
IRIS Performer™ C++
Reference Pages

Document Number 007-2782-001

IRIS Performer™ C++ Reference Pages
Document Number 007-2782-001

CONTRIBUTORS

Written by Sharon Clay, Michael Garland, Brad Grantham, Don Hatch, Jim Helman,
Michael Jones, T. Murali, John Rohlf, Allan Schaffer, Christopher Tanner,
and Jenny Zhao

Production by Derrald Vogt
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© Copyright 1995, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

IRIS, ImageVision Library, Open GL, Silicon Graphics and the Silicon Graphics logo are
registered trademarks of Silicon Graphics, Inc. CHALLENGE, Extreme Graphics, Galileo Video,
ImageVision, Impressario, Indigo2, Indigo Magic, Indy Video, InPerson, IRIS Annotator, IRIS
Digital Media, IRIS InSight, IRIS POWER C, IRIS Showcase, MediaMail, Mindshare, Open
Inventor, Power Fortran Accelerator, RapidApp, RealityEngine, and XFS are trademarks of
Silicon Graphics, Inc.

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

NAME
Performer − Overview of IRIS Performer and summary of the C++ Language Bindings: libpr, libpf,
libpfdu, libpfdb, libpfui, and libpfutil.

DESCRIPTION
Welcome to the IRIS Performer application development environment.

IRIS Performer provides a comprehensive programming interface (with ANSI C and C++ bindings) for
creating real-time visual simulation and other interactive graphics applications. IRIS Performer 2.0 sup-
ports both the IRIS Graphics Library (IRIS GL) and the industry standard OpenGL graphics library; these
libraries combine with the IRIX operating system and REACT extensions to form the foundation of a
powerful suite of tools and features for creating real-time visual simulation applications on Silicon
Graphics systems.

IRIS Performer is an integral part of the Onyx/RealityEngine and Indigo2/Impact visual simulation sys-
tems and provides interfaces to the advanced features of RealityEngine class graphics. IRIS Performer is
compatible with all SGI graphics platforms and attains maximum performance on each. IRIS Performer
provides an extensible basis for creating real-time 3D graphics applications in the fields of visual simula-
tion, entertainment, virtual reality, broadcast video, and computer aided design. IRIS Performer is the
flexible, intuitive, toolkit-based solution for developers who want to optimize performance on Silicon
Graphics systems.

Take a Test Drive
If you are new to IRIS Performer, the best way to start learning about it is to go for a test drive. The
Performer-based sample application perfly is installed in the /usr/sbin directory. To start perfly, all that
you need to do is type

perfly esprit.flt

Type "man pfiXformer" for details on how to drive, fly, or tumble; and rerun perfly with the command
line option "-help" for a full list of features. Type "?" while running perfly to print a list of keyboard com-
mand sequences to the shell window. The source code for this program is in
/usr/share/Performer/src/sample/perfly.

IRIS Performer Overview
IRIS Performer consists of two main libraries, libpf and libpr, and four associated libraries, libpfdu,
libpfdb, libpfui, and libpfutil.

The basis of IRIS Performer is the performance rendering library libpr, a low level library providing high
speed rendering functions based on pfGeoSets, efficient graphics state control using pfGeoStates, and
other application-neutral functions. Layered above libpr is libpf, a real-time visual simulation environ-
ment providing a high-performance multi-processing database rendering system that takes best

iii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

advantage of IRIS symmetric multiprocessing CPU hardware. The database utility library libpfdu pro-
vides powerful functions for defining both geometric and appearance attributes of three dimensional
objects, encourages sharing of state and materials, and generates efficient triangle strips from indepen-
dent polygonal input. The database library libpfdb uses the facilities of libpfdu, libpf, and libpr to
import database files in many popular industry standard database formats. These loaders also serve as a
guide to developers creating new database importers. libpfui contains the user interface, and input
management facilities common to many interactive applications. Completing the suite of libraries is
libpfutil, the IRIS Performer utility library. It provides a collection of important convenience routines
implementing such diverse tasks as smoke effects, MultiChannel Option support, graphical user interface
tools, input event collection and handling, and various traversal functions.

In addition to these SGI-developed tools, IRIS Performer also includes sample code, databases, games,
and movies contributed by the Friends of Performer: companies and individuals with services of general
interest to the IRIS Performer community.

Program Structure

Most IRIS Performer application programs have a common general structure. The following steps are
typically involved in preparing for a real-time simulation:

1. Initialize IRIS Performer with pfInit.

2. Specify number of graphics pipelines with pfMultipipe, choose the multiprocessing
configuration by calling pfMultiprocess, and specify the hardware mode with
pfHyperpipe if needed.

3. Initiate the chosen multiprocessing mode by calling pfConfig.

4. Initialize the frame rate with pfFrameRate and set the frame-extend policy with pfPhase.

5. Create, configure, and open windows with new pfPipeWindow,
pfPipeWindow::setFBConfigAttrs, and pfPipeWindow::open, as required.

6. Create and configure display channels with new pfChannel, pfChannel::setTravFunc,
pfChannel::setFOV, and pfChannel::setScene as required.

Once the application has created a graphical rendering environment as shown above, the remaining task
is to iterate through a main simulation loop once per frame.

7. Compute dynamics, update model matrices, etc.

8. Delay until the next frame time: pfSync

iv

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

9. Perform latency critical viewpoint updates.

10. Draw a frame by calling pfFrame.

In many applications the viewpoint will be set in step 7 and both step 8 and step 9 are not required. The
more general case is shown since it is typical in head-tracked and other cases where low-latency applica-
tions with last-minute position input must be used.

The libpr Performance Rendering Library
Libpr consists of many low-level hardware oriented facilities generally required for real-time and other
performance-oriented graphics applications. These features include

High-speed rendering functions using the innovative pfGeoSet.

Efficient graphics state management and mode control based on the pfGeoState.

Display lists suitable for rendering between multiple processes.

An extensive collection of fast linear algebra and math routines.

Intersection computation and detection services.

A colortable mechanism for rapid switching of database appearance.

Asynchronous file I/O system for real-time file operations.

Memory allocation oriented to shared memory and mutual exclusion.

High speed clock functions that hide the complexities of hardware clocks.

GeoSets are collections of drawable geometry which group same-type graphics primitives (e.g. triangles
or quads) into one data object. The GeoSet contains no geometry itself, only pointers to data arrays and
index arrays. Geometry arrays may be indexed or non-indexed (i.e. stored in order) depending upon
application requirements. Because all the primitives in a GeoSet are of the same type and have the same
attributes, rendering of most databases is performed at maximum hardware speed. There are many
GeoSet rendering methods, one for each combination of geometry and attribute specification. However,
in IRIS Performer, all GeoSet rendering is performed through a single render dispatching routine,
pfGeoSet::draw.

GeoStates provide graphics state definitions (e.g. texture or material) for GeoSets. When used in conjunc-
tion with Performer state management functions, GeoSets can be rendered in a prescribed way without
concern for the inherited modes of the graphics pipeline. GeoSets may share GeoStates. Less-used

v

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

machine modes are not supported.

State Management and Mode Control. IRIS Performer provides functions that bundle together graphics
library state control functions such as lighting, materials, texture, and transparency. They have two pur-
poses: to track state and to allow the creation of display lists that can be rendered later. The application
program can set states in three ways: globally, locally (via GeoState), and directly. State changes made
using direct graphics library calls are not "known" to the IRIS Performer state tracking mechanisms, and
thus defeat IRIS Performer state management. However, functions exist to push state, pop state, and get
the current state so proper intermixing of direct graphics library and IRIS Performer functions can be
achieved.

Display Lists are supported in IRIS Performer. These are not typical graphics library display lists, but
rather simple token and data mechanisms that do not cache geometry or state data and are designed to
allow efficient multiprocessing. These display lists use IRIS Performer state and rendering commands.
They also support function callbacks to allow application programs to perform any required special pro-
cessing during display list rendering.

Windows for IRIS GL, IRIS GL mixed model (GLX), and OpenGL applications can be configured, created
and managed with the pfWindow routines.

Math Support is provided by an extensive set of point, segment, vector, plane, matrix, cylinder, sphere
and frustum functions.

Intersection and collision detection functions are provided to test for the intersection of line segments
with cylinders, spheres, boxes, planes, and geometry. Intersection functions for spheres, cylinders, and
frusta are also provided.

ColorTables are supported by allowing GeoSet color indexes to refer to common tables of RGBA color
information. Color tables are global and may be of any size. Any number of color tables may exist at one
time and they can be activated at any time. The active color table may be switched in real-time without
performance impact.

Asynchronous File I/O is provided by a simple non-blocking file access method. This is provided to
allow applications to retrieve file data during real-time operation.

Memory Allocation is supported with routines to allocate memory from process heap storage, shared
memory arenas, and datapool memory. Shared arenas must be used when multiple processes need to
access data. The arena is created by the application program. Datapools allow applications to create
shared arenas visible to any process where allocations can be locked for easy mutual exclusion on a per
allocation basis.

High Speed Clock support is based on a high speed clock access routine that reports elapsed time in
seconds as a double precision floating point number to highest machine resolution.

vi

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

Statistics are maintained by IRIS Performer on the geometry that is drawn, state changes, transforma-
tions, and most internal operations. These statistics can used for application tuning and form the basis for
IRIS Performer’s automatic system load management.

The libpf Visual Simulation Library
libpf is a high level library built on libpr that is architected and implemented to meet the specific needs of
real-time graphics software. Applications developed with libpf are able to provide smooth motion
through elaborate scenes at programmable frame rates, all with very little code development. libpf pro-
vides

Hierarchical scene graph processing and operators.

Transparent multiprocessing for parallel simulation, culling and drawing.

Graphics load measurement and frame rate management.

Level of detail selection with smooth fade and rotational invariance.

Rapid culling to the viewing frustum through hierarchical bounding volumes.

Multiprocessed intersection detection and reporting.

Dynamic coordinate systems for highly interactive graphics.

Multibuffering of changes to the scene graph for simple multiprocessing.

Multiprocessing

libpf provides a pipelined multiprocessing model for implementing visual simulation applications. The
application, visibility culling and drawing tasks can all run in separate processes. The simulation process
updates the scene, the cull process traverses the scene checking for visibility and generates display lists
which are then rendered by the drawing process. libpf multibuffering capabilities allow each process to
have copies of the scene graph and the user data appropriate to its target frame time.

The simulation, culling, and drawing for a graphics pipeline may be combined into one, two or three
processes to allow an application to be tailored to different hardware and expected CPU demand in each
process. For example, culling and drawing are normally done by separate processes in order to obtain
maximum graphics performance, but if an application is simulation bound, it may wish to combine both
cull and draw into a single process.

Statistics are maintained for each IRIS Performer process - application, cull and draw. These statistics can

vii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

be displayed in a channel, printed, and queried using the pfFrameStats routines.

Graphics Pipes, Windows, and Channels

In addition to the functionality it derives from libpr, libpf supports multiple channels per window, mul-
tiple windows per graphics pipe, grouping of channels to form video walls, and frame synchronization
between multiple graphics pipes. libpf maintains a graphics stress value for each channel and uses it to
attempt to maintain a fixed frame rate by manipulating levels-of-detail (LODs). Like many graphics
libraries, libpf assumes a coordinate system with +Z up, +X to the right and +Y into the screen.

Database

libpf supports a general database hierarchy which consists of the following node types:
pfNode General node (base class)
pfScene Top level node.
pfGroup Node with multiple children.
pfSCS Static coordinate system.
pfDCS Dynamic coordinate system.
pfLayer Layer or decal node.
pfLOD Level of detail node.
pfSwitch Switch node.
pfSequence Sequential animation node.
pfGeode Fundamental geometry node.
pfBillboard Special tracking leaf node.
pfLightPoint One or more emissive light points.
pfLightSource Definition of a graphics hardware light.
pfPartition Special culling acceleration node.
pfText 2D and 3D text geometry.
pfMorph Geometry morphing node.

Each of these is derived from pfNode and any function which requires a pfNode* as an argument can
accept any of the above types. Similarly pfSCS, pfDCS, pfLOD, pfSequence and pfSwitch are derived
from pfGroup and can be used in any function which takes a pfGroup* as an argument.

Nodes can be assembled into a directed graph to represent a scene with its modeling hierarchy.
Geometry and graphics state information is contained in pfGeoStates and pfGeoSets which are attached
to pfGeodes.

Intersection inquiries are made via groups of line segments which can be tested against a subgraph of the
scene. Masks and callbacks can be specified to allow evaluation of line-of-sight visibility, collisions, and
terrain intersections. libpf also provides earth-sky and weather functions for modeling fog, haze and
other atmospheric effects.

viii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

The libpfdu Database Utility Library
libpfdu provides helpful functions for constructing optimized IRIS Performer data structures and scene
graphs. It is used by most of the database loaders in libpfdb to take external file formats containing 3D
geometry and graphics state and load them into IRIS Performer optimized run-time data structures. Such
utilities often prove very useful; most modeling tools and file formats represent their data in structures
that correspond to the way users model data, but such data structures are often mutually exclusive with
effective and efficient IRIS Performer run-time structures.

libpfdu contains many utilities, including DSO support for database loaders and their modes, file path
support, and so on, but the heart of libpfdu is the IRIS Performer database builder and geometry builder.
The builders are tools that allow users to input or output a collection of geometry and graphics state in
immediate mode.

Users send geometric primitives one at a time, each with its corresponding graphics state, to the builder.
When the builder has received all the data, the user simply requests optimized IRIS Performer data struc-
tures which can then be used as a part of a scene graph. The builder hashes geometry into different ‘bins’
based on the geometry’s attribute binding types and associated graphics state. It also keeps track of
graphics state elements (textures, materials, light models, fog, and so on) and shares state elements when-
ever possible. Finally, the builder creates pfGeoSets that contain triangle meshes created by running the
original geometry through the libpfdu triangle-meshing utility.

To go along with each pfGeoSet, the builder creates a pfGeoState (IRIS Performer’s encapsulated state
primitive). The builder generates pfGeoStates that share as many attributes as possible with other pfGeo-
States in the scene graph.

Having created these primitives (pfGeoSets and pfGeoStates) the builder will place them in a leaf node
(pfGeode), and optionally create a spatial hierarchy by running the new database through a spatial
breakup utility function which is also contained in libpfdu.

Note that the builder also allows the user to extend the notion of a graphics state by registering callback
functionality through builder API and then treating this state or functionality like any other IRIS Per-
former state or mode (although such uses of the builder are slightly more complicated). In short, libpfdu
is a collection of utilities that effectively act as a data funnel where users enter flattened 3D graphics infor-
mation and are given in return fully functional and optimized IRIS Performer run-time structures.

The libpfui User Interface Library
The libpfui library provides building blocks for writing manipulation components for user interfaces.
This library provides both C and C++ interfaces. Provided are separate components for motion control (-
pfiInputCoordXform), collision detection between the viewer and objects in the scene (pfiCollide), and
picking of objects in the scene based on current mouse coordinates (pfiPick). The pfiInputCoordXform
utilities update transformation matrices that can be used to drive motion in an application. The actual
mapping of user events is orthogonal to these motion models and can be done using the input collection

ix

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

utilities in libpfutil, or directly with custom application code. The pfiXformer is a re-implementation of
the old pfuXformer based on these components and combines several different kinds of motion control in
one complex component. The pfiXformer also provides mapping of user input events, such as mouse and
keyboard, to motion controls which is described in the pfiXformer reference page. Examples of how to
use these utilities can be found in

/usr/share/Performer/src/pguide/libpfui/

The libpfutil Utility Library
The libpfutil library contains a large number of miscellaneous functions that provide support for the fol-
lowing important tasks.

Processor control enables the user to specify which CPU a particular Performer process runs on and to
devote a particular processor to a given process.

Multiprocess rendezvous lets master and slave processes synchronize in a multiprocessing environment.

GLX mixed model routines are provided for compatibility with previous versions of IRIS Performer.
Current development should be based on the pfWindow and pfPipeWindow routines that provide a sin-
gle API for managing IRIS GL, IRIS GL mixed model, and OpenGL windows.

GL and X input handling is handled by an exhaustive set of commands that operate on compressed,
space-efficient queues of events.

Cursor control is provided to easily manipulate the cursors associated with each window managed by
IRIS Performer.

X fonts are supported so that they can be used to draw text in IRIS Performer windows. The main task of
these functions is to simplify the use of X fonts and present a high-level interface to the user.

Graphical User Interfaces (GUIs) are made easily accessible to the user through a set of functions that
provide simple means to create a GUI, set up widgets, manipulate them, set user-defined functions to
control their behavior and do other common tasks.

Scene graph traversal routines provide for different, highly-customizable traversal mechanisms for the
IRIS Performer scene graph.

MultiChannel Option (MCO) is supported on RealityEngine graphics systems by a set of functions that
generically initialize channels for using MCO.

Path following mechanisms allow the user to follow a pre-defined path in a walkthrough application.

x

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

Functions to create paths are also provided.

Various draw styles like haloed lines and wireframe images are supported as a demonstration of the uses
of multi-pass rendering.

Other utilities supported are for timer control to track time in real-time independently of the frame-rate,
managing hash tables, a simple geometric simplification scheme for generating very simple level-of-
detail representations of the scene graph, texture loading and texture animation, random number gen-
eration, flybox control, smoke and fire simulation and converting light point states into textures.

The libpfdb Database Library
libpfdb is a collection of independent libraries (one for each supported file format) that read or write a
particular scene description file format. These loaders are implemented using the IRIX Dynamic Shared
Object facility and are demand loaded as needed.

The loaders in libpfdb have been developed by Silicon Graphics, by modeling tool vendors, and by Per-
former customers. Many are provided in source form as part of this IRIS Performer distribution. Use
these loaders as templates to write custom loaders for whatever formats you require in your applications.
The different kinds of file formats supported by IRIS Performer are listed below

3ds AutoDesk 3DStudio binary data
bin Minor SGI format used by powerflip
bpoly Side Effects Software PRISMS binary
byu Brigham Young University CAD/FEA data
dwb Coryphaeus Software Designer’s Workbench
dxf AutoDesk AutoCAD ASCII format
flt11 MultiGen public domain Flight v11 format
flt14 MultiGen OpenFlight v14 format
gds McDonnell-Douglas GDS things data
gfo Minor SGI format (radiosity output)
im Minor SGI format (IRIS Performer example)
irtp AAI/Graphicon Interactive Real-Time PHIGS
iv SGI OpenInventor / Silicon Studio Keystone
lsa Lightscape Technologies radiosity (ASCII)
lsb Lightscape Technologies radiosity (binary)
m University of Washington mesh data
medit Medit Productions medit modeling tool
nff Eric Haines’ ray tracing test data format
obj Wavefront Technologies data format

xi

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

phd Minor SGI format (polyhedra)
poly Side Effects Software PRISMS ASCII data
pts University of Washington point data
ptu Minor SGI format (IRIS Performer example)
s1k US ARMY SIMNET databases (Texas Instruments)
sgf US NAVY standard graphics format
sgo Minor SGI format
spf US NAVY simple polygon format
sponge Sierpinski sponge 3D fractal generator
star Yale University compact star chart data
stla 3D Structures Stereolithography (ASCII)
stlb 3D Structures Stereolithography (binary)
sv Format of John Kichury’s i3dm modeler
tri University of Minnesota Geometry Center data
unc University of North Carolina data

Source code for many of these loaders is provided with IRIS Performer. Loader source code is located in
and below the directory

/usr/share/Performer/src/libpfdb

While most loaders do in fact "load" data from files, scene graphs can also be generated procedurally.
The sponge loader is an example of such automatic generation; it builds a model of the Menger (Sierpin-
ski) sponge, without requiring an input file. To see the sponge run perfly specify the number of recur-
sions (0, 1, 2, ...) as the filename. For example

perfly 2.sponge

Learning More
Once you’ve seen IRIS Performer in action, you will want to learn more about it. The IRIS Performer Pro-
gramming Guide and the IRIS Performer Release Notes are the primary sources of information, but the
following overview will give you a head start in your learning process.

IRIS Performer Sample Code

The IRIS Performer sample code can be found in

/usr/share/Performer/src/pguide - small examples

and

xii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

/usr/share/Performer/src/sample - sample applications

and its subdirectories. The "apps" subdirectory contains the various flying demos like perfly and the Per-
former town demo. The "pguide" subdirectory has further subdirectories for each IRIS Performer library.
Each of these directories has example and sample programs that highlight the features of the correspond-
ing library.

IRIS Performer Documentation

In addition to the reference pages on IRIS Performer, an on-line Programming Guide is also provided. To
read this, run Insight and click on the Performer Programming Guide button.

IRIS Performer World Wide Web Home Page

Silicon Surf, the Silicon Graphics World Wide Web Home Page, contains an archive of IRIS Performer-
related technical and promotional material in the Extreme Tech section. The information from the IRIS Per-
former FTP site and mailing list is also accessible via the WWW.

Explore Silicon Surf using the URL

http://www.sgi.com/

or go directly to the IRIS Performer information with the URL

http://www.sgi.com/Technology/Performer.html

IRIS Performer INTERNET FTP Site

An archive of IRIS Performer-related material is available via anonymous FTP from Silicon Graphics. The
FTP address is

ftp://sgigate.sgi.com/pub/Performer

Current contents of the IRIS Performer FTP site include

README Overview file

FAQ The IRIS Performer FAQ

xiii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

INFO-PERFORMER Information about the IRIS Performer mailing list

src/ Sample source code and miscellaneous patches

docs/ IRIS Performer documents including SIGGRAPH ’94 paper

selected-topics/ Directory of info, Q&A, etc. from mailing list

monthly-archives/ Raw monthly archives of the mailing list

CortaillodCentre/ Goodies from SGI’s Cortaillod Office

RealityCentre/ Goodies from SGI’s RealityCentre in the UK

IRIS Performer Electronic Mailing List

The IRIS Performer mailing list is a resource for developers who are using IRIS Performer to maximize
the performance of their graphics applications on Silicon Graphics hardware. The info-performer list is
intended to be an unmoderated, free-form discussion of IRIS Performer with issues both technical and
non-technical; and to provide feedback to Silicon Graphics about the product. Much like the
comp.sys.sgi.* newsgroups, it is not an official support channel but is monitored by the IRIS Performer
development team, so it’s an excellent source of early information about upcoming events and product
features, as well as a venue for asking questions and having them answered.

To subscribe to the info-performer mailing list, send email to

info-performer-request@sgi.com

Once your request is processed you will receive submission and posting instructions, some guidelines,
and a current copy of the Performer Frequently-Asked-Questions (FAQ) list.

The mailing list has become rather large and carries several hundred messages per month. Mailing list
archives are available in the Performer FTP area (see above) in

ftp://sgigate.sgi.com/pub/Performer/monthly-archives/

IRIS Performer Frequently Asked Questions

Silicon Graphics maintains a publicly accessible directory of questions that developers often ask about
IRIS Performer, along with answers to those questions. Each question-and-answer pair is provided in a
file of its own, named by topic. To obtain any of these files, use anonymous FTP to connect to
sgigate.sgi.com; then cd to the directory

xiv

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

/pub/Performer/selected-topics

and use ls to see a list of available topics. Alternatively, use a World Wide Web browser to look at

ftp://sgigate.sgi.com/pub/Performer/selected-topics

The Friends of Performer
A number of leading companies in the visual simulation, database modeling, game authoring, and, vir-
tual reality marketplaces produce tools and products that are based on and work with IRIS Performer.
Several of these companies have provided samples of their work for your use and enjoyment. These
software gifts are in the friends component of the IRIS Performer distribution, and are installed in the
directory

/usr/share/Performer/friends

Check out the gifts and the products that these companies offer.

IRIS Performer Application Programming Interface
The IRIS Performer application programming interface (API) has been designed by following a consistent
set of naming principles that are outlined below. Following that review is a complete listing of the API
grouped by topic for your use as both a quick reference and as an API directory.

Each of the libpf, libpr, libpfdu, libpfdb, libpfui, and libpfutil functions also has a complete reference
page description available via the IRIX man and xman commands. Refer to these reference pages for a
thorough discussion of the functions and data types, features and limitations, performance and resource
implications, and sample code showing how these functions are used in practice.

IRIS Performer Software Conventions
All the IRIS Performer commands have intuitive names that describe what they do. These mnemonic
names make it easy for you to learn and remember the commands. The names may look a little strange to
you if you’re unfamiliar with this type of convention because they use a mixture of upper and lowercase
letters. Naming conventions provide for consistency and uniqueness, both for routines and for symbolic
tokens. Following consistent naming practices in the software that you develop will make it easier for
you and others on your team to understand and debug your code. Naming conventions for IRIS Per-
former are as follows:

xv

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

All class, command and token names, associated with libpf or libpr are preceded by the letters pf, denot-
ing the IRIS Performer library. Member functions do not have the pf prefix since the class name provides
sufficient scope resolution. Functions from the other libraries also affix an identifying letter suffix (d, i, or
u) to the pf prefix for scope resolution purposes.

Library Prefix Exampleiii
libpf pf pfMultiprocess
libpr pf pfGetCurDList
libpfdu pfd pfdNewGeom
libpfdb pfd pfdLoadFile_medit
libpfui pfi pfiResetXformerPosition
libpfutil pfu pfuDownloadTexListc

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

Command and type names are mixed-case, while token names are uppercase. For example, pfTexture is
a type name and PFTEX_SHARPEN is a token name. Underscores are not used in function names except
in the libpfdb libraries, where the underscore serves to separate the common loader name (pfdLoad)
from the file type extension (medit in the example above).

In type names, the part following the pf is usually spelled out in full, as is the case with pfTexture, but in
some cases a shortened form of the word is used. For example, pfDispList is the name of the display-list
type.

Much of IRIS Performer’s interface involves setting parameters and retrieving parameter values. For the
sake of brevity, the word Set is omitted from function names, so that instead of pfSetMtlColor,
pfMtlColor is the name of the routine used for setting the color of a pfMaterial. Get, however, is not
omitted from the names of routines that get information, such as pfGetMtlColor. C++ member function
names do include both "get" and "set".

Routine names are constructed by appending a type name to an operation name. The operation name
always precedes the type name. In this case, the operation name is unabbreviated and the type name is
abbreviated. For example, the name of the routine that applies a pfTexture is pfApplyTex.

Compound type names are abbreviated by the first initial of the first word and the entire second word.
For example, to draw a display list, which is type pfDispList, use pfDrawDList.

Symbolic token names incorporate another abbreviation, usually shorter, of the type name. For example

pfTexture tokens begin with PFTEX_.

pfDispList tokens begin with PFDL_.

This convention ensures that tokens for a particular type have their own name space.

xvi

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

Other tokens and identifiers follow the conventions of ANSI C and C++ wherein a valid identifier consists
of upper and lower-case alphabetic characters, digits, and underscores, and the first character is not a
digit.

LIBPF
Initialization

pfInit initializes all internal IRIS Performer data structures while pfExit cleans up before returning con-
trol to the application. The other functions provide support for multiprocessed execution. This involves
configuring IRIS Performer for multiple processes and threads and multiple and multiplexed (hyper)
pipes.

int pfInit(void);
void pfExit(void);
int pfMultipipe(int numPipes);
int pfGetMultipipe(void);
int pfHyperpipe(int numHyperPipes);
int pfGetHyperpipe(pfPipe *pipe);
int pfMultiprocess(int mpMode);
int pfGetMultiprocess(void);
int pfMultithread(int pipe, uint stage, int nprocs);
int pfGetMultithread(int pipe, uint stage);
int pfConfig(void);
pid_t pfGetPID(int pipe, uint stage);
uint pfGetStage(pid_t pid, int *pipe);
void pfStageConfigFunc(int pipe, uint stage, pfStageFuncType configFunc);
pfStageFuncType pfGetStageConfigFunc(int pipe, uint stage);
int pfConfigStage(int pipe, uint stage);

Frame Control
IRIS Performer is designed to run at a fixed frame rate. pfFrame, pfSync and associated functions set a
frame rate the application should run at, initiate each new frame of IRIS Performer processing and syn-
chronize the application process with the specified frame rate.

pfApp, pfCull, pfDraw and pfDBase trigger the default IRIS Performer processing for each stage of the
graphics pipeline. User-defined callbacks can be specified for each of these stages using the pf*Func func-
tions. Data can be allocated for each stage and also passed down the different stages of the pipeline.

The other functions in this set manipulate IRIS Performer memory (pfMemory) and its associated refer-
ence counts.

xvii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfAppFrame(void);
int pfSync(void);
int pfFrame(void);
void pfApp(void);
void pfCull(void);
void pfDraw(void);
void pfDrawBin(int bin);
void pfIsectFunc(pfIsectFuncType func);
pfIsectFuncType pfGetIsectFunc(void);
void* pfAllocIsectData(int bytes);
void* pfGetIsectData(void);
void pfPassIsectData(void);
void pfDBase(void);
void pfDBaseFunc(pfDBaseFuncType func);
pfDBaseFuncType

pfGetDBaseFunc(void);
void* pfAllocDBaseData(int bytes);
void* pfGetDBaseData(void);
void pfPassDBaseData(void);
void pfPhase(int phase);
int pfGetPhase(void);
void pfVideoRate(float vrate);
float pfGetVideoRate(void);
float pfFrameRate(float rate);
float pfGetFrameRate(void);
int pfFieldRate(int fields);
int pfGetFieldRate(void);
int pfGetFrameCount(void);
double pfGetFrameTimeStamp(void);
void pfFrameTimeStamp(double t);
int pfGetId(void *mem);
int pfAsyncDelete(void *mem);
int pfCopy(void *dst, void *src);

pfPipe Functions
A pfPipe is a software rendering pipeline which renders one or more pfChannels into one or more
pfPipeWindows. Typically one pfPipe is created for each hardware graphics pipeline.

pfPipe* pfGetPipe(int pipeNum);
int pfInitPipe(pfPipe *pipe, pfPipeFuncType configFunc);

xviii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

pfPipe C++ API
These functions create and manipulate pfPipes. Control can be exercised over the hardware screen used
by the pfPipe and the way a pfPipe swaps color buffers at the end of each frame.

pfType* pfPipe::getClassType();
void pfPipe::setSwapFunc(pfPipeSwapFuncType func);
pfPipeSwapFuncType pfPipe::getSwapFunc()const;
void pfPipe::getSize(int *xs, int *ys)const;
void pfPipe::setScreen(int scr);
int pfPipe::getScreen()const;
void pfPipe::setWSConnectionName(const char *name);
const char* pfPipe::getWSConnectionName()const;
pfChannel* pfPipe::getChan(int i)const;
int pfPipe::getNumChans()const;
pfPipeWindow* pfPipe::getPWin(int i)const;
int pfPipe::getNumPWins()const;
int pfPipe::getHyperId()const;
int pfPipe::movePWin(int where, pfPipeWindow *pw);
pfBuffer* pfGetCurBuffer(void);

pfBuffer C++ API
The pfBuffer data structure logically encompasses libpf objects such as pfNodes. Newly created objects
are automatically "attached" to the current pfBuffer specified by pfBuffer::select. Later, any objects
created in buf may be merged into the main IRIS Performer processing stream with pfBuffer::merge. In
conjunction with a forked DBASE process (see pfMultiprocess and pfDBaseFunc), the pfBuffer mechan-
ism supports asynchronous parallel creation and deletion of database objects. This is the foundation of a
real-time database paging system.

new pfBuffer();
void pfBuffer::setScope(pfObject *obj, int scope);
int pfBuffer::getScope(pfObject *obj);
void pfBuffer::merge();
int pfBuffer::unrefDelete(void *mem);
int pfBuffer::checkDelete(void *mem);
int pfBuffer::insert(void *parent, int index, void *child);
int pfBuffer::remove(void *parent, void *child);
int pfBuffer::add(void *parent, void *child);
int pfBuffer::replace(void *parent, void *oldChild, void *newChild);
void pfBuffer::select();
void pfInitGfx(void);

xix

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

pfPipeWindow C++ API
A pfPipeWindow creates a window on the screen managed by a given pfPipe. Programs render to a
pfPipeWindow by attaching a pfChannel of that pfPipe to the pfPipeWindow. Various ways of control-
ling the behavior of pfPipeWindows are provided including specifying their position and size on the
screen, specifying user-specified callbacks to configure them in the DRAW process, controlling lists of
pfWindows that can draw into a singe pfPipewindow, and manipulating pfChannels assigned to the
pfPipeWindows.

new pfPipeWindow(pfPipe *p);
pfType* pfPipeWindow::getClassType();
void pfPipeWindow::setName(const char *name);
const char* pfPipeWindow::getName();
void pfPipeWindow::setWSConnectionName(const char *name);
const char* pfPipeWindow::getWSConnectionName();
void pfPipeWindow::setMode(int mode, int val);
int pfPipeWindow::getMode(int mode);
void pfPipeWindow::setWinType(uint type);
uint pfPipeWindow::getWinType();
pfState* pfPipeWindow::getCurState();
void pfPipeWindow::setAspect(int x, int y);
void pfPipeWindow::getAspect(int *x, int *y);
void pfPipeWindow::setOriginSize(int xo, int yo, int xs, int ys);
void pfPipeWindow::setOrigin(int xo, int yo);
void pfPipeWindow::getOrigin(int *xo, int *yo);
void pfPipeWindow::setSize(int xs, int ys);
void pfPipeWindow::getSize(int *xs, int *ys);
void pfPipeWindow::setFullScreen();
void pfPipeWindow::getCurOriginSize(int *xo, int *yo, int *xs, int *ys);
void pfPipeWindow::getCurScreenOriginSize(int *xo, int *yo, int *xs, int *ys);
void pfPipeWindow::setOverlayWin(pfWindow *ow);
pfWindow* pfPipeWindow::getOverlayWin();
void pfPipeWindow::setStatsWin(pfWindow *sw);
pfWindow* pfPipeWindow::getStatsWin();
void pfPipeWindow::setScreen(int screen);
int pfPipeWindow::getScreen();
void pfPipeWindow::setShare(int mode);
uint pfPipeWindow::getShare();
void pfPipeWindow::setWSWindow(pfWSConnection dsp, pfWSWindow wsw);
Window pfPipeWindow::getWSWindow();
void pfPipeWindow::setWSDrawable(pfWSConnection dsp, pfWSDrawable gxw);

xx

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

pfWSDrawable pfPipeWindow::getWSDrawable();
pfWSDrawable pfPipeWindow::getCurWSDrawable();
void pfPipeWindow::setFBConfigData(void *data);
void* pfPipeWindow::getFBConfigData();
void pfPipeWindow::setFBConfigAttrs(int *attr);
int* pfPipeWindow::getFBConfigAttrs();
void pfPipeWindow::setFBConfig(XVisualInfo *vis);
XVisualInfo* pfPipeWindow::getFBConfig();
void pfPipeWindow::setFBConfigId(int vId);
int pfPipeWindow::getFBConfigId();
void pfPipeWindow::setIndex(int index);
int pfPipeWindow::getIndex();
pfWindow* pfPipeWindow::getSelect();
void pfPipeWindow::setGLCxt(pfGLContext gc);
pfGLContext pfPipeWindow::getGLCxt();
void pfPipeWindow::setWinList(pfList *wl);
pfList* pfPipeWindow::getWinList()const;
int pfPipeWindow::attachWin(pfWindow *w1);
int pfPipeWindow::detachWin(pfWindow *w1);
int pfPipeWindow::attach(pfPipeWindow *pw1);
int pfPipeWindow::detach(pfPipeWindow *pw1);
pfWindow* pfPipeWindow::select();
void pfPipeWindow::swapBuffers();
pfFBConfig pfPipeWindow::chooseFBConfig(int *attr);
int pfPipeWindow::isOpen();
int pfPipeWindow::query(int which, int *dst);
int pfPipeWindow::mQuery(int *which, int *dst);
pfPipe* pfPipeWindow::getPipe();
int pfPipeWindow::getPipeIndex()const;
void pfPipeWindow::setConfigFunc(pfPWinFuncType func);
pfPWinFuncType pfPipeWindow::getConfigFunc();
int pfPipeWindow::getChanIndex(pfChannel *chan);
void pfPipeWindow::config();
void pfPipeWindow::open();
void pfPipeWindow::close();
void pfPipeWindow::closeGL();
int pfPipeWindow::removeChan(pfChannel *chan);
void pfPipeWindow::addChan(pfChannel *chan);
void pfPipeWindow::insertChan(int where, pfChannel *chan);
int pfPipeWindow::moveChan(int where, pfChannel *chan);

xxi

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

pfChannel* pfPipeWindow::getChan(int which);
int pfPipeWindow::getNumChans()const;
void pfNodePickSetup(pfNode* node);

pfChannel C++ API
A pfChannel’s primary function is to define a viewing frustum which is used both for viewing and for
culling. A pfChannel can be associated with a pfPipe with new pfChannel. All aspects of the
pfChannel’s viewing frustum, field of view (FOV), aspect ratio, view point and viewing direction can be
modified. A custom culling volume for the pfChannel can be set (pfChannel::setCullPtope).

Different queries can be made about the pfChannel (pfChannel::get*) and user-defined traversal func-
tions and mode can be set (pfChannel::set*). Functions are provided to control IRIS Performer’s level-
of-detail (LOD) behavior by specifying view position, field-of-view, and viewport pixel size (-
pfChannel::setLOD* and pfChannel::getLOD*). pfChannel::setStress can be used to specify when the
system is at stress so that the LOD behavior is suitably modified.

The pfScene and the pfEarthSky that the pfChannel culls and draws are set using pfChannel::setScene
and pfChannel::setESky, respectively. The pfChannel’s pfGeoState and pfGeoStateTable can also be
specified. Screen to world-space ray intersections on a pfChannel’s scene can be performed using
pfChannel::pick and related functions.

IRIS Performer can also sort the database into "bins" which are rendered in a user-specified order. In
addition, geometry within a bin may be sorted by graphics state like texture or by range for front-to-back
or back-to-front rendering. Functions are provided to achieve this behavior (pfChannel::setBinSort and
friends).

new pfChannel(pfPipe *p);
pfType* pfChannel::getClassType();
int pfChannel::getFrustType()const;
void pfChannel::setAspect(int which, float xyaspect);
float pfChannel::getAspect();
void pfChannel::getFOV(float *fovH, float *fovV)const;
void pfChannel::setNearFar(float n, float f);
void pfChannel::getNearFar(float *n, float *f)const;
void pfChannel::getNear(pfVec3& ll, pfVec3& lr, pfVec3& ul, pfVec3& ur)const;
void pfChannel::getFar(pfVec3& ll, pfVec3& lr, pfVec3& ul, pfVec3& ur)const;
void pfChannel::getPtope(pfPolytope *dst)const;
int pfChannel::getEye(pfVec3& eye)const;
void pfChannel::makePersp(float l, float r, float b, float t);
void pfChannel::makeOrtho(float l, float r, float b, float t);

xxii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfChannel::makeSimple(float fov);
void pfChannel::orthoXform(pfFrustum *fr, const pfMatrix& mat);
int pfChannel::contains(const pfVec3& pt)const;
int pfChannel::contains(const pfSphere *sphere)const;
int pfChannel::contains(const pfBox *box)const;
int pfChannel::contains(const pfCylinder *cyl)const;
void pfChannel::apply();
pfPipe* pfChannel::getPipe()const;
pfPipeWindow* pfChannel::getPWin();
int pfChannel::getPWinIndex();
void pfChannel::setFOV(float fovH, float fovV);
void pfChannel::setViewport(float l, float r, float b, float t);
void pfChannel::getViewport(float *l, float *r, float *b, float *t)const;
void pfChannel::getOrigin(int *xo, int *yo)const;
void pfChannel::getSize(int *xs, int *ys)const;
void pfChannel::setShare(uint mask);
uint pfChannel::getShare()const;
void pfChannel::setAutoAspect(int which);
int pfChannel::getAutoAspect()const;
void pfChannel::getBaseFrust(pfFrustum *frust)const;
void pfChannel::setViewOffsets(pfVec3& xyz, pfVec3& hpr);
void pfChannel::getViewOffsets(pfVec3& xyz, pfVec3& hpr)const;
void pfChannel::setView(pfVec3& vp, pfVec3& vd);
void pfChannel::getView(pfVec3& vp, pfVec3& vd);
void pfChannel::setViewMat(pfMatrix& mat);
void pfChannel::getViewMat(pfMatrix& mat)const;
void pfChannel::getOffsetViewMat(pfMatrix& mat)const;
void pfChannel::setCullPtope(const pfPolytope *vol);
void pfChannel::getCullPtope(pfPolytope *vol)const;
void* pfChannel::allocChanData(int size);
void pfChannel::setChanData(void *data, size_t size);
void* pfChannel::getChanData()const;
size_t pfChannel::getChanDataSize()const;
void pfChannel::setTravFunc(int trav, pfChanFuncType func);
pfChanFuncType pfChannel::getTravFunc(int trav)const;
void pfChannel::setTravMode(int trav, int mode);
int pfChannel::getTravMode(int trav)const;
void pfChannel::setTravMask(int which, uint mask);
uint pfChannel::getTravMask(int which)const;
void pfChannel::setStressFilter(float frac, float low, float high, float s, float max);

xxiii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfChannel::getStressFilter(float *frac, float *low, float *high, float *s, float *max)const;
void pfChannel::setStress(float stress);
float pfChannel::getStress()const;
float pfChannel::getLoad()const;
void pfChannel::setScene(pfScene *s);
pfScene* pfChannel::getScene()const;
void pfChannel::setESky(pfEarthSky *es);
pfEarthSky* pfChannel::getESky()const;
void pfChannel::setGState(pfGeoState *gstate);
pfGeoState* pfChannel::getGState()const;
void pfChannel::setGStateTable(pfList *list);
pfList* pfChannel::getGStateTable()const;
void pfChannel::setLODAttr(int attr, float val);
float pfChannel::getLODAttr(int attr)const;
void pfChannel::setLODState(const pfLODState *ls);
void pfChannel::getLODState(pfLODState *ls)const;
void pfChannel::setLODStateList(pfList *stateList);
pfList* pfChannel::getLODStateList()const;
int pfChannel::setStatsMode(uint mode, uint val);
pfFrameStats* pfChannel::getFStats();
void pfChannel::setBinSort(int bin, int sortType, int *sortOrders);
int pfChannel::getBinSort(int bin, int *sortOrders);
void pfChannel::setBinOrder(int bin, int order);
int pfChannel::getBinOrder(int bin)const;
int pfChannel::attach(pfChannel *chan1);
int pfChannel::detach(pfChannel *chan1);
void pfChannel::passChanData();
int pfChannel::pick(int mode, float px, float py, float radius, pfHit **pickList[]);
void pfChannel::clear();
void pfChannel::drawStats();
int pfChannel::isect(pfNode *node, pfSegSet *segSet, pfHit **hits[], pfMatrix *ma);

pfEarthSky C++ API
These functions provide a means to clear the frame and Z-buffer, draw a sky, horizon and ground plane,
and to implement various weather effects like fog and clouds.

new pfEarthSky();
pfType* pfEarthSky::getClassType();
void pfEarthSky::setMode(int mode, int val);
int pfEarthSky::getMode(int mode);

xxiv

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfEarthSky::setAttr(int mode, float val);
float pfEarthSky::getAttr(int mode);
void pfEarthSky::setColor(int which, float r, float g, float b, float a);
void pfEarthSky::getColor(int which, float *r, float *g, float *b, float *a);
void pfEarthSky::setFog(int which, pfFog *fog);
pfFog* pfEarthSky::getFog(int which);

pfNode C++ API
A pfNode is an abstract type which cannot be explicitly created. The pfNode routines operate on the
common aspects of other IRIS Performer node types which are derived from pfNode. IRIS Performer
provides four major traversals of the scene graph: ISECT, APP, CULL, and DRAW. These functions (-
pfNode::setTrav*) can be used to set which nodes are traversed, the functions to be invoked during the
traversal, when the traversal is initiated and what data is provided to the traversal.

pfType* pfNode::getClassType();
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
pfNode* pfNode::find(const char *name, pfType *type);
int pfNode::setName(const char *name);
const char* pfNode::getName()const;
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre,

pfNodeTravFuncType *post)const;
void pfNode::setTravData(int which, void *data);
void* pfNode::getTravData(int which)const;
uint pfNode::getTravMask(int which)const;
void pfNode::setBufferMode(int mode, int val);
int pfNode::getBufferMode(int mode)const;
pfGroup* pfNode::getParent(int i)const;
int pfNode::getNumParents()const;
void pfNode::setBound(pfSphere *sph, int mode);
int pfNode::getBound(pfSphere *sph);
pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
int pfNode::flatten(int mode);
pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);

pfGroup C++ API
A pfGroup is the internal node type of the IRIS Performer hierarchy and is derived from pfNode. The
functions allow children to be added to and deleted from a pfGroup node and queries to be made about a
pfGroup node’s children.

xxv

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

new pfGroup();
pfType* pfGroup::getClassType();
int pfGroup::addChild(pfNode *child);
int pfGroup::insertChild(int index, pfNode *child);
int pfGroup::removeChild(pfNode *child);
int pfGroup::replaceChild(pfNode *oldn, pfNode *newn);
int pfGroup::bufferAddChild(pfNode *child);
int pfGroup::bufferRemoveChild(pfNode *child);
pfNode* pfGroup::getChild(int i)const;
int pfGroup::getNumChildren()const;
int pfGroup::searchChild(pfNode *n)const;

pfScene C++ API
A pfScene is the root of a hierarchical database which may be drawn or intersected with. pfGeoStates
can be attached to and removed from a pfScene.

new pfScene();
pfType* pfScene::getClassType();
void pfScene::setGState(pfGeoState *gs);
pfGeoState* pfScene::getGState()const;
void pfScene::setGStateIndex(int gs);
int pfScene::getGStateIndex()const;

pfSCS C++ API
These functions manipulate the matrix associated with a pfSCS node. A pfSCS node represents a static
coordinate system -- a modeling transform that cannot be changed once created.

new pfSCS(pfMatrix& m);
pfType* pfSCS::getClassType();
void pfSCS::getMat(pfMatrix& m);
const pfMatrix* pfSCS::getMatPtr();

pfDCS C++ API
These functions manipulate the matrix associated with a pfDCS node. A pfDCS node represents a
dynamic coordinate system -- a modeling transform that can be changed after it is created.

new pfDCS();
pfType* pfDCS::getClassType();
void pfDCS::getMat(pfMatrix& m);
const pfMatrix* pfDCS::getMatPtr();
void pfDCS::setMatType(uint val);
uint pfDCS::getMatType()const;

xxvi

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfDCS::setMat(pfMatrix& m);
void pfDCS::setCoord(pfCoord *c);
void pfDCS::setRot(float h, float p, float r);
void pfDCS::setTrans(float x, float y, float z);
void pfDCS::setScale(float s);
void pfDCS::setScale(float xs, float ys, float zs);

pfLODState C++ API
A pfLODState is a definition of how an LOD or group of LODs should respond to range and stress. The
functions form an interface to create LOD states, set their attributes and give them names.

new pfLODState();
pfType* pfLODState::getClassType();
void pfLODState::setAttr(int attr, float val);
float pfLODState::getAttr(int attr);
int pfLODState::setName(const char *name);
const char* pfLODState::getName()const;
pfLODState*

pfLODState::find(const char *findName);

pfLOD C++ API
Level-of-detail is a technique for manipulating model complexity based on image quality and rendering
speed. IRIS Performer uses range-based LOD and adjusts for field-of-view and viewport pixel size. Each
pfLOD node has the different levels-of-detail as its children. The pfGroup API can be used to manipulate
this child list. A particular LOD is picked based on a transition range. These transition ranges can be set
by pfLOD::setRange and pfLOD::setTransition to ensure smooth transitions between different LODs. A
given pfLOD can also be associated with a pfLODState.

new pfLOD();
pfType* pfLOD::getClassType();
void pfLOD::setCenter(pfVec3& c);
void pfLOD::getCenter(pfVec3& c)const;
void pfLOD::setRange(int index, float range);
int pfLOD::getNumRanges()const;
float pfLOD::getRange(int index)const;
void pfLOD::setTransition(int index, float delta);
int pfLOD::getNumTransitions()const;
float pfLOD::getTransition(int index)const;
void pfLOD::setLODState(pfLODState *ls);
pfLODState* pfLOD::getLODState()const;
void pfLOD::setLODStateIndex(int index);

xxvii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

int pfLOD::getLODStateIndex()const;
float pfLOD::evaluate(const pfChannel *chan, const pfMatrix *offset);

pfSwitch C++ API
The functions manipulate pfSwitch nodes which are interior nodes in the IRIS Performer node hierarchy
that select one, all, or none of their children. The mode of selection is set by pfSwitch::setVal.

new pfSwitch();
pfType* pfSwitch::getClassType();
int pfSwitch::setVal(int val);
int pfSwitch::getVal()const;

pfMorph C++ API
A pfMorph node manipulates the geometric attributes of pfGeoSets and other geometric primitives. Its
primary use is for geometric morphing where the colors, normals, texture coordinates and coordinates of
geometry are smoothly changed over time to simulate actions such as facial and skeletal animation, ocean
waves, morph level-of-detail, and special effects. The attributes of a pfMorph node, the method of access-
ing the source arrays of a pfMorph attribute (non-indexed or indexed) and the weights attached to these
attributes can be set and queried by these functions.

new pfMorph();
pfType* pfMorph::getClassType();
int pfMorph::setAttr(int index, int attr, int nelts, void *dst, int nsrcs, float *alist[], ushort *ilist[],

int n[]);
int pfMorph::getNumAttrs()const;
int pfMorph::getSrc(int index, int src, float **alist, ushort **ilist, int *n)const;
int pfMorph::getNumSrcs(int index)const;
void* pfMorph::getDst(int index)const;
int pfMorph::setWeights(int index, float *weights);
int pfMorph::getWeights(int index, float *weights)const;
void pfMorph::evaluate();

pfSequence C++ API
A pfSequence node is a pfGroup node that sequences through a range of its children, drawing each child
for a certain length of time. Children are added to a pfSequence using normal pfGroup API. The length
of time to draw each child and the range of children to sequence through are set by these functions.

new pfSequence();
pfType* pfSequence::getClassType();
void pfSequence::setDuration(float sp, int nRep);
void pfSequence::getDuration(float *sp, int *nRep)const;
void pfSequence::setInterval(int imode, int beg, int e);

xxviii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfSequence::getInterval(int *imode, int *beg, int *e)const;
void pfSequence::setMode(int m);
int pfSequence::getMode()const;
void pfSequence::setTime(int index, double time);
double pfSequence::getTime(int index)const;
int pfSequence::getFrame(int *rep)const;

pfLayer C++ API
A pfLayer is a node derived from pfGroup that supports proper drawing of coplanar geometry on IRIS
platforms so as to prevent distracting artifacts caused by numerical precision when rendering coplanar
geometry on Z-buffer based machines. These functions create pfLayers and define the base layer and the
other (decal) layers.

new pfLayer();
pfType* pfLayer::getClassType();
void pfLayer::setBase(pfNode *n);
pfNode* pfLayer::getBase()const;
void pfLayer::setDecal(pfNode *n);
pfNode* pfLayer::getDecal()const;
void pfLayer::setMode(int mode);
int pfLayer::getMode()const;

pfPartition C++ API
A pfPartition node is a type of pfGroup node which organizes the scene graphs of its children into a
static data structure which can be more efficient for intersections. pfPartition::build constructs a spatial
partitioning based on the value of type. The other functions update a partition and control the values of its
attributes.

new pfPartition();
pfType* pfPartition::getClassType();
void pfPartition::setVal(int which, float val);
float pfPartition::getVal(int which);
void pfPartition::setAttr(int which, void *attr);
void* pfPartition::getAttr(int which);
void pfPartition::build();
void pfPartition::update();

pfLightPoint C++ API
A pfLightPoint is a pfNode that contains one or more light points. A light point is visible as one or more
self-illuminated small points but does not illuminate surrounding objects. These functions form an inter-
face to create light points and control various light point parameters like size, number, shape, direction,
color, position and intensity in a fog.

xxix

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

new pfLightPoint(int n);
pfType* pfLightPoint::getClassType();
int pfLightPoint::getNumPoints()const;
void pfLightPoint::setSize(float s);
float pfLightPoint::getSize()const;
void pfLightPoint::setFogScale(float onset, float opaque);
void pfLightPoint::getFogScale(float *onset, float *opaque)const;
void pfLightPoint::setRot(float azim, float elev, float roll);
void pfLightPoint::getRot(float *azim, float *elev, float *roll)const;
void pfLightPoint::setShape(int dir, float he, float ve, float f);
void pfLightPoint::getShape(int *dir, float *he, float *ve, float *f)const;
pfGeoSet* pfLightPoint::getGSet()const;
void pfLightPoint::setPos(int i, pfVec3& p);
void pfLightPoint::getPos(int i, pfVec3& p)const;
void pfLightPoint::setColor(int i, pfVec4& clr);
void pfLightPoint::getColor(int i, pfVec4& clr)const;

pfLightSource C++ API
A pfLightSource is a pfNode which can illuminate geometry in a pfScene. The pfLightSource routines
create pfLightSources,

new pfLightSource();
pfType* pfLightSource::getClassType();
void pfLightSource::setColor(int which, float r, float g, float b);
void pfLightSource::getColor(int which, float* r, float* g, float* b);
void pfLightSource::setAmbient(float r, float g, float b);
void pfLightSource::getAmbient(float* r, float* g, float* b);
void pfLightSource::setPos(float x, float y, float z, float w);
void pfLightSource::getPos(float* x, float* y, float* z, float* w);
void pfLightSource::setAtten(float a0, float a1, float a2);
void pfLightSource::getAtten(float* a0, float* a1, float* a2);
void pfLightSource::setSpotDir(float x, float y, float z);
void pfLightSource::getSpotDir(float* x, float* y, float* z);
void pfLightSource::setSpotCone(float f1, float f2);
void pfLightSource::getSpotCone(float* f1, float* f2);
void pfLightSource::on();
void pfLightSource::off();
int pfLightSource::isOn();
void pfLightSource::setMode(int mode, int val);
int pfLightSource::getMode(int mode)const;

xxx

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfLightSource::setVal(int mode, float val);
float pfLightSource::getVal(int mode)const;
void pfLightSource::setAttr(int attr, void *obj);
void* pfLightSource::getAttr(int attr)const;

pfGeode C++ API
A pfGeode is a leaf node in the IRIS Performer scene graph hierarchy. It is a list of pfGeoSets which it
draws and intersects with. Functions are provided to creates pfGeode and manipulate the list of
pfGeoStates attached to them.

new pfGeode();
pfType* pfGeode::getClassType();
int pfGeode::addGSet(pfGeoSet *gset);
int pfGeode::insertGSet(int index, pfGeoSet *gset);
int pfGeode::replaceGSet(pfGeoSet *oldgs, pfGeoSet *newgs);
int pfGeode::removeGSet(pfGeoSet *gset);
pfGeoSet* pfGeode::getGSet(int i)const;
int pfGeode::getNumGSets()const;

pfText C++ API
A pfText node is a list of pfStrings much as a pfGeode is a list of pfGeoSets. The two APIs are also simi-
lar - a new pfText node can be created and the list of pfStrings attached to it can be manipulated by addi-
tion, insertion, removal or replacement.

new pfText();
pfType* pfText::getClassType();
int pfText::addString(pfString *str);
int pfText::insertString(int index, pfString *str);
int pfText::replaceString(pfString *oldgs, pfString *newgs);
int pfText::removeString(pfString *str);
pfString* pfText::getString(int i)const;
int pfText::getNumStrings()const;

pfBillboard C++ API
A pfBillboard is a pfGeode in which each pfGeoSet rotates to follow the eyepoint. Billboards are useful
for representing complex objects which are roughly symmetrical about one or more axes. A pfBillboard
can contain any number of pfGeoSets which can be added to and removed from the pfBillboard using
pfGeode API. Further, the position, mode and axis of rotation of a pfBillboard can also be manipulated.

new pfBillboard();
pfType* pfBillboard::getClassType();
void pfBillboard::setAxis(const pfVec3& axis);

xxxi

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfBillboard::getAxis(pfVec3& axis);
void pfBillboard::setMode(int mode, int val);
int pfBillboard::getMode(int mode);
void pfBillboard::setPos(int i, const pfVec3& pos);
void pfBillboard::getPos(int i, pfVec3& pos);

pfPath C++ API
A pfPath is a dynamically-sized array of pfNode pointers that defines a specific path or chain of nodes
through a scene graph. new pfPath creates a new path.

new pfPath();
pfType* pfPath::getClassType();
void pfCullResult(int result);
int pfGetParentCullResult(void);
int pfGetCullResult(void);
int pfCullPath(pfPath *path, pfNode *root, int mode);

pfTraverser C++ API
These functions are provided as a means to obtain information about the behavior of the IRIS Performer
traversal routines. They can be used to determine the pfChannel or pfNode currently being culled or
drawn, set the matrix for the current traversal, determine the path from the root of the scene graph to the
node currently being traversed and the results of culling the node currently being traversed and the
parent of the current node.

pfChannel* pfTraverser::getChan()const;
pfNode* pfTraverser::getNode()const;
void pfTraverser::getMat(pfMatrix & mat)const;
int pfTraverser::getIndex()const;
const pfPath* pfTraverser::getPath()const;

pfFrameStats C++ API
A pfFrameStats structure contains a pfStats class as well as additional statistics classes and support for
tracking frame related tasks. Many of the functions correspond directly to similar functions for the
pfStats class.

new pfFrameStats();
pfType* pfFrameStats::getClassType();
uint pfFrameStats::setClass(uint mask, int val);
uint pfFrameStats::getClass(uint emask);
uint pfFrameStats::setClassMode(int class, uint mask, int val);
uint pfFrameStats::getClassMode(int class);
void pfFrameStats::setAttr(int attr, float val);

xxxii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

float pfFrameStats::getAttr(int attr);
uint pfFrameStats::getOpen(uint emask);
uint pfFrameStats::open(uint enmask);
uint pfFrameStats::close(uint enmask);
void pfFrameStats::reset();
void pfFrameStats::clear(uint which);
void pfFrameStats::accumulate(pfFrameStats* src, uint which);
void pfFrameStats::average(pfFrameStats* src, uint which, int num);
void pfFrameStats::count(pfGeoSet *gset);
int pfFrameStats::query(uint which, void *dst, int size);
int pfFrameStats::mQuery(uint *which, void *dst, int size);
void pfFrameStats::draw(pfChannel *chan);
void pfFrameStats::countNode(int class, uint mode, pfNode * node);

LIBPR
Initialization Routines

These routines initialize and configure Performer to use multiple processors and graphics pipelines. All
libpf appliciations must call pfInit and pfConfig before creating a scene graph or initiating rendering
with pfFrame. pfInit initializes shared memory and the clock. pfConfig creates multiple processes based
on the requested configuration and sets up internal data structures for frame-accurate propagation of
data between the processes.

void prInit(void);
void prExit(void);

Shared Memory
This is an interface to creating and manipulating a shared memory area to house the data structures
shared by the different IRIS Performer processes. pfInitArenas creates a shared memory arena that can
be used to allocate memory, locks and semaphores from. The other functions free this arena, control the
directory where it is created, return handles to the shared memory and the semaphore memory and set
the base address and size of these shared memory areas.

int pfInitArenas(void);
int pfFreeArenas(void);
PF_USPTR_T*

pfGetSemaArena(void);
void pfSemaArenaSize(size_t size);
size_t pfGetSemaArenaSize(void);
void pfSemaArenaBase(void *base);
void* pfGetSemaArenaBase(void);

xxxiii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void* pfGetSharedArena(void);
void pfSharedArenaSize(size_t size);
size_t pfGetSharedArenaSize(void);
void pfSharedArenaBase(void *base);
void* pfGetSharedArenaBase(void);
void pfTmpDir(char *dir);
const char * pfGetTmpDir(void);

Draw Modes
IRIS Performer supports a large number of drawing modes like shading, transparency, anti-aliasing and
coplanar geometry. These functions define these modes and enable and disable them.

void pfShadeModel(int model);
int pfGetShadeModel(void);
void pfTransparency(int type);
int pfGetTransparency(void);
void pfAlphaFunc(float ref, int func);
void pfGetAlphaFunc(float* ref, int* func);
void pfAntialias(int type);
int pfGetAntialias(void);
void pfDecal(int mode);
int pfGetDecal(void);
void pfCullFace(int cull);
int pfGetCullFace(void);
void pfEnable(int target);
void pfDisable(int target);
int pfGetEnable(int target);
void pfClear(int which, const pfVec4 col);
void pfClear(int which, const pfVec4 *col);
void pfGLOverride(int mode, float val);
float pfGetGLOverride(int mode);

GL Matrix Stack
These functions operate on the graphics library matrix stack. Various standard operations on matrices are
supported.

void pfScale(float x, float y, float z);
void pfTranslate(float x, float y, float z);
void pfRotate(int axis, float degrees);
void pfPushMatrix(void);
void pfPushIdentMatrix(void);

xxxiv

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfPopMatrix(void);
void pfLoadMatrix(const pfMatrix m);
void pfMultMatrix(const pfMatrix m);

Notification
These functions provide a general purpose error message and notification handling facility for applica-
tions using IRIS Performer. User-defined functions can be used as notifiers.

void pfNotifyHandler(pfNotifyFuncType handler);
pfNotifyFuncType pfGetNotifyHandler(void);
void pfDefaultNotifyHandler(pfNotifyData *notice);
void pfNotifyLevel(int severity);
int pfGetNotifyLevel(void);
void pfNotify(int severity, int error, char *format,

Clock Routines
These routines provide a simple and consistent interface to the high resolution hardware-specific timers
available on most SGI platforms.

double pfGetTime(void);
pid_t pfInitClock(double time);
void pfWrapClock(void);
void pfClockName(char *name);
const char* pfGetClockName(void);
void pfClockMode(int mode);
int pfGetClockMode(void);

File Paths
These functions can be used to specify a UNIX-style file path to search for files in and to find files in such
a path.

void pfFilePath(const char* path);
const char* pfGetFilePath(void);
int pfFindFile(const char* file, char path[PF_MAXSTRING], int amode);

Video Clock Routines
These functions provide an interface to the video retrace clock attached to each graphics pipeline. Once a
video clock is initialised, its current value can be determined and it can be used to synchronize a process
with a time barrier.

int pfStartVClock(void);
void pfStopVClock(void);

xxxv

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfInitVClock(int ticks);
void pfVClockOffset(int offset);
int pfGetVClockOffset(void);
int pfGetVClock(void);
int pfVClockSync(int rate, int offset);

pfWindow Routines
IRIS Performer provides a system-independent window paradigm. The prInitGfx function may be called
to initialize the graphics subsystem and acquire the graphics attributes Performer requires. Use
pfGetCurWin to gain access to the current window.

void prInitGfx(void);
pfWindow * pfGetCurWin(void);

Window System Routines
The pfWSConnection data structure encapsulates the workstation-independent frame-buffer (window)
facility in IRIS Performer. These functions serve to define specific windowing attributes necessary for the
application, to open and close windows, and to manipulate the window parameters.

void pfCloseWSConnection(pfWSConnection dsp);
pfFBConfig pfChooseFBConfig(pfWSConnection dsp, int screen, int *attr);
pfFBConfig pfChooseFBConfigData(void **dst, pfWSConnection dsp, int screen, int *attr,

void *arena);
void pfSelectWSConnection(pfWSConnection);
pfWSConnection pfOpenWSConnection(const char *str, int shared);
pfWSConnection pfOpenScreen(int screen, int shared);
pfWSConnection pfGetCurWSConnection(void);
const char* pfGetWSConnectionName(pfWSConnection);
void pfGetScreenSize(int screen, int *x, int *y);

Query Features
Use the QueryFeature routines to determine the presence, absence, or limitations of features in the under-
lying graphics implementation, like the availability of attenuation in the lighting model or the availability
of multiple graphics pipes.

int pfQueryFeature(int which, int *dst);
int pfMQueryFeature(int *which, int *dst);
void pfFeature(int which, int val);

Query System
Use the QuerySys routines to determine the capacity and limitations of the underlying graphics imple-
mentation, like the size of texture memory or the number of stencil planes available.

xxxvi

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

int pfQuerySys(int which, int *dst);
int pfMQuerySys(int *which, int *dst);

pfObject C++ API
A pfObject is the abstract data type from which the major IRIS Performer data structures are derived.
Although pfObjects cannot be created directly, most IRIS Performer data structures are derived from
them and thus inherit the functionality of the pfObject routines and those for pfMemory.

pfType* pfObject::getClassType();
void pfObject::setCopyFunc(pfCopyFuncType func);
pfCopyFuncType pfObject::getCopyFunc();
void pfObject::setDeleteFunc(pfDeleteFuncType func);
pfMergeFuncType pfObject::getMergeFunc();
void pfObject::setMergeFunc(pfMergeFuncType func);
pfDeleteFuncType pfObject::getDeleteFunc();
void pfObject::setPrintFunc(pfPrintFuncType func);
pfPrintFuncType pfObject::getPrintFunc();
int pfObject::getGLHandle(const pfObject *obj);
void pfObject::setUserData(pfObject* obj, void* data);
void* pfObject::getUserData(pfObject* obj);

pfType C++ API
All IRIS Performer data types that derive from pfObject/pfMemory have an associated pfType. The
pfType can be used to determine the class ancestory of both built-in and add-on data types.

new pfType(pfType *parent, char *name);
pfType* pfType::getParent();
int pfType::isDerivedFrom(pfType *ancestor);
void pfType::setMaxTypes(int n);
pfFog* pfGetCurFog(void);

pfFog C++ API
pfFog is used to simulate atmospheric phenomena such as fog and haze and for depthcueing. The fog
color is blended with the color that is computed for rendered geometry based on the geometry’s range
from the eyepoint. IRIS Performer provides functions for defining fog color, ranges, and other attributes.

new(void *arena) pfFog();
pfType* pfFog::getClassType();
void pfFog::setFogType(int type);
int pfFog::getFogType()const;
void pfFog::setRange(float onset, float opaque);
void pfFog::getRange(float* onset, float* opaque)const;

xxxvii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfFog::setOffsets(float onset, float opaque);
void pfFog::getOffsets(float *onset, float *opaque)const;
void pfFog::setRamp(int points, float* range, float* density, float bias);
void pfFog::getRamp(int* points, float* range, float* density, float* bias)const;
void pfFog::setColor(float r, float g, float b);
void pfFog::getColor(float* r, float* g, float* b)const;
float pfFog::getDensity(float range)const;
void pfFog::apply();
pfColortable* pfGetCurCtab(void);

pfColortable C++ API
A pfColortable is a ’color indexing’ mechanism used by pfGeoSets. pfGeoSets can be drawn with the
colors defined in the current globally active pfColortable rather than by using the pfGeoset’s own local
color list. This facility can be used for instant large-scale color manipulation of geometry in a scene.

new(void *arena) pfColortable(int size);
pfType* pfColortable::getClassType();
int pfColortable::getCtabSize()const;
int pfColortable::setColor(int index, pfVec4& acolor);
int pfColortable::getColor(int index, pfVec4& acolor)const;
pfVec4* pfColortable::getColors()const;
void pfColortable::apply();

pfDataPool C++ API
A pfDataPool is similar to a shared memory malloc arena but adds the ability to lock/unlock pfDataPool
memory for multiprocessing applications. The pfDataPool functions allow related or unrelated processes
to share data and provide a means for locking data blocks to eliminate data collision.

pfDataPool* pfDataPool::create(uint size, char* name);
pfDataPool* pfDataPool::attach(char* name);
pfType* pfDataPool::getClassType();
const char* pfDataPool::getName();
void pfDataPool::setAttachAddr(void *addr);
void* pfDataPool::getAttachAddr();
int pfDataPool::getDPoolSize();
volatile void* pfDataPool::alloc(uint size, int id);
volatile void* pfDataPool::find(int id);
int pfDataPool::free(void* dpmem);
int pfDataPool::release();
int pfDataPool::lock(void* dpmem);
int pfDataPool::lock(void* dpmem, int spins, int block);

xxxviii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfDataPool::unlock(void* dpmem);
int pfDataPool::test(void* dpmem);
pfDispList* pfGetCurDList(void);
void pfDrawGLObj(GLOBJECT obj);

pfDispList C++ API
A pfDispList is a display list that once open, captures certain libpr commands, such as pfTransparency,
pfTexture::apply, or pfGeoSet::draw. After it is closed, it may be executed through Performer to perform
the recorded commands. pfDispLists are designed for multiprocessing, where one process builds a
display list of the visible scene and another process draws it.

new(void *arena) pfDispList(int type, int size);
pfType* pfDispList::getClassType();
int pfDispList::getSize()const;
int pfDispList::getDListType()const;
int pfDispList::draw();
void pfDispList::open();
void pfDispList::close();
void pfDispList::reset();
void pfDispList::addCmd(int cmd);
void pfDispList::callback(pfDListFuncType callback, int bytes, void* data);

pfFont C++ API
The pfFont facility provides the capability to load fonts for 3-D rendering with the string drawing rou-
tines from pfString and pfText. IRIS Performer uses this facility to provide wireframe, flat, extruded,
and textured-quad fonts in three dimensions.

new(void *arena) pfFont();
pfType* pfFont::getClassType();
void pfFont::setCharGSet(int ascii, pfGeoSet *gset);
pfGeoSet* pfFont::getCharGSet(int ascii);
void pfFont::setCharSpacing(int ascii, pfVec3 & spacing);
const pfVec3* pfFont::getCharSpacing(int ascii);
void pfFont::setAttr(int which, void *attr);
void* pfFont::getAttr(int which);
void pfFont::setVal(int which, float val);
float pfFont::getVal(int which);
void pfFont::setMode(int mode, int val);
int pfFont::getMode(int mode);

pfGeoSet C++ API
The pfGeoSet (short for "Geometry Set") is a fundamental IRIS Performer data structure. Each pfGeoSet
is a collection of geometry with one primitive type, such as points, lines, triangles, and homogeneous
attribute bindings, such as "untextured with colors per vertex and normals per primitive," so that each
pfGeoSet may be presented to the graphics subsystem with as little overhead as possible, using an

xxxix

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

optimized draw routine, one for each type of pfGeoSet.

new(void *arena) pfGeoSet();
pfType* pfGeoSet::getClassType();
void pfGeoSet::setNumPrims(int n);
int pfGeoSet::getNumPrims()const;
void pfGeoSet::setPrimType(int type);
int pfGeoSet::getPrimType()const;
void pfGeoSet::setPrimLengths(int *lengths);
int* pfGeoSet::getPrimLengths()const;
void pfGeoSet::setAttr(int attr, int bind, void* alist, ushort* ilist);
int pfGeoSet::getAttrBind(int attr)const;
void pfGeoSet::getAttrLists(int attr, void** alist, ushort** ilist)const;
int pfGeoSet::getAttrRange(int attr, int *min, int *max)const;
void pfGeoSet::setDrawMode(int mode, int val);
int pfGeoSet::getDrawMode(int mode)const;
void pfGeoSet::setGState(pfGeoState *gstate);
pfGeoState* pfGeoSet::getGState()const;
void pfGeoSet::setGStateIndex(int id);
int pfGeoSet::getGStateIndex()const;
void pfGeoSet::setHlight(pfHighlight *hlight);
pfHighlight* pfGeoSet::getHlight()const;
void pfGeoSet::setLineWidth(float width);
float pfGeoSet::getLineWidth()const;
void pfGeoSet::setPntSize(float s);
float pfGeoSet::getPntSize()const;
void pfGeoSet::setIsectMask(uint mask, int setMode, int bitOp);
uint pfGeoSet::getIsectMask()const;
void pfGeoSet::setDrawBin(short bin);
int pfGeoSet::getDrawBin()const;
void pfGeoSet::setBound(pfBox* box, int mode);
int pfGeoSet::getBound(pfBox* box);
void pfGeoSet::draw();
int pfGeoSet::query(uint which, void *dst)const;
int pfGeoSet::mQuery(uint *which, void *dst)const;
int pfGeoSet::isect(pfSegSet *segSet, pfHit **hits[]);
void pfGeoSet::drawHlightOnly();
void pfGeoSet::setPassFilter(uint mask);
uint pfGeoSet::getPassFilter();

xl

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

pfHit C++ API
These routines support the testing of intersections of line segments with geometry in pfGeoSets.

pfType* pfHit::getClassType();
int pfHit::query(uint which, void *dst)const;
int pfHit::mQuery(uint *which, void *dst)const;
pfGeoState* pfGetCurGState(void);
pfGeoState* pfGetCurIndexedGState(int index);
pfList* pfGetCurGStateTable(void);

pfGeoState C++ API
pfGeoState is an encapsulation of libpr graphics modes and attributes, and is normally bound to
pfGeoSets. The pfGeoState represents a complete graphics state, allowing IRIS Performer to draw
pfGeoSets in an arbitrary order and evaluate state changes in a lazy fashion to reduce overhead caused
by changing graphics state.

new(void *arena) pfGeoState();
pfType* pfGeoState::getClassType();
void pfGeoState::setMode(int attr, int a);
int pfGeoState::getMode(int attr)const;
int pfGeoState::getCurMode(int attr)const;
int pfGeoState::getCombinedMode(int attr, const pfGeoState *combState)const;
void pfGeoState::setVal(int attr, float a);
float pfGeoState::getVal(int attr)const;
float pfGeoState::getCurVal(int attr)const;
float pfGeoState::getCombinedVal(int attr, const pfGeoState *combState)const;
void pfGeoState::setInherit(uint mask);
uint pfGeoState::getInherit()const;
void pfGeoState::setAttr(int attr, void* a);
void* pfGeoState::getAttr(int attr)const;
void* pfGeoState::getCurAttr(int attr)const;
void* pfGeoState::getCombinedAttr(int attr, const pfGeoState *combState)const;
void pfGeoState::load();
void pfGeoState::apply();
void pfGeoState::makeBasic();
void pfGeoState::applyTable(pfList *gstab);
pfHighlight * pfGetCurHlight(void);

pfHighlight C++ API
IRIS Performer supports a mechanism for highlighting individual objects in a scene with a variety of spe-
cial drawing styles that are activated by applying a pfHighlight state structure. Highlighting makes use
of outlining of lines and polygons and of filling polygons with patterned or textured overlays.

xli

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

new(void *arena) pfHighlight();
pfType* pfHighlight::getClassType();
void pfHighlight::setMode(uint mode);
uint pfHighlight::getMode()const;
pfGeoState* pfHighlight::getGState()const;
void pfHighlight::setGState(pfGeoState *gstate);
void pfHighlight::setGStateIndex(int id);
int pfHighlight::getGStateIndex()const;
void pfHighlight::setColor(uint which, float r, float g, float b);
void pfHighlight::getColor(uint which, float *r, float *g, float *b)const;
void pfHighlight::setAlpha(float a);
float pfHighlight::getAlpha()const;
void pfHighlight::setNormalLength(float len, float bboxScale);
void pfHighlight::getNormalLength(float *len, float *bboxScale)const;
void pfHighlight::setLineWidth(float width);
float pfHighlight::getLineWidth()const;
void pfHighlight::setPntSize(float size);
float pfHighlight::getPntSize()const;
void pfHighlight::setLinePat(int which, ushort pat);
ushort pfHighlight::getLinePat(int which)const;
void pfHighlight::setFillPat(int which, uint *fillPat);
void pfHighlight::getFillPat(int which, uint *pat)const;
void pfHighlight::setTex(pfTexture *tex);
pfTexture* pfHighlight::getTex()const;
void pfHighlight::setTEnv(pfTexEnv *tev);
pfTexEnv* pfHighlight::getTEnv()const;
void pfHighlight::setTGen(pfTexGen *tgen);
pfTexGen* pfHighlight::getTGen()const;
void pfHighlight::apply();
int pfGetCurLights(pfLight *lights[PF_MAX_LIGHTS]);

pfLight C++ API
A pfLight is a light source that illuminates scene geometry, generating realistic shading effects. A
pfLight cannot itself be seen but attributes such as color, spotlight direction, and position can be set to
provide illuminative effects on scene geometry.

new(void *arena) pfLight();
pfType* pfLight::getClassType();
void pfLight::setColor(int which, float r, float g, float b);
void pfLight::getColor(int which, float* r, float* g, float* b)const;

xlii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfLight::setAmbient(float r, float g, float b);
void pfLight::getAmbient(float* r, float* g, float* b)const;
void pfLight::setPos(float x, float y, float z, float w);
void pfLight::getPos(float* x, float* y, float* z, float* w)const;
void pfLight::setAtten(float a0, float a1, float a2);
void pfLight::getAtten(float* a0, float* a1, float* a2)const;
void pfLight::setSpotDir(float x, float y, float z);
void pfLight::getSpotDir(float* x, float* y, float* z)const;
void pfLight::setSpotCone(float f1, float f2);
void pfLight::getSpotCone(float* f1, float* f2)const;
void pfLight::on();
void pfLight::off();
int pfLight::isOn();
pfLightModel* pfGetCurLModel(void);

pfLightModel C++ API
A pfLightModel defines characteristics of the hardware lighting model used to illuminate geometry, such
as attenuation, local vs. global lighting model, and ambient energy.

new(void *arena) pfLightModel();
pfType* pfLightModel::getClassType();
void pfLightModel::setLocal(int l);
int pfLightModel::getLocal()const;
void pfLightModel::setTwoSide(int t);
int pfLightModel::getTwoSide()const;
void pfLightModel::setAmbient(float r, float g, float b);
void pfLightModel::getAmbient(float* r, float* g, float* b)const;
void pfLightModel::setAtten(float a0, float a1, float a2);
void pfLightModel::getAtten(float* a0, float* a1, float* a2)const;
void pfLightModel::apply();
pfLPointState* pfGetCurLPState(void);

pfLPointState C++ API
A pfLPointState is a libpr data structure which, in conjunction with a pfGeoSet of type PFGS_POINTS,
supports a sophisticated light point primitive type. Examples of light points are stars, beacons, strobes,
and taxiway lights. Light points are different from light sources in that a pfLight is not itself visible but
illuminates scene geometry, whereas a light point is visible as a self-illuminated small point that does not
illuminate surrounding objects.

new(void *arena) pfLPointState();
pfType* pfLPointState::getClassType();

xliii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfLPointState::setMode(int mode, int val);
int pfLPointState::getMode(int mode)const;
void pfLPointState::setVal(int attr, float val);
float pfLPointState::getVal(int attr)const;
void pfLPointState::setShape(float horiz, float vert, float roll, float falloff, float ambient);
void pfLPointState::getShape(float *horiz, float *vert, float *roll, float *falloff,

float *ambient)const;
void pfLPointState::setBackColor(float r, float g, float b, float a);
void pfLPointState::getBackColor(float *r, float *g, float *b, float *a);
void pfLPointState::apply();
void pfLPointState::makeRangeTex(pfTexture *tex, int size, pfFog* fog);
void pfLPointState::makeShapeTex(pfTexture *tex, int size);
pfMaterial* pfGetCurMtl(int side);

pfMaterial C++ API
In conjunction with other lighting parameters, a pfMaterial defines the appearance of illuminated
geometry. A pfMaterial defines the reflectance characteristics of surfaces such as diffuse color and shini-
ness.

new(void *arena) pfMaterial();
pfType* pfMaterial::getClassType();
void pfMaterial::setSide(int side);
int pfMaterial::getSide();
void pfMaterial::setAlpha(float alpha);
float pfMaterial::getAlpha();
void pfMaterial::setShininess(float shininess);
float pfMaterial::getShininess();
void pfMaterial::setColor(int acolor, float r, float g, float b);
void pfMaterial::getColor(int acolor, float* r, float* g, float* b);
void pfMaterial::setColorMode(int side, int mode);
int pfMaterial::getColorMode(int side);
void pfMaterial::apply();
pfSprite* pfGetCurSprite(void);

pfSprite C++ API
pfSprite is an intelligent transformation and is logically grouped with other libpr transformation primi-
tives like pfMultMatrix. pfSprite rotates geometry orthogonal to the viewer, so the viewer only sees the
"front" of the model. As a result, complexity is saved in the model by omitting the "back" geometry. A
further performance enhancement is to incorporate visual complexity in a texture map rather than in
geometry. Thus, on machines with fast texture mapping, sprites can present very complex images with
very little geometry. Classic examples of textured sprites use a single quadrilateral that when rotated
about a vertical axis simulate trees and when rotated about a point simulate clouds or puffs of smoke.

xliv

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

new(void *arena) pfSprite();
pfType* pfSprite::getClassType();
void pfSprite::setMode(int which, int val);
int pfSprite::getMode(int which)const;
void pfSprite::setAxis(float x, float y, float z);
void pfSprite::getAxis(float *x, float *y, float *z);
void pfSprite::begin();
void pfSprite::end();
void pfSprite::position(float x, float y, float z);
void pfInitState(usptr_t* arena);
pfState* pfGetCurState(void);
void pfPushState(void);
void pfPopState(void);
void pfGetState(pfGeoState *gstate);
void pfFlushState(void);
void pfBasicState(void);
void pfOverride(uint mask, int val);
uint pfGetOverride(void);
void pfModelMat(pfMatrix mat);
void pfGetModelMat(pfMatrix mat);
void pfViewMat(pfMatrix mat);
void pfGetViewMat(pfMatrix mat);
void pfTexMat(pfMatrix mat);
void pfGetTexMat(pfMatrix mat);
void pfInvModelMat(pfMatrix mat);
void pfGetInvModelMat(pfMatrix mat);
void pfNearPixDist(float pd);
float pfGetNearPixDist(void);

pfState C++ API
IRIS Performer manages a subset of the graphics library state for convenience and improved perfor-
mance, and thus provides its own API for manipulating graphics state such as transparency, antialiasing,
or fog. Attributes not set within a pfGeoState are inherited from the pfState.

new(NULL) pfState();
pfType* pfState::getClassType();
void pfState::select();
void pfState::load();
void pfState::attach(pfState *state1);

pfString C++ API
pfString provides a pfGeoSet like facility for encapsulating geometry to display a string in 3-D with attri-
butes such as color, arbitrary transformation matrix, and font (see pfFont).

xlv

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

new(void *arena) pfString();
pfType* pfString::getClassType();
int pfString::getStringLength()const;
void pfString::setMode(int mode, int val);
int pfString::getMode(int mode)const;
void pfString::setFont(pfFont* fnt);
pfFont* pfString::getFont()const;
void pfString::setString(const char* cstr);
const char* pfString::getString()const;
const pfGeoSet* pfString::getCharGSet(int index)const;
const pfVec3* pfString::getCharPos(int index)const;
void pfString::setSpacingScale(float sx, float sy, float sz);
void pfString::getSpacingScale(float *sx, float *sy, float *sz)const;
void pfString::setGState(pfGeoState *gs);
const pfGeoState* pfString::getGState()const;
void pfString::setColor(float r, float g, float b, float a);
void pfString::getColor(float *r, float *g, float *b, float *a)const;
void pfString::setBBox(const pfBox* newbox);
const pfBox* pfString::getBBox()const;
void pfString::setMat(const pfMatrix & mat);
void pfString::getMat(pfMatrix & mat)const;
void pfString::setIsectMask(uint mask, int setMode, int bitOp);
uint pfString::getIsectMask()const;
void pfString::draw();
void pfString::flatten();
int pfString::isect(pfSegSet *segSet, pfHit **hits[]);
pfTexture* pfGetCurTex(void);

pfTexture C++ API
pfTexture encapsulates texturing data and attributes such as the texture image itself, the texture data for-
mat and the filters for proximity and distance.

new(void *arena) pfTexture();
pfType* pfTexture::getClassType();
void pfTexture::setName(const char *name);
const char* pfTexture::getName()const;
void pfTexture::setImage(uint* image, int comp, int sx, int sy, int sz);
void pfTexture::getImage(uint** image, int* comp, int* sx, int* sy, int* sz)const;
void pfTexture::setLoadImage(uint* image);
uint* pfTexture::getLoadImage()const;

xlvi

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfTexture::setBorderColor(pfVec4 clr);
void pfTexture::getBorderColor(pfVec4 *clr);
void pfTexture::setBorderType(int type);
int pfTexture::getBorderType();
void pfTexture::setFormat(int format, int type);
int pfTexture::getFormat(int format)const;
void pfTexture::setFilter(int filt, int type);
int pfTexture::getFilter(int filt)const;
void pfTexture::setRepeat(int wrap, int type);
int pfTexture::getRepeat(int wrap)const;
void pfTexture::setSpline(int type, pfVec2 *pts, float clamp);
void pfTexture::getSpline(int type, pfVec2 *pts, float *clamp)const;
void pfTexture::setDetail(int l, pfTexture *detail);
void pfTexture::getDetail(int *l, pfTexture **detail)const;
pfTexture* pfTexture::getDetailTex()const;
void pfTexture::setDetailTexTile(int j, int k, int m, int n, int scram);
void pfTexture::getDetailTexTile(int *j, int *k, int *m, int *n, int *scram)const;
void pfTexture::setList(pfList *list);
pfList* pfTexture::getList()const;
void pfTexture::setFrame(float frame);
float pfTexture::getFrame()const;
void pfTexture::setLoadMode(int mode, int val);
int pfTexture::getLoadMode(int mode)const;
void pfTexture::setLevel(int level, pfTexture* ltex);
pfTexture* pfTexture::getLevel(int level);
void pfTexture::setLoadOrigin(int which, int xo, int yo);
void pfTexture::getLoadOrigin(int which, int *xo, int *yo);
void pfTexture::setLoadSize(int xs, int ys);
void pfTexture::getLoadSize(int *xs, int *ys)const;
void pfTexture::apply();
void pfTexture::format();
void pfTexture::load();
void pfTexture::loadLevel(int level);
void pfTexture::subload(int source, uint *image, int xsrc, int ysrc, int xdst, int ydst,

int xsize, int ysize);
void pfTexture::subloadLevel(int source, uint *image, int xsrc, int ysrc, int xdst, int ydst,

int xsize, int ysize, int level);
int pfTexture::loadFile(char* fname);
void pfTexture::freeImage();
void pfTexture::idle();

xlvii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

int pfTexture::isLoaded()const;
int pfTexture::isFormatted()const;
pfTexEnv* pfGetCurTEnv(void);

pfTexEnv C++ API
pfTexEnv encapsulates the texture environment and how the texture should interact with the colors of
the geometry to which it is bound, i.e. how graphics coordinates are transformed into texture coordinates.

new(void *arena) pfTexEnv();
pfType* pfTexEnv::getClassType();
void pfTexEnv::setMode(int mode);
int pfTexEnv::getMode()const;
void pfTexEnv::setComponent(int comp);
int pfTexEnv::getComponent()const;
void pfTexEnv::setBlendColor(float r, float g, float b, float a);
void pfTexEnv::getBlendColor(float* r, float* g, float* b, float* a);
void pfTexEnv::apply();
pfTexGen* pfGetCurTGen(void);

pfTexGen C++ API
The pfTexGen capability is used to automatically generate texture coordinates for geometry, typically for
special effects like projected texture, reflection mapping, and lightpoints (see pfLPointState).

new(void *arena) pfTexGen();
pfType* pfTexGen::getClassType();
void pfTexGen::setMode(int texCoord, int mode);
int pfTexGen::getMode(int texCoord)const;
void pfTexGen::setPlane(int texCoord, float x, float y, float z, float d);
void pfTexGen::getPlane(int texCoord, float* x, float* y, float* z, float* d);
void pfTexGen::apply();

pfCycleMemory C++ API
The pfCycleMemory data type is the low-level memory object used by pfCycleBuffers to provide the
illusion of a single block of memory that can have a different value for each process that references it at
one instant in time. For example, a pfGeoSet might have vertex position, normal, color, or texture arrays
that are being morphed in process A, culled in process B, drawn in process C, and intersected with in pro-
cess D, all with different values due to temporal reasons. Refer to the pfCycleBuffer overview for a
description of how the two features work in concert.

pfType* pfCycleMemory::getClassType();
pfCycleBuffer* pfCycleMemory::getCBuffer();
int pfCycleMemory::getFrame()const;

xlviii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

pfCycleBuffer C++ API
pfCycleBuffer supports efficient management of dynamically modified data in a multi-stage multipro-
cessed pipeline. A pfCycleBuffer logically contains multiple pfCycleMemorys. Each process has a global
index which selects the currently active pfCycleMemory in each pfCycleBuffer. This index can be
advanced once a frame by pfCycleBuffer::setCurIndex so that the buffers "cycle". By advancing the index
appropriately in each pipeline stage, dynamic data can be frame-accurately propagated down the pipe-
line.

new(void *arena) pfCycleBuffer(size_t nbytes);
pfType* pfCycleBuffer::getClassType();
pfCycleMemory* pfCycleBuffer::getCMem(int index)const;
void* pfCycleBuffer::getCurData()const;
void pfCycleBuffer::changed();
void pfCycleBuffer::init(void *data);
int pfCycleBuffer::config(int numBuffers);
int pfCycleBuffer::getConfig();
int pfCycleBuffer::frame();
int pfCycleBuffer::getFrameCount();
int pfCycleBuffer::getCurIndex();
void pfCycleBuffer::setCurIndex(int index);
pfCycleBuffer* pfCycleBuffer::getCBuffer(void *data);

pfMemory C++ API
A pfMemory is the data type from which the major IRIS Performer types are derived and also provides
the primary mechanism for allocating memory used by pfMalloc.

pfType* pfMemory::getClassType();
void* pfMemory::malloc(size_t nbytes, void *arena);
void* pfMemory::calloc(size_t numelem, size_t elsize, void *arena);
char* pfMemory::strdup(const char *str, void *arena);
void* pfMemory::realloc(void *data, size_t nbytes);
size_t pfMemory::getSize(void *data);
void* pfMemory::getArena(void *data);
void pfMemory::free(void *data);
void* pfMemory::getData(const void *data);
pfMemory* pfMemory::getMemory(const void *data);
const char* pfMemory::getTypeName(const void *data);
pfType* pfMemory::getType(const void *data);
int pfMemory::isOfType(const void *data, pfType *type);
int pfMemory::isExactType(const void *data, pfType *type);

xlix

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

int pfMemory::ref(void* mem);
int pfMemory::unref(void* mem);
ushort pfMemory::getRef(const void* mem);
int pfMemory::compare(const void* mem1, const void* mem2);
int pfMemory::print(const void* mem, uint travMode, uint verbose, FILE* file);
int pfMemory::checkDelete(void* mem);
int pfMemory::unrefDelete(void* mem);
int pfMemory::copy(void* dst, const void* src);
pfFile* pfOpenFile(char* fname, int oflag,

pfFile C++ API
pfFile provides a non-blocking, multiprocessing mechanism for file I/O with a similar interface to the
standard UNIX file I/O functions. The difference is that these routines return immediately without block-
ing while the physical file-system access operation completes and also that instead of an integer file
descriptor, a pfFile handle is used.

pfFile* pfFile::create(char* fname, mode_t mode);
pfType*

pfFile::getClassType();
int pfFile::getStatus(int attr)const;
int pfFile::read(char* buf, int nbyte);
int pfFile::write(char* buf, int nbyte);
off_t pfFile::seek(off_t off, int whence);
int pfFile::close();

pfList C++ API
A pfList is a dynamically-sized array of arbitrary, but homogeneously-sized, elements. IRIS Performer
provides the facility to create, manipulate, and search a pfList.

new(void *arena) pfList(int eltSize, int listLength);
pfType* pfList::getClassType();
int pfList::getEltSize()const;
void** pfList::getArray()const;
void pfList::setArrayLen(int alen);
int pfList::getArrayLen()const;
void pfList::setNum(int newNum);
int pfList::getNum()const;
void pfList::set(int index, void *elt);
void* pfList::get(int index)const;
void pfList::reset();
void pfList::combine(const pfList *a, const pfList *b);

l

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfList::add(void *elt);
void pfList::insert(int index, void *elt);
int pfList::search(void *elt)const;
int pfList::remove(void *elt);
void pfList::removeIndex(int index);
int pfList::move(int index, void *elt);
int pfList::fastRemove(void *elt);
void pfList::fastRemoveIndex(int index);
int pfList::replace(void *oldElt, void *newElt);

pfWindow C++ API
These functions provide a single API for creating and managing windows that works across the IRIS GL,
IRIS GLX Mixed Mode, and OpenGL-X environments. Window system independent types have been
provided to match the X Window System types to provide complete portability between the IRIS GL and
OpenGL-X windowing environments.

new(void *arena) pfWindow();
pfType* pfWindow::getClassType();
void pfWindow::setName(const char *name);
const char* pfWindow::getName()const;
void pfWindow::setMode(int mode, int val);
int pfWindow::getMode(int mode)const;
void pfWindow::setWinType(uint type);
uint pfWindow::getWinType()const;
pfState* pfWindow::getCurState()const;
void pfWindow::setAspect(int x, int y);
void pfWindow::getAspect(int *x, int *y)const;
void pfWindow::setOriginSize(int xo, int yo, int xs, int ys);
void pfWindow::setOrigin(int xo, int yo);
void pfWindow::getOrigin(int *xo, int *yo)const;
void pfWindow::setSize(int xs, int ys);
void pfWindow::getSize(int *xs, int *ys)const;
void pfWindow::setFullScreen();
void pfWindow::getCurOriginSize(int *xo, int *yo, int *xs, int *ys);
void pfWindow::getCurScreenOriginSize(int *xo, int *yo, int *xs, int *ys);
void pfWindow::setOverlayWin(pfWindow *ow);
pfWindow* pfWindow::getOverlayWin()const;
void pfWindow::setStatsWin(pfWindow *ow);
pfWindow* pfWindow::getStatsWin()const;
void pfWindow::setScreen(int s);

li

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

int pfWindow::getScreen()const;
void pfWindow::setShare(uint mode);
uint pfWindow::getShare()const;
void pfWindow::setWSWindow(pfWSConnection dsp, pfWSWindow wsWin);
pfWSWindow pfWindow::getWSWindow()const;
void pfWindow::setWSDrawable(pfWSConnection dsp, pfWSDrawable wsWin);
pfWSDrawable pfWindow::getWSDrawable()const;
pfWSDrawable pfWindow::getCurWSDrawable()const;
void pfWindow::setWSConnectionName(const char *name);
const char* pfWindow::getWSConnectionName()const;
void pfWindow::setFBConfigData(void *data);
void* pfWindow::getFBConfigData();
void pfWindow::setFBConfigAttrs(int *attr);
int* pfWindow::getFBConfigAttrs()const;
void pfWindow::setFBConfig(pfFBConfig vInfo);
pfFBConfig pfWindow::getFBConfig()const;
void pfWindow::setFBConfigId(int vId);
int pfWindow::getFBConfigId()const;
void pfWindow::setIndex(int index);
int pfWindow::getIndex()const;
pfWindow* pfWindow::getSelect();
void pfWindow::setGLCxt(pfGLContext gCxt);
pfGLContext pfWindow::getGLCxt()const;
void pfWindow::setWinList(pfList *wl);
pfList* pfWindow::getWinList()const;
void pfWindow::open();
void pfWindow::close();
void pfWindow::closeGL();
int pfWindow::attach(pfWindow *w1);
int pfWindow::detach(pfWindow *w1);
pfWindow* pfWindow::select();
void pfWindow::swapBuffers();
pfFBConfig pfWindow::chooseFBConfig(int *attr);
int pfWindow::isOpen()const;
int pfWindow::query(int which, int *dst);
int pfWindow::mQuery(int *which, int *dst);
pfWindow* pfWindow::openNewNoPort(const char *name, int screen);
pfStats* pfGetCurStats(void);

pfStats C++ API
These functions are used to collect, manipulate, print, and query statistics on state operations, geometry,
and graphics and system operations. IRIS Performer has the ability to keep many types of statistics.
Some statistics can be expensive to gather and might possibly influence other statistics. To alleviate this

lii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

problem, statistics are divided into different classes based on the tasks that they monitor. The specific
statistics classes of interest may be selected with pfStats::setClass.

new(void *arena) pfStats();
pfType* pfStats::getClassType();
uint pfStats::setClassMode(int class, uint mask, int val);
uint pfStats::getClassMode(int class);
void pfStats::setAttr(int attr, float val);
float pfStats::getAttr(int attr);
uint pfStats::setClass(uint enmask, int val);
uint pfStats::getClass(uint enmask);
uint pfStats::getOpen(uint enmask);
uint pfStats::open(uint enmask);
uint pfStats::close(uint enmask);
void pfStats::reset();
void pfStats::clear(uint which);
void pfStats::accumulate(pfStats* src, uint which);
void pfStats::average(pfStats* src, uint which, int num);
void pfStats::copy(const pfStats *src, uint which);
void pfStats::count(pfGeoSet * gset);
int pfStats::query(uint which, void *dst, int size);
int pfStats::mQuery(uint * which, void *dst, int size);
void pfStats::setHwAttr(int attr, float val);
float pfStats::getHwAttr(int attr);
void pfStats::enableHw(uint which);
void pfStats::disableHw(uint which);
uint pfStats::getHwEnable(uint which);
void pfFPConfig(int which, float val);
float pfGetFPConfig(int which);
void pfSinCos(float arg, float* s, float* c);
float pfTan(float arg);
float pfArcTan2(float y, float x);
float pfArcSin(float arg);
float pfArcCos(float arg);
float pfSqrt(float arg);

pfVec2 C++ API
Math functions for 2-component vectors. Most of these routines have macro equivalents which are
described in the pfVec2 man page. The man page also describes C++ arithmetic and indexing operators
which are not listed here.

liii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfVec2::set(float x, float y);
void pfVec2::copy(const pfVec2& v);
int pfVec2::equal(const pfVec2& v)const;
int pfVec2::almostEqual(const pfVec2& v, float tol)const;
void pfVec2::negate(const pfVec2& v);
float pfVec2::dot(const pfVec2& v)const;
void pfVec2::add(const pfVec2& v1, const pfVec2& v2);
void pfVec2::sub(const pfVec2& v1, const pfVec2& v2);
void pfVec2::scale(float s, const pfVec2& v);
void pfVec2::addScaled(const pfVec2& v1, float s, const pfVec2& v2);
void pfVec2::combine(float a, const pfVec2& v1, float b, const pfVec2& v2);
float pfVec2::sqrDistance(const pfVec2& v)const;
float pfVec2::normalize();
float pfVec2::length()const;
float pfVec2::distance(const pfVec2& v)const;

pfVec3 C++ API
Math functions for 3-component vectors. Most of these routines have macro equivalents which are
described in the pfVec3 man page. The man page also describes C++ arithmetic and indexing operators
which are not listed here.

void pfVec3::set(float x, float y, float z);
void pfVec3::copy(const pfVec3& v);
int pfVec3::equal(const pfVec3& v)const;
int pfVec3::almostEqual(const pfVec3& v, float tol)const;
void pfVec3::negate(const pfVec3& v);
float pfVec3::dot(const pfVec3& v)const;
void pfVec3::add(const pfVec3& v1, const pfVec3& v2);
void pfVec3::sub(const pfVec3& v1, const pfVec3& v2);
void pfVec3::scale(float s, const pfVec3& v);
void pfVec3::addScaled(const pfVec3& v1, float s, const pfVec3& v2);
void pfVec3::combine(float a, const pfVec3& v1, float b, const pfVec3& v2);
float pfVec3::sqrDistance(const pfVec3& v)const;
float pfVec3::normalize();
float pfVec3::length()const;
float pfVec3::distance(const pfVec3& v)const;
void pfVec3::cross(const pfVec3& v1, const pfVec3& v2);
void pfVec3::xformVec(const pfVec3& v, const pfMatrix& m);
void pfVec3::xformPt(const pfVec3& v, const pfMatrix& m);
void pfVec3::fullXformPt(const pfVec3& v, const pfMatrix& m);

liv

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

pfVec4 C++ API
Math functions for 4-component vectors. Most of these routines have macro equivalents which are
described in the pfVec4 man page. The man page also describes C++ arithmetic and indexing operators
which are not listed here.

void pfVec4::set(float x, float y, float z, float w);
void pfVec4::copy(const pfVec4& v);
int pfVec4::equal(const pfVec4& v)const;
int pfVec4::almostEqual(const pfVec4& v, float tol)const;
void pfVec4::negate(const pfVec4& v);
float pfVec4::dot(const pfVec4& v)const;
void pfVec4::add(const pfVec4& v1, const pfVec4& v2);
void pfVec4::sub(const pfVec4& v1, const pfVec4& v2);
void pfVec4::scale(float s, const pfVec4& v);
void pfVec4::addScaled(const pfVec4& v1, float s, const pfVec4& v2);
void pfVec4::combine(float a, const pfVec4& v1, float b, const pfVec4& v2);
float pfVec4::sqrDistance(const pfVec4& v)const;
float pfVec4::normalize();
float pfVec4::length()const;
float pfVec4::distance(const pfVec4& v)const;
void pfVec4::xform(const pfVec4& v, const pfMatrix& m);

pfMatrix C++ API
The pfMatrix data type represents a complete 4x4 real matrix. Most accesses to pfMatrix go through
pfMatrix::operator[], but pfMatrix is a public struct whose data member mat is directly accessible, e.g. for
passing to a routine expecting a float* such as glLoadMatrixf. These routines create transformation
matrices based on multiplying a row vector by a matrix on the right, i.e. the vector v transformed by m is
v * m. Many actions will go considerably faster if the last column is (0,0,0,1).

Some of these routines have macro equivalents which are described in the pfMatrix man page. The man
page also describes C++ arithmetic and indexing operators which are not listed here.

void pfMatrix::set(float *m);
int pfMatrix::getMatType()const;
void pfMatrix::setRow(int r, const pfVec3& v);
void pfMatrix::setRow(int r, float x, float y, float z, float w);
void pfMatrix::getRow(int r, pfVec3& dst);
void pfMatrix::getRow(int r, float *x, float *y, float *z, float *w);
void pfMatrix::setCol(int c, const pfVec3& v);
void pfMatrix::setCol(int c, float x, float y, float z, float w);

lv

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfMatrix::getCol(int c, pfVec3& dst);
void pfMatrix::getCol(int c, float *x, float *y, float *z, float *w);
void pfMatrix::getOrthoCoord(pfCoord* dst);
void pfMatrix::makeIdent();
void pfMatrix::makeEuler(float hdeg, float pdeg, float rdeg);
void pfMatrix::makeRot(float degrees, float x, float y, float z);
void pfMatrix::makeTrans(float x, float y, float z);
void pfMatrix::makeScale(float x, float y, float z);
void pfMatrix::makeVecRotVec(const pfVec3& v1, const pfVec3& v2);
void pfMatrix::makeCoord(const pfCoord* c);
void pfMatrix::getOrthoQuat(pfQuat& dst);
void pfMatrix::makeQuat(const pfQuat& q);
void pfMatrix::copy(const pfMatrix& v);
int pfMatrix::equal(const pfMatrix& m)const;
int pfMatrix::almostEqual(const pfMatrix& m2, float tol)const;
void pfMatrix::transpose(pfMatrix& m);
void pfMatrix::mult(const pfMatrix& m1, const pfMatrix & m2);
void pfMatrix::add(const pfMatrix& m1, const pfMatrix & m2);
void pfMatrix::sub(const pfMatrix& m1, const pfMatrix & m2);
void pfMatrix::scale(float s, const pfMatrix & m);
void pfMatrix::postMult(const pfMatrix& m);
void pfMatrix::preMult(const pfMatrix& m);
int pfMatrix::invertFull(pfMatrix& m);
void pfMatrix::invertAff(const pfMatrix& m);
void pfMatrix::invertOrtho(const pfMatrix& m);
void pfMatrix::invertOrthoN(pfMatrix& m);
void pfMatrix::invertIdent(const pfMatrix& m);
void pfMatrix::preTrans(float x, float y, float z, pfMatrix& m);
void pfMatrix::postTrans(const pfMatrix& m, float x, float y, float z);
void pfMatrix::preRot(float degrees, float x, float y, float z, pfMatrix& m);
void pfMatrix::postRot(const pfMatrix& m, float degrees, float x, float y, float z);
void pfMatrix::preScale(float xs, float ys, float zs, pfMatrix& m);
void pfMatrix::postScale(const pfMatrix& m, float xs, float ys, float zs);

pfQuat C++ API
pfQuat represents a quaternion as the four floating point values (x, y, z, w) of a pfVec4. Some of these
routines have macro equivalents which are described in the pfMatrix man page. The man page also
describes C++ arithmetic and indexing operators which are not listed here.

void pfQuat::getRot(float *angle, float *x, float *y, float *z);

lvi

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfQuat::makeRot(float angle, float x, float y, float z);
void pfQuat::conj(const pfQuat& v);
float pfQuat::length()const;
void pfQuat::mult(const pfQuat& q1, const pfQuat& q2);
void pfQuat::div(const pfQuat& q1, const pfQuat& q2);
void pfQuat::invert(const pfQuat& q1);
void pfQuat::exp(const pfQuat& q);
void pfQuat::log(const pfQuat& q);
void pfQuat::slerp(float t, const pfQuat& q1, const pfQuat& q2);
void pfQuat::squad(float t, const pfQuat& q1, const pfQuat& q2, const pfQuat& a, const pfQuat& b);
void pfQuat::meanTangent(const pfQuat& q1, const pfQuat& q2, const pfQuat& q3);

pfMatStack C++ API
These routines allow the creation and manipulation of a stack of 4x4 matrices.

new(void *arena) pfMatStack(int size);
pfType* pfMatStack::getClassType();
void pfMatStack::get(pfMatrix& m)const;
pfMatrix* pfMatStack::getTop()const;
int pfMatStack::getDepth()const;
void pfMatStack::reset();
int pfMatStack::push();
int pfMatStack::pop();
void pfMatStack::load(const pfMatrix& m);
void pfMatStack::preMult(const pfMatrix& m);
void pfMatStack::postMult(const pfMatrix& m);
void pfMatStack::preTrans(float x, float y, float z);
void pfMatStack::postTrans(float x, float y, float z);
void pfMatStack::preRot(float degrees, float x, float y, float z);
void pfMatStack::postRot(float degrees, float x, float y, float z);
void pfMatStack::preScale(float xs, float ys, float zs);
void pfMatStack::postScale(float xs, float ys, float zs);

pfSeg C++ API
A pfSeg represents a line segment starting at pos, extending for a length length in the direction dir. The
routines assume that dir is of unit length, otherwise the results are undefined. pfSeg is a public struct
whose data members pos, dir and length may be operated on directly.

void pfSeg::makePts(const pfVec3& p1, const pfVec3& p2);
void pfSeg::makePolar(const pfVec3& pos, float azi, float elev, float len);
void pfSeg::clip(const pfSeg *seg, float d1, float d2);

lvii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

int pfSeg::closestPtsOn(const pfSeg *seg, pfVec3& dst1, pfVec3& dst2)const;

pfPlane C++ API
A pfPlane represents an infinite 2D plane as a normal and a distance offset from the origin in the normal
direction. A point on the plane satisfies the equation normal dot (x, y, z) = offset. pfPlane is a public struct
whose data members normal and offset may be operated on directly.

void pfPlane::makePts(const pfVec3& p1, const pfVec3& p2, const pfVec3& p3);
void pfPlane::makeNormPt(const pfVec3& norm, const pfVec3& pos);
void pfPlane::displace(float d);
int pfPlane::contains(const pfBox *box)const;
int pfPlane::contains(const pfSphere *sph)const;
int pfPlane::contains(const pfCylinder *cyl)const;
int pfPlane::contains(const pfVec3& pt)const;
void pfPlane::orthoXform(const pfPlane *pln, const pfMatrix& m);
void pfPlane::closestPtOn(const pfVec3& pt, pfVec3& dst)const;
int pfPlane::isect(const pfSeg *seg, float *d)const;
int pfPlane::isect(const pfSeg *seg, float *d1, float *d2)const;

pfSphere C++ API
pfSpheres are typically used as bounding volumes in a scene graph. These routines allow bounding
spheres to be created and manipulated.

void pfSphere::makeEmpty();
int pfSphere::contains(const pfVec3& pt)const;
int pfSphere::contains(const pfSphere *sph)const;
int pfSphere::contains(const pfCylinder *cyl)const;
void pfSphere::around(const pfVec3* pts, int npt);
void pfSphere::around(const pfSphere **sphs, int nsph);
void pfSphere::around(const pfBox **boxes, int nbox);
void pfSphere::around(const pfCylinder **cyls, int ncyl);
void pfSphere::extendBy(const pfVec3& pt);
void pfSphere::extendBy(const pfSphere *sph);
void pfSphere::extendBy(const pfCylinder *cyl);
void pfSphere::orthoXform(const pfSphere *sph, const pfMatrix& m);
int pfSphere::isect(const pfSeg *seg, float *d1, float *d2)const;

pfCylinder C++ API
A pfCylinder represents a cylinder of finite length. The routines listed here provide means of creating
and extending cylinders for use as bounding geometry around groups of line segments. The cylinder is
defined by its center, radius, axis and halfLength. The routines assume axis is a vector of unit length, other-
wise results are undefined. pfCylinder is a public struct whose data members center, radius, axis and hal-
fLength may be operated on directly.

lviii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfCylinder::makeEmpty();
int pfCylinder::contains(const pfVec3& pt)const;
void pfCylinder::orthoXform(const pfCylinder *cyl, const pfMatrix& m);
void pfCylinder::around(const pfVec3 *pts, int npt);
void pfCylinder::around(const pfSeg **segs, int nseg);
void pfCylinder::around(const pfSphere **sphs, int nsph);
void pfCylinder::around(const pfBox **boxes, int nbox);
void pfCylinder::extendBy(const pfSphere *sph);
void pfCylinder::extendBy(const pfCylinder *cyl);
void pfCylinder::extendBy(const pfVec3& pt);
int pfCylinder::isect(const pfSeg *seg, float *d1, float *d2)const;

pfBox C++ API
A pfBox is an axis-aligned box which can be used for intersection tests and for maintaining bounding
information about geometry. A box represents the axis-aligned hexahedral volume: (x, y, z) where min[0]
<= x <= max[0], min[1] <= y <= max[1] and min[2] <= z <= max[2]. pfBox is a public struct whose data
members min and max may be operated on directly.

void pfBox::makeEmpty();
int pfBox::contains(const pfVec3& pt)const;
int pfBox::contains(const pfBox *inbox);
void pfBox::xform(const pfBox *box, const pfMatrix& xform);
void pfBox::around(const pfVec3 *pts, int npt);
void pfBox::around(const pfSphere **sphs, int nsph);
void pfBox::around(const pfBox **boxes, int nbox);
void pfBox::around(const pfCylinder **cyls, int ncyl);
void pfBox::extendBy(const pfVec3& pt);
void pfBox::extendBy(const pfBox *box);
int pfBox::isect(const pfSeg *seg, float *d1, float *d2)const;

pfPolytope C++ API
A pfPolytope is a set of half spaces whose intersection defines a convex, possibly semi-infinite, volume
which may be used for culling and other intersection testing where a tighter bound than a pfBox,
pfSphere, or pfCylinder is of benefit.

new(void *arena) pfPolytope();
pfType* pfPolytope::getClassType();
int pfPolytope::getNumFacets();
int pfPolytope::setFacet(int i, const pfPlane *p);
int pfPolytope::getFacet(int i, pfPlane *p);
int pfPolytope::removeFacet(int i);

lix

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfPolytope::orthoXform(const pfPolytope *src, const pfMatrix& mat);
int pfPolytope::contains(const pfVec3& pt)const;
int pfPolytope::contains(const pfSphere *sphere)const;
int pfPolytope::contains(const pfBox *box)const;
int pfPolytope::contains(const pfCylinder *cyl)const;
int pfPolytope::contains(const pfPolytope *ptope)const;

pfFrustum C++ API
A pfFrustum represents a viewing and or culling volume bounded by left, right, top, bottom, near and far
planes.

new(void *arena) pfFrustum();
pfType* pfFrustum::getClassType();
int pfFrustum::getFrustType()const;
void pfFrustum::setAspect(int which, float widthHeightRatio);
float pfFrustum::getAspect()const;
void pfFrustum::getFOV(float* fovh, float* fovv)const;
void pfFrustum::setNearFar(float nearDist, float farDist);
void pfFrustum::getNearFar(float* nearDist, float* farDist)const;
void pfFrustum::getNear(pfVec3& ll, pfVec3& lr, pfVec3& ul, pfVec3& ur)const;
void pfFrustum::getFar(pfVec3& ll, pfVec3& lr, pfVec3& ul, pfVec3& ur)const;
void pfFrustum::getPtope(pfPolytope *dst)const;
void pfFrustum::getGLProjMat(pfMatrix & mat)const;
int pfFrustum::getEye(pfVec3& eye)const;
void pfFrustum::makePersp(float left, float right, float bot, float top);
void pfFrustum::makeOrtho(float left, float right, float bot, float top);
void pfFrustum::makeSimple(float fov);
void pfFrustum::orthoXform(const pfFrustum* fr2, const pfMatrix& mat);
int pfFrustum::contains(const pfVec3& pt)const;
int pfFrustum::contains(const pfSphere *sphere)const;
int pfFrustum::contains(const pfBox *box)const;
int pfFrustum::contains(const pfCylinder *cyl)const;
void pfFrustum::apply()const;

Triangle Intersection
This routine returns the intersection of a triangle with a line segment and is the basis for Performer’s per-
forming intersection testing and picking against geometry contained in pfGeoSets.

int pfTriIsectSeg(const pfVec3 pt1, const pfVec3 pt2, const pfVec3 pt3, const pfSeg* seg, float* d);

lx

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

LIBPFDU
Database Conversions

IRIS Performer provides an extensive array of converters which load file-based geometry formats into a
pfScene hierarchical scene graph. These functions also provide the capability to set attributes which
modify the behavior of individual loaders.

pfNode* pfdLoadFile(const char *file);
int pfdStoreFile(pfNode *root, const char *file);
pfNode* pfdConvertFrom(void *root, const char *ext);
void* pfdConvertTo(pfNode* root, const char *ext);
int pfdInitConverter(const char *ext);
int pfdExitConverter(const char *ext);
FILE* pfdOpenFile(const char *file);
void pfdAddExtAlias(const char *ext, const char *alias);
void pfdConverterMode(const char *ext, int mode, int value);
int pfdGetConverterMode(const char *ext, int mode);
void pfdConverterAttr(const char *ext, int which, void *attr);
void* pfdGetConverterAttr(const char *ext, int which);
void pfdConverterVal(const char *ext, int which, float val);
float pfdGetConverterVal(const char *ext, int which);
void pfdPrintSceneGraphStats(pfNode *node, double elapsedTime);

Generate pfGeoSets
These routines are provided to conveniently construct pfGeoSets for various geometric objects. The
resulting objects are always positioned and sized in canonical ways. The user can then apply a transfor-
mation to these pfGeoSets to achieve the desired shape and position.

pfGeoSet * pfdNewCube(void *arena);
pfGeoSet * pfdNewSphere(int ntris, void *arena);
pfGeoSet * pfdNewCylinder(int ntris, void *arena);
pfGeoSet * pfdNewCone(int ntris, void *arena);
pfGeoSet * pfdNewPipe(float botRadius, float topRadius, int ntris, void *arena);
pfGeoSet * pfdNewPyramid(void *arena);
pfGeoSet * pfdNewArrow(int ntris, void *arena);
pfGeoSet * pfdNewDoubleArrow(int ntris, void *arena);
pfGeoSet * pfdNewCircle(int ntris, void *arena);
pfGeoSet * pfdNewRing(int ntris, void *arena);
void pfdXformGSet(pfGeoSet *gset, pfMatrix mat);
void pfdGSetColor(pfGeoSet *gset, float r, float g, float b, float a);

Mesh Triangles
Forming independent triangles into triangle strips (or meshes) can significantly improve rendering per-
formance on IRIS systems. Strips reduce the amount of work required by the CPU, bus, and graphics
subsystem. IRIS Performer provides this utility facility for converting independent triangles into strips.

lxi

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

pfGeoSet* pfdMeshGSet(pfGeoSet *gset);
void pfdMesherMode(int mode, int val);
int pfdGetMesherMode(int mode);
void pfdShowStrips(pfGeoSet *gset);

Optimize Scene Graphs
pfdCleanTree and pfdStaticize optimize the scene graph. pfdCleanTree removes pfGroups with one or
fewer child and pfSCSes with identity transformations. pfdStaticize conditionally converts pfDCSes to
pfSCSes, usually in preparation for pfFlatten.

pfNode* pfdCleanTree(pfNode *node, pfuTravFuncType doitfunc);
void pfdReplaceNode(pfNode *oldn, pfNode *newn);
void pfdInsertGroup(pfNode *oldn, pfGroup *grp);
void pfdRemoveGroup(pfGroup *oldn);
pfNode* pfdFreezeTransforms(pfNode *node, pfuTravFuncType doitfunc);

Breakup Scene Graphs
pfdBreakup is provided as a utility to break unstructured scene geometry into a spacially subdivided
scene hierarchy. Spacially subdivided geometry is more easily culled and less time is spent drawing
geometry which does not contribute to the final image.

pfNode* pfdBreakup(pfGeode *geode, float geodeSize, int stripLength, int geodeChild);

Generate Hierarchies
For performance reasons, it is desirable that the geometry in a scene be organized into a spatial hierarchy.
However, it is often easiest to model geometry using logical, rather than spatial, divisions.
pfdTravGetGSets and pfdSpatialize can be used to partition an already constructed scene.

pfList * pfdTravGetGSets(pfNode *node);
pfGroup*

pfdSpatialize(pfGroup *group, float maxGeodeSize, int maxGeoSets);

Share pfGeoStates
It is obviously desirable to share state between database objects in IRIS Performer whenever possible.
The notion of pervasive state sharing underpins the entire pfGeoState mechanism. Common data such
as texture, materials, and lighting models are often duplicated in many different objects throughout a
database. This collection of functions provides the means necessary to easily achieve sharing among
these objects by automatically producing a non-redundant set of states.

pfdShare* pfdNewShare(void);
int pfdCleanShare(pfdShare *share);
void pfdDelShare(pfdShare *share, int deepDelete);

lxii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfdPrintShare(pfdShare *share);
int pfdCountShare(pfdShare *share);
pfList* pfdGetSharedList(pfdShare *share, pfType* type);
pfObject* pfdNewSharedObject(pfdShare *share, pfObject *object);
pfObject* pfdFindSharedObject(pfdShare *share, pfObject *object);
int pfdAddSharedObject(pfdShare *share, pfObject *object);
void pfdMakeShared(pfNode *node);
void pfdMakeSharedScene(pfScene *scene);
int pfdCleanShare(pfdShare *share);
int pfdRemoveSharedObject(pfdShare *share, pfObject *object);
pfList* pfdGetNodeGStateList(pfNode *node);

Combine pfLayers
When multiple sibling layer nodes have been created, efficiency will be improved by combining them
together. pfdCombineLayers provides for exactly this kind of optimization.

void pfdCombineLayers(pfNode *node);

Combine pfBillboards
The performance of pfBillboard nodes is enhanced when they contain several pfGeoSets each as opposed
to a scene graph with a large number of single pfGeoSet pfBillboards. The pfdCombineBillboards()
traversal creates this efficient situation by traversing a scene graph and combining the pfGeoSets of
sibling pfBillboard nodes into a single pfBillboard node.

void pfdCombineBillboards(pfNode *node, int sizeLimit);

The Geometry Builder
It is seldom the case that database models are expressed directly in internal Performer structures (-
pfGeoSets). Instead, models are generally described in geometric constructs defined by the modeller.
The Performer GeoBuilder is meant to simplify the task of translating model geometry into Performer
geometry structures. The GeoBuilder can also create many kinds of polygon mesh (e.g. triangle-strips)
pfGeoSets, which can significantly improve performance.

pfdGeom* pfdNewGeom(int numV);
void pfdResizeGeom(pfdGeom *geom, int numV);
void pfdDelGeom(pfdGeom *geom);
int pfdReverseGeom(pfdGeom *geom);
pfdGeoBuilder* pfdNewGeoBldr(void);
void pfdDelGeoBldr(pfdGeoBuilder* bldr);
void pfdGeoBldrMode(pfdGeoBuilder* bldr, int mode, int val);
int pfdGetGeoBldrMode(pfdGeoBuilder* bldr, int mode);
int pfdTriangulatePoly(pfdGeom *pgon, pfdPrim *triList);

lxiii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfdAddGeom(pfdGeoBuilder *bldr, pfdGeom *Geom, int num);
void pfdAddLineStrips(pfdGeoBuilder *bldr, pfdGeom *lineStrips, int num);
void pfdAddLines(pfdGeoBuilder *bldr, pfdGeom *lines);
void pfdAddPoints(pfdGeoBuilder *bldr, pfdGeom *points);
void pfdAddPoly(pfdGeoBuilder *bldr, pfdGeom *poly);
void pfdAddIndexedLineStrips(pfdGeoBuilder *bldr, pfdGeom *lines, int num);
void pfdAddIndexedLines(pfdGeoBuilder *bldr, pfdGeom *lines);
void pfdAddIndexedPoints(pfdGeoBuilder *bldr, pfdGeom *points);
void pfdAddIndexedPoly(pfdGeoBuilder *bldr, pfdGeom *poly);
void pfdAddIndexedTri(pfdGeoBuilder *bldr, pfdPrim *tri);
void pfdAddLine(pfdGeoBuilder *bldr, pfdPrim *line);
void pfdAddPoint(pfdGeoBuilder *bldr, pfdPrim *Point);
void pfdAddTri(pfdGeoBuilder *bldr, pfdPrim *tri);
int pfdGetNumTris(pfdGeoBuilder *bldr);
const pfList* pfdBuildGSets(pfdGeoBuilder *bldr);
void pfdPrintGSet(pfGeoSet *gset);

The Scene Builder
The Performer Builder is meant to manage most of the details of constructing efficient runtime structures
from input models. It provides a simple and convenient interface for bringing scene data into the applica-
tion without the need for considering how best to structure that data for efficient rendering in Performer.
The Builder provides a comprehensive interface between model input code (such as database file parsers)
and the internal mechanisms of scene representation in Performer. In addition to handling input
geometry, as the GeoBuilder does, the Builder also manages the associated graphics state.

void pfdInitBldr(void);
void pfdExitBldr(void);
pfdBuilder * pfdNewBldr(void);
void pfdDelBldr(pfdBuilder *bldr);
void pfdSelectBldr(pfdBuilder *bldr);
pfdBuilder * pfdGetCurBldr(void);
void pfdBldrDeleteNode(pfNode *node);
void pfdBldrMode(int mode, int val);
int pfdGetBldrMode(int mode);
void pfdBldrAttr(int which, void *attr);
void * pfdGetBldrAttr(int which);
pfObject * pfdGetTemplateObject(pfType *type);
void pfdResetObject(pfObject *obj);
void pfdResetAllTemplateObjects(void);
void pfdMakeDefaultObject(pfObject *obj);

lxiv

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfdResetBldrGeometry(void);
void pfdResetBldrShare(void);
void pfdCleanBldrShare(void);
void pfdCaptureDefaultBldrState(void);
void pfdResetBldrState(void);
void pfdPushBldrState(void);
void pfdPopBldrState(void);
void pfdSaveBldrState(void *name);
void pfdLoadBldrState(void *name);
void pfdBldrGState(const pfGeoState *gstate);
const pfGeoState * pfdGetBldrGState(void);
void pfdBldrStateVal(int which, float val);
float pfdGetBldrStateVal(int which);
void pfdBldrStateMode(int mode, int val);
int pfdGetBldrStateMode(int mode);
void pfdBldrStateAttr(int which, const void *attr);
const void * pfdGetBldrStateAttr(int attr);
void pfdBldrStateInherit(uint mask);
uint pfdGetBldrStateInherit(void);
void pfdSelectBldrName(void *name);
void * pfdGetCurBldrName(void);
void pfdAddBldrGeom(pfdGeom *p, int n);
void pfdAddIndexedBldrGeom(pfdGeom *p, int n);
pfNode * pfdBuild(void);
pfNode * pfdBuildNode(void *name);
void pfdDefaultGState(pfGeoState *def);
const pfGeoState* pfdGetDefaultGState(void);
void pfdMakeSceneGState(pfGeoState *sceneGState,
void pfdOptimizeGStateList(pfList *gstateList,

Haeberli Font Extensions
This is Paul Haeberli’s cool font extension header file - Performer uses Paul’s font library to load fonts
into pfFont structures.

pfFont* pfdLoadFont(const char *ftype, const char *name, int style);
pfFont* pfdLoadFont_type1(const char *name, int style);

Texture Callbacks
These routines are now obsolete in that Performer now supports the notion of texture coordinate genera-
tion in pfGeoStates via the pfTexGen pfObject. However, these routines are still a good example of how
to implement functionality in the draw process through callbacks. Similarly this set of routines also fits
into the builder state extension mechanism - see the pfdBuilder man pages.

lxv

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

int pfdPreDrawTexgenExt(pfTraverser *trav, void *data);
int pfdPostDrawTexgenExt(pfTraverser *trav, void *data);
int pfdPreDrawReflMap(pfTraverser *trav, void *data);
int pfdPostDrawReflMap(pfTraverser *trav, void *data);
int pfdPreDrawContourMap(pfTraverser *trav, void *data);
int pfdPostDrawContourMap(pfTraverser *trav, void *data);
int pfdPreDrawLinearMap(pfTraverser *trav, void *data);
int pfdPostDrawLinearMap(pfTraverser *trav, void *data);
void pfdTexgenParams(const float *newParamsX, const float *newParamsY);

Function Extensors
pfdExtensors provide a framework for extending application functionality. They allow generalized call-
backs to be attached to the model database. These callbacks can be called from any Performer traversal.
The following functions are used to manipulate and install extensors.

int pfdAddState(void *name, long dataSize, void (*initialize)(void *data),
void (*deletor)(void *data), int (*compare)(void *data1, void *data2),
long (*copy)(void *dst, void *src), int token);

void pfdStateCallback(int stateToken, int whichCBack,
pfNodeTravFuncType callback);

pfNodeTravFuncType pfdGetStateCallback(int stateToken, int which);
int pfdGetStateToken(void *name);
int pfdGetUniqueStateToken(void);
pfdExtensor* pfdNewExtensor(int which);
pfdExtensorType* pfdNewExtensorType(int token);
int pfdCompareExtensor(void *a, void *b);
int pfdCompareExtraStates(void *lista, void *listb);
void pfdCopyExtraStates(pfList *dst, pfList *src);
pfdExtensor* pfdGetExtensor(int token);
pfdExtensorType* pfdGetExtensorType(int token);
void * pfdUniqifyData(pfList *dataList, const void *data, long dataSize,

void *(*newData)(long), int (*compare)(void *, void *),
long (*copy)(void *, void *), int *compareResult);

LIBPFUI
void pfiInit(void);

pfiMotionCoord
pfType* pfiGetMotionCoordClassType(void);
pfiMotionCoord * pfiNewMotionCoord(void *arena);

lxvi

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

pfiInputCoord
pfType* pfiGetInputCoordClassType(void);
pfiInputCoord * pfiNewInputCoord(void *arena);
void pfiInputCoordVec(pfiInputCoord *ic, float *vec);
void pfiGetInputCoordVec(pfiInputCoord *ic, float *vec);

pfiInputXform
Building user interfaces requires managing user input events. These functions provide a window system
independent means of handling event streams.

pfiInput * pfiNewInput(void *arena);
void pfiInputName(pfiInput *in, const char *name);
const char * pfiIsIXGetName(pfiInput *in);
void pfiInputFocus(pfiInput *in, int focus);
int pfiGetInputFocus(pfiInput *in);
void pfiInputEventMask(pfiInput *in, int emask);
int pfiGetInputEventMask(pfiInput *in);
void pfiInputEventStreamCollector(pfiInput *in,

pfiEventStreamHandlerType func, void *data);
void pfiGetInputEventStreamCollector(pfiInput *in,

pfiEventStreamHandlerType *func, void **data);
void pfiInputEventStreamProcessor(pfiInput *in,

pfiEventStreamHandlerType func, void *data);
void pfiGetInputEventStreamProcessor(pfiInput *in,

pfiEventStreamHandlerType *func, void **data);
void pfiInputEventHandler(pfiInput *in, pfuEventHandlerFuncType func,

void *data);
void pfiGetInputEventHandler(pfiInput *in, pfuEventHandlerFuncType *func,

void **data);
void pfiResetInput(pfiInput *in);
void pfiCollectInputEvents(pfiInput *in);
void pfiProcessInputEvents(pfiInput *in);
int pfiHaveFastMouseClick(pfuMouse *mouse, int button, float msecs);
pfiInputXform * pfiNewIXform(void *arena);
void pfiIXformFocus(pfiInputXform *in, int focus);
int pfiIsIXformInMotion(pfiInputXform *ix);
void pfiStopIXform(pfiInputXform *ix);
void pfiResetIXform(pfiInputXform *ix);
void pfiUpdateIXform(pfiInputXform *ix);
void pfiIXformMode(pfiInputXform *ix, int mode, int val);

lxvii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

int pfiGetIXformMode(pfiInputXform *ix, int mode);
void pfiResetIXformPosition(pfiInputXform *ix);
void pfiIXformMat(pfiInputXform *ix, pfMatrix mat);
void pfiGetIXformMat(pfiInputXform *ix, pfMatrix mat);
void pfiIXformInput(pfiInputXform *ix, pfiInput *in);
pfiInput* pfiGetIXformInput(pfiInputXform *ix);
void pfiIXformInputCoordPtr(pfiInputXform *ix, pfiInputCoord *xcoord);
pfiInputCoord* pfiGetIXformInputCoordPtr(pfiInputXform *ix);
void pfiIXformMotionCoord(pfiInputXform *ix, pfiMotionCoord *xcoord);
void pfiGetIXformMotionCoord(pfiInputXform *ix, pfiMotionCoord *xcoord);
void pfiIXformResetCoord(pfiInputXform *ix, pfCoord *resetPos);
void pfiGetIXformResetCoord(pfiInputXform *ix, pfCoord *resetPos);
void pfiIXformCoord(pfiInputXform *ix, pfCoord *coord);
void pfiGetIXformCoord(pfiInputXform *ix, pfCoord *coord);
void pfiIXformStartMotion(pfiInputXform *xf, float startSpeed, float startAccel);
void pfiGetIXformStartMotion(pfiInputXform *xf, float *startSpeed,

float *startAccel);
void pfiIXformMotionLimits(pfiInputXform *xf, float maxSpeed, float angularVel,

float maxAccel);
void pfiGetIXformMotionLimits(pfiInputXform *xf, float *maxSpeed,

float *angularVel, float *maxAccel);
void pfiIXformDBLimits(pfiInputXform *xf, pfBox *dbLimits);
void pfiGetIXformDBLimits(pfiInputXform *xf, pfBox *dbLimits);
void pfiIXformBSphere(pfiInputXform *xf, pfSphere *sphere);
void pfiGetIXformBSphere(pfiInputXform *xf, pfSphere *sphere);
void pfiIXformUpudateFunc(pfiInputXform *ix,

pfiInputXformUpdateFuncType func, void *data);
void pfiGetIXformUpudateFunc(pfiInputXform *ix,

pfiInputXformUpdateFuncType *func, void **data);
void pfiIXformMotionFuncs(pfiInputXform *ix, pfiInputXformFuncType start,

pfiInputXformFuncType stop, void *data);
void pfiGetIXformMotionFuncs(pfiInputXform *ix, pfiInputXformFuncType *start,

pfiInputXformFuncType *stop, void **data);
pfiInputXformTrackball * pfiNewIXformTrackball(void *arena);
void pfiIXformTrackballMode(pfiInputXformTrackball *tb, int mode, int val);
int pfiGetIXformTrackballMode(pfiInputXformTrackball *tb, int mode);
pfiInputXformTrackball * pfiCreate2DIXformTrackball(void *arena);
int pfiUpdate2DIXformTrackball(pfiInputXform *tb, pfiInputCoord *icoord,

void *data);
pfType * pfiGetIXformTravelClassType(void);

lxviii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

pfType * pfiGetIXformDriveClassType(void);
pfType * pfiGetIXformFlyClassType(void);
pfType * pfiGetIXformTrackballClassType(void);
pfiInputXformDrive * pfiNewIXformDrive(void *arena);
void pfiIXformDriveMode(pfiInputXformDrive *drive, int mode, int val);
int pfiGetIXformDriveMode(pfiInputXformDrive *drive, int mode);
void pfiIXformDriveHeight(pfiInputXformDrive* drive, float height);
float pfiGetIXformDriveHeight(pfiInputXformDrive* drive);
pfiInputXformDrive * pfiCreate2DIXformDrive(void *arena);
int pfiUpdate2DIXformDrive(pfiInputXform *drive, pfiInputCoord *icoord,

void *data);
pfiInputXformFly * pfiNewIXFly(void *arena);
void pfiIXformFlyMode(pfiInputXformFly *fly, int mode, int val);
int pfiGetIXformFlyMode(pfiInputXformFly *fly, int mode);
pfiInputXformFly * pfiCreate2DIXformFly(void *arnea);
int pfiUpdate2DIXformFly(pfiInputXform *fly, pfiInputCoord *icoord,

void *data);

pfiCollide
For realistic motion through a scene, an application must detect collisions between the viewer and the
scene. These functions provide that functionality. Typical uses of these utilities are to prevent movement
through walls and to maintain a constant "driving" distance above the ground.

pfType * pfiGetCollideClassType(void);
pfiCollide * pfiNewCollide(void *arena);
void pfiEnableCollide(pfiCollide *collide);
void pfiDisableCollide(pfiCollide *collide);
int pfiGetCollideEnable(pfiCollide *collide);
void pfiCollideMode(pfiCollide *collide, int mode, int val);
int pfiGetCollideMode(pfiCollide *collide, int mode);
void pfiCollideStatus(pfiCollide *collide, int status);
int pfiGetCollideStatus(pfiCollide *collide);
void pfiCollideDist(pfiCollide *collide, float dist);
float pfiGetCollideDist(pfiCollide *collide);
void pfiCollideHeightAboveGrnd(pfiCollide *collide, float dist);
float pfiGetCollideHeightAboveGrnd(pfiCollide *collide);
void pfiCollideGroundNode(pfiCollide *collide, pfNode* ground);
pfNode * pfiGetCollideGroundNode(pfiCollide *collide);
void pfiCollideObjNode(pfiCollide *collide, pfNode* db);
pfNode * pfiGetCollideObjNode(pfiCollide *collide);

lxix

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfiGetCollideMotionCoord(pfiCollide *collide, pfiMotionCoord* xcoord);
void pfiCollideFunc(pfiCollide *collide, pfiCollideFuncType func, void *data);
void pfiGetCollisionFunc(pfiCollide *collide, pfiCollideFuncType *func, void **data);
int pfiUpdateCollide(pfiCollide *collide);

pfiPick
The pfiPick utility facilitates user interaction and manipulation of a scene. It provides a means to translate
mouse locations on the screen into the coordinate space of the world being viewed. Having done this, it
can also determine what objects are being pointed to by the mouse.

pfType * pfiGetPickClassType(void);
pfiPick * pfiNewPick(void *arena);
void pfiPickMode(pfiPick *pick, int mode, int val);
int pfiGetPickMode(pfiPick *pick, int mode);
void pfiPickHitFunc(pfiPick *pick, pfiPickFuncType func, void *data);
void pfiGetPicktHitFunc(pfiPick *pick, pfiPickFuncType *func, void **data);
void pfiAddPickChan(pfiPick *pick, pfChannel *chan);
void pfiInsertPickChan(pfiPick *pick, int index, pfChannel *chan);
void pfiRemovePickChan(pfiPick *pick, pfChannel *chan);
int pfiGetPickNumHits(pfiPick *pick);
pfNode * pfiGetPickNode(pfiPick *pick);
pfGeoSet * pfiGetPickGSet(pfiPick *pick);
void pfiSetupPickChans(pfiPick *pick);
int pfiDoPick(pfiPick *pick, int x, int y);
void pfiResetPick(pfiPick *pick);

pfiXformer
pfiXformer objects provide a simple means for user-controlled motion in a scene. The pfiXformer
updates a transformation matrix based on a selected motion model and user input. This transformation
matrix can be used by the application for whatever purposes it desires. In particular, the matrix can be
used to update the viewpoint defined for a pfChannel or the transformation of a pfDCS node.

pfType* pfiGetXformerClassType(void);
pfiXformer * pfiNewXformer(void* arena);
void pfiXformerModel(pfiXformer* xf, int index, pfiInputXform* model);
void pfiSelectXformerModel(pfiXformer* xf, int which);
pfiInputXform* pfiGetXformerCurModel(pfiXformer* xf);
int pfiGetXformerCurModelIndex(pfiXformer* xf);
int pfiRemoveXformerModel(pfiXformer* xf, int index);
int pfiRemoveXformerModelIndex(pfiXformer* xf, pfiInputXform* model);
void pfiStopXformer(pfiXformer* xf);

lxx

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfiResetXformer(pfiXformer* xf);
void pfiResetXformerPosition(pfiXformer* xf);
void pfiCenterXformer(pfiXformer* xf);
void pfiXformerAutoInput(pfiXformer* xf, pfChannel* chan, pfuMouse* mouse,

pfuEventStream* events);
void pfiXformerMat(pfiXformer* xf, pfMatrix mat);
void pfiGetXformerMat(pfiXformer* xf, pfMatrix mat);
void pfiXformerModelMat(pfiXformer* xf, pfMatrix mat);
void pfiGetXformerModelMat(pfiXformer* xf, pfMatrix mat);
void pfiXformerCoord(pfiXformer* xf, pfCoord *coord);
void pfiGetXformerCoord(pfiXformer* xf, pfCoord *coord);
void pfiXformerResetCoord(pfiXformer* xf, pfCoord *resetPos);
void pfiGetXformerResetCoord(pfiXformer* xf, pfCoord *resetPos);
void pfiXformerNode(pfiXformer* xf, pfNode *node);
pfNode * pfiGetXformerNode(pfiXformer* xf);
void pfiXformerAutoPosition(pfiXformer* xf, pfChannel *chan, pfDCS *dcs);
void pfiGetXformerAutoPosition(pfiXformer* xf, pfChannel **chan, pfDCS **dcs);
void pfiXformerLimits(pfiXformer* xf, float maxSpeed, float angularVel,

float maxAccel, pfBox* dbLimits);
void pfiGetXformerLimits(pfiXformer* xf, float *maxSpeed, float *angularVel,

float *maxAccel, pfBox* dbLimits);
void pfiEnableXformerCollision(pfiXformer* xf);
void pfiDisableXformerCollision(pfiXformer* xf);
int pfiGetXformerCollisionEnable(pfiXformer* xf);
void pfiXformerCollision(pfiXformer* xf, int mode, float val, pfNode* node);
int pfiGetXformerCollisionStatus(pfiXformer* xf);
void pfiUpdateXformer(pfiXformer* xf);
int pfiCollideXformer(pfiXformer* xf);
pfType* pfiGetTDFXformerClassType(void);
pfiTDFXformer * pfiNewTDFXformer(void* arena);
pfiXformer * pfiCreateTDFXformer(pfiInputXformTrackball *tb,

pfiInputXformDrive *drive, pfiInputXformFly *fly, void *arena);
void pfiTDFXformerStartMotion(pfiTDFXformer* xf, float startSpeed,

float startAccel, float accelMult);
void pfiGetTDFXformerStartMotion(pfiTDFXformer* xf, float *startSpeed,

float *startAccel, float *accelMult);
void pfiTDFXformerFastClickTime(pfiTDFXformer* xf, float time);
float pfiGetTDFXformerFastClickTime(pfiXformer* xf);
void pfiTDFXformerTrackball(pfiTDFXformer *xf, pfiInputXformTrackball *tb);
pfiInputXformTrackball * pfiGetTDFXformerTrackball(pfiTDFXformer *xf);

lxxi

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfiTDFXformerDrive(pfiTDFXformer *xf, pfiInputXformDrive *tb);
pfiInputXformFly * pfiGetTDFXformerFly(pfiTDFXformer *xf);
void pfiTDFXformerFly(pfiTDFXformer *xf, pfiInputXformFly *tb);
pfiInputXformDrive * pfiGetTDFXformerDrive(pfiTDFXformer *xf);
int pfiProcessTDFXformerMouseEvents(pfiInput *, pfuEventStream *,

void *data);
void pfiProcessTDFXformerMouse(pfiTDFXformer *xf, pfuMouse *mouse,

pfChannel *inputChan);
void pfiProcessTDFTrackballMouse(pfiTDFXformer *xf,

pfiInputXformTrackball *trackball, pfuMouse *mouse);
void pfiProcessTDFTravelMouse(pfiTDFXformer *xf, pfiInputXformTravel *tr,

pfuMouse *mouse);

LIBPFUTIL
libpfutil Management

Before using any libpfutil utilities, the library must be initialized. These functions provide for proper ini-
tialization and control of libpfutil.

void pfuInitUtil(void);
pfDataPool* pfuGetUtilDPool(void);
void pfuExitUtil(void);
void pfuDPoolSize(long size);
long pfuGetDPoolSize(void);
volatile void* pfuFindUtilDPData(int id);

Processor Control
In certain circumstances, users may wish to control which CPU a particular IRIS Performer subprocess
runs on. They might even wish to exclusively devote a particular processor to a given subprocess. These
functions provide control of the scheduling of IRIS Performer subprocesses on a machine’s processors.

int pfuFreeCPUs(void);
int pfuRunProcOn(int cpu);
int pfuLockDownProc(int cpu);
int pfuLockDownApp(void);
int pfuLockDownCull(pfPipe *);
int pfuLockDownDraw(pfPipe *);
int pfuPrioritizeProcs(int onOff);

Multiprocess Rendezvous
These rendezvous functions provide the functionality necessary for synchronizing master and slave
processes in a multiprocessing environment.

lxxii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfuInitRendezvous(pfuRendezvous *rvous, int numSlaves);
void pfuMasterRendezvous(pfuRendezvous *rvous);
void pfuSlaveRendezvous(pfuRendezvous *rvous, int id);

GLX Mixed Mode
The libpfutil GLX routines are now provided for compatibility with previous versions of Performer. New
development should be done based on the pfWindow and pfPipeWindow API that provides a single API
for managing IrisGL, Mixed Mode, and OpenGL windows.

pfuXDisplay * pfuOpenXDisplay(int screen);
pfuGLXWindow * pfuGLXWinopen(pfPipe *p, pfPipeWindow *pw, const char *name);
void pfuGetGLXWin(pfPipe *pipe, pfuGLXWindow *glxWin);
const char * pfuGetGLXDisplayString(pfPipe *pipe);
void pfuGLMapcolors(pfVec3 *clrs, int start, int num);
int pfuGLXAllocColormap(pfuXDisplay *dsp, pfuXWindow w);
void pfuGLXMapcolors(pfuXDisplay *dsp, pfuXWindow w, pfVec3 *clrs, int loc,

int num);
void pfuMapWinColors(pfWindow *w, pfVec3 *clrs, int start, int num);
void pfuMapPWinColors(pfPipeWindow *pwin, pfVec3 *clrs, int start, int num);
void pfuPrintWinFBConfig(pfWindow *win, FILE *file);
void pfuPrintPWinFBConfig(pfPipeWindow *pwin, FILE *file);
pfFBConfig pfuChooseFBConfig(Display *dsp, int screen, int *constraints, void *arena);

Input Handling
These functions provide an interface for managing X and GL event streams.

pfuEventQueue * pfuNewEventQ(pfDataPool *dp, int id);
void pfuResetEventStream(pfuEventStream *es);
void pfuResetEventQ(pfuEventQueue *eq);
void pfuAppendEventQ(pfuEventQueue *eq0, pfuEventQueue *eq1);
void pfuAppendEventQStream(pfuEventQueue *eq, pfuEventStream *es);
void pfuEventQStream(pfuEventQueue *eq, pfuEventStream *es);
pfuEventStream * pfuGetEventQStream(pfuEventQueue *eq);
void pfuGetEventQEvents(pfuEventStream *events, pfuEventQueue *eq);
void pfuIncEventQFrame(pfuEventQueue *eq);
void pfuEventQFrame(pfuEventQueue *eq, int val);
int pfuGetEventQFrame(pfuEventQueue *eq);
void pfuIncEventStreamFrame(pfuEventStream *es);
void pfuEventStreamFrame(pfuEventStream *es, int val);
int pfuGetEventStreamFrame(pfuEventStream *es);
void pfuInitInput(pfPipeWindow *pw, int mode);

lxxiii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfuExitInput(void);
int pfuMapMouseToChan(pfuMouse *mouse, pfChannel *chan);
int pfuMouseInChan(pfuMouse *mouse, pfChannel *chan);
void pfuCollectInput(void);
void pfuCollectGLEventStream(pfuEventStream *events, pfuMouse *mouse,

int handlerMask, pfuEventHandlerFuncType handlerFunc);
void pfuCollectXEventStream(pfWSConnection dsp, pfuEventStream *events,

pfuMouse *mouse, int handlerMask,
pfuEventHandlerFuncType handlerFunc);

void pfuGetMouse(pfuMouse *mouse);
void pfuGetEvents(pfuEventStream *events);
void pfuInputHandler(pfuEventHandlerFuncType userFunc, uint mask);
void pfuMouseButtonClick(pfuMouse *mouse,
void pfuMouseButtonRelease(pfuMouse *mouse,
double pfuMapXTime(double xtime);

Cursor Control
Each window managed by Performer, both pfWindows and pfPipeWindows, can have an associated
cursor. These functions can be used to manage the various cursors desired by an application.

Cursor pfuGetInvisibleCursor(void);
void pfuLoadPWinCursor(pfPipeWindow *w, Cursor c);
void pfuLoadWinCursor(pfWindow *w, Cursor c);
Cursor pfuCreateDftCursor(int index);
void pfuCursor(Cursor c, int index);
Cursor pfuGetCursor(int index);
void pfuInitGUICursors(void);
void pfuGUICursor(int target, Cursor c);
Cursor pfuGetGUICursor(int target);
void pfuGUICursorSel(Cursor sel);
Cursor pfuGetGUICursorSel(void);
void pfuUpdateGUICursor(void);

OpenGL X Fonts
It is convenient to be able to draw text in Performer windows. When programming with OpenGL, an
application must use X fonts for this purpose. These functions simplify the use of X fonts for this purpose
by hiding much of the low-level font management.

void pfuLoadXFont(char *fontName, pfuXFont *fnt);
void pfuMakeXFontBitmaps(pfuXFont *fnt);
void pfuMakeRasterXFont(char *fontName, pfuXFont *font);

lxxiv

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfuSetXFont(pfuXFont *);
void pfuGetCurXFont(pfuXFont *);
int pfuGetXFontWidth(pfuXFont *, const char *);
int pfuGetXFontHeight(pfuXFont *);
void pfuCharPos(float x, float y, float z);
void pfuDrawString(const char *s);
void pfuDrawStringPos(const char *s, float x, float y, float z);

Simple GUI
Many applications require a simple user interface. Their needs are often far more restricted than the func-
tionality provided by user interface libraries such as Motif. For those cases in which a simple and efficient
user interface is required, these functions can be used to provide one.

void pfuInitGUI(pfPipeWindow *pw);
void pfuExitGUI(void);
void pfuEnableGUI(int en);
void pfuUpdateGUI(pfuMouse *mouse);
void pfuRedrawGUI(void);
void pfuGUIViewport(float l, float r, float b, float t);
void pfuGetGUIViewport(float *l, float *r, float *b, float *t);
int pfuInGUI(int x, int y);
void pfuFitWidgets(int val);
void pfuGetGUIScale(float *x, float *y);
void pfuGetGUITranslation(float *x, float *y);
void pfuGUIHlight(pfHighlight *hlight);
pfHighlight * pfuGetGUIHlight(void);
pfuPanel* pfuNewPanel(void);
void pfuEnablePanel(pfuPanel *p);
void pfuDisablePanel(pfuPanel *p);
void pfuGetPanelOriginSize(pfuPanel *p, float *xo, float *yo, float *xs, float *ys);
pfuWidget * pfuNewWidget(pfuPanel *p, int type, int id);
int pfuGetWidgetType(pfuWidget *w);
void pfuEnableWidget(pfuWidget *w);
void pfuDisableWidget(pfuWidget *w);
int pfuGetWidgetId(pfuWidget *w);
void pfuWidgetDim(pfuWidget *w, int xo, int yo, int xs, int ys);
void pfuGetWidgetDim(pfuWidget *w, int *xo, int *yo, int *xs, int *ys);
void pfuWidgetLabel(pfuWidget *w, const char *label);
int pfuGetWidgetLabelWidth(pfuWidget *w);
const char * pfuGetWidgetLabel(pfuWidget *w);

lxxv

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfuWidgetRange(pfuWidget *w, int mode, float min, float max, float val);
void pfuWidgetValue(pfuWidget *w, float val);
float pfuGetWidgetValue(pfuWidget *w);
void pfuWidgetDefaultValue(pfuWidget *w, float val);
void pfuWidgetDrawFunc(pfuWidget *w, pfuWidgetDrawFuncType func);
void pfuWidgetSelectFunc(pfuWidget *w, pfuWidgetSelectFuncType func);
void pfuWidgetActionFunc(pfuWidget *w, pfuWidgetActionFuncType func);
pfuWidgetActionFuncType pfuGetWidgetActionFunc(pfuWidget *w);
pfuWidgetSelectFuncType pfuGetWidgetSelectFunc(pfuWidget *w);
pfuWidgetDrawFuncType pfuGetWidgetDrawFunc(pfuWidget *w);
void pfuWidgetSelections(pfuWidget *w, pfuGUIString *attrList, int *valList,

void (**funcList)(pfuWidget *w), int numSelections);
void pfuWidgetSelection(pfuWidget *w, int index);
int pfuGetWidgetSelection(pfuWidget *w);
void pfuWidgetDefaultSelection(pfuWidget *w, int index);
void pfuWidgetDefaultOnOff(pfuWidget * w, int on);
void pfuWidgetOnOff(pfuWidget *w, int on);
int pfuIsWidgetOn(pfuWidget *w);
void pfuResetGUI(void);
void pfuResetPanel(pfuPanel *p);
void pfuResetWidget(pfuWidget *w);
void pfuDrawTree(pfChannel *chan, pfNode *node, pfVec3 panXYScale);
void pfuDrawMessage(pfChannel *chan, const char *msg, int rel, int just, float x,

float y, int size, int cmode);
void pfuDrawMessageCI(pfChannel *chan, const char *msg, int rel, int just,

float x, float y, int size, int textClr, int shadowClr);
void pfuDrawMessageRGB(pfChannel *chan, const char *msg, int rel, int just,

float x, float y, int size, pfVec4 textClr, pfVec4 shadowClr);

Scene Graph Traversal
Traversals are widely applicable to many tasks required in Performer applications. These functions pro-
vide a customizable, recursive traversal of an IRIS Performer scene graph.

int pfuTravCountNumVerts(pfNode *node);
int pfuTraverse(pfNode *node, pfuTraverser *trav);
void pfuInitTraverser(pfuTraverser *trav);
void pfuTravCalcBBox(pfNode *node, pfBox *box);
void pfuTravCountDB(pfNode *node, pfFrameStats *fstats);
void pfuTravGLProf(pfNode *node, int mode);
void pfuTravNodeAttrBind(pfNode *node, uint attr, uint bind);

lxxvi

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

void pfuTravNodeHlight(pfNode *node, pfHighlight *hl);
void pfuTravPrintNodes(pfNode *node, const char *fname);
int pfuCalcDepth(pfNode *node);
void pfuTravCachedCull(pfNode* node, int numChans);

MultiChannel Option
These functions serve as a generic way of initializing channels when using the Multi-Channel Option
(MCO) available on RealityEngine graphics systems.

void pfuTileChans(pfChannel **chn, int nChans, int ntilesx, int ntilesy);
void pfuConfigMCO(pfChannel **chn, int nChans);
int pfuGetMCOChannels(pfPipe *p);
void pfuTileChan(pfChannel **chn, int thisChan, int nChans, float l, float r, float b, float t);

MultiPipe Statistics
pfuManageMPipeStats provides a simple mechanism for acquiring frame timing statistics over a period
of time and saving them to a disk file.

int pfuManageMPipeStats(int nFrames, int nSampledPipes);

Path Following
Automated path following can greatly simplify the construction of interactive walkthrough applications.
These functions provide the means for creating and using automated paths.

pfuPath * pfuNewPath(void);
pfuPath * pfuSharePath(pfuPath *path);
pfuPath * pfuCopyPath(pfuPath *path);
pfuPath * pfuClosePath(pfuPath *path);
int pfuFollowPath(pfuPath *path, float seconds, pfVec3 where, pfVec3 orient);
int pfuPrintPath(pfuPath *path);
int pfuAddPath(pfuPath *path, pfVec3 first, pfVec3 final);
int pfuAddArc(pfuPath *path, pfVec3 center, float radius, pfVec2 angles);
int pfuAddFillet(pfuPath *path, float radius);
int pfuAddSpeed(pfuPath *path, float desired, float rate);
int pfuAddDelay(pfuPath *path, float delay);
int pfuAddFile(pfuPath *path, char *name);

Collision Detection
This is the old utility for collision detection. These functions are provided to ease the transition of existing
Performer-based applications to the new API. They should not be used in developing new software and
are likely to be removed in a future release. Refer to the reference pages for more information.

lxxvii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

void pfuCollisionChan(pfChannel *chan);
pfChannel* pfuGetCollisionChan(void);
void pfuCollideSetup(pfNode *node, int mode, int mask);
int pfuCollideGrnd(pfCoord *coord, pfNode *node, pfVec3 zpr);
int pfuCollideGrndObj(pfCoord *coord, pfNode *grndNode, pfVec3 zpr, pfSeg *seg,

pfNode *objNode, pfVec3 hitPos, pfVec3 hitNorm);
int pfuCollideObj(pfSeg *seg, pfNode *objNode, pfVec3 hitPos, pfVec3 hitNorm);

Timer Control
Tracking the passage of time is essential for interactive applications. Performer provides pfuTimer
objects, which are both real-time and independent of frame rate.

pfuTimer* pfuNewTimer(void *arena, int size);
void pfuInitTimer(pfuTimer *timer, double start, double delta, void (*func)(pfuTimer*),

void *data);
void pfuStartTimer(pfuTimer *timer);
void pfuStopTimer(pfuTimer *timer);
void pfuEvalTimers(void);
int pfuEvalTimer(pfuTimer *timer);
int pfuActiveTimer(pfuTimer * timer);

Hash Tables
Hash tables are an ubiquitous data structure. They are used internally by Performer, and many Per-
former applications will find them very useful. These functions provide a simple hash table facility to all
Performer-based systems.

pfuHashTable* pfuNewHTable(int numb, int eltsize, void* arena);
void pfuDelHTable(pfuHashTable* ht);
void pfuResetHTable(pfuHashTable* ht);
pfuHashElt* pfuEnterHash(pfuHashTable* ht, pfuHashElt* elt);
int pfuRemoveHash(pfuHashTable* ht, pfuHashElt* elt);
int pfuFindHash(pfuHashTable* ht, pfuHashElt* elt);
int pfuHashGSetVerts(pfGeoSet *gset);
int pfuCalcHashSize(int size);

Geometric Simplification
These functions can be used to automatically generate very simple level-of-detail representations of a sub-
graph from the bounding boxes of the geometric objects contained in that subgraph.

pfLOD* pfuBoxLOD(pfGroup *grp, int flat, pfVec4* clr);
pfGeoSet* pfuMakeBoxGSet(pfBox *box, pfVec4 clr, int flat);

lxxviii

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)hh

Texture Loading
These functions assist in the sharing and downloading of textures, both of which are important for perfor-
mance. Sharing of texture data reduces memory requirements and can subsequently increase efficiency.
For consistent frame rates, it is also very important to download textures into the graphics pipeline’s phy-
sical texture memory before beginning simulation.

pfTexture* pfuNewSharedTex(const char *filename, void *arena);
pfList* pfuGetSharedTexList(void);
pfList * pfuMakeTexList(pfNode *node);
pfList * pfuMakeSceneTexList(pfScene *node);
void pfuDownloadTexList(pfList *list, int style);
int pfuGetTexSize(pfTexture *tex);

Texture Animation
It may be necessary to animate textures to achieve specific visual effects. These functions allow the appli-
cation to setup sequences of textures which define an animation.

void pfuNewTexList(pfTexture *tex);
pfList * pfuLoadTexListFiles(pfList *movieTexList, char nameList[][PF_MAXSTRING], int len);
pfList * pfuLoadTexListFmt(pfList *movieTexList, const char *fmtStr, int start, int end);
pfSequence * pfuNewProjector(pfTexture *handle);
int pfuProjectorPreDrawCB(pfTraverser *trav, void *travData);

Random Numbers
Generating good random numbers is very important for many simulation tasks. These functions provide
a portable interface to the system random number generator which is somewhat more convenient than
random.

void pfuRandomize(int seed);
long pfuRandomLong(void);
float pfuRandomFloat(void);
void pfuRandomColor(pfVec4 rgba, float minColor, float maxColor);

Flybox Control
These routines provide a simple interface to the BG Systems flybox but do not provide a flight model
based on the flybox.

int pfuOpenFlybox(char *p);
int pfuReadFlybox(int *dioval, float *inbuf);
int pfuGetFlybox(float *analog, int *but);
int pfuGetFlyboxActive(void);
int pfuInitFlybox(void);

lxxix

Performer(3pf) IRIS Performer 2.0 C++ Reference Pageshh

Smoke Simulation
These functions simulate the appearance of smoke and fire. They are included both as a utility in simula-
tions as well as a demonstration of how to model such phenomena.

void pfuInitSmokes(void);
pfuSmoke * pfuNewSmoke(void);
void pfuSmokeType(pfuSmoke *smoke, int type);
void pfuSmokeOrigin(pfuSmoke* smoke, pfVec3 origin, float radius);
void pfuSmokeDir(pfuSmoke* smoke, pfVec3 dir);
void pfuSmokeVelocity(pfuSmoke* smoke, float turbulence, float speed);
void pfuGetSmokeVelocity(pfuSmoke* smoke, float *turbulence, float *speed);
void pfuSmokeMode(pfuSmoke* smoke, int mode);
void pfuDrawSmokes(pfVec3 eye);
void pfuSmokeTex(pfuSmoke* smoke, pfTexture* tex);
void pfuSmokeDuration(pfuSmoke* smoke, float dur);
void pfuSmokeDensity(pfuSmoke* smoke, float dens, float diss, float expansion);
void pfuGetSmokeDensity(pfuSmoke* smoke, float *dens, float *diss, float *expansion);
void pfuSmokeColor(pfuSmoke* smoke, pfVec3 bgn, pfVec3 end);

LightPointState Utilities
These functions can derive a texture image from a pfLightPoint specification.

void pfuMakeLPStateShapeTex(pfLPointState *lps, pfTexture *tex, int size);
void pfuMakeLPStateRangeTex(pfLPointState *lps, pfTexture *tex, int size, pfFog *fog);

Draw Styles
These functions demonstrate how to use multi-pass rendering to achieve various special drawing effects.
Hidden line elimination and haloed lines are two examples of effects which can be created using these
functions.

void pfuPreDrawStyle(int style, pfVec4 scribeColor);
void pfuPostDrawStyle(int style);
void pfuCalcNormalizedChanXY(float* px, float* py, pfChannel* chan, int xpos, int ypos);
int pfuSaveImage(char* name, int xorg, int yorg, int xsize, int ysize, int saveAlpha);

lxxx

libpf is a high-level library for
real-time graphics and visual
simulation.

This library provides a scene graph
structure and database traversals
including view culling, rendering
and collision detection in a
multiprocessed environment.

libpf

Chapter 1

IRIS Performer 2.0 libpf C++ Reference Pages pfBillboard(3pf)hh

NAME
pfBillboard − Create and update automatic rotation billboard nodes.

FUNCTION SPECIFICATION
#include <Performer/pf/pfBillboard.h>

pfBillboard::pfBillboard();

static pfType * pfBillboard::getClassType(void);

void pfBillboard::setPos(int i, const pfVec3 &xyzOrigin);

void pfBillboard::getPos(int i, pfVec3 &xyzOrigin);

void pfBillboard::setMode(int mode, int val);

int pfBillboard::getMode(int mode);

void pfBillboard::setAxis(const pfVec3 &axis);

void pfBillboard::getAxis(pfVec3 &axis);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfBillboard is derived from the parent class pfGeode, so each of these member
functions of class pfGeode are also directly usable with objects of class pfBillboard. This is also true for
ancestor classes of class pfGeode.

int pfGeode::addGSet(pfGeoSet* gset);
int pfGeode::removeGSet(pfGeoSet* gset);
int pfGeode::insertGSet(int index, pfGeoSet* gset);
int pfGeode::replaceGSet(pfGeoSet* old, pfGeoSet* new);
pfGeoSet * pfGeode::getGSet(int index);
int pfGeode::getNumGSets(void);

Since the class pfGeode is itself derived from the parent class pfNode, objects of class pfBillboard can
also be used with these functions designed for objects of class pfNode.

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);

3

pfBillboard(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);
pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfBillboard can
also be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfBillboard can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

4

IRIS Performer 2.0 libpf C++ Reference Pages pfBillboard(3pf)hh

DESCRIPTION
A pfBillboard is a pfGeode in which each pfGeoSet rotates to follow the eyepoint. Billboards are useful
for complex objects which are roughly symmetrical about one or more axes. The billboard tracks the
viewer by rotating about an axis or a point to present the same image to the viewer using far fewer
polygons than a solid model. A classic example is a textured billboard of a single quadrilateral represent-
ing a tree.

A pfBillboard can contain any number of pfGeoSets. pfGeoSets are added to and removed from the
pfBillboard using the pfGeode::addGSet and pfGeode::removeGSet routines used with pfGeodes. Each
pfGeoSet rotates independently to follow the viewer. By convention, the pfGeoSet is rotated about the +Z
axis so that the +Y axis points towards the eye point.

new pfBillboard creates and returns a handle to a pfBillboard. Like other pfNodes, pfBillboards are
always allocated from shared memory and cannot be created statically, on the stack or in arrays. pfBill-
boards should be deleted using pfDelete rather than the delete operator.

pfBillboard::getClassType returns the pfType* for the class pfBillboard. The pfType* returned by
pfBillboard::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfBillboard. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfBboardPos specifies the position xyzOrigin for the pfGeoSet with index i. pfBillboard::getPos copies
the position of the pfGeoSet with index i into xyzOrigin.

Billboards can either rotate about an axis or a point.

Axial billboards rotate about the axis specified by pfBillboard::setAxis. The rotation is about the origin
(0,0,0) of the pfGeoSet. In all cases, the geometry is modeled in the XZ plane, with +Y forward. When
rendered, the billboard is rotated so that the -Y axis points back to the eye point. The +Z axis is the
pfGeoSet’s axis of rotation. An axial rotate billboard is specified by setting the PFBB_ROT mode of the
billboard to the value PFBB_AXIAL_ROT using pfBillboard::setMode. The axis of rotation (x, y, z) is
specified using pfBillboard::setAxis. pfBillboard::getAxis returns the axis of the pfBillboard.

Point rotate billboards are useful for spherical objects or special effects such as smoke. They come in two
varieties depending on how the remaining rotational degree of freedom is determined (rotating the -Y
axis towards the eye, still leaves an arbitrary rotation about the pfGeoSet’s Y axis).

If the PFBB_ROT mode on the billboard is set to PFBB_POINT_ROT_EYE, the billboard is
rotated so that the +Z axis of the pfGeoSet stays upright on the screen.

If the PFBB_ROT mode on the billboard is set to PFBB_POINT_ROT_WORLD, the billboard is

5

pfBillboard(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

rotated so that the angle between the +Z axis of the pfGeoSet and axis specified with
pfBillboard::setAxis is minimized.

Both PFBB_AXIAL_ROT and PFBB_POINT_ROT_WORLD billboards may "spin" about the Y axis of
the pfGeoSet when viewed along the rotation or alignment axis.

After the first pfSync, the number of pfGeoSets, the number and length of the primitives, and planarity of
the vertices should not be changed.

Some database formats may place a transformation above each billboard for positioning it. As with a
pfGeode containing a small amount of geometry, having many billboards with transformation matrices
above them can be expensive.

Since billboards always rotate towards the eyepoint, billboards in adjacent channels with the same
eyepoint have the same orientation. Channels with different eyepoints will have different billboard orien-
tations.

BUGS
Intersection traversals test only the pfBillboard’s bounding volume, not its individual pfGeoSets.

pfFlatten only transforms the position of a billboard, not the axis and applies only a uniform scale to the
billboard geometry.

SEE ALSO
pfChannel, pfGeode, pfNode, pfScene, pfTransparency, pfDelete

6

IRIS Performer 2.0 libpf C++ Reference Pages pfBuffer(3pf)hh

NAME
pfBuffer, pfAsyncDelete, pfGetCurBuffer − Create, select, and merge a pfBuffer.

FUNCTION SPECIFICATION
#include <Performer/pf/pfBuffer.h>

pfBuffer::pfBuffer();

void pfBuffer::select(void);

static int pfBuffer::merge(void);

void pfBuffer::setScope(pfObject *obj, int scope);

int pfBuffer::getScope(pfObject *obj);

static int pfBuffer::add(void *parent, void *child);

static int pfBuffer::remove(void *parent, void *child);

static int pfBuffer::insert(void *parent, int index, void *child);

static int pfBuffer::replace(void *parent, void *oldChild, void *newChild);

int pfAsyncDelete(void *mem);

pfBuffer* pfGetCurBuffer(void);

PARAMETERS
buf identifies a pfBuffer

obj identifies a pfObject

DESCRIPTION
A pfBuffer is a data structure that logically encompasses libpf objects such as pfNodes. Newly created
objects are automatically "attached" to the current pfBuffer specified by pfBuffer::select. Later, any
objects created in the pfBuffer may be merged into the main IRIS Performer processing stream with
pfBuffer::merge. In conjunction with a forked DBASE process (see pfMultiprocess and pfDBaseFunc),
the pfBuffer mechanism supports asynchronous parallel creation and deletion of database objects. This is
the foundation of a real-time database paging system.

new pfBuffer creates and returns a handle to a pfBuffer. pfBuffers cannot be created statically, on the
stack, from the heap or in arrays.

pfBuffer::select makes the pfBuffer the current pfBuffer. Once the pfBuffer is current, all subsequently
created libpf objects will be automatically associated with the pfBuffer and these objects may only be
accessed through IRIS Performer routines when the pfBuffer is the current pfBuffer (except for
pfGroup::bufferAddChild and pfGroup::bufferRemoveChild, see the pfGroup man page). A given
pfBuffer should only be current in a single process at any given time. In this way, a pfBuffer restricts
access to a given object to a single process, avoiding hard-to-find errors due to multiprocessed data colli-
sions. pfGetCurBuffer returns the current pfBuffer.

7

pfBuffer(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

Only libpf objects are subject to pfBuffer access restrictions. libpf objects include pfNodes such as
pfGroup, pfGeode and pfUpdatables such as pfLODState, pfChannel, pfEarthSky. libpr objects such as
pfGeoSets, pfGeoStates, and pfMaterials have no pfBuffer restrictions so they may be accessed by any
process at any time although care must be taken by the application to avoid multiprocessed collisions on
these data structures.

pfBuffer::merge merges the current pfBuffer with the main IRIS Performer pfBuffer. This main pfBuffer
is created by pfConfig and will resist deletion and merging and should only be made current in the APP
process (however, it is legal to select a different buffer in the APP process). If called in a process other
than the APP, pfBuffer::merge will block until the APP calls pfSync, at which time the APP will merge
the current pfBuffer into the main pfBuffer and then allow the process that requested the merge to con-
tinue. If called in the APP, pfBuffer::merge will immediately execute the merge. After pfBuffer::merge
returns, any objects that were created in the current pfBuffer may only be accessed in the APP process
when the APP pfBuffer has been selected as the current pfBuffer. In other words, the merged pfBuffer
has been "reset" and its objects now "exist" only in the APP pfBuffer. The addresses of libpf objects are
not changed by pfBuffer::merge.

Any number of pfBuffers may be used and merged (pfBuffer::merge) by any number of processes for
multithreaded database manipulation, subject to the following restrictions:

1. A given pfBuffer should be current (via pfBuffer::select) in only a single process at any
given time.

2. Each process which selects a pfBuffer must be forked, not sproced.

Specifically, pfBuffer usage is not restricted to the DBASE process (see pfConfig).

pfGroup::bufferAddChild and pfGroup::bufferRemoveChild provide access to nodes that do not exist
in the current pfBuffer. Either, none, or both of the pfBuffer and node may exist outside the current
pfBuffer. pfGroup::bufferAddChild and pfGroup::bufferRemoveChild act just like their non-buffered
counterparts pfGroup::addChild and pfGroup::removeChild except that the addition or removal request
is not carried out immediately but is recorded by the current pfBuffer. The request is delayed until the
first pfBuffer::merge when both the parent pfGroup and node are found in the main IRIS Performer
pfBuffer. The list of pfGroup::bufferAddChild and pfGroup::bufferRemoveChild requests is traversed
in pfBuffer::merge after all nodes have been merged. pfGroup::bufferAddChild and
pfGroup::bufferRemoveChild return TRUE if the request was recorded and FALSE otherwise.

In addition to the pfGroup-specific pfGroup::bufferAddChild and pfGroup::bufferRemoveChild rou-
tines, a pfBuffer allows generic list management for pfGroup, pfGeode, pfText, and pfPipeWindow
objects. These functions, pfGroup::bufferAdd, pfGroup::bufferRemove, pfGroup::bufferInsert,
pfGroup::bufferReplace can be used to manage a pfGroup’s list of pfNodes, a pfGeode’s list of
pfGeoSets, a pfText’s list of pfStrings, or a pfPipeWindow’s list of pfChannels respectively. These rou-
tines infer the proper action to take from the argument types. For example, the following code fragment

8

IRIS Performer 2.0 libpf C++ Reference Pages pfBuffer(3pf)hh

is equivalent to group->bufferAddChild(geode):

pfGroup *group;

pfGeode *geode;

pfBuffer::add(group, geode);

pfGroup::bufferAdd, pfGroup::bufferRemove, pfGroup::bufferInsert, pfGroup::bufferReplace all act
similarly in that they do not have effect until pfBuffer::merge is called and all parties have been merged
into the main IRIS Performer buffer. They return -1 if the argument types are not consistent (e.g.,
pfBuffer::remove(group, geoset)), 0 if the request is immediately processed (this happens when all parties
already have scope in the current pfBuffer), and 1 if the request is buffered until the next pfBuffer::merge.

pfBuffer::setScope sets the scope of obj with respect to the pfBuffer. If scope is TRUE, then obj is "added"
to the pfBuffer so that when the pfBuffer is made current (pfBuffer::select) in a process, obj may be
accessed through IRIS Performer routines in that same process. When scope is FALSE, obj is "removed"
from the pfBuffer. pfBuffer::setScope’s primary purpose is to move objects between pfBuffers, particu-
larly from the main APP pfBuffer into an application pfBuffer typically used for asynchronous database
manipulations. In this case the object’s scope would be set to FALSE in the old pfBuffer and TRUE in the
new pfBuffer. It is undefined when an object has scope in multiple pfBuffers since this violates the mul-
tiprocessing data exclusion requirement of IRIS Performer. pfBuffer::getScope returns TRUE or FALSE
indicating the scope of obj in pfBuffer the pfBuffer.

When using pfBuffers for database paging, it is sometimes desirable to retain certain, common database
models ("library models") in memory. Examples are trees, houses, and other "culture" which are
instanced on paged terrain patches. One instancing mechanism is to create the library models in one
pfBuffer and later use pfGroup::bufferAddChild to attach the models to scene graphs created in another
pfBuffer. This is classic instancing which uses transformations (pfSCS) to properly position the models.
However, this mechanism suffers from 2 performance problems:

1. pfBuffer::merge will adversely impact the APP process, proportional to the number of
pfBuffer::addChild and pfBuffer::removeChild requests.

2. Transformations in the scene graph reduce IRIS Performer’s ability to sort the database
(see pfChannel::setBinSort) and matrix operations have some cost in the graphics pipe-
line.

An alternative to classic instancing is "flattening" which creates a clone of the instanced subtree and then
applies the transformation to all geometry in the cloned subtree. This method eliminates the performance
problems listed above but does increase memory usage.

9

pfBuffer(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

pfNode* pfNode::bufferClone(int mode, pfBuffer *buf)

is a version of pfNode::clone which clones the pfBuffer and its subtree, which resides in buf, into the
current pfBuffer. mode is the same argument as that passed to pfNode::clone (it is currently ignored).
Once cloned, a subtree may be flattened with pfNode::flatten.:

Example 1: Instancing with pfGroup::bufferAddChild

libraryBuffer = new pfBuffer;

libraryBuffer->select();

loadLibraryObjects();

pagingBuffer = new pfBuffer;

pagingBuffer->select();

while (!done)

{

pfNode *newStuff;

pfSCS *treeLocation;

/* Load new terrain tile or whatever */

newStuff = loadStuff();

/* Create pfSCS which is location of tree */

treeLocation = new pfSCS(treeMatrix);

/* Add library model of a tree to treeLocation */

treeLocation->bufferAddChild(libraryTree);

/* Add instanced tree to newly loaded stuff */

newStuff->addChild(treeLocation);

}

Example 2: Instancing with pfBufferClone and pfFlatten

libraryBuffer = new pfBuffer;

libraryBuffer->select();

loadLibraryObjects();

10

IRIS Performer 2.0 libpf C++ Reference Pages pfBuffer(3pf)hh

pagingBuffer = new pfBuffer;

pagingBuffer->select();

while (!done)

{

pfNode *newStuff;

pfSCS *treeLocation;

/* Load new terrain tile or whatever */

newStuff = loadStuff();

/* Create pfSCS which is location of tree */

treeLocation = new pfSCS(treeMatrix);

/* Clone tree model from library into current, paging buffer */

newTree = libraryTree->bufferClone(0, libraryBuffer);

/* Transform cloned tree */

treeLocation->addChild(newTree);

treeLocation->flatten();

/* Get rid of unneeded treeLocation */

treeLocation->removeChild(newTree);

pfDelete(treeLocation);

/* Add cloned, flattened tree to newly loaded stuff */

newStuff->addChild(newTree);

}

pfAsyncDelete is a special version of pfDelete which is useful for asynchronous database deletion.
Instead of having immediate effect, pfAsyncDelete simply registers a deletion request at the time of invo-
cation. These deletion requests are then processed in the DBASE trigger routine, pfDBase (pfDBase is
automatically called if you have not registered a DBASE callback with pfDBaseFunc). Thus, if the
DBASE processing stage is configured as its own process via pfMultiprocess, then the deletion will be
carried out asynchronously without affecting (slowing down) the main processing pipelines.

pfAsyncDelete may be called from any process and returns -1 if mem is NULL or not derived from
pfMemory and returns TRUE otherwise. Note that unlike pfDelete pfAsyncDelete does not check mem’s
reference count and return TRUE or FALSE indicating whether mem was successfully deleted or not.
Instead, the reference count check is delayed until the next call to pfDBase. At this time there is no way

11

pfBuffer(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

to query the success of an pfAsyncDelete request.

Note that pfDBase should only be called from within the database callback function (pfDBaseFunc) in
the DBASE process just like pfCull and pfDraw should only be called in the pfChannel CULL and
DRAW callbacks respectively (pfChanTravFunc).

Example 2: How to use a pfBuffer

/* Must create these in shared memory */

static pfGroup **Tiles;

static int *TileStatus;

/*

* Load new tiles and delete old ones.

*/

void

pageDBase(void *data)

{

static pfBuffer *buf = NULL;

pfGroup *root;

if (buf == NULL)

{

buf = new pfBuffer;

buf->select();

}

/* Asynchronously delete unneeded tiles and update their status */

for (allUnneededTiles)

{

/*

* Scene does not have scope in ’buf’ so use pfBufferRemoveChild

* Tiles[i] is not really removed until pfMergeBuffer

*/

Scene->bufferRemoveChild(Tiles[i]);

/* Delete Tiles[i] at pfDBase time if Tiles[i] only has Scene as

a parent.

*/

pfAsyncDelete(Tiles[i]);

/* Update tile status */

TileStatus[i] = TILE_DELETED;

12

IRIS Performer 2.0 libpf C++ Reference Pages pfBuffer(3pf)hh

}

/*

* Synchronously load needed tiles and update their status.

*/

LoadNeededDatabaseTiles(Tiles, TileStatus);

for (allLoadedTiles)

{

/*

* Scene does not have scope in ’buf’ so use pfBufferAddChild

* loadedTile[i] is not really added until pfMergeBuffer

*/

Scene->bufferAddChild(loadedTile[i]);

}

/*

* Merge newly loaded tiles into main pfBuffer then carry out

* all pfBufferAdd/RemoveChild requests.

*/

pfBuffer::merge();

/*

* Carry out pfAsyncDelete requests. Call *after* pfBuffer::merge()

* so that all pfBufferRemoveChild requests have been processed

* and child reference counts have been properly decremented.

*/

pfDBase();

}

:

pfInit();

Tiles = pfMalloc(sizeof(pfGroup*) * NUM_TILES, pfGetSharedArena());

TileStatus = pfMalloc(sizeof(int) * NUM_TILES, pfGetSharedArena());

pfMultiprocess(PFMP_APP_CULL_DRAW | PFMP_FORK_DBASE);
pfConfig();

:

pfDBaseFunc(pageDBase);

while(!done)

{

pfSync();

13

pfBuffer(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

/* Remove and request deletion of unneeded tiles */

UpdateTileStatus(Tiles, TileStatus);

pfFrame();

}

NOTES
pfGetCurBuffer will return the APP pfBuffer immediately after pfConfig returns.

SEE ALSO
pfBuffer, pfConfig, pfDBaseFunc, pfFrame, pfMultiprocess, pfGroup

14

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

NAME
pfChannel, pfApp, pfCull, pfDraw, pfDrawBin, pfNodePickSetup − Set and get pfChannel definition
parameters.

FUNCTION SPECIFICATION
#include <Performer/pf/pfChannel.h>

pfChannel::pfChannel();

static pfType * pfChannel::getClassType(void);

pfPipe * pfChannel::getPipe(void);

void pfChannel::setViewport(float l, float r, float b, float t);

void pfChannel::getViewport(float* l, float* r, float* b, float* t);

void pfChannel::getOrigin(int *xo, int *yo);

void pfChannel::getSize(int *xs, int *ys);

void pfChannel::setLODState(const pfLODState *ls);

void pfChannel::getLODState(pfLODState *ls);

void pfChannel::setLODStateList(pfList *lsList);

pfList* pfChannel::getLODStateList(void);

int pfChannel::getPWinIndex(void);

pfPipeWindow *
pfChannel::getPWin(void);

void pfChannel::setTravFunc(int trav, pfChanFuncType func);

pfChanFuncType
pfChannel::getTravFunc(int trav);

void * pfChannel::allocChanData(int size);

void pfChannel::setChanData(void *data, size_t size);

void * pfChannel::getChanData(void);

size_t pfChannel::getChanDataSize(void);

void pfChannel::passChanData(void);

void pfChannel::clear(void);

int pfChannel::attach(pfChannel* chan1);

int pfChannel::detach(pfChannel* chan1);

15

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

void pfChannel::setShare(uint mask);

uint pfChannel::getShare(void);

void pfChannel::setFOV(float horiz, float vert);

void pfChannel::getFOV(float* horiz, float* vert);

void pfChannel::setNearFar(float near, float far);

void pfChannel::getNearFar(float* near, float* far);

void pfChannel::setAutoAspect(int which);

int pfChannel::getAutoAspect(void);

void pfChannel::getBaseFrust(pfFrustum *frust);

void pfChannel::getPtope(pfPolytope *ptope);

void pfChannel::makePersp(float left, float right, float bottom, float top);

void pfChannel::makeOrtho(float left, float right, float bottom, float top);

void pfChannel::makeSimple(float fov);

int pfChannel::getFrustType(void);

void pfChannel::setAspect(int which, float widthHeightRatio);

float pfChannel::getAspect(void);

void pfChannel::orthoXform(pfChannel* src, const pfMatrix &mat);

void pfChannel::getNear(pfVec3 &ll, pfVec3 &lr, pfVec3 &ul, pfVec3 &ur);

void pfChannel::getFar(pfVec3 &ll, pfVec3 &lr, pfVec3 &ul, pfVec3 &ur);

int pfChannel::getEye(pfVec3 &eye);

void pfChannel::apply(void);

int pfChannel::contains(const pfVec3 &pt, pfChannel* chan);

int pfChannel::contains(const pfSphere* sph);

int pfChannel::contains(const pfCylinder* cyl);

int pfChannel::contains(const pfBox* box);

void pfChannel::setCullPtope(const pfPolytope *ptope);

void pfChannel::getCullPtope(pfPolytope *ptope);

int pfChannel::pick(int mode, float px, float py, float radius, pfHit **picklist[]);

int pfChannel::isect(pfNode *node, pfSegSet *segSet, pfHit **hits[], pfMatrix *mat);

16

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

void pfChannel::setScene(pfScene *scene);

pfScene * pfChannel::getScene(void);

void pfChannel::setESky(pfEarthSky *sky);

pfEarthSky * pfChannel::getESky(void);

void pfChannel::setGState(pfGeoState *gstate);

pfGeoState* pfChannel::getGState(void);

void pfChannel::setGStateTable(pfList *gstable);

pfList* pfChannel::getGStateTable(void);

void pfChannel::setStressFilter(float frac, float low, float high, float scale, float max);

void pfChannel::getStressFilter(float *frac, float *low, float *high, float *scale, float *max);

void pfChannel::setStress(float stress);

float pfChannel::getStress(void);

float pfChannel::getLoad(void);

void pfChannel::setTravMode(int trav, int mode);

int pfChannel::getTravMode(int trav);

void pfChannel::setTravMask(int trav, uint mask);

uint pfChannel::getTravMask(int trav);

void pfChannel::setBinSort(int bin, int sortType, int *sortOrders);

int pfChannel::getBinSort(int bin, int *sortOrders);

void pfChannel::setBinOrder(int bin, int order);

int pfChannel::getBinOrder(int bin);

void pfChannel::setView(pfVec3 &xyz, pfVec3 &hpr);

void pfChannel::getView(pfVec3 &xyz, pfVec3 &hpr);

void pfChannel::setViewMat(pfMatrix &mat);

void pfChannel::getViewMat(pfMatrix &mat);

void pfChannel::setViewOffsets(pfVec3 &xyz, pfVec3 &hpr);

void pfChannel::getViewOffsets(pfVec3 &xyz, pfVec3 &hpr);

void pfChannel::getOffsetViewMat(pfMatrix &mat);

pfFrameStats * pfChannel::getFStats(void);

17

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

int pfChannel::setStatsMode(uint mode, uint val);

void pfChannel::drawStats(void);

void pfChannel::setLODAttr(int attr, float val);

float pfChannel::getLODAttr(int attr);

void pfApp(void);

void pfCull(void);

void pfDraw(void);

void pfDrawBin(int bin);

void pfNodePickSetup(pfNode *node);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfChannel is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfChannel. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfChannel can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();

18

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

void * pfMemory::getArena();
int pfMemory::getSize();

PARAMETERS
chan identifies a pfChannel.

node identifies a pfNode.

trav is a symbolic token identifying a traversal:

PFTRAV_CULL

PFTRAV_DRAW

DESCRIPTION
A pfChannel is essentially a view onto a scene. pfNewChan creates a new pfChannel on the pfPipe
identified by pipe. The new pfChannel will be rendered by the pipe into a pfPipeWindow window associ-
ated with pipe (See pfConfigPWin). new pfChannel creates and returns a handle to a pfChannel.
pfChannels are always allocated from shared memory and cannot be created statically, on the stack or in
arrays.

pfChannel::getClassType returns the pfType* for the class pfChannel. The pfType* returned by
pfChannel::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfChannel. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

PIPE WINDOWS, PIPES, AND CHANNELS
pfChannel::getPipe returns the parent pfPipe of the pfChannel. pfChannel::getPWin returns the pfPi-
peWindow of the pfChannel.

Multiple pfChannels may be rendered by a single pfPipe into a single pfPipeWindow. It is recommended
that multiple pfChannels rather than multiple pfPipes be used to render multiple views on a single
hardware pipeline. If necessary, multiple pfPipeWindows can be rendered by a single pfPipe on a single
hardware pipeline. The handle returned by new pfChannel should be used to identify the pfChannel in
IRIS Performer routines.

Upon creation, pfChannels are automatically assigned to the first pfPipeWindow of its parent pfPipe.
pfChannel::getPWin will return the pfPipeWindow of the pfChannel.

Channels of a pfPipeWindow are drawn in the order in which they are assigned to the pfPipeWindow.
pfChannel::getPWinIndex can be used to get the position of a channel in its pfPipeWindow list. A return
value of (-1) indicates that the channel is not assigned to a pfPipeWindow. Channels can be re-ordered in
their pfPipeWindow, or moved to other pfPipeWindows via list style API on pfPipeWindows. See the

19

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

pfPipeWindow man page for more information.

All active pfChannels are culled and drawn by pfFrame. A pfChannel is by default active but can be
selectively turned on and off by PFDRAW_ON and PFDRAW_OFF arguments to
pfChannel::setTravMode. Multiple pfChannels on a pfPipe will be drawn only if they are assigned to a
pfPipeWindow and will be drawn in the order they were assigned to that pfPipeWindow.

pfChannel::setViewport specifies the fractional viewport used by the pfChannel. l, r, b, t specify the left,
right, bottom, and top extents of a viewport in the range 0.0 to 1.0. The fractional viewport is relative to
the parent pfPipe’s graphics window. Channel viewports on a single pfPipe may overlap. Viewport
extents are clamped to the range 0.0 to 1.0.

pfChannel::getViewport copies the fractional viewport of the pfChannel into l, r, b, t.

pfChannel::getOrigin copies the window coordinates of the origin of chan’s viewport into xo and yo.

pfChannel::getSize copies the X and Y pixel sizes of the pfChannel’s viewport into xs and ys.

APPLICATION-DEFINED CALLBACKS AND DATA
Although IRIS Performer normally handles all culling and drawing, invocation of user written and
registered extension functions (callback functions) is supported to allow custom culling and drawing by the
application. Furthermore, IRIS Performer manages callback data such that when configured for multipro-
cessing, data contention and synchronization issues are handled transparently.

pfChannel::setTravFunc sets the application, cull or draw-process callback functions for the pfChannel.
The trav argument specifies which traversal is to be set and is one of: PFTRAV_APP, PFTRAV_CULL or
PFTRAV_DRAW. User-data that is passed to these functions is allocated on a per-channel basis by
pfChannel::allocChanData. pfChannel::allocChanData returns a pointer to a word-aligned buffer of
shared memory of size bytes. Alternately, applications can provide passthrough data with
pfChannel::setChanData. data is a memory block of size bytes which should be allocated from a shared
malloc arena visible to all IRIS Performer processes when multiprocessing (see pfMultiprocess).

pfChannel::getChanDataSize returns the size of the pfChannel’s passthrough data block.
pfChannel::getChanData returns a pointer to a buffer that was set by pfChannel::setChanData or allo-
cated by pfChannel::allocChanData or NULL if no buffer has been allocated or set.
pfChannel::setTravFunc returns the app, cull or draw callback functions for chan or NULL if the callback
has not been set.

In order to propagate user data downstream to the cull and draw callbacks, pfChannel::passChanData
should be called whenever the user data is changed to indicate that the data should be "passed through"
the IRIS Performer rendering pipeline. The next call to pfFrame will copy the channel buffer into internal
IRIS Performer memory so that the application will then be free to modify data in the buffer without fear

20

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

of corruption.

In the cull phase of the rendering pipeline, IRIS Performer invokes the cull callback with a pointer to the
pfChannel being culled and a pointer to the pfChannel’s data buffer. The cull callback may modify data
in the buffer. The potentially modified buffer is then copied and passed to the user’s draw callback.
Modifications to the data buffer are not visible upstream. For example, changes made by the cull or draw
process are not seen by the application process.

When IRIS Performer is configured for multiprocessing (see pfMultiprocess), it is important to realize
that the cull and draw callbacks may be invoked from different processes and thus may run in parallel
with each other as well as with the main application process. IRIS Performer provides both shared arenas
(see pfGetSemaArena and pfGetSharedArena) and channel data (pfChannel::allocChanData) for inter-
process communication.

With user callbacks, it is possible to extend or even completely replace IRIS Performer actions with cus-
tom traversal, culling and drawing. pfApp, pfCull and pfDraw trigger the default IRIS Performer pro-
cessing. This default processing is invoked automatically in the absence of any user callbacks specified by
pfChannel::setTravFunc, otherwise the user callback usually invokes them directly.

pfApp carries out the application traversal for the channel and should only be invoked in the application
callback specified by pfChannel::setTravFunc. The application callback is invoked once for each channel
group that is sharing PFCHAN_APPFUNC.

pfCull should only be called in the cull callback and causes IRIS Performer to cull the current channel and
generate an IRIS Performer display list (see pfDispList) suitable for rendering if the
PFMP_CULL_DL_DRAW multiprocessing mode is enabled (see pfMultiprocess). Then, in the draw
callback only, pfDraw will traverse the pfDispList and send rendering commands to the graphics
hardware, thus drawing the scene.

If the PFMP_CULL_DL_DRAW multiprocessing mode is not set then all display-listable operations will
be applied directly to the graphics pipeline rather than accumulated in a pfDispList for subsequent draw-
ing. In essence, the draw process does the work of both pfCull and pfDraw without the intermediate
step of building a pfDispList. This mode avoids the overhead of building and traversing a pfDispList but
consequently is not suitable for multipass renderings which require multiple invocations of pfDraw.

When the draw callback is invoked, the graphics context will already have been properly configured for
drawing the pfChannel. Specifically, the viewport, perspective and viewing matrices are set to the correct
values. In addition, graphics library light sources corresponding to the active pfLightSources in the scene
will be enabled so that geometry rendered in the draw callback will be properly lit. User modifications of
this initial state are not reset by pfDraw.

If a draw callback is specified, IRIS Performer will not automatically clear the viewport, leaving control of
this to the application. pfChannel::clear called from the draw callback will clear the channel viewport. If

21

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

the pfChannel has a pfEarthSky (see pfChannel::setESky), then the pfEarthSky will be drawn. Other-
wise, the viewport will be cleared to black and the z-buffer cleared to its maximum value.

By default, pfFrame causes pfCull and pfDraw to be invoked for each active pfChannel. It is legal for the
draw callback to call pfDraw more than once for multipass renderings.

Example 1: Set up channel callbacks and passthrough data

typedef struct

{

int val;

} PassData;

void cullFunc(pfChannel *chan, void *data);

void drawFunc(pfChannel *chan, void *data);

int

main()

{

PassData *pd;

/* Initialize IRIS Performer */

pfInit();

pfConfig();

/* Create and initialize pfChannel ’chan’ */

chan = new pfChannel(pfGetPipe(0));

:

/* Setup channel passthrough data */

pd = (PassData*)chan->allocChanData(sizeof(PassData));

/* Bind cull and draw callback functions to channel */

chan->setTravFunc(PFTRAV_CULL, cullFunc);

chan->setTravFunc(PFTRAV_DRAW, drawFunc);

pd->val = 0;

chan->passChanData();

pfFrame();

:

}

void

22

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

cullFunc(pfChannel *chan, void *data)

{

PassData *pd = (PassData*)data;

pd->val++;

pfCull();

}

void

drawFunc(pfChannel *chan, void *data)

{

PassData *pd = (PassData*)data;

fprintf(stderr, "%ld\n", pd->val);

chan->clear();

pfDraw();

}

SHARING ATTRIBUTES THROUGH CHANNEL GROUPS
IRIS Performer supports the notion of a ’channel group’ which is a collection of pfChannels that share cer-
tain attributes. A channel group is created by attaching a pfChannel to another with pfChannel::attach.
If the pfChannel or chan1 are themselves members of a channel group, then all channels that are grouped
with either the pfChannel or chan1 are combined into a single channel group. All attached channels
acquire the share mask and shared attributes of the channel group. A channel is removed from a channel
group by pfChannel::detach.

The attributes shared by the members of a channel group are specified by the mask argument to
pfChannel::setShare. By definition, all channels in a group have the same share mask. A pfChannel that
is attached to a channel group inherits the share mask of the group. mask is a bitwise OR of the following
tokens which enumerate the attributes that can be shared:

PFCHAN_FOV
Horizontal and vertical fields of view are shared.

PFCHAN_VIEW
The view position and orientation are shared.

PFCHAN_VIEW_OFFSETS
The XYZ and HPR offsets from the view direction are shared.

PFCHAN_NEARFAR
The near and far clip planes are shared.

23

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

PFCHAN_SCENE
All channels display the same scene.

PFCHAN_EARTHSKY
All channels display the same earth-sky model.

PFCHAN_STRESS
All channels use the same stress filter parameters.

PFCHAN_LOD
All channels use the same LOD modifiers.

PFCHAN_SWAPBUFFERS
All channels swap buffers at the same time, even when the channels are on multiple
pfPipes.

PFCHAN_SWAPBUFFERS_HW
All channels swap buffers at the same time. The GANGDRAW feature of the
mswapbuffers function is used to synchronize buffer swapping through hardware inter-
locking. This feature can synchronize graphics pipelines across multiple machines.

PFCHAN_STATS_DRAWMODE
All channels draw the same statistics graph.

PFCHAN_APPFUNC
The application callback is invoked once for all channels sharing PFCHAN_APPFUNC.

PFCHAN_CULLFUNC
All channels invoke the same channel cull callback.

PFCHAN_DRAWFUNC
All channels invoke the same channel draw callback.

PFCHAN_VIEWPORT
All channels use the same viewport specification.

pfChannel::getShare returns the share mask of the pfChannel. The default attributes cause channels
within a share group to share all attributes except PFCHAN_VIEW_OFFSETS, PFCHAN_VIEWPORT
and PFCHAN_SWAPBUFFERS_HW.

Channel groups are useful for multichannel simulations where many of the viewing parameters are the
same across pfChannels. For example, a 3-channel simulation consisting of left, middle, and right views
typically shares the near and far clipping planes. With a channel group, the clipping planes need only be
set on a single pfChannel, say the middle one, and all other pfChannels in the group will acquire the same
settings.

Example 1: Set up a single pipe, 3-channel simulation

24

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

left = new pfChannel(pfGetPipe(0));

middle = new pfChannel(pfGetPipe(0));

right = new pfChannel(pfGetPipe(0));

/* Form channel group with middle as the "master" */

middle->attach(left);

middle->attach(right);

/* Set FOV of all channels */

middle->makeSimple(45.0f);

middle->setAutoAspect(PFFRUST_CALC_VERT);

/* Set clipping planes of all channels */

middle->setNearFar(1.0f, 2000.0f);

hprOffsets->set(0.0f, 0.0f, 0.0f);

xyzOffsets->set(0.0f, 0.0f, 0.0f);

/*

* Set up viewport and viewing offsets.

* Note that these are not shared by default.

*/

left->setViewport(0.0f, 1.0f/3.0f, 0.0f, 1.0f);

hprOffsets[PF_H] = 45.0f;

left->setViewOffsets(xyzOffsets, hprOffsets);

middle->setViewport(1.0f/3.0f, 2.0f/3.0f, 0.0f, 1.0f);

hprOffsets[PF_H] = 0.0f;

middle->setViewOffsets(xyzOffsets, hprOffsets);

right->setViewport(2.0f/3.0f, 1.0f, 0.0f, 1.0f);

hprOffsets[PF_H] = -45.0f;

right->setViewOffsets(xyzOffsets, hprOffsets);

VIEWING FRUSTUM
Many pfChannel frustum routines are borrowed from pfFrustum (but not inherited). These routines have
the identical prototype as the pfFrustum routines but operate on the pfChannel’s internal viewing frus-
tum: makeSimple, makePersp, makeOrtho, setNearFar, getNearFar, getFOV, setAspect, getAspect,
getFrustType, orthoXform, getNear, getFar, getEye, apply, and contains. The reader is referred to the
pfFrustum man page for details on the function descriptions.

25

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

In addition to the pfFrustum routines, IRIS Performer provides the pfChannel::setFOV and
pfChannel::setAutoAspect convenience routines.

The horiz and vert arguments to pfChannel::setFOV specify total horizontal and vertical fields of view
(FOV) in degrees. If either angle is <= 0.0 or >= 180.0, IRIS Performer will automatically compute that
field of view based on the other specified field of view and the aspect ratio of the pfChannel viewport. If
both angles are defaulted in this way, IRIS Performer will use its default of horiz=45.0 with vert matched
to the aspect ratio of the pfChannel. Note that the aspect ratio of a pfChannel is defined by its fractional
viewport as well as the pixel size of its physical display window.

pfChannel::setFOV constructs a on-axis frustum, one where the line from the eyepoint passing through
the center of the image is perpendicular to the projection plane. pfChannel::makeSimple also creates an
on-axis frustum but both horizontal and vertical fields of view are specified with fov.

pfChannel::getFOV copies the total horizontal and vertical fields of view into horiz and vert respectively.
If an angle is matched to the aspect ratio of the pfChannel, then the computed angle is returned.

The which argument to pfChannel::setAutoAspect specifies which FOV extent to automatically match to
the aspect ratio of the pfChannel’s viewport. which is a symbolic token and is one of:

PFFRUST_CALC_NONE
Do not automatically modify field of view.

PFFRUST_CALC_HORIZ
Automatically modify horizontal FOV to match channel aspect.

PFFRUST_CALC_VERT
Automatically modify vertical FOV to match channel aspect.

Automatic aspect ratio matching is useful for situations where the initial size of the display window is not
known or where the display window may change size during runtime. Aspect ratio matching guarantees
that the image will not be distorted in either horizontal or vertical dimensions. pfChannel::makePersp
and pfChannel::makeOrtho disable automatic aspect ratio matching since it is assumed that the viewing
frustum aspect ratio is completely specified by these commands.

pfChannel::setNearFar specifies the near and far clip distances of the viewing frustum. near and far are
the positive, world-coordinate distances along the viewing ray from the eye point to the near and far clip-
ping planes which are parallel to the viewing plane. pfChannel::getNearFar copies the near and far clip-
ping distances into near and far. The default values are 1.0 for the near plane and 1000.0 for the far plane.

pfChannel::getBaseFrust copies the base viewing frustum of the pfChannel into frust. The base viewing
frustum has its eyepoint at the origin and its viewing direction as the +Y axis. The base frustum of a
pfChannel is transformed into world coordinates by the viewing transformation (see
pfChannel::setView). pfChannel::orthoXform transforms the base frustum of src by mat and copies the
result into the base frustum of the dst pfChannel. pfChannel::getPtope copies the transformed base

26

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

frustum into dst.

Example 1: Two equivalent ways of defining a typical viewing channel.

This method is the easiest and most common.

/* Set up a simple viewing frustum */

chan = new pfChannel(pipe0);

/*

* Set horizontal FOV to 45 degrees and automatically match

* vertical FOV to channel viewport.

*/

chan->setFOV(45.0f, -1.0f);

Here’s how to do the same thing using the basic primitives.

/* Set up a simple viewing frustum */

chan = new pfChannel(pipe0);

/*

* Set horizontal FOV to 45 degrees and automatically match

* vertical FOV to channel viewport.

*/

chan->makeSimple(45.0f);

chan->setAutoAspect(PFFRUST_CALC_VERT);

Example 2: Set up a 4 channel, 4 pipe video wall with total horizontal and vertical FOVs of 90 degrees.

/*

* ul == upper left ur == upper right

* ll == lower left lr == lower right

*/

llChan = new pfChannel(pfGetPipe(0));

lrChan = new pfChannel(pfGetPipe(1));

urChan = new pfChannel(pfGetPipe(2));

ulChan = new pfChannel(pfGetPipe(3));

/* Form channel group with urChan as the "master" */

urChan->attach(llChan);

urChan->attach(lrChan);

urChan->attach(ulChan);

27

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

/*

* Share viewport but not field of view

* in addition to the default shared attributes.

*/

share = urChan->getShare();

urChan->setShare((share & ˜PFCHAN_FOV) | PFCHAN_VIEWPORT);

/*

* Set up off-axis viewing frusta which "tile" video wall.

* pfChannel viewport aspect ratio must be 1:1 or image will

* be distorted.

*/

llChan->makePersp(-1.0f, 0.0f, -1.0f, 0.0f);

lrChan->makePersp(0.0f, 1.0f, -1.0f, 0.0f);

urChan->makePersp(0.0f, 1.0f, 0.0f, 1.0f);

ulChan->makePersp(-1.0f, 0.0f, 0.0f, 1.0f);

urChan->setNearFar(1.0f, 2000.0f);

Example 3: Set up a single pipe, 3-channel simulation.

left = new pfChannel(pfGetPipe(0));

middle = new pfChannel(pfGetPipe(0));

right = new pfChannel(pfGetPipe(0));

/* Form channel group with middle as the "master" */

middle->attach(left);

middle->attach(right);

/* Set FOV of all channels */

middle->makeSimple(45.0f);

middle->setAutoAspect(PFFRUST_CALC_VERT);

/* Set clipping planes of all channels */

middle->setNearFar(1.0f, 2000.0f);

hprOffsets[PF_P] = 0.0f;

hprOffsets[PF_R] = 0.0f;

xyzOffsets->set(0.0f, 0.0f, 0.0f);

/*

* Set up viewport and viewing offsets.

28

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

* Note that these are not shared by default.

*/

left->setViewport(0.0f, 1.0f/3.0f, 0.0f, 1.0f);

hprOffsets[PF_H] = 45.0f;

left->setViewOffsets(hprOffsets, xyzOffsets);

middle->setViewport(1.0f/3.0f, 2.0f/3.0f, 0.0f, 1.0f);

hprOffsets[PF_H] = 0.0f;

middle->setViewOffsets(hprOffsets, xyzOffsets);

right->setViewport(2.0f/3.0f, 1.0f, 0.0f, 1.0f);

hprOffsets[PF_H] = -45.0f;

right->setViewOffsets(hprOffsets, xyzOffsets);

Example 4: Custom culling to pfChannel viewing frustum.

/*

* User-supplied cull callback (see pfChannel::setTravFunc)

*/

extern void

myCullFunc(pfChannel *chan, void *data)

{

pfBox *boundingBox = (pfBox*)data;

if (chan->contains(boundingBox))

drawGSetsWithinBoundingBox();

}

pfChannel::getAutoAspect returns the aspect ratio matching mode of the pfChannel.

A pfChannel normally uses its viewing frustum for culling its pfScene (pfChannel::setScene). However,
a custom culling volume may be specified by pfChannel::setCullPtope. If non-NULL, ptope identifies a
pfPolytope which is used for scene culling. A copy of ptope, internal to the pfChannel, is transformed by
chan’s viewing matrix before culling. If ptope is NULL, the pfChannel will use its view frustum for culling.
A pfPolytope is a set of half spaces whose intersection defines a convex volume. Culling performance will
be proportional to the number of facets in ptope. pfChannel::getCullPtope copies the culling polytope of
the pfChannel into ptope.

29

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

PICKING
pfChannel::pick is used for screen to world-space ray intersections on a pfChannel’s scene. This opera-
tion is often referred to as picking. Intersections will only occur with parts of the database that are within
the viewing frustum, and that are enabled for picking intersections. The return value of pfChannel::pick
is the number of successful intersections with the channel scene according to mode.

picklist is a user-supplied pointer. Upon return, the address of an array of pointers to pfHit objects is
stored there. The pfHit objects come from an internally maintained pool and are reused on subsequent
calls. Hence, the contents are only valid until the next invocation of pfChannel::pick in the current pro-
cess. They should not be deleted by the application.

The contents of the pfHit object are queried using pfHit::query and pfHit::mQuery. See the man pages
for pfHit and pfNode for a description of the queries.

mode specifies the behavior of the traversal and type of information that will be returned from the picking
process.

mode is a bitwise OR of tokens. In addition to those tokens that can be specified to pfNode::isect in the
mode field of the pfSegSet, the following values are also allowed:

PFPK_M_NEAREST
Return the picking intersection closest to the viewpoint.

PFPK_M_ALL
Return all picking intersections.

PFTRAV_LOD_CUR
When traversing pfLODs, select the child to traverse based on range in the specified chan-
nel.

When PFPK_M_ALL is set, picklist will contain all of the successful picking intersections in order of
increasing distance from the viewer eyepoint. See the pfNode manual page for information on the PFIS_
intersection tokens.

px, py identify a 2-dimensional point in normalized channel screen coordinates in the range 0.0 to 1.0
(with the lower left corner being (0.0, 0.0)), that corresponds to the channel location to be used for picking.
This 2-dimensional point is used to create a ray from the viewer eyepoint through the near clipping plane
to intersect with the channel scene.

radius is the radius of the picking region in normalized channel coordinates used for the picking of lines.
This argument is provided for coarse picking, and possibly for eventual picking of lines and points which
is currently not implemented. If radius is non-zero, then the mode argument must not specify the
PFTRAV_IS_PRIM mode.

30

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

pfNodePickSetup enables the entire database tree under node for picking intersections and should be
called with a pointer to the pfChannel’s scene graph. This effectively calls pfNode::setTravMask with
PFIS_SET_PICK. Selective picking can be done by calling pfNode::setTravMask, setting the traversal to
PFTRAV_ISECT and including PFIS_SET_PICK in the intersection mask for nodes that are to be enabled
for picking intersections. The picking traversal will not continue past any node that has not been enabled
for picking intersections. See the pfNode::setTravMask manual page for more information on intersec-
tion setup.

pfChannel::isect is identical to pfNode::isect except a pfChannel is provided for evaluating pfLODs dur-
ing the intersection traversal. In addition, mat specifies an initial transform, allowing intersection traver-
sals to begin at non-root nodes. All line segments in segSet will be transformed by mat. mat may be NULL
if no initial transform is needed.

EARTH AND SKY
pfChannel::setScene and pfChannel::setESky set the pfScene and pfEarthSky that the pfChannel will
cull and draw. pfChannel::setScene increments the reference count of scene so that scene must first be
removed from the pfChannel by pfChannel::setScene(NULL) before scene can be deleted with pfDelete.

pfChannel::getScene and pfChannel::getESky return the current pfScene and pfEarthSky for the
pfChannel.

Example 1: Setting a pfChannel’s pfScene.

void

cullFunc(pfChannel *chan, void *data)

{

pfCull();

}

void

drawFunc(pfChannel *chan, void *data)

{

chan->clear();

pfDraw();

}

/* somewhere in application setup phase */

:

/* set channel’s scene */

chan->setScene(scene);

/* bind cull and draw process callbacks */

chan->setTravFunc(PFTRAV_CULL, cullFunc);

31

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

chan->setTravFunc(PFTRAV_DRAW, drawFunc);

GEOSTATES
pfChannel::setGState sets the pfChannel’s pfGeoState to gstate. If non-NULL, gstate is loaded before the
pfChannel’s DRAW callback is invoked. Specifically, gstate is loaded with pfGeoState::load so that the
state encapsulated by gstate becomes the global state that may be inherited by other pfGeoStates within
the scene graph. The pfGeoState state inheritance mechanism is described in detail in the pfGeoState man
page. Note that the channel pfGeoState is loaded before any scene pfGeoState so that state elements in
the scene pfGeoState override those in the channel’s pfGeoState. pfChannel::getGState returns the
pfGeoState of the pfChannel.

pfChannel::setGStateTable sets the pfChannel’s pfGeoState table to gstable. If non-NULL, gstable is made
the global pfGeoState table with pfGeoState::applyTable before the pfChannel’s DRAW callback is
invoked. Any indexed pfGeoStates, either referenced by a pfScene (pfScene::setGStateIndex) or by scene
pfGeoSets (pfGeoSet::setGStateIndex) will be accessed through gstable. Indexed pfGeoStates are useful
for efficiently managing a single database with multiple appearances, e.g., a normal vs. an infrared view
of a scene would utilize 2 pfGeoState tables, each referencing a different set of pfGeoStates.

STRESS PROCESSING AND LEVEL-OF-DETAIL
IRIS Performer attempts to maintain the fixed frame rate set with pfFrameRate by manipulating levels-
of-detail (LODs) to reduce graphics load when rendering time approaches a frame period. At the end of
each frame, IRIS Performer computes a load metric for each pfChannel based on the length of time it took
to render the pfChannel. Load is simply the actual rendering time divided by the desired frame interval.

pfChannel::setLODState specifies a global pfLODState to be used for this channel.

pfChannel::setLODStateList specifies a pfList of pfLODStates to be indexed into by pfLODs that have
specified indexes via pfLOD::setLODStateIndex. (See pfLOD and pfLODState).

If stress processing is enabled, IRIS Performer uses the load metric and a user-defined stress filter to com-
pute a stress value which multiplies effective LOD ranges (see pfLOD) for the next frame. Stress > 1.0
’pushes out’ LOD ranges so that coarser models are drawn and graphics load is reduced. Stress == 1.0
means the system is not in stress and LODs are not modified.

pfChannel::setStressFilter sets the stress filter used by the pfChannel. frac is the fraction of a frame
period the pfChannel is expected to take to render. frac should be 1.0 if only a single pfChannel is drawn
on a pfPipe and should be > 0.0 and < 1.0 for multichannel simulations. frac allows the application to
apportion rendering time amongst multiple channels so that a channel drawing a complex scene may be
allocated more time than a channel drawing a simple one. pfChannel::getStressFilter returns the stress
filter parameters for the pfChannel.

32

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

low and high define a hysteresis band for system load. When load is >= low and <= high, stress is held con-
stant. When load is < low or > high, IRIS Performer will reduce or increase stress respectively until load
stabilizes within the hysteresis band. low should be <= high and they both should be positive. Stress is
computed using the following algorithm:

/* increase stress when above high load level */

if (load > high)

S[i] = minimum(S[i-1] + scale*load, max);

else

/* decrease stress when below low load level */

if (load < low)

S[i] = maximum(S[i-1] - scale*load, 0.0f);

else

/* stress unchanged when between low and high load levels */

S[i] = S[i-1];

where S[i] == stress for frame i and load = time[i] * frameRate / frac. By default, scale = 0.0 and max = 1.0
so that stress is disabled. Stress is clamped to the range [1.0, max].

pfChannels in a channel group may share a stress filter (PFCHAN_STRESS), and LOD behavior (-
PFCHAN_LOD) (see pfChannel::attach). It is useful for pfChannels which draw into adjacent displays
to share LOD behavior. In this case, the LOD multiplier used by all pfChannels in the channel group is
the maximum of each individual pfChannel. This ensures that LOD’s which straddle displays will always
be drawn at the same LOD on each display.

pfChannel::getLoad will return the last computed load for the pfChannel. The load value is defined as
time * frameRate / frac.

The application may choose to not use the default IRIS Performer stress filter by calling
pfChannel::setStress to explicitly set the stress value. Stress values set by pfChannel::setStress will
override the default stress values computed by the stress filter shown above.

pfChannel::getStress returns the last computed stress value for the pfChannel. The individual stress
value is returned regardless of pfChannel attribute sharing (pfChannel::setShare).

CUSTOMIZING SCENE GRAPH TRAVERSAL
A pfChannel directs two important traversals: cull and draw. In the cull traversal, the pfChannel defines
the viewing frustum that the database is culled to and also defines other parameters that modify level-of-
detail behavior. When drawing, the pfChannel defines the parameters of the "camera" which views the
scene. In both cases, a pfChannel traverses a pfScene which is attached to the pfChannel via
pfChannel::setScene. A pfScene is a hierarchy of pfNodes that defines the visual database.

33

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

pfChannel::setTravMode sets the traversal mode of the pfChannel. trav specifies a traversal type and is
either PFTRAV_CULL or PFTRAV_DRAW, for the culling and drawing traversal respectively. mode
specifies the corresponding traversal mode. The culling mode is a bitwise OR of:

PFCULL_VIEW
When set, PFCULL_VIEW enables culling to the viewing frustum. If not set, the entire
database will be rendered every frame. For best drawing performance it is recommended
that PFCULL_VIEW be set. Unless PFCULL_GSET is also set, IRIS Performer culls the
database only down to the pfGeode level.

PFCULL_SORT
When PFCULL_SORT is set, IRIS Performer sorts the database into "bins" which are ren-
dered in a user-specified order. In addition, geometry within a bin may be sorted by graph-
ics state like texture or by range for front-to-back or back-to-front rendering. Unless the cull
stage of the IRIS Performer pipeline becomes the bottleneck or PFMP_CULLoDRAW mode
is used, PFCULL_SORT should be set for optimal drawing performance. Further sorting
details are described below.

PFCULL_GSET
When PFCULL_GSET is set, IRIS Performer culls individual pfGeoSets within pfGeodes.
At the expense of some extra culling time, this can provide a significantly tighter cull both
because of the finer granularity and because pfGeoSet culling uses bounding boxes rather
than bounding spheres. However, when traversing portions of the scene graph under a
transformation (pfSCS or pfDCS), IRIS Performer reverts back to a cull which stops at the
pfGeode level.

PFCULL_IGNORE_LSOURCES
When PFCULL_IGNORE_LSOURCES is not set, IRIS Performer will traverse all paths in
the scene hierarchy which end at a pfLightSource node before proceeding with the normal
cull traversal (see pfLightSource). This is required for pfLightSources to illuminate the
scene and will ensure that graphics hardware lighting is properly configured before the
user’s draw callback is invoked (see pfChannel::setTravFunc). If it is set, any pfLight-
Sources in the pfScene will be ignored.

The pfLightSource cull traversal obeys all traversal rules such as node callbacks, traversal
masks, transformations (pfSCS and pfDCS nodes), and selectors (pfSwitch and pfLOD).

For drawing, mode is either PFDRAW_OFF or PFDRAW_ON. PFDRAW_OFF essentially turns off chan.
No culling or drawing traversal will take place. Drawing is enabled by default.
pfChannel::getTravMode returns the mode corresponding to trav or -1 if trav is an illegal or unknown
traversal type.

The PFTRAV_MULTIPASS traversal mode is only active when the pfChannel’s scene has one or more
pfLightSources which use projected texture-type lighting. See the pfLightSource man page for more
details.

34

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

By default, culling to the viewing frustum, culling to pfGeoSet bounding boxes, pfLightSource culling,
and sorting is enabled: (PFCULL_VIEW | PFCULL_GSET | PFCULL_SORT) For convenience, this
default bitmask is provided by the PFCULL_ALL token.

pfChannel::setTravMask sets the pfChannel’s drawing mask and is used in conjunction with
pfNode::setTravMask for selective culling and drawing of scene graphs on a per-pfChannel basis. Dur-
ing the traversal, the bitwise AND of the traversal mask and the node mask is computed. If the result is
non-zero, the node is culled or drawn as usual. If off (zero), the behavior is as follows depending on trav:

PFTRAV_CULL
Node is not culled and is considered to be entirely within the viewing frustum. The cull
traversal traverses the node and its children without any view culling.

PFTRAV_DRAW
Node is completely ignored. Both cull and draw traversals skip the node and its children.

Node traversal masks are set by pfNode::setTravMask. The default pfNode and pfChannel masks are
0xffffffff so that a pfChannel culls and draws all pfNodes.

pfChannel::getTravMask returns the drawing traversal mask for the specified pfChannel. trav is either
PFTRAV_CULL or PFTRAV_DRAW.

As mentioned above, pfChannels can sort the database for improved image quality and improved render-
ing performance. Database sorting consists of two steps:

1. Partition database into "bins" which are rendered in a particular order.

2. Sort database within each bin by:

2a. Graphics state, in which case there is no particular rendering order or,

2b. Range from the eyepoint in which case the database is rendered either front-to-back or
back-to-front.

During the cull traversal, pfGeoSets are placed into the appropriate bin according to their bin identifier
that was set by pfGeoSet::setDrawBin. If the bin identifier is >= 0, the cull traversal will place that
pfGeoSet into the bin with that identifier. If the bin identifier is < 0, then the cull traversal will decide in
which default bin the pfGeoSet belongs.

IRIS Performer provides 2 default bins: PFSORT_OPAQUE_BIN and PFSORT_TRANSP_BIN for
opaque and transparent geometry respectively. Transparent geometry is that which uses
PFTR_BLEND_ALPHA type of pfTransparency. PFTR_MS_ALPHA-type transparency is considered to
be opaque for purposes of binning.

Each draw bin has a rendering order set by pfChannel::setBinOrder. If order is < 0, then bin is not
ordered at all - pfGeoSets which belong to bin are not stored in the bin but are rendered immediately. If

35

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

order is >=0, it defines the order in which the bin is rendered, 0 == first, 1 == second etc. The
PFSORT_OPAQUE_BIN bin has a default rendering order of 0 and the PFSORT_TRANSP_BIN bin has
a default rendering order of 1 so that transparent surfaces are rendered after opaque surfaces. It is legal to
change the rendering order of the default bins and for different bins to have the same rendering order
although the relative order of these bins is undefined.

Normally, pfDraw renders all bins in the appropriate order. Individual bins may be rendered with
pfDrawBin when called in the pfChannel’s draw callback (see pfChannel::setTravFunc).

pfChannel::setBinSort defines how pfGeoSets are sorted with a bin. sortType is a symbolic token which
identifies the sorting method for bin:

PFSORT_NO_SORT
Do not sort the bin. sortOrders is ignored.

PFSORT_FRONT_TO_BACK
Sort the pfGeoSets in the bin in increasing range from the eyepoint. Range is computed as
the distance from the pfChannel eyepoint to the center of the pfGeoSet’s bounding box. sor-
tOrders is ignored.

PFSORT_BACK_TO_FRONT
Sort the pfGeoSets in the bin in decreasing range from the eyepoint. Range is computed as
the distance from the pfChannel eyepoint to the center of the pfGeoSet’s bounding box. sor-
tOrders is ignored.

PFSORT_BY_STATE
Sort the pfGeoSets in the bin by graphics state. The pfGeoSets in bin are first sorted by
pfGeoState. Then if sortOrders is not NULL, the pfGeoSets will be further sorted by the
ordered list of PFSTATE_* elements in sortOrders. In this case, sortOrders should consist of a
PFSORT_STATE_BGN token followed by 0 or more PFSTATE_* tokens followed by a
PFSORT_STATE_END token followed by a PFSORT_END token to end the list. The
PFSTATE_* tokens define a sorting hierarchy. The elements in sortOrders are copied into
the pfChannel data structure, so in this case it is acceptable to pass static or automatic data
not allocated through pfMalloc.

Example 1: Sorting configuration example

int sortOrders[PFSORT_MAX_KEYS], i = 0;

sortOrders[i++] = PFSORT_STATE_BGN;

sortOrders[i++] = PFSTATE_FOG;

sortOrders[i++] = PFSTATE_MATERIAL;

sortOrders[i++] = PFSTATE_TEXTURE;

sortOrders[i++] = PFSORT_STATE_END;

sortOrders[i++] = PFSORT_END;

36

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

chan->setBinSort(PFSORT_OPAQUE_BIN, PFSORT_BY_STATE, sortOrders);

chan->setBinSort(PFSORT_TRANSP_BIN, PFSORT_BACK_TO_FRONT, NULL);

The default sorting order for the PFSORT_OPAQUE_BIN bin is by pfGeoState only and the default sort-
ing order for the PFSORT_TRANSP_BIN bin is PFSORT_BACK_TO_FRONT.

Sorting by state is limited to the scope of a transformation (pfDCS or pfSCS) or a node with draw call-
backs, i.e. - pfGeoSets affected by different transformations or draw callbacks are not sorted together.
However, range sorting spans both transformation and draw callback boundaries. Thus a range-sorted
scene graph with many transformations and expensive draw callbacks may suffer reduced performance
due to an increased number of transformation and draw callback changes.

VIEWPOINT AND CAMERA SPECIFICATION
pfChannel::setView specifies both the origin and direction of view for a pfChannel. xyz specifies the
x,y,z position of the viewpoint in world coordinates and hpr specifies the Euler angles (heading, pitch,
and roll) in degrees of the viewing direction relative to the nominal view (as defined below). The order of
application of these angles is ROTy(roll) * ROTx(pitch) * ROTz(heading) where ROTa(angle) is a rotation
matrix about world axis a of angle degrees. In all cases a positive rotation is counterclockwise by the right
hand rule. The nominal viewing coordinate system is +Y = forward, +Z = up, +X = right. For example, a
roll of 90 degrees and a heading of -90 degrees would align the view direction with the +X world axis and
the up direction with the -Y world axis.

pfChannel::setViewMat provides another means of specifying view point and direction. mat is a 4x4
homogeneous matrix which defines the view coordinate system such that the upper 3x3 submatrix
defines the coordinate system axes and the bottom vector defines the coordinate system origin. IRIS Per-
former defines the view direction to be along the positive Y axis and the up direction to be the positive Z
direction, e.g., the second row of mat defines the viewing direction and the third row defines the up direc-
tion in world coordinates. mat must be orthonormal or results are undefined.

The actual viewing direction used for culling and drawing is modified by the offsets specified by
pfChannel::setViewOffsets. The argument xyz defines a translation from the nominal eyepoint. The
Euler angles given in hpr define an additional rotation of the viewing direction from that specified by
pfChannel::setView and pfChannel::setViewMat. Although this has similar functionality to
pfChannel::setView, it is specifically useful for applications which render the same scene into adjacent
displays using multiple pfChannels. Two examples where one would use pfChannel::setViewOffsets as
well as pfChannel::setView are offset-eye stereo image viewing applications, and for video wall applica-
tions.

Example 1: Set up a single pipe, 3-channel simulation using pfChanViewOffsets.

37

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

left = new pfChannel(pfGetPipe(0));

middle = new pfChannel(pfGetPipe(0));

right = new pfChannel(pfGetPipe(0));

/* Form channel group with middle as the "master" */

middle->attach(left);

middle->attach(right);

/* Set FOV of all channels */

middle->makeSimple(45.0f, 45.0f);

middle->setAutoAspect(PFFRUST_CALC_VERT);

/* Set clipping planes of all channels */

middle->setNearFar(1.0f, 2000.0f);

hprOffsets[PF_P] = 0.0f;

hprOffsets[PF_R] = 0.0f;

xyzOffsets->set(0.0f, 0.0f, 0.0f);

/*

* Set up viewport and viewing offsets.

* Note that these are not shared by default.

*/

left->setViewport(0.0f, 1.0f/3.0f, 0.0f, 1.0f);

hprOffsets[PF_H] = 45.0f;

left->setViewOffsets(hprOffsets, xyzOffsets);

middle->setViewport(1.0f/3.0f, 2.0f/3.0f, 0.0f, 1.0f);

hprOffsets[PF_H] = 0.0f;

middle->setViewOffsets(hprOffsets, xyzOffsets);

right->setViewport(2.0f/3.0f, 1.0f, 0.0f, 1.0f);

hprOffsets[PF_H] = -45.0f;

right->setViewOffsets(hprOffsets, xyzOffsets);

Both translation and rotational offsets are encoded in the graphics library’s ModelView matrix. This
ensures that fogging is consistent across multiple, adjacent pfChannels. However, proper lighting
requires a lighting model which specifies a local viewer. Otherwise, geometry which spans multiple
pfChannels will be lit differently on each pfChannel.

Example 2: Local viewer lighting model

38

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

pfLightModel *lm;

lm = new pfLightModel;

lm->setLocal(1);

lm->apply();

pfChannel::getView copies the view point/direction into xyz and hpr.

pfChannel::getViewMat copies the viewing matrix (without viewing offsets) into mat.

pfChannel::getViewOffsets copies the view positional and rotational offsets into the indicated arrays
(xyz and hpr).

pfChannel::getOffsetViewMat copies the combined nominal and offset viewing matrices into mat. This
combined viewing matrix is that used for culling and for configuring the graphics library with the
appropriate transformation. It is defined as offset * nominal where offset is specified by
pfChannel::setViewOffsets and nominal is specified by either pfChannel::setViewMat or
pfChannel::setView.

DRAWING FRAME STATISTICS
IRIS Performer keeps track of times spent, and operations done, in the application, cull, and draw stages
of the rendering pipeline and accumulates the data in a pfFrameStats structure. pfChannel::getFStats is
used to get this pfFrameStats structure from the indicated channel. pfChannel::setStatsMode selects
which of the enabled statistics classes should be displayed in that channel by pfChannel::drawStats or
pfFrameStats::draw.

pfChannel::drawStats or pfFrameStats::draw must be called during each frame that a statistics display is
desired and may be called from any of IRIS Performer’s application, cull, or draw processes. This manual
page give some pointers on how to interpret the statistics to help in tuning your database. Refer to the
IRIS Performer Programming Guide for more detailed information.

pfChannel::setStatsMode takes mode, which is currently just PFCSTATS_DRAW, and the corresponding
value for val, which is a statistics class enabling bitmask. The statistics classes displayed by
pfChannel::drawStats or pfFrameStats::draw are those statistics classes that have been enabled by
pfChannel::setStatsMode for display, and are also enabled for collection. pfChannel::drawStats
displays the contents of the enabled statistics classes of the pfFrameStats structure for channel the
pfChannel, according to the current channel stats draw mode (specified with pfChannel::setStatsMode).

At the top of the display is the actual frame rate being achieved and the frame rate set by pfFrameRate
and the phase set by pfPhase. If statistics collection of process frame times has been disabled, then the
actual frame rate will not be known and "???" will be shown. When the graphics statistics class is enabled

39

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

for collection, the average number of pfGeoSets and triangles being displayed is also shown on the top of
the statistics display. See the pfStats::setClass manual page for more information on enabling statistics
classes.

For the Process Frame Times Statistics class, pfChannel::drawStats displays the amount of time, on aver-
age, spent by each process on a single frame, as well as the number of frames that missed the goal, or
extended beyond the time for the specified goal frame rate. When the PFFSTATS_PFTIMES_HIST mode
is enabled (on by default), a timing diagram of previous frames is displayed.

Red vertical lines indicate video retrace intervals and green ones indicate frame boundaries. Horizontal
bars indicate the time taken by pipeline stages. The three different stages: APP, CULL, AND draw are
separated vertically and stages belonging to the same frame are the same color. Each stage of each frame
is labeled with the name of the stage and its offset from the current frame. For example, the current appli-
cation stage is labeled app0 and draw-3 is the draw stage of three frames back. Stages that are in the same
process are connected by thin vertical lines while stages that are a single process by themselves are not.

The bar for the application stage is split into a total of five pieces: time spent cleaning the scene
graph from changes made by the user (drawn at raised level), time spent waiting for the next
frame boundary when the phase is PFPHASE_LOCK or PFPHASE_FLOAT (drawn with thin,
pale, dashed line), the critical time spent between pfSync and pfFrame, the time spent inside
pfFrame possibly cleaning the scene graph again and updating and setting off tasks in forked cull
and intersection processes (drawn in thin elevated line), and the time spent after pfFrame in the
user’s application code.

The cull bar is divided into two pieces: first the time spent getting updates from the application
process (slightly raised), and the time spent culling the scene graph.

The draw timing bar is divided into four pieces: the lowest piece represents the time actually
spent in pfDraw() rendering the scene; the darkened parts before and after the pfDraw() line
represent time spent in the user’s channel draw callback routine; the final part displays the time
drawing channel statistics.

The draw timing bar is somewhat inaccurate because the time stamps are taken from the host and
do not reflect when the graphics pipeline actually finished rendering. Therefore, time for graph-
ics work done in one part of the draw might be counted in a following part when the graphics
pipeline FIFO filled up and caused the host to wait. This means that some pfDraw() time could
be counted in the following user callback time, or in the time to draw the statistics. This statistics
class is enabled by default.

When fill statistics are enabled, the main channel will be painted in colors ranging from blue to pink that
indicate per-pixel depth-complexity. The brightest (pinkest) areas are those pixels that have been written
many times. The statistics displayed, in green, include average total depth complexity (total number of
pixel writes), as well as the average, minimum, and maximum number of times a given pixel is written.

40

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

When the Graphics Statistics class is enabled for collection and display, detailed statistics on numbers of
primitives, attributes, state changes, and matrix transformations are all displayed. These statistics show
what is being drawn by the graphics pipeline. When the PFSTATS_GFX_TSTRIP_LENGTHS mode is
enabled, a histogram of triangle strip lengths showing the percentage of triangles in the scene in strips of
given lengths is also displayed. For the strip length statistics, quads are counted as strips of length two
and independent triangles are counted as strips of length one. For graphics performance, it is good to
have much of the database as possible in triangle strips, and making those triangle strips as long as possi-
ble. On a system with RealityEngine graphics, pay special attention to the numbers for texture loads and
number of bytes loaded. If these numbers are non-zero, then it means that hardware texture memory is
being overflowed and swapped regularly and this will degrade graphics performance.

The CPU statistics display will show some of the statistics seen in osview(1). Graphics context switches
occur when there are multiple active graphics windows on the same screen. An application needing high
fixed frame rates should not be encurring graphics context switches. Another useful indicator of graphics
overload is the fifonowait and fifowait numbers. An excessive number of times seen waiting on the
graphics FIFO could indicate a graphics bottleneck and fill statistics should be examined. If there are an
excessive number of process context switches, then it might help performance to restrict the draw process
to a single processor and then isolate that processor. IRIS Performer will not do this automatically; how-
ever, there are utilities in the IRIS Performer utility library, libpfutil (see pfuLockCPU), that enable you
to do this. These utilities are demonstrated in the IRIS Performer Perfly sample application. These utili-
ties use the IRIX REACT extensions via sysmp(2).

When the Database Statistics class is enabled for collection and display, the number of displayed and
evaluated nodes for each node type is shown. When the cull statistics are displayed, a table showing the
total number of nodes and pfGeoSets traversed by the cull process, the number of node bounding sphere
and pfGeoSet bounding boxes tested, and the total number of nodes, and pfGeoSets, (of those traversed)
that were trivially rejected as being outside the viewing frustum, the number that were fully inside the
viewing frustum, and the number that intersected the viewing frustum. The database and culling statis-
tics together can show the efficiency of the database hierarchy. If many of the nodes in the database are
being traversed by the cull process when only a small percentage are actually visible, then this indicates
that the database hierarchy is not spatially coherent. If there are many pfGeoSets in each pfGeode, and
many pfGeoSets are being rejected by the cull, then adding more database hierarchy above current nodes
may actually speed up the culling traversal because cull tests on nodes would be able to accept or reject
large pieces of the database without traversing lower nodes. If the number of pfLOD nodes evaluated is
much more then the number that are actually drawn, then adding LOD hierarchy might help to reduce
the total number of LOD range calculations, which are fairly expensive.

If there are few nodes in the database relative to the number of pfGeoSets and the cull is taking a small
amount of time but the draw is taking longer than desired, then adding more nodes and using a database
hierarchy that is spatially coherent should improve the accuracy of the cull and speed up the draw traver-
sal. If there are only a few pfGeoSets per pfGeode and the cull is taking longer than the draw in multipro-
cess mode, or is taking a significant amount of time in a process shared with the draw, then it might
benefit to not cull down to the pfGeoSet level. Refer to the pfChannel::setTravMode reference page for

41

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

information on setting cull traversal modes.

Graphics load is displayed in the lower portion of the statistics window. The load hysteresis band (see
pfChannel::setStress) is drawn in white and the previous 3 seconds of graphics load is drawn in red.
Load is not scaled and ranges from 0.0 to 1.0 within the lower portion of the statistics window.

If stress is active, the display shows a graph of the previous 3 seconds of stress which is drawn in white.
Stress is drawn into the upper portion and is scaled to fit.

The pfChannel::drawStats display is very useful for debugging and profiling a particular application and
also for visualizing the behavior of differing multiprocessing modes and pfPipe phases.

NOTES
pfChannel::drawStats and pfFrameStats::draw do not actually draw the diagram but set a flag so that
the diagram is drawn just before IRIS Performer swaps image buffers.

Drawing the timing diagram does take a small amount of time in the draw process, so it will perturb the
frame rate and timing data to some degree.

IRIS Performer level-of-detail behavior is primarily dependent on pfChannel viewing parameters such as
view position, field-of-view, and viewport pixel size. IRIS Performer assumes that LODs are modeled for
a canonical FOV of 45 degrees and a viewport size of 1024 pixels. IRIS Performer computes an internal
scale value for pfChannels whose FOV or viewport size differ from these defaults. This scale value is
used to modify LOD ranges so that correct LOD behavior is maintained. If your LODs were not modeled
with the above defaults you may use PFLOD_SCALE (see below) to adjust the LOD ranges.

Other LOD modification parameters are set with pfChannel::setLODAttr. attr is a symbolic token that
specifies which LOD parameter to set and is one of the following:

PFLOD_SCALE
val multiplies the range computed between chan’s eyepoint and all pfLOD’s drawn by the
pfChannel. This is used to globally increase or decrease level of detail on a per-pfChannel
basis. The default LOD scale is 1.0. See the pfLODState and pfLOD man page for more
details.

PFLOD_FADE
val specifies the global fade scale used to fade between levels of detail. Fade is enabled
when val > 0, and is disabled when val <= 0. Fade is disabled by default. Note that when
computing the actual "fade" or transition distances, this scale is multiplied by individual
fade distance values that are specified via pfLOD::setTransition. Default pfLOD transition
ranges are 1.0. See the pfLODState and pfLOD man page for more details.

42

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

PFLOD_STRESS_PIX_LIMIT
System stress (pfChannel::setStress) will not affect LOD’s whose projected pixel size
exceeds val pixels. This feature is disabled by default.

PFLOD_FRUST_SCALE
The range multiplier based on the pfChannel’s viewport and FOV is multipled by val. Typi-
cally, this feature is enabled with a value of 1.0 and disabled with a value of 0.0.

LOD fade is useful for avoiding distracting LOD switches. When within the fade range, LODs are drawn
semi-transparent so that adjacent LODs smoothly blend together. Fade determines the transparency of an
two independent levels of detail. Here is an example for a pfLOD with 3 levels-of-detail and fade range
of 30 database units:

Switch Range

0 100 250 350

| | | |
|------------|====|====|-------------|====|====|-----|====|====|
| ˆ | ˆ | | ˆ

| | |
| 20/80 LOD0/LOD1 ˆ |

100% LOD0 | 40% LOD2

50/50 LOD1/LOD2

=== indicates where fading is active.

Fade transparency is complementary so that fading the same LOD child with (fade) and (1.0 - fade) will
generate a fully opaque image. As an example, a fade of 0.7 will cover 70% of the screen area while a fade
of (1.0 - fade) = (1.0 - 0.7) = 0.3 will cover the remaining 30% of the screen area.

IRIS Performer ensures that LODs whose switch range is <= 0.0 do not fade in and also clamps the user-
specified fade range to half the distance between LOD switches. For example, if a pfLOD is specified with
switch ranges 0.0, 100.0, 400.0 and the fade range is 80.0, the result will be:

Example 2: Fade clamping

Range LOD(s) drawn

---------- -----------------------------------

0 -> 50 100% LOD0

50 -> 100 100% -> 50% LOD0 + 0% -> 50% LOD1

100 -> 180 50% -> 0% LOD0 + 50% -> 100% LOD1

180 -> 320 100% LOD1

320 -> 400 100% -> 50% LOD1

400 -> 480 50% -> 0% LOD1

43

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

Use fade with discretion since it increases rendering time because two LODs instead of one are drawn
when range is within the fade interval.

pfChannel::getLODAttr returns the value of the LOD modification parameter specified by attr.

IRIS Performer computes a stress value based on graphics load (pfChannel::setStress) to modify LODs.
Specifically, when the system approaches overload, simpler LODs are drawn in order to reduce graphics
load. However, in some situations image fidelity considerations make it undesirable to draw low levels-
of-detail of objects which are close to the viewer and thus occupy considerable screen space.
PFLOD_STRESS_PIX_LIMIT limits the effects of stress to LODs whose projected pixel size is less than
val. Projected pixel size is based on the bounding volume of the LOD and is approximate. When val <
0.0, the stress pixel limit is disabled.

PFLOD_SCALE is a global scale that is useful for debugging and for adapting LODs modeled at one FOV
and viewport size to the canonical FOV and viewport size used by IRIS Performer. A val of 0.0 will cause
only the highest LODs are displayed, since the effective distance will be uniformly scaled to 0.0.

All pfChannels on a pfPipe are rendered into a single graphics window so that they can share hardware
resources such as textures. Additionally, each channel is rendered in succession rather than in parallel to
avoid costly graphics context switching.

For best performance, channel buffers allocated by pfChannel::allocChanData should be as small as pos-
sible and pfChannel::passChanData should be called only when necessary to reduce copying overhead.

When configured as a process separate from the draw, the cull callback should not invoke IRIS GL or
OpenGL graphics calls since only the draw process is attached to a graphics context. However, the
display listable libpr commands invoked in the cull callback will be correctly added to the current IRIS
Performer libpr display list being built for later processing by the draw process.

Callbacks should not modify the IRIS Performer database but may use pfList::get routines to inquire
information as desired.

Draw callbacks should not attempt to perform framebuffer swapping operations directly since IRIS Per-
former must control this to handle frame and channel synchronization. If user control of buffer swapping
is required, register a pfPipe::setSwapFunc callback to cause the named user written function to be used
by IRIS Performer for swapping buffers.

Sorting back-to-front is required for accurate rendering of PFTR_BLEND_ALPHA surfaces. The ordering
mechanism described above provides range sorting on a per-pfGeoSet, not a per-triangle basis so some
anomalies may be apparent when rendering transparent surfaces. These anomalies may be reduced by
rejecting back-facing polygons (see pfCullFace and PFSTATE_CULLFACE).

The IRIS Performer world coordinate system is +X = East, +Y = North, +Z = Up and viewing coordinate

44

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)hh

system is +X = Right, +Y = Forward, +Z = Up. Note that this is not the same as the IRIS GL or OpenGL
default coordinate system which uses +X = Right, +Y = Up, +Z = Out of the screen. IRIS Performer inter-
nally manages the transformation required to go from a ’Z-up’ world to a ’Y-up’ world.

Fade-based level of detail transition is supported only on RealityEngine systems and then only when mul-
tisampling is enabled.

BUGS
Intersections, and thus picking, with lines and points is not yet implemented.

SEE ALSO
pfPipeWindow, pfPipe, pfNode, pfGeoState, pfStats, pfConfig, pfCullFace, pfDispList, pfEarthSky,
pfESkyFog, pfObject, pfFrame, pfFrameRate, pfFrustum, pfGetSemaArena, pfLightSource, pfLOD,
pfMultipipe, pfMultiprocess, pfPolytope, pfPhase, pfScene, pfGetSemaArena, pfTransparency, pfu-
LockCPU

45

pfConfig(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfMultipipe, pfGetMultipipe, pfMultithread, pfGetMultithread, pfMultiprocess, pfGetMultiprocess,
pfConfig, pfGetPID, pfGetPipe, pfInitPipe, pfGetStage, pfStageConfigFunc, pfGetStageConfigFunc,
pfConfigStage, pfHyperpipe, pfGetHyperpipe, pfGetPipeHyperId − Configure process and pipeline
models, get pfPipe handle and process ID.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

int pfMultipipe(int num);

int pfGetMultipipe(void);

int pfMultithread(int pipe, uint stage, int nprocs);

int pfGetMultithread(int pipe, uint stage);

int pfMultiprocess(int mode);

int pfGetMultiprocess(void);

int pfConfig(void);

pid_t pfGetPID(int pipe, uint stage);

pfPipe * pfGetPipe(int pipe);

int pfInitPipe(pfPipe *pipe, pfPipeFuncType configFunc);

uint pfGetStage(pid_t pid, int *pipe);

void pfStageConfigFunc(int pipe, uint stageMask, pfStageFuncType configFunc);

pfStageFuncType pfGetStageConfigFunc(int pipe, uint stageMask);

void pfConfigStage(int pipe, uint stageMask);

void pfHyperpipe(int n);

int pfGetHyperpipe(pfPipe *pipe);

int pfGetPipeHyperId(const pfPipe *pipe);

typedef void (*pfStageFuncType)(int pipe, uint stage);

DESCRIPTION
An IRIS Performer application renders images using one or more pfPipes. A pfPipe is a software render-
ing pipeline that traverses, culls, and draws one or more pfChannels into a single graphics context. The
software rendering pipeline is composed of three functional stages:

46

IRIS Performer 2.0 libpf C++ Reference Pages pfConfig(3pf)hh

APP Application processing

CULL Database culling and level-of-detail selection

DRAW Drawing geometry produced by CULL

In addition, IRIS Performer has a separate intersection stage which can operate either synchronously or
asynchronously with the rendering pipeline (see pfIsectFunc).

All stages may be combined into a single process or split into multiple processes for enhanced perfor-
mance on multiprocessing systems. pfMultiprocess controls the partitioning of functional stages into
processes. mode is a bitwise OR of the following tokens:

PFMP_FORK_ISECT
PFMP_FORK_CULL
PFMP_FORK_DRAW
PFMP_FORK_DBASE
PFMP_CULLoDRAW
PFMP_CULL_DL_DRAW

These tokens specify which stages to fork into separate processes and what multiprocessing communica-
tion mechanism to use between the cull and draw processes.

The process from which all other processes are spawned is known as the application process, or APP.
This process is the one that invokes pfConfig and controls the rendering and intersection pipelines
through pfFrame.

User code in the intersection, database, cull, and draw processes are "triggered" by calling pfFrame.
pfFrame causes IRIS Performer to invoke the user callbacks associated with each process. These callbacks
are established by pfIsectFunc, pfDBaseFunc, pfChanTravFunc respectively. See pfFrame for more
details.

Each pfPipe has a CULL and DRAW stage which may be configured as either one or two processes. The
ISECT and DBASE stages are independent of any pfPipe and may run in the same process as the applica-
tion process or as separate processes (PFMP_FORK_ISECT, PFMP_FORK_DBASE). In the latter case,
the user may further multiprocess intersection traversals through any IRIX multiprocessing mechanism
such as fork, sproc, or m_fork. Database processing utilizing the pfBuffer mechanism may be further
parallelized through fork only (See pfBuffer).

For additional performance gains when a pfPipe contains multiple pfChannels, the CULL stage may be
further parallelized on a per-pfChannel basis. When the stage argument to pfMultithread is
PFPROC_CULL, the CULL stage of the pipeth rendering pipeline is split into nprocs, forked, processes
each of which operates singly on a pfChannel. Thus this extra parallelization is only effective when both

47

pfConfig(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

nprocs and the number of pfChannels on pipe are greater than 1. nprocs need not be equal to the number of
pfChannels. Currently, pfMultithread only accepts a stage argument of PFPROC_CULL, returns 1 on
success and -1 otherwise. The CULL is not automatically multithreaded if PFMP_DEFAULT is specified
as the pfMultiprocess mode.

When multithreading the CULL, care must be taken to avoid data collisions in user callback functions. In
particular, pfChannel and pfNode CULL callbacks (pfChanTravFunc, pfNodeTravFuncs) may be
invoked in parallel.

pfGetMultithread returns the number of processes in the processing stage identified by stage on the
pipeth rendering pipeline. Currently, pfGetMultithread only accepts a stage argument of
PFPROC_CULL and returns -1 otherwise.

Thus, the number of processes an application uses is dependent on:

1. The multiprocessing modes set by pfMultiprocess and pfMultithread.

2. The number of rendering pipelines set by pfMultipipe.

3. The number of user-spawned processes.

The following table indicates the number of processes that are implied by each multiprocessing mode
combination as a function of the number of IRIS Performer pfPipes specified.

FORK_ISECT FORK_CULL FORK_DRAW # Processesii
No No No 1
No No Yes 2
No Yes No 1 + numPipes
No Yes Yes 1 + 2*numPipesii
Yes No No 2
Yes No Yes 3
Yes Yes No 2 + numPipes
Yes Yes Yes 2 + 2*numPipescc

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

Here is an example configuration which would be used to generate a high-performance stereo display
using two pfPipes, each associated with a hardware graphics pipeline. In this situation the output of one
pipeline will be displayed for the viewer’s left eye, and the other will go to the right eye. Here, mul-
tithreading the CULL is of no use since each pfChannel is handled by its own pfPipe.

Example 1: Two pfPipe stereo configuration

/* configure two hardware pipelines */

pfMultipipe(2);

/* operate all processing tasks in parallel */

48

IRIS Performer 2.0 libpf C++ Reference Pages pfConfig(3pf)hh

pfMultiprocess(PFMP_FORK_CULL | PFMP_FORK_DRAW | PFMP_FORK_ISECT);

The processing mode configured by this example looks like:

CULL ---> DRAW left eye

/

/

APP

/ \

/ \

ISECT CULL ---> DRAW right eye

Example 2: One pfPipe stereo configuration using multithreaded CULL

/* operate all processing tasks in parallel */

pfMultiprocess(PFMP_FORK_CULL | PFMP_FORK_DRAW | PFMP_FORK_ISECT);

pfMultithread(0, PFPROC_CULL, 2);

The processing mode configured by this example looks like:

CULL left eye

/ \

APP----- ---------> DRAW

/ \ /

/ CULL right eye

ISECT

PFMP_CULL_DL_DRAW and PFMP_CULLoDRAW specify how the cull and draw stages should com-
municate.

If PFMP_CULL_DL_DRAW is set the cull stage will build up an IRIS Performer display list (pfDispList)
which contains the entire frame’s worth of data. The draw stage then traverses this pfDispList when
pfDraw is called and sends commands to the graphics hardware. When the cull and draw stages are dif-
ferent processes (PFMP_FORK_DRAW) this mode is always enabled. However, when the cull and draw
stages are the same process, the display list construction may add some overhead. If, in this case,
PFMP_CULL_DL_DRAW is not specified, the cull stage will be delayed until pfDraw is called. pfDraw
will then cull and draw the scene in immediate mode and not use a pfDispList.

49

pfConfig(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

PFMP_CULL_DL_DRAW is disabled by default but should be used for applications which use multipass
rendering techniques that require multiple calls to pfDraw.

The ’o’ in PFMP_CULLoDRAW is short for ’overlap’ and when this bit is set, the multiprocessed cull and
draw stages of the same frame will be overlapped. The cull process (the producer) writes to a FIFO
(implemented as a ring buffer) while the draw process (the consumer) simultaneously reads commands
from the ring buffer.

The main benefit of this configuration is that latency will be reduced a full frame time over the pipelined
(non-overlapped) case. A disadvantage is that the draw process may suffer from reduced throughput if
the cull process cannot keep up. This condition is exacerbated when the cull sorts the database by draw
bin or by graphics state. In each case, the cull retains the database in internal data structures and does not
add drawing commands to the display list until the cull is completed. Consequently, to get the best
throughput from PFMP_CULLoDRAW, database mode sorting and ordering should be disabled.

Example 3: Reasonable sorting setup for PFMP_CULLoDRAW

pfMultiprocess(PFMP_APP_CULL_DRAW | PFMP_CULLoDRAW);

/* Draw opaque geometry immediately into CULLoDRAW’s pfDispList

* Transparent geometry is still saved and drawn after opaque. */

pfChanBinOrder(chan, PFSORT_OPAQUE_BIN, PFSORT_NO_ORDER);

/* PFCULL_SORT must be enabled for transparent geometry to be

ordered, i.e. - drawn last. */

pfChanTravMode(chan, PFTRAV_CULL, PFCULL_ALL);

PFMP_CULLoDRAW is ignored if the cull and draw stages are in the same process.

For convenience, other tokens are provided for common multiprocessing modes:

PFMP_APPCULLDRAW
All stages are combined into a single process. A pfDispList is not used. pfDraw both culls
and renders the scene.

PFMP_APPCULL_DL_DRAW
All stages are combined into a single process. A pfDispList is built by pfCull and rendered
by pfDraw.

50

IRIS Performer 2.0 libpf C++ Reference Pages pfConfig(3pf)hh

PFMP_APP_CULLDRAW
The cull and draw stages are combined in a process that is separate from the application
process. A pfDispList is not used. pfDraw both culls and renders the scene. Equivalent to
(PFMP_FORK_CULL).

PFMP_APP_CULL_DL_DRAW
The cull and draw stages are combined in a process that is separate from the application
process. A pfDispList is built by pfCull and rendered by pfDraw. Equivalent to (-
PFMP_FORK_CULL | PFMP_CULL_DL_DRAW).

PFMP_APPCULL_DRAW
The application and cull stages are combined in a process that is separate from the draw
process. Equivalent to (PFMP_FORK_DRAW).

PFMP_APPCULLoDRAW
The application and cull stages are combined in a process that is separate from, but over-
laps, the draw process. Equivalent to (PFMP_FORK_DRAW | PFMP_CULLoDRAW).

PFMP_APP_CULL_DRAW
The application, cull, and draw stages are each separate processes. Equivalent to (-
PFMP_FORK_CULL | PFMP_FORK_DRAW).

PFMP_APP_CULLoDRAW
The application, cull, and draw stages are each separate processes and the cull and draw
process are overlapped. Equivalent to (PFMP_FORK_CULL | PFMP_FORK_DRAW |
PFMP_CULLoDRAW).

PFMP_DEFAULT
IRIS Performer will choose a multiprocessing mode based on the number of pipelines
required and the number of unrestricted processors available. This is also the default mode
if pfMultiprocess is not called. PFMP_DEFAULT will attempt to use as many available
processors as possible except the CULL will not be automatically multithreaded.

By default IRIS Performer uses a single pfPipe. If multiple rendering pipelines are required (in most cases
this will be for machines with multiple hardware pipelines), use pfMultipipe to specify the number of
pfPipes that are created by pfConfig. Multipipe operation absolutely requires that all participating
hardware pipelines be genlocked. Otherwise reduced throughput and increased latency will result.

The multiprocessing mode set by pfMultiprocess is used for all rendering pipelines. However, IRIS Per-
former never multi-threads the application process although the application may choose to do so. If the
application itself multiprocesses, all IRIS Performer calls must be made from the process which calls
pfConfig or results are undefined. When using multiple pipelines, the cull stage must be forked (-
PFMP_FORK_CULL). If not, IRIS Performer defaults to PFMP_APP_CULL_DRAW.

pfMultiprocess, pfMultithread, and pfMultipipe must be called after pfInit but before pfConfig.
pfConfig configures IRIS Performer according to the required number of pipelines and multiprocessing

51

pfConfig(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

modes, forks the appropriate number of IRIS Performer processes and returns control to the single-
threaded application. pfConfig should be called only once between pfInit and pfExit.

IRIS Performer uses fork to split off processes and will create the specified number of separate processes
only when pfConfig is called. Forked processes do not share the same address space as sproc’ed
processes so the application must establish shared memory communication mechanisms between
processes or use the shared memory features provided by IRIS Performer (see pfPassChanData,
pfMalloc, pfGetSharedArena, pfDataPool).

In particular, care must be taken when the DBASE stage is configured as a separate process. Although
deletion requests (pfDelete) may be made in any process, DBASE frees all the memory so if DBASE is
forked it can only free memory that was allocated out of IRIS Performer’s shared memory arena (-
pfGetSharedArena) or from some other memory arena that is visible to the DBASE process. Conse-
quently it is safest to allocate all objects from a shared memory arena when using a forked DBASE pro-
cess.

In addition to forking processes, pfConfig initializes the number of pfCycleBuffer copies (-
pfCBufferConfig) appropriate to the multiprocessing mode and also initializes the video clock (-
pfInitVClock) to 0.

After pfConfig is called, pfGetPipe should be used to get handles to pfPipes for subsequent use in IRIS
Performer routines. pipe identifies a pipe and ranges from 0 to numPipes - 1 where numPipes is the
number of pipes specified in pfMultipipe.

After pfConfig spawns other processes, pfGetPID will return the process id of a specific pipeline stage or
-1 to indicate error. pipe specifies which pipeline the stage is in and ranges from 0 to numPipes - 1. stage is
a bitmask which identifies one or more stages in the multiprocessing pipeline and may consist of:

Token Stage Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PFPROC_ISECT The intersection stage
PFPROC_DBASE The database stage
PFPROC_APP The application stage
PFPROC_CULL The cull stage
PFPROC_DRAW The draw stage
PFPROC_CLOCK The clock processc

c
c
c
c
c
c
c
c

If stage identifies multiple stages, such as (PFPROC_CULL ||PFPROC_DRAW), then the process id will
be returned only if an exact match is made which in this example is only possible if the multiprocessing
mode is PFMP_APP_CULLDRAW. Otherwise a -1 is returned.

pipe is ignored if stage identifies the PFPROC_ISECT, PFPROC_DBASE, or PFPROC_APP stages since
these stages are not associated with any IRIS Performer pipe.

52

IRIS Performer 2.0 libpf C++ Reference Pages pfConfig(3pf)hh

pfGetStage is the "inverse" of pfGetPID. Given a process id, pid, pfGetStage will return a bitmask which
identifies the stages that are performed by process pid and will copy into pipe the number of the pipeline
that pid is in if pipe is not NULL. pfGetStage returns -1 if pid is not a known IRIS Performer process.

The stage bitmask used in pfGetPID and pfGetStage identifies the thread number (pfMultithread) as
well as the processing stage(s). The thread ID is OR’ed into the upper bits of the stage bitmask as follows:

threadId = (stage & PFPROC_THREAD_MASK) >> PFPROC_THREAD_SHIFT;

The PFPROC_THREAD1-7 tokens are provided as a convenience (more than 8 threads are supported).

pfGetMultiprocess and pfGetMultipipe return the multiprocess mode and number of pfPipes
configured.

pfInitPipe is an obsolete routine for initializing the graphics subsystem for a pfPipe. A callback function
configFunc could be provided for initializing pipe in the draw process and was used for opening windows
in the draw process for the pfPipe. This function has been obsoleted by the pfPipeWindow primitive
which can be used to configure windows in either or both the application process and draw process, and
by pfConfigStage which provides a mechanism for initializing any IRIS Performer process or pfPipe
stage. See the pfPipeWindow man page for more information on creating and opening IRIS Performer
windows.

After pfConfig, stage configuration callbacks may be specified with pfStageConfigFunc and triggered
with pfConfigStage. Configuration callbacks are typically used for process initialization, e.g, assign non-
degrading priorities and locking processes to processors or downloading textures in the DRAW stage
callback. The stageMask argument to pfStageConfigFunc is a bitmask which identifies one or more IRIS
Performer stages (see pfGetPID above). If >= 0, the pipe argument to pfStageConfigFunc selects stage(s)
on a particular pfPipe (pfGetPipe(pipe)). If pipe is < 0 it selects stages of all pfPipes. Note that pipe is
ignored for the PFPROC_ISECT, PFPROC_APP, and PFPROC_DBASE stages since they are not associ-
ated with any pfPipe. configFunc is the callback function to be invoked for the indicated stages.
pfGetStageConfigFunc returns the configuration function used for the stage identified by pipe and
stageMask.

pfConfigStage causes the callback functions to be invoked for the identified stages at the start of process-
ing the current application frame. The current application frame gets to the next stage at the next call to
pfFrame. pipe and stageMask are treated identically as in pfStageConfigFunc. When multiprocessing, the
callback functions are invoked in the appropriate processes.

Example 4: Stage configuration

53

pfConfig(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

void

configFunc(int pipe, uint stage)

{

/* Fix CULL processes to processor 1 and 3 */

if (stage == PFPROC_CULL)

sysmp(MP_MUSTRUN, 2*pipe+1);

/* Fix DRAW processes to processor 2 and 4 */

else if (stage == PFPROC_DRAW)

sysmp(MP_MUSTRUN, 2*pipe+2);

}

:

pfMultipipe(2);

pfMultiprocess(PFMP_APP_CULL_DRAW);

pfConfig();

pfStageConfigFunc(-1, PFPROC_CULL|PFPROC_DRAW, configFunc);

pfConfigStage(-1, PFPROC_CULL|PFPROC_DRAW);

pfFrame();

pfHyperpipe supports the hyperpipe hardware feature of VGXT/Skywriter and Onyx/RealityEngine2
research systems. n indicates the number of pfPipes that should be configured together in hyperpipe
mode. Hyperpipes will run at a fraction of the system frame rate as defined by pfFrameRate. For exam-
ple, if n is 2, then each pfPipe in the hyperpipe group will run at half the system frame rate so their aggre-
gate rate will be equal to the system frame rate.

pfGetHyperpipe returns the total number of pfPipes in the hyperpipe group that pipe belongs to.
pfGetPipeHyperId returns the position of pipe in its hyperpipe group. The following example configures
a two-pipeline hyperpipe system:

Example 5: Hyperpipe Example

pfHyperpipe(2);

pfConfig();

pfGetHyperpipe(pfGetPipe(0)); /* This returns 2 */

pfGetPipeHyperId(pfGetPipe(1)); /* This returns 1 */

54

IRIS Performer 2.0 libpf C++ Reference Pages pfConfig(3pf)hh

NOTES
In practice, user callbacks in the intersection process call only pfNodeIsectSegs and user callbacks in the
database process uses the pfBuffer mechanism to asynchronously create and delete scene graphs to
implement database paging.

If PFMP_DEFAULT is not used, it is up to the application to tailor the number of IRIS Performer
processes to the number of processors. Care must be taken to avoid thrashing, starvation, and deadlock.

If pfIsectFunc is called before pfConfig and the multiprocessing mode is PFMP_DEFAULT, then
pfConfig will fork the intersection process if there are enough processors. Otherwise, you must explicitly
fork the intersection process by setting the PFMP_FORK_ISECT bit in the argument passed to
pfMultiprocess.

When using PFMP_CULLoDRAW, multipass algorithms (e.g. - landing lights on RealityEngine) which
call pfDraw more than once per frame will not work.

BUGS
If PFMP_CULLoDRAW is used, modifications to pfChannel passthrough data (see pfPassChanData)
made by the cull callback will not be passed along to the draw callback. However, modifications made by
the application process will still make it to both cull and draw callbacks.

PFMP_CULLoDRAW usually has no effect when IRIS Performer is in the free-running frame rate control
mode specified by pfPhase(PFPHASE_FREE_RUN). Instead, use PFPHASE_FLOAT or
PFPHASE_LOCK.

When in PFMP_CULLoDRAW mode, the draw time recorded by IRIS Performer statistics does not
include the time the draw process spends waiting for the cull process to begin filling the ring buffer.

pfHyperpipe assumes that the pfPipe to hardware pipe association is ordered, e.g. that pipe 0 renders to
screen 0, pipe 1 renders to screen 1, and so on.

SEE ALSO
fork, m_fork, pfChannel, pfCycleBuffer, pfInit, pfIsectFunc, pfDBaseFunc, pfPipe, sproc

55

pfDBaseFunc(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfDBaseFunc, pfGetDBaseFunc, pfAllocDBaseData, pfGetDBaseData, pfPassDBaseData, pfDBase −
Set database callback, allocate and pass database data.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

void pfDBaseFunc(pfDBaseFuncType func);

pfDBaseFuncType pfGetDBaseFunc(void);

void * pfAllocDBaseData(int bytes);

void * pfGetDBaseData(void);

void pfPassDBaseData(void);

void pfDBase(void);

typedef void (*pfDBaseFuncType)(void *userData);

DESCRIPTION
The func argument to pfDBaseFunc specifies the database callback function. This function will be
invoked by pfFrame and will be passed a pointer to a data buffer allocated by pfAllocDBaseData. If a
separate process is allocated for database processing by the PFMP_FORK_DBASE mode to
pfMultiprocess, then pfFrame will cause func to be called in the separate (DBASE) process.
pfGetDBaseFunc returns the database callback or NULL if none is set.

The database function’s primary purpose is to provide asynchronous database creation and deletion
when using the pfBuffer mechanism and a forked DBASE process (see PFMP_FORK_DBASE,
pfMultiprocess, and new pfBuffer).

When the database function is in a separate process, it will run asynchronously with the rest of the
rendering pipeline. Specifically, if the database function takes more than a frame time, the rendering pipe-
line will not be affected.

If a database function has been specified by pfDBaseFunc, it must call pfDBase to carry out default IRIS
Performer database processing. pfDBase should only be called from within the DBASE callback in the
DBASE process just like pfCull and pfDraw should only be called in the pfChannel CULL and DRAW
callbacks (pfChannel::setTravFunc) respectively. If a database function has not been specified or is
NULL, IRIS Performer automatically calls pfDBase from pfFrame.

pfAllocDBaseData returns a pointer to a chunk of shared memory of bytes bytes. This memory buffer
may be used to communicate information between the database function and application. Database data
should only be allocated once. pfGetDBaseData returns the previously allocated database data.

56

IRIS Performer 2.0 libpf C++ Reference Pages pfDBaseFunc(3pf)hh

When the database function is forked, pfPassDBaseData should be used to copy the database data into
internal IRIS Performer memory when the next pfFrame is called. Once pfFrame is called, the application
may modify data in the database data buffer without fear of colliding with the forked database function.
However, modifications to the database data chunk made by the DBASE process will not be visible to the
APP process, i.e, there is no "upstream" propagation of passthrough data.

NOTES
Currently, pfDBase carries out asynchronous deletion requests made with pfAsyncDelete.

SEE ALSO
pfAsyncDelete, pfConfig, pfFrame, pfMultiprocess, new, pfBuffer

57

pfDCS(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfDCS − Create, modify and get the matrix of a dynamic coordinate system.

FUNCTION SPECIFICATION
#include <Performer/pf/pfDCS.h>

pfDCS::pfDCS();

static pfType * pfDCS::getClassType(void);

void pfDCS::setTrans(float x, float y, float z);

void pfDCS::setRot(float h, float p, float r);

void pfDCS::setCoord(pfCoord *coord);

void pfDCS::setScale(float s);

void pfDCS::setScale(float x, float y, float z);

void pfDCS::setMat(pfMatrix &m);

void pfDCS::getMat(pfMatrix &m);

const pfMatrix*
pfDCS::getMatPtr(void);

void pfDCS::setMatType(uint val);

uint pfDCS::getMatType();

PARENT CLASS FUNCTIONS
The IRIS Performer class pfDCS is derived from the parent class pfSCS, so each of these member func-
tions of class pfSCS are also directly usable with objects of class pfDCS. This is also true for ancestor
classes of class pfSCS.

void pfSCS::getMat(pfMatrix &mat);
const pfMatrix* pfSCS::getMatPtr(void);

Since the class pfSCS is itself derived from the parent class pfGroup, objects of class pfDCS can also be
used with these functions designed for objects of class pfGroup.

int pfGroup::addChild(pfNode *child);
int pfGroup::insertChild(int index, pfNode *child);
int pfGroup::replaceChild(pfNode *old, pfNode *new);
int pfGroup::removeChild(pfNode* child);
int pfGroup::searchChild(pfNode* child);
pfNode * pfGroup::getChild(int index);

58

IRIS Performer 2.0 libpf C++ Reference Pages pfDCS(3pf)hh

int pfGroup::getNumChildren(void);
int pfGroup::bufferAddChild(pfNode *child);
int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfDCS can also be
used with these functions designed for objects of class pfNode.

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);
const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);
pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfDCS can also be
used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfDCS can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);

59

pfDCS(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfDCS (Dynamic Coordinate System) is a pfSCS whose matrix can be modified.

new pfDCS creates and returns a handle to a pfDCS. Like other pfNodes, pfDCSes are always allocated
from shared memory and cannot be created statically, on the stack or in arrays. pfDCSes should be
deleted using pfDelete rather than the delete operator.

pfDCS::getClassType returns the pfType* for the class pfDCS. The pfType* returned by
pfDCS::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfDCS. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

The initial transformation is the identity matrix. The transformation of a pfDCS can be set by specifying a
matrix or translation, scale and rotation. When independently setting translation, rotation, and scale, the
pfDCS matrix is computed as S*R*T, where S is the scale, R is the rotation, and T is the translation. The
order of effect is then scale followed by rotation followed by translation.

pfDCS operations are absolute rather than cumulative. For example:

dcs->setTrans(2.0f, 0.0f, 0.0f);

dcs->setTrans(1.0f, 0.0f, 0.0f);

specifies a translation by 1 unit along the X coordinate axis, not 3 units.

By default a pfDCS uses a bounding sphere which is dynamic, so it is automatically updated when the
pfDCS transformation is changed or when children are added, deleted or changed. This behavior may be
changed using pfNode::setBound. The bound for a pfDCS encompasses all B(i)*S*R*T, where B(i) is the
bound for the child ’i’ and S*R*T represents the scale, rotation, and translation transformation of the

60

IRIS Performer 2.0 libpf C++ Reference Pages pfDCS(3pf)hh

pfDCS.

pfDCS::setTrans sets the translation part of the pfDCS to (x, y, z). The rotational portion of the matrix is
unchanged.

pfDCS::setScale sets the scale portion of the pfDCS to scale uniformly by a scale factor s. This supersedes
the previous scale leaving the rotation and translation unchanged. pfDCS::setScale specifies a non-
uniform scale of x, y, z.

pfDCS::setRot sets the rotation portion of the matrix:

h Specifies heading, the rotation about the Z axis.

p Specifies pitch, the rotation about the X axis.

r Specifies roll, rotation about the Y axis.

The matrix created is R*P*H, where R is the roll transform, P is the pitch transform and H is the heading
transform. The new (h,p,r) combination replaces the previous specification, leaving the scale and transla-
tion unchanged. The convention is natural for a model in which +Y is "forward," +Z is "up" and +X is
"right". To maintain 1/1000 degree resolution in the single precision arithmetic used internally for sine
and cosine calculations, the angles h, p, r should be in the range of -7500 to +7500 degrees.

pfDCS::setCoord sets the rotation and translation portion of the pfDCS according to coord. This is
equivalent to:

dcs->setRot(coord->hpr[0], coord->hpr[1], coord->hpr[2]);

dcs->setTrans(coord->xyz[0], coord->xyz[1], coord->xyz[2]);

pfDCS::setMat sets the transformation matrix for the pfDCS to m.

Normally pfDCS::setMat is used as a replacement for the above routines which individually set the scale,
rotation and translational components. The mechanisms can be combined but only if the supplied matrix
can be represented as scale followed by a rotation followed by a translation (e.g. a point pt is transformed
by the matrix as: pt’ = pt*S*R*T), which implies that no shearing or non-uniform scaling is present.

::setMatType allows the specification of information about the type of transformation the matrix
represents. This information allows Performer to speed up some operations. The matrix type is specified
as the OR of

61

pfDCS(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

PFMAT_TRANS:
matrix may include a translational component in the 4th row.

PFMAT_ROT
matrix may include a rotational component in the left upper 3X3 submatrix.

PFMAT_SCALE
matrix may include a uniform scale in the left upper 3X3 submatrix.

PFMAT_NONORTHO
matrix may include a non-uniform scale in the left upper 3X3 submatrix.

PFMAT_PROJ
matrix may include projections.

PFMAT_HOM_SCALE
matrix may include have mat[4][4] != 1.

PFMAT_MIRROR
matrix may include mirroring transformation that switches between right handed and left
handed coordinate systems.

pfDCS::getMatType returns the matrix type as
set by pfDCS::setMatType. If no matrix type is set the default is ˜0, corresponding to a general
matrix.

The transformation of a pfDCS affects all its children. As the hierarchy is traversed from top to
bottom, each new matrix is pre-multiplied to create the new transformation. For example, if
DCSb is below DCSa in the scene graph, any geometry G below DCSa is transformed as
G*DCSb*DCSa.

pfNode::flatten cannot flatten pfDCSes since they may change at run-time. In this case
pfNode::flatten will compute a pfSCS representing the accumulated static transformation that the
pfDCS inherits and insert it above the pfDCS. Static transformations below a pfDCS are flattened
as usual. See pfNode::flatten for more details.

The presence of transformations in the scene graph impacts the performance of intersection, cul-
ling and drawing. pfGeoSet culling (see PFCULL_GSET in pfChannel::setTravMode) is disabled
in portions of the scene graph below pfDCSes.

Both pre and post CULL and DRAW callbacks attached to a pfDCS (pfNode::setTravFuncs) will
be affected by the transformation represented by the pfDCS, i.e. - the pfDCS matrix will already
have been applied to the matrix stack before the pre callback is called and will be popped only
after the post callback is called.

pfDCS::getMat copies the transformation matrix value from the pfDCS into the matrix m. For
faster matrix access, pfDCS::getMatPtr can be used to get a const pointer to the pfDCS’s matrix.

62

IRIS Performer 2.0 libpf C++ Reference Pages pfDCS(3pf)hh

SEE ALSO
pfCoord, pfGroup, pfChannel, pfMatrix, pfNode, pfSCS, pfScene, pfTraverser, pfDelete

63

pfEarthSky(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfEarthSky − Create and control weather, Earth-Sky model, and screen clearing.

FUNCTION SPECIFICATION
#include <Performer/pf/pfEarthSky.h>

pfEarthSky::pfEarthSky();

static pfType * pfEarthSky::getClassType(void);

void pfEarthSky::setMode(int mode, int val);

int pfEarthSky::getMode(int mode);

void pfEarthSky::setAttr(int attr, float val);

float pfEarthSky::getAttr(int mode);

void pfEarthSky::setColor(int which, float r, float g, float b, float a);

void pfEarthSky::getColor(int which, float *r, float *g, float *b, float *a);

void pfEarthSky::setFog(int which, pfFog *fog);

pfFog * pfEarthSky::getFog(int which);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfEarthSky is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfEarthSky. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfEarthSky can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);

64

IRIS Performer 2.0 libpf C++ Reference Pages pfEarthSky(3pf)hh

void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

PARAMETERS
esky identifies a pfEarthSky.

DESCRIPTION
These functions provide a means to clear the frame and Z-buffer, draw a sky, horizon and ground plane,
and to implement various weather effects. Once the earth-sky is set in a channel, it should be the first
thing drawn when a scene is rendered.

new pfEarthSky creates and returns a handle to a pfEarthSky. Like other pfNodes, pfLayers are always
allocated from shared memory and cannot be created statically, on the stack or in arrays. pfEarthSkies
should be deleted using pfDelete rather than the delete operator.

new pfEarthSky creates a pfEarthSky and sets up reasonable defaults. To render the earth and sky
model, it must be added to a pfChannel. By default, the mode is to render a full screen clear unless either
the sky or ground is turned on. pfEarthSky is called automatically in the draw process, unless a draw
callback is present, in which case, it must be explicitly called using pfChannel::clear.

pfEarthSky::getClassType returns the pfType* for the class pfEarthSky. The pfType* returned by
pfEarthSky::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfEarthSky. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfEarthSky::setMode is used to set the earth-sky rendering mode. pfEarthSky::getMode is used to
obtain the earth-sky rendering mode. These functions currently accept the two mode arguments
PFES_BUFFER_CLEAR, and PFES_CLOUDS.

PFES_BUFFER_CLEAR may have the following values:

PFES_FAST
The default mode. This simply clears the color and Z buffers. The clear color can
be set using pfEarthSky::setColor. Dithering is turned off during the clear.

65

pfEarthSky(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

PFES_TAG Initializes the framebuffer to a known state very
rapidly. Has an effect only when multisampling. Often, this mode is used as an
optimization before rendering a background that covers the entire screen. See
pfClear for the details and restrictions of the mode PFCL_MSDEPTH.

PFES_SKY
Causes a sky and horizon backdrop to be drawn. These are drawn using large
polygons that are recalculated each frame, using information about the clipping
planes, field of view, and eyepoint vertical position for the selected channel. They
are drawn instead of a screen clear, forcing the Z buffer to a known state. If the
viewpoint goes below the ground plane, the area below the horizon will not be
cleared. In the case of PFES_SKY, the screen is never cleared below the lower edge
of the horizon.

PFES_SKY_GRND
Add a ground plane to the sky and horizon model drawn by PFES_SKY.

PFES_SKY_CLEAR
Draw the sky and horizon, and clear the screen below the edge of the horizon.

PFES_CLOUDS is used to set the type of cloud layer. Currently, the only value supported is:

PFES_OVERCAST
This cloud type is a non-textured, opaque region that has a color and both top and
bottom dimensions. This, being the only choice at present, is the default type.

pfEarthSky::setColor is used to set the colors referenced by the earth-sky rendering routines.
pfEarthSky::getColor returns the indicated color component of the earth-sky mode. The components are:

PFES_SKY_TOP The color of the sky directly above the viewpoint.

PFES_SKY_BOT The color of the sky where it joins the horizon.

PFES_HORIZ The color of the bottom edge of the horizon.

PFES_GRND_FAR The color of the ground plane where it meets the horizon.

PFES_GRND_NEAR The color of the ground plane directly below the viewer.

PFES_CLOUD_BOT The color of the bottom of the opaque cloud layer.

PFES_CLOUD_TOP The color of the top of the opaque cloud layer.

PFES_CLEAR The color for simple screen clearing.

The fog color is set as explained in the pfFog reference page.

pfEarthSky::setAttr is used to set a number of attributes. The companion function pfEarthSky::getAttr is
used to return these same attribute values. The tokens and their meanings are listed below:

66

IRIS Performer 2.0 libpf C++ Reference Pages pfEarthSky(3pf)hh

PFES_GRND_HT Set the ground height for the ground plane that is
used when PFES_SKY_GRND is enabled and defines the bottom edge of the horizon which
is used in all of the modes that draw a sky. The ground plane extends from the eyepoint to
the horizon with a width greater than the field of view. Note that objects placed on the
ground with the same height may not Z buffer correctly. Also, as objects move into the dis-
tance, the Z buffer resolution for those pixels will decrease, making proper priority resolu-
tion of small distances between the ground plane and objects less likely.

PFES_HORIZ_ANGLE Set the vertical displacement of the horizon band
in degrees. The horizon band is blended into the sky bottom color so it may appear to be
less than this angle. This angle remains constant for any heading. To simulate directional
horizon glow, the angle and color can be changed each frame to achieve the correct appear-
ance.

PFES_CLOUD_TOP Set the cloud layer upper position. The cloud layer
is enabled when the cloud base is less than the cloud top. By default, it is disabled (base >
top). Each token is followed by a height value. The cloud layer is opaque. The cloud layer
thickness is simply (top - bottom).

PFES_CLOUD_BOT Set the cloud layer lower position. The cloud layer
is enabled when the cloud base is less than the cloud top. By default, it is disabled (base >
top). Each token is followed by a height value. The cloud layer is opaque. The cloud layer
thickness is simply (top - bottom).

PFES_TZONE_TOP Set the transition zone for exiting a cloud layer.
Provided to allow a smooth transition out of clouds. This transition is enabled by making
the transition height greater than the cloud top. It is disabled by doing the opposite or by
disabling the cloud layer. By default, the transition zone is disabled.

PFES_TZONE_BOT Set the transition zone for entering a cloud layer.
Provided to allow a smooth transition into clouds. This transition is enabled by making the
transition height less than the cloud bottom. It is disabled by doing the opposite or by disa-
bling the cloud layer. By default, the transition zone is disabled.

PFES_GRND_FOG_TOP Set the height of the ground fog layer. Ground
fog is enabled when a valid pfFog is set. By default ground fog is disabled.

pfESkyFog sets which type of fog to use when in ground fog or general visibility. The token may be one
of the following values:

PFES_GRND
PFES_GENERAL

pfEarthSky::getFog returns the indicated fog selection.

Several different fog functions may be defined at initialization, then just switched in using this routine.
Distant haze and different curves would be done this way. If ground fog is enabled, and the viewer is
transitioning out of the ground fog layer, the fog will be blended into clear visibility or PFES_GENERAL

67

pfEarthSky(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

fog.

Due to the design of the graphics library, fog would be discontinuous in adjacent channels which use
rotational viewing offsets (See pfChannel::setViewOffsets). However, when attached to a pfChannel
(see pfChannel::setESky) that has a rotational viewing offset, a pfEarthSky will automatically adjust the
ranges of the pfFog set by pfEarthSky::setFog to account for any rotational offsets so that fog is continu-
ous across adjacent channels.

NOTES
pfEarthSky does not work properly for off-axis viewing frusta.

Because PFES_TAG only has effect when multisampling, care must be taken for cross-platform portabil-
ity. Background renderings that rely on the depth buffer having been reset (e.g. backgrounds that do not
disable z buffering with zfunction(ZF_ALWAYS) in IRIS GL or glDepthFunc(GL_ALWAYS) in
OpenGL) may need to request a normal depth buffer clear when not multisampling.

When multisamling, PFES_SKY_GND and PFES_SKY are significantly faster than PFES_SKY_CLEAR.

In IRIX 5.3 IRIS GL on Indigo2/Extreme systems the Z-buffer is not fully updated after a window is
moved unless a full Z-clear operation is performed. In such cases your software must detect REDRAW
events and fully clear the Z-buffer.

SEE ALSO
pfChannel, pfClear, pfFog, pfNewChan, zfunction, glDepthFunc, pfDelete

68

IRIS Performer 2.0 libpf C++ Reference Pages pfFrame(3pf)hh

NAME
pfFrameRate, pfGetFrameRate, pfFieldRate, pfGetFieldRate, pfVideoRate, pfGetVideoRate, pfSync,
pfFrame, pfAppFrame, pfGetFrameCount, pfFrameTimeStamp, pfGetFrameTimeStamp, pfPhase,
pfGetPhase − Set and get system frame and video rate, phase, and frame count. Synchronize and initiate
frame.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

float pfFrameRate(float rate);

float pfGetFrameRate(void);

int pfFieldRate(int fields);

int pfGetFieldRate(void);

void pfVideoRate(float vrate);

float pfGetVideoRate(void);

int pfSync(void);

int pfFrame(void);

int pfAppFrame(void);

int pfGetFrameCount(void);

void pfFrameTimeStamp(double time);

double pfGetFrameTimeStamp(void);

void pfPhase(int phase);

int pfGetPhase(void);

DESCRIPTION
IRIS Performer is designed to run at a fixed frame rate. The rate argument to pfFrameRate specifies the
desired rate in units of frames per second. The actual rate used is based on the video timing of the
display hardware. rate is rounded to the nearest frame rate which corresponds to an integral multiple of
video fields.

For a 60Hz video rate, possible frame rates are (in Hz) 60.0, 30.0, 20.0, 15.0, 12.0, 10.0, 8.57, 7.5, 6.67, and
6.0. These rates would mean that the number of fields per frame would range from 1 (for 60Hz) to 10 (for
6Hz). pfFrameRate returns the actual frame rate used or -1.0 if it is called before pfConfig.

pfVideoRate specifies the system video rate as vrate fields per second. If pfVideoRate is not called, then
IRIS Performer determines the video field rate at pfConfig time and will not be aware of changes in video
timing made during application run-time until pfVideoRate is called.

pfGetVideoRate returns the video timing in number of video fields per second or -1.0 if it is called before

69

pfFrame(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

the video rate has been determined. The IRIS Performer video clock (see pfInitVClock) runs at this video
field rate and is initialized to 0 by pfConfig.

An alternate way of specifying a desired frame rate is pfFieldRate. fields is the number of video fields per
simulation frame. The corresponding frame rate will then be the video field rate (see pfGetVideoRate)
divided by fields. pfGetFieldRate returns the number of video fields per simulation frame.

Frame rate is a per-machine metric and is used by all pfPipes. It controls the rate at which multiprocess-
ing pipelines run and affects computed system load and related stress metrics (see pfChannel::setStress).
Since frame rate is global it follows that all hardware pipelines used by a single IRIS Performer applica-
tion should be genlocked, i.e., the video signals are synchronized by hardware. Otherwise the video sig-
nals of the pipes will be out of phase, reducing graphics throughput and increasing latency. Genlock is
crucial for proper multipipe operation and requires some simple, platform-specific cabling and software
configuration through the setmon call.

Depending on the phase as is discussed below, pfSync synchronizes the application process with the
frame rate specified by pfFrameRate (when phase is PFPHASE_LOCK or PFPHASE_FLOAT), or to the
system rendering rate (when phase is PFPHASE_FREE_RUN or PFPHASE_LIMIT). In the first case,
pfSync sleeps until the next frame boundary, then awakens and returns control to the application. In the
second case, pfSync sleeps until the draw process begins rendering a new frame or returns immediately if
in single-process operation. pfSync returns the current frame count and should only be called by the
application process when multiprocessing.

pfFrame initiates a new frame of IRIS Performer processing by doing the following:

1. Triggers all processing stages that are configured as a separate process.

2. Inlines all processing stages that are not configured as a separate process.

3. Sets the current, global pfCycleBuffer index (see pfCycleBuffer::setCurIndex) which is
guaranteed not to be in use by any other IRIS Performer process.

4. Sets the frame’s time stamp (pfFrameTimeStamp).

pfFrame triggers all IRIS Performer processing stages (APP, ISECT, DBASE, CULL, and DRAW). If a
stage is partitioned into a separate process, pfFrame will allow that process to run. Otherwise, pfFrame
itself will carry out the processing associated with the stage. pfFrame will directly invoke all user call-
backs that are in the same process as that which called pfFrame. Otherwise, a callback will be invoked by
the process of which it is a part, e.g., the ISECT callback will be invoked by the ISECT process if
PFMP_FORK_ISECT is set in the argument to pfMultiprocess.

All IRIS Performer stage callbacks have a block of associated data known as "user data." User data is
passed as an argument to the stage callback. To simplify data flow in a multiprocessing environment, IRIS
Performer copies user data into internal buffers and propagates the data down multiprocessing pipelines.

70

IRIS Performer 2.0 libpf C++ Reference Pages pfFrame(3pf)hh

To restrict data copying to only those frames in which user data changes, use the pfPass<*>Data and
pfChannel::passChanData functions. pfPass<*>Data and pfChannel::passChanData signify that the user
data has changed and needs to be copied. pfFrame will then copy the data into its internal buffer and the
stage callback will receive the updated user data. Stage callbacks and user data functions are listed
below.

Stage Callback Allocation Passii
APP pfChannel::setTravFunc pfChannel::allocChanData pfChannel::passChanData

CULL pfChannel::setTravFunc pfChannel::allocChanData pfChannel::passChanData
DRAW pfChannel::setTravFunc pfChannel::allocChanData pfChannel::passChanData
ISECT pfIsectFunc pfAllocIsectData pfPassIsectData
DBASE pfDBaseFunc pfAllocDBaseData pfPassDBaseDatacc

c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

pfFrame triggers the APP, CULL and DRAW stages of all pfPipes so it must be called every frame a new
display is desired. IRIS Performer will attempt to cull and draw all active pfChannels on all pfPipes
within a single frame period. Multiple pfChannels on a single pfPipe will be processed in the order they
were added to the pfPipe. pfFrame returns the current frame count and should only be called by the
application process when multiprocessing.

If specified, pfChannel cull and draw callbacks (pfChannel::setTravFunc) will be invoked by the
appropriate process which may or may not be the same process that called pfFrame. If these callbacks
are not specified, pfCull and pfDraw will be called instead. pfChannel passthrough data which is passed
to pfChannel function callbacks (see pfChannel::passChanData) is copied into internal memory at
pfFrame time.

In typical operation, pfFrame should closely follow pfSync in the main application loop. Since the CULL
does not start until pfFrame is called, considerable processing between pfSync and pfFrame can reduce
system throughput. However, any updates to the database or view made at this time will be applied to
the current frame so latency is reduced for these updates. Updates made after pfFrame will be applied to
the next frame. pfFrame returns the current frame count.

pfFrame will automatically call pfSync if the application did not call pfSync before calling pfFrame. This
means the application need not call pfSync.

It is crucial to keep the time spent in the application process less than a frame’s time so the system can
meet the desired frame rate. If the application process exceeds a single frame’s time, pfFrame will not be
called often enough to meet the frame rate.

The following code fragment is an example of an application’s main processing loop:

Example 1: Main simulation loop.

71

pfFrame(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

pfFrameRate(30.0f); /* Set desired frame rate to 30Hz */

while (!done)

{

app_funcs(); /* Perform application-specific functions */

update_positions(); /* Update moving models for frame N */

pfSync(); /* Sleep until next frame boundary */

update_view(); /* Set view for frame N */

pfFrame(); /* Trigger cull and draw for frame N */

}

pfAppFrame triggers a traversal that updates the state of the scene graph for the next frame. This
includes updating the state of pfSequence nodes and invoking APP callbacks on nodes in the scene graph.
If pfAppFrame is not invoked directly, pfSync or pfFrame invokes it automatically. Note that when the
view is not set until after pfSync, as in the example above, the view point in the channel during the appli-
cation traversal contains the eye point from the previous frame.

pfGetFrameCount returns the current frame count. The frame count is initialized to 0 by pfConfig and is
incremented by each call to pfFrame.

pfGetFrameRate returns the current system frame rate (possibly rounded) previously set by
pfFrameRate. Note that this is not necessarily the same as the achieved frame rate.

pfSync synchronizes the application process to a particular rate. This rate may be fixed, for example a
steady 20Hz or may vary with the rendering rate. In addition, the drawing process may be synchronized
to either a steady or a varying rate. pfPhase specifies the synchronization methods used by pfSync and
the drawing process (if it is a separate process). phase is a symbolic constant that specifies the phase of all
process pipeline(s). It can take on the following values:

PFPHASE_LOCK
pfSync synchronizes to the next frame boundary and the drawing process begins drawing
and swaps its rendering buffers only at fixed frame boundaries.

PFPHASE_FLOAT
pfSync synchronizes to the next frame boundary but the drawing process can begin draw-
ing and swap its rendering buffers at non-frame boundaries.

PFPHASE_FREE_RUN
pfSync synchronizes to the rendering rate so the application runs at its peak (and usually
non-constant) capability.

72

IRIS Performer 2.0 libpf C++ Reference Pages pfFrame(3pf)hh

PFPHASE_LIMIT
pfSync synchronizes to the rendering rate but the rendering rate is limited to that frame
rate specified by pfFrameRate.

If locked, the drawing process will swap buffers only on frame boundaries. A benefit of locking is that
such pipelines are self-regulating so synchronizing two pfPipes together is simple, even across different
machines. Another benefit is that latency is minimized and predictable. The major drawback is that if a
view takes slightly longer than a frame to render (it has ’frame-extended’), then an entire frame is skipped
rather than a single vertical retrace period. However, if minimal distraction is crucial, the phase can float
so that buffer swapping may happen on non-frame boundaries. In this case it is not guaranteed that the
windows on pfPipes will swap together; they may get out of phase resulting in inconsistent images if the
displays are adjacent and are displaying the same scene.

The difference between phase lock and phase float becomes less apparent with increasing frame rate. At
a rate equal to the vertical retrace rate, there is no difference. Also, if pfPipes do not ’frame extend’, then
there is no difference.

Applications which do not require a fixed frame rate may use PFPHASE_FREE_RUN or
PFPHASE_LIMIT. PFPHASE_FREE_RUN essentially disables IRIS Performer’s fixed frame rate
mechanisms and will cause the application to run at its rendering rate so it slows down when rendering
complex scenes and speeds up when rendering simple scenes. In this case, the frame rate specified by
pfFrameRate no longer affects the system frame rate but is still used to compute system load and stress.

PFPHASE_LIMIT is equivalent to PFPHASE_FREE_RUN except that the application can go no faster
than the frame rate specified by pfFrameRate although it may go slower. Thus fixed frame rate behavior
is achieved if the time required to process a frame never takes longer than that specified by pfFrameRate.

pfPhase may be called any time after pfConfig.

pfGetPhase returns the current phase. The default phase is PFPHASE_FREE_RUN.

pfFrameTimeStamp sets the time stamp of the current frame to time. The frame time stamp is used when
evaluating all pfSequences. Normally, pfFrame sets the frame time stamp immediately before returning
control to the application although the application may set it to account for varying latency in a non-
constant frame rate situation. Time is relative to pfInit when the system clock is initialized to 0.

SEE ALSO
pfChannel, pfConfig, pfIsectFunc, pfInitVClock, pfCycleBuffer, pfGetTime

73

pfFrameStats(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfFrameStats − Specify pfFrameStats modes and get collected values.

FUNCTION SPECIFICATION
#include <Performer/pf/pfFrameStats.h>

pfFrameStats::pfFrameStats();

static pfType* pfFrameStats::getClassType(void);

void pfFrameStats::draw(pfChannel *chan);

void pfFrameStats::copy(uint dSel, pfFrameStats *src, uint sSel, uint classes);

uint pfFrameStats::getOpen(pfFrameStats *fstats, uint emask);

uint pfFrameStats::open(pfFrameStats *fstats, uint enmask);

uint pfFrameStats::close(uint enmask);

void pfFrameStats::countNode(int class, uint mode, pfNode * node);

uint pfFrameStats::setClass(uint enmask, int val);

uint pfFrameStats::getClass(uint enmask);

uint pfFrameStats::setClassMode(int class, uint mask, int val);

uint pfFrameStats::getClassMode(int class);

void pfFrameStats::setAttr(int attr, float val);

float pfFrameStats::getAttr(int attr);

void pfFrameStats::copy(pfFrameStats *src, uint dSel, uint sSel, uint classes);

void pfFrameStats::reset(void);

void pfFrameStats::clear(uint which);

void pfFrameStats::count(pfGeoSet * gset);

void pfFrameStats::accumulate(pfFrameStats* src, uint which);

void pfFrameStats::average(pfFrameStats* src, uint which, int num);

int pfFrameStats::query(uint which, float *dst, int size);

int pfFrameStats::mQuery(uint *which, float *dst, int size);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfFrameStats is derived from the parent class pfObject, so each of these
member functions of class pfObject are also directly usable with objects of class pfFrameStats. This is
also true for ancestor classes of class pfObject.

74

IRIS Performer 2.0 libpf C++ Reference Pages pfFrameStats(3pf)hh

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfFrameStats
can also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
The pfFrameStats utilities provide for the collection of statistics about all parts of IRIS Performer process-
ing of a scene for a given frame. These statistics can be kept automatically on every pfChannel or Users
may accumulate and store their own statistics. Routines for operating on, displaying, and printing statis-
tics are also provided.

The frame statistics for a channel are gotten by first getting the pointer to the channel’s statistics structure
with pfChannel::getFStats, and then enabling the desired statistics classes. When a channel is automati-
cally accumulating frame statistics, it enables the necessary statistics hardware and statistics accumula-
tion in the correct processes.

The resulting collected statistics can then be displayed in a channel, queried, or printed. These statistics
may be accumulated and averaged over a specified number of frames or seconds. The pfFrameStats
declarations are contained in pfstats.h. The class of process frame timing statistics for each of the IRIS
Performer processes of application, cull and draw, is enabled by default.

new pfFrameStats creates and returns a handle to a pfFrameStats. pfFrameStats are always allocated
from shared memory and cannot be created statically, on the stack or in arrays. pfFrameStats should be

75

pfFrameStats(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

deleted using pfDelete rather than the delete operator.

pfFrameStats::getClassType returns the pfType* for the class pfFrameStats. The pfType* returned by
pfFrameStats::getClassType is the same as the pfType* returned by invoking the virtual function
getType on any instance of class pfFrameStats. Because IRIS Performer allows subclassing of built-in
types, when decisions are made based on the type of an object, it is usually better to use the member
function isOfType to test if an object is of a type derived from a Performer type rather than to test for
strict equality of the pfType*’s.

A pfFrameStats structure contains pfStats statistics as well as additional statistics classes and support for
tracking frame related tasks. Many pfFrameStats member functions are borrowed (but not inherited)
from the pfStats class: accumulate, average, clear, close, copy, getOpen, setAttr, setClass,
setClassMode, getClassMode, count, getAttr, getClass, mQuery, open, query, reset.

These functions accept identical parameters to their counterparts in pfStats. The reader is referred to the
pfStats man page for details on the routine description.

Only the additional support for pfFrameStats above and beyond that of new pfStats is discussed here.
The pfFrameStats structure stores accumulated statistics in several buffers. The following is a list of the
frame statistics buffers:

PFFSTATS_BUF_PREV Statistics for previous completed frame

PFFSTATS_BUF_CUR Buffer for current statistics collection

PFFSTATS_BUF_CUM Statistics accumulated since last update

PFFSTATS_BUF_AVG Statistics averaged over previous update period

These different buffers can be queried with pfFrameStats::query and printed with pfMemory::print. The
desired PFFSTATS_BUF_* token is simply bitwise OR-ed with the desired statistics value token.

The following table of additional frame statistics classes, their naming token, and their enable token for
forming bitmasks. Notice that pfFrameStats tokens start with PFFSTATS*.

Frame Statistics Class Tableiii
Class PFSTATS_* Token PFSTATS_EN* tokeniii

Process frame times PFFSTATS_PFTIMES PFFSTATS_ENPFTIMES

Database PFFSTATS_DB PFFSTATS_ENDB

Cull PFFSTATS_CULL PFFSTATS_ENCULL
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

76

IRIS Performer 2.0 libpf C++ Reference Pages pfFrameStats(3pf)hh

c c

This table lists the frame statistics modes and tokens.

Frame Statistics Class Mode Tableiii
Class PFSTATS_ Token Modesiii

Process frame times PFFSTATS_PFTIMES PFFSTATS_PFTIMES_BASIC
PFFSTATS_PFTIMES_HIST

Database PFFSTATS_DB PFFSTATS_DB_VIS
PFFSTATS_DB_EVAL

Cull PFFSTATS_CULL PFFSTATS_CULL_TRAVc
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

pfFrameStats::draw displays the pfFrameStats structure fstats in the channel specified by chan. This is
useful for displaying the statistics in a special channel separate from the main scene channel.
pfChannel::drawStats may be called from IRIS Performer’s application, cull, or draw processes and must
be called each frame a statistics display is desired. See pfChannel::drawStats for a detailed explanation
of the channel statistics display.

pfFrameStats::setClass takes a pointer to a statistics structure, fstats, and will set the classes specified in
the bitmask, enmask, according to the val, which is one of the following:

PFSTATS_ON Enables the specified classes.

PFSTATS_OFF Disables the specified classes.

PFSTATS_DEFAULT Sets the specified classes to their default values.

PFSTATS_SET Sets the class enable mask to enmask.

All stats collection can be set at once to on, off, or the default by using PFSTATS_ALL for the bitmask
and the appropriate value for the enable flag. For example, the following function call will enable all
frame statistics, as well as basic statistics classes, with their current class mode settings.

fstats->setClass(PFSTATS_ALL, PFSTATS_ON);

Only statistics classes that are enabled with pfFStatsClass are able to be printed with pfMemory::print,
collected, copied, accumulated, averaged, and queried.

pfFrameStats::getClass takes the statistics classes of interest specified in the bitmask, enmask. The frame
statistics classes are enabled through pfFrameStats::setClass and the frame statistics class bitmasks may
be combined with the basic statistics classes. If any of the statistics classes specified in enmask are enabled,
then pfFrameStats::getClass will return the bitmask of those classes, and will otherwise return zero.

77

pfFrameStats(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

pfFrameStats::setClassMode takes the name of the class to set, class, a mask of class modes, mask, and the
value for those modes, val. The pfFrameStats classes include all of the pfStats classes. If class is
PFSTATS_CLASSES, then all pfFrameStats classes will have their modes set according to mask and val.
Each statistics class has its own mode tokens that may be used for mask. mask may also be one of
PFSTATS_ALL or 0x0. val is one of the statistics value tokens: PFSTATS_ON, PFSTATS_OFF,
PFSTATS_SET, or PFSTATS_DEFAULT. See the pfStats reference page for more general information on
pfStats statistics classes and value tokens under pfStats::setClassMode. The following describes the
additional classes for frame statistics and their corresponding modes.

Process Frame Times Modes:

PFFSTATS_PFTIMES_BASIC
This mode enables a running average of the time for each IRIS Performer process of applica-
tion, cull, and draw to complete the tasks for a single frame. This mode is enabled by
default.

PFFSTATS_PFTIMES_HIST
In this mode, a history of time stamps for different tasks within each of the IRIS Performer
process of application, cull, draw, and the intersection process, is maintained. Examples of
time stamps include when each processes starts and ends processing a frame, and the appli-
cation frame number for that frame for that processes. There are special additional time
stamps for each process. For the application processes there are time stamps to mark when
the application starts and finishes cleaning the scene in pfSync, a time stamp when the
application wakes up to sync to the next frame boundary (done when the application is run-
ning with phase set to PFPHASE_LOCK or PFPHASE_FLOAT), and a time stamp to mark
when the application returns after setting off a forked CULL or ISECT process. The time
stamps for each process are defined in the pfFStatsValPFTimes* data type and queried by
providing the corresponding PFFSTATSVAL_PFTIMES_HIST_* tokens to
pfFrameStats::query.

Database Statistics Modes:

PFFSTATS_DB_VIS
This mode enables tracking of how many pfNodes of each different type are visible and
drawn in a given frame. This mode is enabled by default. These statistics are queried by
providing the desired PFFSTATSVAL_VISIBLE* token to pfFrameStats::query.

PFFSTATS_DB_EVAL
This mode enables tracking of how many pfNodes of each different type have special
evaluations in a given frame. Node types that require special evaluation steps include
pfBillboard, pfSCS, pfDCS, pfLayer, pfLightPoint, pfLightSource, pfPartition, and pfSe-
quence. There are also query tokens to query what processes the evaluation step for a given
node type is done in. This mode is enabled by default. These statistics are queried by pro-
viding the desired PFFSTATSVAL_EVALUATED* token to pfFrameStats::query.

78

IRIS Performer 2.0 libpf C++ Reference Pages pfFrameStats(3pf)hh

Cull Statistics Modes:

PFFSTATS_CULL_TRAV
There is only one cull frame statistics mode and it tracks culling traversal statistics: how
many pfGeoSets and pfNodes of each type are traversed in the cull operation, how many
pfNodes are trivially in or out of the viewing frustum, and how many must pass through a
bounding sphere or bounding box test. These statistics are queried by providing one of the
PFFSTATSVAL_CULLTRAV tokens to pfFrameStats::query. There are also statistics on
the test results of the cull traversal, queried with the PFFSTATSVAL_CULLTEST* tokens.

pfFrameStats::getClassMode takes the name of the class to query, class. The return value is the mode of
class.

pfFrameStats::setAttr takes the name of the attribute to set, attr, and the attribute value, val. Frame statis-
tics provide additional attributes beyond the basic pfStats attributes. These attributes are only relevant
when automatic statistics collection is being done by a parent channel. These attributes are:

PFFSTATS_UPDATE_FRAMES
The number of frames over which statistics should be averaged. The default value is 2. If
val is 0, statistics accumulation and averaging is disabled and only the CUR and PREV
statistics for enabled classes will be maintained. This is recommended for applications that
are not using the averaged statistics and require a high, fixed frame rate.

PFFSTATS_UPDATE_SECS
The number of seconds, over which statistics should be averaged. The default uses the
number of frames. As with PFFSTATS_UPDATE_FRAMES, if val is 0, statistics accumula-
tion and averaging is disabled and only the CUR and PREV statistics for enabled classes
will be maintained.

PFFSTATS_PFTIMES_HIST_FRAMES
For the Process Frame Times Statistics, PFFSTATS_PFTIMES, the number of frames of
time-stamp history to keep. The default value is 4.

pfFrameStats::getAttr takes the name of the attribute to query, attr. The return value is that of attribute
attr.

pfFrameStats::query: which is a PFSTATSVAL_* or PFFSTATSVAL_* token that specifies the value or
values to query in which, and dst destination buffer that is a pointer to a float, a pfStatsVal* or pfFStatsVal*
structure. The size of the expected return data is specified by size and if non-zero, will prevent
pfFrameStats::query from writing beyond a buffer that is too small. The return value is the number of
bytes written to the destination buffer. The return value is the number of bytes written to the destination
buffer. A single PFFSTATS_BUF_* token should be bitwise OR-ed into the which flag to select a frame
stats buffer: PREV, CUR, AVG, or CUM. If no frame statistics buffer is selected, then the query accesses
the CUR buffer by default. If multiple stats buffers are selected, no results will be written and a warning
message will be printed. In a running application, one should query frame statistics in the application

79

pfFrameStats(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

process and query the PREV and AVG statistics buffers. The pfFrameStats query structures and tokens
are all defined in pfstats.h. Frame statistics queries may be mixed with standard statistics queries. There
are tokens for getting back all of the statistics, entire sub-structures, and individual values.

pfFrameStats::mQuery takes a pointer to the start of an array of query tokens in which, and a destination
buffer dst. The size of the expected return data is specified by size and if non-zero, will prevent
pfFrameStats::query from writing beyond a buffer that is too small. The return value is the number of
bytes written to the destination buffer. The return value is the number of bytes written to the destination
buffer. If at any point in the query, an error is encountered, the query will return and not finish the rest of
the requests.

pfFrameStats::copy: The dSel and sSel arguments explicitly specify the statistics buffers for both source
and destination pfFrameStats structures. If either of these values are 0, then the current pfFrameStats
buffer is used for the corresponding pfFrameStats structure. The classes argument is a _EN* statistics
class enable bitmask. Any buffer select token is included with the class bitmask is ignored.

pfFrameStats::countNode will count node in the specified stats class for the specified mode of the
pfFrameStats. Only one class and mode may be specified, and children of node are not traversed.

pfFrameStats::count works as documented for the pfStats statistics structure and accumulates the statis-
tics into the CUR statistics buffer.

The pfFrameStats::clear, pfFrameStats::accumulate, pfFrameStats::average routines work as docu-
mented for the basic pfStats statistics structure. However, for operating on a pfFrameStats structure, these
routines need to know which pfFrameStats buffer to access. A pfFrameStats buffer is selected by OR-ing
in a _BUF_ token with the statistics class enable. The same pfFrameStats buffer is used for both source
and destination pfFrameStats structures. If no pfFrameStats buffer is selected with a _BUF_ token, the
current pfFrameStats buffer is used.

EXAMPLES
For a class of statistics to be collected, the following must be true:

1. A pfFrameStats structure must be gotten from the channel of interest, or created.

2. The corresponding statistics class must be enabled with pfFrameStats::setClass. No statis-
tics classes are enabled by default.

3. The corresponding statistics class mode must be enabled with pfFrameStats::setClassMode
However, each statistics class does have a reasonable set of statistics modes enabled by
default.

Here a pfFrameStats structure is obtained by the channel of interest and then database, cull, and graphics
statistics are enabled.

80

IRIS Performer 2.0 libpf C++ Reference Pages pfFrameStats(3pf)hh

pfFrameStats *fstats = NULL;

fstats = chan->getFStats();

stats->setClass(PFSTATS_ENGFX | PFFSTATS_ENDB | PFFSTATS_ENCULL, PFSTATS_ON);

This example shows how to enable and display just the frame times and the number of triangles per
frame. This is a very efficient configuration.

pfFrameStats *fstats = NULL;

fstats = chan->getFStats();

/* first, turn off the frame history stats */

fstats->setClassMode(PFFSTATS_PFTIMES, PFFSTATS_PFTIMES_HIST, PFSTATS_OFF);

/* Only enable the geometry counts in the graphics stats */

fstats->setClassMode(PFSTATS_GFX, PFSTATS_GFX_GEOM, PFSTATS_SET);

/* disable the display of the verbose graphics stats

* and just have the total tris number at the top of your display.

*/

chan->setStatsMode(PFCSTATS_DRAW, PFFSTATS_ENPFTIMES);

The following is an example of querying a few specific statistics. Note that if the corresponding stats class
and mode is not enabled then the query will simply return 0 for that value.

uint qtmp[5];

float ftmp[5];

pfFrameStats *fstats = NULL;

fstats = chan->getFStats();

qtmp[0] = PFFSTATS_BUF_AVG | PFSTATSVAL_GFX_GEOM_TRIS;
qtmp[1] = PFFSTATS_BUF_AVG | PFFSTATSVAL_PFTIMES_PROC_TOTAL;
qtmp[2] = PFFSTATS_BUF_AVG | PFSTATSVAL_CPU_SYS_BUSY;
qtmp[3] = NULL;

fstats->mQuery(qtmp, ftmp, sizeof(ftmp));

fprintf(stderr, "Query num tris: %.0f\n", ftmp[0]);

fprintf(stderr, "Query frame time: %.0f msecs\n", ftmp[1]*1000.0f);

fprintf(stderr, "Query sys busy: %.0f%%\n", ftmp[2]);

This example shows using a very inexpensive pfFrameStats mode to track frame rates and frames that

81

pfFrameStats(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

missed the goal frame rate.

/* enable only the most minimal stats - tracking of process frame times */

pfFrameStats *fstats = chan->getFStats();

fstats->setClass(PFFSTATS_ENPFTIMES, PFSTATS_SET);

fstats->setClassMode(PFFSTATS_PFTIMES, PFFSTATS_PFTIMES_BASIC, PFSTATS_SET);

/* turn off accumulation and averaging of stats */

fstats->setAttr(PFFSTATS_UPDATE_FRAMES, 0.0f);

#define STAMPS 0

#define TIMES 1

#define MISSES 2

static uint query[] = {

PFFSTATS_BUF_PREV | PFFSTATSVAL_PFTIMES_APPSTAMP,
PFFSTATS_BUF_PREV | PFFSTATSVAL_PFTIMES_PROC,
PFFSTATS_BUF_PREV | PFFSTATSVAL_PFTIMES_MISSES, NULL

};

static pfFStatsValProc dst[3];

int i;

if (!FrameStats)

initFrameStats();

/* get the prev frame times and corresponding app frame stamps */

fstats->mQuery(query, dst, sizeof(dst));

/* record the collected data here */

NOTES
pfFrameStats::draw does not actually draw the diagram but sets a flag so that the diagram is drawn just
before IRIS Performer swaps buffers.

The CPU statistics from the pfStats class PFSTATSHW_CPU are obtained from IRIX process accounting
data at the start and end of the update period. They are then copied into the CUR and AVG buffers.

pfFrameStats::open and pfFrameStats::close cannot be executed on a pfFrameStats structure. All actual
frame statistics collection is done only by individual pfChannels. Frame statistics can be copied and accu-
mulated into additional pfFrameStats structures.

The pfDrawChanStats manual page gives some pointers on how to interpret the statistics to help in tun-
ing your database. Refer to the IRIS Performer Programming Guide for more detailed information.

82

IRIS Performer 2.0 libpf C++ Reference Pages pfFrameStats(3pf)hh

BUGS
The checking of size in pfFrameStats::query and pfFrameStats::mQuery is not yet implemented.

SEE ALSO
pfChannel, pfStats, pfDelete

83

pfGeode(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfGeode − Create, modify, and query a geometry node.

FUNCTION SPECIFICATION
#include <Performer/pf/pfGeode.h>

pfGeode::pfGeode();

static pfType * pfGeode::getClassType(void);

int pfGeode::addGSet(pfGeoSet* gset);

int pfGeode::removeGSet(pfGeoSet* gset);

int pfGeode::insertGSet(int index, pfGeoSet* gset);

int pfGeode::replaceGSet(pfGeoSet* old, pfGeoSet* new);

pfGeoSet * pfGeode::getGSet(int index);

int pfGeode::getNumGSets(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfGeode is derived from the parent class pfNode, so each of these member
functions of class pfNode are also directly usable with objects of class pfGeode. This is also true for
ancestor classes of class pfNode.

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);
const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);
pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

84

IRIS Performer 2.0 libpf C++ Reference Pages pfGeode(3pf)hh

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfGeode can also
be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfGeode can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

PARAMETERS
geode identifies a pfGeode.

DESCRIPTION
The name "pfGeode" is short for Geometry Node. A pfGeode is a leaf node in the IRIS Performer scene
graph hierarchy and is derived from pfNode so it can use pfNode API. A pfGeode is simply a list of
pfGeoSets which it draws and intersects with. A pfGeode is the smallest cullable unit unless
PFCULL_GSET is set by pfChannel::setTravMode in which case IRIS Performer will cull individual
pfGeoSets within pfGeodes.

The bounding volume of a pfGeode is that which surrounds all its pfGeoSets. Unless the bounding
volume is considered static (see pfNode::setBound), IRIS Performer will compute a new volume when
the list of pfGeoSets is modified by pfGeode::addGSet, pfGeode::removeGSet, pfGeode::insertGSet or
pfGeode::replaceGSet. If the bounding box of a child pfGeoSet changes, call pfNode::setBound to tell
IRIS Performer to update the bounding volume of the pfGeode.

85

pfGeode(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

new pfGeode creates and returns a handle to a pfGeode. Like other pfNodes, pfGeodes are always allo-
cated from shared memory and cannot be created statically, on the stack or in arrays. pfGeodes can be
deleted using pfDelete.

pfGeode::getClassType returns the pfType* for the class pfGeode. The pfType* returned by
pfGeode::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfGeode. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfGeode::addGSet appends gset to the pfGeode’s pfGeoSet list. pfGeode::removeGSet removes gset
from the list and shifts the list down over the vacant spot. For example, if gset had index 0, then index 1
becomes index 0, index 2 becomes index 1 and so on. pfGeode::removeGSet returns a 1 if gset was actu-
ally removed and 0 if it was not found in the list. pfGeode::addGSet and pfGeode::removeGSet will
cause IRIS Performer to recompute new bounding volumes for the pfGeode unless it is configured to use
static bounding volumes.

pfGeode::insertGSet will insert gset before the pfGeoSet with index index. index must be within the range
0 to pfGeode::getNumGSets(). pfGeode::replaceGSet replaces old with new and returns 1 if the opera-
tion was successful or 0 if old was not found in the list. pfGeode::insertGSet and pfGeode::replaceGSet
will cause IRIS Performer to recompute new bounding volumes for the pfGeode unless it is configured to
use static bounding volumes.

pfGeode::getNumGSets returns the number of pfGeoSets in the pfGeode. pfGeode::getGSet returns a
handle to the pfGeoSet with index index or NULL if the index is out of range.

If database sorting is disabled, that is if the PFCULL_SORT mode of pfChannel::setTravMode is not set,
the pfGeoSets in a pfGeode will be drawn in the order they appear on the list. If sorting is enabled, there
is no guarantee about the drawing order, since the reordering of GeoSets for minimum state-changing
overhead is one of the primary design motivations of IRIS Performer’s libpf and libpr.

NOTES
pfGeode geometry is not multibuffered by IRIS Performer when in multiprocessing mode in order to save
memory. Therefore there are some restrictions on dynamic geometry. Modified vertex positions will be
culled properly only if a static bound is defined which surrounds all possible excursions of the dynamic
geometry. Since the draw process may be drawing the geometry at the same time the application process
is modifying it, cracks may appear between polygons which share a dynamic vertex. Creation and dele-
tion of vertices are not currently supported by IRIS Performer. However, the application may handle its
own multibuffering of pfGeodes through mutual exclusion with locks or through the use of parallel data
structures and pfSwitch nodes to achieve any kind of dynamic geometry.

86

IRIS Performer 2.0 libpf C++ Reference Pages pfGeode(3pf)hh

The shifting behavior of pfGeode::removeGSet can cause some confusion. The following sample code
shows how to remove all pfGeoSets from geode:

int i;

int n = geode->getNumGSets();

for (i = 0; i < n; i++)

geode->removeGSet(geode->getGSet(0)); /* 0, not i */

Alternately, you can traverse the list from back to front, in which case the shift never hits the fan.

int i;

int n = geode->getNumGSets();

for (i = n - 1; i >= 0; i--)

geode->removeGSet(geode->getGSet(i)); /* i, not 0 */

When sorting is enabled (see pfChannel::setTravMode and PFCULL_SORT), transparent pfGeoSets are
drawn last unless the pfGeode has a pre or post draw callback (see pfNode::setTravFuncs). Drawing
transparent pfGeoSets after opaque geometry reduces artifacts when blended transparency (see
pfTransparency) is used and can improve fill rate performance.

SEE ALSO
pfChannel, pfGeoSet, pfNode, pfTransparency, pfDelete

87

pfGetId(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfGetId, pfUpdatable − Get unique id of libpf object.

FUNCTION SPECIFICATION
#include <Performer/pf/pfUpdatable.h>

virtual int pfUpdatable::pf_getpfId(void);

DESCRIPTION
All IRIS Performer objects defined in the libpf library have a unique integer identifier. The virtual
member function pfUpdatable::pf_getpfId returns the identifier of a libpf object derived from class
pfUpdatable.

SEE ALSO
pfNode, pfUpdatable

88

IRIS Performer 2.0 libpf C++ Reference Pages pfGroup(3pf)hh

NAME
pfGroup − Create, modify, and query a group node.

FUNCTION SPECIFICATION
#include <Performer/pf/pfGroup.h>

pfGroup::pfGroup();

static pfType * pfGroup::getClassType(void);

int pfGroup::addChild(pfNode *child);

int pfGroup::insertChild(int index, pfNode *child);

int pfGroup::replaceChild(pfNode *old, pfNode *new);

int pfGroup::removeChild(pfNode* child);

int pfGroup::searchChild(pfNode* child);

pfNode * pfGroup::getChild(int index);

int pfGroup::getNumChildren(void);

int pfGroup::bufferAddChild(pfNode *child);

int pfGroup::bufferRemoveChild(pfNode *child);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfGroup is derived from the parent class pfNode, so each of these member
functions of class pfNode are also directly usable with objects of class pfGroup. This is also true for
ancestor classes of class pfNode.

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);
const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);
pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);

89

pfGroup(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfGroup can also
be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfGroup can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

PARAMETERS
group identifies a pfGroup.

DESCRIPTION
A pfGroup is the internal node type of the IRIS Performer hierarchy and is derived from pfNode. A
pfGroup has a list of children which are traversed when group is traversed. Children may be any pfNode
which includes both internal nodes (pfGroups) and leaf nodes (pfNodes). Other nodes which are derived
from pfGroup may use pfGroup API. IRIS Performer nodes derived from pfGroup are:

pfScene
pfSwitch
pfLOD

90

IRIS Performer 2.0 libpf C++ Reference Pages pfGroup(3pf)hh

pfSequence
pfLayer
pfSCS
pfDCS
pfMorph

new pfGroup creates and returns a handle to a pfGroup. Like other pfNodes, pfGroups are always allo-
cated from shared memory and cannot be created statically, on the stack or in arrays. pfGroups should
be deleted using pfDelete rather than the delete operator.

pfGroup::getClassType returns the pfType* for the class pfGroup. The pfType* returned by
pfGroup::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfGroup. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfGroup::addChild appends child to the pfGroup and increments the reference count of child.
pfGroup::removeChild removes child from the list and shifts the list down over the vacant spot, e.g. - if
child had index 0, then index 1 becomes index 0, index 2 becomes index 1 and so on.
pfGroup::removeChild returns a 1 if child was actually removed and 0 if it was not found in the list.
pfGroup::removeChild decrements the reference count of child but does not delete child if its reference
count reaches 0.

pfGroup::insertChild inserts child before the child with index index. index must be within the range 0 to
pfGroup::getNumChildren().

pfGroup::replaceChild replaces old with new and returns 1 if the operation was successful or 0 if old is not
a child of the pfGroup.

pfGroup::searchChild returns the index of child if it was found in the children list of the pfGroup or -1 if
it was not found.

pfGroup::getNumChildren returns the number of children in the pfGroup. pfGroup::getChild returns a
handle to the child with index index or NULL if the index is out of range.

The bounding volume of a pfGroup encompasses all its children. Modifications to the child list of a
pfGroup will cause IRIS Performer to recompute new bounding volumes for the pfGroup unless it is
configured to use static bounding volumes (see pfNode::setBound).

pfGroup::bufferAddChild and pfGroup::bufferRemoveChild provide access to nodes that do not exist
in the current pfBuffer (See the pfBuffer man page). Either, none, or both of the pfBuffer and node may
exist outside the current pfBuffer. pfGroup::bufferAddChild and pfGroup::bufferRemoveChild act just

91

pfGroup(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

like their non-buffered counterparts pfGroup::addChild and pfGroup::removeChild except that the
addition or removal request is not carried out immediately but is recorded by the current pfBuffer. The
request is delayed until the first pfBuffer::merge when both the parent pfGroup and node are found in the
main IRIS Performer pfBuffer. The list of pfGroup::bufferAddChild and pfGroup::bufferRemoveChild
requests is traversed in pfBuffer::merge after all nodes have been merged. pfGroup::bufferAddChild
and pfGroup::bufferRemoveChild return TRUE if the request was recorded and FALSE otherwise.

SEE ALSO
pfNode, pfBuffer, pfDelete

92

IRIS Performer 2.0 libpf C++ Reference Pages pfInit(3pf)hh

NAME
pfInit, pfExit − Initialize and terminate IRIS Performer processes.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

int pfInit(void);

void pfExit(void);

DESCRIPTION
pfInit initializes internal IRIS Performer data structures and must be the first IRIS Performer call in an
application except for the following:

pfNotifyLevel

pfSharedArenaSize

pfSharedArenaBase

pfTmpDir

pfInit is required by all Performer applications whether they use libpf or not. But pfInit has slightly dif-
ferent behavior applications that only use libpr and do not include pf.h. for these applications, pfInit
does not set up any shared memory arenas. If shared memory is required, it should be explicitly set up
by calling pfInitArenas before pfInit.

pfExit closes graphics windows, frees all IRIS Performer data structures, deletes all IRIS Performer shared
memory arenas (see pfGetSharedArena), kills all spawned IRIS Performer processes, then returns control
to the application. pfExit also turns off the video retrace clock (see pfVClock). After calling pfExit an
application may restart IRIS Performer with pfInit.

User processes forked or sproced after pfConfig will be terminated by pfExit. Those forked or sproced
before pfConfig will be sent a SIGCLD signal.

NOTES
Since pfExit deletes all shared memory arenas, any memory used by the application that was created out
of IRIS Performer shared memory is now invalid.

BUGS
Currently pfExit returns directly to the operating system, terminating the simulation application as well.
However, it does turn off video retrace CPU interrupts while exiting (see pfVClock).

SEE ALSO
pfConfig, pfGetSharedArena, pfMalloc, pfVClock

93

pfIsectFunc(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfIsectFunc, pfGetIsectFunc, pfAllocIsectData, pfGetIsectData, pfPassIsectData − Set intersection call-
back, allocate and pass intersection data.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

void pfIsectFunc(pfIsectFuncType func);

pfIsectFuncType pfGetIsectFunc(void);

void * pfAllocIsectData(int bytes);

void * pfGetIsectData(void);

void pfPassIsectData(void);

typedef void (*pfIsectFuncType)(void *userData);

DESCRIPTION
The func argument to pfIsectFunc specifies the intersection callback function. This function will be
invoked by pfFrame and will be passed a pointer to a data buffer allocated by pfAllocIsectData. If a
separate process is allocated for intersections by the PFMP_FORK_ISECT mode to pfMultiprocess, then
pfFrame will cause func to be called in the separate process. pfGetIsectFunc returns the intersection call-
back or NULL if none is set.

Within the intersection callback, the user may further multiprocess intersection queries through any IRIX
multiprocessing mechanism such as fork, sproc, or m_fork. All of these processes may call pfNode::isect
in parallel.

When the intersection function is in a separate process, it will run asynchronously with the rest of the
rendering pipeline. Specifically, if the intersection function takes more than a frame time, the rendering
pipeline will not be affected and the next invocation of the intersection function will be delayed until trig-
gered by the next pfFrame. Changes to the scene graph made by the application process are only pro-
pagated to the intersection process after the intersection function returns.

Any modifications made to the scene graph by a forked intersection function will not be reflected in the
scene graph that is seen by any other IRIS Performer functions. To be safe, only pfNode::isect (which
does not modify the scene graph) should be called from within the intersection function.

pfAllocIsectData returns a pointer to a chunk of shared memory of bytes bytes. This memory buffer may
be used to communicate information between the intersection function and application. Intersection data
should only be allocated once. pfGetIsectData returns the previously allocated intersection data.

When the intersection function is forked, pfPassIsectData should be used to copy the intersection data

94

IRIS Performer 2.0 libpf C++ Reference Pages pfIsectFunc(3pf)hh

into internal IRIS Performer memory when the next pfFrame is called. Once pfFrame is called, the appli-
cation may modify data in the intersection data buffer without fear of colliding with the forked intersec-
tion function.

Example 1: Multiprocessed intersections.

typedef struct

{

int frameCount; /* For frame stamping collisions */

pfNode *collidee; /* pfNode to collide with */

int numCollisions; /* Number of collision vectors */

pfSeg *collisionVecs[MAXCOLLISIONS];

} IsectStuff;

void

isectFunc(void *data)

{

IsectStuff istuff = (IsectStuff*) data;

istuff->collidee->isect(etc...);

}

:

pfMultiprocess(PFMP_FORK_ISECT | PFMP_APP_CULL_DRAW);
pfConfig();

:

pfIsectFunc(isectFunc);

isectData = (IsectStuff*) pfAllocIsectData(sizeof(IsectStuff));

isectData->collidee = (pfNode*) scene;

while (!done)

{

pfSync(); /* Sleep until next frame boundary */

update_view(); /* Set view for frame N */

isectData->frameCount = pfGetFrameCount();

pfPassIsectData(); /* Pass intersection data to */

/* intersection process */

pfFrame(); /* Trigger cull, intersection for frame N */

95

pfIsectFunc(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

app_funcs(); /* Perform application-specific functions */

update_positions(); /* Update moving models for frame N + 1 */

/*

* Act on result of previous collisions and set up isectData

* for more collisions.

*/

update_collisions(isectData);

}

If pfIsectFunc is called before pfConfig and the multiprocessing mode is PFMP_DEFAULT, then
pfConfig will fork the intersection process if there are enough processors. Otherwise, you must explicitly
fork the intersection process by setting the PFMP_FORK_ISECT bit in the argument passed to
pfMultiprocess.

SEE ALSO
pfConfig, pfMultiprocess, pfNode

96

IRIS Performer 2.0 libpf C++ Reference Pages pfLOD(3pf)hh

NAME
pfLOD − Create, modify, and query level of detail nodes.

FUNCTION SPECIFICATION
#include <Performer/pf/pfLOD.h>

pfLOD::pfLOD();

static pfType * pfLOD::getClassType(void);

void pfLOD::setRange(int index, float range);

float pfLOD::getRange(int index);

int pfLOD::getNumRanges(void);

void pfLOD::setTransition(int index, float distance);

float pfLOD::getTransition(int index);

int pfLOD::getNumTransitions(void);

void pfLOD::setCenter(pfVec3 ¢er);

void pfLOD::getCenter(pfVec3 ¢er);

void pfLOD::setLODState(pfLODState *ls);

void pfLOD::getLODState(void);

void pfLOD::setLODStateIndex(int index);

void pfLOD::getLODStateIndex(void);

float pfLOD::evaluate(const pfChannel *chan, const pfMatrix *offset);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLOD is derived from the parent class pfGroup, so each of these member func-
tions of class pfGroup are also directly usable with objects of class pfLOD. This is also true for ancestor
classes of class pfGroup.

int pfGroup::addChild(pfNode *child);
int pfGroup::insertChild(int index, pfNode *child);
int pfGroup::replaceChild(pfNode *old, pfNode *new);
int pfGroup::removeChild(pfNode* child);
int pfGroup::searchChild(pfNode* child);
pfNode * pfGroup::getChild(int index);
int pfGroup::getNumChildren(void);
int pfGroup::bufferAddChild(pfNode *child);
int pfGroup::bufferRemoveChild(pfNode *child);

97

pfLOD(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfLOD can also be
used with these functions designed for objects of class pfNode.

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);
const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);
pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfLOD can also be
used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLOD can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);

98

IRIS Performer 2.0 libpf C++ Reference Pages pfLOD(3pf)hh

void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

PARAMETERS
lod identifies a pfLOD.

DESCRIPTION
A pfLOD is a level-of-detail (LOD) node. Level-of-detail is a technique for manipulating model complex-
ity based on image quality and rendering speed. Typically, a model is drawn in finer detail when close to
the viewer (occupies large screen area) than when it is far away (occupies little screen area). In this way,
costly detail is drawn only when necessary.

Additionally, IRIS Performer can adjust LODs based on rendering load. If a scene is taking too long to
draw, IRIS Performer can globally modify LODs so that they are drawn coarser and render time is
reduced (see pfChannel::setStress).

IRIS Performer uses range-based LOD and adjusts for field-of-view and viewport pixel size. Range is
computed as the distance from the pfChannel eyepoint which is drawing the scene to a point designated
as the center of a pfLOD. This range is then potentially modified by pfChannel attributes (see
pfChannel::setLODAttr, pfChannel::setStress). This range indexes the pfLOD range list to select a sin-
gle child to draw.

pfLOD is derived from pfGroup so it can have children and use pfGroup API to manipulate its child list.
In addition to a list of children, a pfLOD has a list of ranges which specify the transition points between
levels-of-detail. new pfLOD creates and returns a handle to a pfLOD. Like other pfNodes, pfLODs are
always allocated from shared memory and cannot be created statically, on the stack or in arrays. pfLODs
should be deleted using pfDelete rather than the delete operator.

pfLOD::getClassType returns the pfType* for the class pfLOD. The pfType* returned by
pfLOD::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfLOD. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfLOD::setCenter sets the object-space point which defines the center of the pfLOD. center is affected by
any transforms in the hierarchy above the pfLOD (see pfSCS). pfLOD::getCenter copies the LOD center

99

pfLOD(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

point into center.

pfLOD::setRange sets the value of range list element index to range which is a floating point distance
specified in world coordinates. A child is selected based on the computed range (LODRange) from the
eyepoint to the pfLOD center and the range list (Ranges) according to the following pseudocode decision
test:

if (LODRange < Ranges[0])

draw nothing;

else

if (LODRange >= Ranges[i] && LODRange < Ranges[i+1])

draw Child[i];

else

if (LODRange >= Ranges[N-1] where N is length of Ranges)

draw nothing;

Ranges specified by pfLOD::setRange must be positive and increasing with index or results are
undefined. pfLOD::getRange returns the range with index index and pfLOD::getNumRanges returns the
number of ranges currently set.

Normally, LOD transitions are abrupt switches that can cause distracting visual artifacts. On hardware
which supports it, IRIS Performer can blend between levels-of-detail for a smooth transition. Blended
level-of-detail transitions are enabled by setting a non-zero transition range with pfChannel::setLODAttr.
Blending is discussed in greater depth in the pfChannel::setLODAttr reference page.

pfLOD::setTransition sets the distance over which IRIS Performer should transition or "fade" between an
lod’s children. The number of transitions is equal to the number of LOD children + 1. Thus Transi-
tions[0] specifies the distance over which LOD child 0 should fade in. Transitions[1] specifies the distance
over which IRIS Performer will fade between child 0 and child 1. Transitions[N] specifies the distance
over which the last lod child will fade out. Note that performer will regulate the transition such that the
fade will be centered based on the ranges specified by pfLODRange. It is also important to note the
pfLODTransition distances should be specified such that there is no overlap between transitions or rea-
sonable, but undefined, behavior will result. Thus, it is important to consider pfLODRanges when speci-
fying transition distances. pfLOD::getTransition returns the range with index index and
pfLOD::getNumRanges returns the number of ranges currently set.

Note that in practice IRIS Performer will multiply this transition distance by a global transition scale (this
scale is set by calls to pfChannel::setLODAttr with the PFLOD_FADE token).

The default behavior of pfLODTransition is that each transition is set to a distance of 1.0 (except Transi-
tions[0] which is set to 0.0 by default). This makes it easy to specify a "global fade range" by controlling a
pfChannel::setLODAttr attribute - PFLOD_FADE. By setting PFLOD_FADE to 10.0, all transitions that

100

IRIS Performer 2.0 libpf C++ Reference Pages pfLOD(3pf)hh

have not be explicitly set will use 10.0 * 1.0 = 10.0 as their fade distance (except Transitions[0] which will
not fade at all).

Note that if one does not desire control over individual lod transitions, it is not necessary to call
pfLOD::setTransition.

pfLOD::setLODState associates the given pfLOD and pfLODState. This enables the control of how a par-
ticular pfLOD responds to stress and range. pfLOD::getLODState returns the pfLODState associated
with lod if there is one or NULL if one does not exist.

pfLOD::setLODStateIndex allows pfLODStates to be indexed on a per channel basis. index is an index
into an pfList of pfLODStates specified via pfChannel::setLODStateList. pfLOD::getLODStateIndex
returns the index currently specified for the pfLOD or -1 if no index has been specified.

Note that if an out of range index is specified for a given pfLOD then the pfLODState specified as the glo-
bal pfLODState for that channel will be used.

pfLOD::evaluate returns the index of the child that the Performer Cull traversal would produce given a
specific channel and matrix offset. The integer portion of the return value represents the selected child,
while the floating point portion of the return is used to distinguish the fade ratio between two visible lods
if lod fading is turned on for the given channel (see pfChannel::setLODAttr). Thus an index of 1.0 would
correspond to Performer’s decision to draw only child one. A value of 1.25 would mean Performer
would be 25% across the FADE transition between child one and child two - meaning that child one
would be 75% opaque while child two would be 25% opaque. Similarly a value of 3.9 would represent
child three being 10% opaque (solid) while child four was 90% opaque. The value -1.0 is returned when
no children are visible. Note that negative floating point values (like -.3) mean that Performer is currently
fading in child 0 and that it is 70% opaque. Thus return values will range from -1.0 <= return value < N+1
where N is the number of children for the LOD. (See pfChannel and pfLODState)

NOTES
Intersection traversals currently always intersect with an LODRange of 0. To intersect with other ranges,
a pfSwitch with the same parent and children as the pfLOD can be created with the pfLOD used for
drawing and the pfSwitch used for intersecting (see pfChannel::setTravMask).

SEE ALSO
pfChannel, pfGroup, pfLODState, pfNode, pfDelete

101

pfLODState(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfLODState − Create, modify, and query level of detail state.

FUNCTION SPECIFICATION
#include <Performer/pf/pfLODState.h>

pfLODState::pfLODState();

static pfType * pfLODState::getClassType(void);

void pfLODState::setAttr(long attr, float val);

float pfLODState::getAttr(long attr);

int pfLODState::setName(const char *name);

const char * pfLODState::getName(void);

pfLODState * pfLODState::find(const char *name);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLODState is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfLODState. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLODState
can also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();

102

IRIS Performer 2.0 libpf C++ Reference Pages pfLODState(3pf)hh

ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

PARAMETERS
ls identifies a pfLODState.

DESCRIPTION
pfLODState encapsulates a definition of how an LOD or group of LODs should respond to distance from
the eyepoint and stress. Currently, there are 8 attributes that can be used to define LOD child selection
and child transition distance based on a LOD’s distance from the channel’s viewpoint and the channel’s
stress (see pfChannel and pfChannel::setStress).

new pfLODState creates and returns a handle to a pfLODState. pfLODStates are always allocated from
shared memory and cannot be created statically, on the stack or in arrays. pfLODStates should be deleted
using pfDelete rather than the delete operator.

pfLODState::getClassType returns the pfType* for the class pfLODState. The pfType* returned by
pfLODState::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfLODState. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfLODState::setAttr and pfLODState::getAttr are used to set and get the following attributes:

PFLODSTATE_RANGE_RANGESCALE, PFLODSTATE_RANGE_RANGEOFFSET
directly modify the geometric range used to determine the current LOD child.

PFLODSTATE_RANGE_STRESSSCALE, PFLODSTATE_RANGE_STRESSOFFSET
modify the way the current channel stress affects the range computation.

PFLODSTATE_TRANSITION_RANGESCALE, PFLODSTATE_TRANSITION_RANGEOFFSET
directly modify the transition widths set by pfLOD::setTransition.

PFLODSTATE_TRANSITION_STRESSSCALE, PFLODSTATE_TRANSITION_STRESSOFFSET
modify the way transition widths are adjusted by the channel stress value.

These scale and offset values adjust the LOD selection process in the following way, presented in pseu-
docode:

effectiveRange =

OverallLODScale *

(Range * RANGE_RANGESCALE + RANGE_RANGEOFFSET) *

(Stress * RANGE_STRESSSCALE + RANGE_STRESSOFFSET);

103

pfLODState(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

effectiveTransitionWidth[i] =

OverallFadeScale *

(Trans[i] * TRANSITION_RANGESCALE + TRANSITION_RANGEOFFSET) /

(Stress * TRANSITION_STRESSSCALE + TRANSITION_STRESSOFFSET);

OverallLODScale and OverallFadeScale are the PFLOD_SCALE and PFLOD_FADE attributes set with
pfChanLODAttr. Both are global values that affect the switching and transition ranges of all pfLODs in
the scene.

The default values for all SCALE and OFFSET attributes are 1.0 and 0.0 respectively except
TRANSITION_STRESSSCALE and TRANSITION_STRESSOFFSET which are 0.0 and 1.0 respec-
tively, i.e., transition ranges are not scaled by stress by default.

A pfLODState influences a pfLOD’s behavior in one of 3 ways:

1. Direct reference. A pfLOD may directly reference a pfLODState with
pfLOD::setLODState.

2. Indexed. A pfLOD may index a pfLODState with pfLOD::setLODStateIndex. When the
LOD is evaluated, the indexth entry of the evaluating pfChannel’s pfLODState table is
used. A pfChannel’s pfLODState table is set with (pfChannel::setLODStateList). With
indexed pfLODStates, different pfChannels can have different LOD behavior by using
different pfLODState tables, e.g., an infrared channel may not "see" cold objects as well as
a visual channel so "cold" pfLODs will index a different pfLODState in the infrared chan-
nel than in the visual channel.

3. Inherited from pfChannel. A pfLOD which does not directly reference or index a pfLOD-
State will use the pfLODState of the evaluating pfChannel (pfChannel::setLODState).
This is the default pfLOD behavior.

When a pfLOD references or indexes a pfLODState, the SCALE and OFFSET parameters of the pfLOD-
State are multiplied and added, respectively, to the corresponding SCALE and OFFSET parameters of the
evaluating pfChannel’s pfLODState, e.g., effective RANGE_RANGESCALE = pfLODState’s
RANGE_RANGESCALE * pfChannel’s RANGE_RANGESCALE.

Multiple pfLODs may share the same pfLODState reference or index.

pfLODState::setName and pfLODState::getName set and get the name of a particular pfLODState while
pfLODState::find will return the first pfLODState defined with the given name.

104

IRIS Performer 2.0 libpf C++ Reference Pages pfLODState(3pf)hh

SEE ALSO
pfLOD, pfChannel

105

pfLayer(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfLayer − Create, modify, and query layer nodes for decals and coplanar polygons.

FUNCTION SPECIFICATION
#include <Performer/pf/pfLayer.h>

pfLayer::pfLayer();

static pfType * pfLayer::getClassType(void);

void pfLayer::setMode(int mode);

int pfLayer::getMode(void);

void pfLayer::setBase(pfNode *base);

pfNode * pfLayer::getBase(void);

void pfLayer::setDecal(pfNode *decal);

pfNode * pfLayer::getDecal(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLayer is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfLayer. This is also true for
ancestor classes of class pfGroup.

int pfGroup::addChild(pfNode *child);
int pfGroup::insertChild(int index, pfNode *child);
int pfGroup::replaceChild(pfNode *old, pfNode *new);
int pfGroup::removeChild(pfNode* child);
int pfGroup::searchChild(pfNode* child);
pfNode * pfGroup::getChild(int index);
int pfGroup::getNumChildren(void);
int pfGroup::bufferAddChild(pfNode *child);
int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfLayer can also be
used with these functions designed for objects of class pfNode.

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);

106

IRIS Performer 2.0 libpf C++ Reference Pages pfLayer(3pf)hh

pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);
const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);
pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfLayer can also be
used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLayer can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();

107

pfLayer(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
On Z-buffer based machines, numerical precision can cause distracting artifacts when rendering coplanar
geometry. A pfLayer is a node derived from pfGroup that supports proper drawing of coplanar
geometry on IRIS platforms.

A pfLayer can be thought of as a stack of geometry where each layer has visual priority over the
geometry beneath it in the stack. An example of a 3 layer stack consists of stripes which are layered over
a runway which is layered over the ground. The bottommost layer is called the "base" while the other
layers are called "decals". When using certain hardware mechanisms (PFDECAL_BASE_STENCIL) to
implement pfLayers, the "base" is special because it defines the depth values which are used to determine
pfLayer visibility with respect to other scene geometry and which are written to the depth buffer.

new pfLayer creates and returns a handle to a pfLayer. Like other pfNodes, pfLayers are always allo-
cated from shared memory and cannot be created statically, on the stack or in arrays. pfLayers should be
deleted using pfDelete rather than the delete operator.

pfLayer::getClassType returns the pfType* for the class pfLayer. The pfType* returned by
pfLayer::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfLayer. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

Since pfLayer is derived from pfGroup, pfGroup API may be used to manipulate its child list. IRIS Per-
former considers child 0 to be the base geometry and children 1 through N-1 to be decals. Decals are ren-
dered in order such that decal[i+1] is drawn atop decal[i]. In other words, decal[i+1] has visual priority
over decal[i] even though they are coplanar. pfLayer::setBase and pfLayer::setDecal are convenience
routines for setting the base and decal children of the pfLayer in the common case where there is only one
decal child. pfLayer::getBase and pfLayer::getDecal return the base and first child of the pfLayer.

The mode argument to pfLayer::setMode specifies which hardware mechanism to use and is one of:

PFDECAL_BASE_DISPLACE
Use slope-based polygon displacement to slightly displace the depth values of decal
geometry closer to the eye so they have visual priority. Each decal is displaced more than its
predecessor to properly resolve priority between decals. The maximum number of decals is
8.

PFDECAL_BASE_DISPLACE | PFDECAL_LAYER_OFFSET
Use slope-based polygon displacement to slightly displace the depth values of decal
geometry closer to the eye so they have visual priority. In addition, decal geometry is offset
a constant amount to eliminate anomalies caused by geometry which is nearly

108

IRIS Performer 2.0 libpf C++ Reference Pages pfLayer(3pf)hh

perpendicular to the view. Each decal is displaced and offset more than its predecessor to
properly resolve priority between decals. The maximum number of decals is 8.

PFDECAL_BASE_STENCIL
Use the stencil-buffer logic to determine visibility of decal geometry. There is no limit to the
number of decals.

PFDECAL_BASE_FAST
Use a decaling mechanism appropriate to the hardware that produces the fastest, but not
necessarily the highest quality, decaling.

PFDECAL_BASE_HIGH_QUALITY
Use a decaling mechanism appropriate to the hardware that produces the highest quality,
but not necessarily the fastest, decaling.

The default layer mode is PFDECAL_BASE_FAST. pfLayer::getMode returns the mode of the pfLayer.

The different pfLayer modes offer quality-feature tradeoffs listed in the table below:

DISPLACE STENCIL (DISPLACE ||OFFSET)ii
Quality medium high high
Sorting enabled disabled enabled
Coplanarity not required required not required
Multipass ok not ok ok
Containment not required required not requiredcc

c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

The STENCIL mechanism offers the best image quality but at a performance cost since the base and layer
geometry must be rendered in order, obviating any benefits of sorting by graphics state offered by
pfChannel::setBinSort. When multisampling on RealityEngine, this mechanism also significantly reduces
pixel fill performance. An additional constraint is that STENCILed layers must be coplanar or decal
geometry may incorrectly show through base geometry. A subtle but important issue with STENCILed
layers is that they are unsuitable for multipass renderings (projected textures) since multiple surfaces are
visible at a given pixel. For proper results, each layer in the "stack" must be completely contained within
the boundaries of the base geometry.

The DISPLACE mechanism offers the best performance since layers can be sorted by graphics state,
because the displace call itself is usually faster than other mode changes, and because there is no pixel fill
rate penalty when it is in use. However, in IRIS GL the displace mechanism is only slope-based, so when
geometry becomes nearly perpendicular to the view, i.e., has little or no slope, the displacement is too lit-
tle to conclusively determine visibility. To solve this problem, the OFFSET mechanism adds a constant
offset to the decal geometry. This mode can be very expensive (RealityEngine) so when using it the data-
base should be sorted with PFSTATE_DECAL as the first sorting key (see pfChannel::setBinSort). Both
DISPLACE mechanisms do not require that geometry within a single layer be coplanar and also produce
a single visible surface at each pixel for multipass renderings. The main disadvantage is that decal

109

pfLayer(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

geometry may incorrectly poke through other geometry due to the displacement of the decal geometry.
Another disadvantage is that the maximum number of decals is 8.

The performance differences between STENCIL and DISPLACE modes are hardware-dependent so
some experimentation and benchmarking is required to determine the most suitable method for your
application.

NOTES
Using PFDECAL_BASE_STENCIL for pfLayer nodes requires several steps for proper operation. First,
the graphics hardware must support stencil plane rendering. Secondly, the graphics context must be
configured with at least one stencil plane, and the lowest order bit of the allocated stencil planes be
reserved for IRIS Performer use. pfInitGfx configures the graphics context in just this way.

The use of displacements for rendering coplanar geometry can cause visual artifacts such as decals "Z
fighting" or "flimmering" when viewed perpendicularly, and the "punching through" of decals that
should mask base geometry when both are viewed obliquely. The former artifact can be eliminated by
specifying PFDECAL_BASE_DISPLACE | PFDECAL_LAYER_OFFSET as the layer mode. If unaccept-
able artifacts still persist, the database should be modified to eliminate the need for coplanar rendering or
PFDECAL_BASE_HIGH_QUALITY should be used.

When using PFDECAL_LAYER_OFFSET, the minimum depth buffer range set with lsetdepth must be
incremented an extra 1024 * max layers so the negative displacement of the layers does not wrap.
pfInitGfx does this automatically.

BUGS
IRIS Performer properly renders coplanar geometry only on machines that have a hardware stencil buffer
allocated or which support displaced polygon rendering.

SEE ALSO
pfChannel, pfDecal, pfGroup, pfInitGfx, pfLookupNode, pfNode, pfDelete

110

IRIS Performer 2.0 libpf C++ Reference Pages pfLightPoint(3pf)hh

NAME
pfLightPoint − Set and get pfLightPoint size, color, shape, rotation and position.

FUNCTION SPECIFICATION
#include <Performer/pf/pfLightPoint.h>

pfLightPoint::pfLightPoint(int num);

static pfType * pfLightPoint::getClassType(void);

int pfLightPoint::getNumPoints(void);

void pfLightPoint::setSize(float size);

float pfLightPoint::getSize(void);

void pfLightPoint::setColor(int index, pfVec4 &clr);

void pfLightPoint::getColor(int index, pfVec4 &clr);

void pfLightPoint::setRot(float azim, float elev, float roll);

void pfLightPoint::getRot(float *azim, float *elev, float *roll);

void pfLightPoint::setShape(int dir, float henv, float venv, float falloff);

void pfLightPoint::getShape(int *dir, float *henv, float *venv, float *falloff);

void pfLightPoint::setFogScale(float onsetScale, float opaqueScale);

void pfLightPoint::getFogScale(float *onsetScale, float *opaqueScale);

void pfLightPoint::setPos(int index, pfVec3 &pos);

void pfLightPoint::getPos(int index, pfVec3 &pos);

pfGeoSet* pfLightPoint::getGSet(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLightPoint is derived from the parent class pfNode, so each of these member
functions of class pfNode are also directly usable with objects of class pfLightPoint. This is also true for
ancestor classes of class pfNode.

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);

111

pfLightPoint(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);
pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfLightPoint can
also be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLightPoint
can also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

112

IRIS Performer 2.0 libpf C++ Reference Pages pfLightPoint(3pf)hh

DESCRIPTION
pfLightPoint is now obsoleted in favor of the libpr primitive pfLPointState. pfLightPoint::getGSet
returns the underlying pfGeoSet from which the pfLPointState can be found:

gset = lpoint->getGSet();

gstate = gset->getGState();

lpstate = gstate->getAttr(PFSTATE_LPOINTSTATE);

A pfLightPoint is a pfNode that contains one or more light points. The light point node is quite different
from a pfLightSource; it is visible as one or more self-illuminated small points but these points do not
illuminate surrounding objects. In contrast to this, a pfLightSource does illuminate scene contents but is
itself not a visible object. All the light points in a pfLightPoint node share all their attributes except point
location and color.

new pfLightPoint creates and returns a handle to a pfLightPoint. Like other pfNodes, pfLightPoints are
always allocated from shared memory and cannot be created statically, on the stack or in arrays. pfLight-
Points should be deleted using pfDelete rather than the delete operator. num specifies the maximum
number of individual light points the node may contain. The function pfLightPoint::getNumPoints
returns this maximum number of light points that the pfLightPoint node can hold. This is the value set
when the light point node was created using new pfLightPoint and is the size of the internal position and
color arrays used to represent the light points.

pfLightPoint::getClassType returns the pfType* for the class pfLightPoint. The pfType* returned by
pfLightPoint::getClassType is the same as the pfType* returned by invoking the virtual function
getType on any instance of class pfLightPoint. Because IRIS Performer allows subclassing of built-in
types, when decisions are made based on the type of an object, it is usually better to use the member
function isOfType to test if an object is of a type derived from a Performer type rather than to test for
strict equality of the pfType*’s.

pfLightPoint::setSize sets the screen size of each point of light in the pfLightPoint. size is specified in pix-
els and is used as the argument to pntsizef. Whenever possible, antialiased points are used but the actual
representation of a light point depends on the hardware being used. See the pntsizef man page for a
description of available light point sizes on IRIS hardware. pfLightPoint::getSize returns the size of the
pfLightPoint.

pfLightPoint::setColor sets the color of light point index in the pfLightPoint to clr. The actual color
displayed depends on light point direction, shape, position, and fog. clr specifies red, green, blue and
alpha in the range 0.0 to 1.0. A pfLightPoint is turned off with an alpha of 0.0 since it will be rendered as
completely transparent. pfLightPoint::getColor copies the indexth color into clr.

pfLightPoint::setRot is used for directional lights. The direction of all light points in the pfLightPoint is

113

pfLightPoint(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

the positive Y axis, rotated about the X axis by elev then rotated about the Z axis by azim. roll only affects
the light envelope as described below. The direction vector is rotated by any transformations (see pfSCS,
pfDCS) above the pfLightPoint in the hierarchy.

pfLightPoint::getRot copies the pfLightPoint’s rotation into azim, elev, and roll.

pfLightPoint::setShape describes the intensity distribution of a light point about its direction vector. dir
is a symbolic token:

PFLP_OMNIDIRECTIONAL
the pfLightPoint will be drawn as omnidirectional light points. Light distribution is equal
in all directions. All other arguments are ignored.

PFLP_UNIDIRECTIONAL
the pfLightPoint will be drawn as unidirectional point lights. Light distribution is an ellipti-
cal cone centered about the light direction vector.

PFLP_BIDIRECTIONAL
the pfLightPoint will be drawn as bidirectional light points. Light distribution is two ellipti-
cal cones centered about the positive and negative light direction vectors.

henv and venv are total angles (not half-angles) in degrees which specify the horizontal and vertical
envelopes about the direction vector. An envelope is a symmetric angular spread in a specific plane
about the light direction vector. The default direction is along the positive Y axis so the horizontal
envelope is in the X plane and the vertical in the Z plane. Both direction and envelopes are rotated by the
pfLightPoint::setRot and any inherited transformations. The default envelope angles are 360.0 degrees
which is equivalent to an omnidirectional light.

When the vector from the eyepoint to the light position is outside a light’s envelope, the light point is not
displayed. If within, the intensity of the light point is computed based on the location of the eye within
the elliptical cone. Intensity ranges from 1.0 when the eye lies on the light direction vector to 0.0 on the
edge of the cone. falloff is an exponent which modifies the intensity. A value of 0 indicates that there is no
falloff and values > 0 increase the falloff rate. The default falloff is 4. As intensity decreases, the light
point’s transparency increases.

pfLightPoint::getShape copies the pfLightPoint’s shape parameters into dir, henv, venv, and falloff.

In general, the real world intensity of emissive light points is much greater than that of reflective surfaces.
Consequently, when fog is active, light points should be more visible through the fog.
pfLightPoint::setFogScale sets the fog range scale factors that affects all light points in the pfLightPoint.
onsetScale and opaqueScale multiply the onset and opaque ranges (pfFog::setRange) of the currently active
fog. Thus if the scale factors are greater than 1.0, the light points will be more visible through fog than
reflective surfaces. The default fog scale factors are both 4.0. pfLightPoint::getFogScale copies the fog
scale factors of the pfLightPoint into onsetScale and opaqueScale.

114

IRIS Performer 2.0 libpf C++ Reference Pages pfLightPoint(3pf)hh

pfLightPoint::setPos sets the position of light point with index index to pos. index is clamped to the range
[0, num-1]. All positions are transformed by any inherited transformations. The final position and orien-
tation of a light point i is transformed by R * T[index] * M where R is a rotation matrix defined by
pfLightPoint::setRot, T[i] is the position of light point i, and M is the transformation inherited by the
pfLightPoint from its hierarchy.

pfLightPoint::getPos copies the indexth position into pos.

NOTES
Light point processing in IRIS Performer has been subsumed by the new pfLPointState mechanism,
which is both more powerful and more efficient. Application developers are encouraged to transition to
these new light point facilities.

pfLightPoint nodes, unlike pfLPointState GeoSets, do not provide size or intensity modulation based on
distance to the viewer and the viewport size. Also, directional lights are significantly more expensive to
cull than omnidirectional lights.

Falloff distribution is cosine(incidence angle) ˆ falloff.

When sorting is enabled (see pfChannel::setTravMode and PFCULL_SORT), light points are drawn after
opaque geometry unless the pfLightPoint node has a pre-draw or post-draw callback (see
pfNode::setTravFuncs).

SEE ALSO
pfNode, pfLPointState

115

pfLightSource(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfLightSource − Create pfLightSource, specify pfLightSource properties.

FUNCTION SPECIFICATION
#include <Performer/pf/pfLightSource.h>

pfLightSource::pfLightSource();

static pfType * pfLightSource::getClassType(void);

void pfLightSource::setAmbient(float r, float g, float b);

void pfLightSource::getAmbient(float* r, float* g, float* b);

void pfLightSource::setColor(int which, float r, float g, float b);

void pfLightSource::getColor(int which, float* r, float* g, float* b);

void pfLightSource::setAtten(float constant, float linear, float quadratic);

void pfLightSource::getAtten(float *constant, float *linear, float *quadratic);

void pfLightSource::setSpotDir(float x, float y, float z);

void pfLightSource::getSpotDir(float* x, float* y, float* z);

void pfLightSource::setSpotCone(float f1, float f2);

void pfLightSource::getSpotCone(float* f1, float* f2);

void pfLightSource::setPos(float x, float y, float z, float w);

void pfLightSource::getPos(float* x, float* y, float* z, float* w);

void pfLightSource::on(void);

void pfLightSource::off(void);

int pfLightSource::isOn(void);

void pfLightSource::setMode(int mode, int val);

int pfLightSource::getMode(int mode);

void pfLightSource::setVal(int mode, float val);

float pfLightSource::getVal(int mode);

void pfLightSource::setAttr(int attr, void *obj);

void* pfLightSource::getAttr(int attr);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLightSource is derived from the parent class pfNode, so each of these
member functions of class pfNode are also directly usable with objects of class pfLightSource. This is
also true for ancestor classes of class pfNode.

116

IRIS Performer 2.0 libpf C++ Reference Pages pfLightSource(3pf)hh

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);
const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);
pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfLightSource can
also be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLightSource
can also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();

117

pfLightSource(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfLightSource is a pfNode which can illuminate geometry in a pfScene. In addition, pfLightSource sup-
ports a technique known as "projected texturing" which can simulate high quality, real time spotlights
and shadows on certain graphics hardware.

new pfLightSource creates and returns a handle to a pfLightSource. Like other pfNodes, pfTexts are
always allocated from shared memory and cannot be created statically, on the stack or in arrays. pfLight-
Sources should be deleted using pfDelete rather than the delete operator.

pfLightSource::getClassType returns the pfType* for the class pfLightSource. The pfType* returned by
pfLightSource::getClassType is the same as the pfType* returned by invoking the virtual function
getType on any instance of class pfLightSource. Because IRIS Performer allows subclassing of built-in
types, when decisions are made based on the type of an object, it is usually better to use the member
function isOfType to test if an object is of a type derived from a Performer type rather than to test for
strict equality of the pfType*’s.

Most pfLightSource routines are borrowed from pfLight (but not inherited): setAmbient, getAmbient,
setColor, getColor, setAtten, getAtten, setPos, getPos, setSpotCone, getSpotCone, setSpotDir, getSpot-
Dir, on, off, isOn. The reader is referred to the pfLight man page for details on the routine description.

When enabled by pfLightSource::on, a pfLightSource influences all geometry that is in the same pfScene
if it is not culled during the cull traversal. Its position in the hierarchy does not affect its area of influence.
A pfLightSource is enabled by default and is explicitly disabled with pfLightSource::off.

pfLightSources are processed somewhat differently than other nodes. If the
PFCULL_IGNORE_LSOURCES mode is not enabled by pfChannel::setTravMode, the cull stage will
begin with a special traversal of all paths which lead from the current pfScene to pfLightSources before it
traverses the pfScene geometry. This initial traversal is no different from the ordinary cull traversal
except that the traversal order is path-directed rather than an in-order traversal. Specifically, all switches
(pfSwitch, pfLOD, pfSequence) and transformations (pfSCS, pfDCS) will affect the traversal. Note that
nodes that lie on paths to pfLightSource nodes will be traversed multiple times; specifically, any cull or
draw callbacks (pfNode::setTravFuncs) will be invoked multiple times.

pfLightSources are culled to the viewing frustum only if they have been assigned a non-null bounding
volume (pfNode::setBound). If a pfLightSource has a null bounding volume (radius < 0) then it is not

118

IRIS Performer 2.0 libpf C++ Reference Pages pfLightSource(3pf)hh

culled and has global effect over its pfScene. By default pfLightSources have null bounding volumes.
After the pfLightSource traversal comes the database traversal which (usually) visually culls the current
pfScene and ignores pfLightSources.

A pfLightSource inherits the current transformation from any pfSCSes and pfDCSes above it in the hierar-
chy. This matrix transforms the light source’s position and direction depending on the light’s type, i.e.- if
it is a local, infinite, or spotlight.

All hardware lights corresponding to pfLightSources in a pfScene will be properly configured before the
pfChannel’s draw callback is invoked (see pfChannel::setTravFunc). Consequently, all geometry ren-
dered in the pfChannel draw callback will be illuminated by the pfScene’s light sources. However, any
draw callback assigned to the pfLightSource node by pfNode::setTravFuncs will be invoked before the
pfChannel draw callback is invoked so that anything drawn in the node callback will be obscured if the
channel viewport is cleared (see pfClearChan). Example 1: Adding a pfLightSource to a pfScene.

sun = new pfLightSource;

/* Set slightly yellow color */

sun->setColor(PFLT_DIFFUSE, 1.0f, 1.0f, .8f);

/* Set a high ambient level */

sun->setColor(PFLT_AMBIENT, .4f, .4f, .3f);

/* Time of day is high noon */

sun->setPos(0.0f, 1.0f, 0.0f, 0.0f);

scene->addChild(sun);

A pfLightSource supports 3 different lighting mechanisms as listed in the following table:

Lighting Normals Texture Effects Are Shadows Extra Draw
Method Used Required Per-? Pass(es)iii
pfLight Yes No Vertex No None

PROJTEX No Yes Pixel No +(0-1)
SHADOW No Auto Pixel Yes +(0-2)cc

c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

The normal use of a pfLightSource is as a pfLight which computes lighting at geometry vertices, taking
into account the surface curvature as represented by geometry normals. This kind of lighting offers the
highest performance but does not produce per-pixel effects or shadows. Lighting using projected tex-
tures, referred to as PROJTEX, produces high quality spotlights since the spotlight boundary is computed
on a per-pixel, rather than a per-vertex basis as it is with pfLight. However, PROJTEX lighting does not
take surface normals into account, requires hardware texture mapping for decent performance, and

119

pfLightSource(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

requires that textured geometry be rendered twice, once with their normal texture and once with the pro-
jected texture. SHADOW lighting is similar to PROJTEX but adds shadows at the cost of an additional
rendering pass. In this case a special texture map, called a shadow map, is automatically generated by the
pfLightSource and then projected onto the scene. Typically, pfLight-type lighting is used in conjunction
with PROJTEX or SHADOW so that lighting is a function of both per-pixel projected texturing and per-
vertex surface curvature.

SHADOW and PROJTEX lighting are separately enabled and disabled with the
PFLS_SHADOW_ENABLE and PFLS_PROJTEX_ENABLE tokens to pfLightSource::setMode. val
should be either PF_ON or PF_OFF. When either is enabled, pfChannels rendering the pfLightSource’s
scene automatically enter "multipass mode" since multiple renderings of the scene are usually required.

pfChannel::setTravMode with the PFTRAV_MULTIPASS traversal token offers some control over the
multiple renderings of the scene. The PFMPASS_GLOBAL_AMBIENT bit indicates that the alpha bit-
planes of the pfChannel’s viewport contain the ambient intensity of the scene. Note that the pfChannel
will not clear the viewport alpha to this intensity but expects it to have already been properly cleared. If
using a pfEarthSky to clear the viewport, you can specify the ambient alpha with pfEarthSky::setColor.
Global ambient is not required and does have some extra cost. It is not particularly useful for PROJTEX
lighting since ambient intensity can be easily incorporated in the projected texture (instead of black, just
use gray outside the spotlight) but is useful for SHADOWS which otherwise would be completely black.

By default, emissive surfaces (including light points) are attenuated by PROJTEX and SHADOW lighting
which is not correct since emissive surfaces should shine even if in shadow or outside the cone of a pro-
jected spotlight. If a scene has emissive surfaces, set the PFMPASS_EMISSIVE_PASS bit in the
PFTRAV_MULTIPASS mode and the emissive surfaces will be properly rendered. Note that the emis-
sive rendering pass is not a full pass - rather it is a pass of only the emissive surfaces.

In situations where the scene is entirely non-textured, PFMPASS_NONTEX_SCENE can be specified as
part of the PFTRAV_MULTIPASS traversal mode of a pfChannel. In this case a complete rendering pass
is eliminated so that the total number of rendering passes is numProjLights + 2 *
numNonFrozenShadowLights.

PROJTEX lighting requires that a pfTexture be specified with the PFLS_PROJ_TEX token to
pfLightSource::setAttr. obj should be an intensity-alpha (2-component) pfTexture* with identical intensity
and alpha components. If the pfLightSource is the only pfLightSource in the scene using PROJTEX light-
ing, the texture may be a full-color, 4-component texture.

SHADOW lighting does not require a pfTexture, rather one is automatically created and configured by
the pfLightSource. The size of the texture(shadow) map may be specified with the
PFLS_SHADOW_SIZE token to pfLightSource::setVal. val is then the square size of the texture map.
The size of the shadow map greatly influences the quality and performance of SHADOW lighting. Large
shadow map sizes increase quality but decrease performance. The default shadow map size is 256. SHA-
DOW lighting requires that the viewport of each pfChannel which renders the pfLightSource’s scene be at

120

IRIS Performer 2.0 libpf C++ Reference Pages pfLightSource(3pf)hh

least as big as the shadow map. Otherwise, shadows will be clipped and visual anomalies will occur.

Both SHADOW and PROJTEX lighting require that a pfFrustum be specified with the
PFLS_PROJ_FRUSTUM token to pfLightSource::setAttr. obj defines the projection of the texture (sha-
dow) map and should be a nominal, i.e., non-transformed pfFrustum*. For SHADOW lighting, the field-
of-view and near and far clipping planes should bracket the scene to be shadowed as tightly as possible
for best results. A sloppy fit of pfFrustum to scene will result in blocky, poor-quality shadows.

By default, SHADOW lighting requires that the scene be rendered from the point of view of the pfLight-
Source to produce a shadow map. By default, pfChannels automatically do this for each SHADOW
pfLightSource in their scene. However, a new shadow map is only required if the pfLightSource or
objects in the scene change. In the special case where the pfLightSource and scene are totally static (e.g.,
the sun illuminating a sleepy town), the shadow map need not be recomputed. In this case
lsource.setMode(PFLS_FREEZE_SHADOWS, PF_ON) will disable the automatic recomputation of the
shadow map, increasing performance.

For best results, SHADOW lighting requires that the scene be slightly displaced in depth when rendering
the shadow map. This reduces artifacts such as "self-shadowing". The
PFLS_SHADOW_DISPLACE_SCALE and PFLS_SHADOW_DISPLACE_OFFSET tokens to
pfLightSource::setVal specify displacement values. The default values are 1.0 and 256.0 respectively but
experimentation is required for best results (both values should be positive).

For pfLightSources which are near the eye, a pfFog can be used to simulate range-attenuation of the light.
Range-attenuation is enabled with the PFLS_FOG_ENABLE token to pfLightSource::setMode and by
specifying a pfFog with the PFLS_PROJ_FOG token to pfLightSource::setAttr. The pfFog color should
be the ambient color of the projected texture. Only a single range-attenuated projected pfLightSource is
supported for a given pfChannel.

A pfLightSource’s intensity is set with the PFLS_INTENSITY token to pfLightSource::setVal. val simply
scales the color(s) of all 3 lighting types: pfLight, PROJTEX, SHADOW. A scene containing multiple,
full-intensity pfLightSources can be easily saturated so setting pfLightSource intensities is a simple way to
"normalize" lighting within a scene. For example, when using 3 pfLightSources to illuminate a scene, an
intensity of .33 would be reasonable. Example 2: Range-attenuated, projected texture lighting for landing
light

pfLightSource *spot;

pfTexture *spotTex;

pfFrustum *spotFrust;

pfFog *spotFog;

pfDCS *spotDCS;

pfChannel *chan;

pfEarthSky *esky;

121

pfLightSource(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

// Create and load 2-component spotlight

spotTex = new pfTexture;

spotTex->loadFile("spot.inta");

// Create and configure projected texture frustum

spotFrust = new pfFrustum;

spotFrust->makeSimple(60.0f);

spotFrust->setNearFar(1.0f, 100.0f);

// Create and configure range-attenuation fog model

spotFog = new pfFog;

spotFog->setColor(0.1f, 0.1f, 0.1f);

spotFog->setRange(0.0f, 100.0f);

// Create and configure projected texture light source

spot = new pfLightSource;

spot->setAttr(PFLS_PROJ_TEX, spotTex);

spot->setAttr(PFLS_PROJ_FRUST, spotFrust);

spot->setAttr(PFLS_PROJ_FOG, spotFog);

spot->setMode(PFLS_PROJTEX_ENABLE, 1);

// Set spotDCS to viewing matrix to move light around with eye

spotDCS = new pfDCS;

spotDCS->addChild(spot);

scene->addChild(spotDCS);

// Enable emissive pass since scene has emissive surfaces

chan->setTravMode(PFTRAV_MULTIPASS,

PFMPASS_EMISSIVE_PASS|PFMPASS_GLOBAL_AMBIENT);

// Set ambient intensity to .1

esky->setColor(PFES_CLEAR, r, g, b, .1f);

chan->setESky(esky);

Example 3: Multiple, shadow-casting, colored pfLightSources

pfLightSource *shad0, *shad1;

pfDCS *shadDCS0, *shadDCS1;

pfFrustum *shadFrust;

pfChannel *chan;

pfEarthSky *esky;

122

IRIS Performer 2.0 libpf C++ Reference Pages pfLightSource(3pf)hh

// Create and configure shadow frustum

shadFrust = new pfFrustum;

shadFrust->makeSimple(60.0f);

shadFrust->setNearFar(1.0f, 100.0f);

// Create and configure shadow casting light sources

shad0 = new pfLightSource;

shad0->setMode(PFLS_SHADOW_ENABLE, 1);

shad0->setAttr(PFLS_PROJ_FRUST, shadFrust);

shad0->setColor(PFLT_DIFFUSE, 1.0f, 0.0f, 0.0f);

shad0->setVal(PFLS_INTENSITY, .5f);

shad1 = new pfLightSource;

shad1->setMode(PFLS_SHADOW_ENABLE, 1);

shad1->setAttr(PFLS_PROJ_FRUST, shadFrust);

shad1->setColor(PFLT_DIFFUSE, 0.0f, 0.0f, 1.0f);

shad1->setVal(PFLS_INTENSITY, .5f);

// Set DCSes to move lights around

shadDCS0 = new pfDCS;

shadDCS0->addChild(shad0);

scene->addChild(shadDCS0);

shadDCS1 = new pfDCS;

shadDCS1->addChild(shad1);

scene->addChild(shadDCS1);

// Enable global ambient

chan->setTravMode(PFTRAV_MULTIPASS, PFMPASS_GLOBAL_AMBIENT);

// Set ambient intensity to .1

esky->setColor(PFES_CLEAR, r, g, b, .1f);

chan->setESky(esky);

NOTES
To respect the limited number of active light sources allowed by graphics library implementations, IRIS
Performer supports at most PF_MAX_LIGHTS active light sources.

If you want light sources to affect only portions of the scene, then set one or more pfLights on the pfGeo-
States which are attached to the pfGeoSets that you wish to illuminate (see pfGeoState::setAttr and
PFSTATE_LIGHTS for further details).

123

pfLightSource(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

Shadows are supported only by RealityEngine when using IRIS GL.

PROJTEX and SHADOW lighting on RealityEngine require local lighting for proper effects (-
pfLightModel::setLocal).

SHADOW lighting on RealityEngine requires the depth buffer to be configured with 32 bits (zbsize()).
Note that it is legal to have multisample buffers allocated in addition, the only requirement is that the
non-multisampled depth buffer be 32 bits. Also note that on RealityEngine, a 32-bit depth buffer requires
12-bit color.

On RealityEngine, shadows and projected textures are not clipped or properly computed behind the
pfLightSource. Instead, geometry behind the pfLightSource will be textured randomly. The only wor-
karound is to ensure that all geometry behind the pfLightSource is not visible to the pfChannel.

Local lighting results in improper shading of flat-shaded triangle and line strips (-
PFGS_FLAT_TRISTRIPS, PFGS_LINE_TRISTRIPS) which often manifests itself as "faceting" of planar
polygons. The only solution is either to use infinite lighting or not use FLAT primitives. Note that when
using the IRIS Performer triangle meshing routine, pfdMeshGSet, the construction of non-FLAT strips is
easily enforced with pfdMesherMode(PFDMESH_LOCAL_LIGHTING, 1).

SEE ALSO
pfChannel, pfNode, pfSCS, pfDCS, pfGeoSet, pfGeoState, pfLight, pfDelete

124

IRIS Performer 2.0 libpf C++ Reference Pages pfMorph(3pf)hh

NAME
pfMorph − Create, modify, and query a pfMorph node.

FUNCTION SPECIFICATION
#include <Performer/pf/pfMorph.h>

pfMorph::pfMorph();

static pfType * pfMorph::getClassType(void);

int pfMorph::setAttr(int index, int floatsPerElt, int nelts, void *dst, int nsrcs, float *alist[],
ushort *ilist[], int nlist[]);

int pfMorph::setWeights(int index, float *weights);

int pfMorph::getWeights(int index, float *weights);

int pfMorph::getNumAttrs(void);

int pfMorph::getSrc(int index, int src, float **alist, ushort **ilist, int *nlist);

int pfMorph::getNumSrcs(int index);

void * pfMorph::getDst(int index);

void pfMorph::evaluate(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfMorph is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfMorph. This is also true for
ancestor classes of class pfGroup.

int pfGroup::addChild(pfNode *child);
int pfGroup::insertChild(int index, pfNode *child);
int pfGroup::replaceChild(pfNode *old, pfNode *new);
int pfGroup::removeChild(pfNode* child);
int pfGroup::searchChild(pfNode* child);
pfNode * pfGroup::getChild(int index);
int pfGroup::getNumChildren(void);
int pfGroup::bufferAddChild(pfNode *child);
int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfMorph can also
be used with these functions designed for objects of class pfNode.

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);

125

pfMorph(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);
const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);
pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfMorph can also
be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfMorph can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();

126

IRIS Performer 2.0 libpf C++ Reference Pages pfMorph(3pf)hh

int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfMorph node does not define geometry; rather, it manipulates geometric attributes of pfGeoSets and
other geometric primitives. While pfMorph is very general, its primary use is for geometric morphing
where the colors, normals, texture coordinates and coordinates of geometry are smoothly changed over
time to simulate actions such as facial and skeletal animation, ocean waves, continuous level-of-detail,
and advanced special effects. In these situations, the rigid body transformations provided by matrices do
not suffice - instead, efficient per-vertex manipulations are required.

A pfMorph consists of one or more "sources" and a single "destination" which together are termed an
"attribute". Both sources and destination are arrays of "elements" where each element consists of 1 or
more floating point numbers, e.g., an array of pfVec3 coordinates. The pfMorph node produces the desti-
nation by computing a weighted sum of the sources. By varying the source weights and using the morph
destination as a pfGeoSet attribute array, the application can achieve smooth, geometric animation. A
pfMorph can "morph" multiple attributes.

new pfMorph creates and returns a handle to a pfMorph. Like other pfNodes, pfMorphs are always allo-
cated from shared memory and cannot be created statically, on the stack or in arrays. pfMorphs should
be deleted using pfDelete rather than the delete operator.

pfMorph::getClassType returns the pfType* for the class pfMorph. The pfType* returned by
pfMorph::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfMorph. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfMorph::setAttr configures the indexth attribute of the pfMorph. floatsPerElt specifies how many float-
ing point numbers comprise a single attribute element. For example, when morphing pfGeoSet coordinate
and texture coordinate arrays (PFGS_COORD3, PFGS_TEXCOORD2), floatsPerElt would be 3 and 2
respectively. nelts specifies how many attribute elements are in the destination array. If the required
number of pfGeoSet coordinates is 33, then nelts would be 33, not 33 * 3 = 99. dst is a pointer to the desti-
nation array which should be at least of size floatsPerElt * nelts * sizeof(float). If dst is NULL, then the
pfMorph will automatically create and use a pfCycleBuffer of appropriate size. (pfCycleBuffers are use-
ful when IRIS Performer is configured to multiprocess.)

There are 2 distinct methods of accessing the source arrays of a pfMorph attribute: non-indexed and
indexed. Indexing provides a means of efficiently applying sparse changes to the destination array. The

127

pfMorph(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

nsrcs argument to pfMorph::setAttr specifies how many source arrays are provided in alist, i.e., alist[i] is
the i’th source and is treated as an array of elements where each element consists of floatsPerElt floating
point numbers. Index arrays and their lengths are provided in ilist and nlist respectively. If ilist is NULL
then all sources are non-indexed. If ilist is non-NULL, it contains a list of index lists corresponding to the
source lists in alist. If nlist is NULL, then the index lists are assumed to be nelts long and if non-NULL, the
length of each index list is specified in nlist. ilist may contain NULL pointers to mix indexed and non-
indexed source arrays.

All source arrays referenced in alist and ilist are reference counted by pfMorph::setAttr.

pfMorph::setWeights specifies the source weights of the indexth attribute of the pfMorph in the array
weights. weights should consist of nsrcs floating point numbers where nsrcs is the number of attribute
sources specified in pfMorph::setAttr. If index is < 0, then weights is used for all attributes of the pfMorph.
pfMorph::getWeights copies the weights of the indexth attribute of the pfMorph into weights. weights
should be an array of at least nsrcs floats.

A pfMorph node is evaluated, i.e., its destination array is computed, during the APP traversal which is
triggered directly by the application through pfAppFrame (see pfAppFrame) or indirectly by pfSync.
Alternately, the pfMorph node may be explicitly evaluated by calling the function pfMorph::evaluate. In
all cases, destination elements are computed as in the following pseudocode:

zero destination array;

for (s=0; s<nsrcs; s++)

{

if (ilist == NULL || ilist[s] == NULL)

{

/* Source is non-indexed */

for (i=0; i<nelts; i++)

for (e=0; e<floatsPerElt; e++)

dst[i][e] += weights[s] * alist[s][i][e];

}

else

{

/* Source is indexed */

int nindex;

if (nlist == NULL)

nindex = nelts;

else

nindex = nlist[s];

128

IRIS Performer 2.0 libpf C++ Reference Pages pfMorph(3pf)hh

for (i=0; i<nindex; i++)

for (e=0; e<floatsPerElt; e++)

dst[ilist[s][i]][e] += weights[s] * alist[s][i][e];

}

}

Note that the actual implementation is much more efficient than above, particularly for the special
weights of 0 and 1.

Since pfMorph is a pfGroup, it is guaranteed to be evaluated before its children in the APP traversal. The
pfMorph is only evaluated by the APP traversal when its weights change.

pfMorph::getNumAttrs returns the number of the pfMorph’s attributes.

pfMorph::getSrc returns the srcth source parameters of the indexth attribute of the pfMorph. The source
attribute array and index array pointers are copied into alist and ilist respectively. The size of the srcth
index array is copied into nlist and the number of floats per element is returned by pfMorph::getSrc.

pfMorph::getNumSrcs returns the number of sources of the indexth attribute of the pfMorph.

pfMorph::getDst returns the indexth destination array of morph. The destination array is either that pro-
vided earlier by pfMorph::setAttr or the pfCycleBuffer automatically created when NULL was passed as
the dst argument to pfMorph::setAttr.

SEE ALSO
pfAppFrame, pfCycleBuffer, pfGroup, pfDelete, pfNode

129

pfNode(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfNode − Set and get pfNode parents and bounding spheres.

FUNCTION SPECIFICATION
#include <Performer/pf/pfNode.h>

static pfType * pfNode::getClassType(void);

pfGroup * pfNode::getParent(int i);

int pfNode::getNumParents(void);

void pfNode::setBound(pfSphere *bsph, int mode);

int pfNode::getBound(pfSphere *bsph);

pfNode* pfNode::clone(int mode);

pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);

int pfNode::flatten(int mode);

int pfNode::setName(const char *name);

const char * pfNode::getName(void);

pfNode* pfNode::find(const char *pathName, pfType *type);

pfNode* pfNode::lookup(const char *name, pfType* type);

int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);

void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);

uint pfNode::getTravMask(int which);

void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

void pfNode::setTravData(int which, void *data);

void * pfNode::getTravData(int which);

which identifies the traversal: PFTRAV_ISECT, PFTRAV_APP, PFTRAV_CULL or PFTRAV_DRAW,
denoting the intersection, application,

DESCRIPTION
A pfNode is an abstract type. IRIS Performer does not provide any means to explicitly create a pfNode.
Rather, the pfNode routines operate on the common aspects of other IRIS Performer node types.

The complete list of IRIS Performer nodes (all derived from pfNode) is:

130

IRIS Performer 2.0 libpf C++ Reference Pages pfNode(3pf)hh

pfLightPoint

pfText

pfGeode

pfBillboard

pfLightSource

pfGroup

pfSCS

pfDCS

pfPartition

pfScene

pfSwitch

pfLOD

pfSequence

pfLayer

Any IRIS Performer node is implicitly a pfNode, and a pointer to any of the above nodes may be used
wherever a pfNode* is required as an argument.

The various pfNode types have certain common properties such as a set of parents, a name, an intersec-
tion mask, bounding geometry, callback functions and callback data.

pfNode::getClassType returns the pfType* for the class pfNode. The pfType* returned by
pfNode::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfNode. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfNode::getNumParents returns the number of parents the pfNode has in the scene graph. A node may
have multiple parents because it was explicitly added to multiple parents with pfGroup::addChild. In
such cases it said to be ’instanced’. Also, leaf geometry nodes such as pfGeodes, pfLightPoints, and
pfBillboards, may have multiple parents as a result of a pfNode::clone. pfNode::getParent returns the ith
parent of the pfNode or NULL if i is out of the range 0 to pfNode::getNumParents - 1.

pfNode::setBound sets the bounding volume of the pfNode. Each pfNode has an associated bounding
volume used for culling and intersection testing and a bounding mode, either static or dynamic. By
definition, the bounding volume of a node encloses all the geometry parented by node, which means that
the node and all its children fit within the node’s bounding volume.

131

pfNode(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

Only a subset of the pfNode types actually contain geometry. These are known as "leaf nodes" in IRIS
Performer. They are:

pfBillboard
pfGeode
pfLightPoint

These and other nodes may indirectly contain geometry through user-supplied function callbacks set by
pfNode::setTravFuncs.

Normally IRIS Performer automatically computes bounding volumes but provides routines to explicitly
set bounding volumes. This is useful for pfNodes which draw custom geometry through node callbacks
(pfNode::setTravFuncs).

The bsph argument to pfNode::setBound is the bounding sphere of the pfNode. If the bsph is NULL, IRIS
Performer will compute the bounding sphere of the pfNode.

The mode argument to pfNode::setBound specifies whether or not the bounding volume for the pfNode
should be recomputed when an attribute of the pfNode changes or something in the scene graph below
the pfNode changes (if the pfNode is a pfGroup). If the mode is PFBOUND_STATIC, IRIS Performer
will not modify the bound once it is set or computed. If the mode is PFBOUND_DYNAMIC, IRIS Per-
former will recompute the bound after children are added or deleted or after the matrix in a pfDCS
changes. Changes in pfSwitches, pfLODs and pfSequences do not affect bounds above them in the scene
graph.

pfNode::getBound returns the current bounding mode and copies into bsph a pfSphere which encloses
the pfNode and its children The return value is the bounding mode which is either
PFBOUND_DYNAMIC or PFBOUND_STATIC indicating whether or not the bounding volume is
updated automatically when its children change.

IRIS Performer supports two methods of node instancing. The first method is to simply add a node to
more than one parent using pfGroup::addChild or pfGroup::replaceChild (see pfGroup). In this case
the graph rooted by the instanced node is shared by all its parents. This type of instancing is called shared
instancing.

pfNode::clone provides instancing which shares geometry but not variable state like transformations
(pfDCS) and switches (pfSwitch). pfNode::clone copies the entire scene graph from the pfNode down to,
but not including, leaf geometry nodes such as pfGeodes, pfBillboards and pfLightPoints. These leaf
nodes are instanced by reference in the cloned scene graph. pfNode::clone returns the root pfNode of the
cloned graph or NULL to indicate error. This type of instancing is called common geometry instancing. An
attempt to clone a leaf geometry node simply returns the handle to that node.

Cloning is recommended for instances of dynamic and articulated models. For example: Shared instances
of a model with pfDCSes in its hierarchy will share the pfDCSes as well as the geometry. This means that

132

IRIS Performer 2.0 libpf C++ Reference Pages pfNode(3pf)hh

all instances will have the exact same articulation. However, a common geometry instance will share
only geometry and as a result of the cloning process will have its own pfDCSes allowing manipulation
independently of any other instances. This example creates a cloned instance:

if ((clone = carModel->clone(0)) != NULL)

carDCS_3->addChild(clone);

The mode argument to pfNode::clone is reserved for future extensions and must be 0 in this release of
IRIS Performer.

When cloning, if the global copy function (pfObject::setCopyFunc) is NULL, user data pointers (-
pfObject::setUserData) are copied to each new node and the reference counts of pfMemory-derived user
data are incremented. If pfObject::setCopyFunc is not NULL, it will be invoked with the destination and
source nodes as arguments. It is then the responsibility of the copy function to handle the copy of user
data.

pfNode::bufferClone is identical to pfNode::clone but allows cloning across pfBuffers. buf identifies the
pfBuffer which containsthe pfNode and its subtree. The clone of the pfNode and its subtree is placed in
the current buffer set by pfBuffer::select. See the pfBuffer man page for more details.

pfNode::flatten is a database pre-processing step which ’flattens’ the transformation hierarchy of the
scene graph rooted by the pfNode. Coordinates and normals contained in leaf geometry nodes such as
pfGeodes, pfBillboards and pfLightPoints are transformed by any inherited static transformations
(pfSCS). pfNode::flatten automatically clones any pfNode or pfGeoSet that is multiply referenced.
Specifically, if the pfNode has multiple parents, node and its entire subtree will be cloned. If a pfDCS is
encountered, pfNode::flatten inserts a pfSCS in between the pfDCS and its parent.

Flattening can substantially improve performance, especially when pfSCSes are being used to instance a
relatively small amount of geometry since the cost of the transformation approaches the cost of drawing
the geometry. However, it can also increase the size of the database since it copies instanced nodes and
geometry. Flattening is highly recommended for pfBillboards. Flattening also increases the ability of IRIS
Performer to sort the database by mode (see pfChannel::setBinSort), often a major performance enhance-
ment, since sorting does not cross transformation boundaries.

pfNode::flatten does not remove pfSCSes from the hierarchy; instead it sets their transformations to the
identity matrix. For improved traversal performance, these flattened pfSCS nodes should be removed
from the hierarchy.

The mode argument to pfFlatten is currently ignored and should be 0.

All IRIS Performer database nodes may be assigned a character string name. Individual node names need
not be unique but to access a node with a non-unique name, an unambiguous pathname to the node must

133

pfNode(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

be given. The pathname doesn’t need to be a full path. All that’s required is enough to distinguish the
node from others with the same name.

pfNode::setName sets the name of the pfNode to the string name. If the name is unique a 1 will be
returned and if the name is not unique, a 0 will be returned. Node names are kept in a global table which
is used for resolving the first path component of a path name by pfNode::lookup. In this case, unambigu-
ous resolution is only possible if the first path component is unique. pfNode::getName returns the name
of the node or NULL if the name has not been set.

pfNode::find is a general search routine for finding named pfNodes. pfNode::find begins searching for
the node of type type and identified by a ’/’-separated path name pathName. The search begins at the
pfNode and uses a depth-first traversal. pfNode::find returns NULL if it cannot find the node. Note that
the type checking performed by pfNode::find is equivalent to pfMemory::isOfType, not
pfMemory::isExactType, e.g. searching for a pfGroup includes derived classes such as pfSwitch.

The string pathName can be either a name or a ’/’-separated pathname. If the name contains no ’/’ charac-
ters, it is assumed to be unique and the global name table is searched. If pathName contains ’/’ characters,
it is assumed to be a path. Paths are searched by first finding the node corresponding to the first com-
ponent of the path in a global name table. The find routine then traverses the subtree rooted at that node,
searching for the rest of the path. The first node encountered during the search traversal which matches
pathName is returned.

Example 1:

pfNode *newhouse, *newdoor;

pfDCS *door;

/* Create "house" model with named subparts including "door" */

/* Create a new instance of "house" */

newhouse = house->clone(0);

/* Give cloned house a new name */

newhouse->setName("newhouse");

/* Find the door part of the new house */

door = (pfDCS*) newhouse->find("door", pfDCS::getClassType());

pfNode::isect intersects a group of line segments with a scene or portion thereof. The intersection opera-
tion traverses the scene graph, testing a group of segments against bounding geometry and eventually
model geometry within pfGeoSets.

134

IRIS Performer 2.0 libpf C++ Reference Pages pfNode(3pf)hh

pfNode::isect returns the number of segments which intersected something. hits is an empty array sup-
plied by the user through which results are returned. The array must have an entry for each segment in
segSet. Upon return, hits[i][0] is a pfHit* which gives the intersection result for the ith segment in segSet.
The pfHit objects come from an internally maintained pool and are reused on subsequent requests.
Hence, the contents are only valid until the next invocation of pfGSetIsectSegs in the current process.
They should not be freed by the application.

segSet is a pfSegSet structure specifying the intersection request. In the structure, segs is an array of line
segments to be intersected against the pfGeoSet. activeMask is a bit vector specifying which segments in
the pfSegSet are to be active for the current request. If bit[i] of the activeMask is set to 1, it indicates the
corresponding segment in the segs array is active.

The bit vector mode specifies the behavior of the intersection operation and is a bitwise OR of the follow-
ing:

PFTRAV_IS_PRIM
Intersect with quads or triangle geometry.

PFTRAV_IS_GSET
Intersect with pfGeoSet bounding boxes.

PFTRAV_IS_GEODE
Intersect with pfGeode bounding sphere.

PFTRAV_IS_NORM
Return normals in the pfHit structure.

PFTRAV_IS_CULL_BACK
Ignore back-facing polygons.

PFTRAV_IS_CULL_FRONT
Ignore front-facing polygons.

PFTRAV_IS_PATH
Retain traversal path information.

PFTRAV_IS_NO_PART
Do not use partitions for intersections.

For several types of pfGroups, the traversal of children can be controlled for the traversal.

For pfSwitches, the default is to traverse only the child or children specified by the current switch value.
This can be changed OR-ing one of the following into the mode argument.

PFTRAV_SW_ALL
Traverse all children of pfSwitches.

135

pfNode(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

PFTRAV_SW_NONE
Don’t traverse any children of pfSwitches.

For pfSequences, the default is to traverse only the current child in the sequence. This can be changed
OR-ing one of the following into the mode argument.

PFTRAV_SEQ_ALL
Intersect with all children of pfSequences.

PFTRAV_SEQ_NONE
Intersect with no children of pfSequences.

For pfLODs, the default is to traverse only the child that would be active at range 0. This can be changed
OR-ing one of the following into the mode argument. Also, see pfChannel::isect for child selection based
on range.

PFTRAV_LOD_ALL
Intersect with all children of pfLODs (default is range 0).

PFTRAV_LOD_NONE
Intersect with no children of pfLODs (default is range 0).

For pfLayers, the default is to traverse all children. This can be changed OR-ing one of the following into
the mode argument.

PFTRAV_LAYER_NONE
Intersect with no children of pfLayers (default is all).

PFTRAV_LAYER_BASE
Intersect with no children of pfLayers (default is all).

PFTRAV_LAYER_DECAL
Intersect with no children of pfLayers (default is all).

The bit fields PFTRAV_IS_PRIM, PFTRAV_IS_GSET, and PFTRAV_IS_GEODE indicate the level at
which intersections should be evaluated and discriminator callbacks, if any, invoked. If none of these
three fields are specified, no intersection testing is done.

In the pfSegSet, isectMask is another bit vector which directs the intersection traversal. At each stage of
the intersection operation, the mask is bit-wise AND-ed with the mask of the pfNode or pfGeoSet. If the
mask is non-zero the intersection continues with the next object, either a pfNode within a pfGroup or a
primitive within a pfGeoSet. The mask of a pfNode is set using pfNode::setTravMask and that of a
pfGeoSet by pfGeoSet::setIsectMask. The mask can be used to distinguish parts of the scene graph
which might respond differently to vision or collision. For example, as a wall would stop a truck but
shrubbery would not.

The bound field in a pfSegSet is an optional user-provided bounding volume around the set of segments.

136

IRIS Performer 2.0 libpf C++ Reference Pages pfNode(3pf)hh

Currently, the only supported volume is a cylinder. To use a bounding cylinder, perform a bitwise OR of
PFTRAV_IS_BCYL into the mode field of the pfSegSet and assign the pointer to the bounding volume to
the bound field.

pfCylinder::around will construct a cylinder around the segments. When a bounding volume is sup-
plied, the intersection traversal may use the cylinder to improve performance. The largest improvement
is for groups of at least several segments which are closely grouped segments. Placing a bounding
cylinder around small groups or widely dispersed segments can decrease performance.

The userData pointer allows an application to associate other data with the pfSegSet. Upon return and in
discriminator callbacks, the pfSegSet’s userData pointer can be obtained from the returned pfHit with
pfObject::getUserData.

discFunc is a user supplied callback function which provides a more powerful means for controlling inter-
sections than the simple mask test.

If discFunc is NULL, the default behavior clips the end of the segment after each successful intersection at
the finest resolution (pfGeode bounding volume , pfGeoSet bounding box, pfGeoSet geometry) specified
in mode. Thus, the segment is clipped by each successful intersection so that the intersection point nearest
the starting point of the segment is returned upon completion.

If a discriminator callback is specified, whenever an intersection occurs, the discFunc callback is invoked
with a pfHit structure containing information about the intersection. The discriminator may then return a
value which indicates whether and how the intersection should continue. The continuation selectors are
PFTRAV_CONT, PFTRAV_PRUNE, and PFTRAV_TERM.

PFTRAV_CONT
Indicates that the traversal should continue traversing the pfGeoSets beneath a pfGeode.
The discriminator function can examine information about candidate intersections and
judge their validity and control the continuation of the traversal with its return value.

PFTRAV_PRUNE
Indicates the traversal should return from the current level of the search and continue. If
returned on a pfGeoSet primitive or bounding box test, PFTRAV_PRUNE stops further
testing of the line segment against that pfGeoSet. If returned on the test against a pfGeode
bounding volume, the pfGeode is not traversed for that line segment.

PFTRAV_TERM
Indicates that the search should terminate for this segment of the pfSegSet. To have
PFTRAV_TERM or PFTRAV_PRUNE apply to all segments, PFTRAV_IS_ALL_SEGS can
be OR-ed into the discriminator return value. This causes the entire traversal to be ter-
minated or pruned.

The callback may OR other bitfields into the status return value:

137

pfNode(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

PFTRAV_IS_IGNORE
Indicates that the current intersection should be ignored, otherwise the intersection is taken
as valid.

PFTRAV_IS_CLIP_START
Indicates for pruned and continued traversals that before proceeding the segment should be
clipped to start at the current intersection point.

PFTRAV_IS_CLIP_END
Indicates for pruned and continued traversals that before proceeding the segment should be
clipped to end at the current intersection point.

If discFunc is NULL, the behavior is the same as if the discriminator returned PFTRAV_CONT |
PFTRAV_IS_CLIP_END, so that the intersection nearest the start of the segment will be returned.

In addition to the discriminator callback, pre- and post- intersection callbacks are available for each node.
These behave identically to the pre- and post-callbacks for the cull traversal and can be used to prune,
continue or terminate the traversal at any node.

Both pfNode::isect and the discriminator callback return information about an intersection in a pfHit
object which can be examined using the pfHit::query and pfHit::mQuery calls. The information includes
the intersection point, current matrix transformation, scene graph, and path. See the reference page for
pfHit for further details.

In multiprocess applications, pfNode::isect should be called from the APP process or from the ISECT
process (in the callback specified by pfIsectFunc). When called in the APP process, pfNode::isect should
be called after pfFrame and before pfSync for best system throughput.

pfNode::setTravMask sets the traversal masks of node which are used to control traversal during the
intersection, cull, and draw traversals. If the bitwise AND of the node’s mask for that traversal type and
the mask for the current traversal is zero, the traversal is disabled at that node. By default, the node
masks are all 1’s. Traverser masks are set by pfNode::isect/pfChanNodeIsectSegs for the intersection
traversal and pfChannel::setTravMask for the CULL and DRAW traversals. pfNode::getTravMask
returns the specified traversal mask for the node.

Bits in the setMode argument indicate whether the set operation should be carried out for just the specified
pfNode (PFTRAV_SELF), just its descendents (PFTRAV_DESCEND) or both itself and descendents.
The descendent traversal goes down into pfGeoSets.

The bitOp argument is one of PF_AND, PF_OR, or PF_SET and indicates whether the new mask should
be AND-ed with the old mask, OR-ed with the old mask or set outright, respectively.

Efficient intersections require that information be cached for each pfGeoSet to be intersected with. To
create this cache, PFTRAV_IS_CACHE should be OR-ed into the setMode when first setting the

138

IRIS Performer 2.0 libpf C++ Reference Pages pfNode(3pf)hh

intersection mask. Because of the computation involved, the cache is best created at setup time. Subse-
quent changes to the masks themselves do not require PFTRAV_IS_CACHE to be specified. However,
for dynamic objects whose geometry changes (e.g. pfGeoSets whose vertex arrays are being changed),
additional calls with the PFTRAV_IS_CACHE in setMode should be used to recompute the cached infor-
mation. PFTRAV_IS_UNCACHE can be OR-ed into the setMode to disable caching.
PFTRAV_IS_CACHE and PFTRAV_IS_UNCACHE can only be specified when which is
PFTRAV_ISECT.

pfNode::setTravFuncs specify the user supplied functions which are to be invoked during the traversal
indicated by which. For each traversal, there is a pre and post traversal callback. pre is invoked before node
and its children are processed while post is invoked after. The pre- and post- methodology supports save
and restore or push and pop programming constructs. Node callbacks are passed pointers to the user
supplied traversal data pointer for that node and a pfTraverser which defines the current traversal state.
pfNode::getTravFuncs copies the pfNode’s pre and post callbacks of traversal type which into pre and post
respectively.

The data argument to pfNode::setTravData is the pointer which is passed to the traversal callbacks indi-
cated by which. Both pre- and post-callbacks will be passed data in addition to a pfTraverser*. When mul-
tiprocessing, data should point to memory in a shared arena. pfNode::getTravData returns the current
data pointer for the specified traversal.

NOTES
When instanced geometry is flattened, the copy created by pfNode::flatten shares pfGeoSet attribute
arrays with the original when possible. This means that the newly flattened pfGeoSet may share some
arrays (e.g. color array), but not other arrays (e.g. the vertex array) with the original.

The post-cull callback is a good place to implement custom level-of-detail mechanisms.

Currently, nodes use spheres as the default bounding volume. This may change in a future release.
libpfutil contains sample code for computing the bounding box for a subgraph of the scene.

It’s an interesting fact that although a node’s bounding volume completely contains the geometry of the
nodes that it parents, it may well not completely contain the bounding volumes of those same nodes. Do
you understand when this situation would occur?

Finding a node by name can be expensive, particularly for path based searches. These functions are pri-
marily intended to get handles to nodes which are loaded from disk and should be used sparingly at
simulation time.

In Performer 2.0, pfNode::lookup replaces a number of functions from 1.2, e.g. pfLookupBboard. See the
scripts in /usr/share/Performer/src/tools for help in porting code.

139

pfNode(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

BUGS
If the graph under a node cloned by pfNode::clone contains an object instanced within the graph, (i.e. a
node having two or more parents within the graph), the new graph will contain multiple copies of the
instanced node rather than duplicating the connectivity of the original graph.

pfNode::flatten transforms the vertex arrays of non-instanced geometry in place. If a pfGeoSet belongs to
multiple pfGeodes or a vertex array is shared between pfGeoSets the array is still flattened in place.

It is not possible to get multiple intersection results per segment without a discriminator callback.

Bounding cylinders do not work when non-orthonormal transformations are present in the pfDCS and
pfSCS nodes of a scene graph.

The path returned by pfGetTravPath is valid only when invoked from a cull callback.

SEE ALSO
pfCylinder, pfGroup, pfHit, pfNode, pfBuffer, pfObject, pfChannel, pfGeoSet, pfBillboard, pfDCS,
pfFrame, pfGeode, pfIsectFunc, pfLightPoint, pfScene, pfSCS, pfSeg, pfGSetIsectSegs, pfSync, pfTraverser

140

IRIS Performer 2.0 libpf C++ Reference Pages pfPartition(3pf)hh

NAME
pfPartition − Create and update pfPartition spatial partitioning node.

FUNCTION SPECIFICATION
#include <Performer/pf/pfPartition.h>

pfPartition::pfPartition();

static pfType * pfPartition::getClassType(void);

void pfPartition::setVal(int which, float val);

float pfPartition::getVal(int which);

void pfPartition::setAttr(int which, void *attr);

void* pfPartition::getAttr(int which);

void pfPartition::build();

void pfPartition::update(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfPartition is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfPartition. This is also true for
ancestor classes of class pfGroup.

int pfGroup::addChild(pfNode *child);
int pfGroup::insertChild(int index, pfNode *child);
int pfGroup::replaceChild(pfNode *old, pfNode *new);
int pfGroup::removeChild(pfNode* child);
int pfGroup::searchChild(pfNode* child);
pfNode * pfGroup::getChild(int index);
int pfGroup::getNumChildren(void);
int pfGroup::bufferAddChild(pfNode *child);
int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfPartition can
also be used with these functions designed for objects of class pfNode.

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);

141

pfPartition(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);
const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);
pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfPartition can
also be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfPartition can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();

142

IRIS Performer 2.0 libpf C++ Reference Pages pfPartition(3pf)hh

void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfPartition is a type of pfGroup for organizing the subgraph of a scene into a static data structure
which is more efficient for intersection testing with pfNodeIsectSegs for some databases. pfPartition
does not affect culling performance nor does it improve intersection performance under transformation
nodes, pfSwitch nodes, pfMorph nodes or pfSequence nodes.

new pfPartition creates and returns a handle to a pfPartition. Like other pfNodes, pfPartitions are
always allocated from shared memory and cannot be created statically, on the stack or in arrays. pfParti-
tions should be deleted using pfDelete rather than the delete operator.

pfPartition::getClassType returns the pfType* for the class pfPartition. The pfType* returned by
pfPartition::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfPartition. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfPartition::build constructs a 2D spatial partitioning based on the type.

Within the confines of the parameters set by pfPartition::setAttr, IRIS Performer attempts to construct an
optimal partition based on the distribution of vertices within the pfGeoSets in the subgraph of the scene
rooted at the partition. Information about the selected partitioning is displayed when the pfNotifyLevel
is debug or higher. Because the search for the optimal partitioning is compute intensive, once the parti-
tioning has been determined for a particular database, the range of the search should be restricted using
pfPartition::setAttr.

pfPartition::update causes the scene graph under the partition to be traversed and any changes incor-
porated into the spatial partitioning. The partitioning itself does not change.

pfPartition::setAttr sets the partition attribute attr to the attribute attr. Partition attributes are:

PFPART_MIN_SPACING
attr points to a pfVec3 specifying the minimum spacing between partition dividers in each
dimension. If not specified, the default is 1/20th of the bounding box diagonal. When a
partition is built, a search is made between PFPART_MAX_SPACING and
PFPART_MIN_SPACING.

PFPART_MAX_SPACING
attr points to a pfVec3 specifying the maximum spacing between partition dividers in each
dimension. If not specified, the default is 1/10th of the bounding box diagonal. When a
partition is built, a search is made between PFPART_MAX_SPACING and
PFPART_MIN_SPACING.

143

pfPartition(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

PFPART_ORIGIN
attr points to a pfVec3 specifying an origin for the partition. If not specified, a search is
done to find an optimal origin.

pfPartition::getAttr returns the partition attribute attr.

pfPartition::setVal sets the partition value val to the value val. Partition values are:

PFPART_FINE
A value between 0.0 and 1.0 which indicates how fine of a partitioning should be con-
structed. The subdivision is limited by PFPART_MIN_SPACING adn
PFPART_MAX_SPACING. 1.0 causes extremely fine subdivision. 0.0 causes no subdivi-
sion. 0.5 is usually a good value and is the default.

pfPartition::getVal returns the partition value val.

A pfPartition behaves like a pfGroup when the mode in the pfSegSet used with pfNodeIsectSegs
includes PFTRAV_IS_NO_PART.

NOTES
pfPartitions are primarily useful for databases containing many axis-aligned objects for which bounding
spheres are a poor fit and when only one or two segments are made per call to pfNodeIsectSegs. For
example, terrain following on gridded terrain is likely to benefit. For databases such as this which them-
selves have a regular grid, it is also important for performance that the origin and spacing of the partition
align exactly the terrain grid. pfPartitions do not currently help with the problem pfGeoSets containing
too much geometry.

BUGS
The search for an optimal grid is very thorough so that it takes a very long time if the search domain is
large. Once a good partitioning for a database is determined, the PFPART_MIN_SPACING,
PFPART_MAX_SPACING and PFPART_ORIGIN can be set equal for much faster building.

Currently only partitionings in the XY plane are supported.

SEE ALSO
pfGroup, pfNode, pfNodeIsectSegs, pfNotifyLevel, pfScene

144

IRIS Performer 2.0 libpf C++ Reference Pages pfPath(3pf)hh

NAME
pfPath, pfCullPath − Create, modify, and maintain a node path.

FUNCTION SPECIFICATION
#include <Performer/pf/pfPath.h>

pfPath::pfPath();

static pfType * pfPath::getClassType(void);

int pfCullPath(pfPath *path, pfNode *node, int mode);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfPath is derived from the parent class pfList, so each of these member func-
tions of class pfList are also directly usable with objects of class pfPath. This is also true for ancestor
classes of class pfList.

void pfList::add(void* elt);
void pfList::combine(const pfList *a, const pfList *b);
int pfList::fastRemove(void* elt);
void pfList::fastRemoveIndex(int index);
void * pfList::get(int index);
const void ** pfList::getArray(void);
int pfList::getArrayLen(void);
int pfList::getEltSize(void);
int pfList::getNum(void);
void pfList::insert(int index, void* elt);
void pfList::move(int index, void *elt);
void pfList::setArrayLen(int len);
void pfList::setNum(int num);
int pfList::remove(void* elt);
void pfList::removeIndex(int index);
int pfList::replace(void* old, void* new);
void pfList::reset(void);
int pfList::search(void* elt);
void pfList::set(int index, void *elt);

Since the class pfList is itself derived from the parent class pfObject, objects of class pfPath can also be
used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);

145

pfPath(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfPath can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfPath is a dynamically-sized array of pointers. A pfPath consisting of pfNode pointers can define a
specific path or chain of nodes through a scene graph.

new pfPath creates and returns a handle to a pfPath. pfPaths are usually allocated from shared memory.
The path element size is sizeof(void*) and the initial number of elements in the path is 4. pfPaths can be
deleted using pfDelete.

pfPath::getClassType returns the pfType* for the class pfPath. The pfType* returned by
pfPath::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfPath. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfCullPath traverses and culls the chain of nodes specified in path, beginning at root. If path is NULL,
then root will be traversed in-order. If root is NULL, then the exact chain of nodes specified in path will be
traversed. If neither root nor path is NULL, then the paths traversed will be all paths emanating from root
which reach the first node in path and then continue down the nodes specified in path.

mode is a bitmask indicating which type of "switching" nodes (pfLOD, pfSequence, pfSwitch) to evaluate

146

IRIS Performer 2.0 libpf C++ Reference Pages pfPath(3pf)hh

and may be either:

PFPATH_IGNORE_SWITCHES
Do not evaluate any switches in the node path.

or else it is the bitwise OR of the following:

PFPATH_EVAL_LOD
Evaluate any pfLOD nodes in the node path.

PFPATH_EVAL_SEQUENCE
Evaluate any pfSequence nodes in the node path.

PFPATH_EVAL_SWITCH
Evaluate any pfSwitch nodes in the node path.

When an enabled switch node is encountered, traversal will terminate if the next node in the path is not
one selected by the switch. As a convenience, PFPATH_EVAL_SWITCHES is defined to enable all three
of these switchs (PFPATH_EVAL_LOD, PFPATH_EVAL_SWITCH, and PFPATH_EVAL_SEQUENCE).

Example 1: Path culling

scene

/ \ \

/ scs0 group0

\ / \

switch0 geode2

/ \

/ \

geode0 geode1

path = new pfPath;

path->add(switch0);

path->add(geode1);

:

/*

* In cull callback. This will cull the following paths:

*

* scene -> switch0 -> geode1

* scene -> scs0 -> switch0 -> geode1

*

* Note that both path traversals will terminate at switch0

* if the pfSwitch’s switch value is not 1.

147

pfPath(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

*/

pfCullPath(path, scene, PFPATH_EVAL_SWITCHES);

pfCullPath should only be called in the cull callback function set by pfChannel::setTravFunc. The
pfChannel passed to the cull callback will be used to traverse the path, that is its LOD attributes will affect
the pfLODs traversed and nodes will be culled to its viewing frustum.

SEE ALSO
pfChannel, pfCull, pfList

148

IRIS Performer 2.0 libpf C++ Reference Pages pfPipe(3pf)hh

NAME
pfPipe − Initialize and get window information for a pfPipe.

FUNCTION SPECIFICATION
#include <Performer/pf/pfPipe.h>

void pfPipe::getSize(int *xsize, int *ysize);

static pfType * pfPipe::getClassType(void);

void pfPipe::setScreen(int screen);

int pfPipe::getScreen(void);

int pfPipe::movePWin(pfPipeWindow *pwin);

pfPipeWindow * pfPipe::getPWin(int which);

void pfPipe::setSwapFunc(pfPipeSwapFuncType func);

pfPipeSwapFuncType pfPipe::getSwapFunc(void);

int pfPipe::getNumPWins(void);

int pfPipe::getNumChans(void);

pfChannel * pfPipe::getChan(int which);

/* pfPipe-specific types */

typedef void (*pfPipeFuncType)(pfPipe *p);

typedef void (*pfPipeSwapFuncType)(pfPipe *p, pfPipeWindow *pw);

DESCRIPTION
A pfPipe is a software rendering pipeline which renders one or more pfChannels into one or more pfPi-
peWindows. A pfPipe can be configured as multiple processes for increased throughput on multiproces-
sor systems. Multiple pfPipes can operate in parallel in support of platforms with multiple graphics pipe-
lines. The number of pfPipes and the multiprocessing mode used are set by pfMultipipe and
pfMultiprocess respectively (see pfConfig).

A pfPipe references one or more pfPipeWindows which in turn reference one or more pfChannels. A
pfChannel is simply a view of a scene which is rendered into a viewport of a pfPipeWindow. A pfPi-
peWindow is a graphics window managed by its parent pfPipe.

pfPipes, pfPipeWindows, and pfChannels form a hierarchy with the following rules:

149

pfPipe(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

1. A screen (i.e. hardware graphics display) can have multiple pfPipes but should only have
one drawing to it

2. A pfPipe may only draw to one screen

3. A pfPipe may render to multiple pfPipeWindows

4. A pfPipeWindow belongs to a single fixed pfPipe and thus also to a single fixed screen

5. A pfPipeWindow may have multiple pfChannels

6. A pfChannel always belongs to a pfPipe but may change pfPipeWindows or might not
belong to any pfPipeWindow. a channel not assigned to a pfPipeWindow is culled but not
drawn.

The following is an example pfPipe->pfPipeWindow->pfChannel configuration.

Example 1:

The screen:

hardware screen/graphics pipeline

+---+

| pfPipe |
| |
| pfPipeWindow1 |
| +----------------+ |
	pfChannel2			
pfPipeWindow0				
+--------------------+				
			-----------+	
	pfChannel0	blank		

	pfChannel1			
+--------------------+				

150

IRIS Performer 2.0 libpf C++ Reference Pages pfPipe(3pf)hh

| |
+---+

The hierarchy:

screen0

|
|

pfPipe0 ---------------------+

/ \ |
/ \ |
/ \ |

pfPipeWindow0 pfPipeWindow1 |
/ \ \ |
/ \ \ |

pfChannel0 pfChannel1 pfChannel2 pfChannel3

(not drawn)

The code: (in application process)

/* Calls that create the hierarchy: */

pfPipe *pipe = pfGetPipe(0);

pfPipeWindow *pwin0 = new pfPipeWindow(pipe);

pfPipeWindow *pwin1 = new pfPipeWindow(pipe);

pfChannel *chan0 = new pfChannel(pipe);

pfChannel *chan1 = new pfChannel(pipe);

pfChannel *chan2 = new pfChannel(pipe);

pwin0->addChan(chan0);

pwin0->addChan(chan1);

pwin1->addChan(chan2);

/* Calls that cause the window to be opened at next pfFrame() */

pwin0->open();

pwin1->open();

pfFrame();

If a pfPipe has no windows at the time pfFrame is called, a full screen pfPipeWindow will be opened for

151

pfPipe(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

pipe and all pfChannels of pipe will be assigned to that pfPipeWindow.

pfPipe::getClassType returns the pfType* for the class pfPipe. The pfType* returned by
pfPipe::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfPipe. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfPipe::setScreen specifies the hardware screen, screen, (graphics pipeline) used for rendering by the
pfPipe, the pfPipe. The screen of the pfPipe may be specified in the application process before the call to
open or configure any pfPipeWindows (pfPipeWindow::open, pfPipeWindow::config) on the pfPipe, or
may be specified implicitly by the screen of the first opened pfPipeWindow. A pfPipe is tied to a specific
hardware pipeline and the screen of a pfPipe cannot be changed once determined. For single pipe opera-
tion, if the screen of a pfPipe or pfPipeWindow is never explicitly set in single pipe configuration, the
screen will be taken from the default screen of the current pfWSConnection, or current X Display. For
multipipe operation, if the screen of a pfPipe or pfPipeWindow is never explicitly set and pfMultipipe()
has been used to configure multiple pfPipes, then pfPipes will automatically be assigned to hardware
screens in order, i.e., pfGetPipe(0) -> screen 0, pfGetPipe(1) -> screen 1, etc. If a custom mapping of
pfPipes to screens is desired, the screens of all pfPipes must be specified before the configuration of the
first pfPipe which will happen at the first call to pfFrame. See the pfGetCurWSConnection reference
page for more details on how to manage X display connections.

pfPipe::setWSConnectionName allows you to specify both a window server target and screen for the
pfPipe. This is useful for doing remote rendering, or for running on a system with multiple window
servers. This call should be made in the application process, before the first call to pfFrame.
pfPipe::getWSConnectionName will return the current window server target name. A window server
target specified on a pfPipe will take precedence over any such targets specified on pfPipeWindows of
that pfPipe. If the window server target of a pfPipe has not been set, it may be implicitly set from the first
such setting on a child pfPipeWindow. The window server target of a pfPipe may not be changed after
the first call to pfFrame. See the pfGetCurWSConnection reference page for more details on how to
manage X display connections.

pfPipe::getScreen can be used to get the screen of a pfPipe. A return value of (-1) indicates that the
screen of the pfPipe is undefined. pfPipe::getSize returns the size of the screen used by the pfPipe.

For best performance only one pfPipe should render to a given hardware pipeline. If multiple views on a
single screen are desired, use multiple pfChannels, and if necessary, multiple pfPipeWindows.

Normally a pfPipe swaps the color buffers at the end of each frame. However, if special control is needed
over buffer swapping, pfPipe::setSwapFunc will register func as the buffer swapping function for the
pfPipe. Instead of swapping buffers, func will be called and will be expected to swap the color buffers of
the provided pfPipeWindow. pfPipe::getSwapFunc returns the buffer swapping function of the pfPipe
or NULL if none is set.

152

IRIS Performer 2.0 libpf C++ Reference Pages pfPipe(3pf)hh

If you wish to frame lock multiple pfPipes so that each pfPipe swaps its color buffers at the same time,
then you should create a channel group consisting of one or more pfChannels on each pfPipe and make
sure PFCHAN_SWAPBUFFERS is shared. In addition, separate hardware graphics pipelines *must* be
genlocked for proper frame-locking.

pfPipe::getPWin returns the pointer to the pfPipeWindow at the location specified by which in the pfPi-
peWindow list on the pfPipe.

pfPipe::getNumPWins returns the number of pfPipeWindows that have been created on the pfPipe.
pfPipe::getNumChans returns the number of pfChannels that have been created on the pfPipe.

pfPipe::movePWin moves the specified pfPipeWindow pwin to the location specified by where in the pfPi-
peWindow list on the pfPipe. The move includes removing pwin from its current location by moving up
the elements in the list that follow it and then inserting pwin into its new location. If pwin is attached to
the pfPipe, (-1) is returned and pwin is not inserted into the list. Otherwise, where is returned to indicate
success. where must be within the range [0 .. n] where n is the number returned by
pfPipe::getNumPWins(), or else (-1) is returned and no move is executed.

pfPipe::getChan returns the pointer to the pfChannel at location which in the list of pfChannels on the
pfPipe.

Example 2: How to frame lock pfPipes

leftChan = new pfChannel(pfGetPipe(0));

rightChan = new pfChannel(pfGetPipe(1));

/* BPFCHAN_SWAPBUFFERS is shared by default */

leftChan->attach(rightChan);

/* Pipe 0 and pipe 1 are now frame-locked */

NOTES
pfPipes cannot be deleted.

SEE ALSO
pfChannel, pfConfig, pfMultipipe, pfMultiprocess, pfPipeWindow, pfGetCurWSConnection

153

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfPipeWindow, pfInitGfx − Initialize and manipulate pfPipeWindows within a pfPipe

FUNCTION SPECIFICATION
#include <Performer/pf/pfPipeWindow.h>

pfPipeWindow::pfPipeWindow();

static pfType* pfPipeWindow::getClassType(void);

void pfPipeWindow::setAspect(int x, int y);

void pfPipeWindow::setConfigFunc(pfPWinFuncType func);

void pfPipeWindow::setFBConfig(XVisualInfo* vi);

void pfPipeWindow::setFBConfigAttrs(int *attr);

void pfPipeWindow::setFBConfigData(void *data);

void pfPipeWindow::setFBConfigId(int id);

void pfPipeWindow::setFullScreen(void);

void pfPipeWindow::setGLCxt(pfGLContext gc);

void pfPipeWindow::setIndex(int index);

void pfPipeWindow::setMode(int mode, int val);

void pfPipeWindow::setName(const char *name);

void pfPipeWindow::setOrigin(int xo, int yo);

void pfPipeWindow::setOriginSize(int xo, int yo, int xs, int ys);

void pfPipeWindow::setOverlayWin(pfWindow *ow);

void pfPipeWindow::setScreen(int screen);

void pfPipeWindow::setShare(int mode);

void pfPipeWindow::setSize(int xs, int ys);

void pfPipeWindow::setStatsWin(pfWindow *sw);

void pfPipeWindow::setWSConnectionName(const char *name);

void pfPipeWindow::setWSDrawable(pfWSConnection dsp, pfWSDrawable gxw);

void pfPipeWindow::setWSWindow(pfWSConnection dsp, pfWSWindow wsw);

void pfPipeWindow::setWinList(pfList *wlist);

void pfPipeWindow::setWinType(uint type);

154

IRIS Performer 2.0 libpf C++ Reference Pages pfPipeWindow(3pf)hh

void pfPipeWindow::getAspect(int *x, int *y);

pfChannel* pfPipeWindow::getChan(int which);

int pfPipeWindow::getChanIndex(pfChannel *chan);

pfPWinFuncType
pfPipeWindow::getConfigFunc(void);

void pfPipeWindow::getCurOriginSize(int *xo, int *yo, int *xs, int *ys);

void pfPipeWindow::getCurScreenOriginSize(int *xo, int *yo, int *xs, int *ys);

pfState* pfPipeWindow::getCurState(void);

pfWSDrawable
pfPipeWindow::getCurWSDrawable(void);

XVisualInfo* pfPipeWindow::getFBConfig(void);

int* pfPipeWindow::getFBConfigAttrs(void);

void* pfPipeWindow::getFBConfigData(void);

int pfPipeWindow::getFBConfigId(void);

pfGLContext pfPipeWindow::getGLCxt(void);

int pfPipeWindow::getIndex(void);

int pfPipeWindow::getMode(int mode);

const char* pfPipeWindow::getName(void);

int pfPipeWindow::getNumChans(void);

void pfPipeWindow::getOrigin(int *xo, int *yo);

pfWindow* pfPipeWindow::getOverlayWin(void);

pfPipe* pfPipeWindow::getPipe(void);

int pfPipeWindow::getPipeIndex(void);

int pfPipeWindow::getScreen(void);

pfWindow* pfPipeWindow::getSelect(void);

uint pfPipeWindow::getShare(void);

void pfPipeWindow::getSize(int *xs, int *ys);

pfWindow* pfPipeWindow::getStatsWin(void);

const char * pfPipeWindow::getWSConnectionName(void);

155

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

pfWSDrawable
pfPipeWindow::getWSDrawable(void);

Window pfPipeWindow::getWSWindow(void);

pfList* pfPipeWindow::getWinList(void);

uint pfPipeWindow::getWinType(void);

int pfPipeWindow::attach(pfPipeWindow *pw);

int pfPipeWindow::attachWin(pfWindow *w);

int pfPipeWindow::detach(pfPipeWindow *pw);

int pfPipeWindow::detachWin(pfWindow *w);

pfFBConfig pfPipeWindow::chooseFBConfig(pfWSConnection dsp, int screen, int *attr);

void pfPipeWindow::close(void);

void pfPipeWindow::closeGL(void);

void pfPipeWindow::config(void);

int pfPipeWindow::isOpen(void);

int pfPipeWindow::mQuery(int *which, int *dst);

void pfPipeWindow::open(void);

int pfPipeWindow::query(int which, int *dst);

pfWindow* pfPipeWindow::select(void);

void pfPipeWindow::swapBuffers(void);

void pfPipeWindow::addChan(pfChannel *chan);

void pfPipeWindow::insertChan(int where, pfChannel *chan);

void pfPipeWindow::moveChan(int where, pfChannel *chan);

void pfPipeWindow::removeChan(pfChannel *chan);

extern void pfInitGfx(void);

/* pfPipeWindow-specific types */

typedef void (*pfPWinFuncType)(pfPipeWindow *pw);

/* X-Window system based Performer types */

typedef Display *pfWSConnection;

typedef XVisualInfo pfFBConfig;

typedef Window pfWSWindow;

typedef Drawable pfWSDrawable;

156

IRIS Performer 2.0 libpf C++ Reference Pages pfPipeWindow(3pf)hh

#ifdef IRISGL

typedef int pfGLContext;

#else /* OPENGL */

typedef GLXContext pfGLContext;

#endif

PARENT CLASS FUNCTIONS
The IRIS Performer class pfPipeWindow is derived from the parent class pfObject, so each of these
member functions of class pfObject are also directly usable with objects of class pfPipeWindow. This is
also true for ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfPipeWindow
can also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

PARAMETERS
pwin identifies a pfPipeWindow.

dsp identifies a pfWSConnection.

157

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

wsw identifies a pfWSWindow.

gxw identifies a pfWSDrawable.

gc identifies a pfGLContext.

DESCRIPTION
IRIS Performer programs render a pfChannel to a pfPipeWindow of the same parent pfPipe. Multiple
pfPipeWindows can be open on a single pfPipe. A pfPipe and all of its windows have the same screen, or
hardware graphics pipeline. By default, pfChannels are assigned to the first pfPipeWindow of a pfPipe.
pfChannels can be removed from the pfPipeWindow and assigned to other pfPipeWindows. pfPipeWin-
dows can be opened/closed and created at any time. Refer to the pfPipe reference page for more infor-
mation on how pfPipeWindows fit into the hierarchy of pfPipes, pfPipeWindows, and pfChannels.

pfPipeWindows are similar to pfWindows but are tracked/maintained by libpf and are needed by libpf to
draw pfChannels. Because of their similarity, many of the pfPipeWindow routines are identical to pfWin-
dow routines accept for the fact that the pfPWin<*> routines operate on a pfPipeWindow and the
pfWin<*> routines operate on a pfWindow. These corresponding routines are listed in the table below
and their functionality is documented in the pfWindow reference page.

158

IRIS Performer 2.0 libpf C++ Reference Pages pfPipeWindow(3pf)hh

pfPipeWindow routine pfWindow routineiii
pfPWinAspect pfWinAspect
pfPWinFBConfig pfWinFBConfig
pfPWinFBConfigAttrs pfWinFBConfigAttrs
pfPWinFBConfigData pfWinFBConfigData
pfPWinFBConfigId pfWinFBConfigId
pfPWinFullScreen pfWinFullScreen
pfPWinGLCxt pfWinGLCxt
pfPWinIndex pfWinIndex
pfPWinMode pfWinMode
pfPWinName pfWinName
pfPWinOrigin pfWinOrigin
pfPWinOriginSize pfWinOriginSize
pfPWinOverlayWin pfWinOverlayWin
pfPWinScreen pfWinScreen
pfPWinShare pfWinShare
pfPWinSize pfWinSize
pfPWinStatsWin pfWinStatsWin
pfPWinWSConnectionName pfWinWSConnectionName
pfPWinWSDrawable pfWinWSDrawable
pfPWinWSWindow pfWinWSWindow
pfGetPWinAspect pfGetWinAspect
pfGetPWinCurOriginSize pfGetWinCurOriginSize
pfGetPWinCurScreenOriginSize pfGetWinCurScreenOriginSize
pfGetPWinCurState pfGetWinCurState
pfGetPWinCurWSDrawable pfGetWinCurWSDrawable
pfGetPWinFBConfig pfGetWinFBConfig
pfGetPWinFBConfigAttrs pfGetWinFBConfigAttrs
pfGetPWinFBConfigData pfGetWinFBConfigData
pfGetPWinFBConfigId pfGetWinFBConfigId
pfGetPWinGLCxt pfGetWinGLCxt
pfGetPWinIndex pfGetWinIndex
pfGetPWinList pfGetWinList
pfGetPWinMode pfGetWinMode
pfGetPWinName pfGetWinName
pfGetPWinOrigin pfGetWinOrigin
pfGetPWinOverlayWin pfGetWinOverlayWin
pfGetPWinScreen pfGetWinScreen
pfGetPWinSelect pfGetWinSelect
pfGetPWinShare pfGetWinShare
pfGetPWinSize pfGetWinSize

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

159

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

cc

pfPipeWindow routine pfWindow routineiii
pfGetPWinStatsWin pfGetWinStatsWin
pfGetPWinType pfGetWinType
pfGetPWinWSConnectionName pfGetWinWSConnectionName
pfGetPWinWSDrawable pfGetWinWSDrawable
pfGetPWinWSWindow pfGetWinWSWindow
pfChoosePWinFBConfig pfChooseWinFBConfig
pfAttachPWin pfAttachWin
pfSelectPWin pfSelectWin
pfSwapPWinBuffers pfSwapWinBuffers
pfIsPWinOpen pfIsWinOpen
pfQueryPWin pfQueryWin
pfMQueryPWin pfMQueryWinc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

pfPipeWindow::new creates and returns a handle to a pfPipeWindow on the screen managed by pipe.
Like other pfUpdatables, pfPipeWindows are always allocated from shared memory. new pfPipeWin-
dow creates and returns a handle to a pfPipeWindow. Like other pfUpdatables, pfPipeWindows are
always allocated from shared memory and cannot be created statically, on the stack or in arrays. The
pipe of a pfPipeWindow cannot be changed. pfGetPWinPipe returns a pointer to the pfPipe of pwin.
Like other pfObjects, pfPipeWindows must be created in the application process.

pfPipeWindow::getClassType returns the pfType* for the class pfPipeWindow. The pfType* returned
by pfPipeWindow::getClassType is the same as the pfType* returned by invoking the virtual function
getType on any instance of class pfPipeWindow. Because IRIS Performer allows subclassing of built-in
types, when decisions are made based on the type of an object, it is usually better to use the member
function isOfType to test if an object is of a type derived from a Performer type rather than to test for
strict equality of the pfType*’s.

pfWindow::setFBConfigId allows you to directly set the OpenGL X visual id to be used in configuring
the resulting OpenGL/X window. pfWindow::getFBConfigId will return the current OpenGL visual id
of the window (or -1 if the id is not known, or if running under IRIS GL). This routine is useful in mul-
tiprocess operation if you want to be able to directly specify the framebuffer configuration of an X win-
dow in the application process. See the XVisualIDFromVisual(3X11) and XGetVisualInfo(3X11) refer-
ence pages for more information about X visuals. This functionality is not supported under IRIS GL
operation.

pfPipeWindow::setscreen will set the screen of the pfPipeWindow and on the parent pfPipe. Once set,
the screen cannot be changed. If the screen of the parent pfPipe had already been set when the pfPi-
peWindow was created, the pfPipeWindow will inherit that screen setting and will not accept another.

160

IRIS Performer 2.0 libpf C++ Reference Pages pfPipeWindow(3pf)hh

The pfPipeWindow will direct all rendering comments to the hardware graphics pipeline specified by
screen. As with pfWindows, if a screen is never set, the default screen of the current window system con-
nection will be set as the screen when the window is opened with pfPipeWindow::open.
pfPipeWindow::getScreen will return the screen of the pfPipeWindow. If the screen has not yet been set,
(-1) will be returned. See the pfGetCurWSConnection reference page for more information on the
specification of a default screen. See the pfPipe::setScreen reference page for special restrictions and
proper specification of pfPipe and pfPipeWindow screens in multipipe configurations.

pfPipeWindow::setWSConnectionName allows you to specify the exact window server and default
screen for the successive opening of the window. This can be used for specifying remote displays or on
machines running more than one window server. pfPipeWindow::getWSConnectionName will return
the name specifying the current window server target. As with the setting of screens, a window server
target specified on a pfPipe will take precedence over a target set on a pfPipeWindow. If a window server
target is not specified for the parent pfPipe of a pfPipeWindow, the parent pfPipe will inherit the window
setting. Because of these restrictions, this routine must be called in the application process, before the
first call to pfFrame. See the pfPipe::setScreen reference page for special restrictions and proper
specification of pfPipe and pfPipeWindow screens in multipipe configurations.

pfPipeWindow::getIndex returns the index of the pfPipeWindow in the pfPipeWindow list of the parent
pfPipe.

pfChannels are assigned to a pfPipeWindow upon their creation. pfPipeWindows also have list-style API
for adding, removing, inserting, and reordering pfChannels on a pfPipeWindow:
pfPipeWindow::addChan will append chan as the last pfChannel of the pfPipeWindow.
pfPipeWindow::insertChan will insert chan as the whereth pfChannel of the pfPipeWindow.
pfPipeWindow::moveChan will move chan from its current position in the pfChannel list of the pfPi-
peWindow to position where. If chan does not belong to the pfPipeWindow, no action is taken and an
error flag of (-1) is returned; otherwise, where is returned. pfPipeWindow::removeChan will remove chan
from the pfPipeWindow. If chan does not belong to the pfPipeWindow, no action is done and an error
flag of (-1) is returned. Otherwise, the previous index of chan is returned. pfPipeWindow::getChan
returns a pointer to the indexth pfChannel of the pfPipeWindow. pfPipeWindow::getNumChans returns
the number of pfChannels attached to the pfPipeWindow. pfPipeWindow::getChanIndex returns the
index of the chan in the channel list, or (-1) if the pfChannel is not attached to the pfPipeWindow.

pfPipeWindow::close can be called from the application process to close a window. However, if addi-
tional draw process work is needed to be done, a pfPipeWindow::config draw process callback should be
used.

pfPipeWindow::config, called from the application process, will trigger the configuration callback func-
tion to be called in the draw process for the current frame. If no user configuration callback function has
been specified, a default configuration function will be called that will open and initialize the pfPipeWin-
dow. pfPipeWindow::setConfigFunc, called from the application process, specifies a draw process call-
back function, func, to configure the pfPipeWindow. The configure function can be used to make draw

161

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

process calls to open, initialize, and close pfPipeWindows. In this window configuration callback func-
tion pfPipeWindow::open can be called on the pfPipeWindow, or an IRIS GL or OpenGL window can be
created and assigned to the pfPipeWindow. pfGetPWinConfigFunc returns the pointer to the user-
specified window configuration callback function, or NULL of no such function has been set.

pfPipeWindow::open will cause the pfPipeWindow to be opened and initialized via pfInitGfx. If called
from the application process, the pfPipeWindow will be automatically opened in the draw process for the
corresponding frame. If called in the draw process, the pfPipeWindow will be opened automatically.
Similarly, pfPipeWindow::close and pfPipeWindow::closeGL can be called from either the application
process or the draw process and will cause the the pfPipeWindow or the graphics context, respectively, to
be closed in the draw process for the given frame. If application specific work needs to be done in the
draw process for manipulating pfPipeWindows, pfPipeWindow::config should be used.

IRIS Performer automatically calls pfInitGfx for windows that it creates and opens. For pfPipeWindows,
pfInitGfx does the same operations as for pfWindows, and in addition, will apply a default material and
a default MODULATE texture environment (pfTexEnv::apply), and enable backface culling (pfCullFace(-
PFCF_BACK)).

pfPipeWindow::setWinList can be used to specify a pfList of pfWindows, wlist, that can draw into a sin-
gle pfPipeWindow. This enables a pfPipeWindow to maintain a list of alternate framebuffer
configurations for the base pfPipeWindow. A pfPipeWindow always maintains a default main graphics
pfWindow and a pfWindow list. Two of the windows in this list are so commonly needed that they have
special names and can be created automatically for the user: OVERLAY and STATS. The user can also
add his own pfWindows to the pfWindow list for additional configurations. This list may only hold
pfWindows, NOT pfPipeWindows. With window lists, we have an effective pfWindow hierarchy of:
screen->pfPipe->pfPipeWindow[graphics, stats, overlay, ...]->pfChannel(s). See the pfWinList reference
page for more information on these alternate framebuffer configuration windows.

pfPipeWindow::setIndex selects pfWindow index from the alternate configuration window list to be the
current pfWindow the pfPipeWindow shall render to. All the pfChannels attached to the pfPipeWindow
will automatically be drawn into this current pfWindow. See pfWindow::setIndex for more details of
this operation. pfPipeWindow::getIndex will return the current index of the pfPipeWindow.

pfPipeWindow::setWinType sets the type of a pfPipeWindow where type is an or-ed bitmask that may
contain the type constants listed below. pfPipeWindow::getWinType returns the type of a pfPipeWin-
dow. A change in the type of a pfPipeWindow takes effect upon the call to pfPipeWindow::open. The
type of an open pfPipeWindow cannot be changed. The pfWindow type attributes all start with
PFPWIN_TYPE_ and are:

PFPWIN_TYPE_X
has identical characteristics to the PFWIN_TYPE_X specification for pfWindows. See the
pfWindow::setType reference page for more information.

162

IRIS Performer 2.0 libpf C++ Reference Pages pfPipeWindow(3pf)hh

PFPWIN_TYPE_SHARE
Specifies that this window should be automatically attached to the first pfPipeWindow
on the parent pfPipe. See the pfWindow::attach reference page for more details.

PFPWIN_TYPE_STATS
has identical characteristics to the PFWIN_TYPE_STATS specification for pfWindows.
See the pfWindow::setType reference page for more information.

Note that the pfWindow type settings of PFWIN_TYPE_NOPORT and PFWIN_TYPE_OVERLAY are
not supported for pfPipeWindows. pfPipeWindow::getWinType will return the type of the pfPipeWin-
dow.

EXAMPLES
The following is an example of basic pfPipeWindow creation:

{ /* in the application process after pfConfig() */

pfPipeWindow *pw;

pw = new pfPipeWindow(pfGetPipe(0));

pw->setName("PipeWin");

pw->setOriginSize(0, 0, 500, 500);

pw->setWinType(PFPWIN_TYPE_X);

pw->open();

/* set off the draw process to open window */

pfFrame();

}

If special draw process operations are to be done with the opening of the window, a pfConfigPWin call-
back function should be used.

{

/* in the application process pfPipeWindow init callback */

pw->setConfigFunc(OpenPipeWin);

/* trigger the draw process to call the config callback

* for this frame

*/

pw->config();

}

/* in the draw process pfPipeWindow init callback */

void OpenPipeWin(pfPipeWindow *pw)

{

pw->open();

/* do other application specific draw process work,

* such as downloading scene textures, displaying

* welcome messages, etc.

163

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

*/

}

The following is an example that shows the creation of multiple pfPipeWindows for a single pfPipe and
the assignment of pfChannels to the different windows:

{

pfChannel *chan[MAX_CHANS];

pfPipeWindow *pwin[MAX_PWINS];

pfPipe *p = pfGetPipe(0);

for (int loop=0; loop < NumWins; loop++)

{

pfPipeWindow *pw;

char str[PF_MAXSTRING];

pwin[loop] = new pfPipeWindow(p);

sprintf(str, "IRIS Performer - Win %d", loop);

pwin[loop]->setName(str);

pwin[loop]->setOriginSize((loop&0x1)*315, ((loop&0x2)>>1)*340, 300, 300);

pwin[loop]->setConfigFunc(OpenPipeWin);

pwin[loop]->config();

}

/* Create and configure a pfChannel for each pfPipeWindow. */

for (int loop=0; loop < NumWins; loop++)

{

chan[loop] = new pfChannel(p);

pwin[loop]->addChan(chan[loop]);

}

/* set off the draw process */

pfFrame();

}

pfOpenPWin and pfClosePWin can both be called from the application process, or from the draw pro-
cess. The following example demonstrates using pfConfigPWin to close a pfPipeWindow:

{

/* in the application process specify a close config func */

pfPWinConfigFunc(pw,ClosePipeWin);

pfConfigPWin(pw);

164

IRIS Performer 2.0 libpf C++ Reference Pages pfPipeWindow(3pf)hh

}

/* in the draw process pfPipeWindow init callback */

void ClosePipeWin(pfPipeWindow *pw)

{

pfClosePWin(pw);

/* do other application specific draw process calls */

}

The following example demonstrates using pfConfigPWin to close a pfPipeWindow:

{

/* in the application process specify a close config func */

pw->setConfigFunc(ClosePipeWin);

pw->config();

}

/* in the draw process pfPipeWindow init callback */

void ClosePipeWin(pfPipeWindow *pw)

{

pw->close();

/* do other application specific draw process calls */

}

NOTES
pfPipeWindows handle the multiprocessing details of IRIS Performer applications for pfWindows. pfPi-
peWindows must be created in the application process. However, with some minor exceptions, pfPi-
peWindows may be configured, opened, closed, and edited in either the application process or draw pro-
cess. Typically, a pfPipeWindow is created and configured in the application process. Custom graphics
state is initialized in a pfPipeWindow::setConfigFunc callback function. The pfPipeWindow of a channel
or a channel’s position in a pfPipeWindow list may only be modified in the application process. The
specification of the current drawing window with pfPipeWindow::select must be done in the drawing
process. Explicit specification of the pfGLContext or pfFBConfig must be done in the drawing process.
pfPipeWindow queries are also best done in the draw process as the query may have to access the graph-
ics context to provide the requested information.

165

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

The following table shows from which process pfPipeWindow routines may be called.
pfPipeWindow routine Application Process Draw Processii

pfNewPWin Yes No
pfPWinAspect Yes Yes
pfPWinConfigFunc Yes No
pfPWinFBConfig Yes No
pfPWinFBConfigAttrs Yes Yes
pfPWinFBConfigData No Yes
pfPWinFBConfigId Yes Yes
pfPWinFullScreen Yes Yes
pfPWinGLCxt No Yes
pfPWinIndex Yes Yes
pfPWinList Yes Yes
pfPWinMode Yes Yes
pfPWinName Yes Yes
pfPWinOrigin Yes Yes
pfPWinOriginSize Yes Yes
pfPWinOverlayWin Yes Yes
pfPWinScreen Yes Yes
pfPWinShare Yes Yes
pfPWinSize Yes Yes
pfPWinStatsWin Yes Yes
pfPWinType Yes Yes
pfPWinWSConnectionName Yes No
pfPWinWSDrawable Yes Yes
pfPWinWSWindow Yes Yescc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

166

IRIS Performer 2.0 libpf C++ Reference Pages pfPipeWindow(3pf)hh

pfPipeWindow routine Application Process Draw Processii
pfAttachPWin Yes Yes
pfClosePWin Yes Yes
pfClosePWinGL Yes Yes
pfConfigPWin Yes Yes
pfOpenPWin Yes Yes
pfIsPWinOpen Yes Yes
pfMQueryPWin No Yes
pfQueryPWin No Yes
pfChoosePWinFBConfig No Yes
pfSelectPWin No Yes
pfSwapPWinBuffers No Yes
pfGetNumChans Yes Yes
pfAddChan Yes No
pfGetChan Yes Yes
pfInsertChan Yes No
pfMoveChan Yes No
pfRemoveChan Yes Noc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Note that whenever any pfObjects are given to a pfPipeWindow, such as pfPipeWindow::setWinList, the
data must be valid for access by the graphics process. This data, such as pfLists and pfWindows, should
always be allocated from shared memory. Structures provided by X, such as that returned by
pfPipeWindow::chooseFBConfig, or pfChooseFBConfig, will not have been allocated in shared memory.
Therefore, those routines must be called from the draw process. Under OpenGL operation,
pfWindow::setFBConfigId can be used to set the framebuffer configuration of an X window in the appli-
cation proceess.

pfPipeWindows support windows in the multiprocessed libpf environment and are the glue between
pfChannels and pfPipes. There are times when you might want to use pfWindows, instead of pfPipeWin-
dows, even in a libpf application. For example, popping up a simple dialog window in the draw process
should use pfWindows and not pfPipeWindows. Additionally, if you want to maintain alternate win-
dows with different visual (framebuffer) configurations for your pfPipeWindow, you use pfWindows
that are alternate framebuffer configurations for the base pfPipeWindow. The PFWIN_STATS_WIN,
PFWIN_OVERLAY_WIN, and other pfPWinList windows must themselves be pfWindows and not pfPi-
peWindows. See the pfPWinList routine below and the pfWindow man page for more information.

BUGS
pfPipeWindows cannot be deleted.

167

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

SEE ALSO
pfChannel, pfPipe, pfWindow, pfGetCurWSConnection, XGetVisualInfo, XVisualIDFromVisual

168

IRIS Performer 2.0 libpf C++ Reference Pages pfSCS(3pf)hh

NAME
pfSCS − Create and get matrix for a static coordinate system node.

FUNCTION SPECIFICATION
#include <Performer/pf/pfSCS.h>

pfSCS::pfSCS(pfMatrix mat);

static pfType * pfSCS::getClassType(void);

void pfSCS::getMat(pfMatrix &mat);

const pfMatrix*
pfSCS::getMatPtr(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfSCS is derived from the parent class pfGroup, so each of these member func-
tions of class pfGroup are also directly usable with objects of class pfSCS. This is also true for ancestor
classes of class pfGroup.

int pfGroup::addChild(pfNode *child);
int pfGroup::insertChild(int index, pfNode *child);
int pfGroup::replaceChild(pfNode *old, pfNode *new);
int pfGroup::removeChild(pfNode* child);
int pfGroup::searchChild(pfNode* child);
pfNode * pfGroup::getChild(int index);
int pfGroup::getNumChildren(void);
int pfGroup::bufferAddChild(pfNode *child);
int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfSCS can also be
used with these functions designed for objects of class pfNode.

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);
const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);

169

pfSCS(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfSCS can also be
used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfSCS can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfSCS node represents a static coordinate system -- a modeling transform that cannot be changed once
created. pfSCS nodes are similar to but less flexible than pfDCS nodes. What they lack in changeability
they make up in performance.

new pfSCS creates and returns a handle to a pfSCS. Like other pfNodes, pfSCSes are always allocated

170

IRIS Performer 2.0 libpf C++ Reference Pages pfSCS(3pf)hh

from shared memory and cannot be created statically, on the stack or in arrays. pfSCSes should be
deleted using pfDelete rather than the delete operator.

new pfSCS creates a pfSCS using mat as the transformation matrix.

By default a pfSCS uses a dynamic bounding volume so it is automatically updated when children are
added, deleted or changed. This behavior may be changed using pfNode::setBound. The bound for a
pfSCS encompasses all B(i)*mat, where B(i) is the bound for the child ’i’ and mat is the transformation
matrix of the pfSCS.

pfSCS::getClassType returns the pfType* for the class pfSCS. The pfType* returned by
pfSCS::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfSCS. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

The transformation of a pfSCS affects all its children. As the hierarchy is traversed from top to bottom,
each new matrix is pre-multiplied to create the new transformation. For example, if SCSb is below SCSa
in the scene graph, any geometry G below SCSa is transformed as G*SCSb*SCSa.

Static transformations represented by pfSCSes may be ’flattened’ in a pre-processing step for improved
intersection, culling, and drawing performance. pfNode::flatten accumulates transformations in a scene
graph, applies them to geometry, and sets flattened pfSCSes to the identity matrix. Flattening is recom-
mended when available memory and scene graph structure allow it. See pfNode for more details.

pfSCS::getMat copies the transformation matrix for the pfSCS into mat. For faster matrix access,
pfSCS::getMatPtr returns a const pointer to the pfSCS’s matrix.

Both pre and post CULL and DRAW callbacks attached to a pfSCS (pfNode::setTravFuncs) will be
affected by the transformation represented by the pfSCS, i.e. - the pfSCS matrix will already have been
applied to the matrix stack before the pre callback is called and will be popped only after the post callback
is called.

SEE ALSO
pfGroup, pfMatrix, pfNode, pfTraverser, pfDelete

171

pfScene(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfScene − Create a scene or root node, set and get scene pfGeoState or pfGeoState index.

FUNCTION SPECIFICATION
#include <Performer/pf/pfScene.h>

pfScene::pfScene();

static pfType * pfScene::getClassType(void);

void pfScene::setGState(pfGeoState *gstate);

pfGeoState * pfScene::getGState(void);

void pfScene::setGStateIndex(int index);

int pfScene::getGStateIndex(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfScene is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfScene. This is also true for
ancestor classes of class pfGroup.

int pfGroup::addChild(pfNode *child);
int pfGroup::insertChild(int index, pfNode *child);
int pfGroup::replaceChild(pfNode *old, pfNode *new);
int pfGroup::removeChild(pfNode* child);
int pfGroup::searchChild(pfNode* child);
pfNode * pfGroup::getChild(int index);
int pfGroup::getNumChildren(void);
int pfGroup::bufferAddChild(pfNode *child);
int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfScene can also be
used with these functions designed for objects of class pfNode.

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);

172

IRIS Performer 2.0 libpf C++ Reference Pages pfScene(3pf)hh

const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);
pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfScene can also
be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfScene can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

173

pfScene(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

PARAMETERS
gstate identifies a pfGeoState.

DESCRIPTION
A pfScene is the root of a hierarchical database which may be drawn or intersected with. pfScene is
derived from pfGroup so it can use pfGroup and pfNode API. A pfScene may have children like a
pfGroup but it cannot be a child of another node. Its special purpose is to serve as the root node of a scene
graph.

new pfScene creates and returns a handle to a pfScene. Like other pfNodes, pfTexts are always allocated
from shared memory and cannot be created statically, on the stack or in arrays. pfScenes should be
deleted using pfDelete rather than the delete operator.

pfScene::getClassType returns the pfType* for the class pfScene. The pfType* returned by
pfScene::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfScene. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

IRIS Performer will automatically carry out the APP, CULL, and DRAW traversals on pfScenes which are
attached to pfChannels by pfChanScene. The CULL and DRAW traversals are directly or indirectly trig-
gered by pfFrame while the APP traversal is triggered by pfAppFrame.

Multiple pfChannels may reference the same pfScene but each pfChannel references only a single
pfScene.

pfScene::setGState attaches gstate to the pfScene. The pfGeoState of a pfScene defines the "global state"
which may be inherited by other pfGeoStates. This state inheritance mechanism is further described in the
pfGeoState man page.

The scene pfGeoState is defined as the global state by pfGeoState::load. This pfGeoState will be loaded
before the pfChannel DRAW callback (pfChannel::setTravFunc) is invoked so any custom rendering in
the callback will inherit the state set by the scene pfGeoState. pfScene::getGState returns the directly
referenced pfGeoState of the pfScene or the appropriate pfGeoState in the global table if the pfScene
indexes its pfGeoState or NULL if the index cannot be resolved.

The scene pfGeoState may be indexed through a global table by assigning an index with
pfScene::setGStateIndex and specifying the table with pfGeoState::applyTable. Usually this table is pro-
vided by the pfChannel (pfChannel::setGStateTable). pfScene::getGStateIndex returns the pfGeoState
index of the pfScene or -1 if the pfScene directly references its pfGeoState.

It is not necessary to provide a scene pfGeoState, but it is a convenient way to specify the default

174

IRIS Performer 2.0 libpf C++ Reference Pages pfScene(3pf)hh

inheritable values for all pfGeoState elements on a per-scene basis.

SEE ALSO
pfChannel, pfGeoState, pfGroup, pfDelete

175

pfSequence(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfSequence − Control animation sequence nodes.

FUNCTION SPECIFICATION
#include <Performer/pf/pfSequence.h>

pfSequence::pfSequence();

static pfType * pfSequence::getClassType(void);

void pfSequence::setTime(int frame, double time);

double pfSequence::getTime(int frame);

void pfSequence::setInterval(int mode, int begin, int end);

void pfSequence::getInterval(int *mode, int *begin, int *end);

void pfSequence::setDuration(float speed, int nReps);

void pfSequence::getDuration(float *speed, int *nReps);

void pfSequence::setMode(int mode);

int pfSequence::getMode(void);

int pfSequence::getFrame(int *repeat);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfSequence is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfSequence. This is also true for
ancestor classes of class pfGroup.

int pfGroup::addChild(pfNode *child);
int pfGroup::insertChild(int index, pfNode *child);
int pfGroup::replaceChild(pfNode *old, pfNode *new);
int pfGroup::removeChild(pfNode* child);
int pfGroup::searchChild(pfNode* child);
pfNode * pfGroup::getChild(int index);
int pfGroup::getNumChildren(void);
int pfGroup::bufferAddChild(pfNode *child);
int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfSequence can
also be used with these functions designed for objects of class pfNode.

pfGroup * pfNode::getParent(int i);

176

IRIS Performer 2.0 libpf C++ Reference Pages pfSequence(3pf)hh

int pfNode::getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);
const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);
pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfSequence can
also be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfSequence can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();

177

pfSequence(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfSequence is a pfGroup that sequences through a range of its children, drawing each child for a certain
length of time. Its primary use is for animations, where a sequence of objects or geometry (children)
represent a desired visual event. new pfSequence creates and returns a handle to a pfSequence. Like
other pfNodes, pfSequences are always allocated from shared memory and cannot be created statically,
on the stack or in arrays. pfSequences should be deleted using pfDelete rather than the delete operator.

pfSequence::getClassType returns the pfType* for the class pfSequence. The pfType* returned by
pfSequence::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfSequence. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

Children are added to a pfSequence using normal pfGroup API (pfGroup::addChild). The length of time
that a child is drawn is specified by pfSequence::setTime. frame is the index of a child that should be
drawn for time seconds. If frame < 0, then all children will be displayed for time seconds. If time = 0.0 or
time is not specified for a particular child, then it will not be drawn at all. If time < 0.0 the sequence will
pause at child frame and draw it repeatedly until the sequence is resumed or stopped (see
pfSequence::setMode below). pfSequence::getTime returns the time for frame frame.

pfSequence::setInterval specifies the interval or range of frames (children) to sequence. begin and end
specify the beginning and ending indexes of the pfSequence respectively. Indexes are inclusive and
should be in the range 0, numChildren - 1. An index < 0 is equivalent to numChildren - 1 for conveni-
ence. end may be less than begin for reverse sequences. The default sequence interval is 0, numChildren -
1.

mode specifies how seq is sequenced over the range from begin to end if it is a repeating sequence.

PFSEQ_CYCLE
seq will go from begin to end then restart at begin.

PFSEQ_SWING
seq will go back and forth from begin to end. The endpoint frames are drawn only once
when the swing changes directions.

The default mode is PFSEQ_CYCLE. pfSequence::getInterval copies the interval parameters into mode,
begin, and end.

178

IRIS Performer 2.0 libpf C++ Reference Pages pfSequence(3pf)hh

pfSequence::setDuration controls the duration of an sequence. speed divides the time that each sequence
frame is displayed. Values < 1.0 slow down the sequence while values > 1.0 speed up the sequence. The
default speed is 1.0. nReps is the number of times seq repeats before stopping. If nReps is < 0, seq will
sequence indefinitely and if == 0 the sequence is disabled. If nReps is > 1, seq will sequence for nReps
cycles or swings depending on the sequencing mode set by pfSequence::setInterval.

The number of repetitions for both PFSEQ_CYCLE and PFSEQ_SWING is increased by 1 every time an
endpoint of the sequence is reached. Therefore PFSEQ_CYCLE begins to repeat itself after 1 repetition
while PFSEQ_SWING repeats itself after 2 repetitions. Note that for 1 repetition, both modes are
equivalent.

The default value for nReps is 1. pfSequence::getDuration copies the duration parameters into speed and
nReps.

pfSequence::setMode controls the run-time execution of the pfSequence. mode is a symbolic token:

PFSEQ_START
Restarts the sequence from its beginning. Once started, a sequence may be stopped,
paused, or started again in which case it is restarted from its beginning.

PFSEQ_STOP
Stops the sequence. After an sequence is stopped, it is reset so that further executions of the
sequence begin from the starting index.

PFSEQ_PAUSE
Pauses the sequence without resetting it. When paused, the current child will be drawn
until the sequence is either stopped or resumed.

PFSEQ_RESUME
Resumes a paused sequence.

Sequences are evaluated once per frame by pfAppFrame. The time used in the evaluation is that set by
pfFrameTimeStamp. This time is automatically set by pfFrame but it may be overridden by the applica-
tion to account for varying latency due to non-constant frame rates.

pfSequence::getMode returns the mode of the pfSequence. The mode will automatically be set to
PFSEQ_STOP if the sequence completes the number of repetitions set by pfSequence::setDuration.

pfSequence::getFrame returns the index of the child which the pfSequence is currently drawing and also
copies the number of repetitions it has completed into repeat.

SEE ALSO
pfAppFrame, pfFrame, pfFrameTimeStamp, pfGroup, pfNode, pfDelete

179

pfSwitch(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

NAME
pfSwitch − Create, modify, and query a switch node.

FUNCTION SPECIFICATION
#include <Performer/pf/pfSwitch.h>

pfSwitch::pfSwitch();

static pfType * pfSwitch::getClassType(void);

int pfSwitch::setVal(int val);

int pfSwitch::getVal(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfSwitch is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfSwitch. This is also true for
ancestor classes of class pfGroup.

int pfGroup::addChild(pfNode *child);
int pfGroup::insertChild(int index, pfNode *child);
int pfGroup::replaceChild(pfNode *old, pfNode *new);
int pfGroup::removeChild(pfNode* child);
int pfGroup::searchChild(pfNode* child);
pfNode * pfGroup::getChild(int index);
int pfGroup::getNumChildren(void);
int pfGroup::bufferAddChild(pfNode *child);
int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfSwitch can also
be used with these functions designed for objects of class pfNode.

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);
const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);
pfNode* pfNode::lookup(const char *name, pfType* type);

180

IRIS Performer 2.0 libpf C++ Reference Pages pfSwitch(3pf)hh

int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfSwitch can also
be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfSwitch can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfSwitch is an interior node in the IRIS Performer node hierarchy that selects one, all, or none of its
children. It is derived from pfGroup so it can use pfGroup API to manipulate its child list.

new pfSwitch creates and returns a handle to a pfSwitch. Like other pfNodes, pfSwitches are always
allocated from shared memory and cannot be created statically, on the stack or in arrays. pfSwitches
should be deleted using pfDelete rather than the delete operator.

181

pfSwitch(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

pfSwitch::getClassType returns the pfType* for the class pfSwitch. The pfType* returned by
pfSwitch::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfSwitch. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfSwitch::setVal sets the switch value of the pfSwitch to val. val may be an integer ranging from 0 to N-1
with N being the number of children of the pfSwitch or it may be a symbolic token: PFSWITCH_ON or
PFSWITCH_OFF in which case all children or no children are selected. pfSwitch::getVal returns the
current switch value.

The validity of the switch value delayed until the switch is actually evaluated (usually by a traversal such
as CULL). For example, it is legal to set a switch value of 2 on a pfSwitch node with no children, provided
at least 2 children are added before the pfSwitch is evaluated.

NOTES
PF_ON and PF_OFF tokens will NOT work with pfSwitch::setVal.

SEE ALSO
pfGroup, pfNode, pfScene, pfDelete

182

IRIS Performer 2.0 libpf C++ Reference Pages pfText(3pf)hh

NAME
pfText − Create, modify, and query a 3D text node.

FUNCTION SPECIFICATION
#include <Performer/pf/pfText.h>

pfText::pfText();

static pfType * pfText::getClassType(void);

int pfText::addString(pfString* string);

int pfText::removeString(pfString* str);

int pfText::insertString(int index, pfString* str);

int pfText::replaceString(pfString* old, pfString* new);

pfString * pfText::getString(int index);

int pfText::getNumStrings(const pfString* string);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfText is derived from the parent class pfNode, so each of these member func-
tions of class pfNode are also directly usable with objects of class pfText. This is also true for ancestor
classes of class pfNode.

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);
pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);
int pfNode::setName(const char *name);
const char * pfNode::getName(void);
pfNode* pfNode::find(const char *pathName, pfType *type);
pfNode* pfNode::lookup(const char *name, pfType* type);
int pfNode::isect(pfSegSet *segSet, pfHit **hits[]);
void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);
uint pfNode::getTravMask(int which);
void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

183

pfText(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfText can also be
used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfText can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

PARAMETERS
string identifies a pfString.

DESCRIPTION
A pfText is analogous to a pfGeode. A pfText encapsulates pfStrings in a scene graph as a pfGeode
encapsulates pfGeoSets. A pfText is a leaf node in the IRIS Performer scene graph hierarchy and is
derived from pfNode so it can use pfNode API. A pfText is simply a list of pfStrings.

The bounding volume of a pfText is that which surrounds all its pfStrings. Unless the bounding volume
is considered static (see pfNode::setBound), IRIS Performer will compute a new volume when the list of
pfStrings is modified by pfText::addString, pfText::removeString, pfText::insertString or
pfText::replaceString. If the bounding box of a child pfString changes, call pfNode::setBound to tell IRIS
Performer to update the bounding volume of the pfText.

new pfText creates and returns a handle to a pfText. Like other pfNodes, pfTexts are always allocated
from shared memory and cannot be created statically, on the stack or in arrays. pfTexts should be deleted

184

IRIS Performer 2.0 libpf C++ Reference Pages pfText(3pf)hh

using pfDelete rather than the delete operator.

pfText::getClassType returns the pfType* for the class pfText. The pfType* returned by
pfText::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfText. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfText::addString appends str to the pfText’s pfString list. pfText::removeString removes str from the
list and shifts the list down over the vacant spot. For example, if str had index 0, then index 1 becomes
index 0, index 2 becomes index 1 and so on. pfText::removeString returns a 1 if str was actually removed
and 0 if it was not found in the list. pfText::addString and pfText::removeString will cause IRIS Per-
former to recompute new bounding volumes for the pfText unless it is configured to use static bounding
volumes.

pfText::insertString will insert str before the pfString with index index. index must be within the range 0
to pfText::getNumStrings(). pfText::replaceString replaces old with new and returns 1 if the operation
was successful or 0 if old was not found in the list. pfText::insertString and pfText::replaceString will
cause IRIS Performer to recompute new bounding volumes for the pfText unless it is configured to use
static bounding volumes.

pfText::getNumStrings returns the number of pfStrings in the pfText. pfText::getString returns a handle
to the pfString with index index or NULL if the index is out of range.

Here is a sample code snippet demonstrating how to use pfText, pfFont, and pfString to add 3D text to a
scene graph:

/* Initialize Performer and create pfScene "scene" */

/* Get shared memory arena */

arena = pfGetSharedArena();

/* Append standard directories to Performer search path, PFPATH */

pfFilePath(".:/usr/share/Performer/data");

/* Create 3D message and place in scene. */

text = new pfText;

scene->addChild(text);

if (pfFindFile("Times-Elfin.of", path, R_OK))

{

str = new pfString;

str->setMode(PFSTR_DRAWSTYLE, PFSTR_EXTRUDED);

185

pfText(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

str->setMode(PFSTR_JUSTIFY, PFSTR_MIDDLE);

str->setColor(1.0f, 0.0f, 0.8f, 1.0f);

str->setString("Welcome to IRIS Performer");

str->flatten();

text->addString(str);

}

else

{

pfNotify(PFNFY_WARN,PFNFY_PRINT,"Couldn’t find font file.");

exit(0);

}

SEE ALSO
pfGeoSet, pfNode, pfString, pfFont, pfDelete

186

IRIS Performer 2.0 libpf C++ Reference Pages pfTraverser(3pf)hh

NAME
pfTraverser, pfCullResult, pfGetCullResult, pfGetParentCullResult − Set and get traversal masks, call-
back functions and callback data, and get pfTraverser attributes.

FUNCTION SPECIFICATION
#include <Performer/pf/pfNode.h>

pfChannel * pfTraverser::getChan(void);

void pfTraverser::getMat(pfMatrix &mat);

pfNode * pfTraverser::getNode(void);

int pfTraverser::getIndex(void);

const pfPath * pfTraverser::getPath(void);

void pfCullResult(int result);

int pfGetCullResult(void);

int pfGetParentCullResult(void);

typedef int (*pfNodeTravFuncType)(pfTraverser *trav, void *userData);

PARAMETERS
which identifies the traversal: PFTRAV_ISECT, PFTRAV_APP, PFTRAV_CULL or PFTRAV_DRAW,

denoting the intersection, application, cull or draw traversals respectively.

DESCRIPTION
IRIS Performer provides four major traversals: intersection, application, cull, and draw that are often
abbreviated as ISECT, APP, CULL, and DRAW. A traversal is typically an in-order traversal of a
directed acyclic graph of pfNodes otherwise known as a subgraph. The actual traversal method,
traverser structure, and traversal initiation used depends on the traversal type as well as the multipro-
cessing mode as shown in the following table.

187

pfTraverser(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

Traversal Traverser Traversee Triggerii
PFTRAV_ISECT pfSegSet subgraph pfNode::isect(),

pfChanNodeIsectSegs
PFTRAV_APP pfTraverser pfScene pfApp()

CULL_DL_DRAW is set
PFTRAV_CULL pfChannel pfScene pfCull()
PFTRAV_DRAW pfChannel pfDispList pfDraw()

CULL_DL_DRAW is not set
PFTRAV_CULL pfChannel pfScene pfDraw()
PFTRAV_DRAW c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Typical traversal callback usage:

ISECT
Collision detection, terrain following, line of sight

APP Application-specific behavior, motors

CULL
Custom level-of-detail selection, culling

DRAW
Custom rendering

When PFMPCULL_DL_DRAW is not set in the multiprocessing mode argument to pfMultiprocess (and
the cull and draw stages are in the same process), then pfDraw simultaneously culls and draws the
pfScene attached to the pfChannel by pfChannel::setScene. Otherwise, pfCull culls and builds up a
pfDispList which is later rendered by pfDraw.

If the traversal CULL mask and node CULL mask AND to zero at a node, the CULL traversal disables
view culling and trivially accepts the node and all its descendents. Note that unlike other traversals, a
mask result of 0 does not prune the node.

If the traversal DRAW mask and node DRAW mask AND to zero at a node, the CULL traversal prunes
the node, so descendents are neither CULL-traversed nor drawn.

If the traversal APP mask and the node APP mask AND to zero, the APP traversal prunes the node and
its descendents.

If the ISECT masks AND to zero, the ISECT traversal prunes the node. The intersection mask is typically
used to control traversals of different types of objects, e.g. different bits may indicate ground, water, foli-
age, and buildings, so they may be intersected selectively. See (pfNode::setTravMask).

188

IRIS Performer 2.0 libpf C++ Reference Pages pfTraverser(3pf)hh

In many respects a traversal appears to the user as an atomic action. The user configures a traverser,
triggers it with the appropriate routine and awaits the results. Node callbacks are supported to provide
user extensibility and configuration into this scenario. They are user-supplied routines that are invoked
in the course of a traversal. Callbacks return a value which can control traversal on a coarse-grained
basis. In addition, draw callbacks can render custom geometry and cull callbacks can substitute custom
culling for the default IRIS Performer culling.

The pre- or post-callbacks for the cull and intersection traversals may return PFTRAV_CONT,
PFTRAV_PRUNE, PFTRAV_TERM to indicate that traversal should continue normally, skip this node
or terminate the traversal, respectively. PFTRAV_PRUNE is equivalent to PFTRAV_CONT for the
post-callback. Currently, the return value from the draw callbacks is ignored.

pfCullResult, pfGetCullResult, and pfGetParentCullResult can all be called in the pre-cull callback and
all but pfCullResult may be called in the post-cull callback. pfGetCullResult returns the result of the
cull for the node that the cull callback is associated with. pfGetParentCullResult returns the cull result
for the parent of the node that the cull callback is associated with. When called within the pre-cull call-
back, pfCullResult specifies the result of cull for the node that the pre-cull callback is associated with.
This essentially replaces default IRIS Performer cull processing with user-defined culling. result is a token
which specifies the result of the cull test and should be one of:

PFIS_FALSE
Node is entirely outside the viewing frustum and should be pruned.

PFIS_MAYBE | PFIS_TRUE
Node is partially inside the viewing frustum and the children of the node should be cull-
tested.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN
Node is totally inside the viewing frustum so all the children of the node should be trivially
accepted without further cull testing.

If pfCullResult is not called within the pre-cull callback, IRIS Performer will use its default geometric cul-
ling mechanism that compares node bounding volumes to the current culling frustum to determine if the
node may be within view.

In the post-cull callback pfGetCullResult will return the result of the cull set by pfCullResult or the
result of the default cull if pfCullResult was not called.

The evaluation order of the cull and draw traversal masks and callbacks is illustrated in the following
pseudo-code:

Example 1: Cull and draw traversal mask and callback evaluation order.

189

pfTraverser(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

/* Return if draw mask test fails */

if ((drawMask & nodeDrawMask) == 0)

return PFTRAV_CONT;

/* Call pre-cull callback */

if (preCull)

{

rtn = (*preCull)(traverser, cullData);

if (rtn == PFTRAV_PRUNE)

return PFTRAV_CONT;

else if (rtn == PFTRAV_TERM)

return PFTRAV_TERM;

}

/* Disable view culling if cull mask test fails */

if ((cullMask & nodeCullMask) == 0)

disableViewCulling();

/* Perform default culling if pfCullResult was not called */

if (!userCalledpfCullResultInThePreCullCallback)

cullResult = cullTest(node);

if (cullResult == PFIS_FALSE)

{

/* Call post-cull callback */

if (postCull)

{

rtn = (*postCull)(traverser, cullData);

if (rtn == PFTRAV_PRUNE)

return PFTRAV_CONT;

else if (rtn == PFTRAV_TERM)

return PFTRAV_TERM;

}

return PFTRAV_CONT;

}

else

/* Trivially accept node and all its children */

if (cullResult == PFIS_ALL_IN)

disableViewCulling();

/* Call pre-draw callback */

190

IRIS Performer 2.0 libpf C++ Reference Pages pfTraverser(3pf)hh

if (preDraw)

(*preDraw)(traverser, drawData);

evaluateNodeAndItsChildren();

/* Call post-draw callback */

if (postDraw)

(*postDraw)(traverser, drawData);

/* Call post-cull callback */

if (postCull)

{

rtn = (*postCull)(traverser, cullData);

if (rtn == PFTRAV_PRUNE)

return PFTRAV_CONT;

else

if (rtn == PFTRAV_TERM)

return PFTRAV_TERM;

}

return PFTRAV_CONT;

Example 2: Use of DRAW callbacks to save and restore state.

extern int

preDraw(pfTraverser *trav, void *data)

{

pfPushState();

pfEnable(PFEN_TEXGEN);

((pfTexGen*)data)->apply;

return PFTRAV_CONT;

}

extern int

postDraw(pfTraverser *trav, void *data)

{

pfPopState();

return PFTRAV_CONT;

}

191

pfTraverser(3pf) IRIS Performer 2.0 libpf C++ Reference Pageshh

/*

* Set up draw callbacks and user data to draw ’geode’ in

* EYE_LINEAR texgen mode.

*/

pfTexGen *tgen;

tgen = new pfTexGen(pfGetSharedArena());

tgen->setMode(PF_S, PFTG_EYE_LINEAR);

tgen->setMode(PF_T, PFTG_EYE_LINEAR);

geode->setTravFuncs(PFTRAV_DRAW, preDraw, postDraw);

geode->setTravData(PFTRAV_DRAW, tgen);

libpr graphics calls like pfTexGen::apply should be made in a DRAW callback only. Specifically, libpr
graphics calls made in a CULL callback are not legal and have undefined behavior.

The intersection, application, cull and draw callbacks are passed a pfTraverser which can be used to
query the channel, current transformation matrix and current node. pfTraverser::getChan returns the
current channel for the cull, and draw traversal. It returns the current channel for intersection traversals
initiated with pfChanNodeIsectSegs and NULL for intersection traversals initiated with pfNode::isect.

pfTraverser::getMat sets mat to the current transformation matrix, which is the concatenation of the
matrices from the root of the scene down to and including the current node. Since no transformation
hierarchy is retained in the draw process, in a draw callback, the current matrix should be queried using
the getmatrix or pfGetModelMat/pfGetViewMat routines.

pfTraverser::getNode returns the current node being traversed and pfTraverser::getIndex returns the
child index of the current node, i.e.- the index of the current node in its parent’s list of children.
pfTraverser::getPath returns a pointer to the list of nodes which defines the path from the scene graph
root to the current node.

NOTES
The post-cull callback is a good place to implement custom level-of-detail mechanisms.

BUGS
The path returned by pfGetTravPath is valid only when invoked from a cull callback.

192

IRIS Performer 2.0 libpf C++ Reference Pages pfTraverser(3pf)hh

SEE ALSO
pfGroup, pfClone, pfFrame, pfNode

193

libpr is a low-level library for
high-performance graphics
applications.

This library provides a wide range of
functions useful functions including
optimized rendering, graphics state
management, math functions, and
shared memory utilities.

libpr

Chapter 1

IRIS Performer 2.0 libpr C++ Reference Pages pfAlphaFunc(3pf)hh

NAME
pfAlphaFunc, pfGetAlphaFunc − Specify alpha function and reference value

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfAlphaFunc(float ref, int mode);

void pfGetAlphaFunc(float *ref, int *mode);

PARAMETERS
ref is a reference value with which to compare source alpha at each pixel. This value should be a float

in the range 0 through 1.

mode is a symbolic constant that specifies the conditional comparison that source alpha and ref must pass
for a pixel to be drawn.

DESCRIPTION
pfAlphaFunc sets the alpha function mode and reference value which affects all subsequent geometry.
mode is a symbolic constant that specifies the conditional comparison that source alpha and ref must pass
for a pixel to be drawn. For example:

if (source alpha mode ref)

draw the pixel

where the alpha value boolean function mode is be one of:
PFAF_ALWAYS
PFAF_EQUAL
PFAF_GEQUAL
PFAF_GREATER
PFAF_LEQUAL
PFAF_LESS
PFAF_NEVER
PFAF_NOTEQUAL
PFAF_OFF

If it was desired to only draw pixels whose alpha value was greater than or equal to 50% of the represent-
able range, then a mode of PFAF_GEQUAL and a ref of 0.5 would produce the hardware pixel rendering
conditional:

if (source alpha PFAF_GEQUAL 0.5)

draw the pixel

The the default mode is PFAF_OFF and default ref value is 0. The alpha function and reference value state
elements are identified by the PFSTATE_ALPHAFUNC and PFSTATE_ALPHAREF tokens respectively.
Use these tokens with pfGeoState::setMode and pfGeoState::getMode, to set the alpha function and

197

pfAlphaFunc(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

reference value of a pfGeoState and with pfOverride to override subsequent alpha function and reference
value changes.

Here is an example:

/*

* Setup pfGeoState so that only pixels whose alpha is > 40

* are drawn once the pfGeoState is applied with pfGeoState::apply.

*/

gstate->setMode(PFSTATE_ALPHAFUNC, PFAF_GREATER);

gstate->setVal(PFSTATE_ALPHAREF, (40.0f/255.0f));

/*

* Override alpha function. The alpha reference value can still

* be changed.

*/

pfOverride(PFSTATE_ALPHAFUNC, PF_ON);

/*

* All subsequent attempts to set alpha function will be ignored

* until pfOverride is called to unlock it.

*/

pfAlphaFunc is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfAlphaFunc will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDispList::draw.

pfGetAlphaFunc copies the current alpha function reference value and mode into ref and mode respec-
tively.

NOTES
pfAlphaFunc is typically used for textures with alpha that simulate trees and other complicated geometry
having many holes. See the IRIS GL afunction(3g) or OpenGL glAlphaFunc manual page for further
details.

SEE ALSO
afunction, glAlphaFunc, pfDispList, pfGeoState, pfState

198

IRIS Performer 2.0 libpr C++ Reference Pages pfAntialias(3pf)hh

NAME
pfAntialias, pfGetAntialias − Specify antialiasing mode

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfAntialias(int mode);

int pfGetAntialias(void);

PARAMETERS
mode is a symbolic constant and is one of:

PFAA_OFF Antialiasing will be disabled.

PFAA_ON Antialiasing will be enabled. The antialiasing mechanism used depends on
the machine type.

DESCRIPTION
pfAntialias sets the hardware antialiasing mode. Geometry drawn subsequent to calling pfAntialias will
be antialiased according to mode. The antialiasing mechanism used is machine-dependent: multisampling
on RealityEngine systems and non-multisampling on all others. In addition, if available, pfAntialias will
enable a special hardware mode that efficiently renders points using multisampled circles rather than
squares. See the IRIS GL multisample(3g) reference page and the SGIS_multisample section of the
OpenGL glIntro(3g) reference page for more detailed information on multisampled antialiasing.

If mode is PFAA_ON, then antialiasing will be enabled. On machines which do not support multisam-
pling, PFAA_ON will enable line and point antialiasing. Polygons will not be antialiased. In this case it is
recommended that pfAntialias be enabled only for points and lines since it may reduce the speed of
polygon rendering.

In pure IRIS GL windows (not GLX), the framebuffer will be reconfigured as needed and as possible to
support multisampling. Since pfAntialias may configure hardware buffers, it is best called at initializa-
tion time for performance reasons. On RealityEngine systems, multisample buffers are configured and
multisampling is enabled if the combination of Video Output Format and Raster Manager count support
multisampling. Specifically, pfAntialias will attempt to configure the IRIS GL window with 12 bit color
buffers, 8 subsamples, 24 bits of depth buffer, and 4 bits of stencil. If this is not available, 1 bit of stencil
will be used. Non-multisample buffers, configured by such IRIS GL calls as zbsize(3g) and stensize(3g)
are all deallocated. If the hardware configuration does not support 8 subsamples then pfAntialias will
attempt to acquire 4 subsamples.

If mode is PFAA_OFF, for pure IRIS GL windows, pfAntialias will deallocate all multisample buffers and
allocate non-multisample buffers accordingly: 12-bit color buffer, 32 bit depth buffer, 4 bit stencil buffer.

X windows cannot have their framebuffer resources reconfigured. X windows for both IRIS GL and
OpenGL are, by default, created with multisample buffers if they are available in the current hardware
configuration. The default configuration, if available will be 8 subsamples, 24 bits of depth buffer, and 4

199

pfAntialias(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

bits of stencil. If this is not available, 1 bit of stencil will be used, and then 4 subsamples will be allocated
if 8 are not still available. The exact framebuffer configuration of windows can be specified via
pfWindow::setFBConfigAttrs.

For X windows, if mode is PFAA_OFF, the antialiasing mode will be disabled but the buffers cannot be
deallocated and there might be associated framebuffer operations that are not truly disabled. Because of
this, the full performance benefit expected by turning off antialiasing may not be achieved.

The antialiasing mode state element is identified by the PFSTATE_ANTIALIAS token. Use this token
with pfGeoState::setMode to set the antialiasing mode of a pfGeoState and with pfOverride to override
subsequent antialiasing mode changes.

pfAntialias is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfAntialias will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDispList::draw.

pfGetAntialias returns the current antialiasing mode.

Example 1:

/* Set up ’antialiased’ pfGeoState */

gstate->setMode(PFSTATE_ANTIALIAS, PFAA_ON);

/* Attach gstate to gset */

gset->setGState(gstate);

/* Draw antialiased gset */

gset->draw();

Example 2:

/* Override antialiasing mode to PFAA_OFF */

pfAntialias(PFAA_OFF);

pfOverride(PFSTATE_ANTIALIAS, PF_ON);

NOTES
pfQueryFeature can be used to determined what features are available on the current hardware
configuration. pfQuerySys can be used to query the exact extent of hardware resources, such as number
of subsamples available for multisampling.

When using antialiasing without multisampling, blending is used which may conflict with other tran-
sparency modes. Specifically, all geometry will be blended which may cause artifacts and may

200

IRIS Performer 2.0 libpr C++ Reference Pages pfAntialias(3pf)hh

substantially reduce performance. For this reason pfAntialias should be used with discretion on all but
RealityEngine systems.

For pure IRIS GL windows, since pfAntialias may configure hardware buffers, it is best called at initiali-
zation time for performance reasons.

In the default framebuffer configurations, the 4 bit of stencil buffer is allocated to support depth complex-
ity fill statistics; see the pfStats reference man page for more information. 1 bit of stencil is required for
the support of high quality decals; see the pfDecal reference page for more information.

Not all machines support stencil planes and in these cases, stencil bits will not be allocated. Indy plat-
forms under IRIS GL operation do not support stencil. Additionally, the Extreme graphics platforms only
support stencil with reduced depth buffer resolution and so stencil will not be allocated by default.

Under OpenGL operation, if a window has been configured with multisample buffers, the state of pfAn-
tialias() is used internally to track whether or not multisampling is being done. This knowledge is used
for doing the fast TAG clear pfClear(), and for drawing multisampled points. IRIS Performer will not
detect a GL call made to enable or disable multisampling so if you do this you must return state to match
IRIS Performer’s internal state or the results will be undefined.

SEE ALSO
blendfunction, glBlendFunc, linesmooth, glHint(GL_LINE_SMOOTH_HINT), pntsmooth,
glHint(GL_POINT_SMOOTH_HINT), mssize, multisample, glIntro, pfQueryFeature, pfQuerySys, pfWin-
dow, pfChooseFBConfig, pfDispList, pfGeoState, pfOverride, pfState

201

pfBox(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfBox − Operate on axis-aligned bounding boxes

FUNCTION SPECIFICATION
#include <Performer/pr/pfGeoMath.h>

void* pfBox::operator new(size_t);

void* pfBox::operator new(size_t, void *arena);

pfBox::pfBox();

void pfBox::makeEmpty(void);

void pfBox::extendBy(const pfVec3 &pt);

void pfBox::extendBy(const pfBox *box);

void pfBox::around(const pfVec3 *pts, int npt);

void pfBox::around(const pfBox **boxes, int nbox);

void pfBox::around(const pfSphere **sphs, int nsph);

void pfBox::around(const pfCylinder **cyls, int ncyl);

int pfBox::contains(const pfVec3 &pt);

int pfBox::contains(const pfBox *box2);

int pfBox::isect(const pfSeg* seg, float* d1, float* d2);

void pfBox::xform(const pfBox *box, const pfMatrix &xform);

struct pfBox

{

pfVec3 min;

pfVec3 max;

};

DESCRIPTION
A pfBox is an axis-aligned box which can be used for intersection tests and for maintaining bounding
information about geometry. A box represents the axis-aligned hexahedral volume: (x, y, z) where min[0]
<= x <= max[0], min[1] <= y <= max[1] and min[2] <= z <= max[2]. pfBox is a public struct whose data
members min and max may be operated on directly.

The default constructor pfBox() is empty and does no initialization. new(arena) allocates a pfBox from
the specified memory arena, or from the heap if arena is NULL. new allocates a pfBox from the default
memory arena (see pfGetSharedArena). pfBoxes can also be created automatically on the stack or stati-
cally. pfBoxes allocated with new can be deleted with delete or pfDelete.

202

IRIS Performer 2.0 libpr C++ Reference Pages pfBox(3pf)hh

pfBox::makeEmpty sets the pfBox to appear empty to extend operations.

pfBox::extendBy extends the size of the pfBox to include the point pt.

pfBox::extendBy extends the size of the pfBox to include the box box.

The variations of the member function pfBox::around set the pfBox to be an axis-aligned box encompass-
ing the given primitives. npt, nbox, ncyls and nsph are the number of points, boxes, and spheres in the
respective primitive lists.

pfBox::contains(const pfVec3, ...) returns TRUE or FALSE depending on whether the point pt is in the
interior of the specified box.

The return value from pfBox::contains(const pfBox*, ...) is the OR of one or more bit fields. The returned
value may be:

PFIS_FALSE:
The intersection of the box argument and the box is empty.

PFIS_MAYBE:
The intersection of the box argument and the box might be non-empty.

PFIS_MAYBE | PFIS_TRUE:
The intersection of the box argument and the box is definitely non-empty.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN:
The box argument is non-empty and lies entirely inside the box.

pfBox::isect intersect the line segment seg with the volume of an axis-aligned pfBox. The possible return
values include all of the above as well as:

PFIS_FALSE:
seg lies entirely in the exterior.

PFIS_MAYBE | PFIS_TRUE | PFIS_START_IN:
The starting point of seg lies in the interior.

PFIS_MAYBE | PFIS_TRUE | PFIS_END_IN:
The ending point of seg lies in the interior.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN | PFIS_START_IN | PFIS_END_IN:
Both end points of seg lie in the interior.

If d1 and d2 are non-NULL, on return from pfBox::isect they contain the starting and ending positions of
the line segment (0 <= d1 <= d2 <= seg->length) intersected with the specified volume.

pfBox::xform sets the pfBox to a box which contains box as transformed by the matrix xform, i.e. a box
around (box * xform). Because transformed boxes must be axis-aligned, most rotations cause the box to

203

pfBox(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

grow, and the transformation is not reversed by the inverse rotation.

NOTES
The bit fields returned by the contains functions are structured so that bitwise AND-ing the results of
sequential tests can be used to compute composite results, e.g. testing exclusion against a number of half
spaces.

Because pfBoxes are axially aligned, they tend to grow when transformed. Hence, they are best for static
geometry or other cases in which the bounding geometry does not need to be transformed.

SEE ALSO
pfSeg, pfSphere

204

IRIS Performer 2.0 libpr C++ Reference Pages pfClear(3pf)hh

NAME
pfClear − Clear specified graphics buffers

FUNCTION SPECIFICATION
void pfClear(int which, const pfVec4 color);

PARAMETERS
which is a mask that specifies which buffers are to be cleared. which is a bitwise OR of:

PFCL_COLOR Clear color buffer to color.

PFCL_DEPTH Clear depth buffer to maximum value of our defined depth range.

PFCL_MSDEPTH Fast clear of the multisample depth buffer.

PFCL_STENCIL Clear stencil buffer to 0.

PFCL_DITHER Enable dithering during the color clear. By default, pfClear turns off dith-
ering for color clears.

color specifies the red, green, blue, and alpha components of the color buffer clear color. Each com-
ponent is defined in the range 0.0 to 1.0. If color is NULL then a black fully opaque color will be
used.

DESCRIPTION
pfClear clears the buffers specified by which in the current graphics window. The actual screen area
cleared depends on many GL state settings including viewport and screen or scissor mask (IRIS GL
scrmask or OpenGL glScissor), current draw buffer (front, back, left, right, overlay, etc.), and the
existence of a depth buffer for PFCL_DEPTH and stencil buffer for PFCL_STENCIL. See the IRIS GL
clear(3g) or OpenGL glClear(3g) reference page for more details.

If which includes PFCL_COLOR and color is NULL, then any selected color buffer will be cleared to black
fully opaque pixels using cpack(0xff000000) in IRIS GL and glColor4f(0,0,0,1) in OpenGL.

PFCL_MSDEPTH has effect only when multisampling (See pfAntialias). In this case, instead of writing
the maximum depth value into each individual pixel subsample, each pixel is "tagged" as having the max-
imum depth value. This clear is much faster than a full depth buffer clear; however, the color buffer is
not cleared so results from previous frames will be left in the color buffer if not redrawn. This requires
that each pixel in the viewport be covered by geometry. Often this is accomplished by drawing one or
more large background polygons (often textured) at the far clip plane to "clear" the framebuffer to an
interesting background rather than depth buffer and then incurring the additional cost of clearing draw-
ing background polygons. This requires that the background rendering disable depth buffer testing (e.g.
zfunction(ZF_ALWAYS) in IRIS GL or glDepthFunc(GL_ALWAYS) in OpenGL). Otherwise, a normal
depth buffer clear will be required if multisampling is not in use or not supported in the current frame-
buffer configuration. Note that the background drawing should leave depth buffering enabled so that it’s
depth values will be written.

The follow example shows how to clear all buffers with one pfClear call:

205

pfClear(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

/*

* Clear color buffer to black, depth buffer to the maximum depth value,

* and stencil buffer to 0.

*/

pfClear(PFCL_DEPTH | PFCL_COLOR | PFCL_STENCIL, NULL);

pfClear is a display-listable command. If a pfDispList has been opened by pfDispList::open, pfClear
will not have immediate effect but will be captured by the pfDispList and will only have effect when that
pfDispList is later drawn with pfDispList::draw.

NOTES
PFCL_MSDEPTH is only available on RealityEngine systems, and then only in the multisample antialias-
ing mode. For performance reasons, the depth buffer for the entire window rather than just the current
viewport is cleared with OpenGL on Indy, i.e. scissoring is disabled. Also, Indy depth buffer clears are
significantly slower under IRIS GL than under OpenGL.

SEE ALSO
pfAntialias, pfDispList, glClear, glDepthFunc, clear, multisample, gconfig, zclear, zfunction, czclear

206

IRIS Performer 2.0 libpr C++ Reference Pages pfColortable(3pf)hh

NAME
pfColortable, pfGetCurCtab − Specify color table properties Color table class and related functions

FUNCTION SPECIFICATION
#include <Performer/pr/pfColortable.h>

pfColortable::pfColortable()

pfColortable::pfColortable(int size)

static pfType * pfColortable::getClassType(void);

int pfColortable::getCtabSize();

void pfColortable::apply();

int pfColortable::setColor(int index, pfVec4 &color);

int pfColortable::getColor(int index, pfVec4 &color);

pfVec4 * pfColortable::getColors();

pfColortable * pfGetCurCtab(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfColortable is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfColortable. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfColortable
can also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);

207

pfColortable(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfColortable is a ’color indexing’ mechanism used by pfGeoSets. It is not related to the graphics library
hardware rendering notion of color index mode. If pfColortable operation is enabled, pfGeoSets will be
drawn with the colors defined in the current globally active pfColortable rather than using the pfGeoSet’s
own local color list. This facility can be used for instant large-scale color manipulation of geometry in a
scene.

new(arena) allocates a pfColortable from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfColortable from the default memory arena (see pfGetSharedArena). Like other
pfObjects, pfColortables cannot be created statically, automatically on the stack or in arrays. The default
constructor returns a pfColortable of 256 entries. Or an argument size may be provided to the construc-
tor, where size is the number of pfVec4 color elements to allocate for the pfColortable. pfColortables
should be deleted with pfDelete rather than the delete operator.

The number of color elements in the pfColortable is returned by pfColortable::getCtabSize.

pfColortable::getClassType returns the pfType* for the class pfColortable. The pfType* returned by
pfColortable::getClassType is the same as the pfType* returned by invoking the virtual function
getType on any instance of class pfColortable. Because IRIS Performer allows subclassing of built-in
types, when decisions are made based on the type of an object, it is usually better to use the member func-
tion isOfTypeto test if an object is of a type derived from a Performer type rather than to test for strict
equality of the pfType*’s.

Use a pfColortable’s apply member function to select it as the current, global color table. If colorindex
mode is enabled (pfEnable(PFEN_COLORTABLE)), then all subsequent pfGeoSets will use the pfVec4
array supplied by the global color table rather than their own local color array. Colorindex mode works
for both indexed and non-indexed pfGeoSets.

pfColortable::apply is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfColortable::apply will not have immediate effect but will be captured by the pfDispList and will only
have effect when that pfDispList is later drawn with pfDispList::draw.

pfGetCurCtab returns the currently active pfColortable or NULL if there is none active.

208

IRIS Performer 2.0 libpr C++ Reference Pages pfColortable(3pf)hh

Colors in a pfColortable are pfVec4’s which specify red, green, blue, and alpha in the range [0..1]. The
member functions setColor and getColor respectively set and get the color at index index. To support
high performance manipulation of colortables, IRIS Performer allows direct access to the array of pfVec4
colors of a pfColortable. The member function getColors returns a pointer to this array which may be
manipulated directly. However care must be taken not to write data outside the array limits.

The pfColortable state element is identified by the PFSTATE_COLORTABLE token. Use this token with
pfGeoSet::setAttr to set the pfColortable of a pfGeoState and with pfOverride to override subsequent
colortable changes.

Example 1:

/* Set up ’colorindexed’ pfGeoState */

gstate->setAttr(PFSTATE_COLORTABLE, ctab);

gstate->setMode(PFSTATE_ENCOLORTABLE, PF_ON);

/* Attach gstate to gset */

gset->setGState(gstate);

/* Draw gset colorindexed with ctab */

gset->draw();

Example 2:

pfEnable(PFEN_COLORTABLE);

ctab->apply();

/*

* Override active pfColortable to ’ctab’ and colorindex enable

* to PF_ON.

*/

pfOverride(PFSTATE_COLORTABLE | PFSTATE_ENCOLORTABLE, PF_ON);

NOTES
pfColortables can be used to simulate FLIR (Forward Looking Infrared) and NVG (Night Vision Goggles)
and for monochrome display devices which separate video components for stereo display purposes.
More flexible FLIR and NVG simulation is available through the use of indexed pfGeoStates.

209

pfColortable(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

SEE ALSO
pfDelete, pfDispList, pfEnable, pfGeoSet, pfGeoState, pfOverride, pfState

210

IRIS Performer 2.0 libpr C++ Reference Pages pfCullFace(3pf)hh

NAME
pfCullFace, pfGetCullFace − Specify face culling mode

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfCullFace(int mode);

int pfGetCullFace(void);

PARAMETERS
mode is a symbolic constant and is one of:

PFCF_OFF Face culling is off,

PFCF_BACK Polygons that are back-facing will be culled.

PFCF_FRONT Polygons that are front-facing will be culled.

PFCF_BOTH Polygons that are front and back-facing will be culled.

DESCRIPTION
pfCullFace sets the face culling mode used to cull all subsequent polygons. A polygon is considered to
be backfacing if its vertices are in clockwise order (screen coordinates). Frontfacing polygon vertex order-
ing is counterclockwise.

pfGetCullFace returns the current face culling mode.

The face culling mode state element is identified by the PFSTATE_CULLFACE token. Use this token
with pfGeoState::setMode to set the face culling mode of a pfGeoState and with pfOverride to override
subsequent face culling mode changes.

pfCullFace is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfCullFace will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDispList::draw.

Example 1:

/* Set up ’face-culled’ pfGeoState */

gstate->setMode(PFSTATE_CULLFACE, PFCF_BACK);

/* Attach gstate to gset */

gset->setGState(gstate);

/* Draw face-culled gset */

gset->draw();

211

pfCullFace(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

Example 2:

/* Override face culling mode to PFCF_OFF */

pfCullFace(PFCF_OFF);

pfOverride(PFSTATE_CULLFACE, PF_ON);

NOTES
Backface culling with pfCullFace(PFCF_BACK) can significantly improve performance for "solid" data-
bases whose polygons are oriented consistently and where objects are closed. With these databases you
cannot see backfacing polygons since they are always obscured by nearer front-facing ones. The graphics
hardware can quickly reject backfacing polygons so use of backface culling is strongly encouraged to
increase performance.

Face culling should be disabled when using two-sided lighting, since the two-sided lighting is only useful
for distinguishing backfacing objects.

SEE ALSO
backface, frontface, pfDispList, pfGeoState, pfOverride, pfState

212

IRIS Performer 2.0 libpr C++ Reference Pages pfCycleBuffer(3pf)hh

NAME
pfCycleBuffer, pfCycleMemory − Create, initialize, manage pfCycleBuffer and pfCycleMemory memory

FUNCTION SPECIFICATION
#include <Performer/pr/pfCycleBuffer.h>

pfCycleBuffer::pfCycleBuffer(size_t nbytes)

static pfType * pfCycleBuffer::getClassType(void);

void * pfCycleBuffer::getCurData();

pfCycleMemory *
pfCycleBuffer::getCMem(int index);

void pfCycleBuffer::changed();

void pfCycleBuffer::init(void *data);

int pfCycleBuffer::config(int numBuffers);

int pfCycleBuffer::getConfig(void);

int pfCycleBuffer::frame(void);

int pfCycleBuffer::getFrameCount(void);

int pfCycleBuffer::getCurIndex(void);

void pfCycleBuffer::setCurIndex(int index);

pfCycleBuffer * pfCycleBuffer::getCBuffer(void *data);

static pfType * pfCycleMemory::getClassType(void);

int pfCycleMemory::getFrame(void);

pfCycleBuffer * pfCycleMemory::getCBuffer(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfCycleBuffer is derived from the parent class pfObject, so each of these
member functions of class pfObject are also directly usable with objects of class pfCycleBuffer. This is
also true for ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfCycleBuffer
can also be used with these functions designed for objects of class pfMemory.

213

pfCycleBuffer(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
Together, pfCycleBuffer and pfCycleMemory provide an automated mechanism for managing dynamic
data in a pipelined, multiprocessing environment. In this kind of environment, data is typically modified
at the head of the pipeline and must propagate down it in a "frame-accurate" fashion. For example,
assume the coordinates of a pfGeoSet are modified for facial animation. If a two-stage rendering pipeline
is used, then it is likely that the coordinates will be modified in the head of the pipeline, at the same time
they are being rendered in the tail of the pipeline. If only a single memory buffer is used, then the
pfGeoSet might be rendered when its coordinates are only partially updated, potentially resulting in
cracks in the facial mesh or other anomalies.

A solution to this problem is to use two memory buffers for the coordinates, one written to by the head
and one read from by the tail of the pipeline. In order for the new coordinates to propagate to the render-
ing stage we could copy the newly updated buffer into the renderer’s buffer during a handshake period
between the two stages. However, if the buffer is large, the copy time could become objectionable.
Another alternative is to simply swap pointers to the two buffers - the classic "double-buffering"
approach. This is much more efficient but requires that the contents of the buffer be completely updated
each frame. Otherwise the render stage will access a "stale" buffer that represents the facial expression at a
previous time so that the animation will appear to go backwards.

The pfCycleBuffer/pfCycleMemory combination supports efficient dynamic data management in an N-
stage pipeline. A pfCycleBuffer logically contains multiple pfCycleMemorys. Each process has a global
index which selects the currently active pfCycleMemory in each pfCycleBuffer. This index can be
advanced once a frame by pfCycleBuffer::setCurIndex so that the buffers "cycle". By advancing the index
appropriately in each pipeline stage, dynamic data can be frame-accurately propagated down the pipe-
line.

214

IRIS Performer 2.0 libpr C++ Reference Pages pfCycleBuffer(3pf)hh

While pfCycleBuffers can be used for generic dynamic data, a prominent use is as attribute arrays for
pfGeoSets. The function pfGeoSet::setAttr accepts pfCycleBuffer memory for attribute arrays and the
pfGeoSet will index the appropriate pfCycleMemory when rendering and intersection testing. Currently,
pfGeoSets do not support pfCycleBuffer index lists.

new(arena) allocates a pfCycleBuffer from the specified memory arena, or from the process heap if arena
is NULL. new allocates a pfCycleBuffer from the default memory arena (see pfGetSharedArena). Like
other pfObjects, pfCycleBuffers cannot be created statically, automatically on the stack or in arrays. The
argument nbytes to the constructor specifies the length of each associated pfCycleMemory. pfCy-
cleBuffers should be deleted with pfDelete rather than the delete operator.

The number of pfCycleMemorys allocated for each pfCycleBuffer is specified by pfCBufferConfig which
is typically called only once at initialization time. pfGetCBufferConfig returns the number set by
pfCBufferConfig.

pfCycleBuffer::getClassType returns the pfType* for the class pfCycleBuffer. The pfType* returned by
pfCycleBuffer::getClassType is the same as the pfType* returned by invoking the virtual function
getType on any instance of class pfCycleBuffer. Because IRIS Performer allows subclassing of built-in
types, when decisions are made based on the type of an object, it is usually better to use the member
function isOfType to test if an object is of a type derived from a Performer type rather than to test for
strict equality of the pfType*’s.

pfCycleMemory::getClassType returns the pfType* for the class pfCycleMemory.

pfCycleBuffer::init initializes all pfCycleMemorys of a pfCycleBuffer to the data referenced by data. data
should be at least of size nbytes.

pfCycleMemory is derived from pfMemory and also provides access to its raw data in the form of a void*
pointer through the pfMemory::getData call. Thus pfCycleBuffer memory is arranged in a hierarchy:
pfCycleBuffer -> pfCycleMemory -> void* and various routines exist which convert one handle into
another. These routines are listed in the following table.

pfCycleBuffer* pfCycleMemory* pfMemory*iii
pfCycleBuffer* NA getCMem getCurData
pfCycleMemory* getCBuffer NA getData
void* getCBuffer getMemory NAc

c
c
c
c

c
c
c
c
c

c
c
c
c
c

The currently active pfCycleMemory portion of a pfCycleBuffer is selected by the global index specified
by pfCycleBuffer::setCurIndex, and is returned by pfCycleBuffer::getCurIndex. One can think of this in
pseudocode as

215

pfCycleBuffer(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

current pfCycleMemory = pfCycleBuffer[pfCurCBufferIndex]

Thus one should always get a new handle to the currently active data whenever the global index changes.
Data modification that is incremental, (such as a += .2) must retain a handle to the previous data for
proper results (current a = previous a + .2).

As mentioned above, cycling buffer pointers is efficient but requires that the buffers be completely
updated each frame. If the data at some time becomes static, it must then be copied into those buffers that
are out of date. pfCycleBuffer supports this copying automatically with pfCycleBuffer::changed in con-
junction with pfCycleBuffer::frame. The member function frame advances a global frame counter that is
used to frame-stamp pfCycleMemorys. After the pfCycleBuffer has been updated, changed frame-
stamps the pfCycleBuffer with the current frame count. Then if that pfCycleBuffer is not changed in a
later frame, the member function frame will automatically copy the latest pfCycleMemory into its
currently active, sibling pfCycleMemory. This copying will continue until all selected pfCycleMemorys
contain the latest data. To determine the frame stamp of a pfCycleMemory, use the member function
getFrame. pfCycleBuffer::getFrameCount returns the current, global, pfCycleBuffer frame count.

The following are examples of pfCycleBuffer usage for libpr-only and libpf applications. When using
libpf, pfConfig and pfFrame call pfCycleBuffer::config and pfCycleBuffer::frame respectively so the
application should not call the latter routines. In addition, libpf calls pfCurCBufferIndex in each process
so that pfCycleBuffer changes are properly propagated down the processing pipelines.

Example 1: libpr-only pfCycleBuffer example

pfVec3 *prevVerts, *curVerts;

/*

* Configure number of pfCycleMemorys per pfCycleBuffer

*/

numBuffers->config();

verts = new pfCycleBuffer(sizeof(pfVec3) * numVerts);

gset->setAttr(PFGS_COORD3, PFGS_PER_VERTEX, verts, NULL);

while(!done)

{

static int index = 0;

index->setCurIndex();

curVerts = verts->getCurData();

216

IRIS Performer 2.0 libpr C++ Reference Pages pfCycleBuffer(3pf)hh

/* Compute new positions of mass-spring system */

for (i=0; i<numVerts; i++)

curVerts[i] = prevVerts[i] + netForceVector * deltaTime;

/* Indicate that ’verts’ has changed */

verts->changed();

prevVerts = curVerts;

/* Advance cyclebuffer frame count */

pfCycleBuffer::frame();

/* Advance buffer index. */

index = (index + 1) % numBuffers;

}

Example 2: libpf pfCycleBuffer example

pfVec3 *prevVerts, *curVerts;

pfInit();

pfMultiprocess(mpMode);

/*

* This calls pfCycleBuffer::config() with the number of buffers

* appropriate to the multiprocessing mode.

*/

pfConfig();

verts = new(pfGetSharedArena()) pfCycleBuffer(sizeof(pfVec3) * numVerts);

gset->setAttr(PFGS_COORD3, PFGS_PER_VERTEX, verts, NULL);

while(!done)

{

curVerts = verts->getCurData();

/* Compute new positions of mass-spring system */

for (i=0; i<numVerts; i++)

curVerts[i] = prevVerts[i] + netForceVector * deltaTime;

217

pfCycleBuffer(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

/* Indicate that ’verts’ has changed */

verts->changed();

prevVerts = curVerts;

/* This calls pfCycleBuffer::frame() */

pfFrame();

}

NOTES
The global index which selects the currently active pfCycleMemory is unique for a given address space.
Specifically, share group processes like those spawned by sproc will share the same global index.

SEE ALSO
pfDelete, pfGetData, pfGetMemory, pfMemory

218

IRIS Performer 2.0 libpr C++ Reference Pages pfCylinder(3pf)hh

NAME
pfCylinder − Operations on cylinder definitions.

FUNCTION SPECIFICATION
#include <Performer/pr/pfGeoMath.h>

void* pfCylinder::operator new(size_t);

void* pfCylinder::operator new(size_t, void *arena);

pfCylinder::pfCylinder();

void pfCylinder::makeEmpty(void);

void pfCylinder::around(const pfSeg **segs, int nseg);

void pfCylinder::around(const pfBox **boxes, int nbox);

void pfCylinder::around(const pfVec3 *pts, int npt);

void pfCylinder::around(const pfCylinder **cyls, int ncyl);

void pfCylinder::around(const pfSphere **sphs, int nsph);

void pfCylinder::extendBy(const pfBox *sph);

void pfCylinder::extendBy(const pfSphere *sph);

void pfCylinder::extendBy(const pfCylinder *cyl);

int pfCylinder::contains(const pfVec3 &pt);

int pfCylinder::isect(const pfSeg* seg, float* d1, float* d2);

void pfCylinder::orthoXform(const pfCylinder *cyl, const pfMatrix &xform);

struct pfCylinder

{

pfVec3 center;

float radius;

pfVec3 axis;

float halfLength;

};

DESCRIPTION
A pfCylinder represents a cylinder of finite length. The routines listed here provide means of creating
and extending cylinders for use as bounding geometry around groups of line segments. The cylinder is
defined by its center, radius, axis and halfLength. The routines assume axis is a vector of unit length, other-
wise results are undefined. pfCylinder is a public struct whose data members center, radius, axis and hal-
fLength may be operated on directly.

219

pfCylinder(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

The default constructor pfCylinder() is empty and does no initialization. new(arena) allocates a
pfCylinder from the specified memory arena, or from the heap if arena is NULL. new allocates a
pfCylinder from the default memory arena (see pfGetSharedArena). pfCylinders can also be created
automatically automatically on the stack or statically. pfCylinders allocated with new can be deleted with
delete or pfDelete.

pfCylinder::makeEmpty sets the pfCylinder so that it appears empty to other operations.

pfCylinder::around(const pfSeg**, int), pfCylinder::around(const pfVec3*, int),
pfSphere::around(const pfSphere**, int) and pfCylinder::around(const pfBox**, int) set the pfCylinder
to a cylinder which contains a set of line segments, points, spheres or boxes, respectively. These routines
are passed the address of an array of pointers to the objects to be encompassed along with the number of
objects.

pfCylinder::extendBy(const pfBox *), pfCylinder::extendBy(const pfSphere *), and
pfCylinder::extendBy(const pfCylinder *) set the pfCylinder to a cylinder which contains both the
pfSphere and the box box, the sphere sph or the cylinder cyl, respectively.

pfCylinder::contains returns TRUE or FALSE depending on whether the point pt is in the interior of the
specified pfCylinder.

pfCylinder::isect intersects the line segment seg with the volume of the cylinder cyl. The possible return
values are:

PFIS_FALSE:
seg lies entirely in the exterior.

PFIS_MAYBE | PFIS_TRUE | PFIS_START_IN:
The starting point of seg lies in the interior.

PFIS_MAYBE | PFIS_TRUE | PFIS_END_IN:
The ending point of seg lies in the interior.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN | PFIS_START_IN | PFIS_END_IN:
Both end points of seg lie in the interior.

If d1 and d2 are non-NULL, on return from pfCylinder::isect they contain the starting and ending posi-
tions of the line segment (0 <= d1 <= d2 <= seg->length) intersected with the cyl.

pfCylinder::orthoXform sets the pfCylinder to the cylinder cyl transformed by the orthogonal transfor-
mation xform. the pfCylinder = cyl * xform. If xform is not an orthogonal transformation the results are
undefined.

220

IRIS Performer 2.0 libpr C++ Reference Pages pfCylinder(3pf)hh

NOTES
C++ does not support array deletion (i.e. delete[]) for arrays of objects allocated new operators that take
additional arguments. Hence, the array deletion operator delete[] should not be used on arrays of objects
created with new(arena) pfVec3[n].

SEE ALSO
pfBox, pfCylinder, pfSeg, pfSphere, pfVec3

221

pfDataPool(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfDataPool − Create, control and allocate from locked memory pools.

FUNCTION SPECIFICATION
#include <Performer/pr/pfDataPool.h>

static pfDataPool* pfDataPool::create(uint size, char *name);

static pfDataPool* pfDataPool::attach(char *name);

int pfDataPool::getDPoolSize(void);

const char* pfDataPool::getName(void);

int pfDataPool::release(void);

volatile void* pfDataPool::alloc(uint size, int id);

int pfDataPool::free(void *dpmem);

volatile void* pfDataPool::find(int id);

static int pfDataPool::lock(void *dpmem);

static int pfDataPool::lock(void *dpmem, int spins, int block);

static void pfDataPool::unlock(void *dpmem);

static int pfDataPool::test(void *dpmem);

void pfDataPool::setAttachAddr(void *addr);

void* pfDataPool::getAttachAddr(void);

static pfType * pfDataPool::getClassType(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfDataPool is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfDataPool. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfDataPool can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);

222

IRIS Performer 2.0 libpr C++ Reference Pages pfDataPool(3pf)hh

pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

PARAMETERS
dpool identifies a pfDataPool.

DESCRIPTION
A pfDataPool is similar to a shared memory malloc arena but adds the ability to lock/unlock pfDataPool
memory for multiprocessing applications. The datapool functions allow related or unrelated processes to
share data and provide a means for locking data blocks to eliminate data collision. These functions use
the shared arena functions (see usinit).

pfDataPool::create creates and returns a handle to a pfDataPool. size is the size in bytes of the pfData-
Pool. name is the name of the pfDataPool and is also the name of the memory-mapped file used by the
pfDataPool. This file is created in the directory "/usr/tmp" unless the environment variable PFTMPDIR
is defined, in which case the file is created in the directory named in the PFTMPDIR environment vari-
able. name should be unique among all pfDataPool names and only a single process should create a given
pfDataPool with name name.

pfDataPool::getClassType return the pfType* for the class pfDataPool. The pfType* returned is the
same as the pfType* returned by invoking getType on any instance of class pfDataPool. Because IRIS
Performer allows subclassing of built-in types, when decisions are made based on the type of an object, it
is usually better to use isOfType to test if an object is of a type derived from a Performer type rather than
to test for strict equality of the pfType*’s.

The member functions pfDataPool::getDPoolSize and pfDataPool::getName respectively return the size
in bytes and the string name of a pfDataPool.

pfDataPool::attach allows the calling process to attach to a pfDataPool with name name that may have
been created by another process. A handle to the found pfDataPool is returned or NULL if it was not

223

pfDataPool(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

found or could not be accessed.

pfDataPool::release hides dpool so that no other processes may attach to it although all previously
attached processes may still access it. Additionally, a released pfDataPool will be removed from the file
system (deleted) once all attached processes exit. The member function release returns TRUE if success-
ful and FALSE otherwise.

pfDataPool::alloc returns a pointer to a block of memory of size bytes that was allocated out of the pfDa-
taPool or NULL if there is not enough available memory. size is in bytes and can range from 1 to the size
of the pfDataPool. The actual size allocated is always rounded up to the next 16 byte boundary. id is an
integer id assigned to the block of memory that is used to reference it by the member function find. Block
id’s should be unique or the results are undefined.

pfDataPool::find returns a pointer to a block of pfDataPool memory which is identified by id or NULL if
id was not found. The calling process must be attached to the datapool memory.

The member function free frees the memory block previously allocated by alloc and makes it available to
be reallocated.

pfDataPool::lock and pfDataPool::unlock lock and unlock access to a block of pfDataPool memory that
was allocated by pfDataPool::alloc. When the lock cannot be acquired, pfDataPool::lock yields the pro-
cessor causing the current thread to block until the lock is available. Extra arguments to pfDataPool::lock
provides more control by accepting arguments to control the spinning and blocking. When block is
FALSE, pfDataPool::lock returns rather than yielding the processor if the lock cannot be acquired. spins
specifies the number of times to spin before yielding or returning. A spins value of -1 invokes the default,
currently 600. pfDataPool::lock returns 1 upon acquisition of the lock, 0 upon failure to acquire the lock
and -1 upon error. pfDataPool::unlock relinquishes the lock on the block of memory.

There are a fixed number of locks (currently 4096) allocated for each pfDataPool and a new lock is con-
sumed when an allocation in that pfDataPool is first locked. Subsequent releases and locks do not require
further lock allocations.

Example:

typedef struct SharedData

{

float a, b, c;

} SharedData;

pfDataPool *pool;

SharedData *data;

:

/* create a DataPool with room for 4 SharedData structures */

224

IRIS Performer 2.0 libpr C++ Reference Pages pfDataPool(3pf)hh

pool = pfDataPool::create(4*sizeof(SharedData), "dpoolForSharedData");

/* allocate SharedData structure in the data pool with ID=153 */

data = (SharedData*)pool->alloc(sizeof(SharedData), 153);

:

/* write to the DataPool with cooperative mutual exclusion */

pfDataPool::lock((void*)data);

data->a = 370.0;

data->b = 371.0;

data->c = 407.0;

pfDataPool::unlock((void*)data);

pfDataPool::lock attempts to acquire a hardware lock associated with dpmem. If another process has
already acquired the lock, the calling process will not return until the lock is acquired. Whether the pro-
cess blocks or spins is a function of the machine configuration. (see usconfig). pfDataPool::unlock
unlocks dpmem. A process which double-trips a lock by calling the member function lock twice in succes-
sion will block until the lock is unset by another process. A process may unlock a lock that was locked by
a different process. pfDataPool::test returns 0 if dpmem is unlocked and 1 if it is locked.

pfDataPool memory may be accessed without using the lock and unlock feature; however this defeats the
mutual exclusion feature provided by pfDataPool functions.

A data pool must occupy the same range of virtual memory addresses in all processes that attach to it.
pfDataPool::attach will fail if something else has already been mapped into the required address space,
e.g. as a result of mmap or sbrk. To minimize this risk, the member function create tries to place new
datapools above the main shared memory arena created by pfInitArenas. The address at which the next
datapool will be created can be overridden by calling pfDataPool::setAttachAddr with the addr argument
specifying the desired address. An addr of NULL tells Performer to return to its normal placement
efforts. The next attachment address is returned by pfDataPool::getAttachAddr.

In the absence of a shared memory arena created by pfInitArenas, create lets the kernel choose the data
pool placement.

Deleting a data pool with pfDelete or delete unmaps the data pool from virtual memory as well as delet-
ing the pfDataPool data structure.

NOTES
When a datapool is created, a file is created in "/usr/tmp" or PFTMPDIR. The file name will end with
the string ".pfdpool". If pfDataPool::release is not called to unlink the datapool, this file will remain in
the file system after the program exits, taking up disk space.

225

pfDataPool(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

When using pfDataPools between unrelated processes, you can reduce memory conflicts by having the
application that uses more virtual memory create the datapool and having the smaller application attach
to the datapool before allocating memory that might cause conflicts. Alternately, if an address is known
to be safe for both applications, it can be specified using pfDataPool::setAttachAddr.

SEE ALSO
amalloc, pfInitArenas, usconfig, usinit, ussetlock, ustestlock, usunsetlock

226

IRIS Performer 2.0 libpr C++ Reference Pages pfDecal(3pf)hh

NAME
pfDecal, pfGetDecal − Set and get decal mode for drawing coplanar polygons

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfDecal(int mode);

int pfGetDecal(void);

PARAMETERS
mode is a symbolic constant specifying a decaling mode and is one of:

PFDECAL_OFF
Decaling is off

PFDECAL_BASE
Subsequent drawn geometry is considered to be ’base’ geometry. Use the default decaling
mechanism.

PFDECAL_LAYER
Subsequent drawn geometry is considered to be ’layered’ geometry. Use the default decaling
mechanism.

PFDECAL_BASE_FAST, PFDECAL_LAYER_FAST
Use a decaling mechanism appropriate to the hardware that produces the fastest, but not
necessarily the highest quality, decaling.

PFDECAL_BASE_HIGH_QUALITY, PFDECAL_LAYER_HIGH_QUALITY
Use a decaling mechanism appropriate to the hardware that produces the highest quality, but
not necessarily the fastest, decaling.

PFDECAL_BASE_DISPLACE, PFDECAL_LAYER_DISPLACE
Use the polygon displacement technique (displacepolygon in IRIS GL and
glPolygonOffsetEXT in OpenGL) to slightly displace the depth values of layer geometry
toward the eyepoint.

PFDECAL_BASE_DISPLACE, PFDECAL_LAYER_DISPLACE_AWAY
Use the polygon displacement technique (displacepolygon in IRIS GL and
glPolygonOffsetEXT in OpenGL) to slightly displace the depth values of layer geometry
away from the eyepoint.

PFDECAL_BASE_STENCIL, PFDECAL_LAYER_STENCIL
Use the stencil buffer technique (stencil in IRIS GL; glStencilFunc, glStencilOp, and
glEnable(GL_STENCIL_TEST) in OpenGL) to determine visual priority.

DESCRIPTION
In some cases, such as when drawing stripes on a runway, it is easier to draw coplanar polygons than it is
to model the geometry without coplanar faces. However, on Z-buffer based machines, coplanar polygons
can cause unwanted visual artifacts because the visual priorities of the coplanar polygons are subject to
the finite numerical precision of the graphics pipeline. This results in a "torn" appearance and "twinkling"

227

pfDecal(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

from frame to frame.

Decaled geometry can be thought of as a stack where each layer has visual priority over the geometry
beneath it in the stack. An example of a 3 layer stack consists of stripes which are layered over a runway
which is layered over the ground. The bottommost layer is called the "base" while the other layers are
called "decals" or "layers". When using certain hardware mechanisms (PFDECAL_BASE_STENCIL) to
implement pfDecal, the "base" is special because it defines the depth values which are used to determine
layer visibility with respect to other scene geometry and which are written to the depth buffer.

Certain decaling mechanisms (currently only DISPLACE) require that each layer in the layer stack be
identified for proper rendering. The PFDECAL_LAYER_1 - PFDECAL_LAYER_7 tokens are provided
for this purpose and should be logically OR’ed into the layer mode, e.g., PFDECAL_LAYER_DISPLACE |
PFDECAL_LAYER_2. Note that the layer identifier is extracted from the mode as follows:

layerId = (mode & PFDECAL_LAYER_MASK) >> PFDECAL_LAYER_SHIFT;

pfDecal is used to draw visually correct coplanar polygons that are arranged as ’base’ and ’layer’
polygons as shown here:

/* Prepare to draw base polygons */

pfDecal(PFDECAL_BASE_DISPLACE);

:

/* draw base geometry using IRIS Performer or graphics library */

:

/* Prepare to draw first layer polygons */

pfDecal(PFDECAL_LAYER_DISPLACE);

:

/* draw layer geometry using IRIS Performer or graphics library */

:

/* Prepare to draw second layer polygons */

pfDecal(PFDECAL_LAYER_DISPLACE | PFDECAL_LAYER_1);
:

/* draw layer geometry using IRIS Performer or graphics library */

:

/* exit decal mode */

pfDecal(PFDECAL_OFF);

228

IRIS Performer 2.0 libpr C++ Reference Pages pfDecal(3pf)hh

The different pfDecal modes offer quality-feature tradeoffs listed in the table below:

DISPLACE STENCIL (DISPLACE ||OFFSET)ii
Quality medium high high
Order not required required not required
Coplanarity not required required not required
Containment not required required not requiredcc

c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

The STENCIL mechanism offers the best image quality but at a performance cost since the base and layer
geometry must be rendered in strict order. When multisampling on RealityEngine, this mechanism also
significantly reduces pixel fill performance. An additional constraint is that STENCILed layers must be
coplanar or decal geometry may incorrectly show through base geometry. For proper results, each layer
in the "stack" must be completely contained within the boundaries of the base geometry.

The DISPLACE mechanism offers the best performance since layers can be sorted by graphics state,
because the displace call itself is usually faster than other mode changes, and because there is no pixel fill
rate penalty when it is in use. However, in IRIS GL the displace mechanism is only slope-based, so when
geometry becomes nearly perpendicular to the view, i.e., has little or no slope, the displacement is too lit-
tle to conclusively determine visibility. To solve this problem, logically OR-ing the
PFDECAL_LAYER_OFFSET bit into the layer mode will add a constant offset to the decal geometry. This
mode can be very expensive (RealityEngine) so when using it the database should be sorted so that all
layers are drawn at the same time, i.e., draw all PFDECAL_LAYER_1 layers together etc. Both
DISPLACE mechanisms do not require that geometry within a single layer be coplanar. The main disad-
vantage is that decal geometry may incorrectly poke through other geometry due to the displacement of
the decal geometry.

The performance differences between STENCIL and DISPLACE modes are hardware-dependent so
some experimentation and benchmarking is required to determine the most suitable method for your
application.

pfDecal is a display-listable command. If a pfDispList has been opened by pfDispList::open, pfDecal
will not have immediate effect but will be captured by the pfDispList and will only have effect when that
pfDispList is later drawn with pfDispList::draw.

pfGetDecal returns the current decal mode.

The decaling mode state element is identified by the PFSTATE_DECAL token. Use this token with
pfGeoState::setMode to set the decaling mode of a pfGeoState and with pfOverride to override subse-
quent decaling mode changes.

229

pfDecal(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

EXAMPLES
Example 1:

/* Set up ’base’ pfGeoState */

gstate->setMode(PFSTATE_DECAL, PFDECAL_BASE);

/* Attach pfGeoState to pfGeoSet */

gset->setGState(gstate);

/* Draw base pfGeoState */

gset->draw();

Example 2:

/* Override decaling mode to PFDECAL_OFF */

pfDecal(PFDECAL_OFF);

pfOverride(PFSTATE_DECAL, PF_ON);

NOTES
PFDECAL_BASE_FAST currently implies displacepolygon on machines that support this feature. The
use of displacements for rendering coplanar geometry can cause visual artifacts such as decals "Z
fighting" or "flimmering" when viewed perpendicularly and punching through geometry that should be
in front of them when viewed obliquely. In these cases, use PFDECAL_LAYER_OFFSET, modify the
database should by cutting away overlapping polygons to eliminate the need for coplanar rendering or
use PFDECAL_BASE_HIGH_QUALITY or PFDECAL_BASE_STENCIL.

PFDECAL_BASE_STENCIL is implemented with stencil planes and requires the framebuffer to be
configured with at least one stencil bit (see stensize(3g) and mssize(3g)). The first stencil bit should be
considered as reserved for pfDecal.

When using PFDECAL_LAYER_OFFSET, the minimum depth buffer range set with lsetdepth must be
incremented an extra 1024 * max layers so the negative displacement of the layers does not wrap.
pfInitGfx does this automatically.

SEE ALSO
mssize, pfDispList, pfGStateMode, pfGeoState, pfOverride, pfState, pfInitGfx, stencil, stensize

230

IRIS Performer 2.0 libpr C++ Reference Pages pfDispList(3pf)hh

NAME
pfDispList, pfDrawGLObj, pfGetCurDList − Create and control a display list

FUNCTION SPECIFICATION
#include <Performer/pr/pfDispList.h>

pfDispList::pfDispList(int type, int size)

static pfType * pfDispList::getClassType(void);

void pfDispList::open(void);

void pfDispList::reset(void);

static void pfDispList::close(void);

int pfDispList::getSize(void);

int pfDispList::getDListType(void);

static void pfDispList::addCmd(int cmd);

static void pfDispList::callback(pfDListFuncType callback, int nbytes, void *data);

void pfDrawGLObj(GLOBJECT obj);

pfDispList * pfGetCurDList(void);

typedef void (*pfDListFuncType)(void *data);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfDispList is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfDispList. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfDispList can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();

231

pfDispList(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfDispList is a reusable display list that captures certain libpr commands. new(arena) allocates a
pfDispList from the specified memory arena, or from the process heap if arena is NULL. new allocates a
pfDispList from the default memory arena (see pfGetSharedArena). Like other pfObjects, pfDispLists
cannot be created statically, automatically on the stack or in arrays. The arguments to the constructor
specify the type and size of the display list. pfDispLists should be deleted with pfDelete rather than the
delete operator.

type is a symbolic token that specifies a type of pfDispList and is either PFDL_FLAT or PFDL_RING. A
PFDL_FLAT display list is a linear list of commands and data while a PFDL_RING is configured as a
ring buffer (FIFO). A ring buffer is provided for multiprocessed paired producer and consumer applica-
tions where the producer writes to the buffer while the consumer simultaneously reads from, and draws
the buffer. IRIS Performer automatically ensures ring buffer consistency by providing synchronization
and mutual exclusion to processes on ring buffer full or empty conditions. pfDispList::getDListType
returns the type of a pfDispList.

pfDispList::getClassType returns the pfType* for the class pfDispList. The pfType* returned by
pfDispList::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfDispList. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfTypeto test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

The size argument to new pfDispList gives a hint in words about how much storage the pfDispList will
require. If more storage is required, IRIS Performer will automatically grow the pfDispList by size words
at a time. arena specifies the malloc arena out of which the pfDispList is allocated or NULL for allocation
off the heap. pfDispList::getSize returns the size of dlist that was requested by new pfDispList, not its

232

IRIS Performer 2.0 libpr C++ Reference Pages pfDispList(3pf)hh

current size.

pfDispList::open opens the pfDispList for appending and puts the calling process into display list mode.
When in display list mode, display-listable libpr commands are recorded in the currently active display
list rather than being executed immediately. libpr commands that may be recorded in a pfDispList say so
in their respective man pages. Only one pfDispList may be open at a time. pfGetCurDList returns the
currently active display list or NULL if the calling process is in immediate mode.

The currently active pfDispList is a global value but is stored in the PRDA process header so that share
group processes (see sproc) need not share the same currently active pfDispList.

Each pfDispList maintains head and tail pointers that indicate where in the list commands are to be
appended and evaluated respectively. Commands entered into the display list are appended after the
head pointer and increment the head pointer appropriately. Commands drawn by pfDispList::draw
increment the tail pointer but do not remove commands from the list. In the PFDL_RING case, IRIS Per-
former ensures that the tail pointer does not overrun the head pointer and vice versa by spinning
processes.

Both head and tail pointers are reset to the beginning of the pfDispList by the pfDispList::reset member
function so that any additions to the current pfDispList will overwrite previously entered commands.
The tail pointers of flat lists are automatically reset by pfDispList::draw when the tail pointer reaches the
head pointer so that the pfDispList may be rendered again from the beginning.

The member function pfDispList::close ’closes’ the active pfDispList and returns the application to
immediate mode.

For PFDL_FLAT display lists, pfDispList::draw traverses the pfDispList from the tail to the head pointer,
and then resets the tail pointer to the beginning of the pfDispList. If the pfDispList is a PFDL_RING,
pfDispList::draw will continually draw the display list, returning control to the application only on
PFDL_END_OF_FRAME or PFDL_RETURN commands (see pfDispList::addCmd). After returning, a
subsequent call to the member function pfDispList::draw will restart drawing from the previous position
in the list.

The pfDispList::draw member function interprets the commands and data in the pfDispList and executes
libpr state routines that in turn execute graphics library commands that send command tokens down the
graphics pipeline. pfDispList::draw is itself a display-listable command provided that pfDispList object
is not the currently active pfDispList.

The following example draws a pfGeoSet into a pfDispList and then subsequently draws the pfDispList:

233

pfDispList(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

/* Open DList and append GSet */

dlist->open();

pfEnable(PFEN_WIREFRAME);

gset->draw();

/* Close DList and return to immediate mode */

pfDispList::close();

/* Draw ’gset’ in wireframe */

dlist->draw();

pfDispList::callback allows custom rendering in the middle of a display list by putting a function call-
back and data in the current display list. Up to 64 bytes of user-data may be copied into the display list.
nbytes specifies the length of data that data references. When a callback token is encountered while draw-
ing a display list, the function callback will be called with a pointer to the user data that is cached in the
display list. A callback may call pfPushState upon entering and pfPopState when leaving to ensure that
any state changes made in the callback will be not inherited by subsequent geometry.

pfDispList::addCmd adds cmd to the currently active display list. cmd is one of the following symbolic
tokens, both of which return control to the application but indicate different situations.

PFDL_RETURN
PFDL_END_OF_FRAME

pfDrawGLObj will directly draw the graphics library display list object identified by obj (via callobj in
IRIS GL or glCallList in OpenGL) if there is no active pfDispList. If there is an open pfDispList, then
pfDrawGLObj will simply add the identifier and command to the active pfDispList.

IRIS Performer optimizes pfDispList’s when they are being built by eliminating redundant mode changes
and by unwinding pfGeoStates into their component parts. As a result, modifications to objects after they
are placed in a pfDispList may be ignored by the pfDispList. To be safe, do not modify any objects that
were placed in one or more pfDispLists.

Here is an example of this phenomenon:

/* Attach gstate0 to gset */

gset->setGState(gstate0);

/* Open dlist as current pfDispList */

dlist->open();

gset->draw();

/* Return to immediate mode */

pfDispList::close();

234

IRIS Performer 2.0 libpr C++ Reference Pages pfDispList(3pf)hh

/* Attach gstate1 to gset */

gset->setGState(gstate1);

/*

* dlist will use gstate0 and not be aware that gset was modified to

* use gstate1.

*/

dlist->draw();

SEE ALSO
pfDelete, pfGeoState, pfObject, pfState, callobj, sproc

235

pfEnable(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfEnable, pfDisable, pfGetEnable − Enable and disable graphics modes.

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfEnable(int mode);

void pfDisable(int mode);

int pfGetEnable(int mode);

PARAMETERS
mode is a symbolic constant that specifies the enable target which is to be enabled or disabled. The

enable targets are:

PFEN_LIGHTING Hardware lighting

PFEN_TEXTURE Hardware texturing

PFEN_FOG Hardware fogging

PFEN_WIREFRAME Wireframe display mode

PFEN_COLORTABLE Colortable display mode

PFEN_HIGHLIGHTING Highlight display mode

PFEN_LPOINTSTATE Light point mode

PFEN_TEXGEN Automatic texture coordinate generation

DESCRIPTION
pfEnable and pfDisable enable and disable various graphics library and IRIS Performer modes. By
default all modes listed above are disabled, i.e., when a pfState is first created, its enable modes are all
PF_OFF.

pfGetEnable returns the enable status of the indicatedmode.

236

IRIS Performer 2.0 libpr C++ Reference Pages pfEnable(3pf)hh

Each pfEnable/pfDisable mode token corresponds to a PFSTATE_ token that identifies the state element
and is used in pfGeoState routines and pfOverride. The PFEN_ / PFSTATE_ correspondence is illus-
trated in the following table:

Enable Token State Tokenii
PFEN_LIGHTING PFSTATE_ENLIGHTING
PFEN_TEXTURE PFSTATE_ENTEXTURE
PFEN_FOG PFSTATE_ENFOG
PFEN_WIREFRAME PFSTATE_ENWIREFRAME
PFEN_COLORTABLE PFSTATE_ENCOLORTABLE
PFEN_HIGHLIGHTING PFSTATE_ENHIGHLIGHTING
PFEN_LPOINTSTATE PFSTATE_ENLPOINTSTATE
PFEN_TEXGEN PFSTATE_ENTEXGENc

c
c
c
c
c
c
c
c
c
c

Once enabled or disabled, these mode changes will not take effect until their associated IRIS Performer
state elements are applied. The following table lists the modes, state objects, and provoking activation
routine for each mode.

Enable Mode Required State Activation Routineiii
PFEN_LIGHTING pfLightModel pfLightModel::apply

pfMaterial
pfLight
normals

PFEN_TEXTURE pfTexture pfTexture::apply
pfTexEnv
texture coordinates

PFEN_FOG pfFog pfFog::apply

PFEN_COLORTABLE pfColortable pfColortable::apply

PFEN_HIGHLIGHTING pfHighlight pfHighlight::apply

PFEN_LPOINTSTATE pfLPointState pfLPointState::apply

PFEN_TEXGEN pfTexGen pfTexGen::apply

PFEN_WIREFRAME none nonecc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Use the PFSTATE_ tokens with pfGeoSet::setMode to set the enable modes of a pfGeoState and with
pfOverride to override subsequent enable mode changes:

237

pfEnable(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

Example 1:

/* Set up textured pfGeoState */

gstate->setMode(PFSTATE_ENTEXTURE, PF_ON);

gstate->setAttr(PFSTATE_TEXTURE, tex);

gstate->setAttr(PFSTATE_TEXENV, texEnv);

/* Attach gstate to gset */

gset->setGState(gstate);

/* Draw textured gset */

gset->draw();

Example 2:

/* Override lighting and texturing enable modes to PF_OFF */

pfDisable(PFEN_LIGHTING);

pfDisable(PFEN_TEXTURE);

pfOverride(PFSTATE_ENLIGHTING | PFSTATE_ENTEXTURE, PF_ON);

pfEnable and pfDisable are display-listable commands. If a pfDispList has been opened by
pfDispList::open, then pfEnable and pfDisable will not have immediate effect. They will be captured by
the pfDispList and will take effect when that pfDispList is later drawn with pfDispList::draw.

pfBasicState disables all of the above modes.

notes When lighting is disabled, lmcolor mode is set to LMC_COLOR which effectively turns it off. Then
when enabled, the lmcolor mode is restored to that of the current front material if there is one.

SEE ALSO
pfDispList, pfGeoSet, pfGeoState, pfOverride, pfState

238

IRIS Performer 2.0 libpr C++ Reference Pages pfFPConfig(3pf)hh

NAME
pfFPConfig, pfGetFPConfig − Specify floating-point tolerances and exception handling

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfFPConfig(int which, float val);

float pfGetFPConfig(int which);

DESCRIPTION
pfFPConfig allows you to set some tolerances used by the IRIS Performer math routines. The which field
specifies which floating point attribute is to be set. val specifies the value that attribute should take. Sup-
ported values are:

PFFP_UNIT_ROUNDOFF
Specifies the tolerance applied to testing for equality, usually scaled by the magnitude of the
operand. The default is 1.0e-5. For performance reasons, the appropriately scaled tolerance
is not used pervasively.

PFFP_ZERO_THRESH
Specifies how large in magnitude a floating point number can be before it should be con-
sidered non-zero. The default is 1.0e-15.

PFFP_TRAP_FPES
Enables and disables trapping of floating point exceptions with values 1.0 and 0.0, respec-
tively. Normally, these floating point errors are handled through kernel exceptions or by
the floating point hardware, and may be nearly invisible to an application except from per-
formance degradation, sometimes very significant, which they can cause. When enabled,
pfNotify events are generated for the floating point exceptions mentioned above and mes-
sages displayed or passed to the user supplied pfNotify handler.

An application can also turn on floating point exception handling via the general Performer pfNotify
notification mechanism. Calling pfNotifyLevel with the PFNFY_FP_DEBUG notification level configures
pfFPConfig to enable exceptions. Alternately, an appropriate setting of the environment variable
PFNFYLEVEL will enable this processing as well. Use of the pfNotifyLevel function is preferable because
then the PFNFYLEVEL environment variable can be used when necessary to override the specification.

BUGS
Enabling floating point exceptions may cause the values returned from exceptions to be different from the
system defaults. Once a PFNFY_FP_INVALID exception has been reported, all subsequent exceptions
will generate incorrect return values.

SEE ALSO
handle_sigfpes, pfNotifyLevel

239

pfFeature(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfQueryFeature, pfMQueryFeature, pfFeature − Graphics feature availability routines

FUNCTION SPECIFICATION
#include <Performer/pr.h>

int pfQueryFeature(int which, int *dst);

int pfMQueryFeature(int *which, int *dst);

void pfFeature(int which, int val);

DESCRIPTION
IRIS Performer make runtime determinations regarding the existence and relative speed of certain graph-
ics features for the current operating graphics library (IRIS GL or OpenGL) on the current hardware
configuration. These functions provide the ability to both query these results, and to override the
existence of a given feature. IRIS Performer makes use of the following useful routines in determining its
information: getgdesc(3g), XGetVisualInfo(3X11), glGetString(3g), glXQueryExtensionsString(3g), and
getinvent(3).

pfQueryFeature takes a PFQFTR_ token and returns in dst a token that indicates whether or not that
feature exists and whether the feature is reasonable to use in a real-time application. The return value is
the number of bytes successfully written. The tokens are documented below and special note is made
where performance is commonly an issue. These pfQueryFeature return values will be one of:

PFQFTR_FALSE
indicates that the feature is not available on the current hardware configuration.

PFQFTR_TRUE
indicates that the feature is available on the current hardware configuration.

PFQFTR_FAST
indicates that the feature is reasonable for real-time on the current hardware
configuration.

The pfQueryFeature tokens must be one of:

PFQFTR_VSYNC
queries the status of the graphics video clock. See the pfInitVClock reference page for
more information.

PFQFTR_VSYNC_SET
queries the write-ability of the graphics video clock. See the pfInitVClock reference page
for more information.

PFQFTR_GANGDRAW
queries the availability of "gang" swapbuffers where multiple graphics pipelines may be
forced to swap framebuffers simultaneously. See the pfChannel::setShare reference
page for more information.

240

IRIS Performer 2.0 libpr C++ Reference Pages pfFeature(3pf)hh

PFQFTR_HYPERPIPE
queries the support for hyperpipe hardware. See the pfHyperpipe reference page for
more information.

PFQFTR_STEREO_IN_WINDOW
queries the support for doing stereo with multiple buffers in a single window. See the
IRIS GL stereobuffer(3g) and OpenGL glDrawBufferMode(3g) reference pages for more
information.

PFQFTR_MULTISAMPLE
queries the support and relative performance of multisampled antialiasing. See the
pfAntialias reference page for more information.

PFQFTR_MULTISAMPLE_TRANSP
queries the support and relative performance of multisampled transparency. See the
pfTransparency reference page for more information.

PFQFTR_MULTISAMPLE_ROUND_POINTS
queries the support and relative performance of round multisampled light points.

PFQFTR_MULTISAMPLE_STENCIL
queries the support and relative performance of multisampled stencil.

PFQFTR_COLOR_ABGR
queries the support and relative performance of image data in the IRIS GL style ABGR
format. This format may be slow or unsupported in some OpenGL implementations.
This is relevant to the OpenGL glDrawPixels(3g) command.

PFQFTR_DISPLACE_POLYGON
queries the support for polygon displacement in screen Z used for doing decals. See the
pfDecal reference page for more information.

PFQFTR_POLYMODE
queries the support for polygon fill modes. See the IRIS GL polymode(3g) and OpenGL
glPolygonMode(3g) reference pages for more information.

PFQFTR_TRANSPARENCY
queries the support for and relative performance of transparency.

PFQFTR_FOG_SPLINE
queries the support for spline fog. See the pfFog reference page for more information.

PFQFTR_ALPHA_FUNC
queries the support for alpha functions. See the pfAlphaFunc reference page and the
IRIS GL blendfunction(3g) and OpenGL glBlendFunc(3g) reference pages for more
information.

241

pfFeature(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

PFQFTR_ALPHA_FUNC_COMPARE_REF
queries the support for comparative alpha functions. Some graphics platforms under
IRIS GL do not support the comparison alpha functions. See the pfAlphaFunc reference
page for more information.

PFQFTR_BLENDCOLOR
queries the support for specification of a blend color to use with alpha functions. Refer to
the IRIS GL blendcolor(3g) and the OpenGL extension glBlendColor(3g) for more infor-
mation.

PFQFTR_BLEND_FUNC_SUBTRACT
queries the support for additional differencing alpha blending functions.

PFQFTR_BLEND_FUNC_MINMAX
queries the support for additional min/max alpha blending functions.

PFQFTR_TEXTURE
queries the support and relative performance of texture mapping.

PFQFTR_TEXTURE_16BIT_IFMTS
queries the support and relative performance of 16-bit texel formats. These formats take
up less texture memory and can provide a significant performance improvement at the
cost of some loss of image quality. See the pfTexFormat reference page for more infor-
mation.

PFQFTR_TEXTURE_SUBTEXTURE
queries the support for dynamic loading of parts or all of textures after the texture has
been defined.

PFQFTR_TEXTURE_TRILINEAR
queries the support for trilinear MIPmapping for minification filtering of texture maps.

PFQFTR_TEXTURE_DETAIL
queries the support for detailing of magnified texture maps. See the pfTexFilter and
pfTexDetail reference pages for more information.

PFQFTR_TEXTURE_SHARPEN
queries the support for sharpening of magnified texture maps. See the pfTexFilter refer-
ence page for more information.

PFQFTR_TEXTURE_3D
queries the support for three-dimensional textures.

PFQFTR_TEXTURE_PROJECTIVE
queries the support for projected textures.

PFQFTR_TEXTURE_MINFILTER_BILINEAR_CMP
queries the support for special bilinear LEQUAL/GEQUAL minification filters for doing
real-time shadows.

242

IRIS Performer 2.0 libpr C++ Reference Pages pfFeature(3pf)hh

PFQFTR_READ_MSDEPTH_BUFFER
queries the support for reading the multisample depth buffer.

PFQFTR_COPY_MSDEPTH_BUFFER
queries the support for copying to/from the multisample depth buffer.

PFQFTR_READ_TEXTURE_MEMORY
queries the support for reading texture memory.

PFQFTR_COPY_TEXTURE_MEMORY
queries the support for copying to/from texture memory.

PFQFTR_MTL_CMODE
queries the support and speed of material color mode. On most graphics platforms, this
mode yields significant performance improvements for management of multiple materi-
als. However, on some older low-end platforms, it can have additional cost and should
not be used if multiple materials are not in used.

PFQFTR_LMODEL_ATTENUATION
queries the support for light attenuation on the light model. This is IRIS GL style light
attenuation. See the IRIS GL lmdef(3g) reference page for more information.

PFQFTR_LIGHT_ATTENUATION
queries the support for light attenuation on the light. This is OpenGL style light attenua-
tion. See the OpenGL glLightModel(3g) reference page for more information.

PFQFTR_LIGHT_CLR_SPECULAR
queries the support for specular color components on lights. This is only supported in
OpenGL. See the OpenGL glLight(3g) reference page for more information.

pfMQueryFeature takes an NULL-terminated array of query tokens and a destination buffer and will do
multiple queries. The return value is the number of bytes successfully written. This routine is more
efficient than pfQueryFeature if multiple queries are desired.

pfFeature takes a PFFTR_ token which and a boolean value val and allows the overriding of IRIS
Performer’s determination of the existence of certain features. This can force IRIS Performer to use, or to
stop using, a specific feature. This is useful for running on new graphics platforms that may have con-
siderations that IRIS Performer did not predict, or for making one machine behave like another for a
specific feature. Note that if a particular feature is forced on and it happens to require hardware support
that does not exist, the program may not run. The features that may be set are:

PFFTR_VSYNC

PFFTR_VSYNC_SET

PFFTR_MULTISAMPLE

243

pfFeature(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

PFFTR_MULTISAMPLE_ROUND_POINT

PFFTR_ALPHA_FUNC_ALL

PFFTR_DISPLACE_POLYGON

PFFTR_POLYMODE

PFFTR_FOG_SPLINE

PFFTR_GANGDRAW

PFFTR_HYPERPIPE

PFFTR_FAST_TRANSPARENCY

PFFTR_TEXTURE_FAST

PFFTR_TEXTURE_16BIT_IFMTS

PFFTR_TEXTURE_SUBTEXTURE

PFFTR_TEXTURE_3D

PFFTR_TEXTURE_DETAIL

PFFTR_TEXTURE_SHARPEN

PFFTR_TEXTURE_OBJECT

PFFTR_TEXTURE_PROJECTIVE

PFFTR_TEXTURE_TRILINEAR

NOTES
pfWindow::query can be used to query the configuration parameters of a given pfWindow. pfQuerySys
can be used to query the specific configuration parameters of the current hardware configuration.

SEE ALSO
getgdesc, XGetVisualInfo, glGetString, glXQueryExtensionsString, getinvent

244

IRIS Performer 2.0 libpr C++ Reference Pages pfFile(3pf)hh

NAME
pfFile − Asynchronous real-time file access operations

FUNCTION SPECIFICATION
#include <Performer/pr/pfFile.h>

static pfFile* pfFile::create(char *path, mode_t mode);

static pfFile* pfFile::open(char *fname, int oflag,

int pfFile::close(void);

int pfFile::read(char *buf, int nbyte);

off_t pfFile::seek(off_t off, int whence);

int pfFile::write(char *buf, int nbyte);

int pfFile::getStatus(int attr);

static pfType * pfFile::getClassType(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfFile is derived from the parent class pfObject, so each of these member func-
tions of class pfObject are also directly usable with objects of class pfFile. This is also true for ancestor
classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfFile can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();

245

pfFile(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
The pfFile member functions create, open, close, read, write, and seek operate in an identical fashion
and take similar arguments as the standard UNIX file I/O functions: creat, open, close, read, write, and
lseek. The difference is that they return immediately without blocking while the physical file-system
access operation completes and also that instead of an integer file descriptor, a pfFile handle is used. IRIS
Performer supports a maximum of PFRTF_MAXREQ pending file I/O requests.

When called, pfFile::open and pfFile::create create a new process using the sproc mechanism that
manages the file operations asynchronously with the calling process. If the calling process has super-user
privileges, the new process will assign itself to processor 0, and lower its priority. The spawned process
will exit when either its pfFile is closed via pfFile::close or when its parent process (that which called the
member function pfFile::open or pfFile::create) exits. The pfFile structure is created on the process heap.

pfFile::close closes the open file and terminates the I/O process created by pfFile::open or pfFile::close.
close does not free file - use pfDelete for that purpose.

pfFile::getClassType returns the pfType* for the class pfFile. The pfType* returned by
pfGetFileClassType is the same as the pfType* returned by invoking the member function getType on
any instance of class pfFile. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfFile::getStatus returns the status of file corresponding to attr which may be one of:

PFRTF_STATUS Return 0 if last action complete and no other actions pending. 1 if action in
progress, and -1 if last action failed.

PFRTF_CMD Return the current (or last) file I/O action, one of the following:
PFRTF_NOACTION
PFRTF_CREATE
PFRTF_OPEN
PFRTF_READ
PFRTF_WRITE
PFRTF_SEEK
PFRTF_CLOSE
PFRTF_PENDING

246

IRIS Performer 2.0 libpr C++ Reference Pages pfFile(3pf)hh

PFRTF_BYTES Return the number of bytes from the last read or write action.

PFRTF_OFFSET Return the offset from the last seek action.

PFRTF_PID Return the process id of the I/O process associated with file.

NOTES
The need for the pfFile facility has been largely superseded by the IRIX 5 asynchronous I/O facility.
These capabilities are accessible through aio_cancel, aio_error, aio_init, aio_read, aio_return,
aio_suspend, and aio_write. Users are encouraged to use the aio functions for performing asynchronous
file operations in programs now in development.

The calling process should always call pfFile::close to close a file before exiting. If the calling program
exits without doing so, the file will not be closed. Such files can be challenging to remove from the file
system.

SEE ALSO
access, aio_cancel, aio_error, aio_init, aio_read, aio_return, aio_suspend, aio_write, close, creat, fcntl,
lseek, open, read, write

247

pfFilePath(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfFilePath, pfGetFilePath, pfFindFile − Locate files using a search path.

FUNCTION SPECIFICATION
#include <unistd.h>

#include <Performer/pr.h>

void pfFilePath(const char *path);

const char * pfGetFilePath(void);

int pfFindFile(const char *file, char path[PF_MAXSTRING], int amode);

DESCRIPTION
pfFilePath specifies one or more search path locations. These locations are directories to be searched for
data files by IRIS Performer applications. This information is used by the pfFindFile function. The path
argument to pfFilePath is a colon-separated list of directory pathnames similar to the PATH environment
variable. Here is a simple example:

pfFilePath("/usr/bin:/usr/sbin:/usr/local/bin");

pfGetFilePath returns the path list set using pfFilePath or NULL if no path has yet been set. The string
returned is identical in format to the one set via pfFilePath; each of the directory names is colon
separated.

pfFindFile attempts to find file amongst the paths set in the environment variable PFPATH and by
pfFilePath. It also tests the file’s access mode against the amode argument. IRIS Performer routines which
access files use pfFindFile.

The PFPATH environment variable is interpreted in the same format used for the pfFilePath. A C-shell
example that specifies the directories "/usr/data" and "/usr/share/Performer/data" is:

setenv PFPATH "/usr/data:/usr/share/Performer/data"

The search logic used by pfFindFile is this:

1. First the file is sought exactly as named by file. If it exists and passes the subsequent access
test described below, then file will be returned in the path argument.

2. If the file was not found or was not accessible, then each of the locations defined by the
PFPATH environment variable are prepended to the file argument and tested. If it exists
and passes the subsequent access test described below, then the complete path name will be
returned in the path argument.

248

IRIS Performer 2.0 libpr C++ Reference Pages pfFilePath(3pf)hh

3. If the file has still not been successfully located, then each of the locations defined by the
most recent call to pfFilePath will be prepended to the file argument and tested. If it exists
and passes the subsequent access test described below, then the complete path name will be
returned in the path argument.

4. If all of these efforts are fruitless, then pfFindFile will give up and return a NULL string in
the path argument.

The mere existence of file in one of the indicated directories is not sufficient, the file must also be accessi-
ble in the access mode defined by amode. This mode is a bitfield composed by OR-ing together the per-
mission attributes defined in <unistd.h> and listed in the following table:

Mode Token Mode Value Actioniii
R_OK 0x4 Read permission
W_OK 0x2 Write permission
X_OK 0x1 Execute and search
F_OK 0x0 Existence of filecc

c
c
c
c
c

cc
c
c
c
c
c

If the bits set in amode are also set in the file’s access permission mode, then the complete path is copied
into path and TRUE is returned indicating success. If the access modes are not similar, then the search
continues until there are no more paths to search and FALSE is returned indicating failure.

NOTES
pfFile::create and pfFile::open do not use pfFindFile. This is because the search implied can be
unpredictably slow when remote directories are present in the search path.

SEE ALSO
access

249

pfFog(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfFog, pfGetCurFog − Create, modify and query fog definition

FUNCTION SPECIFICATION
#include <Performer/pr/pfFog.h>

pfFog::pfFog()

static pfType * pfFog::getClassType(void);

void pfFog::setFogType(int type);

int pfFog::getFogType(void);

void pfFog::setColor(float r, float g, float b);

void pfFog::getColor(float *r, float *g, float *b);

void pfFog::setRange(float onset, float opaque);

void pfFog::getRange(float *onset, float *opaque);

void pfFog::setOffsets(float onset, float opaque);

void pfFog::getOffsets(float *onset, float *opaque);

void pfFog::setRamp(int points, float *range, float *density, float bias);

void pfFog::getRamp(int *points, float *range, float *density, float *bias);

float pfFog::getDensity(float range);

void pfFog::apply(void);

pfFog * pfGetCurFog(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfFog is derived from the parent class pfObject, so each of these member func-
tions of class pfObject are also directly usable with objects of class pfFog. This is also true for ancestor
classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfFog can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);

250

IRIS Performer 2.0 libpr C++ Reference Pages pfFog(3pf)hh

pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
pfFog is used to simulate atmospheric phenomena such as fog and haze and for depthcueing. The fog
color is blended with the color that is computed for rendered geometry based on the geometry’s range
from the eyepoint. Fog effects may be computed at geometric vertices and then interpolated or computed
precisely at each individual pixel.

new(arena) allocates a pfFog from the specified memory arena, or from the process heap if arena is NULL.
new allocates a pfFog from the default memory arena (see pfGetSharedArena). Like other pfObjects,
pfFogs cannot be created statically, automatically on the stack or in arrays and should be deleted with
pfDelete rather than the delete operator.

pfFog::getClassType returns the pfType* for the class pfFog. The pfType* returned by
pfFog::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfFog. When decisions are made based on the type of an object, it is usually better to
use the member function isOfTypeto test if an object is of a type derived from a Performer type rather
than to test for strict equality of the pfType*’s.

pfFog::setFogType sets the fog type to be used when this pfFog is applied. type must be one of:
PFFOG_VTX_LIN
PFFOG_VTX_EXP
PFFOG_VTX_EXP2
PFFOG_PIX_LIN
PFFOG_PIX_EXP
PFFOG_PIX_EXP2
PFFOG_PIX_SPLINE

251

pfFog(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

Detailed descriptions of these fog types are in the IRIS GL fogvertex(3G) and the OpenGL glFog(3G)
reference pages, with the exception of PFFOG_PIX_SPLINE. This is an advanced fog type that allows the
user to define fog densities as a PFFOG_MAXPOINTS point spline curve as described in
pfFog::setRamp. When fog type PFFOG_PIX_SPLINE is specified the internal fog ramp table will be
recomputed using the current values of fog range, fog offsets, and fog ramp. The default fog type is
PFFOG_PIX_EXP2. pfFog::getFogType returns the fog type as its value.

pfFog::setColor specifies the color to be used as the fog blend color. The default fog color is white, whose
RGB value is [1.0, 1.0, 1.0]. pfFog::getColor returns the fog color in the variables specified.

pfFog::setRange sets the onset and opaque ranges in world coordinate distances. The onset is the range
at which fog blending first occurs. The opaque range is the distance at which scene elements are com-
pletely opaque and appear as the fog color. For the fog types PFFOG_VTX_EXP, PFFOG_VTX_EXP2,
PFFOG_PIX_EXP, PFFOG_PIX_EXP2 only the opaque range is significant; the onset range is always 0.0
in world coordinates. If the fog type is PFFOG_PIX_SPLINE then the internal fog ramp table will be
recomputed whenever the ranges are specified. pfFog::getRange returns the current fog range values.

pfFog::setOffsets sets the individual onset and opaque range offsets used to modify the fog range. These
offsets are added to the fog range values when the pfFog is applied. Calling this function with offsets of
zero causes the ranges defined by pfFog::setRange to be used directly. If the fog type is
PFFOG_PIX_SPLINE then the internal fog ramp table will be recomputed whenever the offsets are
specified. pfFog::getOffsets returns the current fog offset values.

pfFog::setRamp defines the fog density curve using a table rather than as an algebraic function of range.
The fog ramp table is only used with the PFFOG_PIX_SPLINE fog type. From four to
PFFOG_MAXPOINTS control points are used to describe this curve. If fewer than four control points are
given, the last point will be replicated to create four points. Each point consists of a range and fog density
pair. These are given in ascending order in the arrays range and density. The range value is specified in a
normalized form in the numeric range [0..1], with 0.0 corresponding to the fog onset range (plus offset)
and 1.0 the fog opaque range (plus offset). This allows the ranges to be changed while maintaining the
same fog density curve. The fog density at each range point must also be in the [0..1] range, where 0.0
represents no fog and 1.0 means opaque fog. A Catmull-Rom spline interpolation is used to create
hardware fog tables from this fog ramp table. If the fog type is PFFOG_PIX_SPLINE then the internal
fog ramp table will be recomputed whenever the fog ramp, fog range, or fog offsets are specified. The
default fog ramp table defines a linear interpolation between the onset and opaque ranges. Currently, the
bias value must be set to zero. pfFog::getRamp returns the number of points, range and density arrays,
and bias in the variables specified.

pfFog::getDensity returns the density, ranging from 0 to 1 of the pfFog at range range.

pfFog::apply configures the graphics hardware with the fog parameters encapsulated by the pfFog. Only
the most recently applied pfFog is active although any number of pfFog definitions may be created. Fog-
ging must also be enabled (pfEnable(PFEN_FOG)) for this pfFog to take effect. Modifications made to

252

IRIS Performer 2.0 libpr C++ Reference Pages pfFog(3pf)hh

this pfFog do not have effect until pfFog::apply is called. If a pfDispList has been opened by
pfDispList::open, pfFog::apply will be captured by the pfDispList and will only have effect when that
pfDispList is later drawn with pfDispList::draw.

The fog state element is identified by the PFSTATE_FOG token. Use this token with pfGeoState::setAttr
to set the fog mode of a pfGeoState and with pfOverride to override subsequent fog changes:

Example 1:

/* Set up ’fogged’ pfGeoState */

gstate->setMode(PFSTATE_ENFOG, PFFOG_ON);

gstate->setAttr(PFSTATE_FOG, fog);

/* Attach gstate to gset */

gset->setGState(gstate);

/* Draw fogged gset */

gset->draw();

Example 2:

/* Override so that all geometry is fogged with ’fog’ */

pfEnable(PFEN_FOG);

fog->apply();

pfOverride(PFSTATE_FOG | PFSTATE_ENFOG, PF_ON);

pfGetCurFog returns the currently active pfFog.

NOTES
PFFOG_PIX_SPLINE is only effective on RealityEngine graphics systems. The visual quality of per-pixel
fogging is influenced by the ratio of the distances from the eye to the far and the eye to the near clipping
planes. This ratio should be minimized for best results.

BUGS
pfFog::getDensity does not properly evaluate PFFOG_PIX_SPLINE; instead it linearly interpolates the
spline points.

SEE ALSO
pfDispList, pfEnable, pfGeoState, pfObject, pfOverride, fogvertex, lsetdepth, perspective, glFog

253

pfFont(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfFont − Routines to load fonts for use in Performer.

FUNCTION SPECIFICATION
#include <Performer/pr/pfString.h>

pfFont::pfFont()

static pfType* pfFont::getClassType(void);

void pfFont::setCharGSet(int ascii, pfGeoSet *gset);

pfGeoSet* pfFont::getCharGSet(int ascii);

void pfFont::setCharSpacing(int ascii, pfVec3 &spacing);

const pfVec3& pfFont::getCharSpacing(int ascii);

void pfFont::setAttr(int which, void *attr);

void* pfFont::getAttr(int which);

void pfFont::setVal(int which, float val);

float pfFont::getVal(int which);

void pfFont::setMode(int mode, int val);

int pfFont::getMode(int mode);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfFont is derived from the parent class pfObject, so each of these member func-
tions of class pfObject are also directly usable with objects of class pfFont. This is also true for ancestor
classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfFont can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();

254

IRIS Performer 2.0 libpr C++ Reference Pages pfFont(3pf)hh

int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
The pfFont facility provides the capability to load fonts for 3-D rendering with the string drawing rou-
tines from pfString and pfText. The basic methodology is the user provides individual GeoSets to be
used as font characters. Likewise, the user provides 3-D spacings for each character so that Performer can
correctly move the ’cursor’ or ’3-D origin’ after drawing each character. Note that this facility is com-
pletely general and is independent of external font descriptions - see pfdLoadFont for a description of
loading some PostScript Type I fonts into a pfFont structure.

new(arena) allocates a pfFont from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfFont from the default memory arena (see pfGetSharedArena). Like other
pfObjects, pfFonts cannot be created statically, automatically on the stack or in arrays and should be
deleted with pfDelete rather than the delete operator.

pfFont::getClassType returns the pfType* for the class pfFont. The pfType* returned by
pfFont::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfFont. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfFont Definition:
Call pfFont::setCharGSet to set the pfGeoSet which Performer should use when drawing the character
specified by ascii in a pfString. pfFont::getCharGSet returns the pfGeoSet currently being used for the
character specified by ascii. Call pfFont::setCharSpacing to set the 3D spacing for the character specified
by ascii to be the pfVec3 spacing. This spacing is used to update the cursor position of a pfString after this
character has been drawn. pfFont::getCharSpacing returns a reference to a pfVec3 specifying the spacing
of a given character of a font.

255

pfFont(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfFont Attributes:
pfFont::setAttr sets a particular attribute for a given Performer font, while pfFont::getAttr will return a
particular attribute corresponding to the which token.

Current valid pfFont Attributes: PFFONT_GSTATE PFFONT_BBOX PFFONT_SPACING
PFFONT_NAME

PFFONT_GSTATE specifies a global pfGeoState to be used for every character of a pfFont. Note that
pfGeoStates bound to GeoSets representing characters will take precedence over the PFFONT_GSTATE
pfGeoState. A Font has NO pfGeoState by default.

PFFONT_BBOX specifies a bounding box that will enclose every individual character of a pfFont.

PFFONT_SPACING specifies a global spacing to use to simulate fixed width fonts. This spacing is used
only if the pfFont mode PFFONT_CHAR_SPACING is set to PFFONT_CHAR_SPACING_FIXED or a
spacing is not available (NULL) for a given character. PFFONT_NAME simply specifies a name associ-
ated with a pfFont.

pfFont Modes:
pfFont::setMode sets a particular mode for a given Performer font, while pfFont::getAttr will return the
current value of the mode corresponding to the mode token.

Current valid pfFont Modes: PFFONT_CHAR_SPACING PFFONT_NUM_CHARS

PFFONT_CHAR_SPACING specifies whether to use fixed or variable spacings for all characters of a
pfFont. Possible values are PFFONT_CHAR_SPACING_FIXED and
PFFONT_CHAR_SPACING_VARIABLE - the later being the default.

pfFont Values:
pfFont::setVal sets a particular value for a given Performer font, while pfFont::getVal will return the
corresponding value associated with the which token.

NOTES
See pfText for sample code demonstrating pfFont.

SEE ALSO
pfBox, pfDelete, pfGeoSet, pfGeoState, pfString, pfText, pfdLoadFont

256

IRIS Performer 2.0 libpr C++ Reference Pages pfFrustum(3pf)hh

NAME
pfFrustum − Operations on frusta

FUNCTION SPECIFICATION
#include <Performer/pr/pfGeoMath.h>

pfFrustum::pfFrustum()

static pfType * pfFrustum::getClassType(void);

void pfFrustum::makePersp(float left, float right, float bottom, float top);

void pfFrustum::makeOrtho(float left, float right, float bottom, float top);

void pfFrustum::makeSimple(float fov);

int pfFrustum::getFrustType(void);

void pfFrustum::getFOV(float* fovh, float* fovv);

void pfFrustum::setAspect(int which, float widthHeightRatio);

float pfFrustum::getAspect(void);

void pfFrustum::setNearFar(float near, float far);

void pfFrustum::getNearFar(float* near, float* far);

void pfFrustum::getNear(pfVec3 &ll, pfVec3 &lr, pfVec3 &ul, pfVec3 &ur);

void pfFrustum::getFar(pfVec3 &ll, pfVec3 &lr, pfVec3 &ul, pfVec3 &ur);

int pfFrustum::getEye(pfVec3 &eye);

void pfFrustum::getPtope(pfPolytope *ptope);

void pfFrustum::getGLProjMat(pfMatrix &mat);

void pfFrustum::apply(void);

int pfFrustum::contains(const pfVec3 &pt);

int pfFrustum::contains(const pfBox *box);

int pfFrustum::contains(const pfSphere *sph);

int pfFrustum::contains(const pfCylinder *cyl);

void pfFrustum::orthoXform(const pfFrustum* src, const pfMatrix &mat);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfFrustum is derived from the parent class pfPolytope, so each of these member
functions of class pfPolytope are also directly usable with objects of class pfFrustum. This is also true for
ancestor classes of class pfPolytope.

257

pfFrustum(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfType* pfPolytope::getClassType(void);
int pfPolytope::getNumFacets(void);
int pfPolytope::setFacet(int i, const pfPlane *facet);
int pfPolytope::getFacet(int i, pfPlane *facet);
int pfPolytope::removeFacet(int i);
void pfPolytope::orthoXform(const pfPolytope *src, const pfMatrix &mat);
int pfPolytope::contains(const pfVec3 &pt);
int pfPolytope::contains(const pfSphere *sphere);
int pfPolytope::contains(const pfBox *box);
int pfPolytope::contains(const pfCylinder *cyl);
int pfPolytope::contains(const pfPolytope *ptope1);

Since the class pfPolytope is itself derived from the parent class pfObject, objects of class pfFrustum can
also be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfFrustum can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();

258

IRIS Performer 2.0 libpr C++ Reference Pages pfFrustum(3pf)hh

int pfMemory::getSize();

DESCRIPTION
A pfFrustum represents a viewing and or culling volume bounded by left, right, top, bottom, near and far
planes.

new(arena) allocates a pfFrustum from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfFrustum from the default memory arena (see pfGetSharedArena). Like other
pfObjects, pfFrusta cannot be created statically, automatically on the stack or in arrays and should be
deleted with pfDelete rather than the delete operator.

A new pfFrustum defaults to a simple perspective frustum (see ::makeSimple) with FOV = 45 degrees,
and near and far distances of 1 and 1000.

pfFrustum::getClassType returns the pfType* for the class pfFrustum. The pfType* returned by
pfFrustum::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfFrustum. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfFrustum::makePersp configures the pfFrustum as a perspective frustum with the eye at (0,0,0) and the
points (left, near, bottom) and (right, near, top) being the lower-left and upper-right corners of the viewing
plane. The coordinate system used is: left -> right = +X axis, near -> far = +Y axis, bottom -> top = +Z
axis. The far plane lies at Y = far. Note that the field of view of a frustum configured with
pfFrustum::makePersp is dependent on the current near plane distance. However, subsequent changes to
the near plane distance with pfFrustum::setNearFar do not affect the field of view, simplifying clip plane
modification.

pfFrustum::makePersp is similar to the IRIS GL window(3g) command and can generate off-axis projec-
tions that are often used for stereo and "video-wall" displays. With an off-axis frustum, the line from the
eyepoint passing through the center of the image is not perpendicular to the projection plane.

Example 1:

/*

* Make two off-axis projections which together provide

* horizontal and vertical FOVs of 90 and 45 degrees.

*/

t = pfTan(22.5f);

left->setNearFar(1.0f, 1000.0f);

left->makePersp(-1.0f, 0.0f, -t, t);

259

pfFrustum(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

right->setNearFar(1.0f, 1000.0f);

right->makePersp(0.0f, 1.0f, -t, t);

pfFrustum::makeOrtho configures the pfFrustum as an orthogonal frustum. The 6 sides of the frustum
are: x = left, x = right, z = bottom, z = top, y = near, y = far. pfFrustum::makeOrtho is similar to the IRIS
GL ortho2(3g) command. The near and far distances of an orthogonal frustum are set by
pfFrustum::setNearFar.

pfFrustum::makeSimple configures the pfFrustum as an on-axis perspective frustum with horizontal and
vertical fields-of-view of fov degrees. With an on-axis frustum, the line connecting the center of projection
with the eyepoint is perpendicular to the projection plane. pfFrustum::makeSimple is similar to the IRIS
GL perspective(3g) command. The near and far distances of a simple frustum are set by
pfFrustum::setNearFar. For viewports with non-square aspect ratios, pfFrustum::setAspect may be used
to automatically fit either the horizontal or vertical fields of view to the viewport (see below).

pfFrustum::getFrustType returns a symbolic token indicating the frustum type of the pfFrustum and is
one of: PFFRUST_SIMPLE, PFFRUST_ORTHOGONAL, or PFFRUST_PERSPECTIVE. The frustum
type is set by the pfFrustum::make<*> routines. Note that it is possible to make a simple frustum with
pfFrustum::makePersp if left == -right and bottom == -top.

pfFrustum::setNearFar sets the near and far distances of the pfFrustum. It will also recalculate the
frustum’s geometry based on the frustum type. If frust is perspective, its field of view will not be
changed, only the near and far planes will be modified. pfFrustum::getNearFar copies the near and far
distances of the pfFrustum into near and far.

pfFrustum::setAspect adjusts the horizontal or vertical extent of the pfFrustum to fit the aspect ratio
specified by widthHeightRatio. which is a symbolic token specifying how to modify frust and is one of:

PFFRUST_CALC_NONE Disable aspect ratio calculation

PFFRUST_CALC_HORIZ Modify horizontal extent of frustum to match the aspect ratio

PFFRUST_CALC_VERT Modify vertical extent of frustum to match the aspect ratio

pfFrustum::setAspect is useful for matching a frustum to a viewport:

Example 2:

getviewport(&l, &r, &b, &t);

aspect = (float)(r - l) / (float)(t - b);

/*

* Fit vertical frustum extent to viewport so that horizontal

* FOV is 45 degrees and vertical is based on ’aspect’.

*/

260

IRIS Performer 2.0 libpr C++ Reference Pages pfFrustum(3pf)hh

frust->makeSimple(45.0f);

frust->setAspect(PFFRUST_CALC_VERT, aspect);

Frustum aspect ratio matching is not persistent. You must call pfFrustum::setAspect each time the frus-
tum changes shape in order to maintain matched frustum/viewport.

pfFrustum::getAspect returns the aspect ratio of the pfFrustum.

pfFrustum::getFOV copies the total horizontal and vertical fields of view into fovh and fovv respectively.
The fields of view for an orthogonal frustum are both 0.0.

pfFrustum::getNear returns the four corners of the near (viewing or projection) plane putting the lower-
left, lower-right, upper-left and upper-right vertices into ll, lr, ul, and ur, respectively.

pfFrustum::getFar returns the four corners of the far plane putting the lower-left, lower-right, upper-left
and upper-right vertices into ll, lr, ul, and ur, respectively.

pfFrustum::getEye copies the eye position of the frustum the pfFrustum into eye.

pfFrustum::getPtope copies the 6 half spaces which define the pfFrustum into the pfPolytope ptope.

pfFrustum::getGLProjMat returns the projection matrix corresponding to the pfFrustum in the coordi-
nate system of the Graphics Library, ignoring any transformations applied to frust with
pfFrustum::orthoXform.

pfFrustum::apply configures the hardware projection matrix with the projection defined by the pfFrus-
tum. Modifications made to frust do not have effect until pfFrustum::apply is called.

pfFrustum::apply is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfFrustum::apply will not have immediate effect but will be captured by the pfDispList and will only
have effect when that pfDispList is later drawn with pfDispList::draw.

pfFrustum::contains(const pfVec3 pt, ...) returns TRUE or FALSE depending on whether the point pt is
in the interior of the specified frustum.

pfFrustum::contains(struct pfBox *), pfFrustum::contains(struct pfSphere *), and
pfFrustum::contains(struct pfCylinder *) test whether the specified pfFrustum contains a non-empty por-
tion of the volume specified by the argument, a box, sphere or cylinder, respectively. The various
member functions pfFrustum::contains test whether the pfFrustum contains a non-empty portion of a
box, sphere, or cylinder.

261

pfFrustum(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

The return value from these functions is the OR of one or more bit fields. The returned value may be:

PFIS_FALSE: The intersection of the primitive
and the pfFrustum is empty.

PFIS_MAYBE: The intersection of the primitive and the
pfFrustum might be non-empty.

PFIS_MAYBE | PFIS_TRUE: The intersection of the primitive and the
pfFrustum is definitely non-empty.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN: The primitive
is non-empty and lies entirely inside the pfFrustum.

The primary use of pfFrustum::contains within IRIS Performer is in culling the database to the view frus-
tum each frame, where speed is paramount. If this computation cannot be done easily, the function
returns PFIS_MAYBE.

pfFrustum::orthoXform transforms the frustum using the matrix mat: dst = src * mat. If mat is not orthog-
onal the results are undefined.

NOTES
pfFrustum construction orients the frustum with +Z up, +X to the right, and +Y into the screen which is
different than both the IRIS GL and OpenGL viewing coordinate systems which have +Y up, +X to the
right and -Z into the screen.

SEE ALSO
pfBox, pfDelete, pfDispList, pfMatrix, pfObject, pfPlaneIsectSeg, pfPolytope, pfSphere, pfState, pfVec3,
ortho, perspective, window

262

IRIS Performer 2.0 libpr C++ Reference Pages pfGLMatrix(3pf)hh

NAME
pfScale, pfTranslate, pfRotate, pfPushMatrix, pfPushIdentMatrix, pfPopMatrix, pfLoadMatrix,
pfMultMatrix − Operate on graphics library matrix stack

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfScale(float x, float y, float z);

void pfTranslate(float x, float y, float z);

void pfRotate(int axis, float degrees);

void pfPushMatrix(void);

void pfPushIdentMatrix(void);

void pfPopMatrix(void);

void pfLoadMatrix(pfMatrix m);

void pfMultMatrix(pfMatrix m);

DESCRIPTION
These functions are similar to the corresponding IRIS GL and OpenGL graphics library matrix stack com-
mands. The only difference is that these IRIS Performer commands may be applied to and retained in a
pfDispList for subsequent activation.

pfRotate accepts the values PF_X, PF_Y, and PF_Z to select the axis of rotation.

pfPushIdentMatrix is equivalent to calling pfPushMatrix followed with a call to pfLoadMatrix with an
identity matrix.

These routines are all display-listable commands. If a pfDispList has been opened by pfDispList::open,
these commands will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDispList::draw.

SEE ALSO
loadmatrix, multmatrix, popmatrix, pushmatrix, rot, scale, translate

263

pfGeoSet(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfGeoSet − Create, modify and query geometry set objects

FUNCTION SPECIFICATION
#include <Performer/pr/pfGeoSet.h>

pfGeoSet::pfGeoSet()

static pfType * pfGeoSet::getClassType(void);

void pfGeoSet::draw(void);

void pfGeoSet::drawHlightOnly(void);

void pfGeoSet::setNumPrims(int num);

int pfGeoSet::getNumPrims(void);

void pfGeoSet::setPrimType(int type);

int pfGeoSet::getPrimType(void);

void pfGeoSet::setPrimLengths(int *lengths);

int * pfGeoSet::getPrimLengths(void);

void pfGeoSet::setAttr(int attr, int bind, void *alist, ushort *ilist);

int pfGeoSet::getAttrBind(int attr);

void pfGeoSet::getAttrLists(int attr, void **alist, ushort **ilist);

int pfGeoSet::getAttrRange(int attr, int *minIndex, int *maxIndex);

void pfGeoSet::setDrawMode(int mode, int val);

int pfGeoSet::getDrawMode(int mode);

void pfGeoSet::setGState(pfGeoState *gstate);

pfGeoState * pfGeoSet::getGState(void);

void pfGeoSet::setGStateIndex(int id);

int pfGeoSet::getGStateIndex(void);

void pfGeoSet::setLineWidth(float width);

float pfGeoSet::getLineWidth(void);

void pfGeoSet::setPntSize(float size);

float pfGeoSet::getPntSize(void);

void pfGeoSet::setHlight(pfHighlight *hlight);

264

IRIS Performer 2.0 libpr C++ Reference Pages pfGeoSet(3pf)hh

pfHighlight * pfGeoSet::getHlight(void);

void pfGeoSet::setDrawBin(short bin);

int pfGeoSet::getDrawBin(void);

static void pfGeoSet::setPassFilter(uint mask);

static uint pfGeoSet::getPassFilter(void);

int pfGeoSet::query(uint which, void* dst);

int pfGeoSet::mQuery(uint* which, void* dst);

void pfGeoSet::setBound(pfBox *bbox, int mode);

void pfGeoSet::getBound(pfBox *bbox);

void pfGeoSet::setIsectMask(uint mask, int setMode, int bitOp);

uint pfGeoSet::getIsectMask(void);

int pfGeoSet::isect(pfSegSet *segSet, pfHit **hits[]);

struct pfSegSet

{

int mode;

void* userData;

pfSeg segs[PFIS_MAX_SEGS];

uint activeMask;

uint isectMask;

void* bound;

int (*discFunc)(pfHit*);

};

PARENT CLASS FUNCTIONS
The IRIS Performer class pfGeoSet is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfGeoSet. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

265

pfGeoSet(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfGeoSet can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

PARAMETERS
attr is a symbolic token that identifies a specific attribute type and is one of:

PFGS_COLOR4 alist must be list of pfVec4 colors

PFGS_NORMAL3 alist must be list of pfVec3 normals,

PFGS_TEXCOORD2 alist must be list of pfVec2 texture coordinates,

PFGS_COORD3 alist must be list of pfVec3 coordinates.

bind
is a symbolic token that specifies an attribute binding type and is one of:

PFGS_OFF attr is not specified and is thus inherited,

PFGS_OVERALL attr is specified once for the entire pfGeoSet,

PFGS_PER_PRIM attr is specified once per primitive,

PFGS_PER_VERTEX attr is specified once per vertex.

DESCRIPTION
The pfGeoSet (short for "Geometry Set") is a fundamental IRIS Performer data structure. Each pfGeoSet
is a collection of geometry with one primitive type, such as points, lines, triangles. Each pfGeoSet also has
a single combination of texture, normal, and color attribute bindings, such as "untextured with colors per
vertex and normals per primitive". A pfGeoSet forms primitives out of lists of attributes which may or
may not be indexed. An indexed pfGeoSet uses a list of unsigned shorts to index an attribute list.

266

IRIS Performer 2.0 libpr C++ Reference Pages pfGeoSet(3pf)hh

Indexing provides a more general mechanism for specifying geometry than hardwired attribute lists and
also has the potential for substantial memory savings due to shared attributes. Nonindexed pfGeoSet’s
are sometimes easier to construct and may save memory in situations where vertex sharing is not possible
since index lists are not required. Nonindexed pfGeoSet’s also require fewer CPU cycles to traverse and
may exhibit better caching behavior. A pfGeoSet is either completely indexed or non-indexed; hybrid
pfGeoSets that have some attributes indexed and others non-indexed are not supported. For theses cases,
simply construct an identity-map index list and specify it with each "non-indexed" pfGeoSet attribute
array.

new(arena) allocates a pfGeoSet from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfGeoSet from the default memory arena (see pfGetSharedArena). Like other
pfObjects, pfGeoSets cannot be created statically, automatically on the stack or in arrays. pfGeoSets
should be deleted with pfDelete rather than the delete operator.

pfGeoSet Attributes
pfGeoSet::setAttr sets a pfGeoSet attribute binding type, attribute list, and attribute index list. An "attri-
bute" is either coordinate, color, normal or texture coordinate which is supplied in list form to the
pfGeoSet. The optional attribute index list is a list of unsigned short integers which index the attribute list.
The attribute binding type specifies how the lists are interpreted to define geometry, for example, does the
color attribute list provide a color for each vertex (PFGS_PER_VERTEX) or just an overall color for the
entire pfGeoSet (PFGS_OVERALL)?

Only certain combinations of attributes and binding types make sense. For example, vertices clearly must
be specified per-vertex and the utility of texture coordinates specified other than per-vertex is question-
able. The following table shows the allowed combinations:

Attribute TypeiiBinding
COLOR4 NORMAL3 TEXCOORD2 COORD3ii

PFGS_OFF yes yes yes no
PFGS_OVERALL yes yes no no
PFGS_PER_PRIM yes yes no no
PFGS_PER_VERTEX yes yes yes yesc

c
c
c
c
c
c
c

An OVERALL binding requires an index list of length 1 for indexed pfGeoSets. The value of bind is
unimportant for attr = PFGS_COORD3 since vertices are always specified on a per-vertex basis. Default
bindings are OFF for all attributes except coordinates.

ilist, if not NULL, is an index array which indexes the attribute array, alist. If ilist is NULL, the pfGeoSet is
non-indexed and accesses the attribute list in sequential order.

If any attribute’s binding is not PFGS_OFF and the corresponding ilist is defined as NULL, the pfGeoSet
is considered to be non-indexed and ALL other specified index lists will be ignored. Nonindexed

267

pfGeoSet(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

interpretation of an attribute list is equivalent to using an index list whose elements are 0,1,2,...,N-1. Con-
sequently it is possible to emulate a pfGeoSet with mixed indexed and non-indexed attributes by using an
index array whose elements are 0,1,2,...,N-1 with N being the largest possible index.

If attribute and index lists are allocated from the pfMalloc routines, pfGeoSet::setAttr will correctly
update the reference counts of the lists. Specifically, pfGeoSet::setAttr will decrement the reference
counts of the old lists and increment the reference counts of the new lists. It will not free any lists whose
reference counts reach 0. When a pfGeoSet is deleted with pfDelete, all pfMalloc’ed lists will have their
reference counts decremented by one and will be freed if their count reaches 0.

When pfGeoSets are copied with pfCopy, all pfMalloc’ed lists of the source pfGeoSet will have their
reference counts incremented by one and those pfMalloc’ed lists of the destination pfGeoSet will have
their reference counts decremented by one. pfCopy copies lists only by reference (only the pointer is
copied) and will not free any lists whose reference counts reach 0.

Attribute lists may be any of the following types of memory:

1. Data allocated with pfMalloc. This is the usual, and recommended memory type for
pfGeoSet index and attribute arrays.

2. Static, malloc(), amalloc(), usmalloc() etc, data subsequently referred to as non-pfMalloc’ed
data. This type of memory is not generally recommended since it does not support refer-
ence counting or other features provided by pfMalloc. In particular, the use of static data is
highly discouraged and may result in segmentation violations.

3. pfCycleBuffer memory. In a pipelined, multiprocessing environment, pfCycleBuffers pro-
vide multiple data buffers which allow frame-accurate data modifications to pfGeoSet attri-
bute arrays like coordinates (facial animation), and texture coordinates (ocean waves, surf).
pfGeoSet::setAttr will accept a pfCycleBuffer* or pfCycleMemory* for the attribute list
(index lists do not yet support pfCycleBuffer) andthe pfGeoSet will select the appropriate
buffer when rendered or intersected with. See pfCycleBuffer for more details.

pfGeoSet::getAttrBind returns the binding type of attr and pfGeoSet::getAttrLists returns the attribute
and index list base pointers. If the gset is non-indexed, send down a dummy ushort pointer instead of
NULL as ilist.

pfGeoSet::getAttrRange returns the range of attributes in the attribute list identified by attr that are used
by the pfGeoSet. (The total size, in bytes, of the list may be queried through pfGetSize if the list was allo-
cated by pfMalloc.) If the list is non-indexed, pfGeoSet::getAttrRange returns the number of contiguous
attributes accessed by the pfGeoSet (the range implicitly beginning at 0). If the list is indexed,
pfGeoSet::getAttrRange returns the same value as in the non-indexed case but also copies the minimum
and maximum indices into minIndex and maxIndex. If the attribute list is non-indexed, or the attribute
binding type is PFGSS_OFF, 0 and -1 are returned in minIndex and maxIndex. NULL may be passed
instead of minIndex and/or maxIndex when the min/max index is not required.

268

IRIS Performer 2.0 libpr C++ Reference Pages pfGeoSet(3pf)hh

pfGeoSet::getAttrRange is typically used to allocate a new attribute array when cloning a pfGeoSet:

int numVerts = gset->getAttrRange(PFGS_COORD3, NULL, &max);

numVerts = PF_MAX2(numVerts, max + 1);

newVerts = (pfVec3*) pfMalloc(sizeof(pfVec3) * numVerts, arena);

pfGeoSet Primitive Types
pfGeoSet::setPrimType specifies the type of primitives found in a pfGeoSet. type is a symbolic token and
is one of:

PFGS_POINTS
PFGS_LINES
PFGS_LINESTRIPS
PFGS_FLAT_LINESTRIPS
PFGS_TRIS
PFGS_QUADS
PFGS_TRISTRIPS
PFGS_FLAT_TRISTRIPS
PFGS_POLYS

The primitive type dictates how the coordinate and coordinate index lists are interpreted to form
geometry. See below for a description of primitive types. pfGeoSet::getPrimType returns the primitive
type of the pfGeoSet.

pfGeoSet::setNumPrims and pfGeoSet::getNumPrims sets/gets the number of primitives in the
pfGeoSet. A primitive is a single point, line segment, line strip, triangle, quad, triangle strip, or polygon
depending on the primitive type.

A single line strip, triangle strip, or polygon is considered to be a primitive so a pfGeoSet may contain
multiple strips of differing lengths or multiple polygons with differing number of sides. Therefore, for
strip primitives and PFGS_POLYS, a separate array is necessary which specifies the number of vertices in
each strip or polygon. This array is set by pfGeoSet::setPrimLengths. lengths is an array of vertex counts
such that lengths[0] = number of vertices in strip/polygon 0, lengths[1] = number of vertices in
strip/polygon 1,..., lengths[n-1] = number of vertices in strip/polygon n-1 where n is the number of prim-
itives set by pfGeoSet::setNumPrims. pfGeoSet::getPrimLengths returns a pointer to the lengths array
of the pfGeoSet.

Assuming the coordinate index list is an array V indexed by i, num is the number of primitives, lengths is
the array of strip or polygon lengths and Nv the size of the coordinate index list, the primitive type inter-
prets V in the following ways:

269

pfGeoSet(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

PFGS_POINTS
The pfGeoSet is a set of num points. Each V[i] is a point, i = 0, 1, 2, ..., num-1. Nv = num.

PFGS_LINES
The pfGeoSet is a set of num disconnected line segments. Each line segment is drawn from
V[i] to V[i+1], i = 0, 2, ..., 2*(num-1). Nv = 2 * num.

PFGS_LINESTRIPS
The pfGeoSet is a set of num line strips (also known as polylines). Linestrip[i] is drawn
between V[p+j], j = 0, 1, ..., lengths[i]-1, where p is sum of all lengths[k], 0 <= k < i. Nv = sum
of all lengths[k], k = 0, 1, ..., num-1. Note that all lengths[i] values should be >= 2.

PFGS_FLAT_LINESTRIPS
The pfGeoSet is a set of num line strips (also known as polylines). Linestrip[i] is drawn
between V[p+j], j = 0, 1, ..., lengths[i]-1, where p is sum of all lengths[k], 0 <= k < i. Nv = sum
of all lengths[k], k = 0, 1, ..., num-1. Note that all lengths[i] value should be >= 2.

PFGS_TRIS
The pfGeoSet is a set of num independent triangles. Each triangle is V[i], V[i+1], V[i+2], i =
0, 3, 6, ..., 3*(num-1). Nv = 3 * num.

PFGS_QUADS
The pfGeoSet is a set of num independent quads. Each quad is V[i], V[i+1], V[i+2], V[i+3], i
= 0, 4, 8, ..., 4*(num-1). Nv = 4 * num.

PFGS_TRISTRIPS
The pfGeoSet is a set of num triangle strips. Tristrip[i] is drawn between V[p+j], j = 0, 1, ...,
lengths[i]-1, where p is sum of all lengths[k], 0 <= k < i. Nv = sum of all lengths[k], k = 0, 1, ...,
num-1. Note that all lengths[i] values should be >= 3.

PFGS_FLAT_TRISTRIPS
The pfGeoSet is a set of num triangle strips. Tristrip[i] is drawn between V[p+j], j = 0, 1, ...,
lengths[i]-1, where p is sum of all lengths[k], 0 <= k < i. Nv = sum of all lengths[k], k = 0, 1, ...,
num-1. Note that all lengths[i] should be >= 3.

PFGS_POLYS
The pfGeoSet is a set of num polygons. Polygon[i] is the convex hull of the vertices V[p+j], j
= 0, 1, ..., lengths[i]-1 where p is sum of all lengths[k], 0 <= k < i. Nv = sum of all lengths[k], k
= 0, 1, ..., num-1. Note that all lengths[i] should be >= 3.

PFGS_TRIS, PFGS_QUADS, PFGS_TRISTRIPS, PFGS_FLAT_TRISTRIPS, and PFGS_POLYS are ren-
dered as filled polygons but will be rendered in wire-frame according to the following rules:

1. Always render in wireframe mode if PFEN_WIREFRAME mode is enabled through
pfGeoSet::setDrawMode.

270

IRIS Performer 2.0 libpr C++ Reference Pages pfGeoSet(3pf)hh

2. Use the wireframe mode set by the attached pfGeoState, if any, as described in
pfGeoSet::setGState below.

3. Use the wireframe mode set by pfEnable or pfDisable with the PFEN_WIREFRAME argu-
ment.

A PFGS_PER_VERTEX binding for PFGS_COLOR4 and PFGS_NORMAL3 is interpreted differently for
PFGS_FLAT_LINESTRIPS and PFGS_FLAT_TRISTRIPS primitive types. With flat-shaded strip primi-
tives, only the last vertex in each primitive defines the shading of the primitive (see pfShadeModel.) Thus
the first vertex in a FLAT_LINESTRIP and the first two vertices in a FLAT_TRISTRIP do not require nor-
mals or colors. Consequently when specifying a PFGS_PER_VERTEX binding for either colors or nor-
mals, you should not specify a color or normal for the first vertex of a line strip or for the first 2 vertices of
a triangle strip. pfGeoSet::draw will automatically set the shading model to FLAT before rendering
PFGS_FLAT_ primitives.

Example 1:

/* Set up a non-indexed, FLAT_TRISTRIP pfGeoSet */

gset = new pfGeoSet;

gset->setPrimType(PFGS_FLAT_TRISTRIPS);

gset->setNumPrims(2);

lengths[0] = 4;

lengths[1] = 3;

gset->setPrimLengths(lengths);

/* Only need 3 colors: 2 for 1st strip and 1 for 2nd */

colors = (pfVec4*) pfMalloc(sizeof(pfVec4) * 3, NULL);

gset->setAttr(PFGS_COLOR4, PFGS_PER_VERTEX, colors, NULL);

gset->setAttr(PFGS_COORD3, PFGS_PER_VERTEX, coords, NULL);

pfGeoSet Special Rendering Characteristics
When colortable mode is enabled, either through pfEnable or through pfGeoState::apply, a pfGeoSet
will not use its local color array but will use the color array supplied by the currently active pfColortable
(See the pfColortable and pfEnable manual pages). pfColortables will affect both indexed and non-
indexed pfGeoSets.

A pfGeoSet of type PFGS_POINTS will be rendered with the special characteristics of light points if a
pfLPointState has been applied. Light point features include:

271

pfGeoSet(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

1. Perspective size.

2. Perspective fading.

3. Fog punch-through.

4. Directionality.

5. Intensity.

See pfLPointState for more details.

pfGeoSet::setPntSize and pfGeoSet::setLineWidth set the point size and line width of the pfGeoSet.
Point size has effect only when the primitive type is PFGS_POINTS and line width is used only for prim-
itive types PFGS_LINES, PFGS_LINESTRIPS, PFGS_FLAT_LINESTRIPS and for all primitives drawn
in wireframe mode. A pfGeoSet sets point size and line width immediately before rendering only if the
size/width is greater than zero. Otherwise it will inherit size/width through the Graphics Library.

pfGeoSet::getPntSize and pfGeoSet::getLineWidth return gset’s point size and line width respectively.

pfGeoSet::setDrawMode further characterizes a pfGeoSet’s primitive type as flat-shaded, wireframe or
compiled. mode is a symbolic token specifying the mode to set and is one of:

PFGS_FLATSHADE Always render the pfGeoSet with a flat shading model.

PFGS_WIREFRAME Always render and intersect the pfGeoSet in wireframe. For render-
ing in wireframe and intersection with solid geometry, enable
wireframe on an attached pfGeoState (See pfGSetGState).

PFGS_COMPILE_GL Compile the pfGeoSet’s geometry into a GL display list and subse-
quently render the display list.

val is PF_ON or PF_OFF to enable/disable the mode.

If a pfGeoSet has very few primitives, the CPU overhead in pfGeoSet::draw may become noticeable. In
this situation, it is reasonable to compile the pfGeoSet into a GL display list which has very little CPU
overhead. However, GL display lists have several drawbacks that must be considered:

Storage
GL display lists will increase memory usage because every vertex, color, etc is copied into
the display list, thus duplicating the pfGeoSet’s attribute arrays. Additionally, GL display
lists cannot index and so do not benefit from vertex sharing.

While it is possible to delete the attribute arrays after the pfGeoSet has been compiled to
free up some memory, it will no longer be possible to intersect with the pfGeoSet’s
geometry (see pfGSetIsectSegs).

272

IRIS Performer 2.0 libpr C++ Reference Pages pfGeoSet(3pf)hh

Flexibility
Once in a GL display list, attributes like coordinates and normals may not be modified.
This precludes dynamic geometry like water and facial animation.

Coherency
If any attribute of the pfGeoSet changes then the burden is on the user to regenerate the GL
display list through pfGeoSet::setDrawMode.

In summary, applications with many very small pfGeoSets each of which defines static unchanging
geometry may be suitable for pfGeoSet compilation into GL display lists.

The mechanism of PFGS_COMPILE_GL is illustrated in the following example:

/* We assume ’gset’ is already "built" by this point */

/* Enable GL display list compilation and rendering */

gset->setDrawMode(PFGS_COMPILE_GL, PF_ON);

/*

* The first pfDrawGSet after pfGSetDrawMode will compile

* the pfGeoSet into a GL display list. Note that this is

* a very slow procedure and is generally done at

* initialization time.

*/

gset->draw();

:

/* This time we draw the GL display list */

gset->draw();

:

/* Disable GL display list mode */

gset->setDrawMode(PFGS_COMPILE_GL, PF_OFF);

/* Free the GL display list and render ’gset’ in immediate mode */

gset->draw();

Deciding which shading model to used when draw a pfGeoSet is performed with the following decision
hierarchy:

1. Use flat shading if pfGeoSet consists of either PFGS_FLAT_TRISTRIPS or
PFGS_FLAT_LINESTRIPS or if the mode PFGS_FLATSHADE is enabled with
pfGeoSet::setDrawMode.

273

pfGeoSet(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

2. Use the shading model specified by the pfGeoState bound to the pfGeoSet. This is the typi-
cal case in IRIS Performer. See the pfGeoSet::setGState description below for further
details.

3. Use the shading model set by pfShadeModel.

pfGeoSet::getDrawMode returns the value of mode or -1 if mode is an unknown mode.

pfGeoSets (Geometry) and pfGeoStates (Appearance)
A pfGeoState is an encapsulation of libpr graphics modes and attributes (see pfState). For example, a
pfGeoState representing a glass surface may reference a shiny pfMaterial and enable transparency. A
pfGeoState does not inherit state from other pfGeoStates. Consequently, when attached to a pfGeoSet via
pfGeoSet::setGState, the pfGeoSet will always be rendered with the state encapsulated by gstate, regard-
less of the order in which pfGeoSet/pfGeoState pairs are rendered. This behavior greatly eases the bur-
den of managing graphics state in the graphics library. A pfGeoSet may directly reference or indirectly
index a pfGeoState through a global table.

pfGeoSet::setGState "attaches" gstate to the pfGeoSet so that the pfGeoSet may be drawn with a certain
graphics state. When drawn by pfGeoSet::draw, a pfGeoSet will apply its pfGeoState (if it has one) with
pfGeoState::apply and the graphics library will be initialized to the proper state for drawing the
pfGeoSet. A gstate value of NULL will remove any previous pfGeoState and cause the pfGeoSet to inherit
whatever graphics state is around at the time of rendering.

pfGeoSet::setGStateIndex allows a pfGeoSet to index its pfGeoState. Indexing is useful for efficiently
managing a single database with multiple appearances, e.g., a normal vs. an infrared view of a scene
would utilize 2 pfGeoState tables, each referencing a different set of pfGeoStates.

Indexed pfGeoStates use a global table of pfGeoState* specified by pfGeoState::applyTable. When index-
ing a pfGeoState, pfGeoSet::draw calls pfGeoState::apply with the indexth entry of this table if the index
can be properly resolved. Otherwise no pfGeoState is applied. pfGeoSet::getGStateIndex returns the
pfGeoState index of the pfGeoSet or -1 if the pfGeoSet directly references its pfGeoState.

pfGeoSet::setGState increments the reference count of the new pfGeoState by one and decrements the
reference count of the previous pfGeoState by one but does not delete the previous pfGeoState if its refer-
ence count reaches zero. pfGeoSet::setGStateIndex does not affect pfGeoState reference counts.

It is important to understand and remember that any pfGeoSet without an associated pfGeoState will not
be rendered with the global, default state but will be drawn with the current state. To inherit the global
state, a pfGeoState which inherits all state elements should be attached to the pfGeoSet. pfGeoSets should
share like pfGeoStates for space and rendering time savings. See the pfGeoState reference page for full
details.

pfGeoSet::getGState returns the pfGeoState associated with the pfGeoSet or NULL if there is none. If the

274

IRIS Performer 2.0 libpr C++ Reference Pages pfGeoSet(3pf)hh

pfGeoSet indexes its pfGeoState, pfGeoSet::getGState will look up the pfGeoState index in the global
pfGeoState table and return the result or NULL if it cannot resolve the reference.

pfGeoSet::setHlight sets hlight to be the highlighting structure used for the pfGeoSet. When this flag is
not PFHL_OFF, this gset will be drawn as highlighted unless highlighting has been overridden as off with
pfOverride. See the pfHighlight manual page for information of creating and configuring a highlighting
state structure. pfGeoSet::getHlight returns the current GeoSet highlight definition.

pfGeoSet::drawHlightOnly is a convenience routine for drawing ONLY the highlighting stage of the
pfGeoSet, according to the currently active highlighting structure.

Drawing pfGeoSets
pfGeoSet::draw is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfGeoSet::draw will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDispList::draw.

If gset has an attached pfGeoState, then pfGeoSet::draw first calls pfGeoState::apply before rendering the
pfGeoSet geometry, as shown in the following examples.

Example 3a:

/* Make sure ’gset’ has not attached pfGeoState */

gset->setGState(NULL);

/* Apply graphics state encapsulated by ’gstate’ */

gstate->apply();

/* Draw ’gset’ with graphics state encapsulated by ’gstate’ */

gset->draw();

Example 3b:

/* Attach ’gstate’ to ’gset’ */

gset->setGState(gstate);

/* Draw ’gset’ with graphics state encapsulated by ’gstate’ */

gset->draw();

Example 3c:

275

pfGeoSet(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

/* Use indexed pfGeoState */

gset->setGStateIndex(2);

/* Set up and apply pfGeoState table */

list->set(2, gstate);

list->applyTable();

/* Draw ’gset’ with graphics state encapsulated by ’gstate’ */

gset->draw();

Examples 3a, 3b, and 3c are equivalent methods for drawing the same thing. Method 3b is recommended
though since the pfGeoState and pfGeoSet pair can be set up at database initialization time.

pfGeoSet::setDrawBin sets the pfGeoSet’s draw bin identifier to bin. bin identifies a drawing bin to
which the pfGeoSet belongs and is used for controlling the rendering order of a database. The pfGeoSet
draw bin is currently used only by libpf applications (see pfChannel::setBinOrder) and is ignored by
libpr-only applications. The default pfGeoSet draw bin identifier is -1. ::getDrawBin returns the draw bin
identifier of gset.

The mask argument to pfGeoSet::setPassFilter is a bitmask which specifies a pfGeoSet drawing "filter".
Only pfGeoSets which pass the filter test are rendered by pfGeoSet::draw. mask consists of the logical OR
of the following:

PFGS_TEX_GSET
Draw only textured pfGeoSets

PFGS_NONTEX_GSET
Draw only non-textured pfGeoSets

PFGS_EMISSIVE_GSET
Draw only pfGeoSets which use an emissive pfMaterial or pfLPointState.

PFGS_NONEMISSIVE_GSET
Draw only non-emissive pfGeoSets

PFGS_LAYER_GSET
Draw only pfGeoSets which are layer (as opposed to base) geometry.

PFGS_NONLAYER_GSET
Draw only pfGeoSets which are not layer geometry.

A mask of 0 disables pfGeoSet filtering. Filtering is useful for multipass rendering techniques.
pfGeoSet::getPassFilter returns the current pfGeoSet filtering mask.

276

IRIS Performer 2.0 libpr C++ Reference Pages pfGeoSet(3pf)hh

Intersecting with pfGeoSets
pfGeoSet::setIsectMask enables intersections and sets the intersection mask for the pfGeoSet. mask is a
32-bit mask used to determine whether a particular pfGeoSet should be examined during a particular
intersection request. A non-zero bit-wise AND of the pfGeoSet’s mask with the mask of the intersection
request (pfGeoSet::isect) indicates that the pfGeoSet should be tested. The default mask is all 1’s, i.e.
0xffffffff.

pfGeoSet::getIsectMask returns the intersection mask of the specified pfGeoSet.

Intersections for geometry whose vertex coordinates don’t change are more efficient when information is
cached for each pfGeoSet to be intersected with. When setting the mask or changing caching,
PFTRAV_SELF should always be part of setMode. OR-ing PFTRAV_IS_CACHE into setMode causes the
creation or update of the cache. Because creating the cache requires a moderate amount of computation,
it is best done at setup time.

For objects whose geometry changes only occasionally, additional calls to pfGeoSet::setIsectMask with
PFTRAV_IS_CACHE OR-ed into setMode will recompute the cached information. Alternately, OR-ing
PFTRAV_IS_UNCACHE into setMode will disable caching.

The bitOp argument is one of PF_AND, PF_OR, or PF_SET and indicates, respectively, whether the new
mask is derived from AND-ing with the old mask, OR-ing with the old mask or simply set.

pfGeoSet::setBound sets the bounding volume of the pfGeoSet. Each pfGeoSet has an associated bound-
ing volume used for culling and intersection testing and a bounding mode, either static or dynamic. By
definition, the bounding volume of a node encloses all the geometry parented by node, which means that
the node and all its children fit within the node’s bounding volume.

The mode argument to pfGeoSet::setBound specifies whether or not the bounding volume for node should
be recomputed when an attribute of the pfGeoSet is changed. If the mode is PFBOUND_STATIC, IRIS
Performer will not modify the bound once it is set or computed. If the mode is PFBOUND_DYNAMIC,
IRIS Performer will recompute the bound if the number of primitives, the primitive lengths array or the
vertex coordinate arrays are changed. Note that IRIS Performer does not know if the contents of these
arrays changes, only when the pointer itself is set. Recomputation of the bounding box can be forced by
calling pfGeoSet::setBound with a bbox that is NULL.

pfGeoSet::getBound copies the bounding box of the pfGeoSet into bbox and returns the current bounding
mode.

pfGeoSet::isect tests for intersection between the pfGeoSet the pfGeoSet and the group of line segments
specified in segSet. The resulting intersections (if any) are returned in hits. The return value of
pfGeoSet::isect is the number of segments that intersected the pfGeoSet.

hits is an empty array supplied by the user through which results are returned. The array must have an

277

pfGeoSet(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

entry for each segment in segSet. Upon return, hits[i][0] is a pfHit* which gives the intersection result for
the ith segment in segSet. The pfHit objects come from an internally maintained pool and are reused on
subsequent requests. Hence, the contents are only valid until the next invocation of pfGSetIsectSegs in
the current process. They should not be freed by the application.

segSet is a pfSegSet public structure specifying the intersection request. In the structure, segs is an array of
line segments to be intersected against the pfGeoSet. activeMask is a bit vector specifying which segments
in the SegSet are to be active for the current request. If the i’th bit is set to 1, it indicates the corresponding
segment in the segs array is active.

The bit vector mode specifies the behavior of the intersection process and is a bitwise OR of the following:

PFTRAV_IS_PRIM Intersect with primitives (quads or triangles)

PFTRAV_IS_GSET Intersect with pfGeoSet bounding boxes

PFTRAV_IS_NORM Return normal in the pfHit structure

PFTRAV_IS_CULL_BACK Ignore backfacing polygons

PFTRAV_IS_CULL_FRONT Ignore front-facing polygons

The bit fields PFTRAV_IS_PRIM and PFTRAV_IS_GSET, indicate the level at which intersections
should be evaluated and discriminator callbacks, if any, invoked. Note that if neither of these level selec-
tors are specified, no intersection testing is done at all. In the pfSegSet, isectMask is another bit vector. It
is bit-wise AND-ed with the intersection mask of the pfGeoSet. If the result is zero no intersection testing
is done.

The bound field in a pfSegSet is an optional user provided bounding volume around the set of segments.
Currently, the only supported volume is a cylinder. To use a bounding cylinder, bitwise OR
PFTRAV_IS_BCYL into the mode field of the pfSegSet and assign the pointer to the bounding volume to
the bound field. pfCylinder::around will construct a cylinder around the segments.

When a bounding volume is supplied, the bounding volume is tested against the pfGeoSet bounding box
before examining the individual segments. The largest improvement is for groups of at least several seg-
ments which are closely grouped segments. Placing a bounding cylinder around small groups or widely
dispersed segments can decrease performance.

The userData pointer allows an application to associate other data with the pfSegSet. Upon return and in
discriminator callbacks, the pfSegSet’s userData pointer can be obtained from the returned pfHit with the
virtual function pfObject::getUserData.

discFunc is a user supplied callback function which provides a more powerful means for controlling inter-
sections than the simple mask test. The function acts as a discriminating function which examines infor-
mation about candidate intersections and judges their validity. When a candidate intersection occurs, the
discFunc callback is invoked with a pfHit structure containing information about the intersection.

278

IRIS Performer 2.0 libpr C++ Reference Pages pfGeoSet(3pf)hh

The callback may then return a value which indicates whether and how the intersection should continue.
This value is composed of the following major action specifications with additional modifiers bitwise-
OR-ed in as explained below.

PFTRAV_CONT
Indicates that the process should continue traversing the primitive list.

PFTRAV_PRUNE
Stops further testing of the line segment against the current pfGeoSet.

PFTRAV_TERM
Stops further testing of the line segment completely.

To have PFTRAV_TERM or PFTRAV_PRUNE apply to all segments, PFTRAV_IS_ALL_SEGS can be
OR-ed into the discriminator return value. This causes the entire traversal to be terminated or pruned.

The callback may OR into the status return value any of:

PFTRAV_IS_IGNORE
Indicates that the current intersection should be ignored, otherwise the intersection is taken
as valid.

PFTRAV_IS_CLIP_START
Indicates that for pruned and continued traversals that before proceeding the segment
should be clipped to start at the current intersection point.

PFTRAV_IS_CLIP_END
Indicates that for pruned and continued traversals that before proceeding the segment
should be clipped to end at the current intersection point.

If discFunc is NULL, the behavior is the same as if the discriminator returned (PFTRAV_CONT |
PFTRAV_IS_CLIP_END), so that the intersection nearest the start of the segment will be returned.

279

pfGeoSet(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

A pfHit object also conveys information to the discriminator callback, if any. The following table lists
the information which can be obtained from an pfHit.

Query Type Contentsii
PFQHIT_FLAGS int Status flags
PFQHIT_SEGNUM int Index of segment in pfSegSet
PFQHIT_SEG pfSeg Segment, as clipped
PFQHIT_POINT pfVec3 Intersection point
PFQHIT_NORM pfVec3 Normal at intersection point
PFQHIT_VERTS pfVec3[3] Vertices of intersected triangle
PFQHIT_TRI int Index of triangle in pfGeoSet primitive
PFQHIT_PRIM int Index of primitive in pfGeoSet
PFQHIT_GSET pfGeoSet * Pointer to intersected pfGeoSet
PFQHIT_NODE pfNode * Pointer to pfGeode
PFQHIT_NAME char * Name of pfGeode
PFQHIT_XFORM pfMatrix Transformation matrix
PFQHIT_PATH pfPath * Path within scene graphc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

pfGeoSet::query is a convenience routine for determining the values of implicit pfGeoSet parameters.
The which argument is a token which selects the parameter from the set PFQGSET_NUM_TRIS and
PFQGSET_NUM_VERTS. The result is written to the address indicated by dst. The number of bytes
written to dst is returned as the value of pfGeoSet::query. pfGeoSet::mQuery is similar but copies a
series of items sequentially into the buffer specified by dst. The items and their order are defined by a
NULL-terminated array of query tokens pointed to by which. For both functions, the return value is the
number of bytes written to the destination buffer.

pfGeoSet::getClassType returns the pfType* for the class pfGeoSet. The pfType* returned by
pfGeoSet::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfGeoSet. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

NOTES
The following example shows one way to create a pfGeoSet defining a hexahedron, which is also known
as a cube.

static pfVec3 coords[] =

{

{-1.0, -1.0, 1.0},

{ 1.0, -1.0, 1.0},

{ 1.0, 1.0, 1.0},

{-1.0, 1.0, 1.0},

{-1.0, -1.0, -1.0},

280

IRIS Performer 2.0 libpr C++ Reference Pages pfGeoSet(3pf)hh

{ 1.0, -1.0, -1.0},

{ 1.0, 1.0, -1.0},

{-1.0, 1.0, -1.0}

};

static ushort cindex[] =

{

0, 1, 2, 3, /* front */

0, 3, 7, 4, /* left */

4, 7, 6, 5, /* back */

1, 5, 6, 2, /* right */

3, 2, 6, 7, /* top */

0, 4, 5, 1 /* bottom */

};

static pfVec3 norms[] =

{

{ 0.0, 0.0, 1.0},

{ 0.0, 0.0, -1.0},

{ 0.0, 1.0, 0.0},

{ 0.0, -1.0, 0.0},

{ 1.0, 0.0, 0.0},

{-1.0, 0.0, 0.0}

};

static ushort nindex[] =

{

0,

5,

1,

4,

2,

3

};

// Convert static data to pfMalloc’ed data

static void*

memdup(void *mem, size_t bytes, void *arena)

{

void *data = pfMalloc(bytes, arena);

memcpy(data, mem, bytes);

return data;

}

281

pfGeoSet(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

/* Set up an indexed PFGS_QUADS pfGeoSet */

gset = new pfGeoSet;

gset->setPrimType(PFGS_QUADS);

gset->setNumPrims(6);

gset->setAttr(PFGS_COORD3, PFGS_PER_VERTEX,

memdup(coords, sizeof(coords), NULL),

(ushort*)memdup(cindex, sizeof(cindex), NULL));

gset->setAttr(PFGS_NORMAL3, PFGS_PER_PRIM,

memdup(norms, sizeof(norms), NULL),

(ushort*)memdup(nindex, sizeof(nindex), NULL));

BUGS
In IRIS GL, PFGS_POLYS are rendered as triangle strips for best performance so that in wireframe the
edges internal to the polygon are visible. In OpenGL the internal edges will not be visible.

SEE ALSO
pfApplyGState, pfColortable, pfCopy, pfCycleBuffer, pfDelete, pfDisable, pfDispList, pfEnable, pfGSet-
DrawMode, pfGeoState, pfHit, pfLPointState, pfMalloc, pfMaterial, pfNewHlight, pfObject,
pfGSetIsectSegs, pfShadeModel, pfState

282

IRIS Performer 2.0 libpr C++ Reference Pages pfGeoState(3pf)hh

NAME
pfGeoState, pfGetCurGState, pfGetCurGStateTable, pfGetCurIndexedGState − Create, modify and
query geometry state objects

FUNCTION SPECIFICATION
#include <Performer/pr/pfGeoState.h>

pfGeoState::pfGeoState()

static pfType * pfGeoState::getClassType(void);

void pfGeoState::apply(void);

void pfGeoState::load(void);

void pfGeoState::setMode(int mode, int val);

int pfGeoState::getMode(int mode);

int pfGeoState::getCurMode(int mode);

int pfGeoState::getCombinedMode(int mode, const pfGeoState *combGState);

void pfGeoState::setVal(int gsval, float val);

float pfGeoState::getVal(int gsval);

float pfGeoState::getCurVal(int gsval);

float pfGeoState::getCombinedVal(int gsval, const pfGeoState *combGState);

void pfGeoState::setInherit(uint mask);

uint pfGeoState::getInherit(void);

void pfGeoState::setAttr(int attr, void *data);

void * pfGeoState::getAttr(int attr);

void* pfGeoState::getCurAttr(int attr);

void* pfGeoState::getCombinedAttr(int attr, const pfGeoState *combGState);

void pfGeoState::setFuncs(pfGStateFuncType preFunc, pfGStateFuncType postFunc,
void *data);

void pfGeoState::getFuncs(pfGStateFuncType *preFunc, pfGStateFuncType *postFunc,
void **data);

static void pfGeoState::applyTable(pfList *gstab);

void pfGeoState::makeBasic(void);

pfGeoState * pfGetCurGState(void);

283

pfGeoState(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfList* pfGetCurGStateTable(void);

pfGeoState* pfGetCurIndexedGState(int index);

typedef int (*pfGStateFuncType)(pfGeoState *gstate, void *userData);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfGeoState is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfGeoState. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfGeoState can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfGeoState is an encapsulation of libpr graphics modes and attributes (see pfState). For example, a
pfGeoState can describe a glass surface by referencing a shiny pfMaterial and enabling transparency.
When a pfGeoState is applied by pfGeoState::apply it sets up the graphics state through normal libpr
routines such as pfMaterial::apply and pfTransparency.

284

IRIS Performer 2.0 libpr C++ Reference Pages pfGeoState(3pf)hh

Most pieces of state that may be manipulated through libpr immediate mode routines may be specified
on a per-pfGeoState basis. For customized state management, pfGeoStates provide function callbacks. In
addition, pfGeoStates can be indexed through a global table so a single database can have multiple
appearances while avoiding database duplication.

The primary use of a pfGeoState is to attach it to a pfGeoSet (pfGeoSet::setGState) in order to define the
appearance of the geometry encapsulated by the pfGeoSet. As discussed below, pfGeoStates have the
useful property of order-independence so that paired pfGeoSets and pfGeoStates will be rendered con-
sistently regardless of order.

pfGeoState state may either be locally set or globally inherited. By default, if a state element is not
specified on a pfGeoState, then that pfGeoState will inherit that state element from the global state. Glo-
bal state is set through libpr immediate mode functions, e.g., pfMaterial::apply, pfTransparency,
pfDecal, pfFog::apply or through pfGeoState::load as described below. Local state is set on a pfGeoState
through pfGeoState::setMode, pfGeoState::setAttr, or pfGeoState::setVal.

If all state elements are locally set, then a pfGeoState becomes a full graphics context since all state is
defined at the pfGeoState level. While this is useful, it usually makes sense to inherit most state from glo-
bal default values and explicitly set only those state elements which are expected to change often. Exam-
ples of useful global defaults are lighting model (pfLightModel), lights (pfLight), fog (pfFog), and tran-
sparency (pfTransparency, usually OFF). Highly variable state is likely to be limited to a small set like
textures and materials. By default all pfGeoState state is inherited.

State is pushed before, and popped after pfGeoStates are applied so that pfGeoStates do not inherit state
from each other. As a result pfGeoStates are order-independent and you need not consider the problem
of one pfGeoState corrupting another by state inheritance through the underlying graphics library. The
actual pfGeoState pop is a lazy one and does not happen unless a subsequent pfGeoState needs the
default state restored. This means that the actual state between pfGeoStates is not necessarily the global
state. If a return to global state is required, call pfFlushState which will restore the global state.

It is a performance advantage to locally set as little local pfGeoState state as possible. This may be accom-
plished by setting global defaults which satisfy the majority of pfGeoStates being drawn. For example, if
most of your database is textured, you should enable texturing at initialization time (pfEnable(-
PFEN_TEXTURE)) and configure your pfGeoStates to inherit the texture enable mode.

new(arena) allocates a pfGeoState from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfGeoState from the default memory arena (see pfGetSharedArena). Like other
pfObjects, pfGeoStates cannot be created statically, automatically on the stack or in arrays. pfGeoStates
should be deleted with pfDelete rather than the delete operator. All modes and attributes are inherited
by default.

pfGeoState::getClassType returns the pfType* for the class pfGeoState. The pfType* returned by
pfGeoState::getClassType is the same as the pfType* returned by invoking the virtual function getType

285

pfGeoState(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

on any instance of class pfGeoState. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfGeoState::setMode sets mode to val. mode is a symbolic constant specifying the mode to set. Once set, a
mode is no longer inherited but is set to val. mode is a symbolic token and is one of:

PFSTATE_TRANSPARENCY
PFSTATE_ANTIALIAS
PFSTATE_DECAL
PFSTATE_ALPHAFUNC
PFSTATE_ENLIGHTING
PFSTATE_ENTEXTURE
PFSTATE_ENFOG
PFSTATE_CULLFACE
PFSTATE_ENWIREFRAME
PFSTATE_ENCOLORTABLE
PFSTATE_ENHIGHLIGHTING
PFSTATE_ENLPOINTSTATE
PFSTATE_ENTEXGEN

val specifies the value of mode and is a symbolic token appropriate to the type of mode. For example when
mode = PFSTATE_TRANSPARENCY then val might be PFTR_ON. Only modes which differ from the
global state should be set. Mode values are not inherited between pfGeoStates. By default all modes are
inherited. See the pfState manual page for information on global default settings.

pfGeoState::setVal sets the gsval value to val. gsval is a symbolic constant specifying the state value to set.
Once set, a value is no longer inherited but is set to val. gsval is a symbolic token and can be chosen from
any of the following list (only one choice at present):

PFSTATE_ALPHAREF

pfGeoState::setAttr sets attr state element to a. attr is a symbolic constant specifying an attribute and is
one of:

PFSTATE_FRONTMTL
PFSTATE_BACKMTL
PFSTATE_TEXTURE
PFSTATE_TEXENV
PFSTATE_FOG
PFSTATE_LIGHTMODEL
PFSTATE_LIGHTS
PFSTATE_COLORTABLE
PFSTATE_HIGHLIGHT

286

IRIS Performer 2.0 libpr C++ Reference Pages pfGeoState(3pf)hh

PFSTATE_LPOINTSTATE
PFSTATE_TEXGEN

data is a handle to a libpr object relevant to attr. If attr is PFSTATE_LIGHTS, a should be an array of
pfLight* of length PF_MAX_LIGHTS which specifies which pfLights should be used by the pfGeoState.
Empty entries in the light array should be NULL.

A pfGeoState ignores the PFMTL_FRONT and PFMTL_BACK setting of a pfMaterial (see
pfMaterial::setSide). Instead it uses the attribute value, PFSTATE_FRONTMTL or
PFSTATE_BACKMTL to decide how to apply the material. Consequently, it is legal to use the same
material for both front and back sides. However, pfGeoStates do not modify the pfMaterial’s side value
which is normally set through pfMaterial::setSide.

Once set, an attribute is no longer inherited but set to a. Only attributes which differ from the global state
should be set. Attributes are not inherited between pfGeoStates. By default, all attributes are inherited
from the global state.

pfGeoState::setAttr increments the reference count of the supplied attribute and decrements the reference
count of the replaced attribute, if there is one. pfGeoState::setAttr will not delete any pfObject whose
reference count reaches 0.

As discussed above, modes, values and attributes may either be locally set on a pfGeoState or inherited
from the global state. To help resolve the inheritance characteristics of pfGeoStates, 3 different versions of
"get" routines are provided for modes, values and attributes:

1. pfGeoState::getMode, pfGeoState::getVal, pfGeoState::getAttr - The exact mode, value,
or attribute of the pfGeoState is returned.

2. pfGeoState::getCurMode, pfGeoState::getCurVal, pfGeoState::getCurAttr - The exact
mode, value, or attribute of the pfGeoState is returned if not inherited. Otherwise the
mode, value, or attribute of the currently active global pfGeoState is returned. Note that
this requires that a pfState be current (see pfState::select).

3. pfGeoState::getCombinedMode, pfGeoState::getCombinedVal,
pfGeoState::getCombinedAttr - The exact mode, value, or attribute of the pfGeoState is
returned if not inherited. Otherwise the mode, value, or attribute of the combGState is
returned.

pfGeoState::getMode returns the mode value corresponding to mode.

pfGeoState::getVal returns the pfGeoState value corresponding to gsval.

pfGeoState::getAttr returns the attribute handle corresponding to attr. If attr is PFSTATE_LIGHTS, the
returned value is the pfLight* array.

287

pfGeoState(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfGeoState::setInherit specifies which state elements should be inherited from the global state. mask is a
bitwise OR of tokens listed for pfGeoState::setMode, pfGeoState::setAttr, and pfGeoState::setVal. All
of the state elements specified in mask will become inherited. All modes and attributes are inherited
unless explicitly specified by setting a mode or attribute with pfGeoState::setAttr, pfGeoState::setMode,
or pfGeoState::setVal. pfGeoState::getInherit returns the bitwise OR of the tokens for state which is
currently inherited from the global state.

pfGeoState::apply makes the pfGeoState the current graphics state. All modes and attributes of the
pfGeoState that are not inherited are applied using libpr immediate mode commands, for example, the
PFSTATE_TEXTURE attribute is applied with pfTexture::apply. Inherited modes and attributes that
were modified by previous pfGeoStates are reset to their global values. State elements that are overrid-
den (See pfOverride) are not changed by pfGeoState::apply.

Another way to apply a pfGeoState is with pfGeoSet::draw. If a pfGeoSet has an attached pfGeoState
(see pfGeoSet::setGState), then pfGeoSet::draw will call pfGeoState::apply with the attached pfGeoState
so that graphics state is properly established before the pfGeoSet geometry is rendered.

The following is an example of pfGeoState behavior.

Example 1:

/* Configure global default that pfGeoStates can inherit */

pfLightModel *lmodel = new pfLightModel;

pfLight *light = new pfLight;

pfEnable(PFEN_LIGHTING);

lmodel->apply;

light->on;

pfTransparency(PFTR_OFF);

/* New pfGeoState inherits everything */

gstate = new pfGeoState;

/* Attach ’gstate’ to ’gset’ */

gset->setGState(gstate);

/* Configure ’gstate’ with a transparent material */

gstate->setAttr(PFSTATE_FRONTMTL, mtl);

gstate->setMode(PFSTATE_TRANSPARENCY, PFTR_ON);

Method A:

288

IRIS Performer 2.0 libpr C++ Reference Pages pfGeoState(3pf)hh

/* Draw transparent ’gset’ */

gset->draw();

Method B:

/* Remove ’gstate’ from ’gset’ */

gset->setGState(NULL);

/* Apply ’gstate’ */

gstate->apply();

/* Draw transparent ’gset’ */

gset->draw();

Method C:

/* Remove ’gstate’ from ’gset’ */

gset->setGState(NULL);

mtl->apply();

pfTransparency(PFTR_ON);

/* Draw transparent ’gset’ */

gset->draw();

In the above example, methods A, B, and C are all produce the same visual result. Method A is recom-
mended, however, since the pfGeoState and pfGeoSet pair may be configured at database initialization
time and the use of a pfGeoState provides order-independence when rendering.

The following is an example of pfGeoState inheritance:

pfLightModel *lmodel = new pfLightModel;

pfLight *light = new pfLight;

/* Configure global default that pfGeoStates can inherit */

pfEnable(PFEN_LIGHTING);

lmodel->apply();

light->on();

/* Assume ’redMtl’ is PFMTL_FRONT */

289

pfGeoState(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

redMtl->apply();

/* New pfGeoStates inherit everything */

gstateA = new pfGeoState;

gstateB = new pfGeoState;

/* Attach pfGeoStates to pfGeoSets */

gsetA->setGState(gstateA);

gsetB->setGState(gstateB);

/* Configure ’gstateA’ with a green material */

gstateA->setAttr(PFSTATE_FRONTMTL, greenMtl);

/* Draw green ’gset’ */

gsetA->draw();

/*

* The FRONTMTL property of gstateB is not set so it inherits

* the global default of ’redMtl’ which will be restored

* as the current pfMaterial when gstateB is applied.

*/

/* Draw red ’gset’ */

gsetB->draw();

/*

* Note that gsetA and gsetB could be drawn in the opposite

* order with the same results. This is a very important

* pfGeoState property.

*/

pfGetCurGState returns the current pfGeoState that was previously applied directly by
pfGeoState::apply or indirectly by pfGeoSet::draw.

pfGeoState::setFuncs sets the callbacks and callback data pointer of the pfGeoState. The reference count
of data is incremented and the reference count of the previous data is decremented but no deletion takes
place if the reference count reaches 0. Callbacks are invoked by pfGeoState::apply (or indirectly by
pfGeoSet::draw as described above) in the following order:

290

IRIS Performer 2.0 libpr C++ Reference Pages pfGeoState(3pf)hh

postFunc() of previously-applied pfGeoState

setup state according to current pfGeoState

preFunc() of current pfGeoState

Notice that the post-callback invocation is delayed until a subsequent pfGeoState is applied. However,
pfPushState, pfPopState, and pfFlushState will invoke any "leftover" post-callback. It is legal to call
pfPushState and pfPopState in the pre and post callbacks respectively but is not usually necessary
because any libpr state set inside pfGeoState callbacks is considered to have been set by the pfGeoState.
Consequently, the global state is not modified and the normal pfGeoState inheritance rules apply to state
set inside the callbacks.

Callbacks are passed a pointer to the parent pfGeoState and the data pointer that was previously supplied
by pfGeoState::setFuncs. The return value from pfGeoState callbacks is currently ignored.
pfGeoState::getFuncs gets back the pre and post pfGeoState callbacks and callback data for the pfGeo-
State in preFunc, postFunc, and data, respectively.

A pfGeoSet may either directly reference or indirectly index a pfGeoState with pfGeoSet::setGState and
pfGeoSet::setGStateIndex respectively. Indexed pfGeoStates use a global table of pfGeoState pointers
that is set by pfGeoState::applyTable. If the global table is NULL or the pfGeoState index is out of the
range of the global table, no pfGeoState is applied, otherwise the indexed pfGeoState is applied when
pfGeoSet::draw is called. Non-indexed pfGeoState references ignore the current pfGeoState table.
pfGetCurGStateTable returns the current pfGeoState table and pfGetCurIndexedGState returns the
indexth pfGeoState* in the current pfGeoState table or NULL if the index cannot be properly resolved.

pfGeoState::load is similar to pfGeoState::apply except the modes and attributes of the pfGeoState can
be inherited by subsequent pfGeoStates. In other words, the pfGeoState loads the global state. Overrid-
den state elements are not modified by pfGeoState::load. If set, the pre-callback of the pfGeoState is
invoked after the graphics state is loaded. As described above, the post-callback is not invoked until a
subsequent pfGeoState is applied or pfPushState, pfPopState, or pfFlushState is called.

pfGeoState::apply, pfGeoState::applyTable, and pfGeoState::load are display-listable commands. If a
pfDispList has been opened by pfDispList::open, these commands will not have immediate effect but
will be captured by the pfDispList and will only have effect when that pfDispList is later executed with
pfDispList::draw. Indexed pfGeoStates are resolved at display list creation time, not at display list execu-
tion time. In addition, pfGeoStates are "unwound" into their constituent parts at display list creation time,
e.g., a pfGeoState may decompose into pfMaterial::apply and pfTransparency calls. As a result, changes
to a pfGeoState which have been captured by a pfDispList will *not* be evident when that pfDispList is
executed (pfDispList::draw). pfGeoState indexing and unwinding at display list creation time is done
strictly to improve pfDispList rendering performance.

pfGeoState::makeBasic configures every state element (value, mode, and attribute) of the pfGeoState to

291

pfGeoState(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

be identical to the state set with pfBasicState. The "basic" state is the initial state of a graphics library
window - everything is "off". For example, the PFSTATE_ENLIGHTING mode will be set to PF_OFF, and
the PFSTATE_CULLFACE mode will be set to PFCF_OFF. The following code fragment is equivalent to
pfBasicState:

pfGeoState *gstate = new(NULL) pfGeoState();

gstate->makeBasic();

gstate->load();

NOTES
In some situations it may appear that pfGeoStates do inherit from each other. This is because IRIS Per-
former currently does not provide any defaults for the state attributes listed above such as
PFSTATE_TEXTURE and PFSTATE_FRONTMTL. Consequently, if the application does not explicitly
set these attributes, it is possible for pfGeoStates which inherit these attributes to inherit them from previ-
ous pfGeoStates.

SEE ALSO
pfAlphaFunc, pfAntialias, pfBasicState, pfCullFace, pfDecal, pfDelete, pfDispList, pfDrawGSet, pfEnable,
pfFog, pfGeoSet, pfLight, pfList, pfLPointState, pfOverride, pfState, pfTexture, pfTexGen, pfTransparency

292

IRIS Performer 2.0 libpr C++ Reference Pages pfHighlight(3pf)hh

NAME
pfHighlight, pfGetCurHlight − Control, create, modify and query highlight state

FUNCTION SPECIFICATION
#include <Performer/pr/pfHighlight.h>

pfHighlight::pfHighlight()

static pfType * pfHighlight::getClassType(void);

void pfHighlight::apply(void);

void pfHighlight::setMode(uint mode);

uint pfHighlight::getMode(void);

void pfHighlight::setColor(uint which, float r, float g, float b);

void pfHighlight::getColor(uint which, float *r, float *g, float *b);

void pfHighlight::setAlpha(float a);

float pfHighlight::getAlpha(void);

void pfHighlight::setNormalLength(float length, float bboxScale);

float pfHighlight::getNormalLength(float *length, float *bboxScale);

void pfHighlight::setLineWidth(float width);

float pfHighlight::getLineWidth(void);

void pfHighlight::setPntSize(float size);

float pfHighlight::getPntSize(void);

void pfHighlight::setLinePat(int which, ushort pat);

ushort pfHighlight::getLinePat(const int which);

void pfHighlight::setFillPat(int which, uint *fillPat);

void pfHighlight::getFillPat(const int which, uint *pat);

void pfHighlight::setGState(pfHighlight* hl, pfGeoState *gstate);

pfGeoState* pfHighlight::getGState(const pfHighlight* hl);

void pfHighlight::setGStateIndex(pfHighlight* hl, int id);

int pfHighlight::getGStateIndex(const pfHighlight* hl);

void pfHighlight::setTex(pfTexture *tex);

pfTexture* pfHighlight::getTex(void);

293

pfHighlight(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

void pfHighlight::setTEnv(pfTexEnv *tev);

pfTexEnv* pfHighlight::getTEnv(void);

void pfHighlight::setTGen(pfTexGen *tgen);

pfTexGen* pfHighlight::getTGen(void);

pfHighlight * pfGetCurHlight(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfHighlight is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfHighlight. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfHighlight can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
IRIS Performer supports a mechanism for highlighting individual objects in a scene with a variety of spe-
cial drawing styles that are activated by applying a pfHighlight state structure. Highlighting makes use
of outlining of lines and polygons and of filling polygons with patterned or textured overlays.
Highlighted drawing uses a highlighting color, or foreground color, and in some modes, a contrasting, or

294

IRIS Performer 2.0 libpr C++ Reference Pages pfHighlight(3pf)hh

background, color. Additionally, there are highlighting modes for displaying the bound normals and
cached bounding boxes of pfGeoState geometry.

A pfHighlight structure can be applied in immediate mode to the current active pfGeoState with
pfHighlight::apply, and added to a specific pfGeoState with pfGeoState::setMode. Highlighting can be
enabled and disabled in immediate mode with pfEnable(PFEN_HIGHLIGHTING) and
pfDisable(PFEN_HIGHLIGHTING), and the override for highlighting can be set with
pfOverride(PFSTATE_HIGHLIGHT). Unlike other types of state, a structure may be applied to a
specific pfGeoSet with pfGeoSet::setHlight. This will cause the pfGeoSet to be drawn as highlighted
with the specified highlighting structure, unless highlighting has been overridden as off with pfOverride.

This special exception was made because it is assumed that highlighting is to be used dynamically to
highlight specific objects for a short period of time and should not impact the rest of the state structure.

Highlighting does have some performance penalty, in part because some of the highlighting modes make
use of expensive graphics features, and in part because, to offer this flexibility, highlighted objects go
through a slightly slower path in IRIS Performer rendering code.

new(arena) allocates a pfHighlight from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfHighlight from the default memory arena (see pfGetSharedArena). Like other
pfObjects, pfHighlights cannot be created statically, automatically on the stack or in arrays. pfHighlights
should be deleted with pfDelete rather than the delete operator.

pfHighlight::getClassType returns the pfType* for the class pfHighlight. The pfType* returned by
pfHighlight::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfHighlight. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfHighlight::apply makes the pfHighlight the current active pfHighlight structure.

pfGetCurHlight returns a pointer to the current active pfHighlight structure.

pfHighlight::setGState sets a highlighting pfGeoState of the pfHighlight to gstate. This pfGeoState is
made the current pfGeoState for the highlighting phase of the drawing of the highlighted pfGeoSet.
Additional highlighting mode changes are applied on top of this pfGeoState. This allows a user to make
additional custom state changes to highlighted objects. pfHighlight::getGState returns the previously set
highlighting pfGeoState of the pfHighlight. pfHighlight::setGStateIndex specifies the index into a
pfGeoState table to use for the highlighting pfGeoState. pfHighlight::getGStateIndex returns the previ-
ously set highlighting pfGeoState index of the pfHighlight.

pfHighlight::setMode sets the highlighting mode mode for the pfHighlight. The mode specifies the

295

pfHighlight(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

drawing style: how the filled region and polygon outlines of an object should be drawn. This mode is a
bitmask composed by bitwise OR-ing together the following tokens. The default is PFHL_FILL, and a
zero mask is ignored.

PFHL_POINTS Selects the display of object vertices as points using the point size specified
by pfHlightPntSize.

PFHL_NORMALS Selects the display of object normals as lines of width determined by
pfHighlight::setLineWidth, length determined by
pfHighlight::setNormalLength, and color determined by
pfHighlight::setColor.

PFHL_BBOX_LINES Selects the display of the object’s cached bounding box in lines of width
determined by pfHighlight::setLineWidth and color determined by
pfHighlight::setColor.

PFHL_BBOX_FILL Selects the display of the object’s cached bounding box as a solid filled box
of the foreground color of the pfHighlight.

PFHL_LINES Selects outlining of primitives. The lines are drawn of width determined by
pfHighlight::setLineWidth and color determined by
pfHighlight::setColor.

PFHL_LINES_R Selects outlining of primitives and reverses foreground and background
colors for the lines.

PFHL_LINESPAT Selects outlining of primitives with patterned lines.

PFHL_LINESPAT2 Selects outlining of primitives with 2-pass patterned lines, using both fore-
ground and background highlighting colors.

PFHL_FILL Selects filling of polygons with the foreground highlighting color. In this
mode, the highlighted polygons are filled once. The foreground highlight-
ing color is used as the base color of polygons, and as the material color for
lit polygons.

PFHL_FILL_R Selects outlining of primitives and reverses foreground and background
colors for fill highlight modes.

PFHL_FILLTEX Selects the application of a highlight texture on the object geometry. The
default texture may be used, or a texture and associated attributes may be
set with pfHighlight::setTexTGen, pfHighlight::setTEnvTGen, and
pfHighlight::setTGen.

PFHL_FILLPAT Selects patterned filling of polygons with the foreground highlighting
color. This patterning will be done in addition to the normal filling of the
polygons and will be an overlay with the normal base polygons showing
through.

296

IRIS Performer 2.0 libpr C++ Reference Pages pfHighlight(3pf)hh

PFHL_FILLPAT2 Selects 2-pass patterned filling of polygons using both the foreground and
background highlighting colors. This patterning will be done in addition
to the normal filling of the polygons and will be an overlay with the nor-
mal base polygons showing through.

PFHL_SKIP_BASE Causes the normal drawing phase of the highlighted pfGeoSet to be
skipped. This includes the application of the pfGeoState for that pfGeoSet.

pfHighlight::getMode returns the highlighting mode of the pfHighlight.

pfHighlight::setColor sets the specified highlighting color color, PFHL_FGCOLOR or PFHL_BGCOLOR,
of the pfHighlight, to r, g, and b. pfHighlight::getColor copies the specified color, PFHL_FGCOLOR or
PFHL_BGCOLOR, of the pfHighlight, into r, g, and b.

pfHighlight::setAlpha sets the alpha of the pfHighlight to a. pfHighlight::getAlpha returns the alpha of
the pfHighlight.

pfHighlight::setLineWidth sets the line width to be used for the PFHL_LINES, PFHL_NORMALS, and
PFHL_BBOX highlighting modes of the pfHighlight to width. If width is not greater than zero, the line
width will not be set by the highlight structure and will be inherited from the current environment.
pfHighlight::getLineWidth returns the line width of the pfHighlight.

pfHighlight::setNormalLength sets a length and a scale factor for the normals drawn in the
PFHL_NORMALS highlighting mode. The normals will be drawn of length normalLength +
bboxScale*bboxLength. pfHighlight::getNormalLength will return the normal length and scale values of
the pfHighlight in length and bboxScale, respectively.

pfHighlight::setPntSize sets the point size to be used for the PFHL_POINTS highlighting mode of the
pfHighlight to size. If size is not greater than zero, the point size will not be set by the highlight structure
and will be inherited from the current environment. pfHighlight::getPntSize returns the point size of the
pfHighlight.

pfHighlight::setLinePat sets the pattern to be used for lines in the PFHL_LINES highlighting modes of
the pfHighlight to pat. pfHighlight::getLinePat returns the highlighting line pattern of the pfHighlight.

pfHighlight::setFillPat sets the fill pattern to be used in the PFHL_FILLPAT highlighting modes of the
pfHighlight to pat. pfHighlight::getFillPat returns the highlighting fill pattern of the pfHighlight.

pfHighlight::setTex sets the pfTexture for the PFHL_TEX highlighting modes of the pfHighlight to tex.
pfHighlight::getTex returns the previously set highlighting texture of the pfHighlight. If a texture is not
specified but the PFHL_TEX is selected for the pfHighlight, a default two-component texture using the
highlighting foreground and background colors will be used.

297

pfHighlight(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfHighlight::setTEnv sets the texture environment (pfTexEnv) for the PFHL_TEX highlighting modes of
the pfHighlight to tev. pfHighlight::getTEnv returns the previously set highlighting texture environment
of the pfHighlight. If a texture environment is not specified but the PFHL_TEX is selected for the
pfHighlight, a default texture blend environment will be used.

pfHighlight::setTGen sets the texture coordinate generation attribute (pfTexGen) for the PFHL_TEX
highlighting modes of the pfHighlight to tgen. pfHighlight::getTGen returns the previously set
highlighting pfTexGen of the pfHighlight. If a texture coordinate generation function is not specified and
the object to be highlighted has no texture coordinates of its own and the PFHL_TEX is selected for the
pfHighlight, a default texture coordinate generation function will be used.

EXAMPLES
Example 1: Set up a highlighting structure and apply it in immediate mode to the current pfGeoState.

pfHighlight *hl;

/* allocate a new highlight color */

hl = new pfHighlight;

/* specify highlight modes */

hl->setMode(PFHL_FILL);

hl->setColor(PFHL_FGCOLOR, 1.0f, 0.0f, 1.0f);

/* apply highlight */

hl->apply();

SEE ALSO
pfDelete, pfDisable, pfDrawHlightedGSet, pfEnable, pfGSetHlight, pfGeoState, pfGetGSetHlight, pfOb-
ject, pfOverride, pfState

298

IRIS Performer 2.0 libpr C++ Reference Pages pfHit(3pf)hh

NAME
pfHit − Intersection and bounding operations on drawable geometry

FUNCTION SPECIFICATION
#include <Performer/pr/pfGeoSet.h>

int pfHit::query(uint which, void *dst);

int pfHit::mQuery(uint *which, void *dst);

static pfType * pfHit::getClassType(void);

DESCRIPTION
pfHit::query and pfHit::mQuery read out information from the pfHit object. pfHit::query copies an item
from the object into the location specified by dst. which specifies the item to be copied using one of the
PFHIT_ tokens listed above. pfHit::mQuery copies a series of items sequentially into the buffer specified
by dst. The items and their order are defined by a NULL-terminated array of query tokens pointed to by
which. For both functions, the return value is the number of bytes written to the destination buffer.

PFQHIT_FLAGS returns a bit vector indicating the validity of information in the structure. It is formed
by a bitwise OR-ing of the PFHIT_POINT, PFHIT_NORM, PFHIT_PRIM, PFHIT_TRI, PFHIT_VERTS
and PFHIT_XFORM symbols.

Flags Bit Validityii
PFHIT_POINT Point of intersection
PFHIT_NORM Polygon normal
PFHIT_PRIM Index of primitive in pfGeoSet
PFHIT_TRI Index of triangle within primitive
PFHIT_VERTS Triangle vertices
PFHIT_XFORM Non-identity transformation matrixc

c
c
c
c
c
c
c
c

Other queried quantities are valid if non-NULL.

PFQHIT_POINT, PFQHIT_NORM and PFQHIT_SEG query the point of intersection, the normal of the
triangle at that point, and the current segment as clipped by the intersection process. All are in local coor-
dinates, i.e. they do not include the transformations of pfSCSes and pfDCSes above them in the scene
graph. When intersecting with primitives inside a pfGeoSet, PFQHIT_PRIM, PFQHIT_TRI and
PFQHIT_VERTS provide the index of the primitive within the pfGeoSet, the triangle within the primi-
tive, and the vertices of the intersected triangle, respectively. PFQHIT_GSET returns the GeoSet.
PFQHIT_NODE returns the parent pfGeode.

PFQHIT_PATH returns a pfPath* denoting the traversal path. Like the pfHit object it is reused and
should not be freed.

pfHit::getClassType returns the pfType* for the class pfHit. The pfType* returned by
pfHit::getClassType is the same as the pfType* returned by invoking the virtual function getType on any

299

pfHit(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

instance of class pfHit. Because IRIS Performer allows subclassing of built-in types, when decisions are
made based on the type of an object, it is usually better to use the member function isOfType to test if an
object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

SEE ALSO
pfCylinder, pfNode, pfGeoSet, pfObject, pfSeg

300

IRIS Performer 2.0 libpr C++ Reference Pages pfLPointState(3pf)hh

NAME
pfLPointState, pfGetCurLPState − Set and get pfLPointState size, transparency, directionality, shape,
and fog attributes.

FUNCTION SPECIFICATION
#include <Performer/pr/pfLPointState.h>

pfLPointState::pfLPointState()

static pfType * pfLPointState::getClassType(void);

void pfLPointState::setMode(int mode, int val);

int pfLPointState::getMode(int mode);

void pfLPointState::setVal(int attr, float val);

float pfLPointState::getVal(int attr);

void pfLPointState::setShape(float horiz, float vert, float roll, float falloff, float ambient);

void pfLPointState::getShape(float *horiz, float *vert, float *roll, float *falloff, float *ambient);

void pfLPointState::setBackColor(float r, float g, float b, float a);

void pfLPointState::getBackColor(float *r, float *g, float *b, float *a);

void pfLPointState::apply(void);

void pfLPointState::makeRangeTex(pfTexture *tex, int size, pfFog* fog);

void pfLPointState::makeShapeTex(pfTexture *tex, int size);

pfLPointState* pfGetCurLPState(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLPointState is derived from the parent class pfObject, so each of these
member functions of class pfObject are also directly usable with objects of class pfLPointState. This is
also true for ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLPointState
can also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);

301

pfLPointState(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfLPointState is a libpr data structure which, in conjunction with a pfGeoSet of type PFGS_POINTS,
supports a sophisticated light point primitive type. Examples of light points are stars, beacons, strobes,
runway edge and end illumination, taxiway lights, visual approach slope indicators (VASI), precision
approach path indicators (PAPI), and street lights when viewed from a great distance.

Light points should not be confused with light sources, such as a pfLight. A light point is visible as one or
more self-illuminated small points that do not illuminate surrounding objects. By comparison, a pfLight
does illuminate scene contents but is itself not a visible object.

When a pfLPointState is applied with pfLPointState::apply or through its parent pfGeoState (See
pfGeoSet::draw and pfGeoState::apply), any pfGeoSet of type PFGS_POINTS will be rendered with the
following special light point characteristics (if enabled):

1. Perspective size. Light points can be assigned a real world size and exhibit perspective
behavior, e.g., points closer to the eye will be rendered larger than those points farther away.

2. Perspective fading. Once a light point reaches a minimum size, it may be made more tran-
sparent in order to enhance the perspective illusion. Fading is often more realistic than simply
shrinking the point size to 0.

3. Fog punch-through. Since light points are emissive objects, they must shine through fog more
than non-emissive objects.

4. Directionality. Light points can be assigned a direction as well as vertical and horizontal
envelopes (or lobes) about this direction vector. Directional light point intensity is then view
position-dependent. Light point direction is defined by the normals (PFGS_NORMAL3) sup-
plied by PFGS_POINTS pfGeoSets.

302

IRIS Performer 2.0 libpr C++ Reference Pages pfLPointState(3pf)hh

5. Intensity. Normally, light point color and transparency are defined by the colors (-
PFGS_COLOR4) supplied by PFGS_POINTS pfGeoSets. pfLPointStates provide the addi-
tional capability of modifying the intensity of all points in a light point pfGeoSet by scaling the
alpha of all point colors.

At a minimum, light point usage requires a configuration based on three linked libpr objects: a pfGeoSet,
a pfGeoState attached to that pfGeoSet, and a pfLPointState attached to the pfGeoState. Here are the
details:

1. A pfGeoSet of type PFGS_POINTS. This pfGeoSet must have a PFGS_COLOR4 attribute
binding of PFGS_PER_VERTEX in some situations and should have supplied normals (-
PFGS_NORMAL3) if the light points are directional.

2. A pfGeoState which is usually attached to the pfGeoSet and
which references a pfLPointState. The pfGeoState should almost always enable transparency
since all light point effects except perspective size require transparency.

3. A pfLPointState configured appropriately and attached to the
pfGeoState listed in step two.

The following example illustrates how to build a comprehensive light point structure that uses texture
mapping to accelerate directionality computations:

/*

* Create pfLPointState and pfGeoState.

*/

pfGeoState *gst = new pfGeoState;

pfLPointState *lps = new pfLPointState;

gst->setMode(PFSTATE_ENLPOINTSTATE, 1);

gst->setAttr(PFSTATE_LPOINTSTATE, lps);

/*

* Light point projected diameter is computed on CPU. Real world

* size is 0.07 database units and projected size is clamped be

* between 0.25 and 4 pixels.

*/

lps->setMode(PFLPS_SIZE_MODE, PFLPS_SIZE_MODE_ON);

lps->setVal(PFLPS_SIZE_MIN_PIXEL, 0.25f);

lps->setVal(PFLPS_SIZE_ACTUAL, 0.07f);

lps->setVal(PFLPS_SIZE_MAX_PIXEL, 4.0f);

/*

* Light points become transparent when their projected diameter is

* < 2 pixels. The transparency falloff rate is linear with

303

pfLPointState(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

* projected size with a scale factor of 0.6. The transparency

* multiplier, NOT the light point transparency, is clamped to 0.1.

*/

lps->setVal(PFLPS_TRANSP_PIXEL_SIZE, 2.0f);

lps->setVal(PFLPS_TRANSP_EXPONENT, 1.0f);

lps->setVal(PFLPS_TRANSP_SCALE, 0.6f);

lps->setVal(PFLPS_TRANSP_CLAMP, 0.1f);

/*

* Light points will be fogged as if they were 4 times

* nearer to the eye than actual to achieve punch-through.

*/

lps->setVal(PFLPS_FOG_SCALE, 0.25f);

/* Range to light points computed on CPU is true range */

lps->setMode(PFLPS_RANGE_MODE, PFLPS_RANGE_MODE_TRUE);

/*

* Light points are bidirectional but have different (magenta)

* back color. Front color is provided by pfGeoSet colors.

*/

lps->setMode(PFLPS_SHAPE_MODE, PFLPS_SHAPE_MODE_BI_COLOR);

lps->setBackColor(1.0f, 0.0f, 1.0f, 1.0f);

/*

* 60 degrees horizontal and 30 degrees vertical envelope.

* Envelope is rotated -25 degrees about the light point

* direction. Falloff rate is linear and ambient intensity is 0.1.

*/

lps->setShape(60.0f, 30.0f, -25.0f, 1.0f, 0.1f);

/*

* Specify that light points should use texturing hardware to simulate

* directionality and use CPU to compute light point transparency and

* fog punch-through. Note that if light points are omnidirectional,

* you should use PFLPS_TRANSP_MODE_TEX and PFLPS_FOG_MODE_TEX instead.

*/

lps->setMode(PFLPS_DIR_MODE, PFLPS_DIR_MODE_TEX);

lps->setMode(PFLPS_TRANSP_MODE, PFLPS_TRANSP_MODE_ALPHA);

lps->setMode(PFLPS_FOG_MODE, PFLPS_FOG_MODE_ALPHA);

/*

* Make directionality environment map of size 64 x 64 and attach

304

IRIS Performer 2.0 libpr C++ Reference Pages pfLPointState(3pf)hh

* it to the light point pfGeoState. We assume that a pfTexEnv of

* type PFTE_MODULATE has been globally applied with pfApplyTEnv.

*/

tex = new pfTexture;

lps->makeShapeTex(tex, 64);

gst->setAttr(PFSTATE_TEXTURE, tex);

gst->setMode(PFSTATE_ENTEXTURE, 1);

/*

* Make SPHERE_MAP pfTexGen and attach to light point pfGeoState.

* pfGeoSet normals define the per-light light point direction.

*/

tgen = new pfTexGen;

tgen->setMode(PF_S, PFTG_SPHERE_MAP);

tgen->setMode(PF_T, PFTG_SPHERE_MAP);

gst->setAttr(PFSTATE_TEXGEN, tgen);

gst->setMode(PFSTATE_ENTEXGEN, 1);

/*

* Configure light point transparency. Use PFTR_BLEND_ALPHA for high

* quality transparency. Set pfAlphaFunc so that light points are not

* drawn unless their alphas exceed 1 when using 8-bit color resolution.

*/

gst->setMode(PFSTATE_TRANSPARENCY, PFTR_BLEND_ALPHA);

gst->setVal(PFSTATE_ALPHAREF, 1.0/255.0);

gst->setMode(PFSTATE_ALPHAFUNC, PFAF_GREATER);

/*

* Disable pfFog effects since light points are fogged by

* the pfLPointState.

*/

gst->setMode(PFSTATE_ENFOG, 0);

/*

* Disable lighting effects since light points are completely

* emissive.

*/

gst->setMode(PFSTATE_ENLIGHTING, 0);

/*

* Attach the pfGeoState to a pfGeoSet of type PFGS_POINTS and

* you’ve got light points!

*/

gset->setPrimType(PFGS_POINTS);

305

pfLPointState(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

gset->setGState(gst);

pfLPointState Modes

Each of the five light point characteristics listed earlier may be achieved through the Graphics Library in
different ways depending on the available graphics hardware.
pfLPointState::setMode/pfLPointState::setVal provide control over feature implementation. Modes and
their corresponding values accepted by pfLPointState::setMode are:

PFLPS_SIZE_MODE /* Perspective size */
PFLPS_SIZE_MODE_ON - Enable perspective light point size. Perspective size is computed
on the CPU.

PFLPS_SIZE_MODE_OFF - Disable perspective light point size.

PFLPS_TRANSP_MODE /* Perspective fading */
PFLPS_TRANSP_MODE_ON - Enable default (CPU-based) light point fading.

PFLPS_TRANSP_MODE_OFF - Disable light point fading.

PFLPS_TRANSP_MODE_ALPHA - Enable light point fading. Compute fade value on CPU
and modify light point alpha. This mode requires that pfGeoSets have a PFGS_COLOR4
binding of PFGS_PER_VERTEX and that there be a unique color for each point.

PFLPS_TRANSP_MODE_TEX - Enable light point fading. Use texture mapping to simulate
fading.

PFLPS_FOG_MODE /* Fog punch-through */
PFLPS_FOG_MODE_ON - Enable default (CPU-based) fog punch-through.

PFLPS_FOG_MODE_OFF - Disable fog punch-through.

PFLPS_FOG_MODE_ALPHA - Enable fog punch-through. Compute fog value on CPU and
modify light point alpha. This mode requires that pfGeoSets have a PFGS_COLOR4 binding
of PFGS_PER_VERTEX and that there be a unique color for each point.

PFLPS_FOG_MODE_TEX - Enable fog punch-through. Use texture mapping to simulate fog.

(Normal fogging should be disabled (pfDisable(PFEN_FOG) or
pfGeoState::setMode(PFSTATE_ENFOG, 0)) when PFLPS_FOG_MODE is not
PFLPS_FOG_MODE_OFF since the pfLPointState will fog the points)

306

IRIS Performer 2.0 libpr C++ Reference Pages pfLPointState(3pf)hh

PFLPS_DIR_MODE /* Directionality enable */
PFLPS_DIR_MODE_ON - Enable default (CPU-based) directional light points.

PFLPS_DIR_MODE_OFF - Disable directional light points.

PFLPS_DIR_MODE_ALPHA - Enable directional light points. Compute directionality on
CPU and modify light point alpha. This mode requires that pfGeoSets have a PFGS_COLOR4
binding of PFGS_PER_VERTEX and that there be a unique color for each point.

PFLPS_DIR_MODE_TEX - Enable directional light points. Use texture mapping to simulate
directionality.

PFLPS_SHAPE_MODE /* Directionality shape */
PFLPS_SHAPE_MODE_UNI - Directional light points are unidirectional. Light distribution
is an elliptical cone specified by pfLPointState::setShape, centered about the light direction
vector.

PFLPS_SHAPE_MODE_BI - Directional light points are bidirectional with identical front and
back colors. Light distribution is two elliptical cones, specified by pfLPointState::setShape,
centered about the positive and negative light direction vectors.

PFLPS_SHAPE_MODE_BI_COLOR - Directional light points are bidirectional with back
color specified by pfLPointState::setBackColor. Light distribution is two elliptical cones,
specified by pfLPointState::setShape, centered about the positive and negative light direction
vectors.

PFLPS_RANGE_MODE
PFLPS_RANGE_MODE_DEPTH - Range to light point is approximated by depth from eye.
This may be faster, but less accurate than PFLPS_RANGE_MODE_TRUE.

PFLPS_RANGE_MODE_TRUE - Range to light point is true, slanted range to eye. This may
be slower, but more accurate than PFLPS_RANGE_MODE_DEPTH.

pfLPointState Values

pfLPointState::setVal sets the attribute of the pfLPointState identified by which to val.
pfLPointState::getVal returns the attribute of the pfLPointState identified by which.

Values associated with PFLPS_SIZE_MODE and which have effect only when PFLPS_SIZE_MODE is
PFLPS_SIZE_MODE_ON are the following:

PFLPS_SIZE_MIN_PIXEL
val specifies the minimum diameter, in pixels, of light points. Default value is 0.25. Note
that actual minimum point size is clamped to the minimum supported by the graphics
hardware.

307

pfLPointState(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

PFLPS_SIZE_MAX_PIXEL
val specifies the maximum diameter, in pixels, of light points. Default value is 4.0. Note
that actual maximum point size is clamped to the maximum supported by the graphics
hardware.

PFLPS_SIZE_ACTUAL
val specifies light point diameter in eye coordinates. Scales do not affect the actual light
point size. Default value is 0.25.

In pseudo-code, the size of a light point is determined as follows:

/* NearPixelDistance is described below */

computedSize = PFLPS_SIZE_ACTUAL * NearPixelDistance / rangeToEye;

if (PFLPS_SIZE_MODE == PFLPS _SIZE_MODE_ON)

{

/* Clamp pixel size of point */

if (computedSize < PFLPS_SIZE_MIN_PIXEL)

computedSize = PFLPS_SIZE_MIN_PIXEL;

else

if (computedSize > PFLPS_SIZE_MAX_PIXEL)

computedSize = PFLPS_SIZE_MAX_PIXEL;

lightPointSize = computedSize;

}

Values associated with PFLPS_TRANSP_MODE and which have effect only when
PFLPS_TRANSP_MODE is not PFLPS_TRANSP_MODE_OFF.

PFLPS_TRANSP_PIXEL_SIZE
val specifies the threshold diameter, in pixels, at which light point alphas are decreased so
that they become more transparent once computed light point size is less than val.
Default value is 0.25.

PFLPS_TRANSP_EXPONENT
val specifies an exponential falloff for light point fading and should be >= 0.0. Values > 0
and < 1 make the falloff curve flatter while values > 1 make it sharper. Default value is
1.0 for a linear falloff based on projected pixel size.

PFLPS_TRANSP_SCALE
val specifies a scale factor for the light point fade multiplier. Values > 0 and < 1 decrease
the falloff rate while values > 1 increase it. Default value is 1.0.

308

IRIS Performer 2.0 libpr C++ Reference Pages pfLPointState(3pf)hh

PFLPS_TRANSP_CLAMP - val specifies the minimum fade multiplier.

In pseudo-code, the transparency of a light point is determined as follows:

if (PFLPS_TRANSP_MODE == PFLPS_TRANSP_MODE_ALPHA &&

PFLPS_TRANSP_PIXEL_SIZE > computedSize)

{

float a;

a = 1.0f - PFLPS_TRANSP_SCALE *

powf(PFLPS_TRANSP_PIXEL_SIZE - computedSize,

PFLPS_TRANSP_EXPONENT);

/* Clamp alpha multiplier, not alpha */

if (a < PFLPS_TRANSP_CLAMP)

a = PFLPS_TRANSP_CLAMP;

lightPointAlpha *= a;

}

PFLPS_FOG_SCALE
val specifies a scale factor that multiplies the range from eye to light point before fogging. Values
> 0.0 and < 1.0 cause light points to punch through fog more than non-emissive surfaces. Default
value is 0.25.

In pseudo-code, the fog of a light point is determined as follows:

/* fogFunction ranges from 0 (no fog) to 1 (completely fogged) */

lightPointAlpha *= 1.0f - fogFunction(rangeToEye * PFLPS_FOG_SCALE);

PFLPS_INTENSITY
val multiplies all light point alphas. Default value is 1.0.

PFLPS_SIZE_DIFF_THRESH
val specifies the threshold, in pixels, at which a new point size should be specified to the Graphics
Library. It is strictly a tuning parameter which trades off speed for image quality. Default value
is 0.1. Higher values improve performance but may degrade light point image quality.

PFLPS_TRANSP_MODE, PFLPS_FOG_MODE, and PFLPS_DIR_MODE modes each have possible
values of ALPHA and TEX which dictate the mechanism used to simulate the effect. The ALPHA
mechanism is the default and uses the CPU to compute the effect which is then realized by modifying the
alpha of light point colors. pfGeoSets of type PFGS_POINTS which use an ALPHA mechanism should

309

pfLPointState(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

have a PFGS_COLOR4 binding of PFGS_PER_VERTEX even if all point colors are the same, since the
light point alphas will be different based on ALPHA computation by the pfLPointState.

While ALPHA mechanisms are graphics hardware-independent, they may be slower than TEX mechan-
isms on machines which provide hardware texture mapping. By supplying an appropriate pfTexture,
pfTexGen, and pfTexEnv (usually attached to the pfGeoState to which the pfLPointState is attached), you
can use the texture mapping hardware to efficiently simulate directionality or fog punch-through and
perspective fading. At this time it is not possible to support all TEX mechanisms at once:

1. Only PFLPS_DIR_MODE_TEX or,

2. PFLPS_TRANSP_MODE_TEX and/or PFLPS_FOG_MODE_TEX
It is recommended that directional light points use PFLPS_DIR_MODE_TEX since directionality is the
most expensive effect to compute on the CPU.

Two convenience routines, pfLPointState::makeRangeTex and pfLPointState::makeShapeTex are pro-
vided to compute a texture image which accurately mimics certain characteristics of the pfLPointState.

pfLPointState::makeRangeTex should be used in conjunction with PFLPS_TRANSP_MODE_TEX
and/or PFLPS_FOG_MODE_TEX and will set a computed image on the supplied pfTexture, tex. The
image will be a 2D array of size by size if both PFLPS_TRANSP_MODE_TEX and
PFLPS_FOG_MODE_TEX are set on lpstate or the image will be a 1D array of length size if only 1 of
PFLPS_TRANSP_MODE_TEX and PFLPS_FOG_MODE_TEX is set.

When using PFLPS_TRANSP_MODE_TEX and/or PFLPS_FOG_MODE_TEX, you must supply a
pfTexGen structure which computes the S (and T if both PFLPS_TRANSP_MODE_TEX and
PFLPS_FOG_MODE_TEX are set) texture coordinates as distance from the Z = 0 plane in eye coordi-
nates. For example:

tgen = new pfTexGen;

tgen->setPlane(PF_S, 0.0f, 0.0f, 1.0f, 0.0f);

tgen->setPlane(PF_T, 0.0f, 0.0f, 1.0f, 0.0f);

tgen->setMode(PF_S, PFTG_EYE_PLANE);

tgen->setMode(PF_T, PFTG_EYE_PLANE);

pfLPointState::makeRangeTex takes into account only the following values of the pfLPointState when
building the texture image and should be called again whenever they change:

PFLPS_TRANSP_PIXEL_SIZE
PFLPS_TRANSP_EXPONENT
PFLPS_TRANSP_SCALE
PFLPS_TRANSP_CLAMP

pfLPointState::makeShapeTex computes an environment map which approximates the directional

310

IRIS Performer 2.0 libpr C++ Reference Pages pfLPointState(3pf)hh

characteristics of the pfLPointState. The computed image is assigned to tex and its dimensions are size by
size. When using PFLPS_DIR_MODE_TEX, you must supply a pfTexGen structure which uses
PFTG_SPHERE_MAP to compute both S and T. For example:

tgen = new pfTexGen;

tgen->setMode(PF_S, PFTG_SPHERE_MAP);

tgen->setMode(PF_T, PFTG_SPHERE_MAP);

pfLPointState::makeShapeTex takes into account only the PFLPS_SHAPE_MODE modes and those
values specified by pfLPointState::setShape. Consequently, pfLPointState::makeShapeTex should be
called whenever these modes/values change.

fog should represent the desired fog ramp, e.g. PFFOG_LINEAR, PFFOG_SPLINE, if
PFLPS_FOG_MODE_TEX is set or NULL if not set. The fog ranges are ignored and fog is not modified.

Each of the four main light point features (size, transparency, fog, and directionality) are view-dependent
effects. Consequently, knowledge about the viewing and modeling transformations is required in certain
situations:

1. When not using libpf. Otherwise, libpf automatically informs libpr of the viewing and
modeling transformations.

2. When using an ALPHA mechanism, e.g., PFLPS_DIR_MODE_ALPHA.

3. When PFLPS_SIZE_MODE is PFLPS_SIZE_MODE_ON.

Use pfViewMat and pfModelMat to specify the viewing and modeling matrices respectively. For best
performance, these routines should be called only when the corresponding matrix changes. Additionally
you may call pfInvModelMat to specify the inverse of the modeling matrix if you’ve already computed it
for some other reason. When using PFLPS_SIZE_MODE_ON, use pfNearPixDist to specify the distance,
in pixels, from the eye to the near clip plane. pfLPointState needs this parameter to map world size to
pixel size (but only if not using libpf). pfViewMat, pfModelMat, pfInvModelMat, and pfNearPixDist
are all display-listable commands which may be captured by an open pfDispList.

new(arena) allocates a pfLPointState from the specified memory arena, or from the process heap if arena
is NULL. new allocates a pfLPointState from the default memory arena (see pfGetSharedArena). Like
other pfObjects, pfLPointStates cannot be created statically, automatically on the stack or in arrays.
pfLPointStates should be deleted with pfDelete rather than the delete operator.

pfLPointState::getClassType returns the pfType* for the class pfLPointState. The pfType* returned by
pfLPointState::getClassType is the same as the pfType* returned by invoking the virtual function
getType on any instance of class pfLPointState. When decisions are made based on the type of an object,
it is usually better to use the member function isOfType to test if an object is of a type derived from a
Performer type rather than to test for strict equality of the pfType*’s.

311

pfLPointState(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfLightPoint::setShape specifies the light distribution characteristics of directional light points. Light
point directions are specified by pfGeoSet normals after they have been transformed by the current
modeling matrix. Note that a PFGS_NORMAL3 binding of PFGS_OVERALL is permitted as well as a
binding of PFGS_PER_VERTEX. Directional light points require that PFLPS_DIR_MODE be
PFLPS_DIR_MODE_ON, PFLPS_DIR_MODE_ALPHA, or PFLPS_DIR_MODE_TEX.

horiz and vert are total angles (not half-angles) in degrees which specify the horizontal and vertical
envelopes about the direction vector. An envelope is a symmetric angular spread in a specific plane
about the light direction vector. The default direction is along the positive Y axis so the horizontal
envelope is in the X plane and the vertical in the Z plane. The envelopes are twisted about the +Y axis by
roll degrees, then rotated by the rotation which takes the +Y axis onto the light point direction vector.
Default values are:

horiz = 90 degrees
vert = 90 degrees
roll = 0 degrees
falloff = 1
ambient = 0

When the vector from the eyepoint to the light position is outside its envelope, the light point’s intensity is
ambient. If within, the intensity of the light point is computed based on the location of the eye within the
elliptical cone. Intensity ranges from 1.0 when the eye lies on the light direction vector to ambient on the
edge of the cone. falloff is an exponent which modifies the intensity. A value of 0 indicates that there is no
falloff and values > 0 increase the falloff rate. The default falloff is 1. As intensity decreases, the light
point’s transparency increases.

pfLightPoint::getShape copies the pfLPointState’s shape parameters into horiz, vert, roll, falloff, and
ambient.

pfLPointState::setBackColor specifies the back color of the pfLPointState. If the pfLPointState’s shape
mode is not PFLPS_SHAPE_MODE_BI_COLOR, then the back color has no effect.
pfLPointState::setBackColor copies the pfLPointState’s back color components into r, g, b, a.

pfLPointState::apply makes the pfLPointState the current pfLPointState which affects all subsequently
drawn pfGeoSets of type PFGS_POINTS. pfLPointState::apply is a display-listable command which
may be captured by an open pfDispList. A pfLPointState may also be attached to a pfGeoState.
pfGetCurLPState returns the current pfLPointState or NULL if there is none.

NOTES
Falloff distribution is cosine(incidence angle) ˆ falloff.

pfLPointState::apply changes, but does not restore the texture matrix if PFLPS_DIR_MODE_TEX,
PFLPS_TRANSP_MODE_TEX, or PFLPS_FOG_MODE_TEX is active.

312

IRIS Performer 2.0 libpr C++ Reference Pages pfLPointState(3pf)hh

SEE ALSO
pfDelete, pfDispList, pfFog, pfGeoSet, pfGeoState, pfState, pfTexture, pfTexGen, pfuMakeLPSta-
teRangeTex, pfuMakeLPStateShapeTex

313

pfLight(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfLight, pfGetCurLights − Create, modify and query lights

FUNCTION SPECIFICATION
#include <Performer/pr/pfLight.h>

pfLight::pfLight()

static pfType * pfLight::getClassType(void);

void pfLight::setColor(int which, float r, float g, float b);

void pfLight::getColor(int which, float *r, float *g, float *b);

void pfLight::setAtten(float constant, float linear, float quadratic);

void pfLight::getAtten(float *constant, float *linear, float *quadratic);

void pfLight::setPos(float x, float y, float z, float w);

void pfLight::getPos(float *x, float *y, float *z, float *w);

void pfLight::setSpotDir(float x, float y, float z);

void pfLight::getSpotDir(float *x, float *y, float *z);

void pfLight::setSpotCone(float exponent, float spread);

void pfLight::getSpotCone(float *exponent, float *spread);

void pfLight::on(void);

void pfLight::off(void);

int pfLight::isOn(void);

void pfLight::setAmbient(float r, float g, float b);

void pfLight::getAmbient(float *r, float *g, float *b);

int pfGetCurLights(pfLight *lights[PF_MAX_LIGHTS]);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLight is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfLight. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

314

IRIS Performer 2.0 libpr C++ Reference Pages pfLight(3pf)hh

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLight can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfLight is a light source that illuminates scene geometry, generating realistic shading effects. A pfLight
cannot itself be seen but its effect is visible through its illuminative effect on scene geometry. There are
some subtle differences between IRIS GL and OpenGL light operation and additional references are
recommended and should be noted. See the IRIS GL lmdef(3g) or the OpenGL glLight(3g) reference
page for more details on lights and individual lighting parameters.

new(arena) allocates a pfLight from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfLight from the default memory arena (see pfGetSharedArena). Like other
pfObjects, pfLights cannot be created statically, automatically on the stack or in arrays. pfLights should
be deleted with pfDelete rather than the delete operator.

pfLight::getClassType returns the pfType* for the class pfLight. The pfType* returned by
pfLight::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfLight. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfLight::setColor accepts a token for the color attribute to set (PFLT_AMBIENT, PFLT_DIFFUSE, or
PFLT_SPECULAR) and three floating point values (r, g, and b) in the range [0.0 .. 1.0] defining values for
the red, green, and blue components of the indicated attribute of the light source. By default, the r, g, and

315

pfLight(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

b values are all 1.0. pfLight::getColor copies the requested light color values for the given light source
and color attribute into the parameters r, g, and b.

pfLight::setAtten sets the attenuation parameters of the pfLight. The light intensity is scaled at each ver-
tex by:

1.0 / (constant + linear * dist + quadratic * distˆ2)

where ’dist’ is the distance from the light position to the lit vertex. Note that ’dist’ is 1.0 for infinite light
sources. The default attenuation values are constant = 1.0, linear = 0.0, quadratic = 0.0, i.e., light attenuation
is disabled. pfLight::getAtten returns the attenuation parameters of the pfLight in constant, linear, and
quadratic. Per-light attenuation is only available in OpenGL. IRIS GL light attenuation is done on the light
model; see the pfLightModel::setAtten reference page for more information.

pfLight::setSpotDir specifies the direction in which a spot light source emits its light. It receives three
floating point values, x, y, and z, specifying the x, y, and z direction vectors. pfLight::getSpotDir copies
the x, y, and z direction vectors into the parameters x, y, and z.

pfLight::setSpotCone specifies the exponent and spread of the spot light cone, and receives two floating
point values, f1 and f2, to set the exponent for the intensity, and the spread of the cone, respectively.
pfLight::getSpotCone copies the current exponent and spread of the cone into the parameters f1 and f2.

pfLight::setPos receives four floating point values to set the x, y, z, and w, coordinates for the position of
the light source. Typically, the homogeneous coordinate w is 0.0 to indicate that the light position is
infinitely far from the origin in the direction (x, y, z). Local light sources are specified by a non-zero value
for w and usually incur a performance penalty. pfLight::getPos copies the x, y, z and w coordinates of
the light source into the parameters x, y, z and w, respectively.

pfLight::on enables the pfLight so that its illumination will influence scene geometry if lighting is prop-
erly enabled (See below). The maximum number of active lights is determined by the particular graphics
library implementation but typically is at least eight.

Modifications made to a pfLight do not have effect until pfLight::on is called.

For geometry to be illuminated, the following must be true:

1. Lighting must be enabled: pfEnable(PFEN_LIGHTING)

2. A pfLightModel must be applied: pfLightModel::apply

3. A pfMaterial must be applied: pfMaterial::apply

4. One or more pfLights must be on: pfLight::on

316

IRIS Performer 2.0 libpr C++ Reference Pages pfLight(3pf)hh

5. Illuminated geometry must have normals: pfGeoSet::setAttr, PFGS_NORMAL3

pfLight::on also affects the position of the light in the scene. When called, the current graphics library
ModelView matrix transforms the position of the light set by pfLight::setPos. Calling pfLight::on when
specific transformations are on the stack will result in different light behaviors, which are outlined in the
following paragraphs.

To simulate a light attached to the viewer (simulating a miner’s head-mounted lamp) call pfLightOn only
once with an identity matrix on the stack:

viewerLight->setPos(0.0, 0.0, 1.0, 0.0);

/*

* viewerLight always points in direction of view, i.e. - down -Z axis.

*/

pfPushIdentMatrix();

viewerLight->on();

pfPopMatrix();

/* Draw scene */

To simulate a light "attached" to the world (at a fixed location in world-space coordinates like the sun or
moon) call pfLightOn every frame with only the viewing transformation on the stack:

sunLight->setPos(0.0, 1.0, 0.0, 0.0);

pfPushIdentMatrix();

/* viewer is at origin looking +30 degrees ’up’ */

pfRotate(PF_X, -30.0f);

/* sunLight always points straight down on scene */

sunLight->on();

/* Draw scene */

pfPopMatrix();

To simulate a light attached to an object like the headlights of a car, call pfLightOn every frame with the
combined viewing and modeling transformation on the stack:

317

pfLight(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

headLight->setPos(2.0, 0.0, 0.0, 1.0);

pfPushIdentMatrix();

/* Viewer is at origin looking +30 degrees ’up’ */

pfRotate(PF_X, -30.0f);

/* Car is at (100.0f, 100.0f, 100.0f) */

pfTranslate(100.0f, 100.0f, 100.0f);

/*

* carLight is a point light source at the front of the car

* provided the car is modeled such that the headlights are

* 2 units from the center of the car in the +X direction.

*/

headLight->on();

/* Draw scene */

pfPopMatrix();

pfLight::off disables the pfLight so that it does not contribute to scene illumination.

pfLight::isOn returns a boolean indicating whether the pfLight is on or not.

pfGetCurLights returns the number of currently active lights, n. The array lights is filled with n pointers
to the pfLight structures of the light sources that are currently ‘‘on’’.

The light source state element is identified by the PFSTATE_LIGHT token. Use this token with
pfGeoState::setAttr to set the light array of a pfGeoState and with pfOverride to override subsequent
light source changes:

pfLight::setAmbient is provided for compatibility with previous versions of IRIS Performer. It accepts
three floating point values in the range from 0.0 through 1.0 to set the r, g, and b, values for the red, green,
and blue components of the ambient light. By default, lights have ambient red, green, and blue values of
0.0. pfLight::getAmbient copies the ambient light values for the given light source into the parameters r,
g, and b. For future compatibility, calls to:

lt->setAmbient(r, g, b);

318

IRIS Performer 2.0 libpr C++ Reference Pages pfLight(3pf)hh

should be replaced by

lt->setColor(PFLT_AMBIENT, r, g, b);

and calls to:

lt->getAmbient(&r, &g, &b);

should be replaced by

lt->getColor(PFLT_AMBIENT, &r, &g, &b);

EXAMPLES
Example 1:

pfLight *lightArray[PF_MAX_LIGHTS];

for (i=0; i<PF_MAX_LIGHTS; i++)

lightArray[i] = NULL;

lightArray[0] = light0;

lightArray[1] = light1;

/* Set up specially-lit pfGeoState */

gstate->setMode(PFSTATE_ENLIGHTING, PF_ON);

gstate->setAttr(PFSTATE_LIGHT, lightArray);

/* Attach gstate to gset */

gset->setGState(gstate);

/* Set normal array. ’gset’ is non-indexed */

gset->setAttr(PFGS_NORMAL3, PFGS_PER_VERTEX, norms, NULL);

/* Draw specially-lit gset */

gset->draw();

Example 2:

319

pfLight(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

light0->on();

light1->on();

/*

* Override so that all geometry is lit with light0 and light1

* if lighting is otherwise properly enabled.

*/

pfOverride(PFSTATE_LIGHT, PF_ON);

The array of lights passed to pfGeoState::setAttr should be PF_MAX_LIGHTS long and should contain
references to pfLights that are to be used by the pfGeoState. Empty array elements should be set to
NULL.

pfLight::on and pfLight::off are display-listable commands. If a pfDispList has been opened by
pfDispList::open, pfLight::on and pfLight::off will not have immediate effect but will be captured by the
pfDispList and will only have effect when that pfDispList is later drawn with pfDispList::draw.

NOTES
Local lighting results in improper shading of flat-shaded triangle and line strips (-
PFGS_FLAT_TRISTRIPS, PFGS_LINE_TRISTRIPS) which often manifests itself as "faceting" of planar
polygons. The only solution is either to use infinite lighting or not use FLAT primitives. Note that when
using the IRIS Performer triangle meshing routine, pfdMeshGSet, the construction of non-FLAT strips is
easily enforced with pfdMesherMode(PFDMESH_LOCAL_LIGHTING, 1).

SEE ALSO
pfDelete, pfDispList, pfGeoState, pfLightModel, pfMaterial, pfObject, pfOverride, pfState, lmbind,
lmcolor, lmdef, glLight, glColorMaterial

320

IRIS Performer 2.0 libpr C++ Reference Pages pfLightModel(3pf)hh

NAME
pfLightModel, pfGetCurLModel − Create, modify and query lighting model

FUNCTION SPECIFICATION
#include <Performer/pr/pfLight.h>

pfLightModel::pfLightModel()

static pfType * pfLightModel::getClassType(void);

static void pfLightModel::apply(void);

void pfLightModel::setAtten(float a0, float a1, float a2);

void pfLightModel::getAtten(float *a0, float *a1, float *a2);

void pfLightModel::setLocal(int l);

int pfLightModel::getLocal(void);

void pfLightModel::setTwoSide(int t);

int pfLightModel::getTwoSide(void);

void pfLightModel::setAmbient(float r, float g, float b);

void pfLightModel::getAmbient(float *r, float *g, float *b);

pfLightModel * pfGetCurLModel(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLightModel is derived from the parent class pfObject, so each of these
member functions of class pfObject are also directly usable with objects of class pfLightModel. This is
also true for ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLightModel
can also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();

321

pfLightModel(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfLightModel defines characteristics of the hardware lighting model used to illuminate geometry.
There are some subtle differences between IRIS GL and OpenGL light operation and additional references
are recommended and should be noted. See the IRIS GL lmdef(3g) or the OpenGL glLightModel(3g)
reference page for more details on lighting environments and individual parameters.

new(arena) allocates a pfLightModel from the specified memory arena, or from the process heap if arena
is NULL. new allocates a pfLightModel from the default memory arena (see pfGetSharedArena). Like
other pfObjects, pfLightModels cannot be created statically, automatically on the stack or in arrays.
pfLightModels should be deleted with pfDelete rather than the delete operator.

pfLightModel::getClassType returns the pfType* for the class pfLightModel. The pfType* returned by
pfLightModel::getClassType is the same as the pfType* returned by invoking the virtual function
getType on any instance of class pfLightModel. Because IRIS Performer allows subclassing of built-in
types, when decisions are made based on the type of an object, it is usually better to use the member
function isOfType to test if an object is of a type derived from a Performer type rather than to test for
strict equality of the pfType*’s.

pfLightModel::setAtten sets the lighting attenuation factors for the pfLightModel. a1, a2, and a3 specify
the constant, linear, and second-order attenuation factors, respectively. These factors are associated with
all non-infinite lights. The default vales for constant, linear, and quadratic attenuation factors are 1.0, 0.0,
and 0.0, respectively, effectively disabling each. Attenuation on the light model is done only in IRIS GL
operation. OpenGL light attenuation is done per-light. See the pfLight::setAtten reference page for more
information.

pfLightModel::getAtten copies the lighting attenuation factors for the pfLightModel into the parameters
a1, a2, and a3.

pfLightModel::setLocal specifies whether the light reflection calculations are to be done based on a local
or infinite viewpoint. The default is PF_OFF signifying an infinite viewer for the light model. In general,

322

IRIS Performer 2.0 libpr C++ Reference Pages pfLightModel(3pf)hh

local lighting is more expensive than infinite lighting.

pfLightModel::getLocal returns a boolean value signifying whether or not the effective viewpoint in the
pfLightModel is a local viewpoint.

pfLightModel::setTwoSide specifies whether two-sided lighting is to be used in the given light model.
The default is PF_OFF, disabling two-sided lighting. See the IRIS GL lmdef(3g) or the OpenGL
glLightModel reference page for more details on two-sided lighting.

pfLightModel::getTwoSide returns the setting of the pfLightModel’s two-sided lighting mode.

pfLightModel::setAmbient receives three floating point values in the range from 0.0 through 1.0 to set
the red, green, and blue, values for the amount of the ambient light associated with the scene for the given
light model.

pfLightModel::getAmbient copies the red, green, and blue components of the ambient in the given light
model into the parameters r, g, and b, respectively. The default value for the ambient red, green, and blue
light components is 0.2.

pfLightModel::apply causes the pfLightModel, with its current settings, to become the current lighting
model. When lighting is enabled (See below), this lighting model will be applied to all geometry drawn
after pfLightModel::apply is called. Modifications to the pfLightModel, such as changing the ambient
color, or setting two-sided lighting, will not be applied until pfLightModel::apply is called with the
pfLightModel.

For geometry to be illuminated, the following must be true:

1. Lighting must be enabled: pfEnable(PFEN_LIGHTING)

2. A pfLightModel must be applied: pfLightModel::apply

3. A pfMaterial must be applied: pfMaterial::apply

4. One or more pfLights must be on: pfLight::on

5. Illuminated geometry must have normals: pfGeoSet::setAttr, PFGS_NORMAL3

The lighting model state element is identified by the PFSTATE_LIGHTMODEL token. Use this token
with pfGeoState::setAttr to set the lighting model of a pfGeoState and with pfOverride to override sub-
sequent lighting model changes.:

EXAMPLES
Example 1:

323

pfLightModel(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

lmodel->setTwoSide(PF_ON);

/* Set up two-sided lighting pfGeoState */

gstate->setMode(PFSTATE_ENLIGHTING, PF_ON);

gstate->setAttr(PFSTATE_LIGHTMODEL, lmodel);

gstate->setAttr(PFSTATE_FRONTMTL, mtl);

gstate->setAttr(PFSTATE_BACKMTL, mtl);

gstate->setMode(PFSTATE_CULLFACE, PF_OFF);

/* Attach gstate to gset */

gset->setGState(gstate);

/* Set normal array. ’gset’ is non-indexed */

gset->setAttr(PFGS_NORMAL3, PFGS_PER_VERTEX, norms, NULL);

/* Draw lit, two-sided gset */

gset->draw();

Example 2:

lmodel->apply();

/* Override so that all geometry is lit with ’lmodel’ */

pfOverride(PFSTATE_LIGHTMODEL, PF_ON);

pfLightModel::apply is a display-listable command. If a pfDispList has been opened by
pfDispList::open, pfLightModel::apply will not have immediate effect but will be captured by the
pfDispList and will only have effect when that pfDispList is later drawn with pfDispList::draw.

pfGetCurLModel returns a pointer to the currently active pfLightModel, or NULL if there is no active
pfLightModel.

SEE ALSO
pfDelete, pfDispList, pfGeoState, pfLight, glLightModel, pfMaterial, pfObject, pfState, lmbind, lmcolor,
lmdef

324

IRIS Performer 2.0 libpr C++ Reference Pages pfList(3pf)hh

NAME
pfList − Dynamically-sized list utility

FUNCTION SPECIFICATION
#include <Performer/pr/pfList.h>

pfList::pfList();

pfList::pfList(int eltSize, int listLength);

static pfType * pfList::getClassType(void);

void pfList::add(void* elt);

void pfList::combine(const pfList *a, const pfList *b);

int pfList::fastRemove(void* elt);

void pfList::fastRemoveIndex(int index);

void * pfList::get(int index);

const void ** pfList::getArray(void);

int pfList::getArrayLen(void);

int pfList::getEltSize(void);

int pfList::getNum(void);

void pfList::insert(int index, void* elt);

void pfList::move(int index, void *elt);

void pfList::setArrayLen(int len);

void pfList::setNum(int num);

int pfList::remove(void* elt);

void pfList::removeIndex(int index);

int pfList::replace(void* old, void* new);

void pfList::reset(void);

int pfList::search(void* elt);

void pfList::set(int index, void *elt);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfList is derived from the parent class pfObject, so each of these member func-
tions of class pfObject are also directly usable with objects of class pfList. This is also true for ancestor
classes of class pfObject.

325

pfList(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfList can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfList is a dynamically-sized array of arbitrary, but homogeneously-sized, elements.

The default constructor pfList creates a list with an element size of 4 bytes. The element size is fixed at
creation time and cannot be later changed. Another constructor is provided that allows the element size
eltSize and initial allocated length listLength for the pfList. new(arena) allocates a pfList from the specified
memory arena, or from the process heap if arena is NULL. new allocates a pfList from the default
memory arena (see pfGetSharedArena). Like other pfObjects, pfLists cannot be created statically,
automatically on the stack or in arrays. pfLists should be deleted with pfDelete rather than the delete
operator.

pfList::getClassType returns the pfType* for the class pfList. The pfType* returned by
pfList::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfList. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

326

IRIS Performer 2.0 libpr C++ Reference Pages pfList(3pf)hh

A pfList dynamically increases its array size by a factor of 2 and zeros the additional memory whenever it
runs out of array memory. This way the array size quickly reaches its final size without many realloca-
tions of memory. However, some memory (up to one half of the total allocation) at the end of the array
may be wasted. If you know the exact number of elements in the array, you can specify the pfList array
length either when creating it (the listLength argument to new pfList) or with pfList::setArrayLen.
pfList::getArrayLen returns the current array length of the pfList.

Example 1:

/* Fit list’s array to its current number of elements */

list->setArrayLen(list->getNum());

pfList::set sets the indexth element of the pfList to elt. The list is automatically grown if index is beyond
the current array length.

pfList::get returns the element of the pfList at index index or 0 if index is out of bounds.

pfList::add appends elt to the pfList and automatically grows the pfList if necessary.

pfList::remove removes elt from the pfList and shifts the array down over the vacant spot, e.g. - if elt had
index 0, then index 1 becomes index 0, index 2 becomes index 1 and so on. pfList::remove returns the
index of elt if elt was actually removed and -1 if it was not found in the list. pfList::removeIndex removes
the indexth element of the pfList, and like pfList::remove, shifts the array down over the vacant spot.

pfList::fastRemove removes elt from the pfList but does not shift the array; instead it places the last ele-
ment of the array into the vacated location so it does not preserve the list ordering.
pfList::fastRemoveIndex replaces the indexth element with the last element of the pfList.

Note that both pfList::remove and pfList::fastRemove linearly search the array for elt and remove only
the first matching element. To remove all occurrences of elt do the following:

while (list->remove(elt) >= 0)

/* empty */ ;

pfList::search returns the index of elt if elt was found in the pfList and -1 otherwise.

pfList::insert inserts elt before the array element with index index. index must be within the range [0 ..
list->getNum()].

pfList::move deletes elt from its current location and inserts before the array element with index index.
index must be within the range [0 .. list->getNum()] or else (-1) is returned and no move is executed. If elt

327

pfList(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

is not already in the pfList, (-1) is returned and elt is not inserted into the list. Otherwise, index is returned
to indicate success.

pfList::replace replaces the first instance of old with new and returns the index of old if it was found in the
pfList and -1 otherwise.

pfList::getNum returns the number of elements in the pfList. (Actually, list may have holes in its array so
pfList::getNum technically should be considered as returning the maximum index of all elements in the
pfList.)

pfList::reset zeros the pfList’s array and resets the number of elements to 0. It does not resize the array.

pfList::combine sets the pfList to a appended with b. the pfList may be the same as a or b. Lists must
have equal element sizes to be combined.

For quick access to the list array, pfList::getArray returns a pointer to the internal array of the pfList.
Care should be taken with this routine since out of bounds range checking provided by pfList API is
bypassed. If you add elements to the pfList then use pfList::setNum to set the number of elements of the
pfList.

BUGS
pfLists currently only support an element size of sizeof(void*).

SEE ALSO
pfDelete

328

IRIS Performer 2.0 libpr C++ Reference Pages pfMatStack(3pf)hh

NAME
pfMatStack − Create and manipulate a matrix stack.

FUNCTION SPECIFICATION
#include <Performer/pr/pfLinMath.h>

pfMatStack::pfMatStack();

pfMatStack::pfMatStack(int size);

static pfType * pfMatStack::getClassType(void);

void pfMatStack::reset(void);

int pfMatStack::push(void);

int pfMatStack::pop(void);

void pfMatStack::preMult(const pfMatrix &m);

void pfMatStack::postMult(const pfMatrix &m);

void pfMatStack::load(const pfMatrix &m);

void pfMatStack::get(pfMatrix &m);

pfMatrix * pfMatStack::getTop(void);

int pfMatStack::getDepth(void);

void pfMatStack::preTrans(float x, float y, float z);

void pfMatStack::postTrans(float x, float y, float z);

void pfMatStack::preRot(float degrees, float x, float y, float z);

void pfMatStack::postRot(float degrees, float x, float y, float z);

void pfMatStack::preScale(float xs, float ys, float zs);

void pfMatStack::postScale(float xs, float ys, float zs);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfMatStack is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfMatStack. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

329

pfMatStack(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfMatStack can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
These routines allow the creation and manipulation of a stack of 4x4 matrices.

new(arena) allocates a pfMatStack from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfMatStack from the default memory arena (see pfGetSharedArena). Like other
pfObjects, pfMatStacks cannot be created statically, automatically on the stack or in arrays. The default
constructor creates a matrix stack 64 deep. Another constructor is provided that takes a size argument.
pfMatStacks should be deleted with pfDelete rather than the delete operator. size is the number of
pfMatrix’s in the matrix stack. The initial depth is 1 and the top of stack is the identity matrix.

pfMatStack::getClassType returns the pfType* for the class pfMatStack. The pfType* returned by
pfMatStack::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfMatStack. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfMatStack::reset sets the stack depth to 1 and sets the top of stack to the identity matrix.

pfMatStack::push pushes down the specified matrix stack duplicating the top. pfMatStack::pop pops
the matrix stack. Attempting to pop a matrix stack containing only a single element or pushing past the
maximum depth causes a warning and leaves the stack unchanged.

330

IRIS Performer 2.0 libpr C++ Reference Pages pfMatStack(3pf)hh

pfMatStack::preMult pre-multiplies the top of the stack by the matrix m and replaces the top of the stack
with the product. Thus if T is the top of the stack, the operation replaces T with m*T. This order
corresponds to that used by OpenGL’s glMultMatrix. pfMatStack::postMult operates similarly but using
post-multiplication, calculating T*m instead.

pfMatStack::load replaces the top of the stack with the matrix m.

pfMatStack::get copies the top of the matrix into the matrix m. pfMatStack::getTop returns a pointer to
the top of the matrix stack.

pfMatStack::getDepth returns the current depth of the stack. Initially the depth is 1.

The following transformations pre- and post- multiply the top of the matrix stack:

pfMatStack::preTrans and pfMatStack::postTrans respectively pre- and post- multiply the top of the
matrix stack by the translation matrix generated by the coordinates x, y and z. (See
pfMatrix::makeTrans).

pfMatStack::preRot and pfMatStack::postRot respectively pre- and post- multiply the top of the matrix
stack by the rotation by degrees about the axis defined by (x, y, z). (See pfMatrix::makeRot). The results
are undefined if the vector (x, y, z) is not normalized.

pfMatStack::preScale and pfMatStack::postScale respectively pre- and post- multiply the top of the
matrix stack by a scaling matrix. (See pfMatrix::makeScale). The matrix scales by x in the X direction, y
and the Y direction and z in the Z direction.

NOTES
pfMatStack::preRot and pfMatStack::postRot use pfSinCos which is faster than the libm counterpart, but
has less resolution.

pfMatStack is not related to the GL matrix stack.

IMPORTANT: The argument order of degrees and axis to the pfMatStack::preRot are not the same as to
the corresponding routine pfRotMStack in the IRIS Performer 1.0 and IRIS Performer 1.1 releases. This
change was first introduced in the IRIS Performer 1.2 release and is present in subsequent releases.

SEE ALSO
pfDelete, pfMakeRotMat, pfMakeScaleMat, pfMakeTransMat, pfMatrix, pfSinCos, multmatrix

331

pfMaterial(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfMaterial, pfGetCurMtl − Create, modify and query a material.

FUNCTION SPECIFICATION
#include <Performer/pr/pfMaterial.h>

pfMaterial::pfMaterial();

static pfType * pfMaterial::getClassType(void);

void pfMaterial::setSide(int side);

int pfMaterial::getSide(void);

void pfMaterial::setAlpha(float alpha);

float pfMaterial::getAlpha(void);

void pfMaterial::setShininess(float shininess);

float pfMaterial::getShininess(void);

void pfMaterial::setColor(int color, float r, float g, float b);

void pfMaterial::getColor(int color, float *r, float *g, float *b);

void pfMaterial::setColorMode(int side, int mode);

int pfMaterial::getColorMode(int side);

void pfMaterial::apply(void);

pfMaterial * pfGetCurMtl(int side);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfMaterial is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfMaterial. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfMaterial can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();

332

IRIS Performer 2.0 libpr C++ Reference Pages pfMaterial(3pf)hh

int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
In conjunction with other lighting parameters, a pfMaterial defines the appearance of illuminated
geometry. A pfMaterial defines the reflectance characteristics of surfaces such as diffuse color and shini-
ness. There are some subtle differences between IRIS GL and OpenGL light operation and additional
references are recommended and should be noted. returned to indicate failure. See the IRIS GL
lmdef(3g) or OpenGL glMaterial(3g) reference page for more details on materials parameters.

new(arena) allocates a pfMaterial from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfMaterial from the default memory arena (see pfGetSharedArena). Like other
pfObjects, pfMaterials cannot be created statically, automatically on the stack or in arrays. pfMaterials
should be deleted with pfDelete rather than the delete operator.

pfMaterial::getClassType returns the pfType* for the class pfMaterial. The pfType* returned by
pfMaterial::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfMaterial. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfMaterial::setSide receives a symbolic token, one of PFMTL_FRONT, PFMTL_BACK, or
PFMTL_BOTH indicating which side of a polygon the material should affect. If lighting is to affect the
back sides of polygons, two-sided lighting must be enabled. Two-sided lighting requires a two-sided
pfLightModel (see pfLightModel::setTwoSide) and that face culling be disabled (see pfCullFace) so that
backfacing polygons are not rejected.

pfMaterial::getSide returns the side(s) affected by the pfMaterial.

333

pfMaterial(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfMaterial::setAlpha specifies the alpha of the pfMaterial in the range 0.0 through 1.0. If transparency is
enabled (see pfTransparency), a material whose alpha is < 1.0 and whose color mode is
PFMTL_CMODE_OFF will be transparent with alpha of 1.0 being completely opaque and 0.0 being com-
pletely transparent. The default alpha value is 1.0 or completely opaque. For non-homogeneous tran-
sparency, use a color mode other than PFMTL_CMODE_OFF and transparency will be taken from
geometry colors. In OpenGL, pfMaterial::setAlpha sets the alpha of the AMBIENT, DIFFUSE, EMISSIVE,
and SPECULAR colors. However, it is the DIFFUSE alpha that determines the resulting alpha value from
the lighting calculation.

pfMaterial::getAlpha returns the alpha of the pfMaterial.

pfMaterial::setShininess specifies the specular scattering exponent, or the shininess, of the given
material. It receives a floating point value in the range 0.0 to 128.0. The default shininess value is 0.0,
which effectively disables specular reflection.

pfMaterial::getShininess returns the shininess of the pfMaterial.

pfMaterial::setColor sets a specific color of the pfMaterial. color indicates which color is to be set by r, g,
and b and is one of PFMTL_AMBIENT, PFMTL_DIFFUSE, PFMTL_EMISSION, or
PFMTL_SPECULAR. The default colors are:

Light Component Red Green Blueiii
PFMTL_AMBIENT 0.2 0.2 0.2
PFMTL_DIFFUSE 0.8 0.8 0.8
PFMTL_EMISSION 0.0 0.0 0.0
PFMTL_SPECULAR 0.0 0.0 0.0cc

c
c
c
c
c

pfMaterial::getColor copies the color of the pfMaterial into r, g, and b. color may be one of
PFMTL_AMBIENT, PFMTL_DIFFUSE, PFMTL_EMISSION, or PFMTL_SPECULAR.

pfMaterial::setColorMode specifies how pfGeoSet and Graphics Library color commands affect the
pfMaterial. side is the same symbolic token used for pfMaterial::setSide and indicates which side mode
affects. mode is a symbolic token specifying which color property of the material is replaced by color com-
mands:

PFMTL_CMODE_AMBIENT_AND_DIFFUSE, RGB color commands will replace the DIFFUSE
and AMBIENT color property of the current material. This is the default pfMaterial color mode.

PFMTL_CMODE_AMBIENT, RGB color commands will replace the AMBIENT color property
of the current material.

PFMTL_CMODE_DIFFUSE, RGB color commands will replace the DIFFUSE color property of
the current material.

334

IRIS Performer 2.0 libpr C++ Reference Pages pfMaterial(3pf)hh

PFMTL_CMODE_EMISSION, RGB color commands will replace the EMISSION color property
of the current material.

PFMTL_CMODE_SPECULAR, RGB color commands will replace the SPECULAR color pro-
perty of the current material.

PFMTL_CMODE_OFF, RGB color commands will be ignored, i.e., overridden by the material
colors. Additionally, in IRIS GL, the current GL color will not be changed.

PFMTL_CMODE_COLOR, RGB color commands will replace the current color. In IRIS GL, if a
color is the last thing sent before a vertex the vertex will be colored. If a normal is the last thing
sent before a vertex the vertex will be lighted. In OpenGL, if lighting is enabled, lit material
colors are always used. PFMTL_CMODE_COLOR is not available in OpenGL and will be
treated as PFMTL_CMODE_OFF.

In IRIS GL, the alpha specified in RGBA color commands will replace a material’s alpha if its color mode
is PFMTL_CMODE_AMBIENT_AND_DIFFUSE, PFMTL_CMODE_AMBIENT, or
PFMTL_CMODE_DIFFUSE. In OpenGL, materials do not have a single alpha; rather, the AMBIENT,
DIFFUSE, SPECULAR, and EMISSIVE colors have individual alphas which are replaced along with red,
green, and blue when the appropriate color mode is enabled.

When enabled, pfMaterial::setColorMode can offer substantial performance gains by drastically reduc-
ing the number of different pfMaterials required by a database. Instead of using a different pfMaterial for
every unique material color, pfMaterial::setColorMode can take a color component from the geometry,
rather than from the pfMaterial. For example, if mode is PFMTL_CMODE_DIFFUSE, then the diffuse
color component of the pfMaterial is ignored. Instead, the color specified by a pfGeoSet or the color
specified through the Graphics Library (e.g. cpack(3g) in IRIS GL, glColor(3g) in OpenGL) becomes the
new diffuse color. However, pfMaterial::getColor will still return the original diffuse color.

The the pfMaterial of mtl must be enabled (other than PFMTL_CMODE_COLOR or
PFMTL_CMODE_OFF) for the colors (PFGS_COLOR4) of any pfGeoSets which use the pfMaterial to
have effect. Note that the only way to display per-vertex colors on lit pfGeoSets is to enable
pfMaterial::setColorMode on the pfMaterial used by the pfGeoSets; specifically, pfGeoSets do not sup-
port a different pfMaterial for each vertex.

The default color mode is PFMTL_CMODE_AMBIENT_AND_DIFFUSE which causes both diffuse and
ambient material colors to be replaced by geometry color commands. Specifically, this setting allows
colors specified by pfGeoSets to have effect. When lighting is disabled, the color mode is set to
PFMTL_CMODE_COLOR in IRIS GL and PFMTL_CMODE_OFF in OpenGL.

pfMaterial::getColorMode returns the color mode of the pfMaterial corresponding to side.

pfMaterial::apply makes the pfMaterial the current pfMaterial. If lighting is enabled (see below), the

335

pfMaterial(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfMaterial will be applied to all geometry drawn after pfMaterial::apply is called. Modifications to the
pfMaterial, such as changing the diffuse color, will not be applied until pfMaterial::apply is called with
the pfMaterial.

For geometry to be illuminated the following must be true:

1. Lighting must be enabled: pfEnable(PFEN_LIGHTING),

2. A pfLightModel must be applied: pfLightModel::apply,

3. A pfMaterial must be applied: pfMaterial::apply,

4. One or more pfLights must be on for diffuse and specular effects: pfLight::on,

5. Illuminated geometry must have normals for diffuse and specular effects:
pfGeoSet::setAttr, PFGS_NORMAL3. Note that ambient and emissive lighting does not
require normals.

The front and back material state elements are identified by the PFSTATE_FRONTMTL and
PFSTATE_BACKMTL tokens. Use these tokens with pfGeoState::setAttr to set the materials of a pfGeo-
State and with pfOverride to override subsequent material changes.:

Example 1: Define a 50% transparent, shiny red plastic material

/* Make it red */

redMtl->setColor(PFMTL_DIFFUSE, 1.0f, 0.0f, 0.0f);

/* Disable color mode so the PFMTL_DIFFUSE color is not ignored */

redMtl->setColorMode(PFMTL_FRONT, PFMTL_CMODE_OFF);

/* Make it shiny */

redMtl->setColor(PFMTL_SPECULAR, 1.0f, 1.0f, 1.0f);

redMtl->setShininess(16.0f);

/* Make it 50% transparent */

redMtl->setAlpha(0.5f);

/* Set the front material of a pfGeoState */

gstate->setMode(PFSTATE_ENLIGHTING, PF_ON);

gstate->setMode(PFSTATE_TRANSPARENCY, PFTR_ON);

gstate->setAttr(PFSTATE_FRONTMTL, redMaterial);

/* Attach gstate to gset */

gset->setGState(gstate);

/* Set normal array. ’gset’ is non-indexed */

336

IRIS Performer 2.0 libpr C++ Reference Pages pfMaterial(3pf)hh

gset->setAttr(PFGS_NORMAL3, PFGS_PER_VERTEX, norms, NULL);

/* Draw transparent, shiny red gset */

gset->draw();

Example 2:

mtl->setSide(PFMTL_FRONT);

mtl->apply();

/* Override so that all geometry uses ’mtl’ as front material */

pfOverride(PFSTATE_FRONTMTL, PF_ON);

When setting the pfMaterial(s) of a pfGeoState using pfGeoState::setAttr, the side of the material is
ignored. Instead, the PFSTATE token defines which side the material should be applied to. For example,

gstate->setAttr(PFSTATE_FRONTMTL, mtl)

will ensure that mtl is always applied to the front side of polygons after gstate is applied.

pfMaterial::apply is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfMaterial::apply will not have immediate effect but will be captured by the pfDispList and will only
have effect when that pfDispList is later drawn with pfDispList::draw.

pfGetCurMtl receives a symbolic token specifying the side of interest, one of PFMTL_FRONT or
PFMTL_BACK, and returns a pointer to the currently active material for that side, or NULL if there is no
active pfMaterial.

BUGS
IRIS GL does not support lmcolor for back-sided materials. Consequently, pfMaterial::setColorMode
has no effect on back-sided materials.

SEE ALSO
lmbind, lmcolor, lmdef, pfCullFace, pfDelete, pfDispList, pfEnable, pfGSetAttr, pfGeoState, pfLight,
pfLightModel, pfLightOn, pfLModelTwoSide, pfObject, pfState, pfTransparency

337

pfMatrix(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfMatrix − Set and operate on 4x4 matrices.

FUNCTION SPECIFICATION
#include <Performer/pr/pfLinMath.h>

void* pfMatrix::operator new(size_t);

void* pfMatrix::operator new(size_t, void *arena);

pfMatrix::pfMatrix();

pfMatrix::pfMatrix(float a00, float a01, float a02, float a03, float a10, float a11, float a12,
float a13, float a20, float a21, float a22, float a23, float a30, float a31, float a32,
float a33);

void pfMatrix::makeIdent(void);

void pfMatrix::makeTrans(float x, float y, float z);

void pfMatrix::makeScale(float x, float y, float z);

void pfMatrix::makeRot(float degrees, float x, float y, float z);

void pfMatrix::makeQuat(const pfQuat& q);

void pfMatrix::makeEuler(float h, float p, float r);

void pfMatrix::makeVecRotVec(const pfVec3& v1, const pfVec3& v2);

void pfMatrix::makeCoord(const pfCoord *c);

void pfMatrix::getOrthoQuat(pfQuat& dst);

void pfMatrix::getOrthoCoord(pfCoord* dst);

int pfMatrix::getMatType(void);

void pfMatrix::setRow(int row, float x, float y, float z, float w);

void pfMatrix::getRow(int row, float *x, float *y, float *z, float *w);

void pfMatrix::setCol(int col, float x, float y, float z, float w);

void pfMatrix::getCol(int col, float *x, float *y, float *z, float *w);

void pfMatrix::setRow(int row, const pfVec3& v);

void pfMatrix::getRow(int row, pfVec3& dst);

void pfMatrix::setCol(int col, const pfVec3& v);

void pfMatrix::getCol(int col, pfVec3& dst);

void pfMatrix::set(const float *m);

338

IRIS Performer 2.0 libpr C++ Reference Pages pfMatrix(3pf)hh

void pfMatrix::copy(const pfMatrix& m);

void pfMatrix::add(const pfMatrix& m1, const pfMatrix& m2);

void pfMatrix::sub(const pfMatrix& m1, const pfMatrix& m2);

void pfMatrix::scale(float s, pfMatrix& m);

void pfMatrix::transpose(pfMatrix& m);

void pfMatrix::mult(const pfMatrix& m1, const pfMatrix& m2);

void pfMatrix::preMult(const pfMatrix& m);

void pfMatrix::postMult(const pfMatrix& m);

void pfMatrix::preTrans(float x, float y, float z, pfMatrix& m);

void pfMatrix::postTrans(const pfMatrix& m, float x, float y, float z);

void pfMatrix::preRot(float degrees, float x, float y, float z, pfMatrix& m);

void pfMatrix::postRot(const pfMatrix& mat, float degrees, float x, float y, float z,);

void pfMatrix::preScale(float x, float y, float z, pfMatrix& m);

void pfMatrix::postScale(const pfMatrix& m, float x, float y, float z);

int pfMatrix::invertFull(const pfMatrix& m);

void pfMatrix::invertAff(const pfMatrix& m);

void pfMatrix::invertOrtho(const pfMatrix& m);

void pfMatrix::invertOrthoN(const pfMatrix& m);

int pfMatrix::invertIdent(const pfMatrix& m);

void pfMatrix::equal(const pfMatrix& m2);

void pfMatrix::almostEqual(const pfMatrix& m2, float tol);

float& pfMatrix::operator [](int i);

const float& pfMatrix::operator [](int i);

int pfMatrix::operator ==(const pfMatrix& v);

pfMatrix pfMatrix::operator +(const pfMatrix& v);

pfMatrix pfMatrix::operator -(const pfMatrix& v);

pfMatrix& pfMatrix::operator +=(const pfMatrix& m);

pfMatrix& pfMatrix::operator -=(const pfMatrix& m);

pfMatrix& pfMatrix::operator =(const pfMatrix& v);

339

pfMatrix(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfMatrix& pfMatrix::operator *=(const pfMatrix& m);

pfMatrix pfMatrix::operator *=(const pfMatrix& m);

pfMatrix pfMatrix::operator *(const pfMatrix& v, float d);

pfMatrix pfMatrix::operator *(float d, const pfMatrix& v);

pfMatrix pfMatrix::operator /(const pfMatrix& v, float d);

struct pfCoord

{

pfVec3 xyz;

pfVec3 hpr;

};

struct pfMatrix

{

float mat[4][4];

};

DESCRIPTION
Routines for pfMatrix, a 4X4 matrix.

Most accesses to pfMatrix go through pfMatrix::operator[], but pfMatrix is a public struct whose data
member mat is directly accessible, e.g. for passing to a routine expecting a float* such as glLoadMatrixf.
The default constructor pfMatrix() is empty and does not initialize the values in the matrix. An initializ-
ing constructor pfMatrix(float, ... float) accepts the initial values in row major order, i.e. mat[0][0],
mat[0][1], mat[0][2], mat[0][3],

new(arena) allocates a pfMatrix from the specified memory arena, or from the heap if arena is NULL.
new allocates a pfMatrix from the default memory arena (pfGetSharedArena). pfMatrices can also be
created automatically on the stack or statically. pfMatrices allocated with new can be deleted with delete
or pfDelete.

pfMatrix::makeIdent sets the pfMatrix to the identity matrix. PFMAKE_IDENT_MAT is an equivalent
macro.

The following routines create transformation matrices based on multiplying a row vector by a matrix on
the right, i.e. the vector v transformed by m is v * m. Many actions will go considerably faster if the last
column is (0,0,0,1).

pfMatrix::makeTrans sets the pfMatrix to the matrix which translates by (x, y, z). Equivalent macro:
PFMAKE_TRANS_MAT.

340

IRIS Performer 2.0 libpr C++ Reference Pages pfMatrix(3pf)hh

pfMatrix::makeScale sets the pfMatrix to the matrix which scales by x in the X direction, by y in the Y
direction and by z in the Z direction. Equivalent macro: PFMAKE_SCALE_MAT

pfMatrix::makeRot sets the pfMatrix to the matrix which rotates by degrees about the axis denoted by the
unit vector (x, y, z). If (x, y, z) is not normalized, results are undefined.

pfMatrix::makeQuat builds a rotation matrix that expresses the rotation defined by the quaternion q.

pfMatrix::makeEuler sets the pfMatrix to a rotation matrix composed of the Euler angles h, p, r: h
specifies heading, the rotation about the Z axis; p specifies pitch, the rotation about the X axis; and, r
specifies roll, rotation about the Y axis. The matrix created is the pfMatrix = R*P*H, where R is the roll
transform, P is the pitch transform and H is the heading transform. All rotations follow the right hand
rule. The convention is natural for a model in which +Y is "forward," +Z is "up" and +X is "right". This
routine uses pfSinCos which is faster than the libm counterpart, but has less resolution (see pfSinCos).

pfMatrix::makeVecRotVec sets the pfMatrix to the rotation matrix which rotates the vector v1 onto v2,
i.e. v2 = v1 * dst. v1 and v2 must be normalized.

pfMatrix::makeCoord sets the pfMatrix to the matrix which rotates by the Euler transform specified by
c->hpr and translates by c->xyz, i.e. dst = R*P*H*T, where R is the roll transform, P is the pitch transform
and H is the heading transform, and T is the translation transform.

pfMatrix::getOrthoQuat constructs a quaternion pfMatrix equivalent to the rotation expressed by the
orthonormal matrix m.

pfMatrix::getOrthoCoord returns in the pfMatrix the translation and rotation of the orthonormal matrix,
m. The returned pitch ranges from -90 to +90 degrees. Roll and heading range from -180 to +180.

pfMatrix::setMatType allows the specification of information about the type of transformation the matrix
represents. This information allows Performer to speed up some operations. The matrix type is specified
as the OR of

PFMAT_TRANS:
matrix includes a translational component in the 4th row.

PFMAT_ROT:
matrix includes a rotational component in the left upper 3X3 submatrix.

PFMAT_SCALE:
matrix includes a uniform scale in the left upper 3X3 submatrix.

PFMAT_NONORTHO:
matrix includes a non-uniform scale in the left upper 3X3 submatrix.

341

pfMatrix(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

PFMAT_PROJ:
matrix includes projections.

PFMAT_HOM_SCALE:
matrix includes have mat[4][4] != 1.

PFMAT_MIRROR:
matrix includes mirroring transformation that switches between right handed and left
handed coordinate systems.

pfMatrix::getMatType computes the type of matrix. This information can be useful if a matrix is to be
used repeatedly, e.g. to transform many objects, but is somewhat time consuming to compute.

pfMatrix::setRow. mat[row][0] = x, mat[row][1] = y, mat[row][2] = z, mat[row][3] = w. Use the arguments
to set row row of the pfMatrix. row must be 0, 1, 2, or 3. Equivalent macro: PFSET_MAT_ROW.

pfMatrix::getRow. *x = mat[row][0], *y = mat[row][1], *z = mat[row][2], *w = mat[row][3]. Get the argu-
ments to row row of the pfMatrix. row must be 0, 1, 2, or 3. Equivalent macro: PFGET_MAT_ROW.

pfMatrix::setCol. mat[0][col] = x, mat[1][col] = y, mat[2][col] = z, mat[3][col] = w. Use the arguments to set
col col of the pfMatrix. col must be 0, 1, 2, or 3. Equivalent macro: PFSET_MAT_COL.

pfMatrix::getCol. *x = mat[0][col], *y = mat[1][col], *z = mat[2][col], *w = mat[3][col]. Get the arguments to
col col of the pfMatrix. col must be 0, 1, 2, or 3. Equivalent macro: PFGET_MAT_COL.

pfMatrix::setRow. mat[row][i] = v[i], i = 0, 1, 2. Set row row of the pfMatrix to the vector v. row must be
0, 1, 2, or 3. Equivalent macro: PFSET_MAT_ROWVEC3.

pfMatrix::getRow. mat[i] = m[row][i], i = 0, 1, 2. Return row row of m and in the pfMatrix. row must be 0,
1, 2, or 3. Equivalent macro: PFGET_MAT_ROWVEC3.

pfMatrix::setCol. mat[i][col] = v[i], i = 0, 1, 2. Set column col of the pfMatrix to the vector v. col must be 0,
1, 2, or 3. Equivalent macro: PFSET_MAT_COLVEC3.

pfMatrix::getCol. mat[i] = m[i][col], i = 0, 1, 2. Return column col of m in the pfMatrix. col must be 0, 1, 2,
or 3. Equivalent macro: PFGET_MAT_COLVEC3.

pfMatrix::set. mat[i][j] = m[i*4+j], 0 <= i,j <= 3.

pfMatrix::copy: mat = m. Copies m into the pfMatrix. Equivalent macro: PFCOPY_MAT

pfMatrix::preTrans: mat = T(x,y,z) * m, where T(x,y,z) is the matrix which translates by (x,y,z).

pfMatrix::postTrans: mat = m * T(x,y,z), where T(x,y,z) is the matrix which translates by (x,y,z).

342

IRIS Performer 2.0 libpr C++ Reference Pages pfMatrix(3pf)hh

pfMatrix::preRot: mat = R(degrees, x,y,z) * m, where R(degrees,x,y,z) is the matrix which rotates by degrees
about the axis (x,y,z).

pfMatrix::postRot: mat = m * R(degrees, x,y,z), where R(degrees,x,y,z) is the matrix which rotates by degrees
about the axis (x,y,z).

pfMatrix::preScale: mat = S(x,y,z) * m, where S(x,y,z) is the matrix which scales by (x,y,z).

pfMatrix::postScale: mat = m * S(x,y,z), where S(x,y,z) is the matrix which scales by (x,y,z).

pfMatrix::add: mat = m1 + m2. Sets the pfMatrix to the sum of m1 and m2.

pfMatrix::sub: mat = m1 - m2. Sets the pfMatrix to the difference of m1 and m2.

pfMatrix::scale: mat = s * m. Sets the pfMatrix to the product of the scalar s and the matrix m. This multi-
plies the full 4X4 matrix and is not a 3D geometric scale.

pfMatrix::transpose: mat = Transpose(m). Sets the pfMatrix to the transpose of m.

pfMatrix::mult: mat = m1 * m2. Sets the pfMatrix to the product of m1 and m2.

pfMatrix::postMult: mat = mat *m. Postmultiplies the pfMatrix by m.

pfMatrix::preMult: mat = m * mat. Premultiplies the pfMatrix by m.

pfMatrix::invertFull, pfMatrix::invertAff, pfMatrix::invertOrtho, pfMatrix::invertOrthoN, and
pfMatrix::invertIdent, set the pfMatrix to the inverse of m for general, affine, orthogonal, orthonormal
and identity matrices respectively. They are listed here in order of decreasing generality and increasing
speed. If the matrix m is not of the type specified in the routine name, the result is undefined.
pfMatrix::invertFull returns FALSE if the matrix is singular and TRUE otherwise.

pfMatrix::equal(m2) = (pfMatrix.mat == m2). Tests for strict component-by-element equality of the pfMa-
trix and m2 and returns FALSE or TRUE. Macro equivalent: PFEQUAL_MAT.

pfMatrix::almostEqual(m2, tol). Tests for approximate element-by-element equality of the pfMatrix

float& operator [](int) const float& operator [](int) Bracket operators to allow indexing into the 2D array,
e.g. m[3][2].

int operator ==(const pfMatrix&) Equality comparison operator.

pfMatrix operator +(const pfMatrix&) pfMatrix operator -(const pfMatrix&) Component-wise binary
matrix addition and subtraction operators.

343

pfMatrix(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfMatrix& operator +=(const pfMatrix&); pfMatrix& operator -=(const pfMatrix&); Component-wise
matrix addition and subtraction operators.

pfMatrix& operator =(const pfMatrix&) Set the matrix from another matrix.

pfMatrix& operator *=(const pfMatrix&) pfMatrix operator *=(const pfMatrix&) Performs right multipli-
cation with anther matrix.

pfMatrix operator *(const pfMatrix&, float) pfMatrix operator *(float, const pfMatrix&) pfMatrix opera-
tor /(const pfMatrix&, float) Component-wise binary scalar multiplication and division operators. and
m2. It returns FALSE or TRUE depending on whether the absolute value of the difference between each
pair of elements is less than the tolerance tol. Macro equivalent: PFALMOST_EQUAL_MAT.

Routines can accept the same matrix as source, destination, or as a repeated operand.

NOTES
Some of these routines use pfSinCos and pfSqrt, which are faster but have less resolution than the libm
counterparts. (See pfSinCos) When using overloaded operators in C++, assignment operators, e.g. "+=",
are somewhat more efficient than the corresponding binary operators, e.g. "+", because the latter con-
struct a temporary intermediate object. Use assignment operators or macros for binary operations where
optimal speed is important.

C++ does not support array deletion (i.e. delete[]) for arrays of objects allocated new operators that take
additional arguments. Hence, the array deletion operator delete[] should not be used on arrays of objects
created with new(arena) pfMatrix[n].

SEE ALSO
pfSinCos, pfSqrt, pfVec3, pfVec4

344

IRIS Performer 2.0 libpr C++ Reference Pages pfMemory(3pf)hh

NAME
pfMemory, pfStrdup − Reference, copy, delete, print and query pfMemory

FUNCTION SPECIFICATION
#include <Performer/pr/pfMemory.h>

pfMemory::pfMemory();

void* pfMemory::operator new(size_t, size_t nbytes);

void* pfMemory::operator new(size_t, size_t nbytes, void *arena);

static pfType * pfMemory::getClassType(void);

void* pfMemory::getData(const void *ptr);

static void* pfMemory::getData(const void *ptr);

pfType * pfMemory::getType();

static pfType * pfMemory::getType(const void *ptr);

int pfMemory::isOfType(pfType *type);

static int pfMemory::isOfType(const void *ptr, pfType *type);

int pfMemory::isExactType(pfType *type);

static int pfMemory::isExactType(const void *ptr, pfType *type);

const char * pfMemory::getTypeName();

static const char * pfMemory::getTypeName(const void *ptr);

int pfMemory::copy(pfMemory *src);

static int pfMemory::copy(void *dst, void *src);

int pfMemory::compare(const pfMemory *mem);

static int pfMemory::compare(const void *ptr1, const void *ptr2);

void pfMemory::print(uint which, uint verbose, FILE *file);

static void pfMemory::print(const void *ptr, uint which, uint verbose, FILE *file);

int pfMemory::getArena(void *ptr);

void* pfMemory::getArena();

static void* pfMemory::getArena(void *ptr);

int pfMemory::ref();

static int pfMemory::ref(void *ptr);

345

pfMemory(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

int pfMemory::unref();

static int pfMemory::unref(void *ptr);

int pfMemory::unrefDelete();

static int pfMemory::unrefDelete(void *ptr);

ushort pfMemory::getRef();

static ushort pfMemory::getRef(const void *ptr);

int pfMemory::checkDelete();

static int pfMemory::checkDelete(void *ptr);

static void * pfMemory::malloc(size_t nbytes, void *arena);

static void * pfMemory::calloc(size_t numelem, size_t elsize, void *arena);

void * pfMemory::realloc(size_t nbytes);

static void * pfMemory::realloc(void *ptr, size_t nbytes);

static void pfMemory::free(void *ptr);

void * pfMemory::getArena();

static void * pfMemory::getArena(void *ptr);

int pfMemory::getSize();

static int pfMemory::getSize(void *ptr);

char * pfStrdup(const char *str, void *arena);

DESCRIPTION
pfMemory is the base class from which all major IRIS Performer classes are derived and is also the type
used by the IRIS Performer memory allocation routines such as pfMemory::malloc and pfMemory::free.

Because most IRIS Performer data structures are derived from pfMemory, they inherit the functionality of
the pfMemory routines described here. In practice this means you can use the pfMemory routines listed
above with most any IRIS Performer object, such as pfMaterial, pfList, pfFog, pfFrustum, pfChannel,
pfGroup, pfGeode or with a data pointer returned by pfMemory::malloc.

pfMemory supports the following:

1. Typed data structures.

2. Memory arena allocation.

3. Memory chunks which know their size.

346

IRIS Performer 2.0 libpr C++ Reference Pages pfMemory(3pf)hh

4. Reference counting.

with only a 4 word overhead.

Although the IRIS Performer general memory allocation routines (pfMemory::malloc) create
pfMemories, they return void* so the application can treat the allocation as raw data. Consequently, all
routines that would normally take a pfMemory* take a void* and infer the pfMemory handle so that
applications can treat pfMemory as raw memory. However, one caveat is that routines which take raw
memory such as pfGeoSet::setAttr or pfMemory::free should not be passed a pointer to static data since
the routines may not be able to successfully infer the pfMemory handle from the void*.

--------------- <------ pfMemory*

| pfMemory |
| header |
| |
--------------- <------ void* returned by

| | allocation routines

| raw data |
. .

. .

. .

Routines which convert between pfMemory* and void* are:

void* -> pfMemory*: pfMemory::getMemory

pfMemory* -> void*: pfMemory::getData

Note that is it legal to pass either a pfMemory* or a void* to those routines which are prototyped as
accepting a void*, e.g., pfMemory::ref. In this way, a single set of routines supports the same feature set
including reference counts, copy, and delete for pfMemories used as IRIS Performer data types like
pfGeoSet as well as for pfMemories used as raw data like pfGeoSet attribute arrays.

pfMemory::getClassType returns the pfType* for the class pfMemory. The pfType* returned by
pfMemory::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfMemory. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

All objects derived from pfMemory have a type identifier (pfType*) that is returned by the member

347

pfMemory(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

function getType. Most Performer types are derived from other Performer types with the derived type
taking on the functionality and routines associated with its parent type. This type inheritance allows rou-
tines associated with a type to be used with any types derived from it. For example pfDCS is derived
from pfGroup.

Example 1: API sharing.

dcs = new pfDCS;

/* pfDCS uses pfGroup routine */

dcs->addChild(geode);

/* pfDCS uses pfNode routine */

dcs->setTravMask(PFTRAV_ISECT, DCS_MASK, PFTRAV_SELF | PFTRAV_DESCEND, PF_SET);

Each data type derived from pfMemory has an associated routine for getting a pointer to its correspond-
ing pfType, e.g. pfDCS::getClassType() returns the pfType* corresponding to the pfDCS class. The exact
type of an object is tested by comparing its pfType* to that returned by one of these *::getClassType rou-
tines or with the pfMemory::isExactType test, e.g.

if (obj->getType == pfGroup::getClassType()) ...

if (obj->IsExactType(pfGroup::getClassType())) ...

But since IRIS Performer allows subclassing and the creation of new types in C++, it’s more often desir-
able to know whether a particular object is of a type derived from a particular type defined by IRIS Per-
former. In particular, exact type tests makes application code more likely to fail on scene graphs pro-
duced by database loaders that use subclassing. pfMemory::isOfType performs this test and returns
TRUE if the object’s type is derived from type:

if (obj->isOfType(pfGroup::getClassType())) ...

If ’obj’ is a pfDCS, then the above conditional would evaluate TRUE since pfDCS is derived from
pfGroup.

pfMemory::getTypeName returns a string that identifies the type of the object. For example, if the object
is a pfDCS, the string returned is "pfDCS".

348

IRIS Performer 2.0 libpr C++ Reference Pages pfMemory(3pf)hh

All pfMemories have a reference count which indicates how many times the pfMemory is referenced,
either by other pfMemories or by the application. Reference counts are crucial for many database opera-
tions, particularly deletion, since it is highly dangerous to delete a pfMemory which is still being used,
i.e., its reference count is greater than 0.

Reference counts may be incremented and decremented by pfMemory::ref and pfMemory::unref respec-
tively. pfMemory::getRef returns the reference count of the object. pfBuffer::unrefDelete will decre-
ment the reference count of the object and delete it if the count is <= 0. Thus it is equivalent to calling
pfMemory::unref followed by pfBuffer::checkDelete.

pfMemory::checkDelete frees the memory associated with the object if its reference count is <= 0. When
an object is freed, it decrements the reference count of all pfMemories that it once referenced and will
delete any of these pfMemories with reference counts that are <= 0. Thus, pfBuffer::checkDelete will fol-
low all reference chains until it encounters a pfMemory which it cannot delete. Note that the reference
count of a pfNode is incremented each time it is added as a child to a pfGroup. Thus, a pfNode must be
removed from all its parents before it can be deleted.

When multiprocessing in a libpf application, pfNodes should be pfDeleteed only in the APP or DBASE
processes as should libpr objects that are referenced directly or indirectly by pfNodes, like pfGeoSets and
pfGeoStates. If you wish to delete objects in processes other than the APP or DBASE, use pfAsyncDelete.

Example 2: Deletion

pfMaterial *mtl;

pfTexture *tex;

pfGeoState *brickStyle, *woodStyle;

pfGeoSet *brickWall, *woodWall;

mtl = new pfMaterial;

brickStyle = new pfGeoState;

tex = new pfTexture;

tex->loadFile("brick.rgb");

brickStyle->setAttr(PFSTATE_TEXTURE, tex);

brickStyle->setAttr(PFSTATE_FRONTMTL, mtl);

woodStyle = new pfGeoState;

tex = new pfTexture;

tex->loadFile("wood.rgb");

woodStyle->setAttr(PFSTATE_TEXTURE, tex);

woodStyle->setAttr(PFSTATE_FRONTMTL, mtl);

349

pfMemory(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

brickWall = new pfGeoSet;

brickWall->setGState(brickStyle);

brickWall->setAttr(PFGS_COORD3, PFGS_PER_VERTEX, coords);

woodWall = new pfGeoSet;

woodWall->setGState(woodStyle);

woodWall->setAttr(PFGS_COORD3, PFGS_PER_VERTEX, coords);

delete woodWall;

/* At this point woodWall, woodStyle, and the wood texture

* have been deleted. coords and mtl have not been deleted

* since they are referenced by brickWall and brickStyle respectively.

*/

pfBuffer::checkDelete returns the following:

FALSE the object was not deleted
TRUE the object was deleted

-1 the object is not a pfMemory

pfBuffer::checkDelete is implemented for all IRIS Performer objects except the following:

pfPipe
pfChannel
pfEarthSky
pfBuffer
pfPipeWindow
pfTraverser
pfState
pfDataPool

pfMemory::copy copies src into dst. pfMemory::copy is not recursive - it does not follow reference chains
but instead copies only the first- level references. The reference counts of objects newly referenced by dst
are incremented by one while those counts of objects previously reverenced by dst are decremented by
one. Objects whose reference counts reach 0 during pfMemory::copy are not deleted.

350

IRIS Performer 2.0 libpr C++ Reference Pages pfMemory(3pf)hh

pfMemory::copy is currently not implemented for any libpf data structures and is not implemented for
the following libpr data structures:

pfState
pfDataPool

pfMemory::print Prints information to a file about the specified object. The file argument specifies the
file. If file is NULL, the listing is printed to stderr. pfMemory::print takes a verbosity indicator, verbose.
Valid selections in order of increasing verbosity are:

PFPRINT_VB_OFF no printing
PFPRINT_VB_ON minimal printing (default)
PFPRINT_VB_NOTICE minimal printing (default)
PFPRINT_VB_INFO considerable printing
PFPRINT_VB_DEBUG exhaustive printing

If mem is a type of pfNode, then which specifies whether the print traversal should only traverse the
current node (PFTRAV_SELF) or print out the entire scene graph rooted by node mem by traversing node
and its descendents in the graph (PFTRAV_SELF | PFTRAV_DESCEND). If mem is a pfFrameStats, then
which specifies a bitmask of frame statistics classes that should be printed. If mem is a pfGeoSet, then
which is ignored and information about that pfGeoSet is printed according to the verbosity indicator. The
output contains the types, names and bounds of the nodes and pfGeoSets in the hierarchy. This routine is
provided for debugging purposes only and the content and format may change in future releases.

Example 3: Print entire contents of a pfGeoSet, gset, to stderr.

gset->print(NULL, PFPRINT_VB_DEBUG, NULL);

Example 4: Print entire scene graph under node to a file file with default verbosity.

file = fopen ("scene.out","w");

scene->print(PFTRAV_SELF | PFTRAV_DESCEND, PFPRINT_VB_ON, file);

fclose(file);

Example 5: Print select classes of a pfFrameStats structure, stats, to stderr.

stats->print(PFSTATS_ENGFX | PFFSTATS_ENDB | PFFSTATS_ENCULL, PFSTATS_ON, NULL);

pfMemory::malloc and the related routines provide a consistent method to allocate memory, either from

351

pfMemory(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

the user’s heap (using the C-library malloc function) or from a shared memory arena (using the IRIX
amalloc function). In addition, these routines provide a reference counting mechanism used by IRIS Per-
former to efficiently manage memory.

pfMemory::malloc operates identically to the C-library malloc function, except that a shared memory
arena may be specified to allocate the memory from. If arena is NULL, memory is allocated from the
heap, otherwise memory is allocated from arena which must be a previously configured shared memory
arena (see pfSharedMem). new(nbytes, arena) is equivalent to pfMemory::malloc(nbytes, arena).
new(nbytes) is equivalent to pfMemory::malloc(nbytes, NULL). "delete ptr" is equivalent to
pfMalloc::free(ptr). Instances of pfMemory and derived classes must be explicitly new’ed individually,
i.e. they cannot be created statically, on the stack or in arrays.

Shared memory arenas can be created using acreate and can be found by using pfGetSharedArena.

pfMemory::calloc and pfMemory::realloc function just as their Unix counterparts, except that they may
use shared arenas.

In all cases, a pointer to the allocated memory block is returned or NULL if there is not enough available
memory.

The data pointer returned by pfMemory::malloc, pfMemory::calloc, and pfMemory::realloc is actually
part of a pfMemory object that, among other things, provides a reference count. Reference counts are
used to keep track of how many times each allocated block of memory is referenced or instanced. All
IRIS Performer libpr objects (pfMemory) are created with pfMemory::malloc so their reference counts are
updated by appropriate libpr routines. Examples of references follow:

Example 6:

tex = new pfTexture;

/* Attach ’tex’ to gstate0 and gstate1 */

gstate0->setAttr(PFSTATE_TEXTURE, tex);

gstate1->setAttr(PFSTATE_TEXTURE, tex);

/* The reference count of ’tex’ is now 2 */

/* Remove ’tex’ from gstate1 */

gstate1->setAttr(PFSTATE_TEXTURE, NULL);

/* The reference count of ’tex’ is now 1 */

Example 7:

352

IRIS Performer 2.0 libpr C++ Reference Pages pfMemory(3pf)hh

coords = (pfVec3*) pfMalloc(sizeof(pfVec3) * numVerts, arena);

/* Attach ’coords’ to non-indexed pfGeoSet, ’gset’ */

gset->setAttr(PFGS_COORD3, PFGS_PER_VERTEX, coords, NULL);

/* The reference count of ’coords’ is now 1 */

Example 8:

/* Attach ’gstate0’ to ’gset’ */

gset->setGState(gstate0);

/* The reference count of ’gstate0’ is now incremented by 1 */

pfMemory::free frees the memory associated with ptr. It is an error to pfMemory::free memory that was
not allocated by pfMemory::malloc, pfCalloc, or pfMemory::realloc. It is also an error to use any
method other than pfMemory::free or pfBuffer::checkDelete to free memory allocated by
pfMemory::malloc, pfMemory::calloc, or pfMemory::realloc.

pfMemory::free does not honor the reference count of ptr. This means that you can free a chunk of
memory that is still being used (which means that its reference count is > 0) with potentially disastrous
results. Typical failure modes are in the form of mysterious memory corruption and segmentation viola-
tions.

pfBuffer::checkDelete, however, does honor the reference count of ptr and will not delete any memory
whose reference count is > 0. pfBuffer::checkDelete returns -1 if ptr is not a pfMalloc pointer, TRUE if
ptr was deleted, and FALSE otherwise. pfBuffer::checkDelete is recommended if you are not sure of the
reference count of a piece of memory. See the pfObject reference page for more details on
pfBuffer::checkDelete.

pfMemory::getMallocArena returns the arena pointer which ptr was allocated from or NULL if ptr was
allocated from the process heap.

pfMemory::getMallocSize returns the size in bytes of the memory referenced by ptr or 0 if ptr is not a
pfMemory::malloc pointer.

pfStrdup duplicates the NULL-terminated string str by allocating storage in the shared memory arena
defined by the arena argument.

353

pfMemory(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

BUGS
pfMemory::print is not yet implemented for pfGeoStates and other state structures, and is not imple-
mented for pfPaths or pfLists.

SEE ALSO
acreate, calloc, free, malloc, realloc, pfInitArenas

354

IRIS Performer 2.0 libpr C++ Reference Pages pfNotify(3pf)hh

NAME
pfNotify, pfNotifyLevel, pfGetNotifyLevel, pfNotifyHandler, pfGetNotifyHandler, pfDefaultNo-
tifyHandler − Control error handling, signal errors or log messages

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfNotify(int severity, int error, char *format,

void pfNotifyLevel(int severity);

int pfGetNotifyLevel(void);

void pfNotifyHandler(pfNotifyFuncType handler);

pfNotifyFuncType pfGetNotifyHandler(void);

void pfDefaultNotifyHandler(pfNotifyData *data);

typedef struct

{

int severity;

int pferrno;

char *emsg;

} pfNotifyData;

typedef void (*pfNotifyFuncType)(pfNotifyData*);

DESCRIPTION
These functions provide a general purpose error message and notification handling facility for applica-
tions using IRIS Performer. This facility is used internally by IRIS Performer for error, warning, and
status notifications and can be used by user developed programs as well.

pfNotifyHandler sets handler as the user error handling routine. All errors, warnings and notices will call
handler with a pointer to a pfNotifyData structure that describes the error or message. The default
notification handler pfDefaultNotifyHandler prints out a message of the form:

PF <LEVEL>/<PFERROR>(<ERRNO>) <MESSAGE>

where LEVEL is a string indicating the severity of the error, PFERROR is the type of error detected,
ERRNO is the value of the system global errno (see perror(3C)), and MESSAGE is the formatted error
message given pfNotify. The default handler zeros the system global errno. If PFERROR is
PFNFY_MORE, the message is considered to be a continuation of the previous message and the print for-
mat is:

355

pfNotify(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

PF <MESSAGE>

The companion function pfGetNotifyHandler returns the address of the installed handler function. It is
possible to inquire this address and provide it to user installed handlers in order to chain multiple
notification handlers to any desired level.

pfNotifyLevel sets the threshold for notification. A notification must have a level less than or equal to the
threshold for the default handler to print a message. The notification handler itself is invoked regardless
of the notification level. The levels are in decreasing severity:

PFNFY_ALWAYS
PFNFY_FATAL
PFNFY_WARN
PFNFY_NOTICE
PFNFY_INFO
PFNFY_DEBUG
PFNFY_FP_DEBUG.

Call pfGetNotifyLevel to query the current notification level. The meaning of these notification levels is
as follows:

Error Level Descriptionii
PFNFY_ALWAYS Always print regardless of notify level
PFNFY_FATAL Fatal error, the dying gasp of a doomed process
PFNFY_WARN Serious warning, rarely used for frame-time errors
PFNFY_NOTICE Warning, may be used for frame time errors
PFNFY_INFO Information on progress as well as errors
PFNFY_DEBUG Debug information of significant verbosity
PFNFY_FP_DEBUG Debug information and floating point exceptionsc

c
c
c
c
c
c
c
c
c

Setting the notification level to PFNFY_FP_DEBUG also enables floating point exceptions for overflow,
underflow and invalid operations. Normally, these floating point errors are handled through kernel
exceptions or by the floating point hardware, and may be nearly invisible to an application except from
the performance degradation, sometimes very significant, which they can cause. When enabled, pfNotify
events are generated for the floating point exceptions mentioned above and messages displayed or passed
to the user supplied pfNotify handler.

The environment variable PFNFYLEVEL can be set to override the value specified in pfNotifyLevel. Once
the notification level is set via PFNFYLEVEL it can not be changed by an application.

A notification level of PFNFY_FATAL causes the program to exit after notification; less severe levels do

356

IRIS Performer 2.0 libpr C++ Reference Pages pfNotify(3pf)hh

not.

pfNotify generates an error message. severity must be one of the above listed constants. error may be any
integer value, however, IRIS Performer uses the following values internally:

PFNFY_USAGE
PFNFY_RESOURCE
PFNFY_SYSERR
PFNFY_ASSERT
PFNFY_PRINT
PFNFY_INTERNAL
PFNFY_FP_OVERFLOW
PFNFY_FP_DIVZERO
PFNFY_FP_INVALID
PFNFY_FP_UNDERFLOW
PFNFY_MORE does a continuation of the previous message.

The severity must be less than or equal to the severity set in pfNotifyLevel for the error message to be
output.

NOTES
Notification level is managed on a per process basis. Processes forked off after pfNotifyLevel is called
inherit the specified level.

BUGS
Enabling floating point exceptions may cause the values returned from exceptions to be different than the
system defaults. After an _INVALID operation, all subsequent exceptions will generate incorrect return
values.

SEE ALSO
errno, handle_sigfpes, perror

357

pfObject(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfObject − pfObject, callback and user data operations

FUNCTION SPECIFICATION
#include <Performer/pr/pfObject.h>

void* pfObject::operator new(size_t);

void* pfObject::operator new(size_t, void *arena);

static pfType * pfObject::getClassType(void);

void pfObject::setUserData(void *data);

static void pfObject::setUserData(void *data);

void* pfObject::getUserData(pfObject *obj);

static void * pfObject::getUserData(pfObject *obj);

static void pfObject::setCopyFunc(pfCopyFuncType func);

static pfCopyFuncType pfObject::getCopyFunc(void);

static void pfObject::setDeleteFunc(pfDeleteFuncType func);

static pfDeleteFuncType pfObject::getDeleteFunc(void);

static void pfObject::setPrintFunc(pfPrintFuncType func);

static pfPrintFuncType pfObject::getPrintFunc(void);

static int pfObject::getGLHandle(void);

typedef void (*pfCopyFuncType)(pfObject *dst, const pfObject *src);

typedef void (*pfDeleteFuncType)(pfObject *obj);

typedef void (*pfPrintFuncType)(const pfObject *obj, uint which, uint verbose, char *, FILE *);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfObject is derived from the parent class pfMemory, so each of these member
functions of class pfMemory are also directly usable with objects of class pfObject. This is also true for
ancestor classes of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();

358

IRIS Performer 2.0 libpr C++ Reference Pages pfObject(3pf)hh

int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfObject is the abstract data type from which the major IRIS Performer data structures are derived.
pfObject in turn derives from pfMemory which is the basic memory allocation unit. Although pfObjects
cannot be created directly, most IRIS Performer data structures are derived from them and thus inherit
the functionality of the pfObject routines described here and those for pfMemory.

new(arena) allocates a pfObject from the specified memory arena, or from the heap if arena is NULL. new
allocates a pfObject from the default memory arena (see pfGetSharedArena). pfObjects cannot be
automatically on the stack, statically or in arrays. pfObjects allocated with new can be deleted with
delete or pfDelete.

pfObject::getClassType returns the pfType* for the class pfObject. The pfType* returned by
pfObject::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfObject. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfObject::setUserData attaches the user-supplied data pointer, data, to the pfObject. User data provides a
mechanism for associating application specific data with IRIS Performer objects.

Example 2: How to use User Data.

typedef struct

{

float coeffFriction;

float density;

float *dataPoints;

}

myMaterial;

359

pfObject(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

myMaterial *granite;

granite = (myMaterial *)pfMalloc(sizeof(myMaterial), NULL);

granite->coeffFriction = 0.5f;

granite->density = 3.0f;

granite->dataPoints = (float *)pfMalloc(sizeof(float)*8, NULL);

graniteMtl = new pfMaterial;

graniteMtl->setUserData(granite);

pfObject::getUserData returns the user-data pointer associated with the pfObject or NULL if there is
none.

Note that memory from pfMemory::malloc is not an considered a pfObject so user-data pointers are not
provided for pfMalloc’ed memory.

User data is reference counted if it is a libpr-type object like pfTexture, pfGeoSet, or memory allocated
from pfMemory::malloc. Thus user data is deleted if its reference count reaches 0 when its parent pfOb-
ject is deleted.

pfObject::setDeleteFunc, pfObject::setCopyFunc, and pfObject::setPrintFunc set global function call-
backs which are called when deleting, copying, and printing a pfObject with non-NULL user data. These
callbacks are provided so you can change the default behavior of user data. If a callback is not specified
or is NULL, the default behaviors are:

1. Delete: Call pfUnrefDelete on the user data.

2. Copy: Decrement the reference count of the user data attached to the destination pfObject
(but do not delete it), increment the reference count of the user data attached to the
source pfObject and copy the user data pointer from the source to the destination pfOb-
ject. In pseudo-code:

pfUnref(dst->userData);

pfRef(src->userData);

dst->userData = src->userData;

3. Print: Print the address of the user data.

pfObject::getDeleteFunc, pfObject::getCopyFunc, and pfObject::getPrintFunc return the global dele-
tion, copy, and print callbacks respectively.

Example 3: How to delete the user data of Example 2.

360

IRIS Performer 2.0 libpr C++ Reference Pages pfObject(3pf)hh

void

myDeleteFunc(pfObject *obj)

{

myMaterial *mtl = obj->getUserData();

pfFree(mtl->dataPoints);

mtl->free();

}

:

/* allocate a new material */

graniteMtl = new pfMaterial;

/* bind user data to material */

graniteMtl->setUserData(granite);

/* set deletion callback */

myDeleteFunc->setDeleteFunc();

/*

* This will trigger callback only if graniteMtl has

* a reference count <= 0.

*/

graniteMtl->checkDelete();

In the above example, the ’dataPoints’ array of the ’myMaterial’ structure would not have been freed
without the deletion callback since pfDelete would have simply deleted the myMaterial structure.

pfObject::getGLHandle is a back-door mechanism for those who need to tweak the graphics library
objects which underly many libpr objects. pfObject::getGLHandle returns the graphics library identifier
associated with obj or -1 if obj has no associated graphics library object.

SEE ALSO
pfDelete, pfMemory

361

pfOverride(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfOverride, pfGetOverride, pfGLOverride, pfGetGLOverride − Override state element(s).

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfOverride(uint mask, int val);

uint pfGetOverride(void);

void pfGLOverride(int which, float val);

float pfGetGLOverride(int which);

PARAMETERS
mask is a bit mask that specifies the state elements that are to be set to the override value val. mask is a

bitwise OR of:
PFSTATE_ENLIGHTING
PFSTATE_ENTEXTURE
PFSTATE_ENFOG
PFSTATE_ENWIREFRAME
PFSTATE_ENHIGHLIGHTING
PFSTATE_ENCOLORTABLE
PFSTATE_FRONTMTL
PFSTATE_BACKMTL
PFSTATE_TEXTURE
PFSTATE_TEXENV
PFSTATE_ALPHAFUNC
PFSTATE_TRANSPARENCY
PFSTATE_ANTIALIAS
PFSTATE_CULLFACE
PFSTATE_DECAL
PFSTATE_ALPHAREF
PFSTATE_COLORTABLE
PFSTATE_HIGHLIGHT
PFSTATE_FOG
PFSTATE_LIGHTS
PFSTATE_LIGHTMODEL

val is a symbolic token and either PF_ON or PF_OFF indicating whether the state elements in mask
should be overridden or not.

DESCRIPTION
pfOverride is used to override individual state elements. If a state element is overridden, all subsequent
attempts to modify it will be ignored. An overridden state element is locked to the current value at the
time pfOverride is called.

362

IRIS Performer 2.0 libpr C++ Reference Pages pfOverride(3pf)hh

Example 1:

pfTransparency(PFTR_OFF);

tex->apply();

pfDisable(PFEN_LIGHTING);

pfOverride(PFSTATE_TRANSPARENCY | PFSTATE_TEXTURE | PFSTATE_ENLIGHTING, PF_ON);

This example turns off transparency and lighting and applies tex to all subsequent geometry for which
texturing is enabled.

pfOverride with a val of PF_OFF will free the state elements specified by mask to be modified. Although
state elements will not be restored to their pre-override condition, pfPushState and pfPopState may be
used to do so. The override mask is pushed and popped along with the rest of the state.

pfGetOverride returns the current override mask.

pfOverride is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfOverride will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDispList::draw.

pfGLOverride overrides the graphics library mechanism used to achieve a desired effect such as tran-
sparency and visually correct coplanar geometry. which identifies the mechanism to override and is one of
the following:

PFGL_TRANSPARENCY
val may be either PFGL_TRANSP_MSALPHA or PFGL_TRANSP_BLEND. in which case
multisample ("screen-door") or blending will be used when transparency is enabled (see
pfTransparency).

PFGL_DECAL
val may be either PFGL_DECAL_STENCIL or PFGL_DECAL_DISPLACE in which case
stenciling or displacement will be used for all decals (see pfDecal).

pfGetGLOverride returns the override mode corresponding to which.

SEE ALSO
pfDispList, pfDrawDList, pfGeoState, pfOpenDList, pfState, pfTransparency, pfDecal

363

pfPlane(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfPlane − Set and operate on planes

FUNCTION SPECIFICATION
#include <Performer/pr/pfGeoMath.h>

void* pfPlane::operator new(size_t);

void* pfPlane::operator new(size_t, void *arena);

pfPlane::pfPlane();

void pfPlane::makePts(const pfVec3 &pt1, const pfVec3 &pt2, const pfVec3 &pt3);

void pfPlane::makeNormPt(const pfVec3 &norm, const pfVec3 &pos);

void pfPlane::displace(float d);

void pfPlane::closestPtOn(const pfVec3 &pt, pfVec3 &dst);

int pfPlane::isect(const pfSeg *seg, float *d);

int pfPlane::isect(const pfSeg* seg, float* d1, float* d2);

int pfPlane::contains(const pfVec3 &pt);

int pfPlane::contains(const pfBox *box);

int pfPlane::contains(const pfSphere *sph);

int pfPlane::contains(const pfCylinder *cyl);

void pfPlane::orthoXform(const pfPlane *pln, const pfMatrix &xform);

struct pfPlane

{

pfVec3 normal;

float offset;

};

DESCRIPTION
A pfPlane represents an infinite 2D plane as a normal and a distance offset from the origin in the normal
direction. A point on the plane satisfies the equation normal dot (x, y, z) = offset. pfPlane is a public struct
whose data members normal and offset may be operated on directly.

The default constructor pfPlane() is empty and does no initialization. new(arena) allocates a pfPlane
from the specified memory arena, or from the heap if arena is NULL. new allocates a pfPlane from the
default memory arena (see pfGetSharedArena). pfPlanes can also be created automatically on the stack
or statically. pfPlanes allocated with new can be deleted with delete or pfDelete.

pfPlane::makePts sets the pfPlane to the plane which passes through the three points pt1, pt2 and pt3.

364

IRIS Performer 2.0 libpr C++ Reference Pages pfPlane(3pf)hh

pfPlane::makeNormPt sets the pfPlane to the plane which passes through the point pt with normal norm.

pfPlane::displace moves the pfPlane by a distance d in the direction of the plane normal.

pfPlane::closestPtOn sets the pfPlane to the closest point to pt which lies in the plane pln. The line seg-
ment connecting pt and the pfPlane is perpendicular to pln.

pfPlane::contains(const pfVec3) returns TRUE or FALSE depending on whether the point given is in the
interior of the specified half-space. The half-space is defined with plane normal pointing to the exterior.

pfPlane::contains(const pfSphere *), pfPlane::contains(const pfBox *) and pfPlane::contains(const
pfCylinder *) test whether the half space specified by pfPlane contains a non-empty portion of the
volume specified by the argument, a sphere, box or cylinder, respectively.

The return value from the these functions is the OR of one or more bit fields. The returned value may be:

PFIS_FALSE:
The intersection of the primitive and the half space is empty.

PFIS_MAYBE:
The intersection of the primitive and the half space might be non-empty.

PFIS_MAYBE | PFIS_TRUE:
The intersection of the primitive and the half space is definitely non-empty.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN:
The primitive is non-empty and lies entirely inside the half space.

indicating indicate that the argument is entirely outside, potentially partly inside, partially inside or
entirely inside the half space specified by the pfPlane.

pfPlane::isect tests the line segment seg for intersection with the half space specified by the pfPlane. The
possible test results are:

PFIS_FALSE:
seg lies entirely in the exterior.

PFIS_MAYBE | PFIS_TRUE | PFIS_START_IN:
The starting point of seg lies in the interior.

PFIS_MAYBE | PFIS_TRUE | PFIS_END_IN:
The ending point of seg lies in the interior.

If d is non-NULL, on return it contains the position along the line segment (0 <= d <= seg->length) at
which the intersection occurred.

pfPlane::isect intersects the line segment seg with the half space specified by the pfPlane and has return

365

pfPlane(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

values the same as pfPlane::isect except that it also returns a non-zero value when both points are inside
the half-space. In this case it returns:

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN | PFIS_START_IN | PFIS_END_IN:
Both end points of seg lie in the interior.

If d1 and d2 are non-NULL, on return from pfPlane::isect they contain the starting and ending positions
of the line segment (0 <= d1 <= d2 <= seg->length) intersected with the half space.

pfPlane::orthoXform sets the pfPlane to the plane as transformed by the orthogonal transformation xform;
dst = pln * xform. If xform is not an orthogonal transformation the results are undefined.

NOTES
The bit fields returned by the contains functions are structured so that bitwise AND-ing the results of
sequential tests can be used to compute composite results, e.g. testing exclusion against a number of half
spaces.

C++ does not support array deletion (i.e. delete[]) for arrays of objects allocated new operators that take
additional arguments. Hence, the array deletion operator delete[] should not be used on arrays of objects
created with new(arena) pfVec3[n].

SEE ALSO
pfBox, pfMatrix, pfSeg, pfSphere, pfVec3

366

IRIS Performer 2.0 libpr C++ Reference Pages pfPolytope(3pf)hh

NAME
pfPolytope − Create, configure, transform, and intersect polytopes

FUNCTION SPECIFICATION
#include <Performer/pr/pfGeoMath.h>

pfPolytope::pfPolytope();

pfType* pfPolytope::getClassType(void);

int pfPolytope::getNumFacets(void);

int pfPolytope::setFacet(int i, const pfPlane *facet);

int pfPolytope::getFacet(int i, pfPlane *facet);

int pfPolytope::removeFacet(int i);

void pfPolytope::orthoXform(const pfPolytope *src, const pfMatrix &mat);

int pfPolytope::contains(const pfVec3 &pt);

int pfPolytope::contains(const pfSphere *sphere);

int pfPolytope::contains(const pfBox *box);

int pfPolytope::contains(const pfCylinder *cyl);

int pfPolytope::contains(const pfPolytope *ptope1);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfPolytope is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfPolytope. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfPolytope can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();

367

pfPolytope(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A pfPolytope is a set of half spaces whose intersection defines a convex, possibly semi-infinite, volume
which may be used for culling and other intersection testing where a tighter bound than a pfBox,
pfSphere, or pfCylinder is of benefit.

new(arena) allocates a pfPolytope from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfPolytope from the default memory arena (see pfGetSharedArena). Like other
pfObjects, pfPolytopes cannot be created statically, automatically on the stack or in arrays. pfPolytopes
can also be created automatically on the stack or statically. pfPolytopes allocated with new can be
deleted with delete or pfDelete.

pfPolytope::getClassType returns the pfType* for the class pfPolytope. The pfType* returned by
pfPolytope::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfPolytope. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfPolytope::setFacet sets the ith facet of the pfPolytope to facet. facet defines a half space such that the
normal of the pfPlane faces "outside". pfPolytope::getFacet copies the ith facet of the pfPolytope into facet.

pfPolytope::removeFacet removes the ith facet of the pfPolytope from the list. Remaining facets are
shifted left over the removed facet.

pfPolytope::getNumFacets returns the number of facets in the pfPolytope.

pfPolytope::orthoXform transforms src by mat and stores the result in the pfPolytope. mat should be an
orthonormal matrix or results are undefined.

The various member functions pfPolytope::contains compute the intersection of a pfPolytope with a

368

IRIS Performer 2.0 libpr C++ Reference Pages pfPolytope(3pf)hh

variety of geometric primitives. pfPolytope::contains returns one of the following:

PFIS_FALSE:
The intersection of the primitive and the pfPolytope is empty.

PFIS_MAYBE:
The intersection of the primitive and the pfPolytope might be non-empty.

PFIS_MAYBE | PFIS_TRUE:
The intersection of the primitive and the pfPolytope is definitely non-empty.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN:
The primitive is non-empty and lies entirely inside the pfPolytope.

SEE ALSO
pfBox, pfCylinder, pfDelete, pfFrustum, pfMatrix, pfObject, pfSphere

369

pfQuat(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfQuat − Set and operate on quaternions

FUNCTION SPECIFICATION
#include <Performer/pr/pfLinMath.h>

pfQuat::pfQuat();

void pfQuat::makeRot(float angle, float x, float y, float z);

void pfQuat::getRot(float *angle, float *x, float *y, float *z);

float pfQuat::length(void);

void pfQuat::conj(const pfQuat &q);

void pfQuat::exp(const pfQuat &q);

void pfQuat::log(const pfQuat &q);

void pfQuat::mult(const pfQuat &q1, const pfQuat &q2);

void pfQuat::div(const pfQuat &q1, const pfQuat &q2);

void pfQuat::invert(const pfQuat &q);

int pfQuat::equal(const pfQuat &q1, const pfQuat &q2);

int pfQuat::almostEqual(const pfQuat &q1, const pfQuat &q2, float tol);

void pfQuat::slerp(float t, const pfQuat &q1, const pfQuat &q2);

void pfQuat::squad(float t, const pfQuat &q1, const pfQuat &q2, const pfQuat &a,
const pfQuat &b);

extern void pfQuat::meanTangent(const pfQuat &q1, const pfQuat &q2, const pfQuat &q3);

pfQuat & pfQuat::operator *(const pfQuat &m);

pfQuat pfQuat::operator *=(const pfQuat &m);

pfQuat pfQuat::operator /(const pfQuat &v);

pfQuat & pfQuat::operator /=(const pfQuat &v);

struct pfQuat : public pfVec4

PARENT CLASS FUNCTIONS
The IRIS Performer class pfQuat is derived from the parent class pfVec4, so each of these member func-
tions of class pfVec4 are also directly usable with objects of class pfQuat. This is also true for ancestor
classes of class pfVec4.

370

IRIS Performer 2.0 libpr C++ Reference Pages pfQuat(3pf)hh

void* pfVec4::operator new(size_t);
void* pfVec4::operator new(size_t, void *arena);
void pfVec4::addScaled(pfVec3& dst, const pfVec3& v1, float s, const pfVec3& v2);
void pfVec4::add(const pfVec4& v1, const pfVec4& v2);
int pfVec4::almostEqual(const pfVec4& v2, float tol);
void pfVec4::combine(float s1, const pfVec4& v1, float s2, const pfVec4& v2);
void pfVec4::copy(const pfVec4& v);
float pfVec4::distance(const pfVec4& pt2);
float pfVec4::dot(const pfVec4& v2);
int pfVec4::equal(const pfVec4& v2);
float pfVec4::length(void);
void pfVec4::negate(const pfVec4& v);
float pfVec4::normalize(void);
void pfVec4::scale(float s, const pfVec4& v);
void pfVec4::set(float x, float y, float z, float w);
float pfVec4::sqrDistance(const pfVec4& pt2);
void pfVec4::sub(const pfVec4& v1, const pfVec4& v2);
void pfVec4::xform(const pfVec4& v, const pfMatrix& m);
float& pfVec4::operator [](int i);
const float& pfVec4::operator [](int i);
int pfVec4::operator ==(const pfVec4& v);
pfVec4 pfVec4::operator -() const;
pfVec4 pfVec4::operator +(const pfVec4& v);
pfVec4 pfVec4::operator -(const pfVec4& v);
pfVec4& pfVec4::operator =(const pfVec4& v);
pfVec4& pfVec4::operator *=(float d);
pfVec4& pfVec4::operator /=(float d);
pfVec4& pfVec4::operator +=(const pfVec4& v);
pfVec4& pfVec4::operator -=(const pfVec4& v);
pfVec4 pfVec4::operator *(const pfVec4& v, float d);
pfVec4 pfVec4::operator *(float d, const pfVec4& v);
pfVec4 pfVec4::operator /(const pfVec4& v, float d);
pfVec4 pfVec4::operator *(const pfVec4& v, const pfMatrix& m);

DESCRIPTION
pfQuat represents a quaternion as the four floating point values (x, y, z, w) of a pfVec4.

The default constructor pfQuat() is empty and does no initialization. new(arena) allocates a pfQuat from
the specified memory arena, or from the heap if arena is NULL. new allocates a pfQuat from the default
memory arena (see pfGetSharedArena). pfQuats can also be created automatically on the stack or stati-
cally. pfQuats allocated with new can be deleted with delete or pfDelete.

pfQuat::makeRot converts an axis and angle rotation representation to a quaternion. pfQuat::getRot is

371

pfQuat(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

the inverse operation. It produces the axis (as a unit length direction vector) and angle equivalent to the
given quaternion. Also see pfMatrix::makeQuat and pfMatrix::getOrthoQuat.

Several monadic quaternion operators are provided. pfQuat::conj produces the complex conjugate dst of
q by negating only the complex components (x, y, and z) which results in an inverse rotation. pfQuat::exp
and pfQuat::log perform complex exponentiation and logarithm functions respectively. The length of a
quaternion is computed by pfQuat::length and is defined as the norm of all four quaternion components.
Macro equivalents are PFCONJ_QUAT and PFLENGTH_QUAT. For negation, use the pfVec4 routine,
pfVec4::negate.

pfQuat::mult and pfQuat::div are dyadic quaternion operations which provide the product, and quotient
of two quaternions. When quaternions are used to represent rotations, multiplication of two quaternions
is equivalent, but more efficient, than the multiplication of the two correspondinging rotation matrices.

pfQuat::invert computes the multiplicative inverse of a quaternion. These operations are the basis from
which the other quaternion capabilities have been derived. Macro equivalents are PFMULT_QUAT,
PFDIV_QUAT, and PFINVERT_QUAT. For addition and scalar multiplication, use the pfVec4 routines
pfVec4::add, pfVec4::sub, and pfVec4::scale. Comparisons can be made with the pfVec4 member func-
tions pfVec4::equal and pfVec4::almostEqual, since pfQuat is derived from pfVec4.

pfQuat & operator *(const pfQuat &m) pfQuat operator *=(const pfQuat &m) Performs multiplication
with anther pfQuat.

pfQuat operator /(const pfQuat &v) pfQuat & operator /=(const pfQuat &v) Performs division with
anther pfQuat.

Interpolation of quaternions (as presented by Ken Shoemake) is an effective technique for rotation inter-
polation. Spherical linear interpolation is performed with pfQuat::slerp, which produces a pfQuat that is
t of the way between q1 and q2.

Spherical quadratic interpolation is provided by pfQuat::squad and its helper function,
pfQuat::meanTangent.

NOTES
These functions use a pfVec4 to represent quaternions and store the imaginary part first, thus the array
contents q = {x,y,z,w} are a representation of the quaternion w + xi + yj+ zk.

Because both q and -q represent the same rotation (quaternions have a rotation range of [-360,360]
degrees) conversions such as pfMatrix::getOrthoQuat make an arbitrary choice of the sign of the
returned quaternion. To prevent the arbitrary sign from introducing large, unintended rotations,
pfQuat::slerp checks the angle theta between q1 and q2. If theta exceeds 180 degrees, q2 is negated chang-
ing the interpolations range from [0,theta] to [0, theta-360 degrees].

372

IRIS Performer 2.0 libpr C++ Reference Pages pfQuat(3pf)hh

When using overloaded operators in C++, assignment operators, e.g. "+=", are somewhat more efficient
than the corresponding binary operators, e.g. "+", because the latter construct a temporary intermediate
object. Use assignment operators or macros for binary operations where optimal speed is important.

C++ does not support array deletion (i.e. delete[]) for arrays of objects allocated new operators that take
additional arguments. Hence, the array deletion operator delete[] should not be used on arrays of objects
created with new(arena) pfVec4[n].

For more information on quaternions, see the article by Sir William Rowan Hamilton "On quaternions; or
on a new system of imaginaries in algebra," in the Philosophical Magazine, xxv, pp. 10-13 (July 1844). More
recent references include "Animating Rotation with Quaternion Curves," SIGGRAPH Proceedings Vol 19,
Number 3, 1985, and "Quaternion Calculus For Animation," in "Math for SIGGRAPH", Course Notes, #23,
SIGGRAPH 1989, both by Ken Shoemake. An introductory tutorial is available on the Internet at
ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z. Note that for consistency with
Performer’s transformation order, pfQuats are the conjugates of the quaternions described in these refer-
ences.

SEE ALSO
pfVec4, pfMatrix

373

pfQuerySys(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfQuerySys, pfMQuerySys − Routines for querying parameters of system configuration

FUNCTION SPECIFICATION
#include <Performer/pr.h>

int pfQuerySys(int which, int *dst);

int pfMQuerySys(int *which, int *dst);

DESCRIPTION
Graphics platforms provide a range of hardware configurations whose parameters may affect the usabil-
ity of graphics features. These functions provide the ability to query these parameters. IRIS Performer
makes use of the following useful routines in determining its information: getgdesc(3g),
XGetVisualInfo(3X11), and glXGetConfig(3g).

pfQuerySys takes a PFQSYS_ token and returns in dst the value for the requested parameter. The return
value is the number of bytes successfully written.

The pfQuerySys query token must be one of:

PFQSYS_GL
returns the GL type currently being used: PFGL_IRISGL or PFGL_OPENGL.

PFQSYS_NUM_CPUS
returns the number of CPUs on the system.

PFQSYS_NUM_CPUS_AVAILABLE
returns the number of available (non-isolated) CPUs on the system.

PFQSYS_NUM_SCREENS
returns the number of screens, or hardware graphics pipelines.

PFQSYS_SIZE_PIX_X
returns the width of the default screen of the current display in pixels. The current
display is that returned by pfGetCurWSConnection.

PFQSYS_SIZE_PIX_Y
returns the height of the default screen of the current display in pixels. The current
display is that returned by pfGetCurWSConnection.

PFQSYS_MAX_SNG_RGBA_BITS
returns the maximum number of configurable single-buffered bits per RGBA color com-
ponent.

PFQSYS_MAX_DBL_RGBA_BITS
returns the maximum number of configurable double-buffered bits per RGBA color com-
ponent.

374

IRIS Performer 2.0 libpr C++ Reference Pages pfQuerySys(3pf)hh

PFQSYS_MAX_SNG_CI_BITS
returns the maximum number of configurable single-buffered bits for colorindex.

PFQSYS_MAX_DBL_CI_BITS
returns the maximum number of configurable double-buffered bits for colorindex.

PFQSYS_MAX_SNG_OVERLAY_CI_BITS
returns the maximum number of configurable bits for colorindex single-buffered overlay
buffers.

PFQSYS_MAX_DBL_OVERLAY_CI_BITS
returns the maximum number of configurable bits for colorindex double-buffered over-
lay buffers.

PFQSYS_MAX_DEPTH_BITS
returns the maximum number of configurable bits for depth buffers.

PFQSYS_MIN_DEPTH_VAL
returns the minimum representable value in the depth buffer. This is IRIS GL only:
OpenGL depth buffers range from 0 to 1.

PFQSYS_MAX_DEPTH_VAL
returns the maximum representable value in the depth buffer. This is IRIS GL only:
OpenGL depth buffers range from 0 to 1.

PFQSYS_MAX_STENCIL_BITS
returns the maximum number of configurable bits for stencil buffers.

PFQSYS_MAX_MS_SAMPLES
returns the maximum number of configurable subsamples for multisample buffers. Mul-
tisample buffers are used for antialiasing. See the pfWindow and pfAntialias reference
pages for more information.

PFQSYS_MAX_MS_DEPTH_BITS
returns the maximum number of configurable bits for multisampled depth buffers.

PFQSYS_MAX_MS_STENCIL_BITS
returns the maximum number of configurable bits for multisampled stencil buffers.

PFQSYS_MAX_LIGHTS
returns the maximum allowable number of GL lights that may be on at one time.

PFQSYS_TEXTURE_MEMORY_BYTES
returns the number of bytes of hardware texture memory.

PFQSYS_MAX_TEXTURE_SIZE
returns the number of bytes in the largest single texture that can can be allocated in
hardware texture memory.

pfMQuerySys takes an NULL-terminated array of query tokens and a destination buffer and will do
multiple queries. The return value will be the number of bytes successfully written. This routine is more

375

pfQuerySys(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

efficient than pfQuerySys if multiple queries are desired.

NOTES
pfWindow::query can be used to query the configuration parameters of a given pfWindow. pfFeature
can be used to query the availability of specific features on the current hardware configuration.

SEE ALSO
pfFeature, pfGetCurWSConnection, pfWindow, pfAntialias, XGetVisualInfo, glXGetConfig

376

IRIS Performer 2.0 libpr C++ Reference Pages pfSeg(3pf)hh

NAME
pfSeg, pfTriIsectSeg − Set and operate on line segments

FUNCTION SPECIFICATION
#include <Performer/pr/pfGeoMath.h>

pfSeg::pfSeg();

void pfSeg::clip(const pfSeg *seg, float d1, float d2);

void pfSeg::makePts(const pfVec3 &p1, const pfVec3 &p2);

void pfSeg::makePolar(const pfVec3 &pos, float azi, float elev, float len);

int pfSeg::closestPtsOn(const pfSeg *seg2, pfVec3 &ptOn1, pfVec3 &ptOn2);

int pfTriIsectSeg(const pfVec3 v1, const pfVec3 v2, const pfVec3 v3, const pfSeg *seg, float *d);

struct pfSeg

{

pfVec3 pos;

pfVec3 dir;

float length;

};

DESCRIPTION
A pfSeg represents a line segment starting at pos, extending for a length length in the direction dir. The
routines assume that dir is of unit length, otherwise the results are undefined. pfSeg is a public struct
whose data members pos, dir and length may be operated on directly.

The default constructor pfSeg() is empty and does no initialization. new(arena) allocates a pfSeg from
the specified memory arena, or from the heap if arena is NULL. new allocates a pfSeg from the default
memory arena (see pfGetSharedArena). pfSegs can also be created automatically on the stack or stati-
cally. pfSegs allocated with new can be deleted with delete or pfDelete.

pfSeg::clip is used to select a subset of the pfSeg. It sets dst to the portion of the pfSegment clipped to
start at distance d1 and end at d2. When d1 = 0 and d2 = seg->length, pfSeg::clip returns the original seg-
ment. Values of d1 < 0 and d2 > seg->length can be used to extend the segment.

pfSeg::makePts sets the pfSeg to the segment which starts at the point p1 and ends at the point p2.

pfSeg::makePolar sets the pfSeg to the segment which starts at pos and has length length and points in the
direction specified by azi and elev. azi specifies the azimuth (or heading), which is the angle which the
projection of the segment in the X-Y plane makes with the +Y axis. elev specifies the elevation (or pitch),
the angle with respect to the X-Y plane. The positive Y axis is azi=0 and elev=0. Azimuth follows the right
hand rule about the Z axis, i.e. +90 degrees is the -X axis. Similarly, elevation follows the right hand rule

377

pfSeg(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

about the X axis, i.e. +90 degrees is the +Z axis.

pfSeg::closestPtsOn returns the two closest points on the implicit pfSeg and seg2. If the two segments are
parallel FALSE is returned and the contents of ptOn1 and ptOn2 are undefined.

pfTriIsectSeg tests the line segment seg for intersection with the triangle defined by the three vertices v1,
v2, and v3. pfTriIsectSeg returns TRUE or FALSE. If d is non-null, on return it contains the length posi-
tion of the intersection between 0 and seg->length.

SEE ALSO
pfNodeIsectSegs, pfGSetIsectSegs, pfVec3

378

IRIS Performer 2.0 libpr C++ Reference Pages pfShadeModel(3pf)hh

NAME
pfShadeModel, pfGetShadeModel − Set and get the shading model

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfShadeModel(int model);

int pfGetShadeModel(void);

PARAMETERS
model is a symbolic constant and is one of:

PFSM_FLAT Use flat shading,

PFSM_GOURAUD Use Gouraud shading.

DESCRIPTION
pfShadeModel sets the shading model to model. When flat shading is enabled, the last vertex in a
geometric primitive defines the color of the entire geometric primitive. When Gouraud shading, vertex
colors are interpolated across the primitive.

The following example shows how data equivalent to OpenGL immediate mode graphics commands
would be interpreted in both PFSM_FLAT and PFSM_GOURAUD shade models.

Example 1:

/*

* Draw a three-primitive triangle strip in OpenGL

*/

glColor3f(0, 0, 0); /**/

glBegin(GL__TRIANGLE_STRIP);/* Actual Rendered Triangle Colors */

glVertex3v(v0); /* ------------------------------------ */

glVertex3v(v1); /* Tri PFSM_FLAT PFSM_GOURAUD */

glColor3f(1, 0, 0); /* ------------------------------------ */

glVertex3v(v2); /* 0 red black/black/red */

glColor3f(0, 1, 0); /* */

glVertex3v(v3); /* 1 green black/red/green */

glColor3f(0, 0, 1); /* */

glVertex3v(v4); /* 2 blue red/green/blue */

glEnd(); /**/

Consequently, strips (triangle PFGS_TRISTRIPS or line PFGS_LINESTRIPS) which are composed of
different colored primitives must have flat shading enabled in order to be rendered properly. The
pfGeoSet primitive types of PFGS_FLAT_TRISTRIPS and PFGS_FLAT_LINESTRIPS ensure that flat
shading will be enabled when the pfGeoSet is drawn.

379

pfShadeModel(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

Another subtlety of the shading model is related to the current lighting model. If the lighting model is
local due to either the pfLightModel (pfLightModel::setLocal) or if any pfLights are local (-
pfLight::setPos), then Gouraud shading must be enabled since lighting effects should be different at each
vertex. This means that even if a triangle has a constant color and normal, it should still be drawn with
Gouraud shading so the effects of the local lighting can be seen. The exception to this rule are the flat
strips discussed above.

The shading model state element is identified by the PFSTATE_SHADEMODEL token. Use this token
with pfGeoState::setMode to set the shading model of a pfGeoState and with pfOverride to override
subsequent shading model changes.

Example 2:

/* Set up flat shaded pfGeoState. */

gstate->setMode(PFSTATE_SHADEMODEL, PFSM_FLAT);

/* Attach gstate to gset */

gset->setGState(gstate);

/* Draw flat shaded gset */

gset->draw();

Example 3:

/* Alternative way to draw flat-shaded pfGeoSet */

gset->setDrawMode(PFGS_FLATSHADE, PF_ON);

gset->draw();

Example 4:

/*

* Draw flat-shaded triangle strip pfGeoSet. PFGS_FLATSHADE

* and pfShadeModel are not required.

*/

gset->setPrimType(PFGS_FLAT_TRISTRIPS);

gset->draw();

Example 5:

380

IRIS Performer 2.0 libpr C++ Reference Pages pfShadeModel(3pf)hh

pfShadeModel(PFSM_FLAT);

/* Override shading model to PFSM_FLAT */

pfOverride(PFSTATE_SHADEMODEL, PF_ON);

pfShadeModel is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfShadeModel will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDispList::draw.

The selection of which shading model a pfGeoSet uses is based upon the following decision hierarchy:

1. Use flat shading if pfGeoSet is PFGS_FLAT_TRISTRIPS or PFGS_FLAT_LINESTRIPS or
if PFGS_FLATSHADE is enabled through pfGeoSet::setDrawMode.

2. Use the shading model set by the attached pfGeoState, if any (see pfGeoSet::setGState).

3. Use the shading model set by pfShadeModel.

The default shading model is Gouraud.

pfGetShadeModel returns the current shading model.

NOTES
Overriding the shading model to PFSM_FLAT can be a useful debugging aid since it reveals the facets of
a normally smooth surface.

SEE ALSO
pfGSetGState, pfGeoSet, pfGeoState, pfLModelLocal, pfLightPos, pfState

381

pfSharedMem(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfInitArenas, pfFreeArenas, pfGetSharedArena, pfGetSemaArena, pfSharedArenaSize,
pfGetSharedArenaSize, pfSharedArenaBase, pfGetSharedArenaBase, pfSemaArenaSize, pfGet-
SemaArenaSize, pfSemaArenaBase, pfGetSemaArenaBase, pfTmpDir, pfGetTmpDir − Shared
Memory Functions

FUNCTION SPECIFICATION
#include <Performer/pr.h>

int pfInitArenas(void);

int pfFreeArenas(void);

void* pfGetSharedArena(void);

void* pfGetSemaArena(void);

void pfSharedArenaSize(size_t size);

size_t pfGetSharedArenaSize(void);

void pfSharedArenaBase(void *base);

void * pfGetSharedArenaBase(void);

void pfSemaArenaSize(size_t size);

size_t pfGetSemaArenaSize(void);

void pfSemaArenaBase(void *base);

void * pfGetSemaArenaBase(void);

void pfTmpDir(char *dirname);

const char * pfGetTmpDir(void);

DESCRIPTION
pfInitArenas creates arenas that can be used to allocate shared memory, locks and semaphores from (see
pfMalloc, usnewlock, usnewsema). In a libpf application, this function is called by pfInit so it is not
necessary to call it directly. However, a libpr application that wishes to use Performer’s arenas, must call
pfInitArenas before calling pfInit to ensure that the type system is created in shared memory.

In addition to creating a shared memory arena, pfInitArenas uses usinit to create an arena for locks and
semaphores.

pfTmpDir and the environment variable PFTMPDIR control where pfInitArenas creates its arenas. If
neither is specified, the semaphore arena is created in /usr/tmp and the shared memory arena is created in
/dev/zero (swap space). If a temporary directory is specified, then files are created in that directory for
the shared memory and semaphore arenas. Both these files are unlinked so that they are removed from
the file system when the process terminates. Once created, these arenas cannot grow beyond the specified
size, so IRIS Performer tries to create a large (256MB by default) shared memory arena and a 128KB

382

IRIS Performer 2.0 libpr C++ Reference Pages pfSharedMem(3pf)hh

semaphore arena. The semaphore arena always uses a memory mapped file.

For the shared memory arena, the default option uses swap space. This is usually preferable to using a
memory mapped file in a directory specified by PFTMPDIR. Using an actual file is slower at allocation
time and requires actual disk space for extending the file length to equal the amount of memory allocated
(pfMalloc) from the arena. Because the temporary file is unlinked after creation, any memory actually
allocated will show up as used under df(1), but not under du(1). The application size in ps(1) will reflect
the maximum specified size of the arena, e.g. 256MB. But space is not reserved until accessed, i.e. until
required by pfMalloc. So the large arena created by pfInitArenas does not consume any substantial disk
or swap space resources until needed.

pfSharedArenaSize can be used to override the arena size that IRIS Performer uses by default (256MB).
size specifies the desired size in bytes. Arena size is limited by the largest contiguous possible memory
mapping, currently slightly more than 1.7GB in an application linked with DSOs. When attempting large
arena mappings, first make sure that the real and virtual memory usage limits set in the shell or with
setrlimit() are adequate. pfSharedArenaSize must be called before pfInitArenas to have effect.
pfGetSharedArenaSize returns the arena size in bytes.

The comparable calls for the semaphore arena are pfSemaArenaSize and pfGetSemaArenaSize.

pfSharedArenaBase sets the base address for the mapping of the shared memory arena. Normally, IRIX
chooses these base addresses automatically. Direct specification is only useful if the application needs
closer control over the layout of virtual address space, e.g. to avoid conflicts with other mappings.
pfGetSharedArenaBase returns the base address for the arena.

The comparable calls for the semaphore arena are pfSemaArenaBase and pfGetSemaArenaBase.

pfGetSemaArena returns a handle to the lock arena and pfGetSharedArena returns a pointer to the
shared memory arena. This pointer cannot be used directly, only as an argument to pfMalloc.
pfGetTmpDir returns the temporary directory set using pfTmpDir.

NOTES
These arenas can only be used by related processes. Related in this context means processes that are
created by fork or sproc once pfInitArenas has been called. Use pfDataPool for sharing memory
between unrelated processes. pfInitArenas should be called before any fork calls are made.

SEE ALSO
acreate, pfFree, pfMalloc, usinit, usnewlock, usnewsema

383

pfSinCos(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfSinCos, pfTan, pfArcTan2, pfArcSin, pfArcCos, pfSqrt − Fast math routines sin, cos, sqrt

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfSinCos(float arg, float* sin, float* cos);

float pfTan(float arg);

float pfArcTan2(float y, float x);

float pfArcSin(float arg);

float pfArcCos(float arg);

float pfSqrt(float arg);

DESCRIPTION
pfSinCos returns sine and cosine of arg degrees in the locations pointed to by sin and cos. The routine is
less accurate than that provided in libm, but faster. It also loses precision earlier for large arguments. For
accuracy within an error tolerance of 1/1000, the argument must be in the range -7500 to +7500 degrees.

pfTan returns the tangent of arg degrees.

pfArcTan2 returns the arc tangent of y/x in the range -180 to +180 degrees using the signs of both argu-
ments to determine the quadrant of the return value.

pfArcSin returns the arc sine of arg in the range -90 to +90 degrees.

pfArcCos returns the arc sine of arg in the range 0 to 180 degrees.

pfSqrt returns the square root of arg. It is faster, but somewhat less accurate than the version in the stan-
dard fast math library (libfastm).

SEE ALSO
pfMatrix, pfVec3

384

IRIS Performer 2.0 libpr C++ Reference Pages pfSphere(3pf)hh

NAME
pfSphere − Set, transform and extend a sphere

FUNCTION SPECIFICATION
#include <Performer/pr/pfGeoMath.h>

void* pfSphere::operator new(size_t);

void* pfSphere::operator new(size_t, void *arena);

pfSphere::pfSphere();

void pfSphere::makeEmpty(void);

void pfSphere::extendBy(const pfVec3 &pt);

void pfSphere::extendBy(const pfSphere* sph);

void pfSphere::extendBy(const pfCylinder* cyl);

void pfSphere::around(const pfVec3 *pts, int npt);

void pfSphere::around(const pfSphere **sphs, int nsph);

void pfSphere::around(const pfBox **boxes, int nbox);

void pfSphere::around(const pfCylinder **cyls, int ncyl);

int pfSphere::contains(const pfVec3 &pt);

int pfSphere::contains(const pfSphere *sph2);

int pfSphere::contains(const pfCylinder *cyl);

int pfSphere::isect(const pfSeg* seg, float* d1, float* d2);

void pfSphere::orthoXform(const pfSphere *sph, const pfMatrix &xform);

struct pfSphere

{

pfVec3 center;

float radius;

};

DESCRIPTION
A pfSphere represents a sphere as a center and a radius. The routines listed here provide means of creat-
ing and extending spheres for use as bounding geometry. pfSphere is a public struct whose data
members center and radius may be operated on directly.

The default constructor pfSphere() is empty and does no initialization. new(arena) allocates a pfSphere
from the specified memory arena, or from the heap if arena is NULL. new allocates a pfSphere from the
default memory arena (see pfGetSharedArena). pfSpheres can also be created automatically on the stack

385

pfSphere(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

or statically. pfSpheres allocated with new can be deleted with delete or pfDelete.

pfSphere::makeEmpty sets the pfSphere so that it appears empty to extend and around operations.

pfSphere::extendBy(const pfVec3 pt), pfSphere::extendBy(const pfSphere *sph), and
pfSphere::extendBy(const pfCylinder *cyl) set the pfSphere to a sphere which contains both the
pfSphere and the point pt, the sphere sph or the cylinder cyl, respectively.

pfSphere::around(const pfVec3 *, int), pfSphere::around(const pfBox **, int), pfSphere::around(const
pfSphere **, int) and pfCylinder::around(const pfCylinder **, int) set the pfSphere to a sphere which
contains a set of points, boxes, spheres or cylinders, respectively. These routines are passed the address
of an array of pointers to the objects being bounded along with the number of objects.

pfSphere::contains(const pfVec3 pt), returns TRUE or FALSE depending on whether the point pt is in
the interior of the specified sphere.

pfSphere::contains(const pfSphere *) and pfSphere::contains(const pfCylinder *) test whether the
sphere contains a non-empty portion of the volume specified by the argument, a sphere or cylinder,
respectively.

The return value from the these functions is the OR of one or more bit fields. The returned value may be:

PFIS_FALSE:
The intersection of the argument and the sphere is empty.

PFIS_MAYBE:
The intersection of the argument and the sphere might be non-empty.

PFIS_MAYBE | PFIS_TRUE:
The intersection of the argument and the sphere is definitely non-empty.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN:
The argument is non-empty and lies entirely inside the sphere.

pfSphere::isect intersects the line segment seg with the volume of the pfSphere sphere. The possible return
values are:

PFIS_FALSE:
seg lies entirely in the exterior.

PFIS_MAYBE | PFIS_TRUE | PFIS_START_IN:
The starting point of seg lies in the interior.

386

IRIS Performer 2.0 libpr C++ Reference Pages pfSphere(3pf)hh

PFIS_MAYBE | PFIS_TRUE | PFIS_END_IN:
The ending point of seg lies in the interior.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN | PFIS_START_IN | PFIS_END_IN:
Both end points of seg lie in the interior.

If d1 and d2 are non-NULL, on return from pfSphere::isect they contain the starting and ending positions
of the line segment (0 <= d1 <= d2 <= seg->length) intersected with the sphere.

pfSphere::orthoXform sets the pfSphere to be the sphere sph transformed by the orthogonal transform
xform.

NOTES
The bit fields returned by the contains functions are structured so that bitwise AND-ing the results of
sequential tests can be used to compute composite results, e.g. testing exclusion against a number of half
spaces.

Some of the extend and around operations are time consuming and should be used sparingly. In general,
the quality of a bound generated by a series of extend operations will be no better, and sometimes much
worse, than a bound generated by a single around operation.

C++ does not support array deletion (i.e. delete[]) for arrays of objects allocated new operators that take
additional arguments. Hence, the array deletion operator delete[] should not be used on arrays of objects
created with new(arena) pfVec3[n].

SEE ALSO
pfBox, pfCylinder, pfSeg, pfVec3

387

pfSprite(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfSprite, pfGetCurSprite − Create and update sprite transformation primitive.

FUNCTION SPECIFICATION
#include <Performer/pr/pfSprite.h>

pfSprite::pfSprite();

pfType * pfSprite::getClassType(void);

void pfSprite::setMode(int which, int val);

int pfSprite::getMode(int which);

void pfSprite::setAxis(float x, float y, float z);

void pfSprite::getAxis(float *x, float *y, float *z);

void pfSprite::begin(void);

void pfSprite::end(void);

void pfSprite::position(float x, float y, float z);

pfSprite * pfGetCurSprite(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfSprite is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfSprite. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfSprite can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);

388

IRIS Performer 2.0 libpr C++ Reference Pages pfSprite(3pf)hh

int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
A "sprite" is a term borrowed from the video game industry and refers to a movable graphical object that
always appears orthogonal to the viewer. In 2D, a sprite can be implemented by simply drawing an
image that is aligned with the screen, a technique called "bit-blitting". pfSprite extends this support to 3D
geometry by rotating the geometry appropriately based on the viewer and object locations to achieve a
consistent screen alignment. In this respect, pfSprite is not really a graphical object itself, rather it is an
intelligent transformation and is logically grouped with other libpr transformation primitives like
pfMultMatrix.

Sprite transformations (subsequently referred to as sprites) are useful for complex objects that are roughly
symmetrical about an axis or a point. By rotating the model about the axis or point, the viewer only sees
the "front" of the model so complexity is saved in the model by omitting the "back" geometry. A further
performance enhancement is to incorporate visual complexity in a texture map rather than in geometry.
Thus, on machines with fast texture mapping, sprites can present very complex images with very little
geometry. Classic examples of textured sprites use a single quadrilateral that when rotated about a verti-
cal axis simulate trees and when rotated about a point simulate clouds or puffs of smoke.

new(arena) allocates a pfSprite from the specified memory arena, or from the heap if arena is NULL. new
allocates a pfSprite from the default memory arena (see pfGetSharedArena). Like other pfObjects,
pfSprites cannot be created statically, automatically on the stack or in arrays. pfSprites should be deleted
with pfDelete rather than the delete operator.

pfSprite::getClassType returns the pfType* for the class pfSprite. The pfType* returned by
pfSprite::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfSprite. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

Sprite transformations are simply rotations which are based on:

1. The viewer location.

389

pfSprite(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

2. The sprite location.

3. The sprite mode/axis.

The viewer’s coordinate system is specified with pfViewMat whose last row is the viewer’s location. The
sprite location in object coordinates is specified with pfSprite::position. This location is transformed by
the current modeling matrix (pfModelMat) into "world" coordinates before computing the rotation based
on the sprite mode.

pfSprite::setMode sets the which mode of the pfSprite to val. which identifies a particular mode and is one
of:

PFSPRITE_ROT val specifies the rotation constraints of the pfSprite and is one of:

PFSPRITE_AXIAL_ROT
sprite rotation is constrained to rotate about the sprite axis defined by pfSprite::setAxis.

PFSPRITE_POINT_ROT_EYE
sprite rotation is constrained to rotate about the sprite location specified by
pfSprite::position. The sprite axis is ignored but the rotation is constrained so that the
+Z object coordinate axis maps to the +Y window coordinate axis, i.e., the object +Z axis
stays upright on the screen.

PFSPRITE_POINT_ROT_WORLD
sprite rotation is constrained to rotate about the sprite location specified by
pfSprite::position. The rotation is further constrained so that the +Z object coordinate
axis maps to the sprite axis.

The default PFSPRITE_ROT mode is PFSPRITE_AXIAL_ROT.

PFSPRITE_MATRIX_THRESHOLD
pfGeoSets which contain a number of vertices less than val will be transformed on the
CPU, rather than through the Graphics Library transformation stack. If sprite is to affect
non-pfGeoSet geometry, then val should be <= 0 in which case the Graphics Library
transformation stack will always be used. Specifically, pfSprite::begin will push the
matrix stack, pfSprite::position will modify the top of stack with the current sprite rota-
tion, and pfSprite::end will pop the matrix stack. It is not necessary to push/pop the
matrix stack within pfSprite::begin/pfSprite::end. The default threshold value is 10.

pfSprite::getMode returns the value of the mode identified by which.

Sprite rotations are based on the object coordinate system as follows:

390

IRIS Performer 2.0 libpr C++ Reference Pages pfSprite(3pf)hh

1. The -Y object coordinate axis of geometry is rotated to point to the viewer.

2. The +Z object coordinate axis of geometry is the axis of rotation for axial sprites, i.e. the +Z
object axis is rotated onto the sprite axis, then the transformed -Y axis is rotated about the
sprite axis to face the viewer.

pfSprite::setAxis sets the pfSprite’s axis to (x, y, z). pfSprite::getAxis returns the axis of sprite in x, y, z.

pfSprite::begin makes the pfSprite the current pfSprite and applies its effects to subsequently drawn
pfGeoSets and non-pfGeoSet geometry if the pfSprite’s matrix threshold value is <= 0. pfSprite::position
specifies the sprite origin and pfSprite::end sets the current pfSprite to NULL and exits "sprite mode".
pfSprite::position may be called outside pfSprite::begin/pfSprite::end and any number of times within
pfSprite::begin/pfSprite::end to render geometry with many different origins but which share the
characteristics of the pfSprite.

Example 1: Draw trees as axial sprites which rotate about +Z.

pfVec3 treeOrg[NUMTREES];

pfGeoSet *trees[NUMTREES];

sprite = new pfSprite;

sprite->begin();

for (i=0; i<NUMTREES; i++)

{

pfSprite::position(treeOrg[i][0], treeOrg[i][1], treeOrg[i][1]);

trees[i]->draw();

}

pfSprite::end();

pfSprite::begin, pfSprite::end, and pfSprite::position are all display-listable commands. If a pfDispList
has been opened by pfDispList::open, these commands will not have immediate effect but will be cap-
tured by the pfDispList and will only have effect when that pfDispList is later drawn with
pfDispList::draw.

NOTES
Both PFSPRITE_AXIAL_ROT and PFSPRITE_POINT_ROT_WORLD sprites may "spin" about the Y
axis of the pfGeoSet when viewed along the rotation or alignment axis.

391

pfSprite(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

SEE ALSO
pfDelete, pfDispList, pfGeoSet, pfModelMat, pfState, pfViewMat

392

IRIS Performer 2.0 libpr C++ Reference Pages pfState(3pf)hh

NAME
pfState, pfInitState, pfGetCurState, pfPushState, pfPopState, pfGetState, pfFlushState, pfBasicState −
Create, modify and query graphics state

FUNCTION SPECIFICATION
#include <ulocks.h>

#include <Performer/pr/pfState.h>

pfState::pfState();

static pfType * pfState::getClassType(void);

void pfState::select(void);

void pfState::load(void);

void pfState::attach(pfState *state1);

void pfInitState(usptr_t* arena);

pfState * pfGetCurState(void);

void pfPushState(void);

void pfPopState(void);

void pfGetState(pfGeoState *gstate);

void pfFlushState(void);

void pfBasicState(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfState is derived from the parent class pfObject, so each of these member func-
tions of class pfObject are also directly usable with objects of class pfState. This is also true for ancestor
classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfState can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();

393

pfState(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
IRIS Performer manages a subset of the graphics library state for convenience and improved perfor-
mance. Further, this state is conceptually partitioned into two divisions: modes and attributes. A mode is
a simple "setting" usually represented by a single value while an attribute is a larger collection of related
modes that is encapsulated in an IRIS Performer structure, such as pfFog.

Modes usually have two routines to set and get them while attributes have many routines for accessing
their parameters and a pf<*>::apply routine which "applies" the attribute’s characteristics to the graphics
system via graphics library state commands. Modes are represented by basic data types like ’int’ and
’float’ while attributes are pointers to opaque IRIS Performer structures whose contents are accessible
only through function calls.

An example of a mode is the shading model set by pfShadeModel and an attribute is exemplified by a
pfMaterial which is applied with pfMaterial::apply. Each mode and attribute is identified by a
PFSTATE_ token. These tokens are used in pfGeoState::setMode and pfGeoState::setAttr when initializ-
ing a pfGeoState and in pfOverride to override mode and attribute settings.

394

IRIS Performer 2.0 libpr C++ Reference Pages pfState(3pf)hh

The following table lists the state components that are modes.

Mode PFSTATE_ Token Routine(s) Defaultii
Transparency TRANSPARENCY pfTransparency PFTR_OFF
Antialiasing ANTIALIAS pfAntialias PFAA_OFF
Decal DECAL pfDecal PFDECAL_OFF
Face culling CULLFACE pfCullFace PFCF_OFF
Alpha function ALPHAFUNC pfAlphaFunc PFAF_ALWAYS
Alpha reference ALPHAREF pfAlphaFunc 0
Lighting enable ENLIGHTING pfEnable/pfDisable PF_OFF
Texturing enable ENTEXTURE pfEnable/pfDisable PF_OFF
Fogging enable ENFOG pfEnable/pfDisable PF_OFF
Wireframe enable ENWIREFRAME pfEnable/pfDisable PF_OFF
Colortable enable ENCOLORTABLE pfEnable/pfDisable PF_OFF
Highlighting enable ENHIGHLIGHTING pfEnable/pfDisable PF_OFF
Light Point enable ENLPOINTSTATE pfEnable/pfDisable PF_OFF
TexGen enable ENTEXGEN pfEnable/pfDisable PF_OFFcc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

The following table lists the state components that are attributes.

Attribute PFSTATE_ Token Routine Defaultii
pfLightModel LIGHTMODEL pfLightModel::apply NULL
pfLights LIGHTS pfLight::on all NULL
front pfMaterial FRONTMTL pfMaterial::apply NULL
back pfMaterial BACKMTL pfMaterial::apply NULL
pfTexEnv TEXENV pfTexEnv::apply NULL
pfTexture TEXTURE pfTexture::apply NULL
pfFog FOG pfFog::apply NULL
pfColortable COLORTABLE pfColortable::apply NULL
pfHighlight HIGHLIGHT pfHighlight::apply NULL
pfLPointState LPOINTSTATE pfLPointState::apply NULL
pfTexGen TEXGEN pfTexGen::apply NULLc

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

State values may be established within libpr in one of three ways:

1. Immediate mode

2. Display list mode

3. pfGeoState mode

Like the graphics library itself, IRIS Performer has two command execution modes: immediate mode and
display list mode. In immediate mode, the setting of a mode or the application of an attribute is carried
out immediately. Any geometry rendered afterwards will be drawn with that mode or attribute

395

pfState(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

characteristics. In display list mode, the command will be "captured" by the open display list (pfDispList)
and will not have effect until the display list is closed and later drawn with pfDispList::draw.

All the routines listed in Table 1 are display-listable, which is to say that they will be captured by an open
pfDispList. In immediate mode, most of the above routines send command tokens to the graphics pipe-
line. Thus, the process invoking these commands must have a graphics context open to accept the com-
mand tokens, otherwise a segmentation violation or similar severe exception will result. In addition to an
open graphics context, a global pfState must have been selected by pfState::select. Note that neither a
graphics context nor pfState is required when drawing in display list mode because the commands will be
captured by the display list.

Example 1:

/* Enable wireframe in immediate mode */

pfEnable(PFEN_WIREFRAME);

/* Draw ’gset’ in wireframe */

gset->draw();

Example 2:

/* Enter display list mode by opening ’dlist’ for appending */

dlist->open();

pfEnable(PFEN_WIREFRAME);

gset->draw();

pfDispList::close();

/* Draw ’gset’ in wireframe */

dlist->draw();

It is important to realize that IRIS Performer display lists (pfDispLists) are different from graphics library
display lists. A pfDispList captures only libpr commands and does not contain low-level geometric
information like vertex coordinates and colors.

The pfGeoState encapsulates all of libpr state, i.e. it has all mode settings and a pointer to a definition for
each attribute type. Through pfGeoState::setMode and pfGeoState::setAttr it is possible to set every
state element of a pfGeoState. When the pfGeoState is applied through pfGeoState::apply all the state
settings encapsulated by the pfGeoState become active. pfGeoStates also have useful inheritance proper-
ties that are discussed in the pfGeoState man page. Typical use of a pfGeoState is to "build" it at database
initialization time and attach it to a pfGeoSet (pfGeoSet::setGState). In this way the pfGeoState defines
the graphics state of the geometry encapsulated by the pfGeoSet (pfDrawGSet will call pfGeoState::apply

396

IRIS Performer 2.0 libpr C++ Reference Pages pfState(3pf)hh

if the pfGeoSet has an attached pfGeoState).

Example 3:

/* Set up wireframe pfGeoState */

gstate = new pfGeoState;

gstate->setMode(PFSTATE_ENWIREFRAME, PF_ON);

/* Draw wireframe pfGeoSet in "pfGeoState" mode */

gstate->apply(); /* Apply ’gstate’ */

gset->draw(); /* Draw ’gset’ in wireframe */

/* Preferred method for drawing wireframe pfGeoSet */

gset->setGState(gstate); /* Attach ’gstate’ to ’gset’ */

gset->draw(); /* Draw ’gset’ in wireframe */

pfInitState initializes internal IRIS Performer state. arena specifies a shared semaphore arena created by
usinit for multiprocess operation of IRIS Performer or NULL for single process operation. For proper
multiprocess operation, pfInitState should be called by a single process before calls to sproc or fork that
will generate other processes using IRIS Performer state, with an arena which is shared by all application
processes. In either single or multi-process operation, pfInitState must be called before any state attri-
butes such as pfTextures are created and should only be called once.

new(arena) allocates a pfState from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfState from the default memory arena (see pfGetSharedArena). Like other
pfObjects, pfStates cannot be created statically, automatically on the stack or in arrays. pfStates should be
deleted with pfDelete rather than the delete operator. Specifically, a pfState has a stack of state structures
that shadow IRIS Performer and graphics library state. This stack may be manipulated by routines
described below.

pfState::getClassType returns the pfType* for the class pfState. The pfType* returned by
pfState::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfState. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

A pfState should be created for each graphics context that the process draws to with libpr routines. When
a process switches graphics contexts it should also switch to the corresponding pfState with
pfState::select.

pfState::select makes the pfState the current state. pfState is a global value so it is shared by all share
group processes(See sproc). pfState::select should be used when switching between different graphics

397

pfState(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

contexts. It does not configure the graphics context with its state settings. pfGetCurState returns a
pointer to the current pfState or NULL if there is no active pfState.

Each pfState structure maintains a 64-deep stack of pfGeoStates. A pfGeoState shadows all libpr modes
and attributes. Changes to the current state made through any of the 3 methods listed above are recorded
in the top of the pfGeoState stack. pfGetState copies the top of the pfGeoState stack into gstate.

pfPushState pushes the pfGeoState stack of the current pfState. When pushed, the configuration of the
current state is recorded so that when popped, that state will be restored, overwriting any state changes
made between push and pop. The bit vector which represents state elements that are overridden by
pfOverride is also pushed.

pfPopState compares the current pfGeoState with that of the previously pushed pfGeoState and calls
graphics library routines to restore the previously pushed state. The override bit vector is popped before
popping any state elements. State changes made to a graphics context must be made using the IRIS Per-
former for pfPushState and pfPopState to work correctly. Calls made by the application directly to the
graphics library will circumvent IRIS Performer state management which may or may not be desired.

pfFlushState is only useful for applications which use pfGeoStates. pfGeoStates do not inherit state from
each other so state is pushed and popped when drawing them. For performance, state is not actually
popped unless a subsequent pfGeoState requires it. This means that in-between pfGeoStates, the state
may not be what the application expects. pfFlushState will return the state to the global default.(See
pfGeoState for more on state flushing). pfPushState calls pfFlushState.

pfBasicState is a convenience routine for disabling all modes and is useful for drawing things like text
which usually should not be lit or fogged. Specifically, pfBasicState is equivalent to the following:

/* return graphics pipeline to basic state */

pfDisable(PFEN_FOG);

pfDisable(PFEN_LIGHTING);

pfDisable(PFEN_TEXTURE);

pfDisable(PFEN_WIREFRAME);

pfDisable(PFEN_COLORTABLE);

pfDisable(PFEN_HIGHLIGHTING);

pfDisable(PFEN_LPOINTSTATE);

pfDisable(PFEN_TEXGEN);

pfShadeModel(PFSM_GOURAUD);

pfAlphaFunc(0, PFAF_OFF);

pfCullFace(PFCF_OFF);

pfTransparency(PFTR_OFF);

if (multisampling-type antialiasing is not enabled)

398

IRIS Performer 2.0 libpr C++ Reference Pages pfState(3pf)hh

pfAntialias(PFAA_OFF);

pfDecal(PFDECAL_OFF);

Use pfGeoState::makeBasic to configure every state element (value, mode, and attribute) of the pfGeo-
State to be identical to the state set with pfBasicState. The following code fragment is equivalent to
pfBasicState:

pfGeoState *gstate = new(NULL) pfGeoState();

gstate->makeBasic();

gstate->load();

Each of pfState::select, pfPushState, pfPopState, pfFlushState, and pfBasicState are display-listable
commands.

SEE ALSO
pfAlphaFunc, pfAntialias, pfColortable, pfCullFace, pfDecal, pfDelete, pfEnable, pfFog, pfGeoSet, pfGeo-
State, pfHighlight, pfLight, pfLightModel, pfLPointState, pfMaterial, pfOverride, pfShadeModel, pfTex-
Env, pfTexGen, pfTexture, pfTransparency

399

pfStats(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfStats, pfGetCurStats − Maintain statistics on IRIS Performer operations and system usage

FUNCTION SPECIFICATION
#include <Performer/pr/pfStats.h>

pfStats::pfStats();

static pfType * pfStats::getClassType(void);

uint pfStats::setClass(uint enmask, int val);

uint pfStats::getClass(uint enmask);

uint pfStats::setClassMode(int class, uint mask, int val);

uint pfStats::getClassMode(int class);

uint pfStats::open(uint enmask);

static uint pfStats::close(uint enmask);

uint pfStats::getOpen(uint enmask);

void pfStats::setAttr(int attr, float val);

float pfStats::getAttr(int attr);

static void pfStats::setHwAttr(int attr, float val);

static float pfStats::getHwAttr(int attr);

static void pfStats::enableHw(uint which);

static void pfStats::disableHw(uint which);

static uint pfStats::getHwEnable(uint which);

void pfStats::copy(pfStats *src, uint which);

void pfStats::reset(void);

void pfStats::clear(uint which);

void pfStats::count(pfGeoSet *gset);

void pfStats::accumulate(pfStats *src, uint which);

void pfStats::average(pfStats *src, uint which, int num);

int pfStats::query(uint which, void *dst, int size);

int pfStats::mQuery(uint *which, void *dst, int size);

pfStats * pfGetCurStats(void);

400

IRIS Performer 2.0 libpr C++ Reference Pages pfStats(3pf)hh

PARENT CLASS FUNCTIONS
The IRIS Performer class pfStats is derived from the parent class pfObject, so each of these member func-
tions of class pfObject are also directly usable with objects of class pfStats. This is also true for ancestor
classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfStats can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
These functions are used to collect, manipulate, print, and query statistics on state operations, geometry,
and graphics and system operations.

Since some statistics can be expensive to gather, and so might possibly influence other statistics, statistics
are divided into different classes based on the tasks that they monitor and one may select the specific
statistics classes of interest with pfStats::setClass.

Statistics classes also have different modes of collection so that expensive modes of a class can be disabled
with pfStats::setClassMode. The statistics class enables may be used for directing operations on statistics
structures, including statistics collection, specified via pfStats::open, and also printing, copying, clearing,
accumulation, and averaging. These enables and disables are specified with bitmasks. Each statistics

401

pfStats(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

class has an enable token: a PFSTATS_EN* token that can be OR-ed with other statistics enable tokens
and the result passed in to enable and disable statistics operations.

Statistics classes that require special hardware support have token names that start with PFSTATSHW_.
These tokens are used as class enable tokens in the usual statistics routines, and also to enable and disable
the hardware statistics gathering via pfStats::enableHw and pfStats::disableHw.

Statistics classes also have modes that select different elements of a class for collection. These modes are
set through pfStats::setClassMode. Each statistics class starts with a default mode setting.

The following tables provide details of the statistics class structure. The first table lists the statistics
classes, their naming tokens, and their enable tokens for forming bitmasks.

Statistics Class Tableii
Class PFSTATS_ Token PFSTATS_EN tokenii

Graphics Rendered PFSTATS_GFX PFSTATS_ENGFX
Pixel Fill PFSTATSHW_GFXPIPE_FILL PFSTATSHW_ENGFXPIPE_FILL
CPU PFSTATSHW_CPU PFSTATSHW_ENCPU
Memory PFSTATS_MEM PFSTATS_ENMEMcc

c
c
c
c
c

cc
c
c
c
c
c

This second table defines the statistics classes and their naming token and enable tokens for forming bit-
masks.

Statistics Mode Tableiii
Class PFSTATS_ Token Modesiii

Graphics PFSTATS_GFX PFSTATS_GFX_GEOM
Rendered PFSTATS_GFX_TSTRIP_LENGTHS

PFSTATS_GFX_ATTR_COUNTS
PFSTATS_GFX_STATE
PFSTATS_GFX_XFORM

Pixel Fill PFSTATSHW_GFXPIPE_FILL PFSTATSHW_GFXPIPE_FILL_DEPTHCMP
PFSTATSHW_GFXPIPE_FILL_TRANSPARENT

CPU PFSTATSHW_CPU PFSTATSHW_CPU_SYS
PFSTATSHW_CPU_INDc

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

The individual stats classes and modes are discussed in more detail in the explanation of the statistics
routines.

new(arena) allocates a pfStats from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfStats from the default memory arena (see pfGetSharedArena). Like other

402

IRIS Performer 2.0 libpr C++ Reference Pages pfStats(3pf)hh

pfObjects, pfStats cannot be created statically, automatically on the stack or in arrays. pfStats should be
deleted with pfDelete rather than the delete operator.

pfStats::getClassType returns the pfType* for the class pfStats. The pfType* returned by
pfStats::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfStats. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfStats::reset will reset that entire statistics structure to its initial state.

pfStats::setClass will set the classes specified in the bitmask, enmask, according to the val, which must be
set to one of the following:

PFSTATS_ON Enables the specified classes.

PFSTATS_OFF Disables the specified classes.

PFSTATS_DEFAULT Resets the specified classes to default values.

PFSTATS_SET Sets the entire class enable mask to enmask.

All stats collection can be set at once to on, off, or the default by using PFSTATS_ALL for the bitmask
and the appropriate value for the enable flag. For example, the following example enables all stats classes
with their current class mode settings.

stats.setClass(PFSTATS_ALL, PFSTATS_ON);

pfStats::getClass takes the statistics classes of interest specified in the bitmask, enmask. If any of the statis-
tics classes specified in enmask are enabled, then pfStats::getClass will return the bitmask of those classes,
and otherwise, will return zero. If classes of an open pfStats structure are disabled, then collection of
those classes stop immediately and those classes are considered closed.

pfStats::setClassMode takes the name of the class to set, class, a mask of the modes to set, mask, and the
value for the modes, val. The class modes offer further control over the statistics that are to be accumu-
lated for a given class. For each statistics class, a set of modes is enabled by default. Some modes of a
statistics class may be somewhat expensive, and therefore they are not enabled by default. val must be
one of:

PFSTATS_ON Enable the modes specified in mask.

PFSTATS_OFF Disable the modes specified in mask.

403

pfStats(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

PFSTATS_DEFAULT Set modes specified in mask to default values.

PFSTATS_SET Set class mode mask to the specified mask.

As a convenience, all classes may have all of their modes set to on, off, or their default values by specify-
ing a class of PFSTATS_CLASSES, and a mask of PFSTATS_ALL. These defaults may differ between
machines and may change in the future; so, code should not assume the current defaults but query the
mode values for a given class where needed. No statistics for a given mode are accumulated unless the
corresponding class has been enabled with pfStats::setClass. If modes of an open pfStats structure are
disabled, then collection of those modes stop immediately.

Graphics Statistics Modes

PFSTATS_GFX_GEOM
This counts geometry that is drawn via pfGeoSet::draw. Statistics include the number of
pfGeoSets drawn, and the numbers of pfGeoSets that have each binding of each attribute,
colors, normals, texture coordinates. The number of each type of pfGeoSet primitive is
counted, as well as the number of base primitives drawn: total triangles, lines, and points.
Statistics are also kept on the number of triangle strips drawn and the number of the total
triangles that were actually in a triangle strip. This mode is enabled by default.

PFSTATS_GFX_TSTRIP_LENGTHS
The number of triangles in strips whose length in terms of triangle count is shorter than
PFSTATS_TSTRIP_LENGTHS_MAX is recorded. Triangles in strips whose triangle count
is greater than or equal to PFSTATS_TSTRIP_LENGTHS_MAX are all counted together.
Quads are counted as strips of length two and independent triangles are counted as strips
of length one. An average triangle strip length (that uses all of the actual lengths) is also
maintained. Keeping these triangle strip statistics is expensive for the drawing operation
and so this mode is not enabled by default, but must be enabled with
pfStats::setClassMode.

PFSTATS_GFX_ATTR_COUNTS
The number of each of the different types of geometry attributes (colors, normals, and tex-
ture coordinates) that are drawn is counted. Keeping attribute statistics is expensive for the
drawing operation and so this mode is not enabled by default, but must be enabled with
pfStats::setClassMode.

PFSTATS_GFX_STATE
This mode enables the counting of calls to state changes, as well as the number of actual
state changes themselves. Such state changes include the immediate mode routines such as
pfAntialias, and the application of the state structures, such as pfTexture::apply. Also
counted is the number of pfGeoStates encountered and the number of state stack opera-
tions, such as pfGeoState::load, pfGeoState::apply, pfPushState, and pfPopState. This
mode is enabled by default.

404

IRIS Performer 2.0 libpr C++ Reference Pages pfStats(3pf)hh

PFSTATS_GFX_XFORM
This mode enables the counting of calls to transformations, such as pfTranslate, pfScale,
and pfRotate, and graphics matrix stack operations, such as pfLoadMatrix, etc. the number
of actual state changes themselves, as well as the number of pfGeoStates encountered. This
mode is enabled by default.

Graphics Pipe Fill Statistics

These modes enable the accumulation of fill depth-complexity statistics and require the corresponding
hardware statistics to be enabled:

pfStats::enableHw(PFSTATSHW_GFXPIPE_FILL_DEPTHCMP);

PFSTATSHW_GFXPIPE_FILL_DCPAINT
This mode causes pfStats::close to paint the screen according to the number of times each
pixel is touched. This mode is enabled by default.

PFSTATSHW_GFXPIPE_FILL_DCCOUNT
This mode causes pfStats::close to read back the framebuffer for the calculation of fill
depth-complexity statistics. This mode is enabled by default.

PFSTATSHW_GFXPIPE_FILL_DEPTHCMP
By default, only actual pixel writes are counted with depth complexity stats. This mode
enables counting of Z compares as well. This mode is not enabled by default.

PFSTATSHW_GFXPIPE_FILL_TRANSP
This mode enables counting of fully transparent pixels. This mode is not enabled by
default.

CPU Statistics

The CPU statistics keep track of system usage and requires that the corresponding hardware statistics be
enabled:

pfStats::enableHw(PFSTATSHW_ENCPU);

The percentage of time CPUs spend idle, busy, in user code, and waiting on the Graphics Pipeline, or on
the swapping of memory is calculated. Counted is the number of context switches (process and graph-
ics), the number of system calls, the number of times the graphics FIFO is found to be full, the number of
times a CPU went to sleep waiting on a full graphics FIFO, the number of graphics pipeline IOCTLs
issued (by the system), and the number of swapbuffers seen. All of these statistics are computed over an
elapsed period of time, and using an elapsed interval of at least one second is recommended.

405

pfStats(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

PFSTATSHW_CPU_SYS
This mode enables computation of the above CPU statistics for the entire system. This
includes statistics on system usage, cpu-graphics interactions, and memory. CPU usage
statistics are summed over all CPUs. This mode is enabled by default.

PFSTATSHW_CPU_IND
This mode enables tracking of CPU statistics for each individual CPU and is much more
expensive than using just the summed statistics. It is not enabled by default.

pfStats::getClassMode takes the name of the class to query, class. The return value is the mode of class.

pfStats::open takes a bitmask specifying the statistics classes that are to be opened for collection in
enmask. This statistics structure will become the one and only statistics structure open for collection. The
return value will be the bitmask for all currently open statistics classes. If another pfStats structure is
already open, then this call to pfStats::open will be ignored and the return value will be 0. When statis-
tics classes that use statistics hardware are open for collection, pfStats::open will access that hardware for
initialization. Therefore, for graphics pipe statistics, it is imperative that the statistics hardware only be
enabled for the drawing process. Furthermore, only one processes should be using statistics hardware at
a time since it is a shared global resource. Finally, for statistics that are actually accumulated in statistics
hardware, it is best to let some time elapse before the statistics are collected (in pfStats::close). Refer the
examples at the end of this manual page.

pfStats::close takes a bitmask which specifying the classes whose collected statistics are to be accumulated
into the current pfStats structure. Further collection of these statistics are then disabled and they will
have to be re-opened with pfStats::open for further collection. A pfStats structure is considered to be
open until all opened statistics classes have been closed with pfStats::close. The return value for
pfStats::close is the bitmask of the remaining open classes. If stats has no open classes, a value of 0 will be
returned. When statistics classes that use statistics hardware are open for collection, pfStats::close will
access that hardware to collect the specified statistics. Therefore, for graphics pipe statistics, it is impera-
tive that the statistics hardware only be enabled for the drawing process. Furthermore, only one
processes should be using statistics hardware at a time since it is a shared global resource.

pfStats::getOpen takes a bitmask enmask specifying the statistics classes that are being queried. If any of
the statistics classes specified in enmask are open for collection, then the bitmask of those statistics classes
is returned, and otherwise, zero.

pfGetCurStats returns the currently open statistics structure, or NULL if there is no statistics structure
open for accumulation.

pfStats::setAttr takes the name of the attribute to set, attr, and the attribute value, val. Currently, there
are no pfStats attributes. pfStats::getAttr takes a pointer to a stats structure, stats, and the name of the
attribute to query, attr. The return value is that of attribute attr.

406

IRIS Performer 2.0 libpr C++ Reference Pages pfStats(3pf)hh

pfStats::enableHw takes a bitmask which specifying the hardware statistics that should be enabled. These
bitmasks are the statistics class enable bitmasks that have start with PFSTATSHW_*. Statistics hardware
must be enabled for the corresponding classes of statistics to be accumulated. Having statistics hardware
enabled will have some cost to performance; however, in most cases, it pays to leave this hardware
enabled if corresponding statistics classes are being frequently enabled and disabled. When statistics
classes that use statistics hardware are open for collection, pfStats::open and pfStats::close will access
that hardware. For graphics pipe statistics, it is therefore imperative that the statistics hardware only be
enabled for a process that is connected to the graphics pipeline. Furthermore, only one processes should
be using statistics hardware at a time since it is a shared global resource.

Graphics Statistics Hardware Enables

PFSTATSHW_ENGFXPIPE_FILL
Enables hardware to support tracking of depth complexity statistics. When this mode is
enabled, the framebuffer keeps track of the number of times each pixel is touched. This
may require a framebuffer reconfiguration which can be quite expensive, and which may
not be possible in GLX windows.

PFSTATSHW_ENCPU
This mode enable gathering of CPU statistics by the system. This mode should only be
enabled by one process at a time.

pfStats::disableHw takes a bitmask which specifying the hardware statistics that should be disabled.

pfStats::getHwEnable takes a bitmask which specifying the hardware statistics that are being queried. If
any of the hardware statistics classes specified in which have their corresponding hardware enabled, then
the bitmask of those statistics classes is returned, and otherwise, zero is returned.

pfStats::setHwAttr takes the name of the attribute to set, attr, and the attribute value, val. There is
currently one stats hardware attribute: PFSTATSHW_FILL_DCBITS. Its value must be and integer
value in the range of 1 to 4. The default value is 3. This attribute sets the maximum number of stencil bits
used for tracking fill depth complexity. See the GL manual page for stensize(3g) for more information on
stencil bitplanes.

pfStats::getHwAttr Returns the value of attribute attr.

Collected statistics can be printed to stderr or a file with pfMemory::print, and can be queried at run-time
with pfStats::query for a single-value query, and pfStats::mQuery for getting back a collection of statis-
tics.

pfStats::query takes a query token in which, and a destination buffer dst. The size of the expected return
data is specified by size and if non-zero, will prevent pfStats::query from writing beyond a buffer that is
too small. The return value is the number of bytes written to the destination buffer. There are tokens for
getting back all of the statistics, entire sub-structures, and individual values. The exposed query structure

407

pfStats(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

types and query tokens are all defined in <Performer/pr/pfStats.h>. Every structure and field is com-
mented with its corresponding query token. For example, the exposed structure type pfStatsValues can
be used to hold the entire contents of a pfStats structure and has corresponding query token
PFSTATSVAL_ALL.

typedef struct pfStatsValues

{ /* to get back all stats: PFSTATSVAL_ALL */

/* PFSTATS_GFX class: PFSTATSVAL_GFX */

pfStatsValGeom geom; /* PFSTATSVAL_GFX_GEOM */

pfStatsValModes modeChanges; /* PFSTATSVAL_GFX_MODECHANGES */

pfStatsValModes modeCalls; /* PFSTATSVAL_GFX_MODECALLS */

pfStatsValState state; /* PFSTATSVAL_GFX_STATE */

pfStatsValXforms xform; /* PFSTATSVAL_GFX_XFORM */

/* PFSTATSHW_GFXPIPE_FILL class: PFSTATSVAL_GFXPIPE_FILL */

pfStatsValFill fill; /* PFSTATSVAL_GFXPIPE_FILL */

/* the PFSTATSHW_CPU class: PFSTATSVAL_CPU */

pfStatsValCPU cpu; /* PFSTATSVAL_CPU */

} pfStatsValues;

The following example will return all of the contents of a pfStats structure into the contents of a structure
of the exposed type pfStatsValues.

pfStats *stats;

pfStatsValues val;

stats = new pfStats;

stats->query(PFSTATSVAL_ALL, (float *) val);

pfStats::mQuery takes a pointer to the start of an array of query tokens in which, and a destination buffer
dst. The size of the expected return data is specified by size and if non-zero, will prevent
pfStats::mQuery from writing beyond a buffer that is too small. The return value is the number of bytes
written to the destination buffer.

pfStats::copy takes a pointer to a pfStats, src, and a bitmask which specifying the statistics that are to be
copied from src. This function is provided to enable more control over the default pfObject function
pfMemory::copy. Note that only statistics data is copied and not any enable/disable settings or modes.

pfStats::clear takes a bitmask which specifying the statistics that are to be cleared to zeroes.

pfStats::count takes a pointer to a pfGeoSet, gset, whose geometry statistics are to be accumulated into
stats.

408

IRIS Performer 2.0 libpr C++ Reference Pages pfStats(3pf)hh

pfStats::accumulate takes a pointer to a statistics structure, src, and a bitmask which specifying the statis-
tics that are to be accumulated from src.

pfStats::average takes a pointer to a statistics structure, src, and a bitmask which specifying the statistics
classes that are to be averaged from src, and num, the number of elements over which the specified statis-
tics in src are to be averaged.

For a class of statistics to be collected, the following must be true:

1. A statistics structure must be created.

2. The corresponding statistics class must be enabled with pfStats::setClass. No statistics
classes are enabled by default.

3. The corresponding statistics class mode must be enabled with pfStats::setClassMode.
However, each statistics class has a popular set of statistics modes enabled by default.

4. Any relevant hardware must be enabled pfStats::enableHw.

5. The statistics class must be opened for collection with pfStats::open.

EXAMPLES
This example creates a statistics structure and enabling the graphics statistics class with the triangle-strip
statistics enabled.

pfStats *stats = NULL;

stats = new pfStats;

stats->setClass(PFSTATS_ENGFX, PFSTATS_ON);

stats->setClassMode(PFSTATS_GFX, PFSTATS_GFX_TSTRIP_LENGTHS, PFSTATS_ON);

This is an example of collecting CPU statistics over an elapsed period of time.

pfStats *stats = NULL;

double lastTime = 0;

stats = new pfStats;

/* enable the CPU stats class - using the default summed CPU statistics */

stats->setClass(PFSTATSHW, PFSTATS_ON);

/* enable CPU stats hardware */

pfStats::enableHw(PFSTATSHW_ENCPU);

:

/* snap CPU stats every 2 seconds */

if (pfGetTime() - lastTime > 2.0)

{

409

pfStats(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

if (stats->getOpen(PFSTATSHW_ENCPU))

{

/*

* final snap of CPU stats is done here and difference

* between this and the initial snap is calculated.

*/

stats->close(PFSTATSHW_ENCPU);

}

else

{

/* initial snap of CPU stats is done here */

stats->open(PFSTATSHW_ENCPU);

}

}

This example shows the enabling and disabling of fill statistics.

pfStats *stats = NULL;

stats = new pfStats;

/* enable fill statistics collection */

stats->setClass(PFSTATSHW_ENGFXPIPE_FILL, PFSTATS_ON);

/* enable fill stats hardware - put framebuffer in correct configuration */

pfStats::enableHw(PFSTATSHW_ENGFXPIPE_FILL);

/* open fill statistics collection and initialize hardware */

stats->open(PFSTATSHW_ENGFXPIPE_FILL);

/* draw geometry */

:

/*

* paint window by number of times each pixel was touched in the

* previous drawing and read back the framebuffer and

* examine the counts

*/

stats->close(PFSTATSHW_ENGFXPIPE_FILL);

410

IRIS Performer 2.0 libpr C++ Reference Pages pfStats(3pf)hh

NOTES
Fill stats are currently calculated by using stencil tests and therefore require stencil bitplanes to be allo-
cated. Furthermore, the PFSTATSHW_GFXPIPE_FILL_TRANSP mode currently disables modes that
reject fully transparent pixels, such as pfAlphaFunc, which will alter what pixels get written into the
zbuffer and therefore should be used in conjunction with PFSTATSHW_GFXPIPE_FILL_DEPTHCMP.

The pfStats routines, structures, and constants are defined in the <Performer/prstats.h> header file.

The Indy graphics platforms do not offer stencil under IRIS GL operation. Allocation of stencil bits may
affect other attributes of your framebuffer configuration, such as depth buffer resolution and number of
samples for multisample.

BUGS
The checking of size in pfStats::query and pfStats::mQuery is not yet implemented.

SEE ALSO
pfDelete, pfPrint

411

pfString(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfString − String facility using pfFont

FUNCTION SPECIFICATION
#include <Performer/pr/pfString.h>

pfString::pfString();

pfType* pfString::getClassType(void);

void pfString::setMat(const pfMatrix *mat);

void pfString::getMat(pfMatrix &at);

void pfString::setMode(int mode, int val);

int pfString::getMode(int mode);

void pfString::setFont(pfFont* font);

pfFont* pfString::getFont(void);

void pfString::setString(const char* cstr);

const char* pfString::getString(void);

void pfString::setBBox(pfBox *newBBox);

const pfBox* pfString::getBBox(void);

void pfString::setSpacingScale(float horiz, float vert, float depth);

void pfString::getSpacingScale(float *horiz, float *vert, float *depth);

void pfString::setColor(float r, float g, float b, float a);

void pfString::getColor(float *r, float *g, float *b, float *a);

const pfGeoSet* pfString::getCharGSet(void);

const pfVec3* pfString::getCharPos(void);

int pfString::getStringLength(void);

void pfString::setGState(pfGeoState* gstate);

pfGeoState* pfString::getGState(void);

void pfString::draw(void);

void pfString::flatten(void);

void pfString::setIsectMask(uint mask, int setMode, int bitOp);

uint pfString::getIsectMask(void);

412

IRIS Performer 2.0 libpr C++ Reference Pages pfString(3pf)hh

int pfString::isect(pfSegSet *segSet, pfHit **hits[]);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfString is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfString. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfString can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

PARAMETERS
string identifies a pointer to a pfString

font identifies a pointer to a pfFont

DESCRIPTION
new(arena) allocates a pfString from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfString from the default memory arena (see pfGetSharedArena). Like other
pfObjects, pfStrings cannot be created statically, automatically on the stack or in arrays. pfStrings should
be deleted with pfDelete rather than the delete operator.

pfString::getClassType returns the pfType* for the class pfString. The pfType* returned by

413

pfString(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfString::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfString. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfString::setMat sets the transformation matrix for the pfString to mat or to the identity matrix if mat is
NULL. Call pfString::getMat to retrieve the matrix.

Use pfString::setMode and pfString::getMode to set and get modes of the pfString. Use the
PFSTR_JUSTIFY mode to set the justification of the string to one of the following:

PFSTR_FIRST or PFSTR_LEFT
Set the string to be left-justified; the first character will be immediately to the right of the
origin.

PFSTR_MIDDLE or PFSTR_CENTER
Set the string to be center-justified; the string will be centered at the origin.

PFSTR_LAST or PFSTR_RIGHT
Set the string to be right-justified; the last character will be immediately to the left of the ori-
gin.

Use the PFSTR_CHAR_SIZE to specify the size, in bytes, of each character in the string. val is one of
PFSTR_CHAR, PFSTR_SHORT, PFSTR_INT indicating that character sizes are sizeof(char),
sizeof(short), and sizeof(int) respectively.

Call pfString::getBBox to retrieve the bounding box around the pfString as if it were drawn using the
assigned justification, drawing style, font, and character string. Call pfString::setBBox to set this bound-
ing box explicitly.

pfString::setSpacingScale and pfString::getSpacingScale set and get the spacing scales of the pfString.
Normally after rendering a character, the rendering position is translated in x, y, and z by the character’s
spacing which is supplied by the pfFont associated with the pfString. This spacing is scaled by the sup-
plied scale factors enabling greater/lesser distances between characters. Also, when the
PFSTR_AUTO_SPACING mode is enabled, the spacing scales can be used to change the direction of the
rendered string, for example, spacing scales of (0, -1, 0) will render the string vertically, suitable for label-
ing the vertical axis of a 2D graph.

of the steps used when drawing each succeeding character from the pfString. The default spacing scales
are all 1.0 An interesting example is horizontal scale 0 and vertical scale -1, in which case the string is
drawn downward like a neon sign outside a downtown bar and grill.

pfString::setGState and pfString::getGState set and get the pfGeoState attached to the pfString. If no

414

IRIS Performer 2.0 libpr C++ Reference Pages pfString(3pf)hh

pfGeoState is attached, then the pfString will be drawn with whatever graphics state is active at draw
time.

Call pfString::setFont and pfString::getFont to set or get the pfFont used by the pfString. Call
pfString::setString and pfString::getString to set or get the character string for the pfString.
pfString::getStringLength will return the length of a pfString’s current character string.
pfString::setColor and pfString::getColor get and set string’s color.

pfString::getCharGSet returns a pointer to the GeoSet currently being used to draw the character at place
index in the pfString’s string. pfString::getCharPos likewise returns a pointer to a pfVec3 that specifies
the exact location relative to the current transform where the character in position index in the string array
will be drawn. Both of the above functions will return NULL if index is greater than or equal to the
pfString’s length - which may be obtained through pfString::getStringLength.

Call pfString::draw to draw the string, including applying the pfGeoState if available, the color, and the
texture if this is a PFSTR_TEXTURED string.

A pfString is normally composed of a pfGeoSet per character in the string. Call pfString::flatten to
flatten the character spacings into the individual GeoSets. A flattened primitive is faster, but flattening
has overhead which should be avoided if the string will be changing quickly, e.g. in every frame.
pfString::flatten Must be called every time you change the contents of the string geometry; e.g. after cal-
ling pfString::setString.

pfString::setIsectMask enables intersections and sets the intersection mask for the pfString. mask is a 32-
bit mask used to determine whether a particular pfString should be examined during a particular inter-
section request. A non-zero bit-wise AND of the pfString’s mask with the mask of the intersection
request (pfString::isect) indicates that the pfString should be tested. The default mask is all 1’s, i.e.
0xffffffff.

pfString::getIsectMask returns the intersection mask of the specified pfString.

pfString::isect tests for intersection between the pfString the pfString and the group of line segments
specified in string. This is done by testing against each of the pfGeoSets in the pfString. The resulting
intersections (if any) are returned in hits. The return value of pfString::isect is the number of segments
that intersected the pfString. See pfGSetIsectSegs for intersection information returned from tests
against the geometric primitives inside pfGeoSets.

NOTES
See pfText for sample code demonstrating pfString.

415

pfString(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

SEE ALSO
pfFont, pfDelete, pfGeoSet, pfText

416

IRIS Performer 2.0 libpr C++ Reference Pages pfTexEnv(3pf)hh

NAME
pfTexEnv, pfGetCurTEnv − Create, modify and query texture environment

FUNCTION SPECIFICATION
#include <Performer/pr/pfTexture.h>

pfTexEnv::pfTexEnv();

pfType * pfTexEnv::getClassType(void);

void pfTexEnv::setMode(int mode);

int pfTexEnv::getMode(void);

void pfTexEnv::setComponent(int comp);

int pfTexEnv::getComponent(void);

void pfTexEnv::setBlendColor(float r, float g, float b, float a);

void pfTexEnv::getBlendColor(float* r, float* g, float* b, float* a);

void pfTexEnv::apply(void);

pfTexEnv * pfGetCurTEnv(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfTexEnv is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfTexEnv. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfTexEnv can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);

417

pfTexEnv(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
new(arena) allocates a pfTexEnv from the specified memory arena, or from the heap if arena is NULL.
new allocates a pfTexEnv from the default memory arena (see pfGetSharedArena). Like other pfObjects,
pfTexEnvs cannot be created statically, automatically on the stack or in arrays. pfTexEnvs should be
deleted with pfDelete rather than the delete operator. See the IRIS GL tevdef or OpenGL glTexEnv(3g)
reference pages for more details on texture environments.

pfTexEnv::getClassType returns the pfType* for the class pfTexEnv. The pfType* returned by
pfTexEnv::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfTexEnv. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfTexEnv::setMode sets the texture environment mode. mode is a symbolic token that specifies a texture
environment mode and is one of the following:

PFTE_MODULATE
PFTE_BLEND
PFTE_DECAL
PFTE_ALPHA

The default mode is PFTE_MODULATE. pfTexEnv::getMode returns the mode of the pfTexEnv.

npfTexEnv::setBlendColor sets the texture environment blend color. This color is used only when the
texture environment mode is PFTE_BLEND. See the IRIS GL tevdef(3g) or OpenGL glTexEnv(3g) refer-
ence pages for more details on texture environment blending. The default IRIS Performer texture
environment blend color is [1,1,1,1]. This matches the default blend color for IRIS GL. However, it is dif-
ferent from the default OpenGL blend color of [0,0,0,0]. This was done to maintain compatibility with
previous IRIS Performer releases. pfTexEnv::getBlendColor copies the texture environment blend color
into r, g, b, a.

The comp argument of pfTexEnv::setComponent selects one or more components of the currently active

418

IRIS Performer 2.0 libpr C++ Reference Pages pfTexEnv(3pf)hh

pfTexture and treats the selection as a smaller 1 or 2 component texture. Thus you can use a 16-bit per
texel RGBA texture as 4 independent 4-bit intensity textures. comp is one of:

PFTE_COMP_OFF
disables component select.

PFTE_COMP_I_GETS_R
Uses the red component of a 4 component texture as a 1 component texture.

PFTE_COMP_I_GETS_G
Uses the green component of a 4 component texture as a 1 component texture.

PFTE_COMP_I_GETS_B
Uses the blue component of a 4 component texture as a 1 component texture.

PFTE_COMP_I_GETS_A
Uses the alpha component of a 4 or 2 component texture as a 1 component texture.

PFTE_COMP_IA_GETS_RG
Uses the red and green components from a 4 component texture as a 2 component texture.

PFTE_COMP_IA_GETS_BA
Uses the blue and alpha components from a 4 component texture as a 2 component texture.

PFTE_COMP_I_GETS_I
Uses the intensity component from a 2 component texture as a 1 component texture.

The selected component or components obey the texture environment mode set by pfTexEnv::setMode.
See the tevdef(3g) man page for more details. pfTexEnv::getComponent returns the component select
value of the pfTexEnv.

pfTexEnv::apply makes the pfTexEnv the current texture environment. When texturing is enabled (see
below), this texture environment will be applied to all geometry drawn after pfTexEnv::apply is called.
Only one pfTexEnv may be active at a time although many may be defined. Modifications to the pfTex-
Env, such as changing the blend color, will not have effect until pfTexEnv::apply is called.

For geometry to be textured, the following must be true:

1. Texturing must be enabled: pfEnable(PFEN_TEXTURE)

2. A pfTexEnv must be applied: pfTexEnv::apply

3. A pfTexture must be applied: pfTexture::apply

4. Geometry must have texture coordinates: pfGeoSet::setAttr, PFGS_TEXCOORD2

The texture environment state element is identified by the PFSTATE_TEXENV token. Use this token
with pfGeoState::setAttr to set the texture environment of a pfGeoState and with pfOverride to override
subsequent texture environment changes.

419

pfTexEnv(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

Example 1:

/* Set up blue ’blend’ texture environment */

tev = new pfTexEnv;

tev->setMode(PFTE_BLEND);

tev->setBlendColor(0.0f, 0.0f, 1.0f);

/* Set up textured/blended pfGeoState */

gstate->setMode(PFSTATE_ENTEXTURE, PF_ON);

gstate->setAttr(PFSTATE_TEXENV, tev);

gstate->setAttr(PFSTATE_TEXTURE, tex);

/* Attach gstate to gset */

gset->setGState(gstate);

/* Set texture coordinate array. ’gset’ is non-indexed */

gset->setAttr(PFGS_TEXCOORD2, PFGS_PER_VERTEX, tcoords, NULL);

/* Draw textured gset */

gset->draw();

Example 2:

tev->apply();

/* Override so that all textured geometry uses ’tev’ */

pfOverride(PFSTATE_TEXENV, PF_ON);

pfTexEnv::apply is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfTexEnv::apply will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDispList::draw.

pfGetCurTEnv returns the currently active pfTexEnv or NULL if there is no active pfTexEnv.

NOTES
pfTexEnv::setComponent and PFTE_ALPHA are supported only on RealityEngine graphics systems.

SEE ALSO
pfDelete, pfDispList, pfEnable, pfGeoState, pfObject, pfState, pfTexture, tevbind, tevdef, texbind, texdef,
glTexEnv, glTexImage2D.

420

IRIS Performer 2.0 libpr C++ Reference Pages pfTexGen(3pf)hh

NAME
pfTexGen, pfGetCurTGen − Create, modify and query texture coordinate generator

FUNCTION SPECIFICATION
#include <Performer/pr/pfTexture.h>

pfTexGen::pfTexGen();

pfType * pfTexGen::getClassType(void);

void pfTexGen::setMode(int texCoord, int mode);

int pfTexGen::getMode(int texCoord);

void pfTexGen::setPlane(int texCoord, float x, float y, float z, float d);

void pfTexGen::getPlane(int texCoord, float* x, float* y, float* z, float* d);

void pfTexGen::apply(void);

pfTexGen* pfGetCurTGen(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfTexGen is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfTexGen. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfTexGen can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();

421

pfTexGen(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

PARAMETERS
texCoord identifies a texture coordinate and is one of:

PF_S, PF_T, PF_R, PF_Q

DESCRIPTION
The pfTexGen capability is used to automatically generate texture coordinates for geometry, typically for
special effects like projected texture, reflection mapping, and for light points (pfLPointState). new(arena)
allocates a pfTexGen from the specified memory arena, or from the heap if arena is NULL. new allocates
a pfTexGen from the default memory arena (see pfGetSharedArena). Like other pfObjects, pfTexGens
cannot be created statically, automatically on the stack or in arrays. pfTexGens should be deleted with
pfDelete rather than the delete operator.

pfTexGen::getClassType returns the pfType* for the class pfTexGen. The pfType* returned by
pfTexGen::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfTexGen. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfTexGen::setMode sets the mode of the pfTexGen corresponding to texture coordinate texCoord to mode.
mode must be one of the following:

PFTG_OFF
Disables texture coordinate generation

PFTG_OBJECT_LINEAR
Generate texture coordinate as distance from plane in object space.

PFTG_EYE_LINEAR
Generate texture coordinate as distance from plane in eye space. The plane is
transformed by the inverse of the ModelView matrix when the pfTexGen is applied.

PFTG_EYE_LINEAR_IDENT
Generate texture coordinate as distance from plane in eye space. The plane is not
transformed by the inverse of the ModelView matrix.

422

IRIS Performer 2.0 libpr C++ Reference Pages pfTexGen(3pf)hh

PFTG_SPHERE_MAP
Generate texture coordinate based on the view vector reflected about the vertex normal in
eye space.

See the IRIS GL texgen(3g) or OpenGL glTexGen(3g) man pages for the specific mathematics of the tex-
ture coordinate generation modes.

The default texture generation mode for all texture coordinates is PFTG_OFF. pfTexGen::getMode
returns the mode of the pfTexGen.

pfTexGen::setPlane sets the plane equation used for generating coordinates for texture coordinate tex-
Coord to aX + bY + cZ + d = 0. This plane equation is used when the pfTexGen’s mode is
PFTG_EYE_LINEAR, PFTG_EYE_LINEAR_IDENT, or PFTG_OBJECT_LINEAR but is ignored when
its mode is PFTG_SPHERE_MAP. The default plane equations are:

PF_S: (1, 0, 0, 0)

PF_T: (0, 1, 0, 0)

PF_R: (0, 0, 1, 0)

PF_Q: (0, 0, 0, 1)

pfTexGen::getPlane will return the plane equation parameters for texture coordinate texCoord of the
pfTexGen in x, y, z, d.

pfTexGen::apply configures the graphics hardware with the texture coordinate generating parameters
encapsulated by the pfTexGen. Only the most recently applied pfTexGen is active although any number
of pfTexGen definitions may be created. Texture coordinate generation must be enabled (pfEnable(-
PFEN_TEXGEN)) for the pfTexGen to have effect and modifications made to the pfTexGen do not have
effect until the next time pfTexGen::apply is called. pfGetCurTGen returns the currently active pfTex-
Gen.

The pfTexGen state element is identified by the PFSTATE_TEXGEN token. Use this token with
pfGeoState::setAttr to set the pfTexGen attribute of a pfGeoState and with pfOverride to override subse-
quent pfTexGen changes.:

Example 1:

/* Set up pfGeoState */

gstate->setMode(PFSTATE_ENTEXGEN, PF_ON);

gstate->setAttr(PFSTATE_TEXGEN, new pfTexGen);

/* Attach gstate to gset */

gset->setGState(gstate);

423

pfTexGen(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

/* Draw pfGeoSet whose texture coordinates are generated */

gset->draw();

Example 2:

/* Override so that all geometry is affected by ’tgen’ */

pfEnable(PFEN_TEXGEN);

tgen->apply();

pfOverride(PFSTATE_TEXGEN | PFSTATE_ENTEXGEN, PF_ON);

pfTexGen::apply is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfTexGen::apply will not have immediate effect but will be captured by the pfDispList and will only
have effect when that pfDispList is later drawn with pfDispList::draw.

SEE ALSO
pfDelete, pfDispList, pfGeoState, pfLPointState, pfMemory, pfObject, pfOverride, texgen, glTexGen.

424

IRIS Performer 2.0 libpr C++ Reference Pages pfTexture(3pf)hh

NAME
pfTexture, pfGetCurTex − Create, modify and query texture

FUNCTION SPECIFICATION
#include <Performer/pr/pfTexture.h>

pfTexture::pfTexture();

static pfType * pfTexture::getClassType(void);

void pfTexture::setName(const char *name);

const char * pfTexture::getName(void);

void pfTexture::setImage(uint* image, int comp, int ns, int nt, int nr);

void pfTexture::getImage(uint **image, int *comp, int *ns, int *nt, int *nr);

void pfTexture::setFormat(int format, int type);

int pfTexture::getFormat(int format);

void pfTexture::setFilter(int filt, int type);

int pfTexture::getFilter(int filt);

void pfTexture::setRepeat(int wrap, int type);

int pfTexture::getRepeat(int wrap);

void pfTexture::setBorderColor(pfVec4 clr);

void pfTexture::getBorderColor(pfVec4 *clr);

void pfTexture::setBorderType(int type);

int pfTexture::getBorderType(void);

void pfTexture::setSpline(int type, pfVec2 *pts, float clamp);

void pfTexture::getSpline(int type, pfVec2 *pts, float *clamp);

void pfTexture::setDetail(int level, pfTexture *detail);

void pfTexture::getDetail(int *level, pfTexture **detail);

pfTexture * pfTexture::getDetailTex(void);

void pfTexture::setDetailTexTile(int j, int k, int m, int n, int scram);

void pfTexture::getDetailTexTile(int *j, int *k, int *m, int *n, int *scram);

void pfTexture::setList(pfList *list);

pfList * pfTexture::getList(void);

425

pfTexture(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

void pfTexture::setFrame(float frame);

float pfTexture::getFrame(void);

void pfTexture::setLoadMode(int mode, int val);

int pfTexture::getLoadMode(int mode);

void pfTexture::setLevel(int level, pfTexture *ltex);

pfTexture * pfTexture::getLevel(int level);

void pfTexture::setLoadImage(uint* image);

uint * pfTexture::getLoadImage(void);

void pfTexture::setLoadOrigin(int which, int xo, int yo);

void pfTexture::getLoadOrigin(int which, int *xo, int *yo);

void pfTexture::setLoadSize(int xs, int ys);

void pfTexture::getLoadSize(int *xs, int *ys);

void pfTexture::apply(void);

void pfTexture::format(void);

void pfTexture::load(void);

void pfTexture::loadLevel(int level);

void pfTexture::subload(void);

void pfTexture::subloadLevel(int level);

int pfTexture::loadFile(char *fname);

void pfTexture::freeImage(void);

void pfTexture::idle(void);

int pfTexture::isLoaded(void);

int pfTexture::isFormatted(void);

pfTexture* pfGetCurTex(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfTexture is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfTexture. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);

426

IRIS Performer 2.0 libpr C++ Reference Pages pfTexture(3pf)hh

void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfTexture can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

PARAMETERS
tex identifies a pfTexture.

DESCRIPTION
new(arena) allocates a pfTexture from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfTexture from the default memory arena (see pfGetSharedArena). Like other
pfObjects, pfTextures cannot be created statically, automatically on the stack or in arrays. pfTextures
should be deleted with pfDelete rather than the delete operator.

pfTexture::getClassType returns the pfType* for the class pfTexture. The pfType* returned by
pfTexture::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfTexture. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfTexture::loadFile opens and loads the IRIS image file specified by file, using the global search paths set
up by pfFilePath and the environment variable PFPATH to find file. The loaded image is then formatted
and used as the image for the pfTexture. Image memory is allocated out of the malloc arena in which the

427

pfTexture(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfTexture was created. A return of 0 indicates failure, 1 success.

pfTexture::loadFile also sets the name of the pfTexture to the pathname of the file that was loaded (see
pfTexture::setName).

pfTexture::setImage sets the image used by the pfTexture. image is an array of 4-byte words containing
the texel data. pfTexture::setImage only copies the pointer to image and does not make a separate copy of
the texture data. image should be a pointer returned from pfMalloc so the image may be properly refer-
ence counted (see pfMalloc and pfObject).

The texture image is loaded from left to right, bottom to top. Texels must be aligned on long word boun-
daries, so rows must be byte-padded to the end of each row to get the proper alignment. comp is the
number of 8-bit components per image pixel. 1, 2, 3, and 4 component textures are supported. ns, nt, nr
are the number of texels in the s, t, and r dimensions of image. See the IRIS GL texdef(3g) or the OpenGL
glTexImage(3g) man pages for a more detailed description of texture formats. Note that the ordering of
color components in the image array is reversed between IRIS GL and OpenGL. pfTexture::getImage
returns the texture image parameters of the pfTexture.

pfTexture::freeImage frees the texture image memory associated with the pfTexture after the next
pfTexture::apply is called if the image’s reference count is 0. The texture image memory should be allo-
cated by pfMalloc and may be shared between multiple pfTextures. However, one should take care with
pfTexture::freeImage if the pfTexture is to be used in multiple IRIS GL or OpenGL windows. If the
image is freed on the first pfTexture::apply then it will not be around when the pfTexture is applied in a
second window. In this case the image should be freed only when the pfTexture has been applied in all
windows.

pfTexture::setName assigns the character string name to the pfTexture. Names are useful for sharing tex-
tures in order to optimize texture memory usage. A pfTexture’s name is also set by pfTexture::loadFile
which sets the name to the pathname of the file that was loaded. pfTexture::getName returns the name of
the pfTexture.

pfTexture::setFormat specifies how the texture image memory associated with the pfTexture is formatted
by pfTexture::format. format is a symbolic token specifying which format to set and is
PFTEX_INTERNAL_FORMAT, PFTEX_EXTERNAL_FORMAT, or PFTEX_SUBLOAD_FORMAT. type
is a symbolic token specifying the format type appropriate to format. The tokens for
PFTEX_EXTERNAL_FORMAT describe how the data in the image array is packed and may be one of
PFTEX_PACK_8 for 8 bit components in packed bytes (the default) or PFTEX_PACK_16 for images
presented as 16bit components. The tokens for PFTEX_INTERNAL_FORMAT include the component
names use in the format and number of bits per component in the format. Internal formats with fewer
bits per texel can have faster performance. The internal formats, and the number of bits per texel for each,
are:

428

IRIS Performer 2.0 libpr C++ Reference Pages pfTexture(3pf)hh

PFTEX_IA_8 16-bit texels

PFTEX_RGB_5 16-bit texels

PFTEX_RGB_4 16-bit texels

PFTEX_RGBA_4 16-bit texels

PFTEX_I_12A_4 16-bit texels

PFTEX_IA_12 24-bit texels

PFTEX_RGBA_8 32-bit texels

PFTEX_RGB_12 48-bit texels

PFTEX_RGBA_12 48-bit texels

PFTEX_I_16 16-bit texels
There are additional boolean format options:

PFTEX_DETAIL_TEXTURE
specifies that the texture is to be used as a detail texture. Once a texture has been
specified to be a detail texture, it can no longer be used as a base texture. Calling
pfTexture::apply on a detail texture will bind the texture to the detail target, not the
base target.

PFTEX_SUBLOAD_FORMAT
is a boolean mode that specifies that texture is to be able to be loaded in pieces, if sup-
ported on the current machine. type should be either PF_ON or PF_OFF. If an image
has been assigned to the pfTexture, it will be automatically downloaded upon format-
ting. This type of texture may be formatted with a NULL image, in which case, no
image is automatically downloaded upon formatting. If the texture is swapped out of
hardware texture memory, the image will not be automatically restored upon pfAp-
plyTex unless the PFTEX_BASE_AUTO_SUBLOAD mode has been specified for the
pfTexture::setLoadMode. and can always be explicitly reloaded with
pfTexture::load. This format also specifies that all loads of the texture will use the ori-
gin, size and image specified by pfTexture::setLoadOrigin, pfTexture::setLoadSize,
and pfTexture::setLoadImage. If the current graphics hardware configuration cannot
support texture subloading, this mode will be ignored. In IRIS GL, this requires a
non-MIPmapped texture and support for subtexload. See the subtexload(3g) IRIS GL
man page for more information. In OpenGL, this requires the EXT_subtexture exten-
sion; see the EXT_subtexture section of the OpenGL glIntro(3g) reference page for
more information. If PFTEX_SUBLOAD_FORMAT is enabled, pfTexture::freeImage
should not be used as long as the texture is in use.

PFTEX_FAST_DEFINE
is a boolean IRIS GL mode to share user image data with GL - no GL copy is made.
type should be either PF_ON or PF_OFF. In IRIS GL, this requires a non-MIPmapped
texture. If PFTEX_FAST_DEFINE is enabled, pfTexture::freeImage should not be

429

pfTexture(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

used as long as the texture is in use. This mode is now redundant with
PFTEX_SUBLOAD_FORMAT.

See the IRIS GL texdef(3g) and subtexload(3g) man pages and the OpenGL glTexImage2D and
glTexSubImage man pages for a description of texture formats and corresponding texture loading
behavior. pfTexture::getFormat returns the format mode corresponding to format.

pfTexture::setRepeat specifies a texture coordinate repeat function. wrap is a symbolic token that
specifies which texture coordinate(s) are affected by the repeat function and is one of PFTEX_WRAP,
PFTEX_WRAP_R, PFTEX_WRAP_S, or PFTEX_WRAP_T. mode is a symbolic token that specifies how
texture coordinates outside the range 0.0 through 1.0 are handled. mode token values may be one of:
PFTEX_REPEAT or PFTEX_CLAMP. The default texture repeat function is PFTEX_REPEAT for all tex-
ture coordinates. pfTexture::getRepeat returns the texture coordinate repeat function corresponding to
wrap. See the IRIS GL texdef(3g) man page for a description of texture repeat.

pfTexture::setFilter sets a filter function used by the pfTexture. type may be one of PFTEX_MINFILTER,
PFTEX_MAGFILTER, PFTEX_MAGFILTER_ALPHA, or PFTEX_MAGFILTER_COLOR. filter is a com-
bination of bitmask tokens which specify a particular minification or magnification filter. Filters may be
partially specified, in which case, IRIS Performer will use defaults based on performance considerations
for the current graphics platform. PFTEX_FAST can be included in a texture filter and may cause a
slightly different filter to be substituted in texture application for fast performance on the current graphics
platform. All filters may include basic interpolation tokens:

PFTEX_POINT
PFTEX_LINEAR
PFTEX_BILINEAR
PFTEX_TRILINEAR
PFTEX_QUADLINEAR - for 3D texture only.
PFTEX_LEQUAL, PFTEX_GEQUAL - currently only supported in IRIS GL.

Additionally, filters may specify additional minification or magnification functions.

Texture Filter Tableiii
Filter PFTEX_ tokensiii

PFTEX_MINFILTER PFTEX_MIPMAP
PFTEX_BICUBIC (IRIS GL only)
PFTEX_BICUBIC_LEQUAL (IRIS GL only)
PFTEX_BICUBIC_GEQUAL (IRIS GL only)

PFTEX_MAGFILTER PFTEX_DETAIL_LINEAR
PFTEX_MODULATE

c
c
c
c
c
c
c
c
c
c
c

430

IRIS Performer 2.0 libpr C++ Reference Pages pfTexture(3pf)hh

PFTEX_ADD
PFTEX_DETAIL_COLOR
PFTEX_DETAIL_ALPHA

PFTEX_MAGFILTER_ALPHA PFTEX_DETAIL
PFTEX_MODULATE
PFTEX_ADD
PFTEX_DETAIL_ALPHA
PFTEX_SHARPEN
PFTEX_SHARPEN_ALPHA

PFTEX_MAGFILTER_COLOR PFTEX_DETAIL
PFTEX_MODULATE
PFTEX_ADD
PFTEX_DETAIL_COLOR
PFTEX_SHARPEN_COLOR
PFTEX_SHARPENcc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

For convenience, there are compound tokens that include the most of usual filter combinations:

PFTEX_MIPMAP_POINT
PFTEX_MIPMAP_LINEAR
PFTEX_MIPMAP_BILINEAR
PFTEX_MIPMAP_TRILINEAR
PFTEX_MIPMAP_QUADLINEAR
PFTEX_MAGFILTER_COLOR
PFTEX_MAGFILTER_ALPHA
PFTEX_SHARPEN_COLOR
PFTEX_SHARPEN_ALPHA
PFTEX_DETAIL_COLOR
PFTEX_DETAIL_ALPHA
PFTEX_DETAIL_LINEAR
PFTEX_MODULATE_DETAIL
PFTEX_ADD_DETAIL
PFTEX_BICUBIC_LEQUAL
PFTEX_BICUBIC_GEQUAL
PFTEX_BICUBIC_LEQUAL
PFTEX_BICUBIC_GEQUAL
PFTEX_BILINEAR_LEQUAL
PFTEX_BILINEAR_GEQUAL

If the desired filter requires support that is not present on the current graphics platform, that part of the
specified filter will be ignored. See the IRIS GL texdef(3g) or OpenGL glTexImage(3g) mans page for

431

pfTexture(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

descriptions of texture filter types. The default filter types are: magfilter = PFTEX_BILINEAR, minfilter
= PFTEX_MIPMAP_TRILINEAR for Reality Engine and PFTEX_MIPMAP_LINEAR otherwise.
pfTexture::getFilter returns the filter type of filter.

Textures are permitted to have explicit borders. By default, these borders are not enabled. Texture bord-
ers can be enabled by setting a texture border type with pfTexture::setBorderType where type is one of
the following tokens: PFTEX_BORDER_NONE, PFTEX_BORDER_COLOR, or
PFTEX_BORDER_TEXEL. The default texture border type is PFTEX_BORDER_NONE. If
PFTEX_BORDER_COLOR is specified, the corresponding texture border color may be set with
pfTexture::setBorderColor. The default texture border color is black. If PFTEX_BORDER_TEXEL bord-
ers are enabled on a pfTexture, it is assumed that the corresponding image for that pfTexture includes the
border texels and the corresponding size of the pfTexture also includes the border texels.
pfTexture::getBorderType will return the texture border type and pfTexture::getBorderColor will return
the texture border color. If the current graphics hardware configuration does not support the selected
border type, it will be ignored. Texel borders are only available in OpenGL operation. Texture borders
should be used only when there is strong motivation and with extreme caution. Texel borders can add
considerable texture storage requirements to the pfTexture and cause subsequent performance degrada-
tions.

pfTexture::setDetail sets detail as the detail texture of the pfTexture or disables detailing of the pfTexture
if detail is NULL. The level of magnification between the base texture and detail texture is a non-positive
number specified by level and may be PFTEX_DEFAULT. The detail texture is replicated as necessary to
create a resulting texture that is 2ˆlevel times the size of the base (level 0) texture. The default tex level is
four which creates a 16:1 mapping from detail texels to base texels. pfTexture::setDetail will also set the
magnification filter of the pfTexture to PFTEX_MODULATE_DETAIL or PFTEX_BILINEAR if detailing
is enabled or disabled respectively. See the IRIS GL texdef and OpenGL glDetailTexFuncSGIS man
pages for a description of detail texture filters and splines. For use with OpenGL, the OpenGL
GL_SGIS_detail_texture extension is required. Once a texture has been specified to be a detail texture, it
can no longer be used as a base texture. Calling pfTexture::apply on a detail texture will bind the texture
to the detail target, not the base target. Please also see the additional notes on using detail textures below.

pfTexture::getDetail returns the detail texture of the pfTexture in detail or NULL if the texture is not
detailed, and the detail texture level in level. The level of magnification at which detail is actually applied
is controlled by pfTexture::setSpline. pfTexture::getDetailTex returns the detail texture of the pfTexture,
or NULL if the texture is not detailed.

pfTexture::setDetailTexTile is provided for compatibility with previous versions of IRIS GL IRIS Per-
former. It sets the tiling parameters of detail texture detail. detail is interpreted as a collection of j X k
subimages which are applied to an m X n block of texels from the base texture. scram is a flag which
enables or disables detail texture scrambling, but is currently ignored. Default values are j = k = m = n = 4,
scram = 0. There corresponding detail texture level for pfTexDetail can be calculated as follows:

IRIS GL detail textures are required to be of size 256x256 and the i and j are fixed at 4, which

432

IRIS Performer 2.0 libpr C++ Reference Pages pfTexture(3pf)hh

implies that the subtiles are of size 64x64 texels.

The magnification level L must satisfy m = n = 64 / 2ˆL, which implies that the maximum IRIS GL
allowable detail level is 6. If you have an IRIS GL m, you can compute the detail level L:

L = Log base 2 (64 / m) = 6 - (log(m) / M_LN2)

See the IRIS GL texdef(3g) man page and IRIS GL Graphics Library Programming Guide for a
description of IRIS GL detail texture tiling. pfTexture::getDetailTexTile returns the tiling param-
eters of detail, and again, is only provided for compatibility with previous versions of IRIS GL
IRIS Performer.

pfTexture::setLevel sets a minification or magnification texture ltex for the level level for the base texture.
If level is positive, it is taken to be a minification level and ltex is made the levelth MIPmap level for the
base texture. If level is zero or negative, ltex is taken to be a detail texture whose corresponding
magnification level will be -level. pfTexture::getLevel will return the texture for the specified level.

pfTexture::setSpline sets the parameters of a cubic interpolating spline used in certain magnification
filters. type is a symbolic token specifying a particular filter spline and is either
PFTEX_SHARPEN_SPLINE or PFTEX_DETAIL_SPLINE which correspond to magfilters for sharpen (-
PFTEX_SHARPEN) and detail texture (PFTEX_MODULATE_DETAIL or PFTEX_ADD_DETAIL)
respectively. pts is an array of pfVec2 of length 4 which specifies the control points of the filter spline. A
control point is of the form (-LOD, scale). The specified LOD is negative since it indicates a magnification
LOD. The spline is clamped to clamp. If clamp is PFTEX_DEFAULT, the spline will be automatically
clamped to its maximum value. If clamp is zero, no clamping will be done. See the notes below on com-
patibility of texture splines with previous versions of IRIS GL IRIS Performer. See the IRIS GL texdef and
OpenGL glDetailTexFuncSGIS and glSharpenTexFuncSGIS man pages for a description of filter
splines. pfTexture::getSpline copies the spline parameters of the filter designated by type into pts and
clamp. Please also see the additional notes on using detail textures below.

pfTexture::setList sets a pfList of pfTexture*, list, on the pfTexture. pfTexture::getList returns the texture
list. pfTexture::setFrame selects a frame from the texture list of the pfTexture upon pfTexture::apply.
The default frame value is (-1) which selects the base texture. pfTexture::getFrame returns the current
pfTexture frame. pfTexture::setList and pfTexture::setFrame together provide a mechanism for doing
texture animations or managing multiple textures on geometry. The base pfTexture is applied to the
geometry, but different pfTextures from the set in the list are selected based on the frame value in the base
texture. The PFTEX_LOAD_LIST mode to pfTexture::setLoadMode controls how textures replace previ-
ous texture from the same list for efficient hardware texture memory management.

pfTexture::format creates a GL/hardware ready texture for the specified pfTexture, the pfTexture. All
pfTexture parameters are take into account. Changing any parameter on a pfTexture will cause it to need
to be re-formatted. pfTexture::isFormatted will return the formatted state of the texture.

433

pfTexture(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfObject::getGLHandle will return the handle to the resulting GL texture, valid only for the current GL
context.

pfTexture::load downloads the specified texture source to graphics hardware texture memory allocated
to the pfTexture. Repeated calls to pfTexture::load will reload the image specified by
pfTexture::setLoadImage or else the main texture image set by pfTexture::setImage or
pfTexture::loadFile down into the graphics subsystem, allowing the contents of the texture image to be
changed dynamically. If a reformatting of the texture is required, pfTexture::format will be called
automatically. In IRIS GL operation, only PFTEX_SUBLOAD_FORMAT textures can have their images
changed without expensive formatting. If the texture is of format PFTEX_SUBLOAD_FORMAT and the
current graphics hardware configuration supports texture subloading, then the origin and size specified
with pfTexture::setLoadOrigin and pfTexture::setLoadSize will be used. pfTexture::isLoaded will
return whether or not the specified pfTexture is currently resident in hardware texture memory. How-
ever, pfTexture::isLoaded will not reflect whether or not additional changes made to the contents of the
texture image have been downloaded. pfTexture::loadLevel will load a specific level of the pfTexture
and is available in OpenGL only. pfTexture::load and pfTexture::loadLevel change the current pfTexture
to be undefined.

pfTexture::subload downloads a specified texture source to graphics hardware memory allocated to the
pfTexture according to the specified source, image, origin, destination, and size which may be different
than the load parameters in the pfTexture. This routine will not change any of these load parameters for
future texture loads. If the current graphics hardware configuration cannot support texture subloading,
this command will have no effect. pfTexture::subloadLevel will load a specific level of the pfTexture and
is available in OpenGL only. pfTexture::subload and pfTexture::subloadLevel change the current pfTex-
ture to be undefined.

pfTexture::setLoadImage can be used to update a location for texels to be downloaded from without
causing a reformatting of the pfTexture and without loosing the main image pointer on the pfTexture.
This specified image pointer will then be used for texture downloads triggered by pfTexture::apply and
pfTexture::load. If image is NULL, then texture downloads will go back to using the main image pointer
on the pfTexture, set through pfTexture::setImage or pfTexture::loadFile. pfTexture::getLoadImage will
return the previously set load image of the pfTexture.

Portions of a texture images may be updated by specifying a pfTexture::setLoadOrigin and
pfTexture::setLoadSize. pfTexture::setLoadOrigin sets the origin of the texture image source or destina-
tion, according to which. pfTexture::setLoadSize sets the texture area size, in texels, that is to be down-
loaded. These settings will affect future texture loads that are triggered by pfTexture::apply and
pfTexture::load. pfTexture::getLoadSize will return the previously set load size of the pfTexture.
pfTexture::getLoadOrigin will return the source or destination load origin, as specified by which of the
pfTexture.

pfTexture::setLoadMode sets parameters that configure texture downloading, specified by mode to val.

434

IRIS Performer 2.0 libpr C++ Reference Pages pfTexture(3pf)hh

mode may be one of PFTEX_LOAD_SOURCE, PFTEX_LOAD_BASE, or PFTEX_LOAD_LIST. Values
for the PFTEX_LOAD_SOURCE select the source for the texture image data and may be one of
PFTEX_IMAGE to select the image specified by pfTexture::setImage, PFTEX_VIDEO for video texture,
or PFTEX_SOURCE_FRAMEBUFFER. The default texture load source is PFTEX_SOURCE_IMAGE.
Texture sources of PFTEX_SOURCE_VIDEO and PFTEX_SOURCE_FRAMEBUFFER also require the
PFTEX_SUBLOAD_FORMAT and set it automatically. The PFTEX_LOAD_BASE mode controls how
base textures are loaded. The default, PFTEX_BASE_APPLY will do a load of the specified texture source
when the texture is dirty upon a pfTexture::apply of the pfTexture. The
PFTEX_BASE_AUTO_SUBLOAD will automatically replace the texture from the specified texture
source upon every call to pfTexture::apply. The PFTEX_LOAD_LIST mode controls how textures from
the texture list are loaded. New selections from the texture list may be loaded in the following ways:
PFTEX_LIST_APPLY, the default, will apply the selected pfTexture from the texture list;
PFTEX_LIST_AUTO_IDLE will idle the previous pfTexture selected from the list so that its graphics tex-
ture memory will be freed. If the base texture is formatted with PFTEX_SUBLOAD_FORMAT,
PFTEX_LIST_SUBLOAD will replace the texture image of the base texture with the texture image from
the selected pfTexture of the texture list. PFTEX_LIST_AUTO_SUBLOAD re-uses the hardware texture
memory of the base texture and so is the most efficient means of sharing graphics memory amongst
pfTextures. However, PFTEX_LIST_SUBLOAD is not available on all graphics platforms (see notes
below) and it requires that the pfTextures be identical in number of components and formats.
PFTEX_LIST_AUTO_SUBLOAD will obey the origin and size set by pfTexture::setLoadOrigin and
pfTexture::setLoadSize. pfTexture::getLoadMode will return the value of mode for the pfTexture.

pfTexture::apply makes the pfTexture the current texture. When texturing is enabled (see below), this
texture will be applied to all geometry drawn after pfTexture::apply is called. Only one pfTexture may
be active at a time although many may be defined. If formatting or downloading of the texture is
required at the time of the call to pfTexture::apply, pfTexture::format and pfTexture::load will be called
automatically. Modifications to the pfTexture, such as changing the filter type, will not have effect until
pfTexture::apply is called with the pfTexture. pfGetCurTex returns the currently active pfTexture.

pfTexture::apply will automatically apply the detail texture associated with the pfTexture and will dis-
able detail texturing if the pfTexture has no associated detail texture.

For geometry to be textured, the following must be true:

1. Texturing must be enabled: pfEnable(PFEN_TEXTURE)

2. A pfTexEnv must be applied: pfTexEnv::apply

3. A pfTexture must be applied: pfTexture::apply

4. Geometry must have texture coordinates: pfGeoSet::setAttr, PFGS_TEXCOORD2

The texture state element is identified by the PFSTATE_TEXTURE token. Use this token with
pfGeoState::setAttr to set the texture of a pfGeoState and with pfOverride to override subsequent texture
changes.:

435

pfTexture(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

Example 1:

/* Apply texture environment to be used by textured geometry */

tev->apply();

/* Set up textured pfGeoState */

gstate->setMode(PFSTATE_ENTEXTURE, PF_ON);

gstate->setAttr(PFSTATE_TEXTURE, tex);

/* Attach gstate to gset */

gset->setGState(gstate);

/* Set texture coordinate array. ’gset’ is non-indexed */

gset->setAttr(PFGS_TEXCOORD2, PFGS_PER_VERTEX, tcoords,NULL);

/* Draw textured gset */

gset->draw();

Example 2:

tex->apply();

/* Override so that all textured geometry uses ’tex’ */

pfOverride(PFSTATE_TEXTURE, PF_ON);

pfGetCurTex returns the current pfTexture or NULL if no pfTexture is active.

pfTexture::idle and pfTexture::isLoaded can help you efficiently manage hardware texture memory.
pfTexture::idle signifies that the pfTexture is no longer needed in texture memory and may be replaced
by new textures. pfTexture::isLoaded returns TRUE or FALSE depending on whether the pfTexture is
already loaded in texture memory or not. With these two commands it is possible to implement a rudi-
mentary texture paging mechanism.

pfTexture::apply and pfTexture::idle are display-listable commands. If a pfDispList has been opened by
pfDispList::open, pfTexture::apply and pfTexture::idle will not have immediate effect but will be cap-
tured by the pfDispList and will only have effect when that pfDispList is later drawn with
pfDispList::draw.

436

IRIS Performer 2.0 libpr C++ Reference Pages pfTexture(3pf)hh

NOTES
Since textures are an expensive hardware resource, the sharing of textures is highly recommended. For
best performance on machines which support hardware texturing, all textures should fit in hardware tex-
ture memory. Otherwise, the GL must page textures from main memory into the graphics pipeline with a
corresponding performance hit. For best performance and use of memory:

Use the PFTEX_INTERNAL_FORMATS that have 16bit texels.

Keep textures of size an even power of two since they are always rounded up to the next power
of two for storage in hardware texture memory.

Share pfTextures across pfGeoStates and share pfGeoStates across pfGeoSets whenever possible.

Minimize the number of distinct detail and sharpen splines.

Check the graphics state statistics (see the pfStats man page) to see if hardware texture memory
is being swapped. As an additional diagnostic, pfTexture::isLoaded can be used in a pfGeoState
callback before applying a pfTexture to see if a load or swap will be required.

Detail texturing, filter splines, sharpen filtering, pfTexture::idle, and pfTexture::isLoaded are supported
only on RealityEngine graphics systems.

For OpenGL operation, detail texturing requires the GL_SGIS_detail_texture OpenGL extension and the
sharpen filter requires the GL_SGIS_sharpen_texture extension. pfTexture::isLoaded requires the
EXT_texture_object OpenGL extension. See the EXT_texture_object section of the OpenGL glIntro(3g)
reference page for more information.

The spline representation for detailed and sharpened textures in IRIS GL IRIS Performer 2.0 differs from
previous IRIS GL IRIS Performer releases. Previously, the LOD component of a spline point was positive
and as of IRIS Performer 2.0, it should be negative. Additionally, there is a difference in the effect of con-
trol point values for IRIS GL and OpenGL detail texture splines. In IRIS GL, detail texels are mapped to
the range of [-0.5,0.5] and in OpenGL, they are mapped to the range [-1.0,1.0]. IRIS Performer handles
this difference internally by rescaling the specified detail texture spline for IRIS GL. This means that
detail texture splines for previous IRIS GL versions of IRIS Performer need to have their control points
scaled by 0.5. Sharpen texture splines should not be scaled. For compatibility, old IRIS GL spline
representations are accepted - if the LOD components of the spline are non-negative, the spline is taken to
be the old representations. New development should use the new representation. See the OpenGL
glDetailTexFuncSGIS(3g) and glSharpenTexFuncSGIS(3g) man pages and specs for more information
on these splines. If IRIS Performer detects an IRIS GL format spline, it will print the usage message:

IRIS GL spline specification is obsolete - use OpenGL style

Clamping of detail and sharpen splines on the RealityEngine is
supported only in IRIS GL.

437

pfTexture(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

Using a single detail pfTexture on multiple base pfTextures with different detail levels will have a severe
performance penalty in IRIS GL operation. Therefore, for IRIS GL operation, a detail pfTexture should
always be used with the same detail level.

A texture source of PFTEX_VIDEO is supported only on RealityEngine graphics systems.

For IRIS GL operation, downloading of sub-textures in only supported on RealityEngine and VGX(T)
graphics systems.

For IRIS GL operation, only PFTEX_SUBLOAD_FORMAT textures can have their images changed
without formatting. Such textures may not be MIPmapped.

BUGS
Specification of a non-zero source and destination for PFTEX_SOURCE_IMAGE textures is not supported
under IRIS GL operation.

SEE ALSO
pfDelete, pfDispList, pfEnable, pfFilePath, pfGeoState, pfGetGLHandle, pfMalloc, pfObject, pfOverride,
pfState, pfStats, pfTexEnv, tevbind, tevdef, texbind, texdef, glTexImage, glDetailTexFuncSGIS, glSharpen-
TexFuncSGIS

438

IRIS Performer 2.0 libpr C++ Reference Pages pfTime(3pf)hh

NAME
pfInitClock, pfGetTime, pfClockMode, pfGetClockMode, pfClockName, pfGetClockName, pfWrap-
Clock − Initialize and query high resolution clock

FUNCTION SPECIFICATION
#include <Performer/pr.h>

pid_t pfInitClock(double time);

double pfGetTime(void);

void pfClockMode(int mode);

int pfGetClockMode(void);

void pfClockName(char *name);

const char * pfGetClockName(char *name);

void pfWrapClock(void);

DESCRIPTION
Most SGI platforms have high resolution hardware timers. The routines described in this man page pro-
vide a simple interface to these timers.

On the first call to pfInitClock, IRIS Performer finds the highest resolution clock available and initializes
it, setting the initial time to time seconds. Subsequent calls simply reset the initial time.

pfGetTime returns a high resolution clock time in seconds that is relative to the initial time set by
pfInitClock. It determines the highest resolution clock available and uses that clock in all subsequent
calls. On Indy, Indigo, Indigo2, 4D/35, Power Series systems with IO3 boards, and Onyx, the resolution
of the clock is submicrosecond. If the hardware does not support a high resolution counter, the time of
day clock is used which typically has 10ms resolution (see below).

By default, processes forked after the first call to pfInitClock share the same clock. All such related
processes receive the same time from pfGetTime and see the effects of any subsequent calls to
pfInitClock.

Unrelated processes can similarly share a single clock by invoking pfClockName before the first call to
pfInitClock. pfClockName allows a character string name to be associated with a clock before it is ini-
tialized. pfClockName has no effect after the clock has been initialized. pfGetClockName returns the
name of the clock.

IRIS Performer periodically checks to see if the underlying hardware counter has wrapped by having an
interval timer (see setitimer(2)) regularly invoke pfWrapClock. By default, this interval timer and the
associated alarm signal are handled in a separate process created by pfInitClock. The wrapping behavior
can be changed by calling pfClockMode before the first call to pfInitClock. A mode of
PFCLOCK_APPWRAP causes wrapping to be handled in the process that called pfInitClock. In this

439

pfTime(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

case, the SIGALRM signals generated by the interval timer are generated and handled in that process.
Wrap checking can be disabled altogether with a mode of PFCLOCK_NOWRAP. In this case, the applica-
tion should invoke pfWrapClock with sufficient frequency to avoid missing a cycle of the counter (typi-
cally the hardware counters wrap every 60-120 secs, but the R3000 Indigo’s clock wraps every 500ms).
pfGetClockMode returns the clock mode.

When wrapping is done in a separate process, only one process is spawned, regardless of the number of
processes using the same clock. If the calling process has super-user privileges, both the spawned process
and the kernel clock functions are forced to run on CPU 0. pfInitClock returns the process ID of the pro-
cess handling clock wrapping and 0 otherwise. A value of -1 indicates failure.

NOTES
If none of the hardware clocks are available, the time of day clock is used, but with only 10ms resolution
it is insufficient for many applications such as frame rate control. In this case, it may be useful to enable
the fast clock (see ftimer(1)).

The pfDataPool file for clock data is created in the directory /usr/tmp or in the directory indicated by the
PFTMPDIR environment variable, if it is specified.

Processes specifying a clock of the same name, share that clock through a pfDataPool. With an unnamed
clock, the pfDataPool is deleted on exit, but when using a named clock, the application must explicitly call
pfDataPool::release with the clock name to remove the pfDataPool.

SEE ALSO
fork, ftimer, setitimer, lboot

440

IRIS Performer 2.0 libpr C++ Reference Pages pfTransparency(3pf)hh

NAME
pfTransparency, pfGetTransparency − Set/get the transparency mode

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfTransparency(int type);

int pfGetTransparency(void);

PARAMETERS
type is a symbolic constant and is one of:

PFTR_OFF
Disable transparency

PFTR_ON
IRIS Performer will use a default transparency mechanism depending on the machine being
used.

PFTR_HIGH_QUALITY
IRIS Performer will use a transparency mechanism that provides the highest quality, not
necessarily the fastest, transparency.

PFTR_FAST
IRIS Performer will use a transparency mechanism that provides the fastest, not necessarily
the highest quality, transparency.

PFTR_BLEND_ALPHA
IRIS Performer will use the IRIS GL blendfunction(3g) or OpenGL glBlendFunc(3g) method
of transparency.

PFTR_MS_ALPHA
IRIS Performer will use the IRIS GL msalpha(3g) or the OpenGL
glEnable(GL_SAMPLE_ALPHA_TO_ONE_SGIS) method of transparency when multisam-
pling is available and enabled. Source alpha values will be converted to 1.0 (full opacity)
before writing to the framebuffer.

PFTR_MS_ALPHA_MASK
IRIS Performer will use the IRIS GL msalpha(3g) OpenGL
glEnable(GL_SAMPLE_ALPHA_TO_MASK_SGIS) method of transparency when mul-
tisampling is enabled. Source alpha values will not be modified.

type may be OR-ed with PFTR_NO_OCCLUDE if transparent geometry is not to occlude other geometry.

DESCRIPTION
pfTransparency sets the transparency mode to mode. Enabling transparency is not enough to render tran-
sparent geometry. Geometry colors must have alpha values that are less than the maximum (alpha < 1
for c4f and alpha < 255 for cpack) in order to be transparent. When alpha is less than maximum, it
defines the blending of geometry color with framebuffer color according to the following equation.

441

pfTransparency(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

finalColor = alpha*geometryColor + (1−alpha)*colorInFramebuffer

In other words, alpha is the "inverse" of transparency.

The transparency mode value may be OR-ed with PFTR_NO_OCCLUDE. PFTR_NO_OCCLUDE dis-
ables writes to the depth buffer so that any geometry rendered after pfTransparency is called with this
value will not modify the depth buffer and so will not be able to occlude any other geometry. Since you
can "see-through" transparent geometry, this is a useful option when using PFTR_BLEND_ALPHA type
transparency and you are unable to render transparent geometry back to front.

pfGetTransparency returns the current transparency mode.

The transparency mode state element is identified by the PFSTATE_TRANSPARENCY token. Use this
token with pfGeoState::setMode to set the transparency mode of a pfGeoState and with pfOverride to
override subsequent transparency mode changes.:

Example 1:

/* Set up transparent pfGeoState */

gstate->setMode(PFSTATE_TRANSPARENCY, PFTR_HIGH_QUALITY);

/* Attach gstate to gset */

gset->setGState(gstate);

/*

* Draw transparent gset. ’gset’ must have alpha values

* that are < 1.0f for transparency to have effect.

*/

gset->draw();

Example 2:

/* Override transparency mode to PFTR_OFF */

pfTransparency(PFTR_OFF);

pfOverride(PFSTATE_TRANSPARENCY, PF_ON);

The MS_ALPHA transparency methods only work when the window is configured for multisampling. In
this case alpha values are converted to a multisample mask, a "screen door" if you will, that allows the
geometry color to only partially influence each pixel. This kind of transparency is most efficient when
multisampling and has the important benefit of *not* requiring sorting of transparent geometry.
PFTR_BLEND_ALPHA on the other hand actually blends the geometry color with what is already in the

442

IRIS Performer 2.0 libpr C++ Reference Pages pfTransparency(3pf)hh

framebuffer. Thus it requires the following for proper results:

1. Transparent geometry be rendered after opaque geometry.

2. Transparent geometry be rendered back to front.

pfTransparency is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfTransparency will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDispList::draw.

BUGS
pfTransparency modifies the zwritemask but does not restore it.

SEE ALSO
blendfunction, msalpha, msmask, glEnable, glSampleMaskSGIS, pfDispList, pfGeoState, pfState, zwri-
temask

443

pfType(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfType, operator pfType − pfType, data typing system

FUNCTION SPECIFICATION
#include <Performer/pr/pfType.h>

pfType::pfType(pfType *parent, char *name);

void* operator pfType::new(size_t s);

const char* pfType::getName();

pfType* pfType::getParent();

int pfType::isDerivedFrom(pfType *ancestor);

void pfType::setMaxTypes(int n);

DESCRIPTION
Objects derived from pfMemory have an associated pfType. An object’s pfType* is returned by calling
pfMemory::getType.

pfType::getParent returns the parent class of the pfType. Note that Performer only uses single inheri-
tance and the type system only maintains a single inheritance chain.

pfType::getName returns the name of the class.

pfType::isDerivedFrom tests whether the pfType has ancestor somewhere in its inheritance ancestry. It
returns TRUE if the ancestor was found, and FALSE otherwise.

The type system must be initialized in shared memory before other processes that will share the type sys-
tem are created. When the type system is initialized by pfInit, each Performer class creates a type for
itself. new pfType(pfType*,char*) allows an application to add additional types to the type system.
parent specifies the parent class, or NULL if the class has no parents. name is the name of the class.
pfTypes must be explicitly new’ed, i.e. they cannot be created statically or automatically on the stack.

pfType::setMaxTypes allows an application to increase the number of allowed types. This must be called
before pfInit to have effect.

pfMemory also has two convenience functions pfMemory::isOfType, pfMemory::getTypeName that
allow access to type information with a single call.

Because IRIS Performer allows subclassing of built-in types, when decisions are made based on the type
of an object, it is usually better to use pfType::isDerivedFrom or pfMemory::isOfType to test the type of
an object rather than to test for the strict equality of the pfType*’s.

444

IRIS Performer 2.0 libpr C++ Reference Pages pfType(3pf)hh

NOTES
pfTypes cannot be deleted.

SEE ALSO
pfMemory

445

pfVClock(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfStartVClock, pfStopVClock, pfInitVClock, pfGetVClockOffset, pfVClockOffset, pfGetVClock,
pfVClockSync − Initialize and query vertical retrace clock

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfStartVClock(void);

void pfStopVClock(void);

void pfInitVClock(int ticks);

int pfGetVClockOffset(void);

void pfVClockOffset(int offset);

int pfGetVClock(void);

int pfVClockSync(int rate, int offset);

DESCRIPTION
A pfVClock (Video Clock) is a clock which runs at the video retrace rate. There is one clock for each
hardware graphics pipeline which runs at the video rate of that pipeline. A pipeline’s video rate is defined
by its video format (see setmon). To access the video clock a Graphics Library window must be opened
and made current although the window does not need to be mapped to the display surface (noport in
IRIS GL). The screen of the current window determines which pipe’s video clock is accessed on multipipe
machines.

pfStartVClock starts the video clock by enabling CPU interrupts from the graphics pipeline while
pfStopVClock disables CPU interrupts. At this time, the video clock can be started/stopped only on
VGX and VGXT graphics hardware. On other hardware such as RealityEngine, CPU interrupts are always
enabled.

pfInitVClock sets the initial value of the video clock to ticks. Note that pfInitVClock does not set the
video clock, rather it computes an offset which is added to the real video clock’s value. This offset is
unique to a given address space - forked processes each have their own offset while sproced processes
share the offset. The offset computed by pfInitVClock is returned by pfGetVClockOffset and may be set
directly with pfVClockOffset, simplifying clock synchronization across processes.

pfGetVClock returns the current video retrace count relative to the initial value set by pfInitVClock.

pfVClockSync puts the calling process to sleep until count modulo rate is equal to offset. For instance, if
the count is 0, the rate is 10 and offset is 4, then pfVClockSync will return when the count is 4. Subsequent
calls with the same values will return when the count is 14, 24, etc. offset must be a non-negative number
less than rate and rate must be positive.

If the retrace count modulo rate is equal to offset at the time pfVClockSync is called, the caller will not

446

IRIS Performer 2.0 libpr C++ Reference Pages pfVClock(3pf)hh

return immediately but will go to sleep until rate ticks later.

The following code fragment illustrates a true video clock which will wake up each vertical retrace period
(subject to process priorities):

while (1)

{

/* wait for next vertical retrace */

pfVClockSync(1, 0);

/* perform per-interval actions */

:

}

NOTES
A GL window (which may be a noport window) must be open before any pfVClock routines are called.

The video clock count is *not* the swapbuffers count.

447

pfVec2(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfVec2 − Set and operate on 2-component vectors

FUNCTION SPECIFICATION
#include <Performer/pr/pfLinMath.h>

void* pfVec2::operator new(size_t);

void* pfVec2::operator new(size_t, void *arena);

pfVec2::pfVec2();

pfVec2::pfVec2(float x, float y);

void pfVec2::addScaled(const pfVec2& v1, float s, const pfVec2& v2);

void pfVec2::add(const pfVec2& v1, const pfVec2& v2);

int pfVec2::almostEqual(const pfVec2& v2, float tol);

void pfVec2::combine(float s1, const pfVec2& v1, float s2, const pfVec2& v2);

void pfVec2::copy(const pfVec2& v);

float pfVec2::distance(const pfVec2& pt2);

float pfVec2::dot(const pfVec2& v2);

int pfVec2::equal(const pfVec2& v2);

float pfVec2::length(void);

void pfVec2::negate(const pfVec2& v);

float pfVec2::normalize(void);

void pfVec2::scale(float s, const pfVec2& v);

void pfVec2::set(float x, float y);

float pfVec2::sqrDistance(const pfVec2& pt2);

void pfVec2::sub(const pfVec2& v1, const pfVec2& v2);

float& pfVec2::operator [](int i);

int pfVec2::operator ==(const pfVec2& v);

pfVec2 pfVec2::operator -() const;

pfVec2 pfVec2::operator +(const pfVec2& v);

pfVec2 pfVec2::operator -(const pfVec2& v);

pfVec2& pfVec2::operator =(const pfVec2& v);

448

IRIS Performer 2.0 libpr C++ Reference Pages pfVec2(3pf)hh

pfVec2& pfVec2::operator *=(float d);

pfVec2& pfVec2::operator /=(float d);

pfVec2& pfVec2::operator +=(const pfVec2& v);

pfVec2& pfVec2::operator -=(const pfVec2& v);

pfVec2 pfVec2::operator *(const pfVec2& v, float d);

pfVec2 pfVec2::operator *(float d, const pfVec2& v);

pfVec2 pfVec2::operator /(const pfVec2& v, float d);

struct pfVec2 {

float vec[2];

};

DESCRIPTION
Math functions for 2-component vectors. Most of these routines have macro equivalents.

Most accesses to pfVec2 go through pfVec2::operator[], but pfVec2 is a public struct whose data member
vec is directly accessible, e.g. for passing to a routine expecting a float* such as glTexCoord2fv. The
default constructor pfVec2() is empty and does not initialize the values in the vector. An initializing con-
structor pfVec2(float, float) accepts the initial values for the vector. new(arena) allocates a pfVec2 from
the specified memory arena, or from the heap if arena is NULL. new allocates a pfVec2 from the default
memory arena (pfGetSharedArena). pfVec2s can also be created automatically on the stack or statically.
pfVec2s allocated with new can be deleted with delete or pfDelete.

The name vec has been used below to indicate the pfVec2 on which the member function is being invoked.

pfVec2::set: vec[0] = x, vec[1] = y. Macro equivalent is PFSET_VEC2.

pfVec2::copy: vec = v. Macro equivalent is PFCOPY_VEC2.

pfVec2::negate: vec = -v. Macro equivalent is PFNEGATE_VEC2.

pfVec2::add: vec = v1 + v2. Sets vec to the sum of vectors v1 and v2. Macro equivalent is PFADD_VEC2.

pfVec2::sub: vec = v1 - v2. Sets vec to the difference of v1 and v2. Macro equivalent is PFSUB_VEC2.

pfVec2::addScaled: vec = v1 + s * v2. Sets vec to the vector v1 plus the vector v2 scaled by s. Macro
equivalent is PFADD_SCALED_VEC2.

pfVec2::scale: vec = s * v1. Sets vec to the vector v scaled by s. Macro equivalent is PFSCALE_VEC2.

449

pfVec2(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfVec2::combine: vec = s1 * v1 + s2 * v2. Sets vec to be the linear combination of v1 and v2 with scales s1
and s2, respectively. Macro equivalent: PFCOMBINE_VEC2.

pfVec2::normalize: vec = vec / length(vec). Normalizes the vector vec to have unit length and returns the
original length of the vector.

pfVec2::dot = vec dot v2 = vec[0] * v2[0] + vec[1] * v2[1] . Returns dot product of the vectors vec and v2.
Macro equivalent is PFDOT_VEC2.

pfVec2::length = |vec| = sqrt(vec dot vec). Returns length of the vector vec. Macro equivalent is
PFLENGTH_VEC2.

pfVec2::sqrDistance = (vec - v2) dot (vec - v2). Returns square of distance between two points v1 and v2.
Macro equivalent is PFSQR_DISTANCE_PT2.

pfVec2::distance = sqrt((vec - v2) dot (vec - v2)). Returns distance between two points vec and v2. Macro
equivalent is PFDISTANCE_PT2.

pfVec2::equal = (vec == v2). Tests for strict component-wise equality of two vectors vec and v2 and
returns FALSE or TRUE. Macro equivalent is PFEQUAL_VEC2.

pfVec2::almostEqual. Tests for approximate component-wise equality of two vectors vec and v2. It
returns FALSE or TRUE depending on whether the absolute value of the difference between each pair of
components is less than the tolerance tol. Macro equivalent is PFALMOST_EQUAL_VEC2.

float& operator [](int i) Accesses indexed component of the vector.

int operator ==(const pfVec2&) Equality comparison operator.

pfVec2 operator -() const Nondestructive unary negation - returns a new vector.

pfVec2 operator +(const pfVec2&) pfVec2 operator -(const pfVec2&) Component-wise binary vector
addition and subtraction operators.

pfVec2& operator =(const pfVec2&) Vector assignment operator.

pfVec2& operator *=(float) pfVec2& operator /=(float) Component-wise scalar multiplication and divi-
sion operators.

pfVec2& operator +=(const pfVec2&) pfVec2& operator -=(const pfVec2&) Component-wise vector
addition and subtraction operators.

pfVec2 operator *(const pfVec2&, float) pfVec2 operator *(float, const pfVec2&) pfVec2 operator /(const

450

IRIS Performer 2.0 libpr C++ Reference Pages pfVec2(3pf)hh

pfVec2&, float) Component-wise binary scalar multiplication and division operators.

Routines can accept the same vector as source, destination, or as a repeated operand.

NOTES
When using overloaded operators in C++, assignment operators, e.g. "+=", are somewhat more efficient
than the corresponding binary operators, e.g. "+", because the latter construct a temporary intermediate
object. Use assignment operators or macros for binary operations where optimal speed is important.

C++ does not support array deletion (i.e. delete[]) for arrays of objects allocated new operators that take
additional arguments. Hence, the array deletion operator delete[] should not be used on arrays of objects
created with new(arena) pfVec2[n].

SEE ALSO
pfMatrix, pfVec3, pfVec4

451

pfVec3(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfVec3 − Set and operate on 3-component vectors

FUNCTION SPECIFICATION
#include <Performer/pr/pfLinMath.h>

void* pfVec3::operator new(size_t);

void* pfVec3::operator new(size_t, void *arena);

pfVec3::pfVec3();

pfVec3::pfVec3(float x, float y, float z);

void pfVec3::addScaled(const pfVec3& v1, float s, const pfVec3& v2);

void pfVec3::add(const pfVec3& v1, const pfVec3& v2);

int pfVec3::equal(const pfVec3& v2);

int pfVec3::almostEqual(const pfVec3& v2, float tol);

void pfVec3::combine(float s1, const pfVec3& v1, float s2, const pfVec3& v2);

void pfVec3::copy(const pfVec3& v);

void pfVec3::cross(const pfVec3& v1, const pfVec3& v2);

float pfVec3::distance(const pfVec3& pt2);

float pfVec3::dot(const pfVec3& v2);

float pfVec3::length(void);

void pfVec3::negate(const pfVec3& v);

float pfVec3::normalize(void);

void pfVec3::scale(float s, const pfVec3& v);

void pfVec3::set(float x, float y, float z);

float pfVec3::sqrDistance(const pfVec3& pt2);

void pfVec3::sub(const pfVec3& v1, const pfVec3& v2);

void pfVec3::xformVec(const pfVec3& v, const pfMatrix& m);

void pfVec3::xformPt(const pfVec3& v, const pfMatrix& m);

void pfVec3::fullXformPt(const pfVec3& v, const pfMatrix& m);

float& pfVec3::operator [](int i);

const float& pfVec3::operator [](int i);

452

IRIS Performer 2.0 libpr C++ Reference Pages pfVec3(3pf)hh

int pfVec3::operator ==(const pfVec3& v);

pfVec3 pfVec3::operator -() const;

pfVec3 pfVec3::operator +(const pfVec3& v);

pfVec3 pfVec3::operator -(const pfVec3& v);

pfVec3& pfVec3::operator =(const pfVec3& v);

pfVec3& pfVec3::operator *=(float d);

pfVec3& pfVec3::operator /=(float d);

pfVec3& pfVec3::operator +=(const pfVec3& v);

pfVec3& pfVec3::operator -=(const pfVec3& v);

pfVec3 pfVec3::operator *(const pfVec3& v, float d);

pfVec3 pfVec3::operator *(float d, const pfVec3& v);

pfVec3 pfVec3::operator /(const pfVec3& v, float d);

pfVec3 pfVec3::operator *(const pfVec3& v, const pfMatrix& m);

struct pfVec3 {

float vec[3];

};

DESCRIPTION
Math functions for 3-component vectors. Most of these routines have macro equivalents.

Most accesses to pfVec3 go through pfVec3::operator[], but pfVec3 is a public struct whose data member
vec is directly accessible, e.g. when necessary for passing to a routine expecting a float* such as
glColor3fv. The default constructor pfVec3() is empty and does not initialize the values in the vector. An
initializing constructor pfVec3(float, float, float) accepts the initial values for the vector. new(arena) allo-
cates a pfVec3 from the specified memory arena, or from the heap if arena is NULL. new allocates a
pfVec3 from the default memory arena (pfGetSharedArena). pfVec3s can also be created automatically
on the stack or statically. pfVec3s allocated with new can be deleted with delete or pfDelete.

The name vec has been used below to indicate the pfVec3 on which the member function is being invoked.

pfVec3::set: vec[0] = x, vec[1] = y, vec[2] = z. Macro equivalent is PFSET_VEC3.

pfVec3::copy: vec = v. Macro equivalent is PFCOPY_VEC3.

pfVec3::negate: vec = -vec. Macro equivalent is PFNEGATE_VEC3.

453

pfVec3(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfVec3::add: vec = v1 + v2. Sets vec to the sum of vectors v1 and v2. Macro equivalent is PFADD_VEC3.

pfVec3::sub: vec = v1 - v2. Sets vec to the difference of v1 and v2. Macro equivalent is PFSUB_VEC3.

pfVec3::scale: vec = s * v1. Sets vec to the vector v scaled by s. Macro equivalent is PFSCALE_VEC3.

pfVec3::addScaled: vec = v1 + s * v2. Sets vec to the vector v1 plus the vector v2 scaled by s. Macro
equivalent is PFADD_SCALED_VEC3.

pfVec3::combine: vec = s1 * v1 + s2 * v2. Sets vec to be the linear combination of v1 and v2 with scales s1
and s2, respectively. Macro equivalent: PFCOMBINE_VEC3.

pfVec3::normalize: vec = vec / length(vec). Normalizes the vector vec to have unit length and returns the
original length of the vector.

pfVec3::cross: vec = v1 X v2. Sets vec to the cross-product of two vectors v1 and v2.

pfVec3::xformVec: vec = v * m (vec[i]=v[i] i=0, 1, 2; v[3] = 0). Transforms v as a vector by the matrix m.

pfVec3::xformPt: vec = vec * m (vec[i]=vec[i] i=0, 1, 2; vec[3] = 1). Transforms vec as a point by the matrix m
using the 4X3 submatrix.

pfVec3::fullXformPt: vec = v * m (vec[i]=v[i] i=0, 1, 2; vec[3] = 1). Transforms vec as a point by the matrix m
using the full 4X4 matrix and scaling dst by the resulting w coordinate.

pfVec3::dot = vec dot v2 = vec[0] * v2[0] + vec[1] * v2[1] + vec[2] * v2[2]. Returns dot product of the vectors
vec and v2. Macro equivalent is PFDOT_VEC3.

pfVec3::length = |vec| = sqrt(vec dot vec). Returns length of the vector vec. Macro equivalent is
PFLENGTH_VEC3.

pfVec3::sqrDistance = (vec - v2) dot (vec - v2). Returns square of distance between two points vec and v2.
Macro equivalent is PFSQR_DISTANCE_PT3.

pfVec3::distance = sqrt((vec - v2) dot (vec - v2)). Returns distance between two points vec and v2. Macro
equivalent is PFDISTANCE_PT3.

pfVec3::equal = (vec == v2). Tests for strict component-wise equality of two vectors vec and v2 and
returns FALSE or TRUE. Macro equivalent is PFEQUAL_VEC3.

pfVec3::almostEqual. Tests for approximate component-wise equality of two vectors vec and v2. It
returns FALSE or TRUE depending on whether the absolute value of the difference between each pair of
components is less than the tolerance tol. Macro equivalent is PFALMOST_EQUAL_VEC3.

454

IRIS Performer 2.0 libpr C++ Reference Pages pfVec3(3pf)hh

float& operator [](int) const float& operator [](int) Accesses indexed component of vector.

int operator ==(const pfVec3&) Equality comparison operator.

pfVec3 operator -() const Nondestructive unary negation - returns a new vector.

pfVec3 operator +(const pfVec3&) pfVec3 operator -(const pfVec3&) Component-wise binary vector
addition and subtraction operators.

pfVec3& operator =(const pfVec3&) Vector assignment operator.

pfVec3& operator *=(float) pfVec3& operator /=(float) Component-wise scalar multiplication and divi-
sion operators.

pfVec3& operator +=(const pfVec3&) pfVec3& operator -=(const pfVec3&) Component-wise vector
addition and subtraction operators.

pfVec3 operator *(const pfVec3&, float) pfVec3 operator *(float d, const pfVec3&) pfVec3 operator
/(const pfVec3&, float) pfVec3 operator *(const pfVec3&, const pfMatrix&) Component-wise binary
scalar multiplication and division operators.

Routines can accept the same vector as source, destination, or as a repeated operand.

NOTES
When using overloaded operators in C++, assignment operators, e.g. "+=", are somewhat more efficient
than the corresponding binary operators, e.g. "+", because the latter construct a temporary intermediate
object. Use assignment operators or macros for binary operations where optimal speed is important.

C++ does not support array deletion (i.e. delete[]) for arrays of objects allocated new operators that take
additional arguments. Hence, the array deletion operator delete[] should not be used on arrays of objects
created with new(arena) pfVec3[n].

SEE ALSO
pfMatrix, pfVec2, pfVec4

455

pfVec4(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfVec4 − Set and operate on 4-component vectors

FUNCTION SPECIFICATION
#include <Performer/pr/pfVec4.h>

void* pfVec4::operator new(size_t);

void* pfVec4::operator new(size_t, void *arena);

pfVec4::pfVec4();

pfVec4::pfVec4(float x, float y, float z, float w);

void pfVec4::addScaled(pfVec3& dst, const pfVec3& v1, float s, const pfVec3& v2);

void pfVec4::add(const pfVec4& v1, const pfVec4& v2);

int pfVec4::almostEqual(const pfVec4& v2, float tol);

void pfVec4::combine(float s1, const pfVec4& v1, float s2, const pfVec4& v2);

void pfVec4::copy(const pfVec4& v);

float pfVec4::distance(const pfVec4& pt2);

float pfVec4::dot(const pfVec4& v2);

int pfVec4::equal(const pfVec4& v2);

float pfVec4::length(void);

void pfVec4::negate(const pfVec4& v);

float pfVec4::normalize(void);

void pfVec4::scale(float s, const pfVec4& v);

void pfVec4::set(float x, float y, float z, float w);

float pfVec4::sqrDistance(const pfVec4& pt2);

void pfVec4::sub(const pfVec4& v1, const pfVec4& v2);

void pfVec4::xform(const pfVec4& v, const pfMatrix& m);

float& pfVec4::operator [](int i);

const float& pfVec4::operator [](int i);

int pfVec4::operator ==(const pfVec4& v);

pfVec4 pfVec4::operator -() const;

pfVec4 pfVec4::operator +(const pfVec4& v);

456

IRIS Performer 2.0 libpr C++ Reference Pages pfVec4(3pf)hh

pfVec4 pfVec4::operator -(const pfVec4& v);

pfVec4& pfVec4::operator =(const pfVec4& v);

pfVec4& pfVec4::operator *=(float d);

pfVec4& pfVec4::operator /=(float d);

pfVec4& pfVec4::operator +=(const pfVec4& v);

pfVec4& pfVec4::operator -=(const pfVec4& v);

pfVec4 pfVec4::operator *(const pfVec4& v, float d);

pfVec4 pfVec4::operator *(float d, const pfVec4& v);

pfVec4 pfVec4::operator /(const pfVec4& v, float d);

pfVec4 pfVec4::operator *(const pfVec4& v, const pfMatrix& m);

struct pfVec4 {

float vec[4];

};

DESCRIPTION
Math functions for 4-component vectors.

Most accesses to pfVec4 go through pfVec4::operator[], but pfVec4 is a public struct whose data member
vec is directly accessible, e.g. for passing to a routine expecting a float* such as glColor4fv. The default
constructor pfVec4() is empty and does not initialize the values in the vector. An initializing constructor
pfVec4(float, float, float, float) accepts the initial values for the vector. new(arena) allocates a pfVec4
from the specified memory arena, or from the heap if arena is NULL. new allocates a pfVec4 from the
default memory arena (pfGetSharedArena). pfVec4s can also be created automatically on the stack or
statically. pfVec4s allocated with new can be deleted with delete or pfDelete.

The name vec has been used below to indicate the pfVec4 on which the member function is being invoked.

pfVec4::set: vec[0] = x, vec[1] = y, vec[2] = z, vec[3] = w . Macro equivalent is PFSET_VEC4.

pfVec4::copy: vec = v. Macro equivalent is PFCOPY_VEC4.

pfVec4::negate: vec = -v. Macro equivalent is PFNEGATE_VEC4.

pfVec4::add: vec = v1 + v2. Sets vec to the sum of vectors v1 and v2. Macro equivalent is PFADD_VEC4.

pfVec4::sub: vec = v1 - v2. Sets vec to the difference of v1 and v2. Macro equivalent is PFSUB_VEC4.

457

pfVec4(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfVec4::scale: vec = s * v1. Sets vec to the vector v scaled by s. Macro equivalent is PFSCALE_VEC4.

pfVec4::addScaled: vec = v1 + s * v2. Sets vec to the vector v1 plus the vector v2 scaled by s. Macro
equivalent is PFADD_SCALED_VEC4.

pfVec4::combine: vec = s1 * v1 + s2 * v2. Sets vec to be the linear combination of v1 and v2 with scales s1
and s2, respectively. Macro equivalent is PFCOMBINE_VEC4.

pfVec4::normalize: vec = vec / length(vec). Normalizes the vector vec to have unit length and returns the
original length of the vector.

pfVec4::xform: vec = v * m. Transforms v by the matrix m.

pfVec4::dot = vec dot v2 = vec[0] * v2[0] + vec[1] * v2[1] + vec[2] * v2[2] + vec[3] * v2[3]. Returns dot pro-
duct of the vectors v1 and v2. Macro equivalent is PFDOT_VEC4.

pfVec4::length = |vec| = sqrt(vec dot vec). Returns length of the vector vec. Macro equivalent is
PFLENGTH_VEC4.

pfVec4::sqrDistance = (vec - v2) dot (vec - v2). Returns square of distance between two points vec and v2.
Macro equivalent is PFSQR_DISTANCE_PT4.

pfVec4::distance = sqrt((vec - v2) dot (vec - v2)). Returns distance between two points vec and v2. Macro
equivalent is PFDISTANCE_PT4.

pfVec4::equal = (vec == v2). Tests for strict component-wise equality of two vectors vec and v2 and
returns FALSE or TRUE. Macro equivalent is PFEQUAL_VEC4.

pfVec4::almostEqual. Tests for approximate component-wise equality of two vectors vec and v2. It
returns FALSE or TRUE depending on whether the absolute value of the difference between each pair of
components is less than the tolerance tol. Macro equivalent is PFALMOST_EQUAL_VEC4. float&
operator [](int i) const float& operator [](int i) Accesses indexed component of vector.

int operator ==(const pfVec4&) Equality comparison operator.

pfVec4 operator -() const Nondestructive unary negation - returns a new vector.

pfVec4 operator +(const pfVec4&) pfVec4 operator -(const pfVec4&) Component-wise binary vector
addition and subtraction operators.

pfVec4& operator =(const pfVec4&) Vector assignment operator.

pfVec4& operator *=(float) pfVec4& operator /=(float) Component-wise scalar multiplication and

458

IRIS Performer 2.0 libpr C++ Reference Pages pfVec4(3pf)hh

division operators.

pfVec4& operator +=(const pfVec4&) pfVec4& operator -=(const pfVec4&) Component-wise vector
addition and subtraction operators.

pfVec4 operator *(const pfVec4&, float) pfVec4 operator *(float d, const pfVec4&) pfVec4 operator
/(const pfVec4&, float) pfVec4 operator *(const pfVec4&, const pfMatrix&) Component-wise binary
scalar multiplication and division operators.

Routines can accept the same vector as source, destination, or as a repeated operand.

NOTES
When using overloaded operators in C++, assignment operators, e.g. "+=", are somewhat more efficient
than the corresponding binary operators, e.g. "+", because the latter construct a temporary intermediate
object. Use assignment operators or macros for binary operations where optimal speed is important.

C++ does not support array deletion (i.e. delete[]) for arrays of objects allocated new operators that take
additional arguments. Hence, the array deletion operator delete[] should not be used on arrays of objects
created with new(arena) pfVec4[n].

SEE ALSO
pfMatrix, pfVec2, pfVec3

459

pfViewMat(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfModelMat, pfGetModelMat, pfViewMat, pfGetViewMat, pfInvModelMat, pfGetInvModelMat,
pfNearPixDist, pfGetNearPixDist, pfTexMat, pfGetTexMat − Set/get shadows of viewing, modeling,
texturing, and inverse modeling matrices; set/get near plane pixel distance

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfModelMat(pfMatrix mat);

void pfGetModelMat(pfMatrix mat);

void pfViewMat(pfMatrix mat);

void pfGetViewMat(pfMatrix mat);

void pfInvModelMat(pfMatrix mat);

void pfGetInvModelMat(pfMatrix mat);

void pfNearPixDist(float npd);

float pfGetNearPixDist(void);

void pfTexMat(pfMatrix mat);

void pfGetTexMat(pfMatrix mat);

DESCRIPTION
Certain eyepoint-dependent features require knowledge about the viewing and modeling matrices as well
as knowledge about the mapping of eye to window coordinates. Current eyepoint-dependent features
include pfLPointState, which renders PFGS_POINTS pfGeoSets as "light points" and pfSprite, which
rotates geometry to face the viewer.

pfViewMat, pfModelMat, pfTexMat and pfNearPixDist set the current viewing matrix, modeling
matrix, texture matrix, and distance to the near (view) plane in pixels. These routines in no way affect the
graphics library or its transformation stack. They only specify values used internally by libpr. libpf
applications do not need to call these routines unless they modify associated values through the graphics
library instead of through libpr matrix routines, e.g., if the viewing transform is set with pfLoadMatrix
instead of pfChanViewMat. pfTexMat is provided so libpr can change, then restore the current texture
matrix without incurring the cost of querying the graphics library for the matrix value.

pfLPointState and pfSprite both require the viewing and modeling matrices. The inverse modeling
matrix is automatically computed by IRIS Performer when necessary unless it is specified by the applica-
tion with pfInvModelMat. pfLPointState also requires the distance, measured in pixels, from the
eyepoint to the near plane of the viewing frustum. This value is required in order to render light points at
their proper screen size. Use pfNearPixDist to set the "near pixel distance" and pfGetNearPixDist to get
it.

pfViewMat makes mat the current viewing matrix. mat is a 4x4 homogeneous matrix which defines the

460

IRIS Performer 2.0 libpr C++ Reference Pages pfViewMat(3pf)hh

view coordinate system such that the upper 3x3 submatrix defines the coordinate system axes and the
bottom vector defines the coordinate system origin. IRIS Performer defines the view direction to be along
the positive Y axis and the up direction to be the positive Z direction, e.g., the second row of mat defines
the viewing direction and the third row defines the up direction in world coordinates. mat must be ortho-
normal or results are undefined. pfGetViewMat copies the current viewing matrix into mat.

pfModelMat makes mat the current modeling matrix. pfGetModelMat copies the current modeling
matrix into mat.

pfViewMat, pfModelMat, pfTexMat, pfInvModelMat, and pfNearPixDist are all display-listable com-
mands. If a pfDispList has been opened by pfOpenDList, these commands will not have immediate
effect but will be captured by the pfDispList and will only have effect when that pfDispList is later drawn
with pfDrawDList.

SEE ALSO
pfLPointState, pfSprite, pfDispList

461

pfWSConnection(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfGetCurWSConnection, pfOpenWSConnection, pfSelectWSConnection, pfOpenScreen,
pfCloseWSConnection, pfGetWSConnectionName, pfGetScreenSize, pfChooseFBConfig,
pfChooseFBConfigData − Window system utility routines

FUNCTION SPECIFICATION
#include <Performer/pr.h>

pfWSConnection pfGetCurWSConnection(void);

pfWSConnection pfOpenWSConnection(const char *str, int shared);

void pfSelectWSConnection(pfWSConnection ws);

pfWSConnection pfOpenScreen(int screen, int shared);

void pfCloseWSConnection(pfWSConnection ws);

const char* pfGetWSConnectionName(pfWSConnection ws);

void pfGetScreenSize(int screen, int *x, int *y);

pfFBConfig pfChooseFBConfig(pfWSConnection ws, int screen, int *attr);

pfFBConfig pfChooseFBConfigData(void **dst, pfWSConnection ws, int screen, int *attr,
void *arena);

/* typedef of X-based Performer Types */

typedef Display *pfWSConnection;

typedef XVisualInfo pfFBConfig;

typedef Window pfWSWindow;

typedef Drawable pfWSDrawable;

/* typedef of GL-based Performer Types */

#ifdef IRISGL

typedef int pfGLContext;

#else /* OPENGL */

typedef GLXContext pfGLContext;

#endif

PARAMETERS
ws identifies a pfWSConnection.

DESCRIPTION
These functions provide a single API for communicating with the window system that works across the
IRIS GL, IRIS GL mixed model (GLX), and OpenGL/X environments. Window system independent
types have been provided to match the X Window System types to provide complete portability between
the IRIS GL and OpenGL/X windowing environments.

462

IRIS Performer 2.0 libpr C++ Reference Pages pfWSConnection(3pf)hh

These routines communicate with the window system via a pfWSConnection to a window server. This
connection is per-process. If a process tries to use the pfWSConnection of another process, bad things are
likely to result. A process may use its pfWSConnection to open and communication with all windows on
all screens managed by that window server. Typically, a given machine will have a single window
server, even if they have multiple screens -- all screens are managed by the single server. Exceptions are
the multiple-keyboard machines. A pfWSConnection has a default screen on which windows will be
opened if no other screen is explicitly named (such as through pfWindow::setScreen). This default
screen is determined by the DISPLAY environment variable, and is screen 0 if the DISPLAY variable is
unset.

A pfWSWindow is a window-server window. In OpenGL or IRIS GL mixed model (GLX), this will be an
X window. In pure IRIS GL, this will be an IRIS GL window. By contrast, a pfWSDrawable is a window
system primitive that may be connected to a GL drawing context. In IRIS GL, this is simple a window;
however, in OpenGL, pfWSDrawable includes Pixmaps. pfGLContext is the GL context that is attached
to the pfWSDrawable.

Windows have framebuffer resources associated with them, such as a zbuffer, stencil planes, and possibly
multisample buffers. A framebuffer configuration can be created by pfChooseFBConfig, or
pfWindow::chooseFBConfig, and is returned in a pfFBConfig.

pfGetCurWSConnection returns the current connection to the window system. If there is no current
open connection, one is opened on the default display (using the DISPLAY environment variable).

pfOpenWSConnection opens the window server connection named by str and if shared is true, this con-
nection will be shared with IRIS Performer and made the current libpr window system connection via a
call to pfSelectWSConnection.

pfOpenScreen opens a local window server connection with the default screen of screen. If screen is (-1),
the default screen as set by the DISPLAY environment variable will be used, or screen 0 if this variable is
unset. Note that all window system connections can communication with all screens managed by that
window server, regardless of the value of the default screen.

pfSelectWSConnection sets the current IRIS Performer libpr window system connection to be ws. The
DISPLAY environment variable for that process will be set to the connection name for ws using the
putenv(3C) command. This window system connection will be that returned by
pfGetCurWSConnection.

pfCloseWSConnection will close the specified window server connection via XCloseDisplay. If ws was
the currently selected libpr, window server connection, the current connection will be reset to NULL.

pfGetWSConnectionName will return the string name for the window system connection. In the X win-
dow system, this corresponds to the string returned by the XDisplayString call.

463

pfWSConnection(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfGetScreenSize returns the X and Y size of screen for the server of the current window system connec-
tion in x and y.

pfChooseFBConfig takes an array of PFFB_ attribute tokens in attr and returns a matching pfFBConfig
describing a framebuffer configuration for the given window system connection, ws, and screen screen. If
ws is null, the current libpr window system connection will be used. If screen is (-1), the default screen for
the window system connection will be used. The attribute tokens and their values match the OpenGL
GLX tokens (see glXChooseVisual for additional information). These tokens and their values are (boole-
ans are true if present and should NOT be followed by any values):

PFFB_USE_GL
Boolean, true if present. Use GLX rendering (the default).

PFFB_BUFFER_SIZE
Depth of the color buffer

PFFB_LEVEL
Level in plane stacking. 0 is the main window. negative numbers are underlay planes,
positive numbers are overlay planes.

PFFB_RGBA
Boolean, does RGBA mode if present

PFFB_DOUBLEBUFFER
Boolean, does double buffering if present

PFFB_STEREO
Boolean, does stereo buffering if present

PFFB_AUX_BUFFERS
Number of auxiliary buffers

PFFB_RED_SIZE
Number of red component bits

PFFB_GREEN_SIZE
Number of green component bits

PFFB_BLUE_SIZE
Number of blue component bits

PFFB_ALPHA_SIZE
Number of alpha component bits

PFFB_DEPTH_SIZE
Number of depth bits

PFFB_STENCIL_SIZE
Number of stencil bits

464

IRIS Performer 2.0 libpr C++ Reference Pages pfWSConnection(3pf)hh

PFFB_ACCUM_RED_SIZE
Number of red accumulation bits

PFFB_ACCUM_GREEN_SIZE
Number of green accumulation bits

PFFB_ACCUM_BLUE_SIZE
Number of blue accumulation bits

PFFB_ACCUM_ALPHA_SIZE
Number of alpha accumulation bits

PFFB_SAMPLES_SGIS
Number of samples per pixel

PFFB_SAMPLE_BUFFERS_SGIS
The number of multisample buffers

The list must be terminated with a NULL or None. IRIS Performer will try to use a multisample buffer
with 8 samples per pixel unless the number of samples or number of multisample buffers has been expli-
citly set to 0 in the attribute array. The default Performer framebuffer configuration looks like:

static int FBAttrs[] =

{

PFFB_RGBA,

PFFB_DOUBLEBUFFER,

PFFB_DEPTH_SIZE, 24,

PFFB_RED_SIZE, 8,

PFFB_SAMPLES, 8,

PFFB_STENCIL_SIZE, 4,

None

};

pfChooseFBConfigData is similar to pfChooseFBConfig but it also returns any extra window system
dependent data in data. This is useful for IRIS GL mixed model programs where data will be a complete
GLX attribute array appropriate for GLXlink. See the GLXlink man page for more information.

SEE ALSO
pfWindow, glXChooseVisual, GLXgetconfig, GLXlink, XOpenDisplay, XCloseDisplay

465

pfWindow(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

NAME
pfWindow, pfGetCurWin, pfInitGfx − GL-independent window creation/management routines

FUNCTION SPECIFICATION
#include <Performer/pr/pfWindow.h>

pfWindow::pfWindow();

pfType* pfWindow::getClassType(void);

void pfWindow::setAspect(int x, int y);

void pfWindow::setFBConfig(pfFBConfig vInfo);

void pfWindow::setFBConfigAttrs(int *attr);

void pfWindow::setFBConfigData(void *data);

void pfWindow::setFBConfigId(int id);

void pfWindow::setFullScreen(void);

void pfWindow::setGLCxt(pfGLContext gCxt);

void pfWindow::setIndex(int index);

void pfWindow::setMode(int mode, int val);

void pfWindow::setName(const char *name);

void pfWindow::setOrigin(int xo, int yo);

void pfWindow::setOriginSize(int xo, int yo, int xs, int ys);

void pfWindow::setOverlayWin(pfWindow *ow);

void pfWindow::setScreen(int s);

void pfWindow::setShare(uint mode);

void pfWindow::setSize(int xs, int ys);

void pfWindow::setStatsWin(pfWindow *statsWin);

void pfWindow::setWSConnectionName(const char *name);

void pfWindow::setWSDrawable(pfWSConnection dsp, pfWSDrawable xWin);

void pfWindow::setWSWindow(pfWSConnection dsp, pfWSWindow xWin);

void pfWindow::setWinList(pfList *wl);

void pfWindow::setWinType(uint type);

void pfWindow::getAspect(int *x, int *y);

466

IRIS Performer 2.0 libpr C++ Reference Pages pfWindow(3pf)hh

void pfWindow::getCurOriginSize(int *xo, int *yo, int *xs, int *ys);

void pfWindow::getCurScreenOriginSize(int *xo, int *yo, int *xs, int *ys);

pfState* pfWindow::getCurState(void);

pfFBConfig pfWindow::getFBConfig(void);

int* pfWindow::getFBConfigAttrs(void);

void* pfWindow::getFBConfigData(void);

int pfWindow::getFBConfigId(void);

pfGLContext pfWindow::getGLCxt(void);

int pfWindow::getIndex(void);

int pfWindow::getMode(int mode);

const char* pfWindow::getName(void);

void pfWindow::getOrigin(int *xo, int *yo);

pfWindow* pfWindow::getOverlayWin(void);

int pfWindow::getScreen(void);

pfWindow* pfWindow::getSelect(void);

uint pfWindow::getShare(void);

void pfWindow::getSize(int *xs, int *ys);

pfWindow* pfWindow::getStatsWin(void);

const char * pfWindow::getWSConnectionName(void);

pfWSDrawable pfWindow::getWSDrawable(void);

pfWSWindow pfWindow::getWSWindow(void);

pfList* pfWindow::getWinList(void);

uint pfWindow::getWinType(void);

int pfWindow::attach(pfWindow *win1);

int pfWindow::detach(pfWindow *win1);

pfFBConfig pfWindow::chooseFBConfig(int *attr);

void pfWindow::close(void);

void pfWindow::closeGL(void);

int pfWindow::isOpen(void);

467

pfWindow(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

int pfWindow::mQuery(int *which, int *dst);

void pfWindow::open(void);

static pfWindow* pfWindow::openNewNoPort(const char *name, int screen);

int pfWindow::query(int which, int *dst);

pfWindow* pfWindow::select(void);

void pfWindow::swapBuffers(void);

extern pfWindow * pfGetCurWin(void);

extern void pfInitGfx(void);

/* typedef of X-based Performer Types */

typedef Display *pfWSConnection;

typedef XVisualInfo pfFBConfig;

typedef Window pfWSWindow;

typedef Drawable pfWSDrawable;

#ifdef IRISGL

typedef int pfGLContext;

#else /* OPENGL */

typedef GLXContext pfGLContext;

#endif

PARENT CLASS FUNCTIONS
The IRIS Performer class pfWindow is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfWindow. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfWindow can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);

468

IRIS Performer 2.0 libpr C++ Reference Pages pfWindow(3pf)hh

pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();

DESCRIPTION
These functions provide a single API for creating and managing windows that works across the IRIS GL,
IRIS GL mixed model (GLX), and OpenGL/X environments. Window system independent types have
been provided to match the X Window System types to provide complete portability between the IRIS GL
and OpenGL/X windowing environments.

new(arena) allocates a pfWindow from the specified memory arena, or from the heap if arena is NULL.
new allocates a pfWindow from the default memory arena (see pfGetSharedArena). Like other pfOb-
jects, pfWindows cannot be created statically, on the stack or in arrays.

pfWindow::getClassType returns the pfType* for the class pfWindow. The pfType* returned by
pfWindow::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfWindow. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfWindow::setAspect sets the aspect ratio of the pfWindow to be x:y. pfWindow::getAspect returns the
aspect X and Y components of the pfWindow in x and y.

pfWindow::setFullScreen will cause the window to be a full screen window and change its size
appropriately. Future queries of size and origin will reflect this new full screen size.

pfWindow::setFBConfig sets the framebuffer configuration for the pfWindow to be that specified by the
XVisualInfo*, vInfo. This will determine the framebuffer configuration used to create the graphics context.

469

pfWindow(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfWindow::getFBConfig will return the XVisualInfo* of the pfWindow.

pfWindow::setFBConfigAttrs provides a window system independent list of attribute tokens, attr, to
describe the desired framebuffer configuration of the pfWindow. The attribute list format is the same as
the SGI GLX attribute format for OpenGL, but with matching PFFB_* tokens that can be used with either
IRIS GL or OpenGL in place of the GLX_* tokens. See the glXChooseVisual reference pages for more
information. pfWindow::getFBConfigAttrs will return the attribute array corresponding to the visual of
win.

pfWindow::setFBConfigData can be used to provide GL dependent data directly to the IRIS GL or
OpenGL framebuffer configuration routine. pfWindow::getFBConfigData can be used to get back GL
dependent data resulting from these calls. In the case of IRIS GL, this routine is only useful for X win-
dows and the resulting data will not be the same data that was passed in, but will be that data returned
by IRIS GL routine GLXgetconfig(3g) and expected by the IRIS GL routine GLXlink(3). This data is use-
ful for IRIS GL X windows because IRIS GL X query routines and Motif routines require this data. See the
IRIS GLXgetconfig(3g) and GLXlink(3g) reference pages for more information.

pfWindow::setFBConfigId allows you to directly set the OpenGL X visual id to be used in configuring
the resulting OpenGL/X window. pfWindow::getFBConfigId will return the current OpenGL visual id
of the window (or -1 if the id is not known, or if running under IRIS GL). See the
XVisualIDFromVisual(3X11) and XGetVisualInfo(3X11) reference pages for more information about X
visuals. This functionality is not supported under IRIS GL operation.

pfWindow::setGLCxt sets the graphics context of the pfWindow to be gCxt. If the graphics context win-
dow of the pfWindow has been set, pfWindow::open on the pfWindow will use that context and not
create another. pfWindow::getGLCxt will return the graphics context of the pfWindow.

pfWindow::setIndex sets the alternate configuration window list index of the pfWindow to be index. If
index is greater than or equal to zero, it will select an alternate configuration window from the pfWindow
pfWinList. index may also select one of the standard windows: PFWIN_STATS_WIN,
PFWIN_OVERLAY_WIN, and the default, PFWIN_GFX_WIN. The window indexing is only one level
deep - if the selected pfWindow has a window list and index, it is ignored and the graphics window and
context of that pfWindow is used to determine the drawing area. pfWindow::getIndex will return the
current index for the pfWindow. pfWindow::getSelect will return the pointer to the currently selected
pfWindow for the pfWindow.

pfWindow::setWinList sets a pfWindow list of alternate configuration windows for the pfWindow to be
the pfList of pfWindow*s, wlist. pfWindow::getWinList will return the current window list. These alter-
nate configuration windows are assumed to have the same pfWSWindow parent window as the base
pfWindow. Additionally, for pure IRIS GL windows, they must have the same graphics window and
graphics context as the base pfWindow. These alternate configuration windows allow you to provide
specify multiple framebuffer configurations for the same drawing area on the screen for tasks such as
overlay drawing or single-buffered drawing.

470

IRIS Performer 2.0 libpr C++ Reference Pages pfWindow(3pf)hh

pfWindow::setMode sets the pfWindow mode specified by mode of the pfWindow to val. mode may be
one of:

PFWIN_ORIGIN_LL will cause placement of win to be relative to the lower left corner of it
and its parent window.

PFWIN_NOBORDER will cause the window to not have the window system border
around the outside of its drawing area. To have a drawing area that
is truly full screen, this mode should be set.

PFWIN_AUTO_RESIZE will cause sub-pfWindows of the pfWindow who also have this
mode set to be automatically reconfigured to match the size and posi-
tion of win. This includes the PFWIN_OVERLAY_WIN, the
PFWIN_STATS_WIN, and the current selected window from the
pfWindow list. The selection of a new window from the pfWindow
list will also be automatically sized and positioned if it is using the
PFWIN_AUTO_RESIZE mode. This mode is only useful for win-
dows of type PFWIN_TYPE_X and will have no effect on IRIS GL
windows. This mode is on by default.

PFWIN_HAS_OVERLAY will cause pfWindow::open to automatically create and open (if
necessary) an overlay window for the main pfWindow. If the win-
dow is of type PFWIN_AUTO_RESIZE, the overlay window will be
automatically configured to keep the same size/position as the main
window.

PFWIN_EXIT Causes the window to receive special ClientMessage X events when
the user selects "Quit" or "Exit" from the window manager border
menu on the window. The XEvent.xclient.message_type field will be
set to point to the X atom for "WM_PROTOCOLS" and
XEvent.xclient.data.l[0] will be set to point to the X atom,
"WM_DELETE_WINDOW". See the examples below and the
XClientMessageEvent reference page for more information. This
mode is only useful for windows of type PFWIN_TYPE_X and will
have no effect on IRIS GL windows.

pfWindow::getMode will return the value of the requested mode in mode.

pfWindow::setName sets the name of a pfWindow. By default, pfWindows have no name.
pfWindow::getName returns the name of a pfWindow.

pfWindow::setOrigin sets the origin of the pfWindow the pfWindow to be (xo,yo), relative to its parent
window. pfWindow::getOrigin returns the origin set by pfWindow::setOrigin. If the pfWindow mode
is PFWIN_ORIGIN_LL, the origin of the window is considered to be the lower-left corner. Otherwise, the
origin of the window is considered to be the X-style upper-left corner. pfWindow::setSize sets the size of
the pfWindow the pfWindow to be x by y. pfWindow::getSize returns the size of the pfWindow set by
pfWindow::setSize, by pfWindow::open, or by pfWindow::getCurOriginSize.

471

pfWindow(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfWindow::setOriginSize sets both the origin and size of the pfWindow.

pfWindow::getCurOriginSize returns the current origin and size of the pfWindow the pfWindow, if
open, otherwise it returns the origin and size set by pfWindow::setOrigin, pfWindow::setSize, or
pfWindow::setOriginSize. The internal origin and size of the pfWindow will be updated. This routine
accesses the graphics context and/or the X server and is slow on a window of type PFWIN_TYPE_X.

pfWindow::getCurScreenOriginSize returns the current screen-relative origin and size of the pfWindow
the pfWindow, if open, otherwise it returns the origin and size set by pfWindow::setOrigin,
pfWindow::setSize, or pfWindow::setOriginSize. This routine accesses the graphics context. For win-
dows of type PFWIN_TYPE_X, it must make expensive queries to the X server and can be very slow.

pfWindow::setOverlayWin sets the pfWindow overlay to be the associated PFWIN_OVERLAY_WIN
window for the main drawing pfWindow, the pfWindow. This pfWindow is selected on the pfWindow
with pfWindow::setIndex(PFWIN_OVERLAY_WIN). overlay should have the same parent X window as
the pfWindow. pfWindow::getOverlayWin will return the PFWIN_OVERLAY_WIN pfWindow.

pfWindow::setScreen sets the screen of the pfWindow to be screen. The screen selection takes effect upon
pfWindow::open. A screen will be set by pfWindow::open if on was not previously set. The screen of a
pfWindow cannot be changed once set. pfWindow::getScreen will return the screen of a pfWindow.

pfWindow::setShare sets the attributes that are to be shared by pfWindows of the share group of the
pfWindow to be the bitmask specified by share. Some share attributes, such as PFWIN_SHARE_TYPE
and PFWIN_SHARE_GFX_OBJS, must be specified before windows in the share group are opened. The
following tokens specify the attributes that may be shared among pfWindows and may be or-ed together
to from share:

PFWIN_SHARE_MODE

PFWIN_SHARE_FBCONFIG

PFWIN_SHARE_GL_CXT

PFWIN_SHARE_GL_OBJS

PFWIN_SHARE_STATE

PFWIN_SHARE_OVERLAY_WIN

PFWIN_SHARE_STATS_WIN

PFWIN_SHARE_TYPE

PFWIN_SHARE_WSDRAWABLE

PFWIN_SHARE_WSWINDOW
pfWindow::getShare will return the share bitmask of the pfWindow.

pfWindow::setStatsWin sets the pfWindow statsWin to be the associated PFWIN_OVERLAY_WIN

472

IRIS Performer 2.0 libpr C++ Reference Pages pfWindow(3pf)hh

window for the main drawing pfWindow, the pfWindow. This pfWindow is selected on the pfWindow
with pfWindow::setIndex(PFWIN_STATS_WIN). statsWin should have the same parent X window as
the pfWindow. pfWindow::getStatsWin will return the PFWIN_STATS_WIN pfWindow.

pfWindow::setWinType sets the type of a pfWindow where type is an or-ed bitmask that may contain the
type constants listed below. pfWindow::getWinType returns the type of a pfWindow. The type of a
pfWindow only takes effect by the call of pfWindow::open. The type of an open pfWindow cannot be
changed. The pfWindow type attributes all start with PFWIN_TYPE_ and are:

PFWIN_TYPE_NOPORT
The resulting window will have a graphics context but will not be mapped onto the
screen. Windows of type PFWIN_TYPE_NOPORT are useful for queries about the
graphics resources of the system and are needed for accessing the Video Sync Clock. To
facilitate this, there is the special utility routine, pfWindow::openNewNoPort. Also, see
the reference pages for pfInitVClock, and pfQuerySys. If this token is specified, all
other type tokens are ignored.

PFWIN_TYPE_X
The window opened will be an X window. OpenGL windows are always of type
PFWIN_TYPE_X so this mode only has effect in IRIS GL and will cause the resulting
window to be a IRIS GL mixed model (GLX) window. Windows of this type have as
their pfWSWindow an X window (pfWindow::setWSWindow). The pfWSDrawable that
is attached to the graphics context is by default an X window (but can be set as an X Pix-
map -- pfWindow::setWSDrawable) and has a framebuffer configuration matching that
specified by the pfWindow. If the pfWSDrawable of the pfWindow is a separate X win-
dow from the parent pfWSWindow X window (as is created by default), the pfWSDraw-
able window can actually be changed for one with a different framebuffer configuration
without ugly flashing. To facilitate this, pfWindows may also have a list of windows (-
pfWindow::setWinList) that may have different framebuffer configuration types and
pfWSDrawable X windows but all share the same parent X pfWSWindow.

PFWIN_TYPE_OVERLAY
The pfWindow the pfWindow will be given an appropriate framebuffer configuration, if
not already set, that will support the standard overlay draw configuration at the time of
the call to pfWindow::open. For X windows, an X colormap will also be created and
attached to the corresponding X window. See the reference pages for XCreateWindow,
and XCreateColormap for more information.

PFWIN_TYPE_STATS
The pfWindow the pfWindow will be given a framebuffer configuration, if one has not
already been specified through pfWindow::setFBConfig or pfWindow::chooseFBConfig,
that will support the current pfStats::setHwAttr configuration at the time of the call to
pfWindow::open. See the pfStats::setHwAttr reference page for information on different
statistics attributes and their framebuffer requirements.

473

pfWindow(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

pfWindow::setWSWindow sets the main window system window of the pfWindow to be xWin This rou-
tine is only relevant for pfWindows of type PFWIN_TYPE_X. The WSWindow of a pfWindow, if not
NULL, is used to manage the size and position of the pfWindow. The WSWindow should also be the
parent window of the WSDrawable window of the pfWindow. The WSWindow should be shared
amongst all sub-pfWindows, such as the overlay window, the stats window, and any windows n the
pfWindow list. If the WSWindow of the pfWindow has been set, pfWindow::open on the pfWindow will
use that X window and not create another. pfWindow::getWSWindow will return the X Window of the
pfWindow. Pure IRIS GL windows require that the WSWindow, WSDrawable, and GL Context are all
the same and can be set with pfWindow::setGLCxt.

pfWindow::setWSDrawable sets the graphics X drawable of the pfWindow to be drawable. The drawable
of a pfWindow is attached to the graphics context and may be an X Pixmap or X Window. If provided as
an X Window, it should be a child of the WSWindow of the pfWindow. If a drawable has not been pro-
vided by the time of pfWindow::open, an X Window will be created by default. If the graphics drawable
of the pfWindow has been set, pfWindow::open on the pfWindow will use that X window and not create
another. pfWindow::getWSDrawable will return the drawable of the pfWindow.
pfWindow::getCurWSDrawable will return the drawable of the currently selected window of the win-
dow list. Pure IRIS GL windows require that the WSWindow, WSDrawable, and GL Context are all the
same and can be set with pfWindow::setGLCxt.

pfWindow::setWSConnectionName allows you to specify the exact window server and default screen
for the successive opening of the window. This can be used for specifying remote displays or on machines
running more than one window server. pfWindow::getWSConnectionName will return the name speci-
fying the current window server target.

pfWindow::attach puts win1, and its current share group, in the pfWindow share group of the pfWin-
dow. The attributes of the pfWindow will be copied to win1 and all of the windows in win1’s previous
share group. pfWindows cannot be removed from a share group. pfWindow::detach removes win1 from
the share group of win0.

pfWindow::chooseFBConfig will select a framebuffer configuration for the pfWindow, constrained by
current settings, such as type and the framebuffer configuration attributes, on the pfWindow. Addition-
ally, the selection of the framebuffer configuration will be relative to the screen of the pfWindow. If the
screen has not been set, it will be determined from the default screen of the current pfWSConnection or
DISPLAY environment variable. The return value is the resulting pfFBConfig, or NULL, indicating
failure. For X windows, pfWindow::chooseFBConfig and pfWindow::getFBConfig returns the resulting
XVisualInfo*.

pfWindow::open creates a graphics context and window, constrained by the settings of the pfWindow on
the current selected display via pfGetCurWSConnection. Attributes of the pfWindow that are not set are
created and set as necessary. If the graphics window and context are not set, they will be created.

If the pfWindow framebuffer configuration is not set (pfWindow::setFBConfig or

474

IRIS Performer 2.0 libpr C++ Reference Pages pfWindow(3pf)hh

pfWindow::chooseFBConfig), the graphics window will get the default rendering framebuffer
configuration for its current type (pfWindow::setWinType). For a rendering graphics window of type
PFWIN_TYPE_X, if the graphics drawable has been set via pfWindow::setWSDrawable, the framebuffer
configuration of that window is used for the graphics context. Otherwise, a default rendering frame-
buffer configuration for the current machine will be chosen via (pfChooseFBConfig). There is a key
difference in the default configurations for X windows and pure IRIS GL windows on machines that offer
hardware multisample antialiasing buffers. Because an X window cannot have its configuration changed,
X windows will have multisample buffers by default. However, pure IRIS GL buffers can be
reconfigured if antialiasing is requested and so do not have multisample buffers by default. All pfWin-
dows are automatically initialized with pfInitGfx upon opening with pfWindow::open.

If the x or y size of the pfWindow is <= 0, then a rubber-band window will be created for the user to
determine the origin and size of the window, constrained by the pfWindow aspect if set (-
pfWindow::setAspect). If the size of the pfWindow is <= 0 but the origin is < 0, then the graphics win-
dow will be opened with fixed size but allow the user to place the window. The pfWindow origin and
size may both be internally set by pfWindow::open. If the PFWIN_HAS_OVERLAY mode has been set, a
PFWIN_OVERLAY_WIN will be automatically created (if not already set, pfWindow::setOverlayWin)
and opened. If the pfWindow has a pfWindow list (pfWindow::setWinList) and the current pfWindow
index is not PFWIN_GFX_WIN, then the selected pfWindow from the list will be opened. A pfState is
automatically created for the pfWindow and the pfWindow is made the current libpr pfWindow.
pfWindow::getCurState will return the current pfState of the pfWindow. pfGetCurWin will return the
pointer to the current libpr pfWindow.

pfWindow::close will destroy the graphics context of the open the pfWindow. If the pfWindow is of type
PFWIN_TYPE_X, its X windows will be unmapped. pfWindow::closeGL will destroy the current graph-
ics context and graphics X window but leaves the top level X window in tact.

pfWindow::isOpen returns the open status of the pfWindow.

pfWindow::query takes a window configuration query token which and writes into dst the value for the
corresponding configuration of the the opened pfWindow. The pfWindow query token may be one of:

PFQWIN_RGB_BITS returns the number of bits per R_G_B color component allocated in
the main color buffer.

PFQWIN_ALPHA_BITS returns the number of bits allocated for alpha in the main color
buffer.

PFQWIN_CI_BITS returns the number of bits for colorindex indices.

PFQWIN_DEPTH_BITS returns the number of framebuffer bits allocated for Z.

PFQWIN_MIN_DEPTH_VAL
returns the minimum representable Z depth value.

475

pfWindow(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

PFQWIN_MAX_DEPTH_VAL
returns the maximum representable Z depth value.

PFQWIN_MS_SAMPLES returns the number of multisample samples.

PFQWIN_STENCIL_BITS returns the number of bits in the stencil buffer.

PFQWIN_NUM_STEREO returns whether the window has stereo buffers allocated.

PFQWIN_NUM_STEREO returns whether the window has double-buffered color buffers allo-
cated.

PFQWIN_NUM_AUX_BUFFERS
returns the number of auxiliary color buffers allocated for the win-
dow.

PFQWIN_LEVEL returns the level of window planes (0 is normal drawing level, nega-
tive for underlay and positive for overlay).

PFQWIN_ACCUM_RGB_BITS
returns the number of bits per R_G_B color component allocated in
the accumulation buffer.

PFQWIN_ACCUM_ALPHA_BITS
returns the number of bits of alpha allocated in the accumulation
buffer.

pfWindow::mQuery takes an NULL-terminated array of query tokens and a destination buffer and will
do multiple queries. The return value will be the number of bytes successfully written. This routine is
more efficient than pfWindow::query if multiple queries are desired.

pfWindow::swapBuffers causes the currently selected front and back buffers of the normal framebuffer
of an open window to be exchanged during the next vertical retrace period.

pfGetCurWin will return the pointer current IRIS Performer pfWindow. This a window is made the
current window when it is opened with pfWindow::open or selected with pfWindow::select.

pfInitGfx will configure the current graphics context correctly for IRIS Performer rendering operation
and is called automatically when pfWindows are opened. It will enable z-buffer depth testing, viewport
clipping, and subpixel vertex accuracy mode. The Viewing projection will be a two-dimensional one-to-
one orthographic mapping from eye coordinates to window coordinates with distances to near and far
clipping planes -1 and 1, respectively. The model matrix will be the current matrix and will be initialized
to the identity matrix. It is highly recommended that a libpr application managing its own windows call
pfInitGfx for its normal drawing.

For pure IRIS GL windows, if no framebuffer configuration attributes have been specified for any existing
current IRIS Performer pfWindow via pfWindow::setFBConfigAttrs, pfInitGfx will put the window in
RGB and double-buffer mode and multisample buffers as appropriate to the system, and will configure

476

IRIS Performer 2.0 libpr C++ Reference Pages pfWindow(3pf)hh

hardware sizes for color, stencil, and Z. The default configuration, if available will be double buffered
with eight bits per component of RGBA color, 24 bits of depth buffer, and four bits of stencil. If this is not
be available, one bit of stencil will be used. Some graphics hardware may support fewer bits of depth and
RGBA as well. If a multisample buffer has previously been allocated, such as by a call to pfAntialias, the
default multisample configuration will be restored. See the pfAntialias reference page for detail on the
multisample antialiasing framebuffer configuration. The pfQuerySys command can be used to query
these parameters for the current system. pfWindow::query can be used to query the configuration of a
specific window after it has been opened.

NOTES
X Window origin and size: There are some subtle issues in the management of origin and size of X win-
dows. With X windows, it can be very expensive to obtain the current screen relative origin of a window,
particularly if the window is in a hierarchy. Therefore, the origin of a window is defined to be that rela-
tive to it’s parent window (which can be the screen). Additionally, there are a bevy of routines for getting
the window origin. User code should not rely on knowning the screen relative origin but should be
window-coordinate relative to be efficient and reliable.

X Framebuffer Configuration: The selection of framebuffer configurations for X windows uses the
default GL selection utilities: GLXgetconfig(3g) for IRIS GLX and glXChooseVisual(3X11) for
OpenGL/X. These utilities return the maximum possible framebuffer configuration matching the
requested attributes. However, this may not be the optimal configuration for performance. One such
example occurs with OpenGL on the RealityEngine: when requesting four multisample subsamples and
a depth buffer of 24 bits, a depth buffer of 32 bits will be returned which has measurably slower fill rate
than a 24 bit depth buffer. If the default utilities are not returning the desired framebuffer configuration,
you can do your own X visual selection and set the visual id or the visual itself on the pfWindow with
pfWindow::setFBConfigId and pfWindow::setFBConfig respectively. Additionally, libpfutil provides an
OpenGL visual chooser, pfuChooseFBConfig, that limits the performance critical attributes: multisam-
ples, depth, RGB color, and stencil.

A special case for framebuffer configuration exists for the Extreme graphics platforms. On these plat-
forms, the default framebuffer configuration has NO allocated stencil bits because stencil bits will reduce
depth buffer resolution. The user may explicitly request stencil bits if desired. The Indy graphics plat-
forms do not offer stencil under IRIS GL operation.

EXAMPLES
This example creates a pfWindow structure and opens and initializes the window for Performer drawing.
This window will be an OpenGL/X window if linked with the OpenGL Performer libraries and will be a
pure IRIS GL window if linked with the IRIS GL IRIS Performer libraries.

477

pfWindow(3pf) IRIS Performer 2.0 libpr C++ Reference Pageshh

{

pfWindow *win;

pfInitState();

win = new pfWindow;

win->setName("Performer");

win->open(); /* create window and rendering context */

......

}

This example is a more detailed example for creating a window of pre-defined size and position. It also
uses IRIS GL mixed model (GLX) when linked with the IRIS GL libraries and will have an overlay win-
dow created automatically when the window is opened.

{

pfWindow *win;

pfWindow *overlay;

WSConnection dsp;

pfInitState();

win = new pfWindow;

win->setName("Performer");

win->setOriginSize(0, 0, 500, 500);

win->setWinType(PFWIN_TYPE_X | PFWIN_TYPE_OVERLAY);
win->open(); /* create window, overlay, and rendering context */

/* get back some useful things created by Performer */

overlay = win->getOverlayWin();

/* get back Performer’s internal shared display

connection to use for event handling */

dsp = pfGetCurWSConnection();

}

This example demonstrates how to catch the X ClientMessage event when a window of a pfWindow of
type PFWIN_TYPE_EXIT is killed via the Quit or Exit option in the window manager menu on the win-
dow border.

{

WSConnection theDisplay = pfGetCurWSConnection();

Atom WMProtocols = XInternAtom(theDisplay, "WM_PROTOCOLS", 1);

ATOM WMDeleteWindow = XInternAtom(theDisplay, "WM_DELETE_WINDOW", 1);

478

IRIS Performer 2.0 libpr C++ Reference Pages pfWindow(3pf)hh

....

/* in X event handling loop */

{

XEvent event;

XNextEvent(theDisplay, &event);

/* in X event handling switch */

case ClientMessage:

if ((event.xclient.message_type == wm_protocols) &&

(event.xclient.data.l[0] == wm_delete_window)) {

/* handle window exit */

}

break;

.....

}

}

SEE ALSO
pfStats, pfState, pfSelectWSConnection, pfGetCurWSConnection, pfuChooseFBConfig, GLXgetconfig,
GLXlink, XCreateWindow, XGetWindowAttributes, XGetVisualInfo, XVisualIDFromVisual

479

libpfdu is a database utility library,
with functions for reading and
writing scene graphs.

This library contains key
computational geometry and data
organization tools for tasks including
polygon decomposition, triangle
meshing, attribute sharing, pfGeoSet
construction, and structure
optimization.

libpfdu

Chapter 1

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdBreakup(3pf)hh

NAME
pfdBreakup − Create an artificial hierarchy from unstructured input geometry.

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

pfNode * pfdBreakup(pfGeode *geode, float geodeSize, int stripLength, int geodeChild);

DESCRIPTION
pfdBreakup accepts a pfGeode that contains pfGeoSets of type PFGS_TRISTRIPS and builds a new
scene graph, with the same geometric content but with a spatial subdivision structure designed for
efficient processing. When the subdivision process is successful pfdBreakup returns the root of the new
scene graph. NULL is returned on failure. Failure is often due to providing non-PFGS_TRISTRIPS
pfGeoSets to pfdBreakup.

The pfGeoSets in geode are subdivided based on their geometrical centers using an octree. The degree of
recursive partitioning desired is specified in the function arguments. The resulting scene graph will have
pfGeodes of a size no larger than geodeSize and triangle strips no longer than stripLength. Each pfGeode
created will have no more than geodeChild pfGeoSets.

NOTES
The input geode is not deleted.

The libpfdu source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

BUGS
pfdBreakup does not work for indexed pfGeoSets.

SEE ALSO
pfGeoSet, pfGeode, pfNode

483

pfdBuilder(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

NAME
pfdInitBldr, pfdExitBldr, pfdNewBldr, pfdDelBldr, pfdSelectBldr, pfdGetCurBldr, pfdAddBldrGeom,
pfdAddIndexedBldrGeom, pfdBldrStateVal, pfdGetBldrStateVal, pfdBldrStateMode, pfdGetBldrSta-
teMode, pfdBldrStateAttr, pfdGetBldrStateAttr, pfdBldrStateInherit, pfdGetBldrStateInherit, pfdCap-
tureDefaultBldrState, pfdResetBldrState, pfdPushBldrState, pfdPopBldrState, pfdSaveBldrState,
pfdLoadBldrState, pfdBldrGState, pfdGetBldrGState, pfdBuild, pfdBuildNode, pfdSelectBldrName,
pfdGetCurBldrName, pfdGetTemplateObject, pfdResetAllTemplateObjects, pfdResetObject,
pfdMakeDefaultObject, pfdResetBldrGeometry, pfdResetBldrShare, pfdCleanBldrShare, pfdDe-
faultGState, pfdGetDefaultGState, pfdMakeSceneGState, pfdOptimizeGStateList, pfdBldrMode,
pfdGetBldrMode, pfdBldrAttr, pfdGetBldrAttr, pfdBldrDeleteNode − Provides a simple interface
between model input code and internal Performer model representations.

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

void pfdInitBldr(void);

void pfdExitBldr(void);

pfdBuilder * pfdNewBldr(void);

void pfdDelBldr(pfdBuilder *bldr);

void pfdSelectBldr(pfdBuilder *bldr);

pfdBuilder * pfdGetCurBldr(void);

void pfdAddBldrGeom(pfdGeom *prims, int count);

void pfdAddIndexedBldrGeom(pfdGeom *prims, int count);

void pfdBldrStateVal(int which, float val);

float pfdGetBldrStateVal(int which);

void pfdBldrStateMode(int mode, int val);

int pfdGetBldrStateMode(int mode);

void pfdBldrStateAttr(int which, const void *attr);

const void * pfdGetBldrStateAttr(int attr);

void pfdBldrStateInherit(uint mask);

uint pfdGetBldrStateInherit(void);

void pfdCaptureDefaultBldrState(void);

void pfdResetBldrState(void);

void pfdPushBldrState(void);

484

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdBuilder(3pf)hh

void pfdPopBldrState(void);

void pfdSaveBldrState(void *name);

void pfdLoadBldrState(void *name);

void pfdBldrGState(const pfGeoState *gstate);

const pfGeoState * pfdGetBldrGState(void);

pfNode * pfdBuild(void);

pfNode * pfdBuildNode(void *name);

void pfdSelectBldrName(void *name);

void * pfdGetCurBldrName(void);

pfObject * pfdGetTemplateObject(pfType *type);

void pfdResetAllTemplateObjects(void);

void pfdResetObject(pfObject *obj);

void pfdMakeDefaultObject(pfObject *obj);

void pfdResetBldrGeometry(void);

void pfdResetBldrShare(void);

void pfdCleanBldrShare(void);

void pfdDefaultGState(pfGeoState *def);

const pfGeoState * pfdGetDefaultGState(void);

pfGeoState * pfdMakeSceneGState(pfList *gstateList, pfGeoState *previousGlobalState);

void pfdOptimizeGStateList(pfList *gstateList, pfGeoState *globalGState);

void pfdBldrMode(int mode, int val);

int pfdGetBldrMode(int mode);

void pfdBldrAttr(int which, void *attr);

void * pfdGetBldrAttr(int which);

void pfdBldrDeleteNode(pfNode *node);

DESCRIPTION
Converting a model database into Performer runtime structures is a very common task which almost all
Performer applications must do. However, the form in which databases are modeled does not necessarily
correspond to Performer runtime structures. Therefore, the task of reading database information can be
tedious.

The Performer Builder is meant to manage most of the details of constructing efficient runtime structures.
It provides a simple and convenient interface for bringing scene data into the application without the

485

pfdBuilder(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

need for considering how best to structure that data for efficient rendering in Performer. The Builder pro-
vides a comprehensive interface between model input code (such as database file parsers) and the internal
mechanisms of scene representation in Performer.

The operational state of the Builder is encapsulated in a pfdBuilder object. During execution, there is
always a current pfdBuilder defined. pfdInitBldr initializes the current (default) pfdBuilder and
pfdExitBldr terminates its use. For those who wish to explicitly manage the use of several builders,
pfdNewBldr creates a new pfdBuilder object and pfdDelBldr destroys a pfdBuilder object.
pfdSelectBldr and pfdGetCurBldr set and query the current pfdBuilder, respectively.

The Builder is used in an immediate mode fashion. A typical client will feed a series of geometric primi-
tives to the Builder, occasionally setting certain graphics states, and finally request that the Builder con-
vert all the input data into a Performer scene graph.

pfdAddBldrGeom is the means by which a new geometric primitive is entered into the Builder. It
accepts a pointer to a single pfdGeom structure prims. If the indicated pfdGeom is a line-strip, then the
count argument provides the number of line segments in the strip. pfdAddIndexedBldrGeom provides
the same functions for indexed primitives. See the documentation for the Performer geometry builder (-
pfdGeoBuilder) for documentation on the structure and use of the pfdGeom structure.

In addition to geometry, we need to specify various graphics states. There is always a current graphics
state being applied to input geometric primitives. pfdBldrStateVal, pfdGetBldrStateVal, pfdBldrSta-
teMode, pfdGetBldrStateMode, pfdBldrStateAttr, pfdGetBldrStateAttr, pfdBldrStateInherit, and
pfdGetBldrStateInherit are used to access and alter this state. These functions are an exact duplication of
the interface to pfGeoStates; refer to the pfGeoState documentation for details on graphics states and
their use.

The current graphics state can also be manipulated as a whole. pfdPushBldrState and pfdPopBldrState
manipulate a stack of graphics states, the top of which is the current state. pfdDefaultGState records the
state defined by pfGeoState def as the Builder’s default state. pfdResetBldrState resets the current graph-
ics state to the default state, and pfdCaptureDefaultBldrState makes the current state the default state.
Finally, pfdSaveBldrState saves the current state with the given name, and pfdLoadBldrState loads the
named state into the current state.

For convenience, the current graphics state can be set directly from a pfGeoState using pfdBldrGState.
The given pfGeoState will be used as a template to set the current Builder graphics state.
pfdGetBldrGState returns the current Builder state as a pfGeoState. The returned pfGeoState should not
be modified in any way.

pfdBuild takes all the geometry data and graphics state information that has been input into the Builder
and constructs a Performer scene graph for it. The function returns a pfNode which is the root of this
graph.

486

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdBuilder(3pf)hh

While transferring database information to the Builder, it is possible to partition the database into logical
units. Each unit is given a name; in normal operation, all data is tagged with the same default name.
Every named partition will correspond to a disjoint subgraph in the scene graph generated by pfdBuild.
The function pfdBuildNode can be used to build the graph for a single specific partition, rather than the
entire input database. pfdSelectBldrName sets the name being applied to input data and
pfdGetCurBldrName queries the current name being used.

It is also possible to remove all accumulated data in the Builder. pfdResetBldrGeometry clears away all
geometry information stored in the Builder. pfdResetBldrShare deletes all shared graphics state in the
Builder. pfdCleanBldrShare deletes all shared graphics state that is only referenced through the current
pfdBuilder’s share structure (this is accomplished through pfdCleanShare which in turn uses
pfUnrefDelete to delete individual state elements that are only referenced by the pfdBuilder).

pfdBldrDeleteNode gets a list of all state attributes attached to leaf nodes under node, activates pfDelete
on node, then proceeds to remove each state attribute from the current pfdBuilder’s share structure via
pfdRemoveSharedObject.

The Builder also tries to alleviate the need for the user to manipulate Performer objects while building the
database. pfdGetTemplateObject returns a standard object of the given type. The user can then fill in
the appropriate slots of this object and pass this object to the Builder. This allows the Builder to deal with
some of the details of Performer data structures as well as accept the burden of managing memory for
database objects. pfdResetObject fills in a template object with the default values for that object type.
pfdMakeDefaultObject sets the default values using the given object as a template. Use
pfdResetAllTemplateObjects to restore all of the template objects to the values defined by the Builder’s
default pfGeoState.

As another form of sharing, Performer databases can also utilize a default global pfGeoState. For exam-
ple, pfSceneGState sets the global pfGeoState for an entire scene. All pfGeoStates in the relevant scene
graph would inherit state from the global default. See the manual pages for pfGeoState for further
details on state inheritance.

The construction of this default state is also incorporated into the Builder. While processing incoming
data, the Builder remembers the default pfGeoState. pfdDefaultGState sets this default state and
pfdGetDefaultGState can be used to query it. All pfGeoStates constructed by the Builder will inherit the
attributes of this default pfGeoState. If a series of pfGeoStates have already been constructed,
pfdMakeSceneGState can be used to extract a default pfGeoState which maximizes sharing through
inheritance. In order to do this, pfdMakeSceneGState requires the list of pfGeoStates to be optimized
and the default pfGeoState in effect when they were originally constructed. Finally,
pfdOptimizeGStateList takes a list of pfGeoStates and forces them to inherit state wherever that state
agrees with the specified default.

The behavior of the Builder can be controlled by changing various Builder modes and attributes.
pfdBldrMode and pfdGetBldrMode set and query the Builder modes, respectively. pfdBldrAttr and

487

pfdBuilder(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

pfdGetBldrAttr set and query Builder attributes.

The supported Builder modes are:
PFDBLDR_MESH_ENABLE
PFDBLDR_AUTO_COLORS
PFDBLDR_AUTO_ORIENT
PFDBLDR_AUTO_NORMALS

These modes are used to control the geometry builder. See the documentation for
pfdGeoBldrMode for details.

PFDBLDR_MESH_SHOW_TSTRIPS
PFDBLDR_MESH_INDEXED
PFDBLDR_MESH_MAX_TRIS
PFDBLDR_MESH_RETESSELLATE

These modes are used to control the triangle strip mesher. Refer to the documentation
for pfdMesherMode.

PFDBLDR_BREAKUP
When this mode is enabled (its value is non-NULL), input geometry will be fed through
pfdBreakup. This utility takes the unstructured input geometry and creates an output
graph reflecting a spatial subdivision of the input.

PFDBLDR_BREAKUP_SIZE
PFDBLDR_BREAKUP_BRANCH
PFDBLDR_BREAKUP_STRIP_LENGTH

If pfdBreakup is called, the values of these modes determine the argument values passed
to it.

PFDBLDR_SHARE_MASK
This is a bitwise-OR of the attributes that should be shared in the Performer scene graph
constructed by the Builder (see pfdShare).

PFDBLDR_ATTACH_NODE_NAMES
If this mode is enabled, every pfNode constructed by the Builder will have its name set to
the name assigned to it during input to the Builder; that is, the name set using
pfdSelectBldrName will become the name of the new nodes.

PFDBLDR_DESTROY_DATA_UPON_BUILD
If this mode is set, all the data in the builder along with associated state information
(except for information about attributes that should be shared) will be destroyed when
pfdBuild returns.

The available attributes are:

488

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdBuilder(3pf)hh

PFDBLDR_NODE_NAME_COMPARE
The value of this attribute is a function to compare two node names. If its value is NULL,
the == operator is used for comparisons.

PFDBLDR_STATE_NAME_COMPARE
The value of this attribute is a function to compare two state names. If its value is NULL,
the == operator is used for comparisons.

The following code sample illustrates the use of the Builder. It is designed to read a database file which is
simply a list of vertex coordinates. Every vertex triple defines a triangle.

pfNode * pfdLoadFile_tri (char *fileName)

{

FILE *triFile = NULL;

pfNode *node = NULL;

pfdGeom *prim = NULL;

int v = 0;

/* open ".tri" file */

if ((triFile = pfdOpenFile(fileName)) == NULL)

return NULL;

/* allocate primitive buffer */

prim = pfdNewGeom(3);

/* discard any lingering geometry in the builders */

pfdResetBldrGeometry();

/* pick a random not-too-dark color */

pfuRandomColor(prim->colors[0], 0.4f, 0.8f);

/* specify control data */

prim->numVerts = 3;

prim->primtype = PFGS_POLYS;

prim->nbind = PFGS_PER_VERTEX;

prim->cbind = PFGS_PER_PRIM;

prim->tbind = PFGS_OFF;

/* read triangles from ".tri" file */

while (!feof(triFile))

{

/* read vertices from ".tri" file */

for (v = 0; v < 3; v++)

{

/* read vertex data */

489

pfdBuilder(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

fscanf(triFile, "%f %f %f",

&prim->coords[v][PF_X],

&prim->coords[v][PF_Y],

&prim->coords[v][PF_Z]);

fscanf(triFile, "%f %f %f",

&prim->norms[v][PF_X],

&prim->norms[v][PF_Y],

&prim->norms[v][PF_Z]);

}

/* add this line to builder */

pfdAddBldrGeom(prim, 1);

}

/* close ".tri" file */

fclose(triFile);

/* release primitive buffer */

pfdDelGeom(prim);

/* get a complete scene graph representing file’s primitives */

node = pfdBuild();

return node;

}

NOTES
The libpfdu source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfGeoSet, pfGeoState, pfObject, pfdBreakup, pfdGeoBuilder, pfdMeshGSet, pfdMesherMode, pfSceneG-
State

490

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdCallbacks(3pf)hh

NAME
pfdPreDrawTexgenExt, pfdPostDrawTexgenExt, pfdPreDrawReflMap, pfdPostDrawReflMap,
pfdPreDrawContourMap, pfdPostDrawContourMap, pfdPreDrawLinearMap, pfdPostDrawLinear-
Map, pfdTexgenParams − Node callbacks examples for special effects.

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

int pfdPreDrawTexgenExt(pfTraverser *trav, void *data);

int pfdPostDrawTexgenExt(pfTraverser *trav, void *data);

int pfdPreDrawReflMap(pfTraverser *trav, void *data);

int pfdPostDrawReflMap(pfTraverser *trav, void *data);

int pfdPreDrawContourMap(pfTraverser *trav, void *data);

int pfdPostDrawContourMap(pfTraverser *trav, void *data);

int pfdPreDrawLinearMap(pfTraverser *trav, void *data);

int pfdPostDrawLinearMap(pfTraverser *trav, void *data);

void pfdTexgenParams(const float *newParamsX, const float *newParamsY);

DESCRIPTION
These callback functions provide a useful generic callback prototype for pfNodes. Use these callbacks to
create effects that IRIS Performer does not support directly, or to perform graphics library tasks dif-
ferently than the built-in mechanisms. The currently implemented callbacks perform reflection mapping
using texgen.

To write a database loader that loads reflective materials (as in pfdLoadFile_obj), just group reflective
materials under different geodes from non-reflective materials and call pfNodeTravFuncs using
pfdPreDrawReflMap as the pre-draw callback and pfdPostDrawReflMap as the post-draw callback as
follows.

pfNodeTravFuncs(MyReflMappedGeode, PFTRAV_DRAW,

pfdPreDrawReflMap, pfdPostDrawReflMap);

This will tell the loader to set pfdPreDrawReflMap as the pre-draw callback and pfdPostDrawReflMap
as the post-draw callback for the geode containing the reflective materials.

At one time the pfdLoadFile_obj database loader used these mechanisms to implement reflection map-
ping. Now that the pfTexGen attribute has been added to libpr’s pfGeoState this is no longer necessary
and the OBJ loader has been updated. The techniques of the reflection map callback utilities is provided
as an example of how similar functions might be implemented.

491

pfdCallbacks(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

NOTES
The libpfdu source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfNode, pfNodeTravFuncs, pfdLoadFile_obj, texgen

492

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdCleanTree(3pf)hh

NAME
pfdFreezeTransforms, pfdCleanTree, pfdReplaceNode, pfdInsertGroup, pfdRemoveGroup − Scene
graph optimizations

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

pfNode * pfdFreezeTransforms(pfNode *node, pfuTravFuncType func);

pfNode * pfdCleanTree(pfNode *node, pfuTravFuncType func);

void pfdReplaceNode(pfNode *oldn, pfNode *newn);

void pfdInsertGroup(pfNode *oldn, pfGroup *grp);

void pfdRemoveGroup(pfGroup *oldn);

DESCRIPTION
pfdCleanTree traverses the scene graph rooted at node and removes redundant and empty pfGroups
from the scene graph. It also converts any pfSCS with an identity transformation into a pfGroup.

By default, pfGroups are eliminated if they have one or fewer children. Any children are reparented to
the parent of the pfGroup being eliminated. The one exception is a pfSwitch node with one child, which
is not eliminated. An optional function func can be provided to alter this determination during the traver-
sal. At each candidate pfGroup, func is passed a pfuTraverser which includes the current node. If func
returns TRUE, the current node is eliminated. If func returns FALSE, the current node is retained.

pfdFreezeTransforms traverses the scene graph rooted at node and converts pfDCSes to pfSCSes. Usually
in preparation for a subsequent call to pfFlatten. By default the conversion occurs for those pfDCSes that
don’t have any callbacks and do not have the string "dcs" or "DCS" embedded in the node name. An
optional function func can be provided to alter this determination during the traversal. At each candidate
pfGroup, func is passed a pfuTraverser which includes the current node. If func returns TRUE, the
current node is converted. If func returns FALSE, the current node remains a pfDCS.

pfdReplaceNode, pfdInsertGroup and pfdRemoveGroup are helper routines. pfdReplaceNode
replaces the node oldn with the node newn in the scene graph, including reparenting newn to the oldn’s
parents and reparenting oldn’s children to newn. oldn is not deleted. Any callbacks, traversal masks and
the node name are also copied. pfdInsertGroup inserts the group grp above oldn in the the scene graph.
grp replaces oldn as a child of all grp’s parents. oldn becomes a child of grp. pfdRemoveGroup removes
oldn from the scene graph, reparenting all of oldn’s children to the parents of oldn. oldn is not deleted.

SEE ALSO
pfFlatten

493

pfdCombineBillboards(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

NAME
pfdCombineBillboards − Merge pfBillboard nodes together.

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

void pfdCombineBillboards(pfNode *node, int sizeLimit);

DESCRIPTION
pfdCombineBillboards() gathers sibling billboard nodes together into as few large pfBillboard nodes as
possible. This can often increase the efficiency of billboard processing in databases with large numbers of
single-pfGeoSet pfBillboard nodes, such as the IRIS Performer Town database. The sizeLimit argument
defines an upper limit to the merging process. No pfBillboard node will be made to have more than this
number of pfGeoSets, and no pfBillboard node already having more than this number will be modified
during the traversal.

There are a few requirements and restrictions to the pfBillboard combination process. In order to be
mergable, pfBillboard nodes must be both similar and combinable.

For a pair of pfBillboard nodes to be similar they must each have the same values for their pfBillboard
attributes. The attributes of pfBillboard nodes are:

Mode Both pfBillboard nodes must have the same rotation mode. The modes are
PFBB_AXIAL_ROT, PFBB_POINT_ROT_EYE, and PFBB_POINT_ROT_WORLD.

Axis When the rotation mode is PFBB_AXIAL_ROT or PFBB_POINT_ROT_WORLD then
both pfBillboard nodes must have the same axis of rotation. No such restriction is
required of PFBB_POINT_ROT_EYE pfBillboards. The axis is compared using
pfAlmostEqualVec3() with a tolerance of 0.0001.

In order for two pfBillboard nodes to be considered combinable, two additional conditions must be met:

Size The destination pfBillboard node must not be too big. The argument sizeLimit defines
the maximum number if pfGeoSets that any combined node may contain, so nodes
that already have at least sizeLimit pfGeoSets will not receive additional pfGeoSets.

Safe Both pfBillboard nodes being combined--the one giving up pfGeoSets and the one
receiving them--must be uninstanced nodes. This means that each node has only one
parent. This situation can be forced if desired by calling pfFlatten() on a scene graph
before passing that scene graph to pfdCombineBillboards().

NOTES
The libpfdu source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

494

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdCombineBillboards(3pf)hh

SEE ALSO
pfFlatten, pfAlmostEqualVec3

495

pfdCombineLayers(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

NAME
pfdCombineLayers − Merge layer nodes together.

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

void pfdCombineLayers(pfNode *node);

DESCRIPTION
pfdCombineLayers gathers sibling layers (pfLayer) together into a single super-layer. All bases are
grouped together followed by all the layers.

All layer nodes, both existing and newly created, are set to use the PFDECAL_LAYER_DISPLACE style
for rendering coplanar geometry.

NOTES
The libpfdu source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfLayer

496

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdExtensor(3pf)hh

NAME
pfdAddState, pfdStateCallback, pfdGetStateCallback, pfdGetStateToken, pfdGetUniqueStateToken,
pfdNewExtensor, pfdNewExtensorType, pfdCompareExtensor, pfdCompareExtraStates, pfdCopyEx-
traStates, pfdGetExtensor, pfdGetExtensorType, pfdUniqifyData − Flexible callback extension mechan-
ism

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

int pfdAddState(void *name, long dataSize, void (*initialize)(void *data),
void (*deletor)(void *data), int (*compare)(void *data1, void *data2),
long (*copy)(void *dst, void *src), int token);

void pfdStateCallback(int stateToken, int whichCBack,
pfNodeTravFuncType callback);

pfNodeTravFuncType pfdGetStateCallback(int stateToken, int which);

int pfdGetStateToken(void *name);

int pfdGetUniqueStateToken(void);

pfdExtensor * pfdNewExtensor(int which);

pfdExtensorType * pfdNewExtensorType(int token);

int pfdCompareExtensor(void *a, void *b);

int pfdCompareExtraStates(void *lista, void *listb);

void pfdCopyExtraStates(pfList *dst, pfList *src);

pfdExtensor * pfdGetExtensor(int token);

pfdExtensorType * pfdGetExtensorType(int token);

void * pfdUniqifyData(pfList *dataList, const void *data, long dataSize,
void *(*newData)(long), int (*compare)(void *, void *),
long (*copy)(void *, void *), int *compareResult);

DESCRIPTION
/* Define minimal Extensor as state in the builder */

/* Note a token will be created for you and passed back if the token */

/* arg is NULL */

extern int pfdAddState(void *name,

long dataSize,

void (*initialize)(void *data),

void (*deletor)(void *data),

int (*compare)(void *data1, void *data2),

long (*copy)(void *dst, void *src),

int token);

497

pfdExtensor(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

/* Extend Extensor Definition through callbacks listed above */

/* Specify function callbacks for an Extensor */

extern void pfdStateCallback(int stateToken, int whichCBack, pfNodeTravFuncType callback);

extern pfNodeTravFuncType pfdGetStateCallback(int stateToken, int which);

/* Look up the builder state token to use for a registered name */

extern int pfdGetStateToken(void *name);

/* Get the next Unique State token that can be used as a valid */

/* token for user state in the builder */

extern int pfdGetUniqueStateToken(void);

/* Create Generic Extensors and Extensor Definitions */

/* Note the builder creates these automatically based on user */

/* definition of extensors through pfdAddState and appropriately */

/* creates instances of an Extensor based on the current user state */

extern pfdExtensor* pfdNewExtensor(int which);

extern pfdExtensorType* pfdNewExtensorType(int token);

/* Needed to share Extensors and do internal extensor caching */

extern int pfdCompareExtensor(void *a, void *b);

/* Compare a list of Extensors */

extern int pfdCompareExtraStates(void *lista, void *listb);

extern void pfdCopyExtraStates(pfList *dst, pfList *src);

/* Find an instance of an Extensor in the Builder’s current User State */

extern pfdExtensor* pfdGetExtensor(int token);

/* Find a Extensor Definitions in the Builder */

extern pfdExtensorType* pfdGetExtensorType(int token);

/* Share Arbitrary data */

extern void *pfdUniqifyData(pfList *dataList, const void *data,

long dataSize, void *(*newData)(long),

int (*compare)(void *,void *),

long (*copy)(void *, void *),

int *compareResult);

498

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdExtensor(3pf)hh

NOTES
The libpfdu source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

499

pfdGSet(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

NAME
pfdNewCube, pfdNewSphere, pfdNewCylinder, pfdNewPipe, pfdNewCone, pfdNewPyramid,
pfdNewArrow, pfdNewDoubleArrow, pfdNewCircle, pfdNewRing, pfdXformGSet, pfdGSetColor −
Construct simple pfGeoSets and perform simple pfGeoSet manipulations.

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

pfGeoSet * pfdNewCube(void *arena);

pfGeoSet * pfdNewSphere(int ntris, void *arena);

pfGeoSet * pfdNewCylinder(int ntris, void *arena);

pfGeoSet * pfdNewPipe(float botRadius, float topRadius, int ntris, void *arena);

pfGeoSet * pfdNewCone(int ntris, void *arena);

pfGeoSet * pfdNewPyramid(void *arena);

pfGeoSet * pfdNewArrow(int ntris, void *arena);

pfGeoSet * pfdNewDoubleArrow(int ntris, void *arena);

pfGeoSet * pfdNewCircle(int ntris, void *arena);

pfGeoSet * pfdNewRing(int ntris, void *arena);

void pfdXformGSet(pfGeoSet *gset, pfMatrix mat);

void pfdGSetColor(pfGeoSet *gset, float r, float g, float b, float a);

DESCRIPTION
These routines are provided to conveniently construct pfGeoSets for various geometric objects. The
resulting objects are always positioned and sized in canonical ways. The user can then apply a transfor-
mation to these pfGeoSets to achieve the desired shape and position.

Some of these routines (such as pfdNewSphere) polygonalize smooth surfaces. These functions take an
argument ntris which specifies how many triangular faces to use when polygonizing the surface. All the
constructor routines allocate storage in the shared memory arena arena.

pfdNewCube creates a new pfGeoSet describing a unit cube.

pfdNewSphere creates a unit sphere centered at the origin.

pfdNewCylinder creates a new cylinder along the Z axis from -1 to 1 with a radius of 1.

pfdNewPipe creates a pipe (a cylinder without caps) extending along the Z axis from -1 to 1. The radius
of the pipe at Z=-1 is given by botRadius while topRadius determines the pipe’s radius at Z=1.

pfdNewCone creates a cone extending along the Z axis. The base of the cone is at Z=0 and has radius 1.

500

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdGSet(3pf)hh

The cone extends to Z=1. The base of the cone is capped with a circle centered at the origin.

pfdNewPyramid creates a pyramid with a unit square base cap centered at the origin and extending
along the Z axis from Z=0 to Z=1.

pfdNewArrow constructs an arrow extending along the Z axis from Z=0 to Z=1.

pfdNewDoubleArrow constructs a double-headed arrow. The arrows extend along the Z axis from Z=0
to Z=1 and Z=-1.

pfdNewCircle creates a filled unit circle centered at the origin in the XY plane. The circle is oriented so as
to face in the direction of the positive Z axis.

pfdNewRing also creates a circle, but it is unfilled. The perimeter of the circle is made up of connected
lines.

pfdXformGSet transforms the coordinates in the given pfGeoSet by the matrix mat.

pfdGSetColor is a simple convenience routine for setting the global color of a pfGeoSet. This function
only works if the color binding of gset is PFGS_OVERALL.

NOTES
The libpfdu source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfGeoSet

501

pfdGeoBuilder(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

NAME
pfdNewGeom, pfdResizeGeom, pfdDelGeom, pfdReverseGeom, pfdNewGeoBldr, pfdDelGeoBldr,
pfdGeoBldrMode, pfdGetGeoBldrMode, pfdTriangulatePoly, pfdAddGeom, pfdAddPoint, pfdAdd-
Line, pfdAddTri, pfdAddPoly, pfdAddPoints, pfdAddLines, pfdAddLineStrips, pfdAddIndexed-
Points, pfdAddIndexedLines, pfdAddIndexedLineStrips, pfdAddIndexedTri, pfdAddIndexedPoly,
pfdGetNumTris, pfdBuildGSets, pfdPrintGSet − Create optimized pfGeoSets from independent
geometry.

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

pfdGeom * pfdNewGeom(int numV);

void pfdResizeGeom(pfdGeom *geom, int numV);

void pfdDelGeom(pfdGeom *geom);

int pfdReverseGeom(pfdGeom *geom);

pfdGeoBuilder * pfdNewGeoBldr(void);

void pfdDelGeoBldr(pfdGeoBuilder* bldr);

void pfdGeoBldrMode(pfdGeoBuilder* bldr, int mode, int val);

int pfdGetGeoBldrMode(pfdGeoBuilder* bldr, int mode);

int pfdTriangulatePoly(pfdGeom *pgon, pfdPrim *triList);

void pfdAddGeom(pfdGeoBuilder *bldr, pfdGeom *Geom, int num);

void pfdAddPoint(pfdGeoBuilder *bldr, pfdPrim *Point);

void pfdAddLine(pfdGeoBuilder *bldr, pfdPrim *line);

void pfdAddTri(pfdGeoBuilder *bldr, pfdPrim *tri);

void pfdAddPoly(pfdGeoBuilder *bldr, pfdGeom *poly);

void pfdAddPoints(pfdGeoBuilder *bldr, pfdGeom *points);

void pfdAddLines(pfdGeoBuilder *bldr, pfdGeom *lines);

void pfdAddLineStrips(pfdGeoBuilder *bldr, pfdGeom *lineStrips, int num);

void pfdAddIndexedPoints(pfdGeoBuilder *bldr, pfdGeom *points);

void pfdAddIndexedLines(pfdGeoBuilder *bldr, pfdGeom *lines);

void pfdAddIndexedLineStrips(pfdGeoBuilder *bldr, pfdGeom *lines, int num);

void pfdAddIndexedTri(pfdGeoBuilder *bldr, pfdPrim *tri);

void pfdAddIndexedPoly(pfdGeoBuilder *bldr, pfdGeom *poly);

502

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdGeoBuilder(3pf)hh

int pfdGetNumTris(pfdGeoBuilder *bldr);

pfList * pfdBuildGSets(pfdGeoBuilder *bldr);

void pfdPrintGSet(pfGeoSet *gset);

typedef struct _pfdPrim

{

int flags;

int nbind, cbind, tbind;

float pixelsize;

pfVec3 coords[3];

pfVec3 norms[3];

pfVec4 colors[3];

pfVec2 texCoords[3];

pfVec3 *coordList;

pfVec3 *normList;

pfVec4 *colorList;

pfVec2 *texCoordList;

ushort icoords[3];

ushort inorms[3];

ushort icolors[3];

ushort itexCoords[3];

struct _pfdPrim *next;

} pfdPrim;

typedef struct _pfdGeom

{

int flags;

int nbind, cbind, tbind;

int numVerts;

short primtype;

float pixelsize;

pfVec3 *coords;

pfVec3 *norms;

pfVec4 *colors;

pfVec2 *texCoords;

503

pfdGeoBuilder(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

pfVec3 *coordList;

pfVec3 *normList;

pfVec4 *colorList;

pfVec2 *texCoordList;

ushort *icoords;

ushort *inorms;

ushort *icolors;

ushort *itexCoords;

struct _pfdGeom *next;

} pfdGeom;

typedef pfdGeom pfdPoly;

typedef pfdPrim pfdTri;

DESCRIPTION
The pfdGeoBuilder tools greatly simplify the task of creating IRIS Performer geometry structures (-
pfGeoSets). More importantly, the pfdGeoBuilder utility creates optimized line-strip and triangle-strip
pfGeoSets that can significantly improve rendering performance and decrease memory usage.

The pfdGeoBuilder only manages geometry. For managing geometry and state (appearance attributes
such as texture and material) there is a higher level pfdBuilder tool that itself uses the pfdGeoBuilder.

Typically the higher-level pfdBuilder (rather than the low-level pfdGeoBuilder) is used when writing a
database importer for IRIS Performer. In either case, the loaders take external data in popular database
file formats and convert them into IRIS Performer runtime scene-graph structures. There are many exam-
ples of file loaders based on the pfdBuilder and pfdGeoBuilder facilities in the libpfdb database loader
library.

The pfdGeoBuilder is used to build pfGeoSets from arbitrary input geometry in the following way:

1. Create a pfdGeoBuilder data structure by calling pfdNewGeoBldr.

2. Create a pfdGeom data structure by calling pfdNewGeom with the maximum number of
vertices required. This size can be changed later via calls to pfdResizeGeom.

3. Add geometric objects one at a time to the builder created in Step 1 via calls to
pfdAddGeom, pfdAddPoint, pfdAddLine, pfdAddTri, pfdAddPoly, pfdAddPoints,
pfdAddLines, pfdAddLineStrips, pfdAddIndexedPoints, pfdAddIndexedLines,
pfdAddIndexedLineStrips, pfdAddIndexedTri, or pfdAddIndexedPoly.

504

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdGeoBuilder(3pf)hh

4. Once all geometry has been added to the builder, call pfdBuildGSets to obtain a list of
pfGeoSets representing the geometry in line strips and triangle strips wherever possible.

pfdNewGeom allocates a pfdGeom structure capable of containing a single geometric object with up to
numV vertices. This object contains a number of internal arrays whose sizes scale with numV, so allocating
a large pfdGeom can require a considerable amount of storage.

pfdResizeGeom is used to change the vertex limit of the pfdGeom geom. The old vertex values are
retained in this reallocation, so that loaders can simply invoke pfdResizeGeom to enlarge a pfdGeom
without special attention to the existing data. When the new size (numV) is smaller than the previous size,
only the first numV old vertices are kept.

pfdDelGeom frees the storage allocated for the pfdGeom geom.

pfdReverseGeom reverses the order of the vertices in geom. Use this to generate polygonal objects with a
consistent vertex ordering (clockwise or counterclockwise) when viewed from the outside. When this is
the case, backface culling can be enabled for improved graphics performance.

pfdNewGeoBldr allocates a new pfdGeoBuilder structure and initializes it to accept geometry. The
pfdGeoBuilder’s internal data is self-sizing and will grow as needed when points, lines, and polygons are
added to it.

pfdDelGeoBldr frees the storage allocated to the pfdGeoBuilder bldr.

pfdGeoBldrMode specifies modes to be used by the pfdGeoBuilder bldr as it processes input geometry
and constructs pfGeoSets. The supported modes are:

PFDGBLDR_AUTO_COLORS
Generate random colors for geometric objects. There are four options for this mode, and
they are:

PFDGBLDR_COLORS_PRESERVE
Leave color definitions as they are. This is the default mode.

PFDGBLDR_COLORS_MISSING
Generate colors for those primitives that do not provide them. This mode only
replaces missing colors, it does not override any colors that have been defined.

PFDGBLDR_COLORS_GENERATE
Generate a new random color for each primitive.

PFDGBLDR_COLORS_DISCARD
Discard existing color definitions and do not generate any replacement colors.

505

pfdGeoBuilder(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

PFDGBLDR_AUTO_NORMALS
Generate normals for geometric objects. There are four options for this mode, and they are:

PFDGBLDR_NORMALS_PRESERVE
Leave normal definitions as they are. This is the default mode.

PFDGBLDR_NORMALS_MISSING
Generate normals for those primitives that do not provide them. This mode only
replaces missing normals, it does not override any normals that have been defined.

PFDGBLDR_NORMALS_GENERATE
Generate a new normal for each primitive.

PFDGBLDR_NORMALS_DISCARD
Discard existing normal definitions and do not generate any replacement normals.

PFDGBLDR_AUTO_TEXTURE
Generate texture coordinates for geometric objects. There are four options for this mode,
and they are:

PFDGBLDR_TEXTURE_PRESERVE
Leave texture coordinate definitions as they are. This is the default mode.

PFDGBLDR_TEXTURE_MISSING
Generate texture coordinates for those primitives that do not provide them. This
mode only replaces missing texture coordinates, it does not override any texture coor-
dinates that have been defined. This option is provided for future expansion. It is not
currently implemented.

PFDGBLDR_TEXTURE_GENERATE
Generate texture coordinates for each primitive. This option is provided for future expan-
sion. It is not currently implemented.

PFDGBLDR_TEXTURE_DISCARD
Discard existing texture coordinate definitions and do not generate any replacement
texture coordinates.

PFDGBLDR_AUTO_ORIENT
Automatically reverse normal vector direction or vertex order for polygons that have a sup-
plied overall normal or per-vertex normals if the internally computed normal value indi-
cates that the input vertices had clockwise rather than counterclockwise orientation.

PFDGBLDR_ORIENT_PRESERVE
Do not modify vertex orientation or normal direction.

506

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdGeoBuilder(3pf)hh

PFDGBLDR_ORIENT_NORMALS
Reverse direction (by negating normals) to make the sidedness of polygons con-
sistent with the standard orientation, which is counterclockwise when viewed from
the outside of the surface. The outside is defined as the direction in which the nor-
mal points.

PFDGBLDR_ORIENT_VERTICES
Reverse direction (by reversing the order of vertices) to make the sidedness of
polygons consistent with the standard orientation, which is counterclockwise when
viewed from the outside of the surface. The outside is defined as the direction in
which the normal points. This is the default method, since people who provide a
normal usually know which way they want it to point.

PFDGBLDR_MESH_ENABLE
Generate triangle meshes from input geometry. This task is actually performed using the
pfdMeshGSet function. See the pfdTMesher man page for further details. The default is
TRUE.

pfdGetBldrMode returns the current value of pfdGeoBuilder bldr’s internal processing mode, mode. The
valid mode arguments are those listed for pfdGeoBldrMode above.

pfdTriangulatePoly triangulates a polygon defined by pfdGeom pgon and appends the resulting triangles
to the list of triangles in triList. If the input polygon is concave, pfdTriangulatePoly will OR the
PFDPOLY_CONCAVE bit into the flags member of the poly structure. The return value is TRUE if poly is
concave and FALSE otherwise. Note that pfdTriangulatePoly will not "fan out" convex polygons but
will "zigzag" them so the resultant triangles can be easily formed into a single triangle strip (see
pfdMeshGSet).

Geometric objects are added to a pfdGeoBuilder using the general pfdAddGeom function or via the
related functions described below. pfdAddGeom adds one a pfdGeom object to the designated
pfdGeoBuilder bldr. If the pfdGeom is a line strip, then the argument num specifies the number of lines in
the line strip pfdAddGeom is the general way to add geometry to a pfdGeoBuilder.

Four distinct types of geometric objects can be defined in a pfdGeom: points, lines, line strips, and
polygons, and there is a lower-level primitive adding function for each: pfdAddPoints, pfdAddLines,
pfdAddLineStrips, and pfdAddPoly. These functions are invoked by pfdAddGeom to process input
geometry and are not usually called directly by users.

The pfdGeoBuilder also supports the optimization of indexed geometric data. It is only necessary to
specify index list information in the pfdGeom structure and then call one of the indexed versions of the
geometry adding functions: pfdAddIndexedPoints, pfdAddIndexedLines, pfdAddIndexedLineStrips,
or pfdAddIndexedPoly.

507

pfdGeoBuilder(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

There are four remaining geometry adding functions. These accept low-level pfdPrim geometry
definitions rather than the higher-level pfdGeom definitions. Use of these functions is discouraged.
pfdAddPoint adds the point pfdPrim Point to pfdGeoBuilder bldr, pfdAddLine adds the line line,
pfdAddTri adds the triangle tri, and pfdAddIndexedTri adds the indexed triangle tri.

In all cases, these geometry processing functions copy the geometric definition into internal
pfdGeoBuilder memory so that the application need not manage multiple pfdGeom or pfdPrim data
structures. The fields of the pfdGeom or pfdPrim structure should be set as follows:

nbind, cbind, tbind specify the normal, color, and texture coordinate binding respectively. They may be
one of the following values:

PFGS_PER_VERTEX
An attribute is specified for each vertex of the point, line, or polygon.

PFGS_PER_PRIM, PFGS_OVERALL
The first element of the attribute array specifies the attribute for the point, line, or polygon,
e.g. norms[0] is the normal for the entire object.

PFGS_OFF
No attribute value is specified.

pixelsize defines the width in pixels to be used when drawing the indicated point or line. pixelsize is
ignored for polygon data.

coords, norms, colors, texCoords specify the coordinates, normals, colors, and texture coordinates of the
point, line, or polygon according to the binding types described above, e.g. coords[0], coords[1], coords[2]
define the coordinates of a pfdTri.

Example 1:

pfdGeoBuilder *bldr;

pfdGeom *geom;

pfList *gsetList;

/* allocate pfdGeoBuilder and pfdGeom storage */

bldr = pfdNewGeoBldr();

geom = pfdNewGeom(4);

/* feed polygons to pfdGeoBuilder */

while (!done)

{

:

geom->flags = 0;

508

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdGeoBuilder(3pf)hh

geom->nbind = PFGS_PER_PRIM;

geom->cbind = PFGS_OFF;

geom->tbind = PFGS_OFF;

geom->numVerts = 4;

pfCopyVec3(geom->coords[0], myCoords[i]);

pfCopyVec3(geom->coords[1], myCoords[i+1]);

pfCopyVec3(geom->coords[2], myCoords[i+2]);

pfCopyVec3(geom->coords[3], myCoords[i+3]);

pfCopyVec3(geom->norms[0], myNorms[j]);

pfdAddGeom(bldr, geom, 1);

:

}

/* generate optimized triangle mesh GeoSet */

gsetList = pfdBuildGSets(bldr);

/* add returned pfGeoSets to geode */

for (i=0; i<pfGetNum(gsetList); i++)

pfAddGSet(geode, pfGet(gsetList, i));

/* release pfdGeoBuilder and pfdGeom storage */

pfdDelGeoBldr(bldr);

pfdDelGeom(geom);

pfdGetNumTris returns the number of triangles currently contained in the pfdGeoBuilder structure bldr.

pfdBuildGSets converts all accumulated points, lines, and polygons into point, line, line strip, triangle,
and triangle-strip pfGeoSets and returns a pfList referencing these pfGeoSets. pfdBuildGSets also resets
bldr, removing the geometric definitions therein. The pfGeoSets created by the builder are meshed by
pfdMeshGSet, subject to the meshing mode set by pfdMesherMode.

pfdPrintGSet prints a representation of pfGeoSet gset using the pfNotify mechanism.

NOTES
The libpfdu source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

509

pfdGeoBuilder(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

SEE ALSO
pfGeoSet, pfGeode, pfList, pfdMeshGSet, pfdMesherMode, pfdTMesher

510

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdConverter(3pf)hh

NAME
pfdOpenFile, pfdLoadFile, pfdStoreFile, pfdConvertFrom, pfdConvertTo, pfdAddExtAlias, pfdIn-
itConverter, pfdExitConverter, pfdConverterMode, pfdGetConverterMode, pfdConverterVal,
pfdGetConverterVal, pfdConverterAttr, pfdGetConverterAttr, pfdPrintSceneGraphStats − Utilities for
loading object databases into Performer applications.

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

FILE* pfdOpenFile(const char *file);

pfNode* pfdLoadFile(const char *fileName);

int pfdStoreFile(const char *fileName, pfNode *root);

pfNode* pfdConvertFrom(const char *ext, void *root);

void* pfdConvertTo(const char *ext, pfNode *root);

void pfdAddExtAlias(const char *ext, const char *alias);

int pfdInitConverter(const char *ext);

int pfdExitConverter(const char *ext);

void pfdConverterMode(const char *ext, int mode, int value);

int pfdGetConverterMode(const char *ext, int mode);

void pfdConverterVal(const char *ext, int which, float val);

float pfdGetConverterVal(const char *ext, int which);

void pfdConverterAttr(const char *ext, int which, void *attr);

void* pfdGetConverterAttr(const char *ext, int which);

void pfdPrintSceneGraphStats(pfNode *node, double elapsedTime);

DESCRIPTION
pfdOpenFile searches through the IRIS Performer search path for the named file and opens it using
fopen(). It is a convenience function used by several of the functions described here.

pfdLoadFile builds in-memory data structures from an external database file. The filename’s extension is
used to determine the file format. If no path to the file is given, the directories in the active Performer file
search path (see pfFilePath) are scanned for the given filename. pfdLoadFile may only be called after
pfConfig.

pfdStoreFile writes a subgraph of a Performer scene rooted at root to a file in the format specified by ext.n

pfdConvertFrom converts the in-memory data structure root of the format specified by ext into an in-
memory Performer scene. pfdConvertTo reverses the process taking an in-memory Performer scene and
converting into the specified in-memory format.

511

pfdConverter(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

pfdAddExtAlias registers an alias for the given file name extension. Whenever a file with extension alias
is encountered, the loader for type ext will be used.

pfdInitConverter dynamically links the converter corresponding to the extension ext into the current exe-
cutable. This routine should be called before pfConfig for all extensions that an executable will use to
ensure that any routines and static data required at run-time are available in all Performer processes. If
the corresponding loader is already in the executable, e.g. as a statically linked object, pfdInitConverter
takes no action. pfdInitConverter returns TRUE if the loader is available or FALSE if it could not be
found or loaded.

The search for the converter DSO proceeds through the following locations in order:

1. In the current directory.

2. In the directory indicated by the environment variable PFLD_LIBRARY_PATH, if it is
defined.

3. In the directory indicated by the rld environment variable LD_LIBRARY_PATH, if it is
defined.

4. In the directory "$PFHOME/usr/lib{,32,64}/libpfdb", if the environment variable PFHOME
is defined. The empty, "32" and "64" lib suffix strings correspond to O32, N32 and N64
modes of compilation and execution.

5. In the directory "$PFHOME/usr/share/Performer/lib/libpfdb", if the environment vari-
able PFHOME is defined.

The loader DSO name is created as "libpfEXT{_igl,_ogl,}{-g}.so" where "_igl" is the IRIS GL version, "_ogl"
is the OpenGL version, and the "-g" suffix is for a full symbol table debug version. pfdInitConverter will
only load the debug version of the converter DSO if it is unable to find the optimized version of the DSO
in any of paths mentioned above. pfdLoadFile also requires that the DSO version number match that of
libpfdu. When PFLD_LIBRARY__PATH is set, pfdLoadFile prints diagnostic information about the DSO
search using pfNotify at the PFNFY_DEBUG notification level.

pfdExitConverter discards the database loader for the extension ext and unlinks any dynamically linked
objects from the current executable. The only reason to call this function is to save swap space. If ext is
NULL, all converters are unlinked.

pfdConverterMode, pfdGetConverterMode, pfdConverterAttr, pfdGetConverterAttr, pfdConverterVal
and pfdGetConverterVal allow the user to access and alter the modes, attributes and values of specific
loaders. These modes, attributes and values are defined inside each individual loader. These functions
are provided as a means for the user to communicate with the loaders which are usually loaded as
Dynamic Shared Objects at run-time.

pfdPrintSceneGraphStats uses pfNotify to print some simple statistics about the primitives in the scene
graph. The elapsedTime argument is provided by the caller and indicates the time it took for the scene

512

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdConverter(3pf)hh

graph to be loaded. It is used by pfdPrintSceneGraphStats to print primitive loading rate statistics. When
the value is zero, none of the loading rate statistics are printed

The routines that take an extension as an argument may be passed a full file name, in which case the
extension is extracted and used.

NOTES
The libpfdu source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

Very few of the database DSOs provided in the current release support pfdStoreFile, none of them sup-
port pfdConvertTo, and only the Open Inventor loader supports pfdConvertFrom. More pervasive sup-
port of these operations is planned for future releases, however, and developers of new database conver-
sion tools are encouraged to provide the full set of conversion functions in the database tools they
develop.

When statically linking a loader library into an executable that calls pfdLoadFile, you can use the ’-u’
option to ld to force the inclusion of the loader object even though it is never referenced in the executable,
e.g. "cc -o myapp myapp.o -u pfdLoadFile_iv libpfiv_igl.a ..."

SEE ALSO
pfFilePath, pfNotify, ld

513

pfdLoadFont(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

NAME
pfdLoadFont, pfdLoadFont_type1 − Utilities for loading fonts into Performer applications

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

pfFont * pfdLoadFont(char *ext, char *fontFileName, int style);

pfFont * pfdLoadFont_type1(char *fontName, int style);

DESCRIPTION
pfdLoadFont tries to load a font of specific type using the ext to find a routine that is capable of building
this type of font. The routine name is of the form pfdLoadFont_ext. This routine will then use
fontFileName to find a file containing the font description and try to create the pfFont using this descrip-
tion and the style token. Current font style tokens include: PFDFONT_TEXTURED,
PFDFONT_OUTLINED, PFDFONT_FILLED, PFDFONT_EXTRUDED, and PFDFONT_VECTOR.
Although only some of these styles may be available for any particular font.

pfdLoadFont_type1 is one instance of a font loader. It loads Haeberli font definitions into Performer
structures. Valid styles are all of the above except PFDFONT_VECTOR.

SEE ALSO
pfFont, pfString, pfText

514

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdOpenFile(3pf)hh

NAME
pfdOpenFile − Search for and open a file.

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

FILE * pfdOpenFile(char *fileName);

DESCRIPTION
pfdOpenFile opens the specified file (much like fopen). However, rather than simply looking in the
current directory, pfdOpenFile will search the Performer file path (see pfFilePath) for the given filename.

NOTES
The libpfdu source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
fopen, pfFilePath

515

pfdShare(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

NAME
pfdNewShare, pfdDelShare, pfdPrintShare, pfdCountShare, pfdGetSharedList, pfdFindSharedOb-
ject, pfdAddSharedObject, pfdRemoveSharedObject, pfdNewSharedObject, pfdMakeShared,
pfdMakeSharedScene, pfdCleanShare, pfdGetNodeGStateList − Facilitate the sharing of graphics state
objects in a Performer scene graph.

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

pfdShare * pfdNewShare(void);

void pfdDelShare(pfdShare *share, int deepDelete);

void pfdPrintShare(pfdShare *share);

int pfdCountShare(pfdShare *share);

pfList * pfdGetSharedList(pfdShare *share, pfType *type);

pfObject * pfdFindSharedObject(pfdShare *share, pfObject *object);

int pfdAddSharedObject(pfdShare *share, pfObject *object);

int pfdRemoveSharedObject(pfdShare *share, pfObject *object);

pfObject * pfdNewSharedObject(pfdShare *share, pfObject *object);

void pfdMakeShared(pfNode *node);

void pfdMakeSharedScene(pfScene *scene);

int pfdCleanShare(pfdShare *share);

pfList * pfdGetNodeGStateList(pfNode *node);

DESCRIPTION
It is obviously desirable to share state between database objects in IRIS Performer whenever possible.
The notion of pervasive state sharing underpins the entire pfGeoState mechanism. Common data such
as texture, materials, and lighting models are often duplicated in many different objects throughout a
database. This collection of functions provides the means necessary to easily achieve sharing among
these objects by automatically producing a non-redundant set of states.

pfdNewShare constructs a new pfdShare structure in shared memory. This structure is the object used
to track shared state objects.

pfdDelShare deletes a pfdShare structure. If deepDelete is non-NULL, all the data referenced by the
pfdShare will also be deleted.

pfdPrintShare will print statistics about how many object references are being held in the given sharing
structure.

pfdCountShare returns the total number of shared objects referenced by the given sharing structure.

516

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdShare(3pf)hh

Each pfdShare structure maintains lists of shared objects with distinct types of objects stored in distinct
lists. pfdGetSharedList returns the list of shared objects of the given type.

pfdNewSharedObject returns a shared object matching object. If a matching object was already present
in the sharing structure, that object is returned. If no such object exists, a new object is created using object
as a template. This new object is entered into the sharing structure and is returned to the caller.

pfdFindSharedObject looks through the given pfdShare structure for an object matching object. A NULL
is returned if no matching object is found.

pfdAddSharedObject adds object to the given sharing structure, if it is not already present. The object’s
index in the sharing list is returned.

pfdRemoveSharedObject removes object from the given sharing structure, if it is present. The object’s
index in the sharing list is returned. The object is deleted if its reference count reaches zero via
pfUnrefDelete.

pfdMakeShared can be used to force sharing of state within an already existing scene graph. It will
traverse the graph rooted at node looking for duplicate state objects. Any references to such objects will
be made to point to a single shared copy, and the duplicates will be freed.

pfdMakeSharedScene is similar to pfdMakeShared except that it works on a scene and computes an
optimal pfScene pfGeoState based on all of the pfGeoStates referenced in scene (see pfdMakeSceneGState
for further information about the scene pfGeoState computation itself). The pfGeoStates in scene are then
optimized based on the new scene GeoState (see pfdOptimizeGStateList). Lastly, the optimized pfGeo-
State is assigned as the scene’s pfGeoState so that the inheritance for the newly optimized states will be
effective (see pfSceneGState).

pfdCleanShare removes all shared objects that are referenced only by the shared structure itself. It is use-
ful to call pfdCleanShare after deleting parts of database that were created using this share structure to
release the memory allocated for currently unused state elements. pfdCleanShare returns the number of
elements actually removed.

pfdGetNodeGStateList creates and returns a pfList of unique pfGeoStates that are referenced by
geometry under node.

NOTES
The libpfdu source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

517

pfdShare(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

SEE ALSO
pfGeoSet, pfGeoState, pfList

518

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdSpatialize(3pf)hh

NAME
pfdSpatialize, pfdTravGetGSets − Collect and partition pfGeoSets in scene graphs.

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

pfGroup * pfdSpatialize(pfGroup *group, float maxGeodeSize, int maxGeoSets);

pfList * pfdTravGetGSets(pfNode *node);

DESCRIPTION
pfdSpatialize gathers together all the pfGeoSets referenced in the graph rooted at group. It constructs a
new subgraph where all the pfGeoSets are grouped together by their spatial location. An octree is used to
control the grouping. It is ensured that no more than maxGeoSets pfGeoSets will be grouped together in
one pfGeode and that the spatial width of every individual pfGeode constructed will never exceed max-
GeodeSize. The new graph is returned to the caller.

pfdTravGetGSets traverses the graph rooted at node to find all the referenced pfGeoSets. A list contain-
ing every pfGeoSet found by this traversal is returned to the caller.

NOTES
The libpfdu source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfGeoSet

519

pfdTMesher(3pf) IRIS Performer 2.0 libpfdu C++ Reference Pageshh

NAME
pfdMeshGSet, pfdMesherMode, pfdGetMesherMode, pfdShowStrips − Create triangle meshes from
pfGeoSets.

FUNCTION SPECIFICATION
#include <Performer/pfdu.h>

pfGeoSet * pfdMeshGSet(pfGeoSet *gset);

void pfdMesherMode(int mode, int val);

int pfdGetMesherMode(int mode);

void pfdShowStrips(pfGeoSet *gset);

DESCRIPTION
Forming independent triangles into triangle strips (or meshes) can significantly improve rendering per-
formance on IRIS systems. Strips reduce the amount of work required by the CPU, bus, and graphics
subsystem. The IRIS Performer utility mesher is adapted from the triangle mesh code supplied in
"/usr/people/4Dgifts". It is modified to work with Performer pfGeoSet data structures and is optimized
for optimal performance.

pfdMeshGSet takes as input a pfGeoSet consisting of independent triangles, (PFGS_TRIS). The input
may be either indexed or non-indexed. This routine outputs the input pfGeoSet if it cannot strip the
input or a single pfGeoSet that is a collection of triangle strips (PFGS_TRISTRIPS) if it is successful. The
output pfGeoSet is non-indexed and the input pfGeoSet is not deleted although the application generally
should do so to avoid wasted memory.

The mesher attempts to maximize the average length of triangle strips inside gset. The code is complex
but works well and can significantly improve drawing performance if the average number of triangles in
the triangle strips in the output GeoSets is at least four. The length of triangle strips necessary to achieve
peak drawing performance is dependent on the exact hardware configuration.

pfdMesherMode sets the mode that the mesher will use when forming triangle strips. Currently two
modes are supported:

PFDMESH_SHOW_TSTRIPS
Generate a random color for each triangle strip generated. This is a diagnostic mode which
is extremely useful in understanding the structure and efficiency of databases.

PFDMESH_RETESSELLATE
With this mode enabled the mesher will retessellate planar quads to achieve longer strips.

pfdGetMesherMode returns the current setting of mode.

520

IRIS Performer 2.0 libpfdu C++ Reference Pages pfdTMesher(3pf)hh

NOTES
If pfdMeshGSet generates a set of triangle strips whose lengths are all three or four i.e. they are all
independent triangles or quads, the output pfGeoSet will be of type PFGS_TRIS or PFGS_QUADS,
respectively.

pfdMeshGSet also calls pfuHashGSetVerts which may delete the attribute and index arrays of the input
pfGeoSet. Thus you may wish to pfRef your arrays to avoid their deletion.

pfdShowStrips will assign each triangle strip a random color. The first triangle in each strip is dis-
tinguished by being slightly darker than the rest of the strip

The libpfdu source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfGeoSet, pfRef, pfuHashGSetVerts

521

libpfui is a user interface
management facility that manages
keyboard, mouse, and window
system events as well as motion
models to support scene-graph
manipulation.

The library contains a user interface
management facility that distributes
and handles keyboard, mouse, and
window system events as well as
direct-manipulation trackball and
vehicle simulation motion models to
support viewpoint and scene-graph
manipulation.

libpfui

Chapter 1

IRIS Performer 2.0 libpfui C++ Reference Pages pfiCollide(3pf)hh

NAME
pfiGetCollideClassType, pfiNewCollide, pfiEnableCollide, pfiDisableCollide, pfiGetCollideEnable,
pfiCollideMode, pfiGetCollideMode, pfiCollideStatus, pfiGetCollideStatus, pfiCollideDist,
pfiGetCollideDist, pfiCollideHeightAboveGrnd, pfiGetCollideHeightAboveGrnd,
pfiCollideGroundNode, pfiGetCollideGroundNode, pfiCollideObjNode, pfiGetCollideObjNode,
pfiCollideCurMotionParams, pfiGetCollideCurMotionParams, pfiGetCollideMotionCoord,
pfiCollideFunc, pfiGetCollisionFunc, pfiUpdateCollide − pfiCollide functions.

FUNCTION SPECIFICATION
#include <Performer/pfui.h>

pfType * pfiGetCollideClassType(void);

pfiCollide * pfiNewCollide(void *arena);

void pfiEnableCollide(pfiCollide *collide);

void pfiDisableCollide(pfiCollide *collide);

int pfiGetCollideEnable(pfiCollide *collide);

void pfiCollideMode(pfiCollide *collide, int mode, int val);

int pfiGetCollideMode(pfiCollide *collide, int mode);

void pfiCollideStatus(pfiCollide *collide, int status);

int pfiGetCollideStatus(pfiCollide *collide);

void pfiCollideDist(pfiCollide *collide, float dist);

float pfiGetCollideDist(pfiCollide *collide);

void pfiCollideHeightAboveGrnd(pfiCollide *collide, float dist);

float pfiGetCollideHeightAboveGrnd(pfiCollide *collide);

void pfiCollideGroundNode(pfiCollide *collide, pfNode* ground);

pfNode * pfiGetCollideGroundNode(pfiCollide *collide);

void pfiCollideObjNode(pfiCollide *collide, pfNode* db);

pfNode * pfiGetCollideObjNode(pfiCollide *collide);

void pfiCollideCurMotionParams(pfiCollide *collide, pfCoord* pos, pfCoord* prevPos,
float speed);

void pfiGetCollideCurMotionParams(pfiCollide *collide, pfCoord* pos, pfCoord* prevPos,
float *speed);

void pfiGetCollideMotionCoord(pfiCollide *collide, pfiMotionCoord* xcoord);

525

pfiCollide(3pf) IRIS Performer 2.0 libpfui C++ Reference Pageshh

void pfiCollideFunc(pfiCollide *collide, pfiCollideFuncType func, void *data);

void pfiGetCollisionFunc(pfiCollide *collide, pfiCollideFuncType *func, void **data);

int pfiUpdateCollide(pfiCollide *collide);

typedef int (*pfiCollideFuncType)(pfiCollide *, void *);

DESCRIPTION
pfiCollide functions.

The pfiCollide has a complete C++ API following the conventions of general IRIS Performer C++ API;
C++ methods are declared in /usr/include/Performer/pfui/pfiCollide.h.

pfiInit should be called once before any pfiCollide routines and before the forked creation of any addi-
tional processes that will be calling pfiCollide routines.

NOTES
The libpfui source code, object code and documentation are provided as unsupported software. Routines
are subject to change in future releases.

526

IRIS Performer 2.0 libpfui C++ Reference Pages pfiInputCoord(3pf)hh

NAME
pfiGetInputCoordClassType, pfiNewInputCoord, pfiInputCoordVec, pfiGetInputCoordVec −
pfiInputCoord functions.

FUNCTION SPECIFICATION
#include <Performer/pfui.h>

pfType* pfiGetInputCoordClassType(void);

pfiInputCoord * pfiNewInputCoord(void *arena);

void pfiInputCoordVec(pfiInputCoord *ic, float *vec);

void pfiGetInputCoordVec(pfiInputCoord *ic, float *vec);

DESCRIPTION
pfiInputCoord functions.

NOTES
The libpfui source code, object code and documentation are provided as unsupported software. Routines
are subject to change in future releases.

527

pfiInputXform(3pf) IRIS Performer 2.0 libpfui C++ Reference Pageshh

NAME
pfiNewIXform, pfiNewInputCoord, pfiNewMotionCoord, pfiNewInput, pfiGetIXformClassType,
pfiGetInputClassType, pfiGetInputCoordClassType, pfiGetMotionCoordClassType,
pfiIsIXformInMotion, pfiInputName, pfiIsIXGetName, pfiInputFocus, pfiGetInputFocus,
pfiInputEventMask, pfiGetInputEventMask, pfiInputEventStreamCollector,
pfiGetInputEventStreamCollector, pfiInputEventStreamProcessor, pfiGetInputEventStreamProcessor,
pfiInputEventHandler, pfiGetInputEventHandler, pfiIXformMat, pfiGetIXformMat, pfiIXformInput,
pfiGetIXformInput, pfiIXformInputCoordPtr, pfiGetIXformInputCoordPtr, pfiIXformMotionCoord,
pfiGetIXformMotionCoord, pfiIXformResetCoord, pfiGetIXformResetCoord, pfiIXformCoord,
pfiGetIXformCoord, pfiIXformStartMotion, pfiGetIXformStartMotion, pfiIXformMotionLimits,
pfiGetIXformMotionLimits, pfiIXformDBLimits, pfiGetIXformDBLimits, pfiIXformBSphere,
pfiGetIXformBSphere, pfiIXformUpdateFunc, pfiGetIXformUpdateFunc, pfiIXformMotionFuncs,
pfiGetIXformMotionFuncs, pfiResetInput, pfiCollectInputEvents, pfiProcessInputEvents,
pfiStopIXform, pfiResetIXform, pfiUpdateIXform, pfiResetIXformPosition, pfiHaveFastMouseClick −
pfiInputXform functions.

FUNCTION SPECIFICATION
#include <Performer/pfui.h>

pfiInputXform * pfiNewIXform(void *arena);

pfiInputCoord * pfiNewInputCoord(void *arena);

pfiMotionCoord * pfiNewMotionCoord(void *arena);

pfiInput * pfiNewInput(void *arena);

pfType * pfiGetIXformClassType(void);

pfType * pfiGetInputClassType(void);

pfType * pfiGetInputCoordClassType(void);

pfType * pfiGetMotionCoordClassType(void);

int pfiIsIXformInMotion(pfiInputXform *ix);

void pfiInputName(pfiInput *in, const char *name);

const char * pfiIsIXGetName(pfiInput *in);

void pfiInputFocus(pfiInput *in, int focus);

int pfiGetInputFocus(pfiInput *in);

void pfiInputEventMask(pfiInput *in, int emask);

int pfiGetInputEventMask(pfiInput *in);

void pfiInputEventStreamCollector(pfiInput *in, pfiEventStreamHandlerType func,
void *data);

528

IRIS Performer 2.0 libpfui C++ Reference Pages pfiInputXform(3pf)hh

void pfiGetInputEventStreamCollector(pfiInput *in, pfuEventHandlerFuncType *func,
void **data);

void pfiInputEventStreamProcessor(pfiInput *in, pfiEventStreamHandlerType func,
void *data);

void pfiGetInputEventStreamProcessor(pfiInput *in, pfuEventHandlerFuncType *func,
void **data);

void pfiInputEventHandler(pfiInput *in, pfuEventHandlerFuncType func, void *data);

void pfiGetInputEventHandler(pfiInput *in,
pfuEventHandlerFuncType *func void **data);

void pfiIXformMat(pfiInputXform *ix, PFMATRIX mat);

void pfiGetIXformMat(pfiInputXform *ix, PFMATRIX mat);

void pfiIXformInput(pfiInputXform *_ix, pfiInput *_in);

pfiInput * pfiGetIXformInput(pfiInputXform *_ix);

void pfiIXformInputCoordPtr(pfiInputXform *ix, pfiInputCoord *icoord);

pfiInputCoord * pfiGetIXformInputCoordPtr(pfiInputXform *ix);

void pfiIXformMotionCoord(pfiInputXform *ix, pfiMotionCoord *xcoord);

void pfiGetIXformMotionCoord(pfiInputXform *ix, pfiMotionCoord *xcoord);

void pfiIXformResetCoord(pfiInputXform *ix, pfCoord *resetPos);

void pfiGetIXformResetCoord(pfiInputXform *ix, pfCoord *resetPos);

void pfiIXformCoord(pfiInputXform *ix, pfCoord *coord);

void pfiGetIXformCoord(pfiInputXform *ix, pfCoord *coord);

void pfiIXformStartMotion(pfiInputXform *ix, float startSpeed, float startAccel);

void pfiGetIXformStartMotion(pfiInputXform *ix, float *startSpeed, float *startAccel);

void pfiIXformMotionLimits(pfiInputXform *ix, float maxSpeed, float angularVel,
float maxAccel);

void pfiGetIXformMotionLimits(pfiInputXform *ix, float *maxSpeed, float *angularVel,
float *maxAccel);

void pfiIXformDBLimits(pfiInputXform *ix, pfBox *dbLimits);

void pfiGetIXformDBLimits(pfiInputXform *ix, pfBox *dbLimits);

void pfiIXformBSphere(pfiInputXform *ix, pfSphere *_sphere);

529

pfiInputXform(3pf) IRIS Performer 2.0 libpfui C++ Reference Pageshh

void pfiGetIXformBSphere(pfiInputXform *ix, pfSphere *_sphere);

void pfiIXformUpdateFunc(pfiInputXform *ix, pfiInputXformUpdateFuncType func,
void *data);

void pfiGetIXformUpdateFunc(pfiInputXform *ix, pfiInputXformUpdateFuncType *func,
void **data);

void pfiIXformMotionFuncs(pfiInputXform *ix, pfiInputXformFuncType start,
pfiInputXformFuncType stop, void *data);

void pfiGetIXformMotionFuncs(pfiInputXform *ix, pfiInputXformFuncType *start,
pfiInputXformFuncType *stop, void **data);

void pfiResetInput(pfiInput *in);

void pfiCollectInputEvents(pfiInput *in);

void pfiProcessInputEvents(pfiInput *in);

void pfiStopIXform(pfiInputXform *ix);

void pfiResetIXform(pfiInputXform *ix);

void pfiUpdateIXform(pfiInputXform *ix);

void pfiResetIXformPosition(pfiInputXform *ix);

int pfiHaveFastMouseClick(pfuMouse *mouse, int button, float msecs);

typedef int (*pfiEventStreamHandlerType)(pfiInput *, pfuEventStream *);

typedef int (*pfiInputXformFuncType)(pfiInputXform *, void *);

typedef int (*pfiInputXformUpdateFuncType)(pfiInputXform *, pfiInputCoord *, void *);

DESCRIPTION
pfiInputXform is a basic facility for tying together routines to get and process user input, invoke a model
for computing transformations based on that input, and applying those transformations to the viewing
position or transformation matrix to be applied to a database.

The pfiInputXform has a complete C++ API following the conventions of general IRIS Performer C++
API; C++ methods are declared in /usr/include/Performer/pfui/pfiInputXform.h.

pfiInit should be called once before any pfiInputXform routines and before the forked creation of any
additional processes that will be calling pfiInputXform routines.

pfiGetIXformClassType returns the pfType* for the class pfiXformer. Because IRIS Performer allows
subclassing of built-in types, when decisions are made based on the type of an object, it is usually better to
use pfIsOfType to test if an object is of a type derived from a Performer type rather than to test for strict
equality of the pfType*’s.

530

IRIS Performer 2.0 libpfui C++ Reference Pages pfiInputXform(3pf)hh

pfiNewIXform creates a new pfiInputXform data structure as described above and returns a pointer to
that structure. arena should specify the shared arena handle returned by pfGetSharedArena or from the
process dynamic memory area.

pfiIXformInput makes in the pfiInput of the pfiInputXform ix. A pfiInput structure make be created with
pfiNewInput. By default, a pfiInputXform has a NULL pfiInput*. pfiGetIXformInput will return the
pfiInput* of the pfiInputXform ix.

pfiIXformInputCoordPtr makes icoord the pfiInputCoord of the pfiInputXform ix. A pfiInput structure
make be created with pfiNewInputCoord. By default, a pfiInputXform has a NULL pfiInputCoord*.
pfiGetIXformInputCoordPtr will return the pfiInputCoord* of the pfiInputXform ix.

pfiIXformMotionCoord will copy the contents of mcoord to the pfiMotionCoord of ix. A pfiMotionCoord
structure make be created with pfiNewMotionCoord. A pfiInputXform has a fixed pfiMotionCoord
structure.

pfiIXformMat sets the current transformation matrix of ix to be mat. This will also cause the current posi-
tion of ix to be recomputed. pfiGetIXformMat will return the current transformation matrix of ix.

pfiIXformCoord sets the current position (XYZ and HPR) of ix to be coord. This will also cause the current
transformation matrix of ix to be recomputed. pfiGetIXformCoord will return the current position
pfCoord of ix.

pfiIXformResetCoord specifies the position that ix should reset to upon a call to pfiResetIXformPosition.
pfiGetIXformResetCoord will return the current reset position. This position is by default xyz=(0.0, 0.0,
0.0) and hpr=(0.0, 0.0, 0.0).

pfiIXformDBLimits will set the database bounding box of ix to be dbLimits. A bounding sphere and data-
base center (if not previously set with pfiIXformBSphere) will be automatically recalculated. The default
bounding box is of size PFI_BIGDB and is centered at (0.0, 0.0, 0.0). pfiGetIXformDBLimits will return
the current bounding box of ix in dblimits. The database size, center, and limits are often used in setting
and constraining the speed and position of motion models.

pfiIXformBSphere will fix a bounding sphere sphere for ix. pfiGetIXformBSphere will return the current
bounding sphere.

pfiIXformStartMotion specifies the starting speed and acceleration to be used by ix when starting motion.
These parameters may be queried with pfiGetIXformStartMotion.

pfiIXformMotionLimits specifies the maximum speed, angular velocity, and acceleration for ix. These
parameters may be queried with pfiGetIXformMotionLimits.

pfiHaveFastMouseClick will determine if a mouse button button of mouse was clicked for less than msecs.

531

pfiInputXform(3pf) IRIS Performer 2.0 libpfui C++ Reference Pageshh

pfiIXformUpdateFunc specifies the callback function and associated data that will be called upon a call to
pfiUpdateIXform on ix. pfiGetIXformUpdateFunc will return the update callback function pointer and
associated data. By default, the update callback function is NULL.

pfiInputEventStreamCollector sets the callback function and associated data for the collection of events
for the event stream of the pfiInput in. This routine will be called upon a call to pfiCollectInputEvents on
in. pfiGetInputEventStreamCollector will return the current callback function and data.

pfiInputEventStreamProcessor sets the callback function and associated data for processing of the events
stored in the event stream of the pfiInput in. This routine will be called upon a call to pfiProcessInputEvents
on in. pfiGetInputEventStreamProcessor will return the current callback function and data.

pfiIXformMode sets the specified mode of ix to have value val. pfiGetIXformMode returns the value of
specified mode of ix. pfiInputXform modes and corresponding values are:

PFIX_MODE_MOTION
sets the basic motion mode for the motion model. PFIX_MOTION_STOP is the basic
motion mode that all pfiInputXforms must understand.

PFIX_MODE_MOTION_MOD
sets a bitmask of special motion modifiers. A bitmask of 0x0 implies that motion does
not undergo any special modifications beyond that expected by the current motion
mode.

PFIX_MODE_ACCEL
sets the current acceleration mode for ix. PFIX_ACCEL_NONE is the basic accelera-
tion mode that all pfiInputXforms must understand.

PFIX_MODE_AUTO
sets the automatic motion condition val.

PFIX_MODE_LIMIT_POS
sets a bitmask indicating the types of position limits that should be enforced by ix.
The bitmask val may contain one or more of PFIX_LIMIT_POS_HORIZ,
PFIX_LIMIT_POS_BOTTOM, and PFIX_LIMIT_POS_TOP. A value of
PFIX_LIMIT_POS_NONE will prohibit limits on position.

PFIX_MODE_LIMIT_SPEED
sets a bitmask indicating what types of speed limits that ix should enforce. The bit-
mask val may contain one or more of PFIX_LIMIT_SPEED_MAX and
PFIX_LIMIT_SPEED_DB. A value of PFIX_LIMIT_SPEED_NONE will prohibit lim-
its on speed.

PFIX_MODE_LIMIT_ACCEL
sets a bitmask indicating what types of speed limits that ix should enforce. The bit-
mask val may contain one or more of PFIX_LIMIT_ACCEL_MAX and
PFIX_LIMIT_ACCEL_DB. A value of PFIX_LIMIT_ACCEL_NONE will prohibit

532

IRIS Performer 2.0 libpfui C++ Reference Pages pfiInputXform(3pf)hh

limits on acceleration.

pfiStopIXform halts motion of ix by setting the current speed and acceleration to zero.

pfiResetIXform resets the motion and positional parameters to their initial values.

pfiResetIXformPosition sets current position of ix to be the current reset position, which can be set with
pfiIXformResetCoord.

pfiUpdateIXform copies the current position of the pfiMotionCoord of ix to the stored previous position
of the pfiMotionCoord and calls the current update callback function with its associated data.

NOTES
The libpfui source code, object code and documentation are provided as unsupported software. Routines
are subject to change in future releases.

533

pfiInputXformDrive(3pf) IRIS Performer 2.0 libpfui C++ Reference Pageshh

NAME
pfiGetIXformDriveClassType, pfiNewIXformDrive, pfiIXformDriveMode, pfiGetIXformDriveMode,
pfiIXformDriveHeight, pfiGetIXformDriveHeight, pfiCreate2DIXformDrive,
pfiUpdate2DIXformDrive − pfiInputXformDrive functions.

FUNCTION SPECIFICATION
#include <Performer/pfui.h>

pfType * pfiGetIXformDriveClassType(void);

pfiInputXformDrive * pfiNewIXformDrive(void *arena);

void pfiIXformDriveMode(pfiInputXformDrive *drive, int mode, int val);

int pfiGetIXformDriveMode(pfiInputXformDrive *drive, int mode);

void pfiIXformDriveHeight(pfiInputXformDrive* drive, float height);

float pfiGetIXformDriveHeight(pfiInputXformDrive* drive);

pfiInputXformDrive * pfiCreate2DIXformDrive(void *arena);

int pfiUpdate2DIXformDrive(pfiInputXform *drive, pfiInputCoord *icoord,
void *data);

DESCRIPTION
pfiInputXformDrive functions.

A pfiInputXformDrive is a child of the pfiInputXform class and so pfiInputXform routines may be called
with a pfiInputXformDrive. See the pfiInputXform reference page for information on pfiInputXform
functionality. The pfiInputXformDrive has a complete C++ API following the conventions of general IRIS
Performer C++ API; C++ methods are declared in /usr/include/Performer/pfui/pfiInputXformDrive.h.

pfiInit should be called once before any pfiInputXformDrive routines and before the forked creation of
any additional processes that will be calling pfiInputXformDrive routines.

NOTES
The libpfui source code, object code and documentation are provided as unsupported software. Routines
are subject to change in future releases.

534

IRIS Performer 2.0 libpfui C++ Reference Pages pfiInputXformFly(3pf)hh

NAME
pfiGetIXformFlyClassType, pfiNewIXFly, pfiIXformFlyMode, pfiGetIXformFlyMode,
pfiCreate2DIXformFly, pfiUpdate2DIXformFly − pfiInputXformFly functions.

FUNCTION SPECIFICATION
#include <Performer/pfui.h>

pfType * pfiGetIXformFlyClassType(void);

pfiInputXformFly * pfiNewIXFly(void *arena);

void pfiIXformFlyMode(pfiInputXformFly *fly, int mode, int val);

int pfiGetIXformFlyMode(pfiInputXformFly *fly, int mode);

pfiInputXformFly * pfiCreate2DIXformFly(void *arnea);

int pfiUpdate2DIXformFly(pfiInputXform *fly, pfiInputCoord *icoord, void *data);

DESCRIPTION
pfiInputXformFly functions.

A pfiInputXformFly is a child of the pfiInputXform class and so pfiInputXform routines may be called
with a pfiInputXformFly. See the pfiInputXform reference page for information on pfiInputXform func-
tionality. The pfiInputXformFly has a complete C++ API following the conventions of general IRIS Per-
former C++ API; C++ methods are declared in /usr/include/Performer/pfui/pfiInputXformFly.h.

pfiInit should be called once before any pfiInputXformFly routines and before the forked creation of any
additional processes that will be calling pfiInputXformFly routines.

NOTES
The libpfui source code, object code and documentation are provided as unsupported software. Routines
are subject to change in future releases.

535

pfiInputXformTrackball(3pf) IRIS Performer 2.0 libpfui C++ Reference Pageshh

NAME
pfiGetIXformTrackballClassType, pfiNewIXformTrackball, pfiIXformTrackballMode,
pfiGetIXformTrackballMode, pfiCreate2DIXformTrackball, pfiUpdate2DIXformTrackball −
pfiInputXformTrackball functions.

FUNCTION SPECIFICATION
#include <Performer/pfui.h>

pfType * pfiGetIXformTrackballClassType(void);

pfiInputXformTrackball * pfiNewIXformTrackball(void *arena);

void pfiIXformTrackballMode(pfiInputXformTrackball *tb, int mode, int val);

int pfiGetIXformTrackballMode(pfiInputXformTrackball *tb, int mode);

pfiInputXformTrackball * pfiCreate2DIXformTrackball(void *arena);

int pfiUpdate2DIXformTrackball(pfiInputXform *tb, pfiInputCoord *icoord,
void *data);

DESCRIPTION
pfiInputXformTrackball functions.

A pfiInputXformTrackball is a child of the pfiInputXform class and so pfiInputXform routines may be
called with a pfiInputXformTrackball. See the pfiInputXform reference page for information on
pfiInputXform functionality. The pfiInputXformTrackball has a complete C++ API following the conven-
tions of general IRIS Performer C++ API; C++ methods are declared in
/usr/include/Performer/pfui/pfiTrackball.h.

pfiInit should be called once before any pfiInputXformTrackball routines and before the forked creation
of any additional processes that will be calling pfiInputXformTrackball routines.

NOTES
The libpfui source code, object code and documentation are provided as unsupported software. Routines
are subject to change in future releases.

536

IRIS Performer 2.0 libpfui C++ Reference Pages pfiMotionCoord(3pf)hh

NAME
pfiGetMotionCoordClassType, pfiNewMotionCoord − pfiMotionCoord functions.

FUNCTION SPECIFICATION
#include <Performer/pfui.h>

pfType * pfiGetMotionCoordClassType(void);

pfiMotionCoord * pfiNewMotionCoord(void *arena);

DESCRIPTION
pfiMotionCoord functions.

NOTES
The libpfui source code, object code and documentation are provided as unsupported software. Routines
are subject to change in future releases.

537

pfiPick(3pf) IRIS Performer 2.0 libpfui C++ Reference Pageshh

NAME
pfiGetPickClassType, pfiNewPick, pfiPickMode, pfiGetPickMode, pfiPickHitFunc,
pfiGetPicktHitFunc, pfiAddPickChan, pfiInsertPickChan, pfiRemovePickChan, pfiGetPickNumHits,
pfiGetPickNode, pfiGetPickGSet, pfiSetupPickChans, pfiDoPick, pfiResetPick − pfiPick functions.

FUNCTION SPECIFICATION
#include <Performer/pfui.h>

pfType * pfiGetPickClassType(void);

pfiPick * pfiNewPick(void *arena);

void pfiPickMode(pfiPick *pick, int mode, int val);

int pfiGetPickMode(pfiPick *pick, int mode);

void pfiPickHitFunc(pfiPick *pick, pfiPickFuncType func, void *data);

void pfiGetPicktHitFunc(pfiPick *pick, pfiPickFuncType *func, void **data);

void pfiAddPickChan(pfiPick *pick, pfChannel *chan);

void pfiInsertPickChan(pfiPick *pick, int index, pfChannel *chan);

void pfiRemovePickChan(pfiPick *pick, pfChannel *chan);

int pfiGetPickNumHits(pfiPick *pick);

pfNode * pfiGetPickNode(pfiPick *pick);

pfGeoSet * pfiGetPickGSet(pfiPick *pick);

void pfiSetupPickChans(pfiPick *pick);

int pfiDoPick(pfiPick *pick, int x, int y);

void pfiResetPick(pfiPick *pick);

typedef int (*pfiPickFuncType)(pfiPick *, void *);

DESCRIPTION
pfiPick functions.

The pfiPick has a complete C++ API following the conventions of general IRIS Performer C++ API; C++
methods are declared in /usr/include/Performer/pfui/pfiPick.h.

pfiInit should be called once before any pfiPick routines and before the forked creation of any additional
processes that will be calling pfiPick routines.

538

IRIS Performer 2.0 libpfui C++ Reference Pages pfiPick(3pf)hh

NOTES
The libpfui source code, object code and documentation are provided as unsupported software. Routines
are subject to change in future releases.

539

pfiTDFXformer(3pf) IRIS Performer 2.0 libpfui C++ Reference Pageshh

NAME
pfiNewTDFXformer, pfiGetTDFXformerClassType, pfiCreateTDFXformer,
pfiTDFXformerStartMotion, pfiGetTDFXformerStartMotion, pfiTDFXformerFastClickTime,
pfiGetTDFXformerFastClickTime, pfiTDFXformerTrackball, pfiTDFXformerDrive, pfiTDFXformerFly,
pfiGetTDFXformerTrackball, pfiGetTDFXformerDrive, pfiGetTDFXformerFly,
pfiProcessTDFXformerMouseEvents, pfiProcessTDFXformerMouse, pfiProcessTDFTrackballMouse,
pfiProcessTDFTravelMouse − Performer utility module used by perfly for managing a collection of
motion models with a default user interface.

FUNCTION SPECIFICATION
#include <Performer/pfui.h>

pfiTDFXformer * pfiNewTDFXformer(void* arena);

pfType* pfiGetTDFXformerClassType(void);

pfiXformer * pfiCreateTDFXformer(pfiInputXformTrackball *tb,
pfiInputXformDrive *drive, pfiInputXformFly *fly, void *arena);

void pfiTDFXformerStartMotion(pfiTDFXformer* xf, float startSpeed,
float startAccel, float accelMult);

void pfiGetTDFXformerStartMotion(pfiTDFXformer* xf, float *startSpeed,
float *startAccel, float *accelMult);

void pfiTDFXformerFastClickTime(pfiTDFXformer* xf, float msecs);

float pfiGetTDFXformerFastClickTime(pfiXformer* xf);

void pfiTDFXformerTrackball(pfiTDFXformer *xf, pfiInputXformTrackball *tb);

void pfiTDFXformerDrive(pfiTDFXformer *xf, pfiInputXformDrive *tb);

void pfiTDFXformerFly(pfiTDFXformer *xf, pfiInputXformFly *tb);

pfiInputXformTrackball * pfiGetTDFXformerTrackball(pfiTDFXformer *xf);

pfiInputXformDrive * pfiGetTDFXformerDrive(pfiTDFXformer *xf);

pfiInputXformFly * pfiGetTDFXformerFly(pfiTDFXformer *xf);

int pfiProcessTDFXformerMouseEvents(pfiInput *, pfuEventStream *,
void *data);

void pfiProcessTDFXformerMouse(pfiTDFXformer *xf, pfuMouse *mouse,
pfChannel *inputChan);

void pfiProcessTDFTrackballMouse(pfiTDFXformer *xf,
pfiInputXformTrackball *trackball, pfuMouse *mouse);

void pfiProcessTDFTravelMouse(pfiTDFXformer *xf, pfiInputXformTravel *tr,
pfuMouse *mouse);

540

IRIS Performer 2.0 libpfui C++ Reference Pages pfiTDFXformer(3pf)hh

DESCRIPTION
pfiTDFXformer is a facility developed using the pfiXformer to provide a convenient utility for managing
motion models derived from pfiInputXformTrackball, pfiInputXformDrive, and pfiInputXformFly and
providing a default user interface for such motion models based on input received through a pfuMouse
structure. This utility is used by IRIS Performer sample programs, such as perfly, in conjunction with the
libpfutil input collection utilities (see the pfuInitInput reference page for more information).

A pfiTDFXformer is a child of the pfiXformer class and so pfiXformer routines may be called with a
pfiTDFXformer. See the pfiXformer and pfiInputXform reference pages for information on other general
functionality. Functionality specific to the pfiXformer are discussed here The pfiTDFXformer has a com-
plete C++ API following the conventions of general IRIS Performer C++ API; C++ methods are declared
in /usr/include/Performer/pfui/pfiXformer.h. This reference page only discusses the C API.

pfiInit should be called once before any pfiTDFXformer routines and before the forked creation of any
additional processes that will be calling pfiXformer routines.

pfiGetTDFXformerClassType returns the pfType* for the class pfiXformer. Because IRIS Performer
allows subclassing of built-in types, when decisions are made based on the type of an object, it is usually
better to use pfIsOfType to test if an object is of a type derived from a Performer type rather than to test
for strict equality of the pfType*’s.

pfiNewTDFXformer creates a new pfiTDFXformer data structure as described above and returns a
pointer to that structure. arena should specify the shared arena handle returned by pfGetSharedArena or
from the process dynamic memory area.

pfiProcessTDFXformerMouse is the default update function used by the pfiTDFXformer and implements
a interface based on input from pfuMouse and pfChannel specified with pfiXformerAutoInput. The type
of the currently selected motion model (selected with pfiSelectXformerModel) is to see if it is derived
from one of pfiInputXformTrackball, or pfiInputXformTravel, causes the pfiTDFXformer to invoke the
mouse handling routine pfiProcessTDFTrackballMouse or pfiProcessTDFTravelMouse for the
corresponding motion model type. The trackball, drive, and fly motion models have the following
interpretations of mouse events:

TRACKBALL
Motion models derived from pfiInputXformTrackball will get the TRACKBALL mouse mapping.
This mode causes the transformation matrix to be transformed as if the user was using the mouse
pointer to spin a virtual trackball that surrounds the scene. The center of the scene is the computed
center of the database supplied by pfiXformerNode, or the center of the supplied database bound-
ing box via pfiXformerLimits or pfiIXformDBLimits in world-space coordinates. Trackball motion
is intended to applied to the matrix of a pfDCS transforming the database.. This can be done
automatically if the pfDCS was supplied with pfiXformerAutoPosition. The trackball transforma-
tion matrix can be requested from the pfiTDFXformer with pfiGetXformerModelMat. Collision

541

pfiTDFXformer(3pf) IRIS Performer 2.0 libpfui C++ Reference Pageshh

detection is disabled in trackball mode. Two kinds of motion are possible in this mode.

ROTATION
The user can "spin" the virtual trackball by holding down the middle mouse button and mov-
ing the cursor relative to where it was at the time the middle button was pressed. Thus, when
the middle mouse button is down, moving the cursor horizontally on the screen will cause
rotation around Performer’s world-space Z-axis, while moving the cursor vertically will cause
rotation around Performer’s world-space X-axis. Releasing the middle mouse button while
moving the cursor will cause the pfiXformer to continue to rotate the transformation matrix at
the current rate. Holding down both the middle and right mouse buttons will cause rotation
around Performer’s world-space Y-axis.

TRANSLATION
The user can "move" or translate the virtual trackball in the XZ plane in Performer’s world-
space (the plane of the screen when the view into the pfChannel is directed down the Y-axis -
the default in perfly) by holding down the left mouse button and moving the cursor relative to
its position at the time the left mouse button was pressed. The user can "zoom" or translate
the virtual trackball on the Y axis in Performer’s world-space by holding down the right (or
both left and right) mouse buttons while moving the cursor vertically on the screen.

Mouse Action Motion Effectii
Left mouse down Translation in X and Z
Middle mouse down Rotation around the X and Z azis
Middle+Right mouse down Rotation about Y axis
Right mouse down: Translation along Y axis (zoom)
Middle+Right mouse down Translation in along Y axis (zoom)
No mouse down mouse position is ignored.c

c
c
c
c
c
c
c
c

If the motion model is changed from the trackball model to a moving viewpoint model,
pfiInputXformDrive or pfiInputXformFly, the corresponding final transformations on the scene pfDCS
are then transformed to the viewpoint.

DRIVE
Motion models derived from pfiInputXformDrive will get the DRIVE mouse mapping. This mode
causes the transformation matrix to be transformed as if the user were using the mouse to control a
car or other land-based vehicle. In this mode the cursor’s position relative to the center of the screen
will continue to cause relative turning of the transformation matrix. Moving the cursor to the right
causes a right turn. Moving the cursor to the left causes a left turn. Keeping the cursor in the mid-
dle keeps the transformation "facing" the same direction. The left and right mouse buttons control
acceleration and deceleration, respectively. If moving forward, the right mouse button will
decelerate until eventually you start moving backward. The left and right buttons together will set
your current speed to zero but allow you to control viewing direction. So, if you are moving for-
wards and you desire to be going in reverse immediately, hit the right and left mouse buttons
together, then release the left mouse button. The middle mouse button allows control of viewing
direction while maintaining a constant speed, or will maintain the current position if the viewer was

542

IRIS Performer 2.0 libpfui C++ Reference Pages pfiTDFXformer(3pf)hh

stopped when the middle mouse button was pushed. Additionally, when the middle mouse button
is pressed, the driving height may be altered by holding down a ctrl-key and moving the mouse up
and down. A single fast middle-mouse click anywhere on the screen will cause motion to stop.
Additionally, if all three mouse buttons are down, motion will stop. When no mouse buttons are
down, the mouse position is ignored; motion in progress when mouse buttons were pressed will
continue at a constant speed.

The mouse buttons are the same as are interpreted as follows:

Mouse Action Motion Effectii
Left mouse down Accelerate forward motion and steer
Right mouse down Decelerate motion direction and steer
Middle mouse down Maintain current motion and and steer
Left and Right down Halt current motion and steer
Fast middle click Halt all motion
No mouse down mouse position is ignored.c

c
c
c
c
c
c
c
c

FLY Motion models derived from pfiInputXformFly will get the FLY mouse mapping. This mode
causes the transformation matrix to be transformed as if the user were using the mouse to direct
flight in 3D space. The viewer position will follow the mouse: vertical motion of the mouse will
direct motion up and down. The behavior in this mode is different from that of classic flight models
where moving the mouse up pushes the nose of the aircraft up and moving the mouse down pushes
the nose down. Here the pitch of the aircraft follows the mouse. Motion controls are analogous to
the pfiInputXformDrive model. The left and right buttons do acceleration and deceleration, middle
mouse directs heading and maintains current motion at a constant speed. Keeping the cursor in the
middle of the screen will maintain current direction. The mouse buttons are interpreted this way.

Mouse Action Motion Effectii
Left mouse down Accelerate forward motion and steer
Right mouse down Decelerate motion direction and steer
Middle mouse down Maintain current motion and and steer
Left and Right down Halt current motion and steer
Fast middle click Halt all motion
No mouse down mouse position is ignored.c

c
c
c
c
c
c
c
c

pfiTDFXformerFastClickTime will set the maximum time for a mouse button to be down and still to
qualify as a "fast click" for xf to be msecs. If msecs is less than 0, fast click checking will be disabled and no
such clicks will be recognized. The default fast click time is 300msecs. pfiGetTDFXformerFastClickTime
returns the fast click time for xf.

543

pfiTDFXformer(3pf) IRIS Performer 2.0 libpfui C++ Reference Pageshh

NOTES
The libpfui source code, object code and documentation are provided as unsupported software. Routines
are subject to change in future releases.

544

IRIS Performer 2.0 libpfui C++ Reference Pages pfiXformer(3pf)hh

NAME
pfiInit, pfiGetXformerClassType, pfiNewXformer, pfiXformerModel, pfiSelectXformerModel,
pfiGetXformerCurModel, pfiGetXformerCurModelIndex, pfiRemoveXformerModel,
pfiRemoveXformerModelIndex, pfiStopXformer, pfiResetXformer, pfiResetXformerPosition,
pfiCenterXformer, pfiXformerAutoInput, pfiXformerMat, pfiGetXformerMat, pfiXformerModelMat,
pfiGetXformerModelMat, pfiXformerCoord, pfiGetXformerCoord, pfiXformerResetCoord,
pfiGetXformerResetCoord, pfiXformerNode, pfiGetXformerNode, pfiXformerAutoPosition,
pfiGetXformerAutoPosition, pfiXformerLimits, pfiGetXformerLimits, pfiEnableXformerCollision,
pfiDisableXformerCollision, pfiGetXformerCollisionEnable, pfiXformerCollision,
pfiGetXformerCollisionStatus, pfiUpdateXformer, pfiCollideXformer − Performer utility module for
managing a collection of motion models.

FUNCTION SPECIFICATION
#include <Performer/pfui.h>

void pfiInit(void);

extern pfType* pfiGetXformerClassType(void);

pfiXformer * pfiNewXformer(void* arena);

void pfiXformerModel(pfiXformer* xf, int index, pfiInputXform* model);

void pfiSelectXformerModel(pfiXformer* xf, int which);

pfiInputXform * pfiGetXformerCurModel(pfiXformer* xf);

int pfiGetXformerCurModelIndex(pfiXformer* xf);

int pfiRemoveXformerModel(pfiXformer* xf, int index);

int pfiRemoveXformerModelIndex(pfiXformer* xf, pfiInputXform* model);

void pfiStopXformer(pfiXformer* xf);

void pfiResetXformer(pfiXformer* xf);

void pfiResetXformerPosition(pfiXformer* xf);

void pfiCenterXformer(pfiXformer* xf);

void pfiXformerAutoInput(pfiXformer* xf, pfChannel* chan, pfuMouse* mouse,
pfuEventStream* events);

void pfiXformerMat(pfiXformer* xf, PFMATRIX mat);

void pfiGetXformerMat(pfiXformer* xf, PFMATRIX mat);

void pfiXformerModelMat(pfiXformer* xf, PFMATRIX mat);

void pfiGetXformerModelMat(pfiXformer* xf, PFMATRIX mat);

545

pfiXformer(3pf) IRIS Performer 2.0 libpfui C++ Reference Pageshh

void pfiXformerCoord(pfiXformer* xf, pfCoord *coord);

void pfiGetXformerCoord(pfiXformer* xf, pfCoord *coord);

void pfiXformerResetCoord(pfiXformer* xf, pfCoord *resetPos);

void pfiGetXformerResetCoord(pfiXformer* xf, pfCoord *resetPos);

void pfiXformerNode(pfiXformer* xf, pfNode *node);

pfNode * pfiGetXformerNode(pfiXformer* xf);

void pfiXformerAutoPosition(pfiXformer* xf, pfChannel *chan, pfDCS *dcs);

void pfiGetXformerAutoPosition(pfiXformer* xf, pfChannel **chan, pfDCS **dcs);

void pfiXformerLimits(pfiXformer* xf, float maxSpeed, float angularVel, float maxAccel,
pfBox* dbLimits);

void pfiGetXformerLimits(pfiXformer* xf, float *maxSpeed, float *angularVel,
float *maxAccel, pfBox* dbLimits);

void pfiEnableXformerCollision(pfiXformer* xf);

void pfiDisableXformerCollision(pfiXformer* xf);

int pfiGetXformerCollisionEnable(pfiXformer* xf);

void pfiXformerCollision(pfiXformer* xf, int mode, float val, pfNode* node);

int pfiGetXformerCollisionStatus(pfiXformer* xf);

void pfiUpdateXformer(pfiXformer* xf);

int pfiCollideXformer(pfiXformer* xf);

typedef struct _pfiXformer pfiXformer;

PARAMETERS
xf identifies a pfiXformer.

DESCRIPTION
pfiXformer is a facility developed to address the common task of updating a transformation matrix based
on a vehicle motion model and control input from a user. A transformation matrix is computed using a
motion model selected from a list of possible motion models maintained by the pfiXformer. This transfor-
mation matrix can then be used to update a pfChannel’s view specification (pfChanViewMat) or a
pfDCS node’s matrix, or the pfiXformer can update these elements automatically if specified with
pfiXformerAutoPosition. pfiXformerAutoInput can be used to set up mouse-based input to the
pfiXformer.

A pfiXformer is a child of the pfiInputXform class and so pfiInputXform routines may be called with a
pfiXformer. See the pfiInputXform reference page for information on pfiInputXform functionality.

546

IRIS Performer 2.0 libpfui C++ Reference Pages pfiXformer(3pf)hh

Functionality specific to the pfiXformer are discussed here. The pfiXformer has a complete C++ API
(more complete than the C API) following the conventions of general IRIS Performer C++ API; C++
methods are declared in /usr/include/Performer/pfui/pfiXformer.h. This reference page only discusses
the C API.

pfiInit should be called once before any pfiXformer routines and before the forked creation of any addi-
tional processes that will be calling pfiXformer routines.

pfiGetXformerClassType returns the pfType* for the class pfiXformer. Because IRIS Performer allows
subclassing of built-in types, when decisions are made based on the type of an object, it is usually better to
use pfIsOfType to test if an object is of a type derived from a Performer type rather than to test for strict
equality of the pfType*’s.

pfiNewXformer creates a new pfiXformer data structure as described above and returns a pointer to that
structure. arena should specify the shared arena handle returned by pfGetSharedArena or from the pro-
cess dynamic memory area.

pfiXformerAutoInput causes the pfiXformer to use the specified mouse and channel when collecting user
input. These structures will be examined every frame, typically xf when pfiUpdateXformer is called.
pfiUpdateXformer should be called every frame and will "update" xf based on the input structures
specified in pfiXformerAutoInput and the currently selected motion model.

pfiXformerAutoPosition will cause the pfiXformer to automatically update the view and position
matrices of chan and dcs automatically. One or both of chan or dcs may be NULL to prevent channel or
dcs updates.

pfiXformerCollision specifies with what types of objects xf should collide. mode is a bit field that will be
bitwise OR-ed into the collision mode of xf. Possible modes are PFICOLLIDE_GROUND and
PFICOLLIDE_OBJECT. val specifies the minimum distance from xf’s origin to an object or to the ground
at which xf is considered to have collided with that object. node specifies the root of the subtree of the
scene graph against which xf will check for collisions. pfiGetXformerCollisionStatus returns whether or
not xf is currently colliding with something.

pfiXformerLimits sets the maximum speed of xf to maxSpeed, the angular velocity of xf to angularVel, the
maximum acceleration of xf to maxAccel and the bounds within which xf can move to be the pfBox dbLim-
its. pfiGetXformerLimits returns everything set by pfiXformerLimits.

pfiXformerModel sets model to put at location index in the motion model list of xf.

pfiSelectXformerModel causes the motion model at location which in the motion model list of xf to be the
current active motion model of xf. pfiGetXformerCurModelIndex will return the index of the current
active motion model for xf.

547

pfiXformer(3pf) IRIS Performer 2.0 libpfui C++ Reference Pageshh

pfiRemoveXformerModel will remove model from the motion model list of xf.
pfiRemoveXformerModelIndex will replace the motion model at index from the motion model list of xf
with NULL.

pfiXformerMat sets the current pfiXformer matrix to mat thus resetting xf’s transformation matrix to mat.
Note that this also causes the xf’s position as specified in the coord field of the pfiXformer to be updated.
pfiGetXformerMat returns xf’s current transform matrix by copying it into mat.

pfiXformerModelMat sets the current tranform matrix of the current motion model of xf to mat thus
resetting xf’s transformation matrix to mat. Note that this also causes the xf’s position as specified in the
coord field of the pfiXformer to be updated. pfiGetXformerModelMat returns the transform matrix of
the current motion model of xf by copying it into mat.

pfiXformerCoord sets the current position of the pfiXformer xf to coord and then recalculates the overall
pfiXformer matrix again based on this new position. Note that positions are absolute and not relative to
previous positions. pfiGetXformerCoord returns the position currently specified by the pfiXformer xf by
copying it into coord.

pfiXformerNode causes the pfiXformer to use node to automatically compute database limits and size
based on the scene graph rooted at node. If the database limits have been previously explicitly specified
with pfiXformerLimits or pfiIXformDBLimits they will not be overwritten.

pfiResetXformer causes the motion models, the collision model, and the current position and transforma-
tion matrices to be reset to their initial state.

pfiStopXformer causes the transformation matrix in xf to stop changing by zeroing velocity and accelera-
tion.

pfiResetXformerPosition causes the position of the pfiXformer and its current motion model to be reset
to the initial position. This stored position can be set with pfiXformerResetCoord and queried with
pfiGetXformerResetCoord.

pfiCenterXformer will cause the position of the pfiXformer and its current motion model to be reset to the
center of the database, computed using the current database limits as defined by pfiXformerNode or
pfiIXformDBLimits.

pfiEnableXformerCollision enables the current requested collisions on xf which will be computed upon
the call to pfiCollideXformer. pfiDisableXformerCollision disables the requested collision and a call to
pfiCollideXformer will have no effect.

pfiCollideXformer performs collision checks of xf against all relevant objects (as specified in
pfiXformerCollision) and return TRUE if xf has collided with something. This routine is commonly called
from a forked intersection process.

548

IRIS Performer 2.0 libpfui C++ Reference Pages pfiXformer(3pf)hh

NOTES
The libpfui source code, object code and documentation are provided as unsupported software. Routines
are subject to change in future releases.

SEE ALSO
pfiTDFXformer, pfChannel, pfChanViewMat, pfCoord, pfDCS, pfGetSharedArena, pfMatrix

549

libpfutil is a library for facilitating
application development.

This library provides functions
including GUI widgets, and motion
models, and window system
support.

libpfutil

Chapter 1

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuBoxLOD(3pf)hh

NAME
pfuBoxLOD, pfuMakeBoxGSet − Calculate node bounding boxes and build LODs from boxes.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

pfLOD * pfuBoxLOD(pfGroup *grp, int flat, pfVec4 *color);

pfGeoSet * pfuMakeBoxGSet(pfBox *box, pfVec4 color, int flat);

DESCRIPTION
These functions can be used to automatically generate very simple level-of-detail representations of a sub-
graph from the bounding boxes of the geometric objects contained in that subgraph. Sending a node to
pfuBoxLOD creates multiple representations for that node by finding bounding boxes at different levels
of the scene graph and then using those boxes as level-of-detail models under pfLOD nodes. The highest
level-of-detail under the pfLOD is simply the original subgraph. The next highest level-of-detail consists
of the subgraph with each pfGeode’s pfGeoSets replaced by a single pfGeoSet depicting a box. Next
every pfGeode is replaced by a single "box" pfGeode. This continues to progressively lower levels-of-
detail as the "box" pfGeodes contain larger and larger subgraphs, until the box rendered for the lowest
level-of-detail contains the entire subgraph. The new partial subgraphs are created using pfClone. The
LOD transition ranges (see pfLODRange) are set as integer multiples of the spatial extent of the sub-
graph.

pfuBoxLOD takes a subgraph grp, a color vector color, and a shading type flat. grp specifies the existing
scene graph hierarchy to be processed. The color argument provides the color definition used for the
boxes that will be built. The shading type flat determines each pfGeoSet’s primitive type and normals. If
flat is non-zero, the generated pfGeoSet’s are made up of PFGS_FLAT_TRISTRIP primitives with face
directed normals. If flat is zero, they consist of PFGS_TRISTRIP primitives with normals directed radi-
ally outwards. The former produces sharply defined cubes, the latter marshmallows.

To determine the appropriate size of the box geometry, pfuBoxLOD uses pfuTravCalcBBox to get a
tighter bound on the subgraphs than pfGetNodeBSphere provides.

pfuMakeBoxGSet takes a pfBox box and returns a pfGeoSet containing drawable geometry that
represents the box with color color and a shading type determined by flat, as explained in the description
of pfuBoxLOD above. The pfGeoSet and associated arrays are allocated from the current shared
memory arena (see pfGetSharedArena).

NOTES
The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

553

pfuBoxLOD(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

BUGS
The LOD transition range setting is very primitive.

SEE ALSO
pfGeoSet, pfLOD, pfLODRange, pfuTravCalcBBox, pfNodeBSphere, pfScene, pfClone, pfGetSharedArena

554

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuCollide(3pf)hh

NAME
pfuCollisionChan, pfuGetCollisionChan, pfuCollideSetup, pfuCollideGrnd, pfuCollideObj, pfuCol-
lideGrndObj − Terrain following and collision routines.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

void pfuCollisionChan(pfChannel *chan);

pfChannel * pfuGetCollisionChan(void);

void pfuCollideSetup(pfNode *node, int mode, int mask);

int pfuCollideGrnd(pfCoord *coord, pfNode *node, pfVec3 zpr);

int pfuCollideObj(pfSeg *seg, pfNode *objNode, pfVec3 hitPos, pfVec3 hitNorm);

int pfuCollideGrndObj(pfCoord *coord, pfNode *grndNode, pfVec3 zpr, pfSeg *seg,
pfNode *objNode, pfVec3 hitPos, pfVec3 hitNorm);

DESCRIPTION
This collection of simple routines provides intersection traversals for basic collision detection and ground
following. Examples of pfuCollide usage can be found in the IRIS Performer transformation utility,
pfuXformer.

pfuCollisionChan sets the channel from which to derive LOD scale and viewing information. This is
used to determine which LOD to collide against.

pfuGetCollisionChan returns the current channel set by pfuCollisionChan.

pfuCollideSetup sets the intersection mask of the subgraph rooted by node to mask. The values mask can
take are the same as in pfNodeTravMask. mode is either

PFUCOLLIDE_STATIC
Geometry below node is considered static and intersection caching will be enabled (see
pfNodeTravMask) or

PFUCOLLIDE_DYNAMIC
Geometry below node is considered dynamic and intersection caching will not be enabled
(see pfNodeTravMask)

Best intersection performance is achieved for static geometry.

pfuCollideGrnd fires a ray downward (in negative Z direction) from coord and returns
PFUCOLLIDE_GROUND if an intersection was found with the subgraph rooted by node and FALSE
otherwise. The height and orientation of the intersected geometry is returned in zpr which contains the
height, and the pitch and roll angles of the surface at the intersection point.

pfuCollideObj intersects seg with the subgraph rooted by objNode and returns PFUCOLLIDE_OBJECT if

555

pfuCollide(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

an intersection was found and FALSE otherwise. The intersection point and surface normal is returned in
hitPos and hitNorm respectively. seg is typically a velocity vector used to detect collisions in the direction
of travel.

pfuCollideGrndObj is the combination of pfuCollideObj and pfuCollideGrnd. It may provide better
performance over calling these routines separately when grndNode and objNode are identical. The return
value is a bitmask of PFUCOLLIDE_GROUND and PFUCOLLIDE_OBJECT indicating whether the
downward-directed ray and/or the line segment hit anything.

NOTES
The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfHit, pfNode, pfNodeIsectSegs, pfNodeTravMask

556

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuCursor(3pf)hh

NAME
pfuCreateDftCursor, pfuLoadWinCursor, pfuLoadPWinCursor, pfuGetInvisibleCursor, pfuCursor,
pfuGetCursor − Create and load cursors for pfWindows and pfPipeWindows.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

Cursor pfuCreateDftCursor(int index);

void pfuLoadWinCursor(pfWindow *win, int index);

void pfuLoadPWinCursor(pfPipeWindow *pwin, int index);

Cursor pfuGetInvisibleCursor(void);

void pfuCursor(Cursor c, int index);

Cursor pfuGetCursor(int index);

DESCRIPTION
These functions allow different types of cursors to be created and associated with pfWindows and
pfPipeWindows.

pfuCreateDftCursor creates and returns a default cursor corresponding to type index.

pfuLoadWinCursor loads the cursor of type index into the pfWindow win. pfuLoadPWinCursor does the
same for the pfPipeWindow pwin. Definitions are provided in pfutil.h for the standard cursor types.
Such cursors have definitions of the form PFU_CURSOR_name, where name is one of:

circle, hand1, arrow, based_arrow_down, based_arrow_up, boat, bogosity, bottom_left_corner,
bottom_right_corner, bottom_side, bottom_tee, box_spiral, center_ptr, clock, coffee_mug, cross,
cross_reverse, crosshair, diamond_cross, dot, dotbox, double_arrow, draft_large, draft_small,
draped_box, exchange, fleur, gobbler, gumby, hand2, heart, icon, iron_cross, left_ptr, left_side,
left_tee, leftbutton, ll_angle, lr_angle, man, middlebutton, mouse, pencil, pirate, plus,
question_arrow, right_ptr, right_side, right_tee, rightbutton, rtl_logo, sailboat, sb_down_arrow,
sb_h_double_arrow, sb_left_arrow, sb_right_arrow, sb_up_arrow, sb_v_double_arrow, shuttle,
sizing, spider, spraycan, star, target, tcross, top_left_arrow, top_left_corner, top_right_corner,
top_side, top_tee, trek, ul_angle, umbrella, ur_angle, watch, or xterm.

pfuGetInvisibleCursor creates and returns an invisible cursor.

pfuCursor allows the user to change the default cursor associated with a given type. pfuCursor sets the
cursor of type index to be c. pfuGetCursor returns the cursor of type index.

Use the xfd command with the "-fn cursor" option to see a list of the different available cursor types. The
IRIS Performer header file "/usr/include/Performer/pfutil.h" contains a list of all the cursor names.

557

pfuCursor(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

NOTES
Only even numbered cursor types are supported, even though xfd will display cursors of both odd and
even types.

SEE ALSO
xfd, pfuGUI, pfuXFont

558

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuEventQueue(3pf)hh

NAME
pfuNewEventQ, pfuResetEventStream, pfuResetEventQ, pfuAppendEventQStream, pfuAppen-
dEventQ, pfuEventQStream, pfuGetEventQStream, pfuGetEventQEvents, pfuIncEventQFrame,
pfuEventQFrame, pfuGetEventQFrame, pfuIncEventStreamFrame, pfuEventStreamFrame,
pfuGetEventStreamFrame − Event queue and event stream management utilities

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

pfuEventQueue * pfuNewEventQ(pfDataPool *dp, int id);

void pfuResetEventStream(pfuEventStream *es);

void pfuResetEventQ(pfuEventQueue *eq);

void pfuAppendEventQStream(pfuEventQueue *dst, pfuEventStream *src);

void pfuAppendEventQ(pfuEventQueue *dst, pfuEventQueue *src);

void pfuEventQStream(pfuEventQueue *eq, pfuEventStream *es);

pfuEventStream * pfuGetEventQStream(pfuEventQueue *eq);

void pfuGetEventQEvents(pfuEventStream *events, pfuEventQueue *eq);

void pfuIncEventQFrame(pfuEventQueue *eq);

void pfuEventQFrame(pfuEventQueue *eq, int val);

int pfuGetEventQFrame(pfuEventQueue *eq);

void pfuIncEventStreamFrame(pfuEventStream *es);

void pfuEventStreamFrame(pfuEventStream *es, int val);

int pfuGetEventStreamFrame(pfuEventStream *es);

These functions provide a means to manage streams and queues of X and GL input events.
pfuEventQueues are compressed frames of events. pfuEventStreams are sequences of events. They offer
a way to manipulate pfuEventQueues.

pfuNewEventQ creates, initializes and returns a new event queue. dp is the pfDataPool from which
memory for the new event queue is allocated. id is the handle by which the event queue is identified. New
memory is allocated for the event queue only if an event queue with the same id is not already present in
dp.

pfuResetEventStream resets the event stream es to a null event stream. pfuResetEventQ resets the event
stream associated with the event queue eq.

pfuAppendEventQStream appends the event stream src to the event queue dst. This is done by copying
the events in src to the end of the event stream associated with dst. pfuAppendEventQ appends the event
stream associated with src to dst.

559

pfuEventQueue(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

pfuEventQStream sets the event stream associated with eq to be es. pfuGetEventQStream returns a
pointer to the event stream associated with eq.

pfuGetEventQEvents copies the event stream associated with src into dst.

pfuIncEventQFrame increments the frame stamp of the event stream associated with eq by 1 or sets the
frame stamp to 0 if it is negative.

pfuEventQFrame sets the frame stamp of the event stream associated with eq to val. pfuGetEventQFrame
returns the frame stamp of the event stream associated with eq.

pfuIncEventStreamFrame increments the frame stamp of the event stream es by 1 or sets the frame stamp
to 0 if it is negative.

pfuEventStreamFrame sets the frame stamp of the event stream es to val. pfuGetEventStreamFrame
returns the frame stamp of the event stream es.

SEE ALSO
pfDataPool, pfuGUI, pfuInitInput

560

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuFlybox(3pf)hh

NAME
pfuOpenFlybox, pfuReadFlybox, pfuGetFlybox, pfuGetFlyboxActive, pfuInitFlybox − Routines to read
the BG Systems flybox.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

int pfuOpenFlybox(char *port);

int pfuReadFlybox(int *dioval, float *inbuf);

int pfuGetFlybox(float *analog, int *but);

int pfuGetFlyboxActive(void);

int pfuInitFlybox(void);

DESCRIPTION
These routines provide a simple interface to the BG Systems flybox but do not provide a flight model
based on the flybox.

pfuOpenFlybox opens the flybox port specified by port.

pfuReadFlybox reads the values of the flybox digital inputs into dioval and stores the eight analog input
values into inbuf.

pfuGetFlybox reads the values of the flybox analog inputs into analog after setting them to zero if their
absolute values are very small. It also stores the flybox digital inputs into but.

pfuGetFlyboxActive returns whether the flybox is currently active.

pfuInitFlybox initializes the flybox. It uses pfuOpenFlybox and pfuGetFlybox.

NOTES
BG Systems Inc. is located in Palo Alto, California. Their telephone number is (415) 858-2628.

The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

561

pfuGLXWinopen(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

NAME
pfuOpenXDisplay, pfuGLXWinopen, pfuGetGLXWin, pfuGetGLXDisplayString, pfuGLXAllocColor-
map, pfuGLXMapcolors, pfuGLMapcolors, pfuMapWinColors, pfuMapPWinColors,
pfuPrintWinFBConfig, pfuPrintPWinFBConfig, pfuChooseFBConfig − Open X display, open GLX win-
dow, get GLX window handle.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

pfuXDisplay * pfuOpenXDisplay(int screen);

pfuGLXWindow * pfuGLXWinopen(pfPipe *pipe, pfPipeWindow* pipewin, const char *name);

void pfuGetGLXWin(pfPipe *pipe, pfuGLXWindow *win);

const char * pfuGetGLXDisplayString(pfPipe *pipe);

int pfuGLXAllocColormap(pfuXDisplay *dsp, pfuXWindow win);

void pfuGLXMapcolors(pfuXDisplay *dsp, pfuXWindow win, pfVec3 *colors, int loc,
int num);

void pfuGLMapcolors(pfVec3 *colors, int loc, int num);

void pfuMapWinColors(pfWindow *win, pfVec3 *colors, int loc, int num);

void pfuMapPWinColors(pfPipeWindow *pwin, pfVec3 *colors, int loc, int num);

void pfuPrintWinFBConfig(pfWindow *win, FILE *_file);

void pfuPrintPWinFBConfig(pfPipeWindow *pwin, FILE *_file);

pfFBConfig pfuChooseFBConfig(Display *dsp, int screen, int *constraints, void *arena);

typedef Window pfuXWindow;

typedef uint pfuXDisplay;

typedef struct _pfuGLXWindow

{

pfPipeWindow *pw;

pfuXDisplay *dsp;

pfuXWindow xWin;

pfuXWindow glWin;

pfuXWindow overWin;

} pfuGLXWindow;

562

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuGLXWinopen(3pf)hh

DESCRIPTION
pfuInitUtil should be called immediately after pfConfig when using these routines to initialize shared
memory used by the utility library.

pfuOpenXDisplay opens and returns a handle to a connection to the X server on screen. If screen is 1, then
the default display, or that specified by the shell environment variable DISPLAY is used.
pfuOpenXDisplay returns NULL if the X display cannot be opened. These routines are provided only
for compatibility with previous IRIS Performer releases and new development should use the window
system utilities in libpr, such as pfOpenWSConnection and pfOpenScreen.

pfuGLXWinopen opens and returns a handle to a GLX window for pfPipe pipe, using the existing
pfPipeWindow pipewin or making a new pfPipeWindow for pipe if pipewin is NULL. The window’s title
bar is set to name.

pfuGetGLXWin returns a handle in win to the GLX window for pfPipe pipe, and returns NULL if no such
window can be found.

pfuGetGLXDisplayString returns the name of the X Display stored for pipe.

pfuGLXAllocColormap allocates color map entries for the window specified in win and returns the
number of colors available. dsp is win’s connection to the X server.

pfuGLMapcolors replaces num IRIS GL color map entries. win, starting at color map index loc. The colors
array contains the color values to map, normalized in the range [0, 1]. The red component is stored in
colors[i][0], the green component in colors[i][1], and the blue component in colors[i][2].

pfuGLXMapcolors replaces num color map entries in the X window win, starting at color map index loc.
dsp is a valid X connection. The colors array contains the color values to map, normalized in the range [0,
1]. The red component is stored in colors[i][0], the green component in colors[i][1], and the blue component
in colors[i][2].

pfuMapWinColors replaces num color map entries in the pfWindow win, starting at color map index loc.
win can be pure a IRIS GL, GLX, or OpenGL/X window. If win is a pure IRIS GL window, this call must
be made in the rendering process. The colors array contains the color values to map, normalized in the
range [0, 1]. The red component is stored in colors[i][0], the green component in colors[i][1], and the blue
component in colors[i][2]. pfuMapPWinColors is the analogous routine for pfPipeWindows. If pwin is a
pure IRIS GL window, this call must be made in the rendering process.

pfuPrintWinFBConfig prints the framebuffer configuration of the pfWindow, win, to the specified file file.
If file is NULL, stderr is used. pfuPrintPWinFBConfig prints the framebuffer configuration of the pfPi-
peWindow, pwin, to the specified file file.

563

pfuGLXWinopen(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

pfuChooseFBConfig is an OpenGL X framebuffer configuration chooser for selecting X Visuals for
OpenGL/X windows. This chooser limits performance critical attributes: multisamples, size of depth
buffer, RGB color, and stencil. If the provided pfWSConnection is NULL, the current pfWSConnection
libpr will be used. See the pfGetCurWSConnection reference page for more information. If the pro-
vided screen is (-1), the default screen of the pfWSConnection will be used.

NOTES
The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfuInitUtil, pfMultipipe

564

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuGUI(3pf)hh

NAME
pfuInitGUI, pfuExitGUI, pfuEnableGUI, pfuUpdateGUI, pfuRedrawGUI, pfuGUIViewport, pfuGet-
GUIViewport, pfuInGUI, pfuInitGUICursors, pfuGUICursor, pfuGetGUICursor, pfuGUIHlight,
pfuGetGUIHlight, pfuGUICursorSel, pfuGetGUICursorSel, pfuUpdateGUICursor, pfuFitWidgets,
pfuGetGUIScale, pfuGetGUITranslation, pfuNewPanel, pfuEnablePanel, pfuDisablePanel, pfuGet-
PanelOriginSize, pfuNewWidget, pfuDisableWidget, pfuEnableWidget, pfuGetWidgetType,
pfuGetWidgetId, pfuWidgetDim, pfuGetWidgetDim, pfuWidgetLabel, pfuGetWidgetLabelWidth,
pfuGetWidgetLabel, pfuWidgetRange, pfuWidgetValue, pfuGetWidgetValue, pfuWidgetDe-
faultValue, pfuWidgetActionFunc, pfuGetWidgetActionFunc, pfuWidgetSelectFunc, pfuGetWidget-
SelectFunc, pfuWidgetDrawFunc, pfuGetWidgetDrawFunc, pfuWidgetSelections, pfuWidgetSelec-
tion, pfuGetWidgetSelection, pfuWidgetDefaultSelection, pfuWidgetDefaultOnOff, pfuWidgetOn-
Off, pfuIsWidgetOn, pfuResetGUI, pfuResetPanel, pfuResetWidget, pfuDrawMessage, pfuDrawMes-
sageCI, pfuDrawMessageRGB, pfuDrawTree − High-performance graphical user interface routines.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

void pfuInitGUI(pfPipe *pipe);

void pfuExitGUI(void);

void pfuEnableGUI(int en);

void pfuUpdateGUI(pfuMouse *mouse);

void pfuRedrawGUI(void);

void pfuGUIViewport(float l, float r, float b, float t);

void pfuGetGUIViewport(float *l, float *r, float *b, float *t);

int pfuInGUI(int x, int y);

void pfuInitGUICursors(void);

void pfuGUICursor(int target, int c);

int pfuGetGUICursor(int target);

void pfuGUIHlight(pfHighlight *hlight);

pfHighlight * pfuGetGUIHlight(void);

void pfuGUICursorSel(int c);

int pfuGetGUICursorSel(void);

void pfuUpdateGUICursor(void);

void pfuFitWidgets(int val);

565

pfuGUI(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

void pfuGetGUIScale(float *x, float *y);

void pfuGetGUITranslation(float *x, float *y);

pfuPanel * pfuNewPanel(void);

void pfuEnablePanel(pfuPanel *p);

void pfuDisablePanel(pfuPanel *p);

void pfuGetPanelOriginSize(pfuPanel *p, float *xo, float *yo, float *xs, float *ys);

pfuWidget * pfuNewWidget(pfuPanel *p, int type, int id);

void pfuDisableWidget(pfuWidget *w);

void pfuEnableWidget(pfuWidget *w);

int pfuGetWidgetType(pfuWidget *w);

int pfuGetWidgetId(pfuWidget *w);

void pfuWidgetDim(pfuWidget *w, int xo, int yo, int xs, int ys);

void pfuGetWidgetDim(pfuWidget *w, int *xo, int *yo, int *xs, int *ys);

void pfuWidgetLabel(pfuWidget *w, const char *label);

int pfuGetWidgetLabelWidth(pfuWidget *w);

const char * pfuGetWidgetLabel(pfuWidget *w);

void pfuWidgetRange(pfuWidget *w, int mode, float min, float max, float val);

void pfuWidgetValue(pfuWidget *w, float newval);

float pfuGetWidgetValue(pfuWidget *w);

void pfuWidgetDefaultValue(pfuWidget *w, float val);

void pfuWidgetActionFunc(pfuWidget *w, pfuWidgetActionFuncType func);

pfuWidgetActionFuncType pfuGetWidgetActionFunc(pfuWidget *w);

void pfuWidgetSelectFunc(pfuWidget *w, pfuWidgetSelectFuncType func);

pfuWidgetSelectFuncType pfuGetWidgetSelectFunc(pfuWidget *w);

void pfuWidgetDrawFunc(pfuWidget *w, pfuWidgetDrawFuncType func);

pfuWidgetDrawFuncType pfuGetWidgetDrawFunc(pfuWidget *w);

void pfuWidgetSelections(pfuWidget *w, pfuGUIString *selectionList,
int *valList, void (**funcList)(pfuWidget *w), int numSelections);

void pfuWidgetSelection(pfuWidget *w, int index);

566

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuGUI(3pf)hh

int pfuGetWidgetSelection(pfuWidget *w);

void pfuWidgetDefaultSelection(pfuWidget *w, int index);

void pfuWidgetDefaultOnOff(pfuWidget * w, int on);

void pfuWidgetOnOff(pfuWidget *w, int on);

int pfuIsWidgetOn(pfuWidget *w);

void pfuResetGUI(void);

void pfuResetPanel(pfuPanel *p);

void pfuResetWidget(pfuWidget *w);

void pfuDrawMessage(pfChannel *chan, const char *msg, int rel, int just, float x,
float y, int size, int cimode);

void pfuDrawMessageCI(pfChannel *chan, const char *msg, int rel, int just,
float x, float y, int size, int textClr, int shadowClr);

void pfuDrawMessageRGB(pfChannel *chan, const char *msg, int rel, int just,
float x, float y, int size, pfVec4 textClr, pfVec4 shadowClr);

void pfuDrawTree(pfChannel *chan, pfNode *tree, pfVec3 panScale);

typedef void (*pfuWidgetDrawFuncType)(pfuWidget *widget, pfuPanel *panel);

typedef pfuWidget* (*pfuWidgetSelectFuncType)(pfuWidget *widget, pfuPanel *panel);

typedef void (*pfuWidgetActionFuncType)(pfuWidget *widget);

DESCRIPTION
These functions define a simple graphical user interface library for the IRIS Performer sample application
perfly.

Call pfuInitGUI to initialize the GUI module. Call pfuExitGUI on exit to deallocate GUI data structures
and print brief frame statistics through pfNotify at notification level PFNFY_INFO.

pfuEnableGUI disables or enables GUI processing and GUI panel updates depending on the value of en.
pfuUpdateGUI uses the current mouse data in mouse to draw the GUI according to its current
configuration. The mouse data can be collected by your own input handling routines and stored in a
pfuMouse structure to give to the GUI or retrieved from the libpfutil input collector using pfuGetMouse.
pfuRedrawGUI redraws the GUI.

pfuGUIViewport sets the GUI coordinates relative to the GUI window. pfuGetGUIViewport retrieves
the current coordinates.

pfuInGUI returns true if the point (x, y) lies within the GUI. x and y should be given relative to the

567

pfuGUI(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

window, not the screen.

Your application should call pfuFitWidgets if you change your panel layout after initialization so that the
widgets in the window are accurately scaled and translated to fit inside the window. This function is
called automatically from pfuUpdateGUI if a change in window size is detected. val is currently ignored.

pfuGetGUIScale can be called to retrieve the relative scale of the GUI to the display window. Similarly,
pfuGetGUITranslation will retrieve the current translation.

pfuNewPanel allocates and initializes a new GUI panel, pfuEnablePanel is used to enable a panel, and
pfuDisablePanel disables a panel. GUI panels are essentially a region containing widgets, rectangular
regions which can be customized as buttons, menus, and other interface items. pfuResetPanel restores
the widgets in panel to their default values. pfuGetPanelOriginSize retrieves the origin and size for
panel.

pfuNewWidget allocates and initializes a new widget of type type. id is the handle by which the new
widget is identified. pfuGetWidgetType returns w’s type while pfuGetWidgetId returns w’s id. Use
pfuEnableWidget and pfuDisableWidget to enable or disable the action of a widget w.

pfuWidgetDim sets w’s lower left corner at (xo, yo) and its top right corner at (xo+xs, yo+ys).
pfuGetWidgetDim returns w in xo and yo and its size in xs and ys.

pfuWidgetLabel sets label to be the label by which w will be identified. pfuGetWidgetLabelWidth
returns the length of w’s label while pfuGetWidgetLabel returns the label itself.

pfuWidgetRange sets the range and initial value of w when mode takes the values PFUGUI_SLIDER or
PFUGUI_SLIDER_LOG. When mode is PFUGUI_SLIDER, w’s range is set to be (min, max) and its initial
value is set to val. When mode is PFUGUI_SLIDER_LOG, the base-10 logarithms of min, max and val are
used.

pfuWidgetValue essentially sets w’s value to newval. The actions are different depending on w’s type.

PFUGUI_SLIDER
w’s value is set to newval.

PFUGUI_SLIDER_LOG
w’s value is set to the base-10 logarithm of newval.

PFUGUI_SWITCH,
w’s value is set to its minimum possible provided newval is close to the minimum. Other-
wise, w’s value is set to its maximum possible.

568

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuGUI(3pf)hh

PFGUI_BUTTON
w is highlighted if newval is non-zero, otherwise it is unhighlighted.

PFUGUI_MENU_BUTTON
w’s value is set to the index of the selection whose value is close to newval.

PFUGUI_RADIO_BUTTON or PFUGUI_RADIO_BUTTON_TOGGLE
w’s value is set to the index of the selection whose value is close to newval.

pfuGetWidgetValue returns w’s value. pfuWidgetDefaultValue works just like pfuWidgetValue but
sets w’s default value to newval instead.

pfuWidgetActionFunc is used to set the callback function when the mouse button is clicked on the
widget. pfuGetWidgetActionFunc will return the widget’s action callback function.
pfuWidgetSelectFunc and pfuWidgetDrawFunc are used to set up custom widgets.
pfuWidgetSelectFunc is called with a custom selection function in func. func is called when the mouse
button is clicked on the widget; func returns a pointer to another widget, whose action function is called
instead of the custom widget’s action function. If pfuWidgetDrawFunc is called to set a custom draw
function, that function will be called instead of the built-in draw function when that widget needs to be
redrawn. pfuGetWidgetDrawFunc and pfuGetWidgetSelectFunc will return the custom draw and
selection callback functions, respectively.

pfuWidgetSelections sets the selection choices for the widget w, which must be of type
PFUGUI_RADIO_BUTTON or PFUGUI_MENU_BUTTON. val contains a list of the values assigned to
each of the selections; if val is NULL, then the selection value will be set to the ordinal index of the selec-
tion. funcList contains a list of action functions corresponding to each selection; if funcList is NULL, then
the widget’s default action function will be used for all of the selections. Use pfuWidgetSelection to set
the current selection. Use pfuGetWidgetSelection to retrieve the selection last chosen or set. Use
pfuWidgetDefaultSelection to set the selection which will be set when the widget (or the panel that con-
tains it) is reset.

pfuWidgetOnOff changes various fields of w depending on whether on is 0 or 1. These changes essen-
tially correspond to setting the widget off or on. Exactly how w is changed depends on its type as follows.

PFUGUI_SWITCH
If on is 0, w’s value is set to its minimum. Otherwise, it is set to the maximum possible
value.

PFUGUI_BUTTON
If on is 1, w’s value is set to 1 and w is highlighted. If on is 0, w’s value is set to 0 and w is
restored to its normal, unhighlighted state.

PFUGUI_RADIO_BUTTON
If on is 1, w is set on; otherwise it is set off.

pfuWidgetDefaultOnOff works essentially like pfuWidgetOnOff. If w is of type PFUGUI_SWITCH, w’s

569

pfuGUI(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

default value is modified. If w is of type PFUGUI_RADIO_BUTTON, w’s default on value is modified.

pfuIsWidgetOn returns the status of w - whether it is on or off.

pfuResetWidget resets w to its default values and calls w’s action function if that function has been set.

pfuDrawMessage draws the message msg justified with respect to (x, y) in a font of size size. x and y must
range between 0 and 1 and size should take the value PFU_FONT_SMALL, PFU_FONT_MED, or
PFU_FONT_BIG. just specifies the justification and can take the value PFU_CENTER_JUSTIFIED,
PFU_LEFT_JUSTIFIED or PFU_RIGHT_JUSTIFIED. Set cimode to PFU_CI to use color-indexing mode
or PFU_RGB to use direct color mode. rel controls whether x and y are specified as absolute values or
relative to chan’s origin.

pfuDrawMessageCI works just like pfuDrawMessage except that cimode is set to PFU_CI. The color
indices are specified in textClr and shadowClr.

pfuDrawMessageRGB also works just like pfuDrawMessage except that cimode is set to PFU_RGB. The
RGB color values are specified in textClr and shadowClr.

pfuDrawTree draws each node of the subtree of the scene graph rooted at tree inside the view frustum
defined by chan.

The following functions are not normally called by user applications but are used by the GUI module to
manipulate its internal state and are provided here for completeness.

pfuInitGUICursors initializes the cursors used by the GUI module.

pfuGetGUICursor and pfuGUICursor are used to get and set cursor definitions, respectively.
pfuGetGUICursorSel and pfuGUICursorSel are used to get and set the current cursor, respectively.
pfuUpdateGUICursor is called to load the current cursor bitmap into the display window.

pfuGUIHlight and pfuGetGUIHlight are used to get and set the pfHighlight definition used to highlight
selected geometry.

NOTES
pfuInitUtil should be called immediately after pfConfig when using these routines to initialize shared
memory used by the utility library. Additionally, the GUI relies on receiving mouse information via
pfuGetMouse. This input can be collected automatically via input handling utilities in libpfutil. See the
pfuInitInput man pages.

These functions use pfDataPools to store multiply accessed data so as to work well in multiprocessing
applications. See "/usr/share/Performer/src/libpfutil/gui.c" for further details.

570

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuGUI(3pf)hh

Sample source code programs using the GUI utilities include
"/usr/share/Performer/src/pguide/libpf/C/detail.c" and the perfly sample application.

The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfDataPool, pfuXFont, pfuCursor, pfuInitInput, pfuInitUtil, pfuGetMouse

571

pfuHash(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

NAME
pfuNewHTable, pfuDelHTable, pfuResetHTable, pfuEnterHash, pfuRemoveHash, pfuFindHash,
pfuHashGSetVerts, pfuCalcHashSize − Hash table utility library.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

pfuHashTable * pfuNewHTable(int numb, int eltsize, void* arena);

void pfuDelHTable(pfuHashTable* ht);

void pfuResetHTable(pfuHashTable* ht);

pfuHashElt * pfuEnterHash(pfuHashTable* ht, pfuHashElt* elt);

int pfuRemoveHash(pfuHashTable* ht, pfuHashElt* elt);

int pfuFindHash(pfuHashTable* ht, pfuHashElt* elt);

int pfuHashGSetVerts(pfGeoSet *gset);

int pfuCalcHashSize(int size);

typedef struct _pfuHashElt

{

int id;

int listIndex;

uint key;

void *data;

} pfuHashElt;

typedef struct _pfuHashBucket

{

int nelts;

pfuHashElt *elts;

struct _pfuHashBucket *next;

} pfuHashBucket;

typedef struct _pfuHashTable

{

void *arena;

int eltSize;

int realeltSize;

int numBuckets;

pfuHashBucket **buckets;

/* Flat list of hash elements provides linear ordering */

572

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuHash(3pf)hh

int listCount;

int listAvail;

pfuHashElt **list;

} pfuHashTable;

DESCRIPTION
pfuNewHTable returns a new hash table allocated from the shared memory arena arena with numb ele-
ments each of size eltsize. eltsize is in bytes and must be a multiple of four.

pfuDelHTable deletes the hash table ht.

pfuResetHTable resets the hash table ht.

pfuEnterHash puts element elt into hash table ht. If the element is already in the table, it returns the
address of that element, otherwise it returns NULL and adds the element to the list member of the
pfuHashTable structure.

pfuRemoveHash removes element elt from the hash table ht, returning TRUE if elt was found and FALSE
otherwise.

pfuFindHash looks for element elt in hash table ht, returning TRUE if elt was found and FALSE other-
wise.

pfuHashGSetVerts takes a pfGeoSet of type PFGS_TRIS and attempts to share all PFGS_PER_VERTEX
attributes. pfuHashGSetVerts will convert a non-indexed pfGeoSet into an indexed one and may delete
the old attribute and index arrays and create new ones. Consequently you may wish to pfRef your arrays
to avoid their deletion.

An example of pfuHashGSetVerts usage is found in pfdMeshGSet.

pfuCalcHashSize returns the smallest prime number larger than size. This is useful since hash tables are
more memory efficient when their table size is prime.

NOTES
The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfGeoSet, pfRef, pfuMeshGSet, pfuEventQueue, pfuGUI

573

pfuInitInput(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

NAME
pfuInitInput, pfuExitInput, pfuGetMouse, pfuGetEvents, pfuInputHandler, pfuCollectInput, pfuCol-
lectGLEventStream, pfuCollectXEventStream, pfuMapMouseToChan, pfuMouseInChan − Initialize,
process and reset input devices.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

void pfuInitInput(pfPipeWindow *pipeWin, int mode);

void pfuExitInput(void);

void pfuGetMouse(pfuMouse *mouse);

void pfuGetEvents(pfuEventStream *events);

void pfuInputHandler(pfuEventHandlerFuncType userFunc, uint mask);

void pfuCollectInput(void);

void pfuCollectGLEventStream(pfuEventStream *events, pfuMouse *mouse, int handlerMask,
pfuEventHandlerFuncType handlerFunc);

void pfuCollectXEventStream(pfWSConnection dsp, pfuEventStream *events, pfuMouse *mouse,
int handlerMask, pfuEventHandlerFuncType handlerFunc);

int pfuMapMouseToChan(pfuMouse *mouse, pfChannel *chan);

int pfuMouseInChan(pfuMouse *mouse, pfChannel *chan);

typedef struct _pfuMouse

{

int flags; /* for PDEV_MOUSE_*_DOWN and PFUDEV_MOD_* bitmasks */

int modifiers; /* modifier keys only */

int xpos, ypos; /* Screen coordinates of mouse */

float xchan, ychan; /* Normalized coordinates of mouse */

double posTime; /* msec timestamp on current mouse position */

/* These are used by the GUI and pfiXformer

* GUI needs Last click positional info

* Xformers need last and middle click and release info

*/

/* Mask of clicks seen last frame */

int click;

/* Last click position for each mouse button */

int clickPos[PFUDEV_MOUSE_DOWN_MASK][2];

/* Screen coordinates where a mouse button was last clicked */

int clickPosLast[2];

574

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuInitInput(3pf)hh

/* mask of mouse releases seen last frame */

int release;

/* last release position for each mouse button */

int releasePos[PFUDEV_MOUSE_DOWN_MASK][2];

/* Screen coordinates where a mouse button was last released*/

int releasePosLast[2];

/* Last click time for each mouse button */

double clickTime[PFUDEV_MOUSE_DOWN_MASK];

/* Time of last button click */

double clickTimeLast;

/* Last release time for each mouse button */

double releaseTime[PFUDEV_MOUSE_DOWN_MASK];

/* Time of last button reelase */

double releaseTimeLast;

int winSizeX; /* Window Size */

int winSizeY;

int inWin; /* Window focus flag */

} pfuMouse;

typedef void (*pfuEventHandlerFuncType)(int dev, void* val,

pfuCustomEvent *pfuevent);

DESCRIPTION
There are a variety of automatic and explicit event collection utilities in libpfutil. Automatic X or GL
input event collection is started with pfuInitInput and the resulting events can be queried with
pfuInputHandler and pfuGetEvents.

pfuInitInput initializes mouse and keyboard input to be read from the specified pfPipeWindow pipeWin.
mode is one of:

PFUINPUT_X
Read mouse and keyboard from a forked process using X device commands. pipe must
have a GLX window. See the pfuGLXWinopen reference page for more information.

PFUINPUT_GL
Read mouse and keyboard from the draw process using GL device commands. pipe must
have a GL window.

575

pfuInitInput(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

pfuCollectInput should be called from the draw process if the mode is PFUINPUT_GL and will poll the
mouse and collect all queued devices. The first time it is called, pfuCollectInput will queue the following
GL devices:

WINQUIT

REDRAW

KEYBD

LEFTMOUSE

MIDDLEMOUSE

RIGHTMOUSE

INPUTCHANGE

Any other required GL devices, such as function keys, should be queued explicitly by the application.

If the mode is PFUINPUT_X then pfuCollectInput does not need to be called since the device input is
automatically collected by the forked process.

pfuInputHandler installs the custom handler userFunc, which will then be called to process each input
event included in mask. If the mode is PFUINPUT_X, then mask can be set to the bitwise-or of an X input
mask with PFUINPUT_CATCH_UNKNOWN, PFUINPUT_CATCH_SIM, or PFU_CATCH_ALL. If
mode is PFUINPUT_GL, then mask may be set to either PFU_CATCH_ALL or
PFU_CATCH_UNKNOWN.

pfuGetMouse copies the current mouse values from the libpfutil event collector (initially triggered with
pfuInitInput) into mouse and pfuGetEvents copies the events of the current frame into events.
pfuGetEvents also resets the internal event queue.

pfuMapMouseToChan maps the mouse screen coordinates (mouse->xpos, mouse->ypos) into coordi-
nates in the range [-1, 1] (mouse->xchan, mouse->ychan) based on chan’s viewport. Either TRUE or
FALSE is returned to indicate that the mouse is in or out of the chan’s viewport.

pfuMouseInChan does the pfuMapMouseToChan mapping. In addition, its return value considers
mouse focus if a mouse button is recorded as being down in mouse. In this case, the recorded position of
where the mouse button was clicked will determine if the current channel has focus. The mouse will be
considered to be "in" the channel of focus.

pfuCollectGLEventStream will do immediate IRIS GL input collection into the provided pfuEventStream
and pfuMouse structures. If the provided event stream or mouse pointer is NULL, it will be ignored. This
routine must be called in the draw process.

pfuCollectXEventStream will do immediate X input collection from the provided pfWSConnection into
the provided pfuEventStream and pfuMouse structures. If the provided event stream or mouse pointer is

576

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuInitInput(3pf)hh

NULL, it will be ignored.

pfuExitInput must be called to terminate the forked X input process.

NOTES
pfuInitUtil should be called immediately after pfConfig when using these routines to initialize shared
memory used by the utility library. IRIS Performer recommends that you use X device input. The IRIS
Performer sample application, perfly, is shipped with PFUINPUT_X as the default. X device input is
recommended for the following reasons:

OpenGL does not contain device input routines and all input must be managed through X.

Collecting GL device input in the draw process can reduce rendering throughput.

Collecting X device input in an asynchronous process can improve real-time characteristics.

See the pfuEventQueue man page for a description of the pfuEventStream structure.

The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfuGLXWinopen, pfuInitUtil, pfuEventQueue, pfuGUI

577

pfuInitUtil(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

NAME
pfuInitUtil, pfuGetUtilDPool, pfuExitUtil, pfuDPoolSize, pfuGetDPoolSize, pfuFindUtilDPData −
Initialize and reset IRIS Performer utility library.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

void pfuInitUtil(void);

pfDataPool * pfuGetUtilDPool(void);

void pfuExitUtil(void);

void pfuDPoolSize(long size);

long pfuGetDPoolSize();

volatile void* pfuFindUtilDPData(int id);

DESCRIPTION
pfuInitUtil must be called before making any calls to the utility library. pfuInitUtil creates a pfDataPool
which libpfutil uses for multiprocess operation. The pfDataPool is created in "/usr/tmp" or the direc-
tory specified by the environment variable, PFTMPDIR, if it is set.

In order to change the amount of memory that pfuInitUtil will allocate for the libpfutil data pool, call
pfuDPoolSize. pfuGetDPoolSize returns the size of the data pool. Note that the default data pool size is
optimal for libpfutil’s memory allocation. You should only use pfuDPoolSize to increase the size of the
data pool. Changes to the data pool size only take effect when your application calls pfuInitUtil.

pfuGetUtilDPool returns a pointer to the utility library pfDataPool.

pfuFindUtilDPData returns a pointer to the block of memory identified by id in the utility library
pfDataPool or NULL if id is not found.

pfuExitUtil removes the utility library pfDataPool from the file system.

NOTES
If a calling program exits abnormally, the pfDataPool will not be deleted.

The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfDataPool

578

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuLPointState(3pf)hh

NAME
pfuMakeLPStateShapeTex, pfuMakeLPStateRangeTex − Sample functions to derive a texture image
from light point specifications.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

void pfuMakeLPStateShapeTex(pfLPointState *lps, pfTexture *tex, int size);

void pfuMakeLPStateRangeTex(pfLPointState *lps, pfTexture *tex, int size, pfFog *fog);

DESCRIPTION
pfMakeLPStateRangeTex and pfMakeLPStateShapeTex are provided to compute a texture image which
accurately mimics certain characteristics of pfLightPoints. These functions are provided as sample code
in libpfutil.

EXAMPLES
The following example illustrates how to build a comprehensive light point structure that uses texture
mapping to accelerate directionality computations. The texture maps are generated using the
pfuMakeLPStateShapeTex described here.

/*

* Create pfLPointState and pfGeoState.

*/

pfGeoState *gst = pfNewGState(arena);

pfLPointState *lps = pfNewLPState(arena);

pfGStateMode(gst, PFSTATE_ENLPOINTSTATE, 1);

pfGStateAttr(gst, PFSTATE_LPOINTSTATE, lps);

/*

* Light point projected diameter is computed on CPU. Real world

* size is 0.07 database units and projected size is clamped be

* between 0.25 and 4 pixels.

*/

pfLPStateMode(lps, PFLPS_SIZE_MODE, PFLPS_SIZE_MODE_ON);

pfLPStateVal(lps, PFLPS_SIZE_MIN_PIXEL, 0.25f);

pfLPStateVal(lps, PFLPS_SIZE_ACTUAL, 0.07f);

pfLPStateVal(lps, PFLPS_SIZE_MAX_PIXEL, 4.0f);

/*

* Light points become transparent when their projected diameter is

* < 2 pixels. The transparency falloff rate is linear with

* projected size with a scale factor of 0.6. The transparency

579

pfuLPointState(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

* multiplier, NOT the light point transparency, is clamped to 0.1.

*/

pfLPStateVal(lps, PFLPS_TRANSP_PIXEL_SIZE, 2.0f);

pfLPStateVal(lps, PFLPS_TRANSP_EXPONENT, 1.0f);

pfLPStateVal(lps, PFLPS_TRANSP_SCALE, 0.6f);

pfLPStateVal(lps, PFLPS_TRANSP_CLAMP, 0.1f);

/*

* Light points will be fogged as if they were 4 times

* nearer to the eye than actual to achieve punch-through.

*/

pfLPStateVal(lps, PFLPS_FOG_SCALE, 0.25f);

/* Range to light points computed on CPU is true range */

pfLPStateMode(lps, PFLPS_RANGE_MODE, PFLPS_RANGE_MODE_TRUE);

/*

* Light points are bidirectional but have different (magenta)

* back color. Front color is provided by pfGeoSet colors.

*/

pfLPStateMode(lps, PFLPS_SHAPE_MODE, PFLPS_SHAPE_MODE_BI_COLOR);

pfLPStateBackColor(lps, 1.0f, 0.0f, 1.0f, 1.0f);

/*

* 60 degrees horizontal and 30 degrees vertical envelope.

* Envelope is rotated -25 degrees about the light point

* direction. Falloff rate is linear and ambient intensity is 0.1.

*/

pfLPStateShape(lps, 60.0f, 30.0f, -25.0f, 1.0f, 0.1f);

/*

* Specify that light points should use texturing hardware to simulate

* directionality and use CPU to compute light point transparency and

* fog punch-through. Note that if light points are omnidirectional,

* you should use PFLPS_TRANSP_MODE_TEX and PFLPS_FOG_MODE_TEX instead.

*/

pfLPStateMode(lps, PFLPS_DIR_MODE, PFLPS_DIR_MODE_TEX);

pfLPStateMode(lps, PFLPS_TRANSP_MODE, PFLPS_TRANSP_MODE_ALPHA);

pfLPStateMode(lps, PFLPS_FOG_MODE, PFLPS_FOG_MODE_ALPHA);

/*

* Make directionality environment map of size 64 x 64 and attach

* it to the light point pfGeoState. We assume that a pfTexEnv of

580

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuLPointState(3pf)hh

* type PFTE_MODULATE has been globally applied with pfApplyTEnv.

*/

tex = pfNewTex(arena);

pfuMakeLPStateShapeTex(lps, tex, 64);

pfGStateAttr(gst, PFSTATE_TEXTURE, tex);

pfGStateMode(gst, PFSTATE_ENTEXTURE, 1);

/*

* Make SPHERE_MAP pfTexGen and attach to light point pfGeoState.

* pfGeoSet normals define the per-light light point direction.

*/

tgen = pfNewTGen(arena);

pfTGenMode(tgen, PF_S, PFTG_SPHERE_MAP);

pfTGenMode(tgen, PF_T, PFTG_SPHERE_MAP);

pfGStateAttr(gst, PFSTATE_TEXGEN, tgen);

pfGStateMode(gst, PFSTATE_ENTEXGEN, 1);

/*

* Configure light point transparency. Use PFTR_BLEND_ALPHA for high

* quality transparency. Set pfAlphaFunc so that light points are not

* drawn unless their alphas exceed 1 when using 8-bit color resolution.

*/

pfGStateMode(gst, PFSTATE_TRANSPARENCY, PFTR_BLEND_ALPHA);

pfGStateVal(gst, PFSTATE_ALPHAREF, 1.0/255.0);

pfGStateMode(gst, PFSTATE_ALPHAFUNC, PFAF_GREATER);

/*

* Disable pfFog effects since light points are fogged by

* the pfLPointState.

*/

pfGStateMode(gst, PFSTATE_ENFOG, 0);

/*

* Disable lighting effects since light points are completely

* emissive.

*/

pfGStateMode(gst, PFSTATE_ENLIGHTING, 0);

/*

* Attach the pfGeoState to a pfGeoSet of type PFGS_POINTS and

* you’ve got light points!

*/

pfGSetPrimType(gset, PFGS_POINTS);

pfGSetGState(gset, gst);

581

pfuLPointState(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

For further details, see the libpr routines pfMakeLPStateShapeTex and pfMakeLPStateRangeTex.

NOTES
The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfLPointState, pfMakeLPStateShapeTex, pfMakeLPStateRangeTex

582

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuLockCPU(3pf)hh

NAME
pfuFreeCPUs, pfuRunProcOn, pfuLockDownProc, pfuLockDownApp, pfuLockDownCull, pfuLock-
DownDraw, pfuPrioritizeProcs − Priority, processes and processor assignment functions.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

int pfuFreeCPUs(void);

int pfuRunProcOn(int cpu);

int pfuLockDownProc(int cpu);

int pfuLockDownApp(void);

int pfuLockDownCull(pfPipe *);

int pfuLockDownDraw(pfPipe *);

int pfuPrioritizeProcs(int pri);

DESCRIPTION
These routines assign processes to CPUs and implement a policy specifically designed for locking down
the IRIS Performer application, cull, and draw processes. The routines implementing these features util-
ize the IRIX REACT facilities. Refer to the IRIX REACT technical report, and the sysmp(2) reference page
for detailed information on these concepts.

The routine pfuRunProcOn can be used to force a process to run on a specified CPU and does not require
super-user permission. This is often used to force extra processes that can run asynchronously from the
draw, such as those receiving and generating input, onto CPU 0 without isolating that CPU from stan-
dard UNIX scheduling.

All of the pfuLock<*> routines force a process to run on the specified CPU. They also attempt to isolate
the processor to run only those processes that have specified that they must run on that CPU. Isolating a
CPU also protects it from seeing unnecessary cache and TLB flushes generated by processes that have not
specified that they must run on this CPU.

The pfuLockDown<App,Cull,Draw> routines implement a policy for selecting CPUs for different pro-
cessors given the program and machine configuration.

These routines are used in the IRIS Performer nextfly and perfly sample applications.

The locking and assignment policy implemented by these routines is implemented in the various stages of
an IRIS Performer application as follows.

1. CPU 0 is never isolated.

2. In the APPCULLDRAW mode, the processor assignment is handled by the APP process which takes

583

pfuLockCPU(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

CPU 1.

3. In the APP_CULLDRAW mode, the processor assignment is handled separately by the APP and
DRAW processes.

4. In the APP_CULL_DRAW mode, each process handles itself.

When there is only one pipe, processors are mapped to processes as follows. If there are three CPUs, each
of APP, CULL and DRAW gets its own process. If there are only two CPUs, APP is put on CPU 0, which
is not isolated, and DRAW and CULL share CPU 1.

Multipipe mappings are as follows.

If NumCPUs >= 2 + 2*NumPipes

then each cull and draw process can have its own CPU, with the application

getting CPU 1, and UNIX getting CPU 0.

If NumCPUs == 1 + 2*NumPipes

then the application shares CPU 0 with UNIX.

Otherwise, if NumCPUs >= 2 + NumPipes

then cull and draw processes for each pipe are paired together.

If there are fewer CPUs then indicated above, then the application is assigned to CPU 0 with UNIX, APP
and CULL process are paired, and when only one free CPU remains, all remaining processes are assigned
to the last CPU.

Each of these routines return 1 if successful and 0 if an error is encountered.

pfuFreeCPUs frees any CPUs which may have been previously restricted.

pfuRunProcOn forces the calling process to run on the specified CPU and does not require super-user
permission.

pfuLockDownProc locks the calling process onto CPU cpu. The CPU is isolated to running only
processes that have specified that they must run on this CPU. This CPU isolation requires super-user per-
mission.

pfuLockDownApp locks the APP process to a CPU determined by the policy above. The CPU is isolated
to running only processes that have specified that they must run on this CPU. This CPU isolation
requires super-user permission.

584

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuLockCPU(3pf)hh

pfuLockDownCull locks the CULL process of a pfPipe (there is one CULL process per pipe) to a CPU
determined by the policy above. This routine should be called the first time through the channel cull call-
back for a given process. The CPU is isolated to running only processes that have specified that they
must run on this CPU. This CPU isolation requires super-user permission.

pfuLockDownDraw locks the DRAW process of a pfPipe (there is one draw process per pipe) to a CPU
determined by the policy above. This routine should be called from application’s pfInitPipe callback.
See the pfInitPipe reference page for more information. The CPU is isolated to running only processes
that have specified that they must run on this CPU. This CPU isolation requires super-user permission.

pfuPrioritizeProcs should be called after pfConfig and will set or remove non-degrading priorities from
all Performer processes. pri is a boolean: if TRUE all IRIS Performer processes will be assigned a non-
degrading priority of NDPHIMAX+2 (see schedctl); if FALSE any non-degrading priorities will be
removed. You must have super-user permission to enable non-degrading priorities but not to remove
them.

If you wish to assign different priorities to different processes, simply modify pfuPrioritizeProcs to suit
your needs.

NOTES
Isolating a CPU to specific processes requires super-user permission.

CPU 0 should never be isolated.

The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfConfig, pfInitPipe, sysmp, schedctl

585

pfuMCO(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

NAME
pfuConfigMCO, pfuGetMCOChannels, pfuTileChans, pfuTileChan − Multi-Channel Option
configuration utilities.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

void pfuConfigMCO(pfChannel **chn, int nChans);

int pfuGetMCOChannels(pfPipe *p);

void pfuTileChans(pfChannel **chn, int nChans, int ntilesx, int ntilesy);

void pfuTileChan(pfChannel **chn, int thisChan, int nChans, float l, float r, float b, float t);

DESCRIPTION
These functions serve as a generic way of initializing channels when using the Multi-Channel Option
(MCO) available for RealityEngine graphics systems. The MCO divides the frame buffer into several tiles
and then outputs these different tiles to different displays through different video outputs. The MCO can
be configured to drive up to six display channels at resolutions varying from 1280x1024 60Hz non-
interlaced to 640x480 30Hz interlaced. These functions use a basic knowledge of how the MCO tiles the
frame buffer to configure pfChannels appropriately for most configurations.

pfuConfigMCO takes the array of pfChannel pointers chn of size nChans and formats the viewports such
that each channel’s viewport divides the framebuffer in the same way the MCO does. Each channel is
thus mapped to a different display.

pfuGetMCOChannels returns the number of channel subdivisions the MCO is currently configured to
use. This is the number of displays that the MCO has tiled the frame buffer into based on the current
video output format specification (see setmon).

pfuTileChans is a tiling routine that takes nChans channels and divides them into a grid of ntilesx by
ntilesy viewports that all fit into the range 0 to 1 in both the x and y directions.

pfuTileChan is a utility function that sets the chn[thisChan] viewport to the specified left (l), right(r),
bottom(b), and top(t) values where each value is between 0 and 1. nChans is usually the number of chan-
nel subdivisions the MCO is configured to use. thisChan should be at most nChans.

NOTES
The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfChannel, pfPipe, setmon

586

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuMPipeStats(3pf)hh

NAME
pfuManageMPipeStats − Multipipe/multichannel stats utility.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

int pfuManageMPipeStats(int nframes, nSampledPipes);

DESCRIPTION
This utility obtains time stamp stats for each Performer channel/pipe in an automatic fashion. The com-
plete stats log is stored in a file for later review. Timing information for pre- and post-callbacks is also
provided.

The routine pfuManageMPipeStats can be used to obtain timing information during a number of frames
per each channel for pre-draw, pfDraw, post-draw, pre-cull, pfCull, post-cull as well as ISECT and APP.

nframes specifies the number of frames to be measured. nSampledPipes is the number of pipes for which
statistics are to be gathered.

The first time that pfuManageMPipeStats is called it automatically determines the pipe and channel
configuration. It also sets up a minimally configured pfStats in order to obtain the data.

During the requested number of frames, the utility grabs the latest pfStats buffer into main memory.
After the requested number of frames, the utility creates a new file called mpstats0.data. This the file
number is incremented each time that the utility is used from the same execution.

pfuManageMPipeStats returns 1 while it is getting time stamps and 0 when it has finished his collection
and created the historical file.

pfuManageMPipeStats must be called in the APP and it could be used multiple times.

Following is an example of use in an application loop:

/* DumpMPipeStats is controlled by the user interface */

if(SharedArena->DumpMPipeStats && !mpstats_running)

mpstats_running = pfuManageMPipeStats(10, 1));

if(mpstats_running)

mpstats_running = pfuManageMPipeStats(10, 1));

The file format used by pfuManageMPipeStats is offered only as an example. The meaning and lay out

587

pfuMPipeStats(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

is as follows:

==

Frame:<frame>

_____________________________APP____________________________________

Absolute Timeline information (sec)

AppFrame:<frame>

AppStart:<start>

enterSync:<enterSync> afterClean:<afterClean> afterSync:<afterSync>

pfFrameStart:<frameStart> pfFrameEnd:<frameEnd>

_____________________________ISECT__________________________________

Absolute Timeline information (sec)

IsectFrame: <frame>

Start:<start> End:<end>

Relative Timeline information (msec)

Total Isect Time:<end-start>

_____________________________CULL & DRAW____________________________

Chan: <Channel_number>

Frame: <frame_number>

Absolute Timeline information (sec)

CullFrame: <cullFrame>

Start: <cullStart> End: <cullEnd>

BeginUpDate: <begUpdate> EndUpdate: <endUpdate>

DrawFrame: <drawFrame>

Start: <drawStart> End: <drawEnd>

pfDrawStart: <pfDrawStart> pfDrawEnd: <pfDrawEnd> AfterSwap: <AfterSwap>

Relative Timeline information (msec)

Total Cull Time:<cullEnd-cullStart>

Total Draw Time:<drawEnd-drawStart>

PreDraw: <preDraw>

pfDraw: <pfDraw>

PostDraw:<postDraw>

--

You are encouraged to change the default file format as well as the data being collected.

588

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuMPipeStats(3pf)hh

NOTES
Depending on the multiprocess mode being used a number of initial frames could be filled by nonsensical
data.

The use of pfuManageMPipeStats modifies the pfStats mode and after his use it leaves the pfStats
modes in the default.

If you wish to reuse the previous pfStats mode you should save it before the first call to
pfuManageMPipeStats.

CPU 0 should never be isolated.

The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfFrameStats

589

pfuPath(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

NAME
pfuNewPath, pfuClosePath, pfuCopyPath, pfuSharePath, pfuPrintPath, pfuFollowPath, pfuAddArc,
pfuAddDelay, pfuAddFile, pfuAddFillet, pfuAddPath, pfuAddSpeed − Simple path-following utility

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

pfuPath * pfuNewPath(void);

pfuPath * pfuClosePath(pfuPath *path);

pfuPath * pfuCopyPath(pfuPath *copy);

pfuPath * pfuSharePath(pfuPath *share);

int pfuPrintPath(pfuPath *path);

int pfuFollowPath(pfuPath *path, float seconds, pfVec3 where, pfVec3 orient);

int pfuAddArc(pfuPath *path, pfVec3 center, float radius, pfVec2 angles);

int pfuAddDelay(pfuPath *path, float delay);

int pfuAddFile(pfuPath *path, char *name);

int pfuAddFillet(pfuPath *path, float radius);

int pfuAddPath(pfuPath *path, pfVec3 start, pfVec3 final);

int pfuAddSpeed(pfuPath *path, float desired, float rate);

DESCRIPTION
The pfuPath functions provide a simple way to move one or more simulated vehicles or eyepoints along
a mathematically defined path. The path is a general series of arcs and line segments. Once a path is
created, it can be followed each simulation frame to provide position and orientation information.

pfuNewPath allocates and initializes a new pfuPath structure. Once the path is opened, segments (both
straight and curved) can be added using the pfuAddPath and pfuAddArc commands as described
below. The initial path speed is set at 1.0 database units per second.

pfuClosePath connects the end point of the final segment of path path with the start point of the path’s
first segment. This creates a closed (also known as looping) path that can be followed endlessly. Paths
can be either open or closed, but they should only be closed once. The closed path is returned.

pfuCopyPath creates and returns a new pfuPath structure that has path segments which are an exact
copy of those in the path indicated by the path argument. This is a deep copy, and will create a new
instance of each element in the original path definition.

pfuSharePath creates a new pfuPath structure, but causes the linked list of path segments in the path
structure path to be shared by both old and new path structures. This allows multiple simulated objects to
follow the same path without the redundant allocation of path storage, and also allows changes to the

590

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuPath(3pf)hh

path segment definition to effect all pfuPath structures that share it.

pfuPrintPath prints the path following control information for path object path, and then prints the
definition of each segment in the path itself. All printing is done using the IRIS Performer pfNotify
mechanism with a severity level of PFNFY_DEBUG.

pfuFollowPath performs the actual simulation of moving an object along the path indicated by path. The
seconds argument specifies the simulated duration, and internal data in the pfuPath structure supplies the
speed. From this time and speed information, the vehicle’s simulated distance of travel is computed.
Then, the vehicle is moved this distance along the path segments defined within the pfuPath object. The
resulting simulated position is returned in the pfVec3 argument where and the orientation of the vehicle is
returned in orient.

pfuAddArc adds a circular arc path segment to the pfuPath structure path. The arc is defined by the center
and radius values, and a pair of angles. The first angle, angle[0], is the start angle for the path, and is a point
on the circle defined by center and radius with the indicated counterclockwise angle from the positive X
axis. The second angle, angle[1], represents the turn angle, the angle between the arc’s start and end
points as measured from the designated center point. Positive turn angles indicate counterclockwise
turns, and negative angles represent clockwise turns. An arc from the +X axis to the +Y axis would be
defined with a start angle of 0 degrees and a turn angle of 90 degrees. The same arc in the opposite direc-
tion of travel is defined by a start angle of 90 degrees and a turn angle of -90 degrees.

pfuAddDelay adds a zero-length segment to path that causes the simulated vehicle to stop for the delay
seconds at that point in the path. Once this much simulated time elapses, the simulation will continue
with the next segment in the path. Delay segments can be used to simulate motor vehicles paused waiting
for traffic signals and similar latent delay sources along a path.

pfuAddFile adds a series of path segments defined by a simple ASCII file format to the pfuPath structure
path. This function provides an easy way to load user specified paths for vehicles into simulation applica-
tions, and is used in the popular Silicon Graphics "Performer Town" demonstration program to load the
paths for the truck into the program.

pfuAddFillet is used to create circular arcs that join two adjacent straight path segments. Fillet creation is
a three step process.

1. A straight segment is added to a path using pfuAddPath. This is the segment that will lead
into the fillet.

2. A fillet request is added using pfuAddFillet. The fillet’s radius is defined in this call.

3. A second straight segment is added, again with pfuAddPath. This segment must start
where the segment of step one ended.

When the second segment is added in step three, a test is performed to see if the first point in the second

591

pfuPath(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

segment has the same X, Y, and Z values as the last point in the previous segment. If so, and if there is a
fillet request between the two segments, then a matching fillet of the specified radius is computed. In
addition, the endpoints (and thus lengths) of the two straight segments are adjusted so as to match with
the fillet endpoints.

For example, the request

line from (0,0) to (1,0)
fillet of radius 0.25
line from (1,0) to (1,1)

will cause the fillet arc and line segment lengths to be automatically computed as

line from (0,0) to (0.75,0)
fillet of radius 0.25 with center (0.75,0.25) and angles 270 and 90.
line from (1,0.25) to (1,1)

This automatic fillet construction is seen to be very convenient once the alternative manual fillet construc-
tion is attempted. When the fillet radius is too large to allow the arc to be created (as would be the case in
the example above with a radius greater than one), a fillet is not constructed and a sharp turn will exist in
the path.

pfuAddPath adds a straight line segment to path. The line segment is defined as extending from start to
final. As mentioned above, if the segment preceding the line segment is an unevaluated fillet, and the
value of start is equal to that of the final point of the segment before the fillet, then an automatic fillet will
be constructed if the fillet’s radius specification is sufficiently small to allow it.

pfuAddSpeed adds a speed changing segment to path. The new speed is indicated by desired and the rate
of adjustment from the current path speed to the new speed is given by rate.

NOTES
The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfNotify

592

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuRandom(3pf)hh

NAME
pfuRandomize, pfuRandomLong, pfuRandomFloat, pfuRandomColor − Set up and generate random
numbers and colors.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

void pfuRandomize(int seed);

long pfuRandomLong(void);

float pfuRandomFloat(void);

void pfuRandomColor(pfVec4 color, float minColor, float maxColor);

DESCRIPTION
These functions set up a random number generator and use it to return uniformly distributed random
numbers and colors.

pfuRandomize initializes the random number generator with seed.

pfuRandomLong returns a random number of type long while pfuRandomFloat returns a random
number of type float.

pfuRandomColor returns a random color in color. The r, g and b values of color are random numbers in
the range [minColor, maxColor]. The alpha value of color is set to the fully opaque value 1.

See the srandom and random man pages for further information on the random number generator used.

SEE ALSO
random, srandom

593

pfuRendezvous(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

NAME
pfuInitRendezvous, pfuMasterRendezvous, pfuSlaveRendezvous − Multiprocessing master and slave
rendezvous routines

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

void pfuInitRendezvous(pfuRendezvous *rvous, int numSlaves);

void pfuMasterRendezvous(pfuRendezvous *rvous);

void pfuSlaveRendezvous(pfuRendezvous *rvous, int id);

#define PFURV_MAXSLAVES 2

#define PFURV_GARBAGE -1

#define PFURV_READY 10

#define PFURV_SYNC 11

#define PFURV_SYNCACK 12

#define PFURV_RESUME 13

typedef struct _pfuRendezvous

{

int master;

int numSlaves;

int slaves[PFURV_MAXSLAVES];

} pfuRendezvous;

DESCRIPTION
These rendezvous functions are useful for synchronizing master and slave processes in a multiprocessing
environment.

In the case of multiple processes, a rendezvous is a method for synchronizing each independent process.
A process chosen as the "master" waits for the remaining processes, designated "slaves", to indicate
through the rendezvous that they are ready to synchronize. As each slave indicates its readiness, it then
waits on the master process. The master process releases the slaves after all slaves have made the rendez-
vous. The rendezvous token should be allocated in a shared arena; all processes require access to it.

pfuInitRendezvous initializes the rendezvous token rvous for one master process and numSlaves slave
processes.

In order to synchronize multiple processes, the master should call pfuMasterRendezvous and each of the
slaves should call pfuSlaveRendezvous with its slave ID in id. Slave IDs can range from 0 to (-
PFURV_MAXSLAVES - 1).

594

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuRendezvous(3pf)hh

NOTES
The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfGetSharedArena, pfMalloc

595

pfuSaveImage(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

NAME
pfuCalcNormalizedChanXY, pfuSaveImage − Capture screen images.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

void pfuCalcNormalizedChanXY(float* px, float* py, pfChannel* chan, int xpos, int ypos);

int pfuSaveImage(char* name, int xorg, int yorg, int xsize, int ysize, int alpha);

DESCRIPTION
pfuCalcNormalizedChanXY normalizes the window coordinates (xpos, ypos) to chan’s viewport and
returns the resulting normalized position in (px, py). The mapping is defined so that (px, py) range from
(0, 0) to (1, 1) when (xpos, ypos) is within chan’s viewport.

pfuSaveImage saves the image rectangle that spans the window coordinates (xorg, yorg) to (xorg + xsize,
yorg + ysize) into an image file with the name name. The alpha boolean argument specifies if only an RGB
image (alpha = 0) or a complete RGBA image (alpha = 1) is desired.

NOTES
The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfChannel, lrectread

596

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuSmoke(3pf)hh

NAME
pfuInitSmokes, pfuNewSmoke, pfuSmokeType, pfuSmokeOrigin, pfuSmokeVelocity,
pfuGetSmokeVelocity, pfuSmokeDir, pfuSmokeMode, pfuDrawSmokes, pfuSmokeTex, pfuSmok-
eDuration, pfuSmokeDensity, pfuGetSmokeDensity, pfuSmokeColor − Routines for simulating smoke
and fire.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

void pfuInitSmokes(void);

pfuSmoke * pfuNewSmoke(void);

void pfuSmokeType(pfuSmoke *smoke, int type);

void pfuSmokeOrigin(pfuSmoke *smoke, pfVec3 origin, float radius);

void pfuSmokeVelocity(pfuSmoke *smoke, float turbulence, float speed);

void pfuGetSmokeVelocity(pfuSmoke *smoke, float *turbulence, float *speed);

void pfuSmokeDir(pfuSmoke *smoke, pfVec3 dir);

void pfuSmokeMode(pfuSmoke *smoke, int mode);

void pfuDrawSmokes(pfVec3 eye);

void pfuSmokeTex(pfuSmoke *smoke, pfTexture *tex);

void pfuSmokeDuration(pfuSmoke *smoke, float dur);

void pfuSmokeDensity(pfuSmoke *smoke, float dens, float diss, float expansion);

void pfuGetSmokeDensity(pfuSmoke *smoke, float *dens, float *diss, float *expansion);

void pfuSmokeColor(pfuSmoke *smoke, pfVec3 bgn, pfVec3 end);

DESCRIPTION
This higher level utility is designed to show how to easily generate smoke effects in IRIS Performer appli-
cations.

pfuInitSmokes allocates for, loads and sets the geometry for the smoke and fire textures. Call
pfuInitSmokes after pfInit but before pfConfig so that all shared data structures are correctly shared
among processes.

Call pfuNewSmoke to get a pointer to a new smoke structure which you then can configure with
pfuSmokeVelocity, pfuSmokeDir and the other smoke functions. Smoke is initialized with several
defaults but is not started by default.

Call pfuDrawSmokes from the draw process (and only from the draw process) so that the active smoke
objects are actually drawn.

597

pfuSmoke(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

pfuSmokeType can be set to any of
PFUSMOKE_MISSILE
PFUSMOKE_EXPLOSION
PFUSMOKE_FIRE
PFUSMOKE_SMOKE
PFUSMOKE_DUST

pfuSmokeOrigin sets the origin and radius of where smoke is to occur.

pfuSmokeVelocity sets the speed at which smoke is to move.

pfuGetSmokeVelocity gets the speed at which smoke is moving.

pfuSmokeDir sets the direction that smoke will move in (via the vector dir).

pfuSmokeMode sets the current mode of operation for smoke. Supported values are
PFUSMOKE_STOP
PFUSMOKE_START

pfuSmokeTex sets the texture to be used for the smoke effect when smoke is drawn.

pfuSmokeDuration sets the length of time smoke should last once it is started.

pfuSmokeDensity sets the density, dissipation rate, and expansion rate of the smoke puff.

pfuSmokeColor sets the beginning and ending colors for the smoke puff.

NOTES
The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

598

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuStyle(3pf)hh

NAME
pfuPreDrawStyle, pfuPostDrawStyle − Functions to produce fancy drawing styles.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

#include <Performer/pfutil.h>

void pfuPreDrawStyle(int style, pfVec4 scribeColor);

void pfuPostDrawStyle(int style);

PARAMETERS
style identifies a drawing style.

DESCRIPTION
Both pfuPreDrawStyle and pfuPostDrawStyle use multi-pass rendering to implement special draw
styles that are not directly provided by the hardware or graphics library. These effects, such as hidden
line rendering and haloed polygons, can however be achieved with high-performance Z-buffered graph-
ics rendering hardware as these functions demonstrate.

pfuPreDrawStyle should be called in the Performer draw callback just before pfDraw.
pfuPostDrawStyle must then be called after pfDraw. These two functions are a pair and both must be
called as described.

The style argument can take the following values.

PFUSTYLE_POINTS
This causes polygon vertices to be drawn as small points. In many cases, internal structural
aspects can be observed from the resulting "cloud of points" image, especially when that
image is in motion on the screen.

PFUSTYLE_LINES
This causes polygons to be drawn in wireframe mode using the Performer
PFGS_WIREFRAME draw style. The lines are drawn in the same color as the base
geometry.

PFUSTYLE_DASHED
This is a wireframe drawing style that does something slightly tricky: it draws the front-
facing polygons of an object in the normal wireframe mode and the back-facing polygons in
a dashed line mode, creating a typical draftsman’s dashed-occlusion hint style of hidden
line drawing.

PFUSTYLE_HALOED
Polygons are drawn in wireframe mode with haloed edges. This is the drawing style of elec-
tronic schematics, where lines that cross but are not connected have a slight gap or break in
the lower line. This same idea can be extended to 3D geometry, and was proposed as a
rendering mode by graphics pioneer Dr. Arthur Appel.

599

pfuStyle(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

PFUSTYLE_HIDDEN
Hidden polygons are not drawn while visible polygons are drawn in wireframe mode. This
is the traditional hidden-line removal display mode.

PFUSTYLE_FILLED
Draws polygons as filled solids. This hidden-surface removal display mode is the standard
display style.

PFUSTYLE_SCRIBED
Polygons are drawn filled with hidden surfaces removed. The boundary of each visible
polygon is highlighted in a wire frame highlight. This mode can be very useful in under-
standing the geometric complexity of textured scenes.

When style takes the values PFUSTYLE_POINTS or PFUSTYLE_DASHED, pfuPostDrawStyle restores
polygon drawing to the normal filled mode. Finally, for every value of style, it restores the state before
pfuPreDrawStyle was called.

The scribeColor argument is the desired color for scribed lines. The first three elements of the array
represent the red, green, and blue values in the range 0 to 1, and the final element is the alpha value for
the scribed lines. This argument is not used in the other style modes.

The following code fragment displays how pfuPreDrawStyle and pfuPostDrawStyle would typically be
used in an application. See the files:

/usr/share/Performer/src/sample/C/perfly.c

/usr/share/Performer/src/sample/C++/perfly.C

for details.

Example 1:

/* convey draw style from localPreDraw to localPostDraw */

static int selectedDrawStyle = 0;

void

localPreDraw(pfChannel *chan, void *data)

{

:

:

/*

* remember draw style in case it changes between now

* and the time localPostDraw() gets called.

*/

selectedDrawStyle = ViewState->drawStyle;

600

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuStyle(3pf)hh

/* handle draw style */

pfuPreDrawStyle(selectedDrawStyle, ViewState->drawColor);

}

void

localPostDraw(pfChannel *chan, void *data)

{

/* handle draw style */

pfuPostDrawStyle(selectedDrawStyle);

:

:

}

SEE ALSO
pfDraw

601

pfuTex(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

NAME
pfuNewSharedTex, pfuGetSharedTexList, pfuMakeTexList, pfuMakeSceneTexList, pfuDownload-
TexList, pfuGetTexSize, pfuNewTexList, pfuLoadTexListFiles, pfuLoadTexListFmt, pfuNewProjector,
pfuProjectorPreDrawCB, pfuProjectorMovie, pfuGetProjectorHandle, pfuProjectorHandle, pfuGet-
ProjectorScreenList, pfuAddProjectorScreen, pfuRemoveProjectorScreen, pfuReplaceProjectorScreen
− Create and initialize textures, create and display movies.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

pfTexture * pfuNewSharedTex(const char *filename, void *arena);

pfList * pfuGetSharedTexList(void);

pfList * pfuMakeTexList(pfNode *node);

pfList * pfuMakeSceneTexList(pfScene *scene);

void pfuDownloadTexList(pfList *list, int style);

int pfuGetTexSize(pfTexture *tex);

void pfuNewTexList(pfTexture *tex);

pfList * pfuLoadTexListFiles(pfList *movieTexList, char nameList[][PF_MAXSTRING], int len);

pfList * pfuLoadTexListFmt(pfList *movieTexList, const char *fmtStr, int start, int end);

pfSequence * pfuNewProjector(pfTexture *handle);

int pfuProjectorPreDrawCB(pfTraverser *trav, void *travData);

void pfuProjectorMovie(pfSequence *proj, pfList *movie);

pfTexture * pfuGetProjectorHandle(pfSequence *proj);

void pfuProjectorHandle(pfSequence *proj, pfTexture *new);

pfList * pfuGetProjectorScreenList(pfSequence *proj);

void pfuAddProjectorScreen(pfSequence *proj, pfTexture *screen);

void pfuRemoveProjectorScreen(pfSequence *proj, pfTexture *screen);

void pfuReplaceProjectorScreen(pfSequence *proj, pfTexture *old, pfTexture *new);

DESCRIPTION
These utilities assist in the sharing and downloading of textures.

For consistent frame rates, it is very important to download textures into the graphics pipeline’s physical
texture memory before beginning simulation. This is so that there is no momentary pause while the tex-
tures are processed (texdef) and downloaded (texbind).

An example of the use of these functions can be found in
/usr/share/Performer/src/sample/apps/common/generic.c which is used by a number of sample

602

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuTex(3pf)hh

applications including the IRIS Performer perfly sample application.

pfuNewSharedTex examines the application’s global list of previously allocated textures for the file
filename. If the file has already been loaded, the address of the existing pfTexture structure is returned; if
not, a new pfTexture is allocated in arena, the named file is read, and the address is returned for reference
in future requests.

pfuGetSharedTexList returns the list of all textures allocated using the pfuNewSharedTex texture-
sharing mechanism described above during the current execution of the process. The list returned is use-
ful for many things including texture downloading.

pfuMakeTexList constructs a list of textures by recursively traversing the IRIS Performer scene graph
rooted by node. Since this traversal is exhaustive no texture will be missed.

Performer supports the notion of a scene pfGeoState to represent common rendering state for a pfScene.
When this mechanism is used, the texture list built by pfuMakeTexList will not include the texture
defined by the scene pfGeoState. The function pfuMakeSceneTexList duplicates the function of
pfuMakeTexList and adds the scene pfGeoState’s texture to the list if the scene pfGeoState defines a tex-
ture.

pfuDownloadTexList visits each texture in the list provided in list and performs one of the following
functions:

PFUTEX_APPLY
Download each texture without any on-screen fanfare.

PFUTEX_SHOW
Show each texture in the screen while downloading. This is the source of the "slide-show"
seen as the IRIS Performer perfly program starts up.

PFUTEX_DEFINE
Perform a partial download, performing only the texdef operation and not the subsequent
texbind. This can be used as the basis of simple texture paging mechanisms.

In most cases, pfuDownloadTexList will be called in the first traversal through the channel draw callback
on each configured pfPipe. This function must be called from the draw process since it makes direct
graphics function calls.

pfuGetTexSize queries the number of bytes of texture used in tex.

pfuNewTexList preallocates a sequence of 16 frames on a pfTexture for animation.

pfuLoadTexListFiles fills a list within a pfTexture from the array of file names, nameList, which contains
len names. If movieTexList is passed as NULL, a new list is automatically allocated. The filled list is
returned.

603

pfuTex(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

pfuLoadTexListFmt fills a list within a pfTexture from a sequence of files indicated by the printf-style
format string fmtStr. pfuLoadTexListFmt uses sprintf and fmtStr to construct filenames ranging sequen-
tially from start to end and adds the textures in these files to the list.

The following routines are used to create and display a movie. A movie has a projector (a pfSequence
node with a special pfUserData and pre-draw callback), a default base frame (a pfTexture*), one or more
screens (pfTexture*’s) and a reel of movie frames (a pfList of pfTexture*).

The pfSequence API is used to run the projector and control the movie display. Screens can be added,
removed, or replaced at will. Each projector can have any number of screens but each screen should be in
only one projector. The projector node should be the first child of the pfScene node. It draws no
geometry, but only configures its pfTexture* screen to display the correct image when accessed later via
traversal of the normal scene graph (or a direct pfApplyTex).

pfuNewProjector creates and returns a pfSequence containing the list of textures in handle, with the tex-
tures stored as the leaves under the pfSequence and installs pfuProjectorPreDrawCB as the default pre-
draw stage callback.

pfuProjectorMovie sets the pfSequence passed in proj to the list of textures passed in movie. This enables
movie to be played in all the screens of proj.

pfuProjectorHandle sets the pfSequence passed in proj to the list of textures contained in the pfTexture
handle new.

pfuGetProjectorHandle returns the pfTexture handle from the pfSequence passed in proj.

pfuGetProjectorScreenList returns the list of screens in the pfSequence passed in proj.

pfuAddProjectorScreen adds tex to the screen list of proj. This causes tex to reference proj’s movie as its
list of frames.

pfuRemoveProjectorScreen removes the screen screen from the movie proj. This sets screen’s texture list to
NULL and its frame to -1.

pfuReplaceProjectorScreen replaces the screen old in the movie proj with the screen mew. This sets old’s
texture list to NULL and its frame to -1.

The following code fragment shows how a movie can be created.

Example 1:

604

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuTex(3pf)hh

/* create a projector with a pfTexture handle for the movie tape.

* The reel base texture can also be used as a base screen.

* The movie can be the texture list on the handle here, or can

* be added/replaced later with pfuProjectorMovie(proj, tape) or with

* pfuProjectorHandle(proj, newHandle);

*/

pfTexture *handle = pfNewTex(pfGetSharedArena());

pfSequence *proj = pfuNewProjector(handle);

/* set AUTO_IDLE mode on the handle - new screens on the projector inherit

* this mode from the handle

*/

pfTexLoadMode(handle, PFTEX_LIST_AUTO_IDLE, 1);

/* Create a pfList to hold the frames of the movie */

pfList *tape = pfuLoadTexListFmt(NULL, fmtStr)

/* or pfuLoadTexListFiles(NULL, fileNameList); */

/* put the movie in the projector */

pfuProjectorMovie(proj, tape);

NOTES
The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfApplyTex, pfList, pfScene, pfSequence, pfTexture, pfUserData, printf, sprintf, texdef, texbind

605

pfuTimer(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

NAME
pfuNewTimer, pfuInitTimer, pfuStartTimer, pfuEvalTimers, pfuEvalTimer, pfuStopTimer, pfuAc-
tiveTimer − Benchmarking and interval timing facilities.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

pfuTimer * pfuNewTimer(void *arena, int size);

void pfuInitTimer(pfuTimer *timer, double start, double delta, void (*func)(pfuTimer*),
void *data);

void pfuStartTimer(pfuTimer *timer);

void pfuEvalTimers(void);

int pfuEvalTimer(pfuTimer *timer);

void pfuStopTimer(pfuTimer *timer);

int pfuActiveTimer(pfuTimer *timer);

struct _pfuTimer

{

double tstart, tstop, tdelta;

int frames;

double tnow;

double fraction;

void (*func)(struct _pfuTimer *timer);

void *data;

int dataSize;

};

typedef struct _pfuTimer pfuTimer;

DESCRIPTION
pfuTimers provide a real-time, frame rate independent mechanism for defining time-based behavior. A
pfuTimer is typically initialized with start and stop times, a callback function, and is triggered with
pfuStartTimer. Then each time pfuEvalTimer is called, the function callback will be invoked and can
then carry out actions based on the current time.

pfuNewTimer creates a new pfuTimer structure in arena as well as a user-data memory block of size
bytes that is referenced by the data member of the pfuTimer structure.

pfuInitTimer initializes the starting time (tstart), duration (tdelta), function callback (func), and user data

606

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuTimer(3pf)hh

(data) of timer to start, delta, func and data. User data is copied by value, not by reference.

pfuStartTimer starts timer and adds it to a static list of active timers. All timers in this list are evaluated
by pfuEvalTimers and a single, activated timer may be evaluated by pfuEvalTimer. A timer must be
evaluated for its function callback to be invoked.

When a timer is evaluated, the current time is checked against its active interval defined by [tstart, tstop].
If the current time is within this interval, func will be invoked with a pointer to the pfuTimer. The follow-
ing elements of the timer will be set:

frames The number of times the pfuTimer has been evaluated,

tnow The current time in seconds,

fraction The fraction of the interval that has passed, (tnow-tstart)/(tstop-tstart). This ranges from 0
to 1.

data The user-data memory block referenced by the timer.

If the current time is not within the active interval, the timer will be removed from the internal timer list.

pfuStopTimer stops timer and removes it from the internal timer list.

pfuActiveTimer returns TRUE if timer is active and FALSE otherwise.

NOTES
pfuTimer utilizes pfGetTime and its accuracy is dependent on the resolution of available system timers.
See pfGetTime for more details.

The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfGetTime, pfInitClock

607

pfuTraverser(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

NAME
pfuInitTraverser, pfuTraverse, pfuTravPrintNodes, pfuTravGLProf, pfuTravCountDB, pfuTravNo-
deHlight, pfuTravNodeAttrBind, pfuTravCalcBBox, pfuTravCountNumVerts, pfuTravCachedCull,
pfuCalcDepth − Useful scene graph traversals.

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

void pfuInitTraverser(pfuTraverser* trav);

int pfuTraverse(pfNode* node, pfuTraverser* trav);

void pfuTravPrintNodes(pfNode *node, const char *fname);

void pfuTravGLProf(pfNode *node, int mode);

void pfuTravCountDB(pfNode *node, pfFrameStats *fstats);

void pfuTravNodeHlight(pfNode *node, pfHighlight *hl);

void pfuTravNodeAttrBind(pfNode *node, unsinged int attr, unsinged int bind);

void pfuTravCalcBBox(pfNode *node, pfBox *box);

int pfuTravCountNumVerts(pfNode *node);

void pfuTravCachedCull(pfNode* node, int numChans);

int pfuCalcDepth(pfNode *node);

struct _pfuTraverser

{

pfuTravFuncType preFunc;

pfuTravFuncType postFunc;

int mode;

int depth

pfNode *node;

pfMatStack *mstack;

void *data;

};

typedef struct _pfuTraverser pfuTraverser;

typedef int (*pfuTravFuncType)(pfuTraverser *trav);

DESCRIPTION
pfuTraverser provides a customizable, recursive traversal of an IRIS Performer scene graph. Traversals
are useful for many things including database queries like "find and activate all the pfSequence nodes in
this scene graph".

608

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuTraverser(3pf)hh

The pfuTraverser facility is used by initializing a pfuTraverser structure and invoking pfuTraverse with
the pfuTraverser and a target pfNode. Custom database processing is carried out in the pre- and post-
traversal callbacks that are provided by the user.

pfuInitTraverser initializes trav to the following:

preFunc = postFunc = NULL

mode = PFUTRAV_SW_ALL | PFUTRAV_LOD_ALL | PFUTRAV_SEQ_ALL

mstack = NULL

data = NULL

mode is a bitmask indicating how to traverse nodes which have an explicit (pfSwitch) or implicit (pfLOD)
switch. The ALL, NONE, and CUR forms of the PFUTRAV tokens indicate that the traversal should
traverse all, none, or just the current child of the specified node type, e.g. PFUTRAV_SEQ_CUR will
traverse the currently selected child of all pfSequence nodes.

preFunc and postFunc are callbacks which are invoked before and after each node in the hierarchy is
visited. Callbacks are passed a pointer to the current pfuTraverser structure and may access elements of
the pfuTraverser.

The node member references the current node in the traversal. data is a pointer to user-data and if non-
NULL, mstack will contain the matrix stack of the traversal, i.e. all pfSCS and pfDCS nodes will push,
multiply and pop the pfMatStack represented by mstack. Memory management of the pfMatStack‘ is the
responsibility of the application.

The following functions provide a few specific examples of the pfuTraverser utility. The specific traver-
sals implemented are

pfuTravPrintNodes
Recursively prints all nodes below node into file fname.

pfuTravGLProf
Outputs GLprof output tags. If mode is true then it places glprof tag callbacks.

pfuTravCountDB
Accumulates stats for scene graph node into stats structure fstats by traversing node with
stats open.

pfuTravNodeHlight
Highlights all nodes below node by recursive traversal and calling a highlight routine on
each.

609

pfuTraverser(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

pfuTravNodeAttrBind
Recursively traverses node setting attr of each node under node to the value bind.

pfuTravCalcBBox
Computes the bounding box of node and returns it in the parameter box. If the node parame-
ter is NULL, the returned box will be an empty box.

pfuTravCountNumVerts
Returns the number of vertices in the scene graph rooted by node.

pfuTravCachedCull
Installs callback functions for each node which cache CULL results between frame updates.

pfuCalcDepth
Returns the depth of the scene graph pointed to by node. A single root node with no chil-
dren is counted as having depth 1.

NOTES
The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfFrameStats, pfGeoSet, pfNode, pfTraverser

610

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuXFont(3pf)hh

NAME
pfuLoadXFont, pfuMakeXFontBitmaps, pfuMakeRasterXFont, pfuGetXFontWidth, pfuGetX-
FontHeight, pfuGetCurXFont, pfuSetXFont, pfuCharPos, pfuDrawString, pfuDrawStringPos − X Win-
dow string drawing routines

FUNCTION SPECIFICATION
#include <Performer/pfutil.h>

void pfuLoadXFont(char *fontName, pfuXFont *fnt);

void pfuMakeXFontBitmaps(pfuXFont *fnt);

void pfuMakeRasterXFont(char *fontName, pfuXFont *fnt);

int pfuGetXFontWidth(pfuXFont *f, const char *str);

int pfuGetXFontHeight(pfuXFont *f);

void pfuGetCurXFont(pfuXFont *f);

void pfuSetXFont(pfuXFont *f);

void pfuCharPos(float x, float y, float z);

void pfuDrawString(const char *s);

void pfuDrawStringPos(const char *s, float x, float y, float z);

typedef struct pfuXFont

{

int size;

int handle;

XFontStruct *info;

} pfuXFont;

DESCRIPTION
These functions do simple text drawing using X Windows fonts and string drawing facilities.

Call pfuLoadXFont to load the X Window font named by fontName into fnt. Application programs will
usually call pfuMakeRasterXFont rather than calling this function directly.

pfuMakeXFontBitmaps allocates display lists under OpenGL for writing the font fnt on the screen. This
is a necessary step after calling pfuLoadXFont and before calling pfuDrawString or pfuDrawStringPos.
Application programs will usually call pfuMakeRasterXFont rather than calling this function directly.

pfuMakeRasterXFont loads the font specified in fontName into fnt and, under OpenGL, allocates display
lists for displaying the font. This function is normally used to load and initialize the font; this can be fol-
lowed by pfuDrawString or pfuDrawStringPos.

611

pfuXFont(3pf) IRIS Performer 2.0 libpfutil C++ Reference Pageshh

pfuGetXFontWidth returns the width (X dimension) in pixels of the string str drawn on the screen in font
f.

pfuGetXFontHeight returns the height (Y dimension) in pixels of the font f.

pfuGetCurXFont sets f to the current X Window font for drawing.

pfuSetXFont sets the current X Window font to be f.

pfuCharPos sets the current drawing position on the screen. See cmov in IRIS GL and glRasterPos3f in
OpenGL for more details.

pfuDrawString draws the string s at the current drawing position.

pfuDrawStringPos draws the string s at the provided coordinates.

NOTES
The libpfutil source code, object code and documentation are provided as unsupported software. Rou-
tines are subject to change in future releases.

SEE ALSO
pfDataPool, cmov, glRasterPos3f

612

IRIS Performer 2.0 libpfutil C++ Reference Pages pfuXformer(3pf)hh

NAME
pfuNewXformer, pfuXformerMode, pfuGetXformerMode, pfuStopXformer, pfuXformerAutoInput,
pfuXformerMat, pfuGetXformerMat, pfuXformerCoord, pfuGetXformerCoord, pfuXformerLimits,
pfuGetXformerLimits, pfuXformerCollision, pfuGetXformerCollisionStatus, pfuUpdateXformer,
pfuCollideXformer − Backward compatibility module for basic flight models and transformers.

DESCRIPTION
As of IRIS Performer 2.0, the pfuXformer has been moved to libpfui -- the IRIS Performer User Interface
library, and is now the pfiXformer. The original pfuXformer API has been preserved, but now has a pfi-
prefix. For compatibility with previous releases of IRIS Performer, there are compatibility defines from
the old pfu routine names to the new pfi routine names in <Performer/pfui.h> that are enabled if the
PF_COMPAT_1_2 variable is defined.

See the pfiNewXformer man page for information on the pfiXformer.

NOTES
These functions are provided to ease the transition of programs from the older IRIS Performer 1.2 release
to the current release. These functions should not be used in new application development since they will
be removed in a future release of IRIS Performer.

613

615

E

errno 357

F

fcntl 247
fogvertex 253
fopen 515
fork 55, 440
free 354
frontface 212
ftimer 440

G

gconfig 206
getgdesc 244
getinvent 244
glAlphaFunc 198
glBlendFunc 201
glClear 206
glColorMaterial 320
glDepthFunc 68, 206
glDetailTexFuncSGIS 438
glEnable 443
glFog 253
glGetString 244
glHint 201
glIntro 201
glLight 320

A

access 247, 249
acreate 354, 383
afunction 198
aio_cancel 247
aio_error 247
aio_init 247
aio_read 247
aio_return 247
aio_suspend 247
aio_write 247
amalloc 226

B

backface 212
blendfunction 201, 443

C

callobj 235
calloc 354
clear 206
close 247
cmov 612
creat 247
czclear 206

Index

616

Index

glLightModel 324
glRasterPos3f 612
glSampleMaskSGIS 443
glSharpenTexFuncSGIS 438
glTexEnv 420
glTexGen. 424
glTexImage 438
glTexImage2D. 420
glXChooseVisual 465
glXGetConfig 376
GLXgetconfig 465, 479
GLXlink 465, 479
glXQueryExtensionsString 244

H

handle_sigfpes 239, 357

L

lboot 440
ld 513
linesmooth 201
lmbind 320, 324, 337
lmcolor 320, 324, 337
lmdef 320, 324, 337
loadmatrix 263
lrectread 596
lseek 247
lsetdepth 253

M

malloc 354
msalpha 443
msmask 443
mssize 201, 230
multisample 201, 206

multmatrix 263, 331
m_fork 55

N

new 57

O

open 247
operator pfType::new
ortho 262

P

Performer 3
perror 357
perspective 253, 262
pfAllocDBaseData xviii, 56
pfAllocIsectData xviii, 94
pfAlmostEqualVec3 494
pfAlphaFunc xxxiv, 197, 292, 399
pfAntialias xxxiv, 199, 206, 292, 376, 399
pfApp xviii, 18
pfAppFrame xviii, 69, 129, 179
pfApplyGState 282
pfApplyTex 605
pfArcCos liii, 384
pfArcSin liii, 384
pfArcTan2 liii, 384
pfAsyncDelete xviii, 7, 57
pfBasicState xlv, 292, 393
pfBillboard xxxi, 3, 140
pfBillboard::getAxis xxxii, 3
pfBillboard::getClassType xxxi, 3
pfBillboard::getMode xxxii, 3
pfBillboard::getPos xxxii, 3
pfBillboard::pfBillboard 3

617

pfBillboard::setAxis xxxi, 3
pfBillboard::setMode xxxii, 3
pfBillboard::setPos xxxii, 3
pfBox 202, 221, 256, 262, 366, 369, 387
pfBox::around lix, 202
pfBox::contains lix, 202
pfBox::extendBy lix, 202
pfBox::isect lix, 202
pfBox::makeEmpty lix, 202
pfBox::operator new
pfBox::pfBox 202
pfBox::xform lix, 202
pfBuffer xix, 7, 14, 57, 92, 140
pfBuffer::add xix, 7
pfBuffer::checkDelete xix
pfBuffer::getScope xix, 7
pfBuffer::insert xix, 7
pfBuffer::merge xix, 7
pfBuffer::pfBuffer 7
pfBuffer::remove xix, 7
pfBuffer::replace xix, 7
pfBuffer::select xix, 7
pfBuffer::setScope xix, 7
pfBuffer::unrefDelete xix
pfChannel xxii, 6, 15, 55, 62, 68, 73, 83, 87, 101, 104,
110, 124, 140, 148, 153, 167, 175, 549, 586, 596
pfChannel::allocChanData xxiii, 15
pfChannel::apply xxiii, 16
pfChannel::attach xxiv, 15
pfChannel::clear xxiv, 15
pfChannel::contains xxiii, 16
pfChannel::detach xxiv, 15
pfChannel::drawStats xxiv, 18
pfChannel::getAspect xxii, 16
pfChannel::getAutoAspect xxiii, 16
pfChannel::getBaseFrust xxiii, 16
pfChannel::getBinOrder xxiv, 17
pfChannel::getBinSort xxiv, 17
pfChannel::getChanData xxiii, 15
pfChannel::getChanDataSize xxiii, 15
pfChannel::getClassType xxii, 15

pfChannel::getCullPtope xxiii, 16
pfChannel::getESky xxiv, 17
pfChannel::getEye xxii, 16
pfChannel::getFar xxii, 16
pfChannel::getFOV xxii, 16
pfChannel::getFrustType xxii, 16
pfChannel::getFStats xxiv, 17
pfChannel::getGState xxiv, 17
pfChannel::getGStateTable xxiv, 17
pfChannel::getLoad xxiv, 17
pfChannel::getLODAttr xxiv, 18
pfChannel::getLODState xxiv, 15
pfChannel::getLODStateList xxiv, 15
pfChannel::getNear xxii, 16
pfChannel::getNearFar xxii, 16
pfChannel::getOffsetViewMat xxiii, 17
pfChannel::getOrigin xxiii, 15
pfChannel::getPipe xxiii, 15
pfChannel::getPtope xxii, 16
pfChannel::getPWin xxiii, 15
pfChannel::getPWinIndex xxiii, 15
pfChannel::getScene xxiv, 17
pfChannel::getShare xxiii, 16
pfChannel::getSize xxiii, 15
pfChannel::getStress xxiv, 17
pfChannel::getStressFilter xxiv, 17
pfChannel::getTravFunc xxiii, 15
pfChannel::getTravMask xxiii, 17
pfChannel::getTravMode xxiii, 17
pfChannel::getView xxiii, 17
pfChannel::getViewMat xxiii, 17
pfChannel::getViewOffsets xxiii, 17
pfChannel::getViewport xxiii, 15
pfChannel::isect xxiv, 16
pfChannel::makeOrtho xxii, 16
pfChannel::makePersp xxii, 16
pfChannel::makeSimple xxiii, 16
pfChannel::orthoXform xxiii, 16
pfChannel::passChanData xxiv, 15
pfChannel::pfChannel 15
pfChannel::pick xxiv, 16

618

Index

pfChannel::setAspect xxii, 16
pfChannel::setAutoAspect xxiii, 16
pfChannel::setBinOrder xxiv, 17
pfChannel::setBinSort xxiv, 17
pfChannel::setChanData xxiii, 15
pfChannel::setCullPtope xxiii, 16
pfChannel::setESky xxiv, 17
pfChannel::setFOV xxiii, 16
pfChannel::setGState xxiv, 17
pfChannel::setGStateTable xxiv, 17
pfChannel::setLODAttr xxiv, 18
pfChannel::setLODState xxiv, 15
pfChannel::setLODStateList xxiv, 15
pfChannel::setNearFar xxii, 16
pfChannel::setScene xxiv, 17
pfChannel::setShare xxiii, 16
pfChannel::setStatsMode xxiv, 18
pfChannel::setStress xxiv, 17
pfChannel::setStressFilter xxiii, 17
pfChannel::setTravFunc xxiii, 15
pfChannel::setTravMask xxiii, 17
pfChannel::setTravMode xxiii, 17
pfChannel::setView xxiii, 17
pfChannel::setViewMat xxiii, 17
pfChannel::setViewOffsets xxiii, 17
pfChannel::setViewport xxiii, 15
pfChanViewMat 549
pfChooseFBConfig xxxvi, 201, 462
pfChooseFBConfigData xxxvi, 462
pfClear xxxiv, 68, 205
pfClockMode xxxv, 439
pfClockName xxxv, 439
pfClone 192, 554
pfCloseWSConnection xxxvi, 462
pfColortable xxxviii, 207, 282, 399
pfColortable::apply xxxviii, 207
pfColortable::getClassType xxxviii, 207
pfColortable::getColor xxxviii, 207
pfColortable::getColors xxxviii, 207
pfColortable::getCtabSize xxxviii, 207
pfColortable::pfColortable 207

pfColortable::setColor xxxviii, 207
pfConfig xvii, 14, 45, 46, 57, 73, 93, 96, 153, 585
pfConfigStage xvii, 46
pfCoord 62, 549
pfCopy xviii, 282
pfCull xviii, 18, 148
pfCullFace xxxiv, 45, 211, 292, 337, 399
pfCullPath xxxii, 145
pfCullResult xxxii, 187
pfCycleBuffer xlix, 55, 73, 129, 213, 282
pfCycleBuffer::changed xlix, 213
pfCycleBuffer::config xlix, 213
pfCycleBuffer::frame xlix, 213
pfCycleBuffer::getCBuffer xlix, 213
pfCycleBuffer::getClassType xlix, 213
pfCycleBuffer::getCMem xlix, 213
pfCycleBuffer::getConfig xlix, 213
pfCycleBuffer::getCurData xlix, 213
pfCycleBuffer::getCurIndex xlix, 213
pfCycleBuffer::getFrameCount xlix, 213
pfCycleBuffer::init xlix, 213
pfCycleBuffer::pfCycleBuffer 213
pfCycleBuffer::setCurIndex xlix, 213
pfCycleMemory::getCBuffer xlviii, 213
pfCycleMemory::getClassType xlviii, 213
pfCycleMemory::getFrame xlviii, 213
pfCylinder 140, 219, 221, 300, 369, 387
pfCylinder::around lix, 219
pfCylinder::contains lix, 219
pfCylinder::extendBy lix, 219
pfCylinder::isect lix, 219
pfCylinder::makeEmpty lix, 219
pfCylinder::operator new
pfCylinder::orthoXform lix, 219
pfCylinder::pfCylinder 219
pfdAddBldrGeom lxv, 484
pfdAddExtAlias lxi, 511
pfdAddGeom lxiv, 502
pfdAddIndexedBldrGeom lxv, 484
pfdAddIndexedLines lxiv, 502
pfdAddIndexedLineStrips lxiv, 502

619

pfdAddIndexedPoints lxiv, 502
pfdAddIndexedPoly lxiv, 502
pfdAddIndexedTri lxiv, 502
pfdAddLine lxiv, 502
pfdAddLines lxiv, 502
pfdAddLineStrips lxiv, 502
pfdAddPoint lxiv, 502
pfdAddPoints lxiv, 502
pfdAddPoly lxiv, 502
pfdAddSharedObject lxiii, 516
pfdAddState lxvi, 497
pfdAddTri lxiv, 502
pfDataPool 222, 560, 571, 578, 612
pfDataPool::alloc xxxviii, 222
pfDataPool::attach xxxviii, 222
pfDataPool::create xxxviii, 222
pfDataPool::find xxxviii, 222
pfDataPool::free xxxviii, 222
pfDataPool::getAttachAddr xxxviii, 222
pfDataPool::getClassType xxxviii, 222
pfDataPool::getDPoolSize xxxviii, 222
pfDataPool::getName xxxviii, 222
pfDataPool::lock xxxviii, 222
pfDataPool::release xxxviii, 222
pfDataPool::setAttachAddr xxxviii, 222
pfDataPool::test xxxix, 222
pfDataPool::unlock xxxix, 222
pfDBase xviii, 56
pfDBaseFunc xviii, 14, 55, 56
pfdBldrAttr lxiv, 485
pfdBldrDeleteNode lxiv, 485
pfdBldrGState lxv, 485
pfdBldrMode lxiv, 485
pfdBldrStateAttr lxv, 484
pfdBldrStateInherit lxv, 484
pfdBldrStateMode lxv, 484
pfdBldrStateVal lxv, 484
pfdBreakup lxii, 483, 490
pfdBuild lxv, 485
pfdBuilder 484
pfdBuildGSets lxiv, 503

pfdBuildNode lxv, 485
pfdCallbacks 491
pfdCaptureDefaultBldrState lxv, 484
pfdCleanBldrShare lxv, 485
pfdCleanShare lxiii, 516
pfdCleanTree lxii, 493
pfdCombineBillboards lxiii, 494
pfdCombineLayers lxiii, 496
pfdCompareExtensor lxvi, 497
pfdCompareExtraStates lxvi, 497
pfdConverter 511
pfdConverterAttr lxi, 511
pfdConverterMode lxi, 511
pfdConverterVal lxi, 511
pfdConvertFrom lxi, 511
pfdConvertTo lxi, 511
pfdCopyExtraStates lxvi, 497
pfdCountShare lxiii, 516
pfDCS xxvi, 58, 124, 140, 549
pfDCS::getClassType xxvi, 58
pfDCS::getMat xxvi, 58
pfDCS::getMatPtr xxvi, 58
pfDCS::getMatType xxvi, 58
pfDCS::pfDCS 58
pfDCS::setCoord xxvii, 58
pfDCS::setMat xxvii, 58
pfDCS::setMatType xxvi, 58
pfDCS::setRot xxvii, 58
pfDCS::setScale xxvii, 58
pfDCS::setTrans xxvii, 58
pfdDefaultGState lxv, 485
pfdDelBldr lxiv, 484
pfdDelGeoBldr lxiii, 502
pfdDelGeom lxiii, 502
pfdDelShare lxii, 516
pfDecal xxxiv, 110, 227, 292, 363, 399
pfDefaultNotifyHandler xxxv, 355
pfDelete 6, 62, 68, 83, 87, 92, 101, 110, 124, 129, 171,
175, 179, 182, 186, 209, 218, 235, 256, 262, 282, 292,
298, 312, 320, 324, 328, 331, 337, 361, 369, 391, 399,
411, 415, 420, 424, 438

620

Index

pfdExitBldr lxiv, 484
pfdExitConverter lxi, 511
pfdExtensor 497
pfdFindSharedObject lxiii, 516
pfdFreezeTransforms lxii, 493
pfdGeoBldrMode lxiii, 502
pfdGeoBuilder 490, 502
pfdGetBldrAttr lxiv, 485
pfdGetBldrGState lxv, 485
pfdGetBldrMode lxiv, 485
pfdGetBldrStateAttr lxv, 484
pfdGetBldrStateInherit lxv, 484
pfdGetBldrStateMode lxv, 484
pfdGetBldrStateVal lxv, 484
pfdGetConverterAttr lxi, 511
pfdGetConverterMode lxi, 511
pfdGetConverterVal lxi, 511
pfdGetCurBldr lxiv, 484
pfdGetCurBldrName lxv, 485
pfdGetDefaultGState lxv, 485
pfdGetExtensor lxvi, 497
pfdGetExtensorType lxvi, 497
pfdGetGeoBldrMode lxiii, 502
pfdGetMesherMode lxii, 520
pfdGetNodeGStateList lxiii, 516
pfdGetNumTris lxiv, 503
pfdGetSharedList lxiii, 516
pfdGetStateCallback lxvi, 497
pfdGetStateToken lxvi, 497
pfdGetTemplateObject lxiv, 485
pfdGetUniqueStateToken lxvi, 497
pfdGSet 500
pfdGSetColor lxi, 500
pfdInitBldr lxiv, 484
pfdInitConverter lxi, 511
pfdInsertGroup lxii, 493
pfDisable xxxiv, 236, 282, 298
pfDispList xxxix, 45, 198, 201, 206, 209, 212, 230, 231,
238, 253, 262, 282, 292, 312, 320, 324, 337, 363, 391,
420, 424, 438, 443, 461
pfDispList::addCmd xxxix, 231

pfDispList::callback xxxix, 231
pfDispList::close xxxix, 231
pfDispList::draw xxxix
pfDispList::getClassType xxxix, 231
pfDispList::getDListType xxxix, 231
pfDispList::getSize xxxix, 231
pfDispList::open xxxix, 231
pfDispList::pfDispList 231
pfDispList::reset xxxix, 231
pfdLoadBldrState lxv, 485
pfdLoadFile lxi, 511
pfdLoadFile_obj 492
pfdLoadFont lxv, 256, 514
pfdLoadFont_type1 lxv, 514
pfdMakeDefaultObject lxiv, 485
pfdMakeSceneGState 485
pfdMakeShared lxiii, 516
pfdMakeSharedScene lxiii, 516
pfdMesherMode lxii, 490, 509, 520
pfdMeshGSet lxii, 490, 509, 520
pfdNewArrow lxi, 500
pfdNewBldr lxiv, 484
pfdNewCircle lxi, 500
pfdNewCone lxi, 500
pfdNewCube lxi, 500
pfdNewCylinder lxi, 500
pfdNewDoubleArrow lxi, 500
pfdNewExtensor lxvi, 497
pfdNewExtensorType lxvi, 497
pfdNewGeoBldr lxiii, 502
pfdNewGeom lxiii, 502
pfdNewPipe lxi, 500
pfdNewPyramid lxi, 500
pfdNewRing lxi, 500
pfdNewShare lxii, 516
pfdNewSharedObject lxiii, 516
pfdNewSphere lxi, 500
pfdOpenFile lxi, 511, 515
pfdOptimizeGStateList 485
pfdPopBldrState lxv, 485
pfdPostDrawContourMap lxvi, 491

621

pfdPostDrawLinearMap lxvi, 491
pfdPostDrawReflMap lxvi, 491
pfdPostDrawTexgenExt lxvi, 491
pfdPreDrawContourMap lxvi, 491
pfdPreDrawLinearMap lxvi, 491
pfdPreDrawReflMap lxvi, 491
pfdPreDrawTexgenExt lxvi, 491
pfdPrintGSet lxiv, 503
pfdPrintSceneGraphStats lxi, 511
pfdPrintShare lxiii, 516
pfdPushBldrState lxv, 484
pfDraw xviii, 18, 601
pfDrawBin xviii, 18
pfDrawDList 363
pfDrawGLObj xxxix, 231
pfDrawGSet 292
pfDrawHlightedGSet 298
pfdRemoveGroup lxii, 493
pfdRemoveSharedObject lxiii, 516
pfdReplaceNode lxii, 493
pfdResetAllTemplateObjects lxiv, 485
pfdResetBldrGeometry lxv, 485
pfdResetBldrShare lxv, 485
pfdResetBldrState lxv, 484
pfdResetObject lxiv, 485
pfdResizeGeom lxiii, 502
pfdReverseGeom lxiii, 502
pfdSaveBldrState lxv, 485
pfdSelectBldr lxiv, 484
pfdSelectBldrName lxv, 485
pfdShare 516
pfdShowStrips lxii, 520
pfdSpatialize lxii, 519
pfdStateCallback lxvi, 497
pfdStoreFile lxi, 511
pfdTexgenParams lxvi, 491
pfdTMesher 509, 520
pfdTravGetGSets lxii, 519
pfdTriangulatePoly lxiii, 502
pfdUniqifyData lxvi, 497
pfdXformGSet lxi, 500

pfEarthSky xxiv, 45, 64
pfEarthSky::getAttr xxv, 64
pfEarthSky::getClassType xxiv, 64
pfEarthSky::getColor xxv, 64
pfEarthSky::getFog xxv, 64
pfEarthSky::getMode xxiv, 64
pfEarthSky::pfEarthSky 64
pfEarthSky::setAttr xxv, 64
pfEarthSky::setColor xxv, 64
pfEarthSky::setFog xxv, 64
pfEarthSky::setMode xxiv, 64
pfEnable xxxiv, 209, 236, 253, 282, 292, 298, 337, 399,
420, 438
pfESkyFog 45
pfExit xvii, 93
pfFeature xxxvi, 240, 376
pfFieldRate xviii, 69
pfFile 245
pfFile::close l, 245
pfFile::create l, 245
pfFile::getClassType l, 245
pfFile::getStatus l, 245
pfFile::open 245
pfFile::read l, 245
pfFile::seek l, 245
pfFile::write l, 245
pfFilePath xxxv, 248, 438, 513, 515
pfFindFile xxxv, 248
pfFlatten 493, 494
pfFlushState xlv, 393
pfFog xxxvii, 68, 250, 292, 312, 399
pfFog::apply xxxviii, 250
pfFog::getClassType xxxvii, 250
pfFog::getColor xxxviii, 250
pfFog::getDensity xxxviii, 250
pfFog::getFogType xxxvii, 250
pfFog::getOffsets xxxviii, 250
pfFog::getRamp xxxviii, 250
pfFog::getRange xxxvii, 250
pfFog::pfFog 250
pfFog::setColor xxxviii, 250

622

Index

pfFog::setFogType xxxvii, 250
pfFog::setOffsets xxxviii, 250
pfFog::setRamp xxxviii, 250
pfFog::setRange xxxvii, 250
pfFont xxxix, 186, 254, 415, 514
pfFont::getAttr xxxix, 254
pfFont::getCharGSet xxxix, 254
pfFont::getCharSpacing xxxix, 254
pfFont::getClassType xxxix, 254
pfFont::getMode xxxix, 254
pfFont::getVal xxxix, 254
pfFont::pfFont 254
pfFont::setAttr xxxix, 254
pfFont::setCharGSet xxxix, 254
pfFont::setCharSpacing xxxix, 254
pfFont::setMode xxxix, 254
pfFont::setVal xxxix, 254
pfFPConfig liii, 239
pfFrame xviii, 14, 45, 57, 69, 140, 179, 192
pfFrameRate xviii, 45, 69
pfFrameStats xxxii, 74, 589, 610
pfFrameStats::accumulate xxxiii, 74
pfFrameStats::average xxxiii, 74
pfFrameStats::clear xxxiii, 74
pfFrameStats::close xxxiii, 74
pfFrameStats::copy 74
pfFrameStats::count xxxiii, 74
pfFrameStats::countNode xxxiii, 74
pfFrameStats::draw xxxiii, 74
pfFrameStats::getAttr xxxiii, 74
pfFrameStats::getClass xxxii, 74
pfFrameStats::getClassMode xxxii, 74
pfFrameStats::getClassType xxxii, 74
pfFrameStats::getOpen xxxiii, 74
pfFrameStats::mQuery xxxiii, 74
pfFrameStats::open xxxiii, 74
pfFrameStats::pfFrameStats 74
pfFrameStats::query xxxiii, 74
pfFrameStats::reset xxxiii, 74
pfFrameStats::setAttr xxxii, 74
pfFrameStats::setClass xxxii, 74

pfFrameStats::setClassMode xxxii, 74
pfFrameTimeStamp xviii, 69, 179
pfFree 383
pfFreeArenas xxxiii, 382
pfFrustum lx, 45, 257, 369
pfFrustum::apply lx, 257
pfFrustum::contains lx, 257
pfFrustum::getAspect lx, 257
pfFrustum::getClassType lx, 257
pfFrustum::getEye lx, 257
pfFrustum::getFar lx, 257
pfFrustum::getFOV lx, 257
pfFrustum::getFrustType lx, 257
pfFrustum::getGLProjMat lx, 257
pfFrustum::getNear lx, 257
pfFrustum::getNearFar lx, 257
pfFrustum::getPtope lx, 257
pfFrustum::makeOrtho lx, 257
pfFrustum::makePersp lx, 257
pfFrustum::makeSimple lx, 257
pfFrustum::orthoXform lx, 257
pfFrustum::pfFrustum 257
pfFrustum::setAspect lx, 257
pfFrustum::setNearFar lx, 257
pfGeode xxxi, 6, 84, 140, 483, 509
pfGeode::addGSet xxxi, 84
pfGeode::getClassType xxxi, 84
pfGeode::getGSet xxxi, 84
pfGeode::getNumGSets xxxi, 84
pfGeode::insertGSet xxxi, 84
pfGeode::pfGeode 84
pfGeode::removeGSet xxxi, 84
pfGeode::replaceGSet xxxi, 84
pfGeoSet xl, 87, 124, 140, 186, 209, 238, 256, 264, 292,
300, 312, 381, 391, 399, 415, 483, 490, 501, 509, 517,
519, 521, 554, 573, 610
pfGeoSet::draw xl, 264
pfGeoSet::drawHlightOnly xl, 264
pfGeoSet::getAttrBind xl, 264
pfGeoSet::getAttrLists xl, 264
pfGeoSet::getAttrRange xl, 264

623

pfGeoSet::getBound xl, 265
pfGeoSet::getClassType xl, 264
pfGeoSet::getDrawBin xl, 265
pfGeoSet::getDrawMode xl, 264
pfGeoSet::getGState xl, 264
pfGeoSet::getGStateIndex xl, 264
pfGeoSet::getHlight xl, 265
pfGeoSet::getIsectMask xl, 265
pfGeoSet::getLineWidth xl, 264
pfGeoSet::getNumPrims xl, 264
pfGeoSet::getPassFilter xl, 265
pfGeoSet::getPntSize xl, 264
pfGeoSet::getPrimLengths xl, 264
pfGeoSet::getPrimType xl, 264
pfGeoSet::isect xl, 265
pfGeoSet::mQuery xl, 265
pfGeoSet::pfGeoSet 264
pfGeoSet::query xl, 265
pfGeoSet::setAttr xl, 264
pfGeoSet::setBound xl, 265
pfGeoSet::setDrawBin xl, 265
pfGeoSet::setDrawMode xl, 264
pfGeoSet::setGState xl, 264
pfGeoSet::setGStateIndex xl, 264
pfGeoSet::setHlight xl, 264
pfGeoSet::setIsectMask xl, 265
pfGeoSet::setLineWidth xl, 264
pfGeoSet::setNumPrims xl, 264
pfGeoSet::setPassFilter xl, 265
pfGeoSet::setPntSize xl, 264
pfGeoSet::setPrimLengths xl, 264
pfGeoSet::setPrimType xl, 264
pfGeoState xli, 45, 124, 175, 198, 201, 209, 212, 230,
235, 238, 253, 256, 282, 283, 298, 312, 320, 324, 337,
363, 381, 399, 420, 424, 438, 443, 490, 517
pfGeoState::apply xli, 283
pfGeoState::applyTable xli, 283
pfGeoState::getAttr xli, 283
pfGeoState::getClassType xli, 283
pfGeoState::getCombinedAttr xli, 283
pfGeoState::getCombinedMode xli, 283

pfGeoState::getCombinedVal xli, 283
pfGeoState::getCurAttr xli, 283
pfGeoState::getCurMode xli, 283
pfGeoState::getCurVal xli, 283
pfGeoState::getFuncs 283
pfGeoState::getInherit xli, 283
pfGeoState::getMode xli, 283
pfGeoState::getVal xli, 283
pfGeoState::load xli, 283
pfGeoState::makeBasic xli, 283
pfGeoState::pfGeoState 283
pfGeoState::setAttr xli, 283
pfGeoState::setFuncs 283
pfGeoState::setInherit xli, 283
pfGeoState::setMode xli, 283
pfGeoState::setVal xli, 283
pfGetAlphaFunc xxxiv, 197
pfGetAntialias xxxiv, 199
pfGetClockMode xxxv, 439
pfGetClockName xxxv, 439
pfGetCullFace xxxiv, 211
pfGetCullResult xxxii, 187
pfGetCurBuffer xix, 7
pfGetCurCtab xxxviii, 207
pfGetCurDList xxxix, 231
pfGetCurFog xxxvii, 250
pfGetCurGState xli, 283
pfGetCurGStateTable xli, 284
pfGetCurHlight xli, 294
pfGetCurIndexedGState xli, 284
pfGetCurLights xlii, 314
pfGetCurLModel xliii, 321
pfGetCurLPState xliii, 301
pfGetCurMtl xliv, 332
pfGetCurSprite xliv, 388
pfGetCurState xlv, 393
pfGetCurStats lii, 400
pfGetCurTEnv xlviii, 417
pfGetCurTex xlvi, 426
pfGetCurTGen xlviii, 421
pfGetCurWin xxxvi, 468

624

Index

pfGetCurWSConnection xxxvi, 153, 167, 376, 462, 479
pfGetData 218
pfGetDBaseData xviii, 56
pfGetDBaseFunc xviii, 56
pfGetDecal xxxiv, 227
pfGetEnable xxxiv, 236
pfGetFieldRate xviii, 69
pfGetFilePath xxxv, 248
pfGetFPConfig liii, 239
pfGetFrameCount xviii, 69
pfGetFrameRate xviii, 69
pfGetFrameTimeStamp xviii, 69
pfGetGLHandle 438
pfGetGLOverride xxxiv, 362
pfGetGSetHlight 298
pfGetHyperpipe xvii, 46
pfGetId xviii, 88
pfGetInvModelMat xlv, 460
pfGetIsectData xviii, 94
pfGetIsectFunc xviii, 94
pfGetMemory 218
pfGetModelMat xlv, 460
pfGetMultipipe xvii, 46
pfGetMultiprocess xvii, 46
pfGetMultithread xvii, 46
pfGetNearPixDist xlv, 460
pfGetNotifyHandler xxxv, 355
pfGetNotifyLevel xxxv, 355
pfGetOverride xlv, 362
pfGetParentCullResult xxxii, 187
pfGetPhase xviii, 69
pfGetPID xvii, 46
pfGetPipe xviii, 46
pfGetPipeHyperId 46
pfGetScreenSize xxxvi, 462
pfGetSemaArena xxxiii, 45, 382
pfGetSemaArenaBase xxxiii, 382
pfGetSemaArenaSize xxxiii, 382
pfGetShadeModel xxxiv, 379
pfGetSharedArena xxxiv, 93, 382, 549, 554, 595
pfGetSharedArenaBase xxxiv, 382

pfGetSharedArenaSize xxxiv, 382
pfGetStage xvii, 46
pfGetStageConfigFunc xvii, 46
pfGetState xlv, 393
pfGetTexMat xlv, 460
pfGetTime xxxv, 73, 439, 607
pfGetTmpDir xxxiv, 382
pfGetTransparency xxxiv, 441
pfGetVClock xxxvi, 446
pfGetVClockOffset xxxvi, 446
pfGetVideoRate xviii, 69
pfGetViewMat xlv, 460
pfGetWSConnectionName xxxvi, 462
pfGLMatrix 263
pfGLOverride xxxiv, 362
pfGroup xxvi, 14, 62, 89, 101, 110, 129, 140, 144, 171,
175, 179, 182, 192
pfGroup::addChild xxvi, 89
pfGroup::bufferAddChild xxvi, 89
pfGroup::bufferRemoveChild xxvi, 89
pfGroup::getChild xxvi, 89
pfGroup::getClassType xxvi, 89
pfGroup::getNumChildren xxvi, 89
pfGroup::insertChild xxvi, 89
pfGroup::pfGroup 89
pfGroup::removeChild xxvi, 89
pfGroup::replaceChild xxvi, 89
pfGroup::searchChild xxvi, 89
pfGSetAttr 337
pfGSetDrawMode 282
pfGSetGState 381
pfGSetHlight 298
pfGSetIsectSegs 140, 282, 378
pfGStateMode 230
pfHighlight xlii, 293, 399
pfHighlight::apply xlii, 293
pfHighlight::getAlpha xlii, 293
pfHighlight::getClassType xlii, 293
pfHighlight::getColor xlii, 293
pfHighlight::getFillPat xlii, 293
pfHighlight::getGState xlii, 293

625

pfHighlight::getGStateIndex xlii, 293
pfHighlight::getLinePat xlii, 293
pfHighlight::getLineWidth xlii, 293
pfHighlight::getMode xlii, 293
pfHighlight::getNormalLength xlii, 293
pfHighlight::getPntSize xlii, 293
pfHighlight::getTEnv xlii, 294
pfHighlight::getTex xlii, 293
pfHighlight::getTGen xlii, 294
pfHighlight::pfHighlight 293
pfHighlight::setAlpha xlii, 293
pfHighlight::setColor xlii, 293
pfHighlight::setFillPat xlii, 293
pfHighlight::setGState xlii, 293
pfHighlight::setGStateIndex xlii, 293
pfHighlight::setLinePat xlii, 293
pfHighlight::setLineWidth xlii, 293
pfHighlight::setMode xlii, 293
pfHighlight::setNormalLength xlii, 293
pfHighlight::setPntSize xlii, 293
pfHighlight::setTEnv xlii, 294
pfHighlight::setTex xlii, 293
pfHighlight::setTGen xlii, 294
pfHit 140, 282, 299, 556
pfHit::getClassType xli, 299
pfHit::mQuery xli, 299
pfHit::query xli, 299
pfHyperpipe xvii, 46
pfiAddPickChan lxx, 538
pfiCenterXformer lxxi, 545
pfiCollectInputEvents lxvii, 530
pfiCollide 525
pfiCollideCurMotionParams 525
pfiCollideDist lxix, 525
pfiCollideFunc lxx, 526
pfiCollideGroundNode lxix, 525
pfiCollideHeightAboveGrnd lxix, 525
pfiCollideMode lxix, 525
pfiCollideObjNode lxix, 525
pfiCollideStatus lxix, 525
pfiCollideXformer lxxi, 546

pfiCreate2DIXformDrive lxix, 534
pfiCreate2DIXformFly lxix, 535
pfiCreate2DIXformTrackball lxviii, 536
pfiCreateTDFXformer lxxi, 540
pfiDisableCollide lxix, 525
pfiDisableXformerCollision lxxi, 546
pfiDoPick lxx, 538
pfiEnableCollide lxix, 525
pfiEnableXformerCollision lxxi, 546
pfiGetCollideClassType lxix, 525
pfiGetCollideCurMotionParams 525
pfiGetCollideDist lxix, 525
pfiGetCollideEnable lxix, 525
pfiGetCollideGroundNode lxix, 525
pfiGetCollideHeightAboveGrnd lxix, 525
pfiGetCollideMode lxix, 525
pfiGetCollideMotionCoord lxx, 525
pfiGetCollideObjNode lxix, 525
pfiGetCollideStatus lxix, 525
pfiGetCollisionFunc lxx, 526
pfiGetInputClassType 528
pfiGetInputCoordClassType lxvii, 527, 528
pfiGetInputCoordVec lxvii, 527
pfiGetInputEventHandler lxvii, 529
pfiGetInputEventMask lxvii, 528
pfiGetInputEventStreamCollector lxvii, 529
pfiGetInputEventStreamProcessor lxvii, 529
pfiGetInputFocus lxvii, 528
pfiGetIXformBSphere lxviii, 530
pfiGetIXformClassType 528
pfiGetIXformCoord lxviii, 529
pfiGetIXformDBLimits lxviii, 529
pfiGetIXformDriveClassType lxix, 534
pfiGetIXformDriveHeight lxix, 534
pfiGetIXformDriveMode lxix, 534
pfiGetIXformFlyClassType lxix, 535
pfiGetIXformFlyMode lxix, 535
pfiGetIXformInput lxviii, 529
pfiGetIXformInputCoordPtr lxviii, 529
pfiGetIXformMat lxviii, 529
pfiGetIXformMode lxviii

626

Index

pfiGetIXformMotionCoord lxviii, 529
pfiGetIXformMotionFuncs lxviii, 530
pfiGetIXformMotionLimits lxviii, 529
pfiGetIXformResetCoord lxviii, 529
pfiGetIXformStartMotion lxviii, 529
pfiGetIXformTrackballClassType lxix, 536
pfiGetIXformTrackballMode lxviii, 536
pfiGetIXformTravelClassType lxviii
pfiGetIXformUpdateFunc 530
pfiGetIXformUpudateFunc lxviii
pfiGetMotionCoordClassType lxvi, 528, 537
pfiGetPickClassType lxx, 538
pfiGetPickGSet lxx, 538
pfiGetPickMode lxx, 538
pfiGetPickNode lxx, 538
pfiGetPickNumHits lxx, 538
pfiGetPicktHitFunc lxx, 538
pfiGetTDFXformerClassType lxxi, 540
pfiGetTDFXformerDrive lxxii, 540
pfiGetTDFXformerFastClickTime lxxi, 540
pfiGetTDFXformerFly lxxii, 540
pfiGetTDFXformerStartMotion lxxi, 540
pfiGetTDFXformerTrackball lxxi, 540
pfiGetXformerAutoPosition lxxi, 546
pfiGetXformerClassType lxx, 545
pfiGetXformerCollisionEnable lxxi, 546
pfiGetXformerCollisionStatus lxxi, 546
pfiGetXformerCoord lxxi, 546
pfiGetXformerCurModel lxx, 545
pfiGetXformerCurModelIndex lxx, 545
pfiGetXformerLimits lxxi, 546
pfiGetXformerMat lxxi, 545
pfiGetXformerModelMat lxxi, 545
pfiGetXformerNode lxxi, 546
pfiGetXformerResetCoord lxxi, 546
pfiHaveFastMouseClick lxvii, 530
pfiInit lxvi, 545
pfiInputCoord 527
pfiInputCoordVec lxvii, 527
pfiInputEventHandler lxvii, 529
pfiInputEventMask lxvii, 528

pfiInputEventStreamCollector lxvii, 528
pfiInputEventStreamProcessor lxvii, 529
pfiInputFocus lxvii, 528
pfiInputName lxvii, 528
pfiInputXform 528
pfiInputXformDrive 534
pfiInputXformFly 535
pfiInputXformTrackball 536
pfiInsertPickChan lxx, 538
pfiIsIXformInMotion lxvii, 528
pfiIsIXGetName lxvii, 528
pfiIXformBSphere lxviii, 529
pfiIXformCoord lxviii, 529
pfiIXformDBLimits lxviii, 529
pfiIXformDriveHeight lxix, 534
pfiIXformDriveMode lxix, 534
pfiIXformFlyMode lxix, 535
pfiIXformFocus lxvii
pfiIXformInput lxviii, 529
pfiIXformInputCoordPtr lxviii, 529
pfiIXformMat lxviii, 529
pfiIXformMode lxvii
pfiIXformMotionCoord lxviii, 529
pfiIXformMotionFuncs lxviii, 530
pfiIXformMotionLimits lxviii, 529
pfiIXformResetCoord lxviii, 529
pfiIXformStartMotion lxviii, 529
pfiIXformTrackballMode lxviii, 536
pfiIXformUpdateFunc 530
pfiIXformUpudateFunc lxviii
pfiMotionCoord 537
pfiNewCollide lxix, 525
pfiNewInput lxvii, 528
pfiNewInputCoord lxvii, 527, 528
pfiNewIXFly lxix, 535
pfiNewIXform lxvii, 528
pfiNewIXformDrive lxix, 534
pfiNewIXformTrackball lxviii, 536
pfiNewMotionCoord lxvi, 528, 537
pfiNewPick lxx, 538
pfiNewTDFXformer lxxi, 540

627

pfiNewXformer lxx, 545
pfInit xvii, 55, 93
pfInitArenas xxxiii, 226, 354, 382
pfInitClock xxxv, 439, 607
pfInitGfx xix, 110, 156, 230, 468
pfInitPipe xviii, 46, 585
pfInitState xlv, 393
pfInitVClock xxxvi, 73, 446
pfInvModelMat xlv, 460
pfiPick 538
pfiPickHitFunc lxx, 538
pfiPickMode lxx, 538
pfiProcessInputEvents lxvii, 530
pfiProcessTDFTrackballMouse lxxii, 540
pfiProcessTDFTravelMouse lxxii, 540
pfiProcessTDFXformerMouse lxxii, 540
pfiProcessTDFXformerMouseEvents lxxii, 540
pfiRemovePickChan lxx, 538
pfiRemoveXformerModel lxx, 545
pfiRemoveXformerModelIndex lxx, 545
pfiResetInput lxvii, 530
pfiResetIXform lxvii, 530
pfiResetIXformPosition lxviii, 530
pfiResetPick lxx, 538
pfiResetXformer lxxi, 545
pfiResetXformerPosition lxxi, 545
pfIsectFunc xviii, 55, 73, 94, 140
pfiSelectXformerModel lxx, 545
pfiSetupPickChans lxx, 538
pfiStopIXform lxvii, 530
pfiStopXformer lxx, 545
pfiTDFXformer 540, 549
pfiTDFXformerDrive lxxii, 540
pfiTDFXformerFastClickTime lxxi, 540
pfiTDFXformerFly lxxii, 540
pfiTDFXformerStartMotion lxxi, 540
pfiTDFXformerTrackball lxxi, 540
pfiUpdate2DIXformDrive lxix, 534
pfiUpdate2DIXformFly lxix, 535
pfiUpdate2DIXformTrackball lxviii, 536
pfiUpdateCollide lxx, 526

pfiUpdateIXform lxvii, 530
pfiUpdateXformer lxxi, 546
pfiXformer 545
pfiXformerAutoInput lxxi, 545
pfiXformerAutoPosition lxxi, 546
pfiXformerCollision lxxi, 546
pfiXformerCoord lxxi, 546
pfiXformerLimits lxxi, 546
pfiXformerMat lxxi, 545
pfiXformerModel lxx, 545
pfiXformerModelMat lxxi, 545
pfiXformerNode lxxi, 546
pfiXformerResetCoord lxxi, 546
pfLayer xxix, 106, 496
pfLayer::getBase xxix, 106
pfLayer::getClassType xxix, 106
pfLayer::getDecal xxix, 106
pfLayer::getMode xxix, 106
pfLayer::pfLayer 106
pfLayer::setBase xxix, 106
pfLayer::setDecal xxix, 106
pfLayer::setMode xxix, 106
pfLight xlii, 124, 292, 314, 324, 337, 399
pfLight::getAmbient xliii, 314
pfLight::getAtten xliii, 314
pfLight::getClassType xlii, 314
pfLight::getColor xlii, 314
pfLight::getPos xliii, 314
pfLight::getSpotCone xliii, 314
pfLight::getSpotDir xliii, 314
pfLight::isOn xliii, 314
pfLight::off xliii, 314
pfLight::on xliii, 314
pfLight::pfLight 314
pfLight::setAmbient xliii, 314
pfLight::setAtten xliii, 314
pfLight::setColor xlii, 314
pfLight::setPos xliii, 314
pfLight::setSpotCone xliii, 314
pfLight::setSpotDir xliii, 314
pfLightModel xliii, 320, 321, 337, 399

628

Index

pfLightModel::apply xliii, 321
pfLightModel::getAmbient xliii, 321
pfLightModel::getAtten xliii, 321
pfLightModel::getClassType xliii, 321
pfLightModel::getLocal xliii, 321
pfLightModel::getTwoSide xliii, 321
pfLightModel::pfLightModel 321
pfLightModel::setAmbient xliii, 321
pfLightModel::setAtten xliii, 321
pfLightModel::setLocal xliii, 321
pfLightModel::setTwoSide xliii, 321
pfLightOn 337
pfLightPoint xxx, 111, 140
pfLightPoint::getClassType xxx, 111
pfLightPoint::getColor xxx, 111
pfLightPoint::getFogScale xxx, 111
pfLightPoint::getGSet xxx, 111
pfLightPoint::getNumPoints xxx, 111
pfLightPoint::getPos xxx, 111
pfLightPoint::getRot xxx, 111
pfLightPoint::getShape xxx, 111
pfLightPoint::getSize xxx, 111
pfLightPoint::pfLightPoint 111
pfLightPoint::setColor xxx, 111
pfLightPoint::setFogScale xxx, 111
pfLightPoint::setPos xxx, 111
pfLightPoint::setRot xxx, 111
pfLightPoint::setShape xxx, 111
pfLightPoint::setSize xxx, 111
pfLightPos 381
pfLightSource xxx, 45, 116
pfLightSource::getAmbient xxx, 116
pfLightSource::getAtten xxx, 116
pfLightSource::getAttr xxxi, 116
pfLightSource::getClassType xxx, 116
pfLightSource::getColor xxx, 116
pfLightSource::getMode xxx, 116
pfLightSource::getPos xxx, 116
pfLightSource::getSpotCone xxx, 116
pfLightSource::getSpotDir xxx, 116
pfLightSource::getVal xxxi, 116

pfLightSource::isOn xxx, 116
pfLightSource::off xxx, 116
pfLightSource::on xxx, 116
pfLightSource::pfLightSource 116
pfLightSource::setAmbient xxx, 116
pfLightSource::setAtten xxx, 116
pfLightSource::setAttr xxxi, 116
pfLightSource::setColor xxx, 116
pfLightSource::setMode xxx, 116
pfLightSource::setPos xxx, 116
pfLightSource::setSpotCone xxx, 116
pfLightSource::setSpotDir xxx, 116
pfLightSource::setVal xxxi, 116
pfList l, 148, 292, 325, 509, 517, 605
pfList::add li, 325
pfList::combine l, 325
pfList::fastRemove li, 325
pfList::fastRemoveIndex li, 325
pfList::get l, 325
pfList::getArray l, 325
pfList::getArrayLen l, 325
pfList::getClassType l, 325
pfList::getEltSize l, 325
pfList::getNum l, 325
pfList::insert li, 325
pfList::move li, 325
pfList::pfList 325
pfList::remove li, 325
pfList::removeIndex li, 325
pfList::replace li, 325
pfList::reset l, 325
pfList::search li, 325
pfList::set l, 325
pfList::setArrayLen l, 325
pfList::setNum l, 325
pfLModelLocal 381
pfLModelTwoSide 337
pfLoadMatrix xxxv, 263
pfLOD xxvii, 45, 97, 104, 554
pfLOD::evaluate xxviii, 97
pfLOD::getCenter xxvii, 97

629

pfLOD::getClassType xxvii, 97
pfLOD::getLODState xxvii, 97
pfLOD::getLODStateIndex xxviii, 97
pfLOD::getNumRanges xxvii, 97
pfLOD::getNumTransitions xxvii, 97
pfLOD::getRange xxvii, 97
pfLOD::getTransition xxvii, 97
pfLOD::pfLOD 97
pfLOD::setCenter xxvii, 97
pfLOD::setLODState xxvii, 97
pfLOD::setLODStateIndex xxvii, 97
pfLOD::setRange xxvii, 97
pfLOD::setTransition xxvii, 97
pfLODRange 554
pfLODState xxvii, 101, 102
pfLODState::find xxvii, 102
pfLODState::getAttr xxvii, 102
pfLODState::getClassType xxvii, 102
pfLODState::getName xxvii, 102
pfLODState::pfLODState 102
pfLODState::setAttr xxvii, 102
pfLODState::setName xxvii, 102
pfLookupNode 110
pfLPointState xliii, 115, 282, 292, 301, 399, 424, 461,
582
pfLPointState::apply xliv, 301
pfLPointState::getBackColor xliv, 301
pfLPointState::getClassType xliii, 301
pfLPointState::getMode xliv, 301
pfLPointState::getShape xliv, 301
pfLPointState::getVal xliv, 301
pfLPointState::makeRangeTex xliv, 301
pfLPointState::makeShapeTex xliv, 301
pfLPointState::pfLPointState 301
pfLPointState::setBackColor xliv, 301
pfLPointState::setMode xliv, 301
pfLPointState::setShape xliv, 301
pfLPointState::setVal xliv, 301
pfMakeLPStateRangeTex 582
pfMakeLPStateShapeTex 582
pfMakeRotMat 331

pfMakeScaleMat 331
pfMakeTransMat 331
pfMalloc 93, 282, 383, 438, 595
pfMaterial xliv, 282, 320, 324, 332, 399
pfMaterial::apply xliv, 332
pfMaterial::getAlpha xliv, 332
pfMaterial::getClassType xliv, 332
pfMaterial::getColor xliv, 332
pfMaterial::getColorMode xliv, 332
pfMaterial::getShininess xliv, 332
pfMaterial::getSide xliv, 332
pfMaterial::pfMaterial 332
pfMaterial::setAlpha xliv, 332
pfMaterial::setColor xliv, 332
pfMaterial::setColorMode xliv, 332
pfMaterial::setShininess xliv, 332
pfMaterial::setSide xliv, 332
pfMatrix 62, 171, 262, 331, 338, 366, 369, 373, 384, 451,
455, 459, 549
pfMatrix::add lvi, 339
pfMatrix::almostEqual lvi, 339
pfMatrix::copy lvi, 339
pfMatrix::equal lvi, 339
pfMatrix::getCol lvi, 338
pfMatrix::getMatType lv, 338
pfMatrix::getOrthoCoord lvi, 338
pfMatrix::getOrthoQuat lvi, 338
pfMatrix::getRow lv, 338
pfMatrix::invertAff lvi, 339
pfMatrix::invertFull lvi, 339
pfMatrix::invertIdent lvi, 339
pfMatrix::invertOrtho lvi, 339
pfMatrix::invertOrthoN lvi, 339
pfMatrix::makeCoord lvi, 338
pfMatrix::makeEuler lvi, 338
pfMatrix::makeIdent lvi, 338
pfMatrix::makeQuat lvi, 338
pfMatrix::makeRot lvi, 338
pfMatrix::makeScale lvi, 338
pfMatrix::makeTrans lvi, 338
pfMatrix::makeVecRotVec lvi, 338

630

Index

pfMatrix::mult lvi, 339
pfMatrix::operator ==
pfMatrix::pfMatrix 338
pfMatrix::postMult lvi, 339
pfMatrix::postRot lvi, 339
pfMatrix::postScale lvi, 339
pfMatrix::postTrans lvi, 339
pfMatrix::preMult lvi, 339
pfMatrix::preRot lvi, 339
pfMatrix::preScale lvi, 339
pfMatrix::preTrans lvi, 339
pfMatrix::scale lvi, 339
pfMatrix::set lv, 338
pfMatrix::setCol lv, 338
pfMatrix::setRow lv, 338
pfMatrix::sub lvi, 339
pfMatrix::transpose lvi, 339
pfMatStack lvii, 329
pfMatStack::get lvii, 329
pfMatStack::getClassType lvii, 329
pfMatStack::getDepth lvii, 329
pfMatStack::getTop lvii, 329
pfMatStack::load lvii, 329
pfMatStack::pfMatStack 329
pfMatStack::pop lvii, 329
pfMatStack::postMult lvii, 329
pfMatStack::postRot lvii, 329
pfMatStack::postScale lvii, 329
pfMatStack::postTrans lvii, 329
pfMatStack::preMult lvii, 329
pfMatStack::preRot lvii, 329
pfMatStack::preScale lvii, 329
pfMatStack::preTrans lvii, 329
pfMatStack::push lvii, 329
pfMatStack::reset lvii, 329
pfMemory 218, 345, 361, 424, 445
pfMemory::calloc xlix, 346
pfMemory::checkDelete l, 346
pfMemory::compare l, 345
pfMemory::copy l, 345
pfMemory::free xlix, 346

pfMemory::getArena xlix, 345, 346
pfMemory::getClassType xlix, 345
pfMemory::getData xlix, 345
pfMemory::getMemory xlix
pfMemory::getRef l, 346
pfMemory::getSize xlix, 346
pfMemory::getType xlix, 345
pfMemory::getTypeName xlix, 345
pfMemory::isExactType xlix, 345
pfMemory::isOfType xlix, 345
pfMemory::malloc xlix, 346
pfMemory::operator new
pfMemory::pfMemory 345
pfMemory::print l, 345
pfMemory::realloc xlix, 346
pfMemory::ref l, 345
pfMemory::strdup xlix
pfMemory::unref l, 346
pfMemory::unrefDelete l, 346
pfModelMat xlv, 391, 460
pfMorph xxviii, 125
pfMorph::evaluate xxviii, 125
pfMorph::getClassType xxviii, 125
pfMorph::getDst xxviii, 125
pfMorph::getNumAttrs xxviii, 125
pfMorph::getNumSrcs xxviii, 125
pfMorph::getSrc xxviii, 125
pfMorph::getWeights xxviii, 125
pfMorph::pfMorph 125
pfMorph::setAttr xxviii, 125
pfMorph::setWeights xxviii, 125
pfMQueryFeature xxxvi, 240
pfMQuerySys xxxvii, 374
pfMultipipe xvii, 45, 46, 153, 564
pfMultiprocess xvii, 14, 45, 46, 57, 96, 153
pfMultithread xvii, 46
pfMultMatrix xxxv, 263
pfNearPixDist xlv, 460
pfNewChan 68
pfNewHlight 282
pfNode 6, 45, 62, 87, 88, 92, 96, 101, 110, 115, 124, 129,

631

130, 140, 144, 171, 179, 182, 186, 192, 300, 483, 492,
556, 610
pfNode::bufferClone xxv, 130
pfNode::clone xxv, 130
pfNode::find xxv, 130
pfNode::flatten xxv, 130
pfNode::getBound xxv, 130
pfNode::getBufferMode xxv
pfNode::getClassType xxv, 130
pfNode::getName xxv, 130
pfNode::getNumParents xxv, 130
pfNode::getParent xxv, 130
pfNode::getTravData xxv, 130
pfNode::getTravFuncs xxv, 130
pfNode::getTravMask xxv, 130
pfNode::isect xxv, 130
pfNode::lookup xxv, 130
pfNode::setBound xxv, 130
pfNode::setBufferMode xxv
pfNode::setName xxv, 130
pfNode::setTravData xxv, 130
pfNode::setTravFuncs xxv, 130
pfNode::setTravMask xxv, 130
pfNodeBSphere 554
pfNodeIsectSegs 144, 378, 556
pfNodePickSetup xxii, 18
pfNodeTravFuncs 492
pfNodeTravMask 556
pfNotify xxxv, 355, 513, 592
pfNotifyHandler xxxv, 355
pfNotifyLevel xxxv, 144, 239, 355
pfObject 45, 140, 235, 253, 262, 282, 298, 300, 320, 324,
337, 358, 369, 420, 424, 438, 490
pfObject::getClassType xxxvii, 358
pfObject::getCopyFunc xxxvii, 358
pfObject::getDeleteFunc xxxvii, 358
pfObject::getGLHandle xxxvii, 358
pfObject::getMergeFunc xxxvii
pfObject::getPrintFunc xxxvii, 358
pfObject::getUserData xxxvii, 358
pfObject::operator new

pfObject::setCopyFunc xxxvii, 358
pfObject::setDeleteFunc xxxvii, 358
pfObject::setMergeFunc xxxvii
pfObject::setPrintFunc xxxvii, 358
pfObject::setUserData xxxvii, 358
pfOpenDList 363
pfOpenFile l
pfOpenScreen xxxvi, 462
pfOpenWSConnection xxxvi, 462
pfOverride xlv, 201, 209, 212, 230, 238, 253, 292, 298,
320, 362, 399, 424, 438
pfPartition xxix, 141
pfPartition::build xxix, 141
pfPartition::getAttr xxix, 141
pfPartition::getClassType xxix, 141
pfPartition::getVal xxix, 141
pfPartition::pfPartition 141
pfPartition::setAttr xxix, 141
pfPartition::setVal xxix, 141
pfPartition::update xxix, 141
pfPassDBaseData xviii, 56
pfPassIsectData xviii, 94
pfPath xxxii, 145
pfPath::getClassType xxxii, 145
pfPath::pfPath 145
pfPhase xviii, 45, 69
pfPipe 45, 55, 149, 167, 586
pfPipe::getChan xix, 149
pfPipe::getClassType xix, 149
pfPipe::getHyperId xix
pfPipe::getNumChans xix, 149
pfPipe::getNumPWins xix, 149
pfPipe::getPWin xix, 149
pfPipe::getScreen xix, 149
pfPipe::getSize xix, 149
pfPipe::getSwapFunc xix, 149
pfPipe::getWSConnectionName xix
pfPipe::movePWin xix, 149
pfPipe::setScreen xix, 149
pfPipe::setSwapFunc xix, 149
pfPipe::setWSConnectionName xix

632

Index

pfPipeWindow xx, 45, 153, 154
pfPipeWindow::addChan xxi, 156
pfPipeWindow::attach xxi, 156
pfPipeWindow::attachWin xxi, 156
pfPipeWindow::chooseFBConfig xxi, 156
pfPipeWindow::close xxi, 156
pfPipeWindow::closeGL xxi, 156
pfPipeWindow::config xxi, 156
pfPipeWindow::detach xxi, 156
pfPipeWindow::detachWin xxi, 156
pfPipeWindow::getAspect xx, 155
pfPipeWindow::getChan xxii, 155
pfPipeWindow::getChanIndex xxi, 155
pfPipeWindow::getClassType xx, 154
pfPipeWindow::getConfigFunc xxi, 155
pfPipeWindow::getCurOriginSize xx, 155
pfPipeWindow::getCurScreenOriginSize xx, 155
pfPipeWindow::getCurState xx, 155
pfPipeWindow::getCurWSDrawable xxi, 155
pfPipeWindow::getFBConfig xxi, 155
pfPipeWindow::getFBConfigAttrs xxi, 155
pfPipeWindow::getFBConfigData xxi, 155
pfPipeWindow::getFBConfigId xxi, 155
pfPipeWindow::getGLCxt xxi, 155
pfPipeWindow::getIndex xxi, 155
pfPipeWindow::getMode xx, 155
pfPipeWindow::getName xx, 155
pfPipeWindow::getNumChans xxii, 155
pfPipeWindow::getOrigin xx, 155
pfPipeWindow::getOverlayWin xx, 155
pfPipeWindow::getPipe xxi, 155
pfPipeWindow::getPipeIndex xxi, 155
pfPipeWindow::getScreen xx, 155
pfPipeWindow::getSelect xxi, 155
pfPipeWindow::getShare xx, 155
pfPipeWindow::getSize xx, 155
pfPipeWindow::getStatsWin xx, 155
pfPipeWindow::getWinList xxi, 156
pfPipeWindow::getWinType xx, 156
pfPipeWindow::getWSConnectionName xx, 155
pfPipeWindow::getWSDrawable xxi, 156

pfPipeWindow::getWSWindow xx, 156
pfPipeWindow::insertChan xxi, 156
pfPipeWindow::isOpen xxi, 156
pfPipeWindow::moveChan xxi, 156
pfPipeWindow::mQuery xxi, 156
pfPipeWindow::open xxi, 156
pfPipeWindow::pfPipeWindow 154
pfPipeWindow::query xxi, 156
pfPipeWindow::removeChan xxi, 156
pfPipeWindow::select xxi, 156
pfPipeWindow::setAspect xx, 154
pfPipeWindow::setConfigFunc xxi, 154
pfPipeWindow::setFBConfig xxi, 154
pfPipeWindow::setFBConfigAttrs xxi, 154
pfPipeWindow::setFBConfigData xxi, 154
pfPipeWindow::setFBConfigId xxi, 154
pfPipeWindow::setFullScreen xx, 154
pfPipeWindow::setGLCxt xxi, 154
pfPipeWindow::setIndex xxi, 154
pfPipeWindow::setMode xx, 154
pfPipeWindow::setName xx, 154
pfPipeWindow::setOrigin xx, 154
pfPipeWindow::setOriginSize xx, 154
pfPipeWindow::setOverlayWin xx, 154
pfPipeWindow::setScreen xx, 154
pfPipeWindow::setShare xx, 154
pfPipeWindow::setSize xx, 154
pfPipeWindow::setStatsWin xx, 154
pfPipeWindow::setWinList xxi, 154
pfPipeWindow::setWinType xx, 154
pfPipeWindow::setWSConnectionName xx, 154
pfPipeWindow::setWSDrawable xx, 154
pfPipeWindow::setWSWindow xx, 154
pfPipeWindow::swapBuffers xxi, 156
pfPlane 364
pfPlane::closestPtOn lviii, 364
pfPlane::contains lviii, 364
pfPlane::displace lviii, 364
pfPlane::isect lviii, 364
pfPlane::makeNormPt lviii, 364
pfPlane::makePts lviii, 364

633

pfPlane::operator new
pfPlane::orthoXform lviii, 364
pfPlane::pfPlane 364
pfPlaneIsectSeg 262
pfPolytope lix, 45, 262, 367
pfPolytope::contains lx, 367
pfPolytope::getClassType lix, 367
pfPolytope::getFacet lix, 367
pfPolytope::getNumFacets lix, 367
pfPolytope::orthoXform lx, 367
pfPolytope::pfPolytope 367
pfPolytope::removeFacet lix, 367
pfPolytope::setFacet lix, 367
pfPopMatrix xxxv, 263
pfPopState xlv, 393
pfPrint 411
pfPushIdentMatrix xxxiv, 263
pfPushMatrix xxxiv, 263
pfPushState xlv, 393
pfQuat 370
pfQuat::almostEqual 370
pfQuat::conj lvii, 370
pfQuat::div lvii, 370
pfQuat::equal 370
pfQuat::exp lvii, 370
pfQuat::getRot lvi, 370
pfQuat::invert lvii, 370
pfQuat::length lvii, 370
pfQuat::log lvii, 370
pfQuat::makeRot lvii, 370
pfQuat::meanTangent lvii, 370
pfQuat::mult lvii, 370
pfQuat::operator *
pfQuat::pfQuat 370
pfQuat::slerp lvii, 370
pfQuat::squad lvii, 370
pfQueryFeature xxxvi, 201, 240
pfQuerySys xxxvii, 201, 374
pfRef 521, 573
pfRotate xxxiv, 263
pfScale xxxiv, 263

pfScene xxvi, 6, 45, 62, 140, 144, 172, 182, 554, 605
pfScene::getClassType xxvi, 172
pfScene::getGState xxvi, 172
pfScene::getGStateIndex xxvi, 172
pfScene::pfScene 172
pfScene::setGState xxvi, 172
pfScene::setGStateIndex xxvi, 172
pfSceneGState 490
pfSCS xxvi, 62, 124, 140, 169
pfSCS::getClassType xxvi, 169
pfSCS::getMat xxvi, 169
pfSCS::getMatPtr xxvi, 169
pfSCS::pfSCS 169
pfSeg 140, 204, 221, 300, 366, 377, 387
pfSeg::clip lvii, 377
pfSeg::closestPtsOn lviii, 377
pfSeg::makePolar lvii, 377
pfSeg::makePts lvii, 377
pfSeg::pfSeg 377
pfSelectWSConnection xxxvi, 462, 479
pfSemaArenaBase xxxiii, 382
pfSemaArenaSize xxxiii, 382
pfSequence xxviii, 176, 605
pfSequence::getClassType xxviii, 176
pfSequence::getDuration xxviii, 176
pfSequence::getFrame xxix, 176
pfSequence::getInterval xxix, 176
pfSequence::getMode xxix, 176
pfSequence::getTime xxix, 176
pfSequence::pfSequence 176
pfSequence::setDuration xxviii, 176
pfSequence::setInterval xxviii, 176
pfSequence::setMode xxix, 176
pfSequence::setTime xxix, 176
pfShadeModel xxxiv, 282, 379, 399
pfSharedArenaBase xxxiv, 382
pfSharedArenaSize xxxiv, 382
pfSharedMem 382
pfSinCos liii, 331, 344, 384
pfSphere 204, 221, 262, 366, 369, 385
pfSphere::around lviii, 385

634

Index

pfSphere::contains lviii, 385
pfSphere::extendBy lviii, 385
pfSphere::isect lviii, 385
pfSphere::makeEmpty lviii, 385
pfSphere::operator new
pfSphere::orthoXform lviii, 385
pfSphere::pfSphere 385
pfSprite xlv, 388, 461
pfSprite::begin xlv, 388
pfSprite::end xlv, 388
pfSprite::getAxis xlv, 388
pfSprite::getClassType xlv, 388
pfSprite::getMode xlv, 388
pfSprite::pfSprite 388
pfSprite::position xlv, 388
pfSprite::setAxis xlv, 388
pfSprite::setMode xlv, 388
pfSqrt liii, 344, 384
pfStageConfigFunc xvii, 46
pfStartVClock xxxv, 446
pfState xlv, 198, 201, 209, 212, 230, 235, 238, 262, 282,
292, 298, 312, 320, 324, 337, 363, 381, 391, 393, 420,
438, 443, 479
pfState::attach xlv, 393
pfState::getClassType xlv, 393
pfState::load xlv, 393
pfState::pfState 393
pfState::select xlv, 393
pfStats liii, 45, 83, 400, 438, 479
pfStats::accumulate liii, 400
pfStats::average liii, 400
pfStats::clear liii, 400
pfStats::close liii, 400
pfStats::copy liii, 400
pfStats::count liii, 400
pfStats::disableHw liii, 400
pfStats::enableHw liii, 400
pfStats::getAttr liii, 400
pfStats::getClass liii, 400
pfStats::getClassMode liii, 400
pfStats::getClassType liii, 400

pfStats::getHwAttr liii, 400
pfStats::getHwEnable liii, 400
pfStats::getOpen liii, 400
pfStats::mQuery liii, 400
pfStats::open liii, 400
pfStats::pfStats 400
pfStats::query liii, 400
pfStats::reset liii, 400
pfStats::setAttr liii, 400
pfStats::setClass liii, 400
pfStats::setClassMode liii, 400
pfStats::setHwAttr liii, 400
pfStopVClock xxxv, 446
pfStrdup 346
pfString xlvi, 186, 256, 412, 514
pfString::draw xlvi, 412
pfString::flatten xlvi, 412
pfString::getBBox xlvi, 412
pfString::getCharGSet xlvi, 412
pfString::getCharPos xlvi, 412
pfString::getClassType xlvi, 412
pfString::getColor xlvi, 412
pfString::getFont xlvi, 412
pfString::getGState xlvi, 412
pfString::getIsectMask xlvi, 412
pfString::getMat xlvi, 412
pfString::getMode xlvi, 412
pfString::getSpacingScale xlvi, 412
pfString::getString xlvi, 412
pfString::getStringLength xlvi, 412
pfString::isect xlvi, 413
pfString::pfString 412
pfString::setBBox xlvi, 412
pfString::setColor xlvi, 412
pfString::setFont xlvi, 412
pfString::setGState xlvi, 412
pfString::setIsectMask xlvi, 412
pfString::setMat xlvi, 412
pfString::setMode xlvi, 412
pfString::setSpacingScale xlvi, 412
pfString::setString xlvi, 412

635

pfSwitch xxviii, 180
pfSwitch::getClassType xxviii, 180
pfSwitch::getVal xxviii, 180
pfSwitch::pfSwitch 180
pfSwitch::setVal xxviii, 180
pfSync xviii, 69, 140
pfTan liii, 384
pfTexEnv xlviii, 399, 417, 438
pfTexEnv::apply xlviii, 417
pfTexEnv::getBlendColor xlviii, 417
pfTexEnv::getClassType xlviii, 417
pfTexEnv::getComponent xlviii, 417
pfTexEnv::getMode xlviii, 417
pfTexEnv::pfTexEnv 417
pfTexEnv::setBlendColor xlviii, 417
pfTexEnv::setComponent xlviii, 417
pfTexEnv::setMode xlviii, 417
pfTexGen xlviii, 292, 312, 399, 421
pfTexGen::apply xlviii, 421
pfTexGen::getClassType xlviii, 421
pfTexGen::getMode xlviii, 421
pfTexGen::getPlane xlviii, 421
pfTexGen::pfTexGen 421
pfTexGen::setMode xlviii, 421
pfTexGen::setPlane xlviii, 421
pfTexMat xlv, 460
pfText xxxi, 183, 256, 415, 514
pfText::addString xxxi, 183
pfText::getClassType xxxi, 183
pfText::getNumStrings xxxi, 183
pfText::getString xxxi, 183
pfText::insertString xxxi, 183
pfText::pfText 183
pfText::removeString xxxi, 183
pfText::replaceString xxxi, 183
pfTexture xlvi, 292, 312, 399, 420, 425, 605
pfTexture::apply xlvii, 426
pfTexture::format xlvii, 426
pfTexture::freeImage xlvii, 426
pfTexture::getBorderColor xlvii, 425
pfTexture::getBorderType xlvii, 425

pfTexture::getClassType xlvi, 425
pfTexture::getDetail xlvii, 425
pfTexture::getDetailTex xlvii, 425
pfTexture::getDetailTexTile xlvii, 425
pfTexture::getFilter xlvii, 425
pfTexture::getFormat xlvii, 425
pfTexture::getFrame xlvii, 426
pfTexture::getImage xlvi, 425
pfTexture::getLevel xlvii, 426
pfTexture::getList xlvii, 425
pfTexture::getLoadImage xlvi, 426
pfTexture::getLoadMode xlvii, 426
pfTexture::getLoadOrigin xlvii, 426
pfTexture::getLoadSize xlvii, 426
pfTexture::getName xlvi, 425
pfTexture::getRepeat xlvii, 425
pfTexture::getSpline xlvii, 425
pfTexture::idle xlvii, 426
pfTexture::isFormatted xlviii, 426
pfTexture::isLoaded xlviii, 426
pfTexture::load xlvii, 426
pfTexture::loadFile xlvii, 426
pfTexture::loadLevel xlvii, 426
pfTexture::pfTexture 425
pfTexture::setBorderColor xlvii, 425
pfTexture::setBorderType xlvii, 425
pfTexture::setDetail xlvii, 425
pfTexture::setDetailTexTile xlvii, 425
pfTexture::setFilter xlvii, 425
pfTexture::setFormat xlvii, 425
pfTexture::setFrame xlvii, 426
pfTexture::setImage xlvi, 425
pfTexture::setLevel xlvii, 426
pfTexture::setList xlvii, 425
pfTexture::setLoadImage xlvi, 426
pfTexture::setLoadMode xlvii, 426
pfTexture::setLoadOrigin xlvii, 426
pfTexture::setLoadSize xlvii, 426
pfTexture::setName xlvi, 425
pfTexture::setRepeat xlvii, 425
pfTexture::setSpline xlvii, 425

636

Index

pfTexture::subload xlvii, 426
pfTexture::subloadLevel xlvii, 426
pfTime 439
pfTmpDir xxxiv, 382
pfTranslate xxxiv, 263
pfTransparency xxxiv, 6, 45, 87, 292, 337, 363, 399, 441
pfTraverser 62, 140, 171, 187, 610
pfTraverser::getChan xxxii, 187
pfTraverser::getIndex xxxii, 187
pfTraverser::getMat xxxii, 187
pfTraverser::getNode xxxii, 187
pfTraverser::getPath xxxii, 187
pfTriIsectSeg lx, 377
pfType xxxvii, 444
pfType::getName 444
pfType::getParent xxxvii, 444
pfType::isDerivedFrom xxxvii, 444
pfType::pfType 444
pfType::setMaxTypes xxxvii, 444
pfuActiveTimer lxxviii, 606
pfuAddArc lxxvii, 590
pfuAddDelay lxxvii, 590
pfuAddFile lxxvii, 590
pfuAddFillet lxxvii, 590
pfuAddPath lxxvii, 590
pfuAddProjectorScreen 602
pfuAddSpeed lxxvii, 590
pfuAppendEventQ lxxiii, 559
pfuAppendEventQStream lxxiii, 559
pfuBoxLOD lxxviii, 553
pfuCalcDepth lxxvii, 608
pfuCalcHashSize lxxviii, 572
pfuCalcNormalizedChanXY lxxx, 596
pfuCharPos lxxv, 611
pfuChooseFBConfig lxxiii, 479, 562
pfuClosePath lxxvii, 590
pfuCollectGLEventStream lxxiv, 574
pfuCollectInput lxxiv, 574
pfuCollectXEventStream lxxiv, 574
pfuCollide 555
pfuCollideGrnd lxxviii, 555

pfuCollideGrndObj lxxviii, 555
pfuCollideObj lxxviii, 555
pfuCollideSetup lxxviii, 555
pfuCollisionChan lxxviii, 555
pfuConfigMCO lxxvii, 586
pfuCopyPath lxxvii, 590
pfuCreateDftCursor lxxiv, 557
pfuCursor lxxiv, 557, 571
pfuDelHTable lxxviii, 572
pfuDisablePanel lxxv, 566
pfuDisableWidget lxxv, 566
pfuDownloadTexList lxxix, 602
pfuDPoolSize lxxii, 578
pfuDrawMessage lxxvi, 567
pfuDrawMessageCI lxxvi, 567
pfuDrawMessageRGB lxxvi, 567
pfuDrawSmokes lxxx, 597
pfuDrawString lxxv, 611
pfuDrawStringPos lxxv, 611
pfuDrawTree lxxvi, 567
pfuEnableGUI lxxv, 565
pfuEnablePanel lxxv, 566
pfuEnableWidget lxxv, 566
pfuEnterHash lxxviii, 572
pfuEvalTimer lxxviii, 606
pfuEvalTimers lxxviii, 606
pfuEventQFrame lxxiii, 559
pfuEventQStream lxxiii, 559
pfuEventQueue 559, 573, 577
pfuEventStreamFrame lxxiii, 559
pfuExitGUI lxxv, 565
pfuExitInput lxxiv, 574
pfuExitUtil lxxii, 578
pfuFindHash lxxviii, 572
pfuFindUtilDPData lxxii, 578
pfuFitWidgets lxxv, 565
pfuFlybox 561
pfuFollowPath lxxvii, 590
pfuFreeCPUs lxxii, 583
pfuGetCollisionChan lxxviii, 555
pfuGetCursor lxxiv, 557

637

pfuGetCurXFont lxxv, 611
pfuGetDPoolSize lxxii, 578
pfuGetEventQEvents lxxiii, 559
pfuGetEventQFrame lxxiii, 559
pfuGetEventQStream lxxiii, 559
pfuGetEvents lxxiv, 574
pfuGetEventStreamFrame lxxiii, 559
pfuGetFlybox lxxix, 561
pfuGetFlyboxActive lxxix, 561
pfuGetGLXDisplayString lxxiii, 562
pfuGetGLXWin lxxiii, 562
pfuGetGUICursor lxxiv, 565
pfuGetGUICursorSel lxxiv, 565
pfuGetGUIHlight lxxv, 565
pfuGetGUIScale lxxv, 566
pfuGetGUITranslation lxxv, 566
pfuGetGUIViewport lxxv, 565
pfuGetInvisibleCursor lxxiv, 557
pfuGetMCOChannels lxxvii, 586
pfuGetMouse lxxiv, 571, 574
pfuGetPanelOriginSize lxxv, 566
pfuGetProjectorHandle 602
pfuGetProjectorScreenList 602
pfuGetSharedTexList lxxix, 602
pfuGetSmokeDensity lxxx, 597
pfuGetSmokeVelocity lxxx, 597
pfuGetTexSize lxxix, 602
pfuGetUtilDPool lxxii, 578
pfuGetWidgetActionFunc lxxvi, 566
pfuGetWidgetDim lxxv, 566
pfuGetWidgetDrawFunc lxxvi, 566
pfuGetWidgetId lxxv, 566
pfuGetWidgetLabel lxxv, 566
pfuGetWidgetLabelWidth lxxv, 566
pfuGetWidgetSelectFunc lxxvi, 566
pfuGetWidgetSelection lxxvi, 567
pfuGetWidgetType lxxv, 566
pfuGetWidgetValue lxxvi, 566
pfuGetXFontHeight lxxv, 611
pfuGetXFontWidth lxxv, 611
pfuGLMapcolors lxxiii, 562

pfuGLXAllocColormap lxxiii, 562
pfuGLXMapcolors lxxiii, 562
pfuGLXWinopen lxxiii, 562, 577
pfuGUI 558, 560, 565, 573, 577
pfuGUICursor lxxiv, 565
pfuGUICursorSel lxxiv, 565
pfuGUIHlight lxxv, 565
pfuGUIViewport lxxv, 565
pfuHash 572
pfuHashGSetVerts lxxviii, 521, 572
pfuIncEventQFrame lxxiii, 559
pfuIncEventStreamFrame lxxiii, 559
pfuInGUI lxxv, 565
pfuInitFlybox lxxix, 561
pfuInitGUI lxxv, 565
pfuInitGUICursors lxxiv, 565
pfuInitInput lxxiii, 560, 571, 574
pfuInitRendezvous lxxiii, 594
pfuInitSmokes lxxx, 597
pfuInitTimer lxxviii, 606
pfuInitTraverser lxxvi, 608
pfuInitUtil lxxii, 564, 571, 577, 578
pfuInputHandler lxxiv, 574
pfuIsWidgetOn lxxvi, 567
pfuLoadPWinCursor lxxiv, 557
pfuLoadTexListFiles lxxix, 602
pfuLoadTexListFmt lxxix, 602
pfuLoadWinCursor lxxiv, 557
pfuLoadXFont lxxiv, 611
pfuLockCPU 45, 583
pfuLockDownApp lxxii, 583
pfuLockDownCull lxxii, 583
pfuLockDownDraw lxxii, 583
pfuLockDownProc lxxii, 583
pfuLPointState 579
pfuMakeBoxGSet lxxviii, 553
pfuMakeLPStateRangeTex lxxx, 312, 579
pfuMakeLPStateShapeTex lxxx, 312, 579
pfuMakeRasterXFont lxxiv, 611
pfuMakeSceneTexList lxxix, 602
pfuMakeTexList lxxix, 602

638

Index

pfuMakeXFontBitmaps lxxiv, 611
pfuManageMPipeStats lxxvii, 587
pfuMapMouseToChan lxxiv, 574
pfuMapPWinColors lxxiii, 562
pfuMapWinColors lxxiii, 562
pfuMapXTime lxxiv
pfuMasterRendezvous lxxiii, 594
pfuMCO 586
pfuMeshGSet 573
pfuMouseInChan lxxiv, 574
pfuMPipeStats 587
pfuNewEventQ lxxiii, 559
pfuNewHTable lxxviii, 572
pfuNewPanel lxxv, 566
pfuNewPath lxxvii, 590
pfuNewProjector lxxix, 602
pfuNewSharedTex lxxix, 602
pfuNewSmoke lxxx, 597
pfuNewTexList lxxix, 602
pfuNewTimer lxxviii, 606
pfuNewWidget lxxv, 566
pfuOpenFlybox lxxix, 561
pfuOpenXDisplay lxxiii, 562
pfuPath 590
pfUpdatable 88
pfUpdatable::pf_getpfId 88
pfuPostDrawStyle lxxx, 599
pfuPreDrawStyle lxxx, 599
pfuPrintPath lxxvii, 590
pfuPrintPWinFBConfig lxxiii, 562
pfuPrintWinFBConfig lxxiii, 562
pfuPrioritizeProcs lxxii, 583
pfuProjectorHandle 602
pfuProjectorMovie 602
pfuProjectorPreDrawCB lxxix, 602
pfuRandom 593
pfuRandomColor lxxix, 593
pfuRandomFloat lxxix, 593
pfuRandomize lxxix, 593
pfuRandomLong lxxix, 593
pfuReadFlybox lxxix, 561

pfuRedrawGUI lxxv, 565
pfuRemoveHash lxxviii, 572
pfuRemoveProjectorScreen 602
pfuRendezvous 594
pfuReplaceProjectorScreen 602
pfuResetEventQ lxxiii, 559
pfuResetEventStream lxxiii, 559
pfuResetGUI lxxvi, 567
pfuResetHTable lxxviii, 572
pfuResetPanel lxxvi, 567
pfuResetWidget lxxvi, 567
pfuRunProcOn lxxii, 583
pfuSaveImage lxxx, 596
pfUserData 605
pfuSetXFont lxxv, 611
pfuSharePath lxxvii, 590
pfuSlaveRendezvous lxxiii, 594
pfuSmoke 597
pfuSmokeColor lxxx, 597
pfuSmokeDensity lxxx, 597
pfuSmokeDir lxxx, 597
pfuSmokeDuration lxxx, 597
pfuSmokeMode lxxx, 597
pfuSmokeOrigin lxxx, 597
pfuSmokeTex lxxx, 597
pfuSmokeType lxxx, 597
pfuSmokeVelocity lxxx, 597
pfuStartTimer lxxviii, 606
pfuStopTimer lxxviii, 606
pfuStyle 599
pfuTex 602
pfuTileChan lxxvii, 586
pfuTileChans lxxvii, 586
pfuTimer 606
pfuTravCachedCull lxxvii, 608
pfuTravCalcBBox lxxvi, 554, 608
pfuTravCountDB lxxvi, 608
pfuTravCountNumVerts lxxvi, 608
pfuTraverse lxxvi, 608
pfuTraverser 608
pfuTravGLProf lxxvi, 608

639

pfuTravNodeAttrBind lxxvi, 608
pfuTravNodeHlight lxxvii, 608
pfuTravPrintNodes lxxvii, 608
pfuUpdateGUI lxxv, 565
pfuUpdateGUICursor lxxiv, 565
pfuWidgetActionFunc lxxvi, 566
pfuWidgetDefaultOnOff lxxvi, 567
pfuWidgetDefaultSelection lxxvi, 567
pfuWidgetDefaultValue lxxvi, 566
pfuWidgetDim lxxv, 566
pfuWidgetDrawFunc lxxvi, 566
pfuWidgetLabel lxxv, 566
pfuWidgetOnOff lxxvi, 567
pfuWidgetRange lxxvi, 566
pfuWidgetSelectFunc lxxvi, 566
pfuWidgetSelection lxxvi, 566
pfuWidgetSelections lxxvi, 566
pfuWidgetValue lxxvi, 566
pfuXFont 558, 571, 611
pfuXformer 613
pfVClock 93, 446
pfVClockOffset xxxvi, 446
pfVClockSync xxxvi, 446
pfVec2 448, 455, 459
pfVec2::add liv, 448
pfVec2::addScaled liv, 448
pfVec2::almostEqual liv, 448
pfVec2::combine liv, 448
pfVec2::copy liv, 448
pfVec2::distance liv, 448
pfVec2::dot liv, 448
pfVec2::equal liv, 448
pfVec2::length liv, 448
pfVec2::negate liv, 448
pfVec2::normalize liv, 448
pfVec2::operator -
pfVec2::pfVec2 448
pfVec2::scale liv, 448
pfVec2::set liv, 448
pfVec2::sqrDistance liv, 448
pfVec2::sub liv, 448

pfVec3 221, 262, 344, 366, 378, 384, 387, 451, 452, 459
pfVec3::add liv, 452
pfVec3::addScaled liv, 452
pfVec3::almostEqual liv, 452
pfVec3::combine liv, 452
pfVec3::copy liv, 452
pfVec3::cross liv, 452
pfVec3::distance liv, 452
pfVec3::dot liv, 452
pfVec3::equal liv, 452
pfVec3::fullXformPt liv, 452
pfVec3::length liv, 452
pfVec3::negate liv, 452
pfVec3::normalize liv, 452
pfVec3::operator +=
pfVec3::pfVec3 452
pfVec3::scale liv, 452
pfVec3::set liv, 452
pfVec3::sqrDistance liv, 452
pfVec3::sub liv, 452
pfVec3::xformPt liv, 452
pfVec3::xformVec liv, 452
pfVec4 344, 373, 451, 455, 456
pfVec4::add lv, 456
pfVec4::addScaled lv, 456
pfVec4::almostEqual lv, 456
pfVec4::combine lv, 456
pfVec4::copy lv, 456
pfVec4::distance lv, 456
pfVec4::dot lv, 456
pfVec4::equal lv, 456
pfVec4::length lv, 456
pfVec4::negate lv, 456
pfVec4::normalize lv, 456
pfVec4::operator +
pfVec4::pfVec4 456
pfVec4::scale lv, 456
pfVec4::set lv, 456
pfVec4::sqrDistance lv, 456
pfVec4::sub lv, 456
pfVec4::xform lv, 456

640

Index

pfVideoRate xviii, 69
pfViewMat xlv, 391, 460
pfWindow li, 167, 201, 376, 465, 466
pfWindow::attach lii, 467
pfWindow::chooseFBConfig lii, 467
pfWindow::close lii, 467
pfWindow::closeGL lii, 467
pfWindow::detach lii, 467
pfWindow::getAspect li, 466
pfWindow::getClassType li, 466
pfWindow::getCurOriginSize li, 467
pfWindow::getCurScreenOriginSize li, 467
pfWindow::getCurState li, 467
pfWindow::getCurWSDrawable lii
pfWindow::getFBConfig lii, 467
pfWindow::getFBConfigAttrs lii, 467
pfWindow::getFBConfigData lii, 467
pfWindow::getFBConfigId lii, 467
pfWindow::getGLCxt lii, 467
pfWindow::getIndex lii, 467
pfWindow::getMode li, 467
pfWindow::getName li, 467
pfWindow::getOrigin li, 467
pfWindow::getOverlayWin li, 467
pfWindow::getScreen lii, 467
pfWindow::getSelect lii, 467
pfWindow::getShare lii, 467
pfWindow::getSize li, 467
pfWindow::getStatsWin li, 467
pfWindow::getWinList lii, 467
pfWindow::getWinType li, 467
pfWindow::getWSConnectionName lii, 467
pfWindow::getWSDrawable lii, 467
pfWindow::getWSWindow lii, 467
pfWindow::isOpen lii, 467
pfWindow::mQuery lii, 468
pfWindow::open lii, 468
pfWindow::openNewNoPort lii, 468
pfWindow::pfWindow 466
pfWindow::query lii, 468
pfWindow::select lii, 468

pfWindow::setAspect li, 466
pfWindow::setFBConfig lii, 466
pfWindow::setFBConfigAttrs lii, 466
pfWindow::setFBConfigData lii, 466
pfWindow::setFBConfigId lii, 466
pfWindow::setFullScreen li, 466
pfWindow::setGLCxt lii, 466
pfWindow::setIndex lii, 466
pfWindow::setMode li, 466
pfWindow::setName li, 466
pfWindow::setOrigin li, 466
pfWindow::setOriginSize li, 466
pfWindow::setOverlayWin li, 466
pfWindow::setScreen li, 466
pfWindow::setShare lii, 466
pfWindow::setSize li, 466
pfWindow::setStatsWin li, 466
pfWindow::setWinList lii, 466
pfWindow::setWinType li, 466
pfWindow::setWSConnectionName lii, 466
pfWindow::setWSDrawable lii, 466
pfWindow::setWSWindow lii, 466
pfWindow::swapBuffers lii, 468
pfWrapClock xxxv, 439
pfWSConnection 462
pntsmooth 201
popmatrix 263
prExit xxxiii
prInit xxxiii
prInitGfx xxxvi
printf 605
pushmatrix 263

R

random 593
read 247
realloc 354
rot 263

641

S

scale 263
schedctl 585
setitimer 440
setmon 586
sprintf 605
sproc 55, 235
srandom 593
stencil 230
stensize 230
sysmp 585

T

tevbind 420, 438
tevdef 420, 438
texbind 420, 438, 605
texdef 420, 438, 605
texgen 424, 492
translate 263

U

usconfig 226
usinit 226, 383
usnewlock 383
usnewsema 383
ussetlock 226
ustestlock 226
usunsetlock 226

W

window 262
write 247

X

XCloseDisplay 465
XCreateWindow 479
xfd 558
XGetVisualInfo 167, 244, 376, 479
XGetWindowAttributes 479
XOpenDisplay 465
XVisualIDFromVisual 167, 479

Z

zclear 206
zfunction 68, 206
zwritemask 443

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2782-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

