
Getting Started With BDSpro

Document Number 007-3274-001

Getting Started With BDSpro
Document Number 007-3274-001

CONTRIBUTORS

Written by Pam Sogard
Illustrated by Dany Galgani
Edited by Christina Cary
Production by Lorrie Williams
Engineering contributions by Larry McVoy
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© 1996, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and the Silicon Graphics logo are registered trademarks and BDSpro
and XBDS are trademarks of Silicon Graphics, Inc. NFS is a registered trademark of
Sun Microsystems, Inc.

iii

About This Guide

Getting Started With BDSpro is written for server and site administrators who plan to add
BDSpro™, the Silicon Graphics© implementation of the Bulk Data Service protocol, to a
Network File System (NFS®) implementation. This guide contains information to help
administrators understand the BDS protocol (XBDS™), prepare a site for BDSpro, and
include BDS extensions to an existing NFS implementation. To use this guide
successfully, you should be experienced in NFS administration and in managing XFS™
on large servers.

What This Guide Contains

This guide comprises three chapters, which cover these topics:

Chapter 1, “BDS Fundamentals”
Explains how BDS works, describes its advantages over standard NFS
implementations, and explains the conditions under which it should be
used.

Chapter 2, “Preparing for BDSpro”
Describes hardware and software requirements for BDSpro and explains
how to modify your existing configuration if you determine that
changes are needed.

Chapter 3, “Setting Up and Testing BDSpro”
Explains how to include BDS in an existing NFS implementation and
check BDSpro performance.

iv

About This Guide

Conventions Used in This Guide

These type conventions and symbols are used in this guide:

Bold Literal command-line arguments, such as options and flags

Italics Executable names, filenames, IRIX commands, manual and book titles,
and new terms

Fixed-width type

Error messages, prompts, and onscreen text

Bold fixed-width type

User input, including keyboard keys (printing and nonprinting)

“” (Double quotation marks) References in text to document section titles

() (Parentheses) Following IRIX commands, surround reference page (man
page) section numbers

IRIX shell prompt for the superuser (root)

% IRIX shell prompt for users other than superuser

Related Documentation

These documents contain additional information that is related to BDSpro:

• BDSpro Release Notes

• IRIX Admin: Disks and Filesystems 007-2835-xxx

• IRIX HIPPI Administrator’s Guide 007-2229-xxx

• ONC3/NFS Administrator’s Guide 007-0850-xxx

See also the online reference pages (man pages): bds(1M), lmdd(1), mount(1M),
exportfs(1M), fstab(4), xlv_make(1M), fcntl(2), open(2), read(2), write(2), filesystems(4),
and malloc(3C).

v

Contents

About This Guide iii
What This Guide Contains iii
Conventions Used in This Guide iii
Related Documentation iv

List of Figures vii

List of Tables ix

1. BDS Fundamentals 1
What BDS Offers 2
How BDS Works 3

Standard NFS Transactions 3
BDS Transactions 5

When BDS Makes Sense 6

2. Preparing for BDSpro 7
Installation Prerequisites 7
Planning Disk and Controller Configurations 7
Tuning XFS Performance 8

Configuring Disks for BDSpro 9
Understanding Logical Volume Stripping 9
Determining the Size of Stripe Units 10
Optimizing the Stripe Unit Size 10

Changing the Maximum DMA Size 11
Sample Performance Results 12

3. Setting Up and Testing BDSpro 15
Exporting Filesystems for BDSpro 15
Mounting Filesystems for BDSpro 15

vi

Contents

Stopping and Restarting BDSpro 16
Testing a BDSpro Setup 16

Using the BDSpro Debugger 17
Debugging Without Kernel-Level BDSpro 18

Testing the Network 19

vii

List of Figures

Figure 1-1 XBDS Protocol Compared with ONC Protocols 1
Figure 1-2 The BDSpro Client-Server Model 2
Figure 1-3 Events in a Standard NFS Transaction 4
Figure 1-4 Events in a BDSpro Transaction 5
Figure 2-1 Effects of the Stripe Unit and Disk Number on Stripe Width 10

ix

List of Tables

Table 1-1 BDSpro Performance Compared With Standard NFS 3
Table 2-1 Effects of Stripe Unit Size on XFS Write Performance 11
Table 2-2 Performance Results With Sample Configurations 12

1

Chapter 1

1. BDS Fundamentals

Bulk Data Service (BDS) is a non-standard extension to NFS that handles large file
transactions over high-speed networks. BDS exploits the data access speed of the XFS
filesystem and data transfer rates of network media, such as HIPPI and fiberchannel, to
accelerate standard NFS performance. The BDS protocol, XBDS, modifies NFS functions
to reduce the time needed to transfer files of 100 megabytes or larger over a network
connection. BDSpro is the Silicon Graphics implementation of XBDS.

Figure 1-1 illustrates the XBDS protocol relative to existing ONC protocols.

Figure 1-1 XBDS Protocol Compared with ONC Protocols

XBDS

TCP

IP

Network
interfaces

NFS

XDR

RPC

UDP/TCP

IP

Network
interface

Application

Presentation

Session

Transport

Network

Data link

Physical

2

Chapter 1: BDS Fundamentals

You can use BDSpro on Silicon Graphics systems running IRIX 6.2 (or later). Hosts must
be connected to a high-speed network (such as HIPPI or fiberchannel) running the
transmission control protocol/ internet protocol suite (TCP/IP).

Note: A Linux version of BDS that runs as a user-level application is available for
nonIRIX systems. If you would like to implement BDS on other platforms, contact your
Silicon Graphics sales representative for information on BDS for multi-vendor networks.

What BDS Offers

BDS is implemented as enhancements to NFS on the client system and a daemon process
on the server. Figure 1-2 illustrates the BDSpro client-server model on Silicon Graphics
systems.

Figure 1-2 The BDSpro Client-Server Model

The hardware and software used on a network and its loading patterns determine the
ultimate speed of NFS transactions. Because these factors vary greatly on individual
networks, it is impossible to predict the performance gains that BDS will provide for a

IR
IX

IR
IX

XFS

TCP

NFS

BDS
server

daemon

TCP

NFS

Client
application

Client

BDS
socket

Server

XFS
data

BDS socket

NFS socketBDS

U
se

r
sp

ac
e

K
er

ne
l s

pa
ce

How BDS Works

3

particular network. However, to evaluate BDS performance potential, it is useful to
consider BDSpro comparisons to standard NFS under constant network conditions.

Table 1-1 compares BDSpro transfer speeds with NFS configurations.

How BDS Works

To achieve high throughput, BDS relies on the ability of the operating system to perform
direct input and output operations (see the O_DIRECT option of the open(2) and fcntl(2)
IRIX reference pages for details). In direct I/O operations, the operating system reads
and writes data from disk directly to a user buffer, bypassing an intermediate copy to the
kernel buffer cache that is standard for other types of I/O. In a network transaction, the
time saved by bypassing the buffer cache is doubled, since the bypass occurs on both the
client and the server systems (see Figure 1-4).

Direct I/O is based on the assumption that buffer alignment and size are known
constants. For this reason, the network applications that use BDS must perform
page-aligned I/O. Applications that are tuned for XFS performance are ideal for use with
BDS, since XFS also requires this alignment.

Standard NFS Transactions

Figure 1-3 illustrates the sequence of events in a standard NFS transaction. These events
take place in Figure 1-3:

1. The application issues a read for remote data.

2. The search for the data in local buffer cache fails.

a. Rates are based on NFS read and write sizes of 48 KB on files of 100 MB or larger. MB
is defined as 1024 × 1024 bytes.

Table 1-1 BDSpro Performance Compared With Standard NFSa

Product Network Configuration Read Rate

NFS (version 2) UDP over HIPPI 2.5 MB per second per channel

NFS (version 3) UDP over HIPPI 16 MB per second per channel

BDSpro TCP/IP over HIPPI 70 MB per second per channel

4

Chapter 1: BDS Fundamentals

3. An NFS read is sent to the remote server.

4. The search of the buffer cache on the remote server fails.

5. The server reads from the filesystem on disk.

6. Data is moved to the buffer cache on the server.

7. The buffer data is sent to the network.

8. The client receives the data in buffer cache.

9. The data is sent from the buffer cache to the application.

Figure 1-3 Events in a Standard NFS Transaction

8

NFS

User
application

Buffer

cache

Client

2

1

3

9

5

4
NFS

Buffer

cache

Server

6

7

7

IRIX

IRIX

Path of read request

Path of returned data

How BDS Works

5

BDS Transactions

Figure 1-4 illustrates the sequence of events in a BDS transaction.

Figure 1-4 Events in a BDSpro Transaction

These events take place in Figure 1-4:

1. The application issues a read for remote data.

2. A BDS read is sent to the remote BDS server.

3. The BDS server reads directly from the filesystem on disk.

4. The BDS server performs an aligned write to the network.

5. The data is page-flipped directly from the client’s network buffer to the application.

User
application

Client

1

2

5

Server

3

4

IRIX

IRIX

Path of read request

Path of returned data

BDS
BDS

XFS

6

Chapter 1: BDS Fundamentals

When BDS Makes Sense

While BDS offers clear advantages to standard NFS implementations in some operating
environments, it is recommended over standard NFS only in certain circumstances. Real
network throughput rates, the applications running on a network, and the size of files
involved in network operations determine whether BDS is a desirable addition to your
current NFS implementation.

File size is an especially important consideration in evaluating BDS for your site. For
small and medium size files, standard NFS frequently offers satisfactory performance.
NFS speed with files of this size is attributable to local data caching, which it performs to
reduce (or eliminate) the need for time-consuming reads and writes over the network.

In transactions with large files, however, NFS caching is troublesome because it purges
potentially valuable data from the cache to store the large file. With BDS, this problem is
eliminated because BDS performs no data caching (see “How BDS Works” for details).
Because of the cache bypasses (and for other performance reasons), BDS also offers much
faster transfer speeds (see Table 1-1 for speeds achieved with BDSpro).

You should consider adding BDS if your NFS implementation meets these criteria:

• Files of 100 MB or larger are routinely accessed over network connections.

• Network hardware is a high-speed medium (such as HIPPI or fiberchannel) with a
potential transfer rate of 100 MB per second or higher.

• The applications that you use perform page-aligned input and output, and they
perform direct reads and writes when accessing XFS files.

• The applications that you use do not rely on data caching.

7

Chapter 2

2. Preparing for BDSpro

This chapter explains what BDSpro requires if it is to achieve its full potential and how
to modify your current setup if you determine that changes are needed. The chapter
contains these sections to help you prepare for running BDSpro:

• “Installation Prerequisites”

• “Planning Disk and Controller Configurations”

• “Tuning XFS Performance”

• “Sample Performance Results”

Installation Prerequisites

BDSpro requires that IRIX version 6.2 (or higher) and NFS (version 2.0 or 3.0) are
installed on client and server systems. It also requires that the applications that use
BDSpro services perform page-aligned I/O and direct reads and writes (see “How BDS
Works” in Chapter 1).

BDSpro software must be installed on both client and server systems. See the BDSpro
Release Notes for instructions on software installation.

Planning Disk and Controller Configurations

Silicon Graphics currently ships SCSI disks manufactured by Quantum and IBM.
Quantum disks excel in random access and relatively small I/O operations, and IBM
disks excel in large sequential access operations. Because of the operating characteristics
of BDS, disks that excel in large sequential access operations offer better performance and
are therefore a better choice.

Most BDS installations are likely to use fast-and-wide SCSI controllers with speeds of 20
MB per second. The IBM drives provided by SGI spin at about 7 MB per second on the

8

Chapter 2: Preparing for BDSpro

outer zone and 5 MB per second on the inner zone. If we assume a transfer rate of 5 MB
per second, it is apparent that 4 drives will completely saturate a single 20 MB per second
controller.

Silicon Graphics provides SCSI boxes with an eight-drive capacity that are configured for
one SCSI channel. Since channel speed is 20 MB per second and drive speed is
approximately 5 MB per second, eight drives offer more bandwidth than is needed.
Therefore it is possible to configure SCSI boxes with two SCSI channels per box, doubling
the bandwidth for each box.

For maximum sequential performance with the minimum number of disks, purchase
more controllers and use one controller for every four disks.

Tuning XFS Performance

BDSpro performance is highly dependent on the local performance of XFS on the server
system. In general, BDSpro requires a local XFS access speed that is twice as high as the
speed at which BDSpro is to perform. For example, if BDSpro is to operate at a rate of 50
MB per second, the server XFS rate must be at least 100 MB per second. This XFS rate is
required to offset the overhead that BDSpro protocols impose on network transactions.

To measure local XFS performance, use lmdd commands similar to those shown below.

This command creates testfile, a 500 MB file with a blocksize of 7 MB:

server# lmdd of=/export/bds/testfile bs=7m move=500m direct=1
497.00 MB in 5.83 secs, 85.29 MB/sec

This command performs a direct read on testfile with a transfer size 7 MB; the output
shows the XFS transfer rate:

server# lmdd if=/export/bds/testfile bs=7m move=500m direct=1
497.00 MB in 4.44 secs, 111.92 MB/sec

Inadequate XFS performance can frequently be corrected by properly configuring disks
and by setting the correct size for direct memory access operations. These topics are
explained in the sections that follow.

Tuning XFS Performance

9

Configuring Disks for BDSpro

XFS uses a logical volume manager, xlv, to stripe data across multiple disk drives. On
striped disks, large XFS requests are split and sent to each disk in parallel. The high
sequential performance of XFS is attributable to this parallelism. (See Chapter 7 of IRIX
Admin: Disks and Filesystems for more information.)

The size of data transfers is an important consideration in planning logical volumes. For
example, assume that a logical volume contains 10 disks and the track size is 64 KB. In
this case, transfers of 640 KB or larger are required to get all drives running
simultaneously. If the data transfer size is 320 KB, only five drives are active in an I/O
operation. Because only half of the available disks are used, a transfer size of 320 KB is
very inefficient, reducing the total performance by half. With proper striping of logical
volumes, however, disk performance can be maximized.

Understanding Logical Volume Stripping

The xlv_make utility is used to stripe the disks in a logical volume. By default, xlv_make
divides the disk into tracks and uses one track from each disk in rotation to create a
stripe. The amount of data that xlv_make allocates on a single drive before going to the
next is called the stripe unit. The stripe unit and the number of disks in the logical volume
determine the stripe width, or

stripe width = stripe unit × number of disks

10

Chapter 2: Preparing for BDSpro

Figure 2-1 illustrates a logical volume containing four disks. Notice from this figure that
the stripe unit is set to two tracks instead of one (the default stripe unit size). If we assume
a track size of 100 KB (track size is set by disk manufacturers), the stripe width for this
logical volume is 800 KB.

Figure 2-1 Effects of the Stripe Unit and Disk Number on Stripe Width

Determining the Size of Stripe Units

When you create a logical volume, you can specify a stripe size using the stripe_unit
argument of xlv_make (see the xlv_make(1M) reference page). Specifying the proper size
of the stripe unit is the key to optimizing I/O performance. In most cases, the objective
in setting the stripe_unit is to achieve a particular bandwidth; but you might also need
to adjust the stripe size to accommodate an application that uses a fixed transfer size.

The transfer size should be a multiple of the system’s page size. The transfer size should
also be a multiple of the stripe width (800 KB in Figure 2-1). If the application needs the
bandwidth of all four disks but is reading with a transfer size of 400 KB, you could set
the stripe unit to one track instead of two to achieve the required bandwidth with half
the transfer size.

Optimizing the Stripe Unit Size

It is not always advisable to use the smallest possible stripe unit. While small requests
can be effective with read transfers because of the read-ahead assistance that SCSI track
buffers offer, small stripe units degrade write performance.

Stripe unit
(set to 2 tracks)

Stripe width

Tuning XFS Performance

11

For example, consider what happens when data is written using the default stripe unit
size of one track. The write is broken into tracks and each track is sent to a different disk.
When the data arrives at the controller, the controller first waits for the disk head to move
to the beginning of the track before it writes the data. This wait, commonly referred to as
a rotational delay, occurs between each track that is written to the same disk; as a result,
using a one-track stripe unit reduces the write performance to half of the read
performance.

It is possible to achieve higher write performance by using larger stripe units. Table 2-1
shows the effects of increasing the size of stripe units on XFS write performance.

Changing the Maximum DMA Size

IRIX imposes a limit on the maximum size of DMA operations. This limit affects XFS,
since direct I/O is a DMA operation. In IRIX 6.2, the default maximum DMA size is 4 MB.
Frequently, this limit must be increased on BDSpro servers to achieve optimum
performance.

To change the maximum DMA size, reset the maxdmasz variable using systune (see the
systune(1M) reference page).

The values of maxdmasz are expressed in pages, which are 16KB on 64-bit systems.
Change these values to the size that you need, then reconfigure and reboot the server.

a. Default size used by the xlv_make command.

Table 2-1 Effects of Stripe Unit Size on XFS Write Performance

Stripe Unit Request Size Write Performance

1 track = 100 KBa 1 track × 4 disks = 400 KB 1/2 read performance

2 tracks = 200 KB 2 tracks × 4 disk = 800 KB 2/3 read performance

3 tracks = 300 KB 3 tracks × 4 disks = 1.2 MB 3/4 read performance

4 tracks = 400 KB 4 tracks × 4 disks = 1.6 MB 4/5 read performance

12

Chapter 2: Preparing for BDSpro

Sample Performance Results

Table 2-2 shows the performance for BDSpro (version 1.0) using IBM drives with a 2 GB
capacity and a HIPPI network. Three disks were configured on each controller; the
transfer size was set to the stripe width size. Notice from Table 2-2 that BDS writes are
slower than XFS writes. This is due to the synchronous nature of BDS write operations.

Table 2-2 Performance Results With Sample Configurations a

Disks Stripe Unit Stripe Width XFS Read XFS Write BDS Read BDS Write

6 64KB 384 KB 29 14 26 10

6 128KB 768 KB 30 18 27 14

6 256KB 1536 KB 29 21 28 16

9 64KB 576 KB 42 20 38 15

9 128KB 1152 KB 43 26 37 19

9 256KB 2304 KB 42 31 38 22

12 64KB 768 KB 54 26 45 19

12 128KB 1536 KB 54 33 44 23

12 256KB 3072 KB 57 41 48 27

15 64KB 960 KB 65 32 52 21

15 128KB 1920 KB 64 41 53 26

15 256KB 3840 KB 68 50 52 30

18 64KB 1152 KB 75 37 58 24

18 128KB 2304 KB 73 47 57 29

18 256KB 4608 KB 80 57 62 33

21 64KB 1344 KB 84 43 64 26

21 128KB 2688 KB 84 54 52 31

21 256KB 5376 KB 90 66 68 31

24 64KB 1536 KB 92 48 68 29

Sample Performance Results

13

a. Read and write speed is expressed in MB per second.

24 128KB 3072 KB 92 60 63 33

24 256KB 6144 KB 100 73 71 30

27 64KB 1728 KB 101 53 71 30

27 128KB 3456 KB 99 64 72 35

27 256KB 6912 KB 108 81 72 34

30 64KB 1920 KB 108 58 70 32

30 128KB 3840 KB 108 71 72 37

30 256KB 7680 KB 118 86 72 40

Table 2-2 (continued) Performance Results With Sample Configurations a

Disks Stripe Unit Stripe Width XFS Read XFS Write BDS Read BDS Write

15

Chapter 3

3. Setting Up and Testing BDSpro

To add BDSpro to an NFS implementation, you mount that filesystems that BDS is to use
and test BDSpro performance on the filesystems. The chapter contains these sections:

• “Exporting Filesystems for BDSpro”

• “Mounting Filesystems for BDSpro”

• “Stopping and Restarting BDSpro”

• “Testing a BDSpro Setup”

• “Testing a BDSpro Setup”

Note: Be sure to review the information in Chapter 2, “Preparing for BDSpro,”and
follow the recommendations that it contains before proceeding with BDSpro setup.

Exporting Filesystems for BDSpro

To make filesystems available to BDSpro, export them from the server with standard NFS
exportfs command. No special arguments to exportfs are required, and all standard
exportfs arguments are valid (see the exportfs(1M) reference page for details).

Note: Only XFS type filesystems are supported with BDSpro.

Mounting Filesystems for BDSpro

To mount filesystems on BDSpro clients, use the standard NFS mount command and the
-o bds option (see the fstab(4) reference page for complete information). The example
that follows illustrates a BDS entry in a client /etc/fstab file:

hip0-goliath:/ /bdsmnt -o bds, vers=3, rw 0 0

16

Chapter 3: Setting Up and Testing BDSpro

In this example, the root filesystem from server goliath is mounted to /bdsmnt on the
client. The interface hip0-goliath on the server connects to the HIPPI network where the
client is also attached.

Stopping and Restarting BDSpro

BDSpro software is ready to run after it is installed. You can start the bds daemon on the
server from the command line if it is not already running (see the bds(1M) reference page
for a list of options).

Note: If it is necessary to stop the server, stop all client applications first.

When the bds daemon starts, it binds to port 2050 (NFS port + 1). Do not stop the daemon
during an active connection. Doing so causes the socket to linger while it tries to process
all remaining packets. If you attempt to restart the daemon during this period, TCP
prevents the restart to allow time for packet processing to finish (approximately two
minutes).

Testing a BDSpro Setup

To test a BDSpro setup, run the BDSpro server in false disk mode. False disk mode is
analogous to sending the data to /dev/null or receiving it from /dev/zero. In false disk
mode, the BDSpro server simulates data movement to and from the disk; network data
is unaffected. This mode is used to verify network performance.

Use this command to start the BDSpro server in false disk mode:

server# /usr/sbin/bds -devnull -devzero -touch -log

The touch option tells BDSpro to touch all data before sending it, which simulates XFS
overhead. (See the bds(1M) reference page for a description of all options).

On the client, first mount the server:

client# mkdir /mnt
client# mount -o bds server:/ /mnt

Testing a BDSpro Setup

17

Note: The mount will fail if you have not yet upgraded the client kernel to use BDSpro,
but you can still test BDSpro with lmdd, since this command contains a user level
implementation of the XBDS™ protocol (see “Debugging Without Kernel-Level
BDSpro,” later in this chapter).

After the filesystem is mounted, try reading a file using an lmdd command similar to this
(remember that no data is actually read in false disk mode):

client# lmdd if=/mnt/unix direct=1 bs=1m move=100m
100 MB in 1.54 secs, 65.01 MB/sec

Note: If you do not include the move=100m argument, the lmdd command will not stop.

Using the BDSpro Debugger

If BDSpro performance is not what you expected, you can use verbose debugging by
adding the -debug option to the bds command line. You can debug in either false or real
disk mode. When you use real data, debugging prints timing data for the network
transfer and the filesystem transfer. In false data mode, only network timing is displayed.

Use the following command on the client to generate debugging on the server:

client# lmdd of=debugfile bs=4m move=20m direct=1

The previous lmdd command writes data across the network to the BDS server using a
block size of 4MB. The BDS transfer size is whatever the remote client is using for read
or write requests.

The example that follows shows the bds debugging output on the server. Because data is
read from the network and written to the disk, readn timing results are network times
and write timing results are XFS times.

server# bds -debug

(null): F xid=24512 uid=0 gid=0 fhandle len=68
Want file handle 68 bytes
V3 filehandle: A xid=24512 uid=0 gid=0 bytes=0
V3 filehandle: W xid=24513 uid=0 gid=0 off=0 len=4.0M
readn: 1000c000 4.0M @ 84.5M/sec
V3 filehandle: lseek to 0 = 0
write: 4.0M @ 52.0M/sec
V3 filehandle: A xid=24513 uid=0 gid=0 bytes=4.0M
V3 filehandle: W xid=24514 uid=0 gid=0 off=4.0M len=4.0M

18

Chapter 3: Setting Up and Testing BDSpro

readn: 10410000 4.0M @ 0.5G/sec
V3 filehandle: lseek to 4.0M = 4.0M
write: 4.0M @ 50.2M/sec
V3 filehandle: A xid=24514 uid=0 gid=0 bytes=4.0M
V3 filehandle: W xid=24515 uid=0 gid=0 off=8.0M len=4.0M
readn: 1000c000 4.0M @ 83.2M/sec
V3 filehandle: lseek to 8.0M = 8.0M
write: 4.0M @ 56.5M/sec
V3 filehandle: A xid=24515 uid=0 gid=0 bytes=4.0M
V3 filehandle: W xid=24516 uid=0 gid=0 off=12.0M len=4.0M
readn: 10410000 4.0M @ 88.6M/sec
V3 filehandle: lseek to 12.0M = 12.0M
write: 4.0M @ 55.7M/sec
V3 filehandle: A xid=24516 uid=0 gid=0 bytes=4.0M
V3 filehandle: W xid=24517 uid=0 gid=0 off=16.0M len=4.0M
readn: 1000c000 4.0M @ 88.5M/sec
V3 filehandle: lseek to 16.0M = 16.0M
write: 4.0M @ 52.9M/sec
V3 filehandle: A xid=24517 uid=0 gid=0 bytes=4.0M
hip0-ebony.engr.sgi.com moved 20.00 MB in 0.75 secs, 26.64 MB/sec

Note: Network writes are frequently returned before data transfers are completed.
Transfers are mapped into socket buffers and the write is returned, but the network
continues to transfer data after these events take place.

Debugging Without Kernel-Level BDSpro

The lmdd debugging tool included with BDSpro has a user level implementation of the
BDS protocol. lmdd tries to use the kernel level BDS protocol, but if that is not present (or
not enabled), lmdd uses the user level protocol.

If you need to debug on the client system, you can do so by mounting the filesystem
without the -o bds option. In this case, the filesystem is mounted with kernel level BDS
disabled.

Testing the Network

19

To see local debugging output, use lmdd with the debug=1 option, as shown in this
example:

lmdd of=debugfile bs=4m move=20m direct=1 debug=1
0.003 bds_open(3, debugfile, 32769, 5)
restart(debugfile)
open(hip0-mahogany:/export/bds1/debugfile) = 3
write at 0.051, rwnd=0 swnd=0
0.263 A xid=2 uid=0 gid=0 bytes=4.0M
bds_write(3, 1000c000, 4194304) = 4194304 @ 18.72MB/sec in 1 writes
write at 0.268, rwnd=0 swnd=0
0.430 A xid=3 uid=0 gid=0 bytes=4.0M
bds_write(3, 1000c000, 4194304) = 4194304 @ 24.62MB/sec in 1 writes
write at 0.435, rwnd=0 swnd=0
0.562 A xid=4 uid=0 gid=0 bytes=4.0M
bds_write(3, 1000c000, 4194304) = 4194304 @ 31.38MB/sec in 1 writes
write at 0.567, rwnd=0 swnd=0
0.693 A xid=5 uid=0 gid=0 bytes=4.0M
bds_write(3, 1000c000, 4194304) = 4194304 @ 31.61MB/sec in 1 writes
write at 0.697, rwnd=0 swnd=0
0.821 A xid=6 uid=0 gid=0 bytes=4.0M
bds_write(3, 1000c000, 4194304) = 4194304 @ 32.23MB/sec in 1 writes
20.00 MB in 0.83 secs, 24.23 MB/sec

Testing the Network

BDSpro is typically used on HIPPI because of its high performance (consult the IRIS
HIPPI Administrator’s Guide for information on installing and configuring a HIPPI
network). If BDSpro testing shows inadequate performance, network problems might be
the cause. In this case, you can use the ttcp test program to verify that the network is
functioning properly. ttcp is a client/server program that moves data between systems
and reports performance results.

To use ttcp, enter this command on the client to start the test:

client% ttcp -s -r -l 524288
ttcp-r : buflen=524288, nbuf=2048,align=16384/0, port=5001 tcp
ttcp-r : socket

20

Chapter 3: Setting Up and Testing BDSpro

Then, enter the following command on the server to start ttcp and send data to the client.
The output of ttcp shows transfer rates:

server% ttcp -s -t -T -l 524288 -n 200 hip-client
ttcp-t: buflen=524288,nbuf=200, align=16384/0, port=5001 tcp -> hip-client
ttcp-t: socket
ttcp-t: connect
ttcp-t: 104857600 bytes in 1.42 real seconds = 73843.38 KB/sec +++

The server should be sending data at approximately 65 to 70 MB per second. If you omit
the -T option, which touches the data to measure caching effects, the rate should be
approximately 90 MB per second. If the network is not performing at the expected level,
determine the cause of the problem and correct it. The problem may be caused by one of
these conditions:

• The data is not being transferred on the HIPPI network.

By default, IRIX designates the Ethernet interface as the primary network interface
and assigns the hostname (the name in the /etc/sys_id file) to this interface. To assign
a hostname to the HIPPI interface, IRIX appends prefix hippi to the hostname. (For
example, if the Ethernet interface is named frosty, the HIPPI interface is named
hippi-frosty).

Check the hostname of the HIPPI client that you specified in the ttcp command to
verify that it is the HIPPI hostname (and not the Ethernet hostname) for this client.
Remember to specify a HIPPI interface when mounting the filesystem also (see
“Mounting Filesystems for BDSpro,” earlier in this chapter).

• The server is running a debugging or sema metering kernel.

Reboot with a non-debug kernel, which performs much faster.

• The client or server is not running IRIX 6.2.

IRIX 5.3 (or earlier) does not offer the HIPPI performance that BDSpro requires.
Upgrade to IRIX 6.2 with BDSpro support.

• The connection is passing through a router.

Use netstat -i to determine whether the HIPPI interface on the server connects to the
HIPPI network where the client resides. If the client and server are not on the same
network, a high-performance router will be required to support HIPPI speeds.

If you try all of these measures and performance is still not adequate, contact your Silicon
Graphics support provider for additional assistance.

