
OpenGL Optimizer™

Programmer’s Guide:
An Open API for
Large-Model Visualization

Document Number 007-2852-002

OpenGL Optimizer™ Programmer’s Guide: An Open API for Large-Model Visualization
Document Number 007-2852-002

CONTRIBUTORS

Written by George Eckel, Renate Kempf, and Leif Wennerberg
Illustrated by Dany Galgani and Martha Levine
Production by Allen Clardy
Engineering contributions by Brian Cabral, Michael Hopcroft, Jonathan Lim, Kevin

Lin, Zi-Cheng Liu, Lena Petrovic, Trina Roy, Tonia Spyridi, Christina
Tempelaar-Lietz, and Julie Yen

St. Peter’s Basilica image courtesy of of ENEL SpA and InfoByte SpA. Disk Thrower
image courtesy of Xavier Berenguer, Animatica.

© 1998, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

IRIS, OpenGL, Silicon Graphics, and the Silicon Graphics logo are registered
trademarks, ImageVision, Inventor, IRIS InSight, IRIS Performer, IRIX, Open
Inventor, OpenGL Optimizer, and Performer are trademarks, and Silicon Surf is a
service mark of Silicon Graphics, Inc. MIPSPro is a trademark of MIPS Technologies,
Inc. Alias is a registered trademark, and Alias|Wavefront is a trademark, of
Alias|Wavefront, a division of Silicon Graphics Limited. SDRC is a registered
trademark of Structural Dynamics Research Corporation. X Window System is a
trademark of Massachusetts Institute of Technology. Motif is a trademark of the
Open Software Foundation, Inc.

iii

List of Chapters

List of Figures xxiii

List of Tables xxv

About This Guide xxvii

PART I Getting Started

1. OpenGL Optimizer Overview 3

2. Basic I/O: Getting Started with OpenGL Optimizer 15

PART II High-Level Strategic Tools for Fast Rendering

3. Sending Efficient Graphics Data to the Hardware 29

4. Rendering Appropriate Levels of Detail 43

5. Culling Unneeded Objects From the Scene Graph 57

6. Organizing the Scene Graph Spatially 73

PART III Specific Tools for Fast Rendering

7. Interactive Highlighting and Manipulating 89

8. Efficient High-Quality Lighting Effects: Reflection Mapping 101

PART IV Managing and Rendering Higher-Order Geometric Primitives

9. Higher-Order Geometric Primitives and Discrete Meshes 115

10. Creating and Maintaining Surface Topology 199

11. Rendering Higher-Order Primitives: Tessellators 213

iv

Table of Contents

PART V Traversers, Low-Level Geometry Processing, and Multiprocessing

12. Traversing a Large Scene Graph 241

13. Manipulating Triangles and Rebuilding Renderable Objects 255

14. Managing Multiple Processors 265

PART VI Utilities and Troubleshooting

15. Utilities 289

16. Troubleshooting 299

PART VII Appendices

A. Installing OpenGL Optimizer 307

B. OpenGL Optimizer Sample Applications 311

C. opviewer Sample Application 317

D. Scene Graph Tuning With the opoptimize Application 335

E. Optimizer Class Hierarchy 365

Glossary 371

Index 375

v

Table of Contents

List of Figures xxiii

List of Tables xxv

About This Guide xxvii
Audience for This Guide xxvii
How to Use This Guide xxviii
What This Guide Contains xxviii
Recommended Background Reading xxxi

Silicon Graphics Publications xxxi
Third-Party Publications xxxi

Conventions Used in This Guide xxxi

PART I Getting Started

1. OpenGL Optimizer Overview 3
The Optimizer Challenge and Solution 4

The Challenge: Large Data Sets 4
The Solution: OpenGL Optimizer 4

The OpenGL Optimizer Toolset 5
Optimizing the Graphics Pipeline 7

Pipeline Stages 7
Bottlenecks in the Pipeline 8

Tools to Optimize the Generate Stage 8
Tools to Optimize the Traversal Stage 11

vi

Table of Contents

Tools to Optimize the Transform Stage 12
Occlusion Culler 12
Simplifiers 13
Mesh Optimizers 13
Tessellators 14
Scene-Graph Manipulation and Other Tools 14

2. Basic I/O: Getting Started with OpenGL Optimizer 15
Calling opInit() 15
Saving and Loading Scene-Graph Files 16

Saving a Scene Graph to a File 16
Loading a Scene Graph 16
opGenLoader Methods 16

Supported File Formats 17
Creating a Scene Graph Loader 18

Viewing Class: opViewer 19
opViewer Methods 21

Controlling Rendering: opKeyCallback and opDrawImpl 22
opDrawImpl Methods 23
opDrawImpl Subclasses Used In Sample Applications 24

opDefDrawImpl: Controlling Rendering for opViewer 24
opDefDrawImpl Methods 24
opDefDrawImpl Keybindings 25
opXmDrawImpl: Controlling Rendering for opXmViewer 25

PART II High-Level Strategic Tools for Fast Rendering

3. Sending Efficient Graphics Data to the Hardware 29
Display Lists 30
Vertex Arrays 31
Shortening Representations of Surface Normal Data 31

Table of Contents

vii

Avoiding OpenGL Mode Switching 32
Removing Color Bindings 32
Removing csAppearance Effects: opCollapseAppearances 32

Methods in opCollapseAppearances 32
Creating OpenGL Connected Primitives 33

Features of Trifans and Tristrips 34
How OpenGL Optimizer Constructs Trifans and Tristrips 34
How OpenGL Optimizer Manages Attributes of Shared Vertices 34
Strategies for Using Trifans, Tristrips, or a Combination of Both 35
Counting Vertices to Assess Graphic Pipeline Load 35

Merging Triangles Into Fans: opTriFanner 36
Class Declaration for opTriFanner 36
The TriFanner::convert() Method 36

Merging Triangles Into Strips: opTriStripper 37
Class Declaration for opTriStripper 37
The TriStripper::convert() Method 37

Tuning Triangle Strips: Fixing Tristrips that are too Short 38
Merging Triangles Into Both Strips and Fans: opTriFanAndStrip 38

Class Declaration for opTriFanAndStrip 39
Methods in opTriFanAndStrip 39

Merging Triangles Using Multiple Processors: opMPTriFanAndStrip 40
Class Declaration for opMPTriFanAndStrip 40
Methods in opMPTriFanAndStrip 40

Observing Trifans and Tristrips: opColorizeStrips() 41

4. Rendering Appropriate Levels of Detail 43
Overview of Simplification Tools 43

Simplifier Classes 44
Levels of Detail 44
LOD Insertion 45

opSimplify: Base Class for Adding Level-of-Detail Nodes 45
Class Declaration for opSimplify 45
Methods in opSimplify 46

viii

Table of Contents

Creating LODs: opSRASimplify 47
Simplifying Parameters 47

Percentage of the Original Model 47
Evaluation Function 48

Effects of Simplification 49
Simplifier Features 51
Simplification Errors 51

Rossignac Simplification Algorithm: opLatticeSimplify 51
Class Declaration for opLatticeSimplify 52
Methods in opLatticeSimplify 52

Merging Graphs With Differing Levels of Detail: opMergeScenes 52
Class Declaration for opMergeScenes 54
Main Features of the Methods in opMergeScenes 54

5. Culling Unneeded Objects From the Scene Graph 57
View-Frustum Culling 58

When to Use View-Frustum Culling 58
View-Frustum Culling and Pipeline Load Balancing 58

Occlusion Culling 60
When to Use Occlusion Culling 60
Occlusion Culling and Pipeline Load Balancing 62

Spatialization to Balance Pipeline Load When Occlusion Culling 62
Changing the Fraction of the Bounding Box Required for Elimination 63

View-Frustum and Occlusion Cull Draw Traversal: opDrawAction 63
Class Declaration for opDrawAction 63
Methods in opDrawAction 64

Rendering With View-Frustum and Occlusion Culling: opOccDrawImpl 65
Methods in opOccDrawImpl 66
Key Bindings for opOccDrawImpl 67

Table of Contents

ix

Tuning Tips for Occlusion Culling 68
Culling Takes Longer Than Rendering 68
Occluded Geometry Is Not Culled 68
Very Small Speedup and Fast Culling 69

Detail Culling 69
Class Declaration for opDetailSimplify 69
Methods in opDetailSimplify 70

Back-Face Culling 70
Setting Back-Face Culling 72

6. Organizing the Scene Graph Spatially 73
Effect of Spatialization on Cull Traversals 73
Granularity Trade-offs 74
When to Spatialize 74
Spatialization Algorithm 74

Spatialization Control Parameters 75
Spatialization Classes 75

Spatialization Tool: opSpatialize 76
Class Declaration for opSpatialize 76
Arguments to opSpatialize::convert() 77

Classes for Component Procedures of Spatialization 77
Spatializing a Scene Graph: opGeoSpatialize 78

Class Declaration for opGeoSpatialize 80
Methods in opGeoSpatialize 80

Merging csGeoSets in a Scene Graph: opCombineGeoSets 81
Class Declaration for opCombineGeoSets 83
Methods in opCombineGeoSets 83

Spatializing a Single csShape: opTriSpatialize 84
Class Declaration for opTriSpatialize 86

x

Table of Contents

PART III Specific Tools for Fast Rendering

7. Interactive Highlighting and Manipulating 89
Overview of Highlighting and Picking 89

How Picking Can Accelerate Rendering Rates 90
Interacting With a Rendered Object: opPickDrawImpl 90

Class Declaration for opPickDrawImpl 91
Methods in opPickDrawImpl 91
Key Bindings for opPickDrawImpl 92

Scene Graph Modification: opPick 93
Class Declaration for opPick 94
Methods in opPick 94
Sample Use of opPick 97

Node to Override Appearances: opHighlight 98
Class Declaration for opHighlight 98
Sample Use of opHighlight for Highlighting 99

8. Efficient High-Quality Lighting Effects: Reflection Mapping 101
Simple Mapping: Remote View of a Remote Environment 102

Sphere Map 104
Gaussian Map 104

Accurate Mapping: Local View of a Local Environment 105
Cylinder Map 107

Reflection-Mapping Class: opReflMap 108
Class Declaration for opReflMap 108
Methods in opReflMap 110

Table of Contents

xi

PART IV Managing and Rendering Higher-Order Geometric Primitives

9. Higher-Order Geometric Primitives and Discrete Meshes 115
Features and Uses of Higher-Order Geometric Primitives 116

Reps and the Rendering Process 116
Trimmed NURBS 116

Objects Required by Reps 117
Pi 117
Classes for Points 117
Classes for Scalar Functions 118

Class Declaration for opScalar 118
Class Declaration for opCompositeScalar 118
Methods in opCompositeScalar 119
Trigonometric Functions 119
Polynomials 119
Class Declaration for opPolyScalar 119

Matrix Class: opFrame 120
Class Declaration for opFrame 120

Geometric Primitives: The Base Class opRep and the Application repTest 121
Class Declaration for opRep 123
Methods in opRep 123

Planar Curves 124
Mathematical Description of a Planar Curve 124

Class Declaration for opCurve2d 126
Methods in opCurve2d 127

Lines in the Plane 128
Class Declaration for opLine2d 128
Methods in opLine2d 129

Circles in the Plane 129
Methods in opCircle2d 130

Superquadric Curves: opSuperQuadCurve2d 131
Class Declaration for opSuperQuadCurve2d 133
Methods in opSuperQuadCurve2d 133

xii

Table of Contents

Hermite-Spline Curves in the Plane 134
Class Declaration for opHsplineCurve2d 135

NURBS Overview 136
OpenGL Optimizer NURBS Classes 137
NURBS Elements That Determine the Control Parameters 137
Knot Points 138
Control Hull 138
Weights for Control Points 139
Features of NURBS and Bezier Curves 139
Equation Used to Calculate a NURBS Curve 140
Alternative Equation for a NURBS Curve 140

NURBS Curves in the Plane 141
Class Declaration for opNurbCurve2d 141
Methods in opNurbCurve2d 142

Piecewise Polynomial Curves: opPieceWisePolyCurve2d 143
Class Declaration for opPieceWisePolyCurve 143

Discrete Curves in the Plane 144
Class Declaration for opDisCurve2d 145
Methods in opDisCurve2d 146

Spatial Curves 147
Lines in Space 147

opOrientedLine3d 148
Circles in Space 148
Superquadrics in Space 149
Hermite Spline Curves in Space 149
NURBS Curves in Space 149
Curves on Surfaces: opCompositeCurve3d 150

Class Declaration for opCompositeCurve3d 150
Methods in opCompositeCurve3d 150

Discrete Curves in Space 151
Example of Using opDisCurve3d and opHsplineCurve3d 151

Table of Contents

xiii

Parametric Surfaces 151
Mathematical Description of a Parametric Surface 152
Defining Edges of a Parametric Surface: Trim Loops and Curves 153
Adjacency Information: opEdge 155

Class Declaration for opEdge 155
Base Class for Parametric Surfaces: opParaSurface 156

Class Declaration for opParaSurface 156
Methods in opParaSurface 158

opPlane 160
Class Declaration for opPlane 160
Methods in opPlane 161

opSphere 162
Class Declaration for opSphere 163
Methods in opSphere 163
opSphere Example 164

opCylinder 165
Class Declaration for opCylinder 166
Methods in opCylinder 166

opTorus 167
Class Declaration for opTorus 168
Methods in opTorus 168

opCone 169
Class Declaration for opCone 170
Methods in opCone 170

Swept Surfaces 171
Orientation of the Cross Section 173
Class Declaration for opSweptSurface 173
Methods in opSweptSurface 174

opFrenetSweptSurface 175
Class Declaration for opFrenetSweptSurface 175
Methods in opFrenetSweptSurface 175
Making a Modulated Torus With opFrenetSweptSurface 176

xiv

Table of Contents

Ruled Surfaces 176
Class Declaration for opRuled 177

Coons Patches 178
Class Declaration for opCoons 180

NURBS Surfaces 181
Class Declaration for opNurbSurface 182
Methods in opNurbSurface 183
Indexing Knot Points and the Control Hull 183
Equation Used to Calculate a NURBS Surface 185
Alternative Equation for a NURBS Surface 185
Sample of a Trimmed opNurbSurface From repTest 186

Hermite-Spline Surfaces 188
Class Declaration for opHsplineSurface 189
Methods in opHsplineSurface 190

opCuboid 190
Class Declaration for opCuboid 190

Regular Meshes and Discrete Surfaces 191
Discrete Surface Base Class: opDisSurface 191
Making a Discrete Surface and Other Mesh Objects: opRegMesh 191

Class Declaration for opRegMesh 192
Methods in opRegMesh 194
An opConstant opRegMesh<opReal>: Data for opviz 196
An opVariable opRegMesh<opReal>: Data for opviz 197
An opVariable opRegMesh<csVec3f>: Data for opviz 197

10. Creating and Maintaining Surface Topology 199
Overview of Topology Tasks 199
Summary of Scene Graph Topology: opTopo 200

Building Topology: Computing and Using Connectivity Information 203
Building Topology Incrementally: A Single-Traversal Build 203
Building Topology From All Scene Graph Surfaces: A Two-Traversal Build 204
Building Topology From a List of Surfaces 204
Building Topology “by Hand”: Imported Surfaces 204
Summary of Topology Building Strategies 205

Table of Contents

xv

Reading and Writing Topology Information: Using opoptimize 206
Class Declaration for opTopo 207
Methods in opTopo 208

Consistent Vertices at Boundaries: opBoundary 209
Class Declaration for opBoundary 210
Methods in opBoundary 210

Collecting Connected Surfaces: opSolid 211
Class Declaration for opSolid 211
Methods in opSolid 212

11. Rendering Higher-Order Primitives: Tessellators 213
Features of Tessellators 214

Tessellators for Varying Levels of Detail 215
Details of Figure 11-2 216

Tessellators Act on a Whole Graph or Single Node 216
Tessellators and Topology: Managing Cracks 216

Base Class opTessellateAction 217
Tessellating a Scene Graph With Several Tessellators 217
Retessellating a Scene Graph 217
Class Declaration for opTessellateAction 218
Methods in opTessellateAction 218

Tessellating Curves in Space 220
Class Declaration for opTessCurve3dAction 220
Methods in opTessCurve3dAction 221

Tessellating a Cuboid: opTessCuboidAction 221
Class Declaration for opTessCuboidAction 221
Methods in opTessCuboidAction 222

Tessellating Parametric Surfaces 222
opTessParaSurfaceAction 222

Class Declaration for opTessParaSurfaceAction 223
Methods in opTessParaSurface 224

Sample From repTest: Tessellating and Rendering a Sphere 225
opTessNurbSurfaceAction 228

xvi

Table of Contents

Tessellating a Regular Mesh 228
Visualizing Scalar-Valued Functions 228
Visualizing Vector-Valued Functions 229
opTessIsoAction 229

Class Declaration for opTessIsoAction 229
Methods in opTessIsoAction 230

opTessSliceAction 230
Class Declaration for opTessSliceAction 230
Methods in opTessSliceAction 231

opTessVecAction 232
Class Declaration for opTessVecAction 232
Methods in opTessVecAction 232
opTessVec2dAction and opTessVec3dAction 233

Sample Mesh Tessellation: opviz and opVizViewer 233
opVizViewer 234
Key Bindings for opVizViewer 234
opviz Main Routine 234

Using a Tessellator—Code Example 235
Initializing a Tessellator 235
opviz Tessellation and Thread Manager Calls 235
Creating a Multi-Threaded Environment 236
MP Tessellation 237

PART V Traversers, Low-Level Geometry Processing, and Multiprocessing

12. Traversing a Large Scene Graph 241
Traversals and Callbacks: General Features 242

Depth-First Traversal Sequence 242
Breadth-First Traversal Sequence 244
Callbacks During a Traversal 245

Controlling a Traversal With the Callback Return Value opTravDisp 245
Specifying Deletion of Traversal Object Storage: opActionDisp 246

Table of Contents

xvii

Depth-First Traversals: opDFTravAction 246
Class Declaration for opDFTravAction 246
Methods in opDFTravAction 247

Breadth-First Traversals: opBFTravAction 248
Class Declaration for opBFTravAction 248
Methods in opBFTravAction 249

Sample Traversal Function From the opoptimize Sample Application 250
Traversing a Scene Graph and Applying a csDispatch: opDispatchAction 253

Methods in opDispatchAction 253

13. Manipulating Triangles and Rebuilding Renderable Objects 255
Overview of Low-Level Geometry Tools 255

Low-Level Tools Class Hierarchy 256
Decomposing csGeoSets Into Constituent Triangles: opGeoConverter 257

Class Declaration for opGeoConverter 258
Methods in opGeoConverter 259

Specifying Coloring of New csGeoSets: opColorGenerator 259
Class Declaration for opColorGenerator 259
Methods in opColorGenerator 260

Building New csGeoSets 260
Geometry-Building Base Class: opGeoBuilder 260

Class Declaration for opGeoBuilder 261
Methods in opGeoBuilder 261

Sets of Triangles From Individual Triangles: opTriSetBuilder 262
Class Declaration for opTriSetBuilder 262
Methods in opTriSetBuilder 262

Sets of Triangle Fans From Triangles: opTriFanSetBuilder 263
Class Declaration for opTriFanSetBuilder 263
Methods in opTriSetBuilder 264

Sets of Triangle Strips From Triangles: opTriStripSetBuilder 264
Methods in opTriStripSetBuilder 264

xviii

Table of Contents

14. Managing Multiple Processors 265
MP Control Tasks and Related Classes 266
Overview of the Thread Manager 266

Sequence of Events for Thread Management 266
Managing Interprocess Dependencies 267
Classes for Scheduling and Defining Tasks 267

Thread Manager: opThreadMgr 268
Class Declaration for opThreadMgr 268
Methods in opThreadMgr 269

Scheduling Methods 269
Interprocess Control Methods 270
Difference Between Interprocess Control Methods 271

Defining Tasks for a Thread Manager 272
opActionInfo Holds Thread Information 272
opFunctionAction: One Task, One Process 273

Class Declaration for opFunctionAction 273
Methods in opFunctionAction 273

opMPFunAction: One Task, Many Processes 273
Methods in opMPFunAction 274

opMPFunListAction: Many Tasks, Many Processes 275
Methods in opMPFunListAction 276

Coordinating Threads That Change a Scene Graph: opTransactionMgr 277
Class Declaration for opTransactionMgr 277
Methods in opTransactionMgr 278
opTransaction 279

Class Declaration for opTransaction 279
Methods in opTransaction 280

opCommit(), opBlockingCommit(), and opSync() 280

Table of Contents

xix

Low-Level Multiprocess Tools 281
opLock 281

Class Declaration for opLock 281
Methods in opLock 282

Mutual Exclusion Within a Code Block: opMutex 282
opSemaphore 283

Class Declaration for opSemaphore 283
Methods in opSemaphore 283

Making Processes Wait on a Task: opTaskBlock 284
Class Declaration for opTaskBlock 284
Methods in opTaskBlock 284

Implementing a Condition Variable: opBlockingCounter 285
Methods in opBlockingCounter 285

PART VI Utilities and Troubleshooting

15. Utilities 289
Error Handling and Notification 290
Performance Indicators 291

opStopWatch 291
opPerfPlot 291

opx: A Template Class for Dynamic Arrays of Contiguous Elements 292
Printing a Scene Graph 292
Gathering Triangle Statistics 292

Getting Statistics About Individual Elements: opTriStatsDispatch 293
Methods in opTriStatsDispatch 294

Getting Statistics About a Scene Graph: opTriStats 294
Methods in opTriStats 294
Example of Using an opTriStats 294

Displaying Node Information 295
Class Declaration for opInfoNode 295
Methods in opInfoNode 296
Example of Using an opInfoNode 296

xx

Table of Contents

Observing OpenGL Modes 296
Class Declaration for opGLSpyNode 296
Methods in opGLSpyNode 297
Example of Using an opGLSpyNode 297

Command-Line Parser: opArgParser 297
Class Declaration for opArgParser 298
Methods in opArgParser 298

16. Troubleshooting 299
Compiler Warning Messages 299
Run-Time Warning Messages 299
Tuning the Scene Graph Database 300

Reduce the Polygon Count 300
Combine Small csGeoSets 300
Spatialize to Facilitate View Frustum and Occlusion Culling 301
Use Level-of-Detail Nodes 302
Tessellation Problems 303

No Triangles 303
Slow Processing 304

PART VII Appendices

A. Installing OpenGL Optimizer 307
Installing the OpenGL Optimizer and Supporting Software on UNIX Systems 307

Environment Variables to Set Before Compiling an Application 308
Installing OpenGL Optimizer on NT Systems 309

B. OpenGL Optimizer Sample Applications 311
Command-Line Options and User Input 311
opviewer Sample Application 312

Motif Version of opviewer 312
X Version of opviewer 313

Table of Contents

xxi

Other Sample Applications 313
Scene Graph Tuning—opoptimize 313
Creating LODs—mergeLODDemo 314
Rendering Higher Order Reps—repTest 314
Using Topology—topoTest 314
Scientific Visualization 314
Reflection Mapping 315

C. opviewer Sample Application 317
Verifying Installation 318
Compiling and Running opviewer 318
opviewer Code 319

D. Scene Graph Tuning With the opoptimize Application 335
Values Returned by Scene Graph Tools 336
Compiling and Running opoptimize 336
opoptimize Code 338

E. Optimizer Class Hierarchy 365
opGUI Class Hierarchy 365
opXmGUI class hierarchy 365
Optimizer Class Hierarchy 366

Glossary 371

Index 375

xxiii

List of Figures

Figure 1-1 Interior Parts From a CAD Model That Can Be Manipulated
Interactively Using OpenGL Optimizer (Data courtesy of SDRC™) 5

Figure 1-2 OpenGL Optimizer Architecture 6
Figure 1-3 Higher-Order Surface Representations With Trimmed Pieces 9
Figure 1-4 NURBS Surfaces Deformed From One Another by Moving

Two Control Points 10
Figure 1-5 Shell That Occludes the Objects Shown in Figure 1-1

(Data courtesy of SDRC™) 12
Figure 1-6 Simplification From 4629 to 2002 to 483 Triangles 13
Figure 1-7 Tessellations of a Higher-Order Surface: 16,544 to 120 triangles 14
Figure 2-1 opViewer Scene Graph 19
Figure 3-1 Construction of Triangle Fan (left) and Triangle Strip (right) 33
Figure 4-1 Evaluation Function 48
Figure 4-2 Original Model Used for Simplification 49
Figure 4-3 Model Simplified using percent 50 weights 100 49
Figure 4-4 Model Simplified using percent 50 weights 010 50
Figure 4-5 Model Simplified using percent 50 weights 001 50
Figure 4-6 Merging Two Scene Graphs 53
Figure 5-1 Combined Effects of View Frustum and Occlusion Culling 61
Figure 5-2 Back Faces, Back-Face Culling, and Two-Sided Lighting Effects 71
Figure 6-1 Organizing and Combining csGeoSets With opGeoSpatialize 79
Figure 6-2 Combining csGeoSets with opCombineGeoSets 82
Figure 6-3 Creating a Spatialized Graph From the csGeoSet in One csShape 85
Figure 8-1 Reflection-Map Geometry: Remote Viewer, Remote Environment 103
Figure 8-2 Reflection-Map Geometry: Local Viewer, Local Environment 106
Figure 8-3 Viewing Configuration for the Cylinder Reflection Map 107
Figure 9-1 Class Hierarchy for Higher-Order Primitives 122
Figure 9-2 Parametric Curve: Parameter Interval (0,1). 125

xxiv

List of Figures

Figure 9-3 Line in the Plane Parameterization 128
Figure 9-4 Circle in the Plane Parameterization 129
Figure 9-5 Superquadric Curve’s Dependence on the Parameter α. 132
Figure 9-6 Hermite Spline Curve Parameterization 134
Figure 9-7 Discrete Curve Definition 144
Figure 9-8 Parametric Surface: Unit-Square Coordinate System 153
Figure 9-9 Trim Loops and Trimmed Surface: Both Trim Loops Made of

Four Trim Curves 154
Figure 9-10 Plane Parameterization 160
Figure 9-11 Sphere Parameterization 162
Figure 9-12 Cylinder Parameterization 165
Figure 9-13 Torus Parameterization 167
Figure 9-14 Cone Parameterization 169
Figure 9-15 Swept Surface: Moving Reference Frame and Effect of

Profile Function 172
Figure 9-16 Ruled Surface Parameterization 176
Figure 9-17 Coons Patch Construction 179
Figure 9-18 NURBS Surface Control Hull Parameterization 184
Figure 9-19 Hermite Spline Surface With Derivatives Specified at Knot Points 188
Figure 10-1 Topological Relations Maintained by Topology Classes 201
Figure 10-2 Consistently Tessellated Adjacent Surfaces and Related Objects 202
Figure 11-1 Class Hierarchy for Tessellators 214
Figure 11-2 Tessellations Varying With Changes in Control Parameter 215
Figure 12-1 Depth-First, Left-to-Right Traversal of a Simple Scene Graph 243
Figure 12-2 A Breadth-First Traversal of a Simple Scene Graph 244
Figure 13-1 Class Hierarchy of Geometry-Building Tools 256
Figure C-1 Model Rendered by the opviewer Sample Application 317
Figure D-1 Simplifying a Model With opoptimize 337

xxv

List of Tables

Table 10-1 Topology Building Methods 205
Table 10-2 Adding Topology and Tessellations to .iv and .csb Files 206
Table 10-3 Reading .csb Files: With and Without Tessellations 207
Table 12-1 opDFTravAction Callbacks 247
Table 12-2 opBFTravAction Callbacks 249
Table 14-1 Modes of Executing Multithreaded Tasks and Their Action Objects 267
Table 15-1 Error Priority Levels: Lowest to Highest 290
Table A-1 Libraries Used by OpenGL Optimizer 307

xxvii

About This Guide

OpenGL Optimizer is a C++ toolkit for CAD applications. It enables interactive, robust
visualization of large model databases. OpenGL Optimizer provides the following tools:

• High-quality surface representations, that is, topologically consistent, parametric
definitions of surfaces

• Tessellation

• Simplification

• Occlusion culling

• Support for multiprocessor computing and advanced graphics hardware

This guide describes each individual tool and explores how they work together, and
explores issues and tools relevant for developing large visualization programs using
OpenGL Optimizer.

This is not a reference manual but a guide. For complete details about elements of the
library, consult the man pages and header files, and look at the example applications.

Audience for This Guide

This book is intended for knowledgeable C and C++ CAD developers who understand
the basic concepts of OpenGL and computer graphics.

To use OpenGL Optimizer effectively, you should also understand Cosmo3D. Cosmo 3D
is a scene graph API built on top of OpenGL that speeds up and facilitates the process of
creating complex graphics applications. Cosmo3D uses ideas from both Open Inventor
and IRIS Performer, so many features may be familiar to users of these toolkits. See the
Cosmo 3D Programmer’s Guide.

OpenGL Optimizer allows developers to optimize a Cosmo3D scene graph. A complete
OpenGL Optimizer application will therefore include Cosmo3D calls.

xxviii

About This Guide

You will more easily understand the tools if you are familiar with scene graphs and
higher-order geometric primitives, such as NURBS. You need not know techniques for
large-model visualization, nor have more than a rudimentary knowledge of
multi-processor techniques.

How to Use This Guide

The OpenGL Optimizer tools are modular without strong interdependencies. After
familiarizing yourself with the topics in Part I, “Getting Started,” you should be able to
read profitably about any topic you pick from the table of contents. Cross-references
within discussions guide you to related material.

Not every feature in every header file is documented in this guide. Also, some elements
presented may differ slightly from the header files, due to late changes in the software.
For further information about a specific class, see the man page for that class, which will
be in the form op*(3), where op* is an OpenGL Optimizer class.

All classes and functions in the OpenGL Optimizer library have names that begin with
the characters op followed by a string beginning with an upper-case letter.

All classes and functions in the Cosmo3D library have names that begin with the
characters cs followed by a string beginning with an uppercase letter. Consult the Cosmo
3D Programmer’s Guide for more information about any object whose name begins with
cs.

What This Guide Contains

This guide is divided into six parts and consists of seventeen chapters.

Part I, “Getting Started,” introduces OpenGL Optimizer by providing background
information and discussing the basic components of a program.

Chapter 1, “OpenGL Optimizer Overview,”summarizes the challenges of large CAD
visualization, characterizes in general terms the rendering task that the OpenGL
Optimizer library facilitates, and surveys the tools OpenGL Optimizer provides to
address bottlenecks at each stage of the graphics pipeline.

Chapter 2, “Basic I/O: Getting Started with OpenGL Optimizer,” introduces the main
rendering tools and lists a minimal first program.

About This Guide

xxix

Part II, “High-Level Strategic Tools for Fast Rendering,” describes complete data
processing methods for fast and coherent rendering of a large CAD database.

Chapter 3, “Sending Efficient Graphics Data to the Hardware,” discusses how to use
display lists, vertex arrays, smaller vertex-data formats, connected geometric primitives.

Chapter 4, “Rendering Appropriate Levels of Detail,” discusses mesh simplifiers and a
tool to insert level-of-detail nodes in the scene graph.

Chapter 5, “Culling Unneeded Objects From the Scene Graph,” discusses view-frustum
culling, occlusion culling, and back-face culling.

Chapter 6, “Organizing the Scene Graph Spatially,” presents tools to reorganize the
triangles in a scene graph to increase rendering speed.

Part III, “Specific Tools for Fast Rendering,” presents tools for two useful rendering
tasks.

Chapter 7, “Interactive Highlighting and Manipulating,” describes how to interactively
highlight and manipulate objects in a scene.

Chapter 8, “Efficient High-Quality Lighting Effects: Reflection Mapping,” presents good,
approximate, fast lighting techniques, and techniques that provide very accurate lighting
for reliable visual examination of model surfaces.

Part IV, “Managing and Rendering Higher-Order Geometric Primitives,” presents the
set of tools for managing and rendering surfaces that are defined by mathematical
equations.

Chapter 9, “Higher-Order Geometric Primitives and Discrete Meshes,” describes
OpenGL Optimizer extensions to Cosmo3D geometric shapes,, for example, parametric
surfaces and trimmed NURBS.

Chapter 10, “Creating and Maintaining Surface Topology,” describes tools to stitch
together geometric primitives so that images do not have artificial cracks or breaks.

Chapter 11, “Rendering Higher-Order Primitives: Tessellators,” presents the tools you
need to convert higher-order primitives into primitives that can be passed to the graphics
hardware.

xxx

About This Guide

Part V, “Traversers, Low-Level Geometry Processing, and Multiprocessing,” describes
tools that manipulate scene graph elements.

Chapter 12, “Traversing a Large Scene Graph,” describes tools that focus on scene-graph
manipulations.

Chapter 13, “Manipulating Triangles and Rebuilding Renderable Objects,” describes the
lower-level tools that perform the tasks discussed in Chapter 6.

Chapter 14, “Managing Multiple Processors,” describes the tools that allow you to easily
manipulate a scene graph with several processors and coordinate manipulations of the
scene graph.

Part VI, “Utilities and Troubleshooting,” describes tools and hints that are useful for
developing OpenGL Optimizer applications.

Chapter 15, “Utilities,” presents several tools, such as error handlers and timers, to help
polish an OpenGL Optimizer application.

Chapter 16, “Troubleshooting,” describes ways to avoid typical sticking points that occur
when developing an OpenGL Optimizer application.

Part VII, “Appendices,” five appendixes complement the material:

Appendix A, “Installing OpenGL Optimizer,” guides you through installing OpenGL
Optimizer (UNIX and Windows) and explains environment variable settings (UNIX
only).

Appendix B, “OpenGL Optimizer Sample Applications,” discusses the available sample
applications.

Appendix C, “opviewer Sample Application,” explains how to use opviewer, a sample
application that allows developers to view and manipulate scene graphs, and contains a
commented listing of the code.

Appendix D, “Scene Graph Tuning With the opoptimize Application,” briefly explores
how to use opoptimize, a sample application that allows developers to optimizer their
own programs in batch processing mode, and contains a commented listing of the code.

About This Guide

xxxi

Appendix E, “Optimizer Class Hierarchy,” lists the class hierarchies for opViewer,
opXMViewer, and Optimizer.

This guide also includes a glossary and an index.

Recommended Background Reading

The following documents are useful as background reading or reference documentation:

Silicon Graphics Publications

Most Silicon Graphics publications are available online in the following locations:

• IRIS InSight Library: from the Toolchest, choose Help > Online Books >
SGI Developer and select the applicable manual.

• Technical Publications Library: if you have access to the Internet, enter the
following URL in your Web browser location window:
http://techpubs.sgi.com/library/

The following documents are relevant for OpenGL Optimizer users:

• Cosmo 3D Programmer’s Guide (SGI_Developer bookshelf)

• IRIS Performer Programming Guide (SGI_Developer bookshelf)

• MIPS Compiling and Performance Tuning Guide (SGI_Developer bookshelf)
For information on dynamically shared objects (DSOs)

• OpenGL on Silicon Graphics Systems (SGI_Developer bookshelf)

Third-Party Publications

• Farin, Gerald. Curves and Surface for Computer Aided Geometric Design. San Diego,
Calif.: Academic Press, Inc., 1988.

• D. Voorhies and J. Foran, “Reflection Vector Shading Hardware” in Computer
Graphics Proceedings, Annual Conference Series, ACM, 1994.

• The OpenGL WWW Center at http://www.opengl.org.

xxxii

About This Guide

The following are all produced by Addison-Wesley Publishing:

• Foley, J. D., A. vanDam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles
and Practice. 1990.

• Gamma, E., R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, 1995.

• Kilgard, M. J., Programming OpenGL for the X Window System, 1996. (Also known as
“the Green book.”)

• OpenGL Architecture Review Board, M. Woo, J. Neider, and T. Davis, OpenGL
Programming Guide, Second Edition, 1997. (Also known as “the Red book.”)

• OpenGL Architecture Review Board, Renate Kempf and Chris Frazier, editors.
OpenGL Reference Manual, Second Edition. 1997. (Also known as “the Blue book.”)

• Watt, A. and M. Watt, Advanced Animation and Rendering Techniques: Theory and
Practice, 1992. Note Chapter 6, “Mapping Techniques: Texture and Environment
Mapping.”

• Wernecke, J., The Inventor Mentor: Programming Object-Oriented 3D Graphics with
Open Inventor, 1994.

• Wernecke, J., The Inventor Toolmaker, 1994.

Conventions Used in This Guide

These type conventions and symbols are used in this guide:

Bold C++ class names, C++ member functions, C++ data members, and
function names.

Italics Filenames, manual/book titles, new terms, and variables.

Fixed-width type

Code.

Bold fixed-width type

User input.

ALL CAPS Environment variables, defined constants.

() (Bold Parentheses)
Follow function names. They surround function arguments if needed
for the discussion or are empty if not needed in a particular context.

PART ONE

Getting Started I

The two chapters in this section introduce OpenGL Optimizer features, show
you how to link to the library, and discuss sample applications.

These are the chapters in Part One:

Chapter 1, “OpenGL Optimizer Overview”

Chapter 2, “Basic I/O: Getting Started with OpenGL Optimizer”

3

Chapter 1

1. OpenGL Optimizer Overview

OpenGL Optimizer is a programmer’s toolkit (API, library, and suite of tools). The toolkit
makes it easier for the application developer to draw large models interactively through
creative uses of culling, multi- threading, level-of-detail (LOD) rendering, and so on.
Optimizer applications can render high-quality images at any scale: from individual
parts, to subassemblies, to entire, complex mechanisms. This is especially useful for
CAD-type applications where it is usually necessary to visualize large data sets.

OpenGL Optimizer is built on top of OpenGL. A single OpenGL Optimizer command
calls several OpenGL commands. The benefit to the developer is that the OpenGL
Optimizer API already knows the most efficient way to organize the data.

OpenGL Optimizer uses Cosmo 3D scene graphs to organize its data. Cosmo 3D is a
scene graph API which provides multi-thread processing of scene graph data, back face
culling, engines, and sensors. For more information about Cosmo3D, see the Cosmo3D
Programmer’s Guide.

This chapter explains how OpenGL Optimizer approaches the challenge posed by large
CAD data sets in the following sections:

• “The Optimizer Challenge and Solution” on page 4

• “The OpenGL Optimizer Toolset” on page 5

4

Chapter 1: OpenGL Optimizer Overview

The Optimizer Challenge and Solution

Over the past few decades, Computer Aided Design (CAD) and other 3D modelling tools
have become prominent elements of the mechanical design process. As a result,
designers nowadays create components that exceed the interactive visualization
capabilities of existing graphics software and hardware. This section first looks at the
challenge of large data sets and explains how OpenGL Optimizer solves the problem. It
then gives an overview of the OpenGL Optimizer tools you can use in your application.

The Challenge: Large Data Sets

CAD and engineering analysis data tend to be complex; it is meant to communicate
engineering information, not visualization information. The data sets are quite large,
particularly when the design team is interested in viewing a whole assembly instead of
a few parts.

Assume that the number of pixels per triangle is, on average, ten. Then only about
100,000 triangles can appear at any instance on a 1024 x 1024 screen. High-end graphics
hardware can easily render frames with this many triangles at 20 Hz, that is, at rates
sufficient for continuous motions. However, a large data set may include millions of
triangles, so less than one tenth of a model can be visible at any time.

The Solution: OpenGL Optimizer

Quickly finding the right set of triangles and producing rendering commands is a central
processing task for a CAD application and is a central purpose of the OpenGL Optimizer
library. OpenGL Optimizer provides the highest quality image possible while
minimizing the amount of work required of the graphics hardware. This is
accomplished, among other techniques, by organizing the data to determine what will
not be seen and therefore should not be drawn (culling).

Figure 1-1 shows the interior of a model that can be manipulated with OpenGL
Optimizer at interactive rates. The parts shown are those hidden by the shell of the
model; when the model is viewed from outside, they are removed from the graphics
pipeline by occlusion culling.

The OpenGL Optimizer Toolset

5

Figure 1-1 Interior Parts From a CAD Model That Can Be Manipulated Interactively Using
OpenGL Optimizer (Data courtesy of SDRC™)

To accurately represent the surfaces in the design data set requires selecting triangles that
provide appropriate detail without artificial cracks. To this end, OpenGL Optimizer tools
provide control over tessellation, mesh simplification, and surface connectivity
information (topology).

The OpenGL Optimizer Toolset

OpenGL Optimizer is not a single tool (like a debugger). Instead, it consists of individual
tools the developer can use to optimize an application. OpenGL Optimizer could be
compared to a hardware store that offers the tools for building. But, just as you need to
choose the proper tools for a job and apply them to the raw materials, you have to choose
the proper tools for optimizing your application and then apply them appropriately.

OpenGL Optimizer tools modify an application so that it sends only essential graphical
information down the graphics pipeline and so that it interacts with the scene graph
efficiently using multiple processors.

To minimize the memory footprint of the scene graph, geometric objects can be
represented as abstract mathematical expressions. When you want to render the objects,
you can, for example, tessellate—that is, approximate them by sets of triangles. OpenGL
Optimizer can also be used to perform view frustrum culling, occlusion culling, or both.
In effect, more processing is being done before rendering, as OpenGL Optimizer in effect
renders only what’s necessary. As a result, the application needs more CPU cycles (for
the preprocessing) but less space in fast memory.

6

Chapter 1: OpenGL Optimizer Overview

The approach of the OpenGL Optimizer toolkit is to treat a scene graph as a mutable
object to be manipulated and altered frequently; such calculations are essential to
practical visualization of large CAD data sets.

The OpenGL Optimizer tools are usually encapsulated as C++ classes. The tools can be
grouped according to what they do. This section first provides some conceptual
information on the graphics pipeline, then explores how OpenGL Optimizer can help
improve performance in the following subsections:

• “Optimizing the Graphics Pipeline” on page 7

• “Tools to Optimize the Generate Stage” on page 8

• “Tools to Optimize the Traversal Stage” on page 11

• “Tools to Optimize the Transform Stage” on page 12

Figure 1-2 shows the relation of OpenGL Optimizer components to the operating system.

Figure 1-2 OpenGL Optimizer Architecture

OpenGLCosmo 3DOpenGL Optim
izer

Operating System

Cullers

Simplifiers

MP Harness

Tessellators
Topology

Higher-Order Primitives

Lighting Effects

Traversers

Scene-Graph Manager

The OpenGL Optimizer Toolset

7

Optimizing the Graphics Pipeline

This section first presents the stages of the graphics pipeline, then discusses bottlenecks
in the pipeline:

Pipeline Stages

The graphics pipeline consists of several stages, from host application to display on the
screen:

1. Generate and organize data to be displayed. The organizational structure for
OpenGL Optimizer applications is a Cosmo3D scene-graph. If you use abstract
surfaces to define objects, you must tessellate them before further processing.

OpenGL Optimizer tools facilitate these tasks.

2. Traverse the data and produce graphics data. For OpenGL Optimizer applications,
this typically means generating OpenGL commands, often guided by
considerations of occlusion and representational priority.

OpenGL Optimizer and Cosmo3D scene graph tools share these tasks.

OpenGL tools perform the tasks in the last three stages:

3. Transform object-description coordinates into an appropriate viewing context; for
example, apply lighting effects, perform perspective transformations, and
transform data into screen-space primitives (points, lines, and polygons).

4. Rasterize screen-space primitives into a frame buffer. Perform per-vertex and
per-pixel operations such as texture lookups, shading calculations, and depth
testing.

5. Display the contents of the frame buffer, typically on a monitor screen.

For further discussion of the graphics pipeline, see section 6.5, “Hardware for OpenGL,”
and section 6.6, “Maximizing OpenGL Performance,” in Programming OpenGL for the X
Window System. OpenGL Optimizer implements many of the tuning suggestions
discussed in section 6.6. See also the OpenGL Programming Guide and OpenGL on Silicon
Graphics Systems.

8

Chapter 1: OpenGL Optimizer Overview

Bottlenecks in the Pipeline

Ideally, the graphics software uses the hardware at its full potential so that processing is
not slowed by a bottleneck at any stage and data flows through the stages of the pipeline
at a uniform rate. There are three types of bottlenecks:

1. Host: Generate- and traverse-stage limits are set by the efficiency of the software and
the performance of the CPU(s). Generating and organizing data for later stages in
the graphics pipeline, and scene graph traversal are CPU-intensive operations.

2. Transform: Transform-stage limits are set by the rate at which the graphics hardware
(or software) can process vertices. For a single lighting source, the transform stage
for one vertex takes approximately 100 floating-point operations.

3. Fill: Rasterize-stage limits are set by the rate at which the hardware can update the
frame buffer.

Machines running OpenGL Optimizer applications typically have special-purpose
graphics hardware to implement the transform, rasterize, and display stages. In this
manual, the term “graphics hardware” is used to refer to only the OpenGL stages of the
graphics pipeline, that is, transform, rasterize, and display.

The pipeline rendering rate is always determined by the slowest stage. Tuning a stage
that is not a bottleneck does not affect performance. In fact, when tuning an application,
you might find that by adding processing to stages that are not rate-controlling, you can
improve the quality of images without affecting the rendering rate.

The OpenGL Optimizer toolkit provides tools that typically minimize both host and
transform bottlenecks. In many cases the same tool affects both a host bottleneck and
transform bottleneck. Typically large CAD applications are not fill limited.

Tools to Optimize the Generate Stage

OpenGL Optimizer provides the following tools for optimizing the generate stage:

• A powerful multiprocess control “harness,” which can be used independently of
any graphics application. All aspects of OpenGL Optimizer are designed to work
with this MP harness.

• Classes to facilitate multiprocess traversals of the scene graph with arbitrary
callbacks. These classes allow application speeds to scale with processor count.

The OpenGL Optimizer Toolset

9

• A transaction manager that coordinates scene graph modifications by several
processes, and maintains logical consistency in a complex, multiprocessor context.

• Higher-order geometric primitives, called reps, that you can include in the scene
graph. Figure 1-3 shows the set of reps included in OpenGL Optimizer. From left to
right, the following reps are shown:

Cuboid

Cylinder

Cone

Sphere

Torus

Ruled Surface

Swept Surface (here with a superquadric curve for cross section)

Coons Patch

Hermite Spline Surface

NURBS Surface

Figure 1-3 Higher-Order Surface Representations With Trimmed Pieces

10

Chapter 1: OpenGL Optimizer Overview

Higher-order surfaces are required to accurately represent CAD data. Direct
support for them allows OpenGL Optimizer applications to handle large design
data sets without sacrificing design integrity. Direct support for higher-order
surfaces also facilitates alteration of surface shapes, as illustrated in Figure 1-4,
which shows NURBS surfaces that differ by moving two control points.

Figure 1-4 NURBS Surfaces Deformed From One Another by Moving Two Control Points

• Tessellators for rendering higher-order geometric primitives. A tessellator in
OpenGL Optimizer is an independent object, not derived from a rep, that is applied
to a rep to produce a renderable object. The separation of tessellators from reps
allows your application to tessellate reps, and avoid storing large, renderable
objects. You can also apply one of several tessellators to a given rep, depending on
your need, or apply one tessellator to a set of reps.

• Topology data structures to easily maintain continuity of adjacent higher-order
surfaces as you modify your model and stitch surfaces together, thus preventing the
appearance of cracks during tessellation.

The OpenGL Optimizer Toolset

11

Tools to Optimize the Traversal Stage

For optimizing the traversal stage, OpenGL Optimizer provides tools that perform these
tasks:

• Organize a scene graph spatially, facilitating rapid culling operations and
interactions with the graph.

• Restructure the scene graph for efficient highlighting and picking.

• Subdivide large csGeoSets into smaller pieces defined by common rendering
features, such as proximity to each other or similarly oriented normal vectors.

• Sort the scene graph to minimize attribute-specification overhead in the graphics
hardware.

• Minimize the amount of data characterizing surface normals.

• Reduce OpenGL command overhead.

• Easily define arbitrary actions on a scene graph using the Visitor Behavioral Pattern
(see Design Patterns: Elements of Reusable Object-Oriented Software in “Recommended
Background Reading” on page xxxi).

12

Chapter 1: OpenGL Optimizer Overview

Tools to Optimize the Transform Stage

Optimizer offers the following tools for optimizing the transform stage:

• “Occlusion Culler”

• “Simplifiers”

• “Mesh Optimizers”

• “Tessellators”

• “Scene-Graph Manipulation and Other Tools”

Occlusion Culler

An occlusion culler removes, before the transform stage, objects in the scene graph that
are occluded by closer objects. Culling is performed automatically; no preprocessing of
the scene graph is required.

Figure 1-5 shows the exterior of a model containing many parts that have been removed
from the graphics pipeline by the occlusion culler. Only the shell needs to be rendered;
the culled geometry is shown in Figure 1-1.

Figure 1-5 Shell That Occludes the Objects Shown in Figure 1-1 (Data courtesy of SDRC™)

The OpenGL Optimizer Toolset

13

Simplifiers

Simplifiers decimate the set of triangles that define a model image. OpenGL Optimizer
provides a new advanced simplification technology, known as the Successive Relaxation
Algorithm, which gives you control over high-quality polygon mesh reduction. You can
also use the faster, Rossignac simplification algorithm if you are not greatly concerned
about object distortion.

Figure 1-6 shows the effects of the Successive Relaxation Algorithm as the number of
triangles diminishes to nearly one tenth the original number. Essential structure is
preserved in the lowest resolution image, which is appropriate for use when the object is
viewed from greater distances.

Figure 1-6 Simplification From 4629 to 2002 to 483 Triangles

Mesh Optimizers

Mesh optimizers reduce the number of vertices that have to be processed to render a
given set of triangles. You can remove redundant vertex information by combining
adjacent triangles into triangle strips (tristrips), triangle fans (trifans) or a combination of
both.

14

Chapter 1: OpenGL Optimizer Overview

Tessellators

Tessellators that approximate higher-order geometric primitives by a set of triangles. The
accuracy, that is, how closely the original surface matches the tessellated surface, is
controlled by a user-specified tolerance with adjustable levels of detail.

Figure 1-7 shows tessellations of a swept surface generated with various tolerances. The
number of triangles used to approximate the surface ranges from 16,544, to 5,400, to 528,
to 120.

Figure 1-7 Tessellations of a Higher-Order Surface: 16,544 to 120 triangles

Scene-Graph Manipulation and Other Tools

A scene-graph manipulation tool can be used to insert level-of-detail nodes. In addition,
OpenGL Optimizer provides advanced shading and reflection mapping capabilities for
applications where image quality is essential.

15

Chapter 2

2. Basic I/O: Getting Started with OpenGL Optimizer

This chapter explores some basic I/O components found in almost every OpenGL
Optimizer application. It discusses:

• “Calling opInit()” on page 15

• “Saving and Loading Scene-Graph Files” on page 16

• “Viewing Class: opViewer” on page 19

• “Controlling Rendering: opKeyCallback and opDrawImpl” on page 22

Note: Appendix C, “opviewer Sample Application,” lists and discusses the opviewer
sample code in some detail. opviewer contains all elements discussed in this chapter.

Calling opInit()

Every OpenGL Optimizer application must call opInit() once before calling any other
OpenGL Optimizer routine. You can terminate an OpenGL Optimizer application with a
call to opExit() or call opNotify() with the notification level set to opFatal. (See “Error
Handling and Notification” on page 290).

If you want to know the OpenGL Optimizer version, call opVersion(), which returns the
OpenGL Optimizer version string to use in correspondence concerning the specific
OpenGL Optimizer library you have installed.

The string returned by opVersion() is defined as follows:

OP_RELEASE_TYPE Type of release (alpha, beta, MR, or unreleased)

OP_MAJOR_VERSION Major release number

OP_MINOR_VERSION Minor release number

OP_BUILD_NUMBER Unique build number

16

Chapter 2: Basic I/O: Getting Started with OpenGL Optimizer

Saving and Loading Scene-Graph Files

OpenGL Optimizer provides a function that saves scene graphs and a class with methods
for loading a scene graph file.

Saving a Scene Graph to a File

To write a scene graph to a .csb file, use the global function csdStoreFile_csb(). The .csb
format is the natural format for OpenGL Optimizer applications.

Loading a Scene Graph

To load a scene graph, use opGenLoader::load(). opGenLoader is a class with various
methods related to loading a file of any supported format. opGenLoader::load(), the
method that actually performs the load, determines the file’s format based on the file’s
extension. This method then finds the appropriate loader for the given file name and then
calls that loader’s entry point. The loader reads and loads the scene graph.

By default, the extension name and prefix are identical. opGenLoader::addType()
enables additional bindings.

opGenLoader Methods

opGenLoader(_ flatten, _tesselator, _incremental)
Sets logical flags indicating whether, upon loading the file, the loader
should flatten the scene graph, tessellate geometric primitives on the fly,
and/or incrementally read the graph. By default, opGenLoader looks in
/usr/lib, /usr/libl, or wherever the LD_LIBRARY_PATH is set on the IRIX
machine.

The arguments to opGenLoader() can be set independently using
setFlatten(), setTessellator(), and setIncremental(). If you set these
values with these methods, use the opGenLoader() version of the
constructor.

Saving and Loading Scene-Graph Files

17

addType(ext, tag)
Adds a loader that reads files with the extension ext. The name of the dso
containing the loader is tagLoader_sp.so or tagLoader_dp.so, depending
on whether you compile in single or double precision. The variable tag
can include a pathname.

load() Reads a data file if opGenLoader can find a loader that supports the
DSO load routine.

setDataFilePath() and getDataFilePath()
Set the search paths for the DSO.

The class also includes accessor functions to set and get the flags for flattening and
incremental reads and to set and get the tessellator.

Supported File Formats

opGenloader provides loaders for the following file formats:

• .iv— the format used by Open Inventor

• .csb—the format used by Cosmo 3D to efficiently store and load scene graphs

• .pfb—the format used by IRIS Performer

The .pfb, and .csb files are two efficient binary file formats used by OpenGL Optimizer
and Cosmo 3D. You can use opGenLoader to read a file, such as a .iv file, and convert it
to the .csb format. The sample application opoptimize gives an example of this
conversion.

As you load the contents of a file, you can create the opGenLoader() instance to:

• Tessellate higher-order primitives (see Chapter 11, “Rendering Higher-Order
Primitives: Tessellators”).

• Perform an incremental load.

18

Chapter 2: Basic I/O: Getting Started with OpenGL Optimizer

Creating a Scene Graph Loader

To develop your own scene graph loader, you need to create a DSO with an external entry
point, for example:

csGroup *extLoad(char *filename, bool flatten,
opTessellateAction *tessellator, bool incremental);

The “ext” in extLoad() is the file extension of your database file. For example, if you were
creating a loader for files with the extension .foo, such as. engine.foo, your DSO would be
named fooLoader_dp.so for double-precision, or fooLoader_sp.so for single-precision. The
precision is defined by setting OP_SINGLE to TRUE or FALSE. The code for the loader
would include the following declaration:

extern “C”
{

csGroup *fooLoad(char *filename, bool flatten,
opTessellateAction *tessellator, \
bool incremental);

}

The arguments are as follows:

For an example of a loader, see ivLoad() in /usr/share/Optimizer/src/loaders/iv, which
contains the source code for the Inventor loader. The ivLoader creates nearly every type
of node available in Cosmo 3D.

The DSO must be named extLoader_dp.so (or _sp for single precision) and be placed in a
location defined in your LD_LIBRARY_PATH, /usr/lib[32], or both.

filename Name of the file to load, for example, opviewer engine.foo.

tessellator Pointer to a tessellator action that you can use for b-reps.

flatten Optimize the scene graph by state and transform flattening.

incremental Perform incremental loading.

Viewing Class: opViewer

19

Viewing Class: opViewer

The opViewer class provides an interactive Cosmo scene graph viewer for the X Window
System. Key features include:

• Scene graph viewing (see Figure 2-1)

• Mouse control of scene translation and rotation

• Keyboard control of various rendering modes

• A strip-chart performance meter.

opViewer can be extended by subclassing. OpenGL Optimizer contains some classes
derived from opViewer, for example opVizViewer. The node opGLSpyNode, which
appears in Figure 2-1, is discussed in “Observing OpenGL Modes” on page 296.

In Optimizer 1.1 and later, opViewer supports multi-threaded (nonforked) and
multi-pipe rendering. Source to opViewer is included to provide a sufficiently complex
example of writing a viewer.

Figure 2-1 opViewer Scene Graph

root

csGroup

model
graph
root
node

csGroup

csTransform

opGLSpyNode

OpenGL
mode

watcher

pose

20

Chapter 2: Basic I/O: Getting Started with OpenGL Optimizer

An application that uses opviewer goes through the following steps:

1. Initializes the library with a call to opInit().

2. Instantiates an opViewer.

3. Loads a scene graph.

4. Calls the opViewer event loop method.

Example 2-1

#include <Cosmo3D/csGroup.h>

#include <Optimizer/Optimizer.h>
#include <Optimizer/opInit.h>
#include <Optimizer/opViewer.h>
#include <Optimizer/opGenLoader.h>
#include <Optimizer/opTessParaSurfaceAction.h>

void main(int argc, char **argv)
{
 // Initialize OpenGL Optimizer.
 opInit();

 // Create a loader that will be used to load a scene graph
 // from a file.
 opGenLoader *loader;
 loader = new opGenLoader(true, NULL, false);

 // Get name of file containing the scene graph.
 char *fileName = argv[1];

 // Load the scene graph.
 csNode *scene = loader->load(fileName);

 csGroup *root = new csGroup;
 if (scene)
 {
 // Add the just loaded scene graph to a csGroup node.
 root->addChild(scene);
 }

 // Throw the loader away, we're done with it delete loader;

Viewing Class: opViewer

21

 // Tessellate the shapes in the scene graph. This is only
 // necessary if the scene graph contains untessellated shapes.
 opTessParaSurfaceAction *tessAction = new opTessParaSurfaceAction;
 tessAction->setChordalDevTol(0.01);
 tessAction->apply(root);

 // Create a viewer with title "Optimizer".
 opViewer *viewer = new opViewer("Optimizer");

 // Add the scene graph to the viewer.
 viewer->addChild(root);

 // Set the view point so that the entire scene graph is visible.
 viewer->setViewPoint(root);

 // Enter the viewer’s event loop. Now you can rotate and translate
 // the scene graph displayed in the viewer using the mouse.
 viewer->eventLoop();

The application can determine interactions with the scene graph by setting drawing
implementations (see “Controlling Rendering: opKeyCallback and opDrawImpl” on
page 22). The sample application opviewer, discussed in Appendix C, “opviewer Sample
Application,”, is a full example of how to use an opViewer.

opViewer Methods

The names of the methods of opViewer are descriptive and often refer the OpenGL
Optimizer functionality they control. Here are a few of the main methods:

addChild(g) Adds group g as child of the pose transform, shown in Figure 2-1.

eventLoop() Is the entry point for the X event loop for the window. eventLoop() starts
opViewer’s interactive mode. Perform all initializations of scene graph
data structures before calling eventLoop().

setDrawImpl() and getDrawImpl()
Sets and gets the opDrawImpl that currently controls scene graph
interactions. The constructor sets a default opDrawImpl, but you can
use others to allow, for example, highlighting and independent
manipulation of subgraphs (see Chapter 7, “Interactive Highlighting
and Manipulating”).

22

Chapter 2: Basic I/O: Getting Started with OpenGL Optimizer

setLODbias() and getLODbias()
Set and get a bias for levels of detail when a scene is rotating.

A bias of i has the effect that, given a sequence of level-of-detail nodes
indexed by a range of integers, 1 to n, arranged from highest to lowest
level of detail, after a level-of-detail calculation that would render node
m, the node m+i is rendered instead. This lightens the load on the
graphics hardware when you are not likely to need the most accurate
object representations.

setViewPoint()
Sets the view frustum to contain the bounding box of the graph rooted
at the node passed as an argument. If the argument is NULL, the
bounding box of the entire scene graph is used.

The opViewer class contains additional methods; consult the man page and source code
for more details. Note that in OpenGL Optimizer 1.1, opViewer supports multithreaded
(nonforked) and multipipe rendering.

Controlling Rendering: opKeyCallback and opDrawImpl

opViewer uses objects derived from opDrawImpl to control rendering details and the
effects of keyboard controls.

opViewer uses a C++ array of functions to associate a key or combination of keys to a
function, which can come from several opDrawImpls (however, you cannot have more
than one opDrawImpl active at any given time). The array is an opKeyCallback, which
is the following pointer-to-function type:

typedef bool (*opKeyCallback)(opDrawImpl *drawImpl,int key);

Controlling Rendering: opKeyCallback and opDrawImpl

23

opDrawImpl Methods

The methods of the opDrawImpl base class do nothing. You create meaningful
definitions in the derived subclasses. These are the intended uses of the member
functions:

opDrawImpl(viewer)
Registers keys and their effects using the member function
registerKey().

registerKey(key, keyCB, helpmessage)
Registers a keyboard key and a callback function keyCB. keyCB becomes
a member of the opKeyCallback pointer-to-function array maintained
by the opViewer. keyCB interprets key in terms of the opDrawImpl’s
methods.

Each subclass defines at least one such member of opKeyCallback. The
subclasses of opDrawImpl in the OpenGL Optimizer library call this
defining function keyHandler() (see “opDrawImpl Subclasses Used In
Sample Applications” on page 24, “Rendering With View-Frustum and
Occlusion Culling: opOccDrawImpl” on page 65, and “Interacting With
a Rendered Object: opPickDrawImpl” on page 90).

Notice that different opDrawImpls cannot associate different
definitions for one keyboard key. This allows you to include without
ambiguity several opDrawImpls in one opViewer and switch among
them. For example you could select among the following
opDrawImpls:

• Default: see “opDrawImpl Subclasses Used In Sample
Applications” on page 24

• Picking: see “Interacting With a Rendered Object:
opPickDrawImpl” on page 90

• Occlusion culling: see “Rendering With View-Frustum and
Occlusion Culling: opOccDrawImpl” on page 65

24

Chapter 2: Basic I/O: Getting Started with OpenGL Optimizer

pick() Allows you to define mouse interactions with a rendered object. See, for
example, the class opPickDrawImpl, which is discussed in “Interacting
With a Rendered Object: opPickDrawImpl” on page 90.

activated() and deactivated()
Defines callbacks that are implemented when you switch to and from an
opDrawImpl using opViewer::setDrawImpl().

reset() Returns a scene to the default settings defined by this function.

opDrawImpl Subclasses Used In Sample Applications

Different sample applications create different subclasses of opDrawImpl.

opDefDrawImpl: Controlling Rendering for opViewer

The opDefDrawImpl class defines the default drawing options and their keybinding for
opViewer().

The class declaration for opDefDrawImpl is nearly identical to that of opDrawImpl. The
main difference is the inclusion of a member of the opKeyCallback function array called
keyHandler(), which defines the effects of keyboard commands. This is the prototype for
the member function keyHandler():

static bool keyHandler(opDrawImpl *,int);

opDefDrawImpl Methods

keyHandler() Defines the effects of the keyboard commands registered by calls to
registerKey(). opDefDrawImpl has the keyboard controls described in
“opDefDrawImpl Keybindings” on page 25.

registerKey() Registers a keyboard command and specifies the function that interprets
the command. The function registerKey() is inherited from
opDrawImpl, which is discussed in “Controlling Rendering:
opKeyCallback and opDrawImpl” on page 22. See the file
opDefDrawImpl.cxx for details.

Controlling Rendering: opKeyCallback and opDrawImpl

25

opDefDrawImpl Keybindings

The class constructor for opDefDrawImpl uses the methods registerKey() and
keyHandler() to register the following keyboard commands (see the file
opDefDrawImpl.cxx):

b Toggles back-face culling (see “Detail Culling” on page 69).

B Toggles bounding-box display. Shows the csBoxBound of each
csGeoSet in the scene.

h Prints help message listing these key actions.

q Quits.

ESC Quits.

r Resets scene to what it was at the start of the application.

l Toggles the light-direction mode, which allows you to control the
location of the light source with your mouse.

L Toggles a second light source opposite the first if you have a model with
normals flipped in opposite directions.

p Prints the scene graph.

s Toggles status display.

t Toggles reflection mapping illumination with the Gaussian map (see
Chapter 8, “Efficient High-Quality Lighting Effects: Reflection
Mapping”).

w Toggles wire-frame mode, which shows the edges of the triangles that
define the objects in the scene.

W Toggles hidden-line removal when in wire-frame mode.

SPACE Stops scene motion.

? Prints OpenGL status during the subsequent frame.

opXmDrawImpl: Controlling Rendering for opXmViewer

If you want to use the Motif library, opXmViewer uses opXmDrawImpl, which has
methods analogous to a combination of opDrawImpl and opPickDrawImpl. The latter
is an opDrawImpl that allows manipulation of selected objects in a scene. See
“Interacting With a Rendered Object: opPickDrawImpl” on page 90

PART TWO

High-Level Strategic Tools for Fast Rendering II

The first three chapters in this section discuss tools that help reduce the amount
of scene-graph data that the graphics hardware must process. With the exception
of the level-of-detail nodes, discussed in Chapter 4, all of these tools also reduce
the size of the host’s data management task.

This section consists of the following chapters:

Chapter 3, “Sending Efficient Graphics Data to the Hardware” discusses
techniques for optimizing the graphics pipeline.

Chapter 4, “Rendering Appropriate Levels of Detail”explains how to use the
OpenGL Optimizer simplification tools.

Chapter 5, “Culling Unneeded Objects From the Scene Graph”discusses
organizing a scene graph to facilitate traversals, particularly view frustum
culling, picking and highlighting, and occlusion culling.

Chapter 6, “Organizing the Scene Graph Spatially” explains how to structure the
scene graph to reflect the spatial relationships of objects in the scene.

29

Chapter 3

3. Sending Efficient Graphics Data to the Hardware

A potential bottleneck in the graphics pipeline is the transfer of rendering commands to
the graphics hardware. Generating a compact set of OpenGL commands not only
simplifies tasks for the host, it can accelerate later stages in the graphics pipeline.

For a discussion of techniques for developing an optimal set of OpenGL commands, see
sections 6.6.2, “Reducing OpenGL Command Overhead,” and section 6.6.3, “Minimize
OpenGL Mode Changes,” in Programming OpenGL for the X Window System (see
“Recommended Background Reading” on page xxxi). This book is referred to in this
chapter as the Green book.

This chapter presents five of the six approaches to optimization mentioned in the Green
book sections 6.6.2 and 6.6.3: display lists, vertex arrays, short normals, connected
primitives, and avoiding mode switching. The sixth method described in the Green
book— using OpenGL evaluators— is a subtler task, addressed by OpenGL Optimizer
higher-order geometric primitives, and discussed in Part IV, “Managing and Rendering
Higher-Order Geometric Primitives.” OpenGL Optimizer also includes a tool for using
multiple processors to create connected primitives.

Also included in this chapter is the discussion of a scene-graph-flattening tool, which
simplifies a scene graph.

The chapter has the following sections:

• “Display Lists” on page 30 (see also the Green book)

• “Vertex Arrays” on page 31 (see also the Green book)

• “Shortening Representations of Surface Normal Data” on page 31

• “Avoiding OpenGL Mode Switching” on page 32 (see also the Green book)

• “Creating OpenGL Connected Primitives” on page 33 (see also the Green book)

30

Chapter 3: Sending Efficient Graphics Data to the Hardware

Display Lists

An OpenGL display list is a copy of the scene graph in a form optimized for the graphics
pipeline. On some machines, you can accelerate rendering by nearly a factor of 10 by
using display lists. The speedup occurs if the graphics hardware can hold display lists in
a cache. For graphics hardware of this type, display lists are the most efficient
descriptions of objects in a scene. However, because display lists are a copy, they use
more memory.

Display lists are useful if you can graphically treat all the elements in the list as a unit. If
you have to independently manipulate an element in the group, a display list is not
appropriate.

For more information on the advantages of using display lists, see the Green book; the
Red book, particularly Chapter 4; and OpenGL on Silicon Graphics Systems, particularly
the sections “CPU Tuning: Basics” and “CPU Tuning: Display Lists” in Chapter 12,
“Tuning the Pipeline.” These books are all listed in “Recommended Background
Reading” on page xxxi.

These two OpenGL Optimizer functions create OpenGL display lists:

opDListCSGeometry(g)
Compiles a single csGeometry g into an OpenGL display list and returns
the modified csGeometry. This is the prototype:

csGeometry *opDListCSGeometry(csGeometry *g)

opDListScene(root)
traverses the scene graph, beginning at root, compiling each csGeometry
into an OpenGL display list. This is the prototype:

void opDListScene(csNode *root)

See the opGFXSpeed(3) manpage for more details.

Vertex Arrays

31

Vertex Arrays

For more efficient surface descriptions, convert csGeoSet attributes to OpenGL vertex
arrays, an alternative to using procedure calls for each piece of vertex data.

For more information on vertex arrays, see the OpenGL Programming Guide, particularly
the section “Vertex Arrays” in Chapter 2; and OpenGL on Silicon Graphics Systems,
Chapter 14, “Tuning the Pipeline.” These books are listed in “Recommended
Background Reading” on page xxxi.

These two OpenGL Optimizer functions make OpenGL vertex arrays (see
opGFXSpeed.h):

opGLArrayEXTCSGeoSet()
Converts the attributes in a csGeoSet to the format appropriate for
glDrawArrays() and returns the modified csGeoSet. This is the
declaration for the conversion function:

csGeoSet *opGLArrayEXTCSGeoSet(csGeoSet *g)

opGLArrayEXTScene()
Converts the attributes in all the csGeoSets in a scene graph to the
format appropriate for glDrawArrays() and returns the root of modified
scene graph. This is the declaration for the conversion function:

void opGLArrayEXTScene(csNode *root)

Shortening Representations of Surface Normal Data

Surface normals, which accurately represent a surface before tessellation, are usually
stored in a csGeoSet as floating-point vectors (csVec3fs), one for each vertex.

For all normal vectors in the scene graph below root, the function
opShortNormsScene(root) converts the data format from csVec3f to csVec3s, that is, to
short-integer vectors. This shortening of the memory segments holding surface normals
reduces the amount of data that must be sent from the host to the graphics pipeline by as
much as 25%.

Short normals provide faster rendering in situations where host-to-graphics-pipeline
bandwidth is the limiting factor. The reduced data volume also enhances performance
by allowing more of the scene to reside in the display-list cache.

32

Chapter 3: Sending Efficient Graphics Data to the Hardware

Avoiding OpenGL Mode Switching

If the OpenGL state (or mode) differs between objects in a scene, rendering speed,
particularly the transformation and rasterization stages, can be slowed due to the
reconfiguration required.

Two OpenGL Optimizer classes allow you to inhibit mode changes during rendering.
You can inhibit a change to the color associated with a csShape or you can disable the
entire csAppearance associated with the shape. In either case the first values of states
that are encountered during the draw traversal are used for the entire scene.

Removing Color Bindings

You can accelerate the transform stage by disabling the current-color tests, which are
controlled by glColorMaterial(). Naturally this alters the color of objects. See the OpenGL
Programming Guide for more details.

The function opRemoveColorBindings() traverses a scene graph and sets the color
binding of each csGeoSet to NO_COLOR. This is the declaration of the function, which
appears in the file opGFXSpeed.h:

void opRemoveColorBindings(csNode *root)

Removing csAppearance Effects: opCollapseAppearances

You can force all csShape nodes in a scene graph to have the same csAppearance, and
thus prevent mode switching by the OpenGL machine during rendering. To do so, use
the class opCollapseAppearances, which is a csAction that traverses the scene graph
and sets all csAppearances to be the same as the first appearance encountered by the
traversal. Be aware, however, that existing csAppearances are lost.

Methods in opCollapseAppearances

apply() Is inherited from csAction. When you call apply() on a node, all
csShapes below it are set to have the same csAppearance as the first
csShape encountered by a traversal starting at that node.

Creating OpenGL Connected Primitives

33

Creating OpenGL Connected Primitives

OpenGL defines two useful geometric primitives to minimize the redundancy of vertex
information, and thus increase rendering performance: triangle fans (trifans) and triangle
strips (tristrips), as shown in Figure 3-1.

Figure 3-1 Construction of Triangle Fan (left) and Triangle Strip (right)

Trifans and tristrips take advantage of adjacency to eliminate vertex data duplication
along shared edges. A tristrip or trifan with n triangles is specified by n+2 vertices, which
is typically significantly less than the 3n vertices required to encode n triangles
independently.

Tristrips and trifans used in conjunction with display lists form a powerful combination
on machines with a display-list cache. Because of their compact representations, tristrips
and trifans allow the cache to hold more triangles.

The following sections discuss OpenGL Optimizer classes for creating trifans and
tristrips:

• “Features of Trifans and Tristrips” on page 34.

• “Merging Triangles Into Fans: opTriFanner” on page 36.

• “Merging Triangles Into Strips: opTriStripper” on page 37.

• “Merging Triangles Into Both Strips and Fans: opTriFanAndStrip” on page 38.

• “Merging Triangles Using Multiple Processors: opMPTriFanAndStrip” on page 40.

• “Observing Trifans and Tristrips: opColorizeStrips()” on page 41.

Note: You can read more about trifans and tristrips in the OpenGL Programming Guide.

0

1 2 2

3

3
4

4

5

6

7

0

1

34

Chapter 3: Sending Efficient Graphics Data to the Hardware

Features of Trifans and Tristrips

Reducing the number of vertices by collecting triangles into strips or fans mainly reduces
transform time— fewer vertices means fewer vertex transformations. Secondary benefits
of “tristripping” and “trifanning” are reductions in OpenGL function call overhead,
bandwidth requirements, memory consumption, and caching. Another benefit is fewer
glVertex*() calls and proportionally less bandwidth to the graphics hardware. Because
tristrips and trifans encode fewer vertices, they also require less memory than
independent triangles. On the host side, this translates into better locality of reference.
Fill-limited applications receive no benefit from using tristrips or trifans.

How OpenGL Optimizer Constructs Trifans and Tristrips

During construction of a trifan, a new triangle is defined by a new vertex, the previous
vertex, and the first vertex, which is common to all the triangles in the fan (see
Figure 3-1).

During the construction of a tristrip, a new triangle is defined by a new vertex the
previous two vertices that were added to the tristrip (see Figure 3-1).

How OpenGL Optimizer Manages Attributes of Shared Vertices

Each vertex has attributes, such as color. When a vertex defines a new triangle in a tristrip
or trifan, it retains the attributes it had as a member of the original triangle. When the
vertex is subsequently shared with another triangle, it has two sets of attributes. To
resolve the ambiguity, the vertex’s attributes that are associated with the most recently
added triangle are lost.

If normals and colors associated with shared vertices of two adjacent triangles are too
different, you may see an unacceptable distortion of appearance. You can therefore
control the maximum acceptable difference between the attributes of the vertex in the
two triangles in which it participates.

To illustrate the problem, consider the case of two adjacent triangles that lie on different
faces of a cube. The original normals associated with the shared vertices on the edge of
the cube are at right angles to each other. If these triangles are grouped into a tristrip, one
of the faces is lit as if it were a curved surface, because its original normal at the shared
vertex no longer controls the lighting calculation. Similarly, if you created a trifan with a
central vertex at the corner of a cube and triangles on all three adjacent faces, two of the
faces would appear curved.

Creating OpenGL Connected Primitives

35

Strategies for Using Trifans, Tristrips, or a Combination of Both

Trifanning algorithms often work well where tristripping algorithms work poorly, and
vice versa. Generating trifans is typically easier than generating good tristrips because a
good candidate for the first vertex in a fan is any vertex adjacent to a large number of
edges. Determining starting triangles for tristrips is more complicated. OpenGL
Optimizer provides classes for three ways to create trifans and tristrips:

• a trifan generator

• a tristrip generator

• an automatic combination of the two

To tune your scene graph, try each technique, and use the one that results in the
minimum number of vertices (see “Gathering Triangle Statistics” on page 292).

Triangle fans are particularly useful when used with tessellations of trimmed NURBS
because the tessellation process often generates large sets of triangles that can be
represented by fans. See Part IV, “Managing and Rendering Higher-Order Geometric
Primitives” for more information on NURBS.

Counting Vertices to Assess Graphic Pipeline Load

To assess the benefits of tristrips or trifans when tuning your database, use the average
number of vertices per triangle as a metric. The vertex number is preferable to the
average number of triangles per trifan or tristrip because it is proportional to the real
computational load on the transformation stage of the pipeline. To obtain triangle and
vertex statistics, see “Gathering Triangle Statistics” on page 292.

36

Chapter 3: Sending Efficient Graphics Data to the Hardware

Merging Triangles Into Fans: opTriFanner

The main feature of the opTriFanner class is an overloaded method, convert(), which
generates csTriFanSets from triangle sets. A set of triangles can come from a csGeometry,
from a singly linked list of trifans that you create, or from an opGeoConverter, discussed
in “Decomposing csGeoSets Into Constituent Triangles: opGeoConverter” on page 257.
In anticipation of possible derivations, the member function convert() is declared to
accept the parent class of csGeoSet, csGeometry.

Class Declaration for opTriFanner

The class has the following main methods:

class opTriFanner : public opTriFanSetBuilder
{
public:
opTriFanner(const opGeoConverter *gc);
~opTriFanner();

static csGeometry *convert(
 const opGeoConverter *gc,
 opColorGenerator *cg=opColorGenerator::noColors());

static csGeometry *convert(
 csGeometry *geom,
 opColorGenerator *cg=opColorGenerator::noColors());
};

The TriFanner::convert() Method

The convert() method can be invoked with two different set of arguments. The method
can have one of the following effects:

• Returns a new csGeometry containing csTriFanSets made by rearranging the
triangles from gc. The optional opColorGenerator specifies a new color scheme for
the triangle fans.

• Returns a csGeometry containing triangle fans made by rearranging the triangles
from geom. The following csGeometrys are triangulated and trifanned: csTriSet,
csTriStripSet, or csTriFanSet, csQuadSet, csPolySet. The optional
opColorGenerator specifies a new color scheme for the triangle fans.

Creating OpenGL Connected Primitives

37

Merging Triangles Into Strips: opTriStripper

The second approach to control redundant vertex information is to organize triangles
into strips of adjacent triangles.

Class Declaration for opTriStripper

The class has the following main methods:

class opTriStripper : public opTriStripSetBuilder
{
public:
opTriStripper(const opGeoConverter *gc);
~opTriStripper();

static csGeometry *convert(
 const opGeoConverter *gc,
 opColorGenerator *cg = opColorGenerator::noColors());

static csGeometry *convert(
 csGeometry *geom,
 opColorGenerator *cg = opColorGenerator::noColors());

static csShape *convert(
 csShape *s,
 opColorGenerator *cg = opColorGenerator::noColors());
};

The TriStripper::convert() Method

The convert() method can be invoked with three different sets of arguments. The method
can have one of the following effects:

• Returns a new csShape containing csTriStripSets made by rearranging the triangles
from shape. The following csGeometrys will be triangulated and tristripped:
csTriSet, csTriStripSet, or csTriFanSet, csQuadSet, csPolySet. The optional
opColorGenerator specifies a new color scheme for the triangle strips.

• Returns a csGeometry containing triangle strips made by rearranging the triangles
from geom. The following csGeometrys will be triangulated and tristripped:
csTriSet, csTriStripSet, or csTriFanSet, csQuadSet, csPolySet. The optional
opColorGenerator specifies a new color scheme for the triangle strips.

38

Chapter 3: Sending Efficient Graphics Data to the Hardware

• Returns a csGeometry containing triangle strips made by rearranging the triangles
in an opGeoConverter. The optional opColorGenerator specifies a new color
scheme for the triangle strips.

Tuning Triangle Strips: Fixing Tristrips that are too Short

The effectiveness of triangle strips depends on the length of the strips: many short strips
are less efficient than the same number of triangles in one long tristrip.

Typically, models cannot be grouped into long strips using OpenGL Optimizer
tristripping algorithms. In general, the more uniform the tessellation, the longer the
strips will be. When you see too many vertices per triangle (see “Gathering Triangle
Statistics” on page 292), check for the following:

• The triangles may not actually be adjacent because of cracks. If the triangles have
been generated by an OpenGL Optimizer tessellator, you may be able to eliminate
the cracks using the opTopo class, which aligns the higher order representations
before tessellation. For more information on opTopo, see Chapter 10, “Creating and
Maintaining Surface Topology.”

• Normals, colors, or texture coordinates may be too different to allow grouping. Try
relaxing tolerances if possible.

• The number of triangles available for creating tristrips may be too small for
developing effective tristrips. Try combining triangles from several csGeoSets (see
“Merging csGeoSets in a Scene Graph: opCombineGeoSets” on page 81).

• Some models cannot be grouped into long strips using the OpenGL Optimizer
algorithm. Try the trifanning algorithm, a different tristripping algorithm, a mix of
tristrip and trifans, or see if you can generate a more uniform tessellation (see
Chapter 11, “Rendering Higher-Order Primitives: Tessellators”).

Merging Triangles Into Both Strips and Fans: opTriFanAndStrip

The class opTriFanAndStrip is a csAction that uses a hybrid approach to traversing a
scene graph and merging the triangles in each csGeoSet into trifans or tristrips.

The merging operation begins by making trifans. If a trifan has fewer than a minimum
number of triangles, the fan is not kept and the triangles are passed to the tristripper.

Creating OpenGL Connected Primitives

39

Class Declaration for opTriFanAndStrip

The class has the following main methods:

class OP_DLLEXPORT opTriFanAndStrip : public csAction
{
public:
// Input: csShape
// csGeometry, csGeoSet0, . . . csGeoSetN
// Output: csShape
// csGeometry, csTriStripSet, csTriFanSet
opTriFanAndStrip(int minFanSize,
 opColorGenerator *cg=opColorGenerator::noColors());
virtual ~opTriFanAndStrip();

static csShape *convert(
 csShape *,
 int minFanSize=5,
 opColorGenerator *cg=opColorGenerator::noColors());
};

Methods in opTriFanAndStrip

apply(csNode *node)
Is inherited from csAction. It initiates the conversion traversal and
applies convert() to each csShape in the scene graph below node.

convert() Collects the csGeoSets in a csShape node and creates from all the
triangles a new csTriFanSet containing fans with at least minFanSize
triangles, and a csTriStripSet containing the remaining triangles.
convert() then places these new objects in the csShape. The remaining
csGeometrys are placed in a new csShape.

To control whether individual trifans and tristrips created by the apply() and convert()
functions are distinguished by color, use an opColorGenerator as for opTriFanner and
opTriStripper (see “The TriFanner::convert() Method” on page 36 and “Specifying
Coloring of New csGeoSets: opColorGenerator” on page 259).

40

Chapter 3: Sending Efficient Graphics Data to the Hardware

Merging Triangles Using Multiple Processors: opMPTriFanAndStrip

If your application runs on a machine with multiple processors, you can use the OpenGL
Optimizer tool opMPTriFanAndStrip to accelerate generation of trifans and tristrips.

The method apply(), which is inherited from csAction, performs the same conversion as
opTriFanAndStrip::apply(), but runs the procedure in parallel. The algorithm checks the
number of processors and reserves one for the thread manager; the remaining processors
manipulate the scene graph. For more information about OpenGL Optimizer
multiprocessing tools, see Chapter 14, “Managing Multiple Processors.”

Class Declaration for opMPTriFanAndStrip

The class has the following main methods:

class opMPTriFanAndStrip : public csAction
{
public:
opMPTriFanAndStrip(int minFanSize, opColorGenerator
 *cg=opColorGenerator::noColors());
virtual ~opMPTriFanAndStrip();

void begin(csNode *node); // count shapes, allocate memory

csTravDirective preVisit(csNode *node); // collect shapes in list

void end(csNode *node); // convert shapes in parallel,
 // replace in tree
};

Methods in opMPTriFanAndStrip

apply(csNode *node)
Is inherited from csAction and initiates the conversion traversal, which
uses all but one of the available processors.

opMPTriFanAndStrip()
Sets the minimum allowable trifan size. Triangles from smaller fans
become parts of tristrips. To evaluate the effect of the trifan size, see
“Gathering Triangle Statistics” on page 292.

To control scene graph traversal, the class defines the virtual functions inherited from
csAction: begin(), preVisit(), and end().

Creating OpenGL Connected Primitives

41

To control whether individual trifans and tristrips created by the apply() and convert()
functions are distinguished by color, use an opColorGenerator as you do for
opTriFanner and opTriStripper (see “The TriFanner::convert() Method” on page 36 and
“Specifying Coloring of New csGeoSets: opColorGenerator” on page 259).

Observing Trifans and Tristrips: opColorizeStrips()

The convenience function opColorizeStrips() traverses a scene graph and applies
random colors to csTriStripSets, csTriFanSets, and csTriSets, allowing you to visualize
the effects of opTriFanner, opTriStripper, opTriFanAndStrip, or opMPTriFanAndStrip
algorithms. Notice that the convert() method for each of these classes also allows you to
apply random color to the output.

The function, which is declared in opGFXSpeed.h, has the following prototype:

void opColorizeStrips(csNode *root)

43

Chapter 4

4. Rendering Appropriate Levels of Detail

Typically, a renderable object in an OpenGL Optimizer application is a csGeoSet that
approximates a surface with a mesh of triangles. Whether you create the set of triangles
with a tessellator (see Chapter 11, “Rendering Higher-Order Primitives: Tessellators”) or
import a model that already has a set of triangles, you do not always want to render
every triangle.

For example, a nearby object requires many more triangles to approximate a smooth
appearance than the same object requires when further away, where it might cover only
a few pixels. Rendering the same set of vertices in both cases is an unnecessary load on
the graphics pipeline. It is also reasonable to use less detail if an object is moving, when
geometric details are less important.

The following sections in this chapter discuss the simplification tools:

• “Overview of Simplification Tools” on page 43

• “opSimplify: Base Class for Adding Level-of-Detail Nodes” on page 45

• “Creating LODs: opSRASimplify” on page 47

• “Rossignac Simplification Algorithm: opLatticeSimplify” on page 51

• “Merging Graphs With Differing Levels of Detail: opMergeScenes” on page 52

Overview of Simplification Tools

The simplifier classes each act on a csGeoSet, creating another csGeoSet with fewer
triangles. OpenGL Optimizer does not provide tools to simplify multiple csGeoSets in a
scene graph, because there are too many possible context-dependent outputs for a
general tool.

For an example of how to traverse a scene graph and simplify all the csGeoSets in it, see
the files /usr/share/Optimizer/src/apps/simplify.h and simplify.cxx. To understand the
traversers there, see Chapter 12, “Traversing a Large Scene Graph.”

44

Chapter 4: Rendering Appropriate Levels of Detail

Simplifier Classes

The base class opSimplify describes mesh simplifiers that create varying levels of detail
from a given csGeoSet. The levels of detail allow you to eliminate unnecessary triangles
when rendering. opSimplify lets you derive your own simplifiers.

OpenGL Optimizer includes two opSimplify classes, opSRASimplify (see “Creating
LODs: opSRASimplify” on page 47) and opLatticeSimplify (see “Rossignac
Simplification Algorithm: opLatticeSimplify” on page 51), which provide different
mesh-simplifying algorithms. The algorithm available through opSRASimplify is more
sophisticated and provides more detailed control than is available through
opLatticeSimplify, but the algorithm in opLatticeSimplify is faster. By extending the
opSRASimplify class, application developers can define their own evaluation function,
thereby changing the order of simplification. (See “Evaluation Function” on page 48 for
more information.)

In OpenGL Optimizer 1.1 and later, opSRASimplify has enhanced decimation
functionality. It also supports all polygonal geoset types as inputs and produces indext
tristrips as output. opSRASimplify also has a method that recalculates the normals of a
given csGeoSet, based on the orientation of its triangles. The method has the following
prototype:

csGeoSet* calculateNormals(csGeoSet* srsGset)

Levels of Detail

Typically you place a set of simplified objects below a level-of-detail node (a LOD). This
node allows you to control the trade-off between interactivity and rendering accuracy;
costly detail is drawn only when you can see it.

The children of an LOD node represent objects with varying degrees of resolution, that
is, varying numbers of triangles. Typically, as the index of the child of an LOD increases,
resolution decreases and rendering rate, therefore, increases. In an extreme case, you may
not want to render an object at all. The tool for this operation is discussed in “Detail
Culling” on page 69.

Cosmo3D provides csLOD scene-graph nodes to allow you to set the appropriate level
of surface detail for a particular view during a draw action. A csLOD is a switch node
that selects among its children based on the distance from the viewpoint. See the Cosmo
3D Programmer’s Guide for more details.

opSimplify: Base Class for Adding Level-of-Detail Nodes

45

When you decide where to place an LOD in a scene graph, consider how much
“popping” you can tolerate as the LOD switches between children during rendering. For
example, you could have one LOD near the root node, or many LODs, one above each
object in a scene.

LOD Insertion

You can insert a csLOD node below a csGroup node by calling the csGroup methods to
add or replace a child node. See the Cosmo 3D Programmer’s Guide for more details.

OpenGL Optimizer provides the function addLODChild() as an example for inserting
an LOD node. The function takes care of initializations required before you add a child
with the method from csGroup. The function addLODChild() is in
/usr/share/Optimizer/src/apps/opoptimize/addLOD.cxx.

The class opMergeScenes lets you combine entire scene graphs that differ only in the
levels of detail in their csGeoSets.

opSimplify: Base Class for Adding Level-of-Detail Nodes

The functions in the opSimplify class are not implemented; they are effectively virtual
functions.

A simplifier takes a scene graph as input and creates a modified scene graph that has
csLOD nodes with simplified children. From the opSimplify base class you can derive
your own simplifiers.

Class Declaration for opSimplify

The class has the following main methods:

class opSimplify
{
public:
opSimplify(void);
~opSimplify(void);

46

Chapter 4: Rendering Appropriate Levels of Detail

public:
// Which child in csGroup to simplify from
enum WhichSrcEnum
{
SRC, // Usually LOD 0
PREV // Usually coarsest LOD
};

void simplifyGraph(csNode *rootNode, int relativeDepth,
 opLengthUnits units, int threadId);

// Simplify from the source
void simplifyFromSrc(int lodLevel);

// Simplify from the previous level
void simplifyFromPrev(int lodLevel);

// Simplifier precision parameter settings
void setRelativePercent(int lodLevel, opReal percent);
void setAbsolutePercent(int lodLevel,opReal percent);
void setPolyCount(int lodLevel, int polyCount);
void setAbsoluteTol(int lodLevel,opReal Tol);
void setRelativeTol(int lodLevel,opReal Tol);

opReal getRelativePercent(int lodLevel);
opReal getAbsolutePercent(int lodLevel);
int getPolyCount(int lodLevel);
opReal getAbsoluteTol(int lodLevel);
opReal getRelativeTol(int lodLevel);
};

Methods in opSimplify

simplifyGraph()
Defines the graph to be simplified.

simplifyFromSrc()
Specifies that the simplifier work on the most detailed object.

simplifyFromPrev()
Specifies that the simplifier work on the previous level of detail.

The remaining methods set and get parameters that characterize the simplification
process.

Creating LODs: opSRASimplify

47

Creating LODs: opSRASimplify

Using different levels of details (LODs) based on distance can increase the performance
of your application: the more distant the geometry or mesh from the viewer, the more
simplified the LOD required to accurately represent it.

opSRASimplify, derived from opSimplify, gives you control over the creation of LODs.
By providing simplifying parameters, you can specify the kinds of vertices that are
removed in the creation of LODs.

Simplifying Parameters

opSRASimplify::decimateGeoSet() makes a copy of a csGeoSet and returns a
simplified version of it (using the indexed csTriSet format) based on the following
parameters:

• Percentage of the original model.

• Three scaling factors in an evaluation function.

• Whether edge vertices are simplified or not.

If the simplification parameters do not allow any vertices to be removed, the returned
csGeoSet is the same as the input csGeoSet.

Note: For an example of using opSRASimplify to simplify all csGeoSets in a scene, see
“Sample Traversal Function From the opoptimize Sample Application” on page 250 and
the file /usr/share/Optimizer/src/apps/opoptimize/simplify.cxx.

The following sections discuss the opSRASimplify parameters.

Percentage of the Original Model

The simplification algorithm removes vertices until a specified percentage of the original
number of triangles remains. The simplification can terminate before that percentage is
reached if the removal of vertices is no longer possible due to other criteria.

setPercent() and getPercent() set and get, respectively, the percentage of the original set
of triangles that should remain in the simplified csGeoSet. Percentage values range from
0.0 to 100.0. By default, the percentage value is set to DEFAULT_SRASIMP_PERCENT.

48

Chapter 4: Rendering Appropriate Levels of Detail

Evaluation Function

You can define your own evaluation function by extending the opSRASimplify class
and implementing the virtual calulateVtxEval method. If you have a set of data, like
strain information that should influence the simplification, you should define your own
calculateVtxEval() method and implement a new evaluation functions. For details on
how to do this, see the opSRASimplify manpage. The evaluation function implemented
in the opSRASimplify is:

vertexWeight = W 0 *distance + W 1 *normalDeviation + W 2 *curvature

Then, set the values of W0, W1, and W2 through the method
opSRASimplify::setWeights().

Each of the weights, when it has a high value compared to the other weights, preserves
different characteristics of the mesh.

• A high W 0 value selectively removes from the mesh all those vertices for which the
distance between the old vertex and the average plane of the simplified polygon is
small, as shown in Figure 4-1.

• A high W1 value preserves sharp features of the mesh.

• A high W2 value preserves high curvature regions.

Figure 4-1 Evaluation Function

Distance from old vertex
to average plane

of simplified polygon

Creating LODs: opSRASimplify

49

Effects of Simplification

The illustrations below illustrate the effects of decimateGeoSet() for specific
simplification parameters.

Figure 4-2 shows the original model. The following three models are obtained after
applying decimateGeoSet() to the original with the arguments:

• percent 50 weights 1 0 0 (Figure 4-3)

• percent 50 weights 0 1 0 (Figure 4-4)

• percent 50 weights 0 0 1 (Figure 4-5)

Notice what happens to the horizontal edge of the wing.

Figure 4-2 Original Model Used for Simplification

Figure 4-3 Model Simplified using percent 50 weights 100

50

Chapter 4: Rendering Appropriate Levels of Detail

Figure 4-4 Model Simplified using percent 50 weights 010

Figure 4-5 Model Simplified using percent 50 weights 001

Because the horizontal edge of the wing is a high curvature region, it is approximated by
a lot of small triangles. Thus, simplification with weights 1 0 0 removes these vertices,
and you can see small dents beginning to form in the model. Simplification with weights
0 0 1 preserves high curvature regions, and the edge of the wing in the model is left intact.

Rossignac Simplification Algorithm: opLatticeSimplify

51

Simplifier Features

The Simplifier has a number of flags you can set that define

• whether the csCoordSet should be shared between the original and the simplified
version

• whether the normals of the simplified mesh should be recalculated

• whether the sharp vertices of the simplified mesh should be split to prevent black
shaded triangles

Look at the opSRASimplify reference pages for a detailed description.

Simplification Errors

If you simplify a csGeoSet with two adjacent triangles that were originally specified
independently, cracks can appear in surfaces rendered after simplification. The cracks
result from shared vertices that are identical but have a double entry in the csCoordSet
array. The simplifier might eliminate one of the triangles, but not the other. The effect is
an apparent tear or crack in the surface.

The simplifier doesn’t check for intersecting triangles upon removal of a vertex and
retriangulation. Self-intersecting meshes are therefore a possible result of simplification.

Rossignac Simplification Algorithm: opLatticeSimplify

The class opLatticeSimplify provides methods to apply the algorithm developed by
Jarek Rossignac to simplify a csGeoSet. The algorithm is less complex than that available
in opSRASimplify, so it is faster, but it gives a somewhat lumpy simplification. This
simplifier is most appropriate for low levels of detail.

The algorithm takes a grid in space and moves each vertex in a csGeoSet to the nearest
grid point. If the grid is too coarse, the result will strongly reflect the grid structure.

52

Chapter 4: Rendering Appropriate Levels of Detail

Class Declaration for opLatticeSimplify

The class has the following main methods:

class opLatticeSimplify : public opSimplify
{
public:
opLatticeSimplify(float gridSpacing);
virtual ~opLatticeSimplify();

csGeoSet *simplify(csGeoSet *);

Methods in opLatticeSimplify

opLatticeSimplify()
Specifies the grid spacing used in the simplification.

simplify() Applies the Rossignac simplification to the specified csGeoSet.

Merging Graphs With Differing Levels of Detail: opMergeScenes

If you simplify all the csGeoSets in a scene graph to varying levels of detail, and create
graphs that otherwise retain the identical structure, you can place the differing levels of
detail in one scene graph with the methods of opMergeScenes. The merged scene graph
has the following structure:

• Above nodes in the tree that you specify with a callback, the output graph is
identical to one of the input graphs.

• Below the specified nodes, a csLOD node is inserted, providing a switch between
the corresponding lower subgraphs of the input graphs.

Before the subgraphs are inserted, they are reorganized to reflect their relative positions
in space and to facilitate rapid cull traversals. See “Spatializing a Scene Graph:
opGeoSpatialize” on page 78.

For an example of how to use an opMergeScenes, see the sample application
mergeLODDemo.

Merging Graphs With Differing Levels of Detail: opMergeScenes

53

Figure 4-6 Merging Two Scene Graphs

csGroup

csGroup

csSwitch

csShape

A B

u

r

s t

csShape

t

csGroup

csGroup

csSwitch
u

r

s

C

csGroup

csGroup

csLODcsSwitch

csLOD csLOD

csShape

w

S(A) S(B)

u v

r

s

x

t

S(D) S(E)

D E

F

S(C) S(F)

Subgraph S() Spatialization of subgraph

54

Chapter 4: Rendering Appropriate Levels of Detail

Class Declaration for opMergeScenes

The class has the following main methods:

class opMergeScenes : public csAction
{
public:
typedef bool (*LODCallback)(csNode *);

opMergeScenes(int maxScenes,int goalMin,int goalMax,
 opMergeScenes::LODCallback f);
~opMergeScenes();

void addScene(csNode *scene);
csNode *done();

void setGoalMin(int n) ;
void setGoalMax(int n) ;
void setInsertLODFunc(LODCallback f) ;

int getGoalMin() ;
int getGoalMax() ;
LODCallback getInsertLODFunc() ;

Main Features of the Methods in opMergeScenes

addScene() Adds a scene graph to the list of graphs to be merged.

apply() Is inherited from csAction and causes a traversal of the graph, merging
subgraphs according to the criteria specified by LODCallback(). The
first scene graph included by calling addScene() is the graph in which
the csLOD nodes and subgraphs are inserted.

done() Has the same effect as apply(), but returns the root node of the merged
graph. You don’t have to call apply() if you call done().

Merging Graphs With Differing Levels of Detail: opMergeScenes

55

opMergeScenes()
Specifies

• the maximum number of scene graphs to merge

• the range of the number of triangles in the spatialized subgraphs
(see “Spatializing a Scene Graph: opGeoSpatialize” on page 78)

• a callback function that specifies when a node should have an LOD
node inserted below it that switches among the corresponding
subgraphs of the input graphs

setGoalMin(), getGoalMin(), setGoalMax(), and getGoalMax()
Set and get the parameters that control the spatialization routine. See
“Spatializing a Scene Graph: opGeoSpatialize” on page 78.

setInsertLODFunc() and getInsertLODFunc()
Set and get the callback function that determines which nodes should be
parents of the inserted LOD node(s) and subgrdaph children. Example
node-selection criteria are the depth of nodes from the top of the graph,
the height of nodes from the bottom of the graph, or specific node
names.

Note: The merged scene graph is created by modifying the first scene graph in the list
created by calls to addScene(); if you have further use for any of the graphs that you
merge, make copies before you merge them.

57

Chapter 5

5. Culling Unneeded Objects From the Scene Graph

With one exception, the tools discussed in this chapter reduce the number of objects and
vertices submitted to OpenGL processing. The tools cull unnecessary objects from the
scene graph before a draw traversal. The effect of these tools is to reduce the load on at
least one of the transformation, rasterization, and display stages of the graphics pipeline.

The following list shows the main culling topics discussed in this chapter:

• “View-Frustum Culling” on page 58

• “Occlusion Culling” on page 60

• “Rendering With View-Frustum and Occlusion Culling: opOccDrawImpl” on
page 65

• “View-Frustum and Occlusion Cull Draw Traversal: opDrawAction” on page 63

• “Tuning Tips for Occlusion Culling” on page 68

• “Detail Culling” on page 69

• “Back-Face Culling” on page 70

58

Chapter 5: Culling Unneeded Objects From the Scene Graph

View-Frustum Culling

View-frustum culling identifies csGeoSets in a scene graph whose geometry is not in the
viewing frustum, and prevents their further processing in the graphics pipeline, clearly
a potential benefit for all downstream resources.

Cosmo3D provides integrated, hierarchical view-frustum culling, which runs as part of the
rendering process. OpenGL Optimizer provides an additional method for multiprocess
view-frustum culling as part of the occlusion culler discussed in the next section.

When to Use View-Frustum Culling

View-frustum culling is beneficial if the viewpoint is near or inside a complex scene
where much of the scene is outside the viewing frustum, for example, during a
walkthrough of a building.

A view-frustum test is not helpful if the scene fits in the viewing frustum, for example,
when you view an entire building from outside. The hierarchical containment test used
to implement view frustum culling in Cosmo3D ensures that unneeded processing is
avoided in such “all-visible” cases by detecting geometry that is completely within the
culling frustum and skipping subordinate frustum tests.

View-Frustum Culling and Pipeline Load Balancing

View-frustum culling usually reduces the work done by the graphics hardware. But it
may either increase or decrease the load on the host, depending on whether the time
needed to perform the cull tests is greater or smaller than the time saved by eliminating
pieces of the scene graph from a draw traversal.

• For few csGeoSets with many triangles, a view-frustum cull is quite fast on the
host, but unneeded triangles slow down the graphics hardware.

• Many smaller csGeoSets with few triangles result in more precise culling and fewer
unneeded triangles sent to the graphics hardware, because a larger fraction of the
member triangles are likely to intersect the view frustum. However, the cost is a
larger number of intersection tests.

For optimal performance, adjust the csGeoSet size to balance the time spent intersection
testing with the time spent transforming off-screen triangles.

View-Frustum Culling

59

• If the host is a bottleneck, send more triangles to the rendering hardware.

• If the rendering hardware is the bottleneck, more precise culling might be a good
use for the free CPU cycles.

You can use OpenGL Optimizer spatialization tools to control the average number of
triangles in a csGeoSet (see Chapter 6, “Organizing the Scene Graph Spatially”).

To illustrate the load balancing issues, consider viewing a lug nut of a car for the
following two extreme scene graphs for rendering a car model:

• One graph consists of one million triangles in one csGeoSet. No time would be
spent on a view-frustum cull. When rendering a close-up view of the lug nut, all
one million triangles pass through the graphics hardware, creating a transform
bottleneck, because the few triangles making up the lug nut were in the viewing
frustum.

• A second graph for the same car consists of one million csGeoSets, each containing
a single triangle. After a view-frustum cull, only the on-screen triangles go to the
graphics hardware, minimizing its load. However, the view-frustum cull test would
cause a host bottleneck.

Because data bases and views are almost never at these polar extremes, view frustum
culling is beneficial in nearly all cases. Balancing the pipeline enhances the benefits.

60

Chapter 5: Culling Unneeded Objects From the Scene Graph

Occlusion Culling

Occlusion culling identifies triangles in a scene graph that are occluded by objects in the
foreground and prevents their further processing in the graphics pipeline.

Note: If you set opDrawAction::setVFCullMode to true, the occlusion culler performs
view frustum culling before occlusion culling to reduce the number of objects for which
occlusion culling has to be performed.

You can control what you mean by “occluded;” the occlusion culler allows you to
eliminate objects for which a specified fraction of their bounding boxes are occluded by
foreground objects. This partial occlusion control allows you to further reduce the load
on the graphics pipeline; the efficacy of culling surges as you decrease the fraction, but at
the possible cost of eliminating partially visible objects.

The default fraction for culling, 100%, is conservative in that the occlusion culler never
eliminates a visible triangle; however, it might not cull all occluded triangles. You can
change the fraction according to your needs, and update it dynamically in response to
graphics-pipeline load as a closed-loop frame rate control mechanism.

Rendering occluded triangles does not generate an incorrect image because the depth
buffer test eliminates occluded pixels, but that test occurs late in the rasterization stage
after vertices have been transformed, so relying on depth-buffer testing for occlusion
culling wastes graphics hardware processing cycles.

Just like view-frustum culling, occlusion culling is clearly a potential benefit for all
downstream processing resources.

When to Use Occlusion Culling

Occlusion culling is appropriate for scenes with high depth complexity, that is, with
many objects that may be occluded. For example, 95% of the triangles in a typical view
of an automobile or other complicated mechanical assembly are occluded. Occlusion
culling provides less of a benefit for scenes with less depth complexity. In a visual
simulation application, where objects do not contain internal parts, more than half the
triangles are commonly visible. In this case, an occlusion culler would have a significant
effect on frame rate.

Occlusion Culling

61

Figure 5-1 Combined Effects of View Frustum and Occlusion Culling

62

Chapter 5: Culling Unneeded Objects From the Scene Graph

Figure 5-1 illustrates how view frustum and occlusion culling work together to greatly
reduce the amount of geometry that needs to be rendered. This is the first step in
high-fidelity, large-model visualization.

You can run the occlusion culler on multiple processes, and you can choose the number
of processes. Even on a single-processor machine, you may benefit from using multiple
processes because the host can cull while the OpenGL process is blocked, waiting for the
graphics FIFO to unclog.

Occlusion Culling and Pipeline Load Balancing

If you set opDrawAction::setVFCullMode to true, the occlusion culler performs view
frustum culling before occlusion culling. As a result, all view frustum performance
characteristics also apply to occlusion culling.

If the time required for occlusion culling is greater than the rendering time saved, culling
only moves a bottleneck to the host and increases the processing time of the graphics
pipeline. If occlusion culling takes less time than drawing, you can use the extra time to
eliminate more triangles from a scene graph, thus further reducing the load on the
graphics hardware and shifting the balance of tasks in the graphics pipeline.

Note: You get lower-quality culling if a scene occupies only a portion of the total z-range
of the depth buffer. For the best precision, set the z-clipping tightly around your scene.

Spatialization to Balance Pipeline Load When Occlusion Culling

You can adjust the execution times of the host and the graphics hardware by controlling
the number of triangles in each csGeoSet (see Chapter 6, “Organizing the Scene Graph
Spatially”).

• Coarser granularities, which are characterized by a few large csGeoSets, make
culling run faster at the risk of drawing more occluded geometry.

• Finer granularities give more precise culling at the cost of extra culling time.

The culler uses bounding boxes to determine whether a csGeoSet is occluded. Although
it may increase the time spent culling, creating smaller csGeoSets with tighter bounding
boxes may have a particularly dramatic impact on graphics hardware processing. For
example, in many tightly-packed mechanical assemblies, the corner of a bounding box
may be visible, even though its enclosed csGeoSet is fully occluded. In that case, the

View-Frustum and Occlusion Cull Draw Traversal: opDrawAction

63

graphics hardware is engaged in an unproductive rendering task. In summary, long
csGeoSets are bad, small rectangular ones are good.

Changing the Fraction of the Bounding Box Required for Elimination

You can dynamically shift the load between the host and the OpenGL pipeline by
varying the fraction of a bounding box that must be occluded before it is eliminated from
the pipeline: thus you can create a closed-loop frame rate control mechanism.

View-Frustum and Occlusion Cull Draw Traversal: opDrawAction

The class opDrawAction is a csDrawAction that allows you to traverse a scene graph
and draw the scene with occlusion culling, view-frustum culling, or both. You can also
set the background color for the scene by specifying RGBA values.

To draw with an opDrawAction, follow these steps:

1. Call setScene() to set the scene graph to be drawn.

2. Call initializeScene() to initialize the scene graph

3. In each frame:

■ draw the scene graph with apply()

■ call postDraw() to do the necessary post processing.

If the scene graph is modified while occlusion culling is enabled, the method
opDrawAction::reset() must be called after the scene graph modification.

Class Declaration for opDrawAction

The class has the following main methods

class opDrawAction : public csDrawAction
{
public:
opDrawAction(int nProcs=1,opBool computeStats=false);
virtual ~opDrawAction();

// Drawing the scene
virtual void setScene (csNode* node);

64

Chapter 5: Culling Unneeded Objects From the Scene Graph

virtual void initializeScene ();
virtual csTravDirective apply (csNode* node);
virtual void postDraw ();
//Accessor functions
csNode* getScene ();
void setLights (int nLights, csLight** lights);
void setWindowSize (int width, int height);
void setConservativeMode (opBool enabled=1);
void setVFCullMode (opBool enabled=1);
void setOCCullMode (opBool enabled=1);
void setDrawCulledMode (opBool enabled=1);
void setBPCullMode (csDrawAction::BpcModeEnum bpcMode);
int getVFShapesCount ();
int getVFTrisCount ();
int getShapesDrawnCount ();
int getTrisDrawnCount ();
void setClearColor (const csVec4f& c);
void getClearColor (csVec4f& c);
};

Methods in opDrawAction

setScene(node)
Sets the scene graph to be drawn by this opDrawAction.

initializeScene()
Performs the necessary initializations of the scene graph. This method
must be called every time the scene graph is modified so that the new
scene graph is initialized correctly.

initializeScene() modifies the scene graph. Therefore, when rendering
with multiple parallel threads, initializeScene() cannot be called by
any thread while the draw threads are drawing.

apply(node) Draws a scene.

postDraw() Performs necessary post processing of the scene. This method modifies
the scene graph. Therefore, when you are rendering with multiple
parallel threads, postDraw() cannot be called by any thread while the
draw threads are drawing.

The remaining methods allow you to control the types of culling applied, window size,
and lights, and to recover statistics about the scene.

Rendering With View-Frustum and Occlusion Culling: opOccDrawImpl

65

Rendering With View-Frustum and Occlusion Culling: opOccDrawImpl

To use the occlusion-culling algorithm in a rendering application, you can register an
opOccDrawImpl in an opViewer. An example appears inAppendix C, “opviewer
Sample Application.”

The class opOccDrawImpl is an opDrawImpl, which is the base class for drawing
implementations discussed in “Controlling Rendering: opKeyCallback and
opDrawImpl” on page 22.

opOccDrawImpl defines key bindings that control its rendering options in an opViewer
application, and that allow you to record a sequence of control operations so that you can
save a “tour” of a scene.

opOccDrawImpl uses opDrawAction to render the scene in an opViewer application.

Class Declaration for opOccDrawImpl

The class has the following main methods

class opOccDrawImpl : public opDrawImpl
{
public:
opOccDrawImpl(opViewer *viewer,int nProcs = 2);
~opOccDrawImpl();

virtual void draw(unsigned frame);
virtual void activated();
virtual void deactivated();
virtual void reset();

static opBool keyHandler(opDrawImpl *,int);

void setConservativeMode(opBool enabled);
void setDrawCulledMode(opBool enabled);
void setOCullMode(opBool enabled);
void setVFCullMode(opBool enabled);

opBool getConservativeMode() const;
opBool getDrawCulledMode() const;
opBool getOCullMode() const;
opBool getVFCullMode() const;

66

Chapter 5: Culling Unneeded Objects From the Scene Graph

int loadRecording(const char *filename);
void saveRecording(const char *filename);
void beginRecording();
int endRecording();
void playback(opViewer *viewer, void *userData);
};

Methods in opOccDrawImpl

opOccDrawImpl()
Registers the occlusion culler with the opViewer, thus making key
bindings effective, and allocates the number of processors to use when
performing the occlusion or view-frustum culling.

draw() Is inherited from opDrawImpl. Implements occlusion culling for each
frame update in opViewer::eventLoop(). The other inherited functions
do nothing.

keyHandler() Defines the effects of the keyboard commands registered by calls to
registerKey(). An opOccDrawImpl has the keyboard control definitions
described in “Key Bindings for opOccDrawImpl” on page 67.

get...() and set...()
Provide interactions with the control parameters.

loadRecording(), and so on
Provide control over recording, writing, reading, and playing a
sequence of manipulations of your scene graph. You can store up to 1000
frames.

registerKey() Registers a keyboard command and specifies the function
(keyHandler()) that interprets the command.

The registerKey() method is inherited from opDrawImpl, which is
discussed in “Controlling Rendering: opKeyCallback and
opDrawImpl” on page 22. See the file
/usr/share/optimizer/src/libopGUI/opOccDrawImpl.cxx for details.

Rendering With View-Frustum and Occlusion Culling: opOccDrawImpl

67

Key Bindings for opOccDrawImpl

The class constructor for opOccDrawImpl uses the methods registerKey() and
keyHandler() to register the following keyboard commands (see the file
opOccDrawImpl.cxx):

c Toggles “conservative” occlusion culling. If you use “non-conservative”
occlusion culling, the culler runs faster, but the screen may flash during
rendering; with conservative culling, no flashing occurs.

o Toggles occlusion culling on and off. Initially, occlusion culling is
disabled and all geometry is rendered. The algorithm removes only
geometry that is not visible, so you do not see any change in the scene,
however, the frame rate increases.

O Toggles rendering of occluded and foreground geometry. This feature
lets you see exactly which portions of your scene are completely
occluded. Note that all the occluded geometry is rendered when this
option is enabled, so for a scene with many layers, the occluded
geometry renders much more slowly than the foreground geometry.

v Toggles view-frustum culling on and off. OpenGL Optimizer allows you
to use multiple processors to perform view-frustum culling.

+ - Allow you to increase and decrease the threshold fraction that specifies
how much of an object’s bounding box must be occluded to cull the
object.

[Starts recording keyboard commands.

] Stops recording.

\ Playback last recording.

! Saves recording.

68

Chapter 5: Culling Unneeded Objects From the Scene Graph

Tuning Tips for Occlusion Culling

The central concern for tuning occlusion culling is load balance. The goal is to avoid
bottlenecks, see “Bottlenecks in the Pipeline” on page 8. Some tuning controls are the
number of processors, the size of the csGeoSets, spatialization, and the z-resolution of
the framebuffer. Because every database is different, you have to measure performance
to identify bottlenecks. An iterative process of measuring performance, adjusting tuning
parameters, and measuring performance again is usually appropriate. The sections
below describe some common problems and their likely causes:

• “Culling Takes Longer Than Rendering” on page 68

• “Occluded Geometry Is Not Culled” on page 68

• “Very Small Speedup and Fast Culling” on page 69

Culling Takes Longer Than Rendering

Possible causes and solutions:

• Not enough geometry is being culled, either because most is visible, or because the
bounding boxes are too long.

• The csGeoSets are too small, so that the time required to cull one is longer than the
time required to draw it. To address this problem, combine csGeoSets to make them
bigger (see “Merging csGeoSets in a Scene Graph: opCombineGeoSets” on page 81).

• Not enough processors. To address this problem, increase the nProcs parameter for
the constructor opDrawAction() up to the number of processors on your system.
On a single CPU system, use the value 2; this allows the host to cull while the
OpenGL process is blocked, waiting for the graphics first-in-first-out queue to clear.

Occluded Geometry Is Not Culled

Possible causes and solutions:

• Bounding boxes are not tight enough.

• Too much downsampling in x-y space.

• Not enough z-resolution.

• Geometry is actually visible through cracks in model.

Detail Culling

69

Very Small Speedup and Fast Culling

Possible causes and solutions:

• csGeoSets are too big; nothing is culled. To fix this, use the spatialization tool to
break up the csGeoSets (see “Spatializing a Single csShape: opTriSpatialize” on
page 84).

• Too much downsampling in x-y space.

Detail Culling

Level-of-detail nodes are useful for adjusting the number of vertices associated with any
given object. In some cases, however, it is most appropriate not to render objects below a
certain size. The methods of opDetailSimplify allow you to remove geometry from
csShapes that are “small.” Small is determined by a threshold for the ratio of shape size
to overall scene graph size, calculated from the radii of their respective bounding
spheres. You can explicitly set the large-scale dimension and thus have more direct
control over which objects are culled.

Small csShape nodes are not removed from the graph; the scene graph structure remains
the same. You can therefore use as an LOD a scene graph that has been detail simplified.

Class Declaration for opDetailSimplify

The class has the following main methods

class opDetailSimplify
{
public:
opDetailSimplify (void)
~opDetailSimplify (void)

// --- ratio of shape size to overall size
void setSizeRatio (float ratio)
float getSizeRatio ()

// --- detail cull scene graph below root
void apply (csNode *root);
void setRootRadius(float radius)
};

70

Chapter 5: Culling Unneeded Objects From the Scene Graph

Methods in opDetailSimplify

apply() Traverses the graph below root and culls small objects. Whether an object
is “small” is determined by:

• The radius of the bounding sphere of the object.

• The value set by setSizeRatio ().

• The radius of the bounding sphere of the root node. You can
explicitly set this maximum scale by calling setRootRadius().

setSizeRatio () and getSizeRatio()
Sets and gets the threshold for culling small objects.

setRootRadius()
Explicitly sets the dimension to which all objects are compared.

Back-Face Culling

Typically, triangles should not be rendered when their front sides do not face the
viewpoint. Such pieces of a surface are called back faces. Figure 5-2 illustrates the back
faces of an open and a capped cylinder: the back faces are those for which the normals
point away from the viewpoint.

Back-face culling keeps these triangles from being rasterized, thus saving on pixel fill
time. Because the cull operation depends on the orientation of the triangles relative to the
viewer, back-face culling occurs in the graphics pipeline after the transform stage: only
rasterization and display stages are affected.

It is not always appropriate to cull back faces. If a surface has any holes, you should
render the back faces because they may be visible through the holes at certain viewing
angles. For example, if you can see into a pipe, render the pipe’s back face. Figure 5-2
illustrates this point by showing the effects of back-face culling on an open and a capped
cylinder.

Back-Face Culling

71

Figure 5-2 Back Faces, Back-Face Culling, and Two-Sided Lighting Effects

Occasionally surface normals are inconsistent or inappropriate. For example, the
normals to a car body part might point towards the interior. Rather than maintain
consistent normals, many CAD applications ignore sidedness of surfaces and light
scenes with two-sided lighting: the front and back sides of triangles are made renderable
that way. To make this work, materials must be set to be two-sided. The right-most panel
in Figure 5-2 illustrates the effect.

Two-sided lighting is inefficient for two reasons:

• Two-sided triangles do not have a back face and so cannot be culled, even for only
one light source.

• Levels of optimization may differ for the different rendering paths.

For example, the rendering path with a single light and single-sided material is on
the optimized path in Silicon Graphics machines, but rendering modes with two or
more lights or with two-sided materials are on the unoptimized path, which may
run at half the speed of the optimized path.

No back-face cull Back-face cull Two-light-source lighting

W
ith

ou
t t

op
W

ith
 to

p

72

Chapter 5: Culling Unneeded Objects From the Scene Graph

An OpenGL Optimizer tool that accommodates inconsistent normals and gives faster
rendering than two lights is the Gaussian light reflection map, discussed in “Gaussian
Map” on page 104.

Setting Back-Face Culling

You have two options for controlling back-face culling.

• For a single csGeoSet, control rendering of the back face of a surface with the
method csGeoSet::setCullFace(). See the Cosmo 3D Programmer’s Guide for more
information.

• For an entire scene, use csContext if you want to set back face culling. See the Cosmo
3D Programmer’s Guide for more information on this feature.

73

Chapter 6

6. Organizing the Scene Graph Spatially

To spatialize a scene graph means to structure the graph to reflect the spatial
relationships of objects in the scene. Spatialization simplifies searching for a node with a
particular location in space, and so increases the efficiency of view-frustum and
occlusion culling, as well as highlighting and picking.

This chapter explores spatialization in the following sections:

• “Effect of Spatialization on Cull Traversals” on page 73

• “Granularity Trade-offs” on page 74

• “When to Spatialize” on page 74

• “Spatialization Algorithm” on page 74

• “Spatialization Tool: opSpatialize” on page 76

• “Classes for Component Procedures of Spatialization” on page 77

Effect of Spatialization on Cull Traversals

As a view-frustum, cull, or highlighting traverser descends a spatialized graph, each
parent node effectively contains a “sign post,” the union of the bounding boxes of its
children, which directs the traverser towards a node of interest. More efficient traversal
results because the traverser does not need to test every node in the scene to check
whether a ray strikes an object; it can eliminate a subgraph with one node test. The
maximum number of tests is the depth of the tree. You control the depth of the tree by
how finely you subdivide the spatial volume, that is, by the granularity of the
spatialization.

74

Chapter 6: Organizing the Scene Graph Spatially

Granularity Trade-offs

Finer granularity for a scene graph reduces the load on the graphics hardware, but
increases traversal time by increasing the number of nodes in the graph. A coarse level
of granularity reduces traversal time, but slows the graphics pipeline because all the
vertices in large csGeoSets must be processed even if only a small portion is actually
visible. As discussed in the section “View-Frustum Culling” on page 58, an appropriate
level of granularity balances the amount of time spent on cull tests with the time saved
by eliminating unnecessary vertices from processing by the graphics hardware. In one
example, it was found that spatializing and defining appropriate granularity reduced
rendering time by a factor greater than ten.

When to Spatialize

Spatialization tools are useful when you have large objects in the viewing frustum, or
when you intend to interactively manipulate selected objects.

Spatialization takes time; it serves no purpose if you spend more time spatializing than
you would traversing and rendering without spatialization. Typically, spatialization
during a flythrough application is not useful, and may disrupt interactions with the
scene graph. Spatializing moving objects is also not typically useful.

Spatialization Algorithm

The spatialization method provided by OpenGL Optimizer is similar to the development
of an octree, a graph in which children correspond to iterated subdivisions of a parent
cube into eight equal cubes. For more information about octrees, see the book Computer
Graphics: Principles and Practice listed in “Recommended Background Reading” on
page xxxi.

Octree spatial division is simple and efficient. However, the OpenGL Optimizer
spatializing tools subdivide space not by simply bisecting edges of a cube, as in an octree,
but by selecting planes for subdivisions so that the rendering loads of the resulting
volumes are similar. After each cut, the number of triangles is approximately the same
on each side of the cutting plane.

Spatialization Algorithm

75

Spatialization Control Parameters

The main parameters you can use to control spatialization are hints for the largest and
smallest sets of triangles in each csGeoSet of the spatialized graph. The spatializing tools
attempt to develop a scene graph with the number of triangles in each csGeoSet within
the prescribed range.

Spatialization Classes

OpenGL Optimizer provides a high-level tool that allows you to re-structure a scene
graph and its csGeoSets to get the desired number of triangles in each leaf node. You can
specify the leaf nodes to be trifans or tristrips. More details are provided in the section
“Spatialization Tool: opSpatialize” on page 76.

You can also use lower-level tools that perform the component procedures of this
process, tools that spatialize a set of triangles, reorganize an existing set of nodes, and
combine csGeoSets. Combining csGeoSets is useful if the nodes in a scene graph are not
appropriate for spatial reorganization because, for example, they contain significantly
different numbers of triangles, or the graph simply has too many small csGeoSets. The
classes that provide these tools are discussed in the following sections:

• “Spatializing a Single csShape: opTriSpatialize” on page 84

• “Spatializing a Scene Graph: opGeoSpatialize” on page 78

• “Merging csGeoSets in a Scene Graph: opCombineGeoSets” on page 81

76

Chapter 6: Organizing the Scene Graph Spatially

Spatialization Tool: opSpatialize

The opSpatialize class may be the only spatialization tool you need. opSpatialize has
one important method, convert(). You control combining and dividing of csGeoSets by
specifying a range of values for the number of triangles in each leaf node.

convert() has the following behavior:

• convert() combines or divides, as necessary, all the csGeoSets in or below the root
node passed as an argument.

• convert() organizes the nodes in the graph spatially such that the bounding box of
each parent node is the union of the bounding boxes of its children.

• convert() is overloaded. If the argument of convert() is a csGeoSet, only that
csGeoSet() is affected. If the argument is the root node of a scene, the entire graph is
processed.

Note: Do not spatialize a scene graph that has LOD nodes or transforms:

• Spatializing csLOD siblings is a nonsensical operation.

• The results of splitting a csGeoSet under a transform node do not necessarily stay
under the transform node.

Class Declaration for opSpatialize

The class has the following methods:

class opSpatialize
{
public:
static csNode *convert(
 csNode *node,
 int goalMin,int goalMax,
 const csBoxBound& bbox,
 csType *outType = csTriFanSet::getClassType(),
 opColorGenerator *c = opColorGenerator::noColors());
};

Classes for Component Procedures of Spatialization

77

Arguments to opSpatialize::convert()

convert() has the following arguments:

node Root node of the graph you want to spatialize.

bbox Volume to be subdivided.

goalMax Target maximum number of triangles in any leaf node in the final scene
graph.

goalMin Minimum number of triangles in any leaf node in the final scene graph.

outType Type of all csGeoSets in the new, spatialized graph: csTriStrip or
csTriFan.

convert() also allows you to provide contrasting colors for the csTriStrips or csTriFans in
the new graph by using opColorGenerator in exactly the same way as opTriFanner and
opTriStripper. See the section “Specifying Coloring of New csGeoSets:
opColorGenerator” in Chapter 13 for more details.

Classes for Component Procedures of Spatialization

The method opSpatialize::convert() uses three component operations that are
implemented individually in three OpenGL Optimizer classes:

1. It uses the class opGeoSpatialize to organize the existing nodes in the scene graph.

2. It uses opCombineGeoSets to combine triangles from small leaf nodes, where
“small” means too few triangles.

3. It uses opTriSpatialize to subdivide large leaf nodes.

These classes are discussed in the following sections:

• “Spatializing a Scene Graph: opGeoSpatialize” on page 78

• “Merging csGeoSets in a Scene Graph: opCombineGeoSets” on page 81

• “Spatializing a Single csShape: opTriSpatialize” on page 84

78

Chapter 6: Organizing the Scene Graph Spatially

Spatializing a Scene Graph: opGeoSpatialize

The class opGeoSpatialize reorganizes existing nodes in a scene graph. Given a
bounding box and a scene-graph root node, convert()

• subdivides the box and re-arranges the node hierarchy until there are
approximately a specified number of triangles in each of the resulting volumes.

• combines csGeoSets with too few triangles into larger csGeoSets by using the class
opCombineGeoSets (see“Merging csGeoSets in a Scene Graph:
opCombineGeoSets” on page 81).

Figure 6-1 illustrates the effects of opGeoSpatialize on a scene graph of car parts. The
csGeoSets for three of the tire-and-rim combinations (necessarily contained in csShape
nodes) are placed appropriately with respect to front or rear, and left or right. The
csGeoSets for the fourth tire and rim are combined in one csGeoSet, and placed
appropriately in the graph. The csGeoSet for the seat is placed in a portion of the graph
for triangles in the center.

Classes for Component Procedures of Spatialization

79

Figure 6-1 Organizing and Combining csGeoSets With opGeoSpatialize

Car

csGroup

csShapecsShape csShape csShape csShape

LR
rimRRLF SeatRF

LR
tire

RRLF SeatRF
LR
rim

LR
tire

csShape

csGroup

csGroup csGroup

LR
rim

LR
tire

Front
wheels

Rear
wheels

LFRF RR

Seat
Front

wheels
Rear

wheels

LR
rim

LR
tireLFRF RR

Seat

Car

Car

Car

csShape csShape csShape csShape

csShape

80

Chapter 6: Organizing the Scene Graph Spatially

Class Declaration for opGeoSpatialize

The class has the following methods:

class opGeoSpatialize : public opDFTravAction
{
public:
opGeoSpatialize(int goalMin,int goalMax, const csBoxBound& bbox);
~opGeoSpatialize();

opTravDisp preNode(csNode *&, const opActionInfo&);
opActionDisp end(csNode *&, const opActionInfo&);

void addShape(csShape *s);

csNode *done(csType *outType = csTriFanSet::getClassType(),
 opColorGenerator *c = opColorGenerator::noColors());

static csNode *convert(
 csNode *node,
 int goalMin,int goalMax,
 const csBoxBound& bbox,
 csType *outType = csTriFanSet::getClassType(),
 opColorGenerator *c = opColorGenerator::noColors());
};

Methods in opGeoSpatialize

The opGeoSpatialize class has several member functions needed for a scene-graph
traversal (see Chapter 12, “Traversing a Large Scene Graph”). To spatialize a scene graph,
however, call convert().

convert() Reorganizes the scene graph. Takes the same set of arguments as
opSpatialize::convert(). A call to convert() returns a root csNode for the
new graph. However, if the csNode argument is not the root of a
(sub)graph, convert() does nothing.

opGeoSpatialize uses an opGeoConverter to organize the triangles in the csNodes. See
“Decomposing csGeoSets Into Constituent Triangles: opGeoConverter” on page 257.

Classes for Component Procedures of Spatialization

81

Merging csGeoSets in a Scene Graph: opCombineGeoSets

When you have a scene (sub)graph with too many small csGeosets, you can combine
them and develop a graph consisting of a root node with children. Each child contains all
the triangles of the original graph that have the same appearance. You can specify
whether the output csGeoSets are csTriStripSets or csTriFanSets. You can subsequently
use opTriSpatialize on the combined triangles to further develop a scene graph structure
and adjust granularity; this is the approach taken by opSpatialize.

The result of combining csGeoSets is faster rendering, because of reduced traversal time
and the possibility of larger trifans or tristrips. In one model with too many small
csGeoSets, simply combining csGeoSets reduced rendering time by over two thirds.

Figure 6-2 illustrates the effects of combining csGeoSets. Notice that interior nodes of the
scene graph are lost: combine nodes before you create LODs or insert transform nodes.
Figure 6-2, which represents scene graph changes, shows the csShape nodes that contain
the csGeoSets.

82

Chapter 6: Organizing the Scene Graph Spatially

Figure 6-2 Combining csGeoSets with opCombineGeoSets

csGroup

csTransform

csShape csShape csShape csShape csShape

1

1

2 3 4 5

csGroup

csShape csShape

2

8 tria
ngles

12 tria
ngles

8 tria
ngles

4 tria
ngles

6 tria
ngles

32 tria
ngles

4 wheels Seat
6 tria

ngles

Classes for Component Procedures of Spatialization

83

Class Declaration for opCombineGeoSets

The class has the following methods:

class opCombineGeoSets : public opDFTravAction
{
public:
opCombineGeoSets();
~opCombineGeoSets();
opTravDisp preNode(csNode *&, const opActionInfo&);
opActionDisp end(csNode *&, const opActionInfo&);

void addGeoSet(csGeoSet *gs,csAppearance *app);
csNode *buildGraph(csType *outType=csTriFanSet::getClassType(),
 opColorGenerator *c = opColorGenerator::noColors());

static csNode *convert(
 csNode *root, float norm_tol,
 csType *outType=csTriFanSet::getClassType(),
 opColorGenerator *c = opColorGenerator::noColors()
);
};

Methods in opCombineGeoSets

The opCombineGeoSets class has several methods needed for a scene-graph traversal
(see Chapter 12, “Traversing a Large Scene Graph”). However, to combine csGeoSets,
call convert(), which handles the traversal details for that case.

convert() Produces a new scene graph with csGeoSets combined wherever
possible. You can use an opColorGenerator to control coloring of the
new graph as you do with opSpatialize::convert().

Note that if the csMaterials associated with two csGeoSets do not
match, then they will not be combined.

84

Chapter 6: Organizing the Scene Graph Spatially

Spatializing a Single csShape: opTriSpatialize

The most elementary spatialization task successively subdivides a bounding box
containing a set of triangles until there are approximately a specified number of triangles
in each of the resulting volumes. Thus the loads on the graphics hardware are
approximately the same for all of the leaf nodes.

The main method of the class opTriSpatialize is the overloaded convert() function,
which redistributes triangles into csGeoSets containing similar numbers of triangles.
Except for the arguments that specify the set of triangles on which convert() acts, its
arguments are the same as for opSpatialize::convert() and have the same effects. You
specify the set of triangles to be manipulated by convert() with a csBoxBound and
csShape. Alternatively, you can use a csGeoSet and a csAppearance.

opTriSpatialize uses an opGeoConverter to manage the set of triangles and preserve
results for other operations. See “Decomposing csGeoSets Into Constituent Triangles:
opGeoConverter” on page 257.

Figure 6-3 illustrates the effects of spatializing the set of triangles in one csGeoSet that
describes all four wheels of a car. A csGeoSet is created for each wheel and placed in a
csShape node corresponding to the spatial position of the wheels.

Classes for Component Procedures of Spatialization

85

Figure 6-3 Creating a Spatialized Graph From the csGeoSet in One csShape

csGroup

csTransform

csShape csShape csShape csShape

1

1

2 3 4

csGroup

csShape csShape

2

8 tria
ngles

12 tria
ngles

8 tria
ngles

10 tria
ngles

32 tria
ngles

4 wheels Seat
6 tria

ngles

86

Chapter 6: Organizing the Scene Graph Spatially

Class Declaration for opTriSpatialize

The class has the following methods:

class opTriSpatialize
{
public:
opTriSpatialize(int goalMin,int goalMax,
 const csBoxBound& bbox,
 opGeoConverter *gc,
 csAppearance *app);
~opTriSpatialize();

void addTriangle(const opTriangle *t);
csNode *done(csType *outType=csTriFanSet::getClassType(),
 opColorGenerator *c = opColorGenerator::noColors());

static csNode *convert(
 csGeoSet *gs, csAppearance *app,
 int goalMin,int goalMax,
 const csBoxBound& bbox,
 csType *outType=csTriFanSet::getClassType(),
 opColorGenerator *colors = opColorGenerator::noColors());

static csNode *convert(
 csShape *shape,
 int goalMin,int goalMax,
 const csBoxBound& bbox,
 csType *outType=csTriFanSet::getClassType(),
 opColorGenerator *colors = opColorGenerator::noColors());
};

PART THREE

Specific Tools for Fast Rendering III

The tools discussed in the two chapters in this section address specific rendering
tasks: selecting and manipulating rendered objects independently while the
remaining objects in a scene remain stationary, and providing complex lighting
environments with which to examine your design.

Chapter 7, “Interactive Highlighting and Manipulating”

Chapter 8, “Efficient High-Quality Lighting Effects: Reflection Mapping”

89

Chapter 7

7. Interactive Highlighting and Manipulating

The tools discussed in this chapter enable you to highlight a portion of a rendered scene
and then pick and manipulate only the highlighted object(s). For example, you might
want to “pull” a piece off a car and examine and perhaps modify it, while the rest of the
vehicle remains stationary in the background. You can successively pick and move pieces
to disassemble a design.

This chapter discusses the following topics:

• “Overview of Highlighting and Picking” on page 89

• “Interacting With a Rendered Object: opPickDrawImpl” on page 90

• “Scene Graph Modification: opPick” on page 93

• “Node to Override Appearances: opHighlight” on page 98

Overview of Highlighting and Picking

During highlighting, a selected piece of the scene graph appears in a distinct color. When
you pick a highlighted object, subsequent interactions with the scene affect only the
picked object. You can expand or contract the picked portion of the scene graph available
for interaction by “climbing” or “descending” the scene graph from the picked node,
which corresponds to the csShape under the cursor. When you are finished, you can
undo interactions with a picked object and return the object to its original position. You
can also tag certain types of nodes as unpickable and so force the selection to nodes
higher in the scene graph.

90

Chapter 7: Interactive Highlighting and Manipulating

How Picking Can Accelerate Rendering Rates

The independent manipulation of an object in a scene can help accelerate scene
transformations. You can pick a small key object that renders quickly, orient it as you like,
recover the net transformation developed during the interaction, and then apply the
transform to the whole scene. As a result, the intermediate steps required to continuously
manipulate a whole scene are no longer necessary. The traversal load on the host and the
load on the graphics pipeline is decreased until you are ready to change the view of the
whole scene.

Interacting With a Rendered Object: opPickDrawImpl

The opPickDrawImpl class provides keyboard and mouse controls for picking and
highlighting. It is derived from opDrawImpl, which is the base class for the drawing
implementations discussed in “Controlling Rendering: opKeyCallback and
opDrawImpl” on page 22.

If you want to use the Motif library, opXmViewer uses opXmDrawImpl, which has
methods analogous to a combination of opPickDrawImpl and opDefDrawImpl (see
“opDrawImpl Subclasses Used In Sample Applications” on page 24).

Interacting With a Rendered Object: opPickDrawImpl

91

Class Declaration for opPickDrawImpl

The class has the following main methods:

class opPickDrawImpl : public opDrawImpl
{
public:
opPickDrawImpl(opViewer *viewer);
virtual ~opPickDrawImpl();

// --- redefined virtual functions
virtual void draw(unsigned frame);
virtual void pick(bool mouseDown, const csHit& hit);
virtual void seetup();
virtual void reset();

static bool keyHandler(opDrawImpl *,int);

 // --- Accessors
bool getDeleteEnabled()
bool enableDelete();

csNode *getHighlightedNode()
csNode *getPickRoot()

// --- cant always pass this to the constructor
void setReflMap(opReflMap *_rm)
};

Methods in opPickDrawImpl

draw() Implements highlighting and picking for each frame update in
opViewer::eventLoop(). Enter m to toggle this rendering function.

getPickRoot () Returns the root node of the modified scene graph developed by
opPickDrawImpl(). Use the returned csNode to render the scene. For
example, viewer->drawScene (pick_root) appears in the code for
draw().

opPickDrawImpl(viewer)
Constructs an opPickDrawImpl.

92

Chapter 7: Interactive Highlighting and Manipulating

keyHandler() Defines the effects of the keyboard commands registered by calls to
registerKey(). opDefDrawImpl has the keyboard controls described in
“Key Bindings for opPickDrawImpl” on page 92.

pick() Sets a flag to switch interactive rendering only to picked objects. This is
the effect of pressing the “m” key and any mouse button.

registerKey() Registers a keyboard command and specifies the function that interprets
the command. The registerKey() method is inherited from
opDrawImpl, discussed in “Controlling Rendering: opKeyCallback and
opDrawImpl” on page 22. See the file opPickDrawImpl.cxx for details.

reset() Returns picked objects to their original position. opDefDrawImpl
defines lowercase “r” to reset the scene.

setReflMap() Sets the reflection map used to control the lighting effects. can also be
passed into the constructor. See Chapter 8, “Efficient High-Quality
Lighting Effects: Reflection Mapping.”

Key Bindings for opPickDrawImpl

opPickDrawImpl defines key bindings that control its options in an opViewer
application. These are the basic features:

• In highlight mode, object colors change to indicate which objects you can pick.

• The up- and down-arrow keys enlarge or shrink the set of selected objects.

• When you click on any highlighted object with a mouse button, it will be picked.

• Subsequent frames are rendered with all but the picked objects stationary.

The class constructor for opPickDrawImpl uses the methods registerKey() and
keyHandler() to register the following keyboard commands, which you can change if
you make a subclass (see “opDrawImpl Subclasses Used In Sample Applications” on
page 24 and the file opPickDrawImpl.cxx):

P Print highlighted portion of the scene graph.

u Unpick: Disable picking interaction, leaving the picked object at its
current location. opDefDrawImpl becomes the opDrawImpl used by
opViewer to control rendering.

X Delete picked objects.

Scene Graph Modification: opPick

93

m Toggles highlight and picking mode. opPickDrawImpl becomes the
opDrawImpl used by opViewer to control rendering. Pressing a mouse
button while in this mode picks a highlighted object.

UP ARROW Move highlight node up in scene-graph hierarchy, thus highlighting
more objects.

DOWN ARROW Move highlight node down in scene-graph hierarchy towards the
geometry under the cursor, thus highlighting fewer objects.

Scene Graph Modification: opPick

The class opPick provides scene-graph modification tools for picking and highlighting.
It uses the csCamera picking method, which returns a csHit that interactively identifies
objects in the scene graph.

opPickDrawImpl uses opPick to implement picking and highlighting. Use opPick if
you are creating your own viewer or want different behavior than that defined in
opPickDrawImpl. A typical application that uses an opPick would include the
following lines of code (see the opPickDrawImpl source code for a more detailed
example of how to use an opPick):

csCamera *camera =
opPick *picker = ...
csNode *root = picker->getRoot();
csHit hit;
csNode *pickedNode;

if (camera->
 pick (root, csWindow::getMouseX(), csWindow::getMouseY(), hit))

{
if (mouseDown)

picker->pickup (hit, pickedNode);
else

picker->highlight (hit, pickedNode);
}

94

Chapter 7: Interactive Highlighting and Manipulating

Class Declaration for opPick

The class has the following main methods:

class opPick
{
public:

// Creating and destroying
opPick (csGroup *root, opReflMap *rm=NULL);
~opPick ();

// Accessor functions
csNode *getHighlightedNode ()
csNode *getPickedNode ()
csTransform *getPickTransform ()
csGroup *getRoot ()

void setHighlightOffset (int _hl_offset)
int getHighlightOffset ()

void setHighlightColor (const csVec3f& _hl_color)
csVec3f getHighlightColor () const

void setInfoPosition (const csVec2f& _pos)
csVec2f getInfoPosition () const

void setReflMap (opReflMap *_rm)
void setForceDraw(opBool flag)

PickBranch *getLodPath () const

// Utility methods
void highlight (const csHit& hit);
csTransform *pickupNode (const csHit& hit);
csTransform *pickupHighlightedNode ();
void drop ();
void removeHighlight ();
void reset ();
void ignoreType (csType *ignore_me);

Methods in opPick

drop() Leaves a picked object in its most recent position, by placing a new
csTransform in the scene graph above the picked node.

Scene Graph Modification: opPick

95

getHighlightedNode()
Returns the currently highlighted node.

getPickedNode()
Returns the currently picked node.

getPickTransform()
Returns the transform that should be used to manipulate the picked
subgraph. You manipulate the picked subgraph by changing this
matrix. See the example in “Sample Use of opPick” on page 97.

getRoot() Returns the root of the scene graph that you use for draw traversals
when picking and highlighting. opPick reorganizes the scene graph, so
use getRoot() to be sure you have the correct root node.

highlight(hit) Highlights the node specified by the csHit returned by the method
csCamera::pick(). The highlighting is accomplished by insertion of an
opHighlight node (see “Node to Override Appearances: opHighlight”
on page 98 for more information about how the choice is made which
node to highlight).

The algorithm for choosing a node out of the csHit path uses hl_offset
and the list of ignored types. The default node is the csShape node. If
there is no shape node, it will choose the leaf node. If the hl_offset is
nonzero, it will be used to adjust the index into the hit path, for
example, if hl_offset is –2, node selected will be pickpath[index–2)
where index is the index of the shape node. Modifier nodes, highlight
nodes, and geometry nodes are ignored, as are any node types specified
in the ignore list.

You can prevent nodes from being highlighted by calling ignoreType().

ignoreType(ignore_me)
Specifies node types that cannot be picked.

opPick() Constructs the class. If you use a reflection map to light the scene, pass
it to the constructor so that its effects will apply to highlighted nodes.

pickupHighlightedNode()
Picks up a currently highlighted node.

The return value is a csTransform that pickupHighlightedNode()
inserts into the scene graph above the picked node. The transform node
allows you to control manipulation of the picked subgraph.

96

Chapter 7: Interactive Highlighting and Manipulating

pickupNode() Picks a node found with csCamera::pick(). You can use highlight offset
to define the picked node.

The return value is a csTransform that pickupNode() inserts into the
scene graph above the picked node. The transform node allows you to
control manipulation of the picked subgraph.

You can prevent nodes from being highlighted by calling ignoreType().

removeHighlight()
Turns off highlighting.

reset() All currently and previously picked nodes are returned to their original
position.

setForceDraw(flag)
opPick tries to only draw the picked elements during pick node.

If flag is true then the entire graph under the true root is drawn. If flag is
false the viewer draws only whatever is necessary for correct display. It
is recommended to use this method with flag set to true only when it is
absolutely necessary to draw the entire graph (for example, when the
display window is resized or exposed). As soon as possible, call this
method with flag set to false again. Calling setForceDraw() with flag set
to true unnecessarily might result in a slowdown during picking and
highlighting.

setHighlightOffset(_hl_offset) and getHighlightOffset()
Set and get the offset in the scene graph from the node originally
highlighted. The default value, 0, results in the leaf node of the scene
graph being picked. This node is typically a csShape.

setHighlightColor(_hl_color) and getHighlightColor()
Set and get the color of highlighted nodes. The default is yellow.

setInfoPosition(_pos) and getInfoPosition()
Set and get information about the placement of the opInfoNode that
displays the node name of the highlighted node.

setReflMap(_rm)Specifies the reflection map that sets the appearance properties of
highlighted nodes. This is useful if the opReflMap is not available when
the opPick is constructed.

Scene Graph Modification: opPick

97

Sample Use of opPick

These lines of code from the opPickDrawImpl source code sketch the use of an opPick
in an opViewer application. Not all the lines required for a working application are
shown.

Create the opPick picker = new opPick
((csGroup *) viewer->getRoot());

The opPick modifies the scene graph, and defines a new
root node for rendering.

pick_root = picker->getRoot();

Highlight or Pick, Given a csHit

Here the code assumes it has a csHit named hit and uses
the key bindings of opPickDrawImpl to determine
highlighting or picking.
These lines of code mimic the lines of code in “Scene
Graph Modification: opPick” on page 93.

if (mouseDown && (state & INPICK_PICKREADY))

{

picker->pickupNode (hit, pickedNode);

}

else

picker->highlight (hit, pickedNode);

Set Highlight Offset

For either mode, use the highlight offset to define
exactly which nodes are affected.

hl_offset = picker->getHighlighOffset();

Set Mouse Control of Object Manipulation

If in the pick mode, to specify that opViewer mouse
controls act on only the picked subgraph, set the pose
csTransform node shown in Figure 2-1 to be the picked
node’s transform.

viewer->setMouseFocus
(picker->getPickTransform());

Draw

Draw the scene graph.
See “Controlling Rendering: opKeyCallback and
opDrawImpl” on page 22

viewer->update (pick_root);

Drop the Object, if Picked

When you are finished with the picked subgraph, leave
the objects where they are, or restore them to their
original position.

picker->drop ();

picker->reset ();

98

Chapter 7: Interactive Highlighting and Manipulating

Node to Override Appearances: opHighlight

The OpenGL Optimizer mechanism for highlighting objects in a scene graph involves
placing an opHighlight node in the scene graph as a temporary parent to the object or
objects to be highlighted. opHighlight will override the appearance of its children using
the csContext appearance override mechanism. opPick uses opHighlight for its effects.

You can also override the rendering appearance of a selected subgraph with the
Cosmo3D methods csContext::pushOverrideAppearance() and
csContext::popOverrideAppearance(), but using opHighlight is more convenient.

Class Declaration for opHighlight

The class has the following main methods:

class opHighlight : public csGroup
{
public:
// Creating and destroying
opHighlight (opReflMap *rm = NULL);
~opHighlight ();

// Accessor functions
csAppearance *getHighlightAppearance () const
void setHighlightAppearance (csAppearance *_hl_appear)

void setColor (const csVec3f& color);
csVec3f getColor () const

// Utility methods
virtual csTravDirective drawVisit (csDrawAction *da);
};

If you are using an opReflMap to light the scene, you must pass it to opHighlight for
appropriate lighting effects.

Node to Override Appearances: opHighlight

99

Sample Use of opHighlight for Highlighting

The basic highlighting and picking operation inserts an opHighlight into the scene
graph between a selected node and the rest of the scene graph. The opHighlight then
controls the appearance of the subgraph.

This example sketches the use of an opHighlight. It includes the insertion of a
csTransform node below the opHighlight, to allow manipulation of objects in the
subgraph. Not all the lines required for a working application are shown.

Create an opHighlight hl_node = new opHighlight ();

Determine the subgraph to highlight hl_subgraph = myHighlightSelectionFunc();

Insert and highlight node in scene
graph

hl_node -> addChild(hlsubgraph);

parentof_hl_subgraph->replaceChild(hl_subgraph, hl_node);

Remove highlighting parent...->replaceChild(hl_node, hl_subgraph);

101

Chapter 8

8. Efficient High-Quality Lighting Effects: Reflection
Mapping

OpenGL Optimizer supplements Cosmo3D lighting effects with reflection mapping, an
efficient technique for simulating a complex lighting environment. With reflection
mapping, also known as environment mapping, you treat a surface as a reflector and follow
one ray (from your eye and reflecting off the surface) to select a point on a texture image
that defines the visual environment. As an object rotates in the environment, the image
appears to move over the surface. This approach contrasts with texture-mapping
techniques that fix an image on a surface.

The reflection mappings available from OpenGL Optimizer form two groups:

• One group uses simple reflection maps, which have approximate lighting geometry
with credible sources and can be computed quickly. This group includes the sphere
and Gaussian map styles.

• The second group uses exact lighting geometry with relatively simple but useful
lighting sources that allow accurate visualization of curvature; they are useful when
visualizing smoothly curved surfaces, such as car bodies. This second group
includes the cylinder, floor, and ceiling mapping types.

OpenGL Optimizer adds a shininess threshold to the basic reflection mapping algorithm
so that selected objects do not reflect the environment image. This is appropriate for
certain materials such as rubber, brick, and many fabrics.

This chapter discusses the principles underlying the different mapping methods, the
basic control parameters for each method, and the class opReflMap, which is the API for
using reflection maps. It contains the following sections:

• “Simple Mapping: Remote View of a Remote Environment” on page 102

• “Accurate Mapping: Local View of a Local Environment” on page 105

• “Reflection-Mapping Class: opReflMap” on page 108

102

Chapter 8: Efficient High-Quality Lighting Effects: Reflection Mapping

For a more detailed discussion of reflection mapping, consult Advanced Animation and
Rendering Techniques: Theory and Practice and the section on “Interobject Reflections” in
Chapter 16 of Computer Graphics: Principles and Practice. Both of these books are listed in
“Recommended Background Reading” on page xxxi.

Simple Mapping: Remote View of a Remote Environment

Two opReflMap map types—sphere and Gaussian—use simple reflection mapping.
These map types are discussed in the following sections:

• “Sphere Map” on page 104

• “Gaussian Map” on page 104

Simple reflection maps determine coordinates for the texture image by assuming the
following:

• An image that lies on a sphere surrounding the scene.

• A remote environment: The reflection geometry is simplified, so that only the
direction of the reflection vector determines texture coordinates. Effectively, the
texture map is infinitely far away.

• A remote viewer: The reflection geometry is further simplified by assuming that all
rays are parallel between the viewpoint and object’s surface. Effectively the
viewpoint is infinitely far away. The direction of the rays is from the viewpoint to
the center of the scene.

These three assumptions imply that the texture coordinates for any point on a surface are
determined by the viewing angle to the center of the scene and the vector normal to the
surface. For a tessellated surface, which includes correct surface-normal vectors only at
vertices, the rendering algorithm calculates the texture coordinates for a point inside a
triangular surface tile by interpolating the coordinates of the triangle’s three vertices. As
an object rotates, the directions of the normal vectors completely determine texture
coordinates; you do not have to calculate a new mapping from the surface to the texture
image.

You can simulate complex lighting environments at low computational cost with a
simple reflection map. However, reflection angles are not exact. For example, the
algorithm yields the same image point for every point on a large, flat surface. This effect
is illustrated in Figure 8-1, where collimating “lenses” indicate the effects of the remote
viewer and remote source approximations. Notice that the shading for all points on each

Simple Mapping: Remote View of a Remote Environment

103

face of the cube is determined by one point on the texture image, which is determined by
the normal to each surface. Furthermore, the texture image is usually blurred to avoid
problems that occur when the curvature of a surface can cause two points that are close
together to reflect widely separated points on the texture map, an effect called aliasing.
Thus you cannot closely examine reflection-map images to make accurate inferences
about a surface or its reflected environment.

Figure 8-1 Reflection-Map Geometry: Remote Viewer, Remote Environment

104

Chapter 8: Efficient High-Quality Lighting Effects: Reflection Mapping

Sphere Map

For sphere maps, you import a texture image, and opReflMap creates a lighting
environment for your scene by projecting the texture on a sphere that surrounds the
scene. The texture map first locates a point on the sphere using a remote viewer and
remote environment, and then projects the point onto the texture coordinate plane (a
plane through the equator) to determine the image point in the texture.

Thus, for a realistic image to appear on the surface, the texture image is a fish-eye image.
Mathematical details of the projection operation are in the discussion of the glTexGen()
functions in the OpenGL Reference Manual. Sphere mapping is discussed more intuitively
in the section “Environment Mapping” in Chapter 9, “Texture Mapping,” of the OpenGL
Programming Guide.

Gaussian Map

Gaussian mapping creates an environment map on a sphere that simulates the effect of a
light source directed along the viewing direction at an imperfectly reflecting surface. It
provides efficient lighting effects for models with inconsistent normals; it is a faster
alternative to using two lights.

The mapping is a Phong-like illumination model characterized by a specularity
parameter that controls the amount of light that is imperfectly reflected. As the
specularity increases, reflections become less diffuse and more mirror-like. For more
details on the Phong illumination model, see the book by van Dam and others listed in
the “Recommended Background Reading” on page xxxi.

A special form is an infinite viewer/infinite sphere environment map where the
environment is two lights with a fixed gaussian distribution. The texture map is only
generated if the user does not specify an image file name or a csImage, in case Gaussian
mapping act just like sphere environment mapping.

Note: Gaussian map mode only supports two lights fixed in the environment map.

Accurate Mapping: Local View of a Local Environment

105

Accurate Mapping: Local View of a Local Environment

Reflection mapping assumes:

• A lighting geometry made of a spherical or cylindrical room

• A local environment: The radius of the room is finite; reflections do not depend solely
on the direction of the reflection angle. Reflections from a large flat surface vary;
they show the alternating lights in the room.

• A local viewer: The distance between the viewpoint and the surface is finite.

The texture coordinates depend on the complete ray-path geometry: the location of the
viewpoint and the location of the reflecting surface point and its normal. These
quantities, and the dimensions of the cylinder, define the point where a ray intersects the
cylinder and determine the point in the texture image (see Figure 8-2).

Unlike the remote viewer and environment configuration, a ray between the viewpoint
and the texture image changes as you bring the viewpoint closer to the surface or
translate the surface; the complete ray geometry determines the texture coordinates
associated with a point on a surface. For example, as you “walk” by a car, translating the
viewpoint of the scene, lines of lights slide over the car’s surface.

Figure 8-2 illustrates the general effects of a local viewer and local environment. To
simplify the comparison with the remote-viewer-remote-environment approximation,
the spherical texture image is the same as in Figure 8-1; the difference is that the
collimating lenses have been removed. Note how each point on the cube maps to a
different point on the texture map; the entire ray geometry determines the texture image
point and the size of the image on the cube.

106

Chapter 8: Efficient High-Quality Lighting Effects: Reflection Mapping

Figure 8-2 Reflection-Map Geometry: Local Viewer, Local Environment

Any change in the scene or viewpoint requires a recomputation of the reflected ray, and
a new mapping of the surface to the texture image. The member function
updateViewInfo() calculates cylinder texture map coordinates for each frame. Clearly,
this is a greater processing burden than using a remote viewer in a remote environment.

Accurate Mapping: Local View of a Local Environment

107

Cylinder Map

Cylinder reflection maps simulate tube lighting. The mapping assumes a local viewer
and a local environment; the x axis is the axis of a cylinder with lights that run down the
wall, parallel to the axis. As you move the viewpoint, the simulated lighting tubes slide
over the surface.Tube lighting is the default when opReflMap has no image file; that is,
you can attach an image to the cylinder.

In cylinder mapping (a.k.a. reality mapping) the environment map is placed on a finite
radius sphere, at a user-defined origin. If no image file or csImage is given to opReflMap,
then a default black and white striped texture map is automatically generated. The user
can control the width, spacing, and coloration of the stripes. Stripes reflected off the body
of an automobile can be an useful aid to visualizing surface curvature and anomolies.

The sample application zebraFly can be used to illustrate this (see “Reflection Mapping”
on page 315).

Figure 8-3 illustrates the viewing configuration used for the cylinder map.

Figure 8-3 Viewing Configuration for the Cylinder Reflection Map

opReflMap has accessor methods to control parameters of the cylinder map.

y

Start angle End angle

108

Chapter 8: Efficient High-Quality Lighting Effects: Reflection Mapping

Reflection-Mapping Class: opReflMap

The opReflMap class provides the tools for the different reflection-mapping types
discussed in this section.

• Use any of the three simple reflection maps to rotate objects in the scene to observe
changing reflections.

• Use the more computationally expensive cylindrical environment map to more
realistically shift the lighting as you “walk” around a surface. The function
updateViewInfo() updates the texture coordinates as you walk around.

In addition to the constructor, opReflMap’s methods fall into three groups: those that are
independent of the type of reflection map set by the constructor, those that apply only to
the Gaussian map type, and those that apply only to the cylinder, floor, and ceiling maps.
No special function is needed to control the sphere map.

Class Declaration for opReflMap

This class has the following main methods:

class opReflMap
{
public:
opReflMap(csGroup *root, char *fileName, unsigned int mt);
opReflMap(csGroup *root, csImage *inputImage, unsigned int mt);
opReflMap(csGroup *root, opReal spec, unsigned int mt);

~opReflMap(void);

// Sets and gets
void setScene(csGroup *root) ;
csGroup *getScene() ;

void setSpecularity(opReal spec);
opReal getSpecularity();

void setScale(opReal _scale);
opReal getScale();

void setXoffset(opReal offset);
opReal getXoffset();

Reflection-Mapping Class: opReflMap

109

void setYoffset(opReal offset);
opReal getYoffset();

void setZoffset(opReal offset);
opReal getZoffset();

void setStartAngle(opReal angle);
opReal getStartAngle();

void setEndAngle(opReal angle);
opReal getEndAngle();

void setMapType(uint mt);
unsigned int getMapType();

void setShinyThres(float t);
float getShinyThres();

void setXRes(int res);
int getXRes();

void setYRes(int res);
int getYRes();

csTexture *getTex()
csTexGen *getTexGen()

void setCBias(float bias)
float getCBias()

void setLightTint(float r, float g, float b)
void setSpaceTint(float r, float g, float b)

// Compute the new texture coordinates for a given geoset
void computeTexCoords(csTriStripSet *gs);
void computeTexCoords(csTriFanSet *gs);

// Run over the scene graph updating the texture coord
void computeAllTexCoords();

// Tell the reflection map to update it’s viewing information
void updateViewInfo(
 csCamera &camera, csTransform &transform, csVec3f ¢er);

110

Chapter 8: Efficient High-Quality Lighting Effects: Reflection Mapping

// Enables the texture appearance on the scene graph’s shape nodes’
// apearances
void setTextureApp(bool enable);
};

Methods in opReflMap

The following opReflMap methods are independent of mapping type:

opReflMap(root, fileName, mt), opReflMap(root, spec, mt), and
opReflMap(root, inputImage, mt)
Construct a reflection map of type mt, where mt is an element of an
enumerated type: SPHERE, GAUSSIAN, CYLINDER, FLOOR, or
CEILING. If mt is GAUSSIAN, spec is the specularity parameter; the
default value is 2.0.

setMapType() and getMapType()
Set and get the map type, which is SPHERE, GAUSSIAN, LSPHERE,
CYLINDER, FLOOR, or CEILING.

setScene() and getScene()
Set and get the scene graph for which opReflMap builds a reflection
mapping.

setShinyThres() and getShinyThres()
Get and set the threshold value for mapping a reflection from a surface.
The threshold is compared with the value of an object’s csMaterial
shininess parameter, which can vary from 0.0, for no reflections, to 1.0
for a perfect reflector. The default value is 0.0.

For GAUSSIAN reflection maps, you have the following specific methods:

setSpecularity() and getSpecularity()
Get and set the specularity parameter for the GAUSSIAN mapping, a
Phong-like illumination model. As the specularity parameter increases,
the surface appears more mirror like. The default value is 2.0.

For CYLINDER reflection maps, you have the following specific methods:

setScale() and getScale()
Get and set the radius for the CYLINDER mapping.

Reflection-Mapping Class: opReflMap

111

setStartAngle() and getStartAngle()
Set and get the angular elevation, in radians, of the right edge of the light
cylinder as you look in the negative x direction. The angle is measured
from the y axis in the z-y plane.

setEndAngle() and getEndAngle()
Set and get the angular elevation, in radians, of the left edge of the light
cylinder as you look down the center of the cylinder in the negative x
direction. The angle is measured from the y axis in the z-y plane.

computeTexCoords()
Computes texture coordinates for a particular csGeoSet, so you can
update the reflection map for a local viewer and environment when you
change the relative position of the viewpoint and the object.

updateViewInfo(camera, transform, center)
Translates the center of the scene to center, changes the viewing angle
according to the matrix transform, and computes new texture
coordinates for the entire scene graph. A simple rotation matrix gives
the best results. Use the center parameter to set the distance from the
center of the scene.

PART FOUR

Managing and Rendering Higher-Order
Geometric Primitives IV

The three chapters in this section discuss tools for creating higher-order
primitives, maintaining surface topology when primitives are adjacent, and
approximating a surface with a set of triangles, which define OpenGL primitives
suitable for rendering.

Chapter 9, “Higher-Order Geometric Primitives and Discrete Meshes” discusses
OpenGL Optimizer representations (reps), such as opScalar or opCuboid.

Chapter 10, “Creating and Maintaining Surface Topology” explains the opTopo,
opBoundary, and opSolid classes.

Chapter 11, “Rendering Higher-Order Primitives: Tessellators” explores
different tessellators available in OpenGL Optimizer.

115

Chapter 9

9. Higher-Order Geometric Primitives and Discrete
Meshes

OpenGL Optimizer extends the set of geometric objects available through Cosmo3D
with a large set of higher-order primitives that you can include in a scene graph.
“Higher-order” means objects other than sets of triangles, and typically implies an object
that is defined mathematically.

Designs produced by CAD systems are defined by mathematically defined surface
representations. By providing direct support for them, OpenGL Optimizer expands
possible applications from simple walkthrough ability to direct interaction with the
design data base. When combined with advanced rendering tools such as those
discussed in “Occlusion Culling” on page 60, higher-order surface representations
provide visual access to very large design data bases, with free-roaming interactivity.

OpenGL Optimizer also provides classes to define discrete curves, discrete surfaces, and
meshes. Meshes associate a vector with each mesh point and are useful for scientific
visualization.

The objects are discussed in the following sections:

• “Features and Uses of Higher-Order Geometric Primitives” on page 116

• “Objects Required by Reps” on page 117

• “Geometric Primitives: The Base Class opRep and the Application repTest” on
page 121

• “Planar Curves” on page 124

• “Spatial Curves” on page 147

• “Parametric Surfaces” on page 151

• “opCuboid” on page 190

• “Regular Meshes and Discrete Surfaces” on page 191

116

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Features and Uses of Higher-Order Geometric Primitives

Higher-order geometric primitives, called representations or simply reps, facilitate the
design process by providing a library of useful curves and surfaces that ease interactive
flexibility, accelerate scene-graph transformations, and reduce the memory footprint of
the scene graph. Reps yield these advantages by using parameters to describe objects.
Instead of a collection of vertices, which must be manipulated independently to change
a surface, reps define surfaces in terms of a relatively small set of control parameters; they
are more like pure mathematical objects.

Reps and the Rendering Process

OpenGL Optimizer allows you to interact with an abstract object (a representation or
rep) and treat rendering as a separate operation. A simple example of a rep is a sphere,
defined by a radius and a center. After defining a sphere, you can implement how it is
rendered in several ways: by tessellating, by a sphere-specific draw routine, or
conceivably by hardware. Member functions of geometric-primitive classes allow you to
implement the most appropriate way of rendering. The fundamental rendering step of
tessellating a representation is discussed in Chapter 11, “Rendering Higher-Order
Primitives: Tessellators.”

Trimmed NURBS

NURBS curves and surfaces are included in the set of OpenGL Optimizer reps. OpenGL
also has these, but OpenGL Optimizer NURBS have two advantages:

• You can maintain topology, so cracks do not appear at the boundaries of adjacent
tessellations when they are drawn.

• You have better control over tessellation.

See Chapter 10, “Creating and Maintaining Surface Topology,” and
“opTessNurbSurfaceAction” on page 228.

Objects Required by Reps

117

Objects Required by Reps

To use reps effectively, you have to understand the OpenGL Optimizer representations
of geometric points and the transformation matrices that are used by the methods of the
rep classes.

Pi

OpenGL Optimizer uses the value for π held in the variable M_PI, declared in csBasic.h:
3.14159265358979323846.

Classes for Points

The classes opVec2, opVec3, and opVec4 define two-, three-, and four-dimensional
vectors, and include common operations of vector algebra such as addition, scalar
multiplication, cross products, and so on. See the header file opVec.h for a list of
operations defined for each vector.

The important distinction between these vector classes and csVec of Cosmo3D is that
OpenGL Optimizer vectors are declared opReal and so can be single or double precision,
depending on the version of the OpenGL Optimizer library you use.

118

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Classes for Scalar Functions

The opScalar class is the base class for defining scalar functions; it allows you to
conveniently read and write functions. The class provides a virtual evaluation method.

Class Declaration for opScalar

The class has the following main methods:

class opScalar : public csObject
{ public:
// Creating and destroying
opScalar();
virtual ~opScalar();
virtual opReal eval(opReal u);
virtual csObject* clone(csNode::CloneEnum);
};

The class opCompositeScalar allows you to define the functional composition of two
opScalars.

Class Declaration for opCompositeScalar

The class has the following main methods:

class opCompositeScalar : public opScalar
{ public:
// Creating and destroying
opCompositeScalar();
opCompositeScalar(opScalar *outFun, opScalar *inFun);
virtual ~opCompositeScalar();

// Accessor functions
opScalar *getOutF()
opScalar *getInF()
void setOutF(opScalar *outF);
void setInF (opScalar *inF);

opReal eval(opReal t);

//Copy
virtual csObject clone(csNode::CloneEnum what);
};

Objects Required by Reps

119

Methods in opCompositeScalar

eval() Returns the value of outF(inF(t)).

clone(what) Copy constructor for Cosmo3d. Creates an instance that has the same
type (classType) as “this”, and copies field values from the created
instance. Each derived class should implement this function.

When what equals CLONE_SELF, data members that are pointers to
csObject are not cloned, and pointers to non-csObjects are cloned.
When what equals CLONE_NODES, only data members that are
pointers to csNode or to non-csObjects are cloned. When what equals
CLONE_ALL, all pointer data members are cloned.

Trigonometric Functions

OpenGL Optimizer provides classes for two trigonometric functions, opCosScalar and
opSinScalar. The class declarations are similar to that of opScalar.

Polynomials

Polynomials of arbitrary degree are defined by the class opPolyScalar.

Class Declaration for opPolyScalar

The class has the following main methods:

class opPolyScalar : public opScalar
{
public:

// Creating and destroying
opPolyScalar(void);
opPolyScalar(int degree, opReal* coef);
virtual ~opPolyScalar();

// Accessor functions
void set(int degree, opReal* coef);
int getDegree()
opReal getCoef(int i)

// Evaluators
opReal eval(opReal u);

//Copy
virtual csObject* clone (csNode::CloneEnum what);
}:

120

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Matrix Class: opFrame

Each geometric primitive is defined with respect to its own coordinate system. The
elementary definition of an object gives a particular orientation and location with respect
to the origin. This reference frame can, in turn, be manipulated by a csTransform to place
it in a scene or manipulate it (see Chapter 7, “Interactive Highlighting and
Manipulating”).

The base class for higher-order primitives has methods that allow you to locate and
orient a primitive with respect to its own reference frame. These methods make insertion
of csTransform nodes whenever you want to define the location or orientation of an
object or to change the shape of an object unnecessary.

The location is defined by an opVec2 or opVec3, and the orientation is controlled by a 3
x 3 matrix, held in the class opFrame. If the matrix is not a rotation matrix, you can
change the shape of an object, for example, you can distort a sphere into an ellipsoid.

Class Declaration for opFrame

The class has the following main methods:

class opFrame
{
public:
opReal m[3][3];
bool identity;

void setIdentity()
opFrame();
};

Geometric Primitives: The Base Class opRep and the Application repTest

121

Geometric Primitives: The Base Class opRep and the Application repTest

opRep is the base class for higher-order geometric primitives that are stored in a Cosmo
3D scene graph. An opRep is derived from a csShape and is therefore always a leaf node.
Figure 9-1 shows the hierarchy of classes derived from opRep.

The following sections discuss the subclasses of opRep:

• “Planar Curves” on page 124

• “Spatial Curves” on page 147

• “Parametric Surfaces” on page 151

• “opCuboid” on page 190

• “Regular Meshes and Discrete Surfaces” on page 191

To experiment with opReps, you can use and modify the application repTest in
/usr/share/Optimizer/src/apps/repTest, which provides sample instances of several
geometric representations, as well as the tessellation and Cosmo3D calls that render the
objects. Sample code from repTest is included with discussions of several of the classes
derived from opRep.

opRep has methods to orient the object in space, so you don’t have to place a
csTransform node above each opRep to move it from its default position. opRep also has
a virtual drawing function that you can use to define an approach to rendering other than
via tessellation and a Cosmo3D draw action.

122

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Figure 9-1 Class Hierarchy for Higher-Order Primitives

opDisSurface

opCuboid

csShape

opCurve2d

opDisCurve2d

opCurve3d

opOrientedLine3d

opRep

opParaSurface

opLine2d

opCircle2d

opHsplineCurve2d

opSuperQuadCurve2d

opNurbCurve2d

opSuperQuadCurve3d

opLine3d

opPieceWisePolyCurve3d

opPieceWisePolySurface

opPieceWisePolyCurve2d

opCircle3d

opHsplineCurve3d

opNurbCurve3d

opCompositeCurve3d

opRegMesh

opTorus

opNurbSurfaceopNurbSurface

opPlane

opDisCurve3d

opSphere

opCylinder

opCone

opSweptSurface

opRuled

opCoons

opNurbSurface

opHsplineSurface

Geometric Primitives: The Base Class opRep and the Application repTest

123

Class Declaration for opRep

The class has the following main methods:

class opRep : public csShape
{
public:
opRep();
virtual ~opRep();

// Accessor functions
void setOrigin(const opVec3& org);
void setOrient(const opFrame& mat);

opVec3 getOrigin();
opFrame getOrient();

// Utility methods
virtual int getMemSize();

public:
// Comso3d virtual functions
virtual void draw(csDrawAction* action);
virtual void isect(csIsectAction* ia);
};

Methods in opRep

setOrient() Sets the orientation of the representation with respect to the origin via a
matrix multiplication.

For a discussion of useful matrices, see the book Computer Graphics:
Principles and Practice in “Recommended Background Reading” on
page xxxi.

setOrigin() Sets the location of the representation with respect to the origin. For
example, supplying the vector (1,0,0) shifts the location of the object 1
unit in the direction of the positive x axis.

opRep’s subclasses typically include evaluator methods to determine coordinates of
points, tangents, and normals. If you do not want the values corresponding to the default
position, do not call these methods before you use setOrient() and setOrigin() to locate
an opRep. Thus, for example, when defining points on a circle, first set the center and the
radius, then call setOrient() to set the orientation, and then evaluate points.

124

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Planar Curves

A parametric curve in the plane can be thought of as the result of taking a piece of the
real number line, twisting it, stretching it, maybe gluing the ends together, and laying it
down on the plane. The base class for parametric curves that lie in the x-y plane is the
class opCurve2d.

An important use of opCurve2d is to specify trim curves, which define boundaries for
surfaces. Surfaces are parameterized by part of a plane, which in OpenGL Optimizer is
referred to as the u-v plane. When an opCurve2d is used to define a trim curve, it is
treated as a curve in the u-v plane. This topic is discussed further in the section
“Parametric Surfaces” on page 151.

Another important use of opCurve2d is for specifying cross sections for swept surfaces.
See “Swept Surfaces” on page 171.

OpenGL Optimizer also provides a class to create discrete curves, opDisCurve2d.

The following sections discuss planar curve classes, most of which are derived from
opCurve2d:

• “Mathematical Description of a Planar Curve” on page 124

• “Lines in the Plane” on page 128

• “Circles in the Plane” on page 129

• “Superquadric Curves: opSuperQuadCurve2d” on page 131

• “Hermite-Spline Curves in the Plane” on page 134

• “NURBS Overview” on page 136

• “NURBS Curves in the Plane” on page 141

• “Piecewise Polynomial Curves: opPieceWisePolyCurve2d” on page 143

• “Discrete Curves in the Plane” on page 144

Mathematical Description of a Planar Curve

Planar curves consist of sets of points, described by two-dimensional vectors, opVec2s.
They are parameterized by the opReal variable t; as t varies, a point “moves” along the
curve. t can be thought of as the amount of time that has passed as a point moves along
the curve. Or, t can measure the distance traveled.

Planar Curves

125

More precisely, each component of a point on the curve is a function of t, which lies in the
parameter interval (t0, t1) on the real line. Points on the curve are described by a pair of
functions of t: (x(t), y(t)).

Figure 9-2 Parametric Curve: Parameter Interval (0,1).

Classes derived from opCurve2d inherit a set of evaluator functions which, for a given
value of t, evaluate a point on the curve, the tangent and normal vectors at the point, and
the curvature. Naturally, the base-class evaluator that locates points on the curve is a
pure virtual function.

To evaluate tangent and normal vectors at a point, opCurve2d provides virtual functions
that, by default, use finite-central-difference calculations. To compute the tangent to the
curve at p[t], a point on the curve, the tangent evaluator function takes the vector
connecting two “nearby” points on the curve, p[t+∆t] − p[t−∆t] where ∆t is “small,” and
divides by 2∆t. Similarly, a finite-central-difference calculation of the normal vector uses
the difference between two nearby tangent vectors: n[t] = (t[t+∆t] −t[t−∆t])/2∆t.

0.0 1.0

t

y

x

t=0.0

t=1.0

Object space

Parameter space

126

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Class Declaration for opCurve2d

The class has the following main methods:

class opCurve2d : public opRep
{
public:
// Creating and destroying
opCurve2d();
opCurve2d(opReal beginT, opReal endT);

virtual ~opCurve2d();

// Accessor functions
void setBeginT(opReal beginT);
void setEndT(opReal endT);

opReal getBeginT();
opReal getEndT();

opVec2 getBeginPt();
opVec2 getEndPt();

opVec2 getBeginTan();
opVec2 getEndTan();

void setClosed(opLoop loopVal);
opLoop getClosed();

void setClosedTol(opReal tol);
opReal getClosedTol();

// Evaluators
virtual void evalPt(opReal t, opVec2 &pnt) = 0;
virtual void evalTan(opReal t, opVec2 &tan);
virtual void evalNorm(opReal t, opVec2 &norm);
virtual void evalCurv(opReal t, opReal &curv);
virtual void eval(opReal t, opVec2 &pnt,
 opVec2 &tan,
 opReal &curv,
 opVec2 &norm);
};

Planar Curves

127

Methods in opCurve2d

opCurve2d(beginT, endT)
Creates an instance of opCurve2d(). If you do not specify any
arguments, then the parametric range of the curve is [0.0,1.0].

eval() For a given t, returns the position, tangent, curvature, and normal
vectors.

evalPt() Is a pure virtual function to evaluate position on the curve.

evalTan(), evalCurv(), and evalNorm()
Evaluate the curve’s tangent, curvature, and normal vectors,
respectively. The default methods approximate the computation using
central differences taken about a small ∆t, given by (endT - beginT) *
functionTol. functionTol is a static data element specified in the file
opRep.H.

setBeginT() and setEndT(), getBeginPt() and getEndPt()
Set and get the parameter range for the curve. Whenever you set one of
these values, the endpoint of the curve changes. Therefore, each of these
methods also recomputes the endpoint, which is cached because it is
frequently used. Also, the methods recompute the ∆t used to
approximate derivatives.

Note that all planar curve classes derived from opCurve2d reuse
setBeginT() and setEndT() to define the extents of their curves.

setClosed() and getClosed()
Set and get whether a curve is closed.

A closed curve is one for which the endpoints match. OpenGL
Optimizer determines automatically whether curves are closed, but
you can override this with setClosed().

setClosedTol() and getClosedTol()
Set and get the mismatch between endpoints that is allowed when
calculating whether curves are closed.

To specify the origin used to locate an opCurve2d, use the first two components set by
the inherited method opRep::setOrigin().

128

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Lines in the Plane

Parametric lines in the plane are defined by beginning and ending points. The
parameterization is such that as t varies from t1 to t2, a point on the line “moves,” at a
uniform rate, from the beginning to the ending point.

Figure 9-3 Line in the Plane Parameterization

Class Declaration for opLine2d

The class has the following main methods:

class opLine2d : public opCurve2d
{
public:
// Creating and destroying
opLine2d();
opLine2d(opReal x1, opReal y1, opReal t1,
 opReal x2, opReal y2, opReal t2);
virtual ~opLine2d();

// Accessor functions
void setPoint1(opReal x1, opReal y1, opReal t1);
void setPoint2(opReal x2, opReal y2, opReal t2);
void getPoint1(opReal *x1, opReal *y1, opReal *t1);
void getPoint2(opReal *x2, opReal *y2, opReal *t2);
// Evaluators
void evalPt(opReal t, opVec2 &pnt);
//Copy
virtual csNode* clone(csNode::CloneEnum what);
};

y

x

t=t1

t=t2

(x1,y1)

(x2,y2)

Planar Curves

129

Methods in opLine2d

opLine2d() Creates a parametric line with end points (0,0) and (1,0), and parameter
interval (0,1).

opLine2d(x1, y1, t1, x2, y2, t2)
Creates a parametric line starting at the point (x1, y1) and ending at
(x2,y2). The line is parameterized so that t = t1 corresponds to (x1, y1)
and t = t2 corresponds to (x2,y2).

evalPt() Is the only evaluator function defined for this object. The tangent vector
is (x2-x1, y2-y1) and the curvature is zero.

setPoint*() and getPoint*()
Set and get the end points of the line.

Circles in the Plane

Use the class opCircle2d to define a parametric circle in the plane. The parameterization
is such that t is the angular displacement, in radians, in a counterclockwise direction
from the x axis. Figure 9-4 illustrates the parameterization of the circle.

Figure 9-4 Circle in the Plane Parameterization

y

x

Origin

Radius
t

130

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Class Declaration for opCircle2d

The class has the following main methods:

class opCircle2d : public opCurve2d
{
public:

// Creating amd destroying
opCircle2d();
opCircle2d(opReal rad, opVec2 *org);
virtual ~opCircle2d();

// Accessor functions
void setRadius(opReal rad) ;
opReal getRadius() ;

// Evaluator
void evalPt(opReal t, opVec2 &pnt);
void evalTan(opReal t, opVec2 &tan);
void evalCurv(opReal t, opReal &curv);
void evalNorm(opReal t, opVec2 &norm);
void eval(opReal t,
 opVec2 &pnt,
 opVec2 &tan,
 opReal &curv,
 opVec2& norm);

//Copy
virtual csNode* clone(csNode::CloneEnum what)
};

Methods in opCircle2d

opCircle2d inherits methods to set the range of parameter values from opCurve2d.

opCircle2d(rad, org)
Creates an instance of a two-dimensional circle with radius rad centered
at org. The default circle has unit radius and origin (0,0). To change the
default position, use the methods setOrigin() and setOrient() inherited
from opRep.

setRadius() and getRadius()
Set and get the circle’s radius.

opCircle2d provides exact calculations for the evaluator functions inherited from
opCurve2d.

Planar Curves

131

Superquadric Curves: opSuperQuadCurve2d

The class opSuperQuadCurve2d provides methods to define a generalization of a circle
that, when used for constructing a swept surface, is convenient for generating rounded,
nearly square surfaces, or surfaces with sharp cusps (see “Swept Surfaces” on page 171).
Two examples of superquadrics appear in repTest.

The position along the curve is specified by an angle from the x axis, in the same as for
an opCircle2d. The shape of the curve is controlled by a second parameter.

A superquadric is the set of points (x,y) given by the following equation that clearly
expresses the relationship to the equation of a circle:

The above equation can be written in a parametric form:

The family of curves generated by these equations as the quantity α varies can be
described as follows (see Figure 9-5).

Four points are always on the curve for any value of α: (±r, 0) and (0, ±r).

• If α is 1, the curve is a circle of radius r.

• As α approaches zero, the circle expands to fill a square of side 2r as if you were
inflating a balloon in a box.

• As α approaches infinity, the circle contracts towards the two diameters along the x
and y axes, approaching two orthogonal lines as if you deflated a balloon with two
rigid orthogonal sticks inside it.

x2()1 α/ y2()1 α/+ r2()1 α/=

x t() r t[]cos αsign t[]cos[]=

y t() r t[]sin αsign t[]sin[]=

132

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Figure 9-5 Superquadric Curve’s Dependence on the Parameter α.

y

x

Planar Curves

133

Class Declaration for opSuperQuadCurve2d

The class has the following main methods:

class opSuperQuadCurve2d : public opCurve2d
{
public:
// Creating and destroying
opSuperQuadCurve2d();
opSuperQuadCurve2d(opReal radius,

opVec2 *origin,
opReal exponent);

virtual ~opSuperQuadCurve2d();

// Accessor functions
void setRadius(opReal _radius);
opReal getRadius();

void setExponent(opReal _exponent);
opReal getExponent();

// Evaluator
void evalPt(opReal t, opVec2 &pnt);

//Copy
virtual csNode* clone(csNode::CloneEnum what);
};

Methods in opSuperQuadCurve2d

The accessor functions allow you to control the radius r and exponent α of the curve. To
change the default position, use the methods setOrigin() and setOrient() inherited from
opRep.

134

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Hermite-Spline Curves in the Plane

A spline is a mathematical technique for generating a single geometric object from pieces.
An advantage of breaking a curve into pieces is greater flexibility when you have many
points controlling the shape: changes to one piece of the curve do not have significant
effects on remote pieces. To define a spline curve for a range of values for the parameter
t, say from 0 to 3, you “tie” together pieces of curves defined over intervals of values for
t. For example, you might assign curve pieces to the three intervals 0 to 1, 1 to 2, and 2 to
3. The four points in the set of parameters, 0, 1, 2, and 3, define the endpoints of the
intervals and are called knots.

A Hermite-spline curve is a curve whose segments are cubic polynomials of the parameter
t, where the coefficients of the polynomials are determined by the position and tangent
to the curve at each knot point. Thus the curve passes through each of a set of specified
points with a specified tangent vector. The set of knot points must be increasing values
of the parameter t.

Figure 9-6 Hermite Spline Curve Parameterization

y

x

t=t0

t=t1
t=t2

t=t3

p0

p1
tng0

tng1
p2

tng2

tng3

p3

Planar Curves

135

Class Declaration for opHsplineCurve2d

The class for creating Hermite spline curves is opHsplineCurve2d. The class has the
following main methods:

class opHsplineCurve2d : public opCurve2d
{
public:
// Creating and destroying
opHsplineCurve2d(opReal tBegin = 0.0, opReal tEnd = 1.0);
virtual ~opHsplineCurve2d();

// Accessor functions
void setPoint(int i, opVec2 &p);
void setTangent(int i, opVec2 &tng);
void setKnot(int i, opReal t);

int getKnotCount();
opVec2* getPoint(int i);
opVec2* getTangent(int i);
opReal getKnot(int i);

virtual int getMemSize();

// Evaluator
virtual void evalPt(opReal t, opVec2 &pnt);

//Copy
virtual csNode* clone(csNode::CloneEnum what);
};

136

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

NURBS Overview

The acronym NURBS stands for “nonuniform rational B-splines.” NURBS define a set of
curves and surfaces that generalizes Bezier curves. Both NURBS curves and Bezier
curves are “smooth” curves that are well suited for CAD design work. They are
essentially determined by a set of points that controls the shape of the curves, although
the points do not lie on the curves.

Because NURBS properties are not widely known, a discussion of their features precedes
details of how to create instances of them. The discussion is necessarily brief and is
intended to provide the minimum amount of information needed to start using OpenGL
Optimizer NURBS classes.

This general discussion of NURBS is presented in the following sections:

• “OpenGL Optimizer NURBS Classes” on page 137

• “NURBS Elements That Determine the Control Parameters” on page 137

• “Knot Points” on page 138

• “Control Hull” on page 138

• “Features of NURBS and Bezier Curves” on page 139

• “Weights for Control Points” on page 139

For more information, consult the following sources, which are listed in “Recommended
Background Reading” on page xxxi:

• An intuitive introduction to NURBS curves and surfaces is Chapter 8 of The Inventor
Mentor.

• A more rigorous mathematical discussion appears in the book Curves and Surfaces
for Computer Aided Geometric Design: A Practical Guide.

• A discussion of NURBS also appears in Chapter 11 of the OpenGL Programming
Guide.

Planar Curves

137

OpenGL Optimizer NURBS Classes

The OpenGL Optimizer classes allow you to treat a NURBS object as a black box that
takes a set of control parameters and generates a geometric shape. A NURBS object’s
essential properties are rather straightforward, although the underlying mathematics are
complex. Unlike lines and circles, NURBS can represent a large set of distinct complex
shapes. Because of this flexibility, developing a NURBS object is often best done
interactively. For example, you could allow a user to design a curve using an interface in
which control parameters are changed by clicking and dragging and by using sliders.

There are three classes:

• The opNurbCurve2d class generates curves in the plane, the simplest NURBS
object provided by OpenGL Optimizer.

• The opNurbCurve3d class generates NURBS curves in three-dimensional space.

• The opNurbSurface class generates NURBS surfaces, which extend the ideas
underlying NURBS curves to two-dimensional objects. The principles for
controlling the shapes of these objects are all essentially the same.

NURBS Elements That Determine the Control Parameters

This section provides some theoretical background information on NURBS elements. If
you already understand NURBS, continue with “NURBS Curves in the Plane” on
page 141)

NURBS are defined by the following elements, discussed in this chapter:

• Nonuniform knot points (see “Knot Points” on page 138)

• A control hull consisting of control points (see “Control Hull” on page 138)

• Weighting parameters for control points (see “Weights for Control Points” on
page 139)

138

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Knot Points

The knot points determine how and where the pieces of the NURBS object are joined. The
knots are nondecreasing— but not necessarily uniformly spaced or distinct—values of
the parameter t for the curve. The sequence of knots need not have uniform spacing in
the parameter interval. In fact, the mathematics of NURBS make it possible and, perhaps,
necessary to repeat knot values; that is, knots can appear with a certain multiplicity. The
number of knot points is determined by counting all the knot points, including all
multiplicities.

For example, although the sequence (0,0,0,0,1,1,1,1) has only two distinct knot points, the
number of knot points is eight. (This example it is the set of knot points for a cubic Bezier
curve defined on the interval 0 to 1). How to determine the order of a NURBS curve is
discussed in “Features of NURBS and Bezier Curves” on page 139.

Control Hull

The control hull is the set of all points that determine the basic shape of NURBS object.
The effect of the control hull is determined by a “B-spline.”

A B-spline is a basis spline; a set of special curves associated with a given knot sequence
from which you can generate all other spline curves having the same knot sequence and
control hull. For each interval described by the knot sequence, the corresponding piece
of a B-spline curve is a Bezier curve.

B-spline curves are like Bezier curves in that they are defined by an algorithm that acts
on a sequence of control points, the control hull, which lie in the plane or in
three-dimensional space. For information on this, consult the book Curves and Surface for
Computer Aided Geometric Design in “Recommended Background Reading” on page xxxi.

Planar Curves

139

Weights for Control Points

The third set of control parameters for a NURBS curve is the set of weights associated
with the control points.

A rational B-spline consists of curves that have a weight associated with each control
point. The individual pieces of a NURBS curve usually are not Bezier curves but rational
Bezier curves. The values of the weights have no absolute meaning; they control how
“hard” an individual control point pulls on the curve relative to other control points. If
the weights for all the control points of a rational Bezier curve are equal, then the curve
becomes a simple Bezier curve. Weights allow construction of exact conic sections, which
cannot be made with simple Bezier curves. See Curves and Surface for Computer Aided
Geometric Design in “Recommended Background Reading” on page xxxi.

Features of NURBS and Bezier Curves

Bezier curves have the following properties:

• They are “nice” polynomial curves whose degree is one less than the number of
control points.

For a polynomial curve, each of the components is a polynomial function of the
parameter t. The number of coefficients in the polynomial, the order of the
polynomial, is equal to the number of control points.

• The control points determine the shape of the Bezier curve, but they do not lie on
the curve, except the first and last control points.

NURBS curves differ in the following ways:

• The order of the polynomial pieces that make up the NURBS curve depends on the
number of control points and the number of knot points. The order of a NURBS
curve is the difference between the number of knots, accounting for multiplicity,
and the number of control points. That is,

order = number of knot points - number of control points

• The relationship between the curves and the control points is looser than for a
Bezier curve. It also depends on the knot sequence and the sequence of weights.

140

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Equation Used to Calculate a NURBS Curve

The equation that defines the NURBS curve is

• is a point on the surface p(t)

• is the ith B-spline basis function of degree n

• is a control point

• is the weight for the control point

Alternative Equation for a NURBS Curve

If you have a surface developed from the alternative expression for a NURBS surface:

you must change the coordinates of the control points to get the same surface from
OpenGL Optimizer; you convert the coordinates of the control points from (x,y,w) to
(wx,wy,w).

p t()

Bi
n t()Ci

i
∑

Bi
n t()Wi

i
∑
----------------------------=

p t()

Bi
n t()

Ci

Wi

p u v,()

Bi
n u()WiCi

i
∑

Bi
n u()Wi

i
∑

-----------------------------------=

Planar Curves

141

NURBS Curves in the Plane

The class opNurbCurve2d defines a nonuniform rational B-spline curve in the plane, the
simplest NURBS object provided by OpenGL Optimizer.

Class Declaration for opNurbCurve2d

The class has the following main methods:

class opNurbCurve2d : public opCurve2d
{
public:
// Creating and destroying
opNurbCurve2d(opReal tBegin = 0.0, opReal tEnd = 1.0);
virtual ~opNurbCurve2d();

// Accessor functions
void setControlHull(int i, opVec2 &p);
void setControlHull(int i, opVec3 &p);
void setWeight(int i, opReal w);
void setKnot(int i, opReal t);
void setControlHullSize(int s);

opVec2* getControlHull(int i);
opReal getWeight(int i);
int getControlHullSize();
int getKnotCount();
opReal getKnot(int i);
int getOrder();

void removeControlHullPnt(int i);
void removeKnot(int i);

// Evaluator
virtual void evalPt(opReal t, opVec2 &pnt);

// Memory foot print
virtual int getMemSize();

//Copy
virtual csNode* clone(csNode::CloneEnum what);
};

142

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Methods in opNurbCurve2d

opNurbCurve2d(tBegin, tEnd)
Creates a NURBS curve in the plane with the specified parameter
domain. The default parameter domain is 0.0 to 1.0.

evalPt() Is a pure virtual function inherited from opCurve2d, and produces
unpredictable results until you set the control parameters.

setControlHull(i, p) and getControlHull(i)
Set and get the two-dimensional control point with index i to the value
p. If you supply opVec3 arguments, the location of the control points is
set by the first two components; the last component is their weight.

setControlHullSize()
Gives a hint about how big the control hull array is. This is not
mandatory but uses time and space most efficiently.

setKnot(i, t) and getKnot(i)
Set and get the knot point with index i and the value t.

setWeight(i, w) and getWeight(i)
Set and get the weight of the control point with index i and weight w.

Planar Curves

143

Piecewise Polynomial Curves: opPieceWisePolyCurve2d

A piecewise polynomial curve consists of an array of polynomial curves. Each
polynomial curve is a polynomial mapping from t to UV plane, where the domain is a
subinterval of [0,1]. The polynomial coefficients are set by setControlHull().

Notice that an opPieceWisePolyCurve2d is a subclass of opCurve2d. The domain of a
opPieceWisePolyCurve2d is defined to be [0, n] where n is the number of pieces.

If reverse is 0, then for any given t in [0, n], its corresponding uv is evaluated in the
following way: The index of the piece that corresponds to t is floor(t), and the polynomial
of that piece is evaluated at w1 + (t-floor(t)) * (w2-w1) to get the (u,v), where [w1, w2] is the
domain interval (set by setLimitParas()) of this piece.

If reverse is 1, then for any given t in [0,n], we first transform t into n-t, then perform the
normal evaluation (at n-t) as described in the preceding paragraph.

Class Declaration for opPieceWisePolyCurve

The class has the following main methods:

class opPieceWisePolyCurve2d : public opCurve3d
{
public:
// Creating and destroying
opPieceWisePolyCurve2d ();
~opPieceWisePolyCurve2d ();

//Accessor functions
void setControlHull (int piece, int i, const opVec2& p);
opVec2& getControlHull (int piece, int i);
void setLimitParas (int piece, opReal w1, opReal w2);
void setReverse (int _reverse);
opVec2& getLimitParas (int piece);
int getReverse ();
int getPatchCount ();
int getOrder (int piece);
virtual void evalPt (opReal t, opVec2& pnt);
virtual void evalBreakPoints (opParaSurface* sur);

//Copy
virtual csNode* clone(csNode::CloneEnum what);
};

144

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

setControlHull(piece, i, p) defines the ith polynomial coefficient of the pieceth polynomial
curve to p. p[0] is for the u coefficient and p[1] is for the v coefficient. setLimitParas() sets
the domain interval.

The class opPieceWisePolyCurve3d has parallel functionality and declaration.

Discrete Curves in the Plane

The class opDisCurve2d is the base class for making a discrete curve from line segments
connecting a sequence of points in the plane. Because opDisCurve2d is not derived from
opCurve2d, it does not inherit that class’s finite difference functions for calculating
derivatives, therefore, opDisCurve2d includes member functions that calculate arc
length, tangents, principal normals, and curvatures using finite central differences.
Figure 9-7 illustrates the definition of the curve by a set of points.

Figure 9-7 Discrete Curve Definition

y

x

p0

p1
p2

p3

p4

pi=(points[2i], points[2i+1])

Planar Curves

145

Class Declaration for opDisCurve2d

The class has the following main methods:

class opDisCurve2d : public opRep
{
public:
// Creating and destroying
opDisCurve2d(void);
opDisCurve2d(int nPoints, opReal *points);

virtual ~opDisCurve2d(void);

// Accessor functions
void set (int nPoints, opReal* points);
opVec2 getBeginPt();
opVec2 getEndPt();

opLoop getClosed();
void setClosed(opLoop c);

void setPoint(int i, const opVec2& pnt);
opVec2 getPoint(int i);
int getPointCount();
opVec2 getTangent(int i);
opVec2 getNormal(int i);
opReal getCurvature(int i);

// Evaluators
void computeTangents();
void computeNormals();
void computeCurvatures();
void computeDerivatives();

// Copy
virtual csNode* clone(csNode::CloneEnum::what);
};

146

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Methods in opDisCurve2d

opDisCurve2d(nPoints, points)
Creates a discrete curve from an array of point coordinates. The
constructor assumes that the coordinates of the points are stored in pairs
sequentially; thus the points array is nPoint*2 in length.

computeCurvatures()
Computes the curvature, which is the magnitude of the normal vector.

computeDerivatives()
Is a convenience function that calls (in order) the tangent, normal, and
curvature functions.

computeNormals()
Computes the principal normal at a point using finite central differences
and stores the result in the class member opDvector n. For the point p[i],
the normal vector is computed to be the difference vector between the
tangents at the two neighboring points, t[i+1] - t[i-1], divided by the sum
of the distances from p[i] to the two neighboring points.

computeTangents()
Computes the arc lengths of segments and then uses finite central
differences to compute the tangents. For the point p[i], the tangent
vector is computed to be the vector between its two neighboring points,
p[i+1] - p[i-1], divided by the sum of the distances from p[i] to the two
neighboring points. The tangents are stored in the opDvector t, the arc
lengths in the opDvector ds, and the total arc length in arcLength.

getCurvature() Returns the value of the curvature at the ith point.

getNormal() Returns the value of the normal at the ith point.

getPoint() Returns the value of the ith point.

getPointCount()
Returns the value of the ith point.

getTangent() Returns the value of the tangent at the ith point.

Spatial Curves

147

Spatial Curves

The class opCurve3d is the base for parametric curves that lie in three-dimensional
space. Among other uses, a curve in space could locate a moving viewpoint in a CAD
walk-through.

The nature of these curves is essentially the same as those of opCurve2d curves, except
opCurve3d curves are made of points described by opVec3s. The components of the
points are assumed to be x, y, and z coordinates. Refer to the section “Planar Curves” on
page 124 for a discussion of the basic features of parametric curves and references to
further reading.

This section parallels the discussion in “Planar Curves” on page 124, and emphasizes the
(not very great) differences that distinguish spatial curves:

• “Lines in Space” on page 147

• “Circles in Space” on page 148

• “Superquadrics in Space” on page 149

• “Hermite Spline Curves in Space” on page 149

• “NURBS Curves in Space” on page 149

• “Curves on Surfaces: opCompositeCurve3d” on page 150

• “Discrete Curves in Space” on page 151

The class declaration for opCurve3d is in the file
/usr/share/Optimizer/src/libop/opCurve3d.h. Its declaration is essentially identical to the
declaration for opCurve2d. The difference is that all opVec2 variables are replaced by
opVec3 variables.

Lines in Space

The base class for lines in space, opLine3d, is essentially the same as opLine2d, discussed
in “Lines in the Plane” on page 128. The main differences are due to the need to manage
three-dimensional vectors. Thus all vector variables are opVec3 and the constructor takes
six variables to define the endpoints of the line.

148

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

The default orientation of the curve is identical to that for the planar curve opLine2d; you
can translate and rotate the line in three-dimensional space with the methods setOrigin()
and setOrient() inherited from opRep.

opOrientedLine3d

The class opOrientedLine3d is derived from opLine3d, and adds vectors to define a
moving three-dimensional reference frame for the line. This object is useful if you want
a straight-line path for an opFrenetSweptSurface (see “Swept Surfaces” on page 171
and, in particular, “Class Declaration for opFrenetSweptSurface” on page 175).

The methods of opOrientedLine3d add to the description of the line an “up” vector,
which you specify. The normal to the line is calculated from the direction of the line and
the up vector.

Circles in Space

The class opCircle3d defines a parametric circle with an arbitrary location and
orientation in space. The parameterization of the circle, before you change its location or
orientation, is such that t is the angular displacement, in radians, in a counterclockwise
direction from the x axis.

The class declaration for opCircle3d is identical to that for opCircle2d, discussed in
“Circles in the Plane” on page 129, except for the changes from opVec2 to opVec3. The
member functions perform the same operations. For more information, see the
discussion in the section “Circles in the Plane” on page 129.

If the matrix you use to orient an opCircle3d does not correspond to a rotation about an
axis—that is, the matrix is not orthonormal— you not only change the tilt of the plane in
which the circle lies but also change the radius, and may distort the circle into an ellipse.
For a discussion of useful matrices, see the book by J. D. Foley, et al., in “Recommended
Background Reading” on page xxxi.

Spatial Curves

149

Superquadrics in Space

The class opSuperQuadCurve3d provides methods to define a superquadric in space
(see “Superquadric Curves: opSuperQuadCurve2d” on page 131). The class declaration
is identical to that for opSuperQuad2d except that position on the curve is defined by an
opVec3.

The default orientation of the curve is identical to that for the planar curve
opSuperQuad2d; you can translate and rotate the curve in three-dimensional space with
the methods setOrigin() and setOrient() inherited from opRep.

Hermite Spline Curves in Space

The class opHsplineCurve3d provides methods to define a Hermite spline curve in
space. The definition of the curve is the same as that for a Hermite spline curve in the
plane, discussed in “Hermite-Spline Curves in the Plane” on page 134. The class
declaration is the same as that for opHsplineCurve2d, but the position and tangent
vectors are opVec3s.

NURBS Curves in Space

The basic properties of NURBS are discussed in the section “NURBS Overview” on
page 136. In an effort to keep things as simple as possible, the discussion in that section
has a bias toward curves in the plane. But the principles and control parameters are, with
one difference, the same for NURBS curves in space.

The difference is that control points for NURBS curves in space can be anywhere in space
instead of being restricted to a plane. The section “Examples of NURBS Curves” in
Chapter 8 of The Inventor Mentor presents illustrations of NURBS curves in space, along
with their control parameters.

The class opNurbCurve3d is the base class for NURBS curves in space. Its class
declaration is practically identical to that for opNurbCurve2d but all occurrences of
opVec2 are changed to opVec3. In addition, the vector argument of setControlHull() can
be an opVec3, if you just want to specify control point locations, or an opVec4, if you
want to append weighting information as a fourth component. See the discussion in the
section “NURBS Curves in the Plane” on page 141.

150

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Curves on Surfaces: opCompositeCurve3d

A planar curve in the u-v plane describes a curve on the surface, given a parameterized
surface (see the section “Parametric Surfaces” on page 151). Each point on the curve in
the parameter plane is “lifted up” to the surface. Such curves are known as composite
curves because they are described mathematically as the composition of the function
describing the curve and the function describing the surface. The edge of a surface
defined by a trim curve is a composite curve.

opCompositeCurve3d is the base class for composite curves. This class is useful for
defining trim curves and surface silhouettes in the parametric surface’s coordinate
system.

Class Declaration for opCompositeCurve3d

The class has the following main methods:

class opCompositeCurve3d : public opCurve3d
{
public:
// Creating and destroying
opCompositeCurve3d();
opCompositeCurve3d(opParaSurface *sur, opCurve2d *cur);
~opCompositeCurve3d();

// Accessor functions
void set(opParaSurface *sur, opCurve2d *cur);
opParaSurface* getParaSurface() {return s;}
opCurve2d* getCurve2d() {return c;}

// Evaluator
void evalPt(opReal u, opVec3 &pnt);
};

Methods in opCompositeCurve3d

The constructor takes two arguments: the first is the surface on which the curve lies, the
second is the curve in the coordinate system of the surface. The returned object is a curve
in space.

Parametric Surfaces

151

Discrete Curves in Space

The class opDisCurve3d is the base class for making a discrete curve of line segments
connecting a sequence of points in space. The class declaration for opDisCurve3d is
identical to that for opDisCurve2d, discussed in “Discrete Curves in the Plane” on
page 144, but opVec2 changes to opVec3. The member functions perform the same
operations.

Example of Using opDisCurve3d and opHsplineCurve3d

One application of an opDisCurve3d and opHsplineCurve3d is to use them to
interactively specify routing for tubing. These are the operations to perform:

1. Create a opDisCurve3d from a set of points. See “Discrete Curves in Space” on
page 151.

2. Use the points and tangents to the discrete curve to create a continuous path with an
opHsplineCurve3d. See “Hermite Spline Curves in Space” on page 149

3. Use the continuous path in an opFrenetSweptSurface with a circular cross section.
See “opFrenetSweptSurface” on page 175.

Parametric Surfaces

A parametric surface can be thought of as the result of taking a piece of a plane, twisting
and stretching it, maybe gluing edges of the piece together, and placing it in space.

The introductory discussion of parametric surfaces occurs in the following sections:

• “Mathematical Description of a Parametric Surface” on page 152

• “Defining Edges of a Parametric Surface: Trim Loops and Curves” on page 153

• “Adjacency Information: opEdge” on page 155

• “Base Class for Parametric Surfaces: opParaSurface” on page 156

152

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

The subclasses of opParaSurface are discussed in the subsequent sections:

• “opPlane” on page 160

• “opSphere” on page 162

• “opCylinder” on page 165

• “opTorus” on page 167

• “opCone” on page 169

• “Swept Surfaces” on page 171

• “Ruled Surfaces” on page 176

• “Coons Patches” on page 178

• “NURBS Surfaces” on page 181

• “Hermite-Spline Surfaces” on page 188

Instances of most of the opParaSurface subclasses are used in the sample application
/usr/share/Optimizer/src/apps/repTest/repTest.

Mathematical Description of a Parametric Surface

To locate a point on a parametric surface, you need two parameters, referred to as u and
v in OpenGL Optimizer. The set of u and v values that describe the surface are known as
the parameter space, or coordinate system, of the surface (see Figure 9-8).

More precisely, the coordinates of the points in space that define a parametric surface are
described by a set of three functions of two parameters: (x(u,v), y(u,v), z(u,v)).

Well-known examples of a parametric surface are a sphere or a globe. On a globe you can
locate points with two parameters: latitude and longitude. The rectangular grid of
latitude and longitudes is the coordinate system that describes points on the globe.

Parametric Surfaces

153

Figure 9-8 Parametric Surface: Unit-Square Coordinate System

Defining Edges of a Parametric Surface: Trim Loops and Curves

To define the extent of a parametric curve, pick an interval. For accurate trimming of a
parametric surface, you need more complex tools. You are likely to need:

• Edges for the surface other than those defined by the limits of the coordinate
system. For example, to define a pipe elbow, you might join two cylinders by a piece
cut from a torus.

• Holes in a surface, for example, to define a T-joint intersection of pipes.

u

v

0.0 1.0

1.0

y

x

z

154

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

OpenGL Optimizer keeps the trim loop side on the left as you look down on the u-v plane
while a point moves along the curve in the direction of increasing t; you can hold on to
the surface with your left hand as you go along the trim loop. Thus a clockwise loop
removes a hole; a counterclockwise loop keeps the enclosed region and eliminates
everything outside. Do not create a trim loop that crosses itself like a figure eight.

OpenGL Optimizer allows you to maintain curves to define the edges of a surface. These
curves are opCurve2d objects defined in the u-v plane that are “lifted” to the surface by
the parameterization. The main use of these curves is to eliminate a portion of the surface
on one side of the curve. The name of a curve in the coordinate system that is used to
define (possibly a piece of) such a surface edge is a trim curve. One or more joined trim
curves form a sequence called a trim loop. To be of use, trim curves should form a closed
loop or reach the edges of the coordinate system for the surface. Figure 9-9 illustrates
trim loops and their effect on a surface.

Figure 9-9 Trim Loops and Trimmed Surface: Both Trim Loops Made of Four Trim Curves

u

Trim1

Trim2

Trim3

v

z

x

y

Parametric Surfaces

155

Adjacency Information: opEdge

An opEdge defines a trim curve in u, v space. opEdge holds information about a surface’s
adjacency. Each opEdge identifies an opBoundary, which the class opTopo uses to keep
track of surface connectivity, and continuous and discrete versions of the trim curve
associated with the boundary. The members of an opEdge are set by the toplogy building
tools; the methods of opEdge access the members. Topology building and the classes
opTopo and opBoundary are discussed further in Chapter 10, “Creating and
Maintaining Surface Topology.”

The information held in opEdge allows tessellators to determine whether a set of vertices
has already been developed for points shared with other surfaces. You can also find other
surfaces that have the same edge or trim-curve endpoint as that defined by a given trim
curve.

The set*() methods are mainly used when reading surface data from a file and creating
OpenGL Optimizer data structures.

Class Declaration for opEdge

The class has the following main methods:

class opEdge
{
public:
// Creating and destroying
opEdge();
~opEdge();

opCurve2d *getContCurve();
void setContCurve(opCurve2d *c);

opDisCurve2d *getDisCurve();
void setDisCurve(opDisCurve2d *d);

int getBoundary();

void setBoundaryDir(int dir);
int getBoundaryDir();

opEdge* clone(csNode::CloneEnum what);
};

156

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Base Class for Parametric Surfaces: opParaSurface

opParaSurface is the base class for parametric surfaces in OpenGL Optimizer. As for the
base classes opCurve2d and opCurve3d, opParaSurface includes a pure virtual function
to evaluate points on the surface and default evaluator functions that calculate
derivatives using finite central differences. The surface normal at a point is the cross
product of the partial derivatives.

For parametric curves whose extent is defined by the interval of values for t, the extent
of an opParaSurface is, initially, defined by all the points in its parameter space.

Class Declaration for opParaSurface

The class has the following main methods:

class opParaSurface : public opRep
{
public:
// Creating and destroying
opParaSurface();
opParaSurface(opReal _beginU = 0, opReal _endU = 1,
 opReal _beginV = 0, opReal _endV = 1,
 int _topoId = 0, int _solid_id = -1);

~opParaSurface();

// Accessor functions
void setBeginU(opReal u);
void setEndU(opReal u);
void setBeginV(opReal v);
void setEndV(opReal v);
void setSolidId(int solidId);
void SetTopoId(int topoId);
void setSurfaceId (int surfaceId);
opReal getBeginU()
opReal getEndU()
opReal getBeginV()
opReal getEndV()

int getTrimLoopCount();
opLoop getTrimLoopClosed(int loopNum);
int getTrimCurveCount(int loopNum);
opEdge* getTrimCurve(int loopNum, int curveNum);

Parametric Surfaces

157

int getTopoId();
int getSolidId();
int getSurfaceId();

void setHandednessHint(bool _clockWise)
bool getHandednessHint()

void insertTrimCurve(int loopNum, opCurve2d *c, opDisCurve2d *d);

// Explicit add a trim curve to a trim loop
void addTrimCurve(int loopNum, opCurve2d *c, opDisCurve2d *d);
void setTrimLoopClosed(int loopNum, opLoop closed);

// Surface evaluators
virtual void evalPt(opReal u, opReal v, opVec3 &pnt) = 0;
virtual void evalDu(opReal u, opReal v, opVec3 &Du);
virtual void evalDv(opReal u, opReal v, opVec3 &Dv);
virtual void evalDuu(opReal u, opReal v, opVec3 &Duu);
virtual void evalDvv(opReal u, opReal v, opVec3 &Dvv);
virtual void evalDuv(opReal u, opReal v, opVec3 &Duv);
virtual void evalNorm(opReal u, opReal v, opVec3 &norm);

// Directional derivative evaluators
virtual void evalD(opReal u, opReal v, opReal theta, opVec3 &D);
virtual void evalDD(opReal u, opReal v, opReal theta, opVec3 &DD);

virtual void eval(opReal u, opReal v,
opVec3 &p, // The point
opVec3 &Du, // The derivative in the u direction
opVec3 &Dv, // The derivative in the v direction
opVec3 &Duu, // The 2nd derivative in the u direction
opVec3 &Dvv, // The 2nd derivative in the v direction
opVec3 &Duv, // The cross derivative
opReal &s, // Texture coordinates
opReal &t);

void clearTessallation();
};

158

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Methods in opParaSurface

addTrimCurve(j, curve, discurve)
Is a quick function for building a trim loop that assumes you know the
order of trim curves. It adds curve to the end of the list of continuous trim
curves for the jth trim loop, and adds discurve to the list of discrete trim
curves.

For example, you could build the trim loops in Figure 9-9 by starting
with one segment and successively adding segments. If the beginning
of curve does not match the end of the previously added curve, use
insertTrimCurve(), which finds the right place for the curve by
assuming topological consistency.

eval() Returns the evaluator functions. The last two arguments of eval() are the
same as the input coordinates u and v.

evalDu(), evalDv(), evalDuu(), evalDvv(), and evalDuv()
Are evaluator functions that use central differences to calculate the first
and second derivatives, identified by the lowercase u and v in the
function names, at a point on the surface.

evalD() and evalDD()
Calculate the first and second directional derivatives in the direction
given by an angle theta from the u axis in the parameter space.

evalNorm() Calculates the unit normal to the surface.

evalPt() Is a pure virtual function that you define to specify a surface.

opParaSurface()
Constructs a parametric surface. You can specify the topology and the
surface to which the parametric surface belongs. See “Summary of Scene
Graph Topology: opTopo” on page 200.

insertTrimCurve(j, curve, discurve)
Is a slower function than addTrimCurve() for building a trim loop that
attempts to guarantee all curves form a sensible trim loop sequence. It
compares the ends of curve with the ends of the trim curves that are
already in the jth trim loop and inserts curve at the appropriate point in
the list. Similarly, addTrimCurve() inserts the discrete curve discurve. If
insertTrimCurve() cannot find an endpoint match, it adds curve to the
end of the list of trim curves. If you are building a trim loop by inserting
trim curves end to end, then addTrimCurve() gives the same result but
more quickly.

Parametric Surfaces

159

setBeginU(), setBeginV(), etc.
Set and get the start and end values for the coordinate space of the
surface. The coordinate space is a rectangle in the u-v plane. The default
is the unit square; u and v both lie in the interval (0,1).

getTrimLoopCount()
Returns the number of trim loops for the opParaSurface.

getTrimLoopClosed() and setTrimLoopClosed()
Get and set the flag indicating whether a given trim loop is closed.
OpenGL Optimizer determines this for you, so use
setTrimLoopClosed() with caution; you could get a meaningless result.

getTrimCurveCount()
Returns the number of trim curves in the specified trim loop.

getTrimCurve(i,j)
Returns the opEdge for the trim curve with index i in the trim loop with
index j.

clearTessellation()
Removes all data that resulted from previous tessellation. This removal
allows the surface to be retessellated with a different tolerance. For each
trim curve, the disCurve is deleted if the contCurve is not NULL. The
xyzBoundary in its boundary structure is deleted. Also, the tessellated
triangles (csGeometry) are removed.

160

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

opPlane

The simplest parametric surface is a plane. The class opPlane defines a plane by two
parameter intervals and three points that define the two coordinate directions.
Figure 9-10 illustrates the parameterization of an opPlane.

Figure 9-10 Plane Parameterization

Class Declaration for opPlane

The class has the following main methods:

class opPlane : public opParaSurface
{
public:
// Creating and destroying
opPlane();
opPlane(opReal x1, opReal y1, opReal z1, opReal u1, opReal v1,
 opReal x2, opReal y2, opReal z2, opReal u2,
 opReal x3, opReal y3, opReal z3, opReal v3);
virtual ~opPlane();

// Accessor functions
void setPoint1(opReal x1, opReal y1, opReal z1, opReal u1, opReal v1);
void setPoint2(opReal x2, opReal y2, opReal z2, opReal u2);
void setPoint3(opReal x3, opReal y3, opReal z3, opReal v3);

y

x

z

(x1,y1,z1)
u=u1
v=v1

(x3,y3,z3)
u=u1
v=v3

(x2,y2,z2)
u=u2
v=v1

Parametric Surfaces

161

void getPoint1(opReal *x1, opReal *y1, opReal *z1,
 opReal *u1, opReal *v1);
void getPoint2(opReal *x2, opReal *y2, opReal *z2, opReal *u2);
void getPoint3(opReal *x3, opReal *y3, opReal *z3, opReal *v3);

// Evaluators
void evalPt(opReal u, opReal v, opVec3 &pnt);
void evalDu(opReal u, opReal v, opVec3 &Du);
void evalDv(opReal u, opReal v, opVec3 &Dv);
void evalNorm(opReal u, opReal v, opVec3 &norm);

virtual csNode* clone(csNode::CloneEnum what);

Methods in opPlane

opPlane() When you construct the class, you can specify the plane with three
points and two parameter intervals or you can use the setPoint*()
methods. Those parameters have the following meanings:

• the point (x1,y1,z1) and its parameter values, (u1,v1)

• the point (x2,y2,z2), which defines the u direction,
(x2-x1,y2-y1,z2-z1), and its parameter values (u2,v1)

• the point (x3,y3,z3), which defines the v direction,
(x3-x1,y3-y1,z3-z1) and its parameter values (u1,v3).

setPoint*() and getPoint*()
Set and get each of the points that define the plane and their
corresponding parameter values (see opPlane()).

162

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

opSphere

The surface of the sphere is parameterized by angles, in radians, for latitude and
longitude; v corresponds to longitude, u to latitude. Figure 9-11 illustrates the
parameterization of an opSphere.

Figure 9-11 Sphere Parameterization

pnt

u

v

Origin

y

x

z

Radius

Parametric Surfaces

163

Class Declaration for opSphere

The class has the following main methods:

class opSphere : public opParaSurface
{
public:
// Creating and destroying
opSphere();
opSphere(opReal radius);
~opSphere();

// Accessor functions
void setRadius(opReal radiusVal)
opReal getRadius()

// Evaluators
void evalPt(opReal u, opReal v, opVec3 &pnt);
void evalNorm(opReal u, opReal v, opVec3 &norm);

//Copy
virtual csNode* clone(csNode::CloneEnum what);
}

Methods in opSphere

The constructor defines a sphere centered on the origin with the specified radius. The
default radius is 1. The evaluator functions do not use finite-difference calculations for
derivatives.

Any point on the sphere is represented as:

x = radius * cos(u) * sin(v)
y = radius * sin(u) * sin(v)
z = radius * cos(v)

164

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

opSphere Example

The following code from the sample application repTest illustrates how an instance of an
opSphere of radius three would be created:

opSphere *sphere = new opSphere(3);

// under certain conditions, a trim curve is added that keeps only the
// portion of the surface above a circle
if (nVersions <= 0)
{
opCircle2d *trimCircle2d =
 new opCircle2d(1.0, new opVec2(M_PI/2.0,M_PI));
sphere->addTrimCurve(0, trimCircle2d);
}
setUpShape(sphere, OP_XDIST*numObject++, Y, OP_VIEWDIST);

setUpShape() locates the sphere in the scene, tessellates it, and places it in the scene
graph (see src/apps/repTest/repTest.cxx). Creating an instance of any opRep is basically the
same, as subsequent examples in the discussions of other opReps will show.

Parametric Surfaces

165

opCylinder

The opCylinder class provides methods for describing a cylinder.

A cylinder can be defined geometrically as the surface in space that is swept by moving
a circle along an axis that is perpendicular to the plane of the circle and passes through
the center of the circle.

The parameterization of an opCylinder is as follows: u represents the position on the
circle and that v represents the position along the axis.

Figure 9-12 Cylinder Parameterization

y

x

z

pnt

v

u

Radius

Origin
Height

166

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Class Declaration for opCylinder

The class has the following main methods:

class opCylinder : public opParaSurface
{
public:
// Creating and destroying
opCylinder(void);
opCylinder(opReal radius, opReal height);
~opCylinder();

// Accessor functions
void setRadius(opReal radiusVal) ;
void setHeight(opReal heightVal);

opReal getRadius()
opReal getHeight()

// Evaluators
void evalPt(opReal u, opReal v, opVec3 &pnt);
void evalNorm(opReal u, opReal v, opVec3 &norm);

//Copy
virtual csNode* clone(csNode::CloneEnum what);
};

Methods in opCylinder

opCylinder(radius, height) constructs a cylinder with the specified height and radius. By
default, the z axis is the cylinder’s axis and the cylinder is centered on the origin,
extending in the positive and negative z directions for one-half the height.

For the default orientation, u measures the angle from the x-z plane in a counterclockwise
direction as you look down on the x-y plane and v measures the distance along the z-axis.
The default radius is 1 and the default height is 2.

Parametric Surfaces

167

opTorus

The opTorus class provides methods to describe a torus. Figure 9-13 illustrates a torus,
and how it is parameterized in opTorus.

A torus can be defined geometrically as the surface in space that is swept by moving a
circle, the minor circle, through space such that its center lies on a second circle, the major
circle, and the planes of the two circles are always perpendicular to each other, with the
plane of the minor circle aligned along radii of the major circle. The parametrization of
the surface is that u represents a position on the major circle and v represents a position
on the minor circle.

Figure 9-13 Torus Parameterization

Major radius Minor radius

Origin

u
v

y

x

z

pnt

168

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Class Declaration for opTorus

The class has the following main methods:

class opTorus : public opParaSurface
{
public:
// Creating and destroying
opTorus();
opTorus(opReal majorRadius, opReal minorRadius);
~opTorus();

// Accessor functions
void setMajorRadius(opReal majorRadiusVal)
void setMinorRadius(opReal minorRadiusVal)
opReal getMajorRadius()
opReal getMinorRadius()

// Evaluators
virtual void evalPt(opReal u, opReal v, opVec3 &pnt);
virtual void evalNorm(opReal u, opReal v, opVec3 &norm);

//Copy
virtual csNode* clone(csNode::CloneEnum what);
}

Methods in opTorus

The constructor opTorus(majorRadius, minorRadius) defines a torus with the specified
radii such that the major circle is in the x-y plane and the minor circle is initially in the x-z
plane. The default value for the major radius is 1; the default for the minor radius is 0.1.

Parametric Surfaces

169

opCone

You can define a cone geometrically by sweeping a circle along an axis in a way similar
to the way a cylinder is defined; however, as the circle is swept along the axis, the radius
changes linearly with distance.

The parameterization of a point on an opCone is that u measures the angle, in radians,
of the point on the circle, and that v measures the distance along the axis from the origin.
To truncate a cone, yielding a frustum, adjust the value for v.

Figure 9-14 Cone Parameterization

y

x

z

pnt

v

u

Radius

Origin

Height

Half-height

170

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Class Declaration for opCone

The class has the following main methods:

class opCone : public opParaSurface
{
public:
// Creating and destroying
opCone(void);
opCone(opReal radius, opReal height);
~opCone();

// Accessor functions
void setRadius(opReal radius) ;
void setHeight(opReal height);
opReal getRadius()
opReal getHeight()

// Evaluators
void evalPt(opReal u, opReal v, opVec3 &pnt);
void evalNorm(opReal u, opReal v, opVec3 &norm);

// Copy
virtual csNode* clone(csNode::CloneEnum what);
}

Methods in opCone

The constructor opCone(radius, height) creates a parametric cone with the specified
height and a circular base with the specified radius. By default, the base of the cone is
parallel to the x-y plane and centered on the z axis and the apex of the cone is on the
positive z-axis. The cone extends from the origin in the positive and negative z directions
for one half the height. The default for the radius of the base is 1 and the default height
is 2.

Parametric Surfaces

171

Swept Surfaces

The class opSweptSurface provides methods to describe a general swept surface. Three
examples of swept surfaces have been presented: a cylinder, a torus, and a cone. In the
first two cases a simple cross-section, a circle of constant radius, was swept along a path.
For a cone, the radius of the circle varied according to a simple profile.

To describe a swept surface, you specify a path, a cross section, and a coordinate frame in
which the graph of the cross section is drawn at each point on the path. The
parameterization of the surface is that u denotes the position along the path and v
denotes the position on the cross-section curve. You can also specify a profile, which
adjusts the size of the cross-section curve. Thus, for example, with a simple profile
method you could generate a sphere from a straight-line path and a circular cross section.
Figure 9-15 illustrates the feature of a swept surface.

172

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Figure 9-15 Swept Surface: Moving Reference Frame and Effect of Profile Function

Path

Cross section

t

b

x

y

Parametric Surfaces

173

Orientation of the Cross Section

Unlike the examples of the cylinder, torus, and cone, the cross-section in an
opSweptSurface generally is not necessarily perpendicular to the path. You set the
orientation of the cross-section with two additional instances of opCurve3d. For a point
on the path corresponding the parameter value t0, the vectors on these two additional
curves that have the same parameter value define the local coordinate system used to
draw the profile: one vector defines the normal to the plane of the graph, the second the
x axis for the graph, and their cross product determines the direction of the y axis for the
graph. For more details, see the discussion of the constructor below.

Class Declaration for opSweptSurface

The class has the following main methods:

class opSweptSurface : public opParaSurface
{
public:
// Creating and destroying
opSweptSurface(void);
opSweptSurface(opCurve3d *crossSection,
 opCurve3d *_path,
 opCurve3d *_t,
 opCurve3d *_b,
 opScalar *_profile);
~opSweptSurface();

// Accessor functions
void setCrossSection(opCurve3d *_crossSection);
void setPath(opCurve3d *_path);
void setT(opCurve3d *_tng);
void setB(opCurve3d *_b);
void setProf(opScalar *_profile);
opCurve3d *getCrossSection() ;
opCurve3d *getPath() ;
opCurve3d *getT() ;
opCurve3d *getB() ;
opScalar *getProf();

virtual void evalPt(opReal u, opReal v, opVec3 &pnt);

virtual csNode clone(csNode::CloneEnum what);
};

174

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Methods in opSweptSurface

opSweptSurface(crossSection, path, t, b, profile)
Defines a swept surface with the given path, cross section, and profile.
The arguments t and b are vector-valued functions of the path’s
parameter. They define the orientation of the profile at each point on the
path.

The orientation at a particular point on the curve is determined by
rendering the graph of crossSection in the coordinate plane
perpendicular to t, which locally defines the z axis of an x-y-z
coordinate system. The x axis is defined by the projection of b onto the
plane, and the y axis forms a right-hand coordinate system with the
other two axes. The cross section is plotted in the x-y plane.

If you specify a NULL value for profile, crossSection does not vary along
path.

evalPt(u, v, pnt)
Calculates the point on the surface, pnt, as the vector sum of (a) the point
on the path corresponding to the value u and (b) the point on the cross
section corresponding to the value v. The vector locating the point on the
cross section is scaled by the value at u of the profile function, if profile is
not NULL.

Parametric Surfaces

175

opFrenetSweptSurface

As a convenience, the class opFrenetSweptSurface allows you to use the Frenet frame of
the path to define the orientation vectors in a swept surface. The Frenet frame is defined
by the three unit vectors derived from the tangent, the principal normal, and their cross
product. This set of vectors facilitates orienting the cross section perpendicularly to the
path at every point.

Note: The path for an opFrenetSweptSurface must be at least a cubic to allow for the
principal normal calculation, which requires a second derivative.

Class Declaration for opFrenetSweptSurface

The class has the following main methods:

class opFrenetSweptSurface : public opSweptSurface
{
public:
// Accessor functions
opFrenetSweptSurface(void);
opFrenetSweptSurface(opCurve3d *crossSection,
 opCurve3d *path,
 opScalar *profile);
~opFrenetSweptSurface();

// Accessor functions
void set(opCurve3d *crossSection,
 opCurve3d *path,
 opScalar *profile);

// Copy
virtual csNode clone(csNode::CloneEnum what);
};

Methods in opFrenetSweptSurface

The arguments of the constructor for opFrenetSweptSurface are the same as for
opSweptSurface and have the same effects, except for the orientation vectors, which are
set to be the tangent and principal normal to path, and so do not appear as arguments.
Use the inherited method evalPt() to locate points on the surface.

176

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Making a Modulated Torus With opFrenetSweptSurface

The following code uses an opFrenetSweptSurface to define a torus whose minor radius
varies with position on the ring. Other instances of opFrenetSweptSurface appear in
repTest.

// Scalar curve used by the swept surface primitive
static opReal profile(opReal t)
{
return 0.5*cos(t*5.0) + 1.25;
};

opCircle3d *cross =
 new opCircle3d(0.75, new opVec3(0.0, 0.0, 0.0));
opCircle3d *path =
 new opCircle3d(1.75, new opVec3(0.0, 0.0, 0.0));
opFrenetSweptSurface *fswept =
 new opFrenetSweptSurface(cross, path, profile);
fswept->setHandednessHint(true);

Ruled Surfaces

A ruled surface is generated from two curves in space, both parameterized by the same
variable, u. A particular value of u specifies a point on both curves. A ruled surface is
defined by connecting the two points with a straight line parameterized by v. The
parameterization of the resulting surface is always the unit square in the u-v plane,
regardless of the parameterizations of the original curves.

Figure 9-16 Ruled Surface Parameterization

c2(u)

c1(u)

(1-v)c1(u) + v c2(u)

Parametric Surfaces

177

A bilinear interpolation of four points is perhaps the simplest example of a ruled surface,
one for which the “curves” that define the surface are in fact straight lines. Thus, you
connect two pairs of points in space with lines and then develop the ruled surface. For a
bilinear interpolation, the parameterization by u and v is such that, if one of them is held
constant, a point “moves” along the connecting straight line at a uniform speed as the
other parameter is varied.

Class Declaration for opRuled

The class has the following main methods:

class opRuled : public opParaSurface
{
public:
// Creating and destroying
opRuled();
opRuled(opCurve3d *c1, opCurve3d *c2);
~opRuled();

// Accessor functions
void setCurve1(opCurve3d *_c1);
void setCurve2(opCurve3d *_c2);
opCurve3d *getCurve1()
opCurve3d *getCurve2()

// Evaluators
void evalPt(opReal u, opReal v, opVec3 &pnt);

//Copy
virtual csNode* clone(csNode::CloneEnum what);
};

The constructor opRuled(c1, c2) creates an instance of a ruled surface defined by the two
curves c1 and c2.

178

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Coons Patches

A Coons patch is arguably the simplest surface you can define from four curves whose
endpoints match and form a closed loop. Think of the four curves as defining the four
sides of the patch, with one pair on opposite sides of the patch defining the top and
bottom curves and the other pair defining the left and right curves (see Figure 9-17). The
top and bottom curves are parameterized by u, and the left and right curves by v. Thus,
u is the “horizontal” coordinate and v the “vertical” coordinate.

The patch is made by

1. Adding the points on the ruled surface defined by the top and bottom curves to the
points on the ruled surface defined by the left and right curves.

2. Subtracting the bilinear interpolation of the four corner points.

Figure 9-17 illustrates the construction. To understand the result, notice that, after you
add the two ruled surfaces, each side of the boundary of the resulting surface is the sum
of the original bounding curve and the straight line connecting the bounding curve’s
endpoints. The straight line was introduced by the construction of the ruled surface that
did not include the boundary curve. Subtracting the bilinear interpolation eliminates the
straight-line components of the sum, leaving just the original four curves as the
boundary of the resulting surface.

Parametric Surfaces

179

Figure 9-17 Coons Patch Construction

z3

z2

z4

z1

z3

z2

z4

z1

z3

z2

z4

z1

y

x

z

z3

z2

z4

z1
y

x

z

y

x

z

z3

z2

z4

z1
y

x

z

y

x

z

2z3

2z2

2z4

2z1

z3

z2

z4

z1

z1
y

x

z

Left & right curves Top & bottom curves

Ruled surfaces

Sum

Bilinear
interpolation

Subtract a bilinear
interpolation from the sum

of the ruled surfaces

Coons patch,bounded
by left, right, top &

bottom curves

180

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Class Declaration for opCoons

The class has the following main methods:

class opCoons : public opParaSurface
{
public:
opCoons();
opCoons(opCurve3d *right, opCurve3d *left,
 opCurve3d *bottom, opCurve3d *top);
~opCoons();

// Accessor functions
void setRight(opCurve3d *right);
void setLeft(opCurve3d *left);
void setBottom(opCurve3d *bottom);
void setTop(opCurve3d *top);

opCurve3d* getTop();
opCurve3d* getBottom();
opCurve3d* getLeft();
opCurve3d* getRight();

// Surface point evaluator
void evalPt(opReal u, opReal v, opVec3 &pnt);

//Copy
virtual csNode* clone(csNode::CloneEnum what);
};

The constructor opCoons(right, left, bottom, top) creates an instance of a Coons patch
defined by the four curves right, left, bottom, and top. The top and bottom curves are
parameterized by u and the left and right curves are parameterized by v. For more
details, see the book Curves and Surface for Computer Aided Geometric Design listed in
“Recommended Background Reading” on page xxxi.

Parametric Surfaces

181

NURBS Surfaces

Just as a NURBS curve consists of Bezier curves, a NURBS surface consists of Bezier
surfaces. The set of control parameters is essentially the same for the curves and surfaces:
a set of knots, a control hull, and a set of weights. However, for a NURBS surface, the
knots form a grid in the coordinate system of the surface; that is, in the u-v plane, and the
control hull is a grid of points in space that loosely defines the surface.

Understanding a Bezier surface helps you understand and use a NURBS surface. A
Bezier surface is defined essentially as the surface formed by sweeping a Bezier cross
section curve through space, along a path defined by a Bezier curve. But, unlike an
opSweptSurface, the shape of the cross-section can be changed.

You define a Bezier surface as follows:

1. Start with a Bezier curve in space: the cross section parameterized by u.

2. Define a family of Bezier curves, a set of paths all of which are parameterized by v,
that start at the control points of the initial cross section.

For each value of v, the set of control points defines a Bezier curve. As v changes, the
cross-sectional curve “moves” through space, changing shape and defining a Bezier
surface.

A more rigorous discussion appears in the book Curves and Surface for Computer Aided
Geometric Design, listed in the section “Recommended Background Reading” on
page xxxi.

A NURBS surface joins Bezier surfaces in a smooth way, similar to NURBS curves joining
Bezier curves. The class opNurbSurface provides methods to describe a NURBS surface.

182

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Class Declaration for opNurbSurface

The class has the following main methods:

class opNurbSurface : public opParaSurface
{
public:
// Creating and destroying
opNurbSurface(void);
~opNurbSurface(void);

// Accessor functions
void setControlHull(int iu, int iv, opVec3 &p);
void setControlHull(int iu, int iv, opVec4 &p);
void setWeight(int iu, int iv, opReal w);
void setUknot(int iu, opReal u);
void setVknot(int iv, opReal v);
void setControlHullUSize(int s);
void setControlHullVSize(int s);

// Get the same parameters
opVec3& getControlHull(int iu, int iv) ;
int getControlHullUSize(void);
int getControlHullVSize(void);
opReal getWeight(int iu, int iv)
opReal& getUknot(int iu);
opReal& getVknot(int iv);
int getUknotCount(void);
int getVknotCount(void);
int getUorder(void) ;
int getVorder(void) ;
void removeControlHullElm(int ui, int iv);
void removeUknot(int iu);
void removeVknow(int iv);
void flipUV();

// Evaluator
virtual void evalPt(opReal u, opReal v, opVec3 &pnt);
virtual void evalDu(opReal u, opReal v, opVec3 &Du);
virtual void evalDv(opReal u, opReal v, opVec3 &Du);
virtual void evalNorm(opReal u, opReal v, opVec3 &norm);

int getMemSize();
virtual csNode* clone(csNode::CloneEnum what);
};

Parametric Surfaces

183

Methods in opNurbSurface

The member functions are essentially the same as those for opNurbCurve3d (see
“NURBS Curves in Space” on page 149), however:

• The hull is a grid of opVec3s indexed by i and j.

• The set of knots is defined by points on the u and v axes.

• There are B-spline basis functions (of possibly differing orders) associated with each
coordinate direction.

Note: opNurbSurface redefines the virtual evaluators inherited from opParaSurface for
tangent and normal vectors; the methods use the NURBS equation rather than finite,
central differences.

Indexing Knot Points and the Control Hull

Indexing of knot points in coordinate space and control hull points in three-dimensional
space is illustrated in Figure 9-18. The indexing works as for gluNurbsSurface, that is, as
follows:

• iu indexes knots on the u axis. The correspondence is established by setUknot().

• iv indexes knots on the v axis.The correspondence is established by setVknot().

• Each (iu,iv) thus indexes a knot point in the u-v plane.

• Each (iu,iv) also indexes a point on the control hull in three-dimensional space. The
correspondence is established by setControlHull().

• Thus, setUknot(), setVknot(), and setControlHull() establish a correspondence
between an index pair (iu,iv) a knot point (uiu viv), and a point on the control hull in
three-dimensional space.

184

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Figure 9-18 NURBS Surface Control Hull Parameterization

u

v

u1 u2 u3 u4u0 u5 u6

(0,0)

(3,2)

(3,2)(0,0)

v4

v3

v2

v1

v0

y

x

z

iv = 0,1,2,3...

iu = 0,1,2,3...

setControlHull (iu, iv, p)

setUknot (iu, u)
setVknot (iv, v)

Parametric Surfaces

185

Equation Used to Calculate a NURBS Surface

Indexing is determined by the following equation that OpenGL Optimizer uses to
calculate a NURBS surface (the index i corresponds to iu in the API, and j corresponds to
iv):

where

• is a point on the surface

• is the ith B-spline basis polynomial of degree m

• is a control point

• is the weight for the control point

Alternative Equation for a NURBS Surface

A NURBS surface can also be developed from the following alternative expression:

For this case, you must change the coordinates of the control points to get the same
surface from OpenGL Optimizer. You convert the coordinates of the control points from
(x,y,z,w) to (wx,wy,wz,w).

p u v,()

Bi
m u()Bj

n v()Cij
i j,
∑

Bi
m u()Bj

n v()Wij
i j,
∑
--=

p u v,()

Bi
m u()

Cij

Wij

p u v,()

Bi
m u()Bj

n v()WijCij
i j,
∑

Bi
m u()Bj

n v()Wij
i j,
∑

---=

186

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Sample of a Trimmed opNurbSurface From repTest

The following code fragment form the repTest sample application illustrates an instance
of an opNurbSurface. Toward the end of the example, an optional opNurbCurve2d trim
curve is created.

int i, j;

opNurbSurface *nurb = new opNurbSurface;

// Control hull dimensions
#define USIZE 4
#define VSIZE 5

// Set up the control hull size because we know a priori how big
// the nurb is. The next two lines are used for space
// efficiency but are functionally unnecessary.
nurb->setControlHullUSize(USIZE);
nurb->setControlHullVSize(VSIZE);

// Make the control hull be an oscillating grid
for (i = 0; i < VSIZE; i++)
{
opReal y = i/(float)(VSIZE - 1) * 2*M_PI - M_PI;

for (j = 0; j < USIZE; j++)
{
opReal x = j/(float)(USIZE - 1) * 2*M_PI - M_PI;
opReal val = 6*pow(cos(sqrt(x*x + y*y)), 2.0);

// Make the control hull a box, j maps to u and i maps to v
nurb->setControlHull(i, j, opVec3(x, y, val));

// Add the weights
nurb->setWeight(i, j, 1.0);
}
}

// Add the knot points
nurb->setUknot(0, 0.0);
nurb->setUknot(1, 0.0);
nurb->setUknot(2, 0.0);
nurb->setUknot(3, 0.0);
nurb->setUknot(4, 1.0);
nurb->setUknot(5, 1.0);

Parametric Surfaces

187

nurb->setUknot(6, 1.0);
nurb->setUknot(7, 1.0);

nurb->setVknot(0, 0.0);
nurb->setVknot(1, 0.0);
nurb->setVknot(2, 0.0);
nurb->setVknot(3, 0.0);
nurb->setVknot(4, 1.0);
nurb->setVknot(5, 1.0);
nurb->setVknot(6, 1.0);
nurb->setVknot(7, 1.0);

// Only trim reps in the first row
if (nVersions <= 0)
{
// Add a super quadric trim curve
opSuperQuadCurve2d *trimCircle0 = new opSuperQuadCurve2d(0.25, new
opVec2(0.25, 0.50), 2.0);
nurb->addTrimCurve(0, trimCircle0, NULL);

// make a 4-th order nurb trim curve
opNurbCurve2d *l = new opNurbCurve2d;

l->setKnot(0,0.0);
l->setKnot(1,0.0);
l->setKnot(2,0.0);
l->setKnot(3,0.0);
l->setKnot(4,1.0);
l->setKnot(5,1.0);
l->setKnot(6,1.0);
l->setKnot(7,1.0);
l->setControlHull(0,opVec2(0.50,0.50));
l->setControlHull(1,opVec2(0.90,0.10));
l->setControlHull(2,opVec2(0.90,0.90));
l->setControlHull(3,opVec2(0.50,0.50));

nurb->addTrimCurve(1, l, NULL);
}

188

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Hermite-Spline Surfaces

Hermite-spline surfaces interpolate a grid of points; that is, they pass through the set of
specified points under the constraint that you supply the tangents at each point in the u
and v directions and the mixed partial derivative at each point. This surface definition is
the natural generalization of Hermite-spline curves, discussed in “Hermite-Spline
Curves in the Plane” on page 134.

Figure 9-19 Hermite Spline Surface With Derivatives Specified at Knot Points

Hermite-spline surfaces are made of Hermite patches (see Figure 9-19). A bicubic Hermite
patch expands the definition of a bilinear interpolation to include specification of first
derivatives and mixed partial derivatives of the surface at each of the four corners. The
adjective “bicubic” in the name of the patches refers to the mathematical definition,
which includes products of the cubic Hermite polynomials that define a Hermite-spline
curve.

An advantage of including the derivatives to constrain the surface is that it is simple to
combine the patches into a smooth composite surface, that is, into a Hermite-spline surface.
A more formal discussion of these objects appears in the book Curves and Surface for
Computer Aided Geometric Design listed in the section “Recommended Background
Reading” on page xxxi.

tv

tv

tv

tv

tu

tu

tu

tu

tuv

tv

tu

tuv

tuv

tv

tu

tuv

tv

tu

tuv

tuv

tuv
tv

tu

tuv

tv

tu

tuv

Parametric Surfaces

189

Class Declaration for opHsplineSurface

The class has the following main methods:

class opHsplineSurface : public opParaSurface
{
public:
// Creating and destroying
opHsplineSurface();
opHsplineSurface(opReal *_p,
 opReal *_tu, opReal *_tv, opReal *_tuv,
 opReal *_uu, opReal *_vv,
 int uKnotCount, int vKnotCount);
~opHsplineSurface();

// Accessor functions
opVec3& getP(int i, int j);
opVec3& getTu(int i, int j);
opVec3& getTv(int i, int j);
opVec3& getTuv(int i, int j);
opReal getUknot(int i);
opReal getVknot(int j);
int getUknotCount();
int getVknotCount();
opReal getCylindrical();

void setAll(opReal *p,
 opReal *tu,
 opReal *tv,
 opReal *tuv,
 opReal *uu,
 opReal *vv,
 int uKnotCount,
 int vKnotCount);
void setCylindrical(opReal cylinderical);

// Surface point evaluator
void evalPt(opReal u, opReal v, opVec3 &pnt);
// Copy
virtual csNode* clone (csNode::CloneEnum what);
};

190

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

Methods in opHsplineSurface

The opHsplineSurface class has two important methods, the constructor and
set/getCylinderical.

The opHsplineSurface constructor has the following arguments:

_p Specifies the grid of points on the surface.

_tu, _tv, and _tuv
Specify, respectively, the corresponding tangents in the u and v
directions and the mixed partials.

The indexing of each of the arrays _p, _tu, _tv, and _tuv is as follows: the
x, y, and z components of each vector are grouped in that order, and the
sequence of points is defined so that the vKnotCount index changes
more rapidly.

uKnotCount and vKnotCount
Specify the number of points in the grid. The surface is made of
(uKnotCount-1) × (vKnotCount-1) Hermite patches.

_uu and _vv Define the knot points, the parameter values corresponding to the patch
corners; thus, they have uKnotCount and vKnotCount elements,
respectively.

setCylindrical() and getCylindrical()
Control the flag for whether the coordinates and derivatives are
assumed to be in cylindrical coordinates.

opCuboid

The opCuboid class defines a simple closed surface, a box with a specified height, width,
and depth. It is not a parametric surface.

Class Declaration for opCuboid

The class has the following main methods:

class opCuboid : public opRep
{
public:
// Creating and destroying

Regular Meshes and Discrete Surfaces

191

opCuboid();
opCuboid(opReal width, opReal height, opReal depth);
~opCuboid();

// Accessor functions
void setWidth(opReal widthVal);
opReal getWidth()

void setHeight(opReal heightVal);
opReal getHeight()

void setDepth(opReal depthVal);
opReal getDepth();

// Copy
virtual csNode* clone(csNode::CloneEnum what);
};

Regular Meshes and Discrete Surfaces

OpenGL Optimizer provides flexible tools to describe discrete objects in space. For
example, you can define a vector-valued function over a topologically regular mesh and
so visualize a fluid flow field.

Discrete Surface Base Class: opDisSurface

opDisSurface is the base for the all discrete surfaces and, more generally,
higher-dimensional meshes. A discrete surface is described as a set of discrete points
interconnected by a specific topology. An example of such a topology is a planar grid
structure. The base class provides methods only for discrete trim curves.

Making a Discrete Surface and Other Mesh Objects: opRegMesh

The opRegMesh template class describes a vector-valued function over a rectangular
mesh. Thus, an opRegMesh is the natural object for visualizing many data sets or
scientific modeling calculations.

192

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

The type of the template is determined by the return value of the mesh function you
define. For example, you can describe a discrete surface with a two-dimensional grid and
a mesh function that returns csVec3f positions of points on the surface. Thus the mesh
would be of type csVec3f. A surface tiling is developed by the member function evalPt(),
which interpolates values of the mesh function.

A mesh can have an arbitrary number of dimensions, although opRegMesh provides
special operations for two-, three-, or four-dimensional meshes. A mesh can have regular
or variable spacing in all dimensions. In general, if you specify a mesh by an array of grid
points, then the argument of the mesh function must be the same data type as the grid
points.

Class Declaration for opRegMesh

The class has the following main methods:

template <class T>
class opRegMesh : public opDisSurface
{
public:
opRegMesh();
opRegMesh(int Xres, int Yres);
opRegMesh(int Xres, int Yres, int Zres);
opRegMesh(int Xres, int Yres, int Zres, int Tres);
opRegMesh(int d, int *res);

~opRegMesh();

// Set and get the dimensionality of the mesh
void setDim (int _dim)
int getDim (void)

// Set and get the dimension of the mesh
void setRes(int Xres, int Yres);
void setRes(int Xres, int Yres, int Zres);
void setRes(int Xres, int Yres, int Zres, int Tres);
void setRes(int d, int *res);

int *getRes() ;

// Set and get the type
void setType(opRegMeshType meshType)
opRegMeshType getType()

Regular Meshes and Discrete Surfaces

193

// Set and get the origin
void setOrigin(opReal *Origin)
opReal& getOrigin()

// Set and get the delta spacing
void setSpacing(opReal *Delta);

opReal& getSpacing() ;
opReal& getSpacing(int i)
opReal& getSpacing(int i, int j);
opReal& getSpacing(int i, int j, int k);
opReal& getSpacing(int i, int j, int k, int l);

// Arbitary indexing via an index vector
opReal& getSpacing(int *index);

// Set and get the mesh function
void setFunction(T *function)
T *getFunction()

// Set and get variable spacing grid
// (memory maintained by calling program
// assumes sizeof(grid) =
// ndim*sizeof(opReal) * res[0]*res[1]*...*res[ndim-1]
void setGrid (opReal *_grid)
opReal *getGrid ()

// Single index subscripting operator
T& operator[](int i);

// One, two, three and four dimensional indexing operators
T& operator()(int i);
T& operator()(int i, int j);
T& operator()(int i, int j, int k);
T& operator()(int i, int j, int k, int l);

// Arbitary indexing via an index vector
T& operator()(int *index);

// Point interpolated evaluators
void evalPt(T& pt, opReal x, opReal y);
void evalPt(T& pt, opReal x, opReal y, opReal z);
void evalPt(T& pt, opReal x, opReal y, opReal z, opReal t);

194

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

// Extract positional information out of grid
opReal gridVal (int i);
csVec2f gridVal (int i, int j);
csVec3f gridVal (int i, int j, int k);
csVec4f gridVal (int i, int j, int k, int l);

// Can set extents if you know them, or compute them
void setExtents (T _min, T _max);
void getExtents (T *_min, T *_max);
// compute min/max over all data points
bool computeExtents (bool force);
};

Methods in opRegMesh

opRegMesh() (Xres, Yres), (Xres, Yres, Zres), (Xres, Yres, Zres, Tres), and (d, res)
Create meshes of two, three, four, and d dimensions, respectively. The
numbers of points in each dimension are Xres, Yres, Zres, and Tres, or are
given by the elements of the integer vector, res.

If parameters are supplied to the constructor, the value of
opRegMeshType is opConstant, indicating constant spacing along the
axes. See the discussion of the methods setType() and getType() for
more information about opRegMeshType.

computeExtents ()
Computes the maximum and minimum values of the mesh function.

evalPt(pt, x, y, ...)
Interpolates from neighboring mesh points the value of the mesh
function. pt is the interpolated value.

gridVal (i,j,...) Returns the grid point corresponding to the specified set of indices.

operator[] and operator()
Are the indexing operators that allow you to define an array of variables
with the same type as the class and use the indexing operator to return
values of the mesh function. For example, F(i,j,k) would give the value
of the grid function F(), for the point indexed by (i,j,k).

setDim () and getDim ()
Get and set the dimension of the mesh.

Regular Meshes and Discrete Surfaces

195

setExtents() and getExtents()
Set or get the maximum and minimum values of the mesh function. If
you know these values beforehand, use setExtents() rather than the
computationally more expensive computeExtents().

setFunction(function) and getFunction()
Set and get the mesh function. Define the mesh function before you
create an instance of opRegMesh. The return value of function is the type
of this template class.

setGrid (_grid) and getGrid()
Get and set an array of grid points. _grid is a one-dimensional opReal
array. Coordinates of points on the grid are grouped, and the offsets of
the groups of coordinates are computed using the offset schemes
presented in the class declaration by the indexing operators (see
opRegMesh.h). The offsets take into account the number of coordinates
associated with each point. Thus, for example, the first coordinate of the
point (i,j,k) in a three-dimensional grid constructed by
opRegMesh(Xres, Yres, Zres) is 3(i + j*Xres + k*Xres*Yres).

setRes() and getRes()
Set and get the number of mesh points.

setSpacing() and getSpacing()
Get and set the spacing of points for meshes with constant spacing along
each axis. Although the spacing along each axis is constant, the spacings
for the axes may differ. The argument for setSpacing() is an opReal
array specifying spacings for each axis.

setType() and getType()
Set and get the mesh type, which is a value of the enumerated type
opRegMeshType: opConstant, opVariable, and opCurviLinear.

An opConstant opRegMesh is defined by the number of points on
orthogonal axes and the spacing between the points on the axes.

An opVariable opRegMesh is defined with an explicit set of grid
points. The grid points must be topologically regular; that is, they can
be indexed with an integer vector that has the same dimension as the
grid points. Thus, for example, points on a three-dimensional grid can
be described by (i,j,k). See the discussions of setGrid() and operator[]
for more information about indexing.

196

Chapter 9: Higher-Order Geometric Primitives and Discrete Meshes

An opConstant opRegMesh<opReal>: Data for opviz

An elementary instance of an opRegMesh<opReal> has a three-dimensional cubic mesh
of points with unit spacing in all three dimensions and a number assigned to each point.
The spacing of the mesh points determines that the mesh is opConstant.

For this example, make_data_cube() is the opReal-valued function. The program
computes the make_data_cube() values for the mesh points, stores them in an opReal
array called data, and loads data into the opRegMesh.

make_data_cube (&data, dims);
ndim = 3;

...

// Set origin and mesh spacing
opReal orig[3] = ;
opReal delta[3] = ;

// --- Allocate opRegMesh to contain raw data
opRegMesh<opReal> *rm = new opRegMesh<opReal>

// Load parameters of the opRegMesh rm:
rm->setType (opConstant);
rm->setRes (ndim, dims);
rm->setDim (ndim);
// do this after setRes because setRes(d,res) will reset dim=4
rm->setOrigin (orig);
rm->setSpacing (delta);

// Load function values:
rm->setFunction (data);

Regular Meshes and Discrete Surfaces

197

An opVariable opRegMesh<opReal>: Data for opviz

This instance of an opRegMesh<opReal> has a mesh of three-dimensional points that
the application reads from a file and loads into the opReal array grid. Thus, the mesh is
opVariable.

The physical model for the real-valued mesh function is the distribution of material
density in space specified by the mesh density function real_rho.

When reading the grid array, the application also determines the number of points along
each grid axis and stores the values in an int array, dims. The application reads values for
the opReal-valued function from a second file and loads them in the array real_rho.

densityMesh = new opRegMesh<opReal>;

densityMesh->setType (opVariable);
densityMesh->setDim (3);
densityMesh->setRes (dims[0], dims[1], dims[2]);
densityMesh->setOrigin (orig);
densityMesh->setGrid (grid);
densityMesh->setFunction (real_rho);

An opVariable opRegMesh<csVec3f>: Data for opviz

This instance of an opRegMesh has the same mesh of three-dimensional points as in the
previous example, but the mesh function is vector-valued.

The physical model here is the distribution of momenta in space specified by the
vector-valued mesh function momentum. The application reads values for the
csVec3f-valued function from a file and loads them in the array momentum.

momentumMesh = new opRegMesh<csVec3f>;

momentumMesh->setType (opVariable);
momentumMesh->setDim (3);
momentumMesh->setRes (dims[0], dims[1], dims[2]);
momentumMesh->setOrigin (orig);
momentumMesh->setGrid (grid);
momentumMesh->setFunction (momentum);

199

Chapter 10

10. Creating and Maintaining Surface Topology

Most objects in a large model are made of many parametric surfaces. The OpenGL
Optimizer classes that describe the connectivity of parametric surfaces, that is, their
topology, allow you to “stitch” surfaces together by defining shared boundary curves,
and to propagate surface contact information.

The main purpose for shared-boundary information is to generate tessellations of
adjacent surfaces that are consistent, that is, no cracks develop between any pair of
rendered surfaces. Tessellations are discrete approximations of surfaces in terms of
renderable geometric primitives, typically triangles (see Chapter 11, “Rendering
Higher-Order Primitives: Tessellators”).

These topics are covered in this chapter:

• “Overview of Topology Tasks” on page 199

• “Summary of Scene Graph Topology: opTopo” on page 200

• “Consistent Vertices at Boundaries: opBoundary” on page 209

• “Collecting Connected Surfaces: opSolid” on page 211

Overview of Topology Tasks

The topology classes provide definitions of boundary curves shared by adjacent
parametric surfaces. Discrete versions of these curves are used by tessellators to prevent
cracks. A rendered image can have artificial cracks due to the following:

• Difficulty sampling enough points on the boundary between two surfaces so that
mismatches of the tessellations are imperceptible

• Finite-precision mismatches between coordinates of ideally identical points, for
example at triple junctions where the edges of three surfaces meet at a point

200

Chapter 10: Creating and Maintaining Surface Topology

Propagating surface contact information is useful for other tasks, such as

• Maintaining consistent normal vectors for adjacent surfaces

• Deforming a surface and consistently deform an adjacent surface

• Determining whether an edge of a surface is in fact a shared boundary

• Creating a mirror image of a compound surface (you can use topological
information to reorient the surface)

Summary of Scene Graph Topology: opTopo

The class opTopo holds data that indicates whether, and how, two opParaSurfaces are in
contact. You can create several opTopos for a particular scene: for example, one each for
subassemblies. A static member of opTopo lists all the opTopos that you create.

opTopo maintains lists of surfaces and boundaries (opBoundarys) that are shared by an
arbitrary number of surfaces. Figure 10-1 illustrates how these data structures define
relations between opParaSurfaces.

When an edge has been tessellated, the associated opBoundary holds a discrete version
of the curve. This discrete version is needed for consistent tessellations because it
specifies one set of boundary vertices for tessellating all the surfaces that share the
boundary. The role of opBoundary in determining a consistent tessellation is illustrated
in Figure 10-2.

The classes opTopo and opBoundary are examples of b-reps, which identify objects in
terms of their bounding objects. opBoundary is also winged data structures, a particular
form of b-rep. For more information on these structures, see the book Computer Graphics:
Principles and Practice listed in “Recommended Background Reading” on page xxxi.

Summary of Scene Graph Topology: opTopo

201

Figure 10-1 Topological Relations Maintained by Topology Classes

u-v coordinate

space

x-y-z

model

space

surfaces

Data

structure

2 trim curves
specified by
2 edges make
up each of the
trim loops in
 the figure

opBoundary

opBoundary

opParaSurface

opEdge opEdge

opBoundary

opParaSurface

opEdge opEdge

opParaSurface

opEdge opEdge

202

Chapter 10: Creating and Maintaining Surface Topology

Figure 10-2 Consistently Tessellated Adjacent Surfaces and Related Objects

Trim
curves

u-v coordinate

space

x-y-z modelspacesurfaces

Discrete
surface

representation

(Edge consistent

tessellation)

inParaSurface

inParaSurface

inEdge

inBoundary

Datastructure

inEdge

Summary of Scene Graph Topology: opTopo

203

Building Topology: Computing and Using Connectivity Information

Given a set of opParaSurfaces in a scene graph, there are several ways to develop a set
of shared vertices to be held in opBoundarys. The following sections describe the
topology construction strategies (beyond the low-fidelity alternative of ignoring
topology):

• “Building Topology Incrementally: A Single-Traversal Build” on page 203

• “Building Topology From All Scene Graph Surfaces: A Two-Traversal Build” on
page 204

• “Building Topology From a List of Surfaces” on page 204

• “Building Topology “by Hand”: Imported Surfaces” on page 204

• “Summary of Topology Building Strategies” on page 205

Building Topology Incrementally: A Single-Traversal Build

As each surface is tessellated during a traversal, the tessellator checks for previously
tessellated adjacent surfaces, uses existing vertices when it can, and adds necessary data
to topology data structures.

Although OpenGL Optimizer’s incremental topology building tools attempt to avoid
cracks, they can, in principle, appear: When a surface is added, a new junction on the
boundary of an existing, tessellated surface may occur and the junction point may not be
in the existing tessellation. The tessellation of the added surface introduces the junction
point, necessarily at a finite distance from the existing tessellation, and a crack appears
between the newly and previously tessellated surfaces.

204

Chapter 10: Creating and Maintaining Surface Topology

Building Topology From All Scene Graph Surfaces: A Two-Traversal Build

Topology built with two passes is very clean; unlike a single-pass build, in principle no
cracks due to unforeseen junctions can occur. The added cost of performing a
two-traversal build is slight; it is the recommended way to build topology and perform
tessellations if you want high-quality images. When building topology in two traversals,
the following steps occur:

1. Connectivity of all surfaces is calculated during a topology building traversal of the
scene graph, before a tessellation traversal.

2. The surfaces in the scene are tessellated during a second traversal.

Building Topology From a List of Surfaces

You can explicitly accumulate a list of surfaces for which to build topology and then
tessellate the surfaces. The result is clean tessellations of the surfaces on the list. Cracks
may appear if an adjacent surface was not included in the list.

Building Topology “by Hand”: Imported Surfaces

If you have a set of surfaces for which you know connectivity, you can explicitly develop
the appropriate topological data structures and develop consistent tessellations.

The presence of cracks will depend on how good your input trim curves are. If three
surfaces meet at a junction point that is not the shared endpoint of trim curves, a crack
may appear.

Summary of Scene Graph Topology: opTopo

205

Summary of Topology Building Strategies

Table 10-1 lists the methods required for each of the topology building strategies. See
“Base Class opTessellateAction” on page 217 for more information about the tessellation
methods listed.

Table 10-1 Topology Building Methods

Topology Building Strategy Methods

Ignore topology information and
let cracks appear as they will.

1. Do not create an opTopo or build topology.
2. opTessellateAction::setBuildTopoWhileTess(FALSE).
3. opTessellateAction::apply()

Build topology incrementally. 1. Create an opTopo.
2. opTessellateAction::setBuildTopoWhileTess(TRUE).
3. opTessellateAction::setTopo(topo).
4. opTessellateAction::apply(root).

Two-traversal build. 1. Create an opTopo.
2. opTopo::buildTopologyTraverse(root).
3. opTessellateAction::setBuildTopoWhileTess(FALSE).
4. opTessellateAction::apply(root).

Assemble a list of surfaces, build
the topology, and then tessellate.

1. Create an opTopo.
2. Assemble list of surfaces: opTopo::addSurface(surf).
3. opTopo::buildTopology().
4. opTessellateAction::setBuildTopoWhileTess(FALSE).
5. opTessellateAction::apply(shape).

Build the topology “by hand.”

See the file
src/apps/topoTest/topoTest.cxx (step 7
does not appear in the code
because FALSE is the default).

1. Create an opTopo.
2. Assemble list of surfaces: opTopo::addSurface().
3. Create opBoundarys.
4. Add to list of boundaries: opTopo::addBoundary().
5. Add edges to boundaries: opBoundary::addEdge().
6. Set boundary orientation: opEdge::setBoundaryDir().
7. opTessellateAction::setBuildTopoWhileTess(FALSE).
8. opTessellateAction::apply(shape).

206

Chapter 10: Creating and Maintaining Surface Topology

Reading and Writing Topology Information: Using opoptimize

You can add topological information to an existing set of connected, higher-order
surfaces in a file—for example NURBS in an .iv file—and save the information for future,
crack-free surface rendering. As a result, you don’t have to repeat the topology build. The
method opGenLoader::load() reads the topological information in a .csb file. See “Saving
and Loading Scene-Graph Files” on page 16.

Before you save the scene graph data, you can also add tessellations that use the topology
to give crack-free images (see Chapter 11, “Rendering Higher-Order Primitives:
Tessellators”).

The demonstration program opoptimize illustrates how to perform these steps (see ,
“Scene Graph Tuning With the opoptimize Application” and
/usr/share/Optimizer/apps/sample/opoptimize).

Table 10-2 shows three possible file conversions that you can apply to .iv or .csb files that
contain reps but no topology or tessellation; they are listed with example opoptimize
command lines.

Table 10-2 Adding Topology and Tessellations to .iv and .csb Files

Conversion Example Command Line

Format change only. opoptimize sur.iv -tess no -batch sur.csb

Add topology information to scene
graph: save reps and topology
information but not tessellations.

opoptimize sur.iv -tess no -ttol topoTol -batch surTopo.csb

or
opoptimize sur.csb -tess no -ttol topoTol -batch surTopo.csb

Add topology information and
tessellations to scene graph: save reps,
topology, and tessellations.

opoptimize sur.iv -ttol topoTol -batch surTopoTess.csb

or
opoptimize sur.csb -ttol topoTol -batch surTopoTess.csb

Summary of Scene Graph Topology: opTopo

207

If you perform conversion, you may have files with or without tessellations. Depending
on the type of file you read, use one of the command lines in Table 10-3.

Note: If you attempt to load a tessellated surface, no additional tessellation is performed.

To delete the tessellation date, use the method clearTessellation().

Class Declaration for opTopo

The following are the main methods in the class:

class opTopo : public csNode
{
public:
// Creating and destroying
opTopo(opReal tol = 1.0e-3,
 opLengthUnits u = meter,
 int sizeEstimate = 1024);
~opTopo();

// Accessor functions
void setDistanceTol(opReal tol, opLengthUnits u)
opReal getDistanceTol()

opParaSurface* getSurface(int i);
int getSurfaceCount();

opBoundary* getBoundary(int i);
int getBoundaryCount();

int getSolidCount()
opSolid* getSolid(int i)

Table 10-3 Reading .csb Files: With and Without Tessellations

To read a .csb file and perform
tessellation (without having to
build topology):

opoptimize surTopo.csb -ctol tessTol

To read a .csb file that already has
tessellations

opoptimize surTopoTess.csb -tess no

208

Chapter 10: Creating and Maintaining Surface Topology

//Adding topological elements
int addSurface(opParaSurface *sur);
int addBoundary(opBoundary *bnd);

//Topology construction
void buildTopology();
void buildTopologyTraverse(csNode *n);
int buildSolids();
};

Methods in opTopo

buildSolids() Collects connected surfaces in the opTopo into opSolids (see
“Collecting Connected Surfaces: opSolid” on page 211.

buildTopology()
Builds consistent set of boundaries from the list of surfaces accumulated
by calls to addSurface(). Previously developed boundaries are deleted.

buildTopologyTraverse()
Traverses a scene graph and builds a consistent set of boundaries for all
surfaces in the graph.

opTopo(tol,u,sizeEstimate)
Construct a topological data structure.

tol specifies a tolerance for calculating when points are close enough
together to be considered the same. Default is 1 millimeter.

u specifies the system of units for tol. Default is meters.

sizeEstimate specifies an estimate of the number of surfaces whose
topology needs to be maintained.

The static member topology is an array of all topologies that have been created.

Consistent Vertices at Boundaries: opBoundary

209

Consistent Vertices at Boundaries: opBoundary

The opBoundary class is an element in the list of boundaries are shared by parametric
surfaces that is maintained by opTopo. An opBoundary holds a curve that represents a
common boundary, and points to adjoining surfaces. Notice that an opBoundary can
include any number of surfaces that share a particular curve as a boundary, so it can
represent the intersection of several surfaces and allow you to describe a non-manifold
surface structure. An opBoundary can also hold just one surface, and thus represent a
free edge.

The opBoundary class holds an opDisCurve3d xyzBoundary, which is derived from a
tessellation, to store a discrete version of a shared boundary. The unique discrete version
guarantees that tessellations of adjoining surfaces share the same vertices along the
boundary and so prevents the development of cracks.

In addition to information identifying each surface, opBoundary stores the index used
by each opParaSurface to identify the trim curve that defines the shared boundary.
Because a boundary may consist of several trim curves, more than one trim curve, and
therefore more than one opBoundary, can define a geometric boundary between two
surfaces.

 If you have an opParaSurface and want to identify adjacent surfaces, you have two
options. The simplest is to find the opSolid that holds the surface, using the
opParaSurface member _solid_id. At a lower level, you can identify each opBoundary
associated with the surface by using the boundary index that is stored in each of the
surface’s opEdge trim curves. The boundary index identifies opBoundary members in the
opTopo list. From each member of the list, you can identify surfaces that share that
boundary. See the section “Parametric Surfaces” in Chapter 9 for more information about
opEdge.

210

Chapter 10: Creating and Maintaining Surface Topology

Class Declaration for opBoundary

The following are the main methods in the class:

class opBoundary
{
public:
opBoundary();
~opBoundary();

// Accessor functions
void addEdge(int i, opParaSurface &sur, int trimLoop, int trimCurve);
int getSurface(int i);
int getLoop(int i);
int getTrimCurve(int i);
int getWingCount();
int getBoundaryId();

// Copy
opBoundary* clone(csNode::CloneEnum what);
};

Methods in opBoundary

opBoundary() Constructs an empty boundary.

addEdge(i, sur, trimLoop, trimCurve)
“Attaches” the surface with index i to the boundary and identifies the
trim loop and trim curve that define the boundary in that surface. The
index sur is from the opTopo list of all opParaSurfaces. The indices
trimLoop and trimCurve are from the doubly indexed list in the
opParaSurface.

getSurface(i) Returns the opTopo index of the opBoundary surface with index i. The
other get*() functions return elements associated with the surface. See
“Parametric Surfaces” on page 151 for more details about the returned
objects.

xyzBoundary Is a discrete representation of the boundary curve. Notice that the curve
is not in the coordinate space of any of the surfaces but represents the
boundary as a curve in three-dimensional space. This curve defines the
set of vertices used in the tessellations of all surfaces that share this
boundary.

Collecting Connected Surfaces: opSolid

211

The set*() methods, which you can find in opBoundary.h, are mainly for use when reading
topological data from a file. For example, they are used by the .csb loader in
opGenLoader to create topological objects when reading a file (see “Saving and Loading
Scene-Graph Files” on page 16).

Collecting Connected Surfaces: opSolid

To maintain consistent normals or propagate deformation information, organize
connected opParaSurfaces in an opSolid. With an opSolid, you can collect connected
surface patches in one object for convenient access and manipulation.

Despite the name of the class, the set of surfaces need not form a closed surface, that is
the boundary of a volume. They can be a set of patches joined to form a surface, for
example, you might generate a hood of a car from two opParaSurafaces that are mirror
images of each other.

To create solids, collect them in an opTopo and then call opTopo::buildSolid() (see
“Summary of Scene Graph Topology: opTopo” on page 200).

Class Declaration for opSolid

The following are the main methods in the class:

class opSolid
{
public:

// Creating and destroying
opSolid()
~opSolid()

// Accessor functions
int addSurface(opParaSurface *sur);
opParaSurface* getSurface(int i);
int getSurfaceCount();
int getSolidId();
};

212

Chapter 10: Creating and Maintaining Surface Topology

Methods in opSolid

Use the methods only after you have created an opSolid with opTopo::buildSolid().

Treat the method setSolidId() that appears in opSolid.h as private: it is used by
opTopo::buildSolid() when building the solid.

213

Chapter 11

11. Rendering Higher-Order Primitives: Tessellators

To render a shape, you must develop an approximation of it constructed of a collection
of like primitives, typically csTriFans or csTriStrips. The tool that translates a shape into
a mesh of contiguous triangles is called a tessellator.

Tessellation is interpretive; there is necessarily a difference between the original surface
and the tessellated mesh. You can control how closely you want the mesh to resemble the
surface.

• Close resemblance, requiring many triangles, produces a realistic shape but incurs
slow graphic processing.

• A gross approximation of the original surface results in fast processing.

Applications often create a series of tessellated representations of a shape, each one
called a level of detail (LOD). High resolution LODs are used when shapes are close to
the viewer and low resolution LODs are used when shapes are far from the viewer.
Because distance obscures detail, high resolution LODs are not necessary to represent
distant shapes.

This chapter describes how to control the tessellation of shapes in the following sections:

• “Features of Tessellators” on page 214

• “Base Class opTessellateAction” on page 217

• “Tessellating Curves in Space” on page 220

• “Tessellating a Cuboid: opTessCuboidAction” on page 221

• “Tessellating Parametric Surfaces” on page 222

• “Tessellating a Regular Mesh” on page 228

214

Chapter 11: Rendering Higher-Order Primitives: Tessellators

Figure 11-1 Class Hierarchy for Tessellators

Features of Tessellators

Tessellators generate a sequence of straight-line segments to approximate an edge curve
of a surface, then cover the surface with triangular tiles. With each triangle vertex it
creates, a tessellator also stores the normal vector at the point from original surface. The
normal vectors are necessary for lighting and shading calculations.

Tessellations necessarily burden the entire graphics pipeline; they provide a first
definition of the rendering task by specifying a maximal set of vertices to be sent to the
graphics hardware. You can redefine and simplify the rendering task by using the tools
discussed in Part II, “High-Level Strategic Tools for Fast Rendering.”

opTessCuboidAction

opTessParaSurfaceAction

opTessIsoAction

opTessNurbSurfaceAction

opTessSliceAction

opTessVecAction

opTessVec3dAction

opTessVec2dAction

csDispatch

opTessellateAction

Tessellators for
continuous

surfaces

Tessellators for
regular meshes

Features of Tessellators

215

Tessellators for Varying Levels of Detail

Ideally you would quickly generate the simplest tessellation that adequately represents
surfaces of interest. What is adequate depends on your particular rendering task. You
may want to generate several tessellations with varying degrees of complexity and
accuracy for one opRep and place them in level-of-detail nodes, as discussed in
Chapter 4, “Rendering Appropriate Levels of Detail.” The tessellators include accessor
functions to help you assess the load they create for the graphics hardware.

The control parameter for tessellations specifies the maximum deviation from the exact
surface. Figure 11-2 illustrates the effects of varying the deviation. The upper left image
is appropriate for accurate representation of the surface, the lower right image would be
appropriate if the object were in the distant background of a scene.

Figure 11-2 Tessellations Varying With Changes in Control Parameter

216

Chapter 11: Rendering Higher-Order Primitives: Tessellators

Details of Figure 11-2

The surface shown in Figure 11-2 was made with the repTest application using an
opFrenetSweptSurface as follows (see “opFrenetSweptSurface” on page 175 and
“Rendering Higher Order Reps—repTest” on page 314):

opReal profile(opReal t) { return 0.5*cos(t*6.0) + 1.25; };
opSuperQuadCurve3d *cross =
 new opSuperQuadCurve3d(0.75, new opVec3(0.0, 0.0, 0.0), 3.0);
opCircle3d *path = new opCircle3d(1.75, new opVec3(0.0, 0.0, 0.0));
opFrenetSweptSurface *fswept =
 new opFrenetSweptSurface(cross, path, profile);
fswept->setHandednessHint(true);

The number of triangles in Figure 11-2 decreases as the maximum-deviation parameter
chordalDevTol varies from .001 to .01 to .1 to .5 (see “Tessellating Parametric Surfaces” on
page 222). These numbers should be compared to the scale of the object, which has a
maximum diameter of 6.125 = 2(1.75 + 1.75 × .75), a minimum diameter of
.875 = 2(1.75 − 1.75 × .75), a maximum height of 2.625 = 2(1.75 × .75), and a minimum
height of 1.125 = 2(.75 × .75).

Tessellators Act on a Whole Graph or Single Node

You can apply a tessellator either to a scene graph or to just one node. The tessellators
produce a csGeoSet from an opRep and place that csGeoSet in the csShape that holds
the opRep.

Tessellators and Topology: Managing Cracks

A tessellation begins with a discrete set of vertices at surface edges. To prevent cracks
from appearing between adjacent surfaces, the same set of vertices should be used to
tessellate both surfaces.

To address the crack problem, you have several options, which are discussed in
“Building Topology: Computing and Using Connectivity Information” on page 203.
Table 10-1 on page 205 lists the different approaches to topology building, and the
methods to use for each.

Base Class opTessellateAction

217

Base Class opTessellateAction

The important methods of opTessellateAction are apply() and mpApply(), which
tessellate all opReps below the csNode that is their only argument. They perform
single-process (apply()) or multiple-process (mpApply()) traversal of the scene graph. If
the csNode is a csShape holding an opRep, then only that opRep is tessellated. If you
supply a csNode argument that is inappropriate for a particular opTessellateAction
subclass, nothing happens.

Subclasses of opTessellateAction, which are described in the subsequent sections of this
chapter, provide tessellators for specific opReps. Each subclass has a pair of public
functions, tessellate() and tessellator(), which implement a tessellation for a specific
opRep. Although these functions are public, you should not need them if you use any
OpenGL Optimizer opTessellateAction; call one of the apply functions, apply() or
mpApply(), to tessellate.

Tessellating a Scene Graph With Several Tessellators

If you create several subclasses of opTessellateAction and call
opTessellateAction::apply(), then for each surface encountered during the tessellation
traversal, the algorithm used to perform the tessellation is that of the most derived
instance of opTessellateAction that is appropriate for the surface. Thus, a call to the base
class method will do the right thing for each opParaSurface, if you create instances of
subclasses that provide the algorithms for doing so.

Retessellating a Scene Graph

A tessellator won’t tessellate an opRep if getGeometryCount is not zero. If you want to
retessellate an opRep, you must call clearTessellation() for opParaSurface and call
removeGeometry() for opCurve2d or opCurve3d. See the example in
/Optimizer/src/apps/removetess/main.cxx for details.

218

Chapter 11: Rendering Higher-Order Primitives: Tessellators

Class Declaration for opTessellateAction

The class has the following main methods:

class opTessellateAction : public csDispatch
{
public:
// Creating and destroying
opTessellateAction(void);
~opTessellateAction(void);

// Accessor functions
void setExtSize(int s);
int getExtSize()
int getTriangleCount()
int getTriStripCount()
int getTriFanCount()

void setReverseTrimLoop(opBool enable)
opBool getReverseTrimLoop()

void setBuildTopoWhileTess(opBool _buildTopoWhileTess)
opBool getBuildTopoWhileTess()

void setTopo(opTopo * _topo)
opTopo *getTopo(void)

// Recursive action application
void apply (csNode *node);
void mpApply(csNode *node);
};

Methods in opTessellateAction

apply() and mpApply()
Tessellate all opReps in a scene graph using a single-process or
multi-process traversal, respectively. Subclasses of opTessellateAction
define specific tessellation algorithms.

getTriangleCount()
Returns the number of all triangles generated by this instance of the
tessellator.

Base Class opTessellateAction

219

getTriStripCount() and getTriFanCount()
Return the number of tristrips or trifans in the tessellation.

setBuildTopoWhileTess() and getBuildTopoWhileTess()
Sets a flag whether surface connectivity is computed during the
tessellation traversal. Set the topology data structure to use with
setTopo().

If TRUE, before tessellating each surface, the connectivity of all
previously tessellated surfaces is used to avoid cracks when
tessellating. Notice that the final tessellations of the surfaces in the
scene graph may still have cracks because of unforeseen junctions
between surfaces.

If FALSE, no topology is constructed while tessellating. This leads to
two very different possible results:

• If topology information for the surfaces to be tessellated was
developed before the tessellation, by calling
opTopo::buildTopologyTraverse() or opTopo::buildTopology() or
by constructing topology by hand, the tessellator uses the
information and avoids cracks between surfaces. This option
provides the most crack-free tessellations possible.

• If topology information was not developed before the tessellation
traversal, then surfaces are tessellated without regard to
connectivity and cracks appear between all adjacent surfaces. This
option provides the least crack-free tessellations possible.

setExtSize() and getExtSize()
Set and return an estimate of how many surfaces you expect to tessellate
and thus allocate contiguous space in memory for opDvectors that hold
the tessellation csGeoSet, a list of vertices, and a list of normals.

setReverseTrimLoop() and getReverseTrimLoop()
Set and recover the orientation of trim loops. Recall that the side of the
surface to the left of the trim loop is rendered (see the section
“Parametric Surfaces” on page 151).

setTopo() and getTopo()
Set and get the opTopo that holds the topology information used by the
tessellator (see “Summary of Scene Graph Topology: opTopo” on
page 200).

220

Chapter 11: Rendering Higher-Order Primitives: Tessellators

Tessellating Curves in Space

The class opTessCurve3dAction provides methods to develop a discrete approximation
to an opCurve3d.

Class Declaration for opTessCurve3dAction

The class has the following main methods:

class OP_DLLEXPORT opTessCurve3dAction : public opTessellateAction
{
public:
// Creating and destroying
opTessCurve3dAction();
opTessCurve3dAction(opReal chordalDevTol,
 opBool scaleTolByCurvature,
 int samples);
~opTessCurve3dAction();

// Accessor functions
void setChordalDevTol(const opReal chordalDevTol);
opReal getChordalDevTol();
void setScaleTolByCurvature(const opReal scaleTolByCurvature);
opBool getScaleTolByCurvature();
void setSampling(const int samples);
int getSampling();
};

Tessellating a Cuboid: opTessCuboidAction

221

Methods in opTessCurve3dAction

apply() and mpApply()
Are inherited from opTessellateAction. They tessellate individual
opCurve3ds or all opCurve3ds in a scene graph using a single-process
or multi-process traversal, respectively.

setChordalDevTol() and getChordalDevTol()
Set and get the maximum distance from the original surface to the edges
produced by the tessellation.

setSampling() and getSampling()
Set and get the hint for the number of vertices in the tessellation.

setScaleTolByCurvature() and getScaleTolByCurvature()
Set and get a flag to control whether the chordal deviation parameter
should be scaled by curvature. If non zero, the tessellation of highly
curved portions of a curve improves.

Tessellating a Cuboid: opTessCuboidAction

The opTessCuboidAction class tessellates an opCuboid. opTessCuboidAction is a
minimal example of a tessellator.

Class Declaration for opTessCuboidAction

The class has the following main methods:

class opTessCuboidAction : public opTessellateAction
{
public:
opTessCuboidAction();
~opTessCuboidAction();

// Tessellate action
static void tessellate(csDispatch *action, csObject *object);

// The actual cuboid tessellator
void tessellator(opCuboid &c);
};

222

Chapter 11: Rendering Higher-Order Primitives: Tessellators

Methods in opTessCuboidAction

apply() and mpApply()
Are inherited from opTessellateAction. Tessellate individual
opCuboids or all opCuboids in a scene graph using single-process or
multi-process traversal.

The methods tessellate() and tessellator() occur for all subclasses of opTessellateAction;
you will rarely need to use them (see “Base Class opTessellateAction” on page 217 for
more details about these functions).

Tessellating Parametric Surfaces

This section discusses the two classes OpenGL Optimizer provides for tessellating
parametric surfaces. The class opTessParaSurfaceAction has methods for any
parametric surface. The class opTessNurbSurfaceAction takes advantage of OpenGL
NURBS routines.

opTessParaSurfaceAction

The opTessParaSurfaceAction class develops tessellations of any opParaSurface. If a
surface has boundary curves, the tessellator starts there and specifies vertices at the
edges of the surface. The tessellator then covers the surface with csTriStripSets or
csTriFanSets, using the boundary vertices to “pin” the edges of the tessellation. If
necessary, the tessellator creates edge vertices by constructing a discrete version of the
boundary curve associated with each of the surface’s opEdges. An advantage of starting
all tessellations at boundaries is easy coordination of tessellations by several processors.

As part of the tessellation process, you can generate the u-v coordinates for each vertex
created by the tessellator.

To control the accuracy of a tessellation, you specify a chordal deviation parameter which
constrains the distance of edges in the tessellation from the original surface.

Tessellating Parametric Surfaces

223

Class Declaration for opTessParaSurfaceAction

The class has the following main methods:

class opTessParaSurfaceAction : public opTessellateAction
{
public:
opTessParaSurfaceAction();
opTessParaSurfaceAction(opReal chordalDevTol,

opBool scaleTolByCurvature, int samples);
~opTessParaSurfaceAction();

// Accessor functions
void setChordalDevTol(const opReal chordalDevTol);
opReal getChordalDevTol();

void setScaleTolByCurvature(const opReal scaleTolByCurvature)
opBool getScaleTolByCurvature()

void setSampling(const int samples)
int getSampling()

void setNonUniformSampling(const opBool samples);
opBool getNonUniformSampline();

void setGenUVCoordinates(const opBool genUVCoordinates);
opBool getGenUVCoordinates();

opBool capUbegin;
opBool capUend;
opBool capVbegin;
opBool capVend;
};

224

Chapter 11: Rendering Higher-Order Primitives: Tessellators

Methods in opTessParaSurface

apply() and mpApply()
Are inherited from opTessellateAction. Tessellate individual
opParaSurfaces or all opParaSurfaces in a scene graph using
single-process or multi-process traversal.

opTessParaSurface()
Creates the class and provides a hint for the maximum deviation of the
tessellation from the original surface, indicates whether the tolerance
should be scaled by curvature, and provides a hint for how many
vertices to include in the tessellation.

setChordalDevTol() and getChordalDevTol()
Set and get the maximum distance from the original surface to the edges
produced by the tessellation.

setGenUVCoordinates() and getGenUVCoordinates()
Set and get a flag that indicates whether to generate u-v coordinates for
the vertices produced in the tessellation. The coordinates for each vertex
are stored as the vertex’s texture coordinates.

setSampling() and getSampling()
Set and get the hint for the number of triangle vertices in the tessellation
along each boundary of the surface. If the surface has no trim curves
defining its “outer” edges, then the sampling is along the edges of the
u-v rectangle that parameterizes the surface.

setScaleTolByCurvature() and getScaleTolByCurvature()
Set and get a flag to control whether the chordal deviation parameter
should be scaled by curvature. If non zero, the tessellation of highly
curved areas improves.

capUbegin, capUend, capVbegin, capVend
Define a rectangular region in coordinate space and thus provide a
simple method to restrict tessellation to a portion of the surface.

The methods tessellate() and tessellator(), which are not shown in the declaration above,
occur for all subclasses of opTessellateAction; you will rarely need to use them (see
“Base Class opTessellateAction” on page 217 for more details about these functions).

Tessellating Parametric Surfaces

225

Sample From repTest: Tessellating and Rendering a Sphere

The sample code in this section not only illustrates the main code elements for
tessellating an opParaSurface but describes the steps in the rendering process. The lines
of code perform the following procedures:

• Submitting the scene graph to an opViewer. This is part of the main program loop.

• Creating an instance of an opTessParaSurfaceAction.

• Creating and tessellating an opSphere.

• Developing the Cosmo3D scene-graph nodes.

The code in this section comes mainly from the functions main(), in the file
/usr/share/Optimizer/src/apps/repTest/main.cxx, and makeShape() and makeObjects() in
the file /usr/share/Optimizer/apps/repTest/repTest.cxx.

From main()

The main routine of repTest, which is
similar to the application opviewer,
creates an opViewer, calls makeObjects()
to get the tessellations, and starts the
rendering event loop.
makeObjects() fills the scene graph with
tessellated reps. It calls setupShape() to
tessellate the reps.

opViewer *viewer = new
opViewer(“repTest”,x,y,w,h);
csGroup *obj = makeObjects();
viewer->addChild(obj);
viewer->setViewPoint(obj);
viewer->eventLoop();

Create Tessellators, Set Accuracy

tc is a tessellator included so
setupShape() can accept an opCuboid in
addition to an opParaSurface.

// Generic parametric surface
// tessellator
static opTessParaSurfaceAction *t
 = new opTessParaSurfaceAction();

// Set up the cuboid tessellator
static opTessCuboidAction *tc
 = new opTessCuboidAction();

// Set the tolerance from the
// command line

t->setChordalDevTol(tol);

226

Chapter 11: Rendering Higher-Order Primitives: Tessellators

Define setUpShape

The function setupShape() creates a new
csShape, applies an appearance, places
an opRep in the csShape, places the
csShape at a position specified by the
arguments, and tessellates the opRep.

// A helper function which attaches
// a rep to a newly created shape
// and attaches that shape to the
// scene graph
static void setUpShape(
 opRep *rep,
 opReal x,
 opReal y,
 opReal z)

{

// Get the current origin of the
// object
opVec3 org = rep->getOrigin();

// Add the incoming offset to it
org[0] += x;
org[1] += y;
org[2] += z;

// Now reset the origin to include
// the incoming offset
rep->setOrigin(org);

// Set the appearance of this shape
// to be a random color
csAppearance *c_app =

makeColor(
 (float)rand()/((2<<15) - 1.0),
 (float)rand()/((2<<15) - 1.0),
 (float)rand()/((2<<15) - 1.0)
);

// Attach the geometry and
// appearance off of the shape
rep->setAppearance(c_app);

// Attach the shape to the scene
// graph

globalTransform->addChild(rep);

// Tessellate the individual shape
t->apply(rep);
tc->apply(rep);

}

Tessellating Parametric Surfaces

227

Define makeObjects()

The function makeObjects() sets up the
scene graph, defines and tessellates the
grid of reps, and places the tessellated
surfaces in the scene graph.
The code here shows the initial lines of
makeObjects() (omitting code that
controls the grid definition) and the
example of defining on opParaSurface, a
trimmed and untrimmed opSphere.
See the file
/usr/share/Optimizer/src/apps/repTest.cxx
for more details on the parameters
nVersions, OP_XDIST, OP_VIEWDIST,
and numObject.

csGroup *makeObjects()
{
...
// Scene’s global light
csPointLight *lt =
 new csPointLight;

// Add the global light to the
// scene
sceneRootNode->addChild(lt);

// Attach the global transform
sceneRootNode->
 addChild(globalTransform);

// Set the tolerance from the
// command line

t->setChordalDevTol(tol);

...
// Now all of the reps

...
/////////////////////////////////

// Sphere

/////////////////////////////////

opSphere *sphere =

 new opSphere(3);

if (nVersions <= 0)

{

opCircle2d *trimCircle2d =
new opCircle2d(1.0,
 new opVec2(M_PI/2.0,M_PI)
);

sphere->
addTrimCurve(0,
 trimCircle2d,
 NULL);

}

setUpShape(sphere,
 OP_XDIST*numObject++,
 Y,
 OP_VIEWDIST);

228

Chapter 11: Rendering Higher-Order Primitives: Tessellators

opTessNurbSurfaceAction

The opTessNurbSurfaceAction class tesselates surfaces using OpenGL NURBS utilities.
As a result, the tessellation developed by opTessNurbSurfaceAction is well tuned for
rendering. For more details about the OpenGL utilities, see the section “The GLU NURBS
Interface” in Chapter 12 of the OpenGL Programming Guide, Second Edition.

The only member function of note is the constructor, which takes a chordal deviation
parameter that has the same effect as that for opTessParaSurfaceAction.

Tessellating a Regular Mesh

To facilitate visualization of discrete data sets, OpenGL Optimizer provides four
tessellators for various types of the template class opRegMesh. The tessellators accept
opRegMeshType opConstant and opVariable. These are brief descriptions of the
tessellation classes discussed in this section:

Visualizing Scalar-Valued Functions

opTessIsoAction
Acts on a surface determined by a constant value of an opReal-valued
function defined on a three-dimensional lattice. An opTessIsoAction
takes an opRegMesh<opReal> and a value for the mesh function and
returns a tessellation of the corresponding level surface, or iso-surface.

opTessSliceAction
Acts on planes that slice through a three-dimensional
opRegMesh<opReal> and, according to a simple “rainbow” scheme,
colors the values of the function at points that lie on the plane: red
corresponds to the minimum value of the mesh function, and blue
corresponds to the maximum value. The slicing planes are
perpendicular to the x, y, or z axes.

Tessellating a Regular Mesh

229

Visualizing Vector-Valued Functions

The last two mesh tessellators return what are known as “hedgehog” plots of the vector
fields. They are both trivial derivations of the base class opTessVecAction:

opTessVec2dAction
Acts on a two-dimensional vector field defined on a two-dimensional
grid. An opTessVec2d takes an opRegMesh<opVec2> and returns a set
of arrows on the x-y plane.

opTessVec3dAction
Acts on a three-dimensional vector field defined on a three-dimensional
grid. An opTessVec3d takes an opRegMesh<opVec3> and returns a set
of arrows distributed in space.

opTessIsoAction

The opTessIsoAction class interprets discrete versions of opReal-valued functions
defined on three-dimensional space. That is, opTessIsoAction acts on an
opRegMesh<opReal> and tessellates the mesh function’s iso-surfaces.

Class Declaration for opTessIsoAction

The class has the following main methods:

class opTessIsoAction : public opTessellateAction
{

public:

// Creating and destroying
opTessIsoAction ();
opTessIsoAction (opReal threshold, int stride = 1);
~opTessIsoAction ();

// Accessor functions
void setThreshold (opReal thresh)
opReal getThreshold ()

void setStride (int _stride)
int getStride ()
};

230

Chapter 11: Rendering Higher-Order Primitives: Tessellators

Methods in opTessIsoAction

apply() and mpApply()
Are inherited from opTessellateAction. They tessellate all
opRegMesh<opReal>s in a scene graph using single-process or
multi-process traversal.

opTessIsoAction()
The variable threshold specifies the value of the mesh function on the
iso-surface. The variable stride specifies the sampling of the mesh by
specifying how to increment the mesh indices. For example, a stride
value of two takes every other point along the axes. The default value of
threshold is 0 and of stride is 1.

opTessSliceAction

The opTessSliceAction class interprets discrete versions of opReal-valued functions
defined on three-dimensional space. That is, opTessSliceAction acts on an
opRegMesh<opReal> and shows, by a simple rainbow map, values of the functions that
lie on a plane. opTessSliceAction uses one of three possible planes perpendicular to the
coordinate axes.

Class Declaration for opTessSliceAction

The class has the following main methods:

class opTessSliceAction : public opTessellateAction
{
public:

opTessSliceAction();
opTessSliceAction (opReal position, char axis);

~opTessSliceAction();

// Accessor functions
void setPosition (opReal _position)
opReal getPosition ()

void setAxis (int _axis)
char getAxis ()
};

Tessellating a Regular Mesh

231

Methods in opTessSliceAction

apply() and mpApply()
Are inherited from opTessellateAction. They tessellate all
opRegMesh<opReal>s in a scene graph using single-process or
multi-process traversal.

opTessSliceAction(position, axis)
Sets the slice plane perpendicular to axis. Values for axis are x, y, or z. The
position argument specifies the location of the slice plane: the point
where axis intersects the plane. The default position is 0.0, and the
default axis is the x axis.

setAxis() and getAxis()
Set and get the current slice axis.

setPosition() and getPosition()
Set and get the current slice position along the currently defined axis.
The argument for setPosition() should be between zero and the mesh
resolution in the direction of axis.

232

Chapter 11: Rendering Higher-Order Primitives: Tessellators

opTessVecAction

opTessVecAction is the base class for the tessellators that act on an
opRegMesh<opVec2> or an opRegMesh<opVec3>. The latter are trivial derivations
from an opTessVecAction.

Class Declaration for opTessVecAction

The class has the following main methods:

class opTessVecAction : public opTessellateAction
{
public:

opTessVecAction();
~opTessVecAction();

// --- Accessors
void setMagScale (opReal _scale)
void setInitialColor (csVec4f _iColor)
void setTerminalColor (csVec4f _tColor)

opReal getMagScale()
csVec4f getInitialColor()
csVec4f getTerminalColor()
};

Methods in opTessVecAction

setMagScale() and getMagScale()
Set and get the vector magnitude scale factor. This allows you to adjust
the length of the rendered vectors. The default value is 1.0.

setInitialColor() and getInitialColor()
Set and get the color to be used at the base of the vectors. The default
value is opaque white: (1.0, 1.0, 1.0, 1.0).

setTerminalColor() and getTerminalColor()
Set and get the color to be used at the tip of the vectors. The default value
is opaque white: (1.0, 1.0, 1.0, 1.0).

Tessellating a Regular Mesh

233

opTessVec2dAction and opTessVec3dAction

The opTessVec2dAction and opTessVec3dAction classes provide tessellators for the two
mesh classes opRegMesh<opVec2> and opRegMesh<opVec3>. They are derived from
opTessVecAction, and each contains no public member functions other than a
constructor, a destructor, and the necessary tessellate() and tessellator() functions. If the
opRep passed to one of the tessellators is not of the correct type, the tesselator returns
NULL.

apply() and mpApply()
Are inherited from opTessellateAction. They tessellate all
opRegMesh<opVec2>s or opRegMesh<opVec3>s in a scene graph
using single-process or multi-process traversal.

Sample Mesh Tessellation: opviz and opVizViewer

The following discussion highlights the basic structure of the opviz sample application,
to orient you when you look at the source files.

The application opviz uses calls to OpenGL Optimizer’s three-dimensional opRegMesh
tessellators, and uses the opVizViewer class, which is derived from opViewer, to control
scene graph interactions and rendering. The application opviz can read Plot3D data files,
(three samples are included in the OpenGL Optimizer library to illustrate mesh
tessellation). For more information on Plot3D data format, see, for example,
http://www.nas.nasa.gov/NAS/FAST/RND-93-010.walatka-clucas/htmldocs/
chp_21.formats.html.

The application opviz runs tessellators on an opThreadManager, which uses an
opFunctionAction to distribute tessellation tasks. For more information on
opThreadManager and opFunctionAction, see “Overview of the Thread Manager” on
page 266.

The following sections first present controls added to opViewer by the class
opVizViewer, and then cover these components of opviz:

• The main rendering routine and data loading

• Creating a tessellator and a csShape to hold the tessellation

• Applying the tessellator to an opRegMesh using an opThreadMgr

234

Chapter 11: Rendering Higher-Order Primitives: Tessellators

opVizViewer

The opVizViewer class extends the functionality of opViewer by defining the function
opVizViewer::keyHandler() to manipulate three tessellators.

Key Bindings for opVizViewer

The class opVizViewer allows you to perform these actions from the keyboard, in
addition to those provided by opViewer:

i Runs an opTessIso.
UP increases the function value used as a threshold and tessellates the
new isosurface.

DOWN decreases the function value and tessellates the new isosurface.

c Runs an opTessSlice.
RIGHT moves the slice plane, which is perpendicular to the x, y, or z axis,
in the positive direction along the appropriate axis, and tessellates the
new slice.

LEFT moves slice in the negative direction along the appropriate axis
and tessellates the new slice.

x sets the slice plane perpendicular to the x axis.

y sets the slice plane perpendicular to the y axis.

z sets the slice plane perpendicular to the y axis.

g Runs an opTessVec3d.
+ increases the size of plotted vectors.

- decreases the size of the plotted vectors.

0,1... Selects the mesh to act on.

opviz Main Routine

The opviz main loop parses command-line arguments, calls a data loader, and then calls
eventLoop(), which is inherited from opViewer, to handle interaction with the data.

The data loader can read the three sample meshes (two scalar meshes and a vector mesh)
that are included in the library. These meshes are discussed in Chapter 9 in these sections:

• “An opConstant opRegMesh<opReal>: Data for opviz” on page 196

Tessellating a Regular Mesh

235

• “An opVariable opRegMesh<opReal>: Data for opviz” on page 197

• “An opVariable opRegMesh<csVec3f>: Data for opviz” on page 197.

The data loader calls the opVizViewer methods addScalarMesh() and
addVectorMesh(), which bring in the mesh data and modify the scene graph for
convenient viewing. The add functions use the methods of the classes ScalarVizPacket
and VectorVizPacket to control the tessellators.

Using a Tessellator—Code Example

Initializing a Tessellator

The function ScalarVizPacket::init_isosurface(), from which the following lines are
taken, is an example of how to begin using a tessellator. Tessellating slices of a vector field
or a scalar mesh requires similar lines of code.

Create the tessellator

iso = new opTessIsoAction ();

Create a csShape node to hold the tessellation.

For this application the node is placed under the root node group.

material-> setShininess (.0078125f * 116.0f);
material->setTransparency (0.5);
material-> setDiffuseColor (0.08, 0.0, 1.0);
material-> setSpecularColor (0.75, 0.75, 1.0);
appear->setMaterial (material);
appear->setLightEnable (1);
appear->setTranspEnable (1);
appear->setTranspMode(csContext::BLEND_TRANSP);
iso_shape->setAppearance (appear);
group->addChild (iso_shape);

opviz Tessellation and Thread Manager Calls

When you enter i after starting opviz, the application calls
ScalarVizPacket::run_isosurface(), which tessellates the sample data set. The
application opviz, via subsequent calls in eventLoop(), then renders the isosurface.

236

Chapter 11: Rendering Higher-Order Primitives: Tessellators

run_isosurface() uses the tessellator created by init_isosurface() and obtains tessellation
parameters from the data management structure developed by addScalarMesh().

Although run_isosurface() creates a multi-thread framework, opviz uses only one
thread. The application provides a framework that is easily extended to a multiprocess
tessellation controlled by an opMPFunListAction (see “opMPFunListAction: Many
Tasks, Many Processes” on page 275). For opviz, tessellations are performed by instances
of an opFunctionAction called IsoAction. See the section “opFunctionAction: One Task,
One Process” on page 273.

Creating a Multi-Threaded Environment

The function run_isosurface(), from which this code is taken, provides a multi-threaded
environment.

The function checks the number of available processors and creates an
opThreadManager, which runs only one thread; see “Overview of the Thread Manager”
on page 266.

int numThreads = opGetProcessorCount();
// ...error checking code deleted
tm = new opThreadMgr(numThreads);
// --- Create action array. Currently the action array only
// contains one action: isosurface generation
// create array
int numActions = 1;
opFunctionAction **actions =
 (opFunctionAction **) new
 opFunctionAction [numActions];
// insert action(s) in the array
for (int i=0; i < numActions; i++)

IsoAction is an opFunAction. Its method function() performs the tessellation. See
“opFunctionAction: One Task, One Process” on page 273.

// the action objects take a mesh and tessellator
actions[i] = new IsoAction (mesh, iso, iso_shape);
// --- the thread manager runs the
// action(s) on separate threads
tm-> SchedMPFunList (new opMPFunListAction(numActions, actions)
);

Tessellating a Regular Mesh

237

MP Tessellation

Because this procedure may occur while another process is in a rendering traversal, the
code from IsoAction::function() first removes the iso_shape node from the scene graph by
submitting an opTransaction::removeChild() to the transaction manager. Then
function() tessellates iso_shape, and submits an opTransaction::addChild() to the
transaction manager, placing the newly tessellated shape back in the scene graph. (See
“opTransaction” in Chapter 14).

Here shape is the member of IsoAction that corresponds to iso_shape in the lines of code
above from ScalarVizPacket::init_isosurface() and scalarMesh is the member that
corresponds to mesh.

int pc = shape->getParentCount();
for (int i = 0; i < pc; i++)
{
csGroup *parent =
 (csGroup *)shape->getParent(i);
int place = parent->findChild (shape);
// --- extract existing geometry,
// delete and replace old one
opTransaction *trans1 =
 new opTransaction;
trans1->removeChild(parent, shape);
opBlockingCommit(trans1);
 isosurface->
 tessellator(*scalarMesh, shape);
opTransaction *trans2 =
new opTransaction;
trans2->addChild(parent, shape);
opCommit(trans2);
}

To recover memory, function() has the IsoAction deleted.

return opDeleteThis;

PART FIVE

Traversers, Low-Level Geometry Processing, and
Multiprocessing V

Chapter 12, “Traversing a Large Scene Graph”

Chapter 13, “Manipulating Triangles and Rebuilding Renderable Objects”

Chapter 14, “Managing Multiple Processors”

241

Chapter 12

12. Traversing a Large Scene Graph

This chapter and Chapter 13, “Manipulating Triangles and Rebuilding Renderable
Objects,” discuss methods to efficiently manipulate (parts of) a scene graph with
extensible traversers. The OpenGL Optimizer tools fall in two general categories:

• Tools that essentially focus on the scene graph manipulation, which are discussed in
this chapter

• Tools that coordinate scene-graph tasks as well as other tasks in a multiprocessor
environment, which are discussed in the next chapter

You define OpenGL Optimizer traversals with callbacks held in a traversal object. The
control provided by the callbacks allows you to do the following:

• Specify the effect when a traverser visits a node.

• Control the progress of the traversal, that is, which node to visit next.

• Delete the traversal object when you are through with it.

This chapter consists of the following sections:

• “Traversals and Callbacks: General Features” on page 242

• “Controlling a Traversal With the Callback Return Value opTravDisp” on page 245

• “Specifying Deletion of Traversal Object Storage: opActionDisp” on page 246

• “Depth-First Traversals: opDFTravAction” on page 246

• “Breadth-First Traversals: opBFTravAction” on page 248

• “Sample Traversal Function From the opoptimize Sample Application” on page 250

• “Traversing a Scene Graph and Applying a csDispatch: opDispatchAction” on
page 253

242

Chapter 12: Traversing a Large Scene Graph

Traversals and Callbacks: General Features

Traversing a scene graph means “visiting” nodes in some sequence and invoking a
callback as each node is visited. Callbacks allow you to perform operations whenever a
node is visited during a traversal; for example, you can count nodes, render objects, or
compute the volume of objects in a scene.

OpenGL Optimizer provides tools for two scene-graph traversal sequences: depth first
or breadth first.

Depth-First Traversal Sequence

To picture depth-first traversals, imagine the path you would take if the links between
nodes in a scene graph were hallways and you walk through the scene graph holding
your right hand on a wall. Nodes would be rooms, and you would continue to hold your
hand on the wall as you walked through the room. Callbacks are made each time you
enter a room, except when the hand-on-the-wall rule returns you to a parent node before
visiting all its children: a callback is made when you first “descend” into the parent node
and after you “ascend” from the last child.

Figure 12-1 shows a depth-first traversal of a simple scene graph. The solid circles in the
figure indicate pre-node callbacks, which are implemented when a traversal first visits a
node. The solid squares indicate post-node callbacks, which are implemented as a traversal
leaves a node.

Traversals and Callbacks: General Features

243

Figure 12-1 Depth-First, Left-to-Right Traversal of a Simple Scene Graph

Notice that a depth-first traversal visits each parent node twice, once before and once
after visiting its children. A depth-first traversal is inherently sequential and so cannot
be reasonably executed by more than one process; the ordering of actions, particularly
when parents are visited after their children, is best maintained by one process.

C D

B

F

A > B > C > D > B > E > F > E > A

E

A

244

Chapter 12: Traversing a Large Scene Graph

Breadth-First Traversal Sequence

The central concept of a breadth-first traversal is that the traverser visits the nodes at a
given level and proceeds to a lower level in the scene graph after all the nodes at a higher
level have been visited. Figure 12-2 shows a breadth-first traversal of a simple scene
graph. The solid circles in the figure indicate per-node callbacks, which are implemented
when a traverser first visits a node.

Figure 12-2 A Breadth-First Traversal of a Simple Scene Graph

Some features such as a multiprocess traversal or nodes with multiple parents, can
complicate the sequence of nodes visited in a bread-first traversal. In those cases, the
simple left-right, top-to-bottom sequence may not hold exactly.

When a breadth-first traversal is executed by several processes, or when nodes in the
graph have several parents, a simple rule guarantees a reasonable sequence of events: the
traversal does not visit children until it visits at least one of the parents. Whenever a
parent node is encountered by a traverser, it places the node’s children at the end of the
processing queue.

A

B C

D E F

A > B > C > D > E > F

Controlling a Traversal With the Callback Return Value opTravDisp

245

Callbacks During a Traversal

During a traversal an instance of an action object performs and specifies the following
basic operation:

1. Call a begin() method to establish any context you might want for the traversal.

2. Visit the scene-graph nodes in sequence.

3. Perform the appropriate callback at each node and determine how the traversal is to
proceed.

4. Delete or retain the action object as specified by the return value of the action
object’s member function end().

You have two controls over how a traversal proceeds:

• The return values of the node-visiting callbacks, which allow you to continue, stop,
or remove the children of a node from the traversal.

• The node argument of the callback, which is passed by reference, and provides
great freedom in determining the specific node that is next in the traversal.

Controlling a Traversal With the Callback Return Value opTravDisp

The possible return values of callbacks, and the method apply() which initiates a
traversal callback sequence, are set by the enumerated type opTravDisp whose values
determine whether the traversal should continue, skip over the children of the current
node, or stop.

This is the type definition for opTravDisp:

typedef enum {opTravCont=0, opTravPrune=1, opTravStop=2} opTravDisp;

246

Chapter 12: Traversing a Large Scene Graph

Specifying Deletion of Traversal Object Storage: opActionDisp

After you complete a traversal, you can keep the object for subsequent use, or free
storage assigned to the traversal object. For example, you may repeatedly use a cull
traverser, invoking it each frame, but you may perform a tessellation traversal only once.

To specify whether a traversal object remains in memory after the traversal stops, specify
the return value of the last callback, end(). The possible values are set by the enumerated
type opActionDisp. This is the declaration for opActionDisp:

typedef enum {opDeleteThis, opKeepThis} opActionDisp;

Depth-First Traversals: opDFTravAction

The class opDFTravAction is used for a depth-first traversal of the scene graph. Parent
nodes are visited at least twice, before and after their children are visited with a different
callback for each visit (see “Depth-First Traversal Sequence” on page 242).

Class Declaration for opDFTravAction

The class has the following main methods:

class opDFTravAction : public opAction
{
public:
opDFTravAction();
virtual ~opDFTravAction();

opTravDisp apply(csNode *root);

virtual void begin (csNode *& , const opActionInfo&);
virtual opTravDisp preNode (csNode *&, const opActionInfo&);
virtual opTravDisp postNode(csNode *&, const opActionInfo&);
virtual opActionDisp end (csNode *&, const opActionInfo&);
};

Depth-First Traversals: opDFTravAction

247

Methods in opDFTravAction

apply() Initiates a traversal below root.

The following table lists callbacks, where they are applied, and what they do (see also
“Depth-First Traversal Sequence” on page 242):

Table 12-1 opDFTravAction Callbacks

Callback When Applied Notes

begin() Before the traverser visits any node. The csNode argument is the root of the
traversal. If the argument equals NULL,
the tree is empty and no traversal will
begin. The default for begin() does
nothing.

preNode() Before visiting a node for the first
time or for each visit to a node before
visiting its children. The latter case
occurs, for example, when a parent is
itself the child of two parents; thus a
traverser could visit the node twice
during a traversal and apply
preNode() each time before visiting
the children.

The default for preNode() returns
opTravCont, and thus simply continues
the traversal.

postNode() After visiting a node’s children. The default for postNode() returns
opTravCont and thus simply continues
the traversal.

end(node, info) Once the traversal is completed or
halted by a callback.

The node argument is the root of the scene
graph. The default for end() cleans up by
returning opDeleteThis, thus deleting the
opDFTravAction. To avoid deletion,
define end() to return the value
opKeepThis.

248

Chapter 12: Traversing a Large Scene Graph

Note the following two features of the arguments you pass to preNode(), postNode(),
and end():

• The csNode pointer, which also appears as an argument for all of the callbacks, is
passed by reference; thus you can change its value. This is useful when the scene
graph changes during a traversal, typically when nodes have been added. The
traverser “decides” where to go next by assuming the traversal is complete up to
the current csNode.

• The class opActionInfo, which appears as an argument for all the callback
functions, is valid only if the traversal is initiated by the thread manager.
opActionInfo is discussed in the section “Difference Between Interprocess Control
Methods” on page 271.

Breadth-First Traversals: opBFTravAction

The class opBFTravAction is for a breadth-first traversal, which can be performed on one
or several processors. All nodes are visited only once, typically, in contrast with an
opDFTravAction, for which parent nodes are typically visited at least twice.

Class Declaration for opBFTravAction

The class has the following main methods:

class opBFTravAction : public opAction
{
public:
opBFTravAction();
virtual ~opBFTravAction();

opTravDisp apply(csNode *root);
void applyMP(csNode *root,
 opThreadMgr *tm,
 const opTIDSet& tids = opTIDSet::opAllTIDs,
 opPriority p = Optimizer::opDefaultPriority);

virtual void begin (csNode *&, const opActionInfo&);
virtual opTravDisp perNode(csNode *&, const opActionInfo&):
virtual opActionDisp end (csNode *&, const opActionInfo&);
};

Breadth-First Traversals: opBFTravAction

249

Methods in opBFTravAction

apply() Initiates a traversal.

applyMP() Initiates a traversal on several threads using a thread manager. See
“Overview of the Thread Manager” on page 266.

The following table lists callbacks, where they are applied, and what they do (see also
“Breadth-First Traversal Sequence” on page 244):

The callbacks are applied at these points of the traversal (see):

As for an opDFTravAction, the scene-graph-node callback arguments can be modified to
change the course of the traversal and opActionInfo arguments are only valid if the
traversal is initiated in a multi-threaded context by a thread manager.

Table 12-2 opBFTravAction Callbacks

Callback When Applied Notes

begin() Before the traverser visits any node. The csNode argument is the root of the
traversal. If the argument equals NULL,
the tree is empty and no traversal will
begin. The default for begin() does
nothing.

perNode() Is applied as the traverser visits each
node

A return value of opTravStop stops the
traversal at the current node. A return
value of opTravStop is equivalent to
opTravPrune, thus eliminating from the
traversal whatever children the current
node may have. The default for
perNode() returns opTravPrune and thus
skips any of the node’s children.

end(node, info) Once the traversal is completed or
halted by a callback.

The node argument is the root of the scene
graph. The default for end() cleans up by
returning opDeleteThis, thus deleting the
opDFTravAction. To avoid deletion,
define end() to return the value
opKeepThis.

250

Chapter 12: Traversing a Large Scene Graph

Sample Traversal Function From the opoptimize Sample Application

The following code fragment illustrates the use of a traverser, and also shows how
simplification traversal works.

OpenGL Optimizer does not provide a simplification traversal class, instead, an
application can design its own traversal class to meet particular needs. The example
below provides one approach: It defines a simplification traversal function that returns
the root of a new, simplified scene graph.

The example performs two checks that are not usually needed for a traverser, but are
necessary for a simplifier:

• Some node-checking to determine whether a node is a csShape, and so could
contain a csGeoSet to simplify

• Some code to further check whether the csShape actually contains a csGeoSet.

These lines of code are taken from simplify.cxx and main.cxx in
/usr/share/Optimizer/src/apps/opoptimize.

Create a Simplifier

See “Creating LODs: opSRASimplify” on
page 47.

static opSRASimplify simplifier;

Create a Traversal Object

Derive an opDFTravAction class SimplifyGeoSet : public opDFTravAction

{

 public:

 opTravDisp PreNode(csNode *&, const opActionInfo&);

 opSRASimpParam *userData;

 csGroup *simpObj;

};

Specify Effect of Callback

Define the callback preNode(). opTravDisp SimplifyGeoSet::PreNode(
 csNode *&node, const opActionInfo &)

Sample Traversal Function From the opoptimize Sample Application

251

Specify Effect of Callback (cont.)

Set the return value to continue the
traversal, thus visiting every node.

{

 opTravDisp rv = opTravCont;

Test if a node is a csShape, and thus may
have a csGeoSet to simplify.

 if ((node->getType())->
 isDerivedFrom(csShape::getClassType()))

 {

Simplify all csGeoSets in the csShape by
using an opSRASimplify (see “Creating
LODs: opSRASimplify” on page 47).

 csShape *shape = (csShape*)node;

 for (int i = 0; i < shape->getGeometryCount(); i++)
 {
 csGeometry *g= shape->getGeometry(i);
 if (
 g &&
 g->getType()->isDerivedFrom(
 csGeoSet::getClassType()
)
)

 {

 csGeoSet *simpGSet, *gset = (csGeoSet*)g;
 int status;
 simplifier.settings(userData);
 // If simplifier didn’t change input geoset,
 // then original input geoset is returned.

 simpGSet =
 simplifier.decimateGeoSet(gset, &status);

Place the simplifications in new csShapes
with the same appearance as the originals.

 // Whether or not the gset changed,
 // add it to the group
 // XXX Need clone since tree gets flattened

 csShape *simpShape = (csShape *)new csShape;
 simpShape->setAppearance(
 shape->getAppearance()
);

 // Add simplified geoset.

 simpShape->setGeometry(i,simpGSet);
 simpObj->addChild(simpShape);

 }
 }
 }
return rv;

}

252

Chapter 12: Traversing a Large Scene Graph

Define the SimplifyTraversal Function

The application simplify then uses
SimplifyGeoSet() to define a
simplify-traversal function, simplifyTree().

csGroup *simplifyTree(csGroup *obj, opSRASimpParam
*userData)

{

 csSphereBound sphere;

 obj->getSphereBound(sphere);

 csGroup *simpObj = new csGroup;

 SimplifyGeoSet *action = new SimplifyGeoSet;
 action->userData = userData;
 action->simpObj = simpObj;

 action->apply(obj);

 return simpObj;

}

Use the Function: Here, Add Simplified
Graph to an LOD

The application opoptimize calls
simplifyTree() and adds the simplified
graph as a child of an LOD node.
addLODChild() is defined in
/usr/share/Optimizer/src/apps/opoptimize/addL
OD.cxx.

csGroup *simpObj = simplifyTree(root, parameters);

// Set child0 as default LOD to be drawn
root = addLODChild(root,simpObj,0);

Traversing a Scene Graph and Applying a csDispatch: opDispatchAction

253

Traversing a Scene Graph and Applying a csDispatch: opDispatchAction

The class opDispatchAction is a csAction that, as it traverses a scene graph, applies a
csDispatch to each node in a scene graph.

Recall that a csAction is a Cosmo3D object for traversing a scene-graph. The class
csDispatch is an object designed to follow the “Visitor Behavioral Pattern,” which
provides a convenient way to organize and define operations on scene graph elements.
The Visitor Behavioral Pattern is described in Design Patterns, listed in “Recommended
Background Reading” on page xxxi. A csDispatch is a “Visitor,” and subclasses are
“Concrete Visitors.” This pattern is also used in Open Inventor; see The Inventor
Toolmaker. For more information about csAction and csDispatch, see Cosmo 3D
Programmer’s Guide.

An example of an opDispatchAction is the tool for gathering scene graph statistics; see
“Getting Statistics About a Scene Graph: opTriStats” on page 294.

Methods in opDispatchAction

apply(csNode *node)
Is inherited from csAction. A call to apply() traverses the scene graph
below node.

opDispatchAction(csDispatch *d)
Constructs the class and specifies the csDispatch to be applied during
the traversal begun by a call to apply().

255

Chapter 13

13. Manipulating Triangles and Rebuilding Renderable
Objects

The high-level scene graph tuning tools discussed in Chapter 3 and Chapter 6 provide
convenient interfaces, and probably meet most of your needs for manipulating triangles
in a scene graph. However, if you want lower-level control, for example, to develop your
own scene graph tuning application, you need the tools discussed in this chapter.

These are the sections in this chapter:

• “Overview of Low-Level Geometry Tools” on page 255

• “Decomposing csGeoSets Into Constituent Triangles: opGeoConverter” on page 257

• “Specifying Coloring of New csGeoSets: opColorGenerator” on page 259

• “Methods in opColorGenerator” on page 260

Overview of Low-Level Geometry Tools

The low-level geometry-building tools work with csGeoSets; they do not manipulate a
scene graph. They decompose csGeoSets into constituent triangles, or collect vertices
and triangles, and then rebuild the triangles into new csGeoSets. These tools are the
basic procedures of opSpatialize, which is discussed in the section “Spatialization Tool:
opSpatialize” on page 76. You can control color attributes of new csGeoSets by
specifying them for each primitive or triangle.

To apply these tools to a scene graph, incorporate them in a traversal; see Chapter 12,
“Traversing a Large Scene Graph” and Chapter 14, “Managing Multiple Processors.”

256

Chapter 13: Manipulating Triangles and Rebuilding Renderable Objects

Low-Level Tools Class Hierarchy

Figure 13-1 shows how the geometry-building classes fit into a class hierarchy.

Figure 13-1 Class Hierarchy of Geometry-Building Tools

The class hierarchy of opGeoBuilder and its children mimics the Cosmo3D hierarchy of
csGeoSet and its children, which are the classes for vertex-based geometries. The
methods in opGeoBuilder manipulate a vertex array developed from a csGeoSet. The
methods in its children manipulate objects in the corresponding descendents of
csGeoSet by using common functionality in opGeoBuilder.

You can therefore derive a class from opGeoBuilder to build a subclass of csGeoSet; for
models, use the classes opTriSetBuilder, opTriFanSetBuilder, and
opTriStripSetBuilder.

This chapter discusses

• opGeoBuilder on page 261.

• opTriFanSetBuilder on page 262.

• opTriStripSetBuilder on page 262.

Also, this chapter discusses in more detail opGeoConverter and opColorGenerator,
which were briefly mentioned in Chapter 3.

opGeoBuilder

opTriSetBuilder

opTriFanSetBuilder

opTriFanner

opTriStripSetBuilder

opTriStripper

opGeoTool

opGeoAttribs

Decomposing csGeoSets Into Constituent Triangles: opGeoConverter

257

The classes opTriFanner and opTriStripper, which appear in Figure 13-1, were discussed
in “Creating OpenGL Connected Primitives” on page 33.

Decomposing csGeoSets Into Constituent Triangles: opGeoConverter

You are likely to have csGeoSets whose triangles you want to reorganize when, for
example, you want to organize them spatially (see Chapter 6, “Organizing the Scene
Graph Spatially”). To reorganize a scene graph based on its renderable content, it is
valuable to have a database that provides convenient access to triangles, and avoids the
complexities of manipulating attributes.

The necessary data management is performed by the class opGeoConverter. It provides
methods to take the important csGeoSets csTriSet, csTriStripSet, and csTriFanSet and
develop data structures—mainly hash tables—that hold the defining features of the
individual component triangles: vertices, normals, and colors. opGeoConverter
represents a set of input csGeoSets as concatenated lists of unique triangles.

The triangles from an opGeoConverter are used as inputs to opTriFanner and
opTriStripper (discussed in “Creating OpenGL Connected Primitives” on page 33) and
to the tools discussed below: opTriSetBuilder, opTriFanSetBuilder, and
opTriStripSetBuilder.

258

Chapter 13: Manipulating Triangles and Rebuilding Renderable Objects

Class Declaration for opGeoConverter

The class has the following main methods:

class opGeoConverter
{
opGeoConverter(csGeoSet::NormalBindEnum nb = csGeoSet::NO_NORMAL,
 csGeoSet::ColorBindEnum cb = csGeoSet::NO_COLOR,
 csGeoSet::TexCoordBindEnum tb = csGeoSet::NO_TEX_COORD);
opGeoConverter(csGeoSet *g,
 csGeoSet::NormalBindEnum nb = csGeoSet::NO_NORMAL,
 csGeoSet::ColorBindEnum cb = csGeoSet::NO_COLOR,
 csGeoSet::TexCoordBindEnum tb = csGeoSet::NO_TEX_COORD);
~opGeoConverter();

void addGeoSet(csGeoSet *g);

void done();

static bool isConvertable(csGeometry *g);

int getNTriangles() const;
opTriangle *getTriangle(int i) const;

int getNVertices() const;

csGeoSet::NormalBindEnum getNBind() const;
csGeoSet::ColorBindEnum getCBind() const;
csGeoSet::TexCoordBindEnum getTBind() const;

csVec3f *getOverallNormal() const;
csVec4f *getOverallColor() const;
csContext::CullFaceEnum getOverallCullFace() const;
void setNormalTolerance(float norm_tol);
float getNormalTolerance() const);
};

Specifying Coloring of New csGeoSets: opColorGenerator

259

Methods in opGeoConverter

opGeoConverter()
Develops hash tables for its triangles and their associated data from the
csGeoSet submitted as an argument and sets default attribute values for
the triangles. If you do not provide a csGeoSet via the constructor, you
must provide them with addGeoSet().

addGeoSet(g) Adds the triangles in g to the data structure maintained by
opGeoConverter.

The accessor functions retrieve the numbers of triangles and vertices, and the normal,
color, and texture bindings of the first csGeoSet included in the hash tables. You can also
test whether a given csGeoSet can be converted; that is whether it is a csTriSet, a
csTriFanSet, or a csTriStripSet.

Because instances of opGeoConverter maintain tables of hashed attributes, you can
reduce memory consumption by destroying opGeoConverters that you no longer need.

Specifying Coloring of New csGeoSets: opColorGenerator

If you use an opGeoConverter to break down csGeoSets, when you rebuild them you
can control the coloring of the new primitives by supplying an opColorGenerator to the
geometry building tools.

Class Declaration for opColorGenerator

The class has the following main methods:

class opColorGenerator
{
public:
opColorGenerator(const csVec4f *color=NULL);
void genOverallColor(const csVec4f *color=NULL);
void genPrimColor();

csGeoSet::ColorBindEnum getCBind() const;
const csVec4f *getOverallColor();
const csVec4f *getPrimColor();
static opColorGenerator* noColors();
};

260

Chapter 13: Manipulating Triangles and Rebuilding Renderable Objects

Methods in opColorGenerator

opColorGenerator()
Provides the main functionality. If you supply a NULL argument, each
new primitive is assigned a random color. If you specify a color for the
constructor, all the new primitives are shades of that color. The default
setting is no color distinctions between primitives; this renders the
fastest.

noColors() This static member function returns a pointer to an opColorGenerator
that specifies no colors. This color generator, which is used as a default
argument in many geometry building routines, should never be deleted.

Note: You should never invoke noColors->genOverallColor() or
noColors->genPrimativeColor(). Invoking these functions causes
the noColors object to start specifying colors, possibly breaking existing
code that relies on the original functionality of noColors().

Building New csGeoSets

Given the data held in an opGeoConverter, you can rebuild csGeoSets with the tools
discussed in this section. You can also use the tools to build csGeoSets from individual
vertices and triangles.

Geometry-Building Base Class: opGeoBuilder

The class opGeoBuilder provides the common functionality needed by its children to
build csGeoSets. You are unlikely to use opGeoBuilder to build a csGeoSet, but rather
one of its children, opTriSetBuilder, opTriFanSetBuilder, or opTriStripSetBuilder.

opGeoBuilder is derived from the base class opGeoTool, which provides basic accessor
functions used by all geometry building classes, but which you should not use.

Building New csGeoSets

261

Class Declaration for opGeoBuilder

The class has the following main methods:

class opGeoBuilder : public opGeoTool
{
public:
opGeoBuilder(const opGeoConverter *gc=NULL);
virtual ~opGeoBuilder();

void setColorBind(csGeoSet::ColorBindEnum cBind);
void setNormalBind(csGeoSet::NormalBindEnum nBind);
void setTexCoordBind(csGeoSet::TexCoordBindEnum tBind);

void addVertex(const opVertex *v);

void finishPrim(const csVec4f *color,
 const csVec3f *normal);
void finishSet(csGeoSet *geoSet,
 const csVec4f *color,
 const csVec3f *normal);
};

Methods in opGeoBuilder

Children of opGeoBuilder can use the following low-level methods:

addVertex() Adds a vertex to a primitive

setColorBind(), setNormalBind(), and setTexCoordBind()
Set the default bindings for a primitive.

finishPrim() Indicates when a set of vertices provided by addVertex() defines a
primitive. Optional arguments allow you to specify color and normals.

finishSet() Is called when a set of primitives defined by calls to finishPrim() is
complete. The function builds the new csGeoSet. Optional arguments
allow you to specify overall color and normals for the new csGeoSet.

If you have developed triangle data with an opGeoConverter, you can use it to supply
vertex data or default attribute settings to an opGeoBuilder.

262

Chapter 13: Manipulating Triangles and Rebuilding Renderable Objects

Sets of Triangles From Individual Triangles: opTriSetBuilder

The class opTriSetBuilder is an opGeoBuilder that provides the necessary tools to build
a csTriSet from a set of triangles along with per-triangle attributes, or from the data in an
opGeoConverter.

Class Declaration for opTriSetBuilder

The following are the main methods in the class:

class opTriSetBuilder : public opGeoBuilder
{
public:
opTriSetBuilder(const opGeoConverter *gc=NULL);
virtual ~opTriSetBuilder();

// Add triangle with optional PER_PRIMITIVE
// attribute values.
void addTriangle(const opTriangle *t, const csVec3f *normal);
void addTriangle(const opTriangle *t, const csVec4f *color=NULL,
 const csVec3f *normal=NULL);

// Finish set with option of passing OVERALL attribute values.
csTriSet *done(const csVec3f *normal);
csTriSet *done(const csVec4f *color=NULL, const csVec3f *normal=NULL);

static csTriSet *convert(const opGeoConverter *gc,
 opColorGenerator *cg = opColorGenerator::noColors());
static csTriSet *convert(csGeometry *geom,
 opColorGenerator *cg = opColorGenerator::noColors());
};

Methods in opTriSetBuilder

In addition to the inherited methods, opTriSetBuilder has the following methods:

addTriangle() Is overloaded to allow you to specify normal and color bindings, or just
normal bindings, for each triangle included in the csTriSet.

done() Completes the process of making a csTriSet from the triangles brought
in by addTriangle(). This function is overloaded to allow you to specify
overall normal and color bindings, or just normal bindings.

Building New csGeoSets

263

convert() Is a convenience function that takes a set of triangles from either of two
sources, an opGeoConverter or a csGeometry, and develops a csTriSet.

addTriangle() Is overloaded to allow you to specify normal and color bindings, or just
normal bindings, for each triangle included in the csTriSet.

done() Completes the process of making a csTriSet from the triangles brought
in by addTriangle(). This function is overloaded to allow you to specify
overall normal and color bindings, or just normal bindings.

convert() Is a convenience function that takes a set of triangles from either an
opGeoConverter or a csGeometry, and develops a csTriSet.

Sets of Triangle Fans From Triangles: opTriFanSetBuilder

The class opTriFanSetBuilder is an opGeoBuilder that provides the necessary tools to
build a csTriFanSet from a set of triangles along with per-triangle attributes or from the
data in an opGeoConverter.

Class Declaration for opTriFanSetBuilder

The class has the following main methods:

class opTriFanSetBuilder : public opGeoBuilder
{
public:
opTriFanSetBuilder(const opGeoConverter *gc=NULL);
virtual ~opTriFanSetBuilder();

// Add triangle with optional PER_PRIMITIVE attribute values.
void addTriangle(const opTriangle *t, const csVec3f *normal);
void addTriangle(const opTriangle *t, const csVec4f *color=NULL,
 const csVec3f *normal=NULL);

// Finish fan with option of passing OVERALL attribute values.
void finishFan(const csVec3f *normal=NULL);
void finishFan(const csVec4f *color,const csVec3f *normal=NULL);

// Finish set with option of passing OVERALL attribute values.
csTriFanSet *done(const csVec3f *normal);
csTriFanSet *done(const csVec4f *color=NULL,

const csVec3f *normal=NULL);
};

264

Chapter 13: Manipulating Triangles and Rebuilding Renderable Objects

Methods in opTriSetBuilder

opTriFanSetBuilder is similar to opTriSetBuilder. However, it requires an intermediate
function to build primitives, which are no longer individual triangles but trifans.

finishFan() Defines data structures for each csTriFan that you build from a set of
triangles developed with calls to addTriangle() or from an
opGeoConverter.

done() Assembles the csTriFans into an output csTriFanSet.

Sets of Triangle Strips From Triangles: opTriStripSetBuilder

The class opTriStripSetBuilder is an opGeoBuilder that provides the necessary tools to
build a csTriStripSet either from a set of triangles along with per-triangle attributes or
from the data in an opGeoConverter.

Methods in opTriStripSetBuilder

With obvious differences in names, opTriStripSetBuilder has the same methods as
opTriFanSetBuilder, and the following additional methods.

finishStrip() Defines the data structures for each csTriStrip that you build from a set
of triangles added by calls to addTriangle().

flipStrip() Sets a flag so that the vertices of subsequently added triangles are
re-ordered to change triangle orientation.

265

Chapter 14

14. Managing Multiple Processors

Using all processors all the time on a multiprocessor machine is desirable but difficult. If
you do not keep processors active, then you are not exploiting the advantages of the
machine; you won’t see execution speeds approach the ideal of a linear increase with the
number of processors. Even on a single-processor machine, you may benefit from using
multiple processes because, for example, the host can cull while the OpenGL process is
blocked, waiting for the graphics first-in-first-out queue to clear.

The tools in this chapter help you manage multiple processes. They provide an
infrastructure that simplifies the design of cooperative tasks. The tools fit into three
groups:

• General, high-level tools that schedule and manage tasks for multiprocess (MP)
programs

• Tools that guarantee the orderly execution of changes to a scene graph when several
processes would make changes

• Low-level multiprocess tools

This chapter has the following sections:

• “MP Control Tasks and Related Classes” on page 266

• “Overview of the Thread Manager” on page 266

• “Thread Manager: opThreadMgr” on page 268

• “Defining Tasks for a Thread Manager” on page 272

• “Coordinating Threads That Change a Scene Graph: opTransactionMgr” on
page 277

• “Low-Level Multiprocess Tools” on page 281

266

Chapter 14: Managing Multiple Processors

MP Control Tasks and Related Classes

The following tasks and related classes are discussed in this chapter:

• Thread management: The class opThreadMgr provides a convenient mechanism to
dispatch and synchronize tasks that run on a set of processes. opThreadMgr is a
general purpose multiprocessing “harness” that can be used independently of your
rendering needs.

• Action objects to define multithreaded tasks: opFunctionAction,
opMPFunListAction, and opMPFunAction provide callbacks to define the tasks.

• MP-safe scene-graph modification: The opTransactionMgr class coordinates
Cosmo3D function calls that alter the scene graph so that alterations attempted by
contemporaneous threads do not interfere with each other.

• Low-level MP operations: opTaskBlock, opLock, opSemaphore, opMutex, and
opBlockingCounter provide basic tools for managing more complex MP software
architectures in a manner consistent with the OpenGL Optimizer library.

Overview of the Thread Manager

The class opThreadMgr provides an environment for submitting tasks to a set of threads
and monitoring and coordinating task execution.

Sequence of Events for Thread Management

To start a thread manager, supply an opThreadMgr with four parameters:

• the number of new processes to start

• the number of priority levels in the queue for each process

• how to prioritize the queues

• the maximum possible number of threads you can start

Overview of the Thread Manager

267

This is the sequence of events to specify and perform tasks managed by an
opThreadMgr:

1. The application defines callbacks for instances of action objects.

2. The application then passes the action objects to scheduling methods.

3. The scheduling methods place the action objects in one or more queues.

4. When an object reaches the head of its queue, it executes its tasks.

Managing Interprocess Dependencies

To design effective MP programs that keep processors occupied, you have to know when
tasks finish and you need tools to manage the order of their execution. For example, you
are likely to have process interdependencies such as “do A after B,” “wait for C,” and so
on. The opThreadMgr methods waitForRequests() and markRequests() allow you to
manage interprocess dependencies.

Note: When you use multiple processors, you cannot know in advance the order in
which tasks finish. opThreadMgr provides queueing and coordination tools, but be
cautious with programming assumptions about completion times when you write MP
programs.

Classes for Scheduling and Defining Tasks

Three action objects define tasks scheduled by opThreadMgr’s three methods, which
distribute one task to one process, one task to many processes, and many tasks to many
processes. Table 14-1 summarizes the processing features of the three scheduling
functions and their action objects.

The callbacks for action objects are discussed after the class opThreadMgr and its
scheduling functions.

Table 14-1 Modes of Executing Multithreaded Tasks and Their Action Objects

Function No. Tasks No. Processes Action Object

SchedSPFun() 1 1 opFunctionAction

SchedMPFun() 1 many opMPFunAction

SchedMPFunList() many many opMPFunListAction

268

Chapter 14: Managing Multiple Processors

Thread Manager: opThreadMgr

The opThreadMgr methods are largely self-explanatory, except for methods that control
scheduling action objects, which are discussed in “Scheduling Methods” on page 269.
The action objects themselves are discussed in “Difference Between Interprocess Control
Methods” on page 271.

Class Declaration for opThreadMgr

The class has the following main methods:

class opThreadMgr {
public:
// Constructor/Destructor
opThreadMgr(int initialNThreads = 2,
 int prioritiesPerThread = 1,
 opQDiscipline qd = opPreEmptive,
 int maxNumberOfThreads = opThreadMgr::defaultMaxThreads);
~opThreadMgr(void);

/* Managing Threads */
// Thread parameter query and set
opTID addThread(int numberOfPriorities = 1,
 opQDiscipline qd = opRoundRobin);
int getThreadCount(void) const;

 // The number of queues associated with a given thread.
int getPriorityCount(opTID tid) const;

// Queue-discipline query and set.
void setQDiscipline(opTID tid, opQDiscipline qd);
opQDiscipline getQDiscipline(opTID tid) const;

/* Scheduling Tasks */
// Enqueue a user function.
void schedMPFunList(opMPFunListAction* actions,

const opTIDSet& tids = opAllTIDs,
 opPriority p = opDefaultPriority);
void schedMPFun(opMPFunAction* action,
 const opTIDSet& tids = opAllTIDs,
 opPriority p = opDefaultPriority);

Thread Manager: opThreadMgr

269

void schedSPFun(opFunctionAction *action,
 opTID tid = opDefaultTID,
 opPriority priority = opDefaultPriority);
static void executeSPFun (opFunctionAction* action);

// Blocking calls that wait for queued requests to finish.
void waitForRequests(const opTIDSet& tids = opAllTIDs,
 opPriority p = opAllLevels);
opBlockingCounter *markRequests(const opTIDSet& tids = opAllTIDs,
 opPriority p = opAllLevels);
};

Methods in opThreadMgr

The main methods of opThreadMgr form two groups:

• Methods that schedule tasks. These methods are discussed in “Scheduling
Methods” on page 269.

• Methods that manage interprocess dependencies. These methods allow you to
guarantee that a task finishes before you start a second task that depends on the
first. The methods are discussed in “Managing Interprocess Dependencies” on
page 267.

Scheduling Methods

Once you have created an opThreadMgr, you can queue tasks with calls to one of the
three scheduling methods. Scheduling methods differ in the kind of action object they
accept and, therefore, the execution mode of the action (see Table 14-1 for a summary of
the basic processing features of the scheduling functions).

Callbacks of the action objects define the scheduled tasks. Action objects are discussed in
“Difference Between Interprocess Control Methods” on page 271.

270

Chapter 14: Managing Multiple Processors

These are the scheduling functions:

schedMPFun(opMPFunAction* actions, const opTIDSet& tids = opAllTIDs, opPriority p
= opDefaultPriority)
Places a single task described by the action object opMPFunAction on a
specified set of threads at a specified priority.

schedMPFunList(opMPFunListAction* actions, const opTIDSet& tids = opAllTIDs,
opPriority p = opDefaultPriority)
Places a set of independent tasks described by the action object
opMPFunListAction on a specified set of threads at a specified priority.

schedSPFun(opFunctionAction *action, opTID tid=opDefaultTID,
opPriority priority = opDefaultPriority)
Places a single task described by the action object opFunctionAction on
a single thread with a specified priority.

executeSPFun(opFunctionAction *action);
Executes action immediately on the calling thread. action, a user-defined
subclass of opFunctionAction, provides the callback function and data
for a single-process task.

Interprocess Control Methods

The opThreadMgr methods markRequests() and waitForRequests() allow you to
control interprocess dependencies.

markRequests(tids, p)
Marks tasks and allows you to have the calling process stop at some later
time and await completion of the tasks. markRequests() allows you to
submit subsequent tasks to the thread manager before you get
verification that the marked tasks are finished.

When you call markRequests(), it returns an opBlockingCounter
initialized to count down from the number of tasks currently active on
the threads tids, and places in the queue of each thread an operator that
decrements the counter when the current task(s) on the thread finish
(see the section “Implementing a Condition Variable:
opBlockingCounter” on page 285). Setting p to an integer value other
than opAllLevels restricts the set of marked tasks to those at level p.

To make a process wait until the tasks finish, call the function
opBlockingCounter::waitForZero(void).

Thread Manager: opThreadMgr

271

waitForRequests(tids, p)
Marks tasks by placing flags in process queues and immediately stops
the calling process until the tasks finish until all tasks finish that were
active on the set of threads tids at the time you called waitForRequests().

Setting p to an integer value other than opAllLevels restricts the set of
tasks waited on to those at level p. A thread waiting for itself will
deadlock.

Difference Between Interprocess Control Methods

Here is an example of the difference between markRequests() and waitForRequests().
Suppose you have task B, which depends on the completion of task A, and you have a
set of other tasks, Q1,...QN, which B does not depend on and which do not depend on A.

If you use markRequest(), you can do the following:

1. Submit A to the thread manager.

2. Call markRequests().

3. Pass the returned opBlockingCounter to B.

4. Submit the tasks Q1,...QN.

5. Have B wait for A.

If you use waitForRequests(), you could do either of the following:

First option:

1. Submit A, have B wait for A to complete.

2. Submit Q1,...QN, thus delaying Q1,...QN until both A and B finish.

Second option:

1. Submit A and Q1,...QN.

2. Have B wait on all the tasks.

The markRequests() method provides greater flexibility in developing an execution
sequence, regardless of the number of processes.

272

Chapter 14: Managing Multiple Processors

Defining Tasks for a Thread Manager

To specify the tasks managed by an opThreadMgr, pass one of the three action objects
opFunctionAction, opMPFunListAction, and opMPFunAction to the appropriate
scheduling function.

The scheduling functions place the action objects in thread queues. When an action object
reaches the head of the queue, it performs its tasks. You specify tasks by defining
callbacks.

The following sections provide details about defining callbacks:

• “opActionInfo Holds Thread Information” on page 272

• “opFunctionAction: One Task, One Process” on page 273

• “opMPFunAction: One Task, Many Processes” on page 273

• “opMPFunListAction: Many Tasks, Many Processes” on page 275

opActionInfo Holds Thread Information

The opActionInfo class is used as an argument for any action-object callback. It provides
information about the callback’s opThreadMgr, the thread on which the callback is
running, and the execution priority of the callback.

Class Declaration for opActionInfo

The class has the following main methods:

class opActionInfo
{
public:
// Creating and destroying
opActionInfo(opThreadMgr *threadMgr, opTID tid, opPriority priority);
~opActionInfo() ;

// Accessors
opThreadMgr *getThreadManager() const;
opTID getTID() const;
opPriority getPriority() const;
};

Defining Tasks for a Thread Manager

273

opFunctionAction: One Task, One Process

opFunctionAction is the class for running one task on one thread in a multi-threaded
environment. To schedule an opFunctionAction, pass it to schedSPFunction().

Class Declaration for opFunctionAction

The class has the following main methods:

class opFunctionAction : public opAction
{
public:
opFunctionAction() ;
virtual ~opFunctionAction() ;

virtual opActionDisp function(const opActionInfo&);
};

Methods in opFunctionAction

You specify the action object’s task by defining the callback function() when you create
an opFunctionAction. The default return value causes the deletion of the class on return
from function(). The possible return values of the callback are discussed in “Controlling
a Traversal With the Callback Return Value opTravDisp” on page 245.

opMPFunAction: One Task, Many Processes

opMPFunAction is the class for running one task on a set of threads. For example, you
might submit a rendering action to four processes and divide the screen into four areas.
You could submit one function to four processes and encode the portion of the screen
actually drawn by the function by using the thread identification number. To schedule an
opMPFunAction, pass it to schedMPFunction().

274

Chapter 14: Managing Multiple Processors

The thread manager processes an opMPFunAction in three steps:

1. A single thread applies the callback begin() to signal that processes are available for
the task.

2. Once begin() returns, each of the scheduled threads processes the callback
perThread().

3. The last thread to return from perThread() calls end() to signal that the action is
completed.

Class Declaration for opMPFunAction

The class has the following main methods:

class opMPFunAction : public opAction
{
public:
opMPFunAction() ;
virtual ~opMPFunAction() ;

virtual void begin(const opActionInfo&);
virtual void perThread(const opActionInfo&);
virtual opActionDisp end(const opActionInfo&);
};

Methods in opMPFunAction

begin(info) Is applied by the first thread scheduled to process an
opMPFunAction.info describes the calling thread and points to the
controlling opThreadMgr. No thread executes the perThread() callback
until begin() returns. The default for begin() does nothing.

end() Is applied after the last thread returns from perThread(). The default
return value, opDeleteThis, deletes the opMPFunAction. See
“Controlling a Traversal With the Callback Return Value opTravDisp”
on page 245.

perThread() Defines the task to be performed by the threads. Define this function
when you derive from opMPFunAction; the default for perThread()
does nothing.

Defining Tasks for a Thread Manager

275

opMPFunListAction: Many Tasks, Many Processes

The opMPFunListAction class runs several tasks on several threads. To schedule an
opMPFunListAction, pass it to an schedMPFunctionList().

The tasks of an opMPFunListAction are defined by a list of opFunctionActions. The
thread manager processes the list in three step:

1. A single thread applies the callback begin() to signal that processes are available for
the list of actions.

2. Once begin() returns, several threads perform the actions on the list.

3. When every action on the list has been performed, a single thread calls end() to
signal that the list of actions has been processed.

You may not always know the set of tasks you wish to implement when you construct an
opMPFunListAction. For example, you might want to render only visible surfaces, for
which you have an occlusion culling traverser. The methods setActionArray() and
addAction() allow you to build the list of functions before you begin the action.

Class Declaration for opMPFunListAction

The class has the following main methods:

class opMPFunListAction : public opAction
{
public:
opMPFunListAction(int nActions,opFunctionAction **actions);
virtual ~opMPFunListAction();

virtual void begin(const opActionInfo&);
virtual opActionDisp end(const opActionInfo&);

void setNumberOfActions(int numberOfActions);
int getNumberOfActions(void) ;

void setActionArray(opFunctionAction **actions);
opFunctionAction **getActionArray(void) ;

void addAction(opFunctionAction *action);
};

276

Chapter 14: Managing Multiple Processors

Methods in opMPFunListAction

addAction() Adds a new action to the end of the list of action objects and increments
the number of actions. The function assumes there is sufficient storage
in the action array for another element. A call to this function between
calls to begin() and end() causes an error.

begin(info) Is applied by the first thread to process an opMPFunListAction. info
describes the calling thread and points to the controlling opThreadMgr.
None of the opFunctionActions is executed until begin() returns. The
default for begin() does nothing.

end() Is applied after all the callbacks have been completed. The default return
value, opDeleteThis causes the opMPFunListAction to be deleted after
returning from end(). See the section “Controlling a Traversal With the
Callback Return Value opTravDisp” on page 245 for a discussion of
opActionDisp return values.

opMPFunListAction(int nActions, opFunctionAction **actions)
Constructs the action object. You specify the number of members in an
opFunctionAction array that you have previously defined and provide
an array of pointers, thus defining the action array.

~opMPFunListAction()
Deletes the action object and the action pointer array but not the
opFunctionAction elements themselves. Delete each of the
opFunctionActions by specifying opDeleteThis as the return value of
each of the opFunctionAction::function() callbacks.

setActionArray()
Sets the action array with a pointer to the opFunctionAction objects. The
class destructor deletes this array; to avoid this, set the array to NULL.
A call to this function between calls to begin() and end() causes an error.

Coordinating Threads That Change a Scene Graph: opTransactionMgr

277

Coordinating Threads That Change a Scene Graph: opTransactionMgr

The class opTransactionMgr coordinates scene-graph–altering activities of several
threads by providing a “clearinghouse” where threads submit requested alterations.
Without an opTransactionMgr, or another process coordinating tool, threads could
perform simultaneous accesses to scene-graph elements and corrupt the scene graph.

The principle of the opTransactionMgr class is that a single process, usually the one
responsible for rendering, controls changes to the scene graph. Other processes read the
graph but do not change it directly. These processes initiate a change to the scene graph
by submitting to the transaction manager opTransaction objects, which consist of
sequences of deferred Cosmo3D function calls. The process that controls the scene graph
affects the queued changes by a call to a member function of opTransactionMgr.

The operations that send opTransaction objects to the queue are so common that you can
perform them by calls that do not refer to an opTransactionMgr class scope. These
functions are run by the default instance of opTransactionMgr, and you can call them
simply as opSync(), opCommit(), and opBlockingCommit().

The following sections provide details about multiprocess scene graph manipulations:

• “Class Declaration for opTransactionMgr” on page 277

• “Methods in opTransactionMgr” on page 278

• “opTransaction” on page 279

• “opCommit(), opBlockingCommit(), and opSync()” on page 280

Class Declaration for opTransactionMgr

The class has the following main methods:

class opTransactionMgr
{
public:
opTransactionMgr();
~opTransactionMgr();

void commit(opTransaction* transaction);
void blockingCommit(opTransaction *transaction);

278

Chapter 14: Managing Multiple Processors

void processTransactions(void);
// Sets the amount of time per frame that the main thread
// may spend processing pending transactions.
void setMergeTimeLimit(float seconds);
float getMergeTimeLimit(void);

void setMaxPending(int n);
int getMaxPending(void);
};

Methods in opTransactionMgr

commit() Sends a transaction to the queue. The calling process is not blocked
unless the queue is full. Queue size is set by setMaxPending().

blockingCommit()
Sends a transaction to the queue and blocks the calling process until the
transaction has been executed.

processTransactions()
Processes the queued transactions until the queue is empty or until the
merge time limit is reached. All transactions that are taken from the
queue are fully executed before processTransactions() returns. If a
process starts before the merge time limit, it finishes.

setMergeTimeLimit()
Sets the amount of time per frame that the main thread may spend
processing pending transactions.

getMergeTimeLimit()
Returns the current transaction-processing time limit.

setMaxPending()
Sets the length of the transaction queue, that is, the number of pending
transactions after which any process that commits a transaction to the
queue will be blocked.

getMaxPending()
Returns the length of the transaction queue.

Coordinating Threads That Change a Scene Graph: opTransactionMgr

279

opTransaction

The opTransaction class holds Cosmo3D functions that you can submit to the transaction
manager. Each of the opTransaction methods appends a token representing a Cosmo3D
function to the list to be submitted to the transaction manager.

Class Declaration for opTransaction

The class has the following main methods:

class opTransaction : public MPQElement
{
public:
opTransaction();
~opTransaction();

// csObject operations
void setUserData(csContainer *container, csData *data);
void unrefDelete(csObject *object);

// csGroup operations
void addChild (csGroup *parent,csNode *child);
void insertChild(csGroup *parent,int idx,csNode *child);
void removeChild (csGroup *parent,csNode *child);
void replaceChild(csGroup *parent,csNode *oldChild,
 csNode *newChild);

// csShape operations
void setGeometry(csShape *shape, int i, csGeometry *geometry);
void setAppearance(csShape *shape,csAppearance *appearance);

// csMaterial operations
void setDiffuseColor(csMaterial *material,float r,float g,float b);
};

280

Chapter 14: Managing Multiple Processors

Methods in opTransaction

The opTransaction methods correspond to methods of a Cosmo3D class according to the
following rules:

• The name of the opTransaction method corresponds to a method of the Cosmo3D
class.

• The Cosmo3D class is the first argument of each opTransaction method.

• The remaining arguments of the opTransaction method are the same as those for
the Cosmo3D class method.

For example, setUserData(base, data) appends a token for the function
base->setUserData(data) to the list of transactions.

opCommit(), opBlockingCommit(), and opSync()

These functions correspond to the most commonly used opTransactionMgr methods.
They are defined so that you can use them without referring to a specific
opTransactionMgr scope; they are executed by the default instance of
opTransactionMgr, _opTransactionMgr, which is initialized by opInit.

The functions opCommit() and opBlockingCommit() have actions that correspond to
the like-named opTransactionMgr methods. The function opSync() calls an
opTransactionMgr::processTransactions() and returns a value of 1.

Low-Level Multiprocess Tools

281

Low-Level Multiprocess Tools

In addition to the high-level tools presented so far in this chapter, there are five OpenGL
Optimizer tools that you can use to spawn processes and coordinate their activities.
These tools typically use libc calls with similar names, but, to be consistent with the rest
of the library, use the OpenGL Optimizer versions. Do not use the libc functions fork()
and sproc() in an OpenGL Optimizer application.

The following sections provide details on low-level multiprocess tools:

• “opLock” on page 281

• “Mutual Exclusion Within a Code Block: opMutex” on page 282

• “opSemaphore” on page 283

• “Making Processes Wait on a Task: opTaskBlock” on page 284

• “Implementing a Condition Variable: opBlockingCounter” on page 285

opLock

This class implements a simple locking mechanism.

Class Declaration for opLock

The class has the following main methods:

class opLock
{
public:
// Allocates the lock from the arena that the opLock structure was
// allocated from.
opLock();
~opLock();

bool lock(void);
bool unlock();
};

282

Chapter 14: Managing Multiple Processors

Methods in opLock

The methods in opLock use the functions in ulocks.h; however, use opLock to be
compatible with the rest of the OpenGL Optimizer library. These are the essential
features of the two member functions:

lock() Blocks until a process acquires the lock. lock() returns true unless an
error occurs.

unlock() Releases a lock. unlock() returns false unless an error occurs.

Mutual Exclusion Within a Code Block: opMutex

The opMutex class provides a mechanism to simplify the control of mutual exclusion
within a block of code. An opMutex acquires and holds the lock passed to its constructor
until control exits the current scope. The lock is released when the destructor is called.

A typical use for opMutex is in conjunction with normal C++ scoping to make sure that
a lock is released when control leaves a block. This is particularly useful when an
exception could be thrown from within a block, or to guard against returning from the
middle of a locked block. See the reference page opLock(3in) for more details and a code
example. The file opMutex.h also contains a code example.

Note: The maximum number of locks in the system is 4096. No more than 65 processes
may share a single lock.

Low-Level Multiprocess Tools

283

opSemaphore

To be compatible with the OpenGL Optimizer library, use the class opSemaphore to
control semaphores.

Class Declaration for opSemaphore

The class has the following main methods:

class opSemaphore
{
public:
// Allocates the lock from the arena that the opLock structure was
// allocated from.
opSemaphore(int count);
~opSemaphore();
opBool p(void);
opBool v(void);
void init(int count);
};

Methods in opSemaphore

opSemaphore(count)
Constructs an opSemaphore with the counter initialized to count. The
value of count reflects the number of resources available:

If count is greater than zero, count resources are available.

If count is negative, the absolute value of count is the number of waiting
processes.

p() Decrements the semaphore counter. If the count becomes negative, the
semaphore will block the calling process until the count is incremented
by a call to v() by another process. p() always returns a value of true.

v() Increments the semaphore counter. If any processes have been blocked
and are waiting for the semaphore, the first process in the queue begins
execution.

The method names p() and v() were introduced by Edsgar Dijkstra based on the
signalling strategy used by Dutch trains; the names of the methods derive from the
Dutch words “passern,” to pass (a train is passing); and “vrijgeven,” to give free (the
track is free). See http://www.kzoo.edu/~k087023/algor/bio/.

284

Chapter 14: Managing Multiple Processors

Making Processes Wait on a Task: opTaskBlock

The class opTaskBlock controls interprocess dependencies by making any number of
processes wait for the completion of a task.

These are the steps involved when an opTaskBlock is used:

1. A blocking task establishes a block by creating an instance of opTaskBlock and
calling start().

2. Other processes wait until the blocking task finishes if they call the member
function waitUntilFinished().

3. When the blocking task finishes, it calls finish() and all the waiting processes begin
execution.

Class Declaration for opTaskBlock

The class has the following main methods:

class opTaskBlock
{
public:
opTaskBlock();
~opTaskBlock();
void start();
void finish();
void waitUntilFinished();
};

Methods in opTaskBlock

finish() Is called by the blocking task when it finishes, thus allowing waiting
processes to begin execution.

start() Is called by the blocking task to establish a block.

waitUntilFinished()
Is called by processes that should wait for the completion of the blocking
task.

Low-Level Multiprocess Tools

285

Implementing a Condition Variable: opBlockingCounter

This class implements the basic operation of opThreadMgr::markRequests(). It uses
opMutex and opSemaphore to implement a condition variable and to provide more
refined control over execution dependency between processes than you have with
opTaskBlock.

The application creates an opBlockingCounter initialized to count down from x:
opBlockingCounter C(x). After that, a process will block on a call to C.waitForZero()
until C.decrement() has been called x times. Naturally, calls to C.decrement() should
correspond to the completion of tasks the application wants to wait for.

Class Declaration for opBlockingCounter

The class has the following main methods:

class opBlockingCounter
{
public:
opBlockingCounter(int count);
~opBlockingCounter();

void decrement(void);
void waitForZero(void);
};

Methods in opBlockingCounter

• Once a process starts after a call to waitForZero(), the opBlockingCounter
reinitializes itself and is ready to receive waitForZero() calls from any process.

• If process P is blocked by a call to waitForZero(), a call to waitForZero() by a second
process R will block R until a call to decrement() after P starts.

PART SIX

Utilities and Troubleshooting VI

Chapter 15, “Utilities”

Chapter 16, “Troubleshooting”

289

Chapter 15

15. Utilities

This chapter describes tools that, although they are helpful in an OpenGL Optimizer
application, have little direct relationship to the main tasks discussed in previous
chapters. The chapter has the following sections:

• “Error Handling and Notification” on page 290

• “Performance Indicators” on page 291

• “opx: A Template Class for Dynamic Arrays of Contiguous Elements” on page 292

• “Printing a Scene Graph” on page 292

• “Gathering Triangle Statistics” on page 292

• “Displaying Node Information” on page 295

• “Observing OpenGL Modes” on page 296

• “Command-Line Parser: opArgParser” on page 297

290

Chapter 15: Utilities

Error Handling and Notification

You can control error handling with error-handling classes. You can also control the level
of importance of an error. The error-handling classes can be found in the file opNotify.h,
along with useful comments.

These are the main error notification functions:

opSetNotifyHandler()
Installs an error-handling function.

opNotify() Generates a notification, which can be selectively suppressed,
depending on the notification threshold (a value of the enumerated type
opSeverity listed in Table 15-1).

opSetNotifyLevel()
Sets the threshold for error notification to one of the values that are listed
in Table 15-1 for the enumerated type opSeverity.

You can set the environment variable OP_NOTIFY_LEVEL to override the value
specified in opSetNotifyLevel(). If you do set OP_NOTIFY_LEVEL, you cannot change
the notification threshold in your application.

Once you set the notification threshold, only messages with a priority greater than or
equal to the current level are printed or handed off to your program. Fatal errors cause
the program to exit unless you install a handler by calling opSetNotifyHandler().

Table 15-1 Error Priority Levels: Lowest to Highest

Value Meaning

opDebug Debug information

opInfo Information and floating-point exceptions

opNotice Warning

opWarn Serious warning

opFatal Fatal error

opAlways Always print regardless of notification level

Performance Indicators

291

The notification level to opFPDebug has the additional effect of trapping floating-point
exceptions such as overflows or operations on invalid floating-point numbers. Consider
using a notification level of opFPDebug while testing your application, so that you will
be informed of all floating-point exceptions.

Performance Indicators

The classes opStopWatch and opPerfPlot provide tools to monitor the performance of an
application.

opStopWatch

The opStopWatch class allows you to observe elapsed times as a program runs. It is not
safe to use in a multi-threaded program.

These are the important methods of opStopWatch:

start() Starts or restarts the clock. The constructor calls start(), so without
subsequent calls, all readings show elapsed time since construction of
the class.

read() Returns the elapsed time since the last call to start().

getResolution() Returns the clock resolution in seconds.

opPerfPlot

The opPerfPlot class allows you to graph timing measurements for events occurring in
possibly more than one process that run on the same processor.

opPerfPlot provides strip charts of elapsed times along with moving-average and peak
information. You can observe the output of an opPerfPlot by running the application
opviewer, which uses the instance of opPerfPlot created by an opViewer to monitor
frame times.

opPerfPlot also printd screen graph statistic. You can print the scene graph statistics
from an opViewer by pressing the <S> key.

292

Chapter 15: Utilities

opx: A Template Class for Dynamic Arrays of Contiguous Elements

Instances of the template class opDvector are common in OpenGL Optimizer classes. A
opDvector provides a convenient, fast, and flexible device for storing and manipulating
sets of objects of any data type. The class defines a vector of arbitrary objects that you can
treat syntactically as you would any one-dimensional vector in C or C++.

opDvector arrays grow dynamically, responding to the storage needs of your
application. You control the “step size” for data storage expansion with the constructor
or with the member function setExtension().The arrays extend such that the data
elements of the opDvector are stored contiguously in memory. This allows you to pass a
pointer to an element in a opDvector to a routine that is expecting the address of an array.

Nested opDvectors do not create a single multidimensional array of the template
argument. For example, a opDvector<opDvector< int> > is not one piece of
two-dimensional integer memory. Rather, nested opDvectors create arrays of
opDvectors, and the nesting sequence ends at one-dimensional arrays of
opDvectors.The example just given creates an array of opDvectors, and each
lowest-level opDvector is an array of integers. At every level in the nesting sequence,
each opDvector is independently dynamic.

Printing a Scene Graph

The function opPrintScene(), which is declared in opGFXSpeed.h, prints a textual listing
of the scene graph under a given a root node, provides some statistical details about
triangles held in each of the csGeometry nodes in the graph, and prints out csGeoSet
attribute bindings.

Gathering Triangle Statistics

The two tools for gathering statistical information about triangles are
opTriStatsDispatch, which acts on one element in a scene graph, and opTristats, which
acts on the whole graph. The statistics accumulated by these classes help you tune a
scene graph and can, for example, help you assess the effect of simplification or
tristripping.

Gathering Triangle Statistics

293

Getting Statistics About Individual Elements: opTriStatsDispatch

opTriStatsDispatch is a csDispatch that accumulates information about elements in a
scene graph: the output from each call to the method apply(), which is inherited from
csDispatch and thus acts on a node, is added to previously accumulated statistical
information. The method print() provides a table of the information. The methods get*()
provide individual values.

The traverser that accumulates triangle statistics is opTriStats, which is discussed in
“Getting Statistics About a Scene Graph: opTriStats” on page 294.

The class has the following main methods:

class opTriStatsDispatch : public csDispatch
{
public:
opTriStatsDispatch(int histogramSize = 0);
~opTriStatsDispatch();

void print();
void reset();

int getGeoSetCount();
int getTriSetCount();
int getTriStripSetCount();
int getTriFanSetCount();
int getQuadSetCount();
int getPolySetCount();

int getTriCount()
int getTriSetTriCount()
int getTriStripTriCount();
int getTriFanTriCount();
int getQuadTriCount();
int getPolyTriCount();
int getTriStripCount() ;
int getTriFanCount() ;
int getQuadCount();
int getPolyCount();

float getLengthsMean();
int getLengthsMedian();
int getLengthsMode();
};

294

Chapter 15: Utilities

Methods in opTriStatsDispatch

apply() Is inherited from csDispatch. It accumulates the appropriate statistics
from any one of the following objects supplied as its argument: csNode,
csShape, csGeometry, csTriSet, csTriStripSet, or csTriFanSet.

print() Prints a statistical summary for all the objects for which apply() was
called, providing the accumulated values in a self-descriptive listing.

reset() Sets all the accumulators to zero.

Getting Statistics About a Scene Graph: opTriStats

The class opTriStats is an opActionDispatch that traverses a scene graph applying an
opTriStatsDispatch to every node, thus accumulating statistics for a whole scene graph
(see “Traversing a Scene Graph and Applying a csDispatch: opDispatchAction” on
page 253).

Methods in opTriStats

The methods perform the operations that are established by opTriStatsDispatch (see
“Getting Statistics About Individual Elements: opTriStatsDispatch” on page 293).

apply(node) Traverses scene graph below node; accumulates scene graph statistics.

Example of Using an opTriStats

The following lines of code, taken from the application opviewer, show a simple use of
an opTriStats.

Get a root node for the graph. Here
the graph comes from a file read by
an opGenLoader. See “Saving and
Loading Scene-Graph Files” on
page 16).

csGroup *obj = loader->load(filename);

Make an opTriStats. opTriStats stats;

Use the inherited function apply()
to get statistics on the scene graph.

stats.apply(obj);

Print the results, for example, as
shown in Example 15-1.

printf(“Scene statistics:\n”);

stats.print();

Displaying Node Information

295

Example 15-1 Stats Print Out

Scene statistics:
opTriStats:
csNodes: 321
 triangles per node: 13
csShapes: 319
 triangles per shape: 13
csGeoSets: 319
 mean prim length: 1.447
 max prim length: 7
 vertices to pipe: 10155
 triangles to pipe: 4263
 vertices per triangle: 2.382
 triangles per geoset: 13
csTriFanSets: 319
 total fans: 2946
 triangles: 4263

Displaying Node Information

The class opInfoNode provides a simple mechanism to present textual information
about nodes in the scene graph. For example, you might show a part name and number
of a picked or highlighted node.

Class Declaration for opInfoNode

The class has the following main methods:

class opInfoNode : public csNode
{
public:
// Creating and destroying
opInfoNode();
~opInfoNode();

// Accessor functions
void setText (const char *text);
const char *getText () const

void setTextPosition (const csVec2f& _pos)
csVec2f getTextPosition () const
};

296

Chapter 15: Utilities

Methods in opInfoNode

draw () Renders text set by setText().

setText() and getText ()
Set and get the text to be rendered, which is held in the private variable
info_text.

Example of Using an opInfoNode

The few lines of code below illustrate how to use an opInfoNode to write the name of a
node.

A subsequent rendering traversal of the scene graph calls the opInfoNode draw method,
and places the node name on the screen.

Observing OpenGL Modes

The opGLSpyNode is a csShape that you can place in the scene graph and switch on to
monitor the current OpenGL status. When enabled, opGLSpyNode prints the
information for the current rendering traversal to the command shell, and switches itself
off.

Class Declaration for opGLSpyNode

The class has the following main methods:

class opGLSpyNode : public csShape
{
public:
// Creating and destroying
opGLSpyNode();
virtual ~opGLSpyNode();

Add an opInfoNode under a scene graph
root.

infoNode = new opInfoNode ();
orig_root->addChild (infoNode);

Write the name of a node of interest. infoNode->setText
(node->getName());

Command-Line Parser: opArgParser

297

void setOn(opBool e) ;
void printStats();
};

Methods in opGLSpyNode

setOn() Toggles the reporting node.

printStats() Prints the current status.

Example of Using an opGLSpyNode

The code from opViewer.cxx, shown below, illustrates how to use the reporting node.

Command-Line Parser: opArgParser

The opArgParser class provides an command-line parser for use with OpenGL
Optimizer applications. Although the parser is convenient, its syntax is not consistent
with UNIX conventions. The parser is not central to the OpenGL Optimizer API; it is not
guaranteed to be supported in future releases.

From a shell, run a program that uses opArgParser by typing the program name,
followed by a number of required arguments, and then any optional arguments.
opArgParser makes programs easy to use because the syntax and documentation for
arguments can be defined in a few lines.

For more information, and an example of a simple application with opArgParser, see the
reference page opArgParser(3in). The header file inArgs.H also has extensive comments.

Create the node and place it in the scene
graph.
For this application, the node is a child of
the csTransform that controls manipulation
of the scene (see Figure 2-1 for the basic
structure of an opViewer scene graph).

spy = new opGLSpyNode;

pose->addChild(spy);

Within opDefDrawImpl, the member
function of opViewer turns the node on.

viewer->getGLSpy()->setOn(true);

298

Chapter 15: Utilities

Class Declaration for opArgParser

The class has the following main methods:

class opArgParser
{
public:
opArgParser();
~opArgParser();

void defRequired(char *format,char *documentation,...);
void defOption(char *format,char *documentation, bool *active,...);

void scanArgs(int argc,char **argv);
void helpMessage(char* message, char* name);
}

Methods in opArgParser

defRequired(format, documentation, ...)
Defines the syntax of required arguments. format is a string similar to
those used by printf(); the symbols %d, %f, and %s denote the types
integer, float, and string, respectively. documentation is a text string that
describes the required arguments. A list of pointers to the variables that
hold the command-line values follows. You can call defRequired() only
once.

defOption(format, documentation, active, ...)
Defines an optional argument, which may be a list of values and is
preceded by a keyword string. format and documentation are similar to
those used by defRequired(). The next parameter is a pointer to a
Boolean variable that is true if this option is found on the command line.
The remaining arguments are pointers to the variables that hold the
values of the arguments.

scanArgs(argc, argv)
Initiates parsing. scanArgs() returns only if the arguments match
definitions, in which case the arguments are initialized. If arguments do
not match the definitions. ScanArgs() prints a help message (based on
the defined syntax) to the stream stderr and aborts execution.

299

Chapter 16

16. Troubleshooting

This chapter presents some likely compile and run-time warnings with appropriate
responses, and provides general approaches to improving your application’s
performance. The topics covered in this chapter are:

• “Compiler Warning Messages” on page 299

• “Run-Time Warning Messages” on page 299

• “Tuning the Scene Graph Database” on page 300

Compiler Warning Messages

• Error Messages:

ld: ERROR 33: Unresolved text symbol “cos” -- 1st referenced by
repTest.o.

ld: ERROR 33: Unresolved text symbol “pow” -- 1st referenced by
repTest.o.

Solution: Enter the following command:

link -lm binary

Run-Time Warning Messages

• Problem: A warning about incompatible versions for libifl.so. This problem should
only occur for IRIX 6.2 or earlier.

Solutions: If you decide you don’t want to install IRIX 6.3 or later, install the ifl.eoe
subsystem. You have two alternatives:

Evaluation http://www.sgi.com/Products/Evaluation/...

Order Image Vision Library 3.2 Runtime CD.

300

Chapter 16: Troubleshooting

Tuning the Scene Graph Database

If you have a bottleneck on the host, tuning the database will help. This section lists
several approaches to tuning a large database. Details for most of the tools and
techniques discussed here appear in Part I, “Getting Started,” and Part II, “High-Level
Strategic Tools for Fast Rendering.”

These are the approaches discussed in this section:

• “Reduce the Polygon Count” on page 300

• “Combine Small csGeoSets” on page 300

• “Spatialize to Facilitate View Frustum and Occlusion Culling” on page 301

• “Use Level-of-Detail Nodes” on page 302

• “Tessellation Problems” on page 303

Reduce the Polygon Count

Analysis: Use the application opviewer to read in the dataset. Note how many
triangles are in the data set and whether the csGeoSets are in optimal
rendering form—csTriStrips or csTriFans. See “Creating OpenGL
Connected Primitives” on page 33 for more information.

Possible solution:
Use the application opoptimize to convert your scene graph. Go to
sample application directory, enter ./opoptimize for options, such as
simplifying, and write out the result with the -batch option.

Evaluation: Compare the frame speed of the original and resulting dataset by
entering s while in opviewer.

Combine Small csGeoSets

Analysis: Print the scene hierarchy. Use the application opviewer to read in the
dataset and either enter p, which is an opViewer command, or use
opPrintScene().

If the csGeoSets have very few triangles, consider combining
primitives into one csGeoSet. See the section on “Merging csGeoSets in
a Scene Graph: opCombineGeoSets” on page 81 for more information.

Tuning the Scene Graph Database

301

Possible solution:
Comine normal tolerance. The normal tolerance argument specifies by
how much normals of two vertices can differ before they are considred
to be two different vertices.

Use the application opoptimize to convert your data. Use the -combine
option, which by default traverses the entire scene graph and combines
csGeoSets that have the same csAppearance (color and material.)
Look at /usr/include/Cosmo3D/csAppearance.h for the attributes. Write the
data into tristrips or trifans by using the -batch option for opoptimize.

Note, however, that you may want to be selective when combining
csGeoSets because you lose hierarchy and text information from the
original scene graph when you combine. This may not be an option for
you, unless you add code to retain information in the node with the
combined csGeoSets.

Evaluation: Print out hierarchy again with new csGeoSet combinations to verify
that csGeoSets are larger. Compare frame speed.

Spatialize to Facilitate View Frustum and Occlusion Culling

Analysis: If the database has large occluders or you tend to view the object close
to the viewpoint so that many parts are outside the viewing frustum,
then your database is a likely candidate for spatialization.

If you do not know if the scene graph is spatially organized, first print
the scene hierarchy. A simple way to do this is to use the application
opviewer to read in the dataset and either enter p, which is
incorporated into opViewer, or use opPrintScene() in your own
application.

If you see a very flat structure without many csGroup nodes sectioning
off the csGeoSets, the database is probably not spatially organized. See
Chapter 6, “Organizing the Scene Graph Spatially,” for more
information.

Possible solution:
Use the application opoptimize with the options -combine and either of
the options -spatialize or -geospatialize. These options combine the
csGeoSets into larger, similar csGeoSets, and then spatialize the results.

302

Chapter 16: Troubleshooting

With the -spatialize and -geospatialize options, you include hints for
the minimum and maximum number of triangles in any leaf node of the
new graph.

With the -spatialize option, opoptimize traverses the scene graph
looking for nodes that have greater than the maximum number of
triangles, and divides them into pieces with numbers of triangles
between the minimum and the maximum.

With the -geospatialize option, opoptimize combines all the csGeoSets
below a particular node, regardless of csAppearance, then spatializes
the result such that the leaf nodes have numbers of triangles between
the minimum and the maximum.

Evaluation: Print the hierarchy again with the new csGeoSet combinations to verify
that csGeoSets have been spatialized. Compare the frame speed.

Use Level-of-Detail Nodes

Analysis: If you don’t need to see the entire database in fine detail all the time, then
use level-of-detail nodes (LODs). Chapter 4, “Rendering Appropriate
Levels of Detail” has more information.

Possible solution:
Simplify the scene graph by controlling the tessellation to produce fewer
triangles, by using a simplifier to reduce the number of existing
triangles, or by using a combination of the two.

For the tessellation approach, if your database has Inventor NURBS, try
different chordal deviation tolerances to control the quality of the
tessellation to see how well you can retain the shape, but with fewer
triangles. View the object in wireframe to see how well it is tessellated,
and look at the polygon count (printed by default). See Chapter 11,
“Rendering Higher-Order Primitives: Tessellators,” for more
information on controlling tessellation. After tessellating, consider
combining, spatializing, then simplifying the scene graph.

For the simplification approach, consider combining and spatializing
the scene graph before simplifying it. If you use the opoptimize
application with the -geospatialize option, try 5000 and 8000 for the
minimum and maximum parameters for this option; they usually give
reasonable results. View the object in wireframe to see how well it is
tessellated.

Tuning the Scene Graph Database

303

Add LODs to scene graph

After obtaining at least two versions of your scene with different levels
of detail that you want to view, add LODs to your scene graph.

There are two possible approaches to adding LODs to the scene graph:
use the application opoptimize, or create your own traversal. You can
use the opoptimize application to generate an LOD node with the roots
of the different versions of the scene graph as children. When you
create your own traversal to traverse the original scene graph, you
must create an LOD, and add the simplified version of the csGeoSet
from the simplified scene graph.

You may also want to adjust the LOD selection process by introducing a
bias when objects are moving, a feature of opViewer. See “Viewing
Class: opViewer” on page 19. The application opviewer does this with a
command-line argument. See Appendix C, “opviewer Sample
Application.”

Evaluation: When you are not viewing the highest level of detail on an object,
performance should improve to an extent that depends on how much
you simplified the scene graph.

Tessellation Problems

Two typical tessellation problems are covered in this section:

• “No Triangles” on page 303

• “Slow Processing” on page 304

No Triangles

Analysis: No triangles are generated when you read in Inventor *.iv files.

Solution: The tessellator generates triangles only for Inventor NURBS Surfaces. To
see if the Inventor models have NURBS surfaces, enter this command:
ivcat < filename.iv > /usr/tmp/junk. This gives you an ASCII
version of the file. Then enter: grep Surface /usr/tmp/junk.

Evaluation: If you still do not see any triangles, you may also have unsupported
Inventor primitives in your files.

304

Chapter 16: Troubleshooting

Slow Processing

Analysis: Tessellation takes too long. Surfaces could be over tessellated.

Solution: Increase the chordal tolerance parameter for the tessellator.

To diagnose which particular surfaces may be causing problems, adjust
the range of the identification numbers of the NURBS objects to be
tessellated, or tessellate just one NURBS. The range is controlled by the
environment variables OP_TESS_BRANGE and OP_TESS_ERANGE,
whose values are inclusive. For tessellating NURBS 0 through 947,
enter

setenv OP_TESS_BRANGE 0

setenv OP_TESS_ERANGE 947

Or, to tessellate just NURBS 555, enter

setenv OP_TESS_BRANGE 555

setenv OP_TESS_ERANGE 555

PART SEVEN

Appendices VII

Appendix A, “Installing OpenGL Optimizer”

Appendix B, “OpenGL Optimizer Sample Applications”

Appendix C, “opviewer Sample Application”

Appendix D, “Scene Graph Tuning With the opoptimize Application”

Appendix E, “Optimizer Class Hierarchy”

307

Appendix A

A. Installing OpenGL Optimizer

This appendix guides you through the process of installing OpenGL Optimizer.

Installing the OpenGL Optimizer and Supporting Software on UNIX Systems

The OpenGL Optimizer library can either be downloaded from the designated Web site
or from the release CD. In either case, use the Software Manager (swmgr) interface to
install the software.

In addition to the library, you need the software listed in Table A-1:

Table A-1 Libraries Used by OpenGL Optimizer

Software Purpose Program Name Program Source

Compile and run C++ programs, use one of
the three.

c++_dev MIPSpro C++ 7.1 or 7.2 CD
7.2 is preferred.

c++_eoe IRIX™ 6.2 part 1 of 2 or IRIX 6.3
CD

compiler_dev 7.1 IDO package. The IDO
package contains 3 CDs, one
per IRIX platform.

Compile programs in the developer build
environment.

dev IRIS® Developer’s Option CD

Load Inventor™ files: Inventor 2.1.1 or
higher.

inventor_dev
and
inventor_eoe

IRIX 6.2 and above

To link with the Digital Media Execution
Environment.

dmedia_eoe IRIX 6.2 and above

For reflection mapping: Image Format
Library.

ifl_eoe Installable from Silicon SurfSM

as part of the ImageVision™

Runtimes 3.1.1

308

Appendix A: Installing OpenGL Optimizer

The installation overwrites previously-installed Cosmo3D and OpenGL Optimizer
libraries and sample applications. To avoid overwriting any changed files during the
installation, save them in another directory.

Sample OpenGL Optimizer applications, file loaders and scene-graph viewers are in
/usr/share/Optimizer/. Sample Cosmo3D applications are in
/usr/share/Optimizer/src/apps/Cosmo3D. Use the commands make ddso or make dso to build
these programs.

Environment Variables to Set Before Compiling an Application

Before compiling an OpenGL Optimizer application, you should set several environment
variables.

• To specify which ABI to compile (o32, n32, or n64), enter this command:

setenv OBJECT_STYLE 32 or N32_M3 or 64

Note: For systems with IRIX 6.4, the compiler defaults to using n32. To force an o32
build enter this command:

setenv OBJECT_STYLE 32

• To designate linking with single or double-precision OpenGL Optimizer libraries,
edit the ‘OP_SINGLE’ value set in /usr/share/Optimizer/src/opusercommondefs.

• To run-time load the debugging versions of the libraries, enter one of these
commands:

setenv LD_LIBRARY_PATH
/usr/lib/Optimizer/Debug:/usr/lib/Cosmo3D/Debug

setenv LD_LIBRARYN32_PATH
/usr/lib32/Optimizer/Debug:/usr/lib32/Cosmo3D/Debug

setenv LD_LIBRARY_PATH64
/usr/lib64/Optimizer/Debug:/usr/lib64/Cosmo3D/Debug

Note: For performance, do not set LD_LIBRARY_PATH to the
/usr/lib/{Optimizer,Cosmo3D}/Debug directories.

Installing OpenGL Optimizer on NT Systems

309

• If you see a compile-time warning that mentions incompatible versions for libifl.so
(sgi1.0), and your application does not use reflection mapping, you can enter this
command

setenv _RLD_ARGS -ignore_all_versions

This error occurs if you have a more recent version of libifl.so that ships with IRIX
6.3 or 6.4: Image Vision Runtimes 3.1.1.

You can avoid the error message by installing the IRIX 6.2 libifl.so into a different
directory than /usr/lib and set your LD_LIBRARY_PATH to point to that directory
first. For example, if you install libifl.so in /usr/tmp/ifllib, enter the following
command:

setenv LD_LIBRARY_PATH /usr/tmp/ifllib:/usr/lib

For further details, see “Compiler Warning Messages” on page 299 and the file
/usr/share/Optimizer/doc/Programming_tips/Compile_Notes.html.

Installing OpenGL Optimizer on NT Systems

To install OpenGL Optimizer on an NT Systems, insert the CD-ROM in the drive, the
choose Start > Run and type at the prompt:

Drive:Optimizer_1.1_PC.exe

where Drive is the name of your CD-ROM drive. InstallShield will then install the
software in the appropriate location.

To build any of the sample applications, type

nmake appname

The makefile provided with OpenGL Optimizer will then compile your program with
the appropriate flags.

311

Appendix B

B. OpenGL Optimizer Sample Applications

To help you get started, the OpenGL Optimizer library includes applications that
illustrate OpenGL Optimizer applications in individual subdirectories of the
/usr/share/Optimizer/src/apps directory. Some of the sample applications are compiled for
you in /usr/sbin and /usr32/sbin. You can modify, compile, and run sample applications if
you install both the eoe and dev portions of the OpenGL Optimizer image.

This appendix discusses the most important sample applications in the following
sections:

• “Command-Line Options and User Input” on page 311

• “opviewer Sample Application” on page 312

• “Other Sample Applications” on page 313

Note: For installation instructions, see Appendix A, “Installing OpenGL Optimizer.”

Command-Line Options and User Input

The sample applications all run similarly. To see the available command-line options,
invoke the executable without any arguments:

% opviewer

The sample applications have many command-line arguments; for example, opviewer
and opoptimize both have over 20. Optional arguments for demonstration applications
should be placed after any required arguments when you invoke a sample application.
For example, opviewer and opoptimize require only filename arguments, so command
lines could look like the following:

% opviewer xxx.csb -useDL
% opoptimize xxx.csb -batch test.csb

312

Appendix B: OpenGL Optimizer Sample Applications

To print a list of interactive program controls into your command shell while you run a
sample application place the mouse cursor in the rendering window and enter h, for
help. Note that opxmviewer has a menu-based input instead.

opviewer Sample Application

opviewer illustrates the basic structure of a complete OpenGL Optimizer application that
includes most of the OpenGL Optimizer rendering tools. It uses the graphical user
interface tools in /usr/share/Optimizer/src/libopGUI. The important tools in this library,
opViewer and opDefDrawImpl are discussed in Chapter 2, “Basic I/O: Getting Started
with OpenGL Optimizer.”

opviewer provides run-time options for viewing a model displaying at an optimized
frame rate.

A line-by-line commentary on opviewer appears in Appendix C, “opviewer Sample
Application.”

The command-line options for opviewer are defined in the file
/usr/share/Optimizer/src/apps/opviewer/main.cxx. Interactive control options are defined by
the class opDefDrawImpl, which is in the /usr/share/Optimizer/src/libopGUI directory and
is discussed in Chapter 2 in “opDrawImpl Subclasses Used In Sample Applications” on
page 24.

Motif Version of opviewer

opxmviewer is the Motif version of opviewer. opxmviewer allows user input through a menu
bar instead of command-line input. /usr/share/Optimizer/src/libopXmGUI is the motif
version of /usr/share/Optimizer/src/libopGUI.

opxmviewer is a typical Motif application that creates a main window and a menu bar.
The application also creates an opXmViewer widget attached to the main window.
opXmViewer is the motif version of opViewer, discussed in “Viewing Class: opViewer”
on page 19. opXmViewer is a composite Motif widget consisting of a main drawing area,
an information area (for help text), and a user interface area.

Other Sample Applications

313

opxmviewer takes the same command-line options as opviewer, with the exception of
occlusion culling and no-picking options: occlusion culling is not available and the
picking option is always on. Interactive controls are defined by the class
opXmDrawImpl, which is the Motif analog to a combination of opDefDrawImpl and
opPickDrawImpl, which are discussed in “Controlling Rendering: opKeyCallback and
opDrawImpl” on page 22; and in “Interacting With a Rendered Object:
opPickDrawImpl” on page 90.

As in opviewer, translation, rotation and zoom are done in opxmviewer using the mouse
in the drawing area. Unlike opviewer, the other interactions are controlled by buttons in
the user interface area, rather than by keyboard commands. If users pass the cursor over
a button, the help text associated with that button is displayed in the information area.

X Version of opviewer

opxdemo is the X version of opviewer. opxdemo illustrates how to render a Cosmo3D scene
graph inside an X Window. It presents a minimal OpenGL Optimizer application and
emphasizes the rendering process. It includes the necessary routines from the following
libraries: X Window, OpenGL extensions to X, Cosmo3D, and OpenGL Optimizer.

Other Sample Applications

This section discusses other sample applications included with the software and
discussed in this manual.

Scene Graph Tuning—opoptimize

opoptimize uses most of the OpenGL Optimizer scene-graph-tuning tools that include
simplifying shapes, creating LODs, and writing out .csb files. It is mainly used in batch
processing mode, although it is possible to view the scene graph using an opViewer (see
“Viewing Class: opViewer” on page 19).

A line-by-line commentary for opoptimize appears in Appendix D, “Scene Graph
Tuning With the opoptimize Application.” This application adds to opviewer the
command-line options and keyboard controls from the file
/usr/share/Optimizer/src/apps/opoptimize/main.cxx.

314

Appendix B: OpenGL Optimizer Sample Applications

Creating LODs—mergeLODDemo

mergeLODDemo creates level-of-detail (LOD) nodes at leaf nodes. mergeLODDemo
provides fewer options than opoptimize, which places LOD nodes near the root of the
scene graph.

This application illustrates how to combine topologically identical scene graphs that
contain leaf nodes with differing levels of detail. See “Merging Graphs With Differing
Levels of Detail: opMergeScenes” on page 52.

Rendering Higher Order Reps—repTest

repTest is used for rendering higher-order reps, providing an environment for developing
and rendering these objects.

This application is discussed in Chapter 9, “Higher-Order Geometric Primitives and
Discrete Meshes.” It adds to opviewer command-line options from in the file
/usr/share/Optimizer/src/apps/reptest/main.cxx.

Using Topology—topoTest

topoTest illustrates the use of the OpenGL Optimizer topology building tools to “stitch”
together surfaces. It is designed to help you import surfaces whose connectivity you
know so that you can use the OpenGL Optimizer tessellators to get crack-free images.
The application also illustrates an approach to developing trimmed NURBS surfaces that
differs somewhat from that used in repTest.

Topology building tools are discussed in Chapter 10, “Creating and Maintaining Surface
Topology.”

Scientific Visualization

opviz illustrates how to use OpenGL Optimizer to visualize discrete scientific and
engineering data.

Other Sample Applications

315

This application is discussed in the section “Sample Mesh Tessellation: opviz and
opVizViewer” on page 233. It adds to opviewer the command-line options that appear in
the file /usr/share/Optimizer/src/apps/opviz/main.cxx, and the interactive commands that
appear in opVizViewer.cxx.

Reflection Mapping

zebraFly illustrates the use of reflection mapping to get tube-lighting effects, which
simulate lighting by fluorescent lights in a cylindrical room. The file
/usr/share/Optimizer/src/apps/zebrafly/README describes the basic controls for the
application, which is based on opviewer.

Reflection mapping tools are discussed in Chapter 8, “Efficient High-Quality Lighting
Effects: Reflection Mapping.”

317

Appendix C

C. opviewer Sample Application

The opviewer application illustrates the basic structure of an OpenGL Optimizer
opViewer application. It is a working application that allows you to use OpenGL
Optimizer rendering tools to manipulate complex models. Figure C-1 shows a model
rendered by opviewer.

Figure C-1 Model Rendered by the opviewer Sample Application

This appendix presents comments and lines of code essentially the same as that of
/usr/share/Optimizer/src/sample/opviewer/main.cxx, briefly highlights OpenGL Optimizer
features, and refers to detailed discussions that appear in this guide.

Note: The code presented here may not be exactly the same as the code that ships with
OpenGL Optimizer, because of late changes.

318

Appendix C: opviewer Sample Application

The rest of this chapter is a running commentary on the code in main.cxx.

The following features are not implemented in opviewer:

• Explicit mention of tools for tuning the scene-graph database, which are discussed
in Part II, “High-Level Strategic Tools for Fast Rendering”

• Multiprocessing tools, which are discussed in Chapter 14, “Managing Multiple
Processors”

Note: The opoptimize sample applications contains many of these features.

Verifying Installation

Use the versions command to verify that you have installed the following software:

• optimizer_eoe

• optimizer_dev

• cosmo3D_eoe

• cosmo3D_dev

For example, to verify optimizer_dev is installed, use the following command:

% versions | grep optimizer_dev

Install any of these packages if they are missing.

Compiling and Running opviewer

To compile opviewer, enter the command make while in the directory
/usr/share/Optimizer/src/sample/opviewer. To list command-line options, invoke the
application without options.

To print a list of interactive program controls into your command shell while you run
opviewer, place the mouse cursor in the rendering window and enter the h key.

opviewer Code

319

opviewer Code

Inclusions

In addition to the standard library, opviewer
requires two base classes from the Cosmo 3D library,
and header files from OpenGL Optimizer.

#include <stdio.h>

#include <Cosmo 3D/csFields.h>

#include <Cosmo3D/csGroup.h>

You can set all csAppearances of the csShapes to
minimize mode switching. See “Avoiding OpenGL
Mode Switching” on page 32.

#include <Optimizer/opAppStats.h>

These two headers include the OpenGL Optimizer
command-line argument parser, which is discussed
in the section “Command-Line Parser:
opArgParser” on page 297; and the file loading
class, discussed in “Saving and Loading
Scene-Graph Files” on page 16.

#include <Optimizer/opArgs.h>

#include <Optimizer/opGenLoader.h>

This header includes the basic graphics acceleration
tools, most of which are discussed in Chapter 3,
“Sending Efficient Graphics Data to the Hardware.”

#include <Optimizer/opGFXSpeed.h>

The library initialization class is discussed in
“Calling opInit()” on page 15.

#include <Optimizer/opInit.h>

The basic control of interactive rendering, including
the control of occlusion culling or the ability to
manipulate selected portions of the scene graph is
provided by the classes in these files. These tools are
discussed in “Rendering With View-Frustum and
Occlusion Culling: opOccDrawImpl” on page 65,
and “Interacting With a Rendered Object:
opPickDrawImpl” on page 90.

#include <Optimizer/opOccDrawImpl.h>

#include <Optimizer/opPickDrawImpl.h>

OpenGL Optimizer provides several tools for
reflection mapping, discussed in Chapter 8,
“Efficient High-Quality Lighting Effects: Reflection
Mapping.”

#include <Optimizer/opReflMap.h>

320

Appendix C: opviewer Sample Application

Inclusions (cont.)

Traversal tools are discussed in Chapter 12,
“Traversing a Large Scene Graph.”

#include <Optimizer/opTraverse.h>

You can collect statistics about the number of
vertices, triangles, and connected primitives in your
scene graph. See “Gathering Triangle Statistics” on
page 292.

#include <Optimizer/opTriStats.h>

The next file holds the basic rendering class
opViewer, discussed in “Viewing Class: opViewer”
on page 19.

#include <Optimizer/opViewer.h>

Initializations and main()

The tessellators convert abstract geometry into
renderable collections of vertices: see “Tessellating
Parametric Surfaces” on page 222.

#include <Optimizer/opTessParaSurfaceAction.h>

#include <Optimizer/opTessNurbSurfaceAction.h>

To guarantee consistent tessellation between
adjacent surfaces, that is, rendered surfaces without
cracks, OpenGL Optimizer provides topology
maintenance tools. See Chapter 10, “Creating and
Maintaining Surface Topology.”

#include <Optimizer/opTopo.h>

You have three ways to develop surface connectivity
information. The argument list is from best to worst.
See Chapter 10, “Creating and Maintaining Surface
Topology.”

enum topologyOption {TOPO_TWO_PASS,
TOPO_ONE_PASS, TOPO_NO};

int main(int argc, char *argv[])

{

See “Calling opInit()” on page 15. opInit();

Command-Line Control Parameters

The command-line control parameters are read
using the methods in the class opArgParser (see
“Command-Line Parser: opArgParser” on
page 297). The command-line parameters set
switches that allow you to control these features:

opArgParser args;
char *filename;

opviewer Code

321

Command-Line Control Parameters (cont.)

The location on the screen (x, y) of the rendering
window, and the dimensions of the window (w,h).
The x-coordinate assumes a screen of width 1280,
and a rendering window of width 600 with a
10-pixel boundary.

bool haveX=-1, haveY=-1, haveW=-1,
 haveH=-1, haveSize=-1;
int x=1280-600-10, y=0, w=600, h=600;

OpenGL display lists. See “Display Lists” on
page 30.

bool haveDL;

bool haveFrameCount;
int frames = 0;

Print the scene graph. See “Printing a Scene Graph”
on page 292.

bool havePrint;

Flatten the scene graph, that is, place all leaf nodes
directly under one group node. See “Methods in
opCollapseAppearances” on page 32.

bool haveFlatten;

Use short representations of surface normal data.
See “Vertex Arrays” on page 31.

bool haveShortNorms;

Introduce complex lighting effects with reflection
(or environment) maps. See Chapter 8, “Efficient
High-Quality Lighting Effects: Reflection
Mapping.”

bool haveReflMap;
char *reflMapFilename;
bool haveCeilingMap;
char *ceilingMapFilename;
bool haveCylinderMap;
bool haveGaussianMap;
int numFiles;

Set a bias for level-of-detail calculations when the
scene is moving. This feature of opViewer is
discussed in “Viewing Class: opViewer” on page 19.

bool haveLODbias;
int lodBias;

Specify the hint for maximum deviations of a
tessellation from the exact surface representation.
See “Tessellating Parametric Surfaces” on page 222.

bool haveChordalTol = -1;
opReal chordalTol = 0.01;

Specify the threshold distance between points
below which they are considered identical when
building topology. See “Summary of Scene Graph
Topology: opTopo” on page 200.

bool haveTopoTol;
opReal topoTol;

322

Appendix C: opviewer Sample Application

Command-Line Control Parameters (cont.)

Specify the background color for the rendering
window and the model orientation. These settings
are controlled by opViewer options. See “Viewing
Class: opViewer” on page 19.

bool haveBackgroundColor;
float backgroundRed, backgroundGreen,
 backgroundBlue, backgroundAlpha;

bool haveRotation;
float vx, vy, vz, angle;

bool haveTranslation;
float tx, ty, tz;

Specify the number of vertices in the tessellation of
surface boundaries. See “opTessParaSurfaceAction”
on page 222.

bool haveSamples;
int samples;

Specify the type of tessellator: a generic parametric
surface tessellator or a NURBS surface tessellator.
See “Tessellating Parametric Surfaces” on page 222.

bool haveTessType = -1;
char *tessType = NULL;

Specify rendering features: occlusion culling (see
“Occlusion Culling” on page 60) or interactive
manipulation (see Chapter 7, “Interactive
Highlighting and Manipulating”).

// --- Draw impl options
bool haveOccCull;
int nProcs = 2;
bool haveNoPick = false;
bool removeColors;

Play back the scene. See “Rendering With
View-Frustum and Occlusion Culling:
opOccDrawImpl” on page 65

// Option to playback recordings
bool havePath;
char *pathFile;
bool haveAutoPlay;

Control OpenGL mode switching by clamping the
first csAppearance encountered in the draw
traversal to all subsequent csShapes. See “Avoiding
OpenGL Mode Switching” on page 32.

bool haveOneAppearance;

By default, build the best topology. See Chapter 10,
“Creating and Maintaining Surface Topology.”

 bool isOnePass = false;

opviewer Code

323

Get Command-Line Parameters

You must supply a file with the scene graph. All
other command-line control parameters are
optional and were described with the argument
declarations. See “Command-Line Parser:
opArgParser” on page 297.

args.defRequired(“%s”,
“<filename>”,&filename);

args.defOption(“-width %d”,
“-width <window width>”,
&haveW, &w);

args.defOption(“-height %d”,
“-height <window height>”,
&haveH, &h);

args.defOption(“-size %d”,
“-size <window width=hieght>”,
&haveSize, &w);

args.defOption(“-xpos %d”,
“-xpos <window x screen position>”,
&haveX, &x);

args.defOption(“-ypos %d”,
“-ypos <window y screen position>”,
&haveY, &y);

args.defOption(“-useDL”,
“-useDL”,
&haveDL);

args.defOption(“-frames %d”,
“-frames <n>”,
&haveFrameCount, &frames);

args.defOption(“-print”,
“-print”,
&havePrint);

args.defOption(“-flatten”,
“-flatten”,
&haveFlatten);

324

Appendix C: opviewer Sample Application

Get Command-Line Parameters (cont.)
args.defOption(“-shortNorms”,
“-shortNorms”,
&haveShortNorms);

args.defOption(“-reflmap %s”,
“-reflmap <filename>”,
&haveReflMap, &reflMapFilename);

args.defOption(“-ceilingmap %s”,
“-ceilingmap”,
&haveCeilingMap, &ceilingMapFilename);

args.defOption(“-cylindermap”,
“-cylindermap”,
&haveCylinderMap);

args.defOption(“-gaussianmap”,
“-gaussianmap”,
&haveGaussianMap);

args.defOption(“-occ %d”,
“-occ <nProcs>”,
&haveOccCull, &nProcs);

args.defOption(“-nopick”,
“-nopick”,
&haveNoPick);

args.defOption(“-lodBias %d”,
“-lodBias <integer>”,
&haveLODbias, &lodBias);

args.defOption(“-noColors”,
“-noColors removes color bindings from
csGeoSets”,
&removeColors);

args.defOption(“-path %s”,
“-path <filename>”,
&havePath, &pathFile);

opviewer Code

325

Get Command-Line Parameters (cont.) args.defOption(“-autoplay”,
“-autoplay”,
&haveAutoPlay);

#ifdef OP_REAL_IS_DOUBLE
args.defOption(“-ctol %l”,
“-ctol <max chordal deviation>”,
&haveChordalTol, &chordalTol);

args.defOption(“-ttol %l”,
“-ttol <topology tolerance> [setting ttol
implies automatic topology building]”,
&haveTopoTol, &topoTol);

#else

args.defOption(“-ctol %f”,
“-ctol <max chordal deviation>”,
&haveChordalTol, &chordalTol);

args.defOption(“-ttol %f”,
“-ttol <topology tolerance> [asetting ttol
implies automatic topology building]”,
&haveTopoTol, &topoTol);
#endif

args.defOption(“-onePass”,
“-onePass [build topology while tessellating]”,
&isOnePass);

args.defOption(“-oneAppearance”,
“-oneAppearance”,
&haveOneAppearance);

args.defOption(“-ceilingmap %s”,
“-ceilingmap”,
&haveCeilingMap, &ceilingMapFilename);

args.defOption(“-tess %s”,
“-tess <gen[eral] nurb>”,
&haveTessType, &tessType);

326

Appendix C: opviewer Sample Application

Get Command-Line Parameters (cont.) // User defined background color
args.defOption(“-background %f %f %f %f”,
“-background <red> <green> <blue><alpha>”,
&haveBackgroundColor,
&backgroundRed,
&backgroundGreen,
&backgroundBlue,
&backgroundAlpha);

// User defined model orientation
args.defOption(“-rotation %f %f %f %f”,
“-rotation <vx> <vy> <vz> <angle>”,
&haveRotation, &vx, &vy, &vz, &angle);

args.defOption(“-translation %f %f %f”,
“-translation <tx> <ty> <tz>”,
&haveTranslation, &tx, &ty, &tz);

args.defOption(“-samples %d”,
“-samples <tessellator sample count>”,
&haveSamples, &samples);

opviewer Code

327

Establish Status Information // Print out version of Optimizer
 fprintf(stderr,”%s\n”,opVersion());

//set topoOption
topologyOption topoOption;

if (!haveTopoTol)
{
topoOption = TOPO_NO;
//don’t build topology
}
else if (isOnePass)
{
topoOption = TOPO_ONE_PASS;
//build topology while tessellating.
}
else
{
topoOption = TOPO_TWO_PASS;
//build topology in a seperate pass before
//tessellation
}

numFiles = args.scanArgs(argc,argv);

if (haveSize)h = w;

328

Appendix C: opviewer Sample Application

Create the Appropriate Tessellator

See Chapter 11, “Rendering Higher-Order
Primitives: Tessellators.”

// Create a tessellator
opTessParaSurfaceAction *tess;

if (tessType == NULL)
tess = new opTessParaSurfaceAction;
else if (strcmp(tessType, “gen”) == 0)
tess = new opTessParaSurfaceAction;
else if (strcmp(tessType, “nurb”) == 0)
tess = new opTessNurbSurfaceAction;
else
tess = new opTessParaSurfaceAction;

// Set the chordal tolerance
tess->setChordalDevTol(chordalTol);

// Set the sample count if the user set them
if (haveSamples)
tess->setSampling(samples);

Create the Topology Data Structures

See Chapter 10, “Creating and Maintaining Surface
Topology.”

//topology
opTopo *topo = new opTopo;

// Set the topology parameters
if (haveTopoTol)
{

topo->setDistanceTol(topoTol, meter);
}

opviewer Code

329

Load the Scene Graph Data

The loader manages topology in one of the
following ways:
• It anticipates the development of connectivity
information for all surfaces in the scene graph
followed by tessellating the surface. Code for these
steps appears later in the application.
• It develops connectivity information as surfaces
load, and tessellates them.
• It ignores connectivity: it simply tessellates
surfaces as they load without regard for adjacencies.
See “Saving and Loading Scene-Graph Files” on
page 16; Chapter 10, “Creating and Maintaining
Surface Topology”; and “Base Class
opTessellateAction” on page 217.

// Create a loader
opGenLoader *loader;

if(topoOption == TOPO_TWO_PASS)
//build topology before tessellating any
//surface.
{

loader = new opGenLoader(true, NULL, false);
//the tessellator is not bound to the loader so
//that there is no tessellation at loading. The
//reason is because tessellation has to wait
//until topology construction is completely done
//for all the surfaces
}

else if(topoOption == TOPO_ONE_PASS)
//build topology while tessellate
{

tess->setBuildTopoWhileTess(true);
//tell the tessellator to invoke topology
//construction at tessellation

tess->setTopo(topo);
//Sets the topology which will be used in the
//topology building tessellation.

loader = new opGenLoader(true, tess, false);
//bind tessellator to loader so that
//tessellation is invoked at loading
}

else //don’t build topology

{

//bind tessellator to loader so that
//tessellation is invoked at loading
loader = new opGenLoader(true, tess, false);

}

// Load the file on the command line and get a
// scene graph back
csGroup *obj = loader->load(filename);

330

Appendix C: opviewer Sample Application

Load the Scene Graph Data (cont.)

If there are several files making up the scene graph,
place them under a csGroup node.

if (numFiles)
{
int i;
csGroup *grp = new csGroup;
if (obj)
{
grp->addChild(obj);
}
char **xtraFiles =
args.getRemainingArgs();

for (i=0;i<numFiles;i++)
{
fprintf(stderr,”loading file
%d %s\n”,i,xtraFiles[i]);

obj = loader->load(xtraFiles[i]);
if (obj)
{
grp->addChild(obj);
}
}
obj = grp;
}
// Throw the loader away, we’re done with it
delete loader;

Build Topology and Tessellate

The most accurate topology, which yields crack-free
tessellations, is created by two traversals of the
scene graph: one to establish adjacencies of surfaces,
and the second to tessellate the surfaces (this is the
default behavior). See “Building Topology:
Computing and Using Connectivity Information”
on page 203.

// Build topology if we haven’t done it and the
// user asks for it
if (obj && topoOption == TOPO_TWO_PASS)
{

fprintf(stderr, “Building topology starts ...
\n”);
topo->buildTopologyTraverse();
fprintf(stderr, “Building topology done\n”);

fprintf(stderr, “Tessellation starts ... \n”);
tess->apply(obj);
fprintf(stderr, “Tessellation done ... \n”);
}

delete tess;

opviewer Code

331

Set Parameters to Draw the Scene

// If the scene graph was loaded successfully,
draw it else end the program
if (obj)
{

See “Gathering Triangle Statistics” on page 292. // Get stats on the scene graph
opTriStats stats;
stats.apply(obj);
printf(“Scene statistics:\n”);
stats.print();

See “Avoiding OpenGL Mode Switching” on
page 32.

if (haveOneAppearance)
{
opCollapseAppearances c;
c.apply(obj);
}

if (removeColors)
opRemoveColorBindings(obj);

See “Methods in opCollapseAppearances” on
page 32.

// Optionally flatten the scene graph
if (haveFlatten)
obj = opFlattenScene(obj);

See “Vertex Arrays” on page 31. if (haveShortNorms)
opShortNormsScene(obj);

See “Viewing Class: opViewer” on page 19. // Note: viewer must be created before
// opDListScene.
opViewer *viewer =
 new opViewer(“Optimizer”, x, y, w, h);

Set the background color. See “Viewing Class:
opViewer” on page 19.

if (haveBackgroundColor)
{
viewer->setBackgroundColor(backgroundRed,
backgroundGreen, backgroundBlue,
backgroundAlpha);
}

Set the bias for LOD calculations color. See “Viewing
Class: opViewer” on page 19.

// Set the LOD bias
if (haveLODbias)
{
viewer->setLODbias(lodBias);
}

332

Appendix C: opviewer Sample Application

Set Parameters to Draw the Scene (cont.)

See “Controlling Rendering: opKeyCallback and
opDrawImpl” on page 22; “Rendering With
View-Frustum and Occlusion Culling:
opOccDrawImpl” on page 65; and “Interacting With
a Rendered Object: opPickDrawImpl” on page 90.

// Make Occ draw object the default.
opOccDrawImpl *occDrawImpl = NULL;
if (haveOccCull || havePath)
{
occDrawImpl = new opOccDrawImpl(viewer,nProcs);
viewer->setDrawImpl(occDrawImpl);

if (havePath)
occDrawImpl->loadRecording(pathFile);
}

opPickDrawImpl *pi = NULL;
if (! haveNoPick) // bad grammar, i know
{
pi = new opPickDrawImpl(viewer);
// Use default DrawImpl until pick invoked
}

See “Printing a Scene Graph” on page 292 if (havePrint) opPrintScene(obj);

See “Viewing Class: opViewer” on page 9. viewer->addChild(obj);
viewer->setViewPoint(obj);

opviewer Code

333

Set Parameters to Draw the Scene (cont.)

See Chapter 8, “Efficient High-Quality Lighting
Effects: Reflection Mapping.”

// A new reflection map
opReflMap *rm = NULL;
if (haveReflMap)
{
rm = new opReflMap(obj, reflMapFilename,
opReflMap::SPHERE);
}
else if (haveGaussianMap)
{
rm = new opReflMap(obj, (char *)NULL,
opReflMap::GAUSSIAN | opReflMap::SPHERE);
}
else if (haveCylinderMap)
{
rm = new opReflMap(obj, (char *)NULL,
opReflMap::CYLINDER);
}
else if (haveCeilingMap)
{
rm = new opReflMap(obj, ceilingMapFilename,
opReflMap::CEILING);
}
viewer->setReflMap(rm);

// --- picker needs refl map for highlighting //
(could be passed into constructor also)

if (pi != NULL)

pi->setReflMap(rm);

See “Display Lists” on page 30. // Build display lists
// Note: this must be done after
// instantiating opReflMap and any
// other csGeometry changes.
if (haveDL)
{
printf(“Display listing scene.\n”);
opDListScene(obj);
}

334

Appendix C: opviewer Sample Application

Set Parameters to Draw the Scene (cont.)

Set orientation of model, if specified. See “Viewing
Class: opViewer” on page 19.

if (haveRotation)
{
viewer->setModelRotation(vx, vy, vz, angle);
}

if (haveTranslation)
{
viewer->setModelTranslation(tx, ty, tz);
}

Draw the Scene if (haveFrameCount)
for (int i=0;i<frames;++i)
viewer->update();
else if (haveAutoPlay && havePath)
occDrawImpl->playback(true);
else
viewer->eventLoop();
}

}

335

Appendix D

D. Scene Graph Tuning With the opoptimize Application

The opoptimize application illustrates the basic structure of a scene-graph tuning
application. Scene graph tuning is typically done before rendering. As a result,
opoptimize is usually used in batch processing mode. However, opoptimize does allow
scene-graph rendering interactions using an opViewer (see “Viewing Class: opViewer”
on page 19). The output of the application is typically a scene graph that can be easily
manipulated in an application like opviewer, which was discussed in Chapter 2.

This chapter presents lines of code that are essentially the same as those of
/usr/share/Optimizer/src/sample/opoptimize/main.cxx. Comments highlight OpenGL
Optimizer features when they are used by the code, and direct you to detailed
discussions that appear in this guide.

The main tools not included in opoptimize are tools for multiprocessing, which are
discussed in Chapter 14, “Managing Multiple Processors.”

This appendix discusses opoptimize in the following sections:

• “Compiling and Running opoptimize” on page 336

• “opoptimize Code” on page 338

336

Appendix D: Scene Graph Tuning With the opoptimize Application

Values Returned by Scene Graph Tools

When you use OpenGL Optimizer methods that construct scene graphs and csGeoSets,
you must not use input pointers after the method call. Input objects may change as a
result of applying the method or they may be included in the output. This may occur, for
example, with the simplifiers, tessellators, and spatialization tools.

If an input object is included in the output, subsequent changes to the original input may
affect the output object. For example, if you generate a level of detail node by simplifying
a csGeoSet and you want to use color to distinguish the levels of detail, but the simplifier
could not change the input because of the criteria you used, then a color change applied
to input will also change the color of the output.

If you want to use an input scene graph or csGeoSet after a call to any modifying
method, make a copy first.

Compiling and Running opoptimize

To compile opoptimize, enter the command make while in the directory
/usr/share/Optimizer/src/sample/opoptimize.

To run opoptimize, recall that command-line options are listed if you invoke the
application without any command-line arguments. To print a list of interactive program
controls into your command shell while you run opoptimize, place the mouse cursor in
the rendering window and enter h.

Figure D-1 illustrates simplification of the original model of 19474 polygons to 10902 to
4938 polygons. The three panels in the figure correspond from left to right to the
following three commands:

opoptimize kittyHawk.iv -rotation 1 0 0 1

opoptimize kittyHawk.iv -rotation 1 0 0 1 -simpPercent 50 0 1 0

opoptimize kittyHawk.iv -rotation 1 0 0 1 -simpPercent 15 1 2 1

Compiling and Running opoptimize

337

The simplifier used for these images is discussed in “Methods in opSimplify” on page 46.

Figure D-1 Simplifying a Model With opoptimize

The rest of this chapter is a running commentary on the code in main.cxx.

338

Appendix D: Scene Graph Tuning With the opoptimize Application

opoptimize Code

Note: The sequence in which tools are applied to the scene graph in opoptimize is not
fundamental to a scene-graph tuning application; if you use opoptimize as a template,
other orderings may be more appropriate for your needs.

Inclusions

These headers include the necessary objects from
Cosmo3D.

#include <stdio.h>

#include <Cosmo3D/csFields.h>
#include <Cosmo3D/csGroup.h>
#include <Cosmo3D/csCsb.h>
#include <Cosmo3D/csLOD.h>
#include <Cosmo3D/csTriStripSet.h>
#include <Cosmo3D/csTriFanSet.h>
#include <Cosmo3D/csTransform.h>

See “Command-Line Parser: opArgParser” on
page 297.

#include <Optimizer/opArgs.h>

You can simplify the rendering task by culling
small features from the scene. See “Detail Culling”
on page 69.

#include <Optimizer/opDetailSimplify.h>

See “Saving and Loading Scene-Graph Files” on
page 16.

#include <Optimizer/opGenLoader.h>

This header provides various functions that
control specific features of the scene graph and
accelerate rendering. For example, see “Display
Lists” on page 30, “Vertex Arrays” on page 31,
and “Methods in opCollapseAppearances” on
page 32.

#include <Optimizer/opGFXSpeed.h>

See “Calling opInit()” on page 15. #include <Optimizer/opInit.h>

See “Error Handling and Notification” on
page 290.

#include <Optimizer/opNotify.h>

opoptimize Code

339

Inclusions (cont.)

The basic control of interactive rendering,
including keyboard commands and the ability to
manipulate selected portions of the scene graph,
are provided by the classes in these files. See
“opDrawImpl Subclasses Used In Sample
Applications” on page 24 and “Interacting With a
Rendered Object: opPickDrawImpl” on page 90.

#include <Optimizer/opDefDrawImpl.h>
#include <Optimizer/opPickDrawImpl.h>

To make scene graph traversals more efficient, you
can organize nodes spatially. See Chapter 6,
“Organizing the Scene Graph Spatially.”

#include <Optimizer/opSpatialize.h>

#include <Optimizer/opGeoSpatialize.h>

A sophisticated simplification tool is provided by
this file. See “Methods in opSimplify” on page 46.

#include <Optimizer/opSRASimplify.h>

You can collect statistics about the numbers of
vertices, triangles and connected primitives in
your scene graph. See “Gathering Triangle
Statistics” on page 292.

#include <Optimizer/opTriStats.h>

Includes classes to develop connected primitives
from a set of triangles in a csGeoSet. See “Merging
Triangles Into Both Strips and Fans:
opTriFanAndStrip” on page 38 and “Merging
Triangles Using Multiple Processors:
opMPTriFanAndStrip” on page 40.

#include <Optimizer/opTriFanAndStrip.h>

This file holds the basic rendering class opViewer,
discussed in “Viewing Class: opViewer” on
page 19.

#include <Optimizer/opViewer.h>

340

Appendix D: Scene Graph Tuning With the opoptimize Application

Inclusions (cont.)

Tessellators convert abstract geometries into
renderable collections of triangles. See
“Tessellating Parametric Surfaces” on page 222.
This application focuses mainly on simplifying
the rendering task by using tessellations with
differing levels of resolution, by removing
triangles from tessellated objects, and by
reorganizing the distribution of triangles in the
scene graph.

#include <Optimizer/opTessParaSurfaceAction.h>

#include <Optimizer/opTessNurbSurfaceAction.h>

To guarantee consistent tessellations between
adjacent surfaces, that is, surfaces rendered
without cracks, OpenGL Optimizer provides
topology maintenance tools. See Chapter 10,
“Creating and Maintaining Surface Topology.”

#include <Optimizer/opTopo.h>

These files are in the opoptimize directory. #include “colorTag.h”
#include “deleteSurf.h”
#include “removeEmpty.h”
#include “simplify.h”
#include “convert.h”

Initialize

You can use either of the algorithms to remove
triangles from a mesh. See “Creating LODs:
opSRASimplify” on page 47 and “Rossignac
Simplification Algorithm: opLatticeSimplify” on
page 51.
Here the application initializes the control
parameter for one of the simplification tools and
creates an instance of the other.

// Global simplifier paramaters for passing to
// app-defined key bindings

float gridSpacing = 0.08;
opSRASimplifier simplfier;

You have three ways to develop surface
connectivity information. The values enumerated
list from best to worst. See Chapter 10, “Creating
and Maintaining Surface Topology.”

int LODoffset;

enum opTopoOption
 {TOPO_TWO_PASS, TOPO_ONE_PASS, TOPO_NO};

opoptimize Code

341

Define a Key Handler

The key handler extends the default keyboard
controls available during rendering. See
“opDrawImpl Subclasses Used In Sample
Applications” on page 24.

// SimplifyViewer extends opViewer by adding new
// key bindings:
// ‘g’ : (go) simplify the scene graph
// ‘c’ : (go) tristrip the scene graph w/ random
// colors
// ‘C’ : (go) tristrip the scene graph w/o random
// colors

static bool keyHandler(opDrawImpl *di, int key)
{ opViewer *viewer = di->getViewer();
bool retVal = true;

switch(key)
{

See “Merging Triangles Into Strips: opTriStripper”
on page 37; and “Gathering Triangle Statistics” on
page 292.

case ‘c’:
case ‘C’:

// Show different colored tristrips

triStripTree((csGroup *)viewer->getRoot(),
 (key==’c’)?true:false);

{
opTriStats ts(8);
ts.apply(viewer->getRoot());
ts.print();
}

 retVal = false;

break;

342

Appendix D: Scene Graph Tuning With the opoptimize Application

Define a Key Handler (cont.)

See the file simplify.h and “Rossignac
Simplification Algorithm: opLatticeSimplify” on
page 51, and “Gathering Triangle Statistics” on
page 292.

case ‘G’:
opNotify(opInfo,opNull,
”Invoking Rossignac simplifier with gridSpacing =
%2.3f\n”,gridSpacing);

latticeSimplifySameTree(
(csGroup *)viewer->getRoot(), gridSpacing);
gridSpacing *= 2.0;
{
 opTriStats ts(14);
 ts.apply(viewer->getRoot());
 ts.print();
}
break;

See the file simplify.h and “Creating LODs:
opSRASimplify” on page 47, and “Gathering
Triangle Statistics” on page 292.

case ‘g’:
opNotify(opInfo,opNull,
”Invoking SRA simplifier.”);

simplifySameTree(
(csGroup *)viewer->getRoot(), &simplfier);
{
 opTriStats ts(14);
 ts.apply(viewer->getRoot());
 ts.print();
}
retVal = false;
break;

The LOD offset adjusts the LOD calculation when
objects in the scene are moving. See “Viewing
Class: opViewer” on page 19.

case ‘+’:
changeLODOffset(
(csGroup *)viewer->getRoot(),++LODoffset);
retVal = false;
break;

case ‘-’:
changeLODOffset(
(csGroup *)viewer->getRoot(),--LODoffset);
retVal = false;
break;

opoptimize Code

343

Define a Key Handler (cont.)

This calls a Cosmo3D function to save a scene
graph to a file in .csb format. See “Saving and
Loading Scene-Graph Files” on page 16.

case ‘z’:
csdStoreFile_csb(
(csGroup *)viewer->getRoot(),”test.csb”);
 break;

default:
break;
}
return retVal;

main()

See “Calling opInit()” on page 15 and
“Command-Line Parser: opArgParser” on
page 297.

int main(int argc, char *argv[])
{

opInit();

opArgParser args;

int numFiles;

char *filename,*outFile;

Command-Line Control Parameters

The location on the screen (x, y) of the rendering
window, and the dimensions of the window (w,h).
The default x-coordinate assumes a screen of
width 1280, and a rendering window of width 600
with a 10-pixel boundary. You can control these
parameters from the command line.

bool haveX=-1, haveY=-1, haveW=-1, haveH=-1,
 haveSize=-1;

int x=1280-600-10, y=0, w=600, h=600;

If TRUE, the processed scene graph is written to a
.csb file and not rendered. See “Saving and
Loading Scene-Graph Files” on page 16.

bool writeCSB;

You can use several techniques to develop
connected primitives that accelerate the rendering
process. See “Creating OpenGL Connected
Primitives” on page 33.

bool doTriStrip, doTriFan, doTriFanStrip,
doMPTriFanStrip;

int minFanSize;

bool doRandomTriStrip;
// Color the tstrips with a random color

344

Appendix D: Scene Graph Tuning With the opoptimize Application

Command-Line Control Parameters (cont.)

You can use either of two simplification
algorithms to remove triangles from a mesh. See
“Creating LODs: opSRASimplify” on page 47 and
“Rossignac Simplification Algorithm:
opLatticeSimplify” on page 51.

bool doSRASimplify;
bool SRApercent,SRAcount,SRAestimate;
float percent;
float fAngle;
int polyCount;
bool doLatticeSimplify;

There are several techniques to rearrange triangles
in a scene graph to reflect their positions in space
and facilitate cull traversals. See Chapter 6,
“Organizing the Scene Graph Spatially.”

bool combineGSet;

bool spatialize, geospatialize;
int minGoal,maxGoal;

bool writeOutput;

You can place simplified and unsimplified scene
graphs under a csLOD node.

bool LODfiles, makeLOD;

See “Detail Culling” on page 69. bool doDetail;
float detail_ratio;

bool doRootRadius;
float root_radius;

bool doScale;
float scale_factor;

bool showDelete;

bool doDeleteSurf;

You can interactively assign colors to objects. See
“Interacting With a Rendered Object:
opPickDrawImpl” on page 90.

bool enableColoring;
char *colorTagFile;
char *colorTag;
bool doColorTag;
colorTable *cTable = NULL;
char *colorFile;

bool doRemoveEmptyGrp;
bool removeColors;

Get Command-Line Parameters

Specify the threshold distance between points
below which they are considered identical when
building topology. See “Summary of Scene Graph
Topology: opTopo” on page 180.

bool haveTopoTol;
opReal topoTol;

opoptimize Code

345

Specify the background color for the rendering
window and the model orientation. These settings
are controlled by opViewer options. See “Viewing
Class: opViewer” on page 19.

bool haveBackgroundColor;

float backgroundRed, backgroundGreen,
 backgroundBlue, backgroundAlpha;

bool haveRotation;
float vx, vy, vz, angle;

bool haveTranslation;
float tx, ty, tz;

Specify control parameters for tessellation, and
the type of tessellator (for example for general
parametric surfaces or for NURBS surfaces). See
“Tessellating Parametric Surfaces” on page 222.
If tessType is equal to zero, no tessellation is
performed. The main use for this option is in batch
mode to convert file formats and possibly store
topology information; you can read in a .iv file and
write the scene graph without tessellations to a
.csb file. Depending on the topology-build
command-line option, the output could have
topology information. See “Saving and Loading
Scene-Graph Files” on page 16.

bool haveChordalTol = -1;
opReal chordalTol = 0.01; bool haveSamples;
int samples;
bool haveTessType = -1;
char *tessType = NULL;
// Initialize this since cmdline args may modify

By default, build the best topology. See
Chapter 10, “Creating and Maintaining Surface
Topology.”

 bool isOnePass = false;

You must supply a file with the scene graph. All
other command-line control parameters are
optional.

args.defRequired(“%s”,
“<filename>”,
&filename);

346

Appendix D: Scene Graph Tuning With the opoptimize Application

Get Command-Line Parameters (cont.)

args.defOption(“-width %d”,
“-width <window width>”,
&haveW, &w);

args.defOption(“-height %d”,
“-height <window height>”,
&haveH, &h);

args.defOption(“-size %d”,
“-size <window width=hieght>”,
&haveSize, &w);

args.defOption(“-xpos %d”,
“-xpos <window x screen position>”,
&haveX, &x);

args.defOption(“-ypos %d”,
“-ypos <window y screen position>”,
&haveY, &y);

args.defOption(“-tristrip”,
“-tristrip”,
&doTriStrip);

args.defOption(“-trifan”,
“-trifan”,
&doTriFan);

args.defOption(“-trifanstrip %d”,
“-trifanstrip <min Fan length>”,
&doTriFanStrip, &minFanSize);

args.defOption(“-mptrifanstrip %d”,
“-mptrifanstrip <min Fan length>”,
&doMPTriFanStrip,&minFanSize);

args.defOption(“-detail %f”,
“-detail <detail ratio>”,
&doDetail, &detail_ratio);

args.defOption(“-rootRadius %f”,
“-rootRadius <radius>”,
&doRootRadius, &root_radius);

args.defOption(“-simplify”,
“-simplify”,
&doSRASimplify);

opoptimize Code

347

Get Command-Line Parameters (cont.)

args.defOption(“-rossignac %f”,
“-rossignac <gridSpacing>”,
&doLatticeSimplify,
&gridSpacing);

The target of the simplification can be specified as
a percentage of the original number of triangles,
or as a exact number. See “Creating LODs:
opSRASimplify” on page 47.

args.defOption(“-simpPercent %f %f “,
“-simpPercent
<percent [0.0,100.0] of model desired>
<feature angle>”,
&SRApercent,
&percent,
&fAngle);

args.defOption(“-simpCount %d %f “,
“-simpCount <count per GeoSet> <feature angle>”,
&SRAcount,
&polyCount,
&fAngle);

args.defOption(“-simpEstimate”,
“-simpEstimate, for quick estimate of resulting
model”,
&SRAestimate);

You can render individual csTriStrips in differing
colors, to see their sizes.See “Creating OpenGL
Connected Primitives” on page 33; and
“Specifying Coloring of New csGeoSets:
opColorGenerator” on page 259.

args.defOption(“-tristripRandom”,
“-tristripRandom, for random colors”,
&doRandomTriStrip);

args.defOption(“-scale %f”,
“-scale <scale factor>”,
&doScale, &scale_factor);

args.defOption(“-batch %s”,
“-batch <output filename>”,
&writeCSB,&outFile);

args.defOption(“-combine”,
“-combine”,
&combineGSet);

args.defOption(“-spatialize %d %d “,
“-spatialize <min tris> <max tris>”,
&spatialize,&minGoal,&maxGoal);

348

Appendix D: Scene Graph Tuning With the opoptimize Application

Get Command-Line Parameters (cont.)

args.defOption(“-geospatialize %d %d “,
“-geospatialize <min tris> <max tris>”,
&geospatialize,&minGoal,&maxGoal);

args.defOption(“-LODfiles”,
“-LODfiles puts listed files as children under LOD
in given order”,
&LODfiles);

args.defOption(“-makeLOD”,
“-makeLOD creates simplified version from root
then adds both to LOD”,
&makeLOD);

args.defOption(“-writeSG”,
“-writeSG prints out entire contents of scene
graph”,
&writeOutput);

args.defOption(“-noColors”,
“-noColors removes color bindings from csGeoSets”,
&removeColors);

opoptimize Code

349

Get Command-Line Parameters (cont.)

#ifdef OP_REAL_IS_DOUBLE
args.defOption(“-ctol %l”,
“-ctol <max chordal deviation>”,
&haveChordalTol, &chordalTol);

args.defOption(“-ttol %l”,
“-ttol <topology tolerance> [setting ttol implies
automatic topology building]”,
&haveTopoTol, &topoTol);

#else

args.defOption(“-ctol %f”,
“-ctol <max chordal deviation>”,
&haveChordalTol, &chordalTol);

args.defOption(“-ttol %f”,
“-ttol <topology tolerance> [setting ttol implies
automatic topology building]”,
&haveTopoTol, &topoTol);

#endif

args.defOption(“-onePass”,
“-onePass [build topology while tessellating]”,
&isOnePass)

// Sets the type of tessellator used either by the
// loader or after building the topology.
args.defOption(“-tess %s”,
“-tess <gen[eral] nurb no>”,
&haveTessType, &tessType);

// Sets how many samples are used on trim curves
// during the tessellation.
args.defOption(“-samples %d”,
“-samples <tessellator sample count>”,
&haveSamples, &samples);

350

Appendix D: Scene Graph Tuning With the opoptimize Application

Get Command-Line Parameters (cont.)

// enable feature to delete highlighted nodes with
‘X’ key
args.defOption(“-showDelete”,
“-showDelete use X key to delete highlighted
nodes to clean up dbase. Need to save SG for
permanent change.”,
&showDelete);

// enable feature to color highlighted subtrees
with number keys
args.defOption(“-enableColoring %s %s”,
“-enableColoring <output filename> <tag>”,
&enableColoring, &colorTagFile, &colorTag);

// Read in <filename>.delete to determine which
parts to delete from SG
args.defOption(“-delete”,
“-delete”,
&doDeleteSurf);

// User defined background color
args.defOption(“-background %f %f %f %f”,
“-background <red> <green> <blue><alpha>”,
&haveBackgroundColor, &backgroundRed,
&backgroundGreen, &backgroundBlue,
&backgroundAlpha);

// User defined model orientation
args.defOption(“-rotation %f %f %f %f”,
“-rotation <vx> <vy> <vz> <angle>”,
&haveRotation, &vx, &vy, &vz, &angle);

args.defOption(“-translation %f %f %f”,
“-translation <tx> <ty> <tz>”,
&haveTranslation, &tx, &ty, &tz);

// Use colortag file to determine which color to
apply to all parts
// in corresponding filename
// Assuming all nodes in file will be same color
args.defOption(“-colortag %s”, “-colortag
<filename>”, &doColorTag, &colorFile);

// Remove group nodes with no children
args.defOption(“-remove”,”-remove”,
&doRemoveEmptyGrp);

opoptimize Code

351

Get Command-Line Parameters (cont.)

numFiles = args.scanArgs(argc,argv);

//set topoOption
topologyOption topoOption;
if (!haveTopoTol)
{
topoOption = TOPO_NO;
//don’t build topology
}
else if (isOnePass)
{
topoOption = TOPO_ONE_PASS;
//build topology while tessellating.
}
else
{
topoOption = TOPO_TWO_PASS;
//build topology in a separate pass before
//tessellation
}

Create the Appropriate Tessellator

See Chapter 11, “Rendering Higher-Order
Primitives: Tessellators.”

// Create a tessellator
opTessParaSurfaceAction *tess;
if (tessType == NULL)
tess = new opTessParaSurfaceAction;
else if (strcmp(tessType, “gen”) == 0)
tess = new opTessParaSurfaceAction;
else if (strcmp(tessType, “nurb”) == 0)
tess = new opTessNurbSurfaceAction;
else if (strcmp(tessType, “no”) == 0)
tess = NULL;

else

tess = new opTessParaSurfaceAction;

// Set the chordal tolerance
if(tess)
tess->setChordalDevTol(chordalTol);

// Set the sample count if the user set them
if (haveSamples)
tess->setSampling(samples);

352

Appendix D: Scene Graph Tuning With the opoptimize Application

Create the Topology Data Structures

See Chapter 10, “Creating and Maintaining
Surface Topology.”

//topology
opTopo *topo = new opTopo;
// Set the topology parameters
if (haveTopoTol)
{
 topo->setDistanceTol(topoTol, meter);
}

opoptimize Code

353

Load the Scene Graph Data

The loader manages topology in one of the
following ways:
•It anticipates the development of connectivity
information for all surfaces in the scene graph
followed by tessellating the surface. Code for
these steps appears later in the application.
• It develops connectivity information as surfaces
load, and tessellates them.
• It ignores connectivity: it simply tessellates
surfaces as they load without regard for
adjacencies.
See “Saving and Loading Scene-Graph Files” on
page 16; Chapter 10, “Creating and Maintaining
Surface Topology”; and “Base Class
opTessellateAction” on page 217.

// Create a loader
opGenLoader *loader;

if(topoOption == TOPO_TWO_PASS)
//build topology before tessellating any
//surface.

{

loader = new opGenLoader(true, NULL, false);
//the tessellator is not bound to the loader so
//that there is no tessellation at loading. The
//reason is because tessellation has to wait
//until topology construction is completely done
//for all the surfaces
}

else if(topoOption == TOPO_ONE_PASS)
//build topology while tessellate
{

tess->setBuildTopoWhileTess(true);
//tell the tessellator to invoke topology
//construction at tessellation

//Sets the topology which will used in the
//topology building at tessellation.
tess->setTopo(topo);

loader = new opGenLoader(true, tess, false);
//bind tessellator to loader so that
//tessellation is invoked at loading
}

else //don’t build topology

{

//bind tessellator to loader so that
//tessellation is invoked at loading

loader = new opGenLoader(true, tess, false);

}

// Load the file on the command line and get a //
scene graph back

csGroup *obj = loader->load(filename);
csGroup *root = obj;

354

Appendix D: Scene Graph Tuning With the opoptimize Application

Load the Scene Graph Data (cont.)

if (obj)
{
// Delete parts specified in corresponding
// *.delete
if (doDeleteSurf)
{
 deleteSurfTree(obj,filename);
}

You can use a color tag file to specify the
appearance of different parts in the scene. The
format of the color tag file is:
• Comments (preceded by the pound sign, #).
• A line containing the number of colors.
• Lines containing the colors: five digits that
specify red, green, blue, alpha, and shininess
values. Currently, alpha is not used, but a
value must appear for the shininess parameter to
be properly interpreted.
• Part names and their associated colors.
See colorTable::colorTable() in
/usr/share/Optimizer/src/sample/opoptimize/
colorTag.cxx.

// Color the parts as specified in color file
if (doColorTag)
{
 cTable = new colorTable(colorFile);
 cTable->setColorTree(obj,filename);
}

opoptimize Code

355

Load the Scene Graph Data (cont.)

if (numFiles)
{
 int i;
 csGroup *grp;

if (LODfiles)
{
grp = (csGroup *)new csLOD;
} else
{
grp = new csGroup;
}

grp->addChild(obj);
char **xtraFiles = args.getRemainingArgs();
for (i=0;i<numFiles;i++)
{
opNotify(opNotice, opNull,
“Loading file %d %s\n”,i,xtraFiles[i]);
obj = loader->load(xtraFiles[i]);

if (obj)
{

if (doDeleteSurf)
{
 deleteSurfTree(obj,xtraFiles[i]);
}
if (doColorTag)
{
 cTable = new colorTable(colorFile);
 cTable->setColorTree(obj,xtraFiles[i]);
}
 grp->addChild(obj);
}
}

356

Appendix D: Scene Graph Tuning With the opoptimize Application

Load the Scene Graph Data (cont.)

See addLOD.cxx. if (LODfiles)
{
setupLOD((csLOD *)grp,(csSwitch::SwitchEnum)0);
}

root = grp;
}

// Throw the loader away, we’re done with it
delete loader;

Build Topology and Tessellate

The most accurate topology, which yields
crack-free tessellations, is created by two
traversals of the scene graph: one to establish
adjacencies of surfaces, and the second to
tessellate the surfaces. See “Building Topology:
Computing and Using Connectivity Information”
on page 203.

//build topology if we haven’t done it
if (obj && topoOption == TOPO_TWO_PASS)
{

fprintf(stderr, “Building topology starts ...
\n”);
topo->buildTopology();
fprintf(stderr, “Building topology done\n”);

You can tessellate higher-order surface
representations and view the scene, or in batch
processing, not view the scene but write the scene
graph (possibly with topology information) to a
.csb file. See “Saving and Loading Scene-Graph
Files” on page 16.

if(tess)
{
fprintf(stderr, “Tessellation starts ... \n”);
tess->apply(obj);
fprintf(stderr, “Tessellation done ... \n”);
}

else

{
fprintf(stderr, “No tessellation is
performed\n”);
}

Remove Childless Nodes and Color Bindings

See the files removeEmpty.h and removeEmpty.cxx. // Run through the SG and remove groups with no
// children
if (doRemoveEmptyGrp)
{
 obj = removeEmpty(root);
}

opoptimize Code

357

Remove Childless Nodes and Color Bindings
(cont.)

csType *type = csTriFanSet::getClassType();
if (doTriStrip || doRandomTriStrip)
{
 type = csTriStripSet::getClassType();
}

See “Removing Color Bindings” on page 32. if (removeColors)
opRemoveColorBindings(root);

Remove Small Objects from the Scene

You can remove small objects from the rendering
pipeline. See “Detail Culling” on page 69.

csSphereBound sph;
root->getSphereBound (sph);
opNotify(opNotice, opNull,

“Root bounding sphere is %f\n”,sph.radius);
if (doDetail)
{
opDetailSimplify *dsimp = new opDetailSimplify;
// Compare radius of geosets to radius of overall
// model so more of the smaller pieces are culled.
if (doRootRadius)
{
 dsimp->setRootRadius(root_radius);
}
dsimp->setSizeRatio (detail_ratio);
dsimp->apply (root);
}

Remove Childless Nodes After Detail Cull

See the files removeEmpty.h and removeEmpty.cxx. // Run through the SG and remove groups with no
children
if (doRemoveEmptyGrp)
{
 root = removeEmpty(root);
}

358

Appendix D: Scene Graph Tuning With the opoptimize Application

Spatialize the Scene Graph

If you have a scene graph with too many small
csGeosets, you can combine them and develop a
graph consisting of a root node with one child that
contains all of the triangles of the original graph.
See “Merging csGeoSets in a Scene Graph:
opCombineGeoSets” on page 81.

if (combineGSet)
{
// For now, don’t generate colors
root =
(csGroup *)opCombineGeoSets::convert(root,type);
}

Spatialize the Scene Graph (cont.)

You can re-organize existing nodes to reflect their
spatial relations (see “Spatializing a Scene Graph:
opGeoSpatialize” on page 78) or spatially
re-organize triangles in a csGeoSet (see
“Spatialization Tool: opSpatialize” on page 76).
The function geoSpatializeTree() is defined in
geoSpatialize.cxx and spatializeTree() is defined in
spatialize.cxx. These functions apply the
spatialization methods to the whole scene graph.

if (geospatialize)
{
// Spatialize based on combining everything below
// a particular group, then chop it up into smaller
// pieces if it exceeds maxGoal
geoSpatializeTree(root,minGoal,maxGoal,type);
} else if (spatialize)
{
spatializeTree(root,minGoal,maxGoal,type);
}

Print Scene Graph

This is the Cosmo3D method to write out the
scene graph.

if (writeOutput)
{
csOutput *output = new csOutput(stdout);
output->write(root);
}

opoptimize Code

359

Remove Triangles and Create Levels of Detail

You can use either of two simplification
algorithms to remove triangles from a mesh. See
“Creating LODs: opSRASimplify” on page 47 and
“Rossignac Simplification Algorithm:
opLatticeSimplify” on page 51.

if (doSRASimplify || makeLOD)
{
// Default is to use percentage
// of model as a target goal
 if (SRAcount)
 {
 // Check if both -simpPercent and -simpCount
 // options were used at the same time
 if (SRApercent)
 {
 opNotify(opFatal,opUsage,”Can not use both
 -simpPercent and -simpCount at the same
 time. Using only -simpCount option\n”);
 }
 opTriStats stats;
 stats.apply(root);
 percent = 100.0*((float)polyCount/
 (float)stats.getTriCount());

 // User changes these settings
 simplifier.setPercent(percent);
 simplifier.setFAngle(fAngle);

 } else if (SRApercent)

 { // User changes these settings
 simplifier.setPercent(percent);
 simplifier.setFAngle(fAngle);
 }

 if (SRAestimate)
 {

 simplifier.setAccurateMethod(false);
 }

360

Appendix D: Scene Graph Tuning With the opoptimize Application

Remove Triangles and Create Levels of Detail

The functions simplifyTree(),
simplifySameTree(), and
latticeSimplifySameTree() traverse the scene
graph and simplify all csGeoSets. See the files
simplify.h, simplify.cxx, and simplifySameTree.cxx.

 if (makeLOD)
 {
 fprintf(stderr,”Simplifying ...”);
 csGroup *simpObj =
 simplifyTree(root, &simplifier);
 fprintf(stderr,”Done\n”);
 // Set child0 as default LOD to be drawn
 root = addLODChild(root,simpObj,0);
 } else
 {
 fprintf(stderr,”Simplifying ...”);
 csGroup *simpObj =
 simplifySameTree(root, &simplifier);
 fprintf(stderr,”Done\n”);
 root = simpObj;
 }
}
else if (doLatticeSimplify)
{
 opNotify(opInfo,opNull,
 ”Invoking Rossignac simplifier with
 gridSpacing =%2.3f\n”,gridSpacing);
 csGroup *simpObj =
 latticeSimplifySameTree(root, gridSpacing);
 gridSpacing *= 2;
 fprintf(stderr,”Done\n”);
 root = simpObj;
}

opoptimize Code

361

Create OpenGL Connected Primitives

To reduce the load on the graphics hardware, you
can reduce redundant vertex information by
combining triangles into fans of a minimum size,
and combining the remainder into triangle strips
(using either a single or multiple processors). See
“Merging Triangles Into Both Strips and Fans:
opTriFanAndStrip” on page 38 and “Merging
Triangles Using Multiple Processors:
opMPTriFanAndStrip” on page 40.

if (doTriFanStrip)
{
// Only create trifans if they can be of a minimum
// Fan Length.
opTriFanAndStrip tfs(minFanSize);
tfs.apply(root);
}
else if (doMPTriFanStrip)
{
// Only create trifans if they can be of a minimum
Fan Length.
opMPTriFanAndStrip tfs(minFanSize);
tfs.apply(root);

You can create just triangle strips to reduce
redundant vertex information, rather than create
both triangle fans and triangle strips. See
“Merging Triangles Into Strips: opTriStripper” on
page 37.
The methods of opTriStripper work only on a
csGeoSet. The function triStripTree() traverses
the whole scene graph, applying the methods of
opTriStripper to every csGeoSet (see triStrip.cxx).

} else if
((doTriStrip || doRandomTriStrip) && !combineGSet
)
{
bool useRandomColor;
fprintf(stderr,”TriStripping ...”);
if (doRandomTriStrip)
 useRandomColor = true;
else
 useRandomColor = false;
triStripTree(root,useRandomColor);
fprintf(stderr,”Done\n”);

You can create just triangle fans to reduce
redundant vertex information, rather than create
both triangle fans and triangle strips. See
“Merging Triangles Into Fans: opTriFanner” on
page 36.
The methods of opTriFanner work only on a
csGeoSet. The function triFanTree() traverses the
whole scene graph, applying the methods of
opTriFanner to every csGeoSet. (see triFan.cxx).

}else if (doTriFan && !combineGSet)
{
bool useRandomColor = false;
fprintf(stderr,”TriFanning ...”);
triFanTree(root,useRandomColor);
}

362

Appendix D: Scene Graph Tuning With the opoptimize Application

Rescale Objects in Scene

if (doScale)
{
csGroup *newroot = new csGroup;
csTransform *xform = new csTransform;
xform->setScale
(scale_factor, scale_factor, scale_factor);
newroot->addChild (xform);
xform->addChild (root);
root = newroot;
}

Collect Vertex Statistics and Print Them

See “Error Handling and Notification” on
page 290 and “Getting Statistics About a Scene
Graph: opTriStats” on page 294.

// Get stats on the scene graph
opTriStats stats;
stats.apply(root);
opNotify(opNotice, opNull,
“Scene statistics:\n”);
stats.print();

Write Scene Graph to File

You can run opoptimize in batch mode without
viewing the effects of the scene-graph
manipulation tools.

 if (writeCSB)
{
csdStoreFile_csb(root,outFile);

}
else
{

opoptimize Code

363

Set Parameters to Draw the Scene

To see the effects of the scene-graph
manipulations, you can use an opViewer and
register the keyboard commands defined by the
keyHandler() with the interaction control class,
an opDrawImpl. See “Viewing Class: opViewer”
on page 19, “Controlling Rendering:
opKeyCallback and opDrawImpl” on page 22,
and “opDrawImpl Subclasses Used In Sample
Applications” on page 24.

if (haveSize)
h = w;

opViewer *viewer =
new opViewer(filename, x, y, w, h);

opDefDrawImpl *di = new opDefDrawImpl(viewer);

if (haveBackgroundColor)
{
viewer->setBackgroundColor(
backgroundRed,
backgroundGreen,
backgroundBlue,
backgroundAlpha);

}

di->registerKey(‘c’, keyHandler, “Tri-strip a
shape node (random colors)”);
di->registerKey(‘C’, keyHandler, “Tri-strip a
shape node (normal colors)”);
di->registerKey(‘g’, keyHandler,
“Go simplify single a shape node.”);
di->registerKey(‘G’, keyHandler,
“Go simplify single a shape node using Rossignac
algorithm.”);
di->registerKey(‘+’, keyHandler,
“See next LOD, less detail.”);
di->registerKey(‘-’, keyHandler,
“See previous LOD, more detail.”);
di->registerKey(‘z’, keyHandler,
“Save scene graph of model.”);

 // Use default DrawImpl until pick invoked
opPickDrawImpl *pi = new opPickDrawImpl(viewer);
if (showDelete)
pi->enableDelete ();
if (enableColoring)
pi->enableColoring (colorTagFile, colorTag);

364

Appendix D: Scene Graph Tuning With the opoptimize Application

Draw the Scene

You can set the model orientation. See “Viewing
Class: opViewer” on page 19.

viewer->addChild(root);
viewer->setViewPoint(root);

if (haveRotation)
{
viewer->setModelRotation(vx, vy, vz, angle);
}

if (haveTranslation)
{
viewer->setModelTranslation(tx, ty, tz);
}

You can further reduce the load on the graphics
hardware by using OpenGL display lists. See
“Display Lists” on page 30.

opDListScene((csGroup*)viewer->getRoot());
viewer->eventLoop();
 }
 }
}

365

Appendix E

E. Optimizer Class Hierarchy

This appendix lists the class hierarchies for opViewer, opXMViewer, and Optimizer in
separate sections.

The Optimizer hierarchy includes the Cosmo3D superclass (for example, csShape for
opRep) so that it can serve as an “entry point” to the Cosmo3D hierarchy. See the Cosmo
3D Programmer’s Guide for that class hierarchy.

opGUI Class Hierarchy

opArgParser
opDrawImpl
 opDefDrawImpl
 opOccDrawImpl
 opPickDrawImpl
opFrameInfo
opViewer

opXmGUI class hierarchy

opXmArgParser
opXmElement
opXmViewer
opXmViewerDrawImpl
 opXmDrawImpl

366

Appendix E: Optimizer Class Hierarchy

Optimizer Class Hierarchy

csAction
 opCollapseAppearances
 opDispatchAction
 opTriStats
 opMPTriFanAndStrip
 opMPTriStripper
 opMergeScenes
 opPrintTraversal
 opSceneStats
 opTriFanAndStrip
csDispatch
 opPrintAction
 opTessellateAction
 opTessCuboidAction
 opTessCurve3dAction
 opTessIsoAction
 opTessParaSurfaceAction
 opTessNurbSurfaceAction
 opTessSliceAction
 opTessVecAction
 opTessVec2dAction
 opTessVec3dAction
 opTriStatsDispatch
csDrawAction
 opDrawAction
csGroup
 opHighlight
 opRenderSwitch
csNode
 opInfoNode
 opTopo
csObject
 opScalar
 opCompositeScalar
 opCosScalar
 opPolyScalar
 opSinScalar
csShape
 opGLSpyNode
 opRep
 opCuboid
 opCurve2d
 opCircle2d

Optimizer Class Hierarchy

367

 opHsplineCurve2d
 opLine2d
 opNurbCurve2d
 opPieceWisePolyCurve2d
 opSuperQuadCurve2d
 opCurve3d
 opCircle3d
 opCompositeCurve3d
 opHsplineCurve3d
 opLine3d
 opOrientedLine3d
 opNurbCurve3d
 opPieceWisePolyCurve3d
 opSuperQuadCurve3d
 opDisCurve2d
 opDisCurve3d
 opDisSurface
 opRegMesh
 opParaSurface
 opCone
 opCoons
 opCylinder
 opHsplineSurface
 opNurbSurface
 opPieceWisePolySurface
 opPlane
 opRuled
 opSphere
 opSweptSurface
 opFrenetSweptSurface
 opTorus
csSwitch
 opModifier
 opHighlightModifier
 opPickModifier
csTransform
 opModifierTransform
csVFCullAction
 opAppearanceStats
 opVFCullStage
opAction
 opBFTravAction
 opDFTravAction
 opCombineGeoSets
 opGeoSpatialize

368

Appendix E: Optimizer Class Hierarchy

 opFunctionAction
 opMPFunAction
 opMPFunListAction
opActionInfo
opAdjGraph
opBarrier
opBlockingCounter
opBlockingMPQueue
opBoundary
opColorGenerator
opDLink
 opDNode
 opMeshTri
opDVector
opDebugger
opDetailSimplify
opEdge
opFlattenedLeaf
opFrame
opGenDList
opGenLoader
opGenSList
 opSNodeList
opGeoConverter
opGeoInfo
opGeoTool
 opGeoAttribs
 opGeoBuilder
 opTriFanSetBuilder
 opTriFanner
 opTriSetBuilder
 opTriStripSetBuilder
 opTriStripper
opGlobal
opHashImpl
 opDefaultHashImpl
opHashIterator
opHashTable
opJunction
opLock
opMPPriorityQ
opMPQElement
 opTransaction
opMPQueue
opMutex

Optimizer Class Hierarchy

369

opNotifyData
opOctTreeNode
 opGeoSpatNode
 opTriSpatNode
opPerfPlot
opPick
opPickImpl
opReflMap
opSLink
 opSNode
opSemaphore
opSimplify
 opLatticeSimplify
 opSRASimplify
opSolid
opSpatialize
opStopWatch
opTIDSet
opTaskBlock
opThreadMgr
opTransactionMgr
opTriEdge
opTriSpatialize
opTriangle
opUniqType
opUnits
opVec2
opVec3
opVec4
opVertex

371

Glossary

aliasing

In reflection mapping, a distortion in appearance resulting from two nearby vertices on
a surface that have different normals, and therefore different texture images.

back faces

The portions of a surface where normals point away from the viewpoint.

highlighting

Rendering specific portions of a scene in a distinctive color, indicating a portion of the
scene graph that is ready to be picked and manipulated independently of other objects
in the scene.

LOD

Level of detail. Usually refers to a csLOD scene graph node, a subclass of csSwitch, that
allows you to select the accuracy with which you render an object. The csLOD node
selects amongst its children based on the distance from the viewpoint to the node. The
children are indexed by an integer. Typically, as the index increases, the rendering rate
also increases, and the amount of detail in the child decreases.

local environment

For reflection mapping, the distance to the texture image environment map is finite;
reflections do not depend solely on the direction of the reflection angle. Reflections from
a large flat surface vary; they show the alternating lights in the room (see Figure 8-2).

local viewer

For reflection mapping, the distance between the viewpoint and the surface is finite. The
texture coordinates depend on the complete ray-path geometry: the location of the
viewpoint and the location of the reflecting surface point and its normal. These
quantities, and the distance to the texture image, define the point where a ray intersects
the cylinder (see Figure 8-2).

372

Glossary

occlusion culling

Eliminating from the graphics pipeline objects that cannot be seen from the viewpoint
because they are behind foreground objects.

picking

Selecting objects from a scene and manipulating them independently from the rest of the
objects in the scene. For example, removing a wheel from a rendered car and moving it
about on the screen.

post-node callback

A traversal callback implemented after a traverser leaves a node.

pre-node callback

A traversal callback implemented before a traverser enters a node.

reflection mapping

A method of simulating a complex lighting environment in which you treat a surface as
a reflector and follow one ray (from your eye and reflecting off the surface) to select a
point on a texture image that defines the visual environment. As an object rotates in the
environment, the image appears to move over the surface, in contrast to perhaps
better-known texture-mapping techniques, which fix an image on a surface.

remote environment

For reflection mapping, the reflection geometry is simplified so that only the direction of
the reflection vector determines texture coordinates. Effectively, the texture map is very
far away (see Figure 8-1).

remote viewer

For reflection mapping, the reflection geometry is simplified so that only the direction
from the viewpoint to the center of the scene determines the ray direction for every point
in the scene: all the rays from the viewpoint are parallel. Effectively, the viewer is very
far away (see Figure 8-1).

reps

Also known as representations. Higher-order geometric primitives, that objects not
made simply from triangles. Typically a rep is more like a pure mathematical object and
must be tessellated with triangles before rendering.

Glossary

373

spatializing

Organizing a scene graph to reflect the spatial relationships of the objects in the scene.

stitching surfaces together

Defining a common boundary for two surfaces.

tessellator

An object that approximates a higher-order geometric surface (a rep) with a set of
triangles. Triangles are OpenGL primitives, but reps typically are not. Tessellation is a
way to render a rep.

texture image

An image that is used in texture or reflection mapping. These operations map each point
on the surface of an object to a point in the texture image. With a texture map, the
association is done once; the texture image is fixed on the surface, even when the surface
moves. With reflection mapping, the image appears as a reflection from a fixed
environment, and slides over a surface as it rotates.

trifans

Also known as triangle fans. A trifan is made of a set of adjacent triangles with one
common vertex. One vertex is required to add a triangle to a trifan. The other two vertices
of the triangle are the one common to all triangles in the fan, and a vertex shared with
only one other triangle. See Figure 3-1 on page 33.

tristrips

Also known as triangle strips. A tristrip is made of a series of adjacent triangles
developed iteratively from one triangle by adding a vertex and sharing two vertices with
a triangle already in the strip. See Figure 3-1 on page 33.

view-frustum culling

Eliminating from the graphics pipeline objects that cannot be seen from the viewpoint
because they are outside the viewing frustum, that is, outside the field of view.

375

Index

A

action objects, 266
callback, 272

adding a scene graph loader, 18
adding surfaces, 203
adjacency information, 155
adjacent surfaces

tessellation, 199
appearances,overriding, 98
avoiding cracks, 199

B

back-face culling, 70
batch processing, 313
Bezier curves, 139
bilinear interpolation, 177
bottlenecks, 29
boundaries maintained by opTopo, 209
boundary index, 209
breadth-first traversal, 244, 248
b-reps, 200
B-splines See NURBS
building a csTriFanSet, 263
building geometry tools, 260
building topology,example, 330

C

CAD applications
higher-order primitives, 115
moving viewpoint, 147

CAD data
NURBS, 136

CAD datasets, 4
callback return values, 245
callbacks

during traversal, 245
in traversal object, 241
post node, 242
pre-node callbacks, 242

circles
in space, 148
in the plane, 129

clearTessellation() method, 207
clock

restarting, 291
stopping, 291

color bindings, 32
removing, sample code, 356

color change, 92
coloring triangle fans, 41
coloring triangle strips, 41
combining csGeoSets, 81
combining GeoSets, 300
command-line parser, 297
compiler error messages, 299
compiler warning messages, 299

376

Index

compiling opoptimize, 336
composite curves, 150
condition variables, 285
cones, 169
connected primitives, 33

example, 361
connecting surface patches, 211
control hull, NURBS, 138
controlling coloring, 259
control parameters for NURBS, 137
convert() function, 80
converting file formats, 16, 206
Coons patch, 178
coordinate mismatches, 199
coordinating scene graph changes, 277
Cosmo3D

csLOD node, 44
file storing tools, 16
functions, 279
lighting effects, 101
scene-graph, 7
vs. Optimizer vectors, 117

cracks
avoiding, 199
possible reasongs, 199

create level-of-detail, 314
creating LOD nodes, 314
creating tessellator

example, 328
creating topology data structures, 328
csAction class, 253
.csb files, 206
csDispatch, 253
csDispatch class, 253
csDrawAction class, 63
csGeoSet

combining, 83, 300

decomposing, 255
spatialization, 75

csLOD class, 44
csShape

creating, 235
spatialization, 84

csTriFanSet building, 263
csTriSet

building, 262
csTriStripSet

building, 264
cuboids, 190
culling

and z-clipping, 62
back faces, 70, 72
detail, 69
occlusion, 60
solving performance problems, 68
toggling, 67
view-frustum, 58

culling partially visible objects, 60
culling scene graph, 57
cull traverser, 73
current-color test, 32
cursor, 89
curves

and trim loops, 153
composite, 150
discrete curves in space, 151
discrete curves in the plane, 144
Hermite spline, 149
in space, 147
in the plane, 124
NURBS, 116
NURBS curve, 181
superquadric, 149
tessellation, 220
trim curve, 154
using splines, 134

377

Index

cylinder map
viewing configuration, 107

cylinders, 165
reflection map, 107

D

database
spatializing, 301

decimateGeoSet() function, 49
decomposing csGeoSets, 255
default drawing options for opViewer, 24
defining key handler, 341
deleting objects, 92
deleting traversal objects, 246
depth-first traversal, 242, 246

illustrated, 243
detail culling, 69
diabling current color test, 32
discrete curves

in space, 151
in the plane, 144

discrete data sets, visualizing, 228
discrete surfaces, 191
display lists, 30
distributing tasks to methods, 267
drawing scene

example, 331
sample code, 364

dvector class, 292
dynamic arrays template, 292

E

edges
defining, 154

efficient graphics data, 29
avoiding mode switching, 32
connected primitives, 33
display lists, 30
removing color bindings, 32
removing csAppearances, 32
short surface normals, 31
vertex arrays, 31

environment mapping, 101
See also reflection mapping

environment variables, 308
error messages, 299
error notification functions, 290
error priority levels, 290
errors,fatal, 290
evaluation functions, 48
evaluator functions, 125
example use

opDisCurve3d, 151
opFrenetSweptSurface, 151
opHsplineCurve3, 151

execution dependencies, 285

F

fatal errors, 290
file formats

conversions, 16, 17, 206
fill bottlenecks, 8
finite-precision coordinate mismatches, 199
fork()DO NOT USE, 281
Frenet frame, 175
functions

polynomials, 119
scalar, 118
trigonometric, 119

378

Index

G

Gaussian reflection maps, 104
geometric primitives, 115, 121
geometry-building classes, hierarchy, 256
geometry tools

base class for building csGeoSetclass, 260
controlling coloring csGeoSetclass, 259
csTriFanSet, 263
decomposing csGeosetreorganizing, 257
low level, 255
triangle sets, 262

glColorMaterial function, 32
granularity of spatialization, 74
graphics data, efficient, 29
graphics pipeline, 29

bottlenecks, 8
introduction, 7

graphing timing measurements, 291

H

hedgehog plots, 229
Hermite spline, 134

curves in space, 149
curves in the plane, 134
surfaces, 188

higher-order geometric primitives, 115, 121
class hierarchy, 122

highlighting objects, 89, 92, 98
host bottlenecks, 8
Hull parameterization, 184

I

improving performance, 299

include files, 338
example, 319

initializing OpenGL Optimizer
example, 320

initializing tessellator, 235
input pointers, 336
interprocess dependencies, 267, 270, 284
iso-surfaces, 229
.iv files, 206

K

keybindings for opDefDrawImpl, 25
keyboard commands, handling, 24
keyboard control of rendering interaction, 23
key handler

defining, 341
keyHandler() in opDefDrawImpl, 24
knot points, 134

Hermite spline, 134
NURBS, 138

L

lattice simplification, 51
level-of-detail node, 44, 302

inserting in a scene graph, 52
inserting in scene graph, 45

levels of detail, 43
libraries required, 307
lighting

effects, 101
two-sided, 71

lines
in space, 147
in the plane, 128

379

Index

load balancing, 62
loading a scene graph, 16
loading scene graph

example, 329
local environment for reflection mapping, 105
local viewer for reflection mapping, 105
locking processes, 281
locks and opMutex, 282
LOD, 213
LOD node, 44, 302

creating, 314
inserting in scene graph, 45

loops
Coons patch, 178
trim loop, 154
trim loops, 153

low-level geometry tools, 255
low-level multiprocessing operations, 266
low-level mutliprocessing controls, 281

M

managing threads, 266
many threads, 273
markRequests() method, 270
matrices, 120
memory

reducing consumption, 259
memory footprint, 5

and reps, 116
mergeLODDemo sample application, 314
merging csGeoSets, 81
merging scene graphs, 52
meshes, 191
mesh tessellation, 233

methods
interprocess control, 270
scheduling, 269

mode observation, 296
mode switching, 32
Motif viewing tools, 25, 90
multiple processes

and culling, 62
multiprocessing

condition variables, 285
interprocess dependencies, 267, 270
locks, 281
low-level controls, 281
low-level operations, 266
many tasks, many processes, 275
one task, many processes, 273
one task, one process, 273
save scene graph modifications, 266
scene-graph changes, 277
scheduling methods, 267, 269
semaphores, 283
tasks, 266, 272
tools, 265
waiting on a task, 284

multiprocess merging of triangles, 40
multiprocess tessellation

example, 237
mutual exclusion, 282

N

node information display, 295
nodes

LOD nodes, 44
non-manifold surface structure, 209
notification threshold, 290

380

Index

NURBS
and Bezier curves, 139
control hull, 138
control hull indexing, 183
control parameters, 137
curves, 116
curves in space, 149
curves in the plane, 141
equation for curve, 140
equation for surface, 185
introduction to, 136
knot points, 138
Optimizer classes, 137
surfaces, 116, 181
weights for control points, 139

O

occlusion culling, 60
load balancing, 62
rendering tool, 63, 65
spatialization, 62
tuning, 68

octrees, 74
OP_NOTIFY_LEVEL, 290
opActionDisp and traversal object deletion, 246
opActionInfo class, 248, 249, 272

declared, 272
opArgParser class

declared, 298
example, 320

opBackFaceCullScene() function, 72
opBFTravAction class, 248

declared, 248
opBlockingCommit(), 277, 280
opBlockingCommit() function, 280
opBlockingCounter, 266

declared, 285

opBoundary class, 200, 209
declared, 210
methods, 210

opCircle2d class
declared, 130

opCircle3d class, 148
opColorGenerator class

declared, 259
opColorizeStrips() function, 41
opCombineGeoSets class

declared, 83
opCommit() Function, 277
opCommit() function, 277, 280
opCompositeCurve3d class

declared, 150
opCompositeScalar class, 118
opCone class

declared, 170
opCoons class

declared, 180
opCosScalar class, 119
opCuboid class

declared, 190
opCurve2d class, 124, 154, 155

declared, 126
opCurve2d evaluator functions, 125
opCurve3d class, 147
opCylinder class

declared, 166
opDefDrawImpl

keybindings, 25
opDetailSimplifyclass

declared, 69
opDFTravAction, 250

declared, 246
opDFTravActioncode sample, 250

381

Index

opDisCurve2d class
declared, 145

opDisCurve3d class, 151, 209
example, 151

opDisSurface class, 191
opDListCSGeometry() function, 30
opDListScene() function, 30
opDrawAction class

declared, 63
opDrawImpl class, 90

declared, 91
methods, 23

opEdge class, 155, 209, 222
declared, 155

OpenGL mode observation, 296
OpenGL Optimizer

overview, 3
OpenGL Optimizer Architecture, 6
OpenGL Programming for the X Window System, 29
opExit(), 15
opFPDebug notification level, 291
opFrame class, 120
opFrenetSweptSurface, 216
opFrenetSweptSurface class, 175

declared, 175
example, 151, 176

opFunctionAction class, 233, 266, 272, 273
declared, 273

opGenLoader
main features, 16

opGeoBuilder class
declared, 261
hierarchy, 256

opGeoConverter, 84
declared, 258
reducing memory consumption, 259

opGeoConverter class, 80

opGeoConverter class, 257
opGeoSpatialize class, 78

declared, 80
opGLArrayEXTCSGeoSet() function, 31
opGLArrayEXTScene() function, 31
opGLSpyNode

declared, 296
opHighlight class, 98

declared, 98
opHsplineCurve2d class, 135, 149
opHsplineCurve3d class, 149

example, 151
opHsplineSurface

declared, 189
opInfoNode class

declared, 295
opInit() function, 15
opKeyCallback, 22, 22, 23
opLatticeSimplify class, 44, 51

declared, 52
opLine2d class

declared, 128
opLine3d class, 147
opLock, 266

declared, 281
opMergeScenes class, 52

declared, 54
opMPFunAction class, 266, 272, 273

declared, 274
opMPFunListAction class, 266, 272, 275

declared, 275
opMPTriFanAndStrip class, 40
opMutex, 266, 282, 285
opNotify(), 15
opNotify() function, 290
opNurbCurve2d class, 137, 141

declared, 141

382

Index

opNurbCurve3d class, 137, 149
opNurbSurface class, 137, 181

declared, 182
opOccDrawImpl class

declared, 65
keybindings, 67

opoptimize sample application, 300, 313, 335
include files, 338
sample command lines, 336

opOrientedLine3d class, 148
opParaSurface class, 156, 209, 222

declared, 156
opPerfPlot class, 291
opPick class, 93

example, 93
opPickDrawImpl class, 92

key bindings, 92
opPieceWisePolyCurve2d class

declared, 143
opPlane class

declared, 160
opPolyScalar class, 119
opPrintScene(), 292
opPrintScene() function, 300
opReflMap class, 101

declared, 108
opRegMesh class, 191, 228, 233

declared, 192
opRemoveColorBindings() function, 32
opRep class, 121

declared, 123
moving from default position, 121

opRuled class
declared, 177

opScalar class, 118
opSemaphore class, 266, 285

declared, 283

opSetNotifyHandler() function, 290
opSetNotifyLevel() function, 290
opShortNormsScene() function, 31
opSimplify class, 44

declared, 45
opSinScalar, 119
opSolid class

methods, 211
opSpatialize class, 255

declared, 76
opSphere class

declared, 163
example, 164

opSRASimplify class, 44
opStopWatch class, 291
opSuperQuad3d class, 149
opSuperQuadCurve2d class, 131

declared, 133
opSweptSurface class, 171

declared, 173
opSync() function, 277, 280
opTaskBlock class, 266, 284, 285

declared, 284
opTessCuboidAction class

declared, 221
opTessCurve3dAction class

declared, 220
opTessellateAction class

declared, 218
opTessIsoAction class, 228

declared, 229
opTessNurbSurfaceAction, 228
opTessParaSurfaceAction class

declared, 223
opTessParaSurface class, 222

example, 225

383

Index

opTessSliceAction class, 228, 230
declared, 230

opTessVec2dAction class, 229, 233
opTessVec3dAction class, 229, 233
opTessVecAction class, 232

declared, 232
methods, 232

opThreadManager class, 233
opThreadMgr class, 266, 268

declared, 268
methods, 269

optimizeDemo, 301
Optimizer, overview, 3
opTopo class, 155, 200

declared, 207
opTorus class

declared, 168
opTransaction class, 279

declared, 279
opTransactionMgr class, 266, 277

methods, 277
opTravDisp and callback return value, 245
opTriFanAndStrip class

declared, 39
opTriFanner class

declared, 36
opTriFanSetBuilder class, 256

declared, 263
opTriSetBuilder, 256

declared, 262
opTriSpatialize class

declared, 86
opTriStats class, 294
opTriStatsDispatch

declared, 293
opTriStripper class

declared, 37

opTriStripSetBuilder class, 256, 264
opVec2 class, 117
opVec3 class, 117
opVec4 class, 117
opVersion() method, 15
opviewer, 300, 317
opViewer class, 19

drawing options, default, 24
methods, 21

opviewer sample application, 312
opviz application, 233

main loop, 234
opviz sample application, 196, 314
opVizViewer class, 19, 233, 234
opxdemo sample application, 313
opXmDrawImpl class, 313

methods, 25
opXmViewer, 25, 90
opxmviewer sample application, 312

P

parameterization
cones, 169
planes, 160
spheres, 162
torus, 167

parametric circles in the plane, 129
parametric curves

in space, 147
parametric lines in the plane, 128
parametric surfaces, 151

base class, 156
planes, 160
stitching, 199
tessallation, 222

384

Index

partially visible objects
culling, 60

performance
culling, 68
improving, 299
indicators, 291
picking, 90
spaztialization, 73
view-frustum culling, 58

pi, 117
picking objects, 89, 92

example, 93
pipeline, 29
pipeline load balancing, 62
planar curves, 124

mathematical description, 124
planes, 160

circles in the plane, 129
discrete curves, 144
lines in the plane, 128
NURBS curves, 141
superquadric curves in the plane, 131

Plot3D data, 233
pointers, input, 336
points, 117
polygon count, reducing, 300
polynomials, 119
post-node callbacks, 242
pre-node callbacks, 242
primitives

higher-order geometric primitives, 121
orienting in reference frame, 120

printing scene graph, 292, 358
priority for error messages, 290
problems with tessallation, 303
processes

execution dependencies, 285
profile of swept surface, 171

R

reducing polygon count, 300
reference frame, orienting primitive, 120
reflection mapping, 101, 315

cylinder map, 107
Gaussian Map, 104
local environment, 105
local viewer, 105
remote environment, 102
remote viewer, 102
simple, 102
sphere, 104
tool, 108

remote environment for reflection mapping, 102
removing childless nodes, example, 356
removing color binding, 32
removing csAppearances, 32
removing triangles, sample code, 359
rendering higher-order reps, 314
rendering interaction keyboard control, 23
representations, 116
reps, 116

and memory footprint, 116
base class, 121
using effectively, 117

repTest sample application, 121, 152, 164, 186, 215,
225, 314

required libraries, 307
rescaling objects

sample code, 362
return values of scene graph tools, 336
ruled surfaces, 176
running opoptimize, 336
run-time warning messages, 299

385

Index

S

sample applications, 311
mergeLODDemo, 314
opoptimize, 313, 335
opviewer, 312, 317
opviz, 314
opxdemo, 313
opxmviewer, 312
repTest, 121, 152, 164, 186, 314
running, 311
topoTest, 205, 314
zebraFly, 107, 315

sample code
drawing scene, 364
mergeLODDemo, 52
opDFTravAction, 250
opFrenetSweptSurface class, 176
opHighlight, 99
opInfoNode, 296
opMutex, 282
opTessParaSurface, 225
opTriStats, 294
opviz, 196, 233, 234
removing triangles, 359
repTest, 186
rescaling objects, 362
simplification traversal, 250
tessellating an opRegMesh, 233

scalar functions, 118
see functions, 118

scalars
defining, 118

scene graph
coordinating changes, 277
culling, 57
inserting LOD node, 45
loading, sample code, 353
modifying, 93
printing, 292, 358

simplification tools, 43
simplifying, 302
spatialization, 73
statistics, 292
traversing, 241

scene graph as a mutable object, 6
scene graph files

loading, 16
writing, 16

scene graph loader
example, 329

scene graph loader, adding, 18
scene graph tool return values, 336
scene graph topology tools, 200
scene graph tuning, 335
scheduling methods, 269
scientific visualization, 228, 314

opVizViewer, 234
semaphores, 266, 283
shared boundaries, trim curve, 209
short normals, 31
short surface normals, 31
simplification

errors, 51
simplification algorithm

lattice simplification, 51
simplifier, 45

evaluation function, 48
simplifying all csGeoSets in a graph, 250
simplifying scene graph, 302
slow tessalation, 304
solids, 211

forming with surface patches, 211
spatial curves, 147
spatialization, 73, 76

algorithm, 74
and octrees, 74

386

Index

and view-frustum culling, 59
combining csGeoSets, 81
component procedures, 77
granularity, 74
in example program, 358
occlusion culling, 62
of a csShape, 84
of scene graph nodes, 78
tools, 75

spatializing database, 301
specifying surface cross sections, 124
specifying tasks for thread manager, 272
spheres, 162

reflection map, 104
splines, 134

Hermite spline, 188
sproc(), 281
sproc() DO NOT USE, 281
statistical data, 292
stitching surfaces, 199
superquadric curves

in space, 149
in the plane, 131

surface contact information, 199
surface edges, 155
surface normals

shortening representation, 31
surfaces

adding, 203
adjacency information, 155
Coons patch, 178
cubes, 190
defining edges, 154
Hermite spline, 188
non-manifold, 209
NURBS, 116
NURBS curve, 181
parametric, 151
ruled surface, 176

specifying cross sections, 124
swept surfaces, 171

swept surfaces, 171
Frenet frame, 175
specifying cross sections, 124

T

tasks
defining for thread manager, 272
many tasks, many threads, 275
one task, many threads, 273
one task, one thread, 273

tessalation
illustration, 215

tessellation
adjacent surfaces, 199
and reflection mapping, 102
base class, 217
consistent, 200
controlling cracks, 216
creating csShape node, 235
curves, 220
deleting data, 207
iso-surfaces, 229
meshes, 228
meshes (sample code), 233
multiprocess, example, 237
NURBS surfaces, 228
opCuboid class, 221
parametric surfaces, 222
problems, 303
too slow, 304
using several tessellators, 217

tessellator
creating, sample code, 351
definition, 213
example, 328
initializing, 235

387

Index

thread management, 266
thread manager

defining tasks, 272
threads

locking, 281
many tasks, many threads, 275
one task, 273
one task, one thread, 273
waiting for task completion, 284

timing measurements
graphing, 291

toggling culling, 67
topology, 314

adding to file, 206
building, example code, 356
information, reading and writing, 206
sample code, 352
solids, 211
tools, 200

topology-building
from list of surfaces, 204
general tasks, 199
imported surfaces, 204
strategies, 203
summary, 205
two traversals, 204

topology data structures
creating, 328

topoTest sample application, 205, 314
tori, 167
transaction manager

submitting Cosmo3D functions, 279
transfer bottleneck, 29
transform bottlenecks, 8
traversal objects, 241

deleting, 246
traversals

applying a csDispatch, 253
breadth first, 244, 248

callbacks, 242, 245
controls, 245
depth first, 242, 246
post-node callbacks, 242
pre-node callbacks, 242
sample code, 250
two traversal topology, 204

traversing large scene graphs, 241
triangle fans, 33

attribute sharing, 34
coloring, 41
construction, 34

triangles
merging into strips, 37

triangle strips, 33
attribute sharing, 34
coloring, 41
construction, 34
tuning, 38

trigonometric functions, 119
trim curve, 124, 154, 209

boundary index, 209
trim loop, 154
trim loops and curves, 153
troubleshooting, 299
tuning occlusion culling, 68
tuning scene graph data, 300
two-sided lighting, 71
two-sided materials, 71
two traversal topology, 204

U

updateViewInfo() function, 108
utilities, 289

388

Index

V

vectors, 117
dynamic array of arbitrary objects, 292

version number string, 15
vertex arrays, 31
view-frustum culling, 58

and spatialization, 59
rendering tool, 63, 65
when to use, 58

visitor behavioral pattern, 253
visualizing CAD datasets, 4
visualizing discrete data sets, 228

W

 waitForRequests() methods, 270
warning messages

compiler, 299
run time, 299

weights for NURBS control points, 139
winged data structures, 200
writing a scene graph file, 16

Z

z-clipping
and culling, 62

zebraFly sample application, 107, 315

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2852-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

