
Getting Started With BDSpro

Document Number 007-3274-003

Getting Started With BDSpro
Document Number 007-3274-003

CONTRIBUTORS

Written by Pam Sogard
Illustrated by Dany Galgani
Production by Mary Macanek
Engineering contributions by Ethan Solomita and Larry McVoy
St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© 1996 - 1998, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and the Silicon Graphics logo are registered trademarks and BDSpro
and XBDS are trademarks of Silicon Graphics, Inc. NFS is a registered trademark of
Sun Microsystems, Inc.

iii

Contents

List of Figures v

List of Tables vii

About This Guide ix
What This Guide Contains ix
Conventions Used in This Guide x
Related Documentation x

1. BDS Fundamentals 1
BDS Requirements 2
What BDS Offers 3
How BDS Works 4

Standard NFS Transactions 5
BDS Transactions 6

BDS Buffer Management 7
How Buffer Size Is Determined 8
Read Buffering in Detail 8
Write Buffering in Detail 9
Write Buffering Risks 11

When BDS Makes Sense 11

2. Preparing Filesystems for BDSpro 13
Installation Prerequisites 13
Disk and Controller Configuration Requirements 13
Changing the Maximum DMA Size 14
Measuring XFS Rates 15

iv

Contents

Tuning XLV Performance 15
Disk Striping Fundamentals 16
Determining the Size of Stripe Units 16
Optimizing the Stripe Unit Size 17

Sample Performance Results 18

3. Setting Up the BDSpro Service 19
Mounting Filesystems for BDSpro 19

Exporting Filesystems for BDSpro 20
Automatic BDS Mounting 20

Verifying BDSpro Performance 20
Using the BDSpro Debugger 21
Debugging Without Kernel-Level BDSpro 23

 Correcting Network Problems 24

4. Using BDSpro 27
Starting and Stopping the BDSpro Service 27
Using Write Buffering 28

Specifying the Number of Buffers 28
Specifying a Buffer Size 28
Precedence in Setting Buffer Size 29
Disabling Buffering 30

Managing BDS Logging 30
Using BDS from an Application 31

XFS Function Controls 32
Application Interfaces 32

A. Frequently Asked Questions 33

v

List of Figures

Figure 1-1 XBDS Protocol Compared With ONC Protocols 2
Figure 1-2 The BDSpro Client-Server Model 3
Figure 1-3 Events in a Standard NFS Transaction 5
Figure 1-4 Events in a BDSpro Transaction Without Buffering 6
Figure 1-5 Read Buffering in a BDSpro Transaction 9
Figure 1-6 Write Buffering in a BDSpro Transaction 10
Figure 2-1 Effects of the Stripe Unit and Disk Number on Stripe Width 16

vii

List of Tables

Table 1-1 BDSpro Performance Compared With Standard NFS 4
Table 2-1 Effects of Stripe Unit Size on XFS Write Performance 17
Table 2-2 Performance Results With Sample Configurations 18

ix

About This Guide

Getting Started With BDSpro explains how to add BDSpro™, the Silicon Graphics
implementation of the Bulk Data Service protocol (XBDS™), to a Network File System
(NFS®) implementation. This guide contains information to help server and site
administrators understand the BDS protocol, evaluate the suitability of BDSpro for their
site, and include BDSpro in an existing NFS implementation. It also contains information
to help application developers make use of BDS services. Administrators using this
guide should be experienced in managing NFS and XFS™ (the X filesystem) on large
servers.

What This Guide Contains

This guide comprises four chapters, which cover these topics:

• Chapter 1, “BDS Fundamentals” explains how BDS works, describes its advantages
over standard NFS implementations, and explains the conditions under which it
should be used.

• Chapter 2, “Preparing Filesystems for BDSpro” describes hardware and software
requirements for BDSpro and explains how to modify your existing configuration if
you determine that changes are needed.

• Chapter 3, “Setting Up the BDSpro Service” explains how to include BDSpro in an
existing NFS implementation and check its performance before putting it into
service.

• Chapter 4, “Using BDSpro,” explains how to start and stop BDSpro, and how to
configure the service to perform buffering and logging. This chapter also explains
the application interfaces that BDSpro offers.

x

About This Guide

Conventions Used in This Guide

These type conventions and symbols are used in this guide:

Bold Literal command-line arguments, such as options and flags

Italics Executable names, filenames, IRIX commands, manual and book titles,
and new terms

Fixed-width type

Error messages, prompts, and onscreen text

Bold fixed-width type

User input, including keyboard keys (printing and nonprinting)

“” (Double quotation marks) References in text to document section titles

() (Parentheses) Following IRIX commands, surround reference page (man
page) section numbers

IRIX shell prompt for the superuser (root)

% IRIX shell prompt for users other than superuser

Related Documentation

These documents contain additional information that is related to BDSpro:

• BDSpro Release Notes

• IRIX Admin: Disks and Filesystems 007-2835-xxx

• IRIX HIPPI Administrator’s Guide 007-2229-xxx

• ONC3/NFS Administrator’s Guide 007-0850-xxx

See also the online reference pages (man pages): bds(1M), lmdd(1), mount(1M),
exportfs(1M), fstab(4), xlv_assemble(1M), xlv_make(1M), fcntl(2), open(2), read(2),
write(2), filesystems(4), and malloc(3C).

1

Chapter 1

1. BDS Fundamentals

Bulk Data Service (BDS) is a non-standard extension to NFS that handles file transactions
over high-speed networks at accelerated rates. To accelerate standard NFS performance,
BDS exploits the data access speed of the XFS filesystem and data transfer rates of
high-speed networks, such as the high performance parallel interface (HIPPI) and
fiberchannel. BDSpro is the Silicon Graphics implementation of the XBDS protocol.

This chapter contains the following sections to help you understand and evaluate BDS
performance:

• “BDS Requirements” on page 2

• “What BDS Offers” on page 3

• “How BDS Works” on page 4

• “BDS Buffer Management” on page 7

• “When BDS Makes Sense” on page 11

2

Chapter 1: BDS Fundamentals

BDS Requirements

You can use BDSpro on Silicon Graphics systems running IRIX 6.2 (or later). The NFS
product must also be installed on BDSpro hosts, and these hosts must be connected to a
high-speed network (such as HIPPI or fiberchannel) running the transmission control
protocol/internet protocol (TCP/IP) suite.

Figure 1-1 illustrates the XBDS protocol relative to the Open Systems Interconnect (OSI)
and Open Network Computing (ONC) protocols.

Figure 1-1 XBDS Protocol Compared With ONC Protocols

XBDS

TCP

IP

Network
interface

NFS

XDR

RPC

UDP/TCP

IP

Network
interface

Application

Presentation

Session

Transport

Network

Data link

Physical

OSI ONC XBDS

What BDS Offers

3

What BDS Offers

BDS is implemented as enhancements to NFS on the client system and a daemon process
on the server. Figure 1-2 illustrates the BDSpro client-server model and the NFS
client-server model on Silicon Graphics systems.

Figure 1-2 The BDSpro Client-Server Model

The hardware and software used on a network and its loading patterns determine the
ultimate speed of NFS and BDS transactions. Because these factors vary greatly on
individual networks, it is impossible to predict the performance gains that BDS will
deliver to a particular network. However, to gauge BDS advantages over standard NFS,
it is useful to compare BDSpro to NFS performance under ideal network conditions.

NFS

BDS

IRIX

IRIX

XFS

TCP
NFS

BDS
server

daemon

TCP

Client
application

Client

NFS transaction
BDS transaction

Server

XFS
data

BDS so
ck

et

NFS socket

U
se

r
sp

ac
e

K
er

ne
l s

pa
ce

4

Chapter 1: BDS Fundamentals

Table 1-1 compares BDSpro transfer speeds with NFS configurations.

How BDS Works

To achieve high throughput, BDS relies on the ability of the operating system to perform
direct input and output (see the O_DIRECT option on the open(2) IRIX reference page for
details). With direct I/O, the operating system reads and writes data from disk directly
to a user buffer, bypassing an intermediate copy to the kernel buffer cache that is
standard for other types of I/O.

In a network transaction such as an NFS read or write, the time saved by bypassing the
kernel buffer cache is doubled, since the bypass occurs on both the client and the server
systems. Figure 1-3 and Figure 1-4 and the discussions that follow them illustrate this
difference in detail.

Table 1-1 BDSpro Performance Compared With Standard NFS

Product Network Configuration Read Rate

NFS (version 2) UDP over HIPPI 2.5 MB per second per channel

NFS (version 3) TCP/IP over HIPPI 19 MB per second per channel

BDSpro TCP/IP over HIPPI 88 MB per second per channel

How BDS Works

5

Standard NFS Transactions

Figure 1-3 illustrates the sequence of events in a standard NFS transaction.

Figure 1-3 Events in a Standard NFS Transaction

These events take place in Figure 1-3:

1. The application issues a read for remote data.

2. The search for the data in the local buffer cache fails, triggering an NFS read.

3. An NFS read is sent to the remote server.

4. The search of the buffer cache on the remote server fails.

5. The server reads from the filesystem on disk.

8

NFS

User
application

Buffer

cache

Client

2

1

3

9

5

4
NFS

Buffer

cache

Server

6

7

7

IRIX

IRIX

Path of read request

Path of returned data

6

Chapter 1: BDS Fundamentals

6. Data is moved to the server’s buffer cache.

7. The buffer data is sent to the network.

8. The client receives the data in its buffer cache.

9. The data is sent from the buffer cache to the application.

BDS Transactions

Figure 1-4 illustrates the sequence of events in an BDS transaction.

Figure 1-4 Events in a BDSpro Transaction Without Buffering

User
application

Client

1

2

5

Server

3

4

IRIX

IRIX

Path of read request

Path of returned data

BDS
BDS

XFS

BDS Buffer Management

7

These events take place in Figure 1-4:

1. The application issues a read for remote data.

2. A BDS read is sent to the remote BDS server.

3. The BDS server reads directly from the filesystem on disk.

4. The BDS server writes the data to the network.

5. Data is mapped to the user’s address space (page-flipped) directly from the
network.

BDS Buffer Management

To increase throughput, BDS performs read buffering automatically. It performs write
buffering if explicitly directed to do so (see “Using Write Buffering” on page 28).

The gains derived from buffering are a function of the speed of the network and
filesystem in a particular configuration. However, in most BDS implementations,
buffering improves performance significantly. For example, in laboratory tests, BDSpro
achieved a 40 MB per second throughput rate without buffering. This rate increased to
87 MB per second with read buffering, and with write buffering, performance increased
to 93 MB per second (the maximum bandwidth of the HIPPI connection).

When a connection requires buffering, BDS allocates two memory buffers for each open
file. The size of these buffers is either calculated by BDS or specified by the user (for
details, see “How Buffer Size Is Determined” on page 8 and “Specifying a Buffer Size” on
page 28).

BDS performs no buffering under these conditions:

• When it cannot determine a buffer size (for writes only)

• If read requests are not sequential

• If multiple clients are accessing a file from the same host

• When the buffer size is set to zero (see “Disabling Buffering” on page 30)

8

Chapter 1: BDS Fundamentals

How Buffer Size Is Determined

When data is located in a real-time filesystem, BDSpro sets the buffer size to the extent
size. When data is located on an XLV logical volume, BDSpro calculates the size of the
disk stripe and sets the buffer size to the disk stripe size. This is the most efficient buffer
size, because it optimizes XLV access and minimizes disk contentions (see “Tuning XLV
Performance” in Chapter 2). When the disk is not striped, BDSpro uses the application’s
I/O request size to set the buffer size.

The calculated buffer size is the default, but you can override this default by specifying
a buffer size by several methods (see “Specifying a Buffer Size” on page 28 for details).
The buffer size setting that is in effect applies to both read and write buffering (if write
buffering is enabled).

Read Buffering in Detail

BDSpro performs read-ahead buffering; that is, as it sends data over the network to fill a
read request, it simultaneously fills a second buffer with data from disk in anticipation
of the next request. This concurrent disk and network I/O enhances BDSpro
performance significantly.

BDS Buffer Management

9

Figure 1-5 illustrates read-ahead buffering in a BDS transaction.

Figure 1-5 Read Buffering in a BDSpro Transaction

As Figure 1-5 illustrates, BDS begins network transfers of read data from a full buffer—
no data is transferred to the network until this buffer is full. While the contents of the first
buffer is being transferred to the network, the second buffer is being filled from disk in
preparation for subsequent read requests.

Write Buffering in Detail

BDS normally writes data to disk as the data is received from the network, as shown in
Figure 1-6. But if you prefer, you can specify write buffering. BDS performs write-behind
buffering; that is, it fills a buffer with data before writing any of the data to disk. Because
a delay occurs between receiving and writing the data, write buffering poses some risks,
so it should be used judiciously (see “Using Write Buffering” on page 28 for details).

Server

IR
IX

BDS

Disk

XFS

Network

10

Chapter 1: BDS Fundamentals

Figure 1-6 illustrates how write-behind buffering works.

Figure 1-6 Write Buffering in a BDSpro Transaction

BDS write

BDS write

BDS write

1

2

3

Disk
write

4

When BDS Makes Sense

11

Write Buffering Risks

Consider these risks before using write buffering:

• A server failure can result in the loss of data if the failure occurs before the buffer is
written to disk.

• Write buffering delays error reporting, since an error is reported only after a
complete buffer is transferred to disk.

• Errors might be reported to a different application accessing the same file on the
same client.

When BDS Makes Sense

While BDS offers clear advantages to standard NFS implementations in some operating
environments, Silicon Graphics recommends it over standard NFS only in certain
circumstances. Real network throughput rates, the applications running on a network,
and the size of files involved in network operations determine whether BDS is a desirable
addition to your current NFS implementation.

For transactions in which the read or write request size is 128 KB or larger, BDS is a sound
alternative to standard NFS because it offers much faster performance (see Table 1-1 for
speeds achieved with BDSpro). Furthermore, performance improves as the request size
increases—BDS achieves optimum performance when the read and write request size is
the same as the BDS buffer size (see “Specifying a Buffer Size” on page 28 for details).

You should consider adding BDS if your NFS implementation meets these criteria:

• Your applications use large read and write request sizes (greater than 128 KB) in
requests to remote filesystems.

• Network hardware is a high-speed medium (such as HIPPI or fiberchannel) with a
potential transfer rate of 100 MB per second or higher.

• The applications that you use do not rely on data caching.

13

Chapter 2

2. Preparing Filesystems for BDSpro

This chapter explains what BDSpro requires to achieve its full potential and how to
modify your current filesystems setup if you determine that it should be changed. The
chapter contains these sections to help you prepare for running BDSpro:

• “Installation Prerequisites” on page 13

• “Disk and Controller Configuration Requirements” on page 13

• “Changing the Maximum DMA Size” on page 14

• “Measuring XFS Rates” on page 15

• “Tuning XLV Performance” on page 15

• “Sample Performance Results” on page 18

Installation Prerequisites

BDSpro requires IRIX version 6.2 (or higher), BDSpro software, and NFS (version 2.0 or
3.0) installed on client and server systems. Server and client systems must also contain
current NFS rollup patches and the mount command patch; server systems also require
the current IRIX and networking rollout patches. Server and client systems must be
connected to a HIPPI, fiberchannel, or other high-performance network. (See the BDSpro
Release Notes for detailed requirements and instructions on software installation).

Disk and Controller Configuration Requirements

When selecting disks for use with BDS, choose a brand and model that excel in large
sequential access operations. Disks with this characteristic offer better BDS performance
and are therefore a better choice.

BDS installations that use fast-and-wide SCSI controllers with speeds of 20 MB per
second (not UltraSCSI or Fiber Channel) must optimize the number of disks on a single

14

Chapter 2: Preparing Filesystems for BDSpro

SCSI bus. For example, a system containing four IBM drives with a transfer rate of 5 MB
per second completely saturated a controller with a 20 MB per second transfer rate. The
IBM drives provided by Silicon Graphics spin at about 7 MB per second on the outer zone
and 5 MB per second on the inner zone. Assuming a transfer rate of 5 MB per second, it
is apparent that 4 drives will completely saturate a single 20 MB per second controller.

Silicon Graphics provides SCSI boxes with an eight-drive capacity that are configured for
one SCSI channel. This single channel configuration is inefficient for BDS— one channel
can service only four of the disks before the maximum bandwidth is reached (4 disks @
5 MB/disk/second = 20 MB/second). To optimize a factory-shipped SCSI box for
BDSpro, reconfigure it from a single-channel to a two-channel device. A SCSI box with
two channels offers twice the bandwidth and the additional channel can service the
remaining four disks.

For maximum sequential performance with the minimum number of disks, purchase
more controllers and use one controller for every three or four disks.

Changing the Maximum DMA Size

The limit that IRIX imposes on the maximum size of direct memory access (DMA)
operations affects XFS, since direct I/O is a DMA operation. In IRIX 6.2, the default
maximum DMA size is 4 MB. Frequently, this limit must be increased on BDSpro servers
to achieve optimum performance.

To change the maximum DMA size, reset the maxdmasz variable using systune (see the
systune(1M) reference page).

The values of maxdmasz are expressed in pages, which are 16 KB on 64-bit systems.
Change these values to the size that you need, and then reconfigure and reboot the server.

Measuring XFS Rates

15

Measuring XFS Rates

BDSpro performance is highly dependent on the local performance of XFS and XLV on
the server system; BDS is superfluous when local filesystem speed (or network speed)
creates performance bottlenecks. You can often correct filesystem performance by
properly configuring disks and by setting the correct size for direct memory access
operations.

To measure local XFS performance, use lmdd commands similar to those shown below. If
you determine that the results are inadequate for a BDS implementation, follow the
tuning recommendations in “Tuning XLV Performance,” which follows.

This command creates testfile, a 500 MB file with a transfer size of 7 MB; the return
message confirms the new file:

server# lmdd of=/export/bds/testfile bs=7m move=500m direct=1
497.00 MB in 5.83 secs, 85.29 MB/sec

This command performs a direct read on testfile with a transfer size of 7 MB; the return
message shows the XFS transfer rate:

server# lmdd if=/export/bds/testfile bs=7m move=500m direct=1
497.00 MB in 4.44 secs, 111.92 MB/sec

Tuning XLV Performance

XFS uses a logical volume manager, xlv, to stripe data across multiple disk drives. On
striped disks, large XFS requests are split and sent to each disk in parallel. The high
sequential performance of XFS is attributable to this parallelism. (See Chapter 7 of IRIX
Admin: Disks and Filesystems for more information.)

The size of data transfers is an important consideration in planning logical volumes. For
example, assume that a logical volume contains ten disks and the stripe size is 64 KB. In
this case, transfers of 640 KB or larger are required to get all drives running
simultaneously. If the data transfer size is 320 KB, only five drives are active in an I/O
operation. Because only half of the available disks are used, a transfer size of 320 KB is
very inefficient, reducing the total performance by half. With proper striping of logical
volumes, however, you can maximize disk performance.

16

Chapter 2: Preparing Filesystems for BDSpro

Disk Striping Fundamentals

The xlv_make utility stripes the disks in a logical volume. By default, xlv_make divides the
disk into tracks and uses one track from each disk in rotation to create a stripe. The
amount of data that xlv_make allocates on a single drive before going to the next is called
the stripe unit. The stripe unit and the number of disks in the logical volume determine
the stripe width, or

stripe width = stripe unit × number of disks

Figure 2-1 illustrates a logical volume containing four disks. Notice from this figure that
the stripe unit is set to two tracks instead of one (the default stripe unit size). If we assume
a track size of 100 KB (track size is set by disk manufacturers), the stripe width for this
logical volume is 800 KB.

Figure 2-1 Effects of the Stripe Unit and Disk Number on Stripe Width

Determining the Size of Stripe Units

When you create a logical volume, you can specify a stripe size using the stripe_unit
argument of xlv_make (see the xlv_make(1M) reference page). Specifying the proper size
of the stripe unit is the key to optimizing I/O performance. In most cases, the objective
in setting the stripe size is to achieve a particular bandwidth; but you might also need to
adjust the stripe size to accommodate an application that uses a fixed transfer size.

Stripe unit
(set to 2 tracks)

Stripe width

Tuning XLV Performance

17

The transfer size should be a multiple of both the system’s page size and the stripe width
(800 KB in Figure 2-1). For example, if an application needs the bandwidth of all four
disks but is reading with a transfer size of 400 KB, you could set the stripe unit to one
track instead of two to achieve the required bandwidth with half the transfer size.

Optimizing the Stripe Unit Size

It is not always advisable to use the smallest possible stripe unit. While small requests
can be effective with read transfers because of the read-ahead assistance that SCSI track
buffers offer, small stripe units degrade write performance.

For example, consider what happens when data is written using the default stripe unit
size of one track. The write is broken into tracks and each track is sent to a different disk.
When the data arrives at the controller, the controller first waits for the disk head to move
to the beginning of the track before it writes the data. This wait, commonly referred to as
a rotational delay, occurs between each track that is written to the same disk; as a result,
using a one-track stripe unit reduces the write performance to half of the read
performance.

It is possible to achieve higher write performance by using larger stripe units. Table 2-1
shows the effects of increasing the size of stripe units on XFS write performance.

a. Default size used by the xlv_make command.

Table 2-1 Effects of Stripe Unit Size on XFS Write Performance

Stripe Unit Request Size Write Performance

1 track = 100 KBa 1 track × 4 disks = 400 KB 1/2 read performance

2 tracks = 200 KB 2 tracks × 4 disk = 800 KB 2/3 read performance

3 tracks = 300 KB 3 tracks × 4 disks = 1.2 MB 3/4 read performance

4 tracks = 400 KB 4 tracks × 4 disks = 1.6 MB 4/5 read performance

18

Chapter 2: Preparing Filesystems for BDSpro

Sample Performance Results

Table 2-2 shows the performance for BDSpro (version 2.0) using IBM drives with a 2 GB
capacity and a HIPPI network. Three disks were configured on each controller; the
transfer size was set to the stripe width size. Notice from Table 2-2 that BDS writes are
significantly slower than XFS writes when write buffering is not used.

a. Read and write speed is expressed in MB per second.

Table 2-2 Performance Results With Sample Configurations a

Disks Unit Width XFS
Read

XFS
Write

BDS
Read

BDS
Write

BDS
Buffered
Write

7 256 KB 1792 KB 52 40 52 15 31

14 128 KB 1792 KB 79 43 69 28 42

14 256 KB 3584 KB 83 50 73 31 48

14 512 KB 7168 KB 84 53 74 33 53

36 256 KB 9216 KB 196 120 89 51 94

68 60 KB 4080 KB 189 121 81 51 92

68 120 KB 8160 KB 221 163 79 58 92

19

Chapter 3

3. Setting Up the BDSpro Service

Setting up BDSpro involves making minor modifications to your NFS implementation,
verifying BDSpro performance, and correcting problems if they occur. This chapter
contains the following sections that explain these tasks in detail:

• “Mounting Filesystems for BDSpro” on page 19

• “Verifying BDSpro Performance” on page 20

• “Correcting Network Problems” on page 24

Note: Be sure to review the information in Chapter 2, “Preparing Filesystems for
BDSpro,”and follow the recommendations that it contains before proceeding with
BDSpro setup.

Mounting Filesystems for BDSpro

To mount filesystems on BDSpro clients, use the standard NFS mount command and the
-o bds option. BDS services are not invoked unless this option appears on the mount
command line. (See the fstab(4) reference page for complete information on the mount
command.)

This example illustrates a BDS entry in a client /etc/fstab file:

hip0-goliath:/ /bdsmnt -o bds, vers=3, rw 0 0

In the previous example, the root filesystem from server goliath is mounted to /bdsmnt on
the client. The interface hip0-goliath on the server connects to the HIPPI network where
the client is also attached.

20

Chapter 3: Setting Up the BDSpro Service

Exporting Filesystems for BDSpro

To make filesystems available to BDSpro, export them from the server with the standard
NFS exportfs command. No special arguments to exportfs are required, and all standard
exportfs arguments are valid (see the exportfs(1M) reference page for details).

Note: Only XFS type filesystems are supported with BDSpro.

Automatic BDS Mounting

You can add the bdsauto option to a mount command line so that BDS is used
automatically whenever the transfer size exceeds a specified limit. When bdsauto is set,
standard NFS is used for file I/O unless the transfer size that you specify is exceeded, in
which case BDS is used.

This example illustrates a mount command that sets bdsauto:

hip0-goliath:/ /bdsmnt -o bds, bdsauto=2000000, vers=3, rw 0 0

The entry in the previous example sets bdsauto to two megabytes, so BDS will be used
in file access operations if the transfer size is two megabytes or larger, even if the
application is not modified to take advantage of BDS. NFS will be used if the transfer size
is smaller than two megabytes.

Verifying BDSpro Performance

To test a BDSpro setup, run the BDSpro server in false disk mode. False disk mode is
analogous to sending the data to /dev/null or receiving it from /dev/zero. In false disk
mode, the BDSpro server simulates data movement to and from the disk; network data
is unaffected. This mode is used to verify network performance.

Use this command to start the BDSpro server in false disk mode:

server# /usr/etc/bds -devnull -devzero -touch -log

The -touch option tells BDSpro to touch all data before sending it, which simulates XFS
overhead. (See the bds(1M) reference page for a description of all options).

Verifying BDSpro Performance

21

On the client, first mount the server:

client# mkdir /mnt
client# mount -o bds server:/ /mnt

Note: The mount will fail if you have not yet upgraded the client kernel to use BDSpro,
but you can still test BDSpro with lmdd, since this command contains a user level
implementation of the XBDS protocol (see “Debugging Without Kernel-Level BDSpro”
on page 23).

After the filesystem is mounted, try reading a file using a command similar to this
(remember that no data is actually read in false disk mode):

client# lmdd if=/mnt/unix direct=1 bs=1m move=20m
20.97 MB in .43 secs, 48.31 MB/sec

If you enter two lmdd commands in succession, performance improves on the second
read. This results from the overhead that BDS incurs on its first sever access; this
overhead is not incurred in the second read:

client# lmdd if=/mnt/unix direct=1 bs=1m move=20m
20.97 MB in .43 secs, 48.31 MB/sec

client# lmdd if=/mnt/unix direct=1 bs=1m move=20m
20.97 MB in .29 secs, 73.34 MB/sec
0.001: R xid=2 uid=0 gid=0 off=0x0 len=4.0000M
0.124: A xid=2 uid=0 gid=0 bytes=4.0000M
/bds/test moved=4194304 wanted=4194304 seekp=4194304 @ 22.8867M/sec
read at 0.176, rwnd=0 swnd=0
0.176: R xid=3 uid=0 gid=0 off=0x400000 len=4.0000M
0.300: A xid=3 uid=0 gid=0 bytes=4.0000M
/bds/test moved=4194304 wanted=4194304 seekp=8388608 @ 23.3921M/sec
read at 0.348, rwnd=0 swnd=0
0.348: R xid=4 uid=0 gid=0 off=0x800000 len=4.0000M
0.373: A xid=4 uid=0 gid=0 bytes=4.0000M
/bds/test moved=4194304 wanted=4194304 seekp=12582912 @ 21.4247M/sec
12.58 MB in 0.54 secs, 23.49 MB/sec

Using the BDSpro Debugger

If BDSpro performance is not what you expected, you can use verbose debugging by
adding the -debug option to the bds command line. You can debug in either false or real
disk mode. When you use real data, debugging prints timing data for the network
transfer and the filesystem transfer. In false disk mode, only network timing is displayed.

22

Chapter 3: Setting Up the BDSpro Service

Use the following command on the client to generate debugging on the server:

client# lmdd of=debugfile bs=4m move=12m direct=1

The previous lmdd command writes data across the network to the BDS server using a
block size of 4MB. The BDS transfer size is whatever the remote client is using for read
or write requests.

The example that follows shows the bds debugging output on the server. Because data is
read from the network and written to the disk, timing results on reads(readn) are
network times and timing results on writes (write) are XFS times.

server# bds -debug

readn: 7fff2e18 72.0000 @ 3.0000 /sec
V3 filehandle: F xid=2878 uid=0 gid=0 fhandle len=68, buflen=16.0000E,
oflags=9
Want file handle 68 bytes
readn: 10619dd8 68.0000 @ 0.8314M/sec
setting bds_xfs_align to 4095
V3 filehandle: setting rbuflen to 7.9688M, wbuflen to 0
bdsid 7312, sprocid 7320
V3 filehandle write(4, 7fff2e18, 72) = 72
writen: V3 filehandle: 72.0000 @ 94.6328K/sec
V3 filehandle: A xid=2878 uid=0 gid=0 bytes=24.0000
V3 filehandle write(4, 7fff2b50, 24) = 24
writen: V3 filehandle: 24.0000 @ 89.0000 /sec
readn: 7fff2e18 72.0000 @ 0.8917M/sec
V3 filehandle: W xid=2877 uid=0 gid=0 off=0x0 len=4.0000M
getbuf returning buffer 0
readn: 441c000 4.0000M @ 84.6113M/sec
write(direct): sz 4.0000M off 0 @ 82.1743M/sec
V3 filehandle write(4, 7fff2e18, 72) = 72
writen: V3 filehandle: 72.0000 @ 269.00 /sec
V3 filehandle: A xid=2877 uid=0 gid=0 bytes=4.0000M
freeing buffer 0
readn: 7fff2e18 72.0000 @ 0.8803M/sec
V3 filehandle: W xid=2879 uid=0 gid=0 off=0x400000 len=4.0000M
getbuf returning buffer 1
readn: 4018000 4.0000M @ 109.40M/sec
write(direct): sz 4.0000M off 4.0000M @ 103.86M/sec
V3 filehandle write(4, 7fff2e18, 72) = 72
writen: V3 filehandle: 72.0000 @ 90.9600K/sec
V3 filehandle: A xid=2879 uid=0 gid=0 bytes=4.0000M
freeing buffer 1
readn: 7fff2e18 72.0000 @ 0.9537M/sec

Verifying BDSpro Performance

23

V3 filehandle: W xid=2880 uid=0 gid=0 off=0x800000 len=4.0000M
getbuf returning buffer 0
readn: 441c000 4.0000M @ 108.11M/sec
write(direct): sz 4.0000M off 8.0000M @ 105.79M/sec
V3 filehandle write(4, 7fff2e18, 72) = 72
writen: V3 filehandle: 72.0000 @ 88.1104K/sec
V3 filehandle: A xid=2880 uid=0 gid=0 bytes=4.0000M
freeing buffer 0
readn: 7fff2e18 72.0000 @ 0.8273M/sec
V3 filehandle: C xid=2881 uid=0 gid=0
V3 filehandle write(4, 7fff2e18, 72) = 72
writen: V3 filehandle: 72.0000 @ 86.8047K/sec
V3 filehandle: A xid=2881 uid=0 gid=0 bytes=0
hip0-ebony.engr.sgi.com moved 12.58 MB in 1.58 secs, 7.96 MB/sec

Debugging Without Kernel-Level BDSpro

The lmdd debugging tool included with BDSpro has a user level implementation of the
BDS protocol. lmdd tries to use the kernel level BDS protocol, but if that is not present (or
not enabled), lmdd uses the user level protocol.

If you need to debug on the client system, you can do so by mounting the filesystem
without the -o bds option. In this case, the filesystem is mounted with kernel level BDS
disabled.

To see local debugging output, use lmdd with the debug=1 option, as shown in this
example:

client# lmdd if=/bds/test direct=1 bs=4m move=12m debug=1
OS did not know O_DIRECT (8000) on /bds/test
0.003 bds_open(3, /bds/test, 32768, 3)
restart(/bds/test)
open(hip0-mahogany:/export/bds1/test) = 3
opened /bds/test
read at 0.000, rwnd=0 swnd=0
0.001: R xid=2 uid=0 gid=0 off=0x0 len=4.0000M
0.124: A xid=2 uid=0 gid=0 bytes=4.0000M
/bds/test moved=4194304 wanted=4194304 seekp=4194304 @ 22.8867M/sec
read at 0.176, rwnd=0 swnd=0
0.176: R xid=3 uid=0 gid=0 off=0x400000 len=4.0000M
0.300: A xid=3 uid=0 gid=0 bytes=4.0000M
/bds/test moved=4194304 wanted=4194304 seekp=8388608 @ 23.3921M/sec
read at 0.348, rwnd=0 swnd=0

24

Chapter 3: Setting Up the BDSpro Service

0.348: R xid=4 uid=0 gid=0 off=0x800000 len=4.0000M
0.373: A xid=4 uid=0 gid=0 bytes=4.0000M
/bds/test moved=4194304 wanted=4194304 seekp=12582912 @ 21.4247M/sec
12.58 MB in 0.54 secs, 23.49 MB/sec

 Correcting Network Problems

BDSpro is typically used on HIPPI because of its high performance (consult the IRIS
HIPPI Administrator’s Guide for information on installing and configuring a HIPPI
network). If BDSpro testing shows inadequate performance, network problems might be
the cause. In this case, you can use the ttcp test program (see the ttcp(1) reference page)
to verify that the network is functioning properly. ttcp is a client/server program that
moves data between systems and reports performance results.

To use ttcp, enter this command on the client to start the test:

client% ttcp -s -r -l 524288
ttcp-r : buflen=524288, nbuf=2048,align=16384/0, port=5001 tcp
ttcp-r : socket

Then, enter the following command on the server to start ttcp and send data to the client.
The output of ttcp shows transfer rates:

server% ttcp -s -t -T -l 524288 -n 200 hip-client
ttcp-t: buflen=524288,nbuf=200, align=16384/0, port=5001 tcp -> hip-client
ttcp-t: socket
ttcp-t: connect
ttcp-t: 104857600 bytes in 1.42 real seconds = 73843.38 KB/sec +++

Correcting Network Problems

25

The server should be sending data at approximately 65 to 70 MB per second. If you omit
the -T option, which touches the data to measure caching effects, the rate should be
approximately 90 MB per second. If the network is not performing at the expected level,
determine the cause of the problem and correct it using these suggestions:

• The data is not being transferred on the HIPPI network.

By default, IRIX designates the Ethernet interface as the primary network interface
and assigns the hostname (the name in the /etc/sys_id file) to this interface. To assign
a hostname to the HIPPI interface, IRIX appends the prefix hippi to the hostname.
(For example, if the Ethernet interface is named frosty, the HIPPI interface is named
hippi-frosty).

Check the hostname of the HIPPI client that you specified in the ttcp command to
verify that it is the HIPPI hostname (and not the Ethernet hostname) for this client.
Remember to specify a HIPPI interface when mounting the filesystem also (see
“Mounting Filesystems for BDSpro” on page 19).

• The server is running a debugging or sema metering kernel.

Reboot with a non-debug kernel, which performs much faster.

• The client or server is not running IRIX 6.2 or later.

IRIX 5.3 (or earlier) does not offer the HIPPI performance that BDSpro requires.
Upgrade to IRIX 6.2 or later, which support BDSpro.

• The connection is passing through a router.

Use netstat -i to determine whether the HIPPI interface on the server connects to the
HIPPI network where the client resides. If the client and server are not on the same
network, a high-performance router will be required to support HIPPI speeds.

If you try all of these measures and performance is still not adequate, contact your Silicon
Graphics support provider for additional assistance.

27

Chapter 4

4. Using BDSpro

This chapter explains how to start and stop the BDSpro service and how to configure its
buffering and logging functions. It also explains the BDSpro services that are available to
other applications.

This chapter contains the following section:

• “Starting and Stopping the BDSpro Service” on page 27

• “Using Write Buffering” on page 28

• “Managing BDS Logging” on page 30

• “Using BDS from an Application” on page 31

Starting and Stopping the BDSpro Service

The BDSpro service is ready to use after NFS is modified on the clients (see “Mounting
Filesystems for BDSpro” on page 19) and the BDS setup is tested on the server (see
“Verifying BDSpro Performance” on page 20). To start and stop the BDSpro service, enter
these commands on the server:

/etc/init.d/BDSpro start
/etc/init.d/BDSpro stop

The start command above starts BDS automatically during the server startup sequence.
This command reads a file called /etc/config/BDSpro.options, which you can create to
specify BDS options, such as write buffering and buffer sizes. For example, this
BDSpro.options file sets the logging level to 3, specifies write buffering, and sets single
read buffering:

-loglevel 3 -writebehind 1 -nbufs 1 > /var/adm/bds.log 2>&1

28

Chapter 4: Using BDSpro

To enable or disable the automatic starting of BDSpro during the server’s startup
sequential, enter these commands:

chkconfig BDSpro on
chkconfig BDSpro off

Using Write Buffering

To turn on write buffering, use the -writebehind option in the BDSpro.options file (see the
bds(1M) reference page and “Starting and Stopping the BDSpro Service” on page 27). On
systems running IRIX 6.5 or higher, you can also specify write buffering from an
application when the application opens a file.

If write buffering is in effect and an application must be certain that data is written to
disk, the application should use the fsync system call (see the fsync(2) reference page for
details). However, using fsync regularly compromises the benefits of write buffering.

Note: Review “Write Buffering Risks” on page 11 before implementing write buffering.

Specifying the Number of Buffers

By default, BDS allocates two memory buffers for each open file (see “BDS Buffer
Management” on page 7 for more information). However, you can reduce the buffer
allocation to one buffer using the nbufs argument in a BDSpro.options file (see the sample
file in “Starting and Stopping the BDSpro Service” on page 27).

Specifying a Buffer Size

For real-time filesystems, BDS sets buffer size to the filesystem extent size; for XLV logical
volumes, BDSpro sets the size of read and write buffers to the size of the logical volume
stripe (see “Tuning XLV Performance” in Chapter 2). If the filesystem is not striped, BDS
sets the buffer size to the application’s read size.

Using Write Buffering

29

The amount of memory used in buffering is affected by the buffer size and the number
of users accessing the server simultaneously. If you find that the default buffer size is
requiring too much memory or unsuitable for other reasons, you can specify a buffer
using any size by these methods:

• Use the -buffersize argument in the /etc/config/BDSpro.options file (see the example
in “Starting and Stopping the BDSpro Service” on page 27 and the bds(1M)
reference page for details).

• Include the bdsbuffer= option on the mount command line, as shown in this
example:

hip0-goliath:/ /bdsmnt -o bds,bdsbuffer=2097152,vers=3, rw 0 0

Precedence in Setting Buffer Size

Buffer size specifications have this order of precedence:

1. The buffersize argument in the /etc/config/BDSpro.options file on the server.

2. The size specified by the application in fcntl (F_GETBDSATTR) (see “Using BDS
from an Application” on page 31).

3. The bdsbuffer option in the mount command on the client.

4. The extent size of a real-time filesystem or the disk stripe size of an XLV logical
volume.

5. The application read/write size.

This example sets the buffer size using a mount option on the client:

hip0-goliath:/ /bdsmnt -o bds, bdsauto=2000000, bdsbuffer=4194304, vers=3, rw 0 0

The entry in the previous example sets the buffer size to 4 MB. Because this parameter is
set when the bdsmount filesystem is mounted, BDS will not use a calculated buffer size
for bdsmount I/O; it will allocate buffers of 4 MB.

However, assume that this argument was used in the BDSpro.options file:

bds -buffersize 2097152

In this case, BDS uses a buffer size of 2 MB, overriding the 4 MB specified in the
filesystem mount on the client.

30

Chapter 4: Using BDSpro

Disabling Buffering

You can disable BDS buffering by specifying a buffer size of zero (0). If you disable
buffering, you can expect significant performance reductions. For example, laboratory
tests with read-ahead buffering demonstrate a sustained performance of 87 MB per
second, whereas without buffering, performance measured about 54 MB per second;
with write-behind buffering, speeds of 93 MB per second dropped to 45 MB per second
without buffering.

Managing BDS Logging

BDSpro supports three levels of logging for errors and other events that occur in BDS
transactions:

• Level 1 records the date and time of each event as well as an event description.

• Level 2 records the date and time of each event, the process ID (PID) of the BDSpro
event that reported it, and an event description.

• Level 3 records the date and time of each event in milliseconds, the PID of the
BDSpro process that reported it, and an event description.

The list below contains all non-error events that are reported by the logging function.

• (For level 1 logging) BANDWIDTH is reported when a client closes a file. It contains
a brief summary of the number of bytes moved and the time elapsed between the
file open and close:

BANDWIDTH client_1 moved 713.03 MB in 15.51 secs, 45.96 MB/sec

• Levels 2 and higher add OPEN and CLOSE, which are reported when a file is
opened and closed. OPEN contains the NFS version number and the device and
inode number of the file; CLOSE contains the total number of requests sent between
the client and server, the number of reads and the number of writes in this total, and
the total number of disk I/Os made to process these requests. CLOSE is always
reported before BANDWIDTH:

OPEN NFS<2 03000005/0000000000000410 from hip-goliath
CLOSE after 212 requests (181 reads, 27 writes) and 112 disk I/Os

Using BDS from an Application

31

• Level 3 adds CONFIG, which reports the number of buffers used in the transaction.
Single and double buffering are supported (see “Specifying the Number of Buffers”
on page 28).

CONFIG 1-buf

Using BDS from an Application

In addition to including the bdsauto option in mount commands (see “Mounting
Filesystems for BDSpro” on page 19 for details), you can specify BDS services from an
application. To use BDSpro, an application must open files with either the O_DIRECT
or, on systems running IRIX 6.5, the O_BULK argument (see O_DIRECT and O_BULK
descriptions in the open(2)) reference page for details). After the file is opened, these
arguments may be changed with the file control function (see the FDIRECT and FBULK
options of the fcntl(2)) reference page for details).

The O_DIRECT and O_BULK arguments have significant differences:

• An open using O_BULK turns on write buffering, which may not be desirable for
some applications (see “Using Write Buffering” on page 28). If BDS is not available,
NFS is used for the transaction.

• An open using O_DIRECT does not turn on write buffering. However, the open
fails if BDS is not available.

Whenever direct I/O and bulk I/O are used in the same application, bulk I/O takes
precedence. If write buffering is in effect and an application must be certain that data is
written to disk, the application should use the fsync system call (see the fsync(2) reference
page for details). BDS performance is significantly reduced when you use fsync regularly.

32

Chapter 4: Using BDSpro

XFS Function Controls

BDSpro recognizes the XFS fcntl command listed below (see the fcntl(2) reference page):

F_DIOINFO
F_ALLOCSP
F_FREESP
F_RESVSP
F_UNRESVSP
F_ALLOCSP64
F_FREESP64
F_RESVSP64
F_UNRESVSP64
F_FSSETXATTR
F_FSGETXATTR
F_FSGETXATTRA

Application Interfaces

BDSpro offers two fcntl commands that may be called by other applications to change file
properties: F_GETBDSATTR and F_SETBDSATTR. Both commands take a pointer to a
struct BDSATTR as an argument. Use F_GETBDSATTR first to obtain current state
information, make the changes that are needed, then use F_SETBDSATTR to record the
changes. All changes that you make affect all users of the file on the client until the last
close of the file.

To use BDSpro from an application, include <fs/nfs/bds.h> in the application. The
following excerpt is from a bds.h file:

Note: Do not change BDSATTR_PRIORITY.

#define BDSATTR_BUFSIZE_DONTCARE (0xffffffffffffffffLL)
#define BDSATTR_PRIORITY_DONTCARE (0)

#define BDSATTRF_BUFFERS_SINGLE 0x01
#define BDSATTRF_WRITEBEHIND 0x08

typedef struct bdsattr {
 uint64 bdsattr_flags;
 uint64 bdsattr_bufsize;
 u_char bdsattr_priority;
} bdsattr_t;

33

Appendix A

A. Frequently Asked Questions

The questions and answers listed in this appendix can help with troubleshooting
BDSpro.

1. Where is BDS server software stored?

The BDS server is now located in /usr/etc instead of /usr/sbin. This is more consistent
with other IRIX daemons.

2. How do I change the configuration options passed to the server?

The file /etc/config/BDSpro.config is passed to the BDS server as arguments. By
default, it turns on logging and sends the results to /var/adm/bds.log.

3. BDS is using a lot of memory. How can I limit it?

Because BDS uses buffering to speed up file accesses, you may find that buffering
takes up a lot of memory, particularly if you have many different applications
accessing files. See “Specifying a Buffer Size” on page 28.

4. Why am I not seeing big improvements in write performance?

The improvements are a result of enabling write buffering. Write buffering is not
enabled by default because it has the potential to lose data in the event of a server
failure, and because, if a write error occurs, it is not reported until a subsequent I/O
operation. See “Starting and Stopping the BDSpro Service” on page 27 for more
information.

5. Why is mount locking up?

As of BDSpro 2.0, you cannot mount a filesystem using BDS unless a BDS daemon
running on the server. Just start up BDS on the server and the problem should be
solved.

6. I think my BDS server is dead or misbehaving. How do I restart it?

A script in /etc/init.d starts and stops the BDS daemon. As root, type this command:

/etc/init.d/BDSpro start

This stops all BDS daemons that were running and restarts them. Clients accessing
BDS are automatically reconnected to the new BDS daemons.

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3274-003.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

