
SpeedShop User’s Guide

Document Number 007-3311-001

SpeedShop User’s Guide
Document Number 007-3311-001

CONTRIBUTORS

Written and Illustrated by Janet Home-Lorenzin, Wendy Ferguson and Dany
Galgani.

Production by Ruth Christian.
Engineering contributions by Marty Itzkowitz, Pete Orelup, Jun Yu and Marco

Zagha.

© Copyright 1996 Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics is a registered trademark of Silicon Graphics, Inc. UNIX is a
registered trademark of UNIX System Laboratories. X Window System is a
trademark of the Massachusetts Institute of Technology. OSF/Motif is a trademark of
the Open Software Foundation. Purify is a registered trademark of Pure Software,
Inc.

iii

Contents

List of Figures ix

List of Tables xi

About This Guide xiii

1. Introduction to Performance Analysis 1
Sources of Performance Problems 1

CPU-bound Processes 2
I/O-bound Processes 2
Memory-bound Processes 2
Bugs 2

Fixing Performance Problems 3
SpeedShop Tools 3

Main Commands 3
Additional Commands 4
Experiment Types 5
Libraries 6
API 6
Supported Programs and Languages 6

Using SpeedShop Tools for Performance Analysis 7
Using ssusage 8
Using ssrun and prof 8

Collecting Data for Part of a Program 10

2. Tutorial for C Users 11
Tutorial Overview 11
Tutorial Setup 13

iv

Contents

Analyzing Performance Data 13
A usertime Experiment 14
A pcsamp Experiment 16
A Hardware Counter Experiment 18
An ideal Experiment 20
An fpe Trace 23

3. Tutorial for Fortran Users 25
Tutorial Overview 25
Tutorial Setup 26
Analyzing Performance Data 27

A usertime Experiment 27
A pcsamp Experiment 30
A Hardware Counter Experiment 31
An ideal Experiment 33

4. Experiment Types 37
Selecting an Experiment 37
usertime Experiment 38
pcsamp Experiment 39
Hardware Counter Experiments 40

[f]gi_hwc 41
[f]cy_hwc 41
[f]ic_hwc 41
[f]isc_hwc 42
[f]dc_hwc 42
[f]dsc_hwc 42
[f]tlb_hwc 42
[f]gfp_hwc 43
prof_hwc 43

Hardware Counter Numbers 43
ideal Experiment 45

Inclusive Basic Block Counting 46
fpe Trace 47

Contents

v

5. Collecting Data on Machine Resource Usage 49
ssusage Syntax 49
ssusage Results 49

6. Setting Up and Running Experiments: ssrun 51
Building your Executable 51
Setting Up Output Directories and Files 53
Running Experiments 53

ssrun Syntax 53
ssrun Examples 55

Example Using the pcsampx Experiment 55
Example Using the -v Option 56

Using ssrun with a Debugger 57
Running Experiments on MPI Programs 57
Using Calipers 58

Setting Calipers with ssrt_caliper_point 59
Setting Calipers with Signals 60
Setting Calipers with a Debugger 60

Effects of ssrun 61
Effects of ssrun -ideal 61

Customizing Your Environment 61
Setting Environment Variables for Spawned Processes 62
Setting General Environment Variables 62

7. Analyzing Experiment Results: prof 65
Using prof to Generate Performance Reports 65

prof Syntax 66
prof Options 66
prof Output 68

vi

Contents

Using prof with ssrun 69
usertime Experiment Reports 69
pcsamp Experiment Reports 71
Hardware Counter Experiment Reports 72
ideal Experiment Reports 73
FPE Trace Reports 75

Using prof Options 76
Using the -dis Option 76
Using the -S Option 77
Using the -calipers Option 79
Using the -gprof Option 79

 Generating Reports For Different Machine Types 82
Generating Reports for Multiprocessed Executables 83
Generating Compiler Feedback Files 83
Interpreting Reports 83

8. Using SpeedShop in Expert Mode: pixie 85
Using pixie 85

pixie Syntax 86
pixie Options 86
pixie Output 87

Obtaining Basic Block Counts 87
Examples of Basic Block Counting 91

Example Using prof –invocations 91
Example Using prof –heavy 93
Example Using prof –quit 94

Obtaining Inclusive Basic Block Counts 95
Example of prof –gprof 98

9. Miscellaneous Commands 99
Using the thrash Command 99

thrash Syntax 99
Effects of thrash 100

Contents

vii

Using the squeeze Command 100
squeeze Syntax 100
Effects of squeeze 101

Calculating the Working Set of a Program 101
Dumping Performance Data Files 103

ssdump Syntax 103
Experiment File Format 104

Dumping Compiler Feedback Files 106
fbdump Syntax 106

Index 109

ix

List of Figures

Figure 8-1 How Basic Block Counting Works 90
Figure 8-2 How Inclusive Basic Block Counting Works 97

xi

List of Tables

Table 1-1 Choosing an Experiment Type 9
Table 4-1 Summary of Experiments 38
Table 4-2 Basic Block Counts and PC Profile Counts Compared 40
Table 4-3 Hardware Counter Numbers 43
Table 6-1 Flags for ssrun 54
Table 6-2 Environment variables for Spawned Processes 62
Table 6-3 Environment Variables for ssrun 62
Table 7-1 Options for prof 66
Table 8-1 Options for pixie 86
Table 9-1 Options for fbdump 107

xiii

About This Guide

This manual is a user’s guide for the SpeedShop performance tools, Release 1.0. It
contains the following chapters:

• Chapter 1, “Introduction to Performance Analysis” provides a general introduction
to performance analysis concepts and techniques, plus an overview of the
SpeedShop tools.

• Chapter 2, “Tutorial for C Users” provides a tutorial on how to collect performance
data and generate reports for a C program.

• Chapter 3, “Tutorial for Fortran Users” provides a tutorial on how to collect
performance data and generate reports for Fortran programs running on
single-processor machines.

• Chapter 4, “Experiment Types” describes the types of experiments that can be
performed using SpeedShop tools.

• Chapter 5, “Collecting Data on Machine Resource Usage” describes how to use the
ssusage command to collect information about a program’s machine resource usage.

• Chapter 6, “Setting Up and Running Experiments: ssrun” explains in detail how to
set up and run experiments using ssrun, and explains how to use caliper points to
generate reports for part of a program.

• Chapter 7, “Analyzing Experiment Results: prof” explains how to generate reports
from performance data using prof.

• Chapter 8, “Using SpeedShop in Expert Mode: pixie” explains how to use pixie and
prof directly, without invoking ssrun.

• Chapter 9, “Miscellaneous Commands” explains how to use the thrash and squeeze
commands to determine the memory usage, or working set, of your application. It
also covers commands to print performance data files.

xiv

About This Guide

1

Chapter 1

1. Introduction to Performance Analysis

This chapter provides a brief introduction to performance analysis techniques for SGI
systems and describes how to use them to solve performance problems. It includes the
following sections:

• “Sources of Performance Problems”

• “Fixing Performance Problems”

• “SpeedShop Tools”

• “Using SpeedShop Tools for Performance Analysis”

• “Collecting Data for Part of a Program”

Sources of Performance Problems

To tune a program’s performance, you need to determine its consumption of machine
resources. At any point (or phase) in a process, there is one limiting resource controlling
the speed of execution. Processes can be slowed down by any of the following:

• CPU speed and availability

• I/O processing

• Memory size and availability

Performance problems might span the entire run of a process, or they may occur in just
a small portion of the program. For example, a function that performs large amounts of
I/O processing might be called regularly as the program runs, or a particularly
CPU-intensive calculation might occur in just one portion of the program. When there
are performance problems in a small portion of the program, it is useful to be able to
collect data for just that part of the program.

Since programs exhibit different behavior during different phases of operation, you need
to identify the limiting resource during each phase. A program can be I/O-bound while
it reads in data, CPU-bound while it performs computation, and I/O-bound again in its

2

Chapter 1: Introduction to Performance Analysis

final stage while it writes out data. Once you’ve identified the limiting resource in a
phase, you can perform an in-depth analysis to find the problem. And after you have
solved that problem, you can check for other problems within the same or other phases—
performance analysis is an iterative process.

CPU-bound Processes

A CPU-bound process spends its time in the CPU and is limited by CPU speed and
availability. To improve performance on CPU-bound processes, you may need to
streamline your code. This can entail modifying algorithms, reordering code to avoid
interlocks, removing nonessential steps, blocking to keep data in cache and registers, or
using alternative algorithms.

I/O-bound Processes

An I/O-bound process has to wait for I/O to complete and may be limited by disk access
speeds or memory caching. To improve the performance of I/O-bound processes, you
can try one of the following techniques:

• Improve overlap of I/O with computation

• Optimize data usage to minimize disk access

• Use data compression

Memory-bound Processes

A memory-bound program that continuously needs to swap out pages of memory. Page
thrashing is often due to accessing virtual memory on a haphazard rather than strategic
basis. One telltale indication of a page-thrashing condition on a system with paging to a
local disk, is noise due to disk accesses. To fix a memory-bound process, you can try to
improve the memory reference patterns or, if possible, decrease the memory used by the
program.

Bugs

You may find that a bug is causing the performance problem. For example, you might
find that you are unnecessarily reading from the same file twice in different parts of the

Fixing Performance Problems

3

program, that floating point exceptions are slowing down your program, that old code
has not been completely removed, or that you are leaking memory (making malloc calls
without the corresponding calls to free).

Fixing Performance Problems

The SpeedShop performance tools described in this manual can help you to identify
specific performance problems described later in this chapter. However the techniques
described in this manual comprise only a part of performance tuning. Other areas that
you can tune, but are outside the scope of this document, include graphics, I/O, the
kernel, system parameters, memory, and real-time system calls.

Although it may be possible to obtain short-term speed increases by relying on
unsupported or undocumented quirks of the compiler system, it’s a bad idea to do so.
Any such “features” may break in future releases of the compiler system. The best way
to produce efficient code that can be trusted to remain efficient is to follow good
programming practices. In particular, choose good algorithms and leave the details to the
compiler.

SpeedShop Tools

The SpeedShop tools allow you to run experiments and generate reports to track down
the sources of performance problems. SpeedShop consists of a set of commands that can
be run in a shell, an API, and a number of libraries to support the commands.

Main Commands

• ssusage

The ssusage command allows you to collect information about your program’s use
of machine resources. Output from ssusage can be used to determine where most
resources are being spent.

• ssrun

The ssrun command allows you to run experiments on a program to collect
performance data. It establishes the environment to capture performance data for
an executable, creates a process from the executable (or from an instrumented

4

Chapter 1: Introduction to Performance Analysis

version of the executable) and runs it. Input to ssrun consists of an experiment type,
control flags, the name of the target, and the arguments to be used in executing the
target.

• prof

The prof command analyzes the performance data you have recorded using ssrun
and provides formatted reports. prof detects the type of experiment you have run,
and generates a report specific to the experiment type.

Additional Commands

• pixie

The pixie command instruments an executable to enable basic block counting
experiments to be performed. If you use ssrun, you will not normally need to call
this program directly.

pixie reads an executable program, partitions it into basic blocks, and writes an
equivalent program (with a .pixie extension by default) containing additional code
that counts the execution of each basic block.

• fbdump

The fbdump command prints out the formatted contents of compiler feedback files
generated by prof.

• squeeze

The squeeze command is used to allocate a region of virtual memory and lock the
virtual memory down into real memory, making it unavailable to other processes.

• thrash

The thrash command is used to explore paging behavior by allowing you to allocate
a block of memory, then accessing the allocated memory to explore paging
behavior.

• ssdump

The ssdump program prints out formatted performance data that was collected
while running ssrun. This program is included for SpeedShop debugging purposes.
You will not normally need to use it.

SpeedShop Tools

5

Experiment Types

You can conduct the following types of experiments using the ssrun command:

• Statistical PC Sampling with pcsamp experiments.

Data is measured by periodically sampling the Program Counter (PC) of the target
executable when it is in the CPU. The PC shows the address of the currently
executing instruction in the program. The data that is obtained from the samples is
translated to a time displayed at the function, source line and machine instruction
levels. The actual CPU time is calculated by multiplying the number of times a
specific address is found in the PC by the amount of time between samples.

• Statistical Hardware Counter Sampling with _hwc experiments.

Hardware counter experiments are available on R10000 systems that have built-in
hardware counters. Data is measured by collecting information each time the
specified hardware counter overflows. You can specify the hardware counter and
the overflow interval you want to use.

• Statistical Call Stack Profiling with usertime

Data is measured by periodically sampling the call stack. The program’s callstack
data is used to attribute exclusive user time to the function at the bottom of each
callstack (i.e., the function being executed at the time of the sample), and to attribute
inclusive user time to all the functions above the one currently being executed.

• Basic Block Counting with ideal

Data is measured by counting basic blocks and calculating an ideal CPU time for
each function. This involves instrumenting the program to divide the code into
basic blocks, which are sets of instructions with a single entry point, a single exit
point, and no branches into or out of the set. Instrumentation also permits a count of
all dynamic (function-pointer) calls to be recorded.

• Floating Point Exception Trace with fpe

A Floating Point Exception Trace collects each floating point exception with the
exception type and the callstack at the time of the exception. prof generates a report
showing inclusive and exclusive floating-point exception counts.

6

Chapter 1: Introduction to Performance Analysis

Libraries

Versions of the SpeedShop libraries libss.so and libssrt.so are available to support
applications built using shared libraries (DSOs) only and 32-bit, n32 or 64-bit Bit ABIs.

• libss.so

libss.so is a shared library (DSO) that supports libssrt.so. libss.so data normally
appears in experiment results generated with prof.

• libssrt.so

libssrt.so is a shared library (DSO) that gets linked in to the program you specify
when you run an experiment. All the collection of performance data with the
SpeedShop system is done within the target process(es), by exercising various
pieces of functionality using libssrt. Data from libssrt.so does not normally appear in
performance data reports generated with prof.

• libfpe_ss.so

Replaces the standard libfpe.so for the purposes of collecting floating point exception
data. Click fpe_ss to view the reference page.

• libmalloc_ss.so

Inserts versions of malloc routines from libc.so.1 that allow tracing all calls to
malloc, free, realloc, memalign, and valloc. Click malloc_ss to view the reference
page.

API

The API is primarily available to allow you to use ssrt_caliper_point to set caliper points
in your source code. See Chapter 6, “Using Calipers” for information on using caliper
points. For information on other API functions, click ssapi to view the reference page.

Supported Programs and Languages

The SpeedShop tools support programs with the following characteristics:

• Shared libraries (DSOs.)

• Non-stripped executables.

• Executables containing fork, sproc, system, or exec commands.

Using SpeedShop Tools for Performance Analysis

7

• Executables using supported techniques for opening, closing, and/or delay-loading
DSOs.

• C, C++, Fortran (Fortran-77, Fortran-90, and High-Performance Fortran), or
ADA-95 source code.

• Power Fortran and Power C source code; prof understands the syntax and semantics
of the MP-runtime, and displays the data accordingly.

• pthreads: Currently supported only with data on a per-process basis, not per-thread.
The behavior of the pthreads library itself is monitored just like any other user-level
code. Future releases of the SpeedShop tools will provide per thread support for
pthreads .

• MPI or other message-passing paradigms: Currently supported by providing data
on the behavior of each process. The behavior of the MPI library itself is monitored
just like any other user-level code.

Using SpeedShop Tools for Performance Analysis

Performance tuning typically consists of examining machine resource usage, breaking
down the process into phases, identifying the resource bottleneck within each phase, and
correcting the cause of the bottleneck. Generally, you run the first experiment to break
your program down into phases and run subsequent experiments to examine each phase
individually. After you have solved a problem in a phase, you should then re-examine
machine resource usage to see if there is further opportunity for performance
improvement.

The general steps for a performance analysis cycle are:

1. Build the application.

2. Run experiments on the application to collect performance data.

3. Examine the performance data.

4. Generate an improved version of the program.

5. Repeat as needed.

8

Chapter 1: Introduction to Performance Analysis

To accomplish the above using SpeedShop Tools:

• Use ssusage to capture information on your program’s use of machine resources.

• Use ssrun to capture different types of performance data over either your entire
program or parts of the program. ssrun can be used in conjunction with dbx or
WorkShop debuggers.

• Use prof to analyze the data and generate reports.

Using ssusage

To determine overall resource usage by your program, run the program with ssusage. The
results of this command allow you to identify high user CPU time, high system CPU
time, high I/O time, and a high degree of paging.

ssusage program_name

From the ssusage output, you can decide which experiments to run to collect data for
further study. For more information on ssusage, see Chapter 5, “Collecting Data on
Machine Resource Usage,” or click ssusage to view the reference page.

Using ssrun and prof

This section describes the steps involved in a performance analysis cycle when using the
main interface to the SpeedShop tools: the ssrun command. You can also call the
commands individually. For example, if you are planning to perform basic block
counting experiments that involve instrumenting the executable, you can either do this
by calling ssrun with the appropriate experiment type, or you can set up your
environment to call pixie directly to instrument your executable. Information on setting
up your environment and running pixie directly can be found in Chapter 8, “Using
SpeedShop in Expert Mode: pixie”.

1. Build the executable. In most circumstances, you can build the executable as you
would normally. See Chapter 6, “Building your Executable” for all the information
you need on how to build the executable.

2. Specify caliper points if you want to collect data for only a portion of your program.
See “Collecting Data for Part of a Program” for more information on running
experiments over part of a program.

Using SpeedShop Tools for Performance Analysis

9

3. To collect performance data, call ssrun with the parameters below. Use the
information in Table 1-1 to determine which experiments to run:

ssrun flags exp_type prog_name prog_args

flags One or more valid flags. For a complete list of flags, click ssrun to
view the reference page.

exp_type Experiment name.

prog_name Executable name.

prog_args Arguments to the executable

For each run of the executable, the experiment data is stored in a file with a name of
the format prog_name.exp_type.pid

For more information on the ssrun command, see Chapter 6, “Setting Up and
Running Experiments: ssrun,” or click ssrun to view the reference page.

Table 1-1 Choosing an Experiment Type

Performance Problem Experiment(s) to Run

High user CPU time usertime
pcsamp
*_hwc experiments

ideal

High system CPU time If floating point exceptions are suspected:
fpe

High I/O time ideal , then examine counts of I/O routines

High paging (majf) ideal, then prof -feedback and cord to
rearrange procedures.

If inefficient heap usage is suspected, use
WorkShop’s Performance Analyzer to gather
information.

10

Chapter 1: Introduction to Performance Analysis

4. To generate a report of the experiment, call prof with the following parameters:

prof flags data_file

flags One or more valid flags. For a complete list of flags, click prof to
view the reference page.

data_file The name of the file in which the experiment data was recorded.

For more information on using prof, see Chapter 7, “Analyzing Experiment Results:
prof,” or click prof to view the reference page.

Collecting Data for Part of a Program

If you have a performance problem in only one part of your program, you may want to
collect performance data for just that part.You can do this by setting caliper points
around the problem area when running an experiment, then using prof -calipers option to
generate a report for the problem area.

You can set caliper points using one of the following approaches:

• The SpeedShop API

• The caliper signal environment

• A debugger such as the ProDev WorkShop debugger

For more information on using calipers, see Chapter 6, “Setting Up and Running
Experiments: ssrun.”

11

Chapter 2

2. Tutorial for C Users

This chapter presents a tutorial for using the SpeedShop tools to gather and analyze
performance data in a C program, and covers these topics:

• “Tutorial Overview”

• “Tutorial Setup”

• “Analyzing Performance Data”

Note: Because of inherent differences between systems and because of concurrent
processes that may be running on your system, your experiment will produce different
results from the one in this tutorial. However, the basic form of the results should be the
same.

Tutorial Overview

This tutorial is based on a sample program called generic. There are three versions of the
program: the generic directory contains files for the 32-bit ABI, the generic64 directory
contains files for the 64-bit ABI and genericn32 directory contains files for the N 32-bit
ABI. When you do the tutorial, choose the version of generic most appropriate for your
system. A good guideline is to choose whichever version corresponds to the way you
expect to develop your programs.

This tutorial was written and tested using the version of generic in the genericn32
directory.

generic was designed as a test and demonstration application. It contains code to run
scenarios that each test a different area of SpeedShop. The version of generic that you will
be using in this tutorial performs scenarios that:

• Build a linked list of structures

• Use a lot of usertime

• Scan a directory and run the stat command on each file

12

Chapter 2: Tutorial for C Users

• Perform file I/O

• Generate a number of floating point exceptions

• Link and call a routine in a DSO

Output from the program looks like the following:

0:00:00.000 ======== (24479) Begin script Fri 03 May 96 10:17:13.
begin script `ll.u.d.i.f.dso’
0:00:00.032 ======== (24479) start of linklist Sun 03 May 96 10:17:13.
linklist completed.
0:00:00.002 ======== (24479) start of usrtime Fri 03 May 96 10:17:13.
usertime completed.
0:00:10.824 ======== (24479) start of dirstat Fri 03 May 96 10:17:24.
dirstat of /usr/include completed, 242 files.
0:00:10.844 ======== (24479) start of iofile Fri 03 May 96 10:17:24.
iofile on /unix completed, 4221656 chars.
0:00:11.036 ======== (24479) start of fpetraps Fri 03 May 96 10:17:24.
fpetraps completed.
0:00:11.038 ======== (24479) start of libdso Fri 03 May 96 10:17:24.
dlslave_init executed
dlslave_routine executed
 slaveusertime completed.
 libdso: dynamic routine returned 13
 end of script ̀ u.d.i.f.dso’
0:00:11.930 ======== (24479) End script Fri 03 May 96 10:17:25.

The tutorial shows you how to perform the following experiments using ssrun, and how
to interpret experiment-specific reports generated by prof:

• usertime

• pcsamp

• dsc_hwc

• ideal

• fpe

Tutorial Setup

13

Tutorial Setup

You need to copy the program to a directory where you have write permission and
compile it so that you can use it in the tutorial.

1. Change to the /usr/demos/SpeedShop directory.

2. Copy the appropriate generic directory and its contents to a directory where you
have write permission:

cp -r generic < your_dir>

3. Change to the directory you just created:

cd < your_dir>/generic

4. Compile the program by typing

make all

This provides an executable for the experiment.

5. Set the library path so that the program can find shared libraries in the generic
directory:

setenv LD_LIBRARY_PATH < your_dir>/generic

Analyzing Performance Data

This section provides steps on how to run the following experiments on the generic
program and generate and interpret the results:

• “A usertime Experiment”

• “A pcsamp Experiment”

• “A Hardware Counter Experiment”

• “An ideal Experiment”

• “An fpe Trace”

You can follow the tutorial from start to finish, or you can follow steps for just the
experiment(s) you want.

14

Chapter 2: Tutorial for C Users

A usertime Experiment

This section takes you through the steps to perform a usertime experiment. The usertime
experiment allows you to gather data on the amount of user time spent in each function
in your program. For more information on usertime, see the “usertime Experiment”
section in Chapter 4, “Experiment Types.”

1. From the command line, type

ssrun -usertime generic

This starts the experiment. Output from generic and from ssrun will be printed to
stdout as shown in the example below. A data file with a name generated by
concatenating the process name, generic, the experiment type, usertime, and the
process ID is also generated. In this example, the filename is generic.usertime.24479.

0:00:00.000 ======== (24479) Begin script Fri 03 May 96 10:17:13.
begin script ̀ ll.u.d.i.f.dso’
0:00:00.032 ======== (24479) start of linklist Sun 03 May 96 10:17:13.
linklist completed.
0:00:00.002 ======== (24479) start of usrtime Fri 03 May 96 10:17:13.
usertime completed.
0:00:10.824 ======== (24479) start of dirstat Fri 03 May 96 10:17:24.
dirstat of /usr/include completed, 242 files.
0:00:10.844 ======== (24479) start of iofile Fri 03 May 96 10:17:24.
iofile on /unix completed, 4221656 chars.
0:00:11.036 ======== (24479) start of fpetraps Fri 03 May 96 10:17:24.
fpetraps completed.
0:00:11.038 ======== (24479) start of libdso Fri 03 May 96 10:17:24.
dlslave_init executed
dlslave_routine executed
 slaveusertime completed.
 libdso: dynamic routine returned 13
 end of script ̀ u.d.i.f.dso’
0:00:11.930 ======== (24479) End script Fri 03 May 96 10:17:25.

2. To generate a report on the data collected, type the following at the command line:

prof <your_output_file_name>

prof prints results to stdout. Note that the prof output below is a partial listing.

Profile listing generated Sun May 19 16:32:23 1996
 with: prof generic.usertime.14427

 Total Time (secs) : 21.51

Analyzing Performance Data

15

 Total Samples : 717
 Stack backtrace failed: 0
 Sample interval (ms) : 30
 CPU : R4000
 FPU : R4010
 Clock : 150.0MHz
 Number of CPUs : 1

 caller/total parents
index %time self descendents total (self) name
 callee/descend children

[1] 100.0% 0.00 21.51 717 (0) __start [1]
 0.00 21.48 716/717 0x10001b44 main [2]
 0.03 0.00 1/717 0x10001b04 __readenv_sigfpe[20]

 0.00 21.48 716/716 0x10001b44 __start [1]
[2] 99.9% 0.00 21.48 716 (0) main [2]
 0.00 21.48 716/716 0x10001bd0 Scriptstring [3]

 0.00 21.48 716/716 0x10001bd0 main [2]
[3] 99.9% 0.00 21.48 716 (0) Scriptstring [3]
 0.00 18.69 623/716 0x10001f64 usrtime [4]
 0.00 1.50 50/716 0x10001f64 iofile [6]
 0.00 1.08 36/716 0x10001f64 libdso [10]
 0.00 0.15 5/716 0x10001e78 genLog [13]
 0.00 0.03 1/716 0x10001f64 dirstat [30]
 0.00 0.03 1/716 0x1000202c genLog [13]

 0.00 18.69 623/623 0x10001f64 Scriptstring [3]
[4] 86.9% 0.00 18.69 623 (0) usrtime [4]
 18.66 0.03 623/623 0x10004edc anneal [5]

 18.66 0.03 623/623 0x10004edc usrtime [4]
[5] 86.9% 18.66 0.03 623 (622) anneal [5]
 0.00 0.03 1/1 0x10005ad0 init2da [27]

 0.00 1.50 50/50 0x10001f64 Scriptstring [3]
[6] 7.0% 0.00 1.50 50 (0) iofile [6]
 0.00 1.50 50/50 0x100025f4 fread [7]

 0.00 1.50 50/50 0x100025f4 iofile [6]
[7] 7.0% 0.00 1.50 50 (0) fread [7]
 0.00 1.44 48/50 0xfac80ec __filbuf [8]
 0.00 0.03 1/50 0xfac8060 _findbuf [33]

16

Chapter 2: Tutorial for C Users

 0.03 0.00 1/50 0xfac8188 memcpy [18]
...

The report shows information for each function, its callers and its callees. The function
names are show in the right-hand column of the report. The function that is being
reported is shown outdented from its caller and callee(s). For example, the first function
shown in this report is __start which has no callers and two callees. The remaining
columns are described below.

• The index column provides an index number for reference.

• The %time column shows the cumulative percentage of inclusive time spent in each
function and its descendents. For example, 99.9% of the time was spent in
Scriptstring and all functions listed below it.

• The self column shows how much time, in seconds, was spent in the function itself
(exclusive time). For example, less than one hundredth of a second was spent in
__start, but 0.03 of a second was spent in __readenv_sigfpe.

• The descendents columns shows how much time, in seconds, was spent in callees of
the function. For example, 21.48 seconds were spent in main.

• The caller/total, total (self), callee/descend column provides information on the
number of cycles out of the total spent on the function, its callers and its callees. For
example, the anneal function (index number 5) shows 623/623 for its caller
(usrtime), 623(622) for itself, and 1/1 for its callee (init2da.)

A pcsamp Experiment

This section takes you through the steps to perform a pcsamp experiment. The pcsamp
experiment allows you to gather information on actual CPU time for each source code
line, machine instruction and function in your program. For more information on
pcsamp, see the “pcsamp Experiment” section in Chapter 4, “Experiment Types.”

1. From the command line, type

ssrun fpcsamp generic

This starts the experiment. The f option is used with pcsamp for this program
because the program runs quickly and does not gather much data using the default
pcsamp experiment. Output from generic and from ssrun will be printed to stdout as
shown in the example below. A data file with a name generated by concatenating
the process name, generic, the experiment type, pcsamp, and the process ID is also
generated. In this example, the filename is generic.pcsamp.2277.

Analyzing Performance Data

17

0:00:00.000 ======== (14480) Begin script Sun 19 May 96 17:18:33.
 begin script ̀ ll.u.d.i.f.dso’
0:00:00.074 ======== (14480) start of linklist Sun 19 May 96 17:18:33.
 linklist completed.
0:00:00.085 ======== (14480) start of usrtime Sun 19 May 96 17:18:33.
 usertime completed.
0:00:17.985 ======== (14480) start of dirstat Sun 19 May 96 17:18:51.
 dirstat of /usr/include completed, 230 files.
0:00:18.008 ======== (14480) start of iofile Sun 19 May 96 17:18:51.
 iofile on /unix completed, 4221656 chars.
0:00:20.321 ======== (14480) start of fpetraps Sun 19 May 96 17:18:54.
 fpetraps completed.
0:00:20.323 ======== (14480) start of libdso Sun 19 May 96 17:18:54.
dlslave_init executed
dlslave_routine executed
 slaveusertime completed.
 libdso: dynamic routine returned 13
 end of script ̀ ll.u.d.i.f.dso’
0:00:21.394 ======== (14480) End script Sun 19 May 96 17:18:55.

2. To generate a report on the data collected and redirect the output to a file, type the
following at the command line:

prof <your_output_file_name> > pcsamp.results

Output similar to the following is generated.

Profile listing generated Sun May 19 17:21:27 1996
 with: prof generic.fpcsamp.14480

samples time CPU FPU Clock N-cpu S-interval Countsize
 19077 19s R4000 R4010 150.0MHz 1 1.0ms 2(bytes)

Each sample covers 4 bytes for every 1.0ms (0.01% of 19.0770s)

 -p[rocedures] using pc-sampling.
 Sorted in descending order by the number of samples in each procedure.
 Unexecuted procedures are excluded.

samples time(%) cum time(%) procedure (dso:file)

 17794 18s(93.3) 18s(93.3) anneal
(/usr/demos/SShop/genericn32/generic:/usr/demos/SShop/genericn32/generic.c)
 1046 1s(5.5) 19s(98.8) slaveusrtime
(/usr/demos/SShop/genericn32/dlslave.so:/usr/demos/SShop/genericn32/dlslave.c)

18

Chapter 2: Tutorial for C Users

 163 0.16s(0.9) 19s(99.6) _read
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/sys/read.s)
 34 0.034s(0.2) 19s(99.8) memcpy
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
 20 0.02s(0.1) 19s(99.9) _xstat
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/sys/xstat.s)
 8 0.008s(0.0) 19s(99.9) fread
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/stdio/fread.c)
 3 0.003s(0.0) 19s(100.0) iofile
(/usr/demos/SShop/genericn32/generic:/usr/demos/SShop/genericn32/generic.c)
 3 0.003s(0.0) 19s(100.0) _doprnt
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/print/doprnt.c)
 1 0.001s(0.0) 19s(100.0) __sinf
(/usr/lib32/libm.so:/work/cmplrs/libm/fsin.c)
 1 0.001s(0.0) 19s(100.0) init2da
(/usr/demos/SShop/genericn32/generic:/usr/demos/SShop/genericn32/generic.c)
 1 0.001s(0.0) 19s(100.0) _write
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/sys/write.s)
 1 0.001s(0.0) 19s(100.0) _drand48
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/math/drand48.c)
 1 0.001s(0.0) 19s(100.0) _morecore
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/gen/malloc.c)
 1 0.001s(0.0) 19s(100.0) fwrite
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/stdio/fwrite.c)

 19077 19s(100.0) 19s(100.0) TOTAL

• The samples columns shows how many samples were taken when the process was
executing in the function.

• The time(%) column shows the amount of time, and the percentage of that time over
the total time that was spent in the function.

• The cum time(%) column shows how much time has been spent in the function up
to and including the procedure in the list.

• The procedure (dso:file) column lists the procedure, its DSO name and file name.
For example, the first line reports statistics for the procedure anneal in the file
generic.c in the generic executable.

A Hardware Counter Experiment

Note: This experiment can be performed only on systems that have built-in hardware
counters (the R10000 class of machines.)

Analyzing Performance Data

19

This section takes you through the steps to perform a hardware counter experiment.
There are a number of hardware counter experiments, but this tutorial describes the steps
involved in performing the dsc_hwc experiment. This experiment allows you to capture
information about secondary data cache misses. For more information on hardware
counter experiments, see the “Hardware Counter Experiments” section in Chapter 4,
“Experiment Types.”

1. From the command line, type

ssrun -dsc_hwc generic

This starts the experiment. Output from generic and from ssrun will be printed to
stdout as shown in the example below. A data file with a name generated by
concatenating the process name, generic, the experiment type, dsc_hwc, and the
process ID is also generated. In this example, the filename is generic.dsc_hwc.5999.

2. To generate a report on the data collected and redirect the output to a file, type the
following at the command line:

prof <your_output_file_name> dsc_hwc.results

The report should look similar to the following partial listing.

Profile listing generated Sun May 19 17:35:21 1996
 with: prof generic.dsc_hwc.5999

 Counter : Sec cache D misses
 Counter overflow value: 131
 Total number of ovfls : 10
 CPU : R10000
 FPU : R10010
 Clock : 196.0MHz
 Number of CPUs : 1

 -p[rocedures] using counter overflow.
 Sorted in descending order by the number of overflows in each procedure.
 Unexecuted procedures are excluded.

 overflows(%) cum overflows(%) procedure (dso:file)

 4(40.0) 4(40.0) memcpy
(/usr/lib64/libc.so.1:/work/irix/lib/libc/libc_64_M4/strings/bcopy.s)
 2(20.0) 6(60.0) anneal
(/usr/people/larry/generic64/generic:/usr/people/larry/generic64/generic.c)
 1(10.0) 7(70.0) _findiop
(/usr/lib64/libc.so.1:/work/irix/lib/libc/libc_64_M4/stdio/flush.c)

20

Chapter 2: Tutorial for C Users

 1(10.0) 8(80.0) init2da
(/usr/people/larry/generic64/generic:/usr/people/larry/generic64/generic.c)
 1(10.0) 9(90.0) libss_timer_unset
(/usr/lib64/libssrt.so:../../ssrt/lib/sstimer.c)
 1(10.0) 10(100.0) _doprnt
(/usr/lib64/libc.so.1:/work/irix/lib/libc/libc_64_M4/print/doprnt.c)

 10(100.0) TOTAL

• The overflows(%) column shows the number of overflows caused by the function,
and the percentage of that number over the total number of overflows in the
program.

• The cum overflows(%) column shows a cumulative number and percentage of
overflows. For example, the anneal function shows two overflows, but the
cumulative number of overflows is 6: 2 from anneal and 4 from memcpy.

• The procedure (dso:file) column shows the procedure name and the DSO and
filename that contain the procedure.

An ideal Experiment

This section takes you through the steps to perform an ideal experiment. For more
information on ideal, see the “ideal Experiment” section in Chapter 4, “Experiment
Types.”

1. From the command line, type

ssrun -ideal generic

This starts the experiment. First the executable and libraries are instrumented using
pixie. This entails making copies of the libraries and executables, which are given a
.pixie extension, and inserting information into the copies. Output from generic and
from ssrun will be printed to stdout as shown in the example below. A data file with
a name generated by concatenating the process name, generic, the experiment type,
ideal, and the process ID is also generated. In this example, the filename is
generic.ideal.14517

Beginning libraries
 /usr/lib32/libssrt.so
 /usr/lib32/libss.so
 /usr/lib32/libm.so
 /usr/lib32/libc.so.1
Ending libraries, beginning “generic”
...

Analyzing Performance Data

21

Beginning libraries
Ending libraries, beginning “dlslave.so”
...

The output section that starts with “Beginning libraries” and ends with “Ending
libraries, beginning “generic”,” tells you that ssrun is instrumenting first libraries, then
the generic executable, and any DSOs that generic calls.

2. To generate a report on the data collected, type the following at the command line:

prof <your_output_file_name> > ideal.results

This command redirects output to a file called ideal.results. The file contains results that
look similar to the following partial listing:

Prof run at: Sun May 19 17:49:10 1996
 Command line: prof generic.ideal.14517

 2662778531: Total number of cycles
 17.75186s: Total execution time
 1875323907: Total number of instructions executed
 1.420: Ratio of cycles / instruction
 150: Clock rate in MHz
 R4000: Target processor modelled

Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

 cycles(%) cum % secs instrns calls procedure(dso:file)

2524610038(94.81) 94.81 16.83 1797940023 1
anneal(generic:/usr/demos/SShop/genericn32/generic.c)
 135001332(5.07) 99.88 0.90 75000822 1
slaveusrtime(./dlslave.so:/usr/demos/SShop/genericn32/dlslave.c)
 1593422(0.06) 99.94 0.01 1378737 4382
memcpy(./libc.so.1:/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
 735797(0.03) 99.97 0.00 506627 4123
fread(./libc.so.1:/work/irix/lib/libc/libc_n32_M3/stdio/fread.c)
 187200(0.01) 99.98 0.00 124800 1600
next(./libc.so.1:/work/irix/lib/libc/libc_n32_M3/math/drand48.c)
 136116(0.01) 99.98 0.00 82498 1
iofile(generic:/usr/demos/SShop/genericn32/generic.c)
 91200(0.00) 99.98 0.00 62400 1600
_drand48(./libc.so.1:/work/irix/lib/libc/libc_n32_M3/math/drand48.c)

22

Chapter 2: Tutorial for C Users

 85497(0.00) 99.99 0.00 56518 1
init2da(generic:/usr/demos/SShop/genericn32/generic.c)
 74095(0.00) 99.99 0.00 28063 628
__sinf(./libm.so:/work/cmplrs/libm/fsin.c)
 56192(0.00) 99.99 0.00 9360 16
offtime(./libc.so.1:/work/irix/lib/libc/libc_n32_M3/gen/time_comm.c)
 51431(0.00) 99.99 0.00 36405 35
_doprnt(./libc.so.1:/work/irix/lib/libc/libc_n32_M3/print/doprnt.c)
 27951(0.00) 100.00 0.00 19670 259
__filbuf(./libc.so.1:/work/irix/lib/libc/libc_n32_M3/stdio/_filbuf.c)
 21392(0.00) 100.00 0.00 10136 58
fwrite(./libc.so.1:/work/irix/lib/libc/libc_n32_M3/stdio/fwrite.c)
 12744(0.00) 100.00 0.00 9497 231
_readdir(./libc.so.1:/work/irix/lib/libc/libc_n32_M3/gen/readdir.c)
 9960(0.00) 100.00 0.00 7536 96
_xflsbuf(./libc.so.1:/work/irix/lib/libc/libc_n32_M3/stdio/flush.c)
 7211(0.00) 100.00 0.00 3959 1
dirstat(generic:/usr/demos/SShop/genericn32/generic.c)
...

• The cycles(%) column reports the number and percentage of machine cycles used
for the procedure. For example, 2524610038 cycles, or 94.81% of cycles were spent in
the anneal procedure.

• The cum% column shows the cumulative percentage of calls. For example, 99.88% of
all calls were spent between the top two functions in the listing: anneal and
slaveusrtime.

• The secs column shows the number of seconds spent in the procedure. For
example, 16.83 seconds were spent in the anneal procedure. The time represents an
idealized computation based on modelling the machine. It ignores potential floating
point interlocks and memory latency time (cache misses and memory bus
contention.)

• The instrns column shows the number of instructions executed for a procedure.
For example, there were 1797940023 instructions devoted to the anneal procedure.

• The calls column reports the number of calls to the procedure. For example, there
was just one call to the anneal procedure.

• The procedure (dso:file) column lists the procedure, its DSO name and file
name. For example, the first line reports statistics for the procedure anneal in the file
generic.c in the generic executable.

Analyzing Performance Data

23

An fpe Trace

This section takes you through the steps to perform an fpe trace. For more information
on the fpe trace, see the “fpe Trace” section in Chapter 4, “Experiment Types.”

1. From the command line, type

ssrun -fpe generic

This starts the experiment. Output from generic and from ssrun will be printed to
stdout as shown in the example below. A data file with a name generated by
concatenating the process name, generic, the experiment type, fpe, and the process
ID is also generated. In this example, the filename is generic.fpe.2334.

2. To generate a report on the data collected, type the following at the command line:

prof <your_output_file_name>

The report should look similar to the following partial listing.

Profile listing generated Tue May 7 19:21:30 1996
 with:prof generic.fpe.2334

Total FPEs : 4
Stack backtrace failed: 0
CPU : R4000
FPU : R4010
Clock : 150.0MHz
Number of CPUs : 1

 caller/total parents
index %FPEs self descendents total (self) name
 callee/descend children

[1] 100.0% 0 4 4 (0) __start [1]
 0 4 4/4 0x10001aa0 main [2]

 0 4 4/4 0x10001aa0 __start [1]
[2] 100.0% 0 4 4 (0) main [2]
 0 4 4/4 0x10001b2c Scriptstring
[3]

 0 4 4/4 0x10001b2c main [2]
[3] 100.0% 0 4 4 (0) Scriptstring [3]
 4 0 4/4 0x10001ec0 fpetraps [4]

24

Chapter 2: Tutorial for C Users

 4 0 4/4 0x10001ec0 Scriptstring
[3]
[4] 100.0% 4 0 4 (4) fpetraps [4]

The report shows information for each function, its callers and its callees. The function
names are show in the right-hand column of the report. The function that is being
reported is shown outdented from its caller and callee(s). For example, the first function
shown in this report is __start which has no callers and one callee. The remaining
columns are described below.

• The index column provides an index number for reference.

• The %FPEs column shows the percentage of the total number of floating point
exceptions that were found in the function.

• The self column shows how many floating point exceptions were found in the
function. For example, 0 floating point exceptions were found in __start.

• The descendents columns shows how many floating point exceptions were found in
the descendents of the function. For example, 4 floating point exceptions were
found in the descendents of main.

• The caller/total, total (self), callee/descend column provides information on the
number of floating point exceptions out of the total that were found.

• The parents, name, children column shows the function names, as described above.

This concludes the tutorial.

25

Chapter 3

3. Tutorial for Fortran Users

This chapter presents a tutorial for using the SpeedShop tools to gather and analyze
performance data in a Fortran program, and covers these topics:

• “Tutorial Overview”

• “Tutorial Setup”

• “Analyzing Performance Data”

Note: Because of inherent differences between systems and also due to concurrent
processes that may be running on your system, your experiment will produce different
results from the one in this tutorial. However, the basic form of the results should be the
same.

Tutorial Overview

This tutorial is based on a standard benchmark program called linpackup. There are three
versions of the program: the linpack directory contains files for the 32-bit ABI, the
linpack64 directory contains files for the 64-bit ABI and the linpackn32 directory contains
files for the N32-bit ABI. Each linpack directory contains versions of the program for a
single processor (linpackup) and for multiple processors (linpackd). When you do the
tutorial, choose the version of the program that is most appropriate for your system. A
good guideline is to choose whichever version corresponds to the way you expect to
develop your programs.

This tutorial was written and tested using the single-processor version of the program
(linpackup) in the linpackn32 directory.

The linpack program is a standard benchmark designed to measure CPU performance in
solving dense linear equations. The program focuses primarily on floating point
performance.

26

Chapter 3: Tutorial for Fortran Users

Output from the linpackup program looks like the following:

...
norm. resid resid machep x(1) x(n)
 5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00 1.00000000E+00

times are reported for matrices of order 300
 dgefa dgesl total mflops unit ratio
 times for array with leading dimension of 301
 1.180E+00 1.000E-02 1.190E+00 1.528E+01 1.309E-01 2.125E+01
 1.180E+00 1.000E-02 1.190E+00 1.528E+01 1.309E-01 2.125E+01
 1.180E+00 1.000E-02 1.190E+00 1.528E+01 1.309E-01 2.125E+01
 1.180E+00 1.000E-02 1.190E+00 1.528E+01 1.309E-01 2.125E+01

 times for array with leading dimension of 300
 1.180E+00 1.000E-02 1.190E+00 1.528E+01 1.309E-01 2.125E+01
 1.180E+00 2.000E-02 1.200E+00 1.515E+01 1.320E-01 2.143E+01
 1.180E+00 1.000E-02 1.190E+00 1.528E+01 1.309E-01 2.125E+01
 1.181E+00 1.200E-02 1.193E+00 1.524E+01 1.312E-01 2.130E+01

The tutorial shows you how to perform the following experiments using ssrun, and how
to interpret experiment-specific reports generated by prof:

• usertime

• pcsamp

• dsc_hwc

• ideal

Tutorial Setup

You need to copy the program to a directory where you have write permission and
compile it so that you can use it in the tutorial.

1. Change to the /usr/demos/SpeedShop directory.

2. Copy the appropriate linpack directory and its contents to a directory where you
have write permission:

cp -r linpack_version your_dir

3. Change to the directory you just created:

cd your_dir/linpack_version

Analyzing Performance Data

27

4. Compile the program by typing

make all

This provides an executable for the experiment.

Analyzing Performance Data

This section provides steps on how to run the following experiments on the linpackup
program and generate and interpret the results:

• “A usertime Experiment”

• “A Hardware Counter Experiment”

• “A pcsamp Experiment”

• “An ideal Experiment”

You can follow the tutorial from start to finish, or you can follow steps for just the
experiment(s) you want.

A usertime Experiment

This section takes you through the steps to perform a usertime experiment. The usertime
experiment allows you to gather data on the amount of user time spent in each function
in your program. For more information on usertime, see the “usertime Experiment”
section in Chapter 4, “Experiment Types.”

1. From the command line, type

ssrun -v -usertime linpackup

This starts the experiment. The -v flag tells ssrun to print a log to stderr. Output from
linpackup and from ssrun will be printed to stdout as shown in the example below. A
data file with a name generated by concatenating the process name, linpackup, the
experiment type, usertime, and the process ID is also generated. In this example, the
filename is linpackup.usertime.17566.

ssrun: setenv _SPEEDSHOP_MARCHING_ORDERS ut:cu
ssrun: setenv _SPEEDSHOP_EXPERIMENT_TYPE usertime
ssrun: setenv _SPEEDSHOP_TARGET_FILE linpackup
ssrun: setenv _RLD_LIST libss.so:libssrt.so:DEFAULT
 Please send the results of this run to:

28

Chapter 3: Tutorial for Fortran Users

 Jack J. Dongarra
 Mathematics and Computer Science Division
 Argonne National Laboratory
 Argonne, Illinois 60439

 Telephone: 312-972-7246

 ARPAnet: DONGARRA@ANL-MCS

 norm. resid resid machep x(1) x(n)
 5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00 1.00000000E+00

 times are reported for matrices of order 300
 dgefa dgesl total mflops unit ratio
 times for array with leading dimension of 301
 3.050E+00 3.000E-02 3.080E+00 5.903E+00 3.388E-01 5.500E+01
 3.030E+00 3.000E-02 3.060E+00 5.941E+00 3.366E-01 5.464E+01
 3.030E+00 3.000E-02 3.060E+00 5.941E+00 3.366E-01 5.464E+01
 3.030E+00 3.000E-02 3.060E+00 5.941E+00 3.366E-01 5.464E+01

 times for array with leading dimension of 300
 3.030E+00 3.000E-02 3.060E+00 5.941E+00 3.366E-01 5.464E+01
 3.040E+00 3.000E-02 3.070E+00 5.922E+00 3.377E-01 5.482E+01
 3.040E+00 3.000E-02 3.070E+00 5.922E+00 3.377E-01 5.482E+01
 3.034E+00 3.000E-02 3.064E+00 5.933E+00 3.371E-01 5.471E+01

2. To generate a report on the data collected, type the following at the command line:

prof <your_output_file_name>

prof interprets the type of experiment you have performed and prints results to
stdout. The report below shows partial prof output.

Profile listing generated Sun May 19 18:31:51 1996
 with: prof linpackup.usertime.17566

 Total Time (secs) : 55.59
 Total Samples : 1853
 Stack backtrace failed: 0
 Sample interval (ms) : 30
 CPU : R8000
 FPU : R8010
 Clock : 75.0MHz
 Number of CPUs : 1

Analyzing Performance Data

29

 caller/total parents
index %time self descendents total (self) name
 callee/descend children

[1] 99.9% 0.00 55.56 1852 (0) __start [1]
 0.00 55.56 1852/1852 0x10000ea8 main [2]

 0.00 55.56 1852/1852 0x10000ea8 __start [1]
[2] 99.9% 0.00 55.56 1852 (0) main [2]
 0.00 55.56 1852/1852 0xae9c218 linp [3]

 0.00 55.56 1852/1852 0xae9c218 main [2]
[3] 99.9% 0.00 55.56 1852 (0) linp [3]
 0.44 30.40 1028/1852 0x10002488 dgefa [4]
 0.04 3.08 104/1852 0x10001020 dgefa [4]
 0.04 3.05 103/1852 0x1000185c dgefa [4]
 0.04 3.05 103/1852 0x10001688 dgefa [4]
 0.04 3.05 103/1852 0x10001a94 dgefa [4]
 0.04 3.05 103/1852 0x1000207c dgefa [4]
 0.04 3.05 103/1852 0x10001ea8 dgefa [4]
 0.04 3.02 102/1852 0x10002250 dgefa [4]
 1.41 0.00 47/1852 0x10002434 matgen [6]
 0.00 0.30 10/1852 0x1000255c dgesl [7]
 0.15 0.00 5/1852 0x10002210 matgen [6]
 0.15 0.00 5/1852 0x1000181c matgen [6]
 0.15 0.00 5/1852 0x10001e68 matgen [6]
 0.12 0.00 4/1852 0x10001194 matgen [6]
 ...

The report shows information for each function, its callers and its callees. The function
names are show in the right-hand column of the report. The function that is being
reported is shown outdented from its caller and callee(s). For example, the first function
shown in this report is __start which has no callers and one callee. The remaining
columns are described below.

• The index column provides an index number for reference.

• The %time column shows the cumulative percentage of inclusive time spent in each
function and its descendents. For example, in the third row, 99.9% of the time was
spent in linp and all functions listed below it.

• The self column shows how much time, in seconds, was spent in the function itself
(exclusive time). For example, less than one hundredth of a second was spent in
linp, but 0.44 of a second was spent in the first call to dgefa.

30

Chapter 3: Tutorial for Fortran Users

• The descendents columns shows how much time, in seconds, was spent in callees of
the function. For example, in the third row, 55.56 seconds were spent in callees of
linp.

• The caller/total, total (self), callee/descend column provides information on the
number of cycles out of the total spent on the function, its callers and its callees. For
example, the linp function (index number 3) shows 1852/1852 for its caller (main),
1852(0) for itself, and 1028/1852 for its first callee (dgefa.)

A pcsamp Experiment

This section takes you through the steps to perform a pcsamp experiment. The pcsamp
experiment allows you to gather information on actual CPU time for each source code
line, machine line and function in your program. For more information on pcsamp, see
the “pcsamp Experiment” section in Chapter 4, “Experiment Types.”

1. From the command line, type

ssrun -pcsamp linpackup

This starts the experiment. Output from linpackup and from ssrun will be printed to
stdout as shown in the example below. A data file with a name generated by
concatenating the process name, linpackup, the experiment type, pcsamp, and the
process ID is also generated. In this example, the filename is linpackup.pcsamp.17576.

 ...
 norm. resid resid machep x(1) x(n)
 5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00 1.00000000E+00
 ...

2. To generate a report on the data collected, type the following at the command line:

prof <your_output_file_name> > pcsamp.results

Profile listing generated Sun May 19 18:38:50 1996
 with: prof linpackup.pcsamp.17576

samples time CPU FPU Clock N-cpu S-interval Countsize
 5421 54s R8000 R8010 75.0MHz 1 10.0ms 2(bytes)

Each sample covers 4 bytes for every 10.0ms (0.02% of 54.2100s)

 -p[rocedures] using pc-sampling.
 Sorted in descending order by the number of samples in each procedure.
 Unexecuted procedures are excluded.

Analyzing Performance Data

31

samples time(%) cum time(%) procedure (dso:file)

 5064 51s(93.4) 51s(93.4) daxpy (linpackup:linpackup.f)
 240 2.4s(4.4) 53s(97.8) matgen (linpackup:linpackup.f)
 76 0.76s(1.4) 54s(99.2) dgefa (linpackup:linpackup.f)
 19 0.19s(0.4) 54s(99.6) dscal (linpackup:linpackup.f)
 17 0.17s(0.3) 54s(99.9) idamax (linpackup:linpackup.f)
 4 0.04s(0.1) 54s(100.0) dmxpy (linpackup:linpackup.f)
 1 0.01s(0.0) 54s(100.0) _ioctl
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M4/sys/ioctl.s)

 5421 54s(100.0) 54s(100.0) TOTAL

• The samples columns shows how many samples were taken when the process was
executing in the function.

• The time(%) column shows the amount of time, and the percentage of that time over
the total time that was spent in the function.

• The cum time(%) column shows how much time has been spent in the function up
to and including the procedure in the list.

• The procedure (dso:file) column lists the procedure, its DSO name and file name.
For example, the first line reports statistics for the procedure daxpy in the file
linpackup.f in the linpackup executable.

A Hardware Counter Experiment

Note: This experiment can be performed only on systems that have built-in hardware
counters (the R10000 class of machines).

This section takes you through the steps to perform a hardware counter experiment.
There are a number of hardware counter experiments, but this tutorial describes the steps
involved in performing the dsc_hwc experiment. This experiment allows you to capture
information about secondary data cache misses. For more information on hardware
counter experiments, see the“Hardware Counter Experiments” section in Chapter 4,
“Experiment Types.”

1. From the command line, type

ssrun -dsc_hwc linpackup

This starts the experiment.

32

Chapter 3: Tutorial for Fortran Users

This starts the experiment. Output from linpackup and from ssrun will be printed to
stdout. A data file with a name generated by concatenating the process name,
linpackup, the experiment type, dsc_hwc, and the process ID is also generated. In this
example, the filename is linpackup.dsc_hwc.6180.

2. To generate a report on the data collected, type the following at the command line:

prof <your_output_file_name> > pcsamp.results

Output similar to the following is generated.

Profile listing generated Sun May 19 18:20:14 1996
 with: prof linpackup.dsc_hwc.6180

 Counter : Sec cache D misses
 Counter overflow value: 131
 Total numer of ovfls : 2737
 CPU : R10000
 FPU : R10010
 Clock : 196.0MHz
 Number of CPUs : 1

 -p[rocedures] using counter overflow.
 Sorted in descending order by the number of overflows in each procedure.
 Unexecuted procedures are excluded.

 overflows(%) cum overflows(%) procedure (dso:file)

 2133(77.9) 2133(77.9) DAXPY
(linpackup:/usr/people/larry/linpack64/linpackup.f)
 307(11.2) 2440(89.1) MATGEN
(linpackup:/usr/people/larry/linpack64/linpackup.f)
 275(10.0) 2715(99.2) DGEFA
(linpackup:/usr/people/larry/linpack64/linpackup.f)
 11(0.4) 2726(99.6) IDAMAX
(linpackup:/usr/people/larry/linpack64/linpackup.f)
 3(0.1) 2729(99.7) DMXPY
(linpackup:/usr/people/larry/linpack64/linpackup.f)
 3(0.1) 2732(99.8) DGESL
(linpackup:/usr/people/larry/linpack64/linpackup.f)
 1(0.0) 2733(99.9) memset
(/usr/lib64/libc.so.1:/work/irix/lib/libc/libc_64_M4/strings/bzero.s)
 1(0.0) 2734(99.9) fflush
(/usr/lib64/libc.so.1:/work/irix/lib/libc/libc_64_M4/stdio/flush.c)

Analyzing Performance Data

33

 1(0.0) 2735(99.9) _mixed_dtoa
(/usr/lib64/libc.so.1:/work/irix/lib/libc/libc_64_M4/math/mixed_dtoa.c)
 1(0.0) 2736(100.0) wsfe
(/usr/lib64/libftn.so:/work/cmplrs/libI77/wsfe.c)
 1(0.0) 2737(100.0) f_exit
(/usr/lib64/libftn.so:/work/cmplrs/libI77/close.c)

 2737(100.0) TOTAL

• The overflows(%) column shows the number of overflows caused by the function,
and the percentage of that number over the total number of overflows in the
program.

• The cum overflows(%) column shows a cumulative number and percentage of
overflows. For example, the MATGEN function shows 307 overflows, but the
cumulative number of overflows is 2440.

• The procedure (dso:file) column shows the procedure name and the DSO and
filename that contain the procedure.

An ideal Experiment

This section takes you through the steps to perform an ideal experiment. For more
information on collecting ideal-time data, and basic block counting, see the “ideal
Experiment” section in Chapter 4, “Experiment Types.”

1. From the command line, type

ssrun -ideal linpackup

This starts the experiment. First the executable and libraries are instrumented using
pixie. This entails making copies of the libraries and executables, which are given a
.pixie extension, and inserting information into the copies. Output from linpackup
and from ssrun will be printed to stdout as shown in the example below. A data file
with a name generated by concatenating the process name, linpackup, the
experiment type, ideal, and the process ID is also generated. In this example, the
filename is linpackup.ideal.17580.

Beginning libraries
 /usr/lib32/libssrt.so
 /usr/lib32/libss.so
 /usr/lib32/libftn.so
 /usr/lib32/libm.so
 /usr/lib32/libc.so.1

34

Chapter 3: Tutorial for Fortran Users

Ending libraries, beginning “linpackup”
...

2. To generate a report on the data collected, type the following at the command line:

prof <your_output_file_name> > ideal.results

This command redirects output to a file called ideal.results. The file should contain results
that look something like the following:

Prof run at: Sun May 19 18:46:10 1996
 Command line: prof linpackup.ideal.17580

 5722510379: Total number of cycles
 76.30014s: Total execution time
 4906763725: Total number of instructions executed
 1.166: Ratio of cycles / instruction
 75: Clock rate in MHz
 R8000: Target processor modelled

Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

 cycles(%) cum % secs instrns calls procedure(dso:file)

5404032607(94.43) 94.43 72.05 4639092022 772633 daxpy(linpackup:linpackup.f)
 207582228(3.63) 98.06 2.77 157405518 18 matgen(linpackup:linpackup.f)
 67844858(1.19) 99.25 0.90 72325769 17 dgefa(linpackup:linpackup.f)
 19920277(0.35) 99.60 0.27 17658342 5083 dscal(linpackup:linpackup.f)
 18115251(0.32) 99.91 0.24 15675343 5083 idamax(linpackup:linpackup.f)
 4053920(0.07) 99.98 0.05 3605124 1 dmxpy(linpackup:linpackup.f)
 786709(0.01) 100.00 0.01 695776 17 dgesl(linpackup:linpackup.f)
 41357(0.00) 100.00 0.00 83826 1116
__flsbuf(./libc.so.1:/work/irix/lib/libc/libc_n32_M4/stdio/_flsbuf.c)
 30294(0.00) 100.00 0.00 29094 1 linp(linpackup:linpackup.f)
 17330(0.00) 100.00 0.00 39823 867
x_putc(./libftn.so:/lv7/mtibuild/nodebug/workarea/mongoose/libI77/wsfe.c)
 12294(0.00) 100.00 0.00 25795 28
x_wEND(./libftn.so:/lv7/mtibuild/nodebug/workarea/mongoose/libI77/wsfe.c)
 10620(0.00) 100.00 0.00 14340 53
wrt_E(./libftn.so:/lv7/mtibuild/nodebug/workarea/mongoose/libI77/wrtfmt.c)
 9617(0.00) 100.00 0.00 14889 71
do_fio64_mp(./libftn.so:/lv7/mtibuild/nodebug/workarea/mongoose/libI77/fmt.c)
 4940(0.00) 100.00 0.00 7917 380

Analyzing Performance Data

35

• The cycles(%) column reports the number and percentage of machine cycles used
for the procedure. For example, 5404032607 cycles, or 94.43% of cycles were spent in
the daxpy procedure.

• The cum% column shows the cumulative percentage of calls. For example, 98.06% of
all calls were spent between the top two functions in the listing: daxpy and matgen.

• The secs column shows the number of seconds spent in the procedure. For
example, 72.05 seconds were spent in the daxpy procedure. The time represents an
idealized computation based on modelling the machine. It ignores potential floating
point interlocks and memory latency time (cache misses and memory bus
contention.)

• The instrns column shows the number of instructions executed for a procedure.
For example, there were 1797940023 instructions devoted to the anneal procedure.

• The calls column reports the number of calls to the procedure. For example, there
were 772633 calls to the daxpy procedure.

• The procedure (dso:file) column lists the procedure, its DSO name and file
name. For example, the first line reports statistics for the procedure daxpy in the file
linpackup.f in the linpackup executable.

This concludes the tutorial.

37

Chapter 4

4. Experiment Types

This chapter provides detailed information on each of the experiment types available
within SpeedShop. It contains the following sections:

• “Selecting an Experiment”

• “usertime Experiment”

• “pcsamp Experiment”

• “Hardware Counter Experiments”

• “ideal Experiment”

• “fpe Trace”

For information on how to run the experiments described in this chapter, see Chapter 6,
“Setting Up and Running Experiments: ssrun.”

Selecting an Experiment

Table 4-1 shows the possible experiments you can perform using the SpeedShop tools
and the reasons why you might want to choose a specific experiment. The Clues column
shows when you might use an experiment. The Data Collected column indicates

38

Chapter 4: Experiment Types

performance data collected by the experiment For detailed information on the
experiments listed, see the sections below.

usertime Experiment

Note: For this experiment, o32 executables must explicitly link with -lexc .

The usertime experiment uses statistical call stack profiling, based on wall clock time, to
measure inclusive and exclusive user time spent in each function while your program
runs. This experiment uses an interval of 30 seconds.

Data is measured by periodically sampling the callstack. The program’s callstack data is
used to attribute exclusive user time to the function at the bottom of each callstack (i.e.,

Table 4-1 Summary of Experiments

Experiment Type Clues Data Collected

usertime Slow program, nothing
else known.

Not CPU-bound.

Inclusive and exclusive user time for each
function by sampling the callstack at 30
millisecond intervals.

ideal CPU-bound Ideal CPU time at the function, source line and
machine instruction levels using instrumentation
for basic block counting.

FPE Trace High system time.

Presence of floating point
operations.

All floating point exceptions with the exception
type and the callstack at the time of the exception.

pcsamp High user CPU time. Actual CPU time at the source line, machine
instruction and function levels by sampling the
program counter at 10 or 1 millisecond intervals.

hwc High user CPU time. On R10000 class machines, exclusive counts at the
source line, machine instruction and function
levels for overflows of the following counters:
Clock Cycle, Graduated Instructions, Primary
Instruction-cache Misses, Secondary
Instruction-cache Misses, Primary Data-cache
Misses, Secondary Data-cache Misses, TLB
Misses, Graduated Floating-point Instructions.

pcsamp Experiment

39

the function being executed at the time of the sample), and to attribute inclusive user
time to all the functions above the one currently being executed.

The time spent in a procedure is determined by multiplying the number of times an
instruction for that procedure appears in the stack by the average time interval between
call stacks. Call stacks are gathered whether the program was running or blocked; hence,
the time computed represents the total time, both within and outside the CPU. If the
target process was blocked for a long time as a result of an instruction, that instruction
will show up as having a high time.

User time runs should incur a slowdown of execution of the program of no more than
15%. Data from a usertime experiment is statistical in nature and will show some
variance from run to run.

pcsamp Experiment

The pcsamp experiment uses statistical PC sampling to estimate actual CPU time for each
source code line, machine line and function in your program. The prof listing of this
experiment shows exclusive PC-sampling time. This experiment is a lightweight,
high-speed operation done with kernel support. The actual CPU time is calculated by
multiplying the number of times an instruction appears in the PC by the interval
specified for the experiment (either 1 or 10 milliseconds.)

To collect the data, the kernel regularly stops the process if it is in the CPU, increments a
counter for the current value of the PC, and resumes the process. The default sample
interval is 10 milliseconds. If you specify the optional f prefix to the experiment, a sample
interval of 1 millisecond is used.

The experiment uses 16-bit bins, based on user and system time. If the optional x suffix
is used, a 32-bit bin size will be used. 16-bit bins allow a maximum of 65,000 counts,
whereas a 32-bit bin allows 65,000 x 65,000 the number of counts. Using a 32-bit bin
provides more accurate information, but requires additional disk space.

PC-sampling time runs should incur a slowdown of execution of the program of no more
than 5%. The measurements are statistical in nature, and will exhibit variance inversely
proportional to the running time.

40

Chapter 4: Experiment Types

This experiment can be used together with the ideal experiment to compare actual and
ideal times spent in the CPU. A major discrepancy between PC Sample CPU time and
ideal CPU Time indicates:

• Cache misses and floating point interlocks in a single process application

• Secondary cache invalidations in an application with multiple processes that is run
on a multiprocessor

A comparison between basic block counts (ideal experiment) and PC profile counts
(pcsamp experiment) is shown in Table 4-2.

Hardware Counter Experiments

The experiments described in this section are available for systems that have hardware
counters (R10000 class machines). Hardware counters allow you to count various types
of events such as cache misses, and counts of issued and graduated instructions.

A hardware counter works as follows: on each processor clock cycle, when events for
which there are hardware counters occur, each event is counted by incrementing the
appropriate hardware counter. For example, when a floating point instruction is
graduated in a cycle, the Graduated Floating-point Instruction counter is incremented by
one.

There are two tools that allow you to access hardware counter data: perfex, a
command-line interface that provides program-level event information, and SpeedShop,
which allows you to perform the hardware counter experiments described below. For
more information on perfex, and on hardware counters, click perfex or r10k_counters to
view the reference pages.

Table 4-2 Basic Block Counts and PC Profile Counts Compared

Basic Block Counts PC Profile Counts

Used to compute ideal CPU time Used to estimate actual CPU time

Data collection by instrumenting Data collection done with the kernel

Slows program down by factor of three Has minimal impact on program speed

Generates an exact count Statistical counts

Hardware Counter Experiments

41

In SpeedShop hardware counter experiments, overflows of a particular hardware
counter are recorded. Each hardware counter is configured to count from zero to a
number designated as the overflow value. When the counter reaches the overflow value,
it is reset to zero, and a count of how many overflows have occurred at the present
program instruction address is incremented. Each experiment provides two possible
overflow values; the values are prime numbers, so any profiles that seem the same for
both overflow values should be statistically valid.

The hardware counter experiments show where the overflows are being triggered in the
program, at the function, source-line, and individual instruction level. When you run prof
on the data collected during the experiment, the overflow counts are multiplied by the
overflow value, to compute the total number of events. These numbers are statistical. The
generated reports show exclusive hardware counts, that is, information about where the
program counter was, not the callstack to get there.

Hardware counter overflow profiling experiments should incur a slowdown of
execution of the program of no more than 5%. Count data is kept as 32-bit integers only.

[f]gi_hwc

The [f]gi_hwc experiment counts overflows of the Graduated Instruction counter. The
Graduated Instruction counter is incremented by the number of instructions that were
graduated on the previous cycle. The experiment uses statistical PC sampling based on
overflows of the counter at an overflow interval of 32771. If the optional f prefix is used,
the overflow interval is 6553.

[f]cy_hwc

The [f]cy_hwc experiment counts overflows of the Cycle counter. The Cycle counter is
incremented on each clock cycle. The experiment uses statistical PC sampling based on
overflows of the counter, at an overflow interval of 16411. If the optional f prefix is used,
the overflow interval is 3779.

[f]ic_hwc

The [f]ic_hwc experiment counts overflows of the Primary Instruction-cache Miss
counter. The Primary Instruction-cache Miss counter is incremented one cycle after an
instruction fetch request is entered into the Miss Handling Table. The experiment uses

42

Chapter 4: Experiment Types

statistical PC sampling based on the overflow of the counter at an overflow interval of
2053. If the optional f prefix is used, the overflow interval is 419.

[f]isc_hwc

The [f]isc_hwc experiment counts overflows of the Secondary Instruction-cache Miss
counter. The Secondary Instruction-cache Miss counter is incremented after the last
16-byte block of a 64-byte primary instruction cache line is written into the instruction
cache. The experiment uses statistical PC sampling based on the overflow of the counter
at an overflow interval of 131. If the optional f prefix is used, the overflow interval is 29.

[f]dc_hwc

The [f]dc_hwc experiment counts overflows of the Primary Data-cache Miss counter. The
Primary Data-cache Miss counter is incremented on the cycle after a primary cache data
refill is begun. The experiment uses statistical PC sampling based on the overflow of the
counter at an overflow interval of 2053. If the optional f prefix is used, the overflow
interval is 419.

[f]dsc_hwc

The [f]dsc_hwc experiment counts overflows of the Secondary Data-cache Miss counter.
The Secondary Data-cache Miss counter is incremented on the cycle after the second
16-byte block of a primary data cache line is written into the data cache. The experiment
uses statistical PC sampling, based on the overflow of the counter at an overflow interval
of 131. If the optional f prefix is used, the overflow interval is 29.

[f]tlb_hwc

The [f]tlb_hwc experiment counts overflows of the TLB (translation lookaside buffer)
counter. The TLB counter is incremented on the cycle after the TLB miss handler is
invoked. The experiment uses statistical PC sampling based on the overflow of the
counter at an overflow interval of 257. If the optional f prefix is used, the overflow
interval is 53.

Hardware Counter Experiments

43

[f]gfp_hwc

The [f]gfp_hwc experiment counts overflows of the Graduated Floating-point
Instruction counter. The Graduated Floating-point Instruction counter is incremented by
the number of floating point instructions which graduated on the previous cycle. The
experiment uses statistical PC sampling based on overflows of the counter, at an
overflow interval of 32771. If the optional f prefix is used, the overflow interval is 6553.

prof_hwc

The prof_hwc experiment allows you to set a hardware counter to use in the experiment,
and to set a counter overflow interval using the following environment variables:

_SPEEDSHOP_HWC_COUNTER_NUMBER
The value of this variable may be any number between 0 and 31.
Hardware counters are described in the MIPS R10000 Microprocessor
User’s Manual, Chapter 14, and on the r10k_counters reference page. The
hardware counter numbers are provided in Table 4-3.

_SPEEDSHOP_HWC_COUNTER_OVERFLOW
The value of this variable may be any number greater than 0. Some
numbers may produce data that is not statistically random, but rather
reflects a correlation between the overflow interval and a cyclic behavior
in the application. You may want to do two or more runs with different
overflow values.

The experiment uses statistical PC sampling based on the overflow of the specified
counter, at the specified interval. Note that these environment variables cannot be used
for other hardware counter experiments. They are examined only when the prof_hwc
experiment is specified.

Hardware Counter Numbers

The possible numeric values for the _SPEEDSHOP_HWC_COUNTER_NUMBER
variable are:

Table 4-3 Hardware Counter Numbers

0 Cycles

1 Issued instructions

44

Chapter 4: Experiment Types

2 Issued loads

3 Issued stores

4 Issued store conditionals

5 Failed store conditionals

6 Decoded branches

7 Quadwords written back from secondary cache

8 Correctable secondary cache data array ECC errors

9 Primary instruction-cache misses

10 Secondary instruction-cache misses

11 Instruction misprediction from secondary cache way prediction table

12 External interventions

13 External invalidations

14 Virtual coherency conditions (or Functional unit completions, depending on hardware
version)

15 Graduated instructions

16 Cycles

17 Graduated instructions

18 Graduated loads

19 Graduated stores

20 Graduated store conditionals

21 Graduated floating point instructions

22 Quadwords written back from primary data cache

23 TLB misses

24 Mispredicted branches

25 Primary data-cache misses

Table 4-3 (continued) Hardware Counter Numbers

ideal Experiment

45

ideal Experiment

The ideal experiment instruments the executables and any DSOs to permit basic block
counting and counting of all dynamic (function-pointer) calls. This involves dividing the
code into basic blocks, which are sets of instructions with a single entry point, a single
exit point, and no branches into or out of the set. Counter code is inserted at the
beginning of each basic block to increment a counter every time that basic block is
executed. The target executable and all the DSOs it uses are instrumented, including
libc.so.1, libexc.so, libm.so, libss.so, libssrt.so. Instrumented files with a .pixie extension are
written to the current working directory.

After the transformations are complete, the program’s symbol table and translation table
are updated so that debuggers can map between transformed addresses and the original
program’s addresses, and reference the measured performance data to the
untransformed code.

After instrumentation, ssrun executes the instrumented program. Data is generated as
long as the process exits normally or receives a fatal signal that the program does not
handle.

prof uses a machine model to convert the block execution counts into an idealized
exclusive time at the function, source line or machine instruction levels. By default, the
machine model corresponds to the machine on which the target was run; the user can
specify a different machine model for the analysis.

The assumption made in calculating ideal CPU time is that each instruction takes exactly
one cycle, and ignores potential floating point interlocks and memory latency time (cache
misses and memory bus contention). Each system call is also assumed to take one cycle.

26 Secondary data-cache misses

27 Data misprediction from secondary cache way prediction table

28 External intervention hits in secondary cache

29 External invalidation hits in secondary cache

30 Store/prefetch exclusive to clean block in secondary cache

31 Store/prefetch exclusive to shared block in secondary cache

Table 4-3 (continued) Hardware Counter Numbers

46

Chapter 4: Experiment Types

The computed ideal time is therefore always less than the real time that any run would
take. See Table 4-2 for a comparison of running a pcsamp experiment, which generates
estimated actual CPU time, and running an ideal experiment.

Note that the execution time of an instrumented program is three-to-six times longer
than an uninstrumented one. This timing change may alter the behavior of a program
that deals with a graphical user interface (GUI), or depends on events such as SIGALRM
that are based on an external clock. Also, during analysis, the instrumented executable
might appear to be CPU-bound, whereas the original executable was I/O-bound.

Basic block counts are translated to ideal CPU time displayed at the function, source line
and machine line levels.

Inclusive Basic Block Counting

The basic block counting explained in the previous section allows you to measure ideal
time spent in each procedure, but doesn’t propagate the time up to the caller of that
procedure. For example, basic block counting may tell you that procedure sin(x) took the
most time, but significant performance improvement can only be obtained by optimizing
the callers of sin(x). Inclusive basic block counting solves this problem.

Inclusive basic block counting calculates cycles just like regular basic block counting, and
then propagates it proportionately to all its callers. The cycles of procedures obtained
using regular basic block counting (called exclusive cycles), are divided up among its
callers in proportion to the number of times they called this procedure. For example, if
sin(x) takes 1000 cycles, and its callers, procedures foo() and bar(), call sin(x) 25 and 75
times respectively, 250 cycles are attributed to foo() and 750 to bar(). By propagating
cycles this way, __start ends up with all the cycles counted in the program.

Note: The assumption made in propagating times from a callee to a caller is that all calls
are equivalent, so that the time attributed is divided equally for all calls. For some
functions (sin(), for example), this assumption is plausible. For others (matrix multiply,
for example), the assumption can be very misleading. If foo() calls matmult() 99 times for
2X2 matrices, while bar() calls it once for 100X100 matrices, the inclusive time report will
attribute 99% of matmult()’s time to foo(), but actually almost all the time derives from
bar()’s one call.

To generate a report that shows inclusive time, specify the -gprof flag to prof.

fpe Trace

47

fpe Trace

A Floating Point Exception Trace collects each floating point exception with the
exception type and the callstack at the time of the exception. Floating-point exception
tracing experiments should incur a slowdown of execution of the program of no more
than 15%. These measurements are exact, not statistical.

prof generates a report that shows inclusive and exclusive floating-point exception
counts.

49

Chapter 5

5. Collecting Data on Machine Resource Usage

This chapter describes how to collect machine resource usage data using SpeedShop’s
ssusage command. Finding out the machine resources that your program uses can help
you identify performance bottlenecks and the performance experiments you need to run.
You can use Table 1-1 to identify which experiments to run, based on the results of
running ssusage on your program.

ssusage Syntax

ssusage prog_name [prog_args]

prog_name The name of the executable for which you want to collect machine
resource usage data.

prog_args Arguments to your executable, if any.

ssusage Results

ssusage prints output to stderr. For example, the command:

ssusage generic

provides output similar to the following:

...

22.03 real, 18.18 user, 0.21 sys, 7 majf, 120 minf, 0 sw, 241 rb, 0
wb, 135 vcx, 648 icx

The last two lines of the output is the machine resource usage information that ssusage
provides. Each field in the report is described below.

real The elapsed time during the command, in seconds.

user The user CPU time in seconds.

sys The system CPU time in seconds.

50

Chapter 5: Collecting Data on Machine Resource Usage

majf Major page faults that cause physical I/O.

minf Minor page faults that require mapping only.

sw Process swaps.

rb/wb Physical blocks read/written. Note that these are attributed to the
process which first requests a block, but do not necessarily directly
correlate with the process’ own I/O operations.

vcx Voluntary context switches, that is, those caused by the process’ own
actions.

icx Involuntary context switches, that is, those caused by the scheduler.

If the program terminates abnormally, a message is printed before the usage line.

51

Chapter 6

6. Setting Up and Running Experiments: ssrun

This chapter provides information on how to set up and run performance analysis
experiments using the ssrun command. It consists of the following sections:

• “Building your Executable”

• “Setting Up Output Directories and Files”

• “Running Experiments”

• “Running Experiments on MPI Programs”

• “Using Calipers”

• “Effects of ssrun”

• “Customizing Your Environment”

Building your Executable

The ssrun command is designed to be used with normally built executables and default
environment settings. However, there are some cases where you will need to make
changes to the way you build your executable or set certain environment variables. This
section lists the conditions under which you may need to change the way you build your
executable program. For information on setting environment variables, see section
“Customizing Your Environment.”

• If you have used the ssrt_caliper_point function provided in the SpeedShop
libraries, you need to explicitly link in the SpeedShop libraries libss.so and libssrt.so.
For more information on setting caliper points, see section “Using Calipers.”

• If you are planning to build your executable using the -32 option to cc, and you
want to run the usertime experiment, you must add -lexc to the link line. For more
information on cc -32, click cc to view the reference page.

• If you have built a stripped executable, you need to rebuild a non-stripped version
to use with SpeedShop. For example, if you are using ld to link your C program, do

52

Chapter 6: Setting Up and Running Experiments: ssrun

not use the -s option since this strips debugging information from the program
object and makes the program unusable for performance analysis.

• If you have used compiler optimization level 3, and you are performing
experiments that report function-level information, the procedure inlining it
performs can result in extremely misleading profiles since the time spent in the
inlined procedure will show up in the profile as time spent in the procedure into
which it was inlined. It is generally better to use compiler optimization level 2 or
less when gathering an execution profile.

• If you are compiling MP Fortran programs, you may encounter anomalies in the
displayed data:

– For all FORTRAN MP compilations, parallel loops within the program are
represented as subroutines with names relating to the source routine in which
they are embedded. The naming conventions for these subroutines are different
for 32-bit and 64-bit compilations. For example, in linpack, most of the time
spent is in the routine DAXPY, which can be parallelized. In a 64-bit MP
version, the routine has the name “DAXPY”, but most of that work is done in
the MP routine named “DAXPY.PREGION1”. In a 32-bit version, the DAXPY
routine is named “daxpy_”, and the MP routine “_daxpy_519_aaab_”.

– In both 32-bit and 64-bit compilations with the -g option, for an ideal
experiment, the source annotations behave differently and incorrectly in most
cases.

In 64-bit source annotations, the exclusive time is correctly shown for each line,
but the inclusive time for the first line of the loop (do statement) includes the
time spent in the loop body. This same time appears on the lines comprising the
loop’s body, in effect representing a double-counting.

In 32-bit source annotations, the exclusive time is incorrectly shown for the line
comprising the loop’s body. The line-level data for the loop-body routine
(“_daxpy_519_aaab_”) does not refer to proper lines. If the program was
compiled with the -mp_keep flag, the line-level data should refer to the
temporary files that are saved from the compilation, but the temporary files do
not contain that information, so no source or disassembly data can be shown.
The disassembly data for the main routine does not show the times for the
loop-body.

If the 32-bit program was compiled without -mp_keep flag, the line-level data
for the loop-body routine is incorrect. Most lines refer to line 0 of the file, and
the rest to other lines at seemingly random places in the file. Consequently,

Setting Up Output Directories and Files

53

spurious annotations will appear on these other lines. Disassembly correctly
shows the instructions and their data, but the line numbers are wrong. This
reflects essentially the same double-counting problem as seen in 64-bit
compilations, but the extra counts go to other places in the file, rather than to
the first line of the loop.

Setting Up Output Directories and Files

When you run an experiment, performance data files are written to the current working
directory by default, and they are named using the following convention:

prog_name.exp_type.pid

In a single-process application, ssrun generates a single performance data file, and in a
multi-process application, it generates a performance data file for each process.

You can change the default filename or directory for performance data files using
environment variables.

• Set _SPEEDSHOP_OUTPUT_DIRECTORY to the directory you want to use if you
want to generate performance data files in a directory other than the current
working directory.

• Set _SPEEDSHOP_OUTPUT_FD to the number of the file descriptor to be used for
writing the output file if you want to specify a file to which to write the
performance data.

• Set _SPEEDSHOP_OUTPUT_FILENAME to the filename you want to use for
recording performance data. If _SPEEDSHOP_OUTPUT_DIRECTORY is also
specified, it is prepended to the filename you specify.

Running Experiments

This section describes how to use ssrun to perform experiments. For information on
using pixie directly, see Chapter 8, “Using SpeedShop in Expert Mode: pixie.”

ssrun Syntax
ssrun flags - exp_type prog_name prog_args

54

Chapter 6: Setting Up and Running Experiments: ssrun

flags Zero or more of the flags described in Table 6-1 that control the data
collection and the treatment of descendent processes or programs, and
how the data is to be externalized.

-exp_type The experiment type. Experiments are described in detail in Chapter 4,
“Experiment Types.”

prog_type The name of the program on which you want to run an experiment.

args Arguments to your program, if any.

ssrun generates a performance data file that is named as described in the section
“Building your Executable.”

Table 6-1 Flags for ssrun

Name Result

-hang Specifies that the process should be left waiting just before executing
its first instruction. This allows you to attach the process to a
debugger.

-mo marching_orders Allows you to specify marching orders; if this option is used the
environment variable _SSRUNTIME_MARCHING_ORDERS is not
examined.

-name target_name Specifies that the target should be run with argv[0] set to target_name.

-purify Can be used only when the Purify product is installed. Specifies that
purify should be run on the target, and then runs the resulting
“purified” executable. Note that -purify and SpeedShop
performance experiments cannot be combined.

-v Prints a log of the operation of ssrun to stderr. The same behavior
occurs if the environment variable _SPEEDSHOP_VERBOSE is set a
to an empty string.

-V Prints a detailed log of the operation of ssrun to stderr. The same
behavior occurs if the environment variable
_SPEEDSHOP_VERBOSE is set a to a non-zero-length string. This
option can be used to see how to set the various environment
variables, and how to invoke instrumentation when necessary.

Running Experiments

55

ssrun Examples

This section provides examples of using ssrun with options and experiment types. For
additional examples, see Chapter 2, “Tutorial for C Users” or Chapter 3, “Tutorial for
Fortran Users.”

Example Using the pcsampx Experiment

The pcsampx experiment collects data to estimate the actual CPU time for each source
code line, machine instruction and function in your program. The optional x suffix causes
a 32-bit bin size to be used, allowing a larger number of counts to be recorded. For a more
detailed description of the pcsamp experiment, see the “pcsamp Experiment” section in
Chapter 4, “Experiment Types.”

ssrun -pcsampx generic

To see the performance data that has been generated, run prof on the performance data
file, generic.pcsampx.16064.

prof generic.pcsampx.16064

The report is printed to stdout. (This layout of this report has been altered slightly to
accommodate presentation needs.) For more information on prof and the reports
generated by prof, see Chapter 7, “Analyzing Experiment Results: prof.”

Profile listing generated Thu May 23 10:30:40 1996
 with: prof generic.pcsampx.16064

samples time CPU FPU Clock N-cpu S-interval Countsize
 2058 21s R4000 R4010 150.0MHz 1 10.0ms 4(bytes)

Each sample covers 4 bytes for every 10.0ms (0.05% of 20.5800s)

 -p[rocedures] using pc-sampling.
 Sorted in descending order by the number of samples in each procedure.
 Unexecuted procedures are excluded.

samples time(%) cum time(%) procedure (dso:file)

1926 19s(93.6) 19s(93.6) anneal
(generic:/usr/demos/SpeedShop/genericn32/generic.c)
111 1.1s(5.4) 20s(99.0) slaveusrtime
(/usr/demos/SS/genericn32/dlslave.so:/usr/demos/SS/genericn32/dlslave.c)

56

Chapter 6: Setting Up and Running Experiments: ssrun

 15 0.15s(0.7) 21s(99.7) _read
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/sys/read.s)
 2 0.02s(0.1) 21s(99.8) memcpy
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
 1 0.01s(0.0) 21s(99.9) _xstat
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/sys/xstat.s)
 1 0.01s(0.0) 21s(99.9) _ltzset
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/gen/time_comm.c)
 1 0.01s(0.0) 21s(100.0) __sinf
(/usr/lib32/libm.so:/work/cmplrs/libm/fsin.c)
 1 0.01s(0.0) 21s(100.0) _write
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/sys/write.s)

 2058 21s(100.0) 21s(100.0) TOTAL

Example Using the -v Option

To get information about how a SpeedShop experiment is set up and performed, you can
supply the -v option to ssrun.

This example performs a pcsampx experiment on the generic executable:

ssrun -v -pcsampx generic

The ssrun command writes the following output to stderr. It displays information as the
command line is parsed and shows the environment variables that ssrun sets.

fraser 75% ssrun -v -pcsampx generic

ssrun: setenv _SPEEDSHOP_MARCHING_ORDERS pc,4,10000,0:cu
ssrun: setenv _SPEEDSHOP_EXPERIMENT_TYPE pcsampx
ssrun: setenv _SPEEDSHOP_TARGET_FILE generic
ssrun: setenv _RLD_LIST libss.so:libssrt.so:DEFAULT
...

Running Experiments on MPI Programs

57

Using ssrun with a Debugger

To use the ssrun command in conjunction with a debugger such as dbx or the ProDev
WorkShop debugger, you need to call ssrun with the -hang option and your program.

The following steps assume you want to run the FPE trace experiment on generic, and
then run generic in a debugger.

1. Call ssrun as follows:

ssrun -hang -fpe generic

ssrun parses the command line, sets up the environment for the experiment, calls
the target process using exec, and hangs the target process on exiting from the call to
exec.

2. Get the process ID of the call to ssrun using a command such as ps.

3. Start your debugging session.

4. Attach the process to the debugger.

5. Run the process from the debugger.

You can also invoke ssrun from within a debugger. In this case, ssrun leaves the target
hung on exiting the call to exec, and informs the debugger of that fact.

You can also use either dbx or the WorkShop debugger to set calipers to record
performance data for a part of your program. See the section “Using Calipers” for more
information on setting calipers.

Running Experiments on MPI Programs

The Message Passing Interface (MPI) is a library specification for message-passing,
proposed as a standard by a committee of vendors, implementors, and users. It allows
processes to communicate by “mailing” data “messages” to other processes, even those
running on distant computers.

58

Chapter 6: Setting Up and Running Experiments: ssrun

If your program uses the MPI, you need to set up SpeedShop experiments a little
differently:

1. Set up a shell script that contains the call to ssrun and the experiment you want to
run.

For example, if you have a program called testit, and you want to run the pcsampx
experiment, a script, named exp_script, might look like the following:

#!/bin/sh

ssrun -pcsampx testit

2. Call mpirun with the script name.

mpirun -np 6 exp_script

Using Calipers

In some cases, you may want to generate performance data reports for only a part of your
program. You can do this by setting caliper points to identify the area or areas for which
you want to see performance data. When you run prof, you can specify a region for which
to generate a report by supplying the -calipers option and the appropriate caliper
numbers. For more information on prof -calipers, see “Using the -calipers Option” in
Chapter 7, “Analyzing Experiment Results: prof.”

You can set caliper points in three different ways:

• You can explicitly link with the SpeedShop runtime and call ssrt_caliper_point to
record a caliper sample. This is useful when you want to set a caliper point at a
specific location in a file.

• You can define a signal to be used to record a caliper sample by specifying a signal
as a value to the environment variable _SPEEDSHOP_CALIPER_POINT_SIG and
then sending the target the given signal. This is useful if you want to be able to set a
caliper point as your program is running.

• You can set a caliper sample trap in dbx or the WorkShop debugger. This is done by
setting a breakpoint and when the process stops and evaluating the expression
libss_caliper_point(1). This is useful if you are working with a debugger in
conjunction with SpeedShop.

An implicit caliper point is always present at the start of execution of the process. A final
caliper-point is recorded when the process calls _exit. The implicit caliper point at the

Using Calipers

59

beginning of the program is numbered 0, the first caliper point recorded is numbered 1,
and any additional caliper points are numbered sequentially.

In addition, caliper points are automatically recorded under the following circumstances
to ensure that at least one valid set of data is recorded.

• When a fatal signal is received, such as SIGQUIT, SIGILL, SIGTRAP, SIGABRT,
SIGEMT, SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGXCPU or SIGXFSZ. Note that this
list does not include SIGKILL.

• When the program calls an exec function such as execve or execvp.

• When a program closes a DSO by calling dlclose.

• When an exit signal is received, such as SIGHUP, SIGINT, SIGPIPE, SIGALRM,
SIGTERM, SIGUSR1, SIGUSR2, SIGPOLL, SIGIO, SIGRTMIN or SIGRTMAX.

Setting Calipers with ssrt_caliper_point

1. Insert calls to ssrt_caliper_point in your source code. You can insert one or more
calls at any point in your code. The function call should be given the argument 1
(True.)

...

ssrt_caliper_point(1);

...

2. Link in the SpeedShop libraries libss.so and libssrt.so into your application. The
libraries can be placed in any order on the link line.

3. Run your program with ssrun and the desired experiment type. For example, if you
want to run the ideal experiment on generic:

ssrun -ideal generic

The caliper points you have set in the source file are recorded in the performance
data file that is generated by ssrun.

60

Chapter 6: Setting Up and Running Experiments: ssrun

Setting Calipers with Signals

1. Set the_SPEEDSHOP_CALIPER_POINT_SIG variable to the signal number you
want to use.

The following are good choices because they do not have any semantics already
associated with them. You must choose a signal that does not terminate the
program. The signal should also not be caught by the target program, as this would
interfere with its use for triggering a caliper point.

SIGUSR1 16 /* user defined signal 1 */

SIGUSR2 17 /* user defined signal 2 */

2. Run ssrun with your program.

3. Run a command such as ps or top to determine the process ID of ssrun. This is also
the process ID of the program you are working on.

4. Send the signal you used in step 1 to the process using the kill command.

kill -sig_num pid

A caliper point is set at the point in the program where the signal was received by
the SpeedShop runtime.

Setting Calipers with a Debugger

From either dbx or the WorkShop debugger, you can set a caliper point anywhere it is
possible to set a breakpoint: function entry or exit, line numbers, execution addresses,
watchpoints, pollpoints (timer-based). You can also attach conditions and/or cycle
counts.

1. Set a breakpoint in your program at the point at which you want to set a caliper
point.

2. When the process stops, evaluate the expression libss_caliper_point(1).

The evaluation of the expression always returns zero, but a side effect of the
evaluation is the recording of the appropriate data.

3. Resume execution of the process.

Effects of ssrun

61

Effects of ssrun

When you call ssrun, the following operations are executed for all experiments:

• The following environment variables are set:
_SPEEDSHOP_MARCHING_ORDERS, _SPEEDSHOP_EXPERIMENT_TYPE, and
_SPEEDSHOP_TARGET_FILE. For more information on these variables, see
“Customizing Your Environment.”

• The SpeedShop libraries libss.so and libssrt.so are inserted as part of your executable
using the environment variable _RLD_LIST.

• The target process is invoked by calling exec.

• The SpeedShop runtime library writes the appropriate experiment data to the
output file.

Effects of ssrun -ideal

When you run an ideal experiment, the following additional operations occur:

• libssrt.so is inserted immediately in front of libc.so.1 in the executable’s library list.

• ssrun generates .pixie versions of all the libraries that the program uses, as well as
the executable. The .pixie files are written to the current working directory, and
include code that allows performance data to be collected for each function and
basic block. For more information on the ideal experiment, see the “ideal
Experiment” section in Chapter 4, “Experiment Types.”

Customizing Your Environment

This section provides information on environment variables that you can use to
customize your environment for ssrun.

• “Setting Environment Variables for Spawned Processes”

• “Setting General Environment Variables”

62

Chapter 6: Setting Up and Running Experiments: ssrun

Setting Environment Variables for Spawned Processes

If your program spawns processes using fork, exec, or sproc, you can use the environment
variables described in Table 6-2 to control whether performance data is collected for the
spawned processes.

Setting General Environment Variables

You can set any of following environment variables to customize the way that ssrun
works. For a complete list of SpeedShop environment variables, click speedshop to view
the reference page.

Table 6-2 Environment variables for Spawned Processes

Variable Name Description

_SPEEDSHOP_TRACE_FORK When set to True, specifies that processes spawned by
calls to fork are monitored. It is set to True by default.

_SPEEDSHOP_TRACE_EXEC When set to True, specifies that processes spawned by
calls to exec are monitored. It is set to True by default.

_SPEEDSHOP_TRACE_SPROC When set to True, specifies that processes spawned by
calls to sproc are monitored. It is set to True by default.

Table 6-3 Environment Variables for ssrun

Variable Name Description

_SPEEDSHOP_VERBOSE Writes a log of each program’s operation to stderr. If
it is set to an empty string, only major events are
logged; if it is set to a non-empty string more
detailed events are logged.

_SPEEDSHOP_SILENT When set to an empty or non-empty string,
suppresses all output other than fatal error
messages from SpeedShop. Overrides
_SPEEDSHOP_VERBOSE.

Customizing Your Environment

63

There are two additional environment variables:
_SPEEDSHOP_EXPERIMENT_TYPEE and _SPEEDSHOP_MARCHING_ORDERS.
These variables are set by ssrun when you run an experiment. If you are using ssrun, you
do not need to set the variables.

_SPEEDSHOP_EXPERIMENT_TYPE passes the name of the experiment to the runtime.
ssrun parses the command line and generates marching orders for the experiment. The
_SPEEDSHOP_MARCHING_ORDERS variable passes the marching orders of the
experiment to the runtime. For examples of these variables, see “Example Using the -v
Option.”

_SPEEDSHOP_SAMPLING_MODE Used for PC-sampling and hardware-counter
profiling. If set to 1, it generates data for the base
executable only. If it is not set, or set to anything
other than 1, it generates data for the executable and
all DSOs.

_SPEEDSHOP_INIT_DEFERRED_SIGNAL When set to a signal number, the experiment is not
initialized when the target process starts, but is
delayed until the specified signal is sent to the
process. A handler for the signal is installed when
the process starts. You must ensure that the handler
is not overwritten by the target code.

_SPEEDSHOP_SBRK_BUFFER_LENGTH Defines the maximum size of the internal malloc
arena used. This arena is completely separate from
the user’s arena and has a default size of 0x400000.

_SPEEDSHOP_FILE_BUFFER_LENGTH Defines the size of the buffer used for writing
experiment files. The default length is 8kb. The
buffer is used for writing small records to the file;
large records are written directly, to avoid the
buffering overhead.

Table 6-3 (continued) Environment Variables for ssrun

Variable Name Description

65

Chapter 7

7. Analyzing Experiment Results: prof

This chapter provides information on how to view and analyze experiment results. It
consists of the following sections:

• “Using prof to Generate Performance Reports”

• “Using prof with ssrun”

• “Using prof Options”

• “Generating Reports For Different Machine Types”

• “Generating Reports for Multiprocessed Executables”

• “Generating Compiler Feedback Files”

• “Interpreting Reports”

Using prof to Generate Performance Reports

Performance data is examined using prof, a text-based report generator that prints to
stdout. The prof command can be used in two modes:

• To generate a report from performance data gathered during experiments recorded
by ssrun:

prof <options> <perf-data-file> <perf-data-file> ...

This chapter focuses on the use of prof to generate reports from ssrun experiments.

• To generate a report from data files produced by running a program that has been
instrumented by pixie:

prof executable_name [options] [pixie counts file]

You can find information on this use of prof in Chapter 8, “Using SpeedShop in
Expert Mode: pixie.”

66

Chapter 7: Analyzing Experiment Results: prof

prof Syntax

The syntax for prof when using it with data files from ssrun is:

prof options data_file data_file ...

options Zero or more of the options described in Table 7-1.

data_file One or more names of performance data files generated by ssrun. These
files are usually of the format prog_name.exp_type.pid.

prof Options

Table 7-1 lists prof options. For more information, click prof to view the reference page.

Table 7-1 Options for prof

Name Result

-calipers n1 n2 Restricts analysis to a segment of program execution. This option only works
for SpeedShop experiments.

Causes prof to compute the data between caliper points n1 and n2, rather than
for the entire experiment. If n1 >= n2, an error is reported. If n1 is negative it
is set to the beginning of the experiment. If n2 is greater than the maximum
number of caliper points recorded, it is set to the maximum. If n1 is omitted,
zero (the beginning of the program) is assumed.

–c[lock] n Lists the number of seconds spent in each routine, based on the CPU clock
frequency n, expressed in megahertz. This option is useful when generating
reports for ideal experiments, or for basic block counting data obtained with
pixie. The default is to use the clock frequency of the machine where the
performance data was collected.

-cycle n Sets the cycle time to n nanoseconds.

-den[sity] Prints a list of procedures with non-zero instruction cycles sorted by the
instruction density, which is the number of cycles per instruction.

-dis[assemble] Disassembles and annotates the analyzed object code with cycle times if you
have run an ideal experiment collected data using pixie, or the number of PC
samples if you have run a pcsamp experiment.

–dso [dso_name] Generates a report only for the named DSO. If you don’t specify dso_name, prof
prints a list of applicable DSO names. Only the basename of the DSO needs to
be specified.

Using prof to Generate Performance Reports

67

-dsolist List all the DSOs in the program and their start and end text addresses.

–e[xclude]
proc1...procN

Excludes information on the procedures specified. If you specify uppercase
–E, prof also omits the specified procedures from the base upon which it
calculates percentages.

–feedback Produces files with information that can be used to (a) arrange procedures in
the binary in an optimal ordering using cord, and (b) tell the compiler how to
optimize compilation of the program using cc -fb filename.cfb. This option can
be used when generating reports for ideal experiments, or for basic block
counting data obtained with pixie.

cord feedback files are named program.fb or libso.fb. Compiler feedback files are
named progam.cfb or libso.cfb. These are binary files and may be dumped using
the fbdump command.

Procedures are normally ordered by their measured invocation counts; if
-gprof is also specified, procedures are ordered using call graph counts,
rather than invocation counts.

–gprof Calculates cycles and propagates basic block counting to a procedure’s callers
proportionately. This option can be used when generating reports for ideal
experiments, or for basic block counting data obtained with pixie.

–h[eavy] Lists the most heavily used lines of source code in descending order of use,
sorting lines by their frequency of use. This option can be used when
generating reports for ideal experiments, or for basic block counting data
obtained with pixie.

–i[nvocations] Lists the number of times each procedure is invoked.

–l[ines] Lists the most heavily used lines of source code in descending order of use, but
lists lines grouped by procedure, sorted by cycles executed per procedure.

-nocounts Analyzes an executable or a .o file using the pixie machine model, and
assuming each instruction is executed once. This analysis cannot match any
possible real run of any executable which contains one or more conditional
branch instructions.

–o[nly]
proc1...procN

Reports information on only the procedures specified. If you specify
uppercase –O, prof uses only the procedures, rather than the entire program,
as the base upon which it calculates percentages.

–p[rocedures] Lists the time spent in each procedure.

Table 7-1 (continued) Options for prof

Name Result

68

Chapter 7: Analyzing Experiment Results: prof

prof Output

prof generates a performance report that is printed to stdout. Warning and fatal errors are
printed to stderr.

Note: Fortran alternate entry point times are attributed to the main function/subroutine,
since there is no general way for prof to separate the times for the alternate entries.

–q[uit] n Condenses output listings by truncating -p[rocedures], -h[eavy], -l[ines], and
-gprof listings. You can specify n in three ways:

n, an integer, truncates everything after n lines;

n%, an integer followed by a percent sign, truncates everything after the line
containing n% calls in the %calls column;

n, an integer, followed by cum%, truncates everything after the line containing
ncum% calls in the cum% column. That is, it truncates the listing after the last
procedure which brings the cumulative total to n%. If -gprof is also specified,
it behaves the same as -q n%.

For example, -q 15 truncates each part of the report after 15 lines of text. -q
15% truncates each part of the report after the first line that represents less
than 15% of the whole, and -q 15cum% truncates each part of the report after
the line that brought the cumulative percentage above 15%.

-r10000|-r8000
|-r5000|-r4000
|-r3000

Overrides the default processor scheduling model that prof uses to generate a
report. If this option is not specified, prof uses the scheduling model for the
processor on which the experiment is being run.

-S (-source) Disassembles and annotates the analyzed object code with cycle times, or PC
samples, and source code.

–z[ero] Lists the procedures that are never invoked. This option can be used when
generating reports for ideal experiments, or for basic block counting data
obtained with pixie.

Table 7-1 (continued) Options for prof

Name Result

Using prof with ssrun

69

Using prof with ssrun

When you call prof with one or more SpeedShop performance data files, it collects the
data from all the output files and produces a listing depending on the experiment type.
The prof command is able to detect which experiment was run and generate and
appropriate report. It provides reports for all experiment types.

In cases where prof accepts more than one data file as input, it sums up the results. The
multiple input data files must be generated from the same executable, using the same
experiment type.

prof may report times for procedures named with a prefix of *DF*, for example
*DF*_hello.init_2. DF stands for “Dummy Function,” and indicates cycles spent in parts
of text which are not in any function: init and fini sections, and MIPS.stubs sections, for
example.

 The types of reports that prof generates are described in the following sections:

• “usertime Experiment Reports”

• “pcsamp Experiment Reports”

• “Hardware Counter Experiment Reports”

• “ideal Experiment Reports”

• “FPE Trace Reports”

usertime Experiment Reports

For usertime experiments, prof generates a list of callers and callees of each function, with
information on how much time was spent in the function, its callers and its callees.

The report shows information for each function, its callers and its callees. The function
names are show in the right-hand column of the report. The function that is being
reported is shown outdented from its caller and callee(s). For example, the first function

70

Chapter 7: Analyzing Experiment Results: prof

shown in this report is __start which has no callers and two callees. The remaining
columns are described below.

• The index column provides an index number for reference.

• The %time column shows the cumulative percentage of time spent in each function.
For example, 99.9% of the time was spent in Scriptstring and all functions listed
below it.

• The self column shows how much time, in seconds, was spent in the function. For
example, less than one hundredth of a second was spent in __start, but 0.03 of a
second was spent in __readenv_sigfpe.

• The descendents columns shows how much time, in seconds, was spent in callees of
the function. For example, 21.48 seconds were spent in main.

• The caller/total, total (self), callee/descend column provides information on the
number of cycles out of the total spent on the function, its callers and its callees. For
example, the anneal function (index number 5) shows 623/623 for its caller
(usrtime), 623(622) for itself, and 1/1 for its callee (init2da.)

Profile listing generated Sun May 19 16:32:23 1996
 with: prof generic.usertime.14427

 Total Time (secs) : 21.51
 Total Samples : 717
 Stack backtrace failed: 0
 Sample interval (ms) : 30
 CPU : R4000
 FPU : R4010
 Clock : 150.0MHz
 Number of CPUs : 1

 caller/total parents
index %time self descendents total (self) name
 callee/descend children

[1] 100.0% 0.00 21.51 717 (0) __start [1]
 0.00 21.48 716/717 0x10001b44 main [2]
 0.03 0.00 1/717 0x10001b04 __readenv_sigfpe[20]

Using prof with ssrun

71

pcsamp Experiment Reports

For [f]pcsamp[x] experiments, prof generates a function list annotated with the number
of samples taken for the function, and the estimated time spent in the function.

• The samples columns shows how many samples of the function were taken.

• The time(%) column shows the amount of time, and the percentage of that time over
the total time that was spent in the function.

• The cum time(%) column shows how much time has been spent up to and including
the procedure being examined.

• The procedure (dso:file) column lists the procedure, its DSO name and file name.
For example, the first line reports statistics for the procedure anneal in the file
generic.c in the generic executable.

Profile listing generated Sun May 19 17:21:27 1996
 with: prof generic.fpcsamp.14480

samples time CPU FPU Clock N-cpu S-interval Countsize
 19077 19s R4000 R4010 150.0MHz 1 1.0ms 2(bytes)

Each sample covers 4 bytes for every 1.0ms (0.01% of 19.0770s)

 -p[rocedures] using pc-sampling.
 Sorted in descending order by the number of samples in each procedure.
 Unexecuted procedures are excluded.

samples time(%) cum time(%) procedure (dso:file)

 17794 18s(93.3) 18s(93.3) anneal
(/usr/demos/SShop/genericn32/generic:/usr/demos/SShop/genericn32/generic.c)

72

Chapter 7: Analyzing Experiment Results: prof

Hardware Counter Experiment Reports

For the various hwc experiments, prof generates a function list annotated with the
number of overflows generated by the function.

• The overflows(%) column shows the number of overflows caused by the function,
and the percentage of that number over the total number of overflows in the
program.

• The cum overflows(%) column shows a cumulative number and percentage of
overflows. For example, the anneal function shows two overflows, but the
cumulative number of overflows is 6: 2 from anneal and 4 from memcpy.

• The procedure (dso:file) column shows the procedure name and the DSO and
filename that contain the procedure.

Profile listing generated Sun May 19 17:35:21 1996
 with: prof generic.dsc_hwc.5999

 Counter : Sec cache D misses
 Counter overflow value: 131
 Total numer of ovfls : 10
 CPU : R10000
 FPU : R10010
 Clock : 196.0MHz
 Number of CPUs : 1

 -p[rocedures] using counter overflow.
 Sorted in descending order by the number of overflows in each procedure.
 Unexecuted procedures are excluded.

 overflows(%) cum overflows(%) procedure (dso:file)

 4(40.0) 4(40.0) memcpy
(/usr/lib64/libc.so.1:/work/irix/lib/libc/libc_64_M4/strings/bcopy.s)

Using prof with ssrun

73

ideal Experiment Reports

For ideal experiments, prof generates a function list annotated with the number of cycles
and instructions attributed to the function, and the estimated time spent in the function.

prof does not take into account interactions between basic blocks. Within a single basic
block, prof computes cycles for one execution and multiplies it with the number of times
that basic block is executed.

If any of the object files linked into the application have been stripped of line-number
information (with ld -x for example), prof warns about the affected procedures. The
instruction counts for such procedures are shown as a procedure total, not on a
per-basic-block basis. Where a line number would normally appear in a report on a
function without line numbers question marks appear instead.

• The cycles(%) column reports the number and percentage of machine cycles used
for the procedure. For example, 2524610038 cycles, or 94.81% of cycles were spent in
the anneal procedure.

• The cum% column shows the cumulative percentage of calls. For example, 99.88% of
all calls were spent between the top two functions in the listing: anneal and
slaveusrtime.

• The secs column shows the number of seconds spent in the procedure. For
example, 16.83 seconds were spent in the anneal procedure. The time represents an
idealized computation based on modelling the machine. It ignores potential floating
point interlocks and memory latency time (cache misses and memory bus
contention.)

• The instrns column shows the number of instructions executed for a procedure.
For example, there were 1797940023 instructions devoted to the anneal procedure.

• The calls column reports the number of calls to the procedure. For example, there
was just one call to the anneal procedure.

• The procedure (dso:file) column lists the procedure, its DSO name and file
name. For example, the first line reports statistics for the procedure anneal in the file
generic.c in the generic executable.

Prof run at: Sun May 19 17:49:10 1996
 Command line: prof generic.ideal.14517

 2662778531: Total number of cycles
 17.75186s: Total execution time
 1875323907: Total number of instructions executed

74

Chapter 7: Analyzing Experiment Results: prof

 1.420: Ratio of cycles / instruction
 150: Clock rate in MHz
 R4000: Target processor modelled

Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

 cycles(%) cum % secs instrns calls procedure(dso:file)

2524610038(94.81) 94.81 16.83 1797940023 1
anneal(generic:/usr/demos/SShop/genericn32/generic.c)

If the -gprof flag is added to prof, a list of callers and callees of each function is provided:

 self kids called/total parents
index cycles(%) self(%) kids(%) called+self name index
 self kids called/total children

[1] 2661528037(99.95%) 71(0.00%) 2661527966(100.00%) 0 __start [1]
 44 2661527913 1/1 main [2]
 5 0 1/1 __istart [107]
 4 0 1/1
__readenv_sigfpe [108]

--
 44 2661527913 1/1 __start [1][2]
2661527957(99.95%) 44(0.00%) 2661527913(100.00%) 1 main [2]
 2152 2661524760 1/1 Scriptstring[3]
 67 934 1/1 exit [55]
--
 2152 2661524760 1/1 main [2]
[3] 2661526912(99.95%) 2152(0.00%) 2661524760(100.00%) 1 Scriptstring [3]
 40 2525080081 1/1 usrtime [4]
 82 135044460 1/1 libdso [6]
 68058 1148856 1/2 iofile [10]
 124 52933 2/8 genLog [16]
 7211 45001 1/1 dirstat [27]
 1438 32051 1/1 linklist [31]
 632 32051 1/1 fpetraps [32]
 124 10922 2/19 fprintf [20]
 696 0 45/45 strcmp [61]
--

Using prof with ssrun

75

 40 2525080081 1/1 Scriptstring[3]
[4] 2525080121(94.83%) 40(0.00%) 2525080081(100.00%) 1 usrtime [4]
 2524610038 437992 1/1 anneal [5]
 62 26466 1/8 genLog [16]
 62 5461 1/19 fprintf [20]

FPE Trace Reports

The report shows information for each function, its callers and its callees. The function
names are show in the right-hand column of the report. The function that is being
reported is shown outdented from its caller and callee(s). For example, the first function
shown in this report is __start which has no callers and one callee. The remaining
columns are described below.

• The index column provides an index number for reference.

• The %FPEs column shows the percentage of the total number of floating point
exceptions that were found in the function.

• The self column shows how many floating point exceptions were found in the
function. For example, 0 floating point exceptions were found in __start.

• The descendents columns shows how many floating point exceptions were found in
the descendents of the function. For example, 4 floating point exceptions were
found in the descendents of main.

• The caller/total, total (self), callee/descend column provides information on the
number of floating point exceptions out of the total that were found.

• The parents, name, children column shows the function names, as described above.

Profile listing generated Tue May 7 19:21:30 1996
 with:prof generic.fpe.2334

Total FPEs : 4
Stack backtrace failed: 0
CPU : R4000
FPU : R4010
Clock : 150.0MHz
Number of CPUs : 1

 caller/total parents
index %FPEs self descendents total (self) name
 callee/descend children

76

Chapter 7: Analyzing Experiment Results: prof

[1] 100.0% 0 4 4 (0) __start [1]
 0 4 4/4 0x10001aa0 main [2]

Using prof Options

This section shows the output from calling prof with some of the options available for
prof.

Using the -dis Option

For pcsamp and ideal experiments, the -dis option to prof can be used to obtain machine
instruction information. prof provides the standard report and then appends the machine
instruction information to the end of the report. The examples below show partial output
from prof, showing just the machine instruction report.

This example shows output from calling prof in the following way:

prof -dis generic .pcsamp .PID

* -dis[assemble] listing annotated pc-samples *
* Procedures with zero samples are excluded. *

/usr/demos/SpeedShop/genericn32/generic.c
anneal: <0x10005aa0-0x10005d78> 1752 total samples(93.19%)
 [1448] 0x10005aa0 0x27bdff90 addiu sp,sp,-112 # 1
 [1448] 0x10005aa4 0xffbf0020 sd ra,32(sp) # 2
 [1448] 0x10005aa8 0xffbc0018 sd gp,24(sp) # 3
 [1448] 0x10005aac 0x3c010002 lui at,0x2 # 4
 [1448] 0x10005ab0 0x2421acb8 addiu at,at,-21320 # 5
 [1448] 0x10005ab4 0x0039e021 addu gp,at,t9 # 6
 [1450] 0x10005ab8 0xd7808040 ldc1 $f0,-32704(gp) # 7
 <2 cycle stall for following instruction>
 [1450] 0x10005abc 0xf7a00010 sdc1 $f0,16(sp) # 10
 [1452] 0x10005ac0 0x9f8281b0 lwu v0,-32336(gp) # 11
 [1452] 0x10005ac4 0x24010001 li at,1 # 12
 <1 cycle stall for following instruction>

Using prof Options

77

 [1452] 0x10005ac8 0xac410000 sw at,0(v0) # 14
 [1453] 0x10005acc 0x9f998184 lwu t9,-32380(gp) # 15
 <2 cycle stall for following instruction>
 [1453] 0x10005ad0 0x0320f809 jalr ra,t9 # 18
 [1453] 0x10005ad4 0000000000 nop # 19
 <2 cycle stall for following instruction>
 [1461] 0x10005ad8 0xafa00008 sw zero,8(sp) # 22
 [1461] 0x10005adc 0x8fa10008 lw at,8(sp) # 23
 ...

The listing shows statistics about the procedure anneal in the file generic.c and lists the
beginning and ending addresses of anneal: <0x1001c90c-0x1001e238>

• The first column lists the line number of the instruction: [1448]

• The second column lists the beginning address of the instruction: 0x10005aa0 .

• The third column shows the instruction in hexadecimal: 0x27bdff90 .

• The next column reports the assembler form (mnemonic) of the instruction: addiu

sp,sp,-112 .

• The last column reports the cycle in which the instruction executed: # 1

Other information includes:

• The number of times an above branch was executed and taken:
Preceding branch executed 1 times, taken 0 times

• The total number of cycles in a basic block and the percentage of the total cycles for
that basic block, the number of times the branch terminating that basic block was
executed, and the number of cycles for one execution of that basic block:
2152 total cycles(0.00%) invoked 1 times, average 2152 cycles/invocation.

• Any cycle stalls (cycles that were wasted.)

Using the -S Option

For ideal experiments, the -S option to prof can be used to obtain source line information.
prof provides the standard report and then appends the source line information to the
end of the report. The examples below show partial output from prof, showing just the
source line report.

78

Chapter 7: Analyzing Experiment Results: prof

This example shows output from calling prof in the following way:

prof -S generic .ideal .PID

...

disassembly listing

...
 <2 cycle stall for following instruction>
 ̂ --- 7 total cycles(0.00%) executed 1 times, average 7 cycles.---̂
/usr/demos/SpeedShop/genericn32/generic.c
dirstat: <0x100022a8-0x100023a8>
 7211 total cycles(0.00%) invoked 1 times, average 7211 cycles/invocation
225: ̂ L
226: /* Simple routines to execute various types of behaviors */
227:
228: /*===*/
229: /* adddso -- add a DSO using sgidladd function */
230: #ifndef NONSHARED
231:
232: static void *dl_object = NULL;
233:
234: int
235: adddso()
236: {
237: int i;
238:
239: /* see if already linked */
240: if(dl_object != NULL) {
241: fprintf(stderr, “libdso: dl_object already
linked\n”);
242: return 0;
243: }
244:
245: /* Log the event */
246: genLog(“start of adddso”);
247:
248: /* open the dynamic shared object */
249: dl_object = sgidladd(DYNSONAME, RTLD_LAZY);
250: if(dl_object == NULL) {
251: fprintf(stderr, “adddso: sgidladd of %s
failed--%s\n”,
252: DYNSONAME, dlerror());
253: return 0;
254: }

Using prof Options

79

255:
256: /* invoke the routine */
257: i = dlslave_routine();
258: fprintf(stderr, “\tadddso: dynamic routine returned %d\n”, i);
259:
260: return 0;
261: }
262: #endif
...

Using the -calipers Option

When you run prof on the output of an experiment in which you have recorded caliper
points, you can use the -calipers option to specify the area of the program for which you
want to generate a performance report. For example, if you set just one caliper point in
the middle of your program, prof can provide a report from the beginning of the program
up to the first caliper point using the following command:

prof -calipers 0 1

prof can also provide a report from the caliper point to the end of the program using the
following command:

prof -calipers 1 2

If you set two caliper points, prof can generate a report from the first to the second caliper
point:

prof -calipers 1 2

Using the -gprof Option

For ideal experiments, the -gprof option to prof can be used to obtain inclusive basic
block counting information. prof provides the standard report and then appends the
inclusive function counts information to the end of the report. The example below shows
partial output from prof, showing just the inclusive function counts report.

With inclusive cycle counting, prof prints a list of functions at the end which are called
but not defined. This list includes functions starting with _rld because rld is not
instrumented.

80

Chapter 7: Analyzing Experiment Results: prof

prof fails to list cycles of a procedure in the inclusive listing for the following reasons:

• init & fini sections, and MIPS stubs are not part of any procedure.

• Calls to procedures that don’t use a “jump and link” are not recognized as
procedure calls.

• When execution of global procedures with the same name occurs in different DSOs,
only one of them is listed.

These exceptions are listed at the end of the report.

This example shows output from calling prof in the following way:

prof -gprof generic.ideal.14641

...
call graph profile:
 The sum of self and descendents is the major sort
 for this listing.

 function entries:

index the index of the function in the call graph
 listing, as an aid to locating it.
cycles(%cycles)
 the total cycles (percentage of total) of the program
 accounted for by this function and its
 descendents.
self(%)
 cycles (percent of total) spent in this function
 itself.
kids(%)
 cycles (percent of total) spent in the descendents of
 this function on behalf of this function.
called the number of times this function is called (other
 than recursive calls).
self the number of times this function calls itself
 recursively.
name the name of the function, with an indication of
 its membership in a cycle, if any.
index the index of the function in the call graph
 listing, as an aid to locating it.

 parent listings:

Using prof Options

81

self*
 cycles of this function’s self time
 which is due to calls from this parent.
kids*
 cycles of this function’s
 descendent time which is due to calls from this
 parent.
called** the number of times this function is called by
 this parent. This is the numerator of the
 fraction which divides up the function’s time to
 its parents.
total* the number of times this function was called by
 all of its parents. This is the denominator of
 the propagation fraction.
parents the name of this parent, with an indication of the
 parent’s membership in a cycle, if any.
index the index of this parent in the call graph
 listing, as an aid in locating it.

 children listings:

self*
 cycles of this child’s self time
 which is due to being called by this function.
kids*
 cycles of this child’s descendent’s
 time which is due to being called by this
 function.
called** the number of times this child is called by this
 function. This is the numerator of the
 propagation fraction for this child.
total* the number of times this child is called by all
 functions. This is the denominator of the
 propagation fraction.
children the name of this child, and an indication of its
 membership in a cycle, if any.
index the index of this child in the call graph listing,
 as an aid to locating it.

 * these fields are omitted for parents (or
 children) in the same cycle as the function. If
 the function (or child) is a member of a cycle,
 the propagated times and propagation denominator
 represent the self time and descendent time of the
 cycle as a whole.

82

Chapter 7: Analyzing Experiment Results: prof

 ** static-only parents and children are indicated
 by a call count of 0.

 cycle listings:
 the cycle as a whole is listed with the same
 fields as a function entry. Below it are listed
 the members of the cycle, and their contributions
 to the time and call counts of the cycle.

 All times are in milliseconds.
--
 NOTE: any functions which are not part of the call
 graph are listed at the end of the gprof listing
--
 self kids called/total parents
index cycles(%) self(%) kids(%) called+self name index
 self kids called/total children
[1] 2661528080(99.95%) 71(0.00%) 2661528009(100.00%) 0 __start [1]
 44 2661527956 1/1 main [2]
 5 0 1/1 __istart [107]
 4 0 1/1
 __readenv_sigfpe [108]
--
 44 2661527956 1/1 __start [1]
[2] 2661528000(99.95%) 44(0.00%) 2661527956(100.00%) 1 main [2]
 2152 2661524803 1/1 Scriptstring
[3] 67 934 1/1 exit [55]

 Generating Reports For Different Machine Types

If you need to generate a report for a machine model that is different from the one on
which the experiment was performed, you can use several of the prof options to specify
a machine model.

For example, if you record an ideal experiment on a R4000 processor with a clock
frequency of 100 megahertz, but you want to generate a report for an R10000 processor,
the prof command would be:

prof -r10000 -clock 196 generic.ideal.4561

Generating Reports for Multiprocessed Executables

83

Generating Reports for Multiprocessed Executables

You can gather data from executables that use the sproc and sprocsp system calls, such
as those executables generated by POWER Fortran and POWER C. Prepare and run the
job using the same method as for uniprocessed executables. For multiprocessed
executables, each thread of execution writes its own separate data file. View these data
files with prof like any other data files.

The only difference between multiprocessed and regular executables is the way in which
the data files are named. The data files are named prog_name.Counts.process_id. This
naming convention avoids the potential conflict of multiple threads attempting to write
simultaneously to the same file.

Generating Compiler Feedback Files

If you run an ideal experiment, run prof with the -feedback option to generate a
feedback file that can be used to arrange procedures more efficiently on the next
recompile. You can rearrange procedures using the -fb flag to cc, or using the cord
command. For more information, click cc or cord to view the reference pages.

Interpreting Reports

If the target process was blocked for a long time as a result of an instruction, that
instruction will show up as having a low or zero CPU time. On the other hand,
CPU-intensive instructions will show up as having a high CPU time.

One way to sanity-check inclusive cycle counts is to look at the percentage cycles for
__start. If the value is anything less than 98 -99%, the inclusive report is suspect. Look for
other warnings that prof didn’t take into account certain procedures.

85

Chapter 8

8. Using SpeedShop in Expert Mode: pixie

This chapter provides information on how to run pixie and prof without invoking ssrun.
By calling pixie directly, you can generate the following performance data:

• An exact count of the number of times each basic block in your program is executed.
A basic block is a sequence of instructions that is entered only at the beginning and
exits only at the end.

• Counts for callers of a routine as well as counts for callees. prof can provide
inclusive basic block counting by propagating regular counts to callers of a routine.

For more information on basic block counting and inclusive basic block counting, see
Chapter 7, “Analyzing Experiment Results: prof.”

This chapter contains the following sections:

• “Using pixie”

• “Obtaining Basic Block Counts”

• “Obtaining Inclusive Basic Block Counts”

Using pixie

Use pixie to measure the frequency of code execution. pixie reads an executable program,
partitions it into basic blocks, and writes (instruments) an equivalent program
containing additional code that counts the execution of each basic block.

Note that the execution time of an instrumented program is two-to-five times longer than
an uninstrumented one. This timing change may alter the behavior of a program that
deals with a graphical user interface (GUI), or depends on events such as SIGALARM
that are based on an external clock.

86

Chapter 8: Using SpeedShop in Expert Mode: pixie

pixie Syntax

The syntax for pixie is:

pixie prog_name [options]

prog_name Name of the input program.

options Zero or more of the keywords listed in Table 8-1.

pixie Options

Table 8-1 lists pixie options. For a complete list of options, click the word pixie to view the
reference page.

Table 8-1 Options for pixie

Name Result

-addlibs lib1.s0:...libN.so Adds lib1.s0:...libN.so to the library list of the executable. No
libraries are added by default.

-copy Produces a copy of the target with function list (map) and arc list
(graph) sections but does not instrument the target.

-directory dir_name Writes output files to dir_name. Files are written to the current
directory by default.

-fcncounts Produces an instrumented executable that counts function calls and
arc calls, but not basic-block or branch counts.

–[no]autopixie Permits or prevents a recursive instrumenting of all dynamic
shared libraries used by the input file during run time. pixie keeps
the timestamp and checksum from the original executable. Thus,
before instrumenting a shared library, pixie checks any lib.pixie files
that it finds matching the lib it is to instrument. If the fields match,
they are not instrumented. pixie cannot detect shared libraries
opened with dlopen (and hence does not instrument them). All
used DSOs need to be instrumented for the .pixie executable to
work. The default behavior with shared libraries is –noautopixie.
The default behavior with an executable is –autopixie.

Obtaining Basic Block Counts

87

pixie Output

The pixie command generates a set of files with a .pixie extension. These files are
essentially copies of your original executable and any DSOs you specified in the call to
pixie with code inserted to enable the collection of performance data when the .pixie
version of your program is run.

If you use the -verbose flag with pixie, it reports the size of the old and new code. The
new code size is the size of the code pixie will actually execute. It does not count read-only
data (including a copy of the original text and another data block the same size as the
original text) put into the text section. Calling size on the .pixie file reports a much larger
text size than pixie -verbose, because size also counts everything in the text segment.

When you run the .pixie version of your program, one or more .Counts files are generated.
The name of an output .Counts file is that of the original program with any leading
directory names removed and .Counts appended. If the program executes calls to sproc,
sprocsp or fork, multiple .Counts files are generated—one for each process in the share
group. In this case, each file will have the process ID appended to its name.

Obtaining Basic Block Counts

Use this procedure to obtain basic block counts. Also refer to Figure 8-1, which illustrates
how basic block counting works.

-[no]longbranch During instrumentation, some transformations can push a branch
offset beyond its legal range and pixie generates warnings about
branch offsets being out of range. This option causes pixie to
transform these instructions into jumps. The default is
-nolongbranch.

–[no]verbose Prints or suppresses messages summarizing the binary-to-binary
translation process. The default is –noverbose.

-suffix .suffix Appends .suffix to the pixified executable and DSOs. The default
suffix is .pixie.

Table 8-1 (continued) Options for pixie

Name Result

88

Chapter 8: Using SpeedShop in Expert Mode: pixie

1. Compile and link your program. The following example uses the input file
myprog.c.

% cc -o myprog myprog.c

The cc compiler compiles myprog.c into an executable called myprog.

2. Run pixie to generate the equivalent program containing basic-block-counting code.

% pixie myprog

pixie takes myprog and writes an equivalent program, myprog.pixie, containing
additional code that counts the execution of each basic block. pixie also writes an
equivalent program for each shared object used by the program (in the form:
libname.so.pixie), containing additional code that counts the execution of each basic
block. For example, if myprog uses libc.so.1, pixie generates libc.so.1.pixie.

3. Set the path for your .pixie files. pixie uses the rld search path for libraries (see rld(1)
for the default paths). If the .pixie files are in your local directory, set the path as:

% setenv LD_LIBRARY_PATH .

4. Execute the file(s) generated by pixie (myprog.pixie) in the same way you executed
the original program.

% myprog.pixie

This program generates a list of basic block counts in files named myprog.Counts. If
the program executes fork or sproc, a process ID is appended to the end of the
filename (for example, myprog.Counts.345) for each process.

Note: Your program may not run as you expect when you invoke it with a .pixie
extension. Some programs, uncompress and vi for example, treat their arguments
differently when the name of the program changes. You may need to rename the
.pixie version of your program back to its original name.

Note: To generate a valid .Counts file, your program must terminate normally or
with a call to exit--if it terminates with a signal such as SIGINT, the program must
use a signal handler and leave the program through exit.

5. Run the profile formatting program prof specifying the name of the original
program and the .Counts file for the program.

% prof myprog myprog.Counts

prof extracts information from myprog.Counts and prints it in an easily readable
format. If multiple .Counts files exist, you can use the wildcard character (*) to
specify all of the files.

% prof myprog myprog.Counts*

Obtaining Basic Block Counts

89

You can run the program several times, altering the input data, to create multiple profile
data files.

The time computation assumes a “best case” execution; actual execution takes longer.
This is because the time includes predicted stalls within a basic block, but not actual stalls
that may occur entering a basic block. Also it assumes that all instructions and data are
in cache (for example, it excludes the delays due to cache misses and memory fetches and
stores).

The complete output of the –pixie option is often extremely large. Use the –quit option
with prof to restrict the size of the report. Refer to Chapter 7, “Analyzing Experiment
Results: prof.” for details about prof options.

90

Chapter 8: Using SpeedShop in Expert Mode: pixie

Figure 8-1 How Basic Block Counting Works

Formatted listing

of profile statistics

Execute

prof progname.Counts

to format data

Execute new program

(progname.pixie)

to collect data

Execute pixie to create

a new equivalent program

pixie progname

Compile

progname.c

Data Files

(progname.

Counts)

Obtaining Basic Block Counts

91

Examples of Basic Block Counting

 The examples in this section illustrate how to use prof to obtain basic block counting
information from a C program, generic.

Example Using prof –invocations

The partial listing below illustrates the report generated for basic block counts in generic.
prof first provides a standard report of basic block counts, then provides a report
reflecting any options provided to prof.

% prof -i generic generic.Counts

Prof run at: Fri May 17 12:39:22 1996
 Command line: prof -i generic generic.Counts

 2662778530: Total number of cycles
 17.75186s: Total execution time
 1875323864: Total number of instructions executed
 1.420: Ratio of cycles / instruction
 150: Clock rate in MHz
 R4000: Target processor modelled

Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

cycles(%) cum % secs instrns calls procedure(dso:file)

2524610038(94.81) 94.81 16.83 1797940023 1
anneal(generic:/usr/demos/SS/genericn32/generic.c)
135001332(5.07) 99.88 0.90 75000822 1
slaveusrtime(./dlslave.so:/usr/demos/SS/genericn32/dlslave.c)
1593518(0.06) 99.94 0.01 1378788 4385
memcpy(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
735797(0.03) 99.97 0.00 506627 4123
fread(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/stdio/fread.c)
187200(0.01) 99.98 0.00 124800 1600
next(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/math/drand48.c)
136116(0.01) 99.98 0.00 82498 1
iofile(generic:/usr/demos/SS/genericn32/generic.c)

92

Chapter 8: Using SpeedShop in Expert Mode: pixie

91200(0.00) 99.98 0.00 62400 1600
_drand48(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/math/drand48.c)
...

• The cycles(%) column reports the number and percentage of machine cycles used
for the procedure. For example, 2524610038 cycles, or 94.81% of cycles were spent in
the anneal procedure.

• The cum% column shows the cumulative percentage of calls. For example, 99.88% of
all calls were spent between the top two functions in the listing: anneal and
slaveusrtime.

• The secs column shows the number of seconds spent in the procedure. For
example, 16.83 seconds were spent in the anneal procedure. The time represents an
idealized computation based on modelling the machine. It ignores potential floating
point interlocks and memory latency time (cache misses and memory bus
contention.)

• The instrns column shows the number of instructions executed for a procedure.
For example, there were 1797940023 instructions devoted to the anneal procedure.

• The calls column reports the number of calls to each procedure. For example, there
was just one call to the anneal procedure.

• The procedure (dso:file) column lists the procedure, its DSO name and file
name. For example, the first line reports statistics for the procedure anneal in the file
generic.c in the generic executable.

The partial listing below illustrates the use of the –i[nvocations] option. For each
procedure, prof reports the number of times it was invoked from each of its possible
callers and lists the procedure(s) that called it.

Procedures sorted in descending order of times invoked.
Unexecuted procedures are not listed.

Total number of procedure invocations: 15114
calls(%) cum% size(bytes) procedure (dso:file)

4385(29.01) 29.01 3416 memcpy
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
4123(27.28) 56.29 1304 fread
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/stdio/fread.c)

Obtaining Basic Block Counts

93

1600(10.59) 66.88 312 next
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/math/drand48.c)
1600(10.59) 77.46 180 _drand48
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/math/drand48.c)
628(4.16) 81.62 368 __sinf
(/usr/lib32/libm.so:/work/cmplrs/libm/fsin.c)
259(1.71) 83.33 524 __filbuf
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/stdio/_filbuf.c)

The above listing shows the total procedure invocations (calls) during the run: 12113082 .

• The calls(%) column reports the number of calls (and the percentage of total calls)
per procedure. For example, there were 4385 calls (or 29.01 % of the total) spent in
the procedure memcpy.

• The cum% column shows the cumulative percentage of calls. For example, 56.29 % of
all calls were spent between memcpy and fread.

• The size(bytes) column shows the total byte size of a procedure. For example, the
procedure memcpy is 3416 bytes.

• The procedure (dso:file) column lists the procedure, its DSO name and its
filename. For example, the first line reports statistics for the procedure memcpy in
the file bcopy.s in libc.so.

Example Using prof –heavy

The following partial listing shows the source code lines responsible for the largest
portion of execution time produced with the –heavy option.

% prof -heavy generic generic.Counts

The partial listing below shows basic block counts sorted in descending order of cycles
used. The fields in the report are described in section “ideal Experiment Reports” section
in Chapter 7, “Analyzing Experiment Results: prof.”

Lines listed in descending order of cycle counts.

cycles(%) cum % times line procedure (dso:file)
2309934120(86.75%) 86.75% 14440000 1465 anneal
(generic:/usr/demos/SpeedShop/genericn32/generic.c)
207945880(7.81%) 94.56% 14440000 1464 anneal
(generic:/usr/demos/SpeedShop/genericn32/generic.c)

94

Chapter 8: Using SpeedShop in Expert Mode: pixie

81000506(3.04%) 97.60% 5000000 29 slaveusrtime
(dlslave.so:/usr/demos/SpeedShop/genericn32/dlslave.c)
54000000(2.03%) 99.63% 5000000 30 slaveusrtime
(dlslave.so:/usr/demos/SpeedShop/genericn32/dlslave.c)
6600000(0.25%) 99.88% 380000 1463 anneal
(generic:/usr/demos/SpeedShop/genericn32/generic.c)
418380(0.02%) 99.89% 32981 493 memcpy
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
418380(0.02%) 99.91% 32981 494 memcpy
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
139482(0.01%) 99.91% 32981 496 memcpy
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
139460(0.01%) 99.92% 32981 495 memcpy
(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
130009(0.00%) 99.92% 10000 1461 anneal
(generic:/usr/demos/SpeedShop/genericn32/generic.c)

Example Using prof –quit

You can limit the output of prof to information on only the most time-consuming parts of
the program by specifying the –quit option. You can instruct prof to quit after a particular
number of lines of output, after listing the elements consuming more than a certain
percentage of the total, or after the portion of each listing whose cumulative use is a
certain amount.

Consider the following sample listing:

% prof -quit 4 generic generic.Counts

 Prof run at: Fri May 17 14:09:12 1996
 Command line: prof -quit 4 generic generic.Counts

 2662778530: Total number of cycles
 17.75186s: Total execution time
 1875323864: Total number of instructions executed
 1.420: Ratio of cycles / instruction
 150: Clock rate in MHz
 R4000: Target processor modelled

Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

Obtaining Inclusive Basic Block Counts

95

cycles(%) cum % secs instrns calls procedure(dso:file)

2524610038(94.81) 94.81 16.83 1797940023 1
anneal(generic:/usr/demos/SpeedShop/genericn32/generic.c)
135001332(5.07) 99.88 0.90 75000822 1
slaveusrtime(./dlslave.so:/usr/demos/SpeedShop/genericn32/dlslave.c)
1593518(0.06) 99.94 0.01 1378788 4385
memcpy(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
735797(0.03) 99.97 0.00 506627 4123
fread(/usr/lib32/libc.so.1:/work/irix/lib/libc/libc_n32_M3/stdio/fread.c)

Obtaining Inclusive Basic Block Counts

Inclusive basic block counting counts basic blocks and generates a call graph. By
propagating regular counts to callers of a routine, prof provides inclusive basic block
counting. For more information on inclusive basic block counting, see the “ideal
Experiment” section in Chapter 4, “Experiment Types.” Use the following procedure to
obtain inclusive basic clock counts. Also refer to Figure 8-1 which illustrates how
inclusive basic block counting works.

1. Compile and link your program. The following example uses the input file
myprog.c.

% cc -o myprog myprog.c

The cc compiler compiles myprog.c into an executable called myprog.

2. Run pixie to generate the equivalent program containing basic-block-counting code.

% pixie myprog

pixie takes myprog and writes an equivalent program, myprog.pixie, containing
additional code that counts the execution of each basic block. pixie also writes an
equivalent program for each shared object used by the program (in the form:
libname.so.pixie), containing additional code that counts the execution of each basic
block. For example, if myprog uses libc.so.1, pixie generates libc.so.1.pixie.

3. Set the path for your .pixie files. pixie uses the rld search path for libraries (see rld(1)
for the default paths). If the .pixie files are in your local directory, set the path as:

% setenv LD_LIBRARY_PATH .

4. Execute the file(s) generated by pixie (myprog.pixie) in the same way you executed
the original program.

% myprog.pixie

96

Chapter 8: Using SpeedShop in Expert Mode: pixie

This program generates a list of basic block counts in files named myprog.Counts. If
the program executes fork or sproc, a process ID is appended to the end of the
filename (for example, myprog.Counts.345) for each process. The –gprof information
is bundled in the .Counts file.

Note: Your program may not run as you expect when you invoke it with a .pixie
extension. Some programs, uncompress and vi for example, treat their arguments
differently when the name of the program changes. You may need to rename the
.pixie version of your program back to its original name.

Note: To generate a valid .Counts file, your program must terminate normally or
with a call to exit--if it terminates with a signal such as SIGINT, the program must
use a signal handler and leave the program through exit.

5. Run the profile formatting program prof specifying the name of the original
program, the -gprof flag, and the .Counts file for the program.

% prof -gprof myprog myprog.Counts

prof extracts information from myprog.Counts and prints it in an easily readable
format. If multiple .Counts files exist, you can use the wildcard character (*) to
specify all of the files.

% prof -gprof myprog myprog.Counts*

Obtaining Inclusive Basic Block Counts

97

Figure 8-2 How Inclusive Basic Block Counting Works

Formatted listing

of inclusive counts

Execute

prof -gprof progname.Counts

to format data

Execute new program

(progname.pixie)

to collect data

Execute pixie to create

an equivalent program

pixie progname

Compile

progname.c

Data Files

(progname.

Counts)

98

Chapter 8: Using SpeedShop in Expert Mode: pixie

Example of prof –gprof

Here’s part of a sample output obtained by using the –gprof option. The fields in the
report are explained in detail in the report, but are not provided in this example. For more
information on the -gprof option, see Chapter 7, “Analyzing Experiment Results: prof.”
(The format of the output has been adjusted slightly).

% prof -gprof generic generic.Counts

...
Prof run at: Fri May 17 14:42:25 1996
 Command line: prof -gprof generic generic.Counts
...
 self kids called/total parents
index cycles(%) self(%) kids(%) called+self name index
 self kids called/total children

[1] 2662767961 (100.00%) 71(0.00%) 2662767890(100.00%) 0 __start [1]
 44 2662767837 1/1 main [2]
 5 0 1/1 __istart[111]
 4 0 1/1 __readenv_sigfpe[112]
--
 44 2662767837 1/1 __start [1]
[2] 2662767881(100.00%) 44(0.00%) 2662767837(100.00%) 1 main [2]
 2152 2662764245 1/1 Scriptstring[3]
 67 926 1/1 exit [58]
 96 309 1/1 _sigset [67]
 32 10 1/9 _gettimeofday[68]

...

99

Chapter 9

9. Miscellaneous Commands

This chapter describes SpeedShop commands for exploring memory usage and paging,
and printing data files generated by SpeedShop tools. It contains the following sections:

• “Using the thrash Command”

• “Using the squeeze Command”

• “Calculating the Working Set of a Program”

• “Dumping Performance Data Files”

• “Dumping Compiler Feedback Files”

Using the thrash Command

The thrash command allows you to explore paging behavior by allocating a region of
virtual memory, and either randomly or sequentially accessing that memory to explore
the system paging behavior.

thrash Syntax
thrash [args]

args One or more of the following flags:

-k N The amount of memory to access in kilobytes, where N is
the number of kilobytes.

-m N The amount of memory to access in megabytes, where N is
the number of megabytes.

-n count The number of references to make before exiting. The
default is 10,000.

-p N The amount of memory to access in pages, where N is the
number of pages.

100

Chapter 9: Miscellaneous Commands

Effects of thrash

Once the memory is allocated, thrash prints a message on stdout saying how much
memory it is using and then proceeds to thrash over it. Here’s an example:

fraser 82% thrash -m 4

thrashing randomly: 4.00 MB (= 0x00400000 = 4194304 bytes = 1024 pages)

 10000 iterations

You can use thrash in conjunction with ssusage and squeeze to determine the approximate
available working memory on a system, as described in section “Calculating the Working
Set of a Program” below.

Using the squeeze Command

The squeeze command allows you to specify an amount of virtual memory to lock down
into real memory, thus making it unavailable to other processes. This command can only
be used by superuser.

squeeze Syntax
squeeze [flag] amount

flag One of the following flags. If no flag is specified, the default is
megabytes.

amount The amount of memory to be locked.

-s Sequential thrashing. The default is random

-w time The amount of time thrash should sleep after thrashing but
before exiting.

-k Kilobytes

-m Megabytes

-p Pages

-% A percentage of the installed memory

Calculating the Working Set of a Program

101

Effects of squeeze

squeeze performs the following operations:

• Locks down the amount of virtual memory you supply as an argument to the
command.

• Prints a message to stdout saying how much memory has been locked, and how
much working memory is available.

• Sleeps indefinitely, or until interrupted by SIGINT or SIGTERM, at which time it
frees up the memory and exits with an exit message.

You should wait until after the exit message is printed before doing any experiments.

Here’s an example:

fraser 1# squeeze 4
squeeze: leaving 60.00 MB (= 0x03c01000 = 62918656) available memory;
 pinned 4.00 MB (= 0x00400000 = 4194304) at address 0x1000e000;
 from 64.00 MB (= 0x04001000 = 67112960) installed memory.

Use Ctrl-c to exit squeeze. The following message is printed:

squeeze exiting

Calculating the Working Set of a Program

You can use the thrash, squeeze and ssusage commands together to determine the
approximate working set of a program as follows. For all practical purposes, the working
set of your program is the size of memory allocated.

1. Choose a machine that has a large amount of physical memory (enough to allow
your target application to run without any paging other than at start-up.)

2. Make sure that the machine is running a minimal number of applications that will
remain fairly consistent for the duration of these steps.

3. Run thrash with ssusage to determine the working set of the kernel and any other
applications you have running. In this example, the thrash command uses 4MB of
memory.

ssusage thrash -m 4

102

Chapter 9: Miscellaneous Commands

When the thrash command completes, ssusage prints the resource usage of thrash; the
value labelled majf gives the number of major page faults (i.e. the number of faults
that required a physical read.) When run on a machine with a large amount of
physical memory, this value is the number of faults needed to start the program,
which is the minimum number for any run. For more information on ssusage, see
Chapter 5, “Collecting Data on Machine Resource Usage.”

4. As superuser in a separate window, run the squeeze command to lock down an
amount of memory.

5. Rerun thrash with ssusage.

ssusage thrash -m 4

6. Repeat steps 4 and 5, increasing the amount of memory for squeeze, until the majf
number begins to rise.

The amount of working memory available reported by squeeze at the point at which
page faults begin to rise for thrash tells you the combined working set of thrash
(~4MB), the kernel and any other applications you have running.

7. Deduct the 4MB that thrash uses from the amount of working memory reported by
squeeze at the point the page faults began to rise to find out the approximate
working set of the kernel and any other applications that are running on the
machine. This number will be needed when you reach step 15.

8. Make sure the applications that the machine is running remain consistent with the
setup from step 2.

9. Run ssusage with your program to ensure that the machine has the amount of
memory your program needs.

ssusage prog_name

When your program exits, ssusage prints the application’s resource usage: the majf
field gives the number of major page faults. When run on a machine with a large
amount of physical memory, this value is the number of faults needed to start the
program, which is the minimum number for any run.

10. Switch to superuser.

11. Run squeeze to lock down an amount of memory. The following example locks down
15 megabytes of memory.

squeeze 15

12. Rerun your program with ssusage.

13. Repeat steps 11 and 12 until the majf number begins to rise.

Dumping Performance Data Files

103

14. Deduct the amount squeezed at the point at which the application begins to page
fault from the total amount of physical memory in the system to find the combined
working set of your program, the kernel and any other applications you have
running.

15. Deduct the amount of working memory calculated in step 7 from the total amount
of physical memory in the system to find the approximate working set of your
program.

Dumping Performance Data Files

All the performance data for a single process is in one file. The file begins with a
prologue, and continues with a mixture of performance data, sample records, and control
records.

The ssdump command can be used for printing performance data files. It provides a
formatted ASCII dump of one or more performance experiment data files. This
command is most likely to be useful in verifying performance data that does not seem
accurate when reported through prof.

ssdump Syntax
ssdump [options] {datafile1 ... datafileN} ...

options Zero or more of the following print options:

datafile1 ... datafileN

If any of the named files contain beads indicating additional data files,
from descendant processes of the original run, those files will also be
dumped.

-d Prints detailed information for each bead.

-h Prints the hex contents of the body of each bead.

-i index Prints only one bead at index in the file.

-q Suppresses printing of those fields that will normally
change from run to run such as process IDs and time
stamps. This option is useful for QA work, to enable
automatic comparisons of recorded experiments.

-s offset Prints only one bead at offset into the file.

104

Chapter 9: Miscellaneous Commands

Experiment File Format

The file is written as a string of “beads”, each of which is a record with a 32-bit type, a
32-bit byte count, and a body whose length is given by the byte-count, rounded up to a
double-word boundary.

The file prologue starts with a file-identifier bead, which acts as a magic-number
indicating that the file is an SpeedShop data file. Other beads in the prologue give the
machine and executable name, the hardware inventory describing the machine, the
machine page size, O/S revision, date and checksum information about the executable,
the target name (the target is the executable after instrumentation), the arguments with
which the target was invoked, the instrumentation performed, and the types of
performance data that are to be recorded in the remainder of the file. The following
example calls ssdump on performance data for an ideal experiment.

ssdump generic.ideal.847

Here’s some partial output from ssdump. The format has been adjusted slightly to meet
presentation needs.

Printing experiment record file “generic.ideal.847” (394024 bytes), last written
on Thu 16 May 96 23:09:55
SpeedShop File Preface 1
 version 3
 created: Thu 16 May 96 23:09:28.520

Hardware Inventory 2, offset 32 = 0x00000020
 hardware inventory: 26 items
 class 1, type 1, contrlr 75, unit 255, state 13
 class 1, type 2, contrlr 0, unit 0, state 4130
...
Experiment name 3, offset 464 = 0x000001d0
 ideal

Experiment marching orders 4, offset 480 = 0x000001e0
 it

Capture module symbol 5, offset 496 = 0x000001f0
 it,4

Executable file 6, offset 512 = 0x00000200
 generic

Target file 7, offset 528 = 0x00000210

Dumping Performance Data Files

105

 generic.pixie

Target arguments 8, offset 552 = 0x00000228
 Time: Thu 16 May 96 23:09:28.520, process pid = 847
 arguments: ““

Target begin 9, offset 592 = 0x00000250
 process # 76283912, pid = 847, event # 0
Program Object List 10, offset 632 = 0x00000278
 process # 0, pid = 847, event # 0, -- 5 DSOs
 Program Object 0, Named ̀ generic’
 Link Time Address: 0x0000000000405a98
 Run Time Address: 0x0000000000405a98
 Size: 0x000000000000c6a0 (50848)
 Base Pointer: 0x0000000000000000

 Program Object 1, Named ̀ ./libss.so.pixie’
 Link Time Address: 0x000000003f854b90
 Run Time Address: 0x000000003f854b90
 Size: 0x00000000000012a0 (4768)
 Base Pointer: 0x0000000000000000

 Program Object 2, Named ̀ ./libssrt.so.pixie’
 Link Time Address: 0x000000003f564b94
 Run Time Address: 0x000000003f564b94
 Size: 0x0000000000136010 (1269776)
 Base Pointer: 0x0000000000000000
...

Target DSO open 11, offset 936 = 0x000003a8
 process # 0, pid = 847, event # 0
 at time = Thu 16 May 96 23:09:52.888
 fname = dlslave.so

Program Object List 12, offset 992 = 0x000003e0
 process # 0, pid = 847, event # 0, -- 6 DSOs
 Program Object 0, Named ̀ generic’
 Link Time Address: 0x0000000000405a98
 Run Time Address: 0x0000000000405a98
 Size: 0x000000000000c6a0 (50848)
 Base Pointer: 0x0000000000000000
...
Sample event trigger 13, offset 1360 = 0x00000550
 process 00007, trap index #0
 at time = Thu 16 May 96 23:09:54.476, #0

106

Chapter 9: Miscellaneous Commands

Event count array (32-bit) 14, offset 1408 = 0x00000580
 integer array, dso index = 0, array size = 921

...
Function pointer trace 20, offset 393592 = 0x00060178
 dso index = 0, 7 function pointer arcs

Function pointer trace 21, offset 393776 = 0x00060230
 dso index = 2, 6 function pointer arcs

Sample data end marker 22, offset 393936 = 0x000602d0

Target termination 23, offset 393984 = 0x00060300
 process # 0, pid = 847, event # 0
 at time = Thu 16 May 96 23:09:55.084

 ** End-of-File 24, offset 394024 = 0x00060328

**** End of experiment record file “generic.ideal.847”
at time = Thu 16 May 96 23:09:28.520

Dumping Compiler Feedback Files

The fbdump command can be used to print out the compiler feedback files generated by
running prof -feedback. For more information on using compiler feedback files, click cord
or cc to view the reference pages.

fbdump Syntax
fbdump options filename

options Zero or more of the options described in table Table 9-1.

Dumping Compiler Feedback Files

107

filename The feedback filename. This file has a .fb extension.

Table 9-1 Options for fbdump

Option Result

-all Prints feedback using all options. This is the default.

-ascii Prints feedback information in the same style as earlier version of the
feedback dump program.

-bb Prints feedback per basic block table as described in “cmplrs/fb.h”. If
-verbose is specified, all basic blocks are printed, even those with zero
execution counts. If -verbose is not specified, fbdump prints only the
basic blocks that have non-zero execution counts.

-call Prints the feedback call table as described in “cmplrs/fb.h”. If -verbose
is specified, all the points of call are printed, even if they have not been
called. If -verbose is not specified, fbdump prints only the relevant
information on the calls.

-header Prints the feedback file header as described in “cmplrs/fb.h”.

-proc Prints the feedback procedure table as described in “cmplrs/fb.h”. If
-verbose is specified, all procedures will be printed, even if they are not
invoked. If -verbose is not specified, fbdump prints only the relevant
information on the procedures that have been invoked.

-sections Prints the feedback file section headers table as described in
“cmplrs/fb.h”.

-str Prints feedback string table.

-verbose Prints all the information in verbose mode including a table with all
zero entries.

109

Index

Symbols

_RLD_LIST variable, 61
_SPEEDSHOP_CALIPER_POINT_SIG variable, 58,

60
_SPEEDSHOP_EXPERIMENT_TYPE variable, 61, 63
_SPEEDSHOP_FILE_BUFFER_LENGTH variable,

63
_SPEEDSHOP_HWC_COUNTER_NUMBER

variable, 43
_SPEEDSHOP_HWC_COUNTER_OVERFLOW

variable, 43
_SPEEDSHOP_INIT_DEFERRED_SIGNAL

variable, 63
_SPEEDSHOP_MARCHING_ORDERS variable, 61,

63
_SPEEDSHOP_OUTPUT_DIRECTORY variable, 53
_SPEEDSHOP_OUTPUT_FD variable, 53
_SPEEDSHOP_OUTPUT_FILENAME variable, 53
_SPEEDSHOP_SAMPLING_MODE variable, 63
_SPEEDSHOP_SBRK_BUFFER_LENGTH variable,

63
_SPEEDSHOP_SILENT variable, 62
_SPEEDSHOP_TARGET_FILE variable, 61
_SPEEDSHOP_TRACE_EXEC variable, 62
_SPEEDSHOP_TRACE_FORK variable, 62
_SPEEDSHOP_TRACE_SPROC variable, 62
_SPEEDSHOP_VERBOSE variable, 62

A

API, 6
setting calipers, 10

B

basic block counting, 20, 33, 45
overview, 5

C

C
examples, 11

calipers, 10, 51, 58
and prof, 79
automatic, 59
sample traps, 58, 60
ssrt_caliper_point, 58, 59
using signals, 58, 60
using the debugger, 58, 60

-calipers option, 10
call stack profiling, 14, 27, 38
compiler feedback files, 83
compiler optimization restrictions, 52
cord, 83, 106
.Counts file, 88, 96
CPU-bound processes, 2
cy_hwc experiment, 41

110

Index

D

data display anomalies, 52
dc_hwc experiment, 42
debugger

setting calipers, 10, 58, 60
using ssrun, 57

dsc_hwc experiment, 42
DSOs, 7

E

environment variables
__SPEEDSHOP_FILE_BUFFER_LENGTH, 63
__SPEEDSHOP_INIT_DEFERRED_SIGNAL, 63
__SPEEDSHOP_SAMPLING_MODE, 63
__SPEEDSHOP_SBRK_BUFFER_LENGTH, 63
__SPEEDSHOP_TRACE_SPROC, 62
__SPEEDSHOP_VERBOSE, 62
_RLD_LIST, 61
_SPEEDSHOP_CALIPER_POINT_SIG, 58, 60
_SPEEDSHOP_EXPERIMENT_TYP, 63
_SPEEDSHOP_EXPERIMENT_TYPE, 61
_SPEEDSHOP_HWC_COUNTER_NUMBER, 43
_SPEEDSHOP_HWC_COUNTER_OVERFLOW,

43
_SPEEDSHOP_MARCHING_ORDERS, 61, 63
_SPEEDSHOP_OUTPUT_DIRECTORY, 53
_SPEEDSHOP_OUTPUT_FD, 53
_SPEEDSHOP_OUTPUT_FILENAME, 53
_SPEEDSHOP_SILENT, 62
_SPEEDSHOP_TARGET_FILE, 61
_SPEEDSHOP_TRACE_FORK, 62
LD_LIBRARY_PATH, 13
SPEEDSHOP_TRACE_EXEC, 62

examples
C, 11
Fortran, 25

exec, 6

executables
calculating a working set, 101
stripped, 51

experiment data, 9
controlling output file, 53
file format, 104
filenames, 53

experiments
choosing, 9, 37
cy_hwc, 41
dc_hwc, 42
dsc_hwc, 42
fpe, 75
fpe trace, 9, 23, 47
gfp_hwc, 43
gi_hwc, 41
hardware counter, 19, 31, 40, 72
hardware counters, 9
ic_hwc, 41
ideal, 20, 33, 45, 73
isc_hwc, 42
 pcsamp, 39
pcsamp, 9, 16, 30, 71
prof_hwc, 43
tlb_hwc, 42
usertime, 9, 14, 27, 38, 69

F

fbdump, 106
overview, 4

files
compiler feedback, 106
performance data, 9, 103

format, 104
floating-point exceptions, 23, 47
floating-point exception trace, 9

overview, 5
fork, 6

111

Index

Fortran
examples, 25
limitations, 52

fpcsampx experiment, 39
fpe trace experiment, 9, 47, 75

overview, 5
tutorial, 23

G

generic program, 11
gfp_hwc experiment, 43
gi_hwc experiment, 41
-gprof

example, 98

H

hardware counter experiment, 72
hardware counter experiments, 9, 40

overview, 5
tutorial, 19, 31

hardware counter numbers, 43
hardware counter overflows, 19, 31, 40
hwc experiments, 9, 40

overview, 5

I

ic_hwc experiment, 41
ideal experiment, 45, 73

effects, 61
overview, 5
tutorial, 20, 33

I/O-bound processes, 2
isc_hwc experiment, 42

L

LD_LIBRARY_PATH, 95
LD_LIBRARY_PATH variable, 13, 88
libfpe_ss.so, 6
libmalloc_ss.so, 6
libraries

libfpe_ss.so, 6
libmalloc_ss.so, 6
libssrt.so, 6, 61
libss.so, 6, 61
linking in SpeedShop, 59

libssrt.so, 6, 59, 61
libss.so, 6, 59, 61
linpack benchmark, 25
locking memory, 100

M

machine resource usage, 49
memory

locking, 100
memory-bound processes, 2
message-passing paradigms, 7
MP Fortran limitations, 52
MPI, 7

with ssrun, 57
multi-processor executables, 7, 52

profiling, 83

P

paging behavior, 99
pcsamp experiment, 9, 39, 71

example, 55
overview, 5

112

Index

tutorial, 16, 30
PC sampling, 39

tutorial, 16, 30
perfex, 40
performance analysis

phases, 7
theory, 1

performance data files
dumping, 103

performance problems, 1, 9
Bugs, 2
CPU, 2
I/0, 2
memory, 2

pixie, 45, 85
and prof –heavy example, 93
and prof –i example, 92
–autopixie option, 86
command option, 85
command syntax, 85
.Counts file, 88, 96
examples, 87
output size, 89
overview, 4
restricting output, 89
setting search path, 88, 95
–verbose option, 87

processes
forking, 6

prof
Also see profiling
-calipers example, 79
-calipers option, 10
compiler feedback, 106
-dis example, 76
-gprof example, 74, 79
–heavy example, 93
–invocations example, 92
options, 66
output, 68

overview, 4, 8
-S example, 77
steps, 8
syntax, 66
using with pixie, 65
using with ssrun, 65

prof_hwc experiment, 43
profiles

interpreting, 83
profiling

-calipers option, 79
–clock option, 66
command syntax, 66
-dis option, 76
–dis option, 66
–dsolist option, 67
–dso option, 66
–exclude option, 67
–feedback option, 67
fpe trace experiment, 75
-gprof option, 67, 79
hardware counter experiments, 72
–heavy option, 67

example, 93
ideal experiment, 73
inclusive basic block counts, 74
–invocations option, 67

example, 92
–lines option, 67
machine scheduler option, 82
multiprocessor executables, 83
–only option, 67
pcsamp experiment, 71
procedure invocation example, 91
–procedures option, 67
processor scheduler option option, 68
–quit option, 68, 89, 94
-S option, 77
–S option, 68
usertime experiment, 69

113

Index

–zero option, 68
program counter sampling, 39
programs

calculating a working set, 101
stripped, 51

pthreads, 7

R

rearranging procedures, 83
reports

for different machine models, 82
fpe trace experiment, 75
hardware counter experiments, 72
ideal experiment, 73
interpreting, 83
pcsamp experiment, 71
usertime experiment, 69
using calipers, 79

rld
search path, 88, 95

S

search path
rld, 88, 95

setting calipers, 10, 58
shared libraries, 7
signals

setting calipers, 10, 58, 60
SpeedShop

overview, 3
SpeedShop API, 6
SpeedShop demo

generic, 11
linpack, 25

SpeedShop libraries, 61

libfpe_ss.so, 6
libmalloc_ss.so, 6
libssrt.so, 6
libss.so, 6
linking, 59

sproc, 6
squeeze, 100

calculating a working set, 101
overview, 4

ssdump, 103
ssrt_caliper_point, 6, 58, 59

executable requirements, 51
ssrun

effects, 61
examples, 55
flags, 54
MPI programs, 57
overview, 3, 8
restrictions, 51
setup, 51
steps, 8
syntax, 54
using a debugger, 57
-v option example, 56

ssusage
calculating a working set, 101
overview, 3

statistical call stack profiling
overview, 5

statistical hardware counter sampling
overview, 5

statistical PC sampling
overview, 5

stripped executables, 51
system, 6

114

Index

T

thrash, 99
calculating a working set, 101
overview, 4

tlb_hwc experiment, 42
tracing floating-point exceptions, 9
tutorial

C, 11
Fortran, 25

U

usertime experiment, 9, 38, 69
overview, 5
restrictions, 51
tutorial, 14, 27

W

working set, 101

Tell Us About This Manual

As a user of Silicon Graphics documentation, your comments are important to us. They
help us to better understand your needs and to improve the quality of our
documentation.

Any information that you provide will be useful. Here is a list of suggested topics to
comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Important Note

Please include the title and part number of the document you are commenting on. The
part number for this document is
007-3311-001.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your comments on
the postage-paid card for your country, then detach and mail it. If your country is not
listed, either use the international card and apply the necessary postage or use electronic
mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail message and mail
it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of pages from the manual) to
Technical Publications at this FAX number:
415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

