
IRIX Checkpoint and Restart™

Operation Guide

Document Number 007-3236-002

IRIX Checkpoint and Restart™ Operation Guide
Document Number 007-3236-002

CONTRIBUTORS

Written by Bill Tuthill
Production by Michael Dixon
Engineering contributions by Jack Jia and Ken Beck
St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica

© 1997, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

OpenGL, Silicon Graphics, and the Silicon Graphics logo are registered trademarks,
and CHALLENGEarray, IRIS InSight, IRIX, IRIX Checkpoint and Restart, IRIX CPR,
POWER CHALLENGEarray, and XFS are trademarks of Silicon Graphics, Inc.MIPS
is a registered trademark, and R10000 is a trademark of MIPS Technologies, Inc.

Cisco is a registered trademark of Cisco Systems, Inc. Informix is a registered
trademark of Informix Software, Inc. Motif is a registered trademark of the Open
Software Foundation. NFS is a registered trademark of Sun Microsystems, Inc.
Oracle is a registered trademark of Oracle Corporation. POSIX is a registered
trademark of IEEE, Inc. Sybase is a registered trademark of Sybase, Inc. UNIX is a
registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Ltd. X Window System is a trademark of the
Massachusetts Institute of Technology.

iii

Contents

List of Figures vii

List of Tables ix

List of Examples xi

About This Guide xiii
Intended Audience xiii
What This Guide Contains xiii
Resources for Further Information xiii
Conventions Used in This Guide xiv

1. Using Checkpoint and Restart 1
Definition of Terms 1

Verifying eoe.sw.cpr 2
Checkpointing Processes 3

Naming the Checkpoint Image 3
Job Control Shells 4

Restarting Processes 4
Persistence of Statefiles 5
Job Control Option 5

Querying Checkpoint Status 5
Deleting Statefiles 5
Graphical Interface—cview 6
Checkpoint and Restart Attributes 8

FILE Policy 9
WILL Policy 9
CDIR or RDIR Policy 10
FORK Policy 10
Example Attribute File 10

iv

Contents

2. Administering Checkpoint and Restart 11
Responsibilities of the Administrator 11
Installing eoe.sw.cpr 11
Managing Checkpoint Images 12

Statefile Location and Content 12
Monitoring a Checkpoint 13
Removing Statefiles 13
Disabling User Checkpoints 13

Checkpointable Objects 14
Non-Checkpointable Objects 14
Troubleshooting 15

Failure to Checkpoint 15
Failure to Restart 16

3. Programming Checkpoint and Restart 17
Design of Checkpoint and Restart 17

POSIX Compliance 17
IRIX Extensions 17

Programming Issues 18
CPR Library Interfaces 18
SIGCKPT and SIGRESTART 18
Adding Event Handlers 19
Preparing for Checkpoint 20
Handling a Checkpoint 20

Checkpoint Time-outs 21
Handling a Restart 22

Contents

v

Checkpoint and Restart of System Objects 22
Checkpoint-Safe Objects 23

Supported Process Groupings 23
User Memory 23
System States in Kernel 23
System Calls 23
SIgnals 24
Open Files and Devices 24
Open Pipes 24
SVR4 Shared Memory 24
Application Licensing 24
Network Applications Using Array Services 25
Other Supported Functionality 25
Compatibility Between Releases 25

Limitations and Caveats 26
SVR4 Semaphores and Messages 26
Networking Socket Connections 26
Other Special Devices 26
Graphics 26
Miscellaneous Restrictions 27

Saving State With ckpt_create() 27
Resuming With ckpt_restart() 28
Checking Status With ckpt_stat() 29
Removing Checkpoints With ckpt_remove() 30
Preparing Checkpoints With ckpt_setup() 30

A. Online Help 31
Overview 31
How to Checkpoint 31
How to Restart 31
Querying a Statefile 32
Deleting a Statefile 32

Index 33

vii

List of Figures

Figure 1-1 Checkpoint Control Panel (cview) 6
Figure 1-2 Restart Control Panel (cview) 7

ix

List of Tables

Table 1-1 IDtype Modifier Options 8
Table 1-2 Policy Names and Actions 8
Table 2-1 CPR Product Subsystems 11
Table 2-2 Checkpoint Failure Messages 15
Table 2-3 Restart Failure Messages 16

xi

List of Examples

Example 3-1 Checkpoint and Restart Event Handling 20
Example 3-2 Routine to Handle Checkpoint 21
Example 3-3 Setting an Alarm in Callback 21
Example 3-4 Routine to Handle Restart 22
Example 3-5 Sample Usage of ckpt_create() Function 27
Example 3-6 Sample Usage of ckpt_restart() Function 28
Example 3-7 Sample Usage of ckpt_stat() Function 29
Example 3-8 Sample Usage of ckpt_remove() Function 30
Example 3-9 Implementation of ckpt_setup() Function 30

xiii

About This Guide

IRIX Checkpoint and Restart (IRIX CPR) is a facility for saving the state of running
processes, and for later resuming execution where it left off. Based on the POSIX 1003.1m
standard, this facility was initially implemented in IRIX release 6.4.

This IRIX Checkpoint and Restart Operation Guide describes how to use and administer
IRIX CPR, and how to program checkpointing applications.

Intended Audience

This document is intended for anyone who needs to checkpoint and restart processes,
including users, administrators, and application programmers.

What This Guide Contains

Here is an overview of the material in this book:

• Chapter 1, “Using Checkpoint and Restart,” explains how to checkpoint and restart
a process, and how to set CPR control options.

• Chapter 2, “Administering Checkpoint and Restart,” describes how to install and
administer CPR, and how to configure state files.

• Chapter 3, “Programming Checkpoint and Restart,” talks about how to program
checkpoints into applications.

Resources for Further Information

The cpr(1) reference page describes the usage and options of the cpr command. The
ckpt_create(3) reference page documents the CPR programming interface; ckpt_setup(3),
ckpt_restart(3), ckpt_stat(3), and ckpt_remove(3) are links to the same page.

xiv

About This Guide

The atcheckpoint(3C) reference page describes how to set up checkpoint and restart
event handlers; atrestart(3C) is a link to that page.

The internal Web site http://taco.engr.sgi.com/CPR/ is worth visiting for updates about
the product. There is no external Web site available yet.

Conventions Used in This Guide

The table below lists typographic conventions used in this guide.

Purpose Example

Names of shell commands The cpr command is a command-line interface for CPR.

Command-line options The -c option checkpoints a process, and -r restarts it.

System calls and library routines Processes can checkpoint themselves with ckpt_create().

Filenames and pathnames Statefile attributes are read from the $HOME/.cpr file.

User input (variables in italic) cpr -c statefile -p processID

Exact quotes of computer output state10-19: Permission denied.

Titles of manuals Refer to IRIX Admin: System Configuration and Operation.

A term defined in the glossary A DSO (dynamic shared object) is linkable at runtime.

1

Chapter 1

1. Using Checkpoint and Restart

IRIX Checkpoint and Restart (CPR) is a facility for saving a running process or set of
processes and, at some later time, restarting the saved process or processes from the point
already reached, without starting all over again. The checkpoint image is saved in a set
of disk files, and restarted by reading saved state from these files to resume execution.

The cpr command provides a command-line interface for checkpointing, restarting
checkpointed processes, checking the status of checkpoint and restart operations, and
deleting files that contain images of checkpointed processes.

Checkpointing is useful for halting and continuing resource-intensive programs that
take a long time to run. IRIX CPR can help when you need to:

• improve a system’s load balancing and scheduling

• run complex simulation or modelling applications

• replace hardware for high-availability or failsafe applications

Processes can continue to run after checkpoint, and can be checkpointed multiple times.

Definition of Terms

A statefile is a directory containing information about a process or set of processes
(including the names of open files and system objects). Statefiles contain all available
information about a running process, to enable restart. The new process(es) should
behave just as if the old process(es) had continued. Statefiles are stored as files inside a
directory, and are protected by normal IRIX security mechanisms.

A checkpoint owner is the owner of all checkpointed processes and the resulting statefiles.
Only the checkpoint owner or superuser is permitted to perform a checkpoint. If targeted
processes have multiple owners, only the superuser is permitted to checkpoint them.
Only the checkpoint owner or superuser can restart checkpointed process(es) from a
statefile. If the superuser performed a checkpoint, only the superuser can restart it.

2

Chapter 1: Using Checkpoint and Restart

A process group is a set of processes that constitute a logical job—they share the same
process group ID. For example, modern UNIX shells arrange pipelined programs into a
process group, so they all can be suspended and managed with the shell’s job control
facilities. You can determine the process group ID using the -p option of the jobs
command, built into all but the Bourne shell; see csh(1) or ksh(1). Programmers can
change the process group ID using the setpgid() system call; see setpgid(2).

A process session is a set of processes started from the same physical or logical terminal.
Such processes share the same session ID. You can determine the process group ID and
the session ID (SID) of any process by giving the -j option to the ps command; see ps(1).
Programmers can change the session ID using the setsid() system call; see setsid(2).

An IRIX array session is a set of conceptually related processes running on different nodes
in an array. Support is provided by the array services daemon, which knows about array
configuration and provides functions for describing and administering the processes of
a single job. The principal use of array services is to run jobs that are large enough to span
two or more machines.

A process hierarchy is the set of all child processes with a common parent. The process
hierarchy is identified by giving the process ID of the parent process. A process session
is one example of a process hierarchy, but by no means the only example.

A share group is a group of processes created from a common ancestor by sproc() system
calls; see sproc(2). The sproc() call is like fork(), except that after sproc(), the new child
process can share the virtual address space of the parent process. The parent and child
each have their own program counter value and stack pointer, but text and data space are
visible to both processes. This provides a mechanism for building parallel programs.

Verifying eoe.sw.cpr

To verify that CPR runs on your system, check that the eoe.sw.cpr subsystem is installed:

$ versions eoe.sw.cpr
I = Installed, R = Removed
 Name Date Description
I eoe 09/28/96 IRIX Execution Environment, 6.3
I eoe.sw 09/14/96 IRIX Execution Environment Software
I eoe.sw.cpr 09/14/96 Checkpoint and Restart

If no CPR subsystem is installed, see “Installing eoe.sw.cpr” on page 11 for instructions
on installing CPR.

Checkpointing Processes

3

Checkpointing Processes

To checkpoint a set of processes (one process or more), employ the -c option of the cpr
command, providing a statefile name, and specifying a process ID with the -p option. For
example, to checkpoint process 111 into statefile ckptSep7, type this command:

$ cpr -c ckptSep7 -p 1111

To checkpoint all processes in a process group, type the process group ID (for example,
123) followed by the :GID modifier:

$ cpr -c statefile -p 123:GID

To checkpoint all processes in a process session, type the process session ID (for example,
345) followed by the :SID modifier:

$ cpr -c statefile -p 345:SID

To checkpoint all processes in an IRIX array session, type the array session ID (for
example, 0x8000abcd00001111) followed by the :ASH modifier:

$ cpr -c statefile -p 0x8000abcd00001111:ASH

To checkpoint all processes in a process hierarchy, type the parent process ID (for
example, 567) followed by the :HID modifier:

$ cpr -c statefile -p 567:HID

To checkpoint all processes in an sproc() share group, type the share group ID (for
example, 789) followed by the :SGP modifier:

$ cpr -c statefile -p 789:SGP

It is possible to combine process designators using the comma separator, as in the
following example. All processes are recorded in the same statefile.

$ cpr -c ckptSep8 -p 1113,1225,1397:HID

Naming the Checkpoint Image

You can place the statefile anywhere, provided you have write permission for the target
directory, and provided there is enough disk space to store the checkpoint images. You
might want to include the date as part of the statefile name, or you might want to number
statefiles consecutively. The -f option forces overwrite of an existing statefile.

4

Chapter 1: Using Checkpoint and Restart

Job Control Shells

The C shell (csh), Korn shell (ksh or, after IRIX 6.3, sh), Tops C shell (tcsh), and GNU shell
(bash) all support job control. The Bourne shell (bsh, formerly sh) does not. Jobs can be
suspended with Ctrl+Z , backgrounded with the bg built-in command, or foregrounded
with fg. All job control shells provide the jobs built-in command with an -l option to list
process ID numbers, and a -p option to show the process group ID of a job.

Restarting Processes

To restart a set of processes (one process or more), employ the -r option of the cpr
command, providing just the statefile name. For example, to restart the set of processes
checkpointed in ckptSep7, type this command:

$ cpr -j -r ckptSep7

Use the -j option if you want to perform interactive job control after restart. Otherwise,
the process group restored belongs to init, effectively disabling job control.

You may restart more than one statefile with the same cpr command. If a restart involves
more than one process, all restarts must succeed before any process is allowed to run;
otherwise all restarts fail. Restart failure can occur for any of the following reasons:

unavailable PID
The original process ID is not available (already in use), and the option
to allow ANY process ID was not in effect.

component unavailable
Application binaries or libraries are no longer available on the system,
and neither the REPLACE nor SUBSTITUTE option was in effect.

security and data integrity
The user lacks proper permission to restart the statefile, or the restart will
destroy or replace data without proper authorization. Only the
checkpoint owner and the superuser may restart a set of processes.

resource limitation
System resources such as disk space, memory (swap space), or number
of processes allowed, ran out during restart.

other fatal failure
Some important part of a process restart failed for unknown reasons.

Querying Checkpoint Status

5

Persistence of Statefiles

The statefile remains unchanged after restart—cpr does not delete it automatically. To free
disk space, use the -D option of cpr; see the section “Deleting Statefiles.”

Job Control Option

If a checkpoint is issued against an interactive process or a group of processes rooted at
an interactive process, it can be restarted interactively with the -j option. This option
makes processes interactive and job-controllable. The restarted processes run in the
foreground, even the original ones ran in the background. Users may issue job control
signals to background the process if desired. An interactive job is defined as a process
with a controlling terminal; see termio(7). Only one controlling terminal is restored even
if the original process had multiple controlling terminals.

Querying Checkpoint Status

To obtain information about checkpoint status, employ the -i option of the cpr command,
providing the statefile name. You may query more than one statefile at a time. For example,
to get information about the set of processes checkpointed in ckptSep7, either before or
after restart, type this command:

$ cpr -i ckptSep7

This displays information about the statefile revision number, process names, credential
information for the processes, the current working directory, open file information, the
time when the checkpoint was done, and so forth.

Deleting Statefiles

To delete a statefile and its associated open files and system objects, use the -D option of
the cpr command, providing a statefile name. You may delete more than one statefile at a
time. For example, to delete the file ckptSep7, type this command:

$ cpr -D ckptSep7

Only the checkpoint owner and the superuser may delete a statefile directory. Once a
checkpoint statefile has been deleted, restart is no longer possible.

6

Chapter 1: Using Checkpoint and Restart

Graphical Interface—cview

The cview command brings up a graphical interface for CPR and provides access to all
features of the cpr command. Online help is available. The checkpoint control panel,
shown in Figure 1-1, displays a list of processes that may be checkpointed.

Figure 1-1 Checkpoint Control Panel (cview)

Graphical Interface—cview

7

Checkpoint options may be set in step II, and are explained in the section “Checkpoint
and Restart Attributes.” Click the right tab at the bottom to switch panels.

The restart control panel, shown in Figure 1-2, displays a list of statefiles that may be
restarted. The buttons near the bottom query checkpoints and delete statefiles.

Figure 1-2 Restart Control Panel (cview)

8

Chapter 1: Using Checkpoint and Restart

Checkpoint and Restart Attributes

The cpr command reads an attribute file at start-up time to set checkpoint configuration
and control restart behavior. Typical defaults are given in the /etc/cpr_proto sample file.
You can control CPR behavior by creating a similar .cpr attribute file in your home
directory (if $HOME is not set, cpr consults the password entry). The CPR attribute file
consists of one or more CKPT attribute definitions, each in the following format:

CKPT IDtype IDvalue {
 policy: instance: action
 ...
}

Possible values for IDtype are similar to process ID modifiers for the -c option of cpr, and
are shown in Table 1-1. IDvalue specifies the process ID or process set ID.

The policy lines inside the CKPT block specify default actions for CPR to take. Possible
values for policy are shown in Table 1-2.

Table 1-1 IDtype Modifier Options

IDtype Process Type Designation

PID UNIX process ID.

GID UNIX process group ID; see setpgrp(2).

SID UNIX process session ID; see setsid(2).

ASH IRIX array session ID; see array_sessions(5).

HID Process hierarchy (tree) rooted at the given process ID.

SGP IRIX sproc() shared group; see sproc(2).

* A wild card for anything.

Table 1-2 Policy Names and Actions

Policy Name Domain of Action

FILE Policies for handling open files.

WILL Actions on the original process after checkpoint.

CDIR Policy on the original working directory; see chdir(2).

RDIR Policy on the original root directory; see chroot(2).

FORK Policy on original process ID.

Checkpoint and Restart Attributes

9

FILE Policy

The FILE policy is the only one that takes an optional instance field. This field specifies
files that have a unique disposition, other than the default action. For example, in one
case you want to replace a file, but in another case you want to append to a file. The
instance field is enclosed in double quotes and may contain wildcards. For example,
/tmp/* identifies all files in the /tmp directory, and /* identifies all files in the system.

The following action keywords are available for the FILE policy:

MERGE No explicit file save at checkpoint. Upon restart, reopen the file and seek
to the previous offset. This is the default file disposition. It may be used
for files that are not modified after checkpoint, or for files where it is
acceptable to overwrite changes made between checkpoint and restart
time, particularly past the saved offset point. If programs seek before
writing, changes preceding the offset point could be overwritten as well.

IGNORE No explicit file save at checkpoint. Upon restart, reopen the file as it was
originally opened, at offset zero (even if originally opened for append).
If the file was originally opened for writing, as with the fopen() “w” or
“a” flag, this action has the effect of overwriting the entire file.

APPEND No explicit file save at checkpoint. Upon restart, append to the end of the
file. This disposition is good for log files.

REPLACE Explicitly save the file at checkpoint. Upon restart, replace the original
file with the saved one. Any changes made to the original file between
checkpoint and restart time are overwritten by the saved file.

SUBSTITUTE Explicitly save the file at checkpoint. Upon restart, reopen the saved file
as an anonymous substitution for the original file. This is similar to the
REPLACE mode except that the original file remains untouched, unless
specifically altered by the program.

WILL Policy

The following action keywords are available for the WILL policy:

EXIT The original process exits after checkpoint. This is the default action.

KILL Same as above. Has the same effect as the cpr -k option.

CONT The original process continues to run after checkpoint. Has the same
effect as the cpr -g option.

10

Chapter 1: Using Checkpoint and Restart

CDIR or RDIR Policy

The following action keywords are available for the CDIR and RDIR policies:

REPLACE Set the current working directory (CDIR) or the root directory (RDIR) to
those of the original process. This is the default action.

IGNORE Ignore the current working directory (CDIR) or the root directory
(RDIR) of the original process, and restart processes based on the current
working directory or the root directory of the new process environment.

FORK Policy

The following action keywords are available for the FORK policy:

ORIGINAL Do a special fork() to recover the original process ID. This is the default
action.

ANY This says it is acceptable for the application to have any process ID as its
underlying process if the original process ID is already taken by another
running process. In other words, the application itself, internally and in
its relationship to other processes, is PID-unaware. If a set of processes
is PID-unaware, the ANY action can be specified to avoid PID collisions.

There is no attribute equivalent to the cpr -u option for operating system upgrade.

Example Attribute File

The $HOME/cpr file specifies a user’s CPR default attributes. Here is an example of a
custom .cpr attribute file:

CKPT PID 1111 {
 FILE: "/tmp/*": REPLACE
 WILL CONT
 FORK ANY
}

This saves and restores all /tmp files, allows the process to continue after checkpoint, and
permits process ID substitution if needed.

11

Chapter 2

2. Administering Checkpoint and Restart

Responsibilities of the Administrator

IRIX Checkpoint and Restart (CPR) adds the following responsibilities to the system
administrator’s already long list:

• install CPR software on server systems as required

• help users employ CPR on server systems and workstations

• prevent statefiles from filling up available disk space

• delete, or encourage users to delete, unneeded old statefiles

Installing eoe.sw.cpr

The subsystems that make up CPR are listed in Table 2-1.

If CPR is not already installed, follow this procedure to install the software:

1. Load the IRIX software distribution CD-ROM.

2. On the server, become superuser and invoke the inst command, specifying the
location of the CD-ROM software distribution:

$ /bin/su -
Password:
inst -f /CDROM/dist

Table 2-1 CPR Product Subsystems

Subsystem Name Contents

eoe.sw.cpr Checkpoint and restart software.

eoe.man.cpr CPR reference manual pages.

eoe.books.cpr This guide as an IRIS InSight document.

12

Chapter 2: Administering Checkpoint and Restart

3. Prevent installation of all default subsystems using the keep subcommand:

Inst> keep *

For additional information on inst, see the IRIX Admin: Software Installation and
Licensing Guide, or the inst(1M) reference page.

4. Make subsystem selections. To install CPR software, the reference manual pages,
and the CPR manuals for IRIS InSight, enter these commands:

Inst> install eoe.*.cpr
Inst> list i
Inst> go

The list subcommand with the i argument displays all the subsystems marked for
installation. The go subcommand starts installation, which takes some time.

For additional information on available subsystems, see the IRIX Release Notes.

5. Ensure that the following line exists in the /var/sysgen/system/irix.sm file (change
cprstub to cpr if necessary):

USE: cpr

Managing Checkpoint Images

Because of their potential size and longevity, checkpoint images (statefiles) are one aspect
of CPR where intervention by the system administrator may be required.

Statefile Location and Content

The statefile can exist anywhere on a filesystem where the user has write permission,
provided there is enough disk space to store it. Statefiles tend to be slightly larger than
their checkpointed process.

As the system administrator, you might want to create a policy saying that checkpoint
images stored in temporary directories (such as /tmp or /var/spool) are not guaranteed to
remain there. If users want to preserve a statefile indefinitely, they should place it in a
permanent directory that they own themselves, such as their home directory.

Checkpoint images contain much information about a process, including process set IDs,
copies of user data and stack memory, kernel execution states, signal vectors, a list of
open files and devices, pipeline setup, shared memory, array job states, and so on.

Managing Checkpoint Images

13

Monitoring a Checkpoint

To obtain information about a statefile directory, run the cpr command with the -i option:

$ cpr -i statefile ...

This displays information about the statefile revision number, process names, credential
information for the processes, the current working directory, open file information, the
time when the checkpoint was done, and so forth.

There is no automated way to tell if a user has restarted a statefile or not. You need to ask.

Removing Statefiles

First check with the checkpoint owner to request that they remove unneeded statefiles.
If there is no reply, and checkpoints are overflowing disk space, look for the oldest
statefiles, especially ones in a series, as the best candidates for removal.

To delete an entire statefile directory, run the cpr command with the -D option:

$ cpr -D statefile ...

Only the checkpoint owner and the superuser may delete a statefile. Once a checkpoint
has been deleted, it cannot be restarted until the statefile is restored from backups.

Disabling User Checkpoints

If you want to restrict user access to CPR, or if some users abuse the facility by leaving
around large statefile directories, you can follow this procedure:

1. Create a “cpr” group in the CPR server’s /etc/group file, listing the users who should
have access to CPR.

cpr::100: user1, user2, user3, user4, user5, user6

2. Make the cpr command group “cpr” and mode 4750.

chgrp cpr /usr/sbin/cpr
chmod 4750 /usr/sbin/cpr

To temporarily disable CPR, make the /usr/sbin/cpr command 000 mode. To permanently
shut off CPR, use the inst command to remove the eoe.sw.cpr subsystem.

14

Chapter 2: Administering Checkpoint and Restart

Checkpointable Objects

The following system objects are checkpoint safe. See “Checkpoint-Safe Objects” on
page 23 for complete coverage of checkpoint safety.

• UNIX processes, process groups, terminal control sessions, IRIX array sessions,
process hierarchies, sproc() groups (see sproc(2)), and random process sets

• all user memory area, including user stack and data regions

• system states, including process and user information, signal disposition and signal
mask, scheduling information, owner credentials, accounting data, resource limits,
current directory, root directory, locked memory, and user semaphores

• system calls, if applications handle return values and error numbers correctly,
although slow system calls may return partial results

• undelivered and queued signals are saved at checkpoint and delivered at restart

• open files (including NFS-mounted files), mapped files, file locks, and inherited file
descriptors

• special files /dev/tty, /dev/console, /dev/zero, /dev/null, and ccsync(7M)

• open pipes and pipeline data

• System V shared memory (but the original shared memory ID is not restored)

• jobs started with CHALLENGEarray services, provided they have a unique ASH
number; see array_services(5)

• applications using the prctl() PR_ATTACHADDR option; see prctl(2)

• applications using blockproc() and unblockproc(); see blockproc(2)

• the Power Fortran join synchronization accelerator; see ccsync(7M)

• R10000 counters; see libperfex(3C) and perfex(1)

Non-Checkpointable Objects

The following system objects are not checkpoint safe. See “Limitations and Caveats” on
page 26 for more complete coverage of unsupported system objects.

• network socket connections; see socket(2)

• X terminals and X11 client sessions

Troubleshooting

15

• special devices such as tape drivers and CD-ROM

• files opened with setuid credential that cannot be reestablished

• System V semaphores and messages; see semop(2) and msgop(2)

Troubleshooting

This section provides a guide to various error messages that could appear during
checkpoint and restart operations, and what these messages might indicate.

Failure to Checkpoint

Checkpointing can fail for any of the reasons shown in Table 2-2.

Table 2-2 Checkpoint Failure Messages

Error Message Problem Indicated

Permission denied Search permission denied on a pathname component of statefile.

Resource busy A resource required by the target process is in use by the system.

Checkpoint error An uncheckpointable resource is associated with the target process.

File exists The pathname designated by statefile already exists.

Invalid argument An invalid argument was passed to a function call.

Too many symbolic links A symbolic link loop occurred during pathname resolution.

No such file or directory The pathname to statefile is nonexistent.

Not a directory A component of the path prefix is not a directory.

Filename too long The pathname to statefile exceeds the maximum length allowed.

No space left on device Space remaining on disk is insufficient for the statefile.

Operation not permitted The calling process does not have appropriate privileges.

Read-only file system The requested statefile would reside on a read-only filesystem.

No such process The process or process group specified by ID does not exist.

16

Chapter 2: Administering Checkpoint and Restart

Failure to Restart

Restart can fail for any of the reasons shown in Table 2-3.

Table 2-3 Restart Failure Messages

Error Message Problem Indicated

Permission denied Search permission denied on a path component of statefile.

Resource temporarily unavailable Total number of processes for user exceeds system limit.

Checkpoint error An unrestartable resource is associated with target process.

Resource deadlock avoided Attempted locking of a system resource would have resulted
in a deadlock situation.

Invalid argument An invalid argument was passed to the function call.

Too many symbolic links A symbolic link loop occurred during pathname resolution.

Filename too long The pathname to statefile exceeds the maximum length.

No such file or directory The pathname to statefile is nonexistent.

Not enough space Restarting the target process requires more memory than
allowed by the hardware or by available swap space.

Not a directory A component of the path prefix is not a directory.

Operation not permitted The real user ID of the calling process does not match the real
user ID of one or more processes recorded in the checkpoint,
or the calling process does not have appropriate privileges to
restart one or more of the target processes.

17

Chapter 3

3. Programming Checkpoint and Restart

This chapter describes how to write applications that checkpoint and restart processes
gracefully. Code samples are provided, and code fragments at the end of the chapter
show sample usage of IRIX CPR library routines.

For applications with checkpoint-unsafe objects, the principal programming concern is
setting up event handlers to perform clean-up at checkpoint time, and to restore network
sockets, graphic state, tape I/O, and CD-ROM status (and so on) at restart time.

Design of Checkpoint and Restart

This section describes some design issues that governed the implementation of CPR.

POSIX Compliance

IRIX Checkpoint and Restart is based on POSIX 1003.1m draft 11, and was initially
implemented in IRIX release 6.3. Because POSIX draft standards often change radically
from inception to approval, the interfaces in IRIX release 6.3 are not guaranteed to be
fully compliant, nor can Silicon Graphics make any assurance that they will conform to
the POSIX 1003.1m standard when eventually approved.

IRIX Extensions

The cpr command is not specified in POSIX 1003.1m draft 11. It is an IRIX specific
command provided for the convenience of customers; see cpr(1). The POSIX draft
standard covers only the programming interfaces for checkpoint and restart.

The ckpt_stat() function, which returns information about the status of checkpoint
statefiles, is not specified in POSIX 1003.1m draft 11; see ckpt_stat(3). The ckpt_setup()
function specified in the POSIX draft is unimplemented; when applications call this
routine, it is a no-op.

18

Chapter 3: Programming Checkpoint and Restart

Programming Issues

This section describes the CPR library interfaces and signals, and shows how to write
programs that set up event handlers using atcheckpoint() to prepare for a checkpoint,
and using atrestart() to restore non-checkpointable system objects at restart time. See
“Limitations and Caveats” on page 26 for a list of non-checkpointable objects.

CPR Library Interfaces

Application interfaces for adding CPR event handlers are contained the C library, and are
listed below. For more information, see atcheckpoint(3C).

• atcheckpoint()—add an event handler function for checkpointing

• atrestart()—add an event handler function for restarting

The checkpoint and restart library interfaces are contained in the libcpr.so dynamic shared
object (DSO). When using this library, include the <ckpt.h> header file:

#include <ckpt.h>

The available library routines are listed below. For more information, see ckpt_create(3).

• ckpt_create()—checkpoint a process or set of processes into statefiles

• ckpt_restart()—resume execution of checkpointed process or process group

• ckpt_stat()—retrieve status information about a checkpoint statefile

• ckpt_remove()—delete a checkpoint statefile directory

• ckpt_setup()—control checkpoint creation attributes (currently a no-op)

In the discussion below, set of processes can mean one process, or a group of processes.

SIGCKPT and SIGRESTART

When a program (such as the cpr command) calls ckpt_create() to create a checkpoint,
that function sends a SIGCKPT signal to the set of processes specified by the checkpoint
ID argument to ckpt_create(). Applications add an event handler to catch SIGCKPT if
they need to restore non-checkpointable objects such as network sockets, graphic state,
or file pointers to CD-ROM. The default action is to ignore SIGCKPT.

Programming Issues

19

After sending a SIGCKPT signal, ckpt_create() waits for the application to finish its
signal handling, before CPR proceeds with further checkpoint activities after SIGCKPT.
At restart time, the first thing ckpt_restart() runs is the application’s SIGRESTART signal
handler, if one exists. This implies that checkpoint and restart can “get stuck” in the
SIGCKPT and SIGRESTART handling routines.

When a program calls ckpt_restart() to resume execution from a checkpoint, the restart
function sends a SIGRESTART signal to the set of processes checkpointed in the statefile
specified by the path argument to ckpt_restart(). Applications add an event handler to
catch SIGRESTART if they need to restore non-checkpointable objects such as sockets,
graphic state, or CD-ROM files. The default action is to ignore SIGRESTART.

Adding Event Handlers

The SIGCKPT and SIGRESTART signals are not intended to be handled directly by an
application. Instead, CPR provides two C library functions that allow applications to
establish a list of functions for handling checkpoint and restart events.

The atcheckpoint() routine takes one parameter—the name of your application’s
checkpoint handling function—and adds this function to the list of functions that get
called upon receipt of SIGCKPT. Similarly, the atrestart() routine registers the specified
callback function for execution upon receipt of SIGRESTART.

These functions are recommended for use during initialization when applications expect
to be checkpointed but contain checkpoint-unsafe objects. An application may register
multiple checkpoint event handlers to be called when checkpoint occurs, and multiple
restart event handlers to be called when restart occurs.

At checkpoint time and at restart time, registered functions are called in the same order
as the first-in-first-out order of their registration with atcheckpoint() or atrestart()
respectively. This is an important consideration for applications that need to register
multiple callback handlers for checkpoint or restart events.

Caution: If applications catch the SIGCKPT and SIGRESTART signals directly, it could
undo all of the automatic CPR signal handler registration provided by atcheckpoint()
and atrestart(), including CPR signal handlers that some libraries may reserve without
the application programmer’s knowledge.

20

Chapter 3: Programming Checkpoint and Restart

Preparing for Checkpoint

If an application needs to restore network sockets, graphic state, tape I/O, CD-ROM
mounts, or some other non-checkpointable system object, it should set up automatic
checkpoint and restart event handlers using the recommended library routines.

The following sample code calls atcheckpoint() and atrestart() to set up functions for
handling checkpoint and restart events. It is possible for this setup to fail on operating
systems that do not (yet) support CPR.

Example 3-1 Checkpoint and Restart Event Handling

#include <stdlib.h>
#include <ckpt.h>

extern void ckptSocket(void);
extern void ckptXserver(void);
extern void restartSocket(void);
extern void restartXserver(void);

main(int argc, char *argv[])
{
 int err = 0;

 if ((atcheckpoint(ckptSocket) == -1) ||
 (atcheckpoint(ckptXserver) == -1) ||
 (atrestart(restartSocket) == -1) ||
 (atrestart(restartXserver) == -1))
 perror("Cannot setup checkpoint and restart handling");
 /*
 * processing ...
 */
 exit(0);
}

Handling a Checkpoint

Suppose your program mounts an ISO 9660 format CD-ROM, from which it reads data
as a basis for more complex processing. Since the CD-ROM is not a checkpointable object,
your program needs to record the file pointer position, close all open files on CD-ROM,
and perhaps unmount the CD-ROM device.

The following sample code marks the current file position in the open cdFile, saves it for
restoration at restart time, closes cdFile, and unmounts the CD-ROM.

Programming Issues

21

Example 3-2 Routine to Handle Checkpoint

#include <sys/types.h>
#include <sys/mount.h>
#include <stdio.h>

extern char *cdFile;
extern FILE fpCD;
long cdOffset;

catchCKPT()
{
 cdOffset = ftell(fpCD);
 fclose(fpCD);
 umount("/CDROM");
 exit(0);
}

Note: The checkpoint event handler should return directly to its calling routine—it must
not contain any sigsetjmp() or siglongjmp() code.

Checkpoint Time-outs

For programs that must wait for some external condition before exiting the checkpoint
event handling function, it might be wise to set a time-out. For example, if a program is
waiting for data to arrive over a TCP socket that must be shut down before checkpoint,
and the data never arrive, the program should not wait forever.

The alarm() system call sends a SIGALRM signal to the calling program after a specified
number of seconds. Since the default action for SIGALRM is for the program to exit, put
this call near the top of the checkpoint handling routines to set a one-minute time-out.

Example 3-3 Setting an Alarm in Callback

extern int sock; /* file descriptor for socket */

catchCKPT()
{
 alarm(60);
 close(sock);
 exit(0);
}

22

Chapter 3: Programming Checkpoint and Restart

Handling a Restart

Suppose your program that unmounted the ISO 9660 CD-ROM at checkpoint time is
restarted with the cpr command. Now it needs to ensure that the CD-ROM is mounted,
reopen the formerly active file, and seek to the previous file offset position. Once it
accomplishes all that, your program is ready to continue reading data from the CD-ROM.

The following sample code waits for the CD-ROM to become mounted, then reopens the
cdFile, and seeks to the remembered offset position in cdFile.

Example 3-4 Routine to Handle Restart

#include <unistd.h>
#include <stdio.h>

extern char *cdFile;
extern FILE fpCD;
extern long cdOffset;

catchRESTART()
{
 while (access("/CDROM/data", R_OK) == -1) {
 perror("please insert CDROM");
 sleep(60);
 }
 if ((fpCD = fopen(cdFile, "r")) == NULL)
 perror("cannot open cdFile");
 if (fseek(fpCD, cdOffset, SEEK_SET))
 perror("cannot seek to cdOffset");
}

Note: The restart event handler should return directly to its calling routine—it must not
contain any sigsetjmp() or siglongjmp() code.

Checkpoint and Restart of System Objects

Due to the nature of UNIX process checkpoint and restart, it is hard, if not impossible, to
claim that everything that an original process owns or connects with can be restored. The
following list defines what is clearly supported (checkpoint safe), and what limitations
are known to exist. For items not listed, application writers and customers must decide
what is checkpoint-safe.

Checkpoint and Restart of System Objects

23

Checkpoint-Safe Objects

All known checkpoint-safe entities are listed below.

Supported Process Groupings

CPR works on UNIX processes, process groups, terminal control sessions, IRIX array
sessions, process hierarchies (trees of processes started from a common ancestor), IRIX
sproc() share groups (see sproc(2)), and random process sets.

User Memory

All user memory regions are saved and restored, including user stack and data regions.
Note that user text, without being saved at checkpoint time, is remapped directly at
restart from the application binaries and libraries. However, by using REPLACE as the
file disposition default, even user texts can be saved. The saved texts may not replace the
originals if the originals are not changed after the checkpoint. Locked memory regions
are restored to remain locked at restart.

System States in Kernel

Most of the important kernel states are restored at restart to be identical to the original
ones, such as basic process and user information, signal disposition and signal mask,
scheduling information, owner credentials, accounting data, resource limits, current
working directory, root directory, user semaphores (see usnewsema(3P)), and so on.

System Calls

All system calls are checkpoint safe as long as the applications are handling the system
call returns and error numbers correctly. Fast system calls are allowed to finish before
checkpoint proceeds. Slow system calls are interrupted and may return to the calling
routine with partial results. Applications using system calls that can return partial results
need to check for and be prepared to deal with partial results. Slow system calls with no
results are transparently reissued at restart.

A number of selected system calls are handled individually. The sleep() call is always
reissued for the entire period again, since its definition guarantees sleeping at least the
amount requested; see sleep(3C). Restart of the alarm() system call is more accurate—the
remainder of time recorded at checkpoint elapses before it times out; see alarm(2).

24

Chapter 3: Programming Checkpoint and Restart

SIgnals

Undelivered signals and queued signals are saved at checkpoint and delivered at restart.

Open Files and Devices

Processes with regular open files or mapped files, including NFS mounted files, can be
checkpointed and restarted without many restrictions as long as users choose the correct
file disposition in the CPR attribute file, as described in the section “Checkpoint and
Restart Attributes” on page 8.

All file locks are also restored at restart. If the file regions that the restarting process needs
to lock have already been locked by another process, CPR tries to acquire the locks a few
times before it aborts the restart.

Supported special files are /dev/tty, /dev/console, /dev/zero, /dev/null, and ccsync(7M).

Inherited file descriptors are restored at restart. Applications using R10000 counters
through the /proc interface are checkpoint safe, provided the /proc file descriptor is closed.

Open Pipes

Applications with SVR3 or SVR4 pipes open can be checkpointed and restarted without
restrictions. Pipe data is also saved and restored.

SVR4 Shared Memory

Applications using SVR4 shared memory can be checkpointed and restarted with the
limitation that the shmid (shared memory ID) may not be restored to have its original
value; see shmop(2). This implies that applications using SVR4 shared memory should
not operate directly on shmid.

Application Licensing

Applications using node-lock licenses (one license per machine) are generally safe for
checkpoint and restart.

Applications using floating licenses may be safe for checkpoint and restart, depending
on the license library implementation. The FLEMlm library will include atcheckpoint()
and atrestart() event handlers after the IRIX 6.4 release.

Checkpoint and Restart of System Objects

25

If your license library employs open-and-warm sockets without CPR-aware handlers,
you should do one of the following:

• Add atcheckpoint() and atrestart() event handlers to your application. The
atcheckpoint() handler should disconnect license checking, and the atrestart()
handler should reconnect license checking.

• Ask your license software vendor to add similar handlers to their license library.

Network Applications Using Array Services

Jobs started with POWER CHALLENGEarray or CHALLENGEarray services can be
checkpointed and restarted, provided the jobs have a unique ASH (array session handle)
number; see array_services(5). Array services jobs may use several methods to generate
a new ASH, including calling newarraysess(); see newarraysess(2).

During an array checkpoint, a checkpoint server is responsible for starting, monitoring,
and synchronizing all checkpoint clients running on its different machines based on the
given ASH. Statefiles are saved locally on each machine for all processes with the given
ASH running on that machine. Restart occurs in a similar fashion, with the restart server
synchronizing with all local restart clients to restore all processes on different machines.

An interactive array job with a controlling terminal on a given machine has to be
checkpointed and restarted from that very same machine. Otherwise the controlling
terminal cannot be restored.

Other Supported Functionality

Applications using blockproc() and unblockproc() are checkpoint safe; see blockproc(2).

Memory regions added by calling prctl() with the PR_ATTACHADDR argument can be
safely checkpointed and restarted; see prctl(2).

The Power Fortran join synchronization accelerator is checkpoint safe; see ccsync(7M).

Applications using R10000 counters are checkpoint safe; see libperfex(3C) or perfex(1).

Compatibility Between Releases

A statefile checkpointed in any current release will most likely be able to restart in future
releases, owing to the object-oriented architecture of the CPR implementation.

26

Chapter 3: Programming Checkpoint and Restart

With certain limitations, an object of system functionality available in any current release
will be remapped to some new replacement object at restart if the original object becomes
obsolete in a future release.

Limitations and Caveats

Various CPR restrictions and warnings are listed below.

SVR4 Semaphores and Messages

Applications using SVR4 semaphores, or SVR4 messages, cannot be checkpointed and
restarted; see semop(2) or msgop(2), respectively.

Networking Socket Connections

Generally speaking, an application with open socket connections (see socket(2)) should
not be checkpointed and restarted without special CPR-aware signal handling code. An
application needs to catch SIGCKPT and SIGRESTART, and run signal handlers to
disconnect any open socket before checkpoint, and reconnect the socket after restart.

Since the MPI (message passing interface) library uses sockets for network connections
to the array services daemon arrayd, it is generally not possible to checkpoint MPI code.
For more information, refer to the MPI and PVM User’s Guide, or see mpi(5).

Other Special Devices

Any device or special file not listed in section “Open Files and Devices” on page 24 as a
checkpoint-safe device can be considered not supported for checkpoint and restart. This
includes tape, CD-ROM, and other special real or pseudo devices. Again, applications
need to close these devices before checkpoint by catching SIGCKPT, and reopen them
after restart by catching SIGRESTART.

Graphics

X terminals, and other kinds of graphics terminals, are not supported. Applications with
these devices open have to be CPR-aware and do proper clean-up by catching SIGCKPT
and SIGRESTART and calling appropriate signal handling routines. (This is similar to
how socket connections should be handled.)

Saving State With ckpt_create()

27

Miscellaneous Restrictions

A potential problem exists with setuid() programs. When restarting resources such as file
descriptors, locks acquired with a different (especially higher) privilege may not succeed.
For example, a root process may first open some files, and then call setuid() to become a
guest. If this process is checkpointed after the setuid() call, the corresponding restart will
fail because the files opened with the root credential cannot be reopened with the guest
credential. Similar restrictions apply for a non-root process’ inherited resources, such as
file descriptors inherited from a root process.

Saving State With ckpt_create()

The ckpt_create() function checkpoints a process or set of processes into a statefile. The
following code shows sample usage of the ckpt_create() function.

Example 3-5 Sample Usage of ckpt_create() Function

#include <ckpt.h>

static int
do_checkpoint(ckpt_id_t id, u_long type, char *pathname)
{
 int rc;

 printf("Checkpointing id %d (type %s) to directory %s\n",
 id, ckpt_type_str(CKPT_REAL_TYPE(type)), pathname);

 if ((rc = ckpt_create(pathname, id, type, 0, 0)) != 0) {
 printf("Failed to checkpoint process %lld\n", id);
 return (rc);
 }
 return (0);
}

The global variable cpr_flags, defined in <ckpt.h>, permits programmers to specify
checkpoint-related options. The following flags may be bitwise ORed into cpr_flags
before a call to ckpt_create():

CKPT_CHECKPOINT_CONT
Have checkpoint target processes continue running after this checkpoint
is finished. This overrides the default WILL policy, and the WILL policy
specified in a user’s CPR attribute file.

28

Chapter 3: Programming Checkpoint and Restart

CKPT_CHECKPOINT_KILL
Kill checkpoint target processes after this checkpoint is finished. This is
the default WILL policy, but overrides a CONT setting in a user’s CPR
attribute file.

CKPT_CHECKPOINT_UPGRADE
Use this flag only when issuing a checkpoint immediately before an
operating system upgrade. This forces a save of all executable files and
DSO libraries used by the current processes, so that target processes can
be restarted in an upgraded environment. This flag must be used again
if restarted processes are again checkpointed in the new environment.

CKPT_OPENFILE_DISTRIBUTE
Instead of saving open files under statefile, save open files in the same
directory where they reside, and assign a unique name to identify them.
For example, if a checkpointed process had the /etc/passwd file open with
this flag set, the open file would be saved in /etc/passwd.ckpt.pidXXX.
Although security could be a concern, this mode is useful when disk
space is at a premium.

Since cpr_flags is a process-wide global variable, make sure to reset or clear flags
appropriately before a second call to ckpt_create().

Resuming With ckpt_restart()

The ckpt_restart() function resumes execution of a checkpointed process or processes.
The following code shows sample usage of the ckpt_restart() function.

Example 3-6 Sample Usage of ckpt_restart() Function

#include <ckpt.h>

static int
do_restart(char *path)
{
 printf("Restarting processes from directory %s\n", path);
 if (ckpt_restart(path, 0, 0) < 0) {
 printf("Restart %s failed\n", path);
 return (-1);
 }
}

Checking Status With ckpt_stat()

29

The global variable cpr_flags, defined in <ckpt.h>, permits programmers to specify
restart-related options. The following flag may be bitwise ORed into cpr_flags before a
call to ckpt_restart():

CKPT_RESTART_INTERACTIVE
Make a process or group of processes interactive (that is, subject to UNIX
job-control), if the original processes were interactive. The calling
process or the calling process’ group leader becomes the group leader of
restarted processes, but the original process group ID cannot be
restored. Without this flag, the default is to restart target processes as an
independent process group with the original group ID restored.

Since cpr_flags is a process-wide global variable, make sure to reset or clear flags
appropriately before a second call to ckpt_restart().

Checking Status With ckpt_stat()

The ckpt_stat() function retrieves status information about a checkpoint statefile. The
following code shows sample usage of the ckpt_stat() function.

Example 3-7 Sample Usage of ckpt_stat() Function

#include <ckpt.h>

static int
ckpt_info(char *path)
{
 ckpt_stat_t *sp, *sp_next;
 int rc;

 if ((rc = ckpt_stat(path, &sp)) != 0) {
 printf("Cannot get information on CPR file %s\n", path);
 return (rc);
 }
 printf("\nInformation About Statefile %s (%s):\n",
 path, rev_to_str(sp->cs_revision));
 while (sp) {
 printf(" Process:\t\t%s\n", sp->cs_psargs);
 printf(" PID,PPID:\t\t%d,%d\n", sp->cs_pid, sp->cs_ppid);
 printf(" PGRP,SID:\t\t%d,%d\n", sp->cs_pgrp, sp->cs_sid);
 printf(" Working at dir:\t%s\n", sp->cs_cdir);
 printf(" Num of Openfiles:\t%d\n", sp->cs_nfiles);
 printf(" Checkpointed @\t%s\n", ctime(&sp->cs_stat.st_mtime));

30

Chapter 3: Programming Checkpoint and Restart

 sp_next = sp->cs_next;
 free(sp);
 sp = sp_next;
 }
 return (0);
}

Removing Checkpoints With ckpt_remove()

The ckpt_remove() function deletes a checkpoint statefile directory.

The following code shows sample usage of the ckpt_remove() function.

Example 3-8 Sample Usage of ckpt_remove() Function

#include <ckpt.h>

static int
do_remove(char *path)
{
 int rc = 0;

 if ((rc = ckpt_remove(path)) != 0) {
 printf("Remove checkpoint statefile %s failed\n", path);
 return (rc);
 }
}

Preparing Checkpoints With ckpt_setup()

This function, described in the POSIX draft standard, is implemented as a no-op.

The following code shows the current implementation of the ckpt_create() function.

Example 3-9 Implementation of ckpt_setup() Function

int ckpt_setup(struct ckpt_args *args[], size_t nargs)
{
 return(0);
}

31

Appendix A

A. Online Help

This appendix contains help screens accessible from the cview window’s Help menu.

Overview

IRIX Checkpoint and Restart (CPR) is a facility for saving a running process or set of
processes and, at some later time, restarting the saved process(es) from the point already
reached. A checkpoint image is saved in a directory, and restarted by reading saved state
from this directory to resume execution.

The cview window provides a graphical user interface for checkpointing, restarting
checkpoints, querying checkpoint status, and deleting statefiles. Two tabs at the bottom
of the cview window select either the checkpoint or restart control panel.

How to Checkpoint

Under the STEP I button, select a process or set of processes from the list. To checkpoint
a process group, a session group, an IRIX array session, a process hierarchy, or an sproc
shared group, select a category from the Individual Process drop-down menu. In the
filename field below, enter the name of a directory for storing the statefile.

Click the STEP II button if you want to change checkpoint options, such as whether to
exit or continue the process, or control open file and mapped file dispositions.

Click the STEP III OK button to initiate the checkpoint, or the Cancel Checkpoint button
to discontinue.

How to Restart

Click the Restart Control Panel tab at the bottom of the cview window.

From the scrolling list of files and directories, select a statefile to restart. Note that all files
and directories are shown, not just statefile directories. If a statefile is located somewhere
besides your home directory, change directories using the icon finder at the top.

32

Appendix A: Online Help

Select any options you want, such as whether to retain the original process ID, whether
to restore the original working directory, or whether to restore the original root directory.

Click the OK Go Restart button to initiate restart.

Querying a Statefile

Click the Restart Control Panel tab at the bottom of the cview window.

From the scrolling list of files and directories, select a statefile to query. Note that all files
and directories are shown, not just statefile directories. If a statefile is located somewhere
besides your home directory, change directories using the icon finder at the top.

At the bottom of the cview window, click the Tell Me More About This Statefile button.

Deleting a Statefile

Click the Restart Control Panel tab at the bottom of the cview window.

From the scrolling list of files and directories, select a statefile to delete. Note that all files
and directories are shown, not just statefile directories. If a statefile is located somewhere
besides your home directory, change directories using the icon finder at the top.

At the bottom of the cview window, click the Remove This Statefile button.

33

checkpoint owner, defined, 1
checkpoint-safe objects, 23
checkpoint-unsafe objects, 26
ckpt_create() library routine, 18, 27
ckpt_remove() library routine, 18, 30
ckpt_restart() library routine, 18, 28
ckpt_setup() library routine, 17, 18, 30
ckpt_stat() library routine, 17, 18, 29
CKPT attribute definitions, 8
<ckpt.h> header file, 18
compatibility of releases, 26
CONT action keyword, 9
content overview, xiii
-c option (checkpoint), 3
.cpr attribute file, 8, 10
cpr command, 1
.cpr example, 10
C shell, 4
cview command, 6

D

deleting statefiles, 5
design of checkpoint and restart, 17
devices and files, safe, 24
disabling user checkpoints, 13
-D option (delete statefile), 5, 13
DSO libcpr.so, 18

A

alarm() system call, 21
ANY action keyword, 10
APPEND action keyword, 9
array services, safe, 25
array session, defined, 2
ASH modifier, 3
atcheckpoint() library routine, 18
atrestart() library routine, 18
attribute file, CPR, 8, 10
audience type, xiii

B

blockproc, safe, 25
Bourne shell, 4

C

ccsync, safe, 25
CDIR policy action keywords, 10
CDROM checkpointing, 20
CDROM containing IRIX, 11
checkpointable objects, 14
checkpoint and restart, defined, 1
checkpoint failure messages, 15
checkpointing processes, 3

Index

34

Index

E

eoe.sw.cpr subsystem, 2, 11
/etc/cpr_proto sample file, 8
EXIT action keyword, 9
extensions to CPR in IRIX, 17

F

failure to checkpoint, reasons, 15
failure to restart, reasons, 4, 16
FILE policy action keywords, 9
files and devices, safe, 24
-f option (force overwrite), 3
FORK policy action keywords, 10

G

GID modifier, 3
-g option (go continue), 9
graphical user interface, cview, 6
graphics state, unsafe, 26
group cpr, creating, 13

H

handling a checkpoint, 20
handling a restart, 22
HID modifier, 3
$HOME/.cpr attribute file, 8
$HOME/.cpr example, 10

I

IDtype modifier options, 8
IDvalue process set ID, 8
IGNORE action keyword, 9, 10
information about statefiles, 13
installing checkpoint and restart, 11
inst command, 12
intended audience, xiii
Internet resources, xiv
-i option (status information), 5, 13
IRIX array session, defined, 2
IRIX extensions to CPR, 17
IRIX software distribution CDROM, 11

J

job control shells, 4
-j option (interactive job control), 4, 5

K

kernel states, safe, 23
KILL action keyword, 9
-k option (kill process), 9
Korn shell, 4

L

libcpr.so DSO, 18
library routine atcheckpoint(), 18
library routines ckpt_*, 18

35

Index

M

memory, safe, 23
MERGE action keyword, 9
monitoring a checkpoint, 13

N

network sockets, unsafe, 26
non-checkpointable objects, 14

O

ORIGINAL action keyword, 10
overview of contents, xiii

P

perfex library routines, safe, 25
persistence of statefiles, 5
pipes and pipe data, safe, 24
policy names and actions, 8
-p option (process ID), 3
POSIX 1003.1m standard, 17
Power Fortran join accelerator, safe, 25
PR_ATTACHADDR, safe, 25
prctl, safe, 25
preventing checkpoint usage, 13
process group, defined, 2
process groupings, safe, 23
process hierarchy, defined, 2
process session, defined, 2

Q

querying checkpoint status, 5

R

R10000 counters, safe, 25
RDIR policy action keywords, 10
release compatibility, 26
removing statefiles, 13
REPLACE action keyword, 9, 10
responsibilities of administrator, 11
restart failure, reasons, 4
restart failure messages, 16
restarting processes, 4
-r option (restart), 4

S

setuid restrictions, 27
SGP modifier, 3
share group, defined, 2
shells and job control, 4
SID modifier, 3
SIGCKPT signal, 18, 20
signals, safe, 24
SIGRESTART signal, 19, 22
socket connections, unsafe, 26
special devices, safe, 24
special devices, unsafe, 26
sproc share group, defined, 2
statefile, defined, 1
statefile deletion, 5
statefile location and content, 12
statefile persistence, 5

36

Index

status of checkpoint, 5
SUBSTITUTE action keyword, 9
system administrator responsibilities, 11
system calls, safe, 23
System V messages, unsafe, 26
System V semaphores, unsafe, 26
System V shared memory, safe, 24

T

timeouts for checkpointing, 21
troubleshooting checkpoint, 15
troubleshooting restart, 16
typographic conventions, xiv

U

unblockproc, safe, 25
-u option (upgrade OS), 10
user memory, safe, 23
users in cpr group, 13

W

Web pages about PCP, xiv
WILL policy action keywords, 9

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3236-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

