
OpenVault™ Infrastructure
Programmer’s Guide

Document Number 007-3305-002

OpenVault™ Infrastructure Programmer’s Guide
Document Number 007-3305-002

CONTRIBUTORS

Written by Bill Tuthill
Production by Allen Clardy
Engineering contributions by Loellyn Cassell, Curtis Anderson, and Joshua Toub

© 1997-1998, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

OpenGL, Silicon Graphics, and the Silicon Graphics logo are registered trademarks,
and GL, Graphics Library, IRIS InSight, IRIXPro, OpenVault, Performance Co-Pilot,
and XFS are trademarks of Silicon Graphics, Inc.

POSIX is a registered trademark of the Institute of Electrical & Electronic Engineers.
EXABYTE is a trademark of EXABYTE Corp. IBM is a registered trademark of
International Business Machines Corp. Sony is a registered trademark of Sony Corp.
UNIX is a registered trademark of X/Open Company, Ltd. StorageTek is a registered
trademark of Storage Technology Corp. Quantum is a registered trademark, and DLT
is a trademark, of Quantum Corp. Ampex is a registered trademark of Ampex Corp.

iii

Contents

List of Figures ix

List of Tables xi

About This Guide xiii
Intended Audience xiii
What This Guide Contains xiii
Conventions Used in This Guide xiv

1. OpenVault Overview 1
What OpenVault Does 1
Why OpenVault Is Needed 2
OpenVault as Middleware 2
OpenVault Architecture 3

MLM Server 4
Cartridge Naming 5
Communication Paths 5

OpenVault Interfaces 5
CAPI for Client Applications 6
AAPI for Administrative Applications 6
Abstract Library Interface (ALI) 7
Abstract Drive Interface (ADI) 9
Administrative Commands 10

2. Common Implementation Issues 11
Booting OpenVault Components 11

MLM Server Booting 11
LCP and DCP Booting 12

Persistent Storage 12

iv

Contents

Communication Protocols 12
Version Negotiation Language 13
Authentication Requests 14
Command Phases 14
Protocol Layers 15
Language Conventions 17

Convenience Routines for Developers 18
Conformance Suites 18

3. Abstract Library Interface (ALI) Language 19
Abstract Library Interface—ALI 19

About ALI 19
ALI Object Definitions 19
Attributes and Object Properties 21
Element Maps 22
ALI Object Naming 23
ALI Commands 24

ALI Response—ALI/R 30
About ALI/R 30
ALI/R Object Definitions 30
Attributes and Object Properties 31
ALI/R Object Naming 31
ALI/R Command Descriptions 31
Ordering of ALI Response Text 34

Response Text for ALI_show Command 34
Response Text for ALI_mount and ALI_unmount Commands 34
Response Text for ALI move command 34
Response Text for ALI_eject Command 35

Other Information 35

4. Programming a Library Control Program (LCP) 37
About the LCP 37

Use of Persistent Storage 37
LCP Configuration 37

Contents

v

Initialization Issues 38
LCP Booting 38

Configuration File 38
LCP Boot Sequence 39
Activation Sequence 41

LCP Development Framework 42
OpenVault Client-Server IPC 42
ALI Parser and ALI/R Generator 43
LCP C Library Routines 43
LCP Common Framework 44

Generic Representation of a Library—lcp_lib.h 44
Common LCP Entry Point 45
Programmable LCP Entry Points 46
Generic Representation of Element Maps 47
Convenience Routines for Element Maps 48
LCP Utility Functions 50

Example LCP Implementation 51
IRIX Implementation 52
Source Code Organization 52

Configuration Processing 52
Device Access Layer 52
ALI Semantic Do* Layer 53
Representing Private Element Map Entries 53

Future LCP Implementations 53
Parallel Execution and Complex Mappings 53

Defined Tokens List 54
Cartridge Form Factors 54
Attribute Names (LCP) 55

vi

Contents

5. Abstract Drive Interface (ADI) Language 57
Abstract Drive Interface—ADI 57

About ADI 57
ADI Object Definitions 57

Abstraction of a Drive 58
Attributes and Object Properties 60
ADI Object Naming 61
ADI Commands 61

ADI Response—ADI/R 66
About ADI/R 66
ADI/R Object Definitions 66
Attributes and Object Properties 66
ADI/R Object Naming 67
ADI/R Command Descriptions 67
Ordering of ADI Response Text 69

Response Text for ADI_show Command 69
Response Text for ADI_attach Command 69

6. Programming a Drive Control Program (DCP) 71
About the DCP 71

Use of Persistent Storage 71
DCP Configuration 71

Initialization Issues 72
DCP Booting 72

Configuration File 72
DCP Boot Sequence 73
Activation Sequence 75

Contents

vii

DCP Development Framework 76
OpenVault Client-Server IPC 76
ADI Parser and ADI/R Generator 76
DCP C Library Routines 77
DCP Common Framework 77

Generic Representation of a Drive—dcp_lib.h 78
Common DCP Entry Point 79
Programmable DCP Entry Points 79
DCP Utility Functions 79

Example DCP Implementation 80
IRIX Implementation 81

Use of Local Filesystem 81
Direct SCSI Commands 81
MTIO Operations 81

Source Code Organization 82
Configuration Processing 82
SCSI Control Access 82
ADI Semantic Do* Layer 82

Future DCP Implementations 83
Defined Tokens List 83

Cartridge Form Factors 83
Cartridge Types 84
Media Bit Formats 85
Drive Capabilities 86
Partition Names 87
Attribute Names (DCP) 87

A. Sample Implementations 89
LCP Sample Code 89

Odetics ATL 2640 89
Exabyte SCSI Media Changers 89

DCP Sample Code 89
DLT 2000 90
Exabyte 8505XL 90

viii

Contents

Compiling and Installing OpenVault 90
Running and Testing OpenVault 91

B. Return Values and Ready States 93
ALI Error and Return Values 93
ADI Error and Return Values 94
Ready States 94

Ready State Transition Rules 95
Ready State Responses 97

C. LCP and DCP Syntax 99
ALI Syntax Specification 99

ALI Language 99
ALI/R Language 102

ADI Syntax Specification 104
ADI Language 104
ADI/R Language 106

Glossary 109

Index 111

ix

List of Figures

Figure 1-1 OpenVault Architecture 3
Figure 2-1 Communication Layers 15
Figure 5-1 Conceptual View of a Drive 59

xi

List of Tables

Table 3-1 Mandatory LCP Attributes 22
Table 3-2 Element Map Components 23
Table 3-3 Three Cases of Eject 26
Table 3-4 Three Cases of OpenPort 28
Table 4-1 ALI and ALI/R Lexical Library Routines 43
Table 4-2 Predefined Cartridge Form Factor Tokens 54
Table 4-3 Predefined Attribute Name Tokens (LCP) 55
Table 5-1 Mandatory DCP Attributes 61
Table 6-1 ADI and ADI/R Lexical Library Routines 77
Table 6-2 Predefined Media Type Tokens 84
Table 6-3 Predefined Bit Format Tokens 85
Table 6-4 Predefined Mount Tokens 86
Table 6-5 Predefined Partition Name Tokens 87
Table 6-6 Predefined Attribute Name Tokens (DCP) 87
Table B-1 Ready State Transitions 95
Table C-1 ALI Language Syntax 99
Table C-2 ALI/R Language Syntax 102
Table C-3 ADI Language Syntax 104
Table C-4 ADI/R Language Syntax 106

xiii

About This Guide

OpenVault software allows multiple applications to manage, mount, and unmount
removable media. This product supports a wide range of removable media libraries and
drives. OpenVault software simplifies the engineering of device support for new
removable media systems, and streamlines the release of revised versions and modules.
It also allows sharing of storage devices by applications such as backup, archive,
hierarchical storage management (HSM), and direct tape access.

This document describes how to program the control program components that manage
removable media drives and libraries. In OpenVault, the media library manager (MLM)
fulfills requests from multiple client applications, directing media operations such as
mount and unmount that are performed by control programs.

The OpenVault Applications Programming Guide describes the client side of OpenVault,
showing how applications can make OpenVault requests in a prescribed format.

Intended Audience

This document is intended for system programmers who are adding support for
removable media libraries or drives. By conforming to the standard OpenVault
infrastructure, developers can eliminate the need to write custom interfaces for each
removable media library and drive in the marketplace.

What This Guide Contains

Here is an overview of the material in this book:

• Chapter 1, “OpenVault Overview,” contains a thumbnail sketch of components.

• Chapter 2, “Common Implementation Issues,” covers topics you should know
about before constructing an OpenVault control program.

xiv

About This Guide

• Chapter 3, “Abstract Library Interface (ALI) Language,” describes the language
used for library control programs.

• Chapter 4, “Programming a Library Control Program (LCP),” offers a tutorial
introduction to creating a library control program.

• Chapter 5, “Abstract Drive Interface (ADI) Language,” describes the language used
for drive control programs.

• Chapter 6, “Programming a Drive Control Program (DCP),” offers a tutorial
introduction to creating a drive control program.

• Appendix A, “Sample Implementations,” contains control program source code.

• Appendix B, “Return Values and Ready States,” lists these by control program.

• Appendix C, “LCP and DCP Syntax,” specifies control program syntax.

• “Glossary” and index are included at the end.

Conventions Used in This Guide

These are the typographic conventions used in this guide:

Purpose Example

Names of keywords and functions The lcp_init() function initializes LCP data structures.

Names of shell commands The umsh command provides access to OpenVault volumes.

Titles of manuals Refer to the OpenVault Applications Programming Guide.

A term defined in the glossary The unit of OpenVault storage is a cartridge.

Filenames and pathnames The control path to the drive is /dev/rmt/tps0d4.

What you type; variables in italic cc -g sourcename.c -lmlm -lali

Exact quotes of computer output Error: device not connected

1

Chapter 1

1.OpenVault Overview

OpenVault helps simplify the engineering of software to control removable media
libraries, by providing standard interfaces for robotic libraries, loadable drives, client
applications, and library administration.

This chapter describes in more detail what this product provides and why it is useful,
and gives an overview of OpenVault architecture and its standard interfaces.

What OpenVault Does

OpenVault is a package of mediation software that helps other applications manage
removable media. This facility can support a wide range of removable media libraries, as
well as a variety of drives interfaced to these libraries. The modular design of OpenVault
eases the task of adding support for new robotic libraries and drives.

A unit of removable media is called a cartridge. This could be a tape reel, a tape cartridge,
an optical disc, a removable magnetic disk, or a videotape.

OpenVault itself does not provide an end-user interface, nor does it generally become
involved in I/O operations to cartridges loaded in drives. User interfaces are provided
by OpenVault client applications, which perform I/O to drives using system facilities
after control programs have mounted and loaded a cartridge for the application.

The following tertiary storage applications can all benefit from OpenVault:

• tape access, for example with tar or cpio

• backup, to guard against system crash or accidental data loss

• archive, for long-term storage of unused data

• hierarchical storage management (HSM)

• CD-ROM jukeboxes or information libraries

• broadcast libraries containing videotapes

2

Chapter 1: OpenVault Overview

Why OpenVault Is Needed

Because of the proliferation of data, many information professionals have trouble putting
their fingers on the data they want. Secondary storage on disk drives is usually near
capacity, and is generally devoted to system overhead and working files. Tertiary storage
often contains the desired data, but is reachable only after expenditure of time and effort.
Attentive management of removable media libraries can enhance the availability of
information without significantly increasing overall system cost.

The traditional way of dealing with robotic libraries is with specialized applications that
interface to particular libraries and drives. Generally, devices are monopolized by a
single application. This approach has several shortcomings:

• Manufacturers of robotic libraries and drives have to develop device drivers for
each new product on all supported system platforms.

• Software vendors must develop additional code to integrate new robotic libraries
and drives, resulting in product support delays.

• Computer system providers have a difficult time offering a complete range of
robotic libraries and applications when customers want them.

• Users and administrators have no access to the removable media library except as
granted by a specialized application—sharing is not possible.

OpenVault solves these problems by providing a set of standard interfaces that raise the
level of abstraction, enabling rapid deployment of removable media libraries, drives,
systems, and client applications.

OpenVault as Middleware

Software that mediates between operating systems and application programs is called
middleware. Middleware creates a common language so that users can access data in a
variety of formats or using devices from different vendors. OpenVault is middleware in
the sense that it mediates between client applications and device control programs,
making it possible for different users to share a removable media library.

Middleware can often improve release independence. With its modular architecture,
OpenVault assists vendors in adding support for new removable media libraries and
drives and delivering upgraded client applications, without requiring rerelease of other
OpenVault components.

OpenVault Architecture

3

OpenVault Architecture

OpenVault is organized as a set of cooperating components, as shown in Figure 1-1.

Figure 1-1 OpenVault Architecture

CAPI
CAPI/R

LCP

ALI

ALI/RDCP

ADI

ADI/R

AAPI

AAPI/R

MLM server
Client

application
Administrator

interface

Persistent
storage

Removable
media library

/dev/mount/* drive

4

Chapter 1: OpenVault Overview

The central mediation component is the media library manager (MLM), a multithreaded
process that accepts client connections and fulfills access requests by forwarding them to
appropriate library and drive control programs. The MLM server maintains persistent
storage containing information about cartridges in the system, and descriptions of
authorized applications, libraries, and drives.

OpenVault consists of the following pieces:

1. One MLM server process mediates among other components.

2. Any number of client applications can make requests using the client application
programming interface, CAPI; the MLM server replies in CAPI response (CAPI/R).

3. An administrative interface makes system requests in a similar but less restricted
administrative API, AAPI; the MLM server replies in AAPI response (AAPI/R).

4. Persistent storage (a database) tracks cartridges and system components.

5. A library control program (LCP) is required for each removable media library
controlled by the MLM server.

The MLM server talks to an LCP using the abstract library interface (ALI), and
receives answers in ALI response (ALI/R). An LCP translates from ALI to the actual
library control interface, and replies in ALI/R.

6. A drive control program (DCP) is required for each drive controlled by the MLM
server. Some removable media libraries contain multiple drives, in which case each
drive has its own DCP. Drives need not be associated with a robotic library.

The MLM server talks to a DCP using the abstract drive interface (ADI), and
receives answers in ADI response (ADI/R). A DCP translates from ADI to the
actual drive control interface, and replies in ADI/R.

The OpenVault languages consist entirely of ASCII strings.

MLM Server

The MLM server accepts requests from applications, and forwards commands to an LCP
and DCP, which translate them into low-level robotic and drive control operations to
serve that request. MLM also schedules competing requests from different applications,
creates and enforces cartridge groups for each application, and maps logical cartridge
names (used by applications) to physical cartridge labels (used by libraries).

OpenVault Interfaces

5

The MLM server manages cartridges, directing LCP and DCP to mount and unmount a
cartridge. Often, cartridges store data. After requesting that a cartridge be mounted, the
client application may read and write the media using POSIX® standard I/O interfaces.
Cartridges can also store audio-video streams for broadcast. In either case, MLM is not
directly involved in I/O operations.

Client applications, libraries, and drives may be added to a live MLM server. The system
administrator installs new programs on the appropriate hosts, and issues administrative
commands on a live system to inform the MLM server that these new programs exist.

Cartridge Naming

Client applications may choose their own names for cartridges. Because OpenVault client
applications operate in separate name spaces, different applications may use the same
name for different cartridges. Moreover, cartridges used by one application are not
visible to or accessible from another application, unless the system administrator permits
specific cartridges to be moved from one application to another.

Some robotic libraries can interpret barcodes and labels affixed to cartridges. It is the
responsibility of the LCP to pass any physical cartridge label (PCL) information to the
MLM server.

Communication Paths

The OpenVault languages CAPI, CAPI/R, AAPI, AAPI/R, ALI, ALI/R, ADI, and ADI/R
are expressed exclusively in text strings, which travel between components by means of
TCP sockets. The underlying communications layer is encapsulated in a C library, so
OpenVault developers need not worry about the details.

OpenVault Interfaces

This section describe the various OpenVault programming interfaces.

6

Chapter 1: OpenVault Overview

CAPI for Client Applications

CAPI (client application programming interface) is the language client applications use
to communicate with the MLM server.

The command-response format is semi-asynchronous. After submitting each command,
the application waits for the server to acknowledge receiving the command, but need not
wait for results before sending the next command. CAPI communications libraries can
also work synchronously if this makes implementation more convenient.

Access to the server is session-oriented. The application initiates a session with the hello
command, and ends with a goodbye. Meanwhile, the application may send commands to
the server to mount and unmount removable media, or to change attributes of media.

Here is a list of CAPI commands organized alphabetically:

• allocate requests volumes for use by this application.

• attribute sets attribute-value pairs associated with OpenVault volumes.

• deallocate returns volumes to the free pool.

• mount asks the MLM server to provide volumes for data access.

• reject tells the server to recategorize a volume.

• rename declares a new name for a volume.

• show displays information about OpenVault volumes.

• unmount says that volumes are no longer needed for data access.

• unwelcome informs the client of an MLM server version mismatch.

• welcome tells the client which version of the MLM server is responding.

The OpenVault Application Programming Guide describes how to program CAPI.

AAPI for Administrative Applications

AAPI (administrative API) is the language that administrative applications use to
communicate with the MLM server. AAPI commands and responses are ASCII strings.
As with CAPI, the command-response format is semi-asynchronous, and access to the
server is session-oriented. AAPI is a superset of CAPI.

OpenVault Interfaces

7

Here is a list of AAPI commands organized alphabetically:

• attribute sets attribute-value pairs associated with OpenVault volumes.

• create establishes a volume or object in the OpenVault database.

• delete removes a volume or object from the OpenVault database.

• eject pushes a cartridge out of a library into the operator’s hand.

• export removes a volume from the OpenVault database.

• inject allows the operator to insert a cartridge into a library.

• mount tells the MLM server to provide data access to a volume.

• move relocates a cartridge from one slot in a library to another.

• rename declares a new name for a volume.

• show displays information about OpenVault volumes.

• unwelcome informs the client of an MLM server version mismatch.

• unmount says that volumes are no longer needed for data access.

• welcome tells the client which version of the MLM server is responding.

The OpenVault Application Programming Guide describes how to program the AAPI.

Abstract Library Interface (ALI)

A library control program (LCP) is a part of OpenVault that deals with low-level details
of a removable media library and its configuration and control procedures. There is at
least one LCP associated with each MLM-managed library. The purpose of an LCP is to
expose library configuration to the MLM server, and to control a library as requested.

The MLM server issues directives to the LCP in a language called ALI. The LCP replies
to the MLM server in a language called ALI response (ALI/R).

ALI/R implements a different command set from ALI, reflecting different needs of an
LCP and the MLM server. The ALI language is primarily a library control interface,
whereas ALI/R constitutes a status reporting interface with support for administration
and configuration. Like CAPI, ALI and ALI/R are semi-asynchronous.

8

Chapter 1: OpenVault Overview

If you are developing a library control program, your program must be able to read ALI
from, and write ALI/R to, the MLM server. The OpenVault infrastructure developer’s kit
includes an ALI parser and ALI/R generator. The parser and generator, as well as the
communications layer, are delivered with a C language interface.

Here is a list of ALI commands organized alphabetically:

• activate disable forces the LCP to stop talking to the library.

• activate enable forces the LCP to resynchronize its internal information with the
physical state of the library, and keep it synchronized.

• attribute sets and unsets named attributes in the LCP.

• barrier tells the LCP to complete all asynchronous commands before continuing.

• cancel revokes a command that the LCP has queued but not yet started.

• eject pushes a cartridge out of the library immediately, or queues a cartridge to be
pushed out of the library (if queueing is implemented).

• exit tells the LCP to store state information, clean up, and exit.

• mount asks the LCP to put cartridges into drives.

• move requests transfer of a cartridge from one physical slot into another.

• openPort instructs the LCP to open the library door, so that cartridges can be added
to or removed from the library.

• reset instructs the LCP to reinitialize its library.

• scan has the LCP ask its library to verify physical labels of cartridges in the library.

• show obtains the current value of an attribute.

• unmount tells the LCP to take cartridges out of drives.

Here is a list of ALI/R commands organized alphabetically:

• attribute sets and unsets named attributes in the OpenVault database.

• cancel prevents execution of a command that has been queued but not yet started.

• config copies information (such as slot state) from the LCP to the MLM server.

• goodbye asks MLM to end this session (vice versa for ALI).

• message sends a message of a specified severity level to an operator or logfile.

• ready tells the MLM server about library status for cartridge operations.

OpenVault Interfaces

9

• response indicates success or failure of an ALI command, and returns results.

• show obtains values of attributes stored in the OpenVault database.

The OpenVault Infrastructure Programming Guide describes the ALI and ALI/R languages,
and offers an introduction to creating library control programs.

Abstract Drive Interface (ADI)

A drive control program (DCP) manages the configuration of drives, and performs the
drive control tasks associated with CAPI mount and unmount requests. There is at least
one DCP associated with each MLM-managed drive. The purpose of DCP is to expose
the drive configuration to the MLM server, and to control drives as requested.

The MLM server issues directives to the DCP in a language called ADI. The DCP replies
to the MLM server in a language called ADI response (ADI/R).

ADI/R implements a different command set from ADI, reflecting different needs of a
DCP and the MLM server. The ADI language is primarily a drive control interface,
whereas the ADI/R language constitutes a status reporting interface with support for
administration and configuration. Like CAPI, ADI and ADI/R are semi-asynchronous

If you are developing a drive control program, your program must be able to read ADI
from, and write ADI/R to, the MLM server. The OpenVault infrastructure developer’s kit
includes an ADI parser and ADI/R generator. The parser and generator, as well as the
communications layer, are delivered with a C language interface.

Here is a list of ADI commands organized alphabetically:

• activate disable forces the DCP to store persistent state and stop communicating with
its hardware.

• activate enable forces the DCP to resynchronize with its drive hardware, ensuring
that the DCP has the current drive state.

• attach selects the appropriate access method, and binds it to a drive handle.

• attribute sets and unsets named attributes in the DCP.

• barrier tells the DCP to complete all asynchronous commands before continuing.

• cancel requests the DCP to stop execution of a command, if possible.

• detach removes the access method binding created by an attach command.

10

Chapter 1: OpenVault Overview

• exit tells the DCP to store state information, clean up, and exit.

• load pushes a cartridge into the drive and engages media at the media access point
(read/write head), or verifies that the drive is loaded.

• reset instructs the DCP to attempt drive reinitialization.

• show asks the DCP to return state or configuration information.

• unload rewinds if necessary, disengages media from the media access point, and
returns media to its cartridge.

Here is a list of ADI/R commands organized alphabetically:

• attribute stores persistent state in the OpenVault database.

• cancel tells OpenVault to prevent execution of a particular command, if possible.

• config tells OpenVault about access modes, form factors, and media formats.

• goodbye asks MLM to end this session (vice versa for ADI).

• message sends a message of some severity level to an operator or logfile.

• ready informs OpenVault of the status of the DCP’s connection to the drive.

• response indicates success or failure of an ADI command, and returns results.

• show queries persistent state stored in the OpenVault database.

The OpenVault Infrastructure Programming Guide describes the ADI and ADI/R
languages, and offers an introduction to creating drive control programs.

Administrative Commands

OpenVault can be administered with commands given from the system prompt. Most of
these commands cause MLM to forward library or drive requests to a particular LCP or
DCP. Most OpenVault commands produce helpful usage messages when invoked with
the wrong syntax or with the -help option. For a list of OpenVault commands, type:

man -k ov_

The user mount shell, umsh, is a system command that provides user and administrator
access to OpenVault volumes. See the umsh(1M) reference page for details.

11

Chapter 2

2.Common Implementation Issues

This chapter presents information you must know before implementing an LCP or DCP.
Please read these sections whether you are implementing an LCP, a DCP, or both:

• “Booting OpenVault Components” shows how OpenVault starts its modules.

• “Persistent Storage” on page 12 tells how OpenVault tracks information.

• “Communication Protocols” on page 12 describes how the modules communicate.

Booting OpenVault Components

Because it is composed of different modules working together, OpenVault booting is
critical for correct operation. This section describes how OpenVault assembles itself,
either at system boot time or when recovering from partial failure of the system.

The MLM server initiates a sequence to bootstrap a functioning OpenVault system. Each
component boots independently, reading its own configuration file, which contains just
enough information to initialize that particular component. Remaining information is
derived from the state of a device, persistent storage, or from parameters compiled into
a particular component. Configuration files vary greatly from component to component.
The session initiation sequence is the same for all components, and allows a component
to identify itself by name, type, and the language versions that it supports.

MLM Server Booting

The MLM server should be the first component to initialize itself. If the MLM server
reboots, all LCP and DCP connections to it are lost. The MLM server must:

1. Read its configuration file.

The LCP or DCP developer does not need to be concerned about this file.

2. Accept connections from booting DCPs and LCPs.

12

Chapter 2: Common Implementation Issues

The communications layer establishes TCP keepalive sockets. If the connection is
lost, the MLM server tries to re-establish the connection every two minutes.

3. Service other client connections and AAPI or CAPI requests.

The MLM server accepts client connections as they arrive. AAPI and CAPI requests
are fulfilled if the resources needed to service them are available.

LCP and DCP Booting

Each LCP and DCP must also initialize itself. For details on LCP booting, see “LCP
Booting” on page 38. For details on DCP booting, see “DCP Booting” on page 72.

Persistent Storage

The OpenVault persistent store is implemented as a database subsystem that resides in
the MLM server. This is a multiuser, in-memory relational database subsystem whose
clients are the modules that make up core OpenVault services. Each OpenVault module
is linked with a C library to handle

• constructing queries and other data update operations

• assembling and disassembling the data update structures

One important OpenVault process is the Catalog Manager, which handles database
startup and recovery, manages the on-disk transactional log file, and takes periodic
snapshots of the database.

The LCP or DCP developer does not need to be concerned about details of the OpenVault
database. The MLM server handles database operations triggered by LCP and DCP
events or by CAPI requests from client applications transparently. LCPs and DCPs
interact with the persistent store through the ALI/R or ADI/R language.

Communication Protocols

The OpenVault interfaces ALI, ADI, CAPI, and AAPI are based on message passing.
Only ASCII strings travel across the sockets. OpenVault client and control program
processes communicate with the MLM server through TCP/IP sockets. The hello-welcome
sequence establishes an IPC connection based on a TCP socket.

Communication Protocols

13

Once an IPC connection has been established, the entity at either end of the connection
may send and receive commands compatible with the negotiated language and version.
The sender of a command generates a unique task ID for that command. The task ID is
used in subsequent responses to that command. The sender may also use the task ID to
cancel the original command or check command status.

Version Negotiation Language

To allow partial upgrades and peaceful coexistence of different language versions,
OpenVault includes a session initiation facility to negotiate language version. When
connecting to the MLM server, a client or control program announces which language it
uses, and which versions of the language it understands. The MLM server then selects
one version and tells the client which one to use for the current session.

hello A client or control program uses the hello command to announce itself to
the MLM server. The client includes in that command the name of the
language it would like to speak, a list of the different language version
numbers it supports, a name for itself as an application, and a name for
a particular instance of that application. An LCP or DCP should use the
OpenVault name of the device it controls as its application name.

welcome After the client announcement, the MLM server responds with a welcome
command, telling the client which version to use. This version is one that
the client enumerated in the hello command. At this point, a session is
established between the client and MLM server, implemented by an
underlying TCP/IP connection.

unwelcome The unwelcome command tells the client that none of the combinations of
language and language version it provided are supported by this MLM
server. After the external client has announced itself to the MLM server,
the server may respond with an unwelcome command if the language
name is unknown, or if none of the language versions supported by the
client are supported by the server.

LCP and DCP programmers working in the C language can use a library routine that
encapsulates the hello and welcome exchange to establish a session. For an LCP, version
negotiation is built into the ALIR_initiate_session() function. For a DCP, version
negotiation is built into the ADIR_initiate_session() function.

The OpenVault session is demarcated by version negotiation (hello and welcome) at the
beginning, and close of session (goodbye) at the end.

14

Chapter 2: Common Implementation Issues

Authentication Requests

Before a session can be established between the initiator and its recipient, authentication
is needed. OpenVault employs public key session verification to provide a modicum of
security while still avoiding export restrictions.

As an example, assume that Alice represents the client that initiates communication with
the MLM server (the client could be a DCP, LCP, or client application). Bob represents the
MLM server. The authentication process begins with Alice sending her name to Bob. Bob
replies by generating a 32-bit random number (R1) and sending it to Alice as a challenge.
Upon receiving this number, Alice encrypts it with the key she shares with Bob and sends
this value, along with another 32-bit random number she has generated herself (R2) to
Bob. After checking to make sure that Alice has successfully encrypted R1, Bob then
encrypts R2 and generates a third random number (R3). Bob now sends the encrypted R2
and R3 to Alice. Alice verifies that R2 has been properly encrypted and then decrypts R3
and stores it as the session key.

Infrastructure developers do not need to be concerned about details of the OpenVault
authentication method. The OpenVault transport layer handles authentication requests
from client applications transparently.

Command Phases

A communication session between the MLM server and a client or control program
employs a stylized sequence of phases. Since the interface is a full-duplex bidirectional
peer-to-peer interface, this applies to both directions of a session. The phases are:

command In this phase, the sender transmits the text of the command, plus a task
ID it assigns to the command, to help track responses.

ack The receiver sends back an intermediate response indicating that it
accepted a command with the given task ID. The receiver may send back
an unacceptable response if the command was incorrectly constructed, in
which case there is no data phase. The sender cannot transmit another
command until it receives an accepted or unaccepted response.

data The receiver of the command sends back a final response, including the
task ID, so as to identify the original command, a return value, which
could be an indication of success or failure, and possibly some data.

Communication Protocols

15

Associated ALI/R or ADI/R commands may intervene between transmission of a
command and receipt of the corresponding final response.

Since sessions are full-duplex, each endpoint must be prepared both to read and write on
a session without blocking for either. For example, if the LCP is sending but the MLM
server is not responding and its buffers are full, the LCP must still be prepared to accept
incoming data from the MLM server. The only permitted blocking I/O operation is a
select() call. This requirement helps reduce the likelihood of deadlocks.

Protocol Layers

Figure 2-1 shows OpenVault communication layers, which are described in this section.

Figure 2-1 Communication Layers

TCP/IP Sockets Layer
OpenVault IP

C Layer
Over-th

e-Wire ALI or ADI

Parser and Generator Layer

Semantic Layer

Implementing ADI or ALI commands
Acknowledgment processing
Ready state transitions
Response sequencing
Handling device state changes

Language version negotiation
Session establishment
Convert between ASCII and C structures

Pure ASCII representation
Phases: command, acknowledgment, data
Conforms to language conventions

Provides server/client communications
Underlying session and packetization
Performs authentication

Employs standard networks, even when
used on local host

16

Chapter 2: Common Implementation Issues

The function of the semantic layer is the same for both ALI and ADI. It is responsible for

• implementation of ALI and ADI commands

• ack processing—synchronizing commands by ensuring that a command is not sent
until an acknowledgment is received for the previous command

• ready state processing—see “Ready State Transition Rules” on page 95

• response sequencing

If an ALI or ADI command results in ALI/R or ADI/R commands being sent, in
addition to the normal ALI/R or ADI/R responses for acknowledgment and final
response, the intervening ALI/R or ADI/R commands should be sent in between
the ack and final responses. For example, an activate enable command to a DCP
usually results in the series ADIR_reponse for acknowledgment, ADIR_config,
ADIR_ready, and finally ADIR_response for final response.

• detection and handling of device state changes

This can range from full asynchronous notification by a device or device controller
to a control program (no examples at this time) to periodic polling of a device by the
control program to detect changes. With SCSI, the device raises a unit attention
condition, and sends a unit attention notification piggy-backed on a response from
the SCSI device, which indicates that some device state has changed. The control
program can then send additional SCSI commands to determine what state has
changed, and to clear the unit attention condition.

When the control program detects state changes that affect the control program’s
ready state or configuration from the MLM server’s point of view (for example, the
library may have gone offline, or the library contents may have been altered if the
library front door was detected to be opened and then closed), then the control
program should update ready state and configuration information, as appropriate,
and push the new ready state and configuration up to the MLM server.

The parser and generator layer uses the POSIX compliant GNU utilities Bison and Flex,
and is responsible for

• language version negotiation and session establishment

The source files involved are ovsrc/include/hello.h and ovsrc/libs/hellor/*.

• converting commands between C data structures and ASCII representations

The ALI source files involved are ovsrc/include/{ali,lcp}.h and ovsrc/libs/ali/*.

The ADI source files involved are ovsrc/include/{adi,dcp}.h and ovsrc/libs/adi/*.

Communication Protocols

17

The over-the-wire ALI and ALI/R or ADI and ADI/R layer employs nothing but ASCII
strings, and is responsible for

• transitioning between command phases (command, ack, data)

• conforming to language conventions (the parser enforces this)

The OpenVault IPC layer is responsible for

• providing OpenVault interprocess communication between clients and the server

• implementing underlying session connections for OpenVault processes, including
the packetization of over-the-wire ASCII commands

• authentication

The TCP/IP socket layer employs standard networks to aid portability.

Language Conventions

All commands are designed so that the basic arguments of the command may be entered
in any order. For example, these two commands are equivalent:

mount slot["#12", "vol.001", "sideA"] drive["DLT2"];
mount drive["DLT2"] slot["#12", "vol.001", "sideA"];

OpenVault strings are composed of ASCII characters in the range 32 to 126 (decimal).
Strings must be quoted with either a double-quote or single-quote (“ or ‘). OpenVault
considers these different quote characters to be identical. To include either quote
character in a string, precede it with backslash (\). To include a single backslash character
in a string, put two backslash characters in a row.

For example:

"This string contains a backslash \\ and a double quote \" character."

Potential return value types depend on the command issued. In general, when a
command is successful, the return value specification is the following:

response success text [retValue(s)]

When a command is unsuccessful, the error return value conforms to the following
specification:

response error errorSpec

18

Chapter 2: Common Implementation Issues

Convenience Routines for Developers

The following modules are provided in the source code tree as an aid to LCP and DCP
developers:

• a generic linked list queue in ovsrc/include/queue.h

• a command queuing facility and state machine in ovsrc/include/cctxt.h and
ovsrc/libs/common/cctxt.c

• shared LCP or DCP data structures and functions in ovsrc/include/[ld]cp_lib.h and
ovsrc/[ld]cp/common/util.c

These are intended to provide a basic framework for developing DCPs and LCPs,
and also reusable software for common control program operations such as ack,
attribute, error, and ready-state processing. This framework will evolve.

LCP and DCP templates will be provided, which developers can use to start coding.

Conformance Suites

An LCP conformance suite is in ovsrc/clients/conformance/lcp, and a DCP conformance
suite is in ovsrc/clients/conformance/dcp. Developers should test each LCP and DCP against
a conformance suite to assure compliance with OpenVault specifications. Although there
is no formal LCP or DCP certification program, this is the next best thing.

Each conformance suite simulates the MLM server’s interaction with an LCP or a DCP,
and attempts to find certain logical errors in a control program, such as allowing ejection
from an empty slot or unloading of an empty drive. See the respective README files for
specific information about running an LCP or DCP conformance suite.

19

Chapter 3

3. Abstract Library Interface (ALI) Language

This chapter provides programmers with an introduction to the OpenVault languages for
controlling removable media libraries, and includes the following sections:

• “Abstract Library Interface—ALI” describes the language in which the MLM server
sends directives to an LCP, and responds to requests sent by an LCP.

• “ALI Response—ALI/R” on page 30 tells how an LCP sends configuration and
status to the MLM server, and responds to directives from the MLM server.

Abstract Library Interface—ALI

The following sections describe the abstract library interface (ALI), including objects,
object attributes, naming conventions, and the ALI command repertoire.

About ALI

ALI is a language that provides an abstraction of a removable media library that is
managed by OpenVault. ALI hides details of the underlying library and control methods
without compromising the ability of OpenVault as a whole to manage its resources
effectively. The MLM server communicates with an LCP using the ALI.

ALI Object Definitions

The ALI language manipulates the following objects:

library control program (LCP)
Each LCP knows the details of a removable media library, including its
configuration and control procedures. An LCP is responsible for
accomplishing tasks that the MLM server asks it to perform, primarily
managing library resources. An LCP communicates with its library
using some device-specific language.

20

Chapter 3: Abstract Library Interface (ALI) Language

An LCP can be seen as a black-box language translator, or a device
management module. See Chapter 4, “Programming a Library Control
Program (LCP)” for details about writing an LCP.

removable media library
A library contains one or more housing units, called bays, for storing
cartridges. Bays contain storage locations for cartridges, optional
attached drives, and one or more transfer agents for moving cartridges
between storage locations in the same or different bay (using the move
command), or between storage locations and drives in the same or a
different bay (using the mount and unmount commands).

A library provides some way to read or verify external labels affixed to
cartridges. A removable media library also provides some means for
inserting cartridges into and removing cartridges from the library.

Each library has a specific control method. For automated libraries, this
is typically some physical control connection from a host. For a human
operated library, this might be a connection to an operator console.

Typically, a library is a single automated device, with some sort of
robotic transfer agent to move cartridges between storage locations and
drives. Larger devices may include a number of bays attached with
pass-through ports. A human operated vault, where tapes are stored on
racks and transported between racks and drives by people, is another
type of removable media library.

cartridge A physical container for storage media. Each cartridge in the OpenVault
system should have some kind of external identifying label (a physical
cartridge label) that the library or an operator can verify. Part of the
external label should be human readable. For automated libraries,
another part of the label is machine readable—typically a barcode label
that a laser scanner can interpret.

Cartridges can have multiple sides. If they do, their containing library
should be able to move or mount cartridges to achieve a particular
orientation, for example, “side A” up.

bay A location for cartridges, with locality determined by similar access
(mount) time. Typically, a bay is a physical grouping of cartridges in a
common unit of housing, where cartridges are stored. A bay contains
storage locations for cartridges, optional drives, and one or more
transfer agents to move cartridges between storage locations and drives
or other storage locations.

Abstract Library Interface—ALI

21

In a multibay library, each bay in the library is attached to at least one
other bay in the same library. For each cartridge in the library, there is
some path for moving that cartridge from its current bay to any other
bay, with one or more transfer agents to move that cartridge.

slot A storage location for a cartridge. It has a shape, or form factor, that
determines which kinds of cartridges it can hold.

drive A device for accessing media inside a cartridge that has been mounted.

port A door or opening where cartridges may be inserted into or removed
from the library.

command ALI commands are objects as far as ALI is concerned. When the MLM
server sends an ALI command, it associates a task ID with that
command. The sender may refer to that command later by using the
same task ID, but only to cancel the command. When an LCP receives a
command, it includes the task ID in command responses.

Attributes and Object Properties

OpenVault requires an LCP to maintain library configuration attributes and notify the
MLM server when they change. LCPs use the ALI/R config and ready commands to do
this. These commands send properties back to the MLM server, where configuration
information is kept in the MLM server persistent store. It is potentially recoverable by the
LCP using the ALI/R show command. Here are the required configuration attributes:

• LCP ready state (see “Ready States” on page 94)

• library nominal cartridge exchange time (see Table 4-3)

• element maps for slot, bay, and drive (see “Element Maps” on page 22)

• cartridge form factor associated with slots, ports, and drives

• number of free slots in each bay, by form factor

Note: Currently, OpenVault does not support recovery of any attribute or property
information stored in the MLM server persistent store by an LCP. However, this may be
supported in a future version of OpenVault.

arbitrary attributes
These are LCP private attributes. Developers may devise arbitrary
attributes, and store them to and recover them from the MLM server
persistent store. These attributes are opaque to the MLM server.

22

Chapter 3: Abstract Library Interface (ALI) Language

mandatory attributes
These are attributes that an LCP is required to support. Developers may
store the logLevel mandatory attribute in the MLM server persistent
store, so the LCP can recover it and resume logging at the same level
across reboots.

ALI expresses LCP attributes using the tuple: object type, object name, attribute name.
Table 3-1 shows the mandatory attributes, not including the configuration attributes.

Element Maps

Element maps are kept in the OpenVault persistent store and refreshed by the LCP when
appropriate. There are element maps for the following objects:

baymap A list of bays in the library, with information on whether each bay is
accessible or not.

slotmap The slotmap is an array of elements, one per slot, provided by the LCP
to help the MLM server operate and administer the library, including:

• physical cartridge label (PCL); for instance, a barcode

• bayID for the bay the slot is in

• slotID for the name of the slot

• formFactor of the slot

• whether a slot is full or empty (PCL is NULL if a slot is empty)

• slot accessibility information (PCL is NULL if this is false)

drivemap A list of drives in the library, with information on whether there is a
cartridge in each drive, and whether it is accessible.

Table 3-1 Mandatory LCP Attributes

Object Type Object Name Attribute Name Command

LCP "" name ALI show

LCP "" supportPCLs ALI show

LCP "" vendor ALI show

LCP "" logLevel ALI show, ALI attribute set

Abstract Library Interface—ALI

23

Table 3-3 shows element map objects that an LCP supports.

ALI Object Naming

These names refer to specific ALI objects:

LCP name Each LCP is uniquely named by a value pair including an OpenVault
client name and an OpenVault instance name.

client name The OpenVault client name refers to a specific removable media library.
This is the name by which a client identifies itself in a hello command to
the MLM server. For ALI clients, this is name that the MLM server
associates with the library that is managed by the associated LCP.

instance name The OpenVault instance name is arbitrary, but is needed in case there are
multiple LCPs controlling the same library, so as to distinguish between
LCPs with the same client (library) name.

PCL A physical cartridge label (PCL) refers to a cartridge. It is some form of
identification on the outside of the cartridge, as opposed to being stored
on media inside the cartridge. A PCL may contain a machine-readable
label (barcode), but it must also contain a human-readable text portion.

bay ID A text string provided by the LCP, which refers to a bay in the library.
An LCP should choose bay IDs that are easy for a human operator to
interpret. For multibay libraries, the bay ID is usually consistent with the
device name or address for a bay.

slot ID A text string provided by the LCP, which refers to a slot in the library.
The slot ID must uniquely identify any slot under control of that LCP,
and should be easy for a human operator to interpret. For libraries with
explicit slot locations, slot ID is usually consistent with the device name
or address for that slot.

drive name Refers to an OpenVault removable media device.

Table 3-2 Element Map Components

Object Type Object Name Attribute Name Command

bay bayID description ALI show

slot slotID slot description ALI show

drive driveID description ALI show

24

Chapter 3: Abstract Library Interface (ALI) Language

port name Currently, there is no ALI support for port names. Port naming may be
supported in a future version of OpenVault.

task ID Uniquely identifies a sender-generated command.

Attribute naming in ALI is different than for CAPI and AAPI, in which an attribute is
given as TableName.ColumnName; attributes are just columns in a relational table. In ALI
and ALI/R, attributes are named with a tuple:

objectType, objectName, attrName

ALI Commands

The MLM server speaks ALI to the LCP, which in turn speaks ALI/R to the MLM server.
The ALI language includes the following commands:

activate The activate command and its variations are used to start and stop LCP
interactions with the library. Note that once the LCP has established a
session with the MLM server using the hello-welcome sequence, it may
begin accepting ALI commands from the server. However, until it has
successfully been activate enabled and is in ready state, it will resend ready
lost state and fail ALI commands requiring access to its library with the
error ALI_E_READY. The LCP uses one of the ALI/R ready command
variations after processing the current command.

These are the variations of the activate command:

activate enable The activate enable command forces the LCP to
resynchronize its internal information with the
physical state of the library, and keep it
synchronized. For example, with a SCSI-based
sighted robot, the LCP could do a barcode inventory
and resume status polling.
Performing this command will probably result in
the LCP modifying slotmap information in the
MLM server for this library, pushing the slotmap to
the MLM server using config, and possibly accessing
LCP-private attributes stored in the MLM database.
The LCP reports ready when all its internal
resynchronization operations have completed (for
example, when the barcode scan is done).

Abstract Library Interface—ALI

25

attribute The attribute command sets and unsets named attributes in the LCP. You
can think of attributes in an LCP as named memory locations that may
cause operations to happen as a side effect of setting or reading them.
Some attributes defined by an LCP may be read-only to the MLM server.

A list of mandatory attribute names appears in Table 3-1.

barrier The barrier command forces the LCP to complete work on all commands
received prior to the barrier command, before it begins working on any
commands that might follow. This may require special processing for
queued eject and openPort commands. For example, if an LCP normally
flushes ejects with the openPort command, barrier should be rejected if
the LCP has not already received an openPort command.

In general, an LCP is free to execute the commands it receives in any
convenient order. Since there might be circumstances where the MLM
server requires an explicit order for executing a sequence of commands,
the barrier command can be employed to force ordering.

cancel The cancel command prevents execution of a command that has been
queued in the LCP but which the device has not yet started. The LCP
may choose to cancel already started jobs on a best-effort basis.

Note: The cancel and response commands may not be cancelled.

activate disable The activate disable command forces the LCP to stop
talking to the library. For example, on a SCSI-based
robot the LCP may be in the habit of polling the
device for status changes; this command would stop
that polling.
An activate disable should complete or cancel ALI
commands that require access to the library, and
store any persistent library state in the MLM server.
The LCP requires an activate enable command before
it can talk to the library again.
The LCP reports ready lost when all its state update
operations have completed and any internal
machinery has been shut down. Performing this
command may not result in the library’s cartridges
becoming inaccessible if there is an alternate LCP
and the library is connected to multiple hosts.

26

Chapter 3: Abstract Library Interface (ALI) Language

eject The eject command, in conjunction with the openPort command, pushes
cartridges out of the library. It takes a (slot ID, PCL) pair for the cartridge
that is to be operated on. The LCP should send the corresponding
changes in its slot and drive maps to the MLM server.

The implementation of the eject command may vary from LCP to LCP,
but there are three basic cases, as listed in Table 3-3.

Table 3-3 Three Cases of Eject

Operator
Interaction
Required

LCP
Becomes
not ready

Likely Semantics and Effect

No No The eject command causes the given cartridge to be
immediately pushed out of the library. The openPort
command is a successful no-op. The library continues
operation uninterrupted.

The ATL2640 is one example of a library in this class. It
has a bin where exported cartridges simply pile up. No
operator interaction with the LCP is required.

Yes No The eject command causes the given cartridge to be
marked as needing to be pushed out of the library, but
the cartridge is not yet pushed out. The LCP is free to
move the cartridge if it needs to. An openPort command
tells the LCP that the operator is ready to physically
take the cartridges out of the library. The library
continues operation uninterrupted.

A StorageTek silo is an example of this library type. The
silo has a port with slots on the inside where the LCP
can move cartridges when they are ejected. The
openPort command unlocks access port(s) and allows
the operator to remove the cartridge(s).

Abstract Library Interface—ALI

27

When a cartridge is physically ejected, it must immediately disappear
from the OpenVault slotmap maintained by the LCP. This implies that
an LCP that cannot immediately push a cartridge out of the library
must be prepared to inform OpenVault that a particular slot ID (and
therefore PCL) has been marked for ejection. The LCP should mark this
slot as inaccessible and push the information to the MLM server.

The LCP should recall this information from the OpenVault database
upon booting, when OpenVault supports retrieval of LCP attributes
from the MLM server’s persistent storage.

exit The exit command tells the LCP to clean up and exit.

The LCP should store any persistent LCP or library information in the
OpenVault database, complete or cancel any pending ALI commands,
send or abort any pending ALI/R commands, do shutdown processing
as required by its interface to the library, send ready lost and goodbye
commands to the MLM server, and exit.

goodbye The goodbye command tells the communicating LCP to end this session.

Yes Yes The eject command causes the given cartridge to be
marked as needing to be pushed out of the library, but
the cartridge is not yet pushed out. The LCP is free to
move the cartridge if it needs to. An openPort command
tells the LCP to put the library into the “ready not” state
and prepare it to allow the operator easy access to those
cartridges marked for ejection.

The Exabyte 210 is an example of this type of library. It
must be taken offline to physically remove cartridge(s).
The openPort command puts the library into ready not
state and unlocks the access door, allowing the operator
to remove ejected cartridge(s).

When an LCP determines that the access door has been
opened and closed, it should lock the door, reinventory
the library, complete affected ejects, inform the MLM
server of slotmap changes, and transition to ready state.

Table 3-3 (continued) Three Cases of Eject

Operator
Interaction
Required

LCP
Becomes
not ready

Likely Semantics and Effect

28

Chapter 3: Abstract Library Interface (ALI) Language

mount The mount command places a cartridge into a drive. The arguments to
mount are a list of tuples (slot ID, PCL, side) and a drive name. The
operation involves taking a cartridge from one of the given slots and
putting it into the specified drive. For multisided cartridges, placement
is according to a specified side orientation, for example “side A” up. The
slot list may have just one element; if more than one is specified, the LCP
decides which slot to use. The LCP should send the corresponding
changes in its slot and drive maps to the MLM server.

Note: Multisided cartridges are not supported in OpenVault version 1.

move The move command transfers a cartridge from one physical slot in the
library to another physical slot. The move source is a slot ID, PCP pair,
and the destination is a slot ID. The LCP should send the corresponding
changes in its slot and drive maps to the MLM server.

openPort The openPort command, in conjunction with the eject command, removes
or allows cartridges to be removed from the library. It may also be used
on its own to allow cartridges to be inserted into the library. The function
of the openPort command is to prepare the library for an operator to gain
physical access to cartridges. Once access is granted, cartridges may be
removed from and inserted into the library. The implementation of
openPort may vary from LCP to LCP, and a given library might be in a
different class for export than for import, but there are three basic cases,
as listed in Table 3-4.

Table 3-4 Three Cases of OpenPort

Operator
Interaction
Required

LCP
Becomes
not ready

Likely Semantics and Effect

No No New cartridges are simply inserted into the library.

For example, the ATL2640 has a cartridge insert door
and a request button next to it. Pressing the request
button is all that is required to prepare the library to
accept a new cartridge.

Yes No The LCP must prepare to accept a new cartridge.

For example, the StorageTek silo may be told to unlock
port(s) so that the operator can add new cartridges.

Abstract Library Interface—ALI

29

See the description of the ready and ready not commands under ALI/R
for more information on how an LCP becomes not ready, permitting its
library to be temporarily not available during an openPort operation.

reset A reset command asks the LCP to try and force the library to reinitialize.
This may cause the library to perform internal diagnostics.

If a reset makes the library unavailable to process other requests for an
extended time, the LCP should use the ready not command to tell the
MLM server that its library is temporarily not available, followed by a
ready command when the library becomes available again.

response The response command acknowledges and indicates success or failure of
an ALI/R command. The optional text portion of the response contains
error details or command results.

scan The scan command forces the LCP to verify or recheck the PCLs of all
cartridges in the library. These are variations of the scan command:

Yes Yes The LCP unlocks the library door and puts the library
into ready not state when it detects a door open. When it
detects the door is closed again, it reexamines cartridge
inventory to see what has been added or removed, and
returns the library to ready state.

For example, the EXABYTE-210 must have its main
door unlocked before the operator can add cartridges.

scan all The LCP should rescan the entire contents of the library
in order to resynchronize its internal information with
the physical state of the library. It should send changes
in content information to the MLM server.

scan from to The LCP should rescan all slots represented by slot IDs
lexicographically between the from slot and the to slot.
The LCP may rescan more slots than listed for some
implementation dependent reason. It should send
changes in content information to the MLM server.

Table 3-4 (continued) Three Cases of OpenPort

Operator
Interaction
Required

LCP
Becomes
not ready

Likely Semantics and Effect

30

Chapter 3: Abstract Library Interface (ALI) Language

If the library will be unavailable to process other requests during this
time, the LCP should use the ready not command to tell the MLM server
that the library is temporarily not available for other motion commands
(such as mount, unmount, move, or eject), followed by a ready command
when the library becomes available again.

show The show command obtains the current value of an attribute. Some of the
attributes defined by an LCP may be write-only to the MLM server.

For more information about LCP attributes, see “Attributes and Object
Properties” on page 31.

unmount The unmount command takes a cartridge out of a drive and returns it to
a slot. The arguments to unmount are a drive name and a slot ID. The
operation involves taking the cartridge from the drive and putting it into
the given slot. Optionally, you can specify “any” for slot ID, and let the
LCP choose where to return a cartridge. The LCP should send the
corresponding changes in its slot and drive maps to the MLM server.

ALI Response—ALI/R

The following sections describe the ALI/R language, including objects, object attributes,
naming conventions, and the ALI/R command repertoire.

About ALI/R

ALI/R is primarily the response language for ALI. In addition to giving the matching
acknowledgment and final response to an ALI command, ALI/R provides the means for
an LCP to send its configuration and status to the MLM server.

ALI/R Object Definitions

The ALI/R language manipulates the following objects:

command ALI/R commands are objects as far as ALI/R is concerned. When an
LCP sends an ALI/R command, it associates a task ID with that
command. The sender may refer to that command later by using the
same task ID, but only to cancel the command. When the MLM server
receives a command, it includes the task ID in command responses.

ALI Response—ALI/R

31

message A text message to be entered into an MLM server-managed log, and
perhaps displayed on some console by the MLM server, or one of its
administrative applications.

Messages are associated with a severity level, or a level of urgency,
which determines (along with site policy) whether the message text is
stored in the MLM server logs, displayed on a library or OpenVault
console for the operator, or both.

Attributes and Object Properties

Currently, ALI/R attributes are not supported by OpenVault, except for attributes stored
by the ALI/R config and ready commands in the MLM server persistent store. Currently,
OpenVault supports setting and unsetting of config and ready attributes only.

ALI/R Object Naming

These names refer to specific ALI/R objects:

message ID Refers to a text message of a given severity level.

task ID Uniquely identifies a sender-generated command.

ALI/R Command Descriptions

The LCP reads ALI commands from the MLM server, and replies to the server in ALI/R.
The ALI/R language includes the following commands:

attribute The attribute command sets and unsets named attributes in the MLM
server, thereby creating persistent storage for whatever the LCP deems
necessary. The MLM server simply stores these attributes; there are
never any side effects of setting them. For background, see “Attributes
and Object Properties” on page 21.

cancel The cancel command prevents execution of a command that has already
been queued in the MLM server but not yet started. The cancelled
command returns response cancelled status, and the response for the
cancel command itself follows.

Note: The cancel and response commands may not be cancelled.

32

Chapter 3: Abstract Library Interface (ALI) Language

config The config command copies configuration information, especially about
element map changes, from the LCP to the MLM server.

The MLM server stores a non-authoritative copy of all the element map
information for all the LCPs it controls. Each LCP must use the config
command in ALI/R to update the MLM server’s copy of the element
map information whenever it changes. The element map should change
only as a result of Administrator or Operator actions.

In the full scope option, all information that the MLM server associates
with the LCP is deleted and replaced with information listed in the
config command. In the partial scope option, the MLM server replaces
only pieces of LCP information that are listed in the config command.

Normally, the full scope option is employed at startup and when major
changes to the library configuration occur, whereas partial scope is
employed when a cartridge movement operation happens. Very large
libraries can initially use a partially populated full scope command
followed by a series of partial scope commands, if this proves easier.

Use the config command to:

• Copy the list of slots to the MLM server, including information on
which bay slots are in, the PCL of the cartridge in a slot, what form
factor of cartridge is in (or could be in) that slot, whether the slot is
occupied or not, and whether the slot is accessible or not.

• Copy the list of drives to the MLM server, including information on
whether there is a cartridge in the drive (it may not have been
loaded, so the DCP might not see it) and whether it is accessible.

• Copy the list of bays to the MLM server, including information on
whether each bay is accessible or not. It is possible for a single bay
in a multi-bay library to be inaccessible or temporarily broken.

• Copy a list and count of free slots in each form factor inside all
library bays to the MLM server. Some libraries have no name for
empty slots, and bays sometimes contain several form factors, so
we need a count of the number of free slots of each type.

• Provide some approximate performance information to the MLM
server for the library. The MLM server may use that information
when choosing which library to use. For example, a library with an
expected cartridge mount time of 10 seconds may be preferable
over one with an expected mount time of 24 hours.

ALI Response—ALI/R

33

goodbye The goodbye command tells the MLM server to end this session and clean
up its end of the session. This protects against the accumulation of idle
connections, since the MLM server has no way of detecting that an LCP
exited other than the TCP/IP keepalive option. Keepalive helps recover
from process failures, but an LCP should send a goodbye before exiting to
prevent unnecessary continuation of connection resources.

message The message command sends a message of some severity level to the
MLM server. The LCP logLevel attribute determines a limit on the
severity level of messages sent to the MLM server. This command
provides a mechanism for the LCP to send messages that the MLM
server can convey to an operator and possibly a system administrator.

Note: This mechanism may change in future releases of OpenVault.

ready The ready command and its variations tell the MLM server the current
status of the library, and whether it is available for cartridge operations.
Like the config command, the ready command is just a shorthand way of
conveying attributes about ALI objects to the MLM server.

These are variations of the ready command:

See “Ready States” on page 94 for more information about ready states.

response The response command acknowledges and indicates success or failure of
an ALI command. The optional text portion of the response contains
error details or command results.

show The show command obtains the value of an attribute that the LCP
previously stored in the MLM server.

ready The LCP has resynchronized its internal information
with the physical state of its device, and is prepared to
accept commands that require it to access its device.

ready not The library is temporarily unavailable for motion
operations, such as ALI mount, unmount, move, and
eject, or ADI load and unload.

ready lost The LCP has lost contact with its device.

ready broken The LCP detected that its device hardware is
reporting a hard failure and is nonfunctional.

34

Chapter 3: Abstract Library Interface (ALI) Language

Ordering of ALI Response Text

For some ALI commands, the matching ALI/R response command for a successful
response contains a text portion, which must have a particular format and ordering. This
section describes these requirements.

Response Text for ALI_show Command

The text portion of a successful response to show depends on the specified mode for the
show, and on the number of attributes to be queried. There are three possible modes:

ALI_show_name show name only
ALI_show_value show value only
ALI_show_namevalue show name and value, in that order

For each attribute to be queried, the text portion of the response includes name-value
information, as dictated by this mode, and is ordered according to the specified attribute
list. So, for example, if a show command requested a query of LCP logLevel and vendor
attributes, with mode ALIR_show_namevalue, the corresponding text portion of the
response would look something like this:

text['logLevel' 'debug' 'vendor' 'EXABYTE']

Response Text for ALI_mount and ALI_unmount Commands

The text portion of a success response for mount and unmount includes the value tuple
source slotID, PCL, OpenVault drive name. The values are not tagged with a name, and
must appear in this order. The corresponding text portion of the response would look
something like this for source slotID “slot 1” PCL “AB1234” drive “fred”:

text['slot 1' 'AB1234' 'fred'];

Response Text for ALI move command

The text portion of a success response for a move command includes the value tuple
source slotID, PCL, destination slotID. The values are not tagged with a name, and must
appear in this order. The corresponding text portion of the response would look
something like this for source slotID “slot 2” PCL “AB5432” destination slot “slot 5”:

text['slot 2' 'AB5432' 'slot 5'];

ALI Response—ALI/R

35

Response Text for ALI_eject Command

The text portion of a success response for an eject command includes the value pair
slotID, PCL. The values are not tagged with a name, and must appear in this order. The
corresponding text portion of the response would look something like this for slotID
“slot 10” PCL “AB9999”:

text['slot 10' 'AB9999'];

Other Information

See Appendix B for a list of return values and detailed information about ready states.

37

Chapter 4

4.Programming a Library Control Program (LCP)

This chapter provides a tutorial to LCP programming, and includes the following topics:

• “Initialization Issues” on page 38 talks about starting up a control program.

• “LCP Development Framework” on page 42 describes the LCP subroutine libraries.

• “Example LCP Implementation” on page 51 discusses layout of sample source code.

• “Defined Tokens List” on page 54 presents tables of OpenVault tokens for an LCP.

About the LCP

A library control program (LCP) translates between the OpenVault ALI and the actual
device control interface for its library, and between device responses and ALI/R. The
LCP does what is necessary to affect the required ALI semantics. It keeps the MLM
server’s “cache” (persistent store) up to date regarding LCP configuration, library
configuration, and ready state information. To do this, the LCP sends config and ready
commands when it detects changes in state, on a best-effort basis.

Use of Persistent Storage

Currently, the library configuration and state is moved in one direction only, from an LCP
to the MLM server persistent store. The MLM server uses this information to assist with
library and drive selection for cartridge and volume mounts. In future revisions of
OpenVault, the LCP might recover some state from the persistent store, so that state and
configuration information can flow in both directions. However, the LCP and library are
always considered the authoritative source for information about the LCP or its library.

LCP Configuration

In sample implementations, LCP configuration is stored in a configuration file that is
local to each LCP. See “Configuration File” on page 38 for more information.

38

Chapter 4: Programming a Library Control Program (LCP)

Initialization Issues

Each LCP must initialize itself in order to contact the MLM server.

LCP Booting

Removable media libraries may be connected to multiple hosts and thus have multiple
control paths. There may be one LCP associated with each control path. Only one LCP at
a time can be active for any library; the MLM server arbitrates which LCP is active.

For example, an LCP could be on an inactive library connection. The LCP boot sequence
must not interfere with another LCP with an active connection. The MLM server is the
arbitrator of control for multiconnected libraries and drives. An LCP should not assume
that it controls a library until the MLM server says so.

Configuration File

Each LCP should have a configuration file containing at least the following information:

• The address of the controlling MLM server.

This allows the LCP to initiate contact with the controlling MLM server. It is the
name of the system, or its numeric IP address. The MLM server is usually available
at well-known port number on that system, by default 44444.

• The OpenVault name for the managed library.

The MLM server uses this name as an identifier for this physical library. This is the
name of the device that it is managing, not the name of the particular instance of
LCP. All names must be unique within an OpenVault domain so that the server can
detect multiconnected libraries (multiple LCPs controlling the same library).

• The LCP instance name.

The instance name is arbitrary, but is required for cases where there are
multiconnected libraries.

• The control path to the library (for example, /dev/scsi/sc0d2l0).

This is how an LCP talks to the hardware. This information is not visible to the
MLM server. Some library implementations are not controlled in this fashion, but all
LCP implementations need something equivalent.

Initialization Issues

39

• The OpenVault name for the drives contained in this library.

The MLM server uses this information to determine relationships between libraries
and drives (between LCPs and DCPs). The “contained in” relationship is helpful
when deciding into which drives a cartridge can be placed, based on which library
contains the cartridge. Each library has some method for addressing each drive
inside that library. The LCP’s name-to-drive address mapping takes the form: the
OpenVault drive named “dlt1” corresponds to library drive 1, while the drive
named “dlt2” corresponds to library drive 2.

For easy editing, LCP configuration files should be composed of readable ASCII text.

LCP Boot Sequence

When an LCP boots or re-boots, it must:

1. Allocate internal data structures.

2. Refrain from talking to the library.

The LCP boots into activate disable state, and must wait for the MLM server to tell it
when to talk to the library. If the library is dual-ported with another LCP actively
controlling it, that session should not be interrupted! The MLM server issues an
activate enable command when conditions permit your LCP to control the library.
If the library is single-ported, activate enable is issued almost immediately.

3. Read its configuration file.

4. Establish a session with the MLM server.

The LCP sends the “hello” message upon opening the connection. In this example,
name is the OpenVault name for the library, and inst is the LCP instance name. If
connection fails, retry ever two minutes. The LCP blocks until it receives a welcome
command telling it which language version to use during this session.

hello language["ALI"] version["1.0"] client["name"] instance["inst"];

When the MLM server is first contacted by an LCP it will:

1. Integrate the library into its list of managed devices.

The MLM server checks for other LCPs managing that physical library. If this LCP is
the first, OpenVault allows this LCP to proceed. This sequencing implies that LCPs
are given control of their associated library on a first-come-first-served basis.

2. (Eventually) issue an activate enable command to the LCP.

40

Chapter 4: Programming a Library Control Program (LCP)

When the MLM server says to activate enable, the LCP must:

1. Reply to the MLM server with a ready no command.

The LCP informs the MLM server that it has started to come up, but is not yet ready
to accept cartridge movement commands.

2. Talk to the library to determine:

• That the library is supported by this LCP (“ATL-2640” is supported).

• Whether or not the library supports PCLs (barcodes), true or false.

• List of supported cartridge form factors (“DLT”); may be compiled into the LCP.

• Total number of slots for each formFactor.

• Total number of used slots for each formFactor.

• Import/export port configuration.

• The slotmap (all the barcodes and occupancy info for the library).

• Any other information that may be relevant to library or LCP operation.

3. Collect any state or configuration information from the MLM server.

The LCP can store state or configuration information in the OpenVault persistent
store. For example, the LCP probably needs to retrieve the loglevel attribute so it can
resume logging only the messages that the system administrator wants logged.

4. Push all the slotmap and drive information up into the MLM server.

The LCP owns the slotmap and therefore needs to update the MLM server’s copy of
the slotmap whenever required. The LCP needs to tell the MLM Core when it is
ready to accept cartridge movement commands.

5. Send a ready command to the MLM server.

The LCP is now ready to accept cartridge movement commands.

6. Respond success to the original activate enable command.

This is defined to be the last step as a convenience to the MLM server, so that the
server can block until it receives a response from its activate enable command rather
than continually polling for arrival of the ready command.

Initialization Issues

41

After receiving slotmap and drive information from the LCP, the MLM server will:

1. Crosscheck the list of drives.

The MLM server crosschecks the list of contained drive names with the list of drives
controlled by known DCPs. Not all DCPs may have checked in before the LCP does.
The MLM server keeps a list of known DCPs that have not yet checked in so that it
can flag them as possible hardware failures.

2. Crosscheck the list of PCLs (barcodes).

The MLM server crosschecks the LCP’s list of PCLs against the previously known
contents of the library, looking for new or missing cartridges. A message is sent to
the system administrator and/or a logfile if any changes are detected.

3. Store all the slot and drive information in persistent store.

The MLM server stores all the information that the LCP provided in its database.
That information is the basis for choosing drives and cartridges on behalf of CAPI
or AAPI clients.

When the MLM server gets a successful response to activate enable, it will:

1. Mark the library as being available for cartridge mounts.

The library is ready to accept cartridge mount, unmount, and movement requests.
This implies that cartridges in that library are no longer filtered out of the list of
candidates for mount operations because they are not accessible to OpenVault.

Activation Sequence

When an LCP receives an activate enable command from the MLM server, and the LCP is
in ready lost state, it should perform these steps:

1. Access its library to acquire or verify device-specific configuration and state.

For example, an LCP may consult its library to determine:

• if the library is supported by this LCP (for instance, “ATL-2640” is supported)

• whether the library is in a usable state by this LCP

• whether the library supports verification of PCLs (has a barcode reader)

• supported cartridge form factors (for instance, “DLT”)

• total number of slots for each formFactor

• total number of free slots for each formFactor

42

Chapter 4: Programming a Library Control Program (LCP)

• import and export port configuration

• element maps (slot, drive, bay, port)

2. Push configuration information to the MLM server.

For example, configuration information includes: free slots, element maps, and
performance information. The LCP is responsible for updating the MLM server’s
copy of element maps whenever it detects a change in map information.

3. Transition to ready state, and push this new state to the MLM server.

While in ready lost state, the LCP should service the activate command, and any ALI
commands in the session that do not require device access. The LCP should return a
ready error (ALI_E_READY) and resend ready lost state for other ALI commands.

LCP Development Framework

The infrastructure developer’s kit includes a framework for writing an LCP that helps
ease the development, porting, and maintenance effort for new devices. The framework
provides general processing of ALI and ALI/R commands, thus freeing the developer to
focus on the idiosyncrasies of a particular device, and on developing suitable support for
a new removable media library.

This section describes the general source tree layout.

OpenVault Client-Server IPC

OpenVault clients and servers communicate with a custom interprocess communication
(IPC) layer. LCP modules that deal directly with ALI and ALI/R must include the
following header file, and be loaded with the following C library:

ovsrc/include/ov_lib.h
C data structures, macros, and subroutine prototypes for IPC

ovsrc/libs/comm/libov_comm.so
C library containing IPC subroutines

LCP Development Framework

43

ALI Parser and ALI/R Generator

The framework includes language parsers and generators. LCP modules using these
facilities must include the following header files, and be linked with these C libraries:

ovsrc/include/ali.h
Supported ALI and ALI/R language version, ALI standard errors, and
C data structures for ALI and ALI/R command representation.

ovsrc/include/lcp.h
Parser and generator subroutine prototypes.

ovsrc/include/hello.h
C data structures for HELLO and WELCOME command representation.

ovsrc/libs/hellor/libov_hello.so
C library that contains HELLO parser-generator subroutines.

ovsrc/libs/ali/libov_ali.so
C library that contains ALI parser-generator subroutines.

LCP C Library Routines

The LCP(3) reference page documents the ALI and ALI/R lexical library routines that
you employ when writing a LCP. Table 4-1 offers a summary of these routines.

Table 4-1 ALI and ALI/R Lexical Library Routines

Purpose of Activity LCP Function Short Description

Initiate session with
MLM server

ALIR_initiate_session() Begins session with a specific MLM server,
including HELLO version negotiation

Parse ALI command
from MLM server

ALI_receive() Parses an ALI command and returns an
ALI_command structure

Acknowledge ALI
command

ALI_acknowledge() Informs MLM server that the LCP received an
ALI_command

Send ALI/R
command to MLM
server

ALIR_alloc_cmd()
ALIR_alloc_ready()
ALIR_alloc_message()
ALIR_alloc_slotinfo()
ALIR_alloc_bayinfo()
ALIR_alloc_driveinfo()

Allocates ALIR_command structure
Allocates ALIR_command for ready command
Allocates ALIR_command for ALIR_message
Inserts slot map info for config command
Inserts bay map info for config command
Inserts drive map info for config command

44

Chapter 4: Programming a Library Control Program (LCP)

LCP Common Framework

The infrastructure developer’s kit includes common utility code for writing an LCP. To
use this code, include the following header files, and read the following C module:

ovsrc/include/queue.h
Generic queue and linked list implementation.

ovsrc/include/cctxt.h
Generic command queuing mechanism.

ovsrc/include/maps.h
Generic element map representation.

ovsrc/include/lcp_lib.h
Generic representation of LCP and library state, generic representation
of an attribute, common LCP fixed and programmable entry points, and
common LCP utility subroutine prototypes.

ovsrc/clients/lcp/common/util.c
LCP common fixed-entry points and utility subroutines.

Generic Representation of a Library—lcp_lib.h

Much of an LCP’s representation of LCP and library state can be represented generically.
However, the LCP developer needs a way to customize this representation for a
particular library and implementation.

The LCP framework provides a private data area and programmable LCP entry points
as a means for the developer to customize the LCP’s representation of LCP and library
state. The private data area allows the developer to maintain additional information
about the LCP and library; the programmable entry points allow the developer to

Send final response
for ALI command to
MLM server

ALIR_alloc_response()
ALI_alloc_string()
ALIR_send()
ALIR_free()

Allocates ALIR_response structure
Allocates string for response, error, data results
Transmits ALIR_command to MLM server
Deallocates ALIR_command structure

Free ALI command ALI_free() Deallocates ALI_command structure

Table 4-1 ALI and ALI/R Lexical Library Routines

Purpose of Activity LCP Function Short Description

LCP Development Framework

45

customize actions associated with ALI command dispatch, deactivation (transition to
ready lost state), graceful shutdown, and ALI/R command task ID generation. This
arrangement allows the shared framework to invoke these entry points as appropriate.

Here is the framework’s generic representation for a library:

struct libinfo
{
 /* elements from LCP config file. */
 char *client; /* MLM name of this library. */
 char *instance; /* Client instance. */
 char *mlmhost; /* MLM host. */
 int mlmport; /* MLM port. */
 int pollinterval; /* seconds between library polls */
 char *addr; /* library control address. */

 /* elements initiated by LCP. */
 char *type; /* Type of library. */
 enum ALIR_msg_severity loglevel; /* Log level for LCP messages */
 enum ALIR_ready_type readystatus; /* ready, not r_, disconnected */
 int supportPCLs; /* 1 if barcode scanner, or 0 */
 char *vendor; /* Library vendor name. */
 queue_t ALI_cmd_queue; /* ALI command queue. */
 queue_t ALIR_cmd_queue; /* ALIR command queue. */
 int waiting_for_ack; /* 1 if waiting for ack, or 0 */
 char *taskid_for_ack; /* TaskID of last ALIR command */

 void(*lcp_deactivate)(struct libinfo *libi); /* deactivate */
 void(*lcp_exit)(struct libinfo *libi, int abnormal); /* shutdown */
 void(*lcp_dispatch)(struct libinfo *libi, struct ALI_command *cmd);
 char *(*lcp_taskid)(struct libinfo *libi); /* taskid generation */

 /* element map info, shared by do- and control-layers */
 element_map_t slotmap; /* Slot map */
 element_map_t drivemap; /* Drive map */
 element_map_t portmap; /* Port map */
 element_map_t baymap; /* Bay map */

 void *private; /* LCP private libary info */
};

Common LCP Entry Point

An LCP that makes use of this developer framework must call the following subroutine
to initialize the generic and private data areas for LCP and library information, and set
the programmable LCP entry points:

46

Chapter 4: Programming a Library Control Program (LCP)

void lcp_init(struct libinfo *libi,
 void lcp_init_private(),
 void lcp_deactivate(),
 void lcp_exit(),
 void lcp_dispatch(),
 char *lcp_taskid(),
 void slot_private(),
 void drive_private(),
 void bay_private(),
 void port_private());

Programmable LCP Entry Points

This entry point is called one time only from lcp_init(), so the libinfo structure does not
store it. Required entry point for LCP private data area allocation and initialization:

void lcp_init_private(struct libinfo *libi);

Remaining entry points are stored in the libinfo structure. Required entry point for LCP
private actions to activate disable:

void lcp_deactivate(struct libinfo *libi);

Required entry point for LCP private actions to shut down gracefully and exit:

void lcp_exit(struct libinfo *libi, int abnormal);

Required entry point for ALI command dispatch from the command state machine:

void lcp_dispatch(struct libinfo *libi, struct ALI_command *cmd);

Required entry point for LCP to generate a task ID for ALI/R commands:

void char *lcp_taskid(struct libinfo *libi);

Optional entry points for element map allocation and initialization (may be NULL):

void slot_private(queue_t *q, int initflag);
void drive_private(queue_t *q, int initflag);
void bay_private(queue_t *q, int initflag);
void port_private(queue_t *q, int initflag);

LCP Development Framework

47

Generic Representation of Element Maps

Much of the information that an LCP needs to maintain about library elements, including
slots, drives, bays, and ports, may be generically represented. However, LCP developers
must be able to customize element information that the LCP maintains.

For example, typical information that an LCP needs to maintain about a slot includes the
slotID, the device-specific address for this slot, the name of the bay in which this slot is
located, whether the slot is accessible and occupied, the PCL of the cartridge that is
currently occupying this slot (if any), and the name of the drive where the cartridge that
was last in this slot is currently mounted (if any).

For typical slot information, the framework provides an extension to the common
information by means of an LCP private data area and programmable entry points for
allocating and deallocating this data area.

An example of how an LCP might use its private slot data area is for multi-sided media,
where the library can mount the cartridge either “side A” up, or “side B” up. In addition
to the typical slot information, an LCP for such a library would probably maintain the
current orientation of a cartridge in its private data area for that slot.

The element map header file, maps.h, is separated from the LCP common header file,
lcp_lib.h, so that the generic element map representation and subroutines may be used
separately from the generic library piece. In the sample implementations, this permits
the ALI semantic layer and the control layer modules for an LCP to share the element
map representation, without both having to include the generic library piece. The control
layer needs the generic element map piece, but not the generic library piece.

Here are the common representations for slot, drive, bay, and port:

typedef struct slot {
 char *name; /* Slot id. */
 char *addr; /* Hardware address. */
 char *bayid; /* Name of bay where slot resides */
 char *shape; /* Of cartridges fitting this slot */
 int access; /* T/F: is slot accessible? */
 int occupied; /* T/F: is slot occupied? */
 char *PCL; /* Label of cartridge in slot, if any */
 char *driveid; /* Drive with slot’s cartridge, if any */
 void *private; /* LCP private data area. */
 queue_t queue; /* To next/prev slots. */
} slot_t;

48

Chapter 4: Programming a Library Control Program (LCP)

typedef struct drive {
 char *name; /* Name of drive. */
 char *addr; /* Hardware address. */
 char *bayid; /* Name of bay where drive resides */
 char *shape; /* Of cartridges that fit in this drive */
 int access; /* T/F: is drive accessible? */
 int occupied; /* T/F: is drive occupied? */
 char *PCL; /* Label of cartridge in drive, if any */
 char *slotid; /* Slot from where cartridge mounted */
 void *private; /* LCP private data area */
 queue_t queue; /* To next/prev drives */
} drive_t;

typedef struct bay {
 char *name; /* Name of bay */
 char *addr; /* Hardware address */
 int access; /* T/F: is bay accessible? */
 void *private; /* LCP private data area */
 queue_t queue; /* To next/prev bays */
} bay_t;

typedef struct port {
 char *name; /* Name of port */
 char *addr; /* Hardware address */
 char *bayid; /* Name of bay where port resides */
 int access; /* T/F: is port accessable? */
 element_map_t slots; /* Separately addressable slots in port */
 void *private; /* LCP private data area */
 queue_t queue; /* To next/prev ports */
} port_t;

Convenience Routines for Element Maps

The element map header file is separated from generic library representation, to allow
element maps to be shared between potentially different layers of an LCP, for instance
between the ALI semantic layer and the device access layer. In sample implementations,
the device layer fills in some of this information and the ALI semantic layer fills in the
rest, then passes element maps to the MLM server with an ALI/R config command.

LCP Development Framework

49

The following convenience routines are provided in module ovsrc/include/util.c to handle
LCP element maps. See the file ovsrc/include/maps.h for subroutine prototypes.

void map_init() Initialize element map of a given type

void map_free() Free an element map

void map_move() Swap two element maps

slot_t *slotmap_add() Add an entry to the slot map

void slotmap_del() Delete a slot map entry

slot_t *slotmap_find_name() Find the entry for a given name in the slot map

slot_t *slotmap_find_addr() Find the entry for a given address in the slot map

slot_t *slotmap_find_PCL() Find the entry for a given PCL in the slot map

slot_t *slotmap_find_empty() Find an empty slot, if one exists

int slotmap_compare() Compare two slot map entries for equivalence

void slotmap_mount()

void slotmap_unmount()

void slotmap_move()

void slotmap_inject()

void slotmap_eject()

drive_t *drivemap_add() Add an entry to the drive map

void drivemap_del() Remove an entry from the drive map

drive_t *drivemap_find_name() Find entry for a given drive name in the drive map

drive_t *drivemap_find_addr() Find entry for a given drive address in the drive map

int drivemap_compare() Compare two drive map entries for equivalence

void drivemap_inject()

bay_t *baymap_add() Add an entry to the bay map

void baymap_del() Remove an entry from the bay map

bay_t *baymap_find_name() Find entry for a given bay name in the bay map

bay_t *baymap_find_addr() Find entry for a given bay address in the bay map

int baymap_compare() Compare two bay map entries for equivalence

50

Chapter 4: Programming a Library Control Program (LCP)

LCP Utility Functions

This section summarizes convenience routines available in module ovsrc/include/util.c,
grouped by purpose. The following functions are provided for ALI command queuing
and the state machine:

The following functions are provided for ALI/R command queuing and MLM server
acknowledgment processing:

The following function is provided for LCP ready state processing:

The following functions are provided for handling ALI error responses:

port_t *portmap_add() Add an entry to the port map

void portmap_del() Remove an entry from the port map

port_t *portmap_find_name() Find entry for a given port name in the port map

port_t *portmap_find_addr() Find entry for a given port address in the port map

int portmap_compare() Compare two port map entries for equivalence

queue_t *ali_command() Enqueue ALI command, and initialize command state.

void ali_next() Send next ALI command.

void ali_complete() ALI command finished, so update state and dequeue it.

void *ali_context() Set and return private command context.

enum cmd_state ali_state() Return ALI command state.

queue_t *alir_command() Enqueue ALI/R command for sending.

void alir_next() Dispatch next ALI/R command.

void alir_abort() Dequeue pending ALI/R commands.

int ali_response() Match ALI response to ALI/R command, and vice-versa.

void readystate_change() LCP standard ready state processing.

void attribute_error() Handle attribute or show error.

void ready_error() Handle ready state error.

Example LCP Implementation

51

The following functions are provided for mandatory attribute and show processing:

The following functions are provided for debugging:

Example LCP Implementation

The Exabyte 210/220/440/480 libraries are SCSI-2 medium changers. The Exabyte 210 is
a model with 10 slots and one or two Exabyte 8505XL drives. It is comparatively simple
to operate—the LCP source code for this autochanger is less than 4000 lines long. The
Exabyte 220 is similar but has 20 slots. The Exabyte 440 has 40 slots and up to four drives.
The Exabyte 480 is similar but has 80 slots. (In Exabyte model numbers, the first digit
describes the maximum number of drives, while the remaining digits describe the
number of available slots.)

The Exabyte 210 LCP may be used in conjunction with the Exabyte 8505XL DCP.

int attribute_() LCP generic attribute and show processing.

int lcp_attr() Attribute and show for generic LCP attribute.

int bay_attr() Attribute and show for generic bay attribute.

int drive_attr() Attribute and show for generic drive attribute.

int slot_attr() Attribute and show for generic slot attribute.

int bay_description() Attribute and show for bay description attribute.

int drive_description() Attribute and show for drive description attribute.

int slot_description() Attribute and show for slot description attribute.

int lcp_name() Attribute and show LCP name attribute.

int lcp_supportPCLs() Attribute and show LCP supportPCLs attribute.

int lcp_vendor() Attribute and show LCP vendor attribute.

int lcp_loglevel() Attribute and show LCP logLeval attribute.

void print_stringlist() Print ALI_stringlist.

void print_attrlist() Print ALI_attrlist.

52

Chapter 4: Programming a Library Control Program (LCP)

IRIX Implementation

Calls to the pass-through SCSI driver are made with the IRIX C library for generic SCSI
operations; see the dslib(3X) reference page. Direct SCSI access is by means of this device
special file:

/dev/scsi/scCdUlL

In this filename, C is the SCSI controller number, U is the unit number, and L is the logical
unit number (lun) for accessing library control. This information may be determined on
IRIX systems by using the hinv command.

Source Code Organization

This section describes the LCP source and run-time configuration modules.

Configuration Processing

The ovsrc/clients/lcp/EXABYTE-210/config file describes both the library and MLM server:

localhost # MLM server host name
739 # MLM server TCP socket
wilma # OpenVault name for library
host-bedrock # LCP instance name
/dev/scsi/sc0d510 # SCSI drive control access path
60 # Library polling interval
fred:82 # Map OpenVault drive name to library address
barney:83 # Do likewise for second drive

The ovsrc/clients/lcp/EXABYTE-210/config.c module parses this file and fills in library
information in both the LCP generic and private data areas.

Device Access Layer

The ovsrc/clients/lcp/EXABYTE-210/control.h header file contains the device access layer
device representation, and declares subroutine entry points for the ALI semantics layer
to access the device. The ovsrc/clients/lcp/EXABYTE-210/control.c module implements
these subroutines.

Example LCP Implementation

53

ALI Semantic Do* Layer

This layer, named after its many functions starting with “do,” is where the LCP interprets
ALI commands. The programmer customizes this layer, based on the generic library
methods that are provided as part of the LCP developer framework.

The ovsrc/clients/lcp/EXABYTE-210/main.h header file contains the LCP private data area
of a generic library representation, and associated macros and subroutine prototypes,
including four programmable LCP entry points used by the framework, and semantic
support routines. The ovsrc/clients/lcp/EXABYTE-210/main.c module is where ALI
semantic handling routines are implemented, and where ALI commands are dispatched
to the appropriate semantic handling routine. For example, the ALI_mount command
would be dispatched to the do_mount() function.

Representing Private Element Map Entries

The Exabyte 210 LCP does not require custom element maps, because the developer
framework provides an adequate generic representation. Other LCPs may require
customization. Programmers can customize element map representation by creating the
ovsrc/clients/lcp/NAME/maps_private.h and ovsrc/clients/lcp/NAME/maps_private.c files,
where NAME represents the LCP name.

Future LCP Implementations

There is potential for a single, shared SCSI-2 media changer LCP. An additional device
module would be required only for vendor-dependent processing, or for possible
departures from the standard. The infrastructure developer’s kit was developed on IRIX,
and has been ported to an increasing list of operating system platforms.

Parallel Execution and Complex Mappings

Certain media libraries may perform parallel (instead of serial) execution of commands,
and complex (not simple) mappings of ALI to underlying library control. Some libraries,
such as SCSI-2 media changers, execute device control commands in a blocking or serial
fashion. For most of these devices, there is a one-to-one mapping between an ALI
command and the underlying SCSI-2 request. The LCP implementation for such a device
may be trivial. For this sort of device, the LCP implementor may simply implement all
ALI commands in a serial fashion. No extension of the framework is needed.

54

Chapter 4: Programming a Library Control Program (LCP)

Other libraries, such as the StorageTek ACSLS and the IBM 3494, provide some
parallelism in control command execution. Optimal use of these devices requires some
extra work on the part of the LCP developer to extend the framework. These controllers
tend to be more complex than SCSI-2, and require one ALI command to be mapped to
potentially multiple underlying control requests. This requires a command execution
state machine. Also, developers must understand command dependencies and how the
underlying library or controller executes commands, to ensure proper sequencing.

Defined Tokens List

This section documents the predefined strings that are relevant to LCP development.

Cartridge Form Factors

The ALI interface lets the LCP describe to the MLM server what shapes of cartridges it
can accept, and what capabilities it can offer with cartridges of that shape. Table 4-2
shows the tokens used for the currently existing cartridge shapes.

Table 4-2 Predefined Cartridge Form Factor Tokens

Token Description or Usage

8mm Any generic 8 mm shell

3480 For example: IBM 3480/3490/3495, STK 4480/4490, and so forth

DLT Digital linear tape (Quantum)

DAT 4 mm digital audio tape (DDS1 and DDS2)

D2-S Small DST cartridges (25 GB capacity)

D2-M Medium DST cartridges (75 GB capacity)

D2-L Large DST cartridges (165 GB capacity)

DTF 20 GB cartridges from Sony

VHS For example: Metrum

QIC Quarter inch cartridge

CD-ROM Compact disk read-only memory

Defined Tokens List

55

Attribute Names (LCP)

Table 4-3 shows one attribute used in an LCP, where it is used, and what it means.

Table 4-3 Predefined Attribute Name Tokens (LCP)

Attribute Name Where Used Possible Values Required? Description

ExchangeTime ALI config
command,
perf clause

numeric, in
seconds

yes The approximate time it takes for the
library to move a cartridge from its
home location to a drive, or back, not
including drive load/unload time.

57

Chapter 5

5. Abstract Drive Interface (ADI) Language

This chapter provides programmers with an introduction to the OpenVault languages for
controlling removable media drives, and includes the following sections:

• “Abstract Drive Interface—ADI” describes the language in which the MLM server
sends directives to a DCP, and responds to requests sent by a DCP.

• “ADI Response—ADI/R” on page 66 tells how a DCP sends configuration and
status to the MLM server, and responds to directives from the MLM server.

Abstract Drive Interface—ADI

The following sections describe the abstract drive interface (ADI), including objects,
object attributes, naming conventions, and the ADI command repertoire.

About ADI

ADI is a language that provides an abstraction of removable media drives managed by
OpenVault. ADI hides details of the underlying drive and control without compromising
the ability of OpenVault as a whole to manage its resources efficiently.

ADI Object Definitions

The ADI language manipulates the following objects:

drive control program (DCP)
Each DCP manages the configuration of drives, and performs drive
control tasks associated with mount and unmount requests from
OpenVault client applications. The main purposes of a DCP are to
expose drive configuration to the MLM server, and to control drives that
have an OpenVault accessible control interface.

See Chapter 6 for a tutorial on DCP programming.

58

Chapter 5: Abstract Drive Interface (ADI) Language

drive A place where a cartridge may be mounted and its media loaded for
read/write access.

access method instance
The instantiation of a drive access method—the implementation of a
particular set of capabilities that describe a mode of access to the drive;
this is equivalent to a UNIX® device special file or dev node.

partition A region on the cartridge media that has a physically marked beginning
and end, both of which the drive recognizes.

command ADI commands become objects as far as ADI is concerned. When the
MLM server sends an ADI command, it associates a task ID with that
command. The sender may refer to that command later by using the
same task ID, but only to cancel the command. When a DCP receives a
command, it includes the task ID in command responses.

Abstraction of a Drive

The most important object managed by a DCP is the drive, which has the following traits:

capabilities and mode of access
A drive has an associated set of capabilities, which describe specific
feature settings. Capabilities determine which device driver to use for
control and data requests, what device settings to select, and device state
to check. Particular combinations of capabilities represent a particular
mode of access. A drive has a configurable set of legal access modes,
each of which represents a logical instance of the drive with underlying
control and access methods. The use of canonical capabilities and modes
of access is what permits a DCP to hide implementation details such as
the underlying local control and access methods for the device.

media Recordable surface(s) upon which data are read or written. A cartridge
may contain one or more pieces of media. Associated with this and the
drive is a bit format, which determines the recording format. Together
with media type, bit format determines media storage capacity.

mount point The physical drive opening where a cartridge may be placed, often
called the drive door. A cartridge must be present at the mount point
before the cartridge and the media it contains can be engaged at the
media access point. When the media is disengaged from the media
access point (and returned to its cartridge, as necessary), the cartridge is
returned to the mount point.

Abstract Drive Interface—ADI

59

Figure 5-1 Conceptual View of a Drive

media access point
A cartridge must be moved and the media it contains engaged at a
media access point before the media can be read/write accessed. This is
the component that reads and writes the media contained by a cartridge.
The cartridge, media, or media access point may physically restrict
access to the media. For instance physical access may be restricted to
read only. Once media is engaged at the media access point, media data
may be accessed through the drive data path.

control path A control interface to the drive that is accessible by the DCP, and
possibly by OpenVault client applications on the DCP host. Typically, a
drive is connected to a host by a local channel or bus. This connection
represents the control path to the drive.

data path A connection between the DCP host and the drive media access point
that may be accessible by the DCP and MLM client applications on the
DCP host. Drives with a control path typically also have a data path,
with control and data paths sharing the same connection, with access
through a local device driver. For drives with a data path, DCP may
require access to that data path, for example to identify a partition. A
drive media access point may lack a data path. For example, a set of RGB
lines attaching a video drive to a display device lacks a host connection,
so applications do not have access to it.

Mount point

Media access point
(read/write)

Load cartridge
in drive

Mount cartridge

Control
interface

60

Chapter 5: Abstract Drive Interface (ADI) Language

drive handle A local binding between a name, such as a device pathname, and a
logical instance of the drive, such as a device node that corresponds to a
particular mode of access. The name is called a drive handle. For drives
that have a data path, the drive handle may be passed to and used by an
OpenVault client application to send drive control or access the media.
When the binding is removed, the drive handle is invalidated.

Attributes and Object Properties

OpenVault requires a DCP to maintain drive configuration attributes and notify the
MLM server when they change. DCPs use the ADI/R config and ready commands to do
this. These commands send attributes back to the MLM server, where configuration
information is kept in the MLM server persistent store. It is potentially recoverable by the
DCP using the ADI/R show command. Here are the required configuration attributes:

• DCP ready state (see “Ready States” on page 94)

• drive capability configuration (see “Drive Capabilities” on page 86)

• additional drive attributes (see “Attribute Names (DCP)” on page 87)

Note: Currently, OpenVault does not support recovery of any attribute or property
information stored in the MLM server persistent store by a DCP. However, this will be
supported in a future version of OpenVault, and developers will be encouraged to use it.

arbitrary attributes
A DCP developer may also maintain arbitrary attributes, and store them
in and recover them from the MLM server persistent store. These
attributes are opaque to the MLM server.

mandatory attributes
A DCP developer may store the logLevel mandatory attribute in the
MLM server persistent store, so it can recover the attribute and resume
logging at the same level across reboots.

Abstract Drive Interface—ADI

61

ADI expresses DCP attributes using the tuple object type, object name, attribute name.
Table 5-1 shows the mandatory attributes, not including the configuration attributes.

ADI Object Naming

These names refer to specific ADI objects:

DCP name Each DCP is uniquely named by a value pair including an OpenVault
client name and an OpenVault instance name.

client name Refers to a specific drive, and is the name by which a client identifies
itself in a HELLO command to the MLM server. This is the name the
MLM server associates with the device managed by the associated DCP.

instance name This name is arbitrary, but is needed if multiple DCPs control the same
drive, so as to differentiate DCPs with the same client (drive) name.

drive name An OpenVault drive name refers to a removable media drive.

drive handle Refers to a particular drive access method instance.

partition name References the name for a media partition.

task ID Uniquely identifies a sender-generated command.

Attribute naming in ADI is different from that for CAPI and AAPI, in which an attribute
is named with TableName.ColumnName; attributes are just columns in a relational table. In
ADI and ADI/R, attributes are named with a tuple:

objectType, objectName, attrName

ADI Commands

The MLM server speaks ADI to the DCP, which in turn speaks ADI/R to the MLM server.
The ADI language includes the following commands:

Table 5-1 Mandatory DCP Attributes

Object Type Object Name Attribute Name Command

DCP "" name ADI show

DCP "" logLevel ADI show, ADI attribute set

62

Chapter 5: Abstract Drive Interface (ADI) Language

activate The activate commands start and stop the DCP and drive interactions.
Once the DCP has established a session with the MLM server with a
hello-welcome sequence, it may begin accepting ADI commands from the
server. However, until it has successfully been activate enabled by the
server, and is in ready state, it should resend ready lost state and fail any
ADI commands that require drive access, with an ADI_E_READY error.

The DCP should issue one of the ready command variations when it
finishes processing the activate request. Activate is supported for all
drives managed by OpenVault, but is a no-op for drives that lack an
OpenVault control interface.

Note that activate may require the DCP to have access to a drive data
path, in addition to a control path; otherwise, it may be a no-op.

activate enable The activate enable command forces the DCP to
resynchronize with its drive hardware, ensuring
that the DCP has current drive state. This helps
support drives that are attached to multiple hosts. If
drive control switches from one DCP to another, the
activate command ensures that the controlling DCP
has up-to-date drive status.
In cases where multiple DCPs are associated with
one drive (that drive is attached to multiple hosts),
the MLM server ensures that only one DCP at a time
is actively controlling the drive.
The DCP reports ready when it has successfully
resynchronized with its drive.

activate disable The activate disable command forces the DCP to stop
communicating with its drive hardware. The DCP
requires an activate enable command before it can
talk to its drive again. This arrangement supports
drives that are attached to multiple hosts. If drive
control switches from one DCP to another, the
activate disable command ensures that the DCP that
loses control does not interfere with another one.
Performing this command should cause the DCP to
complete or cancel any ADI commands that require
access to the drive, store persistent drive state in the
MLM server, stop communicating with the drive,
and send a ready lost command to the MLM server.

Abstract Drive Interface—ADI

63

attach Selects the appropriate logical instance of a drive according to the access
mode specified by the MLM server. Attach instantiates this access
method as needed, and binds an opaque drive handle to the logical
instance (on UNIX systems, this means linking to a device node). The
drive handle must be unique on the DCP host, and may be generated by
the DCP, or specified by the MLM server. The DCP returns an error if it
detects that the drive handle is already in use on the local host.

Generally, the MLM server invokes attach as part of drive selection for a
CAPI mount, after loading. This command is supported for all drives
managed by OpenVault, but is a no-op for drives that lack a data path.

In the case of partitioned drives (such as two-sided optical disc units),
the drive handle that is created may be dependent on the partition. For
example, most disks on UNIX systems have the partition to be accessed
encoded in the drive handle (the device node). The loaded media is
positioned to the specified partition. Partition names may be defined;
see “Defined Tokens List” on page 83 for a list of partition names.

Typically, drives have a shared control and data path. In this case, the
drive handle that is passed back to the MLM server is ultimately passed
back to an OpenVault client application. The application uses the drive
handle to establish access to the drive control/data path.

The attach command allows the MLM server to change drive access
mode multiple times, without changing any names from the client
application’s perspective. However, the application must reestablish
access after each attach for the change to affect the application.

The MLM server ensures that drive access mode is consistent with
drive capabilities.

attribute Attributes are a mechanism by which information that is not contained
in normal configuration data passed to the MLM server can be accessed.
Examples include data that is unique to a drive type, or data that varies
over time. Attributes may read/write or read-only. If the attributes
represent internal information or settings associated with the drive
itself, the DCP sends corresponding requests to the drive, then returns
that information. See “Attributes and Object Properties” on page 60.

cancel The cancel command attempts to stop execution of a command sent to
the DCP. The DCP is free to continue the execution of the command if
the command has proceeded too far to cancel.

Note: The cancel and response commands may not be cancelled.

64

Chapter 5: Abstract Drive Interface (ADI) Language

detach A detach command removes the logical instance as necessary, and the
binding created by an attach command (on UNIX systems, this means
unlinking a device node associated with the device). Detach invalidates
the drive handle created by a previous attach command. For drives with
a shared control and data path, this disables a client application from
establishing access to drive control and data paths through this handle.

Generally, the MLM server invokes this command as part of drive
deselection for a CAPI unmount, before unloading. This command is
supported for all drives managed by OpenVault, but is a no-op for
drives that lack a data path.

The MLM server and the DCP should try to ensure that applications do
not continue to access drive control or data through a drive handle that
has been invalidated by detach. Note that detach and attach may have no
immediate impact on an application that was already accessing the
drive control and data paths. Once the application has established its
access, it may proceed to access the drive control and data paths,
without being affected by subsequent invocations of attach and detach.

A case in point is with random access media and UNIX applications
that perform an open (read/write) and close system call sequence in
which the drive handle is passed by the application as an argument
only to open(). In this case, the effects of the attach or detach command
may occur only during the open() call. The detach and attach commands
may have no effect on any reads and writes that are made between
open and close.

exit The exit command tells the DCP to store any persistent DCP and drive
information to the MLM server, complete or cancel pending ADI
commands, complete or abort pending drive operations, do shutdown
processing as required, send ready lost and goodbye commands to the
MLM server, and exit.

goodbye The goodbye command tells the communicating DCP to end this session.

load If a cartridge is present at the drive mount point, the load command
moves that cartridge to the media access point, and engages it, making
it accessible at the media access point. The drive is then called loaded.

Abstract Drive Interface—ADI

65

Minimally, load verifies that the drive is loaded. This command does not
identify which media is engaged. It is invoked by the MLM server as
part of a CAPI mount request. Normally, the ALI mount command
associated with the CAPI mount loads the drive (the library causes the
load to occur), so DCP load needs to verify only that the drive is loaded.

This command is supported for all drives managed by OpenVault, but
is a no-op for drives that lack an OpenVault control interface.

reset The reset command tells the DCP to force the drive to reinitialize. This
may also cause the drive to execute self-diagnostics. This is a best-effort
type of command. If it is possible to reset a drive only by resetting the
whole SCSI bus, thereby interrupting other transfers on that bus, the
DCP is free to treat this command as a no-op.

If reset is a prolonged drive activity, the DCP should send a ready not
command to indicate that its drive is temporarily not available,
followed by a ready command when the drive becomes available again.

response The response command acknowledges and indicates success or failure of
an ADI/R command. The optional text portion of the response contains
error details or command results.

show This is the attribute query mechanism. Note that show commands that
query information directly from a drive may require that a DCP have
access to a data path with the drive, and otherwise may return an error.
See “Attributes and Object Properties” on page 60.

unload If the drive is loaded, the unload command disengages the media,
returns it to the cartridge as necessary, and returns the cartridge to the
drive mount point. The drive is said to be unloaded at this point. This
command rewinds media before disengaging, as necessary. It is invoked
by the MLM server as part of a CAPI unmount. Minimally, it detects
whether the drive is already unloaded.

This command is supported for all drives managed by OpenVault, but
is a no-op for drives that lack an OpenVault control interface.

The ADI/R response is responsible for returning drive usage and error
statistics as transmitted on pages 2 through 5 of the SCSI log:

response whichtask["A"] success
 text ["bytes written" "32768" "softerrors" "0" ...];

There is no barrier command in ADI—OpenVault assumes that ADI commands are
executed serially by the DCP and its drive.

66

Chapter 5: Abstract Drive Interface (ADI) Language

ADI Response—ADI/R

The following sections describe the ADI response language (ADI/R), including objects,
object attributes, naming conventions, and the ADI/R command repertoire.

About ADI/R

ADI/R is primarily the response language for ADI. In addition to giving the matching
acknowledgment and final response to an ADI command, ADI/R provides the means for
a DCP to send its configuration and status to the MLM server.

ADI/R Object Definitions

The ADI/R language manipulates the following objects:

command ADI/R commands become objects as far as ADI/R is concerned. When
a DCP sends an ADI/R command, it associates a task ID with that
command. The sender may refer to that command later by using the
same task ID, but only to cancel the command. When the MLM server
receives a command, it includes the task ID in command responses.

message A text message to be entered into an MLM server-managed log, and
perhaps displayed on some console by the MLM server, or one of its
administrative applications. Messages are associated with a severity
level, or a level of urgency, which determines (along with site policy)
whether the message text is stored in the MLM server logs, displayed on
a library or OpenVault console for the operator, or both.

Attributes and Object Properties

Currently, ADI/R attributes are not supported by OpenVault, except for attributes stored
by the ADI/R config and ready commands in the MLM server persistent store. Currently,
OpenVault supports only setting and unsetting of these attributes. See “Attributes and
Object Properties” on page 60.

ADI Response—ADI/R

67

ADI/R Object Naming

These names refer to specific ADI/R objects:

message ID Refers to a text message of a given severity level.

task ID Uniquely identifies a sender-generated command.

ADI/R Command Descriptions

The DCP reads ADI commands from the MLM server, and replies to the server in ADI/R.
The ADI/R language includes the following commands:

attribute With an attribute command, the DCP stores persistent state in the
OpenVault database.

cancel The cancel command tells the MLM server to prevent execution of a
particular command, if possible.

Note: The cancel and response commands may not be cancelled.

config The config command tells the MLM server what access modes are
supported, with the form factors, media formats, and performance
characteristics for each. Config copies configuration information, such as
the capabilities of a drive, from the DCP to the MLM server. The MLM
server stores a nonauthoritative copy of all such information for all the
DCPs it controls. Each DCP must use the config command to update
configuration information whenever it changes.

The config command is shorthand for sending attributes about a drive
to the MLM server. See “Attributes and Object Properties” on page 60,
and “Defined Tokens List” on page 83 for more information.

In a full scope, all information associated with the DCP should be
deleted and replaced with the information listed by config. By contrast,
in a partial scope, only the pieces of information about the DCP that are
listed by config should be replaced. Normally full scope is used only at
startup time, or when making major changes to drive configuration.

The config command gives the MLM server a list of access modes that
the drive offers. Each mode has a name and additional characteristics:

• Supported cartridge form factors. Some drives support different
shapes of cartridges, and offer different capabilities when using one
shape instead of another.

68

Chapter 5: Abstract Drive Interface (ADI) Language

• Supported media bit formats. Some drives support different
formats for the bits on the media, and offer different capabilities
when using one bit format instead of another.

• Supported capabilities. Each access mode provides a certain set of
capabilities to the application, and each capability has a name.

• Performance characteristics. Some drives are able to handle
different form factors or media bit formats, and offer different
performance characteristics when using one form factor or bit
format instead of another. The MLM server may use that
information when choosing which drive to use. For example, a
drive with a read bandwidth of greater than 1 MB per second may
be required for a particular application.

• Whether or not a drive is occupied by a cartridge.

goodbye The goodbye command tells the MLM server to end this session and clean
up its end of the session. This protects against the accumulation of idle
connections, since the MLM server has no way of detecting that a DCP
exited other than the TCP/IP keepalive option. Keepalive helps recover
from process failures, but a DCP should send a goodbye before exiting to
prevent unnecessary continuation of connection resources.

message This is a method for the DCP to send a message to the operator or to a
log file. It contains a list of uninterpreted character strings.

ready With a ready command, the DCP informs the MLM server about the
current status of its drive connection. Like the config command, the ready
command is shorthand for sending drive attributes to the MLM server.

These are variations of the ready command:

ready yes Tells the MLM server that the DCP is ready to process
commands.

ready no Informs the MLM server that the DCP is not prepared to
process commands at this time.

ready lost Informs the MLM server that the DCP has lost
communication with its drive. It might be appropriate
for OpenVault to try another control path (another
DCP) connected to the drive.

ready broken The hardware reports a fatal error, so there is no point in
trying an alternate control path.

ADI Response—ADI/R

69

See “Ready States” on page 94 for more detailed information.

response The response command acknowledges and indicates success or failure of
an ADI command. The optional text portion of the response contains
error details or command results.

show With a show command, the DCP queries persistent state it has stored in
the OpenVault database.

Ordering of ADI Response Text

For some ADI commands, the matching ADI/R response command for a successful
response contains a text portion, which must have a particular format. This section
describes the required format.

Response Text for ADI_show Command

The text portion of a successful response to show depends on the specified mode for the
show, and on the number of attributes to be queried. There are three possible modes:

For each attribute to be queried, the text portion of the response includes name-value
information, as dictated by this mode, and is ordered according to the specified attribute
list. So, for example, if a show command requested a query of DCP logLevel and vendor
attributes, with mode ADIR_show_namevalue, the corresponding text portion of the
response would look something like this:

text[’logLevel’ ’debug’ ’vendor’ ’EXABYTE’]

Response Text for ADI_attach Command

The text portion of a success response for an ADI attach command includes the value
drive-handle. Suppose an attach caused the drive handle /tmp/mlm/handleXXX to be
bound to the instantiation of a drive access method. The corresponding text portion of
the response would look something like this:

text[’/tmp/mlm/handleXXX’]

ADI_show_name show name only

ADI_show_value show value only

ADI_show_namevalue show name and value, in that order

71

Chapter 6

6.Programming a Drive Control Program (DCP)

This chapter provides a tutorial to DCP programming, and includes the following topics:

• “Initialization Issues” on page 72 talks about starting up a control program.

• “DCP Development Framework” on page 76 describes DCP subroutine libraries.

• “Example DCP Implementation” on page 80 discusses sample source code layout.

• “Defined Tokens List” on page 83 presents tables of OpenVault tokens for a DCP.

About the DCP

A DCP (drive control program) translates between the OpenVault ADI and the actual
device control interface for its drive, and between device responses and ADI/R. The DCP
does what is necessary to affect the required ADI semantics. It keeps the MLM server’s
“cache” (persistent store) up to date regarding DCP configuration, drive configuration,
and ready state information. To do this, the DCP sends config and ready commands when
it detects changes in state, on a best-effort basis.

Use of Persistent Storage

Currently, the drive configuration and state is moved in one direction only, from a DCP
to the MLM server persistent store. The MLM server uses this information to assist with
drive selection for cartridge and volume mounts. In future revisions of OpenVault, the
DCP may recover some state from the persistent store, so that configuration and state
information can flow in both directions. However, the DCP and drive are always
considered the authoritative source for state information about a DCP or its drive.

DCP Configuration

In sample implementations, DCP configuration is stored in a configuration file that is
local to each DCP. See “Configuration File” on page 72 for more information.

72

Chapter 6: Programming a Drive Control Program (DCP)

Initialization Issues

Each DCP must initialize itself in order to contact the MLM server.

DCP Booting

Drives may be connected to multiple hosts and thus have multiple control paths. There
can be one DCP associated with each control path. Only one DCP at a time may be active
for any drive; the MLM server arbitrates which DCP is active.

For example, a DCP could be on the inactive side of a multiconnected library. The DCP
boot sequence must not interfere with the active side of a multiconnected library. The
MLM server is the arbitrator of control for multiconnected libraries and drives. A DCP
should not assume that it is controlling a drive until the MLM server says so.

Configuration File

Each DCP should have a configuration file containing at least the following information:

• The address of the controlling MLM server.

This allows the DCP to initiate contact with the controlling MLM server. It is the
name of the system, or its numeric IP address. The MLM server is usually available
at well-known port number on that system, by default 44444.

• The OpenVault name for the managed drive.

The MLM server uses this name as an identifier for this physical drive. This is the
name of the device that it is managing, not the name of the particular instance of
DCP. All names must be unique within an OpenVault domain so that the server can
detect multiconnected libraries (multiple LCPs controlling the same library).

• The DCP instance name.

The instance name is arbitrary, but is required for cases where there are
multiconnected libraries.

• The control path to the drive (for example, /dev/rmt/tps0d3).

This is how a DCP talks to the hardware. This information is not visible to the MLM
server. Some drives are not controlled in this way (VHS videocassette players, for
instance), but all DCP implementations need something equivalent.

Initialization Issues

73

• A list of access mode names and access capabilities for this drive.

This is completely implementation-dependent, and sometimes might not even exist,
but some way is needed for administrators to control the capabilities that the DCP
advertises to the MLM server. In IRIX implementations, the configuration file lists
tag names and their associated capabilities and performance parameters.
Capabilities are simply agreed-upon text strings. The MLM server does not care
what they are, it simply compares them for equality when looking for a drive to
satisfy user requirements. Device tags are text strings (pathnames) the MLM server
uses to inform the DCP which combination of capabilities it wants when mounting
the next cartridge. For example:

name capabilities list for that handle device pathname

base /dev/rmt/tps0d4nrv
r rewind /dev/rmt/tps0d4v
f fixedblock /dev/rmt/tps0d4nr
c compressed, /dev/rmt/tps0d4cnrv
cr compressed, rewind /dev/rmt/tps0d4cv
cf compressed, fixedblock /dev/rmt/tps0d4cnr
rf rewind, fixedblock /dev/rmt/tps0d4
crf compressed, rewind, fixedblock /dev/rmt/tps0d4c
stat status /dev/rmt/tps0d4stat
all allmodes /dev/rmt/tps0d4

In this example, a UNIX device pathname is included so as to avoid having the DCP
understand the format of a dev_t minor number, or the equivalent on some other
operating system. The DCP can replicate the path (copy the dev_t) when it needs to
create a handle for that combination of drive and access mode. OpenVault defines
the default capabilities of a drive, so the DCP must specify what capabilities it offers
in terms of changes to that default set.

For easy editing, DCP configuration files should be composed of readable ASCII text.

DCP Boot Sequence

When a DCP boots or reboots, it must:

1. Allocate internal data structures and initialize state.

2. Refrain from talking to the drive.

The DCP boots into activate disable state, and must wait for the MLM server to tell it
when to talk to the drive. If the drive is dual-ported with another DCP actively
controlling it, that session should not be interrupted!

74

Chapter 6: Programming a Drive Control Program (DCP)

The MLM server issues an activate enable command when conditions permit your
DCP to control the drive. If the library is single-ported, activate enable is issued
almost immediately.

3. Read its configuration file.

4. Establish a session with the MLM server.

The DCP sends the “hello” message upon opening the connection. In this example,
name is the OpenVault name for the drive, and inst is the DCP instance name. If
connection fails, retry every two minutes. The DCP blocks until it receives a welcome
command telling it which language version to use during this session.

hello language["ADI"] version["1.0"] client["name"] instance ["inst"];

When the MLM server is first contacted by a DCP it will:

1. Integrate the drive into its list of managed devices.

The MLM server checks for other DCPs managing that physical drive. If this DCP is
the first, OpenVault allows this DCP to proceed. This sequencing implies that DCPs
are given control of their associated drive on a first-come-first-served basis.

2. (Eventually) issue an activate enable command to the DCP.

When the MLM server says to activate enable, the DCP must:

1. Reply to the MLM server with a ready no command.

The DCP informs the MLM server that it has started to come up, but is not yet ready
to accept drive control commands.

2. Talk to the drive to determine:

• That the drive is supported by this DCP.

• The supported media formats (for example: EXABYTE-8mm-5GB).

• Whether or not the drive can support the listed access modes.

• If the drive is loaded or in use at this time.

• Any other information that may be relevant to drive or DCP operation.

3. Collect any state or configuration information from the MLM server.

The DCP can store state or configuration information in the OpenVault persistent
store. For example, the DCP probably needs to retrieve the loglevel attribute so it can
resume logging only the messages that the system administrator wants logged.

Initialization Issues

75

4. Push all the capability information up into the MLM server.

The DCP needs to update the MLM server’s copy of the capability list at boot time,
before the DCP has been activated. This is different from an LCP, which must be
activated in all cases. By contrast, it is unnecessary to activate all the DCPs that
might control a given drive just to determine their capability set.

The DCP takes all its compiled-in settings and information from its configuration
file to generate a config command for the MLM server. There is a possibility that the
offered capabilities might change once the DCP has had a chance to talk to the drive
hardware, but the MLM server must deal with this if it happens.

5. Send a ready command to the MLM server.

The DCP is now ready to accept drive control commands.

6. Respond success to the original activate enable command.

This is defined to be the last step as a convenience to the MLM server, so that the
server can block until it receives a response from its activate enable command rather
than continually polling for arrival of the ready command.

Activation Sequence

When a DCP receives an activate enable command from the MLM server, and the DCP is
in ready lost state, it should perform these steps:

1. Access its drive to acquire or verify device-specific configuration and state.

For example, a DCP may consult its drive to determine:

• if the drive is supported by this DCP

• whether the drive is in a usable state for this DCP

• optimal block size

2. Push configuration information to the MLM server.

For example, configuration information includes: supported form factors, media
types, bit formats, media capacity, block size, nominal drive load time, drive read
and write bandwidth, and drive capabilities. See the tables in the section “Defined
Tokens List” on page 83 for particulars.

3. Transition to ready state, and push this new state to MLM server.

76

Chapter 6: Programming a Drive Control Program (DCP)

DCP Development Framework

The infrastructure developer’s kit includes a framework for writing a DCP that helps
ease the development, porting, and maintenance effort for DCPs. This section describes
the general source tree layout.

OpenVault Client-Server IPC

OpenVault clients and servers communicate with a custom interprocess communication
(IPC) layer. DCP modules that deal directly with ADI and ADI/R need to include the
following header file, and be loaded with the following C library:

ovsrc/include/ov_lib.h
C data structures, macros, and subroutine prototypes for IPC

ovsrc/libs/comm/libov_comm.so
C library containing IPC subroutines

ADI Parser and ADI/R Generator

OpenVault includes language parsers and generators. DCP modules using these facilities
need to include the following header files, and be loaded with the following C libraries:

ovsrc/include/adi.h
Supported ADI and ADI/R language version, ADI standard errors, and
C data structures for ADI and ADI/R command representation.

ovsrc/include/dcp.h
Parser and generator subroutine prototypes.

ovsrc/include/hello.h
C data structures for HELLO and WELCOME command representation.

ovsrc/libs/hellor/libov_hello.so
C library that contains HELLO parser-generator subroutines.

ovsrc/libs/adi/libov_adi.so
C library that contains ADI parser-generator subroutines.

DCP Development Framework

77

DCP C Library Routines

The DCP(3) reference page documents the ADI and ADI/R lexical library routines that
you employ when writing a DCP. Table 6-1 offers a summary of these routines.

DCP Common Framework

The infrastructure developer’s kit includes common utility code for writing a DCP. To
use this code, include the following header files, and read the following C module:

ovsrc/include/cctxt.h
Generic command queuing mechanism.

ovsrc/include/dcp_lib.h
Generic representation of DCP and drive state, generic representation of
an attribute, common DCP fixed and programmable entry points, and
common DCP utility subroutine prototypes.

Table 6-1 ADI and ADI/R Lexical Library Routines

Purpose of Activity DCP Function Short Description

Initiate session with
MLM server

ADIR_initiate_session() Begins session with a specific MLM server,
including HELLO version negotiation

Parse ADI command
from MLM server

ADI_receive() Parses an ADI command and returns an
ADI_command structure

Acknowledge ADI
command

ADI_acknowledge() Informs MLM server that the DCP received
an ADI_command

Send ADI/R
command to MLM
server

ADIR_alloc_cmd()
ADIR_alloc_ready()
ADIR_alloc_message()
ADIR_alloc_capinfo()
ADIR_alloc_attr()

Allocates ADIR_command structure
Allocates ADIR_ready structure
Allocates memory for ADIR_message
Puts drive capability info into ADIR_capinfo
Allocates attribute name and value pair

Send final response
for ADI command to
MLM server

ADIR_alloc_response()
ADI_alloc_string()
ADIR_send()
ADIR_free()

Allocates ADIR_response structure
Allocates string and links into ADI_stringlist
Transmits ADIR_command to MLM server
Deallocates ADIR_command structure

Free ADI command ADI_free() Deallocates ADI_command structure

78

Chapter 6: Programming a Drive Control Program (DCP)

ovsrc/include/queue.h
Generic queue and linked list implementation.

ovsrc/clients/dcp/common/util.c
DCP common fixed-entry points and utility subroutines.

Generic Representation of a Drive—dcp_lib.h

Much of a DCP’s representation of DCP and drive state can be represented generically.
However, the DCP developer needs a way to customize this representation for a
particular drive and implementation.

The framework provides a private data area and programmable entry points so the
developer can customize the representation of DCP and drive state. The private data area
allows the developer to maintain additional information about the DCP and drive;
programmable entry points allow the developer to customize actions associated with
initialization (booting), deactivation (transition to ready lost state), and shutdown. This
arrangement allows the shared framework to invoke these entry points as appropriate.

Here is the framework’s generic representation for a drive:

struct driveinfo {
 /* elements from DCP config file. */
 char *client; /* MLM name of this drive. */
 char *instance; /* Client instance. */
 char *mlmhost; /* MLM host. */
 int mlmport; /* MLM port. */
 int timeout; /* ADI receive timeout. */
 char *addr; /* Drive access path for DCP. */

 /* elements initiated by DCP. */
 enum ADIR_ready_type readystatus; /* ready, not r_, disconnected */
 enum ADIR_msg_severity loglevel; /* Log level for DCP messages. */
 char *vendor; /* Drive vendor name. */
 queue_t ADI_cmd_queue; /* ADI command queue. */
 queue_t ADIR_cmd_queue; /* ADIR command queue. */
 int waiting_for_ack; /* 1 if waiting for ack, or 0 */
 char *taskid_for_ack; /* TaskID of last ADIR command */
 void(*dcp_deactivate)(struct driveinfo *drivei); /* deactivate */
 void(*dcp_exit)(*drivei, int abnormal); /* shutdown */
 void(*dcp_dispatch)(*drivei, struct ADI_command *cmd);
 char *(*dcp_taskid)(*drivei); /* taskid generation */
 void *private; /* DCP private libary info */
};

DCP Development Framework

79

Common DCP Entry Point

A DCP that makes use of this developer framework must call the following subroutine
to initialize the generic and private data areas for DCP and drive information, and set the
programmable DCP entry points:

void dcp_init(struct driveinfo *drivei,
 void dcp_init_private(),
 void dcp_deactivate(),
 void dcp_exit(),
 void dcp_dispatch(),
 void dcp_taskid());

Programmable DCP Entry Points

This entry point is called one time only from dcp_init(), so the driveinfo structure does not
store it. Required entry point for DCP private data area allocation and initialization:

void dcp_init_private(struct driveinfo *drivei);

Remaining entry points are stored in the libinfo structure. Required entry point for DCP
private actions to activate disable:

void dcp_deactivate(struct driveinfo *drivei);

Required entry point for DCP private actions to shut down gracefully and exit:

void dcp_exit(struct driveinfo *drivei);

Required entry point for ADI command dispatch from within command state machine:

void dcp_dispatch(struct driveinfo *drivei, struct ADI_command *cmd);

Required entry point for DCP to generate a task ID for ADI/R commands:

void char *dcp_taskid(struct driveinfo *drivei);

DCP Utility Functions

The following functions are provided for ADI command queuing and the state machine:

queue_t *adi_command() Enqueue ADI command, and initialize command state.

void adi_next() Send next ADI command.

void adi_complete() ADI command finished, so update state and dequeue it.

80

Chapter 6: Programming a Drive Control Program (DCP)

The following functions are provided for ADI/R command queuing and MLM server
acknowledgment processing:

The following function is provided for DCP ready state processing:

The following functions are provided for handling ADI error responses:

The following functions are provided for mandatory attribute and show processing:

The following functions are provided for debugging:

Example DCP Implementation

The EXB-8505XL drive is a SCSI-2 tape device that accepts 8 mm media.

void *adi_context() Set and return private command context.

enum cmd_state adi_state() Return ADI command state.

queue_t *adir_command() Enqueue ADI/R command for sending.

void adir_abort() Dequeue pending ADI/R commands.

void adir_next() Send next ADI/R command.

int adi_response() Match ADI response to ADI/R command.

void readystate_change() DCP standard ready state processing.

void attribute_error() Handle attribute or show error.

void ready_error() Handle ready state error.

int attribute_() DCP generic attribute and show processing.

int dcp_attr() Attribute and show for generic DCP attribute.

int dcp_name() Attribute and show DCP name attribute.

int dcp_loglevel() Attribute and show DCP logLevel attribute.

void print_stringlist() Print ADI_stringlist.

void print_attrlist() Print ADI_attrlist.

Example DCP Implementation

81

The DCP for an Exabyte 8505XL drive may be used in combination with the LCP for an
Exabyte 210 media changer.

IRIX Implementation

Control access is three-part, and includes use of the local filesystem, a pass-through SCSI
driver, and IRIX magnetic tape interface (MTIO) ioctl() operations.

Use of Local Filesystem

This implementation uses a set of drive instance prototypes, which are represented by a
set of existing device special files, for example /dev/rmt/tps0d6. So drive instances are
already instantiated. Attach and detach commands simply bind a drive handle to an
existing instance, or device special file. Creating and removing a binding is done using
the local filesystem mknod() and unlink() operations.

Direct SCSI Commands

Calls to the pass-through SCSI driver are made with the IRIX C library for generic SCSI
operations; see the dslib(3X) reference page. Direct SCSI access is by means of this device
special file:

/dev/scsi/scCdUlL

In this filename, C is the SCSI controller number, U is the unit number, and L is the logical
unit number (lun) for accessing drive control. This information may be determined on
IRIX systems by using the hinv command.

Calls to dslib are used to get mode sense information directly from the drive, to check for
information such as whether the drive supports partitions, and to issue mode select
commands, such as those for moving the tape to a particular position.

MTIO Operations

MTIO calls are made by sending ioctl() calls directly to the tape driver associated with
the control access path for a particular drive instance. MTIO operations perform load
verification and unload.

82

Chapter 6: Programming a Drive Control Program (DCP)

Source Code Organization

This section describes the DCP source and run-time configuration modules.

Configuration Processing

The ovsrc/clients/dcp/EXB-8505XL/config file describes traits of the drive and MLM server:

localhost # MLM server host name
739 # MLM server TCP socket
fred # OpenVault name for drive
dcpfred # DCP instance name
/dev/rmt/tps0d6 # MTIO drive control access path
/dev/scsi/sc0d610 # SCSI drive control access path
60 # Communications timeout

Remaining lines include supported drive instance prototypes, including mode name,
form factor, media type, bit format, capacity, and control capabilities.

The ovsrc/clients/dcp/EXB-8505XL/config.c module parses this file and fills in drive
information in both the DCP generic and private data areas.

SCSI Control Access

The ovsrc/clients/dcp/EXB-8505XL/control.h header file contains definitions, data type
declarations, and subroutine prototypes for control access by means of the pass-through
SCSI driver; see dslib(3X).

The ovsrc/clients/dcp/EXB-8505XL/control.c module contains convenience routines that
make SCSI library calls to get mode sense, check for partition support, and change tape
partition. Since partition support is currently not implemented, the latter is implemented
as a no-op.

Otherwise, device access is made directly from the main ADI semantic module by means
of MTIO ioctl() operations.

ADI Semantic Do* Layer

This layer, named after its many functions starting with “do,” is where a DCP interprets
ADI commands. The programmer customizes this layer, based on the generic drive
methods that are provided as part of the DCP developer framework.

Defined Tokens List

83

The ovsrc/clients/dcp/EXB-8505XL/main.h header file contains the DCP private data area
portion of a generic drive representation, as well as macros and subroutine prototypes,
including four programmable DCP entry points for use by the framework and semantic
support routines.

The ovsrc/clients/dcp/EXB-8505XL/main.c module is where ADI semantic handling
routines and entry points are implemented, and where ADI commands are dispatched to
the appropriate semantic handling routine. For example, the ADI_load command would
be dispatched to the do_load() function.

Future DCP Implementations

There is potential for a single, shared SCSI-2 DCP. An additional device module would
be required only for vendor-dependent processing, or for departures from the standard.

More thought and changes to ADI and the DCP framework are needed to support non
host-attached devices, such as broadcast video.

The infrastructure developer’s kit was developed on IRIX systems, and has yet to be
ported to other platforms. The DCP framework does not yet support partitions.

Defined Tokens List

This section documents the predefined strings that are relevant to DCP development.

Cartridge Form Factors

For a list of predefined cartridge form factors, see “Cartridge Form Factors” on page 54.

84

Chapter 6: Programming a Drive Control Program (DCP)

Cartridge Types

Table 6-2 shows tokens used to describe media inside a cartridge.

Table 6-2 Predefined Media Type Tokens

Token Product Name or Description

8mm-12m 12 meter 8 mm

8mm-60m 60 meter 8 mm

8mm-90m 90 meter 8 mm

8mm-112m 112 meter 8 mm

8mm-160m 160 meter 8 mm

mammoth Exabyte mammoth

3480 IBM 3480

3490 IBM 3490

3490E IBM 3490E

3495 IBM Magstar native

4480 STK Timberline native

4490 STK Redwood native

DLT2000 Quantum DLT2000

DLT2000XT Quantum DLT2000XT

DLT4000 Quantum DLT4000

DLT7000 Quantum DLT7000

DDS1 DAT 60 meter

DDS2 DAT 90 meter

DDS3 DAT 120 meter

D2-S Ampex DST-310 small format

D2-M Ampex DST-310 medium format

D2-L Ampex DST-310 165GB large format

DTF Sony GY-10

QIC Quarter-inch cartridge tape

ISO9660 CD-ROM

Defined Tokens List

85

Media Bit Formats

The format of bits recorded on media is independent of external cartridge appearance.
One well-known case is the Exabyte 8200 versus Exabyte 8500 format, both being
recorded on 8 mm media.

Table 6-3 shows tokens for each bit format, what form factors use it, and a description of
how the format is generated.

Table 6-3 Predefined Bit Format Tokens

Token Form Factor Description

8200 8 mm Exabyte 8200 native

8200c 8 mm Exabyte 8200 compressed

8500 8 mm Exabyte 8500 native

8500c 8 mm Exabyte 8500 compressed

mammoth 8 mm Exabyte mammoth native

mammothc 8 mm Exabyte mammoth compressed

3480 3480 3480 native

3490 3480 3490 native

3490E 3480 3490E native

3495 3480 IBM Magstar native

4480 3480 STK Timberline native

4490 3480 STK Redwood native

DLT2000 DLT DLT2000 native

DLT2000c DLT DLT2000 compressed

DLT4000 DLT DLT4000 native

DLT4000c DLT DLT4000 compressed

DLT7000 DLT DLT7000 native

DLT7000c DLT DLT7000 compressed

DDS1 DAT Digital data storage 1.3 GB

DDS2 DAT Digital data storage 2.0 GB

DDS3 DAT Digital data storage 4.0 GB

D2 D2-[SML] Ampex® DST-310

86

Chapter 6: Programming a Drive Control Program (DCP)

Drive Capabilities

OpenVault assumes that there is a default set of drive capabilities. Table 6-4 shows the
tokens that describe changes from a standard drive.

Drive capabilities are entirely extensible, so this list is not exhaustive.

DTF DTF Sony GY-10

QIC80 QIC Quarter-inch cartridge 80 MB

QIC100 QIC Quarter-inch cartridge 100 MB

QIC150 QIC Quarter-inch cartridge 150 MB

QIC525 QIC Quarter-inch cartridge 525 MB

QIC1024 QIC Quarter-inch cartridge 1024 MB

ISO9660 CD-ROM DOS-like (8.3) filesystem on CD-ROM

Table 6-4 Predefined Mount Tokens

Token Description

read The mount point does not allow writing to the media

write The mount point allows writing to the media

rewind Rewind the media on close of the mount point

compression Attempt compression of the data stream

fixedblock Blocks on the media are a fixed size

variable Blocks on the media are variable sized

status A status-only mount point is also created (in a directory created for the session)

audio Mount point allows playing audio data from media (often unimplemented)

Table 6-3 (continued) Predefined Bit Format Tokens

Token Form Factor Description

Defined Tokens List

87

Partition Names

The ADI interface assumes that there is a standard set of names used for partitioned
media. Table 6-5 shows the tokens used for naming partitions.

Attribute Names (DCP)

Table 6-6 shows attributes used in OpenVault, where they are used, and what they mean.

Table 6-5 Predefined Partition Name Tokens

Token Description

PART 1 The first partition on the media. For magneto-optical or two-sided optical
disc, this would be side one or side A.

PART 2 The second partition on the media. On linear media such as a tape, PART 2
immediately follows PART 1. On non-linear media such as a disk, PART 2 is
the second-lowest numbered or lettered partition. Note that PART 2 does not
refer to the next partition that is in use, it refers to the next partition.

Table 6-6 Predefined Attribute Name Tokens (DCP)

Attribute Name Where Used Possible Values Required? Description

ReadBandwidth ADI config
command,
perf clause

numeric, in
bytes per
second

yes The total effective bandwidth
that an application should be
able to sustain when reading
from that drive using the given
capability set.

WriteBandwidth ADI config
command,
perf clause

numeric, in
bytes per
second

yes The total effective bandwith
that an application should be
able to sustain when writing to
that drive using the given
capability set.

Capacity ADI config
command,
perf clause

numeric, in
bytes

yes The total storage capacity of the
cartridge that an application
should be able to expect when
accessing that drive using the
given capability set.

88

Chapter 6: Programming a Drive Control Program (DCP)

BlockSize ADI config
command,
perf clause

numeric, in
bytes

yes The I/O size that would best
use the drive/cartridge
combination with that drive
with the given capability set.

LoadTime ADI config
command,
perf clause

numeric, in
seconds

yes The number of seconds
between the time a cartridge is
first inserted into a drive and
the time that the drive is ready
to read/write data.

SlotTypeName ADI config
command,
config
clause

Cartridge
FormFactor
token (see
Table 4-2)

yes A supported form factor when
the drive is using the given
capability set.

CartridgeTypeName ADI config
command,
config
clause

MediaType
token

yes A supported media type,
usually indicating tape length.

BitFormat ADI config
command,
config
clause

Bit Format
token

yes A supported recording format
when the drive is using the
given capability set.

NominalLoad ALI config
command,
perf clause

numeric, in
seconds

yes Approximate time it takes for
the library to move a cartridge
from its home location to a
drive, or back, not including
drive load/unload time. This is
analogous to “nominal seek
time” of a disk drive.

It is defined as the total real time
to execute a large number of
cartridge move-load operations
randomly spread through the
physical space of a library,
divided by the number of such
operations performed.

Table 6-6 (continued) Predefined Attribute Name Tokens (DCP)

Attribute Name Where Used Possible Values Required? Description

89

Appendix A

A. Sample Implementations

This appendix tells where to find sample code for an LCP or a DCP, and describes how
to make and test the OpenVault source code.

LCP Sample Code

The sample code in the directories under ovsrc/clients/lcp might give you an idea of how
to code an LCP for a new removable media library (ovsrc depends on where you installed
the OpenVault developer’s kit).

Source code outside the ovsrc/clients/lcp hierarchy is not really important to you, because
the SCSI framework, underlying communication and authentication layer, ALI parser,
and ALI/R generator are all integrated into the developer’s framework.

Odetics ATL 2640

Working source code for the Odetics ATL 2640 autochanger is in the following directory:

ovsrc/clients/lcp/ATL2640

Exabyte SCSI Media Changers

Working source code for the Exabyte 210, 220, 440, and 480 is in the following directory:

ovsrc/clients/lcp/EXABYTE-210

DCP Sample Code

The sample code in the directories under ovsrc/clients/dcp might give you an idea of how
to code a DCP for a new removable media library.

90

Appendix A: Sample Implementations

Source code outside the ovsrc/clients/dcp hierarchy is not really important to you, because
the SCSI framework, underlying communication and authentication layer, ADI parser,
and ADI/R generator are all provided by the developer’s framework.

DLT 2000

Working source code for the Quantum DLT 2000 drive is in the following directory:

ovsrc/clients/dcp/DLT2000

Exabyte 8505XL

Working source code for the Exabyte 8505 XL drive is in the following directory:

ovsrc/clients/dcp/EXB-8505XL

Compiling and Installing OpenVault

The OpenVault source code distribution can be copied anywhere onto a system with at
least 125 MB of free disk space. On IRIX systems the c_dev and compiler_dev product
images must be installed. On other systems you need a C compiler, standard libraries,
and C build tools. The GNU Flex parser and Bison lexical compiler are also required.

Tip: If your IRIX system does not have “n32” libraries, install the c_eoe.sw32.lib and
compiler_eoe.sw32.lib subsystems to make the compiler options -n32 and -mips3 work. On
other systems you must edit the make.defs file to provide correct CC and LD options.

To compile and install the OpenVault programs, run the make install command in the
top-level source code directory:

% cd OVsrc
% make install

This installation does not modify any directories outside the OpenVault source tree. To
uninstall OpenVault, run the make clobber command.

Running and Testing OpenVault

91

Running and Testing OpenVault

When the source code build finishes, change to the install.pseudo directory and run the
pre-configured synthetic OpenVault system:

% cd install.pseudo
% ./STARTUP

The ./STARTUP script brings up nine windows, each in a different directory. There
should be one binary executable in each directory. Run the binary that is in each window.
Start with the lower left window, the one labelled MLM-CORE, and run ovcore. Then run
the other binaries in any order. Cartridges refuse to mount unless the correct subset of
binaries is running, so you should probably start them all. The two windows on the
lower right contain a set of administrative command-line utilities (ov_stat and so forth);
the last one is the user mount shell, umsh.

On IRIX systems you can use the right mouse button to “clone” any of the existing
windows and get the same environment. You can use the testclient command to run
random tests, or you can turn on verbose mode in the administration commands (using
the -v option) to see what AAPI commands they send and receive from OpenVault.

The top-level source code directory contains several testenv.* scripts. Each generates an
install.* directory containing a pre-configured environment for that machine. Currently
only “xfs8” and “pseudo” are provided.

93

Appendix B

B. Return Values and Ready States

This appendix lists error codes and response types, then discusses ready state processing.

ALI Error and Return Values

The following list shows the error codes for an LCP:

#define ALI_E_NOSLOT "ALI_E_NOSLOT" /* unknown slot */
#define ALI_E_NOPCL "ALI_E_NOPCL" /* unknown PCL */
#define ALI_E_NOBAY "ALI_E_NOBAY" /* unknown bay */
#define ALI_E_NODRIVE "ALI_E_NODRIVE" /* unknown drive */
#define ALI_E_NOATTR "ALI_E_NOATTR" /* unknown attribute */
#define ALI_E_NOTYPE "ALI_E_NOTYPE" /* unknown type */
#define ALI_E_NOCMD "ALI_E_NOCMD" /* unknown command */
#define ALI_E_NOTASK "ALI_E_NOTASK" /* unknown task ID */
#define ALI_E_ACCESS "ALI_E_ACCESS" /* access denied or object inaccessible */
#define ALI_E_BADVAL "ALI_E_BADVAL" /* bad attribute value */
#define ALI_E_SRCFULL "ALI_E_SRCFULL" /* source location full */
#define ALI_E_SRCEMPTY "ALI_E_SRCEMPTY" /* source location empty */
#define ALI_E_DSTFULL "ALI_E_DSTFULL" /* destination location full */
#define ALI_E_DSTEMPTY "ALI_E_DSTEMPTY" /* destination location empty */
#define ALI_E_AGAIN "ALI_E_AGAIN" /* retry recommended */
#define ALI_E_READY "ALI_E_READY" /* target not ready */
#define ALI_E_PCL "ALI_E_PCL" /* PCL mismatch */
#define ALI_E_SEQUENCE "ALI_E_SEQUENCE" /* command sequence error */
#define ALI_E_ABORT "ALI_E_ABORT" /* command aborted by LCP */
#define ALI_E_LIBRARY "ALI_E_LIBRARY" /* library or device driver failure */
#define ALI_E_SHAPE "ALI_E_SHAPE" /* cartridge-drive fungibility error */

The following list shows the response types for ALI response:

ALI_response_accepted, /* command queued */
ALI_response_unacceptable /* command not queued */
ALI_response_success, /* command worked */
ALI_response_error, /* command failed */
ALI_response_cancelled /* command cancelled */

94

Appendix B: Return Values and Ready States

ADI Error and Return Values

The following list shows the error codes for a DCP:

#define ADI_E_PART "ADI_E_PART" /* unknown or unsupported partition */
#define ADI_E_MODE "ADI_E_MODE" /* unknown or unsupported mode */
#define ADI_E_HANDLE "ADI_E_HANDLE" /* unknown or in use handle */
#define ADI_E_NOATTR "ADI_E_NOATTR" /* unknown attribute */
#define ADI_E_NOTYPE "ADI_E_NOTYPE" /* unknown type */
#define ADI_E_NOCMD "ADI_E_NOCMD" /* unknown command */
#define ADI_E_NOTASK "ADI_E_NOTASK" /* unknown task ID */
#define ADI_E_ACCESS "ADI_E_ACCESS" /* access denied or object inaccessible */
#define ADI_E_BADVAL "ADI_E_BADVAL" /* bad attribute value */
#define ADI_E_AGAIN "ADI_E_AGAIN" /* retry recommended */
#define ADI_E_READY "ADI_E_READY" /* target not ready */
#define ADI_E_SEQUENCE "ADI_E_SEQUENCE" /* command sequence error */
#define ADI_E_DRIVE "ADI_E_DRIVE" /* drive or device failure */

The following list shows the return values for ADI response:

ADI_response_accepted, /* command queued */
ADI_response_unacceptable, /* command not queued */
ADI_response_success, /* command worked */
ADI_response_error, /* command failed */
ADI_response_cancelled /* command cancelled */

Ready States

Ready state describes the condition of the OpenVault connection with a device.
Whenever the ready state changes, the library or drive control program should save
changes and also send them to the MLM server, by means of the ready command.

When the control program is in “ready yes” state, that means it can talk to its device. If
not in this state, the control program can still accept ALI or ADI commands, but will fail
to execute any ALI or ADI commands requiring that it to talk to its device.

The following terms define state for both libraries and drives, defining how changes in
the underlying device and API state can affect control-program ready status.

Device connected The control program can communicate with its device by
means of the formal device API.

Ready States

95

Ready State Transition Rules

Table B-1 describes the initial ready states, the actions that trigger them to change, the
new ready state for each condition, and the control program action for state transitions
(not including the need to send ready state to the MLM server for each transition).

Device not connected The control program cannot communicate with its device by
means of the formal device API.

Device online The control program has a connection to its device, and the
device is able to accept commands.

Device not online The control program has a connection to its device, but the
device is unable to accept commands because it is in some
unusable state. (For a library, controller software might be
down, and hardware might be offline, or in diagnostic state.)

Device ready The control program has a connection to its device, which
reports “device online” and is ready to accept commands.

Device not ready The control program has a connection to the device, which
reports “device online” but is temporarily not ready to accept
commands.

Table B-1 Ready State Transitions

Initial
State

Action
Triggering Change

New
State

Control Program
Action

lost MLM server sends “activate enable”
command. Control program is unable to
connect to device.

lost

lost MLM server sends “activate enable”
command. Control program is able to connect
to device and finds it online and ready.

yes Get device state and send full
config command to the MLM
server.

lost MLM server sends “activate enable”
command. Control program is able to connect
to device but finds it online not ready.

no

lost MLM server sends “activate enable”
command. Control program is able to connect
to device but finds device not online.

broken

96

Appendix B: Return Values and Ready States

yes MLM server sends “activate disable” or “exit”
command to control program, or control
program finds that its connection to device is
lost.

lost Stop communicating with
device. Force pending device
requests to completion, or
cancel. Forget device state.

If exiting, force pending ALI
or ADI commands to
completion, or cancel them,
and complete or abort
pending ALI/R or ADI/R
commands. Also do
shutdown processing.

yes MLM server sends “activate enable” to control
program.

yes Resend full config command to
the MLM server.

yes Control program about to send command to
device that will effectively block or reject all
other commands to device until this one
completes, or control program finds device is
online but not ready.

no

yes Control program finds that device is not
online.

broken Stop communicating with
device. Force pending device
requests to completion, or
cancel. Forget device state.

no MLM server sends “activate disable” or “exit”
to control program, or control program finds
its connection to device is lost.

lost Stop communicating with
device. Force pending device
requests to completion, or
cancel. Forget device state.

no A device command issued by the control
program that effectively blocked all other
device commands has now completed, or the
control program finds that the device is now
online and ready.

yes

no MLM server sends ALI or ADI command to
control program that requires use of the
device.

no

Table B-1 (continued) Ready State Transitions

Initial
State

Action
Triggering Change

New
State

Control Program
Action

Ready States

97

Ready State Responses

The MLM action in response to control program ready state changes are as follows:

yes The control program can be selected for use. May not activate another
control program for the same device until this one is disabled.

no Temporarily do not send ALI or ADI commands that require device
access to the control program. May not activate another control program
for the same device until this one is disabled.

broken The device associated with control program has failed. Do not try to
activate another control program for this device, because the device
itself is broken. Some recovery technique is needed, such as notifying
the operator to take corrective action. For instance, the operator can
choose to disable the current control program and start a separate one in
manual mode, or switch the current control program into manual mode.

lost The control program is not ready for use. If no other control program is
currently active for this device, the MLM server may try to activate this
or a different control program for the device, as needed.

no Control program finds that device is not
online.

broken Stop communicating with
device. Force pending device
requests to completion, or
cancel. Forget device state.

broken MLM server sends “activate disable” or “exit”
to control program, or control program finds
its connection to device is lost.

lost

broken Control program finds its device is online and
ready.

yes

broken Control program finds its device is online, but
not ready.

no

broken MLM server sends ALI or ADI command to
control program that requires use of the
device.

broken

Table B-1 (continued) Ready State Transitions

Initial
State

Action
Triggering Change

New
State

Control Program
Action

98

Appendix B: Return Values and Ready States

These ASCII tokens are associated with each ready state:

The following list gives more information about control program actions in response to
ready state changes:

• Once it has established a connection with the MLM server, a control program
should initialize its ready state to lost, and send this to the server.

• Once it has established a connection with the MLM server, a control program
should accept and process ALI or ADI commands. If it is in ready lost, no, or broken
state, and it receives a command that requires it to access its device, then the control
program should resend its ready state to the server and fail the command with a
ready error (for example, ALI_E_READY or ADI_E_READY).

The exception to this is that the LCP should process activate enable, as usual, if in
ready lost or broken state.

• If a control program is already in ready yes state, and receives another activate enable
command, it should resend its full configuration, including its ready state, and send
a success response to the server.

• Before transitioning to ready lost or broken state, a control program must process all
pending ALI or ADI commands to completion, either by normal completion along
with the appropriate response, or by aborting commands that it cannot complete
along with a cancelled response.

lost “lost”

yes ““

broken “broken”

no “not”

99

Appendix C

C. LCP and DCP Syntax

This appendix documents ALI and ADI syntax, expressed in abstract form. Words in
bold font represent literals, as do square brackets and semicolons. Words in regular font
are substitutable syntax elements.

ALI Syntax Specification

The MLM server communicates with an LCP using the abstract library interface (ALI),
while the LCP communicates with the MLM server using ALI response (ALI/R).

ALI Language

Table C-1 provides a syntax specification for the ALI language.

Table C-1 ALI Language Syntax

Syntactic Element Valid Syntax Statements

commands mountStmt
unmountStmt
moveStmt
ejectStmt
openportStmt
scanStmt
activateStmt
barrierStmt
resetStmt
exitStmt
attributeStmt
showStmt
cancelStmt
responseStmt

mountStmt mount mountArgs ;

100

Appendix C: LCP and DCP Syntax

mountArgs /* empty */
task [string] mountArgs
drive [string] mountArgs
slot [string string string] mountArgs

unmountStmt unmount unmountArgs ;

unmountArgs /* empty */
task [string] unmountArgs
drive [string] unmountArgs
slotid [string] unmountArgs
any unmountArgs

moveStmt move moveArgs ;

moveArgs /* empty */
task [string] moveArgs
from [string string] moveArgs
to [string] moveArgs

ejectStmt eject ejectArgs ;

ejectArgs /* empty */
task [string] ejectArgs
slot [string string] ejectArgs

scanStmt scan scanArgs ;

scanArgs /* empty */
task [string] scanArgs
all scanArgs
from [string] scanArgs
to [string] scanArgs

openportStmt openport task [string] ;

activateStmt activate activateArgs ;

activateArgs /* empty */
task [string] activateArgs
enable activateArgs
disable activateArgs

barrierStmt barrier task [string] ;

Table C-1 (continued) ALI Language Syntax

Syntactic Element Valid Syntax Statements

ALI Syntax Specification

101

resetStmt reset task [string] ;

exitStmt exit task [string] ;

attributeStmt attribute attributeArgs ;

attributeArgs /* empty */
task [string] attributeArgs
type [string] attributeArgs
name [string] attributeArgs
set [string string] attributeArgs
unset [string] attributeArgs

showStmt show showArgs ;

showArgs /* empty */
task [string] showArgs
type [string] showArgs
name [string] showArgs
report [listOfStrings] showArgs
reportmode [string] showArgs

cancelStmt cancel cancelArgs ;

cancelArgs /* empty */
task [string] cancelArgs
whichtask [string] cancelArgs

responseStmt response responseArgs ;

responseArgs /* empty */
whichtask [string] responseArgs
accepted responseArgs
unacceptable responseArgs
success responseArgs
error [string] responseArgs
cancelled responseArgs
text [listOfStrings] responseArgs

listOfStrings /* empty */
STRING listOfStrings

string STRING

Table C-1 (continued) ALI Language Syntax

Syntactic Element Valid Syntax Statements

102

Appendix C: LCP and DCP Syntax

ALI/R Language

Table C-2 provides a syntax specification for the ALI/R language.

Table C-2 ALI/R Language Syntax

Syntactic Element Valid Syntax Statements

commands responseStmt
messageStmt
configStmt
readyStmt
attributeStmt
showStmt
cancelStmt

messageStmt message messageArgs ;

messageArgs /* empty */
task [string] messageArgs
who [string] messageArgs
severity [string] messageArgs
text [listOfStrings] messageArgs

configStmt config configArgs ;

configArgs /* empty */
task [string] configArgs
scope [string] configArgs
slot [string string string string string string] configArgs
bay [string string] configArgs
drive [string string string string string] configArgs
freeslots [string string string] configArgs
delslots [string] configArgs
perf [string string] configArgs

readyStmt ready readyArgs ;

readyArgs /* empty */
task [string] readyArgs
disconnected readyArgs
broken readyArgs
not [listOfStrings] readyArgs

attributeStmt attribute attributeArgs ;

ALI Syntax Specification

103

attributeArgs /* empty */
task [string] attributeArgs
type [string] attributeArgs
name [string] attributeArgs
set [string string] attributeArgs
unset [string] attributeArgs

showStmt show showArgs ;

showArgs /* empty */
task [string] showArgs
type [string] showArgs
name [string] showArgs
report [listOfStrings] showArgs
reportmode [string] showArgs

cancelStmt cancel cancelArgs ;

cancelArgs /* empty */
task [string] cancelArgs
whichtask [string] cancelArgs

responseStmt response responseArgs ;

responseArgs /* empty */
whichtask [string] responseArgs
accepted responseArgs
unacceptable responseArgs
success responseArgs
error [string] responseArgs
cancelled responseArgs
text [listOfStrings] responseArgs

listOfStrings /* empty */
STRING listOfStrings

string STRING

Table C-2 (continued) ALI/R Language Syntax

Syntactic Element Valid Syntax Statements

104

Appendix C: LCP and DCP Syntax

ADI Syntax Specification

The MLM server communicates with a DCP using the abstract drive interface (ADI),
while the DCP communicates with the MLM server using ADI response (ADI/R).

ADI Language

Table C-3 provides a syntax specification for the ADI language.

Table C-3 ADI Language Syntax

Syntactic Element Valid Syntax Statements

commands attachStmt
detachStmt
loadStmt
unloadStmt
activateStmt
resetStmt
exitStmt
attributeStmt
showStmt
cancelStmt
responseStmt

attachStmt attach attachArgs ;

attachArgs /* empty */
task [string] attachArgs
modename [string] attachArgs
drivehandle [string] attachArgs
partition [string] attachArgs

detachStmt detach detachArgs ;

detachArgs /* empty */
task [string] detachArgs
drivehandle [string] detachArgs

loadStmt load task [string] ;

unloadStmt unload task [string] ;

activateStmt activate activateArgs ;

ADI Syntax Specification

105

activateArgs /* empty */
task [string] activateArgs
enable activateArgs
disable activateArgs

resetStmt reset task [string] ;

exitStmt exit task [string] ;

attributeStmt attribute attributeArgs ;

attributeArgs /* empty */
task [string] attributeArgs
type [string] attributeArgs
name [string] attributeArgs
set [string string] attributeArgs
unset [string] attributeArgs

showStmt show showArgs ;

showArgs /* empty */
task [string] showArgs
type [string] showArgs
name [string] showArgs
report [listOfStrings] showArgs
reportmode [string] showArgs

cancelStmt cancel cancelArgs ;

cancelArgs /* empty */
task [string] cancelArgs
whichtask [string] cancelArgs

responseStmt response responseArgs ;

responseArgs /* empty */
whichtask [string] responseArgs
accepted responseArgs
unacceptable responseArgs
success responseArgs
error [string] responseArgs
cancelled responseArgs
text [listOfStrings] responseArgs

Table C-3 (continued) ADI Language Syntax

Syntactic Element Valid Syntax Statements

106

Appendix C: LCP and DCP Syntax

ADI/R Language

Table C-4 provides a syntax specification for the ADI/R language.

listOfStrings /* empty */
string listOfStrings

string STRING

Table C-4 ADI/R Language Syntax

Syntactic Element Valid Syntax Statements

commands configStmt
messageStmt
readyStmt
attributeStmt
showStmt
cancelStmt
responseStmt

configStmt config configArgs ;

configArgs /* empty */
task [string] configArgs
scope [string] configArgs
config [string] configArgs
cap [string configCapArgs] configArgs

configCapArgs /* empty */
attr [string string] configCapArgs
caplist [listOfStrings] configCapArgs

messageStmt message messageArgs ;

messageArgs /* empty */
task [string] messageArgs
who [string] messageArgs
severity [string] messageArgs
text [listOfStrings] messageArgs

Table C-3 (continued) ADI Language Syntax

Syntactic Element Valid Syntax Statements

ADI Syntax Specification

107

readyStmt ready readyArgs ;

readyArgs /* empty */
task [string] readyArgs
disconnected readyArgs
not [listOfStrings] readyArgs

attributeStmt attribute attributeArgs ;

attributeArgs /* empty */
task [string] attributeArgs
type [string] attributeArgs
name [string] attributeArgs
set [string string] attributeArgs
unset [string] attributeArgs

showStmt show showArgs ;

showArgs /* empty */
task [string] showArgs
type [string] showArgs
name [string] showArgs
report [listOfStrings] showArgs
reportmode [string] showArgs

cancelStmt cancel cancelArgs ;

cancelArgs /* empty */
task [string] cancelArgs
whichtask [string] cancelArgs

responseStmt response responseArgs ;

responseArgs /* empty */
whichtask [string] responseArgs
accepted responseArgs
unacceptable responseArgs
success responseArgs
error [string] responseArgs
cancelled responseArgs
text [listOfStrings] responseArgs

Table C-4 (continued) ADI/R Language Syntax

Syntactic Element Valid Syntax Statements

108

Appendix C: LCP and DCP Syntax

listOfStrings /* empty */
STRING listOfStrings

string STRING

Table C-4 (continued) ADI/R Language Syntax

Syntactic Element Valid Syntax Statements

109

Glossary

ALI and ALI/R

Abstract library interface and ALI response, languages for communicating between the
media library manager (MLM) server and a library control program.

ADI and ADI/R

Abstract drive interface and ADI response, languages for communicating between the
media library manager (MLM) server and a drive control program.

barcode

A machine-readable representation of a physical cartridge label (PCL).

barcode reader

A laser-optical reader that scans a barcode and then uses logic to translate from a scanned
barcode to a human-readable representation, such as volume serial number.

bay

A physical grouping of slots in a common unit of housing where cartridges are stored.
Usually a bay contains storage locations for cartridges, optional drives, and one or more
transfer agents to move cartridges around.

cartridge

A cartridge is the unit of physical operation and management within a library. A
cartridge contains one or more pieces of media, and has a certain form factor. The most
common forms of cartridge are for magnetic tape and laser- and magneto- optical disk.

DCP (drive control program)

An OpenVault software component that mediates between the media library manager
(MLM) server and the actual drive control interface.

drive

A magnetic or optical device for accessing media inside a cartridge mounted in a slot.

110

Glossary

LCP (library control program)

An OpenVault software component that mediates between the media library manager
(MLM) server and the actual library control interface.

partition

A region on the recording surface of a piece of media that has a physical beginning and
ending that can be accessed by a drive. Typically, each piece of media has a single
partition, which spans the entire recordable surface of the media. However, there are
drives that support partitioning of this recordable surface, such as DDS2 and D2 tape,
such that a single piece of media may contain multiple partitions.

PCL (physical cartridge label)

Some form of identification on the outside of the cartridge, as opposed to being stored on
media inside the cartridge. A PCL may contain a machine-readable label (barcode), but
it must also contain a human-readable text portion.

port

A door or opening where cartridges may be inserted into or removed from the library.

removable media library

A robotic device (usually) with storage slots and drives for accessing multiple cartridges.

side

For tape cartridges containing one piece of recording media, with all recording surfaces
accessible when loaded in a drive, the cartridge contains one side. For a multi-sided
cartridge, access to a side requires that the cartridge be mounted in a drive with a
particular orientation (for side A of optical disk, the cartridge must be positioned for
mount with side A up).

slot

A storage location for a cartridge, with a form factor that determines which kinds of
cartridges it can hold.

slotmap

A persistent table associated with a single library. For each cartridge contained by that
library, this table maps the physical cartridge label (PCL) to a slot within the library.

111

A

AAPI (administrative API), 4, 6
access method instance, 58, 73
ack command phase, 14
activate

activate disable, 25, 62
activate enable, 24, 62
ADI command, 62
ALI command, 24

activation sequence
for DCP booting, 75
for LCP booting, 41

ADI (abstract drive interface), 4, 9, 57
ADI_attach response text, 69
ADI_show response text, 69
ADI language syntax specification, 104
ADI lexical functions

ADI_acknowledge(), 77
ADI_free(), 77
ADI_receive(), 77

ADI/R (abstract drive interface response), 66
ADI/R language syntax specification, 106
ADIR lexical functions

ADIR_alloc_*(), 77
ADIR_initiate_session(), 13, 77
ADIR_send(), 77

adir utility functions
adir_abort(), 80
adir_command(), 80
adir_next(), 80

adi utility functions
adi_command(), 79
adi_complete(), 79
adi_context(), 80
adi_next(), 79
adi_response(), 80
adi_state(), 80

administrative interface, 10
ALI (abstract library interface), 4, 7, 19
ALI_eject response text, 35
ALI_mount or ALI_unmount response text, 34
ALI_move response text, 34
ALI_show response text, 34
ALI language syntax specification, 99
ALI lexical functions

ALI_acknowledge(), 43
ALI_free(), 44
ALI_receive(), 43

ALI/R (abstract library interface response), 30
ALI/R language syntax specification, 102
ALIR lexical functions

ALIR_alloc_*(), 43
ALIR_initiate_session(), 13, 43
ALIR_send(), 44

alir utility functions
alir_abort(), 50
alir_command(), 50
alir_next(), 50

ali utility functions
ali_command(), 50
ali_complete(), 50

Index

112

Index

ali_context(), 50
ali_next(), 50
ali_response(), 50
ali_state(), 50

arbitrary attributes, 21, 60
architecture of OpenVault, 3
attach—ADI command, 63
attribute

ADI command, 63
ADI/R command, 67
ALI command, 25
ALI/R command, 31

attribute_() function, 51, 80
attribute_error() function, 50, 80
audience type, xiii
authentication requests to MLM, 14

B

barrier—ALI command, 25
bay_attr() function, 51
bay_description() function, 51
bay ID object name, 23
baymap element map, 22, 47
bay object, 20
BitFormat attribute, 88
bit format tokens, 85
BlockSize attribute, 88
booting

components of OpenVault, 11
DCP for active drives, 72
LCP for active libraries, 38
MLM server, 11

C

cancel
ADI command, 63
ADI/R command, 67
ALI command, 25
ALI/R command, 31

capabilities of drive, 58, 73
Capacity attribute, 87
CAPI (client API), 4, 6
cartridge form factors, tokens, 54
cartridge naming conventions, 5
cartridge object, 20
CartridgeTypeName attribute, 88
cartridge type tokens, 84
client object name, 23, 61
code examples, LCP and DCP, 51, 81, 89
command-line interface to OpenVault, 10
command object, 21, 58

for ADI/R, 66
for ALI/R, 30

command phases, 14
communication paths and methods, 5
communication protocols, 12
config

ADI/R command, 67
ALI/R command, 32

configuration
DCP configuration file, 72
LCP configuration file, 38
of a DCP, 71
of an LCP, 37
source code for configuration processing, 52, 82

conformance suites for LCPs and DCPs, 18
content overview, xiii
control path for a drive, 59
convenience routines for developers, 18

113

Index

D

data command phase, 14
data path for a drive, 59
DCP (drive control program), 4, 57
dcp_attr() function, 80
dcp_loglevel() function, 80
dcp_name() function, 80
DCP configuration file, 72
DCP object name, 61
defined tokens list, 54, 83
detach—ADI command, 64
device (not) connected, 95
device (not) online, 95
device (not) ready, 95
device access layer, 52
direct SCSI library, 81
DLT 2000 sample code, 90
“do” semantic layer, 53, 82
drive_attr() function, 51
drive_description() function, 51
drive capabilities and access mode, 58
drive capability tokens, 86
drive handle binding, 60
drive handle object name, 61
drivemap element map, 22, 47
drive object, 21, 58
drive object name, 23, 61

E

eject—ALI command, 26
element maps

convenience routines for, 49
generic representation of, 47
private entries, 53

entry points for DCP, 79
entry points for LCP, 45
error codes

for a DCP, 94
for an LCP, 93

Exabyte 210 220 440 480 sample code, 89
Exabyte 8505 XL sample code, 90
ExchangeTime attribute, 55
exit

ADI command, 64
ALI command, 27

F

functions
ADI lexical library, 77
adi utility library, 79
ALI lexical library, 43
ali utility library, 50

future developments, 53, 83

G

generic representation
of a drive in DCP, 78
of library in LCP, 44

goodbye
ADI command, 64
ADI/R command, 68
ALI command, 27
ALI/R command, 33

H

hello—LCP or DCP command, 13

114

Index

I

instance object name, 23, 61
intended audience, xiii
IPC layer, 17

source code for DCP, 76
source code for LCP, 42

IRIX implementation, 52, 81

L

language conventions for quoting, 17
LCP (library control program), 4, 19
lcp_attr() function, 51
lcp_loglevel() function, 51
lcp_name() function, 51
lcp_supportPCLs() function, 51
lcp_vendor() function, 51
LCP configuration file, 38
LCP object name, 23
library routines

ADI lexical functions, 77
adi utility functions, 79
ALI lexical functions, 43
ali utility functions, 50

load—ADI command, 64
LoadTime attribute, 88

M

mandatory attributes, 22, 60
media, OpenVault definition, 58
media access point for drive, 59
media bit format tokens, 85
media cartridge type tokens, 84
message

ADI/R command, 68
ALI/R command, 33

message ID
ADI/R object name, 67
ALI/R object name, 31

message object
for ADI/R, 66
for ALI/R, 31

middleware, OpenVault as, 2
MLM (media library manager), 4
mode of access, 58, 73
mount—ALI command, 28
mount point for a drive, 58
move—ALI command, 28
MTIO operations, 81

N

NominalLoad attribute, 88

O

Odetics ATL 2640 sample code, 89
openPort—ALI command, 28
ordering of response text

for ADI, 69
for ALI, 34

organization of source code, 52, 82
over-the-wire layer, protocols, 17
overview of book contents, xiii
overview of OpenVault, 1

P

parser and generator layer, 16

115

Index

source code for DCP, 76
source code for LCP, 43

partition name tokens, 87
partition object, 58
partition object name, 61
PCL object name, 23
persistent storage, 4, 12, 37, 71
portmap element map, 47
port object, 21
port object name, 24
print_attrlist() function, 51, 80
print_stringlist() function, 51, 80
private element maps, 53
programmable entry points

for DCP, 79
for LCP, 46

protocol layers in OpenVault, 15

Q

quoting conventions, 17

R

ReadBandwidth attribute, 87
ready

ADI/R command, 68
ALI/R command, 33
ready broken, 33, 95, 98
ready lost, 33, 95, 98
ready not, 33, 95, 98

ready_error() function, 50, 80
ready state

processing rules, 94
responses, 97
transition rules, 95

readystate_change() function, 50, 80
removable media library, 20
reset

ADI command, 65
ALI command, 29

response
ADI command, 65
ADI/R command, 69
ALI command, 29
ALI/R command, 33

return values
for ADI response, 94
for ALI response, 93

S

sample code, LCP and DCP, 51, 81, 89
scan

ALI command, 29
scan all, 29
scan from to, 29

SCSI control access, 82
SCSI direct library, 81
semantic layer, protocols, 16
show

ADI command, 65
ADI/R command, 69
ALI command, 30
ALI/R command, 33

slot_attr() function, 51
slot_description() function, 51
slot ID object name, 23
slotmap element map, 22, 47
slot object, 21
SlotTypeName attribute, 88
source code

compiling and installing, 90

116

Index

organization of DCP source, 82
organization of LCP source, 52
running the pseudo install, 91

syntax specification
for ADI and ADI/R, 104
for ALI and ALI/R, 99

T

task ID
ADI object name, 61
ADI/R object name, 67
ALI object name, 24
ALI/R object name, 31

TCP/IP layer, protocols, 17
tertiary storage applications, 1
tuple

for DCP attributes, 61
for LCP attributes, 22

typographic conventions, xiv

U

umsh command, user mount shell, 10
unload—ADI command, 65
unmount—ALI command, 30
unwelcome—ALI or ADI command, 13
usefulness of OpenVault, 2

V

version negotiation language, 13

W

welcome—ALI or ADI command, 13
WriteBandwidth attribute, 87

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3305-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

