrinsic Name
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Converting Calls to RAN

The Fortran 77 subroutine RAN performs two purposes: it accepts a seed
value, and it returns an updated seed value which is also a pseudorandom
number. Fortran 90 separates these two purposes. You call RANDOM_SEED
to save, or to restart, a sequence of pseudorandom numbers. You call
RANDOM_NUMBER to retrieve one or more new values from the current
sequence. When porting a Fortran 77 program that uses RAN, analyze the
program logic to find the point, or points, at which it changes the seed value.
Convert these to calls on RANDOM_SEED.

The algorithm used by RANDOM_NUMBER is more robust than the one
used by RAN (see “Implementation of RANDOM_NUMBER” on page 45).

Differences in I/O Processing

The Fortran 77 run-time library supports several I/O features that are not
part of Fortran 90. The features are summarized, with possible work-around
schemes, in the topics that follow. In Table B-3 is a list of Fortran 77
keywords that indicate use of an unsupported I/O feature. When you find
one of these words in a Fortran 77 program, use the table to find the
discussion of the feature.

Table B-3 Keywords Indicating Use of Unsupported Features

Keyword or Statement Name Feature and Topic Reference

name .EQ. "UNKNOWN" “UNDEFINED Instead of UNKNOWN” on
page 210

-vms_endfile (compiler option) “VMS Endfile” on page 210

ACCEPT “ACCEPT Statement” on page 203

ACCESS="APPEND" “Open File for APPEND” on page 208

ACCESS="KEYED" “Key-Indexed (ISAM) Access” on page 205

ASSOCIATEVARIABLE=var “Getting the Number of the Next Record” on
page 205

CARRIAGECONTROL=type “Carriage Control” on page 203
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DECODE “Internal Files in Numeric Arrays” on page 205

DEFAULTFILE=fname “Default Filename Prefix” on page 203

DEFINE FILE “Open Direct File With DEFINE” on page 207

DELETE [UNIT=]unit “Key-Indexed (ISAM) Access” on page 205

DISP[OSE]=disposition “File Disposition” on page 204

ENCODE “Internal Files in Numeric Arrays” on page 205

FIND ([UNIT=]unit...) “Seeking a Position With FIND” on page 208

NML=groupname “Namelist Data Compatibility” on page 206

OPEN...FILE=numeric_var “Numeric Variable for FILE” on page 207

OPEN...FORM="BINARY" “Special File Formats” on page 209

OPEN...FORM="SYSTEM" “Special File Formats” on page 209

OPEN...KEY=(...) “Key-Indexed (ISAM) Access” on page 205

OPEN...MAXREC=n “Maximum Records in a Direct File” on page 206

OPEN...READONLY “Enforcing Read-Only Access” on page 204

OPEN...RECORDSIZE=n “RECORDSIZE Instead of RECL” on page 208

OPEN...SHARED “SYNC Mode Output” on page 209

OPEN...TYPE=statusvar “OPEN TYPE Instead of OPEN STATUS” on
page 208

ORGANIZATION= “Key-Indexed (ISAM) Access” on page 205

READ...KEY=key “Key-Indexed (ISAM) Access” on page 205

RECORDTYPE=rectype “Specifying the Record Type” on page 209

REWRITE “Key-Indexed (ISAM) Access” on page 205

TYPE fmt,iolist “TYPE Synonym for PRINT” on page 210

UNLOCK “Key-Indexed (ISAM) Access” on page 205

Table B-3 (continued) Keywords Indicating Use of Unsupported Features

Keyword or Statement Name Feature and Topic Reference
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ACCEPT Statement

The ACCEPT statement in Fortran 77 transfers data from the standard input
unit to the items specified by the input list. Replace it in Fortran 90 with a
READ from unit 5.

Carriage Control

(This topic amplifies the Fortran 90 Handbook topic 9.2.10.)

Carriage control is not supported in Fortran 90. Formatted output always
starts in column 1, and list-directed output always starts in column 2,
leaving a space character in column 1.

The Fortran 77 CARRIAGECONTROL clause can be used with OPEN to
specify the type of carriage control to be used with the file. It can be specified
with INQUIRE to find out the type of carriage control used by a file.

Since the clause is not supported, remove it from the OPEN statement. If the
value specified was NONE and this file uses only formatted output, or if
value specified was LIST and this file uses only list-directed output, no
further conversion is needed—the Fortran 90 output will be the same as in
Fortran 77.

Otherwise, you have to determine if the column-1 carriage control characters
are really required by the programs that use the output. If so, you have to
modify the WRITE and FORMAT statements used for output so as to
generate the needed column-1 data.

If the CARRIAGECONTROL clause appears on an INQUIRE statement,
remove it and replace it with an assignment of "UNKNOWN" to the
variable.

Default Filename Prefix

The DEFAULTFILE clause of Fortran 77 OPEN establishes a prefix string
that is used with the FILE clause to construct the full name of the file to be
opened. When STATUS="SCRATCH"is specified, the prefix string is used
with the UNIT number to construct a name for the temporary file.
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The DEFAULTFILE clause can also be used with INQUIRE to retrieve the
value given at OPEN.

This feature is not supported by Fortran 90. You have to revise the program
to construct the filename string using character expressions, and pass the full
string in the FILE clause. Store the prefix string in a global variable. If the
clause appears on an INQUIRE statement, replace it with an assignment
from the global variable.

Enforcing Read-Only Access

In Fortran 77, you specify that a file is to be read-only by writing the
READONLY clause in the OPEN statement.

The same purpose in Fortran 90 is achieved by writing ACCESS=READ in
the OPEN statement. This is a simple textual change.

File Disposition

Fortran 77 supports the use of the DISPOSE=disposition clause on the OPEN
statement. It also allows the use of DISPOSE=disposition clause on a CLOSE
statement to override the disposition of the file.

This clause is not supported by Fortran 90. The possible dispositions and
their conversions are as follows.

KEEP, SAVE Default disposition. Simply comment-out the clause.

PRINT Arrange for printing in some other way, for example
by calling the system() library function with an lp
command specifying the filename.

SUBMIT Arrange for execution in some other way, for example
by calling the system() library function with a
command string that pipes the file to sh.

PRINT/DELETE,
SUBMIT/DELETE

Not supported. Handle PRINT or SUBMIT as above,
and use the unlink() system function to delete the file.
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For more on system functions, see “Support for IRIX Kernel Functions” on
page 27. For details on the Fortran 90 OPEN statement, see the Fortran 90
Handbook section 9.5.

Getting the Number of the Next Record

When using direct access, the program sometimes needs to know the record
number at which the file is currently positioned. In Fortran 77 and in
Fortran 90, you can get this information with the INQUIRE NEXTREC=
clause.

In Fortran 77 you can use OPEN ASSOCIATEVARIABLE= to specify a
variable that is automatically updated with the next record number after
every access to the file. This feature is not supported in Fortran 90. You have
to delete the clause from OPEN, and ensure that the specified variable is
updated by INQUIRE before it is used.

Internal Files in Numeric Arrays

Fortran 77 permits storing internal files in numeric arrays, rather than in
character variables as is normal for internal files. This is done using the
DECODE and ENCODE statements instead of READ and WRITE.

This feature is not supported in Fortran 90. Recode the program to use
READ and WRITE (the statement parameters are almost the same) and
character variables.

Key-Indexed (ISAM) Access

SGI Fortran 77 supports key-indexed access to files. Key-index access is also
called indexed-sequential access, or ISAM. The sign that a file is used in this
way is the appearance of ACCESS="KEYED" in the OPEN statement.

Key-indexed access is not supported by Fortran 90. If this type of access is
essential to the application, it is probably best to not attempt a conversion to
Fortran 90.
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The DELETE statement is used only with key-indexed files. It deletes the
record last retrieved.

The following clauses of the INQUIRE statement are related to key-indexed
access and need to be changed:

Maximum Records in a Direct File

The Fortran 77 OPEN statement accepts the MAXREC= clause to specify the
maximum number of records in a direct-access file. This clause is not
supported by Fortran 90. Remove the clause. If the program relies on the
Fortran run-time library to detect creation of a record beyond the maximum
size, you have to revise the program to enforce the limit using program logic.

Namelist Data Compatibility

The form of a namelist data record as supported by MIPSpro Fortran 77 is:

{ $ | &} groupname item = value  [ , ...] [ / ] { $ | &}[ END]

In particular, the “/” terminator is used only when input is to terminate
early, and is never written by a namelist WRITE statement. Even when “/”
is present, the record must be terminated by a “$” or “&” after it.

The form of a namelist data record as defined for Fortran 90 is:

&groupname item = value  [ , ...] /

That is, the “/” terminator is required on all records; is always written; and
no terminating “&” is required. These two formats are not compatible, so
namelist data files prepared by or for a Fortran 77application are formally
incompatible with a Fortran 90 application.

ACCESS= Cannot return the value "KEYED"

KEYED= Not supported, must be removed

ORGANIZATION= Not supported, must be removed (ACCESS=
returns comparable information for the supported
access modes)
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Two extensions are supported in MIPSpro Fortran 90 to relieve this
incompatibility. An input namelist is allowed to start with either “&” or “$”
(recognition of “$” is an extension). An input namelist is allowed to end with
“/” or “$,” and characters between “$” and end of record are ignored
(recognition of “$” is an extension).

These extensions permit Fortran 90 to read namelist data prepared by a
Fortran 77 program. This allows you to convert a Fortran 77 program to
Fortran 90 and still read the data that was written by the Fortran 77 version.
A Fortran 77 program cannot read namelist data written by Fortran 90.

Note: Fortran 90 cannot read namelist data written by Fortran 90 when the
output contains CHARACTER data, unless the output was written with
delimiters (not the default behavior). This is the standard-defined behavior.

Numeric Variable for FILE

SGI Fortran 77 permits the use of a numeric variable as the operand of the
FILE= clause of the OPEN statement. (Such a numeric variable might be
initialized using a Hollerith literal; see “Character and Hollerith Literals” on
page 192.)

The Fortran 90 standard specifies that the FILE= clause must specify a
character expression.

Open Direct File With DEFINE

The DEFINE FILE statement is effectively the same as the OPEN statement
with the ACCESS="DIRECT" clause. Rewrite the DEFINE FILE to use OPEN
instead.
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Open File for APPEND

In Fortran 77 you use the OPEN clause ACCESS="APPEND" to open a file
for output at end. To do the same thing in Fortran 90, change

OPEN (...ACCESS="APPEND"...)

to read

OPEN (...ACCESS="SEQUENTIAL",POSITION="APPEND"...)

For details on the OPEN statement, refer to the Fortran 90 Handbook topic 9.6.

OPEN TYPE Instead of OPEN STATUS

The Fortran 77 OPEN statement permits the clause TYPE= as a synonym for
the STATUS= clause. For Fortran 90 use, rewrite TYPE= as STATUS=.

RECORDSIZE Instead of RECL

Fortran 77 permits the RECORDSIZE= clause of OPEN as a synonym for the
RECL= clause. Change the word RECORDSIZE to RECL for Fortran 90.

Seeking a Position With FIND

The Fortran 77 FIND statement sets the record position of a direct-access file
without transferring any data. It is not supported by Fortran 90. You can
achieve the same result using an unformatted, direct-access READ with an
empty iolist.
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Special File Formats

In SGI Fortran 77, the FORMAT clause of OPEN can specify two special
modes:

• FORMAT="BINARY" permits reading and writing binary data from
character variables.

• FORMAT="SYSTEM" allows input ignoring record boundaries.

These special modes are permitted by MIPSpro Fortran 90. However, neither
is supported by the Fortran 90 standard. Either type of file access can also be
achieved by  using the IRIX kernel functions read() and write() (see “Support
for IRIX Kernel Functions” on page 27).

Specifying the Record Type

Fortran 77 accepts the RECORDTYPE= clause on the OPEN and INQUIRE
statements. On OPEN, the only acceptable value is the default type for the
file based on the ACCESS and FORMAT clauses. The record type is returned
on INQUIRE.

The RECORDTYPE= clause is not supported by Fortran 90. The run-time
support expects the same default record types as Fortran 77 (files are
interchangeable between languages). Comment-out the clause on the OPEN
statement. If the clause appears on the INQUIRE statement, replace it with
an assignment of a constant string to the target variable.

SYNC Mode Output

The Fortran 77 OPEN statement permits the clause SHARED to request that
the file be written to disk as soon as possible. This clause is not supported by
the Fortran 90 standard.

You can remove the SHARED clause but get the same support using the
fcntl() library function (see “Support for IRIX Kernel Functions” on page 27)
to set the F_SYNC file descriptor flag.
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Appendix B: Converting From Fortran 77

TYPE Synonym for PRINT

In SGI Fortran 77, you can use the word TYPE as a synonym for the word
PRINT. This is not possibly in Fortran 90, where TYPE is the statement used
to declare a structure (see “Differences in Declaration of Structures” on
page 194). Replace TYPE with PRINT.

UNDEFINED Instead of UNKNOWN

Certain clauses of the Fortran 90 INQUIRE statement return the string
UNDEFINED in situations where Fortran 77 returned the string
UNKNOWN. This is true of the ACCESS, BLANK, and FORM queries (as
well as DELIM and POSITION, which will not appear in a Fortran 77
program).

If the Fortran 77 program inquires these values and then compares
.EQ. "UNKNOWN," it will always get a result of .FALSE.

Other INQUIRE clauses do return UNKNOWN as in Fortran 77: DIRECT,
FORMATTED, SEQUENTIAL, and UNFORMATTED.

VMS Endfile

Normally the end of a sequential file is defined by the IRIX file-size
information. All data in the file is part of the file. Under Fortran 77 you can
pass the -vms_endfile option to the compiler. This causes the run-time code
for formatted input to recognize a control-D character in the input stream as
an end of file mark.

Fortran 90 does not support this option. You can write a program in C or perl
to read a file and truncate it (using the system function ftruncate() or the perl
function truncate()) at the length preceding the first control-D. You can write
a Fortran 90 program to read a file and copy it, stopping the copy at the first
control-D (Fortran 90 does not have access to the ftruncate() system
function). Either of these methods can be used to clean up a file that uses the
VMS endfile convention, so that it can be read using Fortran 90 conventions.
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alias

A second identifier that accesses the same memory location as some other
identifier. In Fortran, you can explicitly create aliases using the
EQUIVALENCE statement and by use of the TARGET attribute and pointer
assignment. An alias also occurs when the same variable is passed to a
procedure in two or more argument positions.

assertion

In Fortran work, a specially-formatted comment line that describes the
source program to the compiler. For example, the line C*$* ASSERT NO
EQUIVALENCE HAZARD tells the compiler that the code in the following
loop never addresses the same memory location under two different,
equivalenced, identifiers. (Note that the general term assertion has several
other meanings in general data processing speech.)

assumed dependence

A dependence that the compiler assumes may exist, but about which it has no
information. An assumed dependence can prevent the compiler from
performing many kinds of optimization.

critical section

A portion of a parallel section that can be executed by only one process at a
time. You use critical sections to ensure that shared static variables are
updated in an orderly way.

data independence

When the value assigned to a variable within a loop does not depend on any
value calculated in a different iteration of the loop, the variable has data
independence. The compiler needs to verify data independence in order to
parallelize a loop.
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dependence

When the value of one variable depends on the value of another variable,
there is a dependence between them. The compiler locates and analyzes data
dependences in order to be able to optimize the program correctly.

directive

A specially-formatted comment line that directs the compiler to treat the
program in a particular way. For example the line C*$*IPA enables
interprocedural analysis (IPA) over the following code. See also assertion.

driver

In general, a driver is a program that controls or manages something, for
example a device driver. Speaking of programming languages, a driver is the
program that directs the steps of compilation and linking. The f90 program
is the compiler driver for a Fortran 90 compilation.

dynamically linked

Linked in name only, so that the executable file contains only the information
needed to locate the code of a procedure—the name of the DSO that contains
it and the name of the entry point. When the executable program is loaded,
the DSO is also loaded, and the linkage between them is fixed in memory
only.

external name

The name of a subroutine or function that is not defined in an object module,
but that is called from that module. External names are recorded as strings
in the object module, and can be displayed using the nm command.

generic function

An intrinsic function that can be called with arguments of various data
types; for example, SIN can be applied to any numeric type. In a CALL, the
compiler invokes the correct specific intrinsic function based on the type of
arguments used. A generic function’s name cannot be passed as an
argument because the compiler cannot determine which specific name to
pass. See specific function, intrinsic procedure.
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inlining

The process of replacing a reference to a function with a copy of the function
itself. This is done as an optimization, to remove the overhead of calling the
function; however it expands the size of the program, which can slow the
program down due to cache contention.

interprocedural analysis (IPA)

The process of inspecting the text of a function with respect to the code from
which it is called, in order to get information about the relationships
between the arguments and result of a function, and the variables used by
the function’s caller. This information can enable optimizations that are not
otherwise possible.

intrinsic procedure

A function or subroutine that is defined as part of the Fortran language, for
example SIN or LEN. Unlike language keywords, names of intrinsic
procedures are not reserved; they can be preempted by user procedures or
variables. See generic function, specific function.

loop interchange

To modify two or more nested loops exchanging the loop variables of an
inner and an outer loop, in order to remove a data dependence or to reduce the
stride of array indexing.

loop-invariant if

A Boolean expression, usually in an IF statement, that appears within a loop
of some kind yet always has the same value when evaluated because it does
not test any variables that are assigned within the loop. Such a loop and the
IF that contains it can be moved outside the loop, saving time.

main module

A program unit that is compiled with the expectation that program
execution will commence in that module. Only one main module can be
linked into any executable.

parallel optimization

An optimization in program logic that makes the program take better
advantage of multiple CPUs when they are available.
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parallel section

A passage of Fortran code that can be executed in parallel by multiple,
concurrent processes. A parallel section can be designated using PCF
directives. A single DO loop can be made into a parallel section using the
C$DOACROSS directive.

processor dependency

Any detail of compiler or run-time operation that is not defined by the
Fortran 90 language standard.

public name

The name of a subroutine or function that is defined in an object module and
that can be called from other, separately-compiled, modules. Public names
are recorded as strings in the object module, and can be displayed using the
nm command.

recurrence

A mathematical relationship in which the current value of an expression
depends on at least one prior value (Xt = f(Xt-1)). Loops that calculate
recurrences are difficult to parallelize.

reduction

A mathematical operation that produces a value as a function of a set of
values, for example, taking the sum of all elements of an array. When a
reduction is calculated in a loop, it can be difficult to parallelize the loop.

scalar optimization

An optimization that affects the use of scalar, that is, single, variables or the
use of a single CPU. Compare to parallel optimization, which affects the use of
multiple CPUs.

specific function

An intrinsic function that has specific requirements as to the data types of its
arguments and its result; for example, CSIN requires a COMPLEX
argument. See generic function, intrinsic procedure.

statically linked

Linked as a physical part of an executable file. The linkage between calls and
subprograms is completely fixed at link time. See dynamically linked.
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stride

The distance in memory units between array indexes in successive iterations
of a loop. The stride depends on which array index varies fastest, and the
increment for the index. A stride of 1 visits successive array elements, and
has the best performance in cache memory.

thread

An independently-scheduled point of execution. This term has many uses in
data processing, for example “POSIX Thread” is one standardized
programming interface for creating and controlling threads not yet
supported by IRIX. In Fortran 90 and IRIX, a thread is implemented by a
lightweight process created by the system call sproc().

work-sharing construct

A portion of a parallel section that you designate to be used in a particular
way by concurrent processes. All concurrent processes in the parallel section
synchronize at the end of the work-sharing construct.
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C$,  131
C*$* [NO] INLINE,  107
C*$* [NO] IPA,  107
C*$* ARCLIMIT,  103
C*$* ASSERT [NO] ARGUMENT ALIASING,  114
C*$* ASSERT [NO] BOUNDS VIOLATIONS,  115
C*$* ASSERT [NO] EQUIVALENCE HAZARD,  113
C*$* ASSERT NO RECURRENCE,  112
C*$* ASSERT RELATION,  111
C*$* EACH_INVARIANT_IF_GROWTH,  103
C*$* MAX_INVARIANT_IF_GROWTH,  103
C*$* NO ASSERTIONS,  108
C*$* OPTIMIZE,  105
C*$* ROUNDOFF,  105
C*$* SCALAROPTIMIZE,  106
cache,  149
C$CHUNK,  132
C data types,  50
CDIR$ NORECURRENCE,  112
C$DOACROSS,  124-133

CHUNK clause,  127
examples,  130
IF clause,  125
LASTLOCAL clause,  125
LOCAL clause,  125
MP_SCHEDTYPE clause,  127
REDUCTION clause,  126

Symbols

%LOC,  64
%VAL,  64

A

aliasing,  77, 113
argument alias,  114

ALLOCATE
size limit,  19
status after,  41

array constructor,  41
array subscript bounds,  77
assembly language,  71
assertions,  108-117

about dependences,  110
C*$* ASSERT [NO] ARGUMENT ALIASING,  114
C*$* ASSERT [NO] BOUNDS VIOLATIONS,  115
C*$* ASSERT [NO] EQUIVALENCE HAZARD,

113
C*$* ASSERT NO RECURRENCE,  112
C*$* ASSERT RELATION,  111
recognizing,  100
supported,  108

assumed dependences,  110
assumed-shape array,  38, 52
assumptions about program,  77

Index
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Index

SHARE clause,  125
syntax,  124

C$MP_SCHEDTYPE,  132
command arguments at runtime,  18
COMMON,  158, 178

alignment of,  86
sharing with C,  61

core file,  23
C$PAR,  164
C$PAR BARRIER,  171
C$PAR CRITICAL SECTION,  170
C$PAR PARALLEL DO,  166
C$PAR PDO,  166
C$PAR PSECTION,  167
C$PAR SINGLE PROCESS,  169
cpp use,  3
Cray assertions

CDIR$ NORECURRENCE,  112
critical section,  170
CVD$ NODEPCHK,  112

D

data type
C versus Fortran,  50

data types,  36
dbx,  23
DEALLOCATE

status after,  41
debugging

driver options,  15
deferred-shape array,  38, 52
dependences

assertions about,  110
assumed and known,  110
multiprocessing,  134-146

directives,  100-108
and driver options,  101
C$,  131
C*$* [NO] INLINE,  107
C*$* [NO] IPA,  107
C*$* ARCLIMIT,  103
C*$* EACH_INVARIANT_IF_GROWTH,  103
C*$* MAX_INVARIANT_IF_GROWTH,  103
C*$* NO ASSERTIONS,  108
C*$* OPTIMIZE,  105
C*$* ROUNDOFF,  105
C*$* SCALAROPTIMIZE,  106
C$CHUNK,  132
C$MP_SCHEDTYPE,  132
format,  102
recognizing,  101
supported,  102
used for parallelization,  122
see also PCF directives

driver
control of phases,  17
debugging options,  15
input files,  12
linking,  4-9
macro preprocessor,  11
macro processing,  3
memory alignment,  14
memory allocation,  14
optimization levels,  15
output files,  13
overview of,  2
source format,  11
target features,  13

driver option,  10-18
-A,  11
-alignn, 14
-bytereclen,  11, 42
-C,  178
-c,  13, 17
-col120,  11
-col72,  11
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-d8 and d16,  14
-dlines (not supported),  11
-Dname,  11
-E,  13, 17
-extend_source,  11
-fe,  17
-fixedform,  11
-freeform,  11
-G,  14
-g,  15
-GCM,  15
-I,  12
-in, 14
-keep,  13
-L,  4, 12
-l,  12
-LIST,  13
-listing,  13
-M,  11, 17
-mp,  15, 173, 177
-nocpp,  11, 17
-noextend_source,  11
-nostdinc,  12
-nostdlib,  12
-o,  13
-objectlist,  12
-On, 15
-OPT,  15
-P,  13, 17
-p,  15
-pfa,  15, 17
-pfakeep,  15
-pfalist,  15
-r8 and -r8,  14
-S,  13, 17
-sopt,  15, 17
-static,  14, 133, 174, 177, 178
-SWP,  15
-TARG,  13
-TENV,  13
-U (not supported),  48

-Uname,  11
-Wc,  17
-WK,  15, 73-88, 89-97

-aggressive,  86
–arclimit,  86
-assert,  115
-assume,  77
–assume,  113
–cacheline,  87
–cachesize,  87
-directives,  100
–directives,  101
–dpregisters,  87
-each_invariant_if_growth,  79
–fpregisters,  87
-fuse,  79
-inline,  91
-inline_and_copy,  94
–inline_create,  93
-inline_depth,  97
–inline_from_files,  91
–inline_from_libraries,  92
-inline_looplevel,  95
-inline_man,  97
-ipa,  91
–ipa_create,  93
–ipa_from_files,  91
–ipa_from_libraries,  92
–ipa_looplevel,  95
-listoptions,  79
-max_invariant_if_growth,  79
-nodirectives,  108
-optimize,  75
-recursion,  78
-roundoff,  81
-scalaropt,  75, 79
–setassociativity,  87

-xgot,  14
-Yc,  17

dynamic shared object (DSO),  5, 7-9
versus MODULE,  7
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E

edit code "S",  43
environment variable

CHUNK,  158
f77_dump_flag,  23
MP_BLOCKTIME,  156
MP_SCHEDTYPE,  158
MP_SET_NUMTHREADS,  156
MP_SETUP,  156
MP_SUGNUMTHD,  157
MP_SUGNUMTHD_MAX,  157
MP_SUGNUMTHD_MIN,  157
TRAP_FPE,  23

EQUIVALENCE,  113, 177
error handling,  23
execution environment,  18-23

command arguments,  18
connecting files,  21
error handling,  23
floating point exceptions,  23
memory size limits,  19
multiprocessing,  153
predefined filenames,  22
running parallel programs,  173
status after I/O,  42

extcentry,  68
external name,  47-50

’$’ not supported,  48
treatment of,  48

F

f77_dump_flag,  23
file

default action,  22
filename syntax,  22
position when opened,  22
preconnected,  21

filename,  22
fine-inlining

fine-tuning,  107
floating point exceptions,  23
Fortran 90

conformance to standard,  25-26
driver. See driver
implementation-dependent features,  35-46

G

getarg,  18, 43
global option table,  14
global variable,  39

H

handle_sigfpes,  23

I

iargc,  18
implementation-dependent features,  35-46
INCLUDE,  38
inlining,  89

creating libraries,  93
default options,  90
restrictions,  97
source of functions,  91
specifying functions,  91

interprocedural analysis (IPA),  89
default options,  90
fine-tuning,  107
restrictions,  97
specifying procedures,  91
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intrinsic functions
in parallel loop,  133
vector versions,  84

intrinsic procedure
nonstandard,  40

invariant IF floating,  79
I/O

default record length,  42
I/O status,  42
IOSTAT values,  42
IRIX kernel functions,  27-35

K

known dependences,  110

L

libfpe,  23
library functions,  27-35
limit command,  20
linking,  4-9

default libraries,  5
dynamic,  5
library location,  4
multiple-unit program,  6
object file sources,  4
static,  5
with DSO,  8

listing of optimization,  79
local variable

allocation,  40
in parallel loop,  137
size limits,  19

loop fusion,  79
loop interchange,  146
loop transformation by C$DOACROSS,  160

M

main module,  6
makefiles,  70
makefile with mkf2c,  70
matrix multiply,  149
memory

global variable,  39
local variable,  40
management transformation,  87
maximum allocatable,  19
module global variable,  39
size limits,  19
swap storage limit,  21

memory alignment,  14
memory allocation,  14
mkf2c,  64-70

character arguments,  66
extcentry,  68
parameter correspondence,  65
restrictions,  68

module
allocation of global variable,  39
compared to DSO,  7
implementation,  43
intrinsic,  35
standard,  35

mp_barrier,  158
mp_block,  153
mp_blocktime,  154
mp_create,  154
mp_destroy,  154
mp_my_threadnum,  155
mp_numthreads,  155
mp_set_numthreads,  154, 155
mp_setlock,  158
mp_setup,  154, 155
mp_unblock,  153
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mp_unsetlock,  158

N

name of external routine,  48
nonstandard intrinsics,  40
numeric precision,  36

O

object file,  4
optimization

controlling internal table size,  86
controlling with directives,  106
control of assumptions,  77
dead code elimination,  75
dependences,  110
driver options,  15
floating invariant IF,  79
inlining,  89-98
IPA,  89-98
listing level,  79
loop fusion,  79
memory management,  87
number of registers,  87
roundoff control,  81
scalar,  73-88, 106

level,  75
specifying cache size,  87

P

Parallel Computing Forum (PCF),  122
parallelization,  120-172

and -static,  174
cache effects,  149-153
critical section,  170

debugging,  176-178
dynamic scheduling,  129
effect of dependences,  134
efficiency of,  172
execution,  173-175
implementation,  160-162
interleaved scheduling,  129, 151
local common blocks,  158
matrix multiply,  149
of intrinsic functions,  133
of procedure calls,  133
of simple loops,  123-133
overview,  120
parallel region,  164
parallel sections,  167
PCF directives for,  162
profiling,  175-176
runtime control,  153-160
scheduling modes,  127
sproc compatibility,  159
work quantum of,  146-148

parallel region,  164
parameters, passing,  53
PCF directives,  122, 162-172

C$DOACROSS,  124
C$PAR,  164
C$PAR BARRIER,  171
C$PAR CRITICAL SECTION,  170
C$PAR PARALLEL DO,  166
C$PAR PDO,  166
C$PAR PSECTION,  167
C$PAR SINGLE PROCESS,  169
efficiency of,  172
parallel region,  164
parallel sections,  167
summary,  163
work-sharing directives,  165

profiling,  15
public name,  47-50
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R

random number generation,  45
RECL= specifier,  42
RECURSIVE,  44
roundoff,  81
runtime environment. See execution environment

S

SAVE attribute,  39
stack

size limits,  19
statement function

array references in,  45
subprogram parameters,  53
SYS$ERROR,  22
SYS$INPUT,  22
SYS$OUTPUT,  22

U

unit number
preconnected,  21

V

VAST directives
CVD$ NODEPCHK,  112

vector intrinsics,  84

W

wrapper
made by mkf2c,  64
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