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Chapter 1

1.N32 ABI Overview

Welcome to the N32 ABI Handbook. This book describes the N32 High Performance
32-bit Application Binary Interface (ABI) for the MIPS architecture.

Contents of This Guide

As you continue reading this guide, you’ll learn about N32. Topics include:

• Chapter 1 (this chapter), “N32 ABI Overview”

– “What is N32?,” which describes the N32 ABI and compares it with the other
MIPS ABIs.

– “Why We Need a New ABI,” which lists the reasons why we need a new ABI.

– “N32 Migration Requirements,” which describes what is required of both SGI
and its customers to use the N32 ABI.

• Chapter 2, “Calling Convention Implementations”

• Chapter 3, “N32 Compatibility, Porting, and Assembly Language Programming
Issues”

• Chapter 4, “N32 Examples and Case Studies”

This document uses the following terminology:

o32 The current 32-bit ABI generated by the ucode compiler, that is, 32-bit
compilers prior to IRIX 6.1 operating system.

n32 The new 32-bit ABI generated by the MIPSpro 64-bit compiler.

n64 The new 64-bit ABI generated by the MIPSpro 64-bit compiler.
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What is N32?

N32 is a minor variation on the high performance 64-bit ABI. All the performance of the
hardware is available to the program and existing 32-bit ABI programs are easily ported.
Table 1-1 compares the various ABIs.

* UX=1 implies 64-bit registers and also indicates that MIPS3 and MIPS4 instructions are
legal. N32 uses 64-bit registers but restricts addresses to 32 bits.

Why We Need a New ABI

The Application Binary Interface, or ABI, is the set of rules that all binaries must follow
in order to run on an SGI system. This includes, for example, object file format,
instruction set, data layout, subroutine calling convention, and system call numbers. The
ABI is one part of the mechanism that maintains binary compatibility across all SGI
platforms.

Table 1-1 ABI Comparison Summary

o32 n32 n64

Compiler Used ucode MIPSpro MIPSpro

Integer Model ILP32 ILP32 LP64

Calling
Convention

mips new new

Number of FP
Registers

16 (FR=0) 32 (FR=1) 32 (FR=1)

Number of
Argument
Registers

4 8 8

Debug Format mdbug dwarf dwarf

ISAs
Supported

mips1/2 mips3/4 mips3/4

32/64 Mode 32 (UX=0) 64 (UX=1) * 64 (UX=1)
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Until IRIX operating system version 6.1, Silicon Graphics supported two ABIs: a 32-bit
ABI and a 64-bit ABI. IRIX 6.1 supports a new ABI, n32.

The following sections outline limitations of the old 32-bit ABI the 64-bit ABI. These
issues form the motivation for the new N32 ABI. Specifically, topics covered include:

• “Limitations of the 32-bit ABI”

• “Limitations of the 64-bit ABI”

• “Motivation for the N32 ABI”

Limitations of the 32-bit ABI

The 32-bit ABI was designed essentially for the R3000. We can’t extend the 32-bit ABI to
use new performance-related features and instructions of the R4400 and beyond. For
example:

• We can’t use 16 of the 32 floating point registers.

• We can’t use any 64-bit arithmetic instructions.

• We can’t use any 64-bit data movement instructions.

• We can’t use any MIPS4/R8000 instructions.

Because of this, we lose the performance available from the chip. Floating point intensive
programs are especially hurt by these limitations; indeed some are 50%-100% slower!

Limitations of the 64-bit ABI

Although the 64-bit ABI exploits many performance-related features of the MIPS
architecture, it also has issues that make using it problematical. These issues include the
following:

• Porting code from the 32-bit ABI to the 64-bit ABI typically requires some recoding.

• When ported from the 32-bit ABI to the 64-bit ABI, some C programs get
significantly larger.
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Motivation for the N32 ABI

Many ISVs and customers are finding it difficult to port to the 64-bit ABI. Clearly we need
an ABI with all of the performance advantages of the 64-bit ABI, but with the same data
type sizes as the 32-bit ABI to allow ease of porting.

N32 Migration Requirements

In order to implement n32, Silicon Graphics provides the following to our customers:

• A compiler that supports n32. (The 6.1 version of MIPSpro compilers supports n32).

• A kernel that supports n32. (IRIX 6.1 supports n32).

• N32 versions of each library.

To take advantage of the N32 ABI, our customers must:

• Install n32 OS, compiler, and all n32 libraries.

• Rewrite Assembly code to conform to n32 guidelines.

• Prototype C functions that use varargs and floating point.

• Recompile all the code with the compiler that supports n32 (use –n32 on the
command line). Makefile changes are needed only if explicit library paths are used.
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Chapter 2

2.Calling Convention Implementations

This chapter describes the differences between o32, n32, and n64 ABIs with respect to
calling convention implementations. Specifically, this chapter describes:

• “N32 and Native 64-Bit (N64) Subprogram Interface for MIPS Architectures” covers
the 64-bit subprogram interface. This interface is also used in the n32 ABI.

• “Implementation Differences” identifies differences between the 32-bit, n32-bit, and
64-bit C implementations, and explains why it’s easier to port to n32 rather than to
64 bits.

• “ABI Attribute Summary” lists the important attributes for the o32 and n32/64-bit
ABI implementations.

N32 and Native 64-Bit (N64) Subprogram Interface for MIPS Architectures

This section describes the internal subprogram interface for n32-bit and native 64-bit
(n64) programs. This section assumes some familiarity with the current 32-bit interface
conventions as specified in the MIPS application binary interface (ABI). The transition to
n32-bit and 64-bit code requires subprogram interface changes due to the changes in
register and address size.

The principal interface for n32-bit and 64-bit code is similar to the 32-bit ABI standard,
with all 32-bit objects replaced by 64-bit objects. Note that square brackets [ ] indicate
differences in 32-bit, n32-bit and 64-bit ABI conventions.

In particular, this implies:

• All integer parameters are promoted (that is, sign- or zero-extended to 64-bit
integers and passed in a single register). Typically, no code is required for the
promotion.

• All pointers and addresses are 32-bit objects. [Under –64, pointers and addresses are
64bits.]
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• Floating point parameters are passed as single- or double-precision according to the
ANSI C rules. [This is the same under –64.]

• All stack parameter slots become 64-bit doublewords, even for parameters that are
smaller (for example, floats and 32-bit integers). [This is also true for –64.]

In more detail, the calling sequence has the following characteristics.

• All stack regions are quadword aligned. [The o32-bit ABI specifies only doubleword
alignment.]

• Up to eight integer registers ($4 .. $11) may be used to pass integer arguments. [The
o32-bit ABI uses only the four registers $4 .. $7.]

• Up to eight floating point registers ($f12 .. $f19) may be used to pass floating point
arguments. [The o32-bit ABI uses only the four registers $f12 .. $f15, with the odd
registers used only for halves of double-precision arguments.]

• The argument registers may be viewed as an image of the initial eight doublewords
of a structure containing all of the arguments, where each of the argument fields is a
multiple of 64 bits in size with doubleword alignment. The integer and floating
point registers are distinct images, that is, the first doubleword is passed in either $4
or $f1, depending on its type; the second in either $5 or $f1; and so on. [The o32-bit
ABI associates each floating point argument with an even/odd pair of integer or
floating point argument registers.]

• Within each of the 64-bit save area slots, smaller scalar parameters are
right-justified, that is, they are placed at the highest possible address (for big-endian
targets). This is relevant to integer parameters of 32 or fewer bits. Float parameters
are left-justified. Only int parameters arise in C except for prototyped cases—
smaller integers are promoted to int and floats are promoted to doubles . [This is
true for the o32-bit ABI, but is relevant only to prototyped small integers since all
the other types were at least register-sized.]

• 32-bit integer (int) parameters are always sign-extended when passed in registers,
whether of signed or unsigned type. [This issue does not arise in the o32-bit ABI.]

• Quad-precision floating point parameters (C long double or Fortran REAL*16) are
always 16-byte aligned. This requires that they be passed in even-odd floating point
register pairs, even if doing so requires skipping a register parameter and/or a
64-bit save area slot. [The o32-bit ABI does not consider long double parameters,
since they were not supported.]

• Structs, unions, or other composite types are treated as a sequence of doublewords,
and are passed in integer or floating point registers as though they were simple



N32 and Native 64-Bit (N64) Subprogram Interface for MIPS Architectures

7

scalar parameters to the extent that they fit, with any excess on the stack packed
according to the normal memory layout of the object. More specifically:

– Regardless of the struct field structure, it is treated as a sequence of 64-bit
chunks. If a chunk consists solely of a double float field (but not a double,
which is part of a union), it is passed in a floating point register. Any other
chunk is passed in an integer register.

–  A union, either as the parameter itself or as a struct parameter field, is treated
as a sequence of integer doublewords for purposes of assignment to integer
parameter registers. No attempt is made to identify floating point components
for passing in floating point registers.

– Array fields of structs are passed like unions. Array parameters are passed by
reference (unless the relevant language standard requires otherwise).

– Right-justifying small scalar parameters in their save area slots
notwithstanding, struct parameters are always left-justified. This applies both
to the case of a struct smaller than 64 bits, and to the final chunk of a struct
which is not an integral multiple of 64 bits in size. The implication of this rule is
that the address of the first chunk’s save area slot is the address of the struct,
and the struct is laid out in the save area memory exactly as if it were allocated
normally (once any part in registers has been stored to the save area). [These
rules are analogous to the o32-bit ABI treatment – only the chunk size and the
ability to pass double fields in floating point registers are different.]

• Whenever possible, floating point arguments are passed in floating point registers
regardless of whether they are preceded by integer parameters. [The o32-bit ABI
allows only leading floating point (FP) arguments to be passed in FP registers; those
coming after integer registers must be moved to integer registers.]

• Variable argument routines require an exception to the previous rule. Any floating
point parameters in the variable part of the argument list (leading or otherwise) are
passed in integer registers. Several important cases are involved:

– If a varargs prototype (or the actual definition of the callee) is available to the
caller, it places floating point parameters directly in the integer register
required, and no problems occur.

– If no prototype is available to the caller for a direct call, the caller’s parameter
profile is provided in the object file (as are all global subprogram formal
parameter profiles), and the linker (ld/rld) generates an error message if the
linked entry point turns out to be a varargs routine.
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Note: If you add –TENV:varargs_prototypes=off to the compilation command
line, the floating point parameters appear in both floating point registers and
integer registers. This decreases the performance of not only varargs routines
with floating point parameters, but also of any unprototyped routines that pass
floating point parameters. The program compiles and executes correctly;
however, a warning message about unprototyped varargs routines still is
present.

– If no prototype is available to the caller for an indirect call (that is, via a function
pointer), the caller assumes that the callee is not a varargs routine and places
floating point parameters in floating point registers (if the callee is varargs, it is
not ANSI-conformant).

• The portion of the argument structure beyond the initial eight doublewords is
passed in memory on the stack and pointed to by the stack pointer at the time of
call. The caller does not reserve space for the register arguments; the callee is
responsible for reserving it if required (either adjacent to any caller-saved stack
arguments if required, or elsewhere as appropriate.) No requirement is placed on
the callee either to allocate space and save the register parameters, or to save them
in any particular place. [The o32-bit ABI requires the caller to reserve space for the
register arguments as well.]

• Function results are returned in $2 (and $3 if needed), or $f0 (and $f2 if needed), as
appropriate for the type. Composite results (struct, union, or array) are returned in
$2/$f0 and $3/$f2 according to the following rules:

– A struct with only one or two floating point fields is returned in $f0 (and $f2 if
necessary). This is a generalization of the Fortran COMPLEX case.

– Any other struct or union results of at most 128 bits are returned in $2 (first 64
bits) and $3 (remainder, if necessary).

– Larger composite results are handled by converting the function to a procedure
with an implicit first parameter, which is a pointer to an area reserved by the
caller to receive the result. [The o32-bit ABI requires that all composite results
be handled by conversion to implicit first parameters. The MIPS/SGI Fortran
implementation has always made a specific exception to return COMPLEX
results in the floating point registers.]

• There are eight callee-saved floating point registers, $f24..$f31 for the 64-bit
interface. There are six for the n32 ABI, the six even registers in $f20..$f30. [The
o32-bit ABI specifies the six even registers, or even/odd pairs, $f20..$f31.]

• Routines are not be restricted to a single exit block. [The o32-bit ABI makes this
restriction, though it is not observed under all optimization options.]
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There is no restriction on which register must be used to hold the return address in exit
blocks. The .mdebug format was unable to cope with return addresses in different places,
but the DWARF format can. [The o32-bit ABI specifies $3, but the implementation
supports .mask as an alternative.]

PIC (position-independent code, for DSO support) is generated from the compiler
directly, rather than converting it later with a separate tool. This allows better compiler
control for instruction scheduling and other optimizations, and provides greater
robustness.

In the 64-bit interface, gp becomes a callee-saved register. [The o32-bit ABI makes gp a
caller-saved register.]

Table 2-1 specifies the use of registers in n32 and native 64-bit mode. Note that
“Caller-saved” means only that the caller may not assume that the value in the register
is preserved across the call.

Table 2-1 N32 and Native 64-Bit Interface Register Conventions

Register Name Software Name Use Saver

$0 zero Hardware zero

$1 or $at at Assembler
temporary

Caller-saved

$2..$3 v0..v1 Function results Caller-saved

$4..$11 a0..a7 Subprogram
arguments

Caller-saved

$12..$15 t4..t7 Temporaries Caller-saved

$16..$23 s0..s7 Saved Callee-saved

$24 t8 Temporary Caller-saved

$25 t9 Temporary Caller-saved

$26..$27 kt0..kt1 Reserved for kernel

$28 or $gp gp Global pointer Callee-saved

$29 or $sp sp Stack pointer Callee-saved
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Table 2-2 shows several examples of parameter passing. It illustrates that at most eight
values can be passed through registers. In the table note that:

• d1..d5 are double precision floating point arguments

• s1..s4 are single precision floating point arguments

$30 s8 Frame pointer (if
needed)

Callee-saved

$31 ra Return address Caller-saved

hi, lo Multiply/divide
special registers

Caller-saved

$f0, $f2 Floating point
function results

Caller-saved

$f1, $f3 Floating point
temporaries

Caller-saved

$f4..$f11 Floating point
temporaries

Caller-saved

$f12..$f19 Floating point
arguments

Caller-saved

$f20..$f23
(32-bit)

Floating point
temporaries

Caller-saved

$f24..$f31
(64-bit)

Floating point Callee-saved

$f20..$f31 even
(n32)

Floating point
temporaries

Callee-saved

$f20..$f31 odd
(n32)

Floating point Caller-saved

Table 2-1 (continued) N32 and Native 64-Bit Interface Register Conventions

Register Name Software Name Use Saver
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• n1..n3 are integer arguments

Table 2-2 N32 and Native 64-Bit C Parameter Passing

Argument List Register and Stack Assignments

d1,d2 $f12, $f13

s1,s2 $f12, $f13

s1,d1 $f12, $f13

d1,s1 $f12, $f13

n1,d1 $4,$f13

d1,n1,d1 $f12, $5,$f14

n1,n2,d1 $4, $5,$f14

d1,n1,n2 $f12, $5,$6

s1,n1,n2 $f12, $5,$6

d1,s1,s2 $f12, $f13, $f14

s1,s2,d1 $f12, $f13, $f14

n1,n2,n3,n4 $4,$5,$6,$7

n1,n2,n3,d1 $4,$5,$6,$f15

n1,n2,n3,s1 $4,$5,$6, $f15

s1,s2,s3,s4 $f12, $f13,$f14,$f15

s1,n1,s2,n2 $f12, $5,$f14,$7

n1,s1,n2,s2 $4,$f13,$6,$f15

n1,s1,n2,n3 $4,$f13,$6,$7

d1,d2,d3,d4,d5 $f12, $f13, $f14, $f15, $f16

d1,d2,d3,d4,d5,s1,s2,s3,s4 $f12, $f13, $f14, $f15, $f16, $f17, $f18,$f19,stack

d1,d2,d3,s1,s2,s3,n1,n2,n3 $f12, $f13, $f14, $f15, $f16, $f17, $10,$11, stack
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Implementation Differences

This section lists differences between the 32-bit, n32-bit, and the 64-bit C
implementations. Because all of the implementations adhere to the ANSI standard, and
because C is a rigorously defined language designed to be portable, only a few
differences exist between the 32-bit, n32, and 64-bit compiler implementations.
Differences can occur in data types (by definition) and in areas where ANSI does not
define the precise behavior of the language. In this area the n32 ABI is like the current
32-bit ABI. Thus, it is easier to port to the n32 ABI than to the 64-bit ABI.

Table 2-3 summarizes the differences in data types under the 32-bit and 64-bit data type
models.

As you can see in Table 2-3, long ints, pointers, and long doubles are different under the
two models.

a. On ucode 32-bit compiles the long double data type generates a warning message indicating
that the long qualifier is not supported. It is supported under n32.

Table 2-3 Differences in Data Type Sizes

C type 32-bit and N32 64-bit

char  8   8

short int 16 16

int 32 32

long int 32 64

long long int 64 64

pointer 32 64

float 32 32

double 64 64

long doublea 64 (128 in n32) 128
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ABI Attribute Summary

Table 2-4 summarizes the important attributes for the o32 and n32/64-bit ABI
implementations.

Table 2-4 ABI Attribute Summary

Attribute o32 N32/64-bit

Width of integer
parameters in registers

32 bits 64 bits

Stack parameter slot size 32 bits 64 bits

Types requiring multiple
registers or stack slots

(long) double, long long long double

Stack region alignment 16 byte 16 byte

Integer parameter
registers

$4..$7 $4..$11

Floating point parameter
registers (single/double
precision)

$f12, $f14 $f12 .. $f19

Floating point parameters
in Floating point registers

(not varags)

first two only, not after
integer parameters

any of first eight

Floating point parameters
in Floating point registers

(varags)

first two only, not after
integer parameters

prototyped parameters
only

Integer parameter register
depends on earlier
floating point parameter

Yes No

Justification of parameters
smaller than slot

integer: left

float: N/A

integer: left

float: Undecided

Placement of long double
parameters

register: $f12/$f14

memory: aligned

register: even/odd

memory: aligned
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Sizes of structure
components that are
passed by registers

32 bits 64 bits

Are structure fields of type
double in floating point
registers?

Never If not unioned

Justification of structs in
partial registers

left left

Who saves area for
parameter registers

caller callee, only if needed

Structure results limited to
one or two FP fields in
registers

FORTRAN COMPLEX
only

Always

All types of structure
results in registers

never up to 128 bits

Structure results via first
parameter result in $2

yes no

Callee-saved FP registers $f20..$f31 pairs $f24..$f31 all (64-bit)

$f20..$f31 even (n32)

Single exit block? yes, sometimes ignored no (option)

Return address register ABI: $31

.mask support

any

GP register caller-saved callee saved

Use of odd FP registers double halves arbitrary

Use of 64-bit int registers never (MIPS 1) arbitrary

Table 2-4 (continued) ABI Attribute Summary

Attribute o32 N32/64-bit
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3.N32 Compatibility, Porting, and Assembly Language
Programming Issues

This chapter explains the levels of compatibility between o32, n32, and 64-bit programs.
It also describes the porting procedure to follow and the changes to make when porting
your application from o32 to n32.

Specifically, this chapter discusses the following topics:

• “Compatibility,” which describes compatibility between o32, n32, and 64-bit
programs.

• “N32 Porting Guidelines,” which explains guidelines for porting high-level
languages.

• “Assembly Language Programming Guidelines,” which provides guidelines for
writing portable assembly language code.

Compatibility

In order to execute different ABIs, support must exist at three levels:

• The operating system must support the ABI

• The libraries must support the ABI

• The application must be recompiled with a compiler that supports the ABI

Figure 3-1 shows how applications rely on library support to use the operating system
resources that they need.

Note: Each o32, n32, and n64 application must be linked against unique libraries that
conform to its respective ABI. As a result, you CANNOT mix and match objects files or
libraries from any of the different ABIs.
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Figure 3-1 Application Support Under Different ABIs

Figure 3-2 illustrates the locations of the different libraries.

Figure 3-2 Library Locations for the Different ABIs

Applications

Libraries

Operating
System

64−bit

n32 o32

n32

64−bit

o32

/usr

lib (o32) lib32 (n32) lib64 (64−bit)
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An operating system that supports all three ABIs is also needed for running the
application. Consequently, all applications that want to use the features of n32 must be
ported. The next section covers the steps in porting an application to the n32 ABI.

N32 Porting Guidelines

This section describes the guidelines/steps necessary to port IRIX 5.x 32-bit applications
to n32. Typically, any porting project can be divided into the following tasks:

• Identifying and creating the necessary porting environment (see “Porting
Environment”)

• Identifying and making the necessary source code changes (see “Source Code
Changes”)

• Rebuilding the application for the target machine (see “Build Procedure”)

• Analyzing and debugging runtime issues (see “Runtime Issues”)

Each of these tasks is described below.

Porting Environment

The porting environment consists of a compiler and associated tools, include files,
libraries, and makefiles, all of which are necessary to compile and build your application.
Version 6.1 of the MIPSpro compiler supports the generation of n32 code. To generate this
code, you must:

• Check all libraries needed by your application to make sure they are recompiled
n32. The default root location for n32 libraries is /usr/lib32. If the n32 library needed
by your application does not exist, recompile the library for n32.

• Modify existing makefiles (or set environment variables) to reflect the locations of
these n32 libraries, if they use -L to specify library locations.

Source Code Changes

Since no differences occur in the sizes of fundamental types between o32 and n32,
porting to n32 requires very few source code changes for applications written in
high-level languages such as C, C++, and Fortran.
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However, applications that make assumptions about the sizes of types defined in types.h
may run into difficulties. For example, off_t is a 64-bit integer under n32, whereas it is
a 32-bit integer under o32. Likewise, ino_t, blkcnt_t, fsblkcnt_t, and fsfilcnt_t

also differ in size whether compiled –n32 or –32. Make sure that variables of these types
do not get assigned (or cast) to integers, because truncation may occur. Programs that
print these values out must also use %lld or %llx.

The only exception to this is that C functions that accept variable numbers of floating
point arguments must be prototyped.

Assembly language code, however, must be modified to reflect the new subprogram
interface. Guidelines for following this interface are described in “Assembly Language
Programming Guidelines.”

Build Procedure

Recompiling for n32 involves either setting the –n32 argument in the compiler invocation
or running the compiler with the environment variable SGI_ABI set to –n32. That’s all
you must do after you set up a native n32 compilation environment (that is, all necessary
libraries and include files reside on the host system).

Runtime Issues

Applications that are ported to n32 may get different results than their o32 counterparts.
Reasons for this include:

• Differences in algorithms used by n32 libraries and o32 libraries

• Operand reassociation or reduction performed by the optimizer for n32.

• Hardware differences of the R8000 (madd instructions round slightly differently
than a multiply instruction followed by an add instruction).

For more information refer to Chapter 5 of the MIPSpro 64-bit Porting and Transition Guide.
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Assembly Language Programming Guidelines

This section describes techniques for writing assembler code that can be compiled and
run as either an o32 or n32 executable. These techniques are based on using certain
predefined variables of the compiler, and on macros defined in <sys/asm.h> and
<sys/regdef.h>, which rely on those compiler predefines. Together, they enable a fairly
easy conversion of existing assembly code to run under the n32 ABI. They also allow
retargeted assembler code to look fairly uniform in the way it is converted.

Predefined Variables

The predefined variables are set by the compiler or assembler when they are invoked.
These variables will have different values depending on which switches are used on the
command line. These variables can then be used by conditional compilation directives
such as #ifdef to determine which code gets compiled or assembled for a particular ABI.
You can see the values of these predefined variables by adding the –show switch to a
compilation command. The variable that can help distinguish between on32 and n32
compilations are the following:

 For MipsI o32 executables:
 -D_MIPS_FPSET=16
 -D_MIPS_ISA=_MIPS_ISA_MIPS1
 -D_MIPS_SIM=_MIPS_SIM_ABI32

 For MipsIV N32 executables:
 -D_MIPS_FPSET=32
 -D_MIPS_ISA=_MIPS_ISA_MIPS4
 -D_MIPS_SIM=_MIPS_SIM_ABIN32

The explanation of these predefines is as follows:

• MIPS_ISA is Mips Instruction Set Architecture. MIPS_ISA_MIPS1 and
MIPS_ISA_MIPS4 are the most common variants for assembler code.
MIPS_ISA_MIPS4 is the ISA for R5000, R8000, and R10000 applications.

• MIPS_SIM denotes the Mips Subprogram Interface Model.This describes the
subroutine linkage convention and register naming/usage convention. It indicates
o32 n32 or n64.
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• _MIPS_FPSET describes the number of floating point registers. The Mips IV
compilation model makes use of the extended floating point registers available on
the R4000 and beyond.

The following code fragment shows an example of the use of these macros:

#if (_MIPS_ISA == _MIPS_ISA_MIPS1 || _MIPS_ISA == _MIPS_ISA_MIPS2)

 #define SZREG           4

 #endif

 #if (_MIPS_ISA == _MIPS_ISA_MIPS3 || _MIPS_ISA == _MIPS_ISA_MIPS4)
 #define SZREG           8
 #endif

N32 Implications for Assembly Code

Four implications to writing assembly language code for n32 are:

• The first requires you to use a different convention to save the global pointer
register ($gp) as explained in “Caller $gp (o32) vs. Callee Saved $gp (n32 and n64).”

• The second deals with different register sizes as explained in “Different Register
Sizes.”

• The third requires you to use a different subroutine linkage convention as explained
in “Using a Different Subroutine Linkage.”

• The fourth restricts your use of lwc1 instructions to access floating point register
pairs but allows you to use more floating point registers as described in “Using
More Floating Point Registers.”

Caller $gp (o32) vs. Callee Saved $gp (n32 and n64)

The $gp register is used to point to the Global Offset Table (GOT). The GOT stores
addresses of subroutines and static data for runtime linking. Since each DSO has its own
GOT, the $gp register must be saved across function calls. Two conventions are used to
save the $gp register.

Under the first convention, called caller saved $gp, each time a function call is made, the
calling routine saves the $gp and then restores it after the called function returns. To
facilitate this two assembly language pseudo instructions are used. The first, .cpload, is
used at the beginning of a function and sets up the $gp with the correct value. The second,
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.cprestore, saves the value of $gp on the stack at an offset specified by the user. It also
causes the assembler to emit code to restore $gp after each call to a subroutine.

The formats for correct usage of the .cpload and .cprestore instructions are shown below:

.cpload reg reg is t9 by convention

.cprestore offset offset refers to the stack offset where $gp is saved

Under the second convention, called callee saved $gp, the responsibility for saving the
$gp register is placed on the called function. As a result, the called function needs to save
the $gp register when it first starts executing. It must also restore it, just before it returns.
To accomplish this the .cpsetup pseudo assembly language instruction is used. Its usage
is shown below:

.cpsetup reg, offset, proc_name
reg is t9 by convention
offset refers to the stack offset where $gp is saved
proc_name refers to the name of the subroutine

Note: You must create a stack frame by subtracting the appropriate value from the $sp
register before using the directives which save the $gp on the stack.

In order to facilitate writing assembly language code for both conventions several macros
have been defined in <sys/asm.h>. The macros SETUP_GP, SETUP_GPX, SETUP_GP_L,
and SAVE_GP are defined under o32 and provide the necessary functionality to support
a caller saved $gp environment. Under n32, these macros are null. However,
SETUP_GP64, SETUP_GPX64, SETUP_GPX64_L, and RESTORE_GP64 provide the
functionality to support a callee saved environment. These same macros are null for o32.
An example of the use of these macros and their definition can be found at the end of the
fourth section.

Different Register Sizes

Under n32, registers are 64 bits wide; under o32, they are 32 bits wide. To properly
manipulate these register under n32, you must use the 64-bit forms of the basic load,
store, and arithmetic operation instructions. To allow the same source to be assembled
for either o32 or n32, a set of macros has been defined in <sys/asm.h>. These macros use
the correct instruction form for 32-bit or 64-bit operation. These macros include the
following:

•     REG_S   expands to sw for o32 and to sd for n32.
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•     REG_L   expands to lw for o32 and to ld for n32.

•     PTR_L expands to lw for o32 and to lw for n32.

•     PTR_S expands to sw for o32 and to sw for n32.

•     PTR_SUBU expands to subu for o32 and to sub for n32.

•     PTR_ADDU expands to addu for o32 and to add for n32.

Using a Different Subroutine Linkage

Under n32, more registers are used to pass arguments to called subroutines. The registers
that are saved by the calling and called subroutines are also different under this
convention, which is described in detail in Chapter 2, “Calling Convention
Implementations.” As a result, a different register naming convention exists. The
compiler predefine _MIPS_SIM enables macros in <sys/asm.h> and <sys/regdef.h>. Some
important ramifications of the subroutine linkage convention are outlined below.

The _MIPS_SIM_NABI32 model (n32), defines 4 additional argument registers for a total
of 8 argument registers: $4 .. $11. The additional 4 argument registers come at the expense
of the temp registers in <sys/regdef.h>. In this model, there are no registers t4 .. t7, so any
code using these registers does not compile under this model. Similarly, the register
names a4 .. a7 are not available under the _MIPS_SIM_ABI32 model. (Note that those
temporary registers are not lost -- the argument registers can serve as scratch registers
also, with certain constraints.)

To make it easier to convert assembler code, the new names ta0, ta1, ta2, and ta3 are
available under both _MIPS_SIM models. These alias with t4 .. t7 in the o32 ABI, and with
a4 ..a7 in the n32 ABI.

Another facet of the linkage convention is that the caller no longer has to reserve space
for a called function in which to store its arguments. The called routine allocates space
for storing its arguments on its own stack, if desired. The NARGSAVE define in
<sys/asm.h> helps with this.

The following example handles assembly language coding issues for n32 and KPIC
(KPIC requires that the asm coder deals with PIC issues). It creates a template for the start
and end of a generic assembly language routine.

The template is followed by relevant defines and macros from <sys/asm.h>.

#include <sys/regdef.h>
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#include <sys/asm.h>
#include <sys/fpregdef.h>

LOCALSZ= 7     # save gp ra and any other needed registers
/* For this example 7 items are saved on the stack */
/* To access the appropriate item use the offsets below */
FRAMESZ= (((NARGSAVE+LOCALSZ)*SZREG)+ALSZ)&ALMASK
RAOFF=  FRAMESZ-(1*SZREG)
GPOFF=  FRAMESZ-(4*SZREG)
A0OFF=  FRAMESZ-(5*SZREG)
A1OFF=  FRAMESZ-(6*SZREG)
T0OFF=  FRAMESZ-(7*SZREG)

NESTED(asmfunc,FRAMESZ,ra)
        move t0, gp   # save entering gp
                      # SIM_ABI64 has gp callee save
                      # no harm for SIM_ABI32
        SETUP_GPX(t8)
        PTR_SUBU sp,FRAMESZ
        SETUP_GP64(GPOFF,_sigsetjmp)
        SAVE_GP(GPOFF)
/* Save registers as needed here */
        REG_S ra,RAOFF(sp)
        REG_S a0,A0OFF(sp)
        REG_S a1,A1OFF(sp)
        REG_S t0,T0OFF(sp)

/* do real work here */
/* safe to call other functions */

/* restore saved regsisters as needed here */
        REG_L ra,RAOFF(sp)
        REG_L a0,A0OFF(sp)
        REG_L a1,A1OFF(sp)
        REG_L t0,T0OFF(sp)

/* setup return address, $gp and stack pointer */
REG_L    ra,RAOFF(sp)
RESTORE_GP64
PTR_ADDU sp,FRAMESZ

        bne      v0,zero,err
        j        ra

        END(asmfunc)
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/* The following macro definitions are */
/* from /usr/include/sys/asm.h */

#if (_MIPS_SIM == _MIPS_SIM_ABI32)
/*
 * Set gp when at 1st instruction
 */
#define SETUP_GP     \
            .set noreorder;    \
            .cpload t9;     \
            .set reorder

/* Set gp when not at 1st instruction */
#define SETUP_GPX(r)     \
            .set noreorder;    \
            move r, ra;  /* save old ra */ \
            bal 10f;  /* find addr of cpload */\
            nop;      \
10:       \
            .cpload ra;     \
            move ra, r;     \
        .set reorder;

#define SETUP_GPX_L(r,l)    \
        .set noreorder;    \
        move r, ra;  /* save old ra */ \
        bal l;  /* find addr of cpload */\
        nop;      \
l:       \
        .cpload ra;     \
        move ra, r;     \
        .set reorder;

#define SAVE_GP(x)     \
        .cprestore x; /* save gp trigger t9/jalr conversion */

#define SETUP_GP64(a,b)
#define SETUP_GPX64(a,b)
#define SETUP_GPX64_L(cp_reg,ra_save, l)
#define RESTORE_GP64
#define USE_ALT_CP(a)
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#else /* (_MIPS_SIM == _MIPS_SIM_ABI64) || (_MIPS_SIM ==
_MIPS_SIM_NABI32) */
/*
 * For callee-saved gp calling convention:
 */
#define SETUP_GP
#define SETUP_GPX(r)
#define SETUP_GPX_L(r,l)
#define SAVE_GP(x)

#define SETUP_GP64(gpoffset,proc)   \
        .cpsetup t9, gpoffset, proc

#define SETUP_GPX64(cp_reg,ra_save)   \
        move ra_save, ra;     /* save old ra */ \
        .set noreorder;    \
        bal 10f;      /* find addr of .cpsetup */ \
        nop;      \
10:       \
        .set reorder;    \
        .cpsetup ra, cp_reg, 10b;  \
        move ra, ra_save

#define SETUP_GPX64_L(cp_reg,ra_save, l)  \
        move ra_save, ra;     /* save old ra */ \
        .set noreorder;    \
        bal l;      /* find addr of .cpsetup */ \
        nop;      \
l:       \
        .set reorder;    \
        .cpsetup ra, cp_reg, l;   \
        move ra, ra_save

#define RESTORE_GP64     \
        .cpreturn

#define USE_ALT_CP(reg)     \
        .cplocal reg     /* use alternate register for  context
pointer */

#endif /* _MIPS_SIM != _MIPS_SIM_ABI32 */

/*
 * Stack Frame Definitions
 */
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#if (_MIPS_SIM == _MIPS_SIM_ABI32)
#define NARGSAVE 4 /* space for 4 arg regs must be alloc*/
#endif
#if (_MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32)
#define NARGSAVE 0 /* no caller responsibilities */
#endif

#define ALSZ  15 /* align on 16 byte boundary */
#define ALMASK  ~0xf

#if (_MIPS_ISA == _MIPS_ISA_MIPS1 || _MIPS_ISA == _MIPS_ISA_MIPS2)
#define SZREG  4
#endif

#if (_MIPS_ISA == _MIPS_ISA_MIPS3 || _MIPS_ISA == _MIPS_ISA_MIPS4)
#define SZREG  8
#endif

Using More Floating Point Registers

On the R4000 and later generation MIPS microprocessors, the FPU provides:

• 16 64-bit Floating Point registers (FPRs) each made up of a pair of 32-bit floating
point general purpose register when the FR bit in the Status register equals 0, or

• 32 64-bit Floating Point registers (FPRs) each corresponding to a 64-bit floating
point general purpose register when the FR bit in the Status register equals 1

For more information about the FPU of the R4000 refer to Chapter 6 of the MIPS R4000
User’s Manual.

Under o32, the FR bit is set to 0. As a result, o32 provides only 16 registers for double
precision calculations. Under o32, double precision instructions must refer to the even
numbered floating point general purpose register. A major implication of this is that code
written for the MIPS I instruction set treated a double precision floating point register as
an odd and even pair of single precision floating point registers. It would typically use
sequences of the following instructions to load and store double precision registers.
lwc1 $f4, 4(a0)
lwc1 $f5, 0(a0)
...
swc1 $f4, 4(t0)
swc1 $f5, 0(t0)
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Under n32, however, the FR bit is set to 1. As a result, n32 provides all 32 floating point
general purpose registers for double precision calculations. Since $f4 and $f5 refer to
different double precision registers, the code sequence above will not work under n32. It
can be replaced with the following:

l.d $f14, 0(a0)
...
s.d $f14, 0(t0)

The assembler will automatically generate pairs of LWC1 instructions for MIPS I and use
the LDC1 instruction for MIPS II and above.

On the other hand, you can use these additional odd numbered registers to improve
performance of double precision code.

The following example taken form <libm43/z_abs.s> can be assembled for o32 or n32.
When assembled –n32, it uses odd double precision floating point registers as well as the
macros from <sys/asm.h> to adhere to the subroutine interface convention.

#include <regdef.h>
#include <sys/asm.h>

        PICOPT
        .text

.weakext  z_abs_, __z_abs_
#define z_abs_  __z_abs_

.extern __hypot

LOCALSZ = 10
FSIZE = (((NARGSAVE+LOCALSZ)*SZREG)+ALSZ)&ALMASK
RAOFF= FSIZE - SZREG
GPOFF= FSIZE - (2*SZREG)

#if (_MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32)

NESTED(z_abs_,FSIZE,ra)

       PTR_SUBU sp,FSIZE
       SETUP_GP64(GPOFF,z_abs_)
       REG_S   ra, RAOFF(sp)
       l.d     $f12, 0(a0)
       l.d     $f13, 8(a0)
       jal     __hypot
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       REG_L   ra, RAOFF(sp)
       RESTORE_GP64
       PTR_ADDU sp, FSIZE
       j       ra
END(z_abs_)

#elif (_MIPS_SIM == _MIPS_SIM_ABI32)

NESTED(z_abs_,FSIZE,ra)

       SETUP_GP
       PTR_SUBU sp,FSIZE
       SAVE_GP(GPOFF)
       REG_S   ra, RAOFF(sp)
       l.d     $f12, 0(a0)
       l.d     $f14, 8(a0)
       jal     hypot
       REG_L   ra, RAOFF(sp)
       PTR_ADDU sp, FSIZE
       j       ra

END(z_abs_)

#endif
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4.N32 Examples and Case Studies

This chapter provides examples and case studies of programs that have been converted
from o32 to n32. Each step in the conversion is presented and examined in detail.
Examples include:

• “An Example Application”

• “Building and Running the o32 Application”

• “Porting Issues”

• “Building and Running the N32 Application”

• “Building Multiple Versions of the Application”

An Example Application

An examination of the following application, app1, illustrates the steps necessary to port
from o32 to n32. As you can see, app1 is trivial in functionality, but it is constructed to
point out several of the issues involved in converting code from o32 to n32.

App1 contains the following files:

• main.c, which contains the function main().

• foo.c, which contains foo() a varargs function.

• gp.s, which contains the assembly language leaf routine, get_gp(). This function
returns the value of the global pointer register ($gp).

• regs.s, which contains the assembly language function regs(). This function is linked
separately into its own DSO. The function regs() returns the value of $gp, the return
address register ($ra), and the stack pointer ($sp). This function also makes calls to
the libc routines malloc() and free() as well as calculating the sum of two double
precision values passed to it as arguments and returns the sum through a pointer
that is also passed to it as an argument.
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Figure 4-1 shows a call tree is for the app1 program. It illustrates that main() calls get_gp(),
foo() and printf(). The function foo() calls regs() and printf(), while regs() calls malloc()
and free(). The figure also shows that app1 is linked against two shared objects, libc.so
and regs.so.

Figure 4-1 Call Tree for App1

The source code for the original versions of main.c, foo.c, gp.s. and regs.s are shown below.

/* main.c */
extern void foo();

get_gp()

main()

foo()

printf()

malloc()

free()

regs()

libc.so

app1

regs.so
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main()
{
   unsigned gp,ra,sp, get_regs();
   double d1 = 1.0;
   double d2 = 2.0;
   double res;

   gp = get_gp();
   printf(“gp is 0x%x\n”, gp);
   foo(7, 3.14, &gp, &ra,
       &sp, d1, &d2, &res);

}

/* foo.c */

#include <stdarg.h>

void foo(int narg, ...)
{
  va_list ap;
  double d1;
  double daddr1, *daddr2, *resaddr;
  unsigned *gp, *ra, *sp;

  va_start(ap, narg);
  printf(“Number of Arguments is: %d\n”,narg);

  d1 = va_arg(ap, double);
  printf(“%e\n”,d1);

  gp = va_arg(ap, unsigned*);
  ra = va_arg(ap, unsigned*);
  sp = va_arg(ap, unsigned*);

  daddr1 = va_arg(ap, double);
  daddr2 = va_arg(ap, double*);
  resaddr = va_arg(ap, double*);

  printf(“first  double precision argument is %e\n”,daddr1);
  printf(“second double precision argument is %e\n”,*daddr2);

  regs(gp, ra, sp, daddr1, daddr2, resaddr);
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  printf(“Back from assembly routine\n”);
  printf(“gp is 0x%x\n”,*gp);
  printf(“ra is 0x%x\n”,*ra);
  printf(“sp is 0x%x\n”,*sp);
  printf(“result of double precision add is %e\n”,*resaddr);

  va_end(ap);
}

/* gp.s */
#include <regdef.h>
#include <asm.h>

LEAF(get_gp)
        move  v0, gp
        j     ra
        .end  get_gp

/* regs.s */
#include <regdef.h>

        .text
        .globlregs          # make regs external
        .entregs 2
regs:
        .set noreorder
        .cploadt9           # setup gp
        .set reorder
        subu   sp, 32       # create stack frame
        sw     ra, 28(sp)   # save return address
        .cprestore     24   # for caller saved gp
                            # save gp 24(sp)
        sw     gp, 0(a0)    # return gp in first arg
        sw     ra, 0(a1)    # return ra in second arg
        sw     sp, 0(a2)    # return sp in third arg

        li     a0, 1000     # call libc routines
        jal    malloc       # for illustrative purposes
        move   a0, v0       # to make regs
        jal    free         # a nested function

        lw     t0, 56(sp)   # get fifth argument from stack
        lwc1   $f4, 4(t0)   # load it in fp register
        lwc1   $f5, 0(t0)   # fp values are stored in LE
                            # format
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        lwc1   $f6, 52(sp)  # get fourth argument from stack
        lwc1   $f7, 48(sp)  # fp values are stored in LE
                            # format

        add.d  $f8, $f4, $f6  # do the calculation
        lw     t0, 60(sp)     # get the sixth argument
                              # from the stack
        swc1   $f8, 4(t0)     # save the result
        swc1   $f9, 0(t0)     # fp values are stored in LE

    lw     ra, 28(sp)     # get return address
    addu   sp, 32         # pop stack
    j      ra             # return to caller
    .end regs

Building and Running the o32 Application

The commands used to build app1 are shown below. As mentioned previously, regs.s is
compiled and linked separately into its own DSO, while main.c, foo.c and gp.s are
compiled and linked together.

%cc -32 -O -shared -o regs.so regs.s

%cc -32 -O -o app1 main.c foo.c gp2.s regs.so

In order to run the application, the LD_LIBRARY_PATH environment variable must be
set to the directory where regs.so resides.

%setenv LD_LIBRARY_PATH .

Running the application produces the following results. Note that the value of $gp is
different when code is executing in the regs.so DSO.

%app1

gp is 0x100090f0

Number of Arguments is: 7

3.140000e+00

first  double precision argument is 1.000000e+00

second double precision argument is 2.000000e+00

Back from assembly routine

gp is 0x5fff8ff0



34

Chapter 4: N32 Examples and Case Studies

ra is 0x400d10

sp is 0x7fff2e28

result of double precision add is 3.000000e+00

Porting Issues

If the files foo.c and main.c were recompiled for n32, the resulting executable would not
work for a variety of reasons. Each reason is examined below and a solution is given. The
resulting set of files will work when compiled either for o32 or for n32. This section
covers:

• “Varargs Routines”

• “Assembly Language Issues”

Varargs Routines

Attempting to recompile main.c foo.c –n32 results in two sets of warnings shown below:

%cc -n32 -O -o app1 main.c foo.c gp2.s

foo.c

!!! Warning (user routine ’foo’):

!!! Prototype required when passing floating point parameter to
varargs routine: printf

!!! Use ’#include <stdio.h>’ (see ANSI X3.159-1989, Section 3.3.2.2)

ld32: WARNING 110: floating-point parameters exist in the call for
“foo”, a VARARG function, in object “main.o” without a prototype --
would result in invalid result.  Definition can be found in object
“foo.o”

ld32: WARNING 110: floating-point parameters exist in the call for
“printf”, a VARARG function, in object “foo.o” without a prototype
-- would result in invalid result.  Definition can be found in
object “/usr/lib32/mips4/libc.so”

The first warning points out that printf() is a varargs routine that is being called with
floating point arguments. Under these circumstances, a prototype must exist for printf().
This is accomplished by adding the following line to the top of foo.c:

#include <stdio.h>
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The second warning points out that foo() is also a varargs routine with floating point
arguments and must also be prototyped. This is fixed by changing the declaration of foo()
in main.c to:

foo(int, ...)

For completeness, <stdio.h> is also included in main.c to provide a prototype for printf()
should it ever use floating point arguments.

As a result of these small changes, the C files are fixed and ready to be compiled –n32.
The new versions are shown below.

/* main.c */
#include <stdio.h>
extern void foo(int, ...);

main()
{
   unsigned gp,ra,sp, get_regs();
   double d1 = 1.0;
   double d2 = 2.0;
   double res;

   gp = get_gp();
   printf(“gp is 0x%x\n”, gp);

   foo(7, 3.14, &gp, &ra,
       &sp, d1, &d2, &res);

}

/* foo.c */
#include <stdio.h>
#include <stdarg.h>

void foo(int narg, ...)
{

  va_list ap;
  double d1;
  double daddr1, *daddr2, *resaddr;
  unsigned *gp, *ra, *sp;

  va_start(ap, narg);
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  printf(“Number of Arguments is: %d\n”,narg);

  d1 = va_arg(ap, double);
  printf(“%e\n”,d1);

  gp = va_arg(ap, unsigned*);
  ra = va_arg(ap, unsigned*);
  sp = va_arg(ap, unsigned*);

  daddr1 = va_arg(ap, double);
  daddr2 = va_arg(ap, double*);
  resaddr = va_arg(ap, double*);

  printf(“first  double precision argument is %e\n”,daddr1);
  printf(“second double precision argument is %e\n”,*daddr2);

  regs(gp, ra, sp, daddr1, daddr2, resaddr);
  printf(“Back from assembly routine\n”);
  printf(“gp is 0x%x\n”,*gp);
  printf(“ra is 0x%x\n”,*ra);
  printf(“sp is 0x%x\n”,*sp);
  printf(“result of double precision add is %e\n”,*resaddr);

  va_end(ap);
}

Assembly Language Issues

Since get_gp() is a leaf routine that is linked in the same DSO where it is called, no
changes are required to port it to n32. However, you have to recompile it.

Since get_gp() is a leaf routine that is linked in the same DSO where it is called, no
changes are required to port it to n32. However, you have to recompile it.

On the other hand, regs() requires a lot of work. The issues that need to be addressed are
detailed below.

 gp register

As explained throughout this book, the o32 ABI follows the convention that $gp (global
pointer register) is caller saved. This means that the global pointer is saved before each
function call and restored after each function call returns. This is accomplished by using
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the .cpload and .cprestore assembler pseudo instructions respectively. Both lines are
present in the original version of regs.s.

The n32 ABI, on the other hand, follows the convention that $gp is callee saved. This
means that $gp is saved at the beginning of each routine and restored right before that
routine itself returns. This is accomplished through the use of .cpsetup, an assembler
pseudo instruction.

The recommended way to deal with these various pseudo instructions is to use the
macros provided in <sys/asm.h>. The macros below will provide correct use of these
pseudo instructions whether compiled for o32 or for n32.

•  SETUP_GP expands to the .cpload t9 pseudo instruction for o32. For n32 it is null.

•  SAVE_GP(GPOFF) expands to the .cprestore pseudo instruction for o32. For n32 it is
null.

• SETUP_GP64(GPOFF, regs) expands to the .cpsetup pseudo instruction for n32. For
o32 it is null.

Register Size

Under o32, registers are 32 bits wide. Under n32, they are 64 bits wide. As a result,
assembly language routines must be careful in the way they operate on registers. The
following macros defined in <sys/asm.h> are useful because they expand to 32-bit
instructions under o32 and to 64-bit instructions under n32.

•     REG_S expands to sw for o32 and to sd for n32.

•     REG_L   expands to lw for o32 and to ld for n32.

•     PTR_SUBU expands to subu for o32 and to sub for n32.

•     PTR_ADDU expands to addu for o32 and to add for n32.

Argument Passing

The get_regs() function in regs.s is called with six arguments. Under o32, the first three
are passed in registers a0 through a2. The fourth argument (a double precision
parameter) is passed at offset 16 relative to the stack. The fifth and sixth arguments are
passed at offsets 24 and 28 relative to the stack, respectively. Under n32, however, all of
the arguments are passed in registers. The first three arguments are passed in registers a0
through a2 as they were under o32. The next parameter is passed in register $f15. The last
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two parameters are passed in registers a4 and a5 respectively. Table 4-1 summarizes
where each of the arguments are passed under the two conventions.

Note: Under o32, there are no a4 and a5 registers, but under n32 they must be saved on
the stack because they are used after calls to an external function.

The code fragment that illustrates accessing the arguments under n32 is shown below:
        mov.d   $f4,$f15            # 5th argument in 5th fp
                                    # arg. register
        l.d     $f6,0(a4)           # fourth argument in
                                    # fourth arg. register
        s.d     $f8,0(a5)           # save in 6th arg. reg

Extra Floating point Registers

As explained in Chapter 3, “N32 Compatibility, Porting, and Assembly Language
Programming Issues,” floating point registers are 64 bits wide under n32. They are no
longer accessed as pairs of single precision registers for double precision calculations. As
a result, the section of code that uses the pairs of lwc1 or swc1 instructions must be
changed. The simplest way to accomplish this is to use the l.d assembly language
instruction. This instruction expands to two lwc1 instructions under -mips1; under
-mips2 and above, it expands to the ldc1 instruction.

Putting it together

The new version of regs.s is shown below. It is coded so that it will compile and execute
for either o32 or n32 environments.

Table 4-1 Argument Passing

Argument o32 n32

argument1 a0 a0

argument2 a1 a1

argument3 a2 a2

argument4 $sp+16 $f15

argument5 $sp+24 a4

argument6 $sp+28 a5
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/* regs.s */
#include <sys/regdef.h>
#include <sys/asm.h>

.text

LOCALSZ=5            # save ra, a4, a5, gp, $f15

FRAMESZ= (((NARGSAVE+LOCALSZ)*SZREG)+ALSZ)&ALMASK

RAOFF=FRAMESZ-(1*SZREG)     # stack offset where ra is saved
A4OFF=FRAMESZ-(2*SZREG)     # stack offset where a4 is saved
A5OFF=FRAMESZ-(3*SZREG)     # stack offset where a5 is saved
GPOFF=FRAMESZ-(4*SZREG)     # stack offset where gp is saved
FPOFF=FRAMESZ-(5*SZREG)     # stack offset where $f15 is
                            # saved
                            # a4, a5, and $f15 don’t have to
                            # be saved, but no harm done in
                            # doing so
NESTED(regs, FRAMESZ, ra)
                            # define regs to be a nested
                            # function
    SETUP_GP                # used for caller saved gp
    PTR_SUBU sp,FRAMESZ     # setup stack frame
    SETUP_GP64(GPOFF, regs) # used for callee saved gp
    SAVE_GP(GPOFF)          # used for caller saved gp

    REG_S   ra, RAOFF(sp)   # save ra on stack

#if (_MIPS_SIM != _MIPS_SIM_ABI32)
                            # not needed for o32
    REG_S   a4, A4OFF(sp)   # save a4 on stack (argument 4)
    REG_S   a5, A5OFF(sp)   # save a5 on stack (argument 5)
    s.d     $f15,FPOFF(sp)  # save $f15 on stack (argument 6)
#endif /* _MIPS_SIM != _MIPS_SIM_ABI32 */

    sw      gp, 0(a0)       # return gp in first arg
    sw      ra, 0(a1)       # return ra in second arg
    sw      sp, 0(a2)       # return sp in third arg

    li      a0, 1000        # call malloc
    jal     malloc          # for illustration purposes only

    move    a0, v0          # call free
    jal     free            # go into libc.so twice
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                                # this is why a4, a5, $f15
                                # had to be saved

#if (_MIPS_SIM != _MIPS_SIM_ABI32)
                                # not needed for o32
        l.d     $f15,FPOFF(sp)  # restore $f15 (argument #6)
        REG_L   a4, A4OFF(sp)   # restore a4   (argument #4)
        REG_L   a5, A5OFF(sp)   # restore a5   (argument #5)
#endif /* _MIPS_SIM != _MIPS_SIM_ABI32 */

#if (_MIPS_SIM == _MIPS_SIM_ABI32)
                                # for o32 arguments will
                                # need to be pulled from the
                                # stack
        lw      t0,FRAMESZ+24(sp) # fifth argument is 24
                                  # relative to original sp
        l.d     $f4,0(t0)         # use l.d for correct code
                                  # on both mips1 & mips2
        l.d     $f6,FRAMESZ+16(sp)  # fourth argument is 16
                                    # relative to original sp
        add.d   $f8, $f4, $f6       # do the calculation
        lw      t0,FRAMESZ+28(sp)   # sixth argument is 28
                                    # relative to original sp
        s.d     $f8,0(t0)           # save the result there
#else
                                    # n32 args are in regs
        mov.d   $f4,$f15            # 5th argument in 5th fp
                                    # arg. register
        l.d     $f6,0(a4)           # fourth argument in
                                    # fourth arg. register
        add.d   $f8, $f4, $f6       # do the calculation
        s.d     $f8,0(a5)           # save in 6th arg. reg
#endif /* _MIPS_SIM != _MIPS_SIM_ABI32 */

        REG_L   ra, RAOFF(sp)     # restore return address
        RESTORE_GP64              # restore gp for n32
                                  # (callee saved)
        PTR_ADDU sp,FRAMESZ       # pop stack
        j        ra               # return to caller
.endregs
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Building and Running the N32 Application

The commands for building an n32 version of app1 are shown below. The only difference
is in the use of the –n32 argument on the compiler command line. If app1 was a large
application using many libraries, the command line or makefile would possibly need to
be modified to refer to the correct library paths. In the case of app1 the correct libc.so is
automatically used as a result of the –n32 argument.

%cc -n32 -O -shared -o regs.so regs.s

%cc -n32 -O -o app1 main.c foo.c gp.s regs.so

In order to run the application, the LD_LIBRARY_PATH environment variable must
again be set to the directory where regs.so resides.

%setenv LD_LIBRARY_PATH .

Running the application produces the following results. Note that the values of some of
the returned registers are different from those returned by the o32 version of app1.

%app1

gp is 0x100090e8

Number of Arguments is: 7

3.140000e+00

first  double precision argument is 1.000000e+00

second double precision argument is 2.000000e+00

Back from assembly routine

gp is 0x5fff8ff0

ra is 0x10000d68

sp is 0x7fff2e30

result of double precision add is 3.000000e+00

Building Multiple Versions of the Application

Following the procedure above generates new n32 versions of app1 and regs.so; however,
they overwrite the old o32 versions. To build multiple versions of app1, use one of the
following methods:
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• Use different names for the n32 and o32 versions of the application and DSO. This
method is simple, but for large applications, you must rename each DSO.

• Create separate directories for the o32 and n32 applications and DSOs, respectively.
Modify the commands above or makefiles to create app1 and reg.so in the
appropriate directory. This method offers more organization than the approach
above, but you must set the LD_LIBRARY_PATH accordingly.

• Create separate directories as specified above, but add the –rpath argument to the
command line that builds app1.
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