
OpenVaultTM Infrastructure
Programmer’s Guide

007–3305–003 Version 1.4

© 1997, 1998, 2000, Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated
elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

Silicon Graphics and IRIX are registered trademarks, and OpenVault, SGI, and the SGI logo are trademarks of Silicon Graphics, Inc.

Ampex and DST are trademarks of Ampex Corp. Digital is a trademark of Digital Equipment Corporation. DLT and Quantum are
trademarks of Quantum Corp. EXABYTE is a trademark of EXABYTE Corp. IBM and Magstar are trademarks of International
Business Machines Corp. POSIX is a registered trademark of the Institute of Electrical & Electronic Engineers. RedWood, STK,
StorageTek, and TimberLine, are trademarks of Storage Technology Corp. Sony is a trademark of Sony Corp. UNIX is a registered
trademark of X/Open Company, Ltd.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

New Features in This Guide

This revision of the OpenVault Infrastructure Programmer’s Guide supports the
OpenVault release 1.4. The following updates have been made to this guide:

• Expanded command lists in Chapter 1.

• Updated filename and directory lists in Chapters 4 and 6.

• Updated "Configuration File" Chapter 6.

Miscellaneous technical and editing changes were made throughout the guide.

007–3305–003 iii

Record of Revision

Version Description

001 December 1997
Original publication.

002 September 1998
Incorporates information in support of the OpenVault release 1.2.

003 November 2000
Incorporates information in support of the OpenVault release 1.4 for
systems running on the IRIX release 6.2 with License Tools 2.1.1 or
higher, IRIX release 6.4 with License Tools 3.0 or higher, or IRIX
release 6.5, which includes the appropriate License Tools.

007–3305–003 v

Contents

About This Guide . xxiii

Intended Audience . xxiii

What This Guide Contains . xxiii

Related Publications . xxiv

Obtaining Publications . xxiv

Conventions . xxiv

Reader Comments . xxvi

1. OpenVault Overview 1

What OpenVault Does . 1

Why OpenVault Is Needed . 2

OpenVault as Middleware . 2

OpenVault Architecture . 3

MLM Server . 4

Cartridge Naming . 5

Communication Paths . 5

OpenVault Interfaces . 6

CAPI for Client Applications 6

AAPI for Administrative Applications 7

Abstract Library Interface (ALI) 8

ALI Commands . 8

ALI/R Commands . 9

Abstract Drive Interface (ADI) 9

ADI Commands . 10

007–3305–003 vii

Contents

ADI/R Commands . 11

Administrative Commands 11

2. Common Implementation Issues 13

Booting OpenVault Components 13

MLM Server Booting . 13

LCP and DCP Booting . 14

Persistent Storage . 14

Communication Protocols . 14

Version Negotiation Language 15

Authentication Requests . 16

Command Phases . 16

Protocol Layers . 17

Semantic Layer . 18

Parser and Generator Layer 19

Over-the-Wire ALI or ADI Layer 20

OpenVault IPC Layer . 20

TCP/IP Socket Layer . 20

Language Conventions . 20

Convenience Routines for Developers 21

Conformance Suites . 22

3. Abstract Library Interface (ALI) Language 23

Abstract Library Interface (ALI) 23

About ALI . 23

ALI Object Definitions . 24

Attributes and Object Properties 26

Element Maps . 27

viii 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

ALI Object Naming . 28

ALI Commands . 29

ALI Response (ALI/R) . 38

About ALI/R . 38

ALI/R Object Definitions . 39

Attributes and Object Properties 39

ALI/R Object Naming . 39

ALI/R Command Descriptions 40

Ordering of ALI Response Text 42

Response Text for ALI show Command 43

Response Text for ALI mount and ALI unmount Commands 43

Response Text for ALI move Command 43

Response Text for ALI eject Command 44

Other Information . 44

4. Programming a Library Control Program (LCP) 45

About the LCP . 45

Use of Persistent Storage . 45

LCP Configuration . 45

Initialization Issues . 46

Configuration File . 46

LCP Boot Sequence . 47

Activation Sequence . 49

LCP Development Framework 50

OpenVault Client-Server IPC 51

ALI Parser and ALI/R Generator 51

LCP C Library Routines . 52

007–3305–003 ix

Contents

LCP Common Framework . 52

Generic Representation of a Library (lcp_lib.h) 53

Common LCP Entry Point 55

Programmable LCP Entry Points 55

Generic Representation of Element Maps 56

Convenience Routines for Element Maps 57

LCP Utility Functions . 59

Example LCP Implementation 61

IRIX Implementation . 62

Source Code Organization . 62

Configuration Processing 62

Device Access Layer . 62

ALI Semantic Do* Layer 63

Representing Private Element Map Entries 63

Future LCP Implementations 63

Parallel Execution and Complex Mappings 63

Defined Tokens List . 64

Cartridge Form Factors . 64

Attribute Names (LCP) . 65

5. Abstract Drive Interface (ADI) Language 67

Abstract Drive Interface (ADI) 67

About ADI . 67

ADI Object Definitions . 68

Abstraction of a Drive . 69

Attributes and Object Properties 71

ADI Object Naming . 72

x 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

ADI Commands . 74

ADI Response (ADI/R) . 78

About ADI/R . 79

ADI/R Object Definitions . 79

Attributes and Object Properties 79

ADI/R Object Naming . 80

ADI/R Command Descriptions 80

Ordering of ADI Response Text 82

Response Text for ADI show Command 82

Response Text for ADI attach Command 83

6. Programming a Drive Control Program (DCP) 85

About the DCP . 85

Use of Persistent Storage . 85

DCP Configuration . 85

Initialization Issues . 86

Configuration File . 86

DCP Boot Sequence . 88

Activation Sequence . 90

DCP Development Framework 90

OpenVault Client-Server IPC 91

ADI Parser and ADI/R Generator 91

DCP C Library Routines . 92

DCP Common Framework . 92

Generic Representation of a Drive (dcp_lib.h) 93

Common DCP Entry Point 94

Programmable DCP Entry Points 94

007–3305–003 xi

Contents

DCP Utility Functions . 95

Example DCP Implementation 96

IRIX Implementation . 96

Use of Local Filesystem . 96

Direct SCSI Commands . 97

MTIO Operations . 97

Source Code Organization . 97

Configuration Processing 97

SCSI Control Access . 98

ADI Semantic Do* Layer 98

Future DCP Implementations 98

Defined Tokens List . 99

Drive Capabilities . 99

Cartridge Form Factors . 99

Media Bit Formats . 100

Cartridge Types . 101

Partition Names . 102

Attribute Names (DCP) . 103

Appendix A. Sample Implementations 105

LCP Sample Code . 105

Odetics ATL 2640 . 105

EXABYTE SCSI Media Changers 105

DCP Sample Code . 106

DLT 2000 . 106

EXABYTE 8505XL . 106

Appendix B. Return Values and Ready States 107

xii 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

ALI Error and Return Values . 107

ADI Error and Return Values . 108

Ready States . 108

Ready State Transition Rules 109

Ready State Responses . 113

Appendix C. LCP and DCP Syntax 115

ALI Syntax Specification . 115

ALI Language . 115

ALI/R Language . 118

ADI Syntax Specification . 120

ADI Language . 120

ADI/R Language . 122

Glossary . 125

Index . 129

007–3305–003 xiii

Figures

Figure 1-1 OpenVault Architecture 3

Figure 2-1 Communication Layers 18

Figure 5-1 Conceptual View of a Drive 69

007–3305–003 xv

Tables

Table 3-1 Mandatory LCP Attributes 27

Table 3-2 Element Map Components 28

Table 3-3 Three Cases of eject 33

Table 3-4 Three Cases of OpenPort 36

Table 4-1 ALI and ALI/R Lexical Library Routines 52

Table 4-2 Predefined Cartridge Form Factor Tokens 64

Table 4-3 Predefined Attribute Name Tokens (LCP) 65

Table 5-1 Mandatory DCP Attributes 72

Table 6-1 ADI and ADI/R Lexical Library Routines 92

Table 6-2 Predefined mount Tokens 99

Table 6-3 Predefined Bit Format Tokens 100

Table 6-4 Predefined Media Type Tokens 101

Table 6-5 Predefined Partition Name Tokens 103

Table 6-6 Predefined Attribute Name Tokens (DCP) 103

Table B-1 Ready State Transitions 110

Table C-1 ALI Language Syntax 115

Table C-2 ALI/R Language Syntax 118

Table C-3 ADI Language Syntax 120

Table C-4 ADI/R Language Syntax 122

007–3305–003 xvii

Examples

Example 2-1 Using Quote Characters in Strings 20

Example 4-1 Generic Library Representation 54

Example 4-2 lcp_init Subroutine 55

Example 4-3 Common Slot, Drive, Bay, and Port Representations 56

Example 4-4 ovsrc/clients/lcp/EXABYTE-210/config File 62

Example 6-1 DCP config File 87

Example 6-2 Framework’s Generic Representation 93

Example 6-3 dcp_init Subroutine 94

Example 6-4 ovsrc/clients/dcp/EXB-8505XL/config File 97

007–3305–003 xix

Procedures

Procedure 2-1 Booting MLM Server 13

007–3305–003 xxi

About This Guide

This guide documents OpenVault release 1.4 running on IRIX operating systems.

OpenVault is a package of mediation software that helps other applications manage
removable media:

• This facility can support a wide range of removable media libraries, as well as a
variety of drives interfaced to these libraries.

• The modular design of OpenVault eases the task of adding support for new
robotic libraries and drives.

• User interfaces are provided by OpenVault client applications, which perform I/O
to drives using standard system facilities after OpenVault has mounted and loaded
media for the application.

The OpenVault Infrastructure Programmer’s Guide describes how to program the control
program components that manage removable media drives and libraries. In
OpenVault, the media library manager (MLM) fulfills requests from multiple client
applications, directing media operations such as mount and unmount that are
performed by control programs.

Intended Audience
This guide is intended for system programmers who are adding support for
removable media libraries or drives. By conforming to the standard OpenVault
infrastructure, developers can eliminate the need to write custom interfaces for each
removable media library and drive in the marketplace.

What This Guide Contains
Here is an overview of the material in this guide:

• Chapter 1, page 1, contains a thumbnail sketch of components.

• Chapter 2, page 13, covers topics you should know about before constructing an
OpenVault control program.

007–3305–003 xxiii

About This Guide

• Chapter 3, page 23, describes the language used for library control programs.

• Chapter 4, page 45, offers a tutorial introduction to creating a library control
program.

• Chapter 5, page 67, describes the language used for drive control programs.

• Chapter 6, page 85, offers a tutorial introduction to creating a drive control
program.

• Appendix A, page 105, contains control program source code.

• Appendix B, page 107, lists these by control program.

• Appendix C, page 115, specifies control program syntax.

• “Glossary” and index are included at the end.

Related Publications
The following documents contain additional information that may be helpful:

OpenVault Application
Programmer’s Guide

Describes the client side of OpenVault, showing how
applications can make OpenVault requests in a
prescribed format.

OpenVault Operator’s
and Administrator’s
Guide

Describes how to develop OpenVault applications and
device support.

Obtaining Publications
To obtain SGI documentation, go to the SGI Technical Publications Library at
http://techpubs.sgi.com.

Conventions
The following conventions are used throughout this document:

xxiv 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in parentheses after
man page names. The following list describes the
identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

8 Administrator commands

Some internal routines (for example, the
_assign_asgcmd_info() routine) do not have man
pages associated with them.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or
directive line.

007–3305–003 xxv

About This Guide

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

xxvi 007–3305–003

Chapter 1

OpenVault Overview

OpenVault helps simplify the engineering of software to control removable media
libraries, by providing standard interfaces for robotic libraries, loadable drives, client
applications, and library administration.

This chapter describes in more detail what this product provides and why it is useful,
and gives an overview of OpenVault architecture and its standard interfaces.

1.1 What OpenVault Does
OpenVault is a package of mediation software that helps other applications manage
removable media. This facility can support a wide range of removable media libraries,
as well as a variety of drives interfaced to these libraries. The modular design of
OpenVault eases the task of adding support for new robotic libraries and drives.

A unit of removable media is called a cartridge. This could be a tape reel, a tape
cartridge, an optical disc, a removable magnetic disk, or a videotape.

OpenVault itself does not provide an end-user interface, nor does it generally become
involved in I/O operations to cartridges loaded in drives. User interfaces are provided
by OpenVault client applications, which perform I/O to drives using system facilities
after control programs have mounted and loaded a cartridge for the application.

The following tertiary storage applications can all benefit from OpenVault:

• Tape access, for example with tar or cpio

• Backup, to guard against system crash or accidental data loss

• Archive, for long-term storage of unused data

• Hierarchical storage management (HSM)

• CD-ROM jukeboxes or information libraries

• Broadcast libraries containing videotapes

007–3305–003 1

1: OpenVault Overview

1.2 Why OpenVault Is Needed
Because of the proliferation of data, many information professionals have trouble
putting their fingers on the data they want. Secondary storage on disk drives is
usually near capacity, and is generally devoted to system overhead and working files.
Tertiary storage often contains the desired data, but is reachable only after expenditure
of time and effort. Attentive management of removable media libraries can enhance
the availability of information without significantly increasing overall system cost.

The traditional way of dealing with robotic libraries is with specialized applications
that interface to particular libraries and drives. Generally, devices are monopolized by
a single application. This approach has several shortcomings:

• Manufacturers of robotic libraries and drives have to develop device drivers for
each new product on all supported system platforms.

• Software vendors must develop additional code to integrate new robotic libraries
and drives, resulting in product support delays.

• Computer system providers have a difficult time offering a complete range of
robotic libraries and applications when customers want them.

• Users and administrators have no access to the removable media library except as
granted by a specialized application—sharing is not possible.

OpenVault solves these problems by providing a set of standard interfaces that raise
the level of abstraction, enabling rapid deployment of removable media libraries,
drives, systems, and client applications.

1.3 OpenVault as Middleware
Software that mediates between operating systems and application programs is called
middleware. Middleware creates a common language so that users can access data in a
variety of formats or using devices from different vendors. OpenVault is middleware
in the sense that it mediates between client applications and device control programs,
making it possible for different users to share a removable media library.

Middleware can often improve release independence. With its modular architecture,
OpenVault assists vendors in adding support for new removable media libraries and
drives and delivering upgraded client applications, without requiring rerelease of
other OpenVault components.

2 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

1.4 OpenVault Architecture
OpenVault is organized as a set of cooperating components, as shown in Figure 1-1.

CAPI
CAPI/R

LCP

ALI

ALI/RDCP

ADI

ADI/R

AAPI

AAPI/R

MLM server
Client

application
Administrator

interface

Persistent
storage

Removable
media library

/dev/mount/* drive

Figure 1-1 OpenVault Architecture

007–3305–003 3

1: OpenVault Overview

The central mediation component is the media library manager (MLM), a
multithreaded process that accepts client connections and fulfills access requests by
forwarding them to appropriate library and drive control programs. The MLM server
maintains persistent storage containing information about cartridges in the system,
and descriptions of authorized applications, libraries, and drives.

OpenVault consists of the following pieces:

1. One MLM server process mediates among other components.

2. Any number of client applications can make requests using the client application
programming interface, CAPI; the MLM server replies in CAPI response
(CAPI/R).

3. An administrative interface makes system requests in a similar but less restricted
administrative API, AAPI; the MLM server replies in AAPI response (AAPI/R).

4. Persistent storage (a database) tracks cartridges and system components.

5. A library control program (LCP) is required for each removable media library
controlled by the MLM server.

The MLM server talks to an LCP using the abstract library interface (ALI), and
receives answers in ALI response (ALI/R). An LCP translates from ALI to the
actual library control interface, and replies in ALI/R.

6. A drive control program (DCP) is required for each drive controlled by the MLM
server. Some removable media libraries contain multiple drives, in which case
each drive has its own DCP. Drives need not be associated with a robotic library.

The MLM server talks to a DCP using the abstract drive interface (ADI), and
receives answers in ADI response (ADI/R). A DCP translates from ADI to the
actual drive control interface, and replies in ADI/R.

The OpenVault languages consist entirely of ASCII strings.

1.4.1 MLM Server

The MLM server accepts requests from applications, and forwards commands to an
LCP and DCP, which translate them into low-level robotic and drive control
operations to serve that request. MLM also schedules competing requests from
different applications, creates and enforces cartridge groups for each application, and
maps logical cartridge names (used by applications) to physical cartridge labels (used
by libraries).

4 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

The MLM server manages cartridges, directing LCP and DCP to mount and unmount
a cartridge. Often, cartridges store data. After requesting that a cartridge be mounted,
the client application may read and write the media using POSIX standard I/O
interfaces. Cartridges can also store audio-video streams for broadcast. In either case,
MLM is not directly involved in I/O operations.

Client applications, libraries, and drives may be added to a live MLM server. The
system administrator installs new programs on the appropriate hosts, and issues
administrative commands on a live system to inform the MLM server that these new
programs exist.

1.4.2 Cartridge Naming

Client applications may choose their own names for cartridges. Because OpenVault
client applications operate in separate name spaces, different applications may use the
same name for different cartridges. Moreover, cartridges used by one application are
not visible to or accessible from another application, unless the system administrator
permits specific cartridges to be moved from one application to another.

Some robotic libraries can interpret barcodes and labels affixed to cartridges. It is the
responsibility of the LCP to pass any physical cartridge label (PCL) information to the
MLM server.

1.4.3 Communication Paths

The OpenVault languages CAPI, CAPI/R, AAPI, AAPI/R, ALI, ALI/R, ADI, and
ADI/R are expressed exclusively in text strings, which travel between components by
means of TCP sockets. The underlying communications layer is encapsulated in a C
library; so OpenVault developers need not worry about the details.

007–3305–003 5

1: OpenVault Overview

1.5 OpenVault Interfaces
This section describe the various OpenVault programming interfaces.

1.5.1 CAPI for Client Applications

CAPI (client application programming interface) is the language client applications
use to communicate with the MLM server.

The command-response format is semi-asynchronous. After submitting each
command, the application waits for the server to acknowledge receiving the
command, but need not wait for results before sending the next command. CAPI
communications libraries can also work synchronously if this makes implementation
more convenient.

Access to the server is session-oriented. The application initiates a session with the
hello command, and ends with a goodbye. Meanwhile, the application may send
commands to the server to mount and unmount removable media, or to change
attributes of media.

Here is a list of CAPI commands organized alphabetically:

• allocate requests volumes for use by this application.

• attribute sets attribute-value pairs associated with OpenVault volumes.

• cancel revokes a command that the LCP has queued but not yet started.

• deallocate returns volumes to the free pool.

• goodbye asks MLM to end this session (vice versa for ADI).

• mount asks the MLM server to provide volumes for data access.

• reject tells the server to recategorize a volume.

• rename declares a new name for a volume.

• response indicates success or failure of an ALI command, and returns results.

• show displays information about OpenVault volumes.

• unmount says that volumes are no longer needed for data access.

• unwelcome informs the client of an MLM server version mismatch.

6 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

• welcome tells the client which version of the MLM server is responding.

The OpenVault Application Programmer’s Guide describes how to program CAPI.

1.5.2 AAPI for Administrative Applications

AAPI (administrative API) is the language that administrative applications use to
communicate with the MLM server. AAPI commands and responses are ASCII
strings. As with CAPI, the command-response format is semi-asynchronous, and
access to the server is session-oriented. AAPI is a superset of CAPI.

Here is a list of AAPI commands organized alphabetically:

• allocate requests volumes for use by this application.

• attribute sets attribute-value pairs associated with OpenVault volumes.

• create establishes a volume or object in the OpenVault database.

• deallocate returns volumes to the free pool.

• delete removes a volume or object from the OpenVault database.

• eject pushes a cartridge out of a library into the operator’s hand.

• export removes a volume from the OpenVault database.

• inject allows the operator to insert a cartridge into a library.

• mount tells the MLM server to provide data access to a volume.

• move relocates a cartridge from one slot in a library to another.

• reject tells the server to recategorize a volume.

• rename declares a new name for a volume.

• show displays information about OpenVault volumes.

• unwelcome informs the client of an MLM server version mismatch.

• unmount says that volumes are no longer needed for data access.

• welcome tells the client which version of the MLM server is responding.

The OpenVault Application Programmer’s Guide describes how to program the AAPI.

007–3305–003 7

1: OpenVault Overview

1.5.3 Abstract Library Interface (ALI)

A library control program (LCP) is a part of OpenVault that deals with low-level
details of a removable media library and its configuration and control procedures.
There is at least one LCP associated with each MLM-managed library. The purpose of
an LCP is to expose library configuration to the MLM server, and to control a library
as requested.

The MLM server issues directives to the LCP in a language called ALI. The LCP
replies to the MLM server in a language called ALI response (ALI/R).

ALI/R implements a different command set from ALI, reflecting different needs of an
LCP and the MLM server. The ALI language is primarily a library control interface,
whereas ALI/R constitutes a status reporting interface with support for
administration and configuration. Like CAPI, ALI and ALI/R are semi-asynchronous.

If you are developing a library control program, your program must be able to read
ALI from, and write ALI/R to, the MLM server. The OpenVault infrastructure
developer’s kit includes an ALI parser and ALI/R generator. The parser and
generator, as well as the communications layer, are delivered with a C language
interface.

The following sections provide lists of ALI and ALI/R commands.

1.5.3.1 ALI Commands

Here is a list of ALI commands organized alphabetically:

• activate disable forces the LCP to stop talking to the library.

• activate enable forces the LCP to resynchronize its internal information with
the physical state of the library, and keep it synchronized.

• attribute sets and unsets named attributes in the LCP.

• barrier tells the LCP to complete all asynchronous commands before continuing.

• cancel revokes a command that the LCP has queued but not yet started.

• eject pushes a cartridge out of the library immediately, or queues a cartridge to
be pushed out of the library (if queueing is implemented).

• exit tells the LCP to store state information, clean up, and exit.

• mount asks the LCP to put cartridges into drives.

8 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

• move requests transfer of a cartridge from one physical slot into another.

• openPort instructs the LCP to open the library door, so that cartridges can be
added to or removed from the library.

• reset instructs the LCP to reinitialize its library.

• response indicates success or failure of an ALI command, and returns results.

• scan has the LCP ask its library to verify physical labels of cartridges in the
library.

• show obtains the current value of an attribute.

• unmount tells the LCP to take cartridges out of drives.

1.5.3.2 ALI/R Commands

Here is a list of ALI commands organized alphabetically:

• attribute sets and unsets named attributes in the OpenVault database.

• cancel prevents execution of a command that has been queued but not yet
started.

• config copies information (such as slot state) from the LCP to the MLM server.

• goodbye asks MLM to end this session (vice versa for ALI).

• message sends a message of a specified severity level to an operator or log file.

• ready tells the MLM server about library status for cartridge operations.

• response indicates success or failure of an ALI command, and returns results.

• show obtains values of attributes stored in the OpenVault database.

For a description of the ALI and ALI/R languages and an introduction to creating
library control programs, see Chapter 3, page 23, and Chapter 4, page 45.

1.5.4 Abstract Drive Interface (ADI)

A drive control program (DCP) manages the configuration of drives, and performs the
drive control tasks associated with CAPI mount and unmount requests. There is at
least one DCP associated with each MLM-managed drive. The purpose of DCP is to
expose the drive configuration to the MLM server, and to control drives as requested.

007–3305–003 9

1: OpenVault Overview

The MLM server issues directives to the DCP in a language called ADI. The DCP
replies to the MLM server in a language called ADI response (ADI/R).

ADI/R implements a different command set from ADI, reflecting different needs of a
DCP and the MLM server. The ADI language is primarily a drive control interface,
whereas the ADI/R language constitutes a status reporting interface with support for
administration and configuration. Like CAPI, ADI and ADI/R are semi-asynchronous.

If you are developing a drive control program, your program must be able to read ADI
from, and write ADI/R to, the MLM server. The OpenVault infrastructure developer’s
kit includes an ADI parser and ADI/R generator. The parser and generator, as well as
the communications layer, are delivered with a C language interface.

1.5.4.1 ADI Commands

Here is a list of ADI commands organized alphabetically:

• activate disable forces the DCP to store persistent state and stop
communicating with its hardware.

• activate enable forces the DCP to resynchronize with its drive hardware,
ensuring that the DCP has the current drive state.

• attach selects the appropriate access method, and binds it to a drive handle.

• attribute sets and unsets named attributes in the DCP.

• barrier tells the DCP to complete all asynchronous commands before continuing.

• cancel requests the DCP to stop execution of a command, if possible.

• detach removes the access method binding created by an attach command.

• exit tells the DCP to store state information, clean up, and exit.

• load pushes a cartridge into the drive and engages media at the media access
point (read/write head), or verifies that the drive is loaded.

• reset instructs the DCP to attempt drive reinitialization.

• response indicates success or failure of an ADI command, and returns results.

• show asks the DCP to return state or configuration information.

• unload rewinds if necessary, disengages media from the media access point, and
returns media to its cartridge.

10 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

1.5.4.2 ADI/R Commands

Here is a list of ADI/R commands organized alphabetically:

• attribute stores persistent state in the OpenVault database.

• cancel tells OpenVault to prevent execution of a particular command, if possible.

• config tells OpenVault about access modes, form factors, and media formats.

• goodbye asks MLM to end this session (vice versa for ADI).

• message sends a message of some severity level to an operator or logfile.

• ready informs OpenVault of the status of the DCP’s connection to the drive.

• response indicates success or failure of an ADI command, and returns results.

• show queries persistent state stored in the OpenVault database.

For a description of the ARI and ARI/R languages and an introduction to creating
drive control programs, see Chapter 5, page 67, and Chapter 6, page 85.

1.5.5 Administrative Commands

OpenVault can be administered with commands given from the system prompt. Most
of these commands cause MLM to forward library or drive requests to a particular
LCP or DCP. Most OpenVault commands produce helpful usage messages when
invoked with the wrong syntax or with the -help option. For a list of OpenVault
commands, type:

man -k ov_

The user mount shell, umsh, is a system command that provides user and
administrator access to OpenVault volumes. See the umsh(1M) man page for details.

Note: Before entering this man command, ensure that you are using the MANPATH
environment variable.

export MANPATH=/usr/OpenVault/man

007–3305–003 11

Chapter 2

Common Implementation Issues

This chapter presents information you must know before implementing an LCP or
DCP. Please read these sections whether you are implementing an LCP, a DCP, or both:

• Section 2.1 shows how OpenVault starts its modules.

• Section 2.2, page 14, tells how OpenVault tracks information.

• Section 2.3, describes how the modules communicate.

2.1 Booting OpenVault Components
Because it is composed of different modules working together, OpenVault booting is
critical for correct operation. This section describes how OpenVault assembles itself,
either at system boot time or when recovering from partial failure of the system.

The MLM server initiates a sequence to bootstrap a functioning OpenVault system.
Each component boots independently, reading its own configuration file, which
contains just enough information to initialize that particular component. Remaining
information is derived from the state of a device, persistent storage, or from
parameters compiled into a particular component. Configuration files vary greatly
from component to component. The session initiation sequence is the same for all
components, and allows a component to identify itself by name, type, and the
language versions that it supports.

2.1.1 MLM Server Booting

The MLM server should be the first component to initialize itself. If the MLM server
reboots, all LCP and DCP connections to it are lost. Procedure 2-1 describes the steps
the MLM server takes during booting:

Procedure 2-1 Booting MLM Server

1. Read its configuration file.

The LCP or DCP developer does not need to be concerned about this file.

2. Accept connections from booting DCPs and LCPs.

007–3305–003 13

2: Common Implementation Issues

The communications layer establishes TCP keepalive sockets. If the connection is
lost, the MLM server tries to re-establish the connection every two minutes.

3. Service other client connections and AAPI or CAPI requests.

The MLM server accepts client connections as they arrive. AAPI and CAPI
requests are fulfilled if the resources needed to service them are available.

2.1.2 LCP and DCP Booting

Each LCP and DCP must also initialize itself. For details on LCP booting, see Chapter
4, page 45. For details on DCP booting, see Chapter 6, page 85.

2.2 Persistent Storage
The OpenVault persistent store is implemented as a database subsystem that resides
in the MLM server. This is a multiuser, in-memory relational database subsystem
whose clients are the modules that make up core OpenVault services. Each
OpenVault module is linked with a C library to handle the following activities:

• Constructing queries and other data update operations

• Assembling and disassembling the data update structures

One important OpenVault process is the Catalog Manager, which handles database
startup and recovery, manages the on-disk transactional log file, and takes periodic
snapshots of the database.

The LCP or DCP developer does not need to be concerned about details of the
OpenVault database. The MLM server handles database operations triggered by LCP
and DCP events or by CAPI requests from client applications transparently. LCPs and
DCPs interact with the persistent store through the ALI/R or ADI/R language.

2.3 Communication Protocols
The OpenVault interfaces ALI, ADI, CAPI, and AAPI are based on message passing.
Only ASCII strings travel across the sockets. OpenVault client and control program
processes communicate with the MLM server through TCP/IP sockets. The
hello-welcome sequence establishes an IPC connection based on a TCP socket.

14 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Once an IPC connection has been established, the entity at either end of the
connection may send and receive commands compatible with the negotiated language
and version. The sender of a command generates a unique task ID for that command.
The task ID is used in subsequent responses to that command. The sender may also
use the task ID to cancel the original command or check command status.

2.3.1 Version Negotiation Language

To allow partial upgrades and peaceful coexistence of different language versions,
OpenVault includes a session initiation facility to negotiate language version. When
connecting to the MLM server, a client or control program announces which language
it uses, and which versions of the language it understands. The MLM server then
selects one version and tells the client which one to use for the current session.

hello A client or control program uses the hello command to announce
itself to the MLM server. The client includes in that command the name
of the language it would like to speak, a list of the different language
version numbers it supports, a name for itself as an application, and a
name for a particular instance of that application. An LCP or DCP
should use the OpenVault name of the device it controls as its
application name.

welcome After the client announcement, the MLM server responds with a
welcome command, telling the client which version to use. This
version is one that the client enumerated in the hello command. At
this point, a session is established between the client and MLM server,
implemented by an underlying TCP/IP connection.

unwelcome The unwelcome command tells the client that none of the combinations
of language and language version it provided are supported by this
MLM server. After the external client has announced itself to the MLM
server, the server may respond with an unwelcome command if the
language name is unknown, or if none of the language versions
supported by the client are supported by the server.

LCP and DCP programmers working in the C language can use a library routine that
encapsulates the hello and welcome exchange to establish a session. For an LCP,
version negotiation is built into the ALIR_initiate_session() function. For a
DCP, version negotiation is built into the ADIR_initiate_session() function.

The OpenVault session is demarcated by version negotiation (hello and welcome) at
the beginning, and close of session (goodbye) at the end.

007–3305–003 15

2: Common Implementation Issues

2.3.2 Authentication Requests

Before a session can be established between the initiator and its recipient,
authentication is needed. OpenVault employs public key session verification to
provide a modicum of security while still avoiding export restrictions.

As an example, assume that Alice represents the client that initiates communication
with the MLM server (the client could be a DCP, LCP, or client application). Bob
represents the MLM server. The authentication process begins with Alice sending her
name to Bob. Bob replies by generating a 32-bit random number (R1) and sending it
to Alice as a challenge. Upon receiving this number, Alice encrypts it with the key
she shares with Bob and sends this value, along with another 32-bit random number
she has generated herself (R2) to Bob. After checking to make sure that Alice has
successfully encrypted R1, Bob then encrypts R2 and generates a third random
number (R3). Bob now sends the encrypted R2 and R3 to Alice. Alice verifies that R2
has been properly encrypted and then decrypts R3 and stores it as the session key.

Infrastructure developers do not need to be concerned about details of the OpenVault
authentication method. The OpenVault transport layer handles authentication
requests from client applications transparently.

2.3.3 Command Phases

A communication session between the MLM server and a client or control program
employs a stylized sequence of phases. Since the interface is a full-duplex
bidirectional peer-to-peer interface, this applies to both directions of a session. There
are three phases:

Command In this phase, the sender transmits the text of the command, plus a task
ID it assigns to the command, to help track responses.

Ack The receiver sends back an intermediate response indicating that it
accepted a command with the given task ID. The receiver may send
back an unacceptable response if the command was incorrectly
constructed, in which case there is no data phase. The sender cannot
transmit another command until it receives an accepted or unaccepted
response.

16 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Data The receiver of the command sends back a final response, including the
task ID, so as to identify the original command, a return value, which
could be an indication of success or failure, and possibly some data.

Associated ALI/R or ADI/R commands may intervene between transmission of a
command and receipt of the corresponding final response.

Since sessions are full-duplex, each endpoint must be prepared both to read and write
on a session without blocking for either. For example, if the LCP is sending but the
MLM server is not responding and its buffers are full, the LCP must still be prepared
to accept incoming data from the MLM server. The only permitted blocking I/O
operation is a select() call. This requirement helps reduce the likelihood of
deadlocks.

2.3.4 Protocol Layers

Figure 2-1, page 18, shows OpenVault communication layers, which are described in
this section.

007–3305–003 17

2: Common Implementation Issues

TCP/IP Sockets Layer
OpenVault IP

C Layer
Over-th

e-Wire ALI or ADI

Parser and Generator Layer

Semantic Layer

Implementing ADI or ALI commands
Acknowledgment processing
Ready state transitions
Response sequencing
Handling device state changes

Language version negotiation
Session establishment
Convert between ASCII and C structures

Pure ASCII representation
Phases: command, acknowledgment, data
Conforms to language conventions

Provides server/client communications
Underlying session and packetization
Performs authentication

Employs standard networks, even when
used on local host

Figure 2-1 Communication Layers

2.3.4.1 Semantic Layer

The function of the semantic layer is the same for both ALI and ADI. It is responsible
for the following tasks:

• Implementation of ALI and ADI commands

• Ack processing, synchronizing commands by ensuring that a command is not sent
until an acknowledgment is received for the previous command

• Ready state processing Section B.3.1, page 109)

• Response sequencing

If an ALI or ADI command results in ALI/R or ADI/R commands being sent, in
addition to the normal ALI/R or ADI/R responses for acknowledgment and final

18 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

response, the intervening ALI/R or ADI/R commands should be sent in between
the ack and final responses. For example, an activate enable command to a
DCP usually results in the series ADIR_reponse for acknowledgment,
ADIR_config, ADIR_ready, and finally ADIR_response for final response.

• Detection and handling of device state changes

This can range from full asynchronous notification by a device or device controller
to a control program to periodic polling of a device by the control program to
detect changes. With SCSI, the device raises a unit attention condition, and
sends a unit attention notification piggy-backed on a response from the SCSI
device, which indicates that some device state has changed. The control program
can then send additional SCSI commands to determine what state has changed,
and to clear the unit attention condition.

When the control program detects state changes that affect the control program’s
ready state or configuration from the MLM server’s point of view (for example,
the library may have gone offline, or the library contents may have been altered if
the library front door was detected to be opened and then closed), then the control
program should update ready state and configuration information, as appropriate,
and push the new ready state and configuration up to the MLM server.

2.3.4.2 Parser and Generator Layer

The parser and generator layer uses the POSIX compliant GNU utilities Bison and
Flex, and is responsible for the following tasks:

• Language version negotiation and session establishment

The source files involved are ovsrc/include/hello.h and
ovsrc/libs/hellor/*.

• Converting commands between C data structures and ASCII representations

The ALI source files involved are ovsrc/include/{ali,lcp}.h and
ovsrc/libs/ali/*.

The ADI source files involved are ovsrc/include/{adi,dcp}.h and
ovsrc/libs/adi/*.

007–3305–003 19

2: Common Implementation Issues

2.3.4.3 Over-the-Wire ALI or ADI Layer

The over-the-wire ALI and ALI/R or ADI and ADI/R layer employs nothing but
ASCII strings, and is responsible for the following tasks:

• Transitioning between command phases (command, ack, data)

• Conforming to language conventions (the parser enforces this)

2.3.4.4 OpenVault IPC Layer

The OpenVault IPC layer is responsible for the following tasks:

• Providing OpenVault interprocess communication between clients and the server

• Implementing underlying session connections for OpenVault processes, including
the packetization of over-the-wire ASCII commands

• Authentication

2.3.4.5 TCP/IP Socket Layer

The TCP/IP socket layer employs standard networks to aid portability.

2.3.5 Language Conventions

All commands are designed so that the basic arguments of the command may be
entered in any order. For example, these two commands are equivalent:

mount slot["#12", "vol.001", "sideA"] drive["DLT2"];

mount drive["DLT2"] slot["#12", "vol.001", "sideA"];

OpenVault strings are composed of ASCII characters in the range 32 to 126 (decimal).
Strings must be quoted with either a double-quote or single-quote (“ or ‘) as shown in
Example 2-1. OpenVault considers these different quote characters to be identical.

Example 2-1 Using Quote Characters in Strings

To include either quote character in a string, precede it with backslash (\). To include
a single backslash character in a string, put two backslash characters in a row:

"This string contains a backslash \\ and a double quote \" character."

20 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Potential return value types depend on the command issued. In general, when a
command is successful, the return value specification is the following:

response success text [retValue(s)]

When a command is unsuccessful, the error return value conforms to the following
specification:

response error errorSpec

Boolean return values are predefined strings “true” and “false”.

2.4 Convenience Routines for Developers
The following modules are provided in the source code tree as an aid to LCP and
DCP developers:

• A generic linked list queue in ovsrc/src.GPL/server/include/queue.h

• A command queuing facility and state machine in
ovsrc/src.LGPL/include/cctxt.h and
ovsrc/src.LGPL/common/cctxt.c

• Shared LCP or DCP data structures and functions in
ovsrc/src.LGPL/include/[ld]cp_lib.h and
ovsrc/src.BSD/[ld]cp/common/util.c

These are intended to provide a basic framework for developing DCPs and LCPs,
and also reusable software for common control program operations such as ack,
attribute, error, and ready-state processing. This framework will evolve.

These modules, which are intended as a basic framework for DCP and LCP
development, will evolve. They include reusable software for common control
program operations such as ack, attribute, error, and ready-state processing.

LCP and DCP templates are provided to enable developers to start coding. This
source code is available as a freely downloadable package:
http://www.sgi.com/software/opensource/openvault/

007–3305–003 21

2: Common Implementation Issues

2.5 Conformance Suites
An LCP conformance suite is in ovsrc/src.GPL/conformance/lcp, and a DCP
conformance suite is in ovsrc/src.GPL/conformance/dcp. Developers should
test each LCP and DCP against a conformance suite to assure compliance with
OpenVault specifications. Although there is no formal LCP or DCP certification
program, this is the next best thing.

Each conformance suite simulates the MLM server’s interaction with an LCP or a
DCP, and attempts to find certain logical errors in a control program, such as
allowing ejection from an empty slot or unloading of an empty drive. See the
respective README files for specific information about running an LCP or DCP
conformance suite.

22 007–3305–003

Chapter 3

Abstract Library Interface (ALI) Language

This chapter provides programmers with an introduction to the OpenVault languages
for controlling removable media libraries, and includes the following sections:

• Section 3.1 describes the language in which the MLM server sends directives to an
LCP, and responds to requests sent by an LCP.

• Section 3.2, page 38, tells how an LCP sends configuration and status to the MLM
server, and responds to directives from the MLM server.

3.1 Abstract Library Interface (ALI)
The following sections describe the abstract library interface (ALI), including objects,
object attributes, naming conventions, and the ALI command repertoire.

3.1.1 About ALI

ALI is a language that provides an abstraction of a removable media library that is
managed by OpenVault. ALI hides details of the underlying library and control
methods without compromising the ability of OpenVault as a whole to manage its
resources effectively. The MLM server communicates with an LCP using the ALI.

007–3305–003 23

3: Abstract Library Interface (ALI) Language

3.1.2 ALI Object Definitions

The ALI language manipulates the following objects:

Bay A location for cartridges, with locality determined by
similar access (mount) time. Typically, a bay is a
physical grouping of cartridges in a common unit of
housing, where cartridges are stored. A bay contains
storage locations for cartridges, optional drives, and
one or more transfer agents to move cartridges between
storage locations and drives or other storage locations.

In a multibay library, each bay in the library is attached
to at least one other bay in the same library. For each
cartridge in the library, there is some path for moving
that cartridge from its current bay to any other bay,
with one or more transfer agents to move that cartridge.

Cartridge A physical container for storage media. Each cartridge
in the OpenVault system should have some kind of
external identifying label (a physical cartridge label)
that the library or an operator can verify. Part of the
external label should be human readable. For
automated libraries, another part of the label is machine
readable—typically a barcode label that a laser scanner
can interpret.

Cartridges can have multiple sides. If they do, their
containing library should be able to move or mount
cartridges to achieve a particular orientation, for
example, “side A” up.

Command ALI commands are objects as far as ALI is concerned.
When the MLM server sends an ALI command, it
associates a task ID with that command. The sender
may refer to that command later by using the same task
ID, but only to cancel the command. When an LCP
receives a command, it includes the task ID in
command responses.

Drive A device for accessing media inside a cartridge that has
been mounted.

Library control
program (LCP)

Each LCP knows the details of a removable media
library, including its configuration and control

24 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

procedures. An LCP is responsible for accomplishing
tasks that the MLM server asks it to perform, primarily
managing library resources. An LCP communicates
with its library using some device-specific language.

An LCP can be seen as a black-box language translator,
or a device management module. See Chapter 4 for
details about writing an LCP.

Port A door or opening where cartridges may be inserted
into or removed from the library.

Removable media
library

A library contains one or more housing units, called
bays, for storing cartridges. Bays contain storage
locations for cartridges, optional attached drives, and
one or more transfer agents for moving cartridges
between storage locations in the same or different bay
(using the move command), or between storage
locations and drives in the same or a different bay
(using the mount and unmount commands).

A library provides some way to read or verify external
labels affixed to cartridges. A removable media library
also provides some means for inserting cartridges into
and removing cartridges from the library.

Each library has a specific control method. For
automated libraries, this is typically some physical
control connection from a host. For a human operated
library, this might be a connection to an operator
console.

Typically, a library is a single automated device, with
some sort of robotic transfer agent to move cartridges
between storage locations and drives. Larger devices
may include a number of bays attached with
pass-through ports. A human operated vault, where
tapes are stored on racks and transported between

007–3305–003 25

3: Abstract Library Interface (ALI) Language

racks and drives by people, is another type of
removable media library.

Slot A storage location for a cartridge. It has a shape, or
form factor, that determines which kinds of cartridges it
can hold.

3.1.3 Attributes and Object Properties

OpenVault requires an LCP to maintain library configuration attributes and notify the
MLM server when they change. LCPs use the ALI/R config and ready commands
to do this. These commands send properties back to the MLM server, where
configuration information is kept in the MLM server persistent store. It is potentially
recoverable by the LCP using the ALI/R show command. Here are the required
configuration attributes:

• LCP ready state (Section B.3, page 108)

• Library nominal cartridge exchange time (Table 4-3, page 65)

• Element maps for slot, bay, and drive (Section 3.1.4, page 27)

• Cartridge form factor associated with slots, ports, and drives

• Number of free slots in each bay, by form factor

Note: Currently, OpenVault does not support recovery of any attribute or property
information stored in the MLM server persistent store by an LCP. However, this
may be supported in a future version of OpenVault.

Arbitrary attributes These are LCP private attributes. Developers may
devise arbitrary attributes, and store them to and
recover them from the MLM server persistent store.
These attributes are opaque to the MLM server.

Mandatory attributes These are attributes that an LCP is required to support.
Developers may store the loglevel mandatory
attribute in the MLM server persistent store; so the LCP
can recover it and resume logging at the same level
across reboots.

26 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

ALI expresses LCP attributes using the tuple:

object type, object name, attribute name

. Table 3-1 shows the mandatory attributes, not including the configuration attributes.

Table 3-1 Mandatory LCP Attributes

Object Type Object Name Attribute Name Command

LCP "" Name ALI show

LCP "" SupportPCLs ALI show

LCP "" Vendor ALI show

LCP "" loglevel ALI show, ALI attribute set

3.1.4 Element Maps

Element maps are kept in the OpenVault persistent store and refreshed by the LCP
when appropriate. There are element maps for the following objects:

Baymap List of bays in the library, with information on whether
each bay is accessible or not

Drivemap List of drives in the library, with information on
whether there is a cartridge in each drive, and whether
it is accessible

Slotmap Array of elements, one per slot, provided by the LCP to
help the MLM server operate and administer the
library, including:

• Physical cartridge label (PCL); for instance, a
barcode

• bayID for the bay the slot is in

• slotID for the name of the slot

• formFactor of the slot

007–3305–003 27

3: Abstract Library Interface (ALI) Language

• Whether a slot is full or empty (PCL is NULL if a
slot is empty.)

• Slot accessibility information (PCL is NULL if this is
false.)

Table 3-2 shows element map objects that an LCP supports.

Table 3-2 Element Map Components

Object Type Object Name Attribute Name Command

Bay bayID Description ALI show

Slot slotID Slot description ALI show

Drive driveID Description ALI show

3.1.5 ALI Object Naming

These names refer to specific ALI objects:

Bay ID A text string provided by the LCP, which refers to a bay
in the library. An LCP should choose bay IDs that are
easy for a human operator to interpret. For multibay
libraries, the bay ID is usually consistent with the
device name or address for a bay.

Client name The OpenVault client name refers to a specific
removable media library. This is the name by which a
client identifies itself in a hello command to the MLM
server. For ALI clients, this is name that the MLM
server associates with the library that is managed by
the associated LCP.

Drive name Refers to an OpenVault removable media device.

Instance name The OpenVault instance name is arbitrary, but is needed
in case there are multiple LCPs controlling the same

28 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

library, so as to distinguish between LCPs with the
same client (library) name.

LCP name Each LCP is uniquely named by a value pair including
an OpenVault client name and an OpenVault instance
name.

PCL A physical cartridge label (PCL) refers to a cartridge. It
is some form of identification on the outside of the
cartridge, as opposed to being stored on media inside
the cartridge. A PCL may contain a machine-readable
label (barcode), but it must also contain a
human-readable text portion.

Port name Currently, there is no ALI support for port names. Port
naming may be supported in a future version of
OpenVault.

Slot ID A text string provided by the LCP, which refers to a slot
in the library. The slot ID must uniquely identify any
slot under control of that LCP, and should be easy for a
human operator to interpret. For libraries with explicit
slot locations, slot ID is usually consistent with the
device name or address for that slot.

Task ID Uniquely identifies a sender-generated command.

Attribute naming in ALI is different than for CAPI and AAPI, in which an attribute is
given as TableName.ColumnName; attributes are just columns in a relational table. In
ALI and ALI/R, attributes are named with a tuple:

objectType, objectName, attrName

3.1.6 ALI Commands

The MLM server speaks ALI to the LCP, which in turn speaks ALI/R to the MLM
server. The ALI language includes the following commands:

activate Starts and stops LCP interactions with the library. The
activate command includes two variations. Note that
once the LCP has established a session with the MLM
server using the hello-welcome sequence, it may
begin accepting ALI commands from the server.
However, until it has successfully been activate

007–3305–003 29

3: Abstract Library Interface (ALI) Language

enabled and is in ready state, it will resend ready
lost state and fail ALI commands requiring access to
its library with the error ALI_E_READY. The LCP uses
one of the ALI/R ready command variations after
processing the current command.

These are the variations of the activate command:

activate enable Forces the LCP to
resynchronize its internal
information with the
physical state of the
library, and keep it
synchronized. For
example, with a
SCSI-based sighted robot,
the LCP could do a
barcode inventory and
resume status polling.

Performing this command
will probably result in the
LCP modifying slotmap
information in the MLM
server for this library,
pushing the slotmap to
the MLM server using
config, and possibly
accessing LCP-private
attributes stored in the
MLM database. The LCP
reports ready when all
its internal
resynchronization
operations have
completed (for example,
when the barcode scan is
done).

activate disable Forces the LCP to stop
talking to the library. For
example, on a SCSI-based
robot the LCP may be in

30 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

the habit of polling the
device for status changes;
this command would
stop that polling.

An activate disable
should complete or cancel
ALI commands that
require access to the
library, and store any
persistent library state in
the MLM server.

The LCP requires an
activate enable
command before it can
talk to the library again.

The LCP reports ready
lost when all its state
update operations have
completed and any
internal machinery has
been shut down.
Performing this
command may not result
in the library’s cartridges
becoming inaccessible if
there is an alternate LCP
and the library is
connected to multiple
hosts.

attribute Sets and unsets named attributes in the LCP. You can
think of attributes in an LCP as named memory
locations that may cause operations to happen as a side
effect of setting or reading them. Some attributes
defined by an LCP may be read-only to the MLM server.

007–3305–003 31

3: Abstract Library Interface (ALI) Language

A list of mandatory attribute names appears in Table
3-1, page 27.

barrier Forces the LCP to complete work on all commands
received prior to the barrier command, before it
begins working on any commands that might follow.
This may require special processing for queued eject
and openPort commands. For example, if an LCP
normally flushes ejects with the openPort command,
barrier should be rejected if the LCP has not already
received an openPort command.

In general, an LCP is free to execute the commands it
receives in any convenient order. Since there might be
circumstances where the MLM server requires an
explicit order for executing a sequence of commands,
the barrier command can be employed to force
ordering.

cancel Prevents execution of a command that has been queued
in the LCP but which the device has not yet started.
The LCP may choose to cancel already started jobs on a
best-effort basis.

Note: The cancel and response commands may not
be cancelled.

eject Pushes, in conjunction with the openPort command,
cartridges out of the library. It takes a (slot ID, PCL)
pair for the cartridge that is to be operated on. The LCP
should send the corresponding changes in its slot and
drive maps to the MLM server.

The implementation of the eject command may vary
from LCP to LCP, but there are three basic cases, as
listed in Table 3-3, page 33.

32 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Table 3-3 Three Cases of eject

Operator
Interaction
Required

LCP
Becomes
not ready Likely Semantics and Effect

No No The eject command causes the given cartridge to be
immediately pushed out of the library. The openPort
command is a successful no-op. The library continues
operation uninterrupted.

The ATL2640 is one example of a library in this class. It
has a bin where exported cartridges simply pile up. No
operator interaction with the LCP is required.

Yes No The eject command causes the given cartridge to be
marked as needing to be pushed out of the library, but the
cartridge is not yet pushed out. The LCP is free to move
the cartridge if it needs to. An openPort command tells
the LCP that the operator is ready to physically take the
cartridges out of the library. The library continues
operation uninterrupted.

A StorageTek silo is an example of this library type. The
silo has a port with slots on the inside where the LCP can
move cartridges when they are ejected. The openPort
command unlocks access port(s) and allows the operator
to remove the cartridge(s).

Yes Yes The eject command causes the given cartridge to be
marked as needing to be pushed out of the library, but the
cartridge is not yet pushed out. The LCP is free to move
the cartridge if it needs to. An openPort command tells
the LCP to put the library into the “ready not” state and
prepare it to allow the operator easy access to those
cartridges marked for ejection.

007–3305–003 33

3: Abstract Library Interface (ALI) Language

Operator
Interaction
Required

LCP
Becomes
not ready Likely Semantics and Effect

The EXABYTE 210 is an example of this type of library. It
must be taken offline to physically remove cartridge(s).
The openPort command puts the library into ready not
state and unlocks the access door, allowing the operator to
remove ejected cartridge(s).

When an LCP determines that the access door has been
opened and closed, it should lock the door, reinventory
the library, complete affected ejects, inform the MLM
server of slotmap changes, and transition to ready state.

When a cartridge is physically ejected, it must
immediately disappear from the OpenVault slotmap
maintained by the LCP. This implies that an LCP that
cannot immediately push a cartridge out of the library
must be prepared to inform OpenVault that a particular
slot ID (and therefore PCL) has been marked for
ejection. The LCP should mark this slot as inaccessible
and push the information to the MLM server.

The LCP should recall this information from the
OpenVault database upon booting, when OpenVault
supports retrieval of LCP attributes from the MLM
server’s persistent storage.

exit Tells the LCP to clean up and exit.

The LCP should store any persistent LCP or library
information in the OpenVault database, complete or
cancel any pending ALI commands, send or abort any
pending ALI/R commands, do shutdown processing as
required by its interface to the library, send ready
lost and goodbye commands to the MLM server, and
exit.

goodbye Tells the communicating LCP to end this session.

mount Places a cartridge into a drive. The arguments to mount
are a list of tuples (slot ID, PCL, side) and a drive
name. The operation involves taking a cartridge from

34 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

one of the given slots and putting it into the specified
drive. For multisided cartridges, placement is according
to a specified side orientation, for example “side A” up.
The slot list may have just one element; if more than
one is specified, the LCP decides which slot to use. The
LCP should send the corresponding changes in its slot
and drive maps to the MLM server.

Note: Multisided cartridges are not supported in
OpenVault version 1.0.

move Transfers a cartridge from one physical slot in the
library to another physical slot. The move source is a
slot ID, PCP pair, and the destination is a slot ID. The
LCP should send the corresponding changes in its slot
and drive maps to the MLM server.

openPort Removes or allows, in conjunction with the eject
command, cartridges to be removed from the library. It
may also be used on its own to allow cartridges to be
inserted into the library. The function of the openPort
command is to prepare the library for an operator to
gain physical access to cartridges. Once access is
granted, cartridges may be removed from and inserted
into the library. The implementation of openPort may
vary from LCP to LCP, and a given library might be in
a different class for export than for import, but there are
three basic cases, as listed in Table 3-4, page 36.

007–3305–003 35

3: Abstract Library Interface (ALI) Language

Table 3-4 Three Cases of OpenPort

Operator
Interaction
Required

LCP
Becomes
not ready Likely Semantics and Effect

No No New cartridges are simply inserted into the library.

For example, the ATL2640 has a cartridge insert door and
a request button next to it. Pressing the request button is
all that is required to prepare the library to accept a new
cartridge.

Yes No The LCP must prepare to accept a new cartridge.

For example, the StorageTek silo may be told to unlock
port(s) so that the operator can add new cartridges.

Yes Yes The LCP unlocks the library door and puts the library into
ready not state when it detects a door open. When it
detects the door is closed again, it reexamines cartridge
inventory to see what has been added or removed, and
returns the library to ready state.

For example, the EXABYTE-210 must have its main door
unlocked before the operator can add cartridges.

See the description of the ready and ready not
commands under ALI/R for more information on how
an LCP becomes not ready, permitting its library to be
temporarily not available during an openPort
operation.

reset Asks the LCP to try and force the library to reinitialize.
This may cause the library to perform internal
diagnostics.

If a reset makes the library unavailable to process other
requests for an extended time, the LCP should use the
ready not command to tell the MLM server that its
library is temporarily not available, followed by a

36 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

ready command when the library becomes available
again.

response Acknowledges and indicates success or failure of an
ALI/R command. The optional text portion of the
response contains error details or command results.

scan Forces the LCP to verify or recheck the PCLs of all
cartridges in the library. These are variations of the
scan command:

scan all The LCP should rescan
the entire contents of the
library in order to
resynchronize its internal
information with the
physical state of the
library. It should send
changes in content
information to the MLM
server.

scan from to The LCP should rescan
all slots represented by
slot IDs lexicographically
between the from slot
and the to slot. The LCP
may rescan more slots
than listed for some
implementation
dependent reason. It
should send changes in
content information to
the MLM server.

If the library will be unavailable to process other
requests during this time, the LCP should use the
ready not command to tell the MLM server that the
library is temporarily not available for other motion
commands (such as mount, unmount, move, or eject),

007–3305–003 37

3: Abstract Library Interface (ALI) Language

followed by a ready command when the library
becomes available again.

show Obtains the current value of an attribute. Some of the
attributes defined by an LCP may be write-only to the
MLM server.

For more information about LCP attributes, see Section
3.2.3, page 39.

unmount Takes a cartridge out of a drive and returns it to a slot.
The arguments to unmount are a drive name and a slot
ID. The operation involves taking the cartridge from the
drive and putting it into the given slot. Optionally, you
can specify any for slot ID, and let the LCP choose
where to return a cartridge. The LCP should send the
corresponding changes in its slot and drive maps to the
MLM server.

3.2 ALI Response (ALI/R)
The following sections describe the ALI/R language, including objects, object
attributes, naming conventions, and the ALI/R command repertoire.

3.2.1 About ALI/R

ALI/R is primarily the response language for ALI. In addition to giving the matching
acknowledgment and final response to an ALI command, ALI/R provides the means
for an LCP to send its configuration and status to the MLM server.

38 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

3.2.2 ALI/R Object Definitions

The ALI/R language manipulates the following objects:

Command ALI/R commands are objects as far as ALI/R is concerned. When an
LCP sends an ALI/R command, it associates a task ID with that
command. The sender may refer to that command later by using the
same task ID, but only to cancel the command. When the MLM server
receives a command, it includes the task ID in command responses.

Message A text message to be entered into an MLM server-managed log, and
perhaps displayed on some console by the MLM server, or one of its
administrative applications.

Messages are associated with a severity level, or a level of urgency,
which determines (along with site policy) whether the message text is
stored in the MLM server logs, displayed on a library or OpenVault
console for the operator, or both.

3.2.3 Attributes and Object Properties

Currently, ALI/R attributes are not supported by OpenVault, except for attributes
stored by the ALI/R config and ready commands in the MLM server persistent
store. Currently, OpenVault supports setting and unsetting of config and ready
attributes only.

3.2.4 ALI/R Object Naming

These names refer to specific ALI/R objects:

Message ID Refers to a text message of a given severity level.

Task ID Uniquely identifies a sender-generated command.

007–3305–003 39

3: Abstract Library Interface (ALI) Language

3.2.5 ALI/R Command Descriptions

The LCP reads ALI commands from the MLM server, and replies to the server in
ALI/R. The ALI/R language includes the following commands:

attribute Sets and unsets named attributes in the MLM server, thereby creating
persistent storage for whatever the LCP deems necessary. The MLM
server simply stores these attributes; there are never any side effects of
setting them. For background, see Section 3.1.3, page 26.

cancel Prevents execution of a command that has already been queued in the
MLM server but not yet started. The cancelled command returns
response cancelled status, and the response for the cancel
command itself follows.

Note: The cancel and response commands may not be cancelled.

config Copies configuration information, especially about element map
changes, from the LCP to the MLM server.

The MLM server stores a non-authoritative copy of all the element map
information for all the LCPs it controls. Each LCP must use the config
command in ALI/R to update the MLM server’s copy of the element
map information whenever it changes. The element map should change
only as a result of administrator or operator actions.

In the full scope option, all information that the MLM server
associates with the LCP is deleted and replaced with information listed
in the config command. In the partial scope option, the MLM
server replaces only pieces of LCP information that are listed in the
config command.

Normally, the full scope option is employed at startup and when
major changes to the library configuration occur, whereas partial
scopeis employed when a cartridge movement operation happens.
Very large libraries can initially use a partially populated full scope
option followed by a series of partial scope commands, if this
proves easier.

40 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

The config command does the following:

• Copies the list of slots to the MLM server, including information on
which bay slots are in, the PCL of the cartridge in a slot, what form
factor of cartridge is in (or could be in) that slot, whether the slot is
occupied or not, and whether the slot is accessible or not.

• Copies the list of drives to the MLM server, including information
on whether there is a cartridge in the drive (it may not have been
loaded, so the DCP might not see it) and whether it is accessible.

• Copies the list of bays to the MLM server, including information on
whether each bay is accessible or not. It is possible for a single bay
in a multibay library to be inaccessible or temporarily broken.

• Copies a list and count of free slots in each form factor inside all
library bays to the MLM server. Some libraries have no name for
empty slots, and bays sometimes contain several form factors, so we
need a count of the number of free slots of each type.

• Provides some approximate performance information to the MLM
server for the library. The MLM server may use that information
when choosing which library to use. For example, a library with an
expected cartridge mount time of 10 seconds may be preferable over
one with an expected mount time of 24 hours.

goodbye Tells the MLM server to end this session and clean up its end of the
session. This protects against the accumulation of idle connections,
since the MLM server has no way of detecting that an LCP exited other
than the TCP/IP keepalive option. keepalive helps recover from
process failures, but an LCP should send a goodbye before exiting to
prevent unnecessary continuation of connection resources.

message Sends a message of some severity level to the MLM server. The LCP
loglevel attribute determines a limit on the severity level of messages
sent to the MLM server. This command provides a mechanism for the
LCP to send messages that the MLM server can convey to an operator
and possibly a system administrator.

Note: This mechanism may change in future releases of OpenVault.

007–3305–003 41

3: Abstract Library Interface (ALI) Language

ready Tells the MLM server, along its variations, the current status of the
library, and whether it is available for cartridge operations. Like the
config command, the ready command is just a shorthand way of
conveying attributes about ALI objects to the MLM server.

These are variations of the ready command:

ready The LCP has resynchronized its internal
information with the physical state of its
device, and is prepared to accept
commands that require it to access its
device.

ready not The library is temporarily unavailable for
motion operations, such as ALI mount,
unmount, move, and eject, or ADI
load and unload.

ready lost The LCP has lost contact with its device.

ready broken The LCP detected that its device
hardware is reporting a hard failure and
is nonfunctional.

See Section B.3, page 108, for more information about ready states.

response Acknowledges and indicates success or failure of an ALI command.
The optional text portion of the response contains error details or
command results.

show Obtains the value of an attribute that the LCP previously stored in the
MLM server.

3.2.6 Ordering of ALI Response Text

For some ALI commands, the matching ALI/R response command for a successful
response contains a text portion, which must have a particular format and ordering.
This section describes these requirements.

42 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

3.2.6.1 Response Text for ALI show Command

The text portion of a successful response to the show command depends on the
specified mode for the show command, and on the number of attributes to be
queried. There are three possible modes:

ALI_show_name Shows name only.

ALI_show_value Shows value only.

ALI_show_namevalue Shows name and value, in that order.

For each attribute to be queried, the text portion of the response includes name-value
information, as dictated by this mode, and is ordered according to the specified
attribute list. So, for example, if a show command requested a query of LCP
loglevel and vendor attributes, with the ALIR_show_namevalue mode, the
corresponding text portion of the response would look something like this:

text[’loglevel’ ’debug’ ’vendor’ ’EXABYTE’]

3.2.6.2 Response Text for ALI mount and ALI unmount Commands

The text portion of a success response for mount and unmount includes the value
tuple:

source slotID, PCL, and OpenVault drive name

The values are not tagged with a name, and must appear in this order. The
corresponding text portion of the response would look something like this for source
slotID slot 1, for PCL AB1234, and for drive fred:

text[’slot 1’ ’AB1234’ ’fred’];

3.2.6.3 Response Text for ALI move Command

The text portion of a success response for a move command includes the value tuple:

source slotID, PCL, destination slotID

The values are not tagged with a name, and must appear in this order. The
corresponding text portion of the response would look something like this for source
slotID slot 2, for PCL AB5432, and for destination slotID slot 5:

text[’slot 2’ ’AB5432’ ’slot 5’];

007–3305–003 43

3: Abstract Library Interface (ALI) Language

3.2.6.4 Response Text for ALI eject Command

The text portion of a success response for an eject command includes the value pair
slotID, PCL. The values are not tagged with a name, and must appear in this order.
The corresponding text portion of the response would look something like this for
slotID slot 10 PCL AB9999:

text[’slot 10’ ’AB9999’];

3.2.7 Other Information

See Appendix B, page 107, for a list of return values and detailed information about
ready states.

44 007–3305–003

Chapter 4

Programming a Library Control Program (LCP)

This chapter provides a tutorial to LCP programming, and includes the following
topics:

• Section 4.2, page 46, talks about starting up a control program.

• Section 4.3, page 50, describes the LCP subroutine libraries.

• Section 4.4, page 61, discusses layout of sample source code.

• Section 4.5, page 64, presents tables of OpenVault tokens for an LCP.

4.1 About the LCP
A library control program (LCP) translates between the OpenVault ALI and the actual
device control interface for its library, and between device responses and ALI/R. The
LCP does what is necessary to affect the required ALI semantics. It keeps the MLM
server’s cache (persistent store) up to date regarding LCP configuration, library
configuration, and ready state information. To do this, the LCP sends config and
ready commands when it detects changes in state, on a best-effort basis.

4.1.1 Use of Persistent Storage

Currently, the library configuration and state is moved in one direction only, from an
LCP to the MLM server persistent store. The MLM server uses this information to
assist with library and drive selection for cartridge and volume mounts. In future
revisions of OpenVault, the LCP might recover some state from the persistent store, so
that state and configuration information can flow in both directions. However, the
LCP and library are always considered the authoritative source for information about
the LCP or its library.

4.1.2 LCP Configuration

In sample implementations, LCP configuration is stored in a configuration file that is
local to each LCP. See Section 4.2.1, page 46, for more information.

007–3305–003 45

4: Programming a Library Control Program (LCP)

4.2 Initialization Issues
Each LCP must initialize itself in order to contact the MLM server.

Removable media libraries may be connected to multiple hosts and thus have
multiple control paths. There may be one LCP associated with each control path.
Only one LCP at a time can be active for any library; the MLM server arbitrates
which LCP is active.

For example, an LCP could be on an inactive library connection. The LCP boot
sequence must not interfere with another LCP with an active connection. The MLM
server is the arbitrator of control for multiconnected libraries and drives. An LCP
should not assume that it controls a library until the MLM server says so.

4.2.1 Configuration File

Each LCP should have a configuration file containing at least the following
information:

Address of the
controlling MLM server

This allows the LCP to initiate contact with the
controlling MLM server. It is the name of the system, or
its numeric IP address. The MLM server is usually
available at well-known port number on that system,
by default 44444.

OpenVault name for
the managed library

The MLM server uses this name as an identifier for this
physical library. This is the name of the device that it is
managing, not the name of the particular instance of
LCP. All names must be unique within an OpenVault
domain so that the server can detect multiconnected
libraries (multiple LCPs controlling the same library).

LCP instance name The instance name is arbitrary, but is required for cases
where there are multiconnected libraries.

Control path to the
library

This path show an LCP talks to the hardware (for
example, /dev/scsi/sc0d2l0). This information is
not visible to the MLM server. Some library
implementations are not controlled in this fashion, but
all LCP implementations need something equivalent.

OpenVault name for
the drives contained in
this library

The MLM server uses this information to determine
relationships between libraries and drives (between
LCPs and DCPs). The “contained in” relationship is

46 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

helpful when deciding into which drives a cartridge
can be placed, based on which library contains the
cartridge. Each library has some method for addressing
each drive inside that library. The LCP’s name-to-drive
address mapping takes the form: the OpenVault drive
named dlt1 corresponds to library drive 1, while the
drive named dlt2 corresponds to library drive 2.

For easy editing, LCP configuration files should be composed of readable ASCII text.

4.2.2 LCP Boot Sequence

The LCP boot sequence is composed of the following steps:

1. When an LCP boots or re-boots, it does the following:

a. Allocates internal data structures.

b. Refrains from talking to the library.

The LCP boots into activate disable state, and must wait for the MLM
server to tell it when to talk to the library. If the library is dual-ported with
another LCP actively controlling it, that session should not be interrupted!
The MLM server issues an activate enable command when conditions
permit your LCP to control the library.If the library is single-ported,
activate enable is issued almost immediately.

c. Reads its configuration file.

d. Establishes a session with the MLM server.

The LCP sends the hello message upon opening the connection. In this
example, name is the OpenVault name for the library, and inst is the LCP
instance name. If connection fails, retry every two minutes. The LCP blocks
until it receives a welcome command telling it which language version to use
during this session.

hello language["ALI"] version["1.0"] client["name"] instance["inst"];

2. When the MLM server is first contacted by an LCP, it does the following:

a. Integrates the library into its list of managed devices.

007–3305–003 47

4: Programming a Library Control Program (LCP)

Thre MLM server checks for other LCPs managing that physical library. If
this LCP is the first, OpenVault allows the LCP to proceed. This sequencing
implies that LCPs are given control of their associated library on a
first-come-first served basis.

b. Eventually issues an activate enable command to the LCP.

3. When the MLM server says to activate enable, the LCP does the following:

a. Replies to the MLM server with a ready no command.

The LCP informs the MLM server that it has started to come up, but is not
yet ready to accept cartridge movement commands.

b. Talks to the library to determine:

• That the library is supported by this LCP (“ATL-2640” is supported).

• Whether or not the library supports PCLs (barcodes), true or false.

• List of supported cartridge form factors (“DLT”); may be compiled into
the LCP

• Total number of slots for each formFactor

• Total number of used slots for each formFactor

• Import/export port configuration

• Slotmap (all the barcodes and occupancy info for the library)

• Any other information that may be relevant to library or LCP operation

c. Collects any state or configuration information from the MLM server.

The LCP can store state or configuration information in the OpenVault
persistent store.

d. Pushs all the slotmap and drive information up into the MLM server.

The LCP owns the slotmap and therefore needs to update the MLM server’s
copy of the slotmap whenever required. The LCP needs to tell the MLM Core
when it is ready to accept cartridge movement commands.

e. Sends a ready command to the MLM server.

The LCP is now ready to accept cartridge movement commands.

48 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

f. Responds success to the original activate enable command.

This is defined to be the last step as a convenience to the MLM server, so that
the server can block until it receives a response from its activate enable
command rather than continually polling for arrival of the ready command.

4. After the MLM receives slotmap and drive information from the LCP, the server
does the following:

a. Crosschecks the list of drives.

The MLM server crosschecks the list of contained drive names with the list of
drives controlled by known DCPs. Not all DCPs may have checked in before
the LCP does. The MLM server keeps a list of known DCPs that have not yet
checked in so that it can flag them as possible hardware failures.

b. Crosschecks the list of PCLs (barcodes).

The MLM server crosschecks the LCP’s list of PCLs against the previously
known contents of the library, looking for new or missing cartridges. A
message is sent to the system administrator and/or a logfile if any changes
are detected.

c. Stores all the slot and drive information in persistent store.

The MLM server stores all the information that the LCP provided in its
database. That information is the basis for choosing drives and cartridges on
behalf of CAPI or AAPI clients.

5. When the MLM server gets a successful response to activate enable, it sends
the LCP its message logging level and marks the library as being available for
cartridge mounts.

The library is ready to accept cartridge mount, unmount, and movement requests.
This implies that cartridges in that library are no longer filtered out of the list of
candidates for mount operations because they are not accessible to OpenVault.

4.2.3 Activation Sequence

When an LCP receives an activate enable command from the MLM server, and
the LCP is in ready lost state, it performs these steps:

1. Accesses its library to acquire or verify device-specific configuration and state.

For example, an LCP may consult its library to determine the following:

007–3305–003 49

4: Programming a Library Control Program (LCP)

• Library supported by this LCP (For instance, “ATL-2640” is supported.)

• Whether the library is in a usable state by this LCP

• Whether the library supports verification of PCLs (barcode reader)

• Supported cartridge form factors (for instance, “DLT”)

• Total number of slots for each formFactor

• Total number of free slots for each formFactor

• Import and export port configuration

• Element maps (slot, drive, bay, port)

2. Pushes configuration information to the MLM server.

For example, configuration information includes: free slots, element maps, and
performance information. The LCP is responsible for updating the MLM server’s
copy of element maps whenever it detects a change in map information.

3. Transitions to ready state, and pushes this new state to the MLM server.

While in ready lost state, the LCP should service the activate command, and
any ALI commands in the session that do not require device access. The LCP should
return a ready error (ALI_E_READY) and resend ready lost state for other ALI
commands.

4.3 LCP Development Framework
The infrastructure developer’s kit includes a framework for writing an LCP that helps
ease the development, porting, and maintenance effort for new devices. The
framework provides general processing of ALI and ALI/R commands, thus freeing
the developer to focus on the idiosyncrasies of a particular device, and on developing
suitable support for a new removable media library.

This section describes the general source tree layout.

50 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

4.3.1 OpenVault Client-Server IPC

OpenVault clients and servers communicate with a custom interprocess
communication (IPC) layer. LCP modules that deal directly with ALI and ALI/R
must include the following header file, and be loaded with the following C library:

ovsrc/include/ov_lib.h

C data structures, macros, and subroutine prototypes for IPC

ovsrc/src.LGPL/comm/libov_comm.a

C library containing IPC subroutines

4.3.2 ALI Parser and ALI/R Generator

The framework includes language parsers and generators. LCP modules using these
facilities must include the following header files, and be linked with these C libraries:

ovsrc/src.LGPL/include/ali.h

Supported ALI and ALI/R language version, ALI standard errors,
and C data structures for ALI and ALI/R command representation

ovsrc/src.LGPL/include/lcp.h

Parser and generator subroutine prototypes

ovsrc/src.LGPL/include/hello.h

C data structures for HELLO and WELCOME command representation

ovsrc/src.LGPL/hellor/libov_hello.a

C library that contains HELLO parser-generator subroutines

ovsrc/src.LGPL/ali/libov_lcp.a

C library that contains ALI parser-generator subroutines

007–3305–003 51

4: Programming a Library Control Program (LCP)

4.3.3 LCP C Library Routines

The LCP(3) man page documents the ALI and ALI/R lexical library routines that you
employ when writing a LCP. Table 4-1 offers a summary of these routines.

Table 4-1 ALI and ALI/R Lexical Library Routines

Purpose of Activity LCP Function Short Description

To initiate session with
MLM server

ALIR_initiate_session() Begins session with a specific MLM server,
including HELLO version negotiation.

To parse ALI command
from MLM server

ALI_receive() Parses an ALI command and returns an ALI
command structure.

To acknowledge ALI
command

ALI_acknowledge() Informs MLM server that the LCP received
an ALI command.

To send ALI/R command
to MLM server

ALIR_alloc_cmd()
ALIR_alloc_ready()
ALIR_alloc_message()
ALIR_alloc_slotinfo()
ALIR_alloc_bayinfo()
ALIR_alloc_driveinfo()

Allocates ALIR command structure.
Allocates ALIR command for ready
command.
Allocates ALIR command for ALIR message.
Inserts slot map info for config command.
Inserts bay map info for config command.
Inserts drive map info for config command.

To send final response for
ALI command to MLM
server

ALIR_alloc_response()
ALI_alloc_string()
ALIR_send()
ALIR_free()

Allocates ALIR response structure.
Allocates string for response, error, data
results.
Transmits ALIR command to MLM server.
Deallocates ALIR command structure.

To free ALI command ALI_free() Deallocates ALI command structure.

4.3.4 LCP Common Framework

The infrastructure developer’s kit includes common utility code for writing an LCP.
To use this code, include the following header files, and read the following C module:

ovsrc/src.GPL/server/include/queue.h

Generic queue and linked list implementation

52 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

ovsrc/src.GPL/include/cctxt.h

Generic command queuing mechanism

ovsrc/src.GPL/include/maps.h

Generic element map representation

ovsrc/src.GPL/include/lcp_lib.h

Generic representation of LCP and library state, generic
representation of an attribute, common LCP fixed and programmable
entry points, and common LCP utility subroutine prototypes

ovsrc/src.BSD/lcp/common/util.c

LCP common fixed-entry points and utility subroutines

4.3.4.1 Generic Representation of a Library (lcp_lib.h)

Much of an LCP’s representation of LCP and library state can be represented
generically. However, the LCP developer needs a way to customize this
representation for a particular library and implementation.

The LCP framework provides a private data area and programmable LCP entry
points as a means for the developer to customize the LCP’s representation of LCP and
library state. The private data area allows the developer to maintain additional
information about the LCP and library; the programmable entry points allow the
developer to customize actions associated with ALI command dispatch, deactivation
(transition to ready lost state), graceful shutdown, and ALI/R command task ID
generation. This arrangement allows the shared framework to invoke these entry
points as appropriate.

007–3305–003 53

4: Programming a Library Control Program (LCP)

Example 4-1 shows the framework’s generic representation for a library.

Example 4-1 Generic Library Representation

Here is the framework’s generic representation for a library:

struct libinfo
{

/* elements from LCP config file. */

char *client; /* MLM name of this library. */

char *instance; /* Client instance. */

char *mlmhost; /* MLM host. */
int mlmport; /* MLM port. */

int pollinterval; /* seconds between library polls */

char *addr; /* library control address. */

/* elements initiated by LCP. */

char *type; /* Type of library. */
enum ALIR_msg_severity loglevel; /* Log level for LCP messages */

enum ALIR_ready_type readystatus; /* ready, not r_, disconnected */

int supportPCLs; /* 1 if barcode scanner, or 0 */

char *vendor; /* Library vendor name. */

queue_t ALI_cmd_queue; /* ALI command queue. */

queue_t ALIR_cmd_queue; /* ALIR command queue. */
int waiting_for_ack; /* 1 if waiting for ack, or 0 */

char *taskid_for_ack; /* TaskID of last ALIR command */

void(*lcp_deactivate)(struct libinfo *libi); /* deactivate */

void(*lcp_exit)(struct libinfo *libi, int abnormal); /* shutdown */

void(*lcp_dispatch)(struct libinfo *libi, struct ALI_command *cmd);
char *(*lcp_taskid)(struct libinfo *libi); /* taskid generation */

/* element map info, shared by do- and control-layers */

element_map_t slotmap; /* Slot map */

element_map_t drivemap; /* Drive map */

element_map_t portmap; /* Port map */
element_map_t baymap; /* Bay map */

void *private; /* LCP private libary info */

};

54 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

4.3.4.2 Common LCP Entry Point

An LCP that makes use of this developer framework must call the lcp_init
subroutine, shown in Example 4-2, to initialize the generic and private data areas for
LCP and library information, and set the programmable LCP entry points:

Example 4-2 lcp_init Subroutine

void lcp_init(struct libinfo *libi,

void lcp_init_private(),

void lcp_deactivate(),

void lcp_exit(),
void lcp_dispatch(),

char *lcp_taskid(),

void slot_private(),

void drive_private(),

void bay_private(),
void port_private());

4.3.4.3 Programmable LCP Entry Points

This entry point is called one time only from lcp_init(); so the libinfo structure
does not store it. Required entry point for LCP private data area allocation and
initialization:

void lcp_init_private(struct libinfo *libi);

Remaining entry points are stored in the libinfo structure. Required entry point for
LCP private actions to activate disable:

void lcp_deactivate(struct libinfo *libi);

Required entry point for LCP private actions to shut down gracefully and exit:

void lcp_exit(struct libinfo *libi, int abnormal);

Required entry point for ALI command dispatch from the command state machine:

void lcp_dispatch(struct libinfo *libi, struct ALI_command *cmd);

Required entry point for LCP to generate a task ID for ALI/R commands:

void char *lcp_taskid(struct libinfo *libi);

Optional entry points for element map allocation and initialization (may be NULL):

007–3305–003 55

4: Programming a Library Control Program (LCP)

void slot_private(queue_t *q, int initflag);
void drive_private(queue_t *q, int initflag);

void bay_private(queue_t *q, int initflag);

void port_private(queue_t *q, int initflag);

4.3.4.4 Generic Representation of Element Maps

Much of the information that an LCP needs to maintain about library elements,
including slots, drives, bays, and ports, may be generically represented. However, LCP
developers must be able to customize element information that the LCP maintains.

For example, typical information that an LCP needs to maintain about a slot includes
the slotID, the device-specific address for this slot, the name of the bay in which this
slot is located, whether the slot is accessible and occupied, the PCL of the cartridge
that is currently occupying this slot (if any), and the name of the drive where the
cartridge that was last in this slot is currently mounted (if any).

For typical slot information, the framework provides an extension to the common
information by means of an LCP private data area and programmable entry points for
allocating and deallocating this data area.

An example of how an LCP might use its private slot data area is for multi-sided
media, where the library can mount the cartridge either “side A” up, or “side B” up.
In addition to the typical slot information, an LCP for such a library would probably
maintain the current orientation of a cartridge in its private data area for that slot.

The element map header file, maps.h, is separated from the LCP common header file,
lcp_lib.h, so that the generic element map representation and subroutines may be
used separately from the generic library piece. In the sample implementations, this
permits the ALI semantic layer and the control layer modules for an LCP to share the
element map representation, without both having to include the generic library piece.
The control layer needs the generic element map piece, but not the generic library
piece.

Example 4-3 illustrates the common representations for slot, drive, bay, and port:

Example 4-3 Common Slot, Drive, Bay, and Port Representations

typedef struct slot {

char *name; /* Slot id. */

char *addr; /* Hardware address. */

char *bayid; /* Name of bay where slot resides */

char *shape; /* Of cartridges fitting this slot */

56 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

int access; /* T/F: is slot accessible? */
int occupied; /* T/F: is slot occupied? */

char *PCL; /* Label of cartridge in slot, if any */

char *driveid; /* Drive with slot’s cartridge, if any */

void *private; /* LCP private data area. */

queue_t queue; /* To next/prev slots. */
} slot_t;

typedef struct drive {

char *name; /* Name of drive. */

char *addr; /* Hardware address. */

char *bayid; /* Name of bay where drive resides */

char *shape; /* Of cartridges that fit in this drive */
int access; /* T/F: is drive accessible? */

int occupied; /* T/F: is drive occupied? */

char *PCL; /* Label of cartridge in drive, if any */

char *slotid; /* Slot from where cartridge mounted */

void *private; /* LCP private data area */
queue_t queue; /* To next/prev drives */

} drive_t;

typedef struct bay {

char *name; /* Name of bay */

char *addr; /* Hardware address */

int access; /* T/F: is bay accessible? */
void *private; /* LCP private data area */

queue_t queue; /* To next/prev bays */

} bay_t;

typedef struct port {

char *name; /* Name of port */
char *addr; /* Hardware address */

char *bayid; /* Name of bay where port resides */

int access; /* T/F: is port accessable? */

element_map_t slots; /* Separately addressable slots in port */

void *private; /* LCP private data area */
queue_t queue; /* To next/prev ports */

} port_t;

4.3.4.5 Convenience Routines for Element Maps

The element map header file is separated from generic library representation, to allow
element maps to be shared between potentially different layers of an LCP, for instance
between the ALI semantic layer and the device access layer. In sample

007–3305–003 57

4: Programming a Library Control Program (LCP)

implementations, the device layer fills in some of this information and the ALI
semantic layer fills in the rest, then passes element maps to the MLM server with an
ALI/R config command.

The following convenience routines are provided in module
ovsrc/include/util.c to handle LCP element maps. See the
ovsrc/include/maps.h file for subroutine prototypes.

void map_init() Initializes element map of a given
type.

void map_free() Frees an element map.

void map_move() Swaps two element maps.

slot_t *slotmap_add() Adds an entry to the slot map.

void slotmap_del() Deletes a slot map entry.

slot_t *slotmap_find_name() Finds the entry for a given name in
the slot map.

slot_t *slotmap_find_addr() Finds the entry for a given address
in the slot map.

slot_t *slotmap_find_PCL() Finds the entry for a given PCL in
the slot map.

slot_t *slotmap_find_empty() Finds an empty slot, if one exists.

int slotmap_compare() Compares two slot map entries for
equivalence.

void slotmap_mount() Updates slot information after a
mount.

void slotmap_unmount() Updates slot information after an
unmount.

void slotmap_move() Updates slot information after a
move.

void slotmap_inject() Updates slot information after an
inject.

void slotmap_eject() Updates slot information after an
eject.

drive_t *drivemap_add() Adds an entry to the drive map.

58 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

void drivemap_del() Removes an entry from the drive
map.

drive_t *drivemap_find_name() Finds entry for a given drive name
in the drive map.

drive_t *drivemap_find_addr() Finds entry for a given drive
address in the drive map.

int drivemap_compare() Compares two drive map entries
for equivalence.

void drivemap_inject() Updates drive information after an
inject.

bay_t *baymap_add() Adds an entry to the bay map.

void baymap_del() Removes an entry from the bay
map.

bay_t *baymap_find_name() Finds entry for a given bay name in
the bay map.

bay_t *baymap_find_addr() Finds entry for a given bay address
in the bay map.

int baymap_compare() Compares two bay map entries for
equivalence.

port_t *portmap_add() Adds an entry to the port map.

void portmap_del() Removes an entry from the port
map.

port_t *portmap_find_name() Finds entry for a given port name
in the port map.

port_t *portmap_find_addr() Finds entry for a given port address
in the port map.

int portmap_compare() Compares two port map entries for
equivalence.

4.3.4.6 LCP Utility Functions

This section summarizes convenience routines available in module
ovsrc/include/util.c, grouped by purpose:

007–3305–003 59

4: Programming a Library Control Program (LCP)

• The following functions are provided for ALI command queuing and the state
machine:

queue_t * ali_command() Enqueues ALI command, and
initializes command state

void ali_next() Sends next ALI command.

void ali_complete() ALI command finished, so
updates state and dequeues it.

void * ali_context() Sets and returns private
command context.

enum cmd_state ali_state() Returns ALI command state.

• The following functions are provided for ALI/R command queuing and MLM
server acknowledgment processing:

queue_t * alir_command() Enqueues ALI/R command for
sending.

void alir_next() Dispatches next ALI/R
command.

void alir_abort() Dequeues pending ALI/R
commands.

int ali_response() Matches ALI response to ALI/R
command, and vice-versa.

• The following function is provided for LCP ready state processing:

void readystate_change() LCP standard ready state
processing.

• The following functions are provided for handling ALI error responses:

void attribute_error() Handles attribute or show error.

void ready_error() Handles ready state error.

• The following functions are provided for mandatory attribute and show
processing:

int attribute_() LCP generic attribute and show
processing.

int lcp_attr() Attribute and show for generic
LCP attribute.

60 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

int bay_attr() Attribute and show for generic
bay attribute.

int drive_attr() Attribute and show for generic
drive attribute.

int slot_attr() Attribute and show for generic
slot attribute.

int bay_description() Attribute and show for bay
description attribute.

int drive_description() Attribute and show for drive
description attribute.

int slot_description() Attribute and show for slot
description attribute.

int lcp_name() Attribute and show LCP name
attribute.

int lcp_supportPCLs() Attribute and show LCP
support PCLs attribute.

int lcp_vendor() Attribute and show LCP vendor
attribute

int lcp_loglevel() Attribute and show LCP
loglevel attribute.

• The following functions are provided for debugging:

void print_stringlist() Prints ALIstringlist.

void print_attrlist() Prints ALIattrlist.

4.4 Example LCP Implementation
The EXABYTE 210/220/440/480 libraries are SCSI-2 medium changers. The
EXABYTE 210 is a model with 10 slots and one or two EXABYTE 8505XL drives. It is
comparatively simple to operate—the LCP source code for this autochanger is less
than 4000 lines long. The EXABYTE 220 is similar but has 20 slots. The EXABYTE 440
has 40 slots and up to four drives. The EXABYTE 480 is similar but has 80 slots. (In
EXABYTE model numbers, the first digit describes the maximum number of drives,
while the remaining digits describe the number of available slots.)

The EXABYTE 210 LCP may be used in conjunction with the EXABYTE 8505XL DCP.

007–3305–003 61

4: Programming a Library Control Program (LCP)

4.4.1 IRIX Implementation

Calls to the pass-through SCSI driver are made with the IRIX C library for generic
SCSI operations; see the dslib(3X) man page. Direct SCSI access is by means of this
device special file:

/dev/scsi/scCdUlL

In this filename, C is the SCSI controller number, U is the unit number, and L is the
logical unit number (lun) for accessing library control. This information may be
determined on IRIX systems by using the hinv command.

4.4.2 Source Code Organization

This section describes the LCP source and run-time configuration modules.

4.4.2.1 Configuration Processing

Example 4-4 shows the ovsrc/clients/lcp/EXABYTE-210/config file, which
describes both the library and MLM server.

Example 4-4 ovsrc/clients/lcp/EXABYTE-210/config File

The ovsrc/clients/lcp/EXABYTE-210/config.c module parses this file and
fills in library information in both the LCP generic and private data areas.

localhost # MLM server host name

739 # MLM server TCP socket

wilma # OpenVault name for library

host-bedrock # LCP instance name

/dev/scsi/sc0d510 # SCSI drive control access path
60 # Library polling interval

fred:82 # Map OpenVault drive name to library address

barney:83 # Do likewise for second drive

4.4.2.2 Device Access Layer

The ovsrc/clients/lcp/EXABYTE-210/control.h header file contains the
device access layer device representation, and declares subroutine entry points for the
ALI semantics layer to access the device. The
ovsrc/clients/lcp/EXABYTE-210/control.c module implements these
subroutines.

62 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

4.4.2.3 ALI Semantic Do* Layer

This layer, named after its many functions starting with “do,” is where the LCP
interprets ALI commands. The programmer customizes this layer, based on the
generic library methods that are provided as part of the LCP developer framework.

The ovsrc/clients/lcp/EXABYTE-210/main.h header file contains the LCP
private data area of a generic library representation, and associated macros and
subroutine prototypes, including four programmable LCP entry points used by the
framework, and semantic support routines. The
ovsrc/clients/lcp/EXABYTE-210/main.c module is where ALI semantic
handling routines are implemented, and where ALI commands are dispatched to the
appropriate semantic handling routine. For example, the ALI mount command would
be dispatched to the do_mount() function.

4.4.2.4 Representing Private Element Map Entries

The EXABYTE 210 LCP does not require custom element maps, because the developer
framework provides an adequate generic representation. Other LCPs may require
customization. Programmers can customize element map representation by creating
the ovsrc/src.BSD/lcp/NAME/maps_private.h and
ovsrc/src.BSD/lcp/NAME/maps_private.c files, where NAME represents the
LCP name.

4.4.3 Future LCP Implementations

There is potential for a single, shared SCSI-2 media changer LCP. An additional
device module would be required only for vendor-dependent processing, or for
possible departures from the standard. The infrastructure developer’s kit was
developed on the IRIX operating system, and has been ported to an increasing list of
operating system platforms.

4.4.3.1 Parallel Execution and Complex Mappings

Certain media libraries may perform parallel (instead of serial) execution of
commands, and complex (not simple) mappings of ALI to underlying library control.
Some libraries, such as SCSI-2 media changers, execute device control commands in a
blocking or serial fashion. For most of these devices, there is a one-to-one mapping
between an ALI command and the underlying SCSI-2 request. The LCP
implementation for such a device may be trivial. For this sort of device, the LCP

007–3305–003 63

4: Programming a Library Control Program (LCP)

implementor may simply implement all ALI commands in a serial fashion. No
extension of the framework is needed.

Other libraries, such as the StorageTek ACSLS and the IBM 3494, provide some
parallelism in control command execution. Optimal use of these devices requires
some extra work on the part of the LCP developer to extend the framework. These
controllers tend to be more complex than SCSI-2, and require one ALI command to be
mapped to potentially multiple underlying control requests. This requires a command
execution state machine. Also, developers must understand command dependencies
and how the underlying library or controller executes commands, to ensure proper
sequencing.

4.5 Defined Tokens List
This section documents the predefined strings that are relevant to LCP development.

4.5.1 Cartridge Form Factors

The ALI interface lets the LCP describe to the MLM server what shapes of cartridges
it can accept, and what capabilities it can offer with cartridges of that shape. Table 4-2
shows the tokens used for the currently existing cartridge shapes. Cartridge form
factors are also called slot type names.

Table 4-2 Predefined Cartridge Form Factor Tokens

Token Description or Usage

8mm Any generic 8–mm shell

3480 For example: IBM 3480/3490/3495, STK 4480/4490, and so forth

DLT Digital linear tape (Quantum)

DAT 4 mm digital audio tape (DDS1 and DDS2)

D2-S Small DST cartridges (25 GB capacity)

D2-M Medium DST cartridges (75 GB capacity)

D2-L Large DST cartridges (165 GB capacity)

DTF 20 GB cartridges from Sony

64 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

4.5.2 Attribute Names (LCP)

Table 4-3 shows one attribute used in an LCP, where it is used, and what it means.

Table 4-3 Predefined Attribute Name Tokens (LCP)

Attribute Name Where Used Possible Values Required? Description

ExchangeTime ALI config
command, perf
clause

Numeric, in
seconds

Yes The approximate time it takes for
the library to move a cartridge
from its home location to a drive,
or back, not including drive
load/unload time.

007–3305–003 65

Chapter 5

Abstract Drive Interface (ADI) Language

This chapter provides programmers with an introduction to the OpenVault languages
for controlling removable media drives, and includes the following sections:

• Section 5.1 describes the language in which the MLM server sends directives to a
DCP, and responds to requests sent by a DCP.

• Section 5.2, page 78, tells how a DCP sends configuration and status to the MLM
server, and responds to directives from the MLM server.

5.1 Abstract Drive Interface (ADI)
The following sections describe the abstract drive interface (ADI), including objects,
object attributes, naming conventions, and the ADI command repertoire.

5.1.1 About ADI

ADI is a language that provides an abstraction of removable media drives managed
by OpenVault. ADI hides details of the underlying drive and control without
compromising the ability of OpenVault as a whole to manage its resources efficiently.

007–3305–003 67

5: Abstract Drive Interface (ADI) Language

5.1.2 ADI Object Definitions

The ADI language manipulates the following objects:

Access method instance The instantiation of a drive access method—the
implementation of a particular set of capabilities that
describe a mode of access to the drive; this is
equivalent to a UNIX device special file or dev node.

Command ADI commands become objects as far as ADI is
concerned. When the MLM server sends an ADI
command, it associates a task ID with that command.
The sender may refer to that command later by using
the same task ID, but only to cancel the command.
When a DCP receives a command, it includes the task
ID in command responses.

Drive A place where a cartridge may be mounted and its
media loaded for read/write access. For a conceptual
view, see Figure 5-1, page 69.

Drive control program
(DCP)

Each DCP manages the configuration of drives, and
performs drive control tasks associated with mount and
unmount requests from OpenVault client applications.
The main purposes of a DCP are to expose drive
configuration to the MLM server, and to control drives
that have an OpenVault accessible control interface.

68 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

See Chapter 6, page 85, for a tutorial on DCP
programming.

Partition A region on the cartridge media that has a physically
marked beginning and end, both of which the drive
recognizes.

Mount point

Media access point
(read/write)

Load cartridge
in drive

Mount cartridge

Control
interface

Figure 5-1 Conceptual View of a Drive

5.1.3 Abstraction of a Drive

The most important object managed by a DCP is the drive, which has the following
traits:

Capabilities and mode
of access

A drive has an associated set of capabilities, which
describe specific feature settings. Capabilities determine
which device driver to use for control and data requests,
what device settings to select, and device state to check.
Particular combinations of capabilities represent a
particular mode of access. A drive has a configurable
set of legal access modes, each of which represents a
logical instance of the drive with underlying control
and access methods. The use of canonical capabilities
and modes of access is what permits a DCP to hide

007–3305–003 69

5: Abstract Drive Interface (ADI) Language

implementation details such as the underlying local
control and access methods for the device.

Control path A control interface to the drive that is accessible by the
DCP, and possibly by OpenVault client applications on
the DCP host. Typically, a drive is connected to a host
by a local channel or bus. This connection represents
the control path to the drive.

Data path A connection between the DCP host and the drive
media access point that may be accessible by the DCP
and MLM client applications on the DCP host. Drives
with a control path typically also have a data path, with
control and data paths sharing the same connection,
with access through a local device driver. For drives
with a data path, DCP may require access to that data
path, for example to identify a partition. A drive media
access point may lack a data path. For example, a set of
RGB lines attaching a video drive to a display device
lacks a host connection, so applications do not have
access to it.

Drive handle A local binding between a name, such as a device
pathname, and a logical instance of the drive, such as a
device node that corresponds to a particular mode of
access. The name is called a drive handle. For drives
that have a data path, the drive handle may be passed
to and used by an OpenVault client application to send
drive control or access the media. When the binding is
removed, the drive handle is invalidated.

Media Recordable surface(s) upon which data are read or
written. A cartridge may contain one or more pieces of
media. Associated with this and the drive is a bit
format, which determines the recording format.
Together with media type, bit format determines media
storage capacity.

70 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Media access point A cartridge must be moved and the media it contains
engaged at a media access point before the media can
be read/write accessed. This is the component that
reads and writes the media contained by a cartridge.
The cartridge, media, or media access point may
physically restrict access to the media. For instance
physical access may be restricted to read only. Once
media is engaged at the media access point, media data
may be accessed through the drive data path.

Mount point The physical drive opening where a cartridge may be
placed, often called the drive door. A cartridge must be
present at the mount point before the cartridge and the
media it contains can be engaged at the media access
point. When the media is disengaged from the media
access point (and returned to its cartridge, as
necessary), the cartridge is returned to the mount point.

5.1.4 Attributes and Object Properties

OpenVault requires a DCP to maintain drive configuration attributes and notify the
MLM server when they change. DCPs use the ADI/R config and ready commands
to do this. These commands send attributes back to the MLM server, where
configuration information is kept in the MLM server persistent store. It is potentially
recoverable by the DCP using the ADI/R show command. Here are the required
configuration attributes:

• DCP ready state (Section B.3, page 108)

• Drive capability configuration (Section 6.5.1, page 99)

• Additional drive attributes (Section 6.5.6, page 103)

Note: Currently, OpenVault does not support recovery of any attribute or property
information stored in the MLM server persistent store by a DCP. However, this
will be supported in a future version of OpenVault, and developers will be
encouraged to use it.

Arbitrary attributes A DCP developer may also maintain arbitrary
attributes, and store them in and recover them from the
MLM server persistent store. These attributes are
opaque to the MLM server.

007–3305–003 71

5: Abstract Drive Interface (ADI) Language

Mandatory attributes A DCP developer may store the loglevel mandatory
attribute in the MLM server persistent store, so it can
recover the attribute and resume logging at the same
level across reboots.

ADI expresses DCP attributes using the tuple:

object type, object nameattribute name

Table 5-1 shows the mandatory attributes, not including the configuration attributes.

Table 5-1 Mandatory DCP Attributes

Object Type Object Name Attribute Name Command

DCP "" Name ADI show

DCP "" loglevel ADI show, ADI attribute set

5.1.5 ADI Object Naming

These names refer to specific ADI objects:

Client name Refers to a specific drive, and is the name by which a
client identifies itself in a HELLO command to the MLM
server. This is the name the MLM server associates
with the device managed by the associated DCP.

DCP name Each DCP is uniquely named by a value pair including
an OpenVault client name and an OpenVault instance
name.

Drive handle Refers to a particular drive access method instance.

72 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Drive name Refers to a removable media drive.

Instance name This name is arbitrary, but is needed if multiple DCPs
control the same drive, so as to differentiate DCPs with
the same client (drive) name.

Partition name References the name for a media partition.

Task ID Uniquely identifies a sender-generated command.

Attribute naming in ADI is different from that for CAPI and AAPI, in which an
attribute is named with TableName.ColumnName; attributes are just columns in a
relational table. In ADI and ADI/R, attributes are named with a tuple:

objectType, objectName, attrName

007–3305–003 73

5: Abstract Drive Interface (ADI) Language

5.1.6 ADI Commands

The MLM server speaks ADI to the DCP, which in turn speaks ADI/R to the MLM
server. The ADI language includes the following commands:

activate Starts and stops the DCP and drive interactions. Once the DCP has
established a session with the MLM server with a hello-welcome
sequence, it may begin accepting ADI commands from the server.
However, until it has successfully been activate enabled by the
server, and is in ready state, it should resend ready lost state and
fail any ADI commands that require drive access, with an
ADI_E_READY error.

The DCP should issue one of the ready command variations when it
finishes processing the activate request. activate is supported for all
drives managed by OpenVault, but is not an implemented operation for
drives that lack an OpenVault control interface.

activate enable Forces the DCP to resynchronize with its
drive hardware, ensuring that the DCP
has current drive state. This helps
support drives that are attached to
multiple hosts. If drive control switches
from one DCP to another, the activate
command ensures that the controlling
DCP has up-to-date drive status.

In cases where multiple DCPs are
associated with one drive (that drive is
attached to multiple hosts), the MLM
server ensures that only one DCP at a
time is actively controlling the drive.

The DCP reports ready when it has
successfully resynchronized with its drive.

activate disable Forces the DCP to stop communicating
with its drive hardware. The DCP
requires an activate enable
command before it can talk to its drive
again. This arrangement supports drives
that are attached to multiple hosts. If
drive control switches from one DCP to
another, the activate disable

74 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

command ensures that the DCP that loses
control does not interfere with another
one.

Performing this command should cause
the DCP to complete or cancel any ADI
commands that require access to the
drive, store persistent drive state in the
MLM server, stop communicating with
the drive, and send a ready lost
command to the MLM server.

Note that activate may require the DCP to have access to a drive
data path, in addition to a control path; otherwise, it may be not an
implemented operation.

attach Selects the appropriate logical instance of a drive according to the access
mode specified by the MLM server. Attach instantiates this access
method as needed, and binds an opaque drive handle to the logical
instance (on UNIX systems, this means linking to a device node). The
drive handle must be unique on the DCP host, and may be generated
by the DCP, or specified by the MLM server. The DCP returns an error
if it detects that the drive handle is already in use on the local host.

Generally, the MLM server invokes attach as part of drive selection
for a CAPI mount, after loading. This command is supported for all
drives managed by OpenVault, but is not an implemented operation for
drives that lack a data path.

In the case of partitioned drives (such as two-sided optical disc units),
the drive handle that is created may be dependent on the partition. For
example, most disks on UNIX systems have the partition to be accessed
encoded in the drive handle (the device node). The loaded media is
positioned to the specified partition. Partition names may be defined;
see Section 6.5, page 99, for a list of partition names.

Typically, drives have a shared control and data path. In this case, the
drive handle that is passed back to the MLM server is ultimately passed
back to an OpenVault client application. The application uses the drive
handle to establish access to the drive control/data path.

The attach command allows the MLM server to change drive access
mode multiple times, without changing any names from the client

007–3305–003 75

5: Abstract Drive Interface (ADI) Language

application’s perspective. However, the application must reestablish
access after each attach for the change to affect the application.

The MLM server ensures that drive access mode is consistent with
drive capabilities.

attribute Provides an attribute, a mechanism by which information that is not
contained in normal configuration data passed to the MLM server can
be accessed. Examples include data that is unique to a drive type, or
data that varies over time. Attributes may read/write or read-only. If
the attributes represent internal information or settings associated with
the drive itself, the DCP sends corresponding requests to the drive, then
returns that information. See Section 5.1.4, page 71.

cancel Attempts to stop execution of a command sent to the DCP. The DCP is
free to continue the execution of the command if the command has
proceeded too far to cancel.

Note: The cancel and response commands may not be cancelled.

detach Removes the logical instance as necessary, and the binding created by
an attach command (on UNIX systems, this means unlinking a device
node associated with the device). The detach command invalidates the
drive handle created by a previous attach command. For drives with
a shared control and data path, this disables a client application from
establishing access to drive control and data paths through this handle.

Generally, the MLM server invokes this command as part of drive
deselection for a CAPI unmount, before unloading. This command is
supported for all drives managed by OpenVault, but is not an
implemented operation for drives that lack a data path.

The MLM server and the DCP should try to ensure that applications do
not continue to access drive control or data through a drive handle that
has been invalidated by detach. Note that detach and attach may
have no immediate impact on an application that was already accessing
the drive control and data paths. Once the application has established
its access, it may proceed to access the drive control and data paths,
without being affected by subsequent invocations of attach and
detach.

76 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

A case in point is with random access media and UNIX applications
that perform an open (read/write) and close system call sequence in
which the drive handle is passed by the application as an argument
only to open(). In this case, the effects of the attach or detach
command may occur only during the open() call. The detach and
attach commands may have no effect on any reads and writes that are
made between open and close.

exit Tells the DCP to store any persistent DCP and drive information to the
MLM server, complete or cancel pending ADI commands, complete or
abort pending drive operations, do shutdown processing as required,
send ready lost and goodbye commands to the MLM server, and
exit.

goodbye Tells the communicating DCP to end this session.

load Moves the cartridge (if a cartridge is present at the drive mount point)
to the media access point, and engages it, making it accessible at the
media access point. The drive is then called loaded.

Minimally, load verifies that the drive is loaded. This command does
not identify which media is engaged. It is invoked by the MLM server
as part of a CAPI mount request. Normally, the ALI mount command
associated with the CAPI mount loads the drive (the library causes the
load to occur), so DCP load needs to verify only that the drive is
loaded.

This command is supported for all drives managed by OpenVault, but
is not an implemented operation for drives that lack an OpenVault
control interface.

reset Tells the DCP to force the drive to reinitialize. This may also cause the
drive to execute self-diagnostics. This is a best-effort type of command.
If it is possible to reset a drive only by resetting the whole SCSI bus,
thereby interrupting other transfers on that bus, the DCP is free to treat
this command as not an implemented operation.

007–3305–003 77

5: Abstract Drive Interface (ADI) Language

If reset is a prolonged drive activity, the DCP should send a ready
not command to indicate that its drive is temporarily not available,
followed by a ready command when the drive becomes available again.

response Acknowledges and indicates success or failure of an ADI/R command.
The optional text portion of the response contains error details or
command results.

show Is the attribute query mechanism. Note that show commands that
query information directly from a drive may require that a DCP have
access to a data path with the drive, and otherwise may return an error.
See Section 5.1.4, page 71.

unload Disengages the media from a loaded drive, returns it to the cartridge as
necessary, and returns the cartridge to the drive mount point. The drive
is said to be unloaded at this point. This command rewinds media
before disengaging, as necessary. It is invoked by the MLM server as
part of a CAPI unmount. Minimally, it detects whether the drive is
already unloaded.

This command is supported for all drives managed by OpenVault, but
is not an implemented operation for drives that lack an OpenVault
control interface.

The ADI/R response is responsible for returning drive usage and
error statistics as transmitted on pages 2 through 5 of the SCSI log:

response whichtask["A"] success

text ["bytes written" "32768" "softerrors" "0" ...];

There is no barrier command in ADI; OpenVault assumes that ADI commands are
executed serially by the DCP and its drive.

5.2 ADI Response (ADI/R)
The following sections describe the ADI response language (ADI/R), including
objects, object attributes, naming conventions, and the ADI/R command repertoire.

78 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

5.2.1 About ADI/R

ADI/R is primarily the response language for ADI. In addition to giving the
matching acknowledgment and final response to an ADI command, ADI/R provides
the means for a DCP to send its configuration and status to the MLM server.

5.2.2 ADI/R Object Definitions

The ADI/R language manipulates the following objects:

Command ADI/R commands become objects as far as ADI/R is concerned. When
a DCP sends an ADI/R command, it associates a task ID with that
command. The sender may refer to that command later by using the
same task ID, but only to cancel the command. When the MLM server
receives a command, it includes the task ID in command responses.

Message A text message to be entered into an MLM server-managed log, and
perhaps displayed on some console by the MLM server, or one of its
administrative applications. Messages are associated with a severity
level, or a level of urgency, which determines (along with site policy)
whether the message text is stored in the MLM server logs, displayed
on a library or OpenVault console for the operator, or both.

5.2.3 Attributes and Object Properties

Currently, ADI/R attributes are not supported by OpenVault, except for attributes
stored by the ADI/R config and ready commands in the MLM server persistent
store. Currently, OpenVault supports only setting and unsetting of these attributes.
See Section 5.1.4, page 71.

007–3305–003 79

5: Abstract Drive Interface (ADI) Language

5.2.4 ADI/R Object Naming

These names refer to specific ADI/R objects:

Message ID Refers to a text message of a given severity level.

Task ID Uniquely identifies a sender-generated command.

5.2.5 ADI/R Command Descriptions

The DCP reads ADI commands from the MLM server, and replies to the server in
ADI/R. The ADI/R language includes the following commands:

attribute With an attribute command, the DCP stores persistent state in the
OpenVault database.

cancel Tells the MLM server to prevent execution of a particular command, if
possible.

Note: The cancel and response commands may not be cancelled.

config Tells the MLM server what access modes are supported, with the form
factors, media formats, and performance characteristics for each. The
config command copies configuration information, such as the
capabilities of a drive, from the DCP to the MLM server. The MLM
server stores a nonauthoritative copy of all such information for all the
DCPs it controls. Each DCP must use the config command to update
configuration information whenever it changes.

The config command is shorthand for sending attributes about a drive
to the MLM server. See Section 5.1.4, page 71, and Section 6.5, page 99,
for more information.

In a full scope, all information associated with the DCP should be
deleted and replaced with the information listed by config. By
contrast, in a partial scope, only the pieces of information about the
DCP that are listed by config should be replaced. Normally, full
scope is used only at startup time, or when making major changes to
drive configuration.

The config command gives the MLM server a list of access modes that
the drive offers. Each mode has a name and additional characteristics:

80 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

• Supported cartridge form factors. Some drives support different
shapes of cartridges, and offer different capabilities when using one
shape instead of another.

• Supported media bit formats. Some drives support different formats
for the bits on the media, and offer different capabilities when using
one bit format instead of another.

• Supported capabilities. Each access mode provides a certain set of
capabilities to the application, and each capability has a name.

• Performance characteristics. Some drives are able to handle different
form factors or media bit formats, and offer different performance
characteristics when using one form factor or bit format instead of
another. The MLM server may use that information when choosing
which drive to use. For example, a drive with a read bandwidth of
greater than 1 MB per second may be required for a particular
application.

• Whether or not a drive is occupied by a cartridge.

goodbye Tells the MLM server to end this session and clean up its end of the
session. This protects against the accumulation of idle connections,
since the MLM server has no way of detecting that a DCP exited other
than the TCP/IP keepalive option. keepalive helps recover from
process failures, but a DCP should send a goodbye before exiting to
prevent unnecessary continuation of connection resources.

message Provides a method for the DCP to send a message to the operator or to
a log file. It contains a list of uninterpreted character strings.

ready With a ready command, the DCP informs the MLM server about the
current status of its drive connection. Like the config command, the
ready command is shorthand for sending drive attributes to the MLM
server.

These are variations of the ready command:

ready yes Tells the MLM server that the DCP is
ready to process commands.

ready no Informs the MLM server that the DCP is
not prepared to process commands at this
time.

007–3305–003 81

5: Abstract Drive Interface (ADI) Language

ready lost Informs the MLM server that the DCP
has lost communication with its drive. It
might be appropriate for OpenVault to
try another control path (another DCP)
connected to the drive.

ready broken The hardware reports a fatal error, so
there is no point in trying an alternate
control path.

See Section B.3, page 108, for more detailed information.

response Acknowledges and indicates success or failure of an ADI command.
The optional text portion of the response contains error details or
command results.

show With a show command, the DCP queries persistent state it has stored in
the OpenVault database.

5.2.6 Ordering of ADI Response Text

For some ADI commands, the matching ADI/R response command for a successful
response contains a text portion, which must have a particular format. This section
describes the required format.

5.2.6.1 Response Text for ADI show Command

The text portion of a successful response to a show command depends on the
specified mode for the show, and on the number of attributes to be queried. There are
three possible modes:

ADI_show_name Shows name only.

ADI_show_value Shows value only.

ADI_show_namevalue Show name and value, in that order.

For each attribute to be queried, the text portion of the response includes name-value
information, as dictated by this mode, and is ordered according to the specified
attribute list. So, for example, if a show command requested a query of DCP
loglevel and vendor attributes, with mode ADIR_show_namevalue, the
corresponding text portion of the response would look something like this:

text[’loglevel’ ’debug’ ’vendor’ ’EXABYTE’]

82 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

5.2.6.2 Response Text for ADI attach Command

The text portion of a success response for an ADI attach command includes the
value drive-handle. Suppose an attach caused the drive handle
/tmp/mlm/handleXXX to be bound to the instantiation of a drive access method.
The corresponding text portion of the response would look something like this:

text[’/tmp/mlm/handleXXX’]

007–3305–003 83

Chapter 6

Programming a Drive Control Program (DCP)

This chapter provides a tutorial to DCP programming, and includes the following
topics:

• Section 6.2, page 86, talks about starting up a control program.

• Section 6.3, page 90, describes DCP subroutine libraries.

• Section 6.4, page 96, discusses sample source code layout.

• Section 6.5, page 99, presents tables of OpenVault tokens for a DCP.

6.1 About the DCP
A DCP (drive control program) translates between the OpenVault ADI and the actual
device control interface for its drive, and between device responses and ADI/R. The
DCP does what is necessary to affect the required ADI semantics. It keeps the MLM
server’s cache (persistent store) up to date regarding DCP configuration, drive
configuration, and ready state information. To do this, the DCP sends config and
ready commands when it detects changes in state, on a best-effort basis.

6.1.1 Use of Persistent Storage

Currently, the drive configuration and state is moved in one direction only, from a
DCP to the MLM server persistent store. The MLM server uses this information to
assist with drive selection for cartridge and volume mounts. In future revisions of
OpenVault, the DCP may recover some state from the persistent store, so that
configuration and state information can flow in both directions. However, the DCP
and drive are always considered the authoritative source for state information about a
DCP or its drive.

6.1.2 DCP Configuration

In sample implementations, DCP configuration is stored in a configuration file that is
local to each DCP. See Section 6.2.1, page 86, for more information.

007–3305–003 85

6: Programming a Drive Control Program (DCP)

6.2 Initialization Issues
Each DCP must initialize itself in order to contact the MLM server.

Drives may be connected to multiple hosts and thus have multiple control paths.
There can be one DCP associated with each control path. Only one DCP at a time
may be active for any drive; the MLM server arbitrates which DCP is active.

For example, a DCP could be on the inactive side of a multiconnected library. The
DCP boot sequence must not interfere with the active side of a multiconnected library.
The MLM server is the arbitrator of control for multiconnected libraries and drives. A
DCP should not assume that it is controlling a drive until the MLM server says so.

6.2.1 Configuration File

Each DCP should have a configuration file containing at least the following
information:

Address of the
controlling MLM server

This allows the DCP to initiate contact with the
controlling MLM server. It is the name of the system, or
its numeric IP address. The MLM server is usually
available at well-known port number on that system,
by default 44444.

OpenVault name for
the managed drive

The MLM server uses this name as an identifier for this
physical drive. This is the name of the device that it is
managing, not the name of the particular instance of
DCP. All names must be unique within an OpenVault
domain so that the server can detect multiconnected
libraries (multiple LCPs controlling the same library).

DCP instance name The instance name is arbitrary, but is required for cases
where there are multiconnected libraries.

Control path to the
drive

This is how a DCP talks to the hardware (for example,
/dev/rmt/tps0d3). This information is not visible to
the MLM server. Some drives are not controlled in this
way (VHS videocassette players, for instance), but all
DCP implementations need something equivalent.

86 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

List of access mode
names and access
capabilities for this
drive

Although implementation-dependent, a way is needed
for administrators to control the capabilities that a DCP
advertises to the server. In IRIX implementations, the
DCP configuration file, such as shown in Example 6-1,
is used. It lists drive names and associated capabilities,
which are string tokens. The OpenVault server
compares these tokens for equality when looking for
drives to satisfy user requests.

Example 6-1 DCP config File

All lines would be prefaced with “cap” in this example:

name type cartridge shorthand capacity device pathname slot type
7base DLT DLT7000 DLT7000 35000 /dev/rmt/tps3d5.7000 DLT7000 capabilities
7s DLT DLT7000 DLT7000s 35000 /dev/rmt/tps3d5s.7000 DLT7000 capabilities
7nr DLT DLT7000 DLT7000 35000 /dev/rmt/tps3d5nr.7000 DLT7000 capabilities
7nrs DLT DLT7000 DLT7000s 35000 /dev/rmt/tps3d5nrs.7000 DLT7000 capabilities
7c DLT DLT7000 DLT7000c 70000 /dev/rmt/tps3d5.7000c DLT7000 capabilities
7sc DLT DLT7000 DLT7000cs 70000 /dev/rmt/tps3d5s.7000c DLT7000 capabilities
7nrc DLT DLT7000 DLT7000c 70000 /dev/rmt/tps3d5nr.7000c DLT7000 capabilities
7nrsc DLT DLT7000 DLT7000cs 70000 /dev/rmt/tps3d5nrs.7000c DLT7000 capabilities
7v DLT DLT7000 DLT7000 35000 /dev/rmt/tps3d5v.7000 DLT7000 capabilities
7sv DLT DLT7000 DLT7000s 35000 /dev/rmt/tps3d5sv.7000 DLT7000 capabilities
7nrv DLT DLT7000 DLT7000 35000 /dev/rmt/tps3d5nrv.7000 DLT7000 capabilities
7nrsv DLT DLT7000 DLT7000s 35000 /dev/rmt/tps3d5nrsv.7000 DLT7000 capabilities
7vc DLT DLT7000 DLT7000c 70000 /dev/rmt/tps3d5v.7000c DLT7000 capabilities
7svc DLT DLT7000 DLT7000cs 70000 /dev/rmt/tps3d5sv.7000c DLT7000 capabilities
7nrvc DLT DLT7000 DLT7000c 70000 /dev/rmt/tps3d5nrv.7000c DLT7000 capabilities
7nrsvc DLT DLT7000 DLT7000cs 70000 /dev/rmt/tps3d5nrsv.7000c DLT7000 capabilities

A UNIX device pathname is included so as to avoid having the DCP understand the
format of a dev_t minor number, or equivalent. The DCP can replicate the path
(copy dev_t) when it needs to create a handle for that combination of drive and
access mode. OpenVault defines the default capabilities of a drive, and the DCP
specifies what capabilities it offers in terms of changes to that default set.

For easy editing, DCP configuration files should be composed of readable ASCII text.

007–3305–003 87

6: Programming a Drive Control Program (DCP)

6.2.2 DCP Boot Sequence

The DCP boot sequence is composed of the following steps:

1. When a DCP boots or reboots, it does the following:

a. Allocates internal data structures and initialize state.

b. Refrains from talking to the drive.

The DCP boots into activate disable state, and must wait for the MLM
server to tell it when to talk to the drive. If the drive is dual-ported with
another DCP actively controlling it, that session should not be interrupted!

The MLM server issues an activate enable command when conditions
permit your DCP to control the drive. If the library is single-ported,
activate enable is issued almost immediately.

c. Reads its configuration file.

d. Establishes a session with the MLM server.

The DCP sends the hello message upon opening the connection. In this
example, name is the OpenVault name for the drive, and inst is the DCP
instance name. If connection fails, retry every two minutes. The DCP blocks
until it receives a welcome command telling it which language version to use
during this session.

hello language["ADI"] version["1.0"] client["name"] instance ["inst"];

2. When the MLM server is first contacted by a DCP, it does the following:

a. Integrates the drive into its list of managed devices.

The MLM server checks for other DCPs managing that physical drive. If this
DCP is the first, OpenVault allows this DCP to proceed. This sequencing
implies that DCPs are given control of their associated drive on a
first-come-first-served basis.

b. (Eventually) issues an activate enable command to the DCP.

3. When the MLM server says to activate enable, the DCP does the following:

a. Replies to the MLM server with a ready no command.

The DCP informs the MLM server that it has started to come up, but is not
yet ready to accept drive control commands.

88 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

b. Talks to the drive to determine:

• That the drive is supported by this DCP.

• The supported media formats (for example: EXABYTE-8mm-5GB).

• Whether or not the drive can support the listed access modes.

• If the drive is loaded or in use at this time.

• Any other information that may be relevant to drive or DCP operation.

c. Collects any state or configuration information from the MLM server.

The DCP can store state or configuration information in the OpenVault
persistent store.

d. Push all the capability information up into the MLM server.

The DCP needs to update the MLM server’s copy of the capability list at boot
time, before the DCP has been activated. This is different from an LCP, which
must be activated in all cases. By contrast, it is unnecessary to activate all the
DCPs that might control a given drive just to determine their capability set.

The DCP takes all its compiled-in settings and information from its
configuration file to generate a config command for the MLM server. There
is a possibility that the offered capabilities might change once the DCP has
had a chance to talk to the drive hardware, but the MLM server must deal
with this if it happens.

e. Sends a ready command to the MLM server.

The DCP is now ready to accept drive control commands.

f. Responds success to the original activate enable command.

This is defined to be the last step as a convenience to the MLM server, so that
the server can block until it receives a response from its activate enable
command rather than continually polling for arrival of the ready command.

4. When the MLM server gets a successful response to activate enable, it sends
the DCP its message logging level.

007–3305–003 89

6: Programming a Drive Control Program (DCP)

6.2.3 Activation Sequence

When a DCP receives an activate enable command from the MLM server, and
the DCP is in ready lost state, it performs these steps:

1. Accesses its drive to acquire or verify device-specific configuration and state.

For example, a DCP may consult its drive to determine:

• If the drive is supported by this DCP

• Whether the drive is in a usable state for this DCP

• Optimal block size

2. Pushes configuration information to the MLM server.

For example, configuration information includes: supported form factors, media
types, bit formats, media capacity, block size, nominal drive load time, drive read
and write bandwidth, and drive capabilities. See the tables in the section Section
6.5, page 99, for particulars.

3. Transitions to ready state, and pushes this new state to MLM server.

6.3 DCP Development Framework
The infrastructure developer’s kit includes a framework for writing a DCP that helps
ease the development, porting, and maintenance effort for DCPs. This section
describes the general source tree layout.

90 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

6.3.1 OpenVault Client-Server IPC

OpenVault clients and servers communicate with a custom interprocess
communication (IPC) layer. DCP modules that deal directly with ADI and ADI/R
need to include the following header file, and be loaded with the following C library:

ovsrc/src.LGPL/include/ov_lib.h

C data structures, macros, and subroutine prototypes for IPC

ovsrc/src.LGPL/comm/libov_comm.a

C library containing IPC subroutines

6.3.2 ADI Parser and ADI/R Generator

OpenVault includes language parsers and generators. DCP modules using these
facilities need to include the following header files, and be loaded with the following
C libraries:

ovsrc/src.LGPL/include/adi.h

Supported ADI and ADI/R language version, ADI standard errors,
and C data structures for ADI and ADI/R command representation

ovsrc/src.LGPL/include/dcp.h

Parser and generator subroutine prototypes

ovsrc/src.LGPL/include/hello.h

C data structures for HELLO and WELCOME command representation

ovsrc/src.LGPL/hellor/libov_hello.a

C library that contains HELLO parser-generator subroutines

ovsrc/src.LGPL/adi/libov_adi.a

C library that contains ADI parser-generator subroutines

007–3305–003 91

6: Programming a Drive Control Program (DCP)

6.3.3 DCP C Library Routines

The DCP(3) man page documents the ADI and ADI/R lexical library routines that you
employ when writing a DCP. Table 6-1 offers a summary of these routines.

Table 6-1 ADI and ADI/R Lexical Library Routines

Purpose of Activity DCP Function Short Description

To initiate session with
MLM server

ADIR_initiate_session() Begins session with a specific MLM server,
including HELLO version negotiation.

To parse ADI command
from MLM server

ADI_receive() Parses an ADI command and returns an ADI
command structure.

To acknowledge ADI
command

ADI_acknowledge() Informs MLM server that the DCP received an
ADI command.

To send ADI/R
command to MLM
server

ADIR_alloc_cmd()
ADIR_alloc_ready()
ADIR_alloc_message()
ADIR_alloc_capinfo()
ADIR_alloc_attr()

Allocates ADIR command structure.
Allocates ADIR ready structure.
Allocates memory for ADIR message.
Puts drive capability info into ADIR capinfo.
Allocates attribute name and value pair.

To send final response
for ADI command to
MLM server

ADIR_alloc_response()
ADI_alloc_string()
ADIR_send()
ADIR_free()

Allocates ADIR response structure.
Allocates string and links into ADI stringlist.
Transmits ADIR command to MLM server.
Deallocates ADIR command structure.

To free ADI command ADI_free() Deallocates ADI command structure.

6.3.4 DCP Common Framework

The infrastructure developer’s kit includes common utility code for writing a DCP. To
use this code, include the following header files, and read the following C module:

ovsrc/src.LGPL/include/cctxt.h

Generic command queuing mechanism

92 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

ovsrc/src.LGPL/include/dcp_lib.h

Generic representation of DCP and drive state, generic representation
of an attribute, common DCP fixed and programmable entry points,
and common DCP utility subroutine prototypes

ovsrc/src.LGPL/server/include/queue.h

Generic queue and linked list implementation

ovsrc/clients/src.LGPL/dcp/common/util.c

DCP common fixed-entry points and utility subroutines

6.3.4.1 Generic Representation of a Drive (dcp_lib.h)

Much of a DCP’s representation of DCP and drive state can be represented
generically. However, the DCP developer needs a way to customize this
representation for a particular drive and implementation.

The framework provides a private data area and programmable entry points so the
developer can customize the representation of DCP and drive state. The private data
area allows the developer to maintain additional information about the DCP and
drive; programmable entry points allow the developer to customize actions associated
with initialization (booting), deactivation (transition to ready lost state), and
shutdown. This arrangement allows the shared framework to invoke these entry
points as appropriate.

Example 6-2 shows the framework’s generic representation for a drive:

Example 6-2 Framework’s Generic Representation

struct driveinfo {

/* elements from DCP config file. */

char *client; /* MLM name of this drive. */

char *instance; /* Client instance. */
char *mlmhost; /* MLM host. */

int mlmport; /* MLM port. */

int timeout; /* ADI receive timeout. */

char *addr; /* Drive access path for DCP. */

/* elements initiated by DCP. */
enum ADIR_ready_type readystatus; /* ready, not r_, disconnected */

enum ADIR_msg_severity loglevel; /* Log level for DCP messages. */

char *vendor; /* Drive vendor name. */

007–3305–003 93

6: Programming a Drive Control Program (DCP)

queue_t ADI_cmd_queue; /* ADI command queue. */
queue_t ADIR_cmd_queue; /* ADIR command queue. */

int waiting_for_ack; /* 1 if waiting for ack, or 0 */

char *taskid_for_ack; /* TaskID of last ADIR command */

void(*dcp_deactivate)(struct driveinfo *drivei); /* deactivate */

void(*dcp_exit)(*drivei, int abnormal); /* shutdown */
void(*dcp_dispatch)(*drivei, struct ADI_command *cmd);

char *(*dcp_taskid)(*drivei); /* taskid generation */

void *private; /* DCP private libary info */

};

6.3.4.2 Common DCP Entry Point

A DCP that makes use of this developer framework must call the dcp_init
subroutine, shown in Example 6-3, to initialize the generic and private data areas for
DCP and drive information, and set the programmable DCP entry points:

Example 6-3 dcp_init Subroutine

void dcp_init(struct driveinfo *drivei,

void dcp_init_private(),
void dcp_deactivate(),

void dcp_exit(),

void dcp_dispatch(),

void dcp_taskid());

6.3.4.3 Programmable DCP Entry Points

This entry point is called one time only from dcp_init(); so the driveinfo structure
does not store it. Required entry point for DCP private data area allocation and
initialization:

void dcp_init_private(struct driveinfo *drivei);

Remaining entry points are stored in the libinfo structure. Required entry point for
DCP private actions to activate disable:

void dcp_deactivate(struct driveinfo *drivei);

Required entry point for DCP private actions to shut down gracefully and exit:

void dcp_exit(struct driveinfo *drivei);

94 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Required entry point for ADI command dispatch from within command state machine:

void dcp_dispatch(struct driveinfo *drivei, struct ADI_command *cmd);

Required entry point for DCP to generate a task ID for ADI/R commands:

void char *dcp_taskid(struct driveinfo *drivei);

6.3.4.4 DCP Utility Functions

The following functions are provided for ADI command queuing and the state
machine:

queue_t * adi_command() Enqueues ADI command, and
initialize command state.

void adi_next() Sends next ADI command.

void adi_complete() ADI command finished, so updates
state and dequeues it.

void *adi_context() Sets and returns private command
context.

enum cmd_state adi_state() Returns ADI command state.

The following functions are provided for ADI/R command queuing and MLM server
acknowledgment processing:

queue_t *adir_command() Enqueues ADI/R command for
sending.

void adir_abort() Dequeues pending ADI/R
commands.

void adir_next() Sends next ADI/R command.

int adi_response() Matches ADI response to ADI/R
command.

The following function is provided for DCP ready state processing:

void readystate_change() DCP standard ready state
processing.

The following functions are provided for handling ADI error responses:

void attribute_error() Handles attribute or show error.

007–3305–003 95

6: Programming a Drive Control Program (DCP)

void ready_error() Handles ready state error.

The following functions are provided for mandatory attribute and show processing:

int attribute_() DCP generic attribute and show
processing.

int dcp_attr() Attribute and show for generic
DCP attribute.

int dcp_name() Attribute and show DCP name
attribute.

int dcp_loglevel() Attribute and show DCP
loglevel attribute.

The following functions are provided for debugging:

void print_stringlist() Prints ADI stringlist.

void print_attrlist() Prints ADI attrlist.

6.4 Example DCP Implementation
The EXB-8505XL drive is a SCSI-2 tape device that accepts 8 mm media.

The DCP for an EXABYTE 8505XL drive may be used in combination with the LCP
for an EXABYTE 210 media changer.

6.4.1 IRIX Implementation

Control access is three-part, and includes use of the local filesystem, a pass-through
SCSI driver, and IRIX magnetic tape interface (MTIO) ioctl() operations.

6.4.1.1 Use of Local Filesystem

This implementation uses a set of drive instance prototypes, which are represented by
a set of existing device special files, for example /dev/rmt/tps0d6. So drive
instances are already instantiated. Attach and detach commands simply bind a drive
handle to an existing instance, or device special file. Creating and removing a binding
is done using the local filesystem mknod() and unlink() operations.

96 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

6.4.1.2 Direct SCSI Commands

Calls to the pass-through SCSI driver are made with the IRIX C library for generic
SCSI operations; see the dslib(3X) man page. Direct SCSI access is by means of this
device special file:

/dev/scsi/scCdUlL

In this filename, C is the SCSI controller number, U is the unit number, and L is the
logical unit number (lun) for accessing drive control. This information may be
determined on IRIX systems by using the hinv command.

Calls to dslib are used to get mode sense information directly from the drive, to
check for information such as whether the drive supports partitions, and to issue
mode select commands, such as those for moving the tape to a particular position.

6.4.1.3 MTIO Operations

MTIO calls are made by sending ioctl() calls directly to the tape driver associated
with the control access path for a particular drive instance. MTIO operations perform
load verification and unload.

6.4.2 Source Code Organization

This section describes the DCP source and run-time configuration modules.

6.4.2.1 Configuration Processing

Example 6-4 illustrates the ovsrc/clients/dcp/EXB-8505XL/config file, which
describes traits of the drive and MLM server.

Example 6-4 ovsrc/clients/dcp/EXB-8505XL/config File

localhost # MLM server host name
739 # MLM server TCP socket

fred # OpenVault name for drive

dcpfred # DCP instance name

/dev/rmt/tps0d6 # MTIO drive control access path

/dev/scsi/sc0d610 # SCSI drive control access path
60 # Communications timeout

007–3305–003 97

6: Programming a Drive Control Program (DCP)

Remaining lines include supported drive instance prototypes, including mode name,
form factor, media type, bit format, capacity, and control capabilities.

The ovsrc/clients/dcp/EXB-8505XL/config.c module parses this file and fills
in drive information in both the DCP generic and private data areas.

6.4.2.2 SCSI Control Access

The ovsrc/clients/dcp/EXB-8505XL/control.h header file contains
definitions, data type declarations, and subroutine prototypes for control access by
means of the pass-through SCSI driver; see the dslib(3X) man page.

The ovsrc/clients/dcp/EXB-8505XL/control.c module contains convenience
routines that make SCSI library calls to get mode sense, check for partition support,
and change tape partition. Since partition support is currently not implemented, the
latter is nonoperational.

Otherwise, device access is made directly from the main ADI semantic module by
means of MTIO ioctl() operations.

6.4.2.3 ADI Semantic Do* Layer

This layer, named after its many functions starting with “do,” is where a DCP
interprets ADI commands. The programmer customizes this layer, based on the
generic drive methods that are provided as part of the DCP developer framework.

The ovsrc/clients/dcp/EXB-8505XL/main.h header file contains the DCP
private data area portion of a generic drive representation, as well as macros and
subroutine prototypes, including four programmable DCP entry points for use by the
framework and semantic support routines.

The ovsrc/clients/dcp/EXB-8505XL/main.c module is where ADI semantic
handling routines and entry points are implemented, and where ADI commands are
dispatched to the appropriate semantic handling routine. For example, the ADI_load
command would be dispatched to the do_load() function.

6.4.3 Future DCP Implementations

There is potential for a single, shared SCSI-2 DCP. An additional device module
would be required only for vendor-dependent processing, or for departures from the
standard.

98 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

More thought and changes to ADI and the DCP framework are needed to support
non host-attached devices, such as broadcast video.

The infrastructure developer’s kit was developed on IRIX systems, and has yet to be
ported to other platforms. The DCP framework does not yet support partitions.

6.5 Defined Tokens List
This section documents the predefined strings that are relevant to DCP development.

6.5.1 Drive Capabilities

OpenVault assumes that there is default set of drive capabilities. Table 6-2 shows the
tokens that describe changes from a standard drive.

Table 6-2 Predefined mount Tokens

Token Description

audio Mount point allows playing audio data from media (often
unimplemented).

compression Attempts compression of the data stream.

fixed Blocks on the media are a fixed size.

readonly The mount point allows reading of the media.

readwrite The mount point allow writing of the media.

rewind Rewinds the media on close of the mount point.

status A status-only mount point is also created (in a directory
created for the session).

variable Blocks on the media are variable sized.

Drive capabilities are entirely extensible; so this list is not exhaustive.

6.5.2 Cartridge Form Factors

For a list of predefined cartridge form factors, see Section 4.5.1, page 64.

007–3305–003 99

6: Programming a Drive Control Program (DCP)

6.5.3 Media Bit Formats

The format of bits recorded on media is independent of external cartridge appearance.
One well-known case is the EXABYTE 8200 versus EXABYTE 8500 format, both being
recorded on 8 mm media.

Table 6-3 shows tokens for each bit format, what form factors use it, and a description
of how the format is generated.

Table 6-3 Predefined Bit Format Tokens

Token Form Factor Description

8200 8 mm EXABYTE 8200 native

8200c 8 mm EXABYTE 8200 compressed

8500 8 mm EXABYTE 8500 native

8500c 8 mm EXABYTE 8500 compressed

mammoth 8 mm EXABYTE mammoth native

mammothc 8 mm EXABYTE mammoth compressed

3480 3480 3480 native

3490 3480 3490 native

3490E 3480 3490E native

3495 3480 IBM Magstar native

4480 3480 STK TimberLine native

4490 3480 STK RedWood native

DLT2000 DLT DLT2000 native

DLT2000c DLT DLT2000 compressed

DTL4000 DLT DLT4000 native

DLT4000c DLT DLT4000 compressed

DLT7000 DLT DLT7000 native

DLT7000c DLT DLT7000 compressed

DDS1 DAT Digital data storage 1.3 GB

100 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Token Form Factor Description

DDS2 DAT Digital data storage 2.0 GB

DDS3 DAT Digital data storage 4.0 GB

D2 D2-[SML] Ampex DST-310

DTF DTF Sony GY-10

QIC80 QIC Quarter-inch cartridge 80 MB

QIC100 QIC Quarter-inch cartridge 100 MB

QIC150 QIC Quarter-inch cartridge 150 MB

QIC525 QIC Quarter-inch cartridge 525 MB

QIC1024 QIC Quarter-inch cartridge 1024 MB

ISO9660 CD-ROM DOS-like (8.3) filesystem on CD-ROM

6.5.4 Cartridge Types

Table 6-4 shows tokens used to describe media inside a cartridge.

Table 6-4 Predefined Media Type Tokens

Token Product Name or Description

8mm-12m 12 meter 8 mm

8mm-60m 60 meter 8 mm

8mm-90m 90 meter 8 mm

8mm-112m 112 meter 8 mm

8mm-160m 160 meter 8 mm

mammoth EXABYTE mammoth

3480 IBM 3480

3490 IBM 3490

3490E IBM 3490E

3495 IBM Magstar native

007–3305–003 101

6: Programming a Drive Control Program (DCP)

Token Product Name or Description

4480 STK TimberLine native

4490 STK RedWood native

DLT2000 Quantum DLT2000

DLT2000XT Quantum DLT2000XT

DLT4000 Quantum DLT4000

DLT7000 Quantum DLT7000

DDS1 DAT 60 meter

DDS2 DAT 90 meter

DDS3 DAT 120 meter

D2-S Ampex DST-310 small format

D2-M Ampex DST-310 medium format

D2-L Ampex DST-310 165GB large format

DTF Sony GY-10

QIC Quarter-inch cartridge tape

ISO9660 CD-ROM

6.5.5 Partition Names

The ADI interface assumes that there is a standard set of names used for partitioned
media. Table 6-5 shows the tokens used for naming partitions.

102 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Table 6-5 Predefined Partition Name Tokens

Token Description

PART 1 The first partition on the media. For magneto-optical or two-sided
optical disc, this would be side one or side A.

PART 2 The second partition on the media. On linear media such as a tape,
PART 2 immediately follows PART 1. On non-linear media such as a
disk, PART 2 is the second-lowest numbered or lettered partition. Note
that PART 2 does not refer to the next partition that is in use, it refers to
the next partition.

6.5.6 Attribute Names (DCP)

Table 6-6 shows attributes used in OpenVault, where they are used, and what they
mean.

Table 6-6 Predefined Attribute Name Tokens (DCP)

Attribute Name Where Used Possible Values Required? Description

ReadBandwidth ADI config
command, perf
clause

Numeric, in
bytes per second

Yes The total effective bandwidth
that an application should be
able to sustain when reading
from that drive using the
given capability set.

WriteBandwidth ADI config
command, perf
clause

Numeric, in
bytes per second

Yes The total effective bandwith
that an application should be
able to sustain when writing
to that drive using the given
capability set.

Capacity ADI config
command, perf
clause

Numeric, in
bytes

Yes The total storage capacity of
the cartridge that an
application should be able to
expect when accessing that
drive using the given
capability set.

007–3305–003 103

6: Programming a Drive Control Program (DCP)

Attribute Name Where Used Possible Values Required? Description

BlockSize ADI config
command, perf
clause

Numeric, in
bytes

Yes The I/O size that would best
use the drive/cartridge
combination with that drive
with the given capability set.

LoadTime ADI config
command, perf
clause

Numeric, in
seconds

Yes The number of seconds
between the time a cartridge is
first inserted into a drive and
the time that the drive is ready
to read/write data.

SlotTypeName ADI config
command,
config clause

Cartridge
FormFactor
token (Table
4-2)

Yes A supported form factor when
the drive is using the given
capability set.

CartridgeTypeName ADI config
command,
config clause

MediaType
token

Yes A supported media type,
usually indicating tape length.

BitFormat ADI config
command,
config clause

Bit Format token Yes A supported recording format
when the drive is using the
given capability set.

NominalLoad ALI config
command, perf
clause

Numeric, in
seconds

Yes Approximate time it takes for
the library to move a cartridge
from its home location to a
drive, or back, not including
drive load/unload time. This
is analogous to “nominal seek
time” of a disk drive.
It is defined as the total real
time to execute a large number
of cartridge move-load
operations randomly spread
through the physical space of a
library, divided by the number
of such operations performed.

104 007–3305–003

Appendix A

Sample Implementations

This appendix tells where to find sample code for an LCP or a DCP, and describes
how to make and test the OpenVault source code.

A.1 LCP Sample Code
The sample code in the directories under ovsrc/clients/lcp might give you an
idea of how to code an LCP for a new removable media library (ovsrc depends on
where you installed the OpenVault developer’s kit).

Source code outside the ovsrc/clients/lcp hierarchy is not really important to
you, because the SCSI framework, underlying communication and authentication
layer, ALI parser, and ALI/R generator are all integrated into the developer’s
framework.

A.1.1 Odetics ATL 2640

Working source code for the Odetics ATL 2640 autochanger is in the following
directory:

ovsrc/clients/lcp/ATL2640

A.1.2 EXABYTE SCSI Media Changers

Working source code for the EXABYTE 210, 220, 440, and 480 is in the following
directory:

ovsrc/clients/lcp/EXABYTE-210

007–3305–003 105

A: Sample Implementations

A.2 DCP Sample Code
The sample code in the directories under ovsrc/clients/dcp might give you an
idea of how to code a DCP for a new removable media library.

Source code outside the ovsrc/clients/dcp hierarchy is not really important to
you, because the SCSI framework, underlying communication and authentication
layer, ADI parser, and ADI/R generator are all provided by the developer’s
framework.

A.2.1 DLT 2000

Working source code for the Quantum DLT 2000 drive is in the following directory:

ovsrc/clients/dcp/DLT2000

A.2.2 EXABYTE 8505XL

Working source code for the EXABYTE 8505 XL drive is in the following directory:

ovsrc/clients/dcp/EXB-8505XL

106 007–3305–003

Appendix B

Return Values and Ready States

This appendix lists error codes and response types, then discusses ready state
processing.

B.1 ALI Error and Return Values
The following list shows the error codes for an LCP:

#define ALI_E_NOSLOT "ALI_E_NOSLOT" /* unknown slot */

#define ALI_E_NOPCL "ALI_E_NOPCL" /* unknown PCL */

#define ALI_E_NOBAY "ALI_E_NOBAY" /* unknown bay */

#define ALI_E_NODRIVE "ALI_E_NODRIVE" /* unknown drive */
#define ALI_E_NOATTR "ALI_E_NOATTR" /* unknown attribute */

#define ALI_E_NOTYPE "ALI_E_NOTYPE" /* unknown type */

#define ALI_E_NOCMD "ALI_E_NOCMD" /* unknown command */

#define ALI_E_NOTASK "ALI_E_NOTASK" /* unknown task ID */

#define ALI_E_ACCESS "ALI_E_ACCESS" /* access denied or object inaccessible */
#define ALI_E_BADVAL "ALI_E_BADVAL" /* bad attribute value */

#define ALI_E_SRCFULL "ALI_E_SRCFULL" /* source location full */

#define ALI_E_SRCEMPTY "ALI_E_SRCEMPTY" /* source location empty */

#define ALI_E_DSTFULL "ALI_E_DSTFULL" /* destination location full */

#define ALI_E_DSTEMPTY "ALI_E_DSTEMPTY" /* destination location empty */
#define ALI_E_AGAIN "ALI_E_AGAIN" /* retry recommended */

#define ALI_E_READY "ALI_E_READY" /* target not ready */

#define ALI_E_PCL "ALI_E_PCL" /* PCL mismatch */

#define ALI_E_SEQUENCE "ALI_E_SEQUENCE" /* command sequence error */

#define ALI_E_ABORT "ALI_E_ABORT" /* command aborted by LCP */

#define ALI_E_LIBRARY "ALI_E_LIBRARY" /* library or device driver failure */
#define ALI_E_SHAPE "ALI_E_SHAPE" /* cartridge-drive fungibility error */

The following list shows the response types for ALI response:

ALI_response_accepted, /* command queued */

ALI_response_unacceptable /* command not queued */
ALI_response_success, /* command worked */

ALI_response_error, /* command failed */

ALI_response_cancelled /* command cancelled */

007–3305–003 107

B: Return Values and Ready States

B.2 ADI Error and Return Values
The following list shows the error codes for a DCP:

#define ADI_E_PART "ADI_E_PART" /* unknown or unsupported partition */
#define ADI_E_MODE "ADI_E_MODE" /* unknown or unsupported mode */

#define ADI_E_HANDLE "ADI_E_HANDLE" /* unknown or in use handle */

#define ADI_E_NOATTR "ADI_E_NOATTR" /* unknown attribute */

#define ADI_E_NOTYPE "ADI_E_NOTYPE" /* unknown type */

#define ADI_E_NOCMD "ADI_E_NOCMD" /* unknown command */

#define ADI_E_NOTASK "ADI_E_NOTASK" /* unknown task ID */
#define ADI_E_ACCESS "ADI_E_ACCESS" /* access denied or object inaccessible */

#define ADI_E_BADVAL "ADI_E_BADVAL" /* bad attribute value */

#define ADI_E_AGAIN "ADI_E_AGAIN" /* retry recommended */

#define ADI_E_READY "ADI_E_READY" /* target not ready */

#define ADI_E_SEQUENCE "ADI_E_SEQUENCE" /* command sequence error */
#define ADI_E_DRIVE "ADI_E_DRIVE" /* drive or device failure */

The following list shows the return values for ADI response:

ADI_response_accepted, /* command queued */

ADI_response_unacceptable, /* command not queued */
ADI_response_success, /* command worked */

ADI_response_error, /* command failed */

ADI_response_cancelled /* command cancelled */

B.3 Ready States
Ready state describes the condition of the OpenVault connection with a device.
Whenever the ready state changes, the library or drive control program should save
changes and also send them to the MLM server, by means of the ready command.

When the control program is in ready yes state, that means it can talk to its device.
If not in this state, the control program can still accept ALI or ADI commands, but
will fail to execute any ALI or ADI commands requiring that it to talk to its device.

The following terms define state for both libraries and drives, defining how changes
in the underlying device and API state can affect control-program ready status.

108 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Device connected The control program can communicate with its device
by means of the formal device API.

Device not connected The control program cannot communicate with its
device by means of the formal device API.

Device online The control program has a connection to its device, and
the device is able to accept commands.

Device not online The control program has a connection to its device, but
the device is unable to accept commands because it is
in some unusable state. (For a library, controller
software might be down, and hardware might be
offline, or in diagnostic state.)

Device ready The control program has a connection to its device,
which reports “device online” and is ready to accept
commands.

Device not ready The control program has a connection to the device,
which reports “device online” but is temporarily not
ready to accept commands.

B.3.1 Ready State Transition Rules

Table B-1, page 110, describes the initial ready states, the actions that trigger them to
change the new ready state for each condition, and the control program action for
state transitions (not including the need to send ready state to the MLM server for
each transition).

007–3305–003 109

B: Return Values and Ready States

Table B-1 Ready State Transitions

Initial
State Action Triggering Change

New
State Control Program Action

Lost MLM server sends activate enable
command. Control program is unable
to connect to device.

Lost

Lost MLM server sends activate enable
command. Control program is able to
connect to device and finds it online
and ready.

Yes Gets device state and
send full config
command to the MLM
server.

Lost MLM server sends activate enable
command. Control program is able to
connect to device but finds it online
not ready.

No

Lost MLM server sends activate enable
command. Control program is able to
connect to device but finds device not
online.

Broken

Yes MLM server sends activate
disable or exit command to control
program, or control program finds that
its connection to device is lost.

Lost Stops communicating
with device. Forces
pending device requests
to completion, or cancels.
Forgets device state.

If exiting, forces pending
ALI or ADI commands
to completion, or cancels
them, and completes or
aborts pending ALI/R or
ADI/R commands. Also
does shutdown
processing.

Yes MLM server sends activate enable
to control program.

Yes Resends full config
command to the MLM
server.

110 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Initial
State Action Triggering Change

New
State Control Program Action

Yes Control program about to send
command to device that will
effectively block or reject all other
commands to device until this one
completes, or control program finds
device is online but not ready.

No

Yes Control program finds that device is
not online.

Broken Stops communicating
with device. Forces
pending device requests
to completion, or cancels.
Forgets device state.

No MLM server sends activate
disable or exit to control program,
or control program finds its connection
to device is lost.

Lost Stops communicating
with device. Forces
pending device requests
to completion, or cancels.
Forgets device state.

No A device command issued by the
control program that effectively
blocked all other device commands has
now completed, or the control
program finds that the device is now
online and ready.

Yes

No MLM server sends ALI or ADI
command to control program that
requires use of the device.

No

No Control program finds that device is
not online.

Broken Stops communicating
with device. Force
pending device requests
to completion, or cancel.
Forgets device state.

Broken MLM server sends activate
disable or exit to control program,
or control program finds its connection
to device is lost.

Lost

007–3305–003 111

B: Return Values and Ready States

Initial
State Action Triggering Change

New
State Control Program Action

Broken Control program finds its device is
online and ready.

Yes

Broken Control program finds its device is
online, but not ready.

No

Broken MLM server sends ALI or ADI
command to control program that
requires use of the device.

Broken

112 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

B.3.2 Ready State Responses

The MLM action in response to control program ready state changes are as follows:

Yes The control program can be selected for use. May not activate another
control program for the same device until this one is disabled.

No Temporarily do not send ALI or ADI commands that require device
access to the control program. May not activate another control
program for the same device until this one is disabled.

Broken The device associated with control program has failed. Do not try to
activate another control program for this device, because the device
itself is broken. Some recovery technique is needed, such as notifying
the operator to take corrective action. For instance, the operator can
choose to disable the current control program and start a separate one in
manual mode, or switch the current control program into manual mode.

Lost The control program is not ready for use. If no other control program is
currently active for this device, the MLM server may try to activate this
or a different control program for the device, as needed.

These ASCII tokens are associated with each ready state:

Lost ‘‘lost’’

Yes ‘‘‘‘

Broken ‘‘broken’’

No ‘‘not’’

The following list gives more information about control program actions in response
to ready state changes:

• Once it has established a connection with the MLM server, a control program
should initialize its ready state to lost, and send this to the server.

• Once it has established a connection with the MLM server, a control program
should accept and process ALI or ADI commands. If it is in ready lost, no, or
broken state, and it receives a command that requires it to access its device, then
the control program should resend its ready state to the server and fail the
command with a ready error (for example, ALI_E_READY or ADI_E_READY).

The exception to this is that the LCP should process activate enable, as usual,
if in ready lost or broken state.

007–3305–003 113

B: Return Values and Ready States

• If a control program is already in ready yes state, and receives another
activate enable command, it should resend its full configuration, including its
ready state, and send a success response to the server.

• Before transitioning to ready lost or broken state, a control program must
process all pending ALI or ADI commands to completion, either by normal
completion along with the appropriate response, or by aborting commands that it
cannot complete along with a cancelled response.

114 007–3305–003

Appendix C

LCP and DCP Syntax

This appendix documents ALI and ADI syntax, expressed in abstract form. Words in
fixed-space font represent commands and literals, as do square brackets and
semicolons. Words in italics are substitutable syntax elements.

C.1 ALI Syntax Specification
The MLM server communicates with an LCP using the abstract library interface (ALI),
while the LCP communicates with the MLM server using ALI response (ALI/R).

C.1.1 ALI Language

Table C-1, page 115, provides a syntax specification for the ALI language.

Table C-1 ALI Language Syntax

Syntactic Element Valid Syntax Statements

commands mountStmt
unmountStmt
moveStmt
ejectStmt
openportStmt
scanStmt
activateStmt
barrierStmt
resetStmt
exitStmt
attributeStmt
showStmt
cancelStmt
responseStmt

mountStmt mount mountArgs ;

007–3305–003 115

C: LCP and DCP Syntax

Syntactic Element Valid Syntax Statements

mountArgs /* empty */
task [string]mountArgs
drive [string]mountArgs
slot [string string string]mountArgs

unmountStmt unmount unmountArgs ;

unmountArgs /* empty */
task [string]unmountArgs
drive [string]unmountArgs
slotid [string]unmountArgs
any unmountArgs

moveStmt move moveArgs ;

moveArgs /* empty */
task [string]moveArgs
from [string string]moveArgs
to [string]moveArgs

ejectStmt eject ejectArgs ;

ejectArgs /* empty */
task [string]ejectArgs
slot [string string]ejectArgs

scanStmt scan scanArgs ;

scanArgs /* empty */
task [string]scanArgs
all scanArgs
from [string]scanArgs
to [string]scanArgs

openportStmt openport task [string];

activateStmt activate activateArgs ;

activateArgs /* empty */
task [string]activateArgs
enable activateArgs
disable activateArgs

barrierStmt barrier task [string];

resetStmt reset task [string];

116 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Syntactic Element Valid Syntax Statements

exitStmt exit task [string];

attributeStmt attribute attributeArgs ;

attributeArgs /* empty */
task [string]attributeArgs
type [string]attributeArgs
name [string]attributeArgs
set [string string]attributeArgs
unset [string]attributeArgs

showStmt show showArgs ;

showArgs /* empty */
task [string]showArgs
type [string]showArgs
name [string]showArgs
report [listOfStrings]showArgs
reportmode [string]showArgs

cancelStmt cancel cancelArgs ;

cancelArgs /* empty */
task [string]cancelArgs
whichtask [string]cancelArgs

responseStmt response responseArgs ;

responseArgs /* empty */
whichtask [string]responseArgs
accepted responseArgs
unacceptable responseArgs
success responseArgs
error [string]responseArgs
cancelled responseArgs
text [listOfStrings]responseArgs

listOfStrings /* empty */
STRING listOfStrings

string STRING

007–3305–003 117

C: LCP and DCP Syntax

C.1.2 ALI/R Language

Table C-2, page 118, provides a syntax specification for the ALI/R language.

Table C-2 ALI/R Language Syntax

Syntactic Element Valid Syntax Statements

commands responseStmt
messageStmt
configStmt
readyStmt
attributeStmt
showStmt
cancelStmt

messageStmt message messageArgs ;

messageArgs /* empty */
task [string]messageArgs
who [string]messageArgs
severity [string]messageArgs
text [listOfStrings]messageArgs

configStmt config configArgs ;

configArgs /* empty */
task [string]configArgs
scope [string]configArgs
slot [string string string string string string]configArgs
bay [string string]configArgs
drive [string string string string string]configArgs
freeslots [string string string]configArgs
delslots [string]configArgs
perf [string string]configArgs

readyStmt ready readyArgs ;

readyArgs /* empty */
task [string]readyArgs
disconnected readyArgs
broken readyArgs
not [listOfStrings]readyArgs

118 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Syntactic Element Valid Syntax Statements

attributeStmt attribute attributeArgs ;

attributeArgs /* empty */
task [string]attributeArgs
type [string]attributeArgs
name [string]attributeArgs
set [string string]attributeArgs
unset [string]attributeArgs

showStmt show showArgs ;

showArgs /* empty */
task [string]showArgs
type [string]showArgs
name [string]showArgs
report [listOfStrings]showArgs
reportmode [string]showArgs

cancelStmt cancel cancelArgs ;

cancelArgs /* empty */
task [string]cancelArgs
whichtask [string]cancelArgs

responseStmt response responseArgs ;

responseArgs /* empty */
whichtask [string]responseArgs
accepted responseArgs
unacceptable responseArgs
success responseArgs
error [string] responseArgs
cancelled responseArgs
text [listOfStrings]responseArgs

listOfStrings /* empty */
STRING listOfStrings

string STRING

007–3305–003 119

C: LCP and DCP Syntax

C.2 ADI Syntax Specification
The MLM server communicates with a DCP using the abstract drive interface (ADI),
while the DCP communicates with the MLM server using ADI response (ADI/R).

C.2.1 ADI Language

Table C-3, page 120, provides a syntax specification for the ADI language.

Table C-3 ADI Language Syntax

Syntactic Element Valid Syntax Statements

commands attachStmt
detachStmt
loadStmt
unloadStmt
activateStmt
resetStmt
exitStmt
attributeStmt
showStmt
cancelStmt
responseStmt

attachStmt attach attachArgs ;

attachArgs /* empty */
task [string]attachArgs
modename [string]attachArgs
drivehandle [string]attachArgs
partition [string]attachArgs

detachStmt detach detachArgs ;

detachArgs /* empty */
task [string]detachArgs
drivehandle [string]detachArgs

loadStmt load task [string];

unloadStmt unload task [string];

120 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Syntactic Element Valid Syntax Statements

activateStmt activate activateArgs ;

activateArgs /* empty */
task [string]activateArgs
enable activateArgs
disable activateArgs

resetStmt reset task [string];

exitStmt exit task [string];

attributeStmt attribute attributeArgs ;

attributeArgs /* empty */
task [string]attributeArgs
type [string]attributeArgs
name [string]attributeArgs
set [string string]attributeArgs
unset [string]attributeArgs

showStmt show showArgs ;

showArgs /* empty */
task [string]showArgs
type [string]showArgs
name [string]showArgs
report [listOfStrings]showArgs
reportmode [string]showArgs

cancelStmt cancel cancelArgs ;

cancelArgs /* empty */
task [string]cancelArgs
whichtask [string]cancelArgs

responseStmt response responseArgs ;

responseArgs /* empty */
whichtask [string]responseArgs
accepted responseArgs
unacceptable responseArgs
success responseArgs
error [string]responseArgs
cancelled responseArgs
text [listOfStrings]responseArgs

007–3305–003 121

C: LCP and DCP Syntax

Syntactic Element Valid Syntax Statements

listOfStrings /* empty */
string listOfStrings

string STRING

C.2.2 ADI/R Language

Table C-4, page 122, provides a syntax specification for the ADI/R language.

Table C-4 ADI/R Language Syntax

Syntactic Element Valid Syntax Statements

commands configStmt
messageStmt
readyStmt
attributeStmt
showStmt
cancelStmt
responseStmt

configStmt config configArgs ;

configArgs /* empty */
task [string]configArgs
scope [string]configArgs
config [string]configArgs
cap [string configCapArgs]configArgs

configCapArgs /* empty */
attr [string string]configCapArgs
caplist [listOfStrings]configCapArgs

messageStmt message messageArgs ;

messageArgs /* empty */
task [string]messageArgs
who [string]messageArgs
severity [string]messageArgs
text [listOfStrings]messageArgs

122 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

Syntactic Element Valid Syntax Statements

readyStmt ready readyArgs ;

readyArgs /* empty */
task [string]readyArgs
disconnected readyArgs
not [listOfStrings]readyArgs

attributeStmt attribute attributeArgs ;

attributeArgs /* empty */
task [string]attributeArgs
type [string]attributeArgs
name [string]attributeArgs
set [string string]attributeArgs
unset [string]attributeArgs

showStmt show showArgs ;

showArgs /* empty */
task [string]showArgs
type [string]showArgs
name [string]showArgs
report [listOfStrings]showArgs
reportmode [string]showArgs

cancelStmt cancel cancelArgs ;

cancelArgs /* empty */
task [string]cancelArgs
whichtask [string]cancelArgs

responseStmt response responseArgs ;

responseArgs /* empty */
whichtask [string]responseArgs
accepted responseArgs
unacceptable responseArgs
success responseArgs
error [string]responseArgs
cancelled responseArgs
text [listOfStrings]responseArgs

007–3305–003 123

C: LCP and DCP Syntax

Syntactic Element Valid Syntax Statements

listOfStrings /* empty */
STRING listOfStrings

string STRING

124 007–3305–003

Glossary

ALI and ALI/R

Abstract library interface and ALI response, languages for communicating between
the media library manager (MLM) server and a library control program.

ADI and ADI/R

Abstract drive interface and ADI response, languages for communicating between the
media library manager (MLM) server and a drive control program.

barcode

A machine-readable representation of a physical cartridge label (PCL).

barcode reader

A laser-optical reader that scans a barcode and then uses logic to translate from a
scanned barcode to a human-readable representation, such as volume serial number.

bay

A physical grouping of slots in a common unit of housing where cartridges are
stored. Usually a bay contains storage locations for cartridges, optional drives, and
one or more transfer agents to move cartridges around.

cartridge

A cartridge is the unit of physical operation and management within a library. A
cartridge contains one or more pieces of media, and has a certain form factor. The
most common forms of cartridge are for magnetic tape and laser- and magneto-
optical disk.

DCP (drive control program)

An OpenVault software component that mediates between the media library manager
(MLM) server and the actual drive control interface.

drive

A magnetic or optical device for accessing media inside a cartridge mounted in a slot.

007–3305–003 125

Glossary

LCP (library control program)

An OpenVault software component that mediates between the media library manager
(MLM) server and the actual library control interface.

partition

A region on the recording surface of a piece of media that has a physical beginning
and ending that can be accessed by a drive. Typically, each piece of media has a
single partition, which spans the entire recordable surface of the media. However,
there are drives that support partitioning of this recordable surface, such as DDS2 and
D2 tape, such that a single piece of media may contain multiple partitions.

PCL (physical cartridge label)

Some form of identification on the outside of the cartridge, as opposed to being
stored on media inside the cartridge. A PCL may contain a machine-readable label
(barcode), but it must also contain a human-readable text portion.

port

A door or opening where cartridges may be inserted into or removed from the library.

removable media library

A robotic device (usually) with storage slots and drives for accessing multiple
cartridges.

side

For tape cartridges containing one piece of recording media, with all recording
surfaces accessible when loaded in a drive, the cartridge contains one side. For a
multi-sided cartridge, access to a side requires that the cartridge be mounted in a
drive with a particular orientation (for side A of optical disk, the cartridge must be
positioned for mount with side A up).

slot

A storage location for a cartridge, with a form factor that determines which kinds of
cartridges it can hold.

126 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

slotmap

A persistent table associated with a single library. For each cartridge contained by that
library, this table maps the physical cartridge label (PCL) to a slot within the library.

007–3305–003 127

Index

A

AAPI (administrative API), 4, 7
access method instance, 68, 87
ack command phase, 17
activate

activate disable, 30, 74
activate enable, 30, 74
ADI command, 74
ALI command, 29

activation sequence
for DCP booting, 90
for LCP booting, 49

ADI (abstract drive interface), 4, 10, 68
ADI attach response text, 83
ADI language syntax specification, 120
ADI lexical functions

ADI_acknowledge(), 92
ADI_free(), 92
ADI_receive(), 92

ADI show response text, 82
adi utility functions

adi_command(), 95
adi_complete(), 95
adi_context(), 95
adi_next(), 95
adi_response(), 95
adi_state(), 95

ADI/R (abstract drive interface response), 79
ADI/R language syntax specification, 122
ADIR lexical functions

ADIR_alloc_*(), 92
ADIR_initiate_session(), 15, 92
ADIR_send(), 92

adir utility functions
adir_abort(), 95
adir_command(), 95

adir_next(), 95
administrative interface, 11
ALI (abstract library interface), 4, 8, 24
ALI eject response text, 44
ALI language syntax specification, 115
ALI lexical functions

ALI_acknowledge(), 52
ALI_free(), 52
ALI_receive(), 52

ALI mount or ALI unmount response text, 43
ALI move response text, 43
ALI show response text, 43
ali utility functions

ali_command(), 60
ali_complete(), 60
ali_context(), 60
ali_next(), 60
ali_response(), 60
ali_state(), 60
alir_command(), 60

ALI/R (abstract library interface response), 38
ALI/R language syntax specification, 118
ALIR lexical functions

ALIR_alloc_*(), 52
ALIR_initiate_session(), 15, 52
ALIR_send(), 52

alir utility functions
alir_abort(), 60
alir_next(), 60

arbitrary attributes, 26, 71
architecture of OpenVault, 3
attach—ADI command, 75
attribute

ADI command, 76
ADI/R command, 80
ALI command, 31
ALI/R command, 40

007–3305–003 129

Index

attribute_() function, 60, 96
attribute_error() function, 60, 95
authentication requests to MLM, 16

B

barrier—ALI command, 32
bay ID object name, 28
bay object, 24
bay_attr() function, 61
bay_description() function, 61
baymap element map, 27, 56
bit format tokens, 100
BitFormat attribute, 104
BlockSize attribute, 104
booting

components of OpenVault, 13
DCP for active drives, 86
LCP for active libraries, 46
MLM server, 13

C

cancel
ADI command, 76
ADI/R command, 80
ALI command, 32
ALI/R command, 40

capabilities of drive, 69, 87
Capacity attribute, 103
CAPI (client API), 4, 6
cartridge form factors, tokens, 64
cartridge naming conventions, 5
cartridge object, 24
cartridge type tokens, 101
CartridgeTypeName attribute, 104
client object name, 28, 72
code examples, LCP and DCP, 61, 96, 105
command object, 24, 68

for ADI/R, 79

for ALI/R, 39
command phases, 16
command-line interface to OpenVault, 11
communication paths and methods, 5
communication protocols, 15
config

ADI/R command, 80
ALI/R command, 40

configuration
DCP configuration file, 86
LCP configuration file, 46
of a DCP, 86
of an LCP, 46
source code for configuration processing, 62, 98

conformance suites for LCPs and DCPs, 23
control path for a drive, 70
convenience routines for developers, 21

D

data command phase, 17
data path for a drive, 70
DCP (drive control program), 4, 68
DCP configuration file, 86
DCP object name, 72
dcp_attr() function, 96
dcp_loglevel() function, 96
dcp_name() function, 96
defined tokens list, 64, 99
detach—ADI command, 76
device (not) connected, 109
device (not) online, 109
device (not) ready, 109
device access layer, 63
direct SCSI library, 97
DLT 2000 sample code, 106
“do” semantic layer, 63, 98
drive capabilities and access mode, 69
drive capability tokens, 99
drive handle binding, 70

130 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

drive handle object name, 72
drive object, 24, 68
drive object name, 28, 73
drive_attr() function, 61
drive_description() function, 61
drivemap element map, 27, 56

E

eject—ALI command, 32
element maps

convenience routines for, 58
generic representation of, 56
private entries, 63

entry points for DCP, 94
entry points for LCP, 55
error codes

for a DCP, 108
for an LCP, 107

EXABYTE 210 220 440 480 sample code, 105
EXABYTE 8505 XL sample code, 106
ExchangeTime attribute, 65
exit

ADI command, 77
ALI command, 34

F

functions
ADI lexical library, 92
adi utility library, 95
ALI lexical library, 52
ali utility library, 60

future developments, 63, 99

G

generic representation
of a drive in DCP, 93

of library in LCP, 53
goodbye

ADI command, 77
ADI/R command, 81
ALI command, 34
ALI/R command, 41

H

hello—LCP or DCP command, 15

I

instance object name, 28, 73
IPC layer, 20

source code for DCP, 91
source code for LCP, 51

IRIX implementation, 62, 96

L

language conventions for quoting, 20
LCP (library control program), 4, 24
LCP configuration file, 46
LCP object name, 29
lcp_attr() function, 60
lcp_loglevel() function, 61
lcp_name() function, 61
lcp_supportPCLs() function, 61
lcp_vendor() function, 61
library routines

ADI lexical functions, 92
adi utility functions, 95
ALI lexical functions, 52
ali utility functions, 60

load—ADI command, 77
LoadTime attribute, 104

007–3305–003 131

Index

M

mandatory attributes, 26, 72
media access point for drive, 71
media bit format tokens, 100
media cartridge type tokens, 101
media, OpenVault definition, 70
message

ADI/R command, 81
ALI/R command, 41

message ID
ADI/R object name, 80
ALI/R object name, 39

message object
for ADI/R, 79
for ALI/R, 39

middleware, OpenVault as, 2
MLM (media library manager), 5
mode of access, 69, 87
mount point for a drive, 71
mount—ALI command, 34
move—ALI command, 35
MTIO operations, 97

N

NominalLoad attribute, 104

O

Odetics ATL 2640 sample code, 105
openPort—ALI command, 35
ordering of response text

for ADI, 82
for ALI, 42

organization of source code, 62, 97
over-the-wire layer, protocols, 20
overview of OpenVault, 1

P

parser and generator layer, 19
source code for DCP, 91
source code for LCP, 51

partition name tokens, 102
partition object, 69
partition object name, 73
PCL object name, 29
persistent storage, 4, 14, 45, 85
port object, 25
port object name, 29
portmap element map, 56
print_attrlist() function, 61, 96
print_stringlist() function, 61, 96
private element maps, 63
programmable entry points

for DCP, 94
for LCP, 55

protocol layers in OpenVault, 18

Q

quoting conventions, 20

R

ReadBandwidth attribute, 103
ready

ADI/R command, 81
ALI/R command, 42
ready broken, 42, 109, 113
ready lost, 42, 109, 113
ready not, 42, 109, 113

ready state
processing rules, 108
responses, 113
transition rules, 109

ready_error() function, 60, 96

132 007–3305–003

OpenVaultTM Infrastructure Programmer’s Guide

readystate_change() function, 60, 95
removable media library, 25
reset

ADI command, 77
ALI command, 36

response
ADI command, 78
ADI/R command, 82
ALI command, 37
ALI/R command, 42

return values
for ADI response, 108
for ALI response, 107

S

sample code, LCP and DCP, 61, 96, 105
scan

ALI command, 37
scan all, 37
scan from to, 37

SCSI control access, 98
SCSI direct library, 97
semantic layer, protocols, 18
show

ADI command, 78
ADI/R command, 82
ALI command, 38
ALI/R command, 42

slot ID object name, 29
slot object, 26
slot_attr() function, 61
slot_description() function, 61
slotmap element map, 27, 56
SlotTypeName attribute, 104
source code

organization of DCP source, 97
organization of LCP source, 62

syntax specification
for ADI and ADI/R, 120
for ALI and ALI/R, 115

T

task ID
ADI object name, 73
ADI/R object name, 80
ALI object name, 29
ALI/R object name, 39

TCP/IP layer, protocols, 20
tertiary storage applications, 1
tuple

for DCP attributes, 72
for LCP attributes, 27

U

umsh command, user mount shell, 11
unload—ADI command, 78
unmount—ALI command, 38
unwelcome—ALI or ADI command, 15
usefulness of OpenVault, 2

V

version negotiation language, 15

W

welcome—ALI or ADI command, 15
WriteBandwidth attribute, 103

007–3305–003 133

