
SpeedShop User’s Guide

Document Number 007-3311-002

SpeedShop User’s Guide
Document Number 007-3311-002

CONTRIBUTORS

Written by Janet Home-Lorenzin and Wendy Ferguson. Updated by Renate Kempf
and Sandra Motroni

Illustrated by Dany Galgani
Production by Kirsten Johnson
Engineering contributions by Marty Itzkowitz, Pete Orelup, Alexandros Poulos, Jun

Yu, Marco Zagha, Chris Hull, Zaineb Asaf, Aaron Schuman, and Brond Larson.

© Copyright 1997 Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics is a registered trademark of Silicon Graphics, Inc. ProDev and IRIX
are trademarks of Silicon Graphics, Inc. Ada is a registered trademark of the Ada
Joint Program Office, U.S. Government. OSF/Motif is a trademark of the Open
Software Foundation. POSIX is a registered trademark of the Institute of Electrical
and Electronic Engineers, Inc. Purify is a registered trademark of Pure Software, Inc.
R10000 and R4000 are trademarks of MIPS Technologies, Inc. UNIX is a registered
trademark of X/Open Company. Ltd. X Window System is a trademark of the
Massachusetts Institute of Technology.

iii

Contents

List of Figures ix

List of Tables xi

About This Guide xiii
About This Revision xiv

1. Introduction to Performance Analysis 1
Sources of Performance Problems 2

CPU-Bound Processes 2
I/O-Bound Processes 3
Memory-Bound Processes 3
Bugs 3

Fixing Performance Problems 4
SpeedShop Tools 4

Main Commands 5
Additional Commands 5
Experiment Types 6
SpeedShop Libraries 7
API 7
Supported Programming Models and Languages 8

Using SpeedShop Tools for Performance Analysis 9
Using ssusage to Evaluate Machine Resource Use 10
Using ssrun and prof to Gather and Analyze Performance Data 10
Collecting Data for Part of a Program 13

iv

Contents

2. Tutorial for C Users 15
Tutorial Overview 16

Contents of the generic Program 16
Output from the generic Program 17
Use of the generic Program 17

Tutorial Setup 18
Analyzing Performance Data 18

usertime Experiment 19
Performing a usertime Experiment 19
Generating a Report 20
Analyzing the Report 21

pcsamp Experiment 21
Generating a Report 22
Analyzing the Report 24

Hardware Counter Experiment 24
Performing a Hardware Counter Experiment 24
Generating a Report 25
Analyzing the Report 26

ideal Experiment 26
Performing an ideal Experiment 26
Generating a Report 27
Analyzing the Report 29

fpe Trace 29
Performing an fpe Trace 29
Generating a Report 30
Analyzing the Report 30

3. Tutorial for Fortran Users 31
Tutorial Overview 32

Output From the linpackup Program 32
Experiments Performed in This Tutorial 33

Tutorial Setup 33

Contents

v

Analyzing Performance Data 34
usertime Experiment 34

Performing a usertime Experiment 34
Generating a Report 36
Analyzing the Report 37

pcsamp Experiment 38
Performing a pcsamp Experiment 38
Generating a Report 39
Analyzing the Report 40

Hardware Counter Experiment 40
Performing a hardware counter Experiment 40
Generating a Report 41
Analyzing the Report 42

ideal Experiment 42
Performing an ideal Experiment 42
Generating a Report 43
Analyzing the Report 45

4. Experiment Types 47
Selecting an Experiment 48
usertime Experiment 49
pcsamp Experiment 50
ideal Experiment 51

How SpeedShop Prepares Files 51
How SpeedShop Calculates CPU Time 51
Inclusive Basic Block Counting 52
Using pcsamp and ideal Together 53

vi

Contents

Hardware Counter Experiments 54
Two Tools for Hardware Counter Experiments 54
SpeedShop Hardware Counter Experiments 54
[f]gi_hwc 55
[f]cy_hwc 55
[f]ic_hwc 55
[f]isc_hwc 55
[f]dc_hwc 56
[f]dsc_hwc 56
[f]tlb_hwc 56
[f]gfp_hwc 56
prof_hwc 57

Hardware Counter Numbers 58
fpe Trace 59

5. Collecting Data on Machine Resource Usage 61
ssusage Syntax 61
ssusage Results 61

6. Setting Up and Running Experiments: ssrun 63
Building Your Executable 64

Special Information for MP Fortran Programs 65
Setting Up Output Directories and Files 66
Using Runtime Environment Variables 67

User Environment Variables 67
Process Tracking Environment Variables 69
Expert-Mode Environment Variables 70

Running Experiments 71
ssrun Syntax 71
ssrun Examples 72

Example Using the pcsampx Experiment 72
Example Using the -v Option 74

Using ssrun With a Debugger 74

Contents

vii

Running Experiments on MPI Programs 75
Running Experiments on Programs Using Pthreads 76
Using Calipers 77

Setting Calipers With ssrt_caliper_point 78
Setting Calipers With Signals 79
Setting Calipers With a Debugger 79

Effects of ssrun 80
Effects of ssrun -ideal 80

7. Analyzing Experiment Results: prof 81
Using prof to Generate Performance Reports 82

prof Syntax 82
prof Options 83
prof Output 87

Using prof With ssrun 87
usertime Experiment Reports 88
pcsamp Experiment Reports 89
Hardware Counter Experiment Reports 90
ideal Experiment Reports 91
FPE Trace Reports 94

Using prof Options 95
Using the -dis Option 95
Using the -S Option 98
Using the -calipers Option 102
Using the -gprof Option 102

Generating Reports for Different Machine Types 107
Generating Reports for Multiprocessed Executables 107
Generating Compiler Feedback Files 108
Interpreting Reports 108

viii

Contents

8. Using SpeedShop in Expert Mode: pixie 109
Using pixie 110

pixie Syntax 110
pixie Options 110
pixie Output 112

Obtaining Basic Block Counts 113
Examples of Basic Block Counting 116

Example Using prof –invocations 116
Example Using prof –heavy 119
Example Using prof –quit 120

Obtaining Inclusive Basic Block Counts 121
Example of prof –gprof 121

9. Miscellaneous Commands 123
Using the thrash Command 124

thrash Syntax 124
Effects of thrash 124

Using the squeeze Command 125
squeeze Syntax 125
Effects of squeeze 125

Calculating the Working Set of a Program 126
Dumping Performance Data Files 128

ssdump Syntax 128
Experiment File Format 129

Dumping Compiler Feedback Files 134
fbdump Syntax 134

Index 135

ix

List of Figures

Figure 8-1 How Basic Block Counting Works 115

xi

List of Tables

Table 1-1 SpeedShop Main Commands 5
Table 1-2 SpeedShop Additional Commands 5
Table 1-3 SpeedShop Libraries 7
Table 1-4 Choosing an Experiment Type 11
Table 1-5 Letter Codes in Process Experiment ID Numbers 12
Table 4-1 Summary of Experiments 48
Table 4-2 Basic Block Counts and PC Profile Counts Compared 53
Table 4-3 Hardware Counter Numbers 58
Table 6-1 Letter Codes in Experiment ID Numbers 66
Table 6-2 General Environment Variables 67
Table 6-3 Process Tracking Environment Variables 69
Table 6-4 Expert-Mode Environment Variables 70
Table 6-5 Flags for ssrun 72
Table 6-6 Setting Caliper Points 77
Table 7-1 Letter Codes in Experiment ID Numbers 83
Table 7-2 Options for prof 83
Table 7-3 Letter Codes in Experiment ID Numbers 108
Table 8-1 Options for pixie 110
Table 9-1 Options for fbdump 134

xiii

About This Guide

This manual is a user’s guide for the SpeedShop performance tools, Release 1.2. It
contains the following chapters:

• Chapter 1, “Introduction to Performance Analysis,” provides a general introduction
to performance analysis concepts and techniques, plus an overview of the
SpeedShop tools.

• Chapter 2, “Tutorial for C Users,” provides a tutorial on how to collect performance
data and generate reports for a C program.

• Chapter 3, “Tutorial for Fortran Users,” provides a tutorial on how to collect
performance data and generate reports for Fortran programs running on
single-processor machines.

• Chapter 4, “Experiment Types,” describes the types of experiments that can be
performed using SpeedShop tools.

• Chapter 5, “Collecting Data on Machine Resource Usage,” describes how to use the
ssusage command to collect information about a program’s machine resource usage.

• Chapter 6, “Setting Up and Running Experiments: ssrun,” explains in detail how to
set up and run experiments using ssrun, and explains how to use caliper points to
generate reports for part of a program.

• Chapter 7, “Analyzing Experiment Results: prof,” explains how to generate reports
from performance data using prof.

• Chapter 8, “Using SpeedShop in Expert Mode: pixie,” explains how to use pixie and
prof directly, without invoking ssrun.

• Chapter 9, “Miscellaneous Commands,” explains how to use the thrash and squeeze
commands to determine the memory usage, or working set, of your application. It
also covers commands to print performance data files.

xiv

About This Guide

About This Revision

This revision of the manual was prepared in the spring of 1997. It includes bug fixes and
updates for the Speedshop 1.2 release.

1

Chapter 1

1. Introduction to Performance Analysis

This chapter provides a brief introduction to performance analysis techniques for Silicon
Graphic® systems and describes how to use them to solve performance problems. It
includes the following sections:

• “Sources of Performance Problems” provides a general overview of potential
performance problems.

• “Fixing Performance Problems” discusses how you can use SpeedShop to
determine what the problems are.

• “SpeedShop Tools” lists SpeedShop commands, experiment types, and libraries.

• “Using SpeedShop Tools for Performance Analysis” steps you through the general
steps to take when using SpeedShop.

2

Chapter 1: Introduction to Performance Analysis

Sources of Performance Problems

To tune a program’s performance, you need to determine its consumption of machine
resources. At any point (or phase) in a process, there is one limiting resource controlling
the speed of execution. Processes can be slowed down by any of the following:

• CPU speed and availability

• I/O processing

• memory size and availability

Performance problems may span the entire run of a process, or they may occur in just a
small portion of the program. For example, a function that performs a lot of I/O
processing might be called regularly as the program runs, or a particularly
CPU-intensive calculation might occur in just one portion of the program. When there
are performance problems in a small portion of the program, collect data for just that part
of the program.

Because programs exhibit different behavior during different phases of operation, you
need to identify the limiting resource for each phase. A program can be I/O-bound while
it reads in data, CPU-bound while it performs computation, and I/O-bound again in its
final stage while it writes out data. Once you’ve identified the limiting resource in a
phase, you can perform an in-depth analysis to find the problem. After you have solved
that problem, you can check for other problems within the same or other phases—
performance analysis is an iterative process.

CPU-Bound Processes

A CPU-bound process spends its time in the CPU and is limited by CPU speed and
availability. To improve performance on CPU-bound processes, streamline your code
using one or more of the following techniques:

• modifying algorithms

• reordering code to avoid interlocks

• removing nonessential steps

• blocking to keep data in cache and registers

• using alternative algorithms

Sources of Performance Problems

3

I/O-Bound Processes

An I/O-bound process has to wait for I/O to complete and may be limited by disk access
speeds or memory caching. To improve the performance of I/O-bound processes, try one
of the following techniques:

• improving overlap of I/O with computation

• optimizing data usage to minimize disk access

• using data compression

Memory-Bound Processes

A memory-bound program continuously swaps out pages of memory. Page thrashing is
often due to accessing virtual memory on a haphazard rather than strategic basis. One
telltale indication of page-thrashing with paging to a local disk is noise during disk
accesses. To fix a memory-bound process, try to improve the memory reference patterns
or, if possible, decrease the memory used by the program.

Bugs

Certain bugs can cause performance problems. Examples include:

• The program is unnecessarily reading from the same file twice in different parts.

• Floating point exceptions are slowing down the program.

• Old code has not been completely removed.

• The program is leaking memory (making malloc() calls without the corresponding
calls to free()).

4

Chapter 1: Introduction to Performance Analysis

Fixing Performance Problems

The SpeedShop performance tools described in this manual can help you to identify
specific performance problems described later in this chapter. However, the techniques
described in this manual are only a part of performance tuning. Other areas that you can
tune, but that are outside the scope of this document, include graphics, I/O, the kernel,
system parameters, memory, and real-time system calls.

Although it may be possible to obtain short-term speed increases by relying on
unsupported or undocumented quirks of the compiler, it’s a bad idea to do so. Any such
“features” may break in future compiler releases. The best way to produce efficient code
that can be trusted to remain efficient is to follow good programming practices. In
particular, choose good algorithms and leave the details to the compiler.

SpeedShop Tools

The SpeedShop tools allow you to run experiments and generate reports to track down
the sources of performance problems. SpeedShop consists of a set of commands that can
be run in a shell, an API, and a number of libraries to support the commands.

This section provides an overview of the tools by first discussing the main commands,
then providing more detail on additional commands, experiment types, libraries, and
supported programs and languages.

SpeedShop Tools

5

Main Commands

SpeedShop provides the commands listed in Table 1-1.

Additional Commands

SpeedShop provides the additional commands shown in Table 1-2.

Table 1-1 SpeedShop Main Commands

Command Description

ssusage Collects information about your program’s use of machine resources. Output from
ssusage can be used to determine where most resources are being spent.

ssrun Allows you to run experiments on a program to collect performance data. It
establishes the environment to capture performance data for an executable, creates a
process from the executable (or from an instrumented version of the executable) and
runs it. Input to ssrun consists of an experiment type, control flags, the name of the
target, and the arguments to be used in executing the target.

prof Analyzes the performance data you have recorded using ssrun and provides
formatted reports. prof detects the type of experiment you have run, and generates a
report specific to the experiment type.

Table 1-2 SpeedShop Additional Commands

Command Description

pixie Instruments an executable to enable basic block counting experiments to be
performed. If you use ssrun, you will not normally need to call this program directly.

fbdump Prints out the formatted contents of compiler feedback files generated by prof.

squeeze Allocates a region of virtual memory and locks the virtual memory down into real
memory, making it unavailable to other processes.

thrash Allows you to allocate a block of memory, then access the allocated memory to
explore paging behavior.

ssdump Prints out formatted performance data that was collected while running ssrun. This
program is included for SpeedShop debugging purposes. You don’t normally need
to use it.

6

Chapter 1: Introduction to Performance Analysis

Experiment Types

You can conduct the following types of experiments using the ssrun command:

• Statistical PC sampling with pcsamp experiments.

Data is measured by periodically sampling the Program Counter (PC) of the target
executable when it is executing in the CPU. The PC shows the address of the
currently executing instruction in the program. The data that is obtained from the
samples is translated to a time that can be displayed at the function, source line, and
machine instruction levels. The actual CPU time is calculated by multiplying the
number of times a specific address is found in the PC by the amount of time
between samples.

• Statistical hardware counter sampling with _hwc experiments.

Hardware counter experiments are available on R10000™ systems that have built-in
hardware counters. Data is measured by collecting information each time the
specified hardware counter overflows. You can specify the hardware counter and
the overflow interval you want to use.

• Statistical call stack profiling with usertime.

Data is measured by periodically sampling the call stack. The program’s call stack
data is used to attribute exclusive user time to the function at the bottom of each call
stack (that is, the function being executed at the time of the sample), and to attribute
inclusive user time to all the functions above the one currently being executed.

• Basic block counting with ideal.

Data is measured by counting basic blocks and calculating an ideal CPU time for
each function. This involves instrumenting the program to divide the code into
basic blocks, which are sets of instructions with a single entry point, a single exit
point, and no branches into or out of the set. Instrumentation also permits a count of
all dynamic (function-pointer) calls to be recorded.

• Floating point exception trace with fpe.

A floating point exception trace collects each floating point exception with the
exception type and the call stack at the time of the exception. prof generates a report
showing inclusive and exclusive floating point exception counts.

SpeedShop Tools

7

SpeedShop Libraries

Versions of the SpeedShop libraries libss.so and libssrt.so are available to support
applications built using shared libraries (DSOs) only and the old 32-bit, new 32-bit or
64-bit application binary interfaces (ABIs).

Table 1-3 provides information about the different SpeedShop libraries.

API

The SpeedShop API is primarily available to allow you to use ssrt_caliper_point to set
caliper points in your source code. See “Using Calipers” in Chapter 6 for information on
using caliper points. For information on other API functions, see the ssapi reference page.

Table 1-3 SpeedShop Libraries

Library Description

libss.so A shared library (DSO) that supports libssrt.so. libss.so data normally appears
in experiment results generated with prof.

libssrt.so A shared library (DSO) that is linked in to the program you specify when you
run an experiment. All the performance data collection with the SpeedShop
system is done within the target process(es), by exercising various pieces of
functionality using libssrt. Data from libssrt.so does not normally appear in
performance data reports generated with prof.

libfpe_ss.so Supplements the standard libfpe.so for the purposes of collecting floating point
exception data. See the fpe_ss reference page for more information.

libmalloc_ss.so Inserts versions of malloc routines from libc.so.1 that allow tracing all calls to
malloc, free, realloc, memalign, and valloc. See the malloc_ss reference page
for more information.

libpixrt.so A shared library (DSO) used by pixified programs.

8

Chapter 1: Introduction to Performance Analysis

Supported Programming Models and Languages

The SpeedShop tools support programs with the following characteristics:

• Shared libraries (DSOs.)

• Non-stripped executables.

• Executables containing fork, sproc, system, or exec commands.

• Executables using supported techniques for opening, closing, and/or delay-loading
DSOs.

• C, C++, Fortran (Fortran-77, Fortran-90, and High-Performance Fortran), or Ada® 95
source code.

• Power Fortran and Power C source code.

prof understands the syntax and semantics of the multi-processing runtime and
displays the data accordingly.

• pthreads, supported with data on a per-program basis.

• Message Passing Interface (MPI) or other message-passing paradigms. Currently
supported by providing data on the behavior of each process. The behavior of the
MPI library itself is monitored just like any other user-level code.

Using SpeedShop Tools for Performance Analysis

9

Using SpeedShop Tools for Performance Analysis

Performance tuning typically consists of

• examining machine resource usage

• breaking down the process into phases

• identifying the resource bottleneck within each phase

• correcting the cause of the bottleneck

Generally, you run the first experiment to break your program down into phases and run
subsequent experiments to examine each phase individually. After you have solved a
problem in a phase, you should re-examine machine resource usage to see if there is
further opportunity for performance improvement.

The general steps for a performance analysis cycle are:

1. Build the application.

2. Run experiments on the application to collect performance data.

3. Examine the performance data.

4. Generate an improved version of the program.

5. Repeat as needed.

To accomplish this using SpeedShop tools:

• Use ssusage to capture information on your program’s use of machine resources.

• Use ssrun to capture different types of performance data over either your entire
program or parts of the program. ssrun can be used in conjunction with dbx or
WorkShop debuggers.

• Use prof to analyze the data and generate reports.

10

Chapter 1: Introduction to Performance Analysis

Using ssusage to Evaluate Machine Resource Use

To determine overall resource usage by your program, run the program with ssusage. The
results of this command allow you to identify high user CPU time, high system CPU
time, high I/O time, and a high degree of paging.

ssusage prog_name prog_args

From the ssusage output, you can decide which experiments to run to collect data for
further study. For more information on ssusage, see Chapter 5, “Collecting Data on
Machine Resource Usage,” or see the ssusage reference page.

Using ssrun and prof to Gather and Analyze Performance Data

This section describes the steps involved in a performance analysis cycle when using the
main interface to the SpeedShop tools: the ssrun command.

You can also call the commands individually. For example, if you are planning to
perform basic block counting experiments that involve instrumenting the executable,
you can either do this by calling ssrun with the appropriate experiment type, or you can
set up your environment to call pixie directly to instrument your executable. Information
on setting up your environment and running pixie directly can be found in Chapter 8,
“Using SpeedShop in Expert Mode: pixie.”

Using SpeedShop Tools for Performance Analysis

11

To perform a performance analysis, follow these general steps:

1. Build the executable.

You can usually build the executable as you would normally. See “Building Your
Executable” in Chapter 6 for information on how to build the executable.

2. Specify caliper points if you want to collect data for only a portion of your program.

See “Collecting Data for Part of a Program” for more information.

3. To collect performance data, call ssrun with the parameters below. Use the
information in Table 1-4 to determine which experiments to run:

ssrun flags exp_type prog_name prog_args

flags One or more valid flags. For a complete list of flags, see the ssrun
reference page.

exp_type Experiment name.

prog_name Executable name.

prog_args Arguments to the executable

Table 1-4 Choosing an Experiment Type

Performance Problem Experiment(s) to Run

High user CPU time usertime
pcsamp (four variants)

*_hwc experiments

ideal

High system CPU time If floating point exceptions are suspected: fpe

High I/O time ideal, then examine counts of I/O routines

High paging (majf) ideal, then prof -feedback and cord to rearrange procedures.

If inefficient heap usage is suspected, use WorkShop’s
Performance Analyzer to gather information.

12

Chapter 1: Introduction to Performance Analysis

For each process of the executable, the experiment data is stored in a file with a
name of the format prog_name.exp_type.id.

The experiment ID, id, consists of one or two letters (designating the process type)
and the process ID number. See Table 1-5 for letter codes and descriptions.

For more information on the ssrun command, see Chapter 6, “Setting Up and
Running Experiments: ssrun,” or view the ssrun reference page.

4. To generate a report of the experiment, call prof with the following parameters:

prof flags data_file

flags One or more valid flags. For a complete list of flags, see the prof
reference page.

data_file The name of the file in which the experiment data was recorded.

For more information on using prof, see Chapter 7, “Analyzing Experiment Results:
prof,” or see the prof reference page.

Table 1-5 Letter Codes in Process Experiment ID Numbers

Letter Codes Description

m Master process created by ssrun

p Process created by a call to sproc()

f Process created by a call to fork()

s Process created by a call to system()

e Process created by a call to exec()

fe Process created by a call to fork() and exec()

Using SpeedShop Tools for Performance Analysis

13

Collecting Data for Part of a Program

If you have a performance problem in only one part of your program, consider collecting
performance data for just that part. You can do this by setting caliper points around the
problem area when running an experiment, then using the prof -calipers option to
generate a report for the problem area.

You can set caliper points using one of the following:

• the SpeedShop API

• the caliper signal environment

• a debugger such as the ProDev WorkShop debugger

For more information on using calipers, see “Using Calipers” in Chapter 6.

15

Chapter 2

2. Tutorial for C Users

This chapter presents a tutorial for using the SpeedShop tools to gather and analyze
performance data in a C program, and covers these topics:

• “Tutorial Overview” introduces the sample program and explains the different
scenarios in which it will be used.

• “Tutorial Setup” steps you through the necessary setup for running the experiment.

• “Analyzing Performance Data” steps you through five different experiments,
discussing first how to do the experiments, then how to interpret the results.

Note: Because of inherent differences between systems and because of concurrent
processes that may be running on your system, your experiment will produce different
results from the one in this tutorial. However, the basic form of the results should be the
same.

16

Chapter 2: Tutorial for C Users

Tutorial Overview

This tutorial uses a sample program called generic. There are three versions of the
program:

When you work with the tutorial, choose the version of generic most appropriate for your
system. A good guideline is to choose the version that corresponds to the way you expect
to develop your programs.

This tutorial was written and tested using the version of generic in the generic directory.

Contents of the generic Program

generic was designed as a test and demonstration application. It contains code to run
scenarios that each test a different area of SpeedShop. The version of generic used in this
tutorial performs scenarios that:

• build a linked list of structures

• use a lot of usertime

• scan a directory and run the stat command on each file

• perform file I/O

• generate a number of floating point exceptions

• link and call a routine in a DSO

generic directory Contains files for the n32-bit ABI

generic64 directory Contains files for the 64-bit ABI

generico32 directory Contains files for the (old) 32-bit ABI

Tutorial Overview

17

Output from the generic Program

Output from the program looks like the following:

0:00:00.000 ======== (24479) Begin script Fri 03 May 96 10:17:13.
begin script `ll.u.d.i.f.dso’
0:00:00.032 ======== (24479) start of linklist Sun 03 May 96 10:17:13.
linklist completed.
0:00:00.002 ======== (24479) start of usrtime Fri 03 May 96 10:17:13.
usertime completed.
0:00:10.824 ======== (24479) start of dirstat Fri 03 May 96 10:17:24.
dirstat of /usr/include completed, 242 files.
0:00:10.844 ======== (24479) start of iofile Fri 03 May 96 10:17:24.
iofile on /unix completed, 4221656 chars.
0:00:11.036 ======== (24479) start of fpetraps Fri 03 May 96 10:17:24.
fpetraps completed.
0:00:11.038 ======== (24479) start of libdso Fri 03 May 96 10:17:24.
dlslave_init executed
dlslave_routine executed
 slaveusertime completed, x = 5000000.000000.
 libdso: dynamic routine returned 13
 end of script `u.d.i.f.dso’
0:00:11.930 ======== (24479) End script Fri 03 May 96 10:17:25.

Use of the generic Program

The tutorial shows you how to perform the following experiments using ssrun, and how
to interpret experiment-specific reports generated by prof:

• usertime

• pcsamp

• dsc_hwc

• ideal

• fpe

18

Chapter 2: Tutorial for C Users

Tutorial Setup

Copy the program to a directory where you have write permission and compile it so that
you can use it in the tutorial.

1. Change to the /usr/demos/SpeedShop directory.

2. Copy the appropriate generic directory and its contents to a directory where you
have write permission:

cp -r generic_version your_dir

3. Change to the directory you just created:

cd your_dir/generic_version

4. Compile the program by entering

make all

This provides an executable for the experiment.

5. Set the library path so that the program can find shared libraries in the generic
directory:

setenv LD_LIBRARY_PATH your_dir/generic_version

Analyzing Performance Data

This section explains how to run the following experiments on the generic program and
generate and interpret the results:

• “usertime Experiment”

• “pcsamp Experiment”

• “Hardware Counter Experiment”

• “ideal Experiment”

• “fpe Trace”

You can follow the tutorial from start to finish, or you can choose the experiment(s) you
want to perform.

Analyzing Performance Data

19

usertime Experiment

This section explains how to perform a usertime experiment. The usertime experiment
allows you to gather data on the amount of user time spent in each function in your
program. For more information on usertime, see the “usertime Experiment” section in
Chapter 4, “Experiment Types.”

Performing a usertime Experiment

From the command line, enter

ssrun -usertime generic

This starts the experiment. Output from generic and from ssrun is printed to stdout, as
shown in the following example. A data file is also generated. The name consists of the
process name (generic), the experiment type, usertime, and the experiment ID. In this
example, the filename is generic.usertime.m24479.

0:00:00.000 ======== (24479) Begin script Fri 03 May 96 10:17:13.
begin script `ll.u.d.i.f.dso’
0:00:00.032 ======== (24479) start of linklist Sun 03 May 96 10:17:13.
linklist completed.
0:00:00.002 ======== (24479) start of usrtime Fri 03 May 96 10:17:13.
usertime completed.
0:00:10.824 ======== (24479) start of dirstat Fri 03 May 96 10:17:24.
dirstat of /usr/include completed, 242 files.
0:00:10.844 ======== (24479) start of iofile Fri 03 May 96 10:17:24.
iofile on /unix completed, 4221656 chars.
0:00:11.036 ======== (24479) start of fpetraps Fri 03 May 96 10:17:24.
fpetraps completed.
0:00:11.038 ======== (24479) start of libdso Fri 03 May 96 10:17:24.
dlslave_init executed
dlslave_routine executed
 slaveusertime completed, x = 5000000.000000.
 libdso: dynamic routine returned 13
 end of script `u.d.i.f.dso’
0:00:11.930 ======== (24479) End script Fri 03 May 96 10:17:25.

20

Chapter 2: Tutorial for C Users

Generating a Report

To generate a report on the data collected, enter at the command line:

prof your_output_file_name > usertime.results

prof prints results to stdout. Note that the prof output below is a partial listing.

Profile listing generated Mon Nov 18 11:43:45 1996
 with: prof generic.usertime.m24479

Total Time (secs) : 43.98
Total Samples : 1466
Stack backtrace failed: 1
Sample interval (ms) : 30
CPU : R4600
FPU : R4600
Clock : 100.0MHz
Number of CPUs : 1

index %Samples self descendents total name
[1] 99.9% 0.00 43.95 1465 __start
[2] 99.9% 0.00 43.95 1465 main
[3] 99.9% 0.00 43.95 1465 Scriptstring
[4] 94.5% 0.00 41.55 1385 usrtime
[5] 94.5% 41.52 0.03 1385 anneal
[6] 3.0% 0.00 1.32 44 libdso
[7] 3.0% 0.00 1.32 44 dlslave_routine
[8] 3.0% 1.32 0.00 44 slaveusrtime
[9] 2.2% 0.00 0.96 32 iofile
[10] 2.2% 0.00 0.96 32 fread
[11] 2.1% 0.00 0.93 31 __filbuf
[12] 2.1% 0.93 0.00 31 _read
[13] 0.2% 0.00 0.09 3 dirstat
[14] 0.1% 0.00 0.06 2 _stat
[15] 0.1% 0.06 0.00 2 _xstat
[16] 0.1% 0.00 0.03 1 linklist
[17] 0.1% 0.00 0.03 1 _malloc
[18] 0.1% 0.00 0.03 1 _smalloc
[19] 0.1% 0.00 0.03 1 __malloc
[20] 0.1% 0.00 0.03 1 init2da
[21] 0.1% 0.03 0.00 1 __sinf
[22] 0.1% 0.00 0.03 1 _readdir
[23] 0.1% 0.03 0.00 1 _ngetdents
[24] 0.1% 0.03 0.00 1 memcpy

Analyzing Performance Data

21

Analyzing the Report

The report shows information for each function. The remaining columns are described
below:

• The index column provides an index number for reference.

• The %Samples column shows the cumulative percentage of inclusive time spent in
each function and its descendents. For example, 99.9% of the time was spent in
Scriptstring() and all functions listed below it.

• The self column shows how much time, in seconds, was spent in the function itself
(exclusive time). For example, less than one hundredth of a second was spent in
__start(), but 0.03 of a second was spent in memcpy().

• The descendents columns shows how much time, in seconds, was spent in callees
of the function. For example, 43.95 seconds were spent in the callees of main().

• The total column provides information on the number of samples of the function
and all of its descendants.

pcsamp Experiment

This section explains how to perform a pcsamp experiment. The pcsamp experiment
allows you to gather information on actual CPU time for each source code line, machine
instruction, and function in your program. For more information on pcsamp, see the
“pcsamp Experiment” section in Chapter 4, “Experiment Types.”

From the command line, enter

ssrun -fpcsamp generic

This starts the experiment. The f option is used with pcsamp for this program because
the program runs quickly and does not gather much data using the default pcsamp
experiment. Output from generic and from ssrun is printed to stdout as shown in the
example below.

22

Chapter 2: Tutorial for C Users

A data file is also generated. The name consists of the process name (generic), the
experiment type, fpcsamp, and the experiment ID. In this example, the filename is
generic.fpcsamp.m14480.

0:00:00.000 ======== (14480) Begin script Sun 19 May 96 17:18:33.
 begin script `ll.u.d.i.f.dso’
0:00:00.074 ======== (14480) start of linklist Sun 19 May 96 17:18:33.
 linklist completed.
0:00:00.085 ======== (14480) start of usrtime Sun 19 May 96 17:18:33.
 usertime completed.
0:00:17.985 ======== (14480) start of dirstat Sun 19 May 96 17:18:51.
 dirstat of /usr/include completed, 230 files.
0:00:18.008 ======== (14480) start of iofile Sun 19 May 96 17:18:51.
 iofile on /unix completed, 4221656 chars.
0:00:20.321 ======== (14480) start of fpetraps Sun 19 May 96 17:18:54.
 fpetraps completed.
0:00:20.323 ======== (14480) start of libdso Sun 19 May 96 17:18:54.
dlslave_init executed
dlslave_routine executed
 slaveusertime completed, x = 5000000.000000.
 libdso: dynamic routine returned 13
 end of script `ll.u.d.i.f.dso’
0:00:21.394 ======== (14480) End script Sun 19 May 96 17:18:55.

Generating a Report

To generate a report on the data collected, and to redirect the output to a file, enter the
following at the command line:

prof your_output_file_name > pcsamp.results

Output similar to the following is generated:

Analyzing Performance Data

23

Profile listing generated Sun May 19 17:21:27 1996
 with: prof generic.fpcsamp.m14480

samples time CPU FPU Clock N-cpu S-interval Countsize
 19077 19s R4000 R4010 150.0MHz 1 1.0ms 2(bytes)

Each sample covers 4 bytes for every 1.0ms (0.01% of 19.0770s)

 -p[rocedures] using pc-sampling.
 Sorted in descending order by the number of samples in each procedure.
 Unexecuted procedures are excluded.

samples time(%) cum time(%) procedure (dso:file)

 17794 18s(93.3) 18s(93.3) anneal (/usr/demos/SpeedShop/
generic/generic:/usr/demos/SpeedShop/generic/generic.c)

 1046 1s(5.5) 19s(98.8) slaveusrtime (/usr/demos/SpeedShop/generic/
dlslave.so:/usr/demos/SpeedShop/generic/dlslave.c)

 163 0.16s(0.9) 19s(99.6) _read (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/sys/read.s)

 34 0.034s(0.2) 19s(99.8) memcpy (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)

 20 0.02s(0.1) 19s(99.9) _xstat (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/sys/xstat.s)

 8 0.008s(0.0) 19s(99.9) fread (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/stdio/fread.c)

 3 0.003s(0.0) 19s(100.0) iofile (/usr/demos/SpeedShop/generic/
generic:/usr/demos/SpeedShop/generic/generic.c)

 3 0.003s(0.0) 19s(100.0) _doprnt (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/print/doprnt.c)

 1 0.001s(0.0) 19s(100.0) __sinf (/usr/lib32/libm.so:
/work/cmplrs/libm/fsin.c)

 1 0.001s(0.0) 19s(100.0) init2da (/usr/demos/SpeedShop/generic/
generic:/usr/demos/SpeedShop/generic/generic.c)

 1 0.001s(0.0) 19s(100.0) _write (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/sys/write.s)

 1 0.001s(0.0) 19s(100.0) _drand48 (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/math/drand48.c)

 1 0.001s(0.0) 19s(100.0) _morecore (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/gen/malloc.c)

 1 0.001s(0.0) 19s(100.0) fwrite (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/stdio/fwrite.c)

 19077 19s(100.0) 19s(100.0) TOTAL

24

Chapter 2: Tutorial for C Users

Analyzing the Report

The report has the following columns:

• The samples columns shows how many samples were taken when the process was
executing in the function.

• The time(%) column shows the amount of time, and the percentage of that time
over the total time that was spent in the function.

• The cum time(%) column shows how much time has been spent in the function up
to and including the procedure in the list.

• The procedure (dso:file) column lists the procedure, its DSO name and file
name. For example, the first line reports statistics for the procedure anneal() in the
file generic.c in the generic executable.

Hardware Counter Experiment

Note: This experiment can be performed only on systems that have built-in hardware
counters (the R10000 class of machines).

This section takes you through the steps to perform a hardware counter experiment.
There are a number of hardware counter experiments, but this tutorial describes the steps
involved in performing the dsc_hwc experiment. This experiment allows you to capture
information about secondary data cache misses. For more information on hardware
counter experiments, see “ideal Experiment” in Chapter 4, “Experiment Types.”

Performing a Hardware Counter Experiment

From the command line, enter

ssrun -dsc_hwc generic

This starts the experiment. Output from generic and from ssrun is printed to stdout.
A data file is also generated. The name consists of the process name (generic), the
experiment type, dsc_hwc, and the experiment ID. In this example, the filename is
generic.dsc_hwc.m5999.

Analyzing Performance Data

25

Generating a Report

To generate a report on the data collected and redirect the output to a file, enter the
following at the command line:

prof your_output_file_name > dsc_hwc.results

The report should look similar to the following partial listing:

Profile listing generated Thu Jun 5 13:23:14 1997
 with: prof generic.dsc_hwc.m5999

Counter : Sec cache D misses
Counter overflow value: 131
Total number of ovfls : 10
CPU : R10000
FPU : R10010
Clock : 196.0MHz
Number of CPUs : 1

 -p[rocedures] using counter overflow.
 Sorted in descending order by the number of overflows in each procedure.
 Unexecuted or inlined procedures are excluded.

 overflows(%) cum overflows(%) procedure (dso:file)

 4(40.0) 4(40.0) memcpy (/usr/lib32/libc.so.1:bcopy.s)
 2(20.0) 6(60.0) anneal (generic:generic.c)
 2(20.0) 8(80.0) init2da (generic:generic.c)
1(10.0) 9(90.0) _smalloc (/usr/lib32/libc.so.1:malloc.c)
 1(10.0) 10(100.0) _doprnt (/usr/lib32/libc.so.1:doprnt.c)

 10(100.0) TOTAL

26

Chapter 2: Tutorial for C Users

Analyzing the Report

The columns in the report provide the following information:

• The overflows(%) column shows the number of overflows caused by the function,
and the percentage of that number over the total number of overflows in the
program.

• The cum overflows(%) column shows a cumulative number and percentage of
overflows. For example, the anneal() function shows two overflows, but the
cumulative number of overflows is six. Two overflows come from anneal() and four
come from memcpy().

• The procedure (dso:file) column shows the procedure name and the DSO and
filename that contain the procedure.

ideal Experiment

This section takes you through the steps to perform an ideal experiment. For more
information on ideal, see the “ideal Experiment” section in Chapter 4, “Experiment
Types.”

Performing an ideal Experiment

From the command line, enter

ssrun -ideal generic

This starts the experiment. First the executable and libraries are instrumented using pixie.
This entails making copies of the libraries and executables, giving the copies an extension
that depends on the ABI, and inserting information into the copies. The extension is
.pixie for the executable, .pix32 for all 32 libraries, .pixn32 for all n32 libraries, and
.pix64 for all 64 libraries.

Analyzing Performance Data

27

Output from generic and from ssrun is printed to stdout. A data file is also generated. The
name consists of the process name (generic), the experiment type, ideal, and the
experiment ID. In this example, the filename is generic.ideal.m14517, and the output to
stdout looks like the following:

Beginning libraries
 /usr/lib32/libssrt.so
 /usr/lib32/libss.so
 /usr/lib32/libm.so
 /usr/lib32/libc.so.1
Ending libraries, beginning “generic”
...
Beginning libraries
Ending libraries, beginning “dlslave.so”
...

The output section that starts with Beginning libraries and ends with Ending

libraries, beginning ‘generic’ tells you that ssrun is instrumenting first the
libraries listed in the executable, then the generic executable itself. The section that starts
Beginning libraries and ends with Ending libraries, beginning ‘dlslave.so’

is added when the DSO dlslave.so is dlopen’d.

Generating a Report

To generate a report on the data collected, enter the following at the command line:

prof your_output_file_name > ideal.results

This command redirects output to a file called ideal.results. The file contains results that
look similar to the following partial listing:

Prof run at: Sun May 19 17:49:10 1996
 Command line: prof generic.ideal.m14517

 2662778531: Total number of cycles
 17.75186s: Total execution time
 1875323907: Total number of instructions executed
 1.420: Ratio of cycles / instruction
 150: Clock rate in MHz
 R4000: Target processor modelled

28

Chapter 2: Tutorial for C Users

Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

 cycles(%) cum % secs instrns calls procedure(dso:file)

2524610038(94.81) 94.81 16.83 1797940023 1 anneal(generic.pixie:/usr
/demos/SpeedShop/generic/generic.c)

 135001332(5.07) 99.88 0.90 75000822 1 slaveusrtime
(./dlslave.so.pixn32:/usr/demos/SpeedShop/generic/dlslave.c)

 1593422(0.06) 99.94 0.01 1378737 4382 memcpy(./libc.so.1.pixn32:
/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)

 735797(0.03) 99.97 0.00 506627 4123 fread(./libc.so.1.pixn32:
/work/irix/lib/libc/libc_n32_M3/stdio/fread.c)

 187200(0.01) 99.98 0.00 124800 1600 next(./libc.so.1.pixn32:
/work/irix/lib/libc/libc_n32_M3/math/drand48.c)

 136116(0.01) 99.98 0.00 82498 1 iofile(generic.pixie:
/usr/demos/SpeedShop/generic/generic.c)

 91200(0.00) 99.98 0.00 62400 1600 _drand48(./libc.so.1.pixn32:
/work/irix/lib/libc/libc_n32_M3/math/drand48.c)

 85497(0.00) 99.99 0.00 56518 1 init2da(generic.pixie:
/usr/demos/SpeedShop/generic/generic.c)

 74095(0.00) 99.99 0.00 28063 628 __sinf(./libm.so.pixn32:
/work/cmplrs/libm/fsin.c)

 56192(0.00) 99.99 0.00 9360 16 offtime(./libc.so.1.pixn32:
/work/irix/lib/libc/libc_n32_M3/gen/time_comm.c)

 51431(0.00) 99.99 0.00 36405 35 _doprnt(./libc.so.1.pixn32:
/work/irix/lib/libc/libc_n32_M3/print/doprnt.c)

 27951(0.00) 100.00 0.00 19670 259 __filbuf(./libc.so.1.pixn32:
/work/irix/lib/libc/libc_n32_M3/stdio/_filbuf.c)

 21392(0.00) 100.00 0.00 10136 58 fwrite(./libc.so.1.pixn32:
/work/irix/lib/libc/libc_n32_M3/stdio/fwrite.c)

 12744(0.00) 100.00 0.00 9497 231 _readdir(./libc.so.1.pixn32:
/work/irix/lib/libc/libc_n32_M3/gen/readdir.c)

 9960(0.00) 100.00 0.00 7536 96 _xflsbuf(./libc.so.1.pixn32:
/work/irix/lib/libc/libc_n32_M3/stdio/flush.c)

 7211(0.00) 100.00 0.00 3959 1 dirstat(generic.pixie:
/usr/demos/SpeedShop/generic/generic.c)

Analyzing Performance Data

29

Analyzing the Report

The columns in the report provide the following information

• The cycles(%) column reports the number and percentage of machine cycles used
for the procedure. For example, 2524610038 cycles, or 94.81% of cycles were spent in
the anneal() procedure.

• The cum% column shows the cumulative percentage of cycles. For example, 99.88%
of all cycles were spent between the top two functions in the listing: anneal() and
slaveusrtime().

• The secs column shows the number of seconds spent in the procedure. For
example, 16.83 seconds were spent in the anneal() procedure. The time represents
an idealized computation based on modelling the machine. It ignores potential
floating point interlocks and memory latency time (cache misses and memory bus
contention).

• The instrns column shows the number of instructions executed for a procedure.
For example, there were 1797940023 instructions devoted to the anneal() procedure.

• The calls column reports the number of calls to the procedure. For example, there
was just one call to the anneal() procedure.

• The procedure (dso:file) column lists the procedure, its DSO name and
filename. For example, the first line reports statistics for the procedure anneal() in
the file generic.c in the generic executable.

fpe Trace

This section takes you through the steps to perform an fpe trace. For more information
on the fpe trace, see the “fpe Trace” section in Chapter 4, “Experiment Types.”

Performing an fpe Trace

From the command line, enter

ssrun -fpe generic

This starts the experiment. Output from generic and from ssrun is printed to stdout. A data
file with a name generated by concatenating the process name, generic, the experiment
type, fpe, and the experiment ID is also generated. In this example, the filename is
generic.fpe.m18823.

30

Chapter 2: Tutorial for C Users

Generating a Report

To generate a report on the data collected, enter the following at the command line:

prof your_output_file_name > fpe.results

The report should look similar to the following partial listing:

Profile listing generated Mon Nov 18 11:46:33 1996
 with: prof generic.fpe.m18823

Total FPEs : 4
Stack backtrace failed: 0
CPU : R4600
FPU : R4600
Clock : 100.0MHz
Number of CPUs : 1

index %FPEs self descendents total name
[1] 100.0% 0 4 4 __start
[2] 100.0% 0 4 4 main
[3] 100.0% 0 4 4 Scriptstring
[4] 100.0% 4 0 4 fpetraps

Analyzing the Report

The report shows information for each function. The function names are shown in the
right-hand column of the report. The remaining columns are described below:

• The index column provides an index number for reference.

• The %FPEs column shows the percentage of the total number of floating point
exceptions that were found in the function.

• The self column shows how many floating point exceptions were found in the
function. For example, four floating point exceptions were found in fpetraps.

• The descendents columns shows how many floating point exceptions were found
in the descendents of the function. For example, four floating point exceptions were
found in the descendents of main().

• The total column provides information on the number of floating point exceptions
out of the total that were found.

This concludes the tutorial.

31

Chapter 3

3. Tutorial for Fortran Users

This chapter presents a tutorial for using the SpeedShop tools to gather and analyze
performance data in a Fortran program, and covers these topics:

• “Tutorial Overview” introduces the sample program and explains the different
scenarios in which it will be used.

• “Tutorial Setup” steps you through the necessary setup for running the experiment.

• “Analyzing Performance Data” steps you through five different experiments,
discussing first how to do the experiments, then how to interpret the results.

Note: Because of inherent differences between systems and also due to concurrent
processes that may be running on your system, your experiment will produce different
results from the one in this tutorial. However, the basic form of the results should be the
same.

32

Chapter 3: Tutorial for Fortran Users

Tutorial Overview

This tutorial is based on a standard benchmark program called linpackup. There are three
versions of the program: the linpack directory contains files for the n32-bit ABI, the
linpack64 directory contains files for the 64-bit ABI and the linpacko32 directory contains
files for the 32-bit ABI. Each linpack directory contains versions of the program for a
single processor (linpackup) and for multiple processors (linpackd). When you work with
the tutorial, choose the version of the program that is most appropriate for your system.
A good guideline is to choose whichever version corresponds to the way you expect to
develop your programs.

This tutorial was written and tested using the single-processor version of the program
(linpackup) in the linpack directory.

The linpack program is a standard benchmark designed to measure CPU performance in
solving dense linear equations. The program focuses primarily on floating point
performance.

Output From the linpackup Program

Output from the linpackup program looks like the following:

...
norm. resid resid machep x(1) x(n)
 5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00 1.00000000E+00

times are reported for matrices of order 300
 dgefa dgesl total mflops unit ratio
 times for array with leading dimension of 301
 1.180E+00 1.000E-02 1.190E+00 1.528E+01 1.309E-01 2.125E+01
 1.180E+00 1.000E-02 1.190E+00 1.528E+01 1.309E-01 2.125E+01
 1.180E+00 1.000E-02 1.190E+00 1.528E+01 1.309E-01 2.125E+01
 1.180E+00 1.000E-02 1.190E+00 1.528E+01 1.309E-01 2.125E+01

 times for array with leading dimension of 300
 1.180E+00 1.000E-02 1.190E+00 1.528E+01 1.309E-01 2.125E+01
 1.180E+00 2.000E-02 1.200E+00 1.515E+01 1.320E-01 2.143E+01
 1.180E+00 1.000E-02 1.190E+00 1.528E+01 1.309E-01 2.125E+01
 1.181E+00 1.200E-02 1.193E+00 1.524E+01 1.312E-01 2.130E+01

Tutorial Setup

33

Experiments Performed in This Tutorial

The tutorial shows you how to perform the following experiments using ssrun, and how
to interpret experiment-specific reports generated by prof:

• usertime

• pcsamp

• dsc_hwc

• ideal

Tutorial Setup

Copy the program to a directory where you have write permission and compile it so that
you can use it in the tutorial.

1. Change to the /usr/demos/SpeedShop directory.

2. Copy the appropriate linpack directory and its contents to a directory where you
have write permission:

cp -r linpack_version your_dir

3. Change to the directory you just created:

cd your_dir/linpack_version

4. Compile the program by entering

make all

This provides an executable for the experiment.

34

Chapter 3: Tutorial for Fortran Users

Analyzing Performance Data

This section provides steps on how to run the following experiments on the linpackup
program and generate and interpret the results:

• “usertime Experiment”

• “Hardware Counter Experiment”

• “pcsamp Experiment”

• “ideal Experiment”

You can follow the tutorial from start to finish, or you can follow steps for just the
experiment(s) you want.

usertime Experiment

This section takes you through the steps to perform a usertime experiment. The usertime
experiment allows you to gather data on the amount of user time spent in each function
in your program. For more information on usertime, see the “usertime Experiment”
section in Chapter 4, “Experiment Types.”

Performing a usertime Experiment

From the command line, enter

ssrun -v -usertime linpackup

This starts the experiment. The -v flag tells ssrun to print a log to stderr.

Output from linpackup and from ssrun is printed to stdout as shown in the example below.
A data file is also generated. The name consists of the process name (linpackup), the
experiment type, usertime, and the experiment ID. In this example, the filename is
linpackup.usertime.m17566.

Analyzing Performance Data

35

ssrun: target PID 17566
ssrun: setenv _SPEEDSHOP_MARCHING_ORDERS ut:cu
ssrun: setenv _SPEEDSHOP_EXPERIMENT_TYPE usertime
ssrun: setenv _SPEEDSHOP_TARGET_FILE linpackup
ssrun: setenv _RLD_LIST libss.so:libssrt.so:DEFAULT
 Please send the results of this run to:

 Jack J. Dongarra
 Mathematics and Computer Science Division
 Argonne National Laboratory
 Argonne, Illinois 60439

 Telephone: 312-972-7246

 ARPAnet: DONGARRA@ANL-MCS

 norm. resid resid machep x(1) x(n)
 5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00 1.00000000E+00

 times are reported for matrices of order 300
 dgefa dgesl total mflops unit ratio
 times for array with leading dimension of 301
 3.050E+00 3.000E-02 3.080E+00 5.903E+00 3.388E-01 5.500E+01
 3.030E+00 3.000E-02 3.060E+00 5.941E+00 3.366E-01 5.464E+01
 3.030E+00 3.000E-02 3.060E+00 5.941E+00 3.366E-01 5.464E+01
 3.030E+00 3.000E-02 3.060E+00 5.941E+00 3.366E-01 5.464E+01

 times for array with leading dimension of 300
 3.030E+00 3.000E-02 3.060E+00 5.941E+00 3.366E-01 5.464E+01
 3.040E+00 3.000E-02 3.070E+00 5.922E+00 3.377E-01 5.482E+01
 3.040E+00 3.000E-02 3.070E+00 5.922E+00 3.377E-01 5.482E+01
 3.034E+00 3.000E-02 3.064E+00 5.933E+00 3.371E-01 5.471E+01

36

Chapter 3: Tutorial for Fortran Users

Generating a Report

To generate a report on the data collected, enter the following at the command line:

prof your_output_file_name > usertime.results

prof interprets the type of experiment you have performed and prints results to stdout.
The report below shows partial prof output:

Profile listing generated Mon Nov 18 11:39:36 1996
 with: prof linpackup.usertime.m17566

Total Time (secs) : 115.11
Total Samples : 3837
Stack backtrace failed: 2
Sample interval (ms) : 30
CPU : R4600
FPU : R4600
Clock : 100.0MHz
Number of CPUs : 1

index %Samples self descendents total name
[1] 99.9% 0.00 115.05 3835 __start
[2] 99.9% 0.00 115.05 3835 main
[3] 99.9% 0.00 115.05 3835 linp
[4] 94.9% 3.12 106.17 3643 dgefa
[5] 92.7% 106.71 0.00 3557 daxpy
[6] 3.8% 4.35 0.00 145 matgen
[7] 0.9% 0.00 1.08 36 dgesl
[8] 0.2% 0.27 0.00 9 dscal
[9] 0.2% 0.27 0.00 9 idamax
[10] 0.2% 0.00 0.18 6 s_wsfe64
[11] 0.2% 0.00 0.18 6 s_wsfe_com
[12] 0.2% 0.00 0.18 6 wsfe
[13] 0.1% 0.03 0.09 4 f_init
[14] 0.1% 0.00 0.06 2 f77canseek
[15] 0.1% 0.03 0.03 2 _isatty
[16] 0.1% 0.06 0.00 2 dmxpy
[17] 0.1% 0.03 0.03 2 s_stop
[18] 0.0% 0.03 0.00 1 _mips2_test_and_set
[19] 0.0% 0.00 0.03 1 _ftell64
[20] 0.0% 0.00 0.03 1 memset

Analyzing Performance Data

37

[21] 0.0% 0.03 0.00 1 _blk_init
[22] 0.0% 0.03 0.00 1 __oserror
[23] 0.0% 0.03 0.00 1 c_sfe
[24] 0.0% 0.00 0.03 1 do_ud
[25] 0.0% 0.00 0.03 1 check_buflen
[26] 0.0% 0.00 0.03 1 _malloc
[27] 0.0% 0.00 0.03 1 __malloc
[28] 0.0% 0.03 0.00 1 _morecore
[29] 0.0% 0.00 0.03 1 pars_f
[30] 0.0% 0.00 0.03 1 f_s
[31] 0.0% 0.00 0.03 1 f_list
[32] 0.0% 0.00 0.03 1 i_tem
[33] 0.0% 0.00 0.03 1 ne_d
[34] 0.0% 0.03 0.00 1 op_gen
[35] 0.0% 0.00 0.03 1 do_fioxr8v
[36] 0.0% 0.00 0.03 1 do_fio64_mp
[37] 0.0% 0.03 0.00 1 w_ed
[38] 0.0% 0.03 0.00 1 f_exit

Analyzing the Report

The report shows information for each function. The function names are show in the
right-hand column of the report. The remaining columns are described below:

• The index column provides an index number for reference.

• The %time column shows the cumulative percentage of inclusive time spent in each
function and its descendents. For example, in the third row, 99.9% of the time was
spent in linp and all functions listed below it.

• The self column shows how much time, in seconds, was spent in the function itself
(exclusive time). For example, less than one hundredth of a second was spent in
linp, but 3.12 seconds were spent in dgefa.

• The descendents columns shows how much time, in seconds, was spent in callees
of the function. For example, in the third row, 115.05 seconds were spent in callees
of linp.

• The total column provides information on the number of cycles out of the total
spent on the function.

Note: Many functions shown here have only one or two “hits.” The data for those
functions is not statistically significant.

38

Chapter 3: Tutorial for Fortran Users

pcsamp Experiment

This section takes you through the steps to perform a pcsamp experiment. The pcsamp
experiment allows you to gather information on actual CPU time for each source code
line, machine line, and function in your program. For more information on pcsamp, see
the “pcsamp Experiment” section in Chapter 4, “Experiment Types.”

Performing a pcsamp Experiment

From the command line, enter

ssrun -pcsamp linpackup

This starts the experiment.

Output from linpackup and from ssrun is printed to stdout as shown in the example below.
A data file is also generated. The name consists of the process name (linpackup), the
experiment type, pcsamp, and the experiment ID. In this example, the filename is
linpackup.pcsamp.m17576.
 ...
 norm. resid resid machep x(1) x(n)
 5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00 1.00000000E+00
 ...

Analyzing Performance Data

39

Generating a Report

To generate a report on the data collected, enter the following at the command line:

prof your_output_file_name > pcsamp.results

Profile listing generated Sun May 19 18:38:50 1996
 with: prof linpackup.pcsamp.m17576

samples time CPU FPU Clock N-cpu S-interval Countsize
 5421 54s R8000 R8010 75.0MHz 1 10.0ms 2(bytes)

Each sample covers 4 bytes for every 10.0ms (0.02% of 54.2100s)

 -p[rocedures] using pc-sampling.
 Sorted in descending order by the number of samples in each procedure.
 Unexecuted procedures are excluded.

samples time(%) cum time(%) procedure (dso:file)

 5064 51s(93.4) 51s(93.4) daxpy (linpackup:linpackup.f)
 240 2.4s(4.4) 53s(97.8) matgen (linpackup:linpackup.f)
 76 0.76s(1.4) 54s(99.2) dgefa (linpackup:linpackup.f)
 19 0.19s(0.4) 54s(99.6) dscal (linpackup:linpackup.f)
 17 0.17s(0.3) 54s(99.9) idamax (linpackup:linpackup.f)
 4 0.04s(0.1) 54s(100.0) dmxpy (linpackup:linpackup.f)
 1 0.01s(0.0) 54s(100.0) _ioctl (/usr/lib32/libc.so.1:

/work/irix/lib/libc/libc_n32_M4/sys/ioctl.s)

 5421 54s(100.0) 54s(100.0) TOTAL

40

Chapter 3: Tutorial for Fortran Users

Analyzing the Report

The report has the following columns:

• The samples column shows how many samples were taken when the process was
executing in the function.

• The time(%) column shows the amount of time, and the percentage of that time
over the total time that was spent in the function.

• The cum time(%) column shows how much time has been spent in the function up
to and including the procedure in the list.

• The procedure (dso:file) column lists the procedure, its DSO name and
filename. For example, the first line reports statistics for the procedure daxpy in the
file linpackup.f in the linpackup executable.

Hardware Counter Experiment

Note: This experiment can be performed only on systems that have built-in hardware
counters (the R10000 class of machines).

This section takes you through the steps to perform a hardware counter experiment.
There are a number of hardware counter experiments, but this tutorial describes the steps
involved in performing the dsc_hwc experiment. This experiment allows you to capture
information about secondary data cache misses. For more information on hardware
counter experiments, see the“ideal Experiment” section in Chapter 4, “Experiment
Types.”

Performing a hardware counter Experiment

From the command line, enter

ssrun -dsc_hwc linpackup

This starts the experiment. Output from linpackup and from ssrun will be printed to
stdout. A data file is also generated. The name consists of the process name (linpackup),
the experiment type, dsc_hwc, and the experiment ID. In this example, the filename is
linpackup.dsc_hwc.m6180.

Analyzing Performance Data

41

Generating a Report

To generate a report on the data collected, enter the following at the command line:

prof your_output_file_name > dsc_hwc.results

Output similar to the following is generated:

Profile listing generated Sun May 19 18:20:14 1996
 with: prof linpackup.dsc_hwc.m6180

 Counter : Sec cache D misses
 Counter overflow value: 131
 Total numer of ovfls : 2737
 CPU : R10000
 FPU : R10010
 Clock : 196.0MHz
 Number of CPUs : 1

 -p[rocedures] using counter overflow.
 Sorted in descending order by the number of overflows in each procedure.
 Unexecuted procedures are excluded.

 overflows(%) cum overflows(%) procedure (dso:file)

 2133(77.9) 2133(77.9) DAXPY (linpackup:/usr/demos/
SpeedShop/linpack64/linpackup.f)

 307(11.2) 2440(89.1) MATGEN (linpackup:/usr/demos/
SpeedShop/linpack64/linpackup.f)

 275(10.0) 2715(99.2) DGEFA (linpackup:/usr/demos/
SpeedShop/linpack64/linpackup.f)

 11(0.4) 2726(99.6) IDAMAX (linpackup:/usr/demos/
SpeedShop/linpack64/linpackup.f)

 3(0.1) 2729(99.7) DMXPY (linpackup:/usr/demos/
SpeedShop/linpack64/linpackup.f)

 3(0.1) 2732(99.8) DGESL (linpackup:/usr/demos/
SpeedShop/linpack64/linpackup.f)

 1(0.0) 2733(99.9) memset (/usr/lib64/libc.so.1:
/work/irix/lib/libc/libc_64_M4/strings/bzero.s)

 1(0.0) 2734(99.9) fflush (/usr/lib64/libc.so.1:
/work/irix/lib/libc/libc_64_M4/stdio/flush.c)

 1(0.0) 2735(99.9) _mixed_dtoa (/usr/lib64/libc.so.1:
/work/irix/lib/libc/libc_64_M4/math/mixed_dtoa.c)

42

Chapter 3: Tutorial for Fortran Users

 1(0.0) 2736(100.0) wsfe (/usr/lib64/libftn.so:
/work/cmplrs/libI77/wsfe.c)

 1(0.0) 2737(100.0) f_exit (/usr/lib64/libftn.so:
/work/cmplrs/libI77/close.c)

 2737(100.0) TOTAL

Analyzing the Report

The report has the following columns:

• The overflows(%) column shows the number of overflows caused by the function,
and the percentage of that number over the total number of overflows in the
program.

• The cum overflows(%) column shows a cumulative number and percentage of
overflows. For example, the MATGEN function shows 307 overflows, but the
cumulative number of overflows is 2440.

• The procedure (dso:file) column shows the procedure name and the DSO and
filename that contain the procedure.

ideal Experiment

This section takes you through the steps to perform an ideal experiment. For more
information on collecting ideal-time data, and basic block counting, see the “ideal
Experiment” section in Chapter 4, “Experiment Types.”

Performing an ideal Experiment

From the command line, enter

ssrun -ideal linpackup

This starts the experiment. First the executable and libraries are instrumented using pixie.
This entails making copies of the libraries and executables, giving them an extension that
depends on the ABI, and inserting information into the copies. The extension is .pixie
for the executable, .pix32 for all 32 libraries, .pixn32 for all n32 libraries, and .pix64

for all 64 libraries.

Analyzing Performance Data

43

Output from linpackup and from ssrun is printed to stdout as shown in the example below.
A data file is also generated. The name consists of the process name (linpackup), the
experiment type, ideal, and the experiment ID. In this example, the filename is
linpackup.ideal.n17580.

Beginning libraries
 /usr/lib32/libssrt.so
 /usr/lib32/libss.so
 /usr/lib32/libftn.so
 /usr/lib32/libm.so
 /usr/lib32/libc.so.1
Ending libraries, beginning “linpackup”
...

Generating a Report

To generate a report on the data collected, enter the following at the command line:

prof your_output_file_name > ideal.results

This command redirects output to a file called ideal.results. The file should contain results
that look something like the following:

Prof run at: Sun May 19 18:46:10 1996
 Command line: prof linpackup.ideal.m17580

 5722510379: Total number of cycles
 76.30014s: Total execution time
 4906763725: Total number of instructions executed
 1.166: Ratio of cycles / instruction
 75: Clock rate in MHz
 R8000: Target processor modelled

Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

 cycles(%) cum % secs instrns calls procedure(dso:file)

5404032607(94.43) 94.43 72.05 4639092022 772633 daxpy(linpackup.pixie:
linpackup.f)

 207582228(3.63) 98.06 2.77 157405518 18 matgen(linpackup.pixie:
linpackup.f)

44

Chapter 3: Tutorial for Fortran Users

 67844858(1.19) 99.25 0.90 72325769 17 dgefa(linpackup.pixie:
linpackup.f)

 19920277(0.35) 99.60 0.27 17658342 5083 dscal(linpackup.pixie:
linpackup.f)

 18115251(0.32) 99.91 0.24 15675343 5083 idamax(linpackup.pixie:
linpackup.f)

 4053920(0.07) 99.98 0.05 3605124 1 dmxpy(linpackup.pixie:
linpackup.f)

 786709(0.01) 100.00 0.01 695776 17 dgesl(linpackup.pixie:
linpackup.f)

 41357(0.00) 100.00 0.00 83826 1116 __flsbuf(./libc.so.1.pixn32:
/work/irix/lib/libc/libc_n32_M4/stdio/_flsbuf.c)

 30294(0.00) 100.00 0.00 29094 1 linp(linpackup.pixie:
linpackup.f)

 17330(0.00) 100.00 0.00 39823 867 x_putc(./libftn.so.pixn32:
/lv7/mtibuild/nodebug/workarea/mongoose/libI77/wsfe.c)

 12294(0.00) 100.00 0.00 25795 28 x_wEND(./libftn.so.pixn32:
/lv7/mtibuild/nodebug/workarea/mongoose/libI77/wsfe.c)

 10620(0.00) 100.00 0.00 14340 53 wrt_E(./libftn.so.pixn32:
/lv7/mtibuild/nodebug/workarea/mongoose/libI77/wrtfmt.c)

 9617(0.00) 100.00 0.00 14889 71 do_fio64_mp
(./libftn.so.pixn32:/lv7/mtibuild/nodebug/workarea/mongoose/libI77/
fmt.c)

 4940(0.00) 100.00 0.00 7917 380

Analyzing Performance Data

45

Analyzing the Report

The report has the following columns:

• The cycles(%) column reports the number and percentage of machine cycles used
for the procedure. For example, 5404032607 cycles, or 94.43% of cycles were spent in
the daxpy procedure.

• The cum% column shows the cumulative percentage of cycles. For example, 98.06%
of all cycles were spent between the top two functions in the listing: daxpy and
matgen.

• The secs column shows the number of seconds spent in the procedure. For
example, 72.05 seconds were spent in the daxpy procedure. The time represents an
idealized computation based on modelling the machine. It ignores potential floating
point interlocks and memory latency time (cache misses and memory bus
contention.)

• The instrns column shows the number of instructions executed for a procedure.
For example, there were 157405518 instructions devoted to the matgen procedure.

• The calls column reports the number of calls to the procedure. For example, there
were 18 calls to the matgen procedure.

• The procedure (dso:file) column lists the procedure, its DSO name and
filename. For example, the first line reports statistics for the procedure daxpy in the
file linpackup.f in the linpackup executable.

This concludes the tutorial.

47

Chapter 4

4. Experiment Types

This chapter provides detailed information on each experiment type available within
SpeedShop. It contains the following sections:

• “Selecting an Experiment”

• “usertime Experiment”

• “pcsamp Experiment”

• “ideal Experiment”

• “Hardware Counter Experiments”

• “fpe Trace”

For information on how to run the experiments described in this chapter, see Chapter 6,
“Setting Up and Running Experiments: ssrun.”

48

Chapter 4: Experiment Types

Selecting an Experiment

Table 4-1 shows the possible experiments you can perform using the SpeedShop tools
and the reasons why you might want to choose a specific experiment. The Clues column
shows when you might use an experiment. The Data Collected column indicates
performance data collected by the experiment. For detailed information on the
experiments listed, see the sections listed in Table 4-1.

Table 4-1 Summary of Experiments

Experiment Clues Data Collected

“usertime
Experiment”

Slow program, nothing
else known.

Not CPU-bound.

Inclusive and exclusive user time for each function by
sampling the callstack at 30-millisecond intervals.

“pcsamp
Experiment”

High user CPU time. Actual CPU time at the source line, machine
instruction and function levels by sampling the
program counter at 10-or 1-millisecond intervals.

“ideal
Experiment”

CPU-bound. Ideal CPU time at the function, source line and
machine instruction levels using instrumentation for
basic block counting.

“ideal
Experiment”

High user CPU time. On R10000 class machines, exclusive counts at the
source line, machine instruction, and function levels
for overflows of the following counters: clock cycle,
graduated instructions, primary instruction-cache
misses, secondary instruction-cache misses, primary
data-cache misses, secondary data-cache misses, TLB
misses, graduated floating-point instructions.

“fpe Trace” High system time.

Presence of floating point
operations.

All floating point exceptions with the exception type
and the callstack at the time of the exception.

usertime Experiment

49

usertime Experiment

The usertime experiment uses statistical call stack profiling, based on wall clock time, to
measure inclusive and exclusive user time spent in each function while your program
runs. This experiment uses an interval of 30 milliseconds.

Data is measured by periodically sampling the callstack. The program’s callstack data is
used to

• attribute exclusive user time to the function at the bottom of each callstack (that is,
the function being executed at the time of the sample)

• attribute inclusive user time to all the functions above the one currently being
executed

The time spent in a procedure is determined by multiplying the number of times an
instruction for that procedure appears in the stack by the average time interval between
call stacks. Call stacks are gathered whether the program was running or blocked; hence,
the time computed represents the total time, both within and outside the CPU. If the
target process was blocked for a long time as a result of an instruction, that instruction
will show up as having a high time.

User time runs should incur a program execution slowdown of no more than 15%. Data
from a usertime experiment is statistical in nature and shows some variance from run to
run.

Note: For this experiment, o32 executables must explicitly link with -lexc.

50

Chapter 4: Experiment Types

pcsamp Experiment

The pcsamp experiment uses statistical PC sampling to estimate actual CPU time for
each source code line, machine line, and function in your program. The prof listing of this
experiment shows exclusive PC-sampling time. This experiment is a lightweight,
high-speed operation done with kernel support. The actual CPU time is calculated by
multiplying the number of times an instruction appears in the PC by the interval
specified for the experiment (either 1 or 10 milliseconds.)

To collect the data, the kernel regularly stops the process if it is in the CPU, increments a
counter for the current value of the PC, and resumes the process. The default sample
interval is 10 milliseconds. If you specify the optional f prefix to the experiment, a sample
interval of 1 millisecond is used.

By default, the experiment uses 16-bit bins, based on user and system time. If the optional
x suffix is used, a 32-bit bin size will be used. Using a 32-bit bin provides more accurate
information, but requires additional disk space.

• 16-bit bins allow a maximum of 65,000 counts.

• 32-bit bins allow approximately 4,000,000 counts.

PC-sampling time runs should incur a slowdown of execution of the program of no more
than 5%. The measurements are statistical in nature, and exhibit variance inversely
proportional to the running time.

ideal Experiment

51

ideal Experiment

The ideal experiment instruments the executables and any DSOs to permit basic block
counting and counting of all dynamic (function-pointer) calls.

How SpeedShop Prepares Files

To permit block counting, SpeedShop

• divides the code into basic blocks (which are sets of instructions with a single entry
point), a single exit point, and no branches into or out of the set

• inserts counter code at the beginning of each basic block to increment a counter each
time that basic block is executed

The target executable and all the DSOs it uses are instrumented, including libc.so.1,
libexc.so, libm.so, libss.so, libssrt.so. Instrumented files with an extension .pix*, where *
depends on the ABI, are written to the current working directory.

After the transformations are complete, the program’s symbol table and translation table
are updated so that debuggers can map between transformed addresses and the original
program’s addresses, and reference the measured performance data to the
untransformed code.

After instrumentation, ssrun executes the instrumented program. Data is generated as
long as the process exits normally or receives a fatal signal that the program does not
handle.

How SpeedShop Calculates CPU Time

prof uses a machine model to convert the block execution counts into an idealized
exclusive time at the function, source line, or machine instruction levels. By default, the
machine model corresponds to the machine on which the target was run; the user can
specify a different machine model for the analysis.

52

Chapter 4: Experiment Types

SpeedShop calculates ideal CPU time by using the TDT models. Potential floating-point
interlocks are taken into account inside the same basic blocks, but ignored across basic
block boundaries. Memory latency time (cache misses and memory bus contention) is
ignored. The computed ideal time is therefore always less than the real time that any run
would take. See Table 4-2 for a comparison of running a pcsamp experiment, which
generates estimated actual CPU time, and running an ideal experiment.

Note that the execution time of an instrumented program is three to six times longer than
an uninstrumented one. This timing change may alter the behavior of a program that
deals with a graphical user interface (GUI), or depends on events such as SIGALRM that
are based on an external clock. Also, during analysis, the instrumented executable might
appear to be CPU-bound, whereas the original executable was I/O-bound.

Basic block counts are translated to ideal CPU time displayed at the function, source line
and machine line levels.

Inclusive Basic Block Counting

The basic block counting explained in the previous section allows you to measure ideal
time spent in each procedure, but doesn’t propagate the time up to the caller of that
procedure. For example, basic block counting may tell you that procedure sin(x) took the
most time, but significant performance improvement can only be obtained by optimizing
the callers of sin(x). Inclusive basic block counting solves this problem.

Inclusive basic block counting calculates cycles just like regular basic block counting, and
then propagates it proportionately to all its callers. The cycles of procedures obtained
using regular basic block counting (called exclusive cycles), are divided up among its
callers in proportion to the number of times they called this procedure. For example, if
sin(x) takes 1000 cycles, and its callers, procedures foo() and bar(), call sin(x) 25 and 75
times respectively, 250 cycles are attributed to foo() and 750 to bar(). By propagating
cycles this way, __start() ends up with all the cycles counted in the program. for
example), the assumption can be very misleading. If foo() calls matmult() 99 times for 2X2
matrices, while bar() calls it once for 100X100 matrices, the inclusive time report will
attribute 99% of matmult()’s time to foo(), but actually almost all the time derives from
bar()’s one call.

To generate a report that shows inclusive time, specify the -gprof flag to prof.

ideal Experiment

53

Using pcsamp and ideal Together

The ideal experiment can be used together with the pcsamp experiment to compare
actual and ideal times spent in the CPU. A major discrepancy between pcsamp CPU time
and ideal CPU time indicates

• cache misses and floating point interlocks in a single process application

• secondary cache invalidations in an application with multiple processes that is run
on a multiprocessor

A comparison between basic block counts (ideal experiment) and PC profile counts
(pcsamp experiment) is shown in Table 4-2.

Table 4-2 Basic Block Counts and PC Profile Counts Compared

Basic Block Counts PC Profile Counts

Used to compute ideal CPU time Used to estimate actual CPU time

Data collection by instrumenting Data collection done with the kernel

Slows program down by factor of three Has minimal impact on program speed

Generates an exact count Generates statistical counts

54

Chapter 4: Experiment Types

Hardware Counter Experiments

The experiments described in this section are available for systems that have hardware
counters (R10000 class machines). Hardware counters allow you to count various types
of events, such as cache misses and counts of issued and graduated instructions.

A hardware counter works as follows: for each event the appropriate hardware counter
is incremented on each processor clock cycle when events occur for which there are
hardware counters. For example, when a floating point instruction is graduated in a
cycle, the graduated floating-point instruction counter is incremented by 1.

Two Tools for Hardware Counter Experiments

There are two tools that allow you to access hardware counter data:

• perfex is command-line interface that provides program-level event information, For
more information on perfex, and on hardware counters, see the perfex or
r10k_counters reference pages.

• SpeedShop allows you to perform the hardware counter experiments described in
the next section (“SpeedShop Hardware Counter Experiments”).

SpeedShop Hardware Counter Experiments

In SpeedShop hardware counter experiments, overflows of a particular hardware
counter are recorded. Each hardware counter is configured to count from zero to a
number designated as the overflow value. When the counter reaches the overflow value,
the system resets it to zero and increments the number of overflows at the present
program instruction address. Each experiment provides two possible overflow values;
the values are prime numbers, so any profiles that seem the same for both overflow
values should be statistically valid.

The hardware counter experiments show where the overflows are being triggered in the
program, at the function, source-line, and individual instruction level. When you run prof
on the data collected during the experiment, the overflow counts are multiplied by the
overflow value to compute the total number of events. These numbers are statistical. The
generated reports show exclusive hardware counts, that is, information about where the
program counter was, not the callstack to get there.

Hardware Counter Experiments

55

Hardware counter overflow profiling experiments should incur a slowdown of
execution of the program of no more than 5%. Count data is kept as 32-bit integers only.

The available hardware experiments are [f]gi_hwc, [f]cy_hwc, [f]ic_hwc, [f]isc_hwc,
[f]dc_hwc, [f]dsc_hwc, [f]tlb_hwc, [f]gfp_hwc, and prof_hwc.

[f]gi_hwc

The [f]gi_hwc experiment counts overflows of the graduated instruction counter. The
graduated instruction counter is incremented by the number of instructions that were
graduated on the previous cycle. The experiment uses statistical PC sampling based on
overflows of the counter at an overflow interval of 32771. If the optional f prefix is used,
the overflow interval is 6553.

[f]cy_hwc

The [f]cy_hwc experiment counts overflows of the cycle counter. The cycle counter is
incremented on each clock cycle. The experiment uses statistical PC sampling based on
overflows of the counter, at an overflow interval of 16411. If the optional f prefix is used,
the overflow interval is 3779.

[f]ic_hwc

The [f]ic_hwc experiment counts overflows of the primary instruction-cache miss
counter. The primary instruction-cache miss counter is incremented one cycle after an
instruction fetch request is entered into the miss handling Table. The experiment uses
statistical PC sampling based on the overflow of the counter at an overflow interval of
2053. If the optional f prefix is used, the overflow interval is 419.

[f]isc_hwc

The [f]isc_hwc experiment counts overflows of the secondary instruction-cache miss
counter. The secondary instruction-cache miss counter is incremented after the last
16-byte block of a 64-byte primary instruction cache line is written into the instruction
cache. The experiment uses statistical PC sampling based on the overflow of the counter
at an overflow interval of 131. If the optional f prefix is used, the overflow interval is 29.

56

Chapter 4: Experiment Types

[f]dc_hwc

The [f]dc_hwc experiment counts overflows of the primary data-cache miss counter. The
primary data-cache miss counter is incremented on the cycle after a primary cache data
refill is begun. The experiment uses statistical PC sampling based on the overflow of the
counter at an overflow interval of 2053. If the optional f prefix is used, the overflow
interval is 419.

[f]dsc_hwc

The [f]dsc_hwc experiment counts overflows of the secondary data-cache miss counter.
The secondary data-cache miss counter is incremented on the cycle after the second
16-byte block of a primary data cache line is written into the data cache. The experiment
uses statistical PC sampling, based on the overflow of the counter at an overflow interval
of 131. If the optional f prefix is used, the overflow interval is 29.

[f]tlb_hwc

The [f]tlb_hwc experiment counts overflows of the TLB (translation lookaside buffer)
counter. The TLB counter is incremented on the cycle after the TLB miss handler is
invoked. The experiment uses statistical PC sampling based on the overflow of the
counter at an overflow interval of 257. If the optional f prefix is used, the overflow
interval is 53.

[f]gfp_hwc

The [f]gfp_hwc experiment counts overflows of the graduated floating-point instruction
counter. The graduated floating-point instruction counter is incremented by the number
of floating point instructions which graduated on the previous cycle. The experiment
uses statistical PC sampling based on overflows of the counter, at an overflow interval of
32771. If the optional f prefix is used, the overflow interval is 6553.

Hardware Counter Experiments

57

prof_hwc

The prof_hwc experiment allows you to set a hardware counter to use in the experiment,
and to set a counter overflow interval using the following environment variables:

_SPEEDSHOP_HWC_COUNTER_NUMBER
The value of this variable may be any number between 0 and 31.
Hardware counters are described in the MIPS R10000 Microprocessor
User’s Manual, Chapter 14, and on the r10k_counters reference page. The
hardware counter numbers are provided in Table 4-3.

_SPEEDSHOP_HWC_COUNTER_OVERFLOW
The value of this variable may be any number greater than 0. Some
numbers may produce data that is not statistically random, but rather
reflects a correlation between the overflow interval and a cyclic behavior
in the application. You may want to do two or more runs with different
overflow values.

The default counter is the primary instruction-cache miss counter; the default overflow
interval is 2053.

The experiment uses statistical PC sampling based on the overflow of the specified
counter, at the specified interval. Note that these environment variables cannot be used
for other hardware counter experiments. They are examined only when the prof_hwc
experiment is specified.

58

Chapter 4: Experiment Types

Hardware Counter Numbers

The possible numeric values for the _SPEEDSHOP_HWC_COUNTER_NUMBER
variable are shown in Table 4-3.

Table 4-3 Hardware Counter Numbers

0 Cycles

1 Issued instructions

2 Issued loads

3 Issued stores

4 Issued store conditionals

5 Failed store conditionals

6 Decoded branches

7 Quadwords written back from secondary cache

8 Correctable secondary cache data array ECC errors

9 Primary instruction-cache misses

10 Secondary instruction-cache misses

11 Instruction misprediction from secondary cache way prediction table

12 External interventions

13 External invalidations

14 Virtual coherency conditions (or functional unit completions, depending on hardware
version)

15 Graduated instructions

16 Cycles

17 Graduated instructions

18 Graduated loads

19 Graduated stores

20 Graduated store conditionals

fpe Trace

59

fpe Trace

A floating point exception trace collects each floating point exception with the exception
type and the callstack at the time of the exception. Floating-point exception tracing
experiments should incur a slowdown of execution of the program of no more than 15%.
These measurements are exact, not statistical.

prof generates a report that shows inclusive and exclusive floating-point exception
counts.

21 Graduated floating point instructions

22 Quadwords written back from primary data cache

23 TLB misses

24 Mispredicted branches

25 Primary data-cache misses

26 Secondary data-cache misses

27 Data misprediction from secondary cache way prediction table

28 External intervention hits in secondary cache

29 External invalidation hits in secondary cache

30 Store/prefetch exclusive to clean block in secondary cache

31 Store/prefetch exclusive to shared block in secondary cache

Table 4-3 (continued) Hardware Counter Numbers

61

Chapter 5

5. Collecting Data on Machine Resource Usage

This chapter describes how to collect machine resource usage data using the SpeedShop
ssusage command. Finding out the machine resources that your program uses can help
you identify performance bottlenecks and determine which performance experiments
you need to run. You can use Table 1-4 to identify which experiments to run, based on
the results of running ssusage on your program.

ssusage Syntax

ssusage prog_name [prog_args]

prog_name Name of the executable for which you want to collect machine resource
usage data.

prog_args Arguments to your executable, if any.

ssusage Results

ssusage prints output to stderr. For example, the command

ssusage generic

provides output similar to the following:

...

22.03 real, 18.18 user, 0.21 sys, 7 majf, 120 minf, 0 sw, 241 rb, 0
wb, 135 vcx, 648 icx

62

Chapter 5: Collecting Data on Machine Resource Usage

The last two lines of the output is the machine resource usage information that ssusage
provides. Each field in the report is described below.

real Elapsed time during the command, in seconds.

user User CPU time in seconds.

sys System CPU time in seconds.

majf Major page faults that cause physical I/O.

minf Minor page faults that require mapping only.

sw Process swaps.

rb/wb Physical blocks read/written. Note that these are attributed to the
process that first requests a block, but do not necessarily directly
correlate with the process’ own I/O operations.

vcx Voluntary context switches, that is, those caused by the process’ own
actions.

icx Involuntary context switches, that is, those caused by the scheduler.

If the program terminates abnormally, a message is printed before the usage line.

63

Chapter 6

6. Setting Up and Running Experiments: ssrun

This chapter provides information on how to set up and run performance analysis
experiments using the ssrun command. It consists of the following sections:

• “Building Your Executable”

• “Setting Up Output Directories and Files”

• “Using Runtime Environment Variables”

• “Running Experiments”

• “Running Experiments on MPI Programs”

• “Running Experiments on Programs Using Pthreads”

• “Using Calipers”

• “Effects of ssrun”

64

Chapter 6: Setting Up and Running Experiments: ssrun

Building Your Executable

The ssrun command is designed to be used with normally built executables and default
environment settings. However, there are some cases where you need to change the way
you build your executable or set certain environment variables.

This section explains when to change the way you build your executable program. For
information on setting environment variables, see “Using Runtime Environment
Variables.”

• If you have used the ssrt_caliper_point() function provided in the SpeedShop
libraries, you have to explicitly link in the SpeedShop libraries libss.so and libssrt.so.
For more information on setting caliper points, see “Using Calipers.”

• If you are planning to build your executable using the -32 option to the cc
command, and you want to run the usertime experiment, you must add -lexc to the
link line. For more information on cc -32, see the cc reference page.

• If you have built a stripped executable, you need to rebuild a non-stripped version
to use with SpeedShop. For example, if you are using ld to link your C program, do
not use the -s option because this strips debugging information from the program
object and makes the program unusable for performance analysis.

• If you have used compiler optimization level 3, and you are performing
experiments that report function-level information, the procedure inlining the
optimization performs can result in extremely misleading profiles since the time
spent in the inlined procedure will show up in the profile as time spent in the
procedure into which it was inlined. It’s generally better to use compiler
optimization level 2 or less when gathering an execution profile.

Building Your Executable

65

Special Information for MP Fortran Programs

If you are compiling MP Fortran programs, you may encounter anomalies in the
displayed data:

• For all FORTRAN MP compilations, parallel loops within the program are
represented as subroutines with names relating to the source routine in which they
are embedded. The naming conventions for these subroutines are different for
32-bit and 64-bit compilations.

For example, in the linpack example program, most of the time is spent in the
routine DAXPY, which can be parallelized.

– In an n32 or 64-bit MP version, the routine has the name “DAXPY,” but most of
that work is done in the MP routine named “DAXPY.PREGION1.”

– In a 32-bit version, the DAXPY routine is named “daxpy_,” and the MP routine
“_daxpy_519_aaab_.”

• If you perform an ideal experiment, the source annotations for 32-bit and 64-bit
compilations with the -g option differ and are not correct in most cases.

– In 64-bit source annotations, the exclusive time is correctly shown for each line,
but the inclusive time for the first line of the loop (do statement) includes the
time spent in the loop body. This same time appears on the lines comprising the
loop’s body, in effect representing a double-counting.

– In 32-bit source annotations, the exclusive time is incorrectly shown for the line
comprising the loop’s body. The line-level data for the loop-body routine
(“_daxpy_519_aaab_”) doesn’t refer to proper lines. If the program was
compiled with the -mp_keep flag, the line-level data should refer to the
temporary files that are saved from the compilation, but the temporary files do
not contain that information, so no source or disassembly data can be shown.
The disassembly data for the main routine does not show the times for the
loop-body.

– If the 32-bit program was compiled without the -mp_keep flag, the line-level
data for the loop-body routine is incorrect. Most lines refer to line 0 of the file,
and the rest to other lines at seemingly random places in the file. Consequently,
spurious annotations will appear on these other lines. Disassembly correctly
shows the instructions and their data, but the line numbers are wrong. This
reflects essentially the same double-counting problem as seen in 64-bit
compilations, but the extra counts go to other places in the file, rather than to
the first line of the loop.

66

Chapter 6: Setting Up and Running Experiments: ssrun

Setting Up Output Directories and Files

When you run an experiment, performance data files are written to the current working
directory by default. They are named using the following convention:

prog_name.exp_type.id

The experiment ID, id, consists of one or two letters (designating the process type) and
the process ID number. See Table 6-1 for letter codes and descriptions.

In a single-process application, ssrun generates a single performance data file. In a
multi-process application, ssrun generates a performance data file for each process.

You can change the default filename or directory for performance data files
using environment variables. See _SPEEDSHOP_OUTPUT_DIRECTORY and
_SPEEDSHOP_OUTPUT_FILENAME in Table 6-2 for more information.

Table 6-1 Letter Codes in Experiment ID Numbers

Letter code Description

m Master process created by ssrun

p Process created by a call to sproc()

f Process created by a call to fork()

s Process created by a call to system()

e Process created by a call to exec()

fe Process created by a call to fork() and exec()

Using Runtime Environment Variables

67

Using Runtime Environment Variables

This section provides information about available environment variables, grouped by
functionality:

• “User Environment Variables”

• “Process Tracking Environment Variables”

• “Expert-Mode Environment Variables”

User Environment Variables

A number of environment variables are normally used to control the operation of
SpeedShop. Table 6-2 lists these variables.

Table 6-2 General Environment Variables

Variable Description

_SPEEDSHOP_VERBOSE Causes a log of each program’s operation to
be written to stderr. If this variable is set to
an empty string, only major events are
logged; if it is set to a non-empty string,
more detailed events are logged.

_SPEEDSHOP_SILENT Suppresses all SpeedShop output, other
than fatal error messages.

If both _SPEEDSHOP_VERBOSE and
_SPEEDSHOP_SILENT are set,
_SPEEDSHOP_VERBOSE is ignored.

 _SPEEDSHOP_CALIPER_POINT_SIG sig_num Causes the specified signal number to be
used for recording a caliper-point in the
experiment.

_SPEEDSHOP_REUSE_FILE_DESCRIPTORS Opens and closes the file descriptors for the
output files every time performance data is
to be written.

68

Chapter 6: Setting Up and Running Experiments: ssrun

_SPEEDSHOP_HWC_COUNTER_NUMBER Specifies the counter to be used for
prof_hwc experiments. Counters are
numbered between 0 and 31, and are
described in the MIPS R10000
Microprocessor’s User’s Manual, Chapter 14.
Counter 0 counters are numbered 0-15, and
counter 1 counters are numbered 16-31.

_SPEEDSHOP_HWC_COUNTER_OVERFLOW Specifies the overflow value for the counter
to be used in prof_hwc experiments. The
value chosen may be any number greater
than 0. Some choices may produce data that
is not statistically random, but reflects a
correlation between the overflow interval
and a cyclic behavior in the application.
Users may want to do two or more runs
with different overflow values.

_SPEEDSHOP_OUTPUT_NOCOMPRESS Disables the compression of performance
data.

_SPEEDSHOP_OUTPUT_DIRECTORY Causes the output data files to be placed in
the specified directory, rather than the
current working directory.

_SPEEDSHOP_OUTPUT_FILENAME Causes the output file to be saved under the
specified name.

If _SPEEDSHOP_OUTPUT_DIRECTORY is
also specified, it is prepended to the
filename you specify.

Table 6-2 (continued) General Environment Variables

Variable Description

Using Runtime Environment Variables

69

Process Tracking Environment Variables

A number of environment variables may be used for controlling the treatment of
processes spawned from the original target. Table 6-3 lists these variables.

Table 6-3 Process Tracking Environment Variables

Variable Description

_SPEEDSHOP_TRACE_FORK [True|False] If True, specifies that processes spawned by
calls to fork() will be monitored if they don’t
call exec(). If they do call exec(), and
_SPEEDSHOP_TRACE_FORK_TO_EXEC
is not set to True, the data covering the time
between the fork() and exec() will be
discarded. It is true by default.

Note: In the current release, data are
recorded independent of whether the
process calls exec() or not.

_SPEEDSHOP_TRACE_FORK_TO_EXEC
[True|False]

If True, specifies that a process spawned by
calls to fork() will be monitored even if they
also call exec(). It is False by default.

 _SPEEDSHOP_TRACE_EXEC [True|False] If True, specifies that a process spawned by
calls to any of the various flavors of exec()
will be monitored. It is true by default.

_SPEEDSHOP_TRACE_SPROC [True|False] If True, specifies that a process spawned by
calls to sproc() will be monitored. It is True
by default.

_SPEEDSHOP_TRACE_SYSTEM [True|False] If True, specifies that system() calls will be
monitored. It is False by default.

70

Chapter 6: Setting Up and Running Experiments: ssrun

Expert-Mode Environment Variables

A number of variables may be used for debugging and finer control of the operation of
SpeedShop. Table 6-4 lists these variables.

Table 6-4 Expert-Mode Environment Variables

Variable Description

_SPEEDSHOP_SAMPLING_MODE For PC-sampling and hardware-counter
profiling. If set to 1, generates data for the
base executable only. If not set, or set to a
value different from 1, data is generated
for the executable and all DSOs it uses.

_SPEEDSHOP_INIT_DEFERRED_SIG sig_num If specified, initialization of the
experiment is not performed when the
target process starts, but will be delayed
until the specified signal is sent to the
process. A handler for the given signal is
installed when the process starts. It is the
user’s responsibility to ensure that it is
not overridden by the target code.

_SPEEDSHOP_SHUTDOWN_SIG sig_num If specified, termination of the experiment
will not be performed when the target
process exits, but rather will happen
when the specified signal is sent to the
process. A handler for the given signal
will be installed when the process starts,
and it is the user’s responsibility to ensure
that it is not overridden by the target
code.

_SPEEDSHOP_EXPERIMENT_TYPE Passes the name of the experiment to the
runtime. It is normally set by ssrun, but
may be overwritten.

_SPEEDSHOP_MARCHING_ORDERS Passes the marching orders of the
experiment to the runtime. It is normally
set by ssrun from the experiment type, but
may be overwritten.

_SPEEDSHOP_SBRK_BUFFER_LENGTH Defines the maximum size of the internal
malloc arena used. This arena is
completely separate from the user’s
arena, and has a default size of 0x100000.

Running Experiments

71

Running Experiments

This section describes how to use ssrun to perform experiments. For information on
using pixie directly, see Chapter 8, “Using SpeedShop in Expert Mode: pixie.”

ssrun Syntax
ssrun flags -exp_type prog_name prog_args

flags Zero or more of the flags described in Table 6-5 that control the data
collection and the treatment of descendent processes or programs, and
how the data is to be externalized.

-exp_type The experiment type. Experiments are described in detail in Chapter 4,
“Experiment Types.”

prog_name The name of the program on which you want to run an experiment.

args Arguments to your program, if any.

ssrun generates a performance data file that is named as described in the section
“Building Your Executable.”

_SPEEDSHOP_FILE_BUFFER_LENGTH Defines the size of the buffer used for
writing the experiment files. The default
length is 8 KB. The buffer is used only for
writing small records to the file; large
records are written directly to avoid the
buffering overhead.

_SPEEDSHOP_DEBUG_NO_SIG_TRAPS Disables the normal setting of signal
handlers for all fatal and exit signals.

_SPEEDSHOP_DEBUG_NO_STACK_UNWIND Suppresses the stack unwind as done in
usertime experiments, and as is done at
caliper-samples for all experiments. The
option is used as a workaround for
various unwind bugs in libexc.

Table 6-4 (continued) Expert-Mode Environment Variables

Variable Description

72

Chapter 6: Setting Up and Running Experiments: ssrun

ssrun Examples

This section provides examples of using ssrun with options and experiment types. For
additional examples, see Chapter 2, “Tutorial for C Users,” or Chapter 3, “Tutorial for
Fortran Users.”

Example Using the pcsampx Experiment

The pcsampx experiment collects data to estimate the actual CPU time for each source
code line, machine instruction, and function in your program. The optional x suffix
causes a 32-bit bin size to be used, allowing a larger number of counts to be recorded. For
a more detailed description of the pcsamp experiment, see the “pcsamp Experiment”
section in Chapter 4, “Experiment Types.”

Table 6-5 Flags for ssrun

Name Result

-hang Specifies that the process should be left waiting just before executing its
first instruction. This allows you to attach the process to a debugger.

-mo marching_orders Allows you to specify marching orders. If this option is used, the
environment variable _SSRUNTIME_MARCHING_ORDERS is not
examined.

-name target_name Specifies that the target should be run with argv[0] set to target_name.

-purify Can be used only when the Purify product is installed. Specifies that
purify should be run on the target, and then runs the resulting “purified”
executable. Note that -purify and SpeedShop performance
experiments cannot be combined.

-v Prints a log of the operation of ssrun to stderr. The same behavior occurs
if the environment variable _SPEEDSHOP_VERBOSE is set a to an
empty string.

-V Prints a detailed log of the operation of ssrun to stderr. The same
behavior occurs if the environment variable _SPEEDSHOP_VERBOSE
is set a to a non-zero-length string. This option can be used to see how
to set the various environment variables, and how to invoke
instrumentation when necessary.

Running Experiments

73

This example performs a pcsampx experiment on the generic executable:

ssrun -pcsampx generic

To see the performance data that has been generated, run prof on the performance data
file, generic.pcsampx.16064:

prof generic.pcsampx.m16064

The report is printed to stdout. (This layout of this report has been altered slightly to
accommodate presentation needs.) For more information on prof and the reports
generated by prof, see Chapter 7, “Analyzing Experiment Results: prof.”

Profile listing generated Thu May 23 10:30:40 1996
 with: prof generic.pcsampx.m16064

samples time CPU FPU Clock N-cpu S-interval Countsize
 2058 21s R4000 R4010 150.0MHz 1 10.0ms 4(bytes)

Each sample covers 4 bytes for every 10.0ms (0.05% of 20.5800s)

 -p[rocedures] using pc-sampling.
 Sorted in descending order by the number of samples in each procedure.
 Unexecuted procedures are excluded.

samples time(%) cum time(%) procedure (dso:file)

1926 19s(93.6) 19s(93.6) anneal (generic:/usr/demos/
SpeedShop/generic/generic.c)

111 1.1s(5.4) 20s(99.0) slaveusrtime (/usr/demos/SpeedShop/
generic/dlslave.so:/usr/demos/SpeedShop/generic/dlslave.c)

15 0.15s(0.7) 21s(99.7) _read (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/sys/read.s)

2 0.02s(0.1) 21s(99.8) memcpy (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)

1 0.01s(0.0) 21s(99.9) _xstat (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/sys/xstat.s)

1 0.01s(0.0) 21s(99.9) _ltzset (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/gen/time_comm.c)

1 0.01s(0.0) 21s(100.0) __sinf (/usr/lib32/libm.so:
/work/cmplrs/libm/fsin.c)

1 0.01s(0.0) 21s(100.0) _write (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/sys/write.s)

2058 21s(100.0) 21s(100.0) TOTAL

74

Chapter 6: Setting Up and Running Experiments: ssrun

Example Using the -v Option

To get information about how a SpeedShop experiment is set up and performed, you can
supply the -v option to ssrun.

This example performs a pcsampx experiment on the generic executable:

ssrun -v -pcsampx generic

The ssrun command writes the following output to stderr. It displays information as the
command line is parsed and shows the environment variables that ssrun sets.

fraser 75% ssrun -v -pcsampx generic

ssrun: setenv _SPEEDSHOP_MARCHING_ORDERS pc,4,10000,0:cu
ssrun: setenv _SPEEDSHOP_EXPERIMENT_TYPE pcsampx
ssrun: setenv _SPEEDSHOP_TARGET_FILE generic
ssrun: setenv _RLD_LIST libss.so:libssrt.so:DEFAULT
...

Using ssrun With a Debugger

To use the ssrun command in conjunction with a debugger such as dbx or the ProDev™

WorkShop debugger, you need to call ssrun with the -hang option and the name of your
program.

Follow these steps to run the FPE trace experiment on generic, and then run generic in a
debugger.

1. Call ssrun as follows:

ssrun -hang -fpe generic

ssrun parses the command line, sets up the environment for the experiment, calls
the target process using exec, and hangs the target process on exiting from the call to
exec.

2. Get the process ID of the call to ssrun using a command such as ps.

3. Start your debugging session.

4. Attach the process to the debugger.

5. Run the process from the debugger.

Running Experiments on MPI Programs

75

You can also invoke ssrun from within a debugger. In this case, ssrun leaves the target
hung on exiting the call to exec, and informs the debugger of that fact.

You can also use either dbx or the WorkShop debugger to set calipers to record
performance data for a part of your program. See “Using Calipers” for more information
on setting calipers.

Running Experiments on MPI Programs

The Message Passing Interface (MPI) is a library specification for message-passing,
proposed as a standard by a committee of vendors, implementors, and users. It allows
processes to communicate by “mailing” data “messages” to other processes, even those
running on distant computers.

If your program uses the MPI, you need to set up SpeedShop experiments a little
differently. There are two ways to accomplish this. The first method takes two steps:

1. Set up a shell script that contains the call to ssrun and the experiment you want to
run.

For example, if you have a program called testit, and you want to run the pcsampx
experiment, a script, named exp_script, might look like the following:

#!/bin/sh

ssrun -pcsampx testit

2. Call mpirun with the script name using one of the following:

mpirun -np 6 exp_script

mpirun host1 2, host2 2 exp_script

The second method is to use one of the following:

mpirun -np 6 ssrun -pcsampx testit

mpirun host1 2, host2 2 ssrun -pcsampx testit

The master experiment file created on each MPI host might not contain performance data
from the application (depending on the MPI version), but rather from a master program
that spawns the actual MPI application slaves. You can choose to exclude that file from
performance analysis.

76

Chapter 6: Setting Up and Running Experiments: ssrun

When using ssrun -ideal, or ssrun -purify, you should take care that the code for each
separate host executes out of a different physical directory, not out of the same NFS
mounted directory. During process creation, instrumentation is performed, and since
different hosts may have different versions of the same named library (libc.so.1, for
example), conflicts may occur. You may also need to use the -d option with mpirun to
specify the directory on each host.

Running Experiments on Programs Using Pthreads

Pthreads are the threads defined by the POSIX® operating system standard
(IEEE1003.1c-1995). This standard contains a set of interfaces and semantics for creating
and managing threads within the POSIX operating system definition. The basic Silicon
Graphics pthreads implementation consists of a library (one for each o32, n32 and n64
ABI) and a header file.

Applications using pthreads are specifically identified by SpeedShop. Performance data
collection is done on a per-program basis, rather than on a per-pthread basis. Under
IRIX™ 6.2, 6.3 and 6.4, SpeedShop creates as many experiment files as the number of
sprocs used by the pthreads library to create and manage the pthreads. In addition,
cm_usage data is not supported, and SIGTERM is reserved to be used to terminate the
application normally. You should analyze all the experiment files together via prof to get
a valid profile for the code. Under IRIX 6.5, SpeedShop creates only one experiment file.
For usertime and fpe experiments, however, you can specify the -pthreads option with prof
to get per-pthread performance reports.

Using Calipers

77

Using Calipers

In some cases, you may want to generate performance data reports for only a part of your
program. You can do this by setting caliper points to identify the area or areas for which
you want to see performance data. When you run prof, you can specify a region for which
to generate a report by supplying the -calipers option and the appropriate caliper
numbers. For more information on prof -calipers, see “Using the -calipers Option” in
Chapter 7, “Analyzing Experiment Results: prof.”

Table 6-6 shows how you can set caliper points in three different ways.

An implicit caliper point is always present at the start of execution of the process. A final
caliper-point is recorded when the process calls _exit. The implicit caliper point at the
beginning of the program is numbered 0, the first caliper point recorded is numbered 1,
and any additional caliper points are numbered sequentially.

Table 6-6 Setting Caliper Points

Use This Approach... For These Benefits...

Explicitly link with the SpeedShop runtime and call
ssrt_caliper_point to record a caliper sample.

Allows you to set a caliper point at a
specific location in a file.

Define a signal to be used to record a caliper sample by
specifying a signal as a value to the environment variable
_SPEEDSHOP_CALIPER_POINT_SIG and then sending
the target the given signal.

Useful if you want to be able to set a
caliper point as your program is
running.

Set a caliper sample trap in dbx or the WorkShop
debugger. Setting a trap involves setting a breakpoint and
evaluating the expression libss_caliper_point(1) when
the process stops.

Useful if you’re working with a
debugger in conjunction with
SpeedShop.

78

Chapter 6: Setting Up and Running Experiments: ssrun

In addition, caliper points are automatically recorded under the following circumstances
to ensure that at least one valid set of data is recorded.

• When a fatal signal is received, such as SIGQUIT, SIGILL, SIGTRAP, SIGABRT,
SIGEMT, SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGXCPU or SIGXFSZ. Note that this
list does not and cannot include SIGKILL.

• When the program calls an exec function such as execve() or execvp().

• When a program closes a DSO by calling dlclose().

• When an exit signal is received, such as SIGHUP, SIGINT, SIGPIPE, SIGALRM,
SIGTERM, SIGUSR1, SIGUSR2, SIGPOLL, SIGIO, SIGRTMIN or SIGRTMAX.

Setting Calipers With ssrt_caliper_point

To set calipers with ssrt_caliper_point, follow these steps:

1. Insert calls to ssrt_caliper_point() in your source code. Call the function with the
argument 1 (True).

...

ssrt_caliper_point(1);

...

You can insert one or more calls at any point in your code.

2. Link the SpeedShop library libss.so into your application.

The library should be placed last on the link line.

3. Run your program with ssrun and the desired experiment type.

For example, if you want to run the ideal experiment on generic:

ssrun -ideal generic

The caliper points you have set in the source file are recorded in the performance
data file that is generated by ssrun.

Using Calipers

79

Setting Calipers With Signals

To set calipers with signals, follow these steps:

1. Set the_SPEEDSHOP_CALIPER_POINT_SIG variable to the signal number you
want to use.

Choose a signal that doesn’t terminate the program. The signal should also not be
caught by the target program, because this would interfere with its use for
triggering a caliper point.

The following signals are good choices because they don’t have any semantics
already associated with them:

SIGUSR1 16 /* user defined signal 1 */

SIGUSR2 17 /* user defined signal 2 */

2. Run ssrun with your program.

3. Enter a command such as ps or top to determine the process ID of ssrun. This is also
the process ID of the program you are working on.

4. Send the signal you used in step 1 to the process using the kill command:

kill -sig_num pid

A caliper point is set at the point in the program where the signal was received by
the SpeedShop runtime.

Setting Calipers With a Debugger

From either dbx or the WorkShop debugger, you can set a caliper point anywhere it is
possible to set a breakpoint: function entry or exit, line numbers, execution addresses,
watchpoints, pollpoints (timer-based). You can also attach conditions and/or cycle
counts.

1. Set a breakpoint in your program at the point at which you want to set a caliper
point.

2. When the process stops, evaluate the expression libss_caliper_point(1).

The evaluation of the expression always returns zero, but a side effect of the
evaluation is the recording of the appropriate data.

3. Resume execution of the process.

80

Chapter 6: Setting Up and Running Experiments: ssrun

Effects of ssrun

When you call ssrun, the system performs the following operations for all experiments:

• Sets various environment variables like _SPEEDSHOP_MARCHING_ORDERS and
_SPEEDSHOP_EXPERIMENT_TYPE.

For more information on these variables, see “Using Runtime Environment
Variables.”

• Inserts the SpeedShop libraries libss.so and libssrt.so as part of your executable using
the environment variable _RLD_LIST.

• Invokes the target process by calling exec().

• The SpeedShop runtime library writes the appropriate experiment data to the
output file.

Effects of ssrun -ideal

When you run an ideal experiment, the following additional operations occur:

• libpixrt.so is inserted first in the executable’s library list.

• libssrt.so and libss.so are inserted in the executable’s library list.

• ssrun generates pixified versions of all the libraries that the program uses, as well as
the executable.

The generated pixified versions have an extension that depends on the ABI:

– .pixie for the executable

– .pix32 for all 32 libraries

– .pixn32 for all n32 libraries

– .pix64 for all 64 libraries

The generated files are written to the current working directory, and include code
that allows performance data to be collected for each function and basic block.

For more information on the ideal experiment, see the “ideal Experiment” section in
Chapter 4, “Experiment Types.”

81

Chapter 7

7. Analyzing Experiment Results: prof

This chapter provides information on how to view and analyze experiment results. It
consists of the following sections:

• “Using prof to Generate Performance Reports”

• “Using prof With ssrun”

• “Using prof Options”

• “Generating Reports for Different Machine Types”

• “Generating Reports for Multiprocessed Executables”

• “Generating Compiler Feedback Files”

• “Interpreting Reports”

82

Chapter 7: Analyzing Experiment Results: prof

Using prof to Generate Performance Reports

Performance data is examined using prof, a text-based report generator that prints to
stdout.

The prof command can be used in two modes:

• To generate a report from performance data gathered during experiments recorded
by ssrun:

prof <options> <perf-data-file> <perf-data-file> ...

• To generate a report from data files produced by running a program that has been
instrumented by pixie:

prof executable_name [options] [pixie counts file]

This chapter focuses on the use of prof to generate reports from ssrun experiments.
For information on prof for a pixie experiment, see Chapter 8, “Using SpeedShop in
Expert Mode: pixie.”

prof Syntax

The syntax for prof when using it with data files from ssrun is:

prof options data_file data_file ...

options Zero or more of the options described in Table 7-2.

data_file One or more names of performance data files generated by ssrun. These
files are usually of the format prog_name.exp_type.id.

The experiment ID, id, consists of one or two letters (designating the
process type) and the process ID number. See Table 7-1 for letter codes
and descriptions.

Using prof to Generate Performance Reports

83

Table 7-1 lists the letter codes for id.

prof Options

Table 7-2 lists prof options. For more information, see the prof reference page.

Table 7-1 Letter Codes in Experiment ID Numbers

Letter Code Description

m Master process created by ssrun

p Process created by a call to sproc()

f Process created by a call to fork()

s Process created by a call to system()

e Process created by a call to exec()

fe Process created by a call to fork() and exec()

Table 7-2 Options for prof

Name Result

-calipers n1 n2 Restricts analysis to a segment of program execution. This option works only
for SpeedShop experiments.

Causes prof to compute the data between caliper points n1 and n2, rather
than for the entire experiment.

If n1 >= n2, an error is reported.

If n1 is negative, it is set to the beginning of the experiment.

If n2 is greater than the maximum number of caliper points recorded, it is set
to the maximum.

If n1 is omitted, zero (the beginning of the program) is assumed.

–c[lock] n Lists the number of seconds spent in each routine, based on the CPU clock
frequency n, expressed in megahertz. This option is useful when generating
reports for ideal experiments, or for basic block counting data obtained
with pixie. The default is to use the clock frequency of the machine where the
performance data was collected.

-cycle n Sets the cycle time to n nanoseconds.

84

Chapter 7: Analyzing Experiment Results: prof

-den[sity] Prints a list of procedures with non-zero instruction cycles sorted by the
instruction density, which is the number of cycles per instruction.

This option can be used when generating reports for ideal experiments, or
for basic block counting data obtained with pixie.

-debug:dbg_flags dbg_flags can be combinations of the following:

GPROF_FLAG 0x00000001

COUNTS_FLAG 0x00000002

SAMPLE_FLAG 0x00000004

MISS_FLAG 0x00000008

FEEDBACK_FLAG 0x00000010

CORD_FLAG 0x00000020

USERPC_FLAG 0x00000040

MDEBUG_FLAG 0x00000080

BEAD_FLAG 0x00000100

LIBSSRT_FLAG 0x00000200

-dis[assemble] Disassembles and annotates the analyzed object code with cycle times if you
have run an ideal experiment, collected data using pixie, or have run a
pcsamp or prof_hwc experiment.

–dso [dso_name] Generates a report only for the named DSO. If you don’t specify dso_name,
prof prints a list of applicable DSO names. Only the basename of the DSO
needs to be specified.

-dsolist List all the DSOs in the program and their start and end text addresses.

–e[xclude]
proc1...procN

Excludes information on the specified procedures. If you specify uppercase
–E, prof also omits the specified procedures from the base upon which it
calculates percentages.

Table 7-2 (continued) Options for prof

Name Result

Using prof to Generate Performance Reports

85

–feedback Produces files with information that can be used to (a) arrange procedures in
the binary in an optimal ordering using cord, and (b) tell the compiler how to
optimize compilation of the program using cc -fb filename.cfb. This option can
be used when generating reports for ideal experiments, or for basic block
counting data obtained with pixie.

cord feedback files are named program.fb or libso.fb. Compiler feedback files
are named progam.cfb or libso.cfb. These are binary files and may be dumped
using the fbdump command.

Procedures are normally ordered by their measured invocation counts; if
-gprof is also specified, procedures are ordered using call graph counts,
rather than invocation counts.

–gprof Calculates cycles and propagates basic block counting to a procedure’s
callers proportionately. This option can be used when generating reports for
ideal experiments, or for basic block counting data obtained with pixie. It
can also be used for fpe and usertime experiments.

–h[eavy] Lists the most heavily used lines of source code in descending order of use,
sorting lines by their frequency of use. This option can be used when
generating reports for ideal, pcsamp, or prof_hwc experiments, or for
basic block counting data obtained with pixie.

–i[nvocations] Lists the number of times each procedure is invoked. This option can be used
when generating reports for ideal experiments, or for basic block counting
data obtained with pixie.

–l[ines] Lists the most heavily used lines of source code in descending order of use,
but lists lines grouped by procedure, sorted by cycles executed per
procedure. This option can be used when generating reports for ideal,
pcsamp, or prof_hwc experiments, or for basic block counting data
obtained with pixie.

-nocounts Analyzes an executable or a .o file using the pixie machine model, and
assuming each instruction is executed once. This analysis cannot match any
possible real run of any executable which contains one or more conditional
branch instructions.

-nofilenames Removes a.out, DSO, and source filenames from the listing; useful for
scripted analysis of prof output.

Table 7-2 (continued) Options for prof

Name Result

86

Chapter 7: Analyzing Experiment Results: prof

–o[nly]
proc1...procN

Reports information on only the procedures specified. If you specify
uppercase –O, prof uses only the procedures, rather than the entire program,
as the base upon which it calculates percentages.

–p[rocedures] Lists the time spent in each procedure.

-pthreads
pthrd1... pthrdN

Analyzes data only for the specified pthreads (for usertime and fpe
experiments on applications that use pthreads (on Irix 6.5 or later)).

–q[uit] n Condenses output listings by truncating -p[rocedures], -h[eavy], -l[ines],
and -gprof listings. You can specify n in three ways:

n, an integer, truncates everything after n lines;

n%, an integer followed by a percent sign, does not print any procedure or
line with less than n in the % column;

ncum%, an integer followed by cum%, does not print any procedure or line
with more than n in the cum% column. That is, it truncates the listing after
the last procedure or line which brings the cumulative total to n%. If -gprof
is also specified, it behaves the same as -q n%.

For example, -q 15 truncates each part of the report after 15 lines of text.
-q 15% truncates each part of the report that represents less than 15% of the
whole, and -q 15cum% truncates each part of the report that has a
cumulative percentage above 15%.

-r10000|-r8000
|-r5000|-r4000
|-r3000

Overrides the default processor scheduling model that prof uses to generate
a report. If this option is not specified, prof uses the scheduling model for the
processor on which the experiment is being run.

-S (-source) Disassembles and annotates the analyzed object code with cycle times, or PC
samples, and source code, if you have run an ideal, pcsamp, or prof_hwc
experiment, or collected data using pixie.

–z[ero] Lists the procedures that are never invoked. Use this option when
generating reports for ideal experiments, or for basic block counting data
obtained with pixie.

Table 7-2 (continued) Options for prof

Name Result

Using prof With ssrun

87

prof Output

prof generates a performance report that is printed to stdout. Warning and fatal errors are
printed to stderr.

Note: Fortran alternate entry point times are attributed to the main function/subroutine,
since there is no general way for prof to separate the times for the alternate entries.

Using prof With ssrun

When you call prof with one or more SpeedShop performance data files, it collects the
data from all the output files and produces a listing depending on the experiment type.
The prof command is able to detect which experiment was run and generate an
appropriate report. It provides reports for all experiment types.

In cases where prof accepts more than one data file as input, it sums up the results. The
multiple input data files must be generated from the same executable, using the same
experiment type.

prof may report times for procedures named with a prefix of *DF*, for example
*DF*_hello.init_2. DF stands for “Dummy Function,” and indicates cycles spent in parts
of text which are not in any function: init and fini sections, and MIPS.stubs sections, for
example.

 The types of reports that prof generates are described in the following sections:

• “usertime Experiment Reports”

• “pcsamp Experiment Reports”

• “Hardware Counter Experiment Reports”

• “ideal Experiment Reports”

• “FPE Trace Reports”

88

Chapter 7: Analyzing Experiment Results: prof

usertime Experiment Reports

For usertime experiments, prof generates a list of callers and callees of each function, with
information on how much time was spent in the function, its callers and its callees.

The report shows information for each function, its callers and its callees. The function
names are show in the right-hand column of the report. The function that is being
reported is shown outdented from its caller and callee(s). For example, the first function
shown in this report is __start(), which has no callers and two callees. The remaining
columns are described below:

• The index column provides an index number for reference.

• The %samples column shows the cumulative percentage of time spent in each
function.

• The self column shows how much time, in seconds, was spent in the function.

• The descendents columns shows how much time, in seconds, was spent in callees
of the function.

• The total column provides information on the number of samples of the function.

This example is a truncated version of the full report. For a complete report see
“Generating a Report” on page 20.

Profile listing generated Mon Nov 18 11:43:45 1996
 with: prof generic.usertime.m24479

Total Time (secs) : 43.98
Total Samples : 1466
Stack backtrace failed: 1
Sample interval (ms) : 30
CPU : R4600
FPU : R4600
Clock : 100.0MHz
Number of CPUs : 1

index %Samples self descendents total name
[1] 99.9% 0.00 43.95 1465 __start

Using prof With ssrun

89

pcsamp Experiment Reports

For [f]pcsamp[x] experiments, prof generates a function list annotated with the number
of samples taken for the function, and the estimated time spent in the function.

• The samples column shows how many samples of the function were taken.

• The time(%) column shows the amount of time, and the percentage of that time
over the total time that was spent in the function.

• The cum time(%) column shows how much time has been spent up to and
including the procedure being examined.

• The procedure (dso:file) column lists the procedure, its DSO name and file
name. For example, the first line reports statistics for the procedure anneal in the
file generic.c in the generic executable.

Profile listing generated Sun May 19 17:21:27 1996
 with: prof generic.fpcsamp.m14480

samples time CPU FPU Clock N-cpu S-interval Countsize
 19077 19s R4000 R4010 150.0MHz 1 1.0ms 2(bytes)

Each sample covers 4 bytes for every 1.0ms (0.01% of 19.0770s)

 -p[rocedures] using pc-sampling.
 Sorted in descending order by the number of samples in each procedure.
 Unexecuted procedures are excluded.

samples time(%) cum time(%) procedure (dso:file)

 17794 18s(93.3) 18s(93.3) anneal (/usr/demos/SpeedShop/
generic/generic:/usr/demos/Speedshop/generic/generic.c)

90

Chapter 7: Analyzing Experiment Results: prof

Hardware Counter Experiment Reports

For the various hwc experiments, prof generates a function list annotated with the
number of overflows generated by the function.

• The overflows(%) column shows the number of overflows caused by the function,
and the percentage of that number over the total number of overflows in the
program.

• The cum overflows(%) column shows a cumulative number and percentage of
overflows.

• The procedure (dso:file) column shows the procedure name and the DSO and
filename that contain the procedure.

Profile listing generated Sun May 19 17:35:21 1996
 with: prof generic.dsc_hwc.m5999

 Counter : Sec cache D misses
 Counter overflow value: 131
 Total numer of ovfls : 10
 CPU : R10000
 FPU : R10010
 Clock : 196.0MHz
 Number of CPUs : 1

 -p[rocedures] using counter overflow.
 Sorted in descending order by the number of overflows in each procedure.
 Unexecuted procedures are excluded.

 overflows(%) cum overflows(%) procedure (dso:file)

 4(40.0) 4(40.0) memcpy (/usr/lib64/libc.so.1:
/work/irix/lib/libc/libc_64_M4/strings/bcopy.s)

Using prof With ssrun

91

ideal Experiment Reports

For ideal experiments, prof generates a function list annotated with the number of cycles
and instructions attributed to the function, and the estimated time spent in the function.

prof does not take into account interactions between basic blocks. Within a single basic
block, prof computes cycles for one execution and multiplies it with the number of times
that basic block is executed.

If any of the object files linked into the application have been stripped of line-number
information (with ld -x for example), prof warns about the affected procedures. The
instruction counts for such procedures are shown as a procedure total, not on a
per-basic-block basis. Where a line number would normally appear in a report on a
function without line numbers, question marks appear instead.

• The cycles(%) column reports the number and percentage of machine cycles used
for the procedure. For example, 2524610038 cycles, or 94.81% of cycles were spent in
the anneal() procedure.

• The cum% column shows the cumulative percentage of calls. For example, 99.88% of
all calls were spent between the top two functions in the listing: anneal() and
slaveusrtime().

• The secs column shows the number of seconds spent in the procedure. For
example, 16.83 seconds were spent in the anneal() procedure. The time represents
an idealized computation based on modelling the machine. Potential floating-point
interlocks and memory latency time (cache misses and memory bus contention) are
ignored.

• The instrns column shows the number of instructions executed for a procedure.
For example, there were 1797940023 instructions devoted to the anneal() procedure.

• The calls column reports the number of calls to the procedure. For example, there
was just one call to the anneal() procedure.

• The procedure (dso:file) column lists the procedure, its DSO name and
filename. For example, the first line reports statistics for the procedure anneal() in
the file generic.c in the generic executable.

92

Chapter 7: Analyzing Experiment Results: prof

Prof run at: Sun May 19 17:49:10 1996
 Command line: prof generic.ideal.m14517

 2662778531: Total number of cycles
 17.75186s: Total execution time
 1875323907: Total number of instructions executed
 1.420: Ratio of cycles / instruction
 150: Clock rate in MHz
 R4000: Target processor modelled

Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

 cycles(%) cum % secs instrns calls procedure(dso:file)

2524610038(94.81) 94.81 16.83 1797940023 1 anneal(generic:/usr/demos/
SpeedShop/generic/generic.c)

Using prof With ssrun

93

If the -gprof flag is added to prof, a list of callers and callees of each function is provided:

 self kids called/total parents
index cycles(%) self(%) kids(%) called+self name index
 self kids called/total children

[1] 2661528037(99.95%) 71(0.00%) 2661527966(100.00%) 0 __start [1]
 44 2661527913 1/1 main [2]
 5 0 1/1 __istart [107]
 4 0 1/1
__readenv_sigfpe [108]

--
 44 2661527913 1/1 __start [1][2]
2661527957(99.95%) 44(0.00%) 2661527913(100.00%) 1 main [2]
 2152 2661524760 1/1 Scriptstring[3]
 67 934 1/1 exit [55]
--
 2152 2661524760 1/1 main [2]
[3] 2661526912(99.95%) 2152(0.00%) 2661524760(100.00%) 1 Scriptstring [3]
 40 2525080081 1/1 usrtime [4]
 82 135044460 1/1 libdso [6]
 68058 1148856 1/2 iofile [10]
 124 52933 2/8 genLog [16]
 7211 45001 1/1 dirstat [27]
 1438 32051 1/1 linklist [31]
 632 32051 1/1 fpetraps [32]
 124 10922 2/19 fprintf [20]
 696 0 45/45 strcmp [61]
--
 40 2525080081 1/1 Scriptstring[3]
[4] 2525080121(94.83%) 40(0.00%) 2525080081(100.00%) 1 usrtime [4]
 2524610038 437992 1/1 anneal [5]
 62 26466 1/8 genLog [16]
 62 5461 1/19 fprintf [20]

94

Chapter 7: Analyzing Experiment Results: prof

FPE Trace Reports

The report shows information for each function. The function name is show in the right
column of the report. The remaining columns are described below.

• The index column provides an index number for reference.

• The %FPEs column shows the percentage of the total number of floating point
exceptions that were found in the function.

• The self column shows how many floating point exceptions were found in the
function. For example, 0 floating point exceptions were found in __start().

• The descendents columns shows how many floating point exceptions were found
in the descendents of the function.

• The totals column provides information on the number of floating point
exceptions out of the total that were found.

Profile listing generated Mon Nov 18 11:46:33 1996
 with: prof generic.fpe.m18823

Total FPEs : 4
Stack backtrace failed: 0
CPU : R4600
FPU : R4600
Clock : 100.0MHz
Number of CPUs : 1

index %FPEs self descendents total name
[1] 100.0% 0 4 4 __start

Using prof Options

95

Using prof Options

This section shows the output from calling prof with some of the options available for
prof.

Using the -dis Option

For pcsamp and ideal experiments, the -dis option to prof can be used to obtain machine
instruction information. prof provides the standard report and then appends the machine
instruction information to the end of the report. The example below shows partial output
from prof, for a pcsamp experiment.

Profile listing generated Tue May 27 18:04:10 1997
 with: prof -dis generic.pcsamp.m875

samples time CPU FPU Clock N-cpu S-interval Countsize
 4142 41s R4600 R4600 100.0MHz 1 10.0ms 2(bytes)

Each sample covers 4 bytes for every 10.0ms (0.02% of 41.4200s)

 -p[rocedures] using pc-sampling.
 Sorted in descending order by the number of samples in each procedure.
 Unexecuted or inlined procedures are excluded.

samples time(%) cum time(%) procedure (dso:file)

 3975 40s(96.0) 40s(96.0) anneal (generic:generic.c)
 124 1.2s(3.0) 41s(99.0) slaveusrtime (./dlslave.so:dlslave.c)
 32 0.32s(0.8) 41s(99.7) _read (/usr/lib32/libc.so.1:/xlv1/

bonsai-sep09/work/irix/lib/libc/libc_n32_M3/sys/read.s)
 4 0.04s(0.1) 41s(99.8) _xstat (/usr/lib32/libc.so.1:/xlv1/

bonsai-sep09/work/irix/lib/libc/libc_n32_M3/sys/xstat.s)
 2 0.02s(0.0) 41s(99.9) fread (/usr/lib32/libc.so.1:/xlv1/

bonsai-sep09/work/irix/lib/libc/libc_n32_M3/stdio/fread.c)
 1 0.01s(0.0) 41s(99.9) iofile (generic:generic.c)
 1 0.01s(0.0) 41s(99.9) usrtime (generic:generic.c)
 1 0.01s(0.0) 41s(100.0) _write (/usr/lib32/libc.so.1:/xlv1/

bonsai-sep09/work/irix/lib/libc/libc_n32_M3/sys/write.s

96

Chapter 7: Analyzing Experiment Results: prof

 1 0.01s(0.0) 41s(100.0) _morecore (/usr/lib32/libc.so.1:/xlv1/
bonsai-sep09/work/irix/lib/libc/libc_n32_M3/gen/malloc.c)

 1 0.01s(0.0) 41s(100.0) next (/usr/lib32/libc.so.1:/xlv1
/bonsai-sep09/work/irix/lib/libc/libc_n32_M3/math/drand48.c)

 4142 41s(100.0) 41s(100.0) TOTAL

* -dis[assemble] listing annotated pc-samples *
* Procedures with zero samples are excluded. *

...

generic.c
anneal: <0x100065b8-0x100068c4> 3975 total samples(95.97%)
 [1514] 0x100065b8 0x27bdffd0 addiu sp,sp,-48 # 1
 [1514] 0x100065bc 0xffbf0018 sd ra,24(sp) # 2
 [1514] 0x100065c0 0xffbc0020 sd gp,32(sp) # 3
 [1514] 0x100065c4 0x3c030002 lui v1,0x2 # 4
 [1514] 0x100065c8 0x246399e0 addiu v1,v1,-26144 # 5
 [1514] 0x100065cc 0x0323e021 addu gp,t9,v1 # 6
 [1516] 0x100065d0 0xd7808040 ldc1 $f0,-32704(gp) # 7

<2 cycle stall for following instruction>
 [1516] 0x100065d4 0xf7a00000 sdc1 $f0,0(sp) # 10
 [1518] 0x100065d8 0x24010001 li at,1 # 11
 [1518] 0x100065dc 0x8f8281c0 lw v0,-32320(gp) # 12

<2 cycle stall for following instruction>
 [1518] 0x100065e0 0xac410000 sw at,0(v0) # 15
 [1519] 0x100065e4 0x8f99819c lw t9,-32356(gp) # 16

<2 cycle stall for following instruction>
 [1519] 0x100065e8 0x0320f809 jalr ra,t9 # 19
 [1519] 0x100065ec 0000000000 nop # 20

<2 cycle stall for following instruction>
 [1527] 0x100065f0 0xafa00008 sw zero,8(sp) # 23
 [1527] 0x100065f4 0x8fa40008 lw a0,8(sp) # 24

<2 cycle stall for following instruction>
 [1527] 0x100065f8 0x28842710 slti a0,a0,10000 # 27
 [1527] 0x100065fc 0x108000ac beq a0,zero,0x100068b0 # 28
 [1527] 0x10006600 0000000000 nop # 29

<2 cycle stall for following instruction>
 [1529] 0x10006604 0x24070001 li a3,1 # 32
 ^------ 1 samples(0.02%)------^
 [1529] 0x10006608 0xafa7000c sw a3,12(sp) # 33
 [1529] 0x1000660c 0x8f8681b8 lw a2,-32328(gp) # 34

<2 cycle stall for following instruction>

Using prof Options

97

 [1529] 0x10006610 0x8cc60000 lw a2,0(a2) # 37
<2 cycle stall for following instruction>

 [1529] 0x10006614 0x24c6ffff addiu a2,a2,-1 # 40
 [1529] 0x10006618 0x8fa5000c lw a1,12(sp) # 41

<2 cycle stall for following instruction>
 [1529] 0x1000661c 0x00a6282a slt a1,a1,a2 # 44
 ^------ 1 samples(0.02%)------^
 [1529] 0x10006620 0x10a0009c beq a1,zero,0x10006894 # 45
 [1529] 0x10006624 0000000000 nop # 46

<2 cycle stall for following instruction>
 [1530] 0x10006628 0x240a0001 li t2,1 # 49
 ^------ 2 samples(0.05%)------^
 [1530] 0x1000662c 0xafaa0010 sw t2,16(sp) # 50
 [1530] 0x10006630 0x8f8981b8 lw t1,-32328(gp) # 51
 ^------ 1 samples(0.02%)------^

<2 cycle stall for following instruction>
 [1530] 0x10006634 0x8d290000 lw t1,0(t1) # 54

<2 cycle stall for following instruction>
 [1530] 0x10006638 0x2529ffff addiu t1,t1,-1 # 57
 [1530] 0x1000663c 0x8fa80010 lw t0,16(sp) # 58

<2 cycle stall for following instruction>
 [1530] 0x10006640 0x0109402a slt t0,t0,t1 # 61
 ^------ 3 samples(0.07%)------^
 [1530] 0x10006644 0x11000089 beq t0,zero,0x1000686c # 62
 ^------ 1 samples(0.02%)------^
 [1530] 0x10006648 0000000000 nop # 63

<2 cycle stall for following instruction>
 [1531] 0x1000664c 0x8fa90010 lw t1,16(sp) # 66
 ^------ 17 samples(0.41%)------^

<2 cycle stall for following instruction>
 [1531] 0x10006650 0x25290001 addiu t1,t1,1 # 69
 ^------ 18 samples(0.43%)------^
 [1531] 0x10006654 0x8fab000c lw t3,12(sp) # 70
 ^------ 15 samples(0.36%)------^

<2 cycle stall for following instruction>
 [1531] 0x10006658 0x256b0001 addiu t3,t3,1 # 73
 ^------ 33 samples(0.80%)------^
 [1531] 0x1000665c 0x000b5080 sll t2,t3,2 # 74
 ^------ 21 samples(0.51%)------^
 [1531] 0x10006660 0x014b5021 addu t2,t2,t3 # 75
 ^------ 9 samples(0.22%)------^
 [1531] 0x10006664 0x000a50c0 sll t2,t2,3 # 76
 ^------ 15 samples(0.36%)------^

98

Chapter 7: Analyzing Experiment Results: prof

The listing shows statistics about the procedure anneal() in the file generic.c and lists the
beginning and ending addresses of anneal(): <0x100065b8-0x100068c4>. The five columns
display the following information:

Other information includes:

• The number of times the immediately preceding branch was executed and taken
(ideal only).

• The total number of cycles in a basic block and the percentage of the total cycles for
that basic block, the number of times the branch terminating that basic block was
executed, and the number of cycles for one execution of that basic block (ideal
only).

• The total number of samples in an instruction (pcsamp only).

• Any cycle stalls, that is, cycles that were wasted.

Using the -S Option

For ideal experiments, the -S option to prof can be used to obtain source line information.
prof provides the standard report and then appends the source line information to the
end of the report.

Column... Displays...

1 Line number of the instruction: [1514].

2 Beginning address of the instruction: 0x100065b8.

3 Instruction in hexadecimal: 0x27bdffd0.

4 Assembler form (mnemonic) of the instruction: addiu sp,sp,-48.

5 Cycle in which the instruction executed: # 1.

Using prof Options

99

This example shows output from calling prof for an ideal experiment:

Prof run at: Tue May 27 18:04:51 1997
 Command line: prof -S -dis generic.ideal.m876

3900085040: Total number of cycles
 39.00085s: Total execution time
 2046668286: Total number of instructions executed
 1.906: Ratio of cycles / instruction
 100: Clock rate in MHz
 R4600: Target processor modelled

Procedures sorted in descending order of cycles executed.
Unexecuted or inlined procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

 cycles(%) cum % secs instrns calls procedure(dso:file)

3754320037(96.26) 96.26 37.54 1971220024 1 anneal(generic.pixie:generic.c)
 145001146(3.72) 99.98 1.45 75000728 1 slaveusrtime(./dlslave.so.pixn32:

dlslave.c)
 187200(0.00) 99.99 0.00 124800 1600 next(./libc.so.1.pixn32:

/xlv1/bonsai-sep09/work/irix/lib/libc/libc_n32_M3/math/drand48.c)
 101504(0.00) 99.99 0.00 58124 1 init2da(generic.pixie:generic.c)
 91200(0.00) 99.99 0.00 62400 1600 _drand48(./libc.so.1.pixn32:

/xlv1/bonsai-sep09/work/irix/lib/libc/libc_n32_M3/math/drand48.c)
 78574(0.00) 99.99 0.00 30063 628 __sinf(./libm.so.pixn32:

../../libm/fsin.c)
 64442(0.00) 99.99 0.00 45661 48 _doprnt(./libc.so.1.pixn32:

/xlv1/bonsai-sep09/work/irix/lib/libc/libc_n32_M3/print/doprnt.c)
 57888(0.00) 100.00 0.00 9648 16 offtime(./libc.so.1.pixn32:

/xlv1/bonsai-sep09/work/irix/lib/libc/libc_n32_M3/gen/time_comm.c)
 43767(0.00) 100.00 0.00 29215 263 fread(./libc.so.1.pixn32:

/xlv1/bonsai-sep09/work/irix/lib/libc/libc_n32_M3/stdio/fread.c)
 16484(0.00) 100.00 0.00 12285 299 _readdir(./libc.so.1.pixn32:

/xlv1/bonsai-sep09/work/irix/lib/libc/libc_n32_M3/gen/readdir.c)
 12376(0.00) 100.00 0.00 7224 281 memcpy(./libc.so.1.pixn32:

/xlv1/bonsai-sep09/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
 10526(0.00) 100.00 0.00 6321 1 dirstat(generic.pixie:generic.c)
 9545(0.00) 100.00 0.00 6103 1 iofile(generic.pixie:generic.c)
 6258(0.00) 100.00 0.00 5066 298 _stat(./libc.so.1.pixn32:

/xlv1/bonsai-sep09/work/irix/lib/libc/libc_n32_M3/sys/stat.c)

100

Chapter 7: Analyzing Experiment Results: prof

disassembly listing

*DF*_generic.MIPS.stubs_1
*DF*_generic.MIPS.stubs_1: <0x10001a90-0x10001db4>
 154 total cycles(0.00%) invoked 0 times, average ? cycles/invocation
 [1] 0x10001a90 0x0006000d break 0x6 # 1
 ^--- 0 total cycles(0.00%) executed 0 times, average 1 cycles.---^
 [1] 0x10001a94 0x8f998050 lw t9,-32688(gp) # 1
 [1] 0x10001a98 0x03e07825 move t7,ra # 2

<1 cycle stall for following instruction>
 [1] 0x10001a9c 0x0320f809 jalr ra,t9 # 4
 [1] 0x10001aa0 0x34180029 ori t8,zero,0x29 # 5

<2 cycle stall for following instruction>
 ^--- 7 total cycles(0.00%) executed 1 times, average 7 cycles.---^
 [1] 0x10001aa4 0x8f998050 lw t9,-32688(gp) # 1
 [1] 0x10001aa8 0x03e07825 move t7,ra # 2

<1 cycle stall for following instruction>
 [1] 0x10001aac 0x0320f809 jalr ra,t9 # 4
 [1] 0x10001ab0 0x3418002a ori t8,zero,0x2a # 5

...

generic.c
main: <0x10001ecc-0x10002000>
 44 total cycles(0.00%) invoked 1 times, average 44 cycles/invocation
File ‘generic.c’:
Skipping source listing to line 87
88: void sproctestgrandchild(void *); /* sproc grandchild code */
89:
90: static struct timeval starttime; /* starting time--first timestamp */
91: static struct timeval ttime; /* last-recorded timestamp */
92: static struct timeval deltatime;
93:
94: int pagesize;
95:
96: main(unsigned argc, char **argv)
97: {
 [97] 0x10001ecc 0x27bdffd0 addiu sp,sp,-48 # 1
 [97] 0x10001ed0 0xffbf0008 sd ra,8(sp) # 2
 [97] 0x10001ed4 0xffbc0010 sd gp,16(sp) # 3
 [97] 0x10001ed8 0x3c010002 lui at,0x2 # 4
 [97] 0x10001edc 0x2421e0cc addiu at,at,-7988 # 5
 [97] 0x10001ee0 0x0321e021 addu gp,t9,at # 6

Using prof Options

101

 [97] 0x10001ee4 0xafa40024 sw a0,36(sp) # 7
 [97] 0x10001ee8 0xafa5002c sw a1,44(sp) # 8
98: int i;
99:
100: /* initialize the timestamp */
101: (void) gettimeofday(&starttime, NULL);
 [101] 0x10001eec 0x27848360 addiu a0,gp,-31904 # 9
 [101] 0x10001ef0 0x00002825 move a1,zero # 10
 [101] 0x10001ef4 0x8f99807c lw t9,-32644(gp) # 11
 ^--- 11 total cycles(0.00%) executed 1 times, average 11 cycles.---^
 [101] 0x10001ef8 0x0320f809 jalr ra,t9 # 1
 [101] 0x10001efc 0000000000 nop # 2

<2 cycle stall for following instruction>
 ^--- 4 total cycles(0.00%) executed 1 times, average 4 cycles.---^
102:
103: /* set up to reap any children */
104: (void) sigset(SIGCHLD, (SIG_PF)reapSig);
 [104] 0x10001f00 0x24040012 li a0,18 # 1
 [104] 0x10001f04 0x8f858144 lw a1,-32444(gp) # 2
 [104] 0x10001f08 0x8f998080 lw t9,-32640(gp) # 3
 ^--- 3 total cycles(0.00%) executed 1 times, average 3 cycles.---^
 [104] 0x10001f0c 0x0320f809 jalr ra,t9 # 1
 [104] 0x10001f10 0000000000 nop # 2

<2 cycle stall for following instruction>
 ^--- 4 total cycles(0.00%) executed 1 times, average 4 cycles.---^
105:
106: if(argc == 1) {
 [106] 0x10001f14 0x8fa20024 lw v0,36(sp) # 1
 [106] 0x10001f18 0x24030001 li v1,1 # 2

<1 cycle stall for following instruction>
 [106] 0x10001f1c 0x1443000c bne v0,v1,0x10001f50 # 4
 [106] 0x10001f20 0000000000 nop # 5

<2 cycle stall for following instruction>
 Preceding branch executed 1 times, taken 0 times.

 ^--- 7 total cycles(0.00%) executed 1 times, average 7 cycles.---^
107: Scriptstring(DEFAULT_SCRIPT);
 [107] 0x10001f24 0x8f84805c lw a0,-32676(gp) # 1

<2 cycle stall for following instruction>
 [107] 0x10001f28 0x24847038 addiu a0,a0,28728 # 4
 [107] 0x10001f2c 0x8f99814c lw t9,-32436(gp) # 5
 ^--- 5 total cycles(0.00%) executed 1 times, average 5 cycles.---^
 [107] 0x10001f30 0x0320f809 jalr ra,t9 # 1

102

Chapter 7: Analyzing Experiment Results: prof

Using the -calipers Option

When you run prof on the output of an experiment in which you have recorded caliper
points, you can use the -calipers option to specify the area of the program for which you
want to generate a performance report. For example, if you set just one caliper point in
the middle of your program, prof can provide a report from the beginning of the program
up to the first caliper point using the following command:

prof -calipers 0 1

prof can also provide a report from the caliper point to the end of the program using the
following command:

prof -calipers 1 2

If you set two caliper points, prof can generate a report from the first to the second caliper
point:

prof -calipers 1 2

Using the -gprof Option

For ideal, usertime, and fpe experiments, the -gprof option to prof can be used to obtain
inclusive basic block counting information. prof provides the standard report and then
appends the inclusive function counts information to the end of the report. The example
below shows partial output from prof, showing just the inclusive function counts report.

With inclusive cycle counting, prof prints a list of functions at the end, which are called
but not defined. This list includes functions starting with _rld because rld is not
instrumented. It also includes functions from libss; they are instrumented, but their data
is normally excluded.

prof fails to list cycles of a procedure in the inclusive listing for the following reasons:

• init & fini sections and MIPS stubs are not part of any procedure.

• Calls to procedures that don’t use a “jump and link” are not recognized as
procedure calls.

• When global procedures with the same name are executed in different DSOs, only
one of them is listed.

These exceptions are listed at the end of the report.

Using prof Options

103

This example shows output from calling prof for a usertime experiment:

Profile listing generated Tue May 27 18:18:21 1997
 with: prof -gprof generic.usertime.m1019

Total Time (secs) : 41.01
Total Samples : 1367
Stack backtrace failed: 1
Sample interval (ms) : 30
CPU : R4600
FPU : R4600
Clock : 100.0MHz
Number of CPUs : 1

index %Samples self descendents total name
[1] 99.9% 0.00 40.98 1366 __start
[2] 99.9% 0.00 40.98 1366 main
[3] 99.9% 0.00 40.98 1366 Scriptstring
[4] 96.0% 0.00 39.36 1312 usrtime
[5] 96.0% 39.36 0.00 1312 anneal
[6] 3.1% 0.00 1.26 42 libdso
[7] 3.1% 0.00 1.26 42 dlslave_routine
[8] 3.1% 1.26 0.00 42 slaveusrtime
[9] 0.8% 0.00 0.33 11 iofile
[10] 0.7% 0.00 0.30 10 fread
[11] 0.7% 0.30 0.00 10 _read
[12] 0.1% 0.00 0.03 1 dirstat
[13] 0.1% 0.00 0.03 1 _stat
[14] 0.1% 0.03 0.00 1 _xstat
[15] 0.1% 0.00 0.03 1 genLog
[16] 0.1% 0.00 0.03 1 fprintf
[17] 0.1% 0.00 0.03 1 _doprnt
[18] 0.1% 0.00 0.03 1 _dowrite
[19] 0.1% 0.00 0.03 1 fwrite
[20] 0.1% 0.03 0.00 1 _write

Gprof Listing

104

Chapter 7: Analyzing Experiment Results: prof

 caller/total parents
index %time self descendents total (self) name
 callee/descend children

[1] 99.9% 0.00 40.98 1366 (0) __start [1]
 0.00 40.98 1366/1366 0x10001e9c main [2]

 0.00 40.98 1366/1366 0x10001e9c __start [1]
[2] 99.9% 0.00 40.98 1366 (0) main [2]
 0.00 40.98 1366/1366 0x10001f30 Scriptstring
[3]

 0.00 40.98 1366/1366 0x10001f30 main [2]
[3] 99.9% 0.00 40.98 1366 (0) Scriptstring [3]
 0.00 39.36 1312/1366 0x10002378 usrtime [4]
 0.00 1.26 42/1366 0x10002378 libdso [6]
 0.00 0.33 11/1366 0x10002378 iofile [9]
 0.00 0.03 1/1366 0x10002378 dirstat [12]

 0.00 39.36 1312/1312 0x10002378 Scriptstring
[3]
[4] 96.0% 0.00 39.36 1312 (0) usrtime [4]
 39.36 0.00 1312/1312 0x100059b8 anneal [5]

 39.36 0.00 1312/1312 0x100059b8 usrtime [4]
[5] 96.0% 39.36 0.00 1312 (1312) anneal [5]

 0.00 1.26 42/42 0x10002378 Scriptstring
[3]
[6] 3.1% 0.00 1.26 42 (0) libdso [6]

Using prof Options

105

 0.00 1.26 42/42 0x10003028
dlslave_routine [7]

 0.00 1.26 42/42 0x10003028 libdso [6]
[7] 3.1% 0.00 1.26 42 (0) dlslave_routine [7]
 1.26 0.00 42/42 0x5ffe0650 slaveusrtime
[8]

 1.26 0.00 42/42 0x5ffe0650
dlslave_routine [7]
[8] 3.1% 1.26 0.00 42 (42) slaveusrtime [8]

 0.00 0.33 11/11 0x10002378 Scriptstring
[3]
[9] 0.8% 0.00 0.33 11 (0) iofile [9]
 0.00 0.30 10/11 0x10002ab8 fread [10]
 0.00 0.03 1/11 0x10002a5c genLog [15]

 0.00 0.30 10/10 0x10002ab8 iofile [9]
[10] 0.7% 0.00 0.30 10 (0) fread [10]
 0.30 0.00 10/10 0xfad26e0 _read [11]

 0.30 0.00 10/10 0xfad26e0 fread [10]
[11] 0.7% 0.30 0.00 10 (10) _read [11]

 0.00 0.03 1/1 0x10002378 Scriptstring
[3]
[12] 0.1% 0.00 0.03 1 (0) dirstat [12]
 0.00 0.03 1/1 0x10002820 _stat [13]

 0.00 0.03 1/1 0x10002820 dirstat [12]

106

Chapter 7: Analyzing Experiment Results: prof

[13] 0.1% 0.00 0.03 1 (0) _stat [13]
 0.03 0.00 1/1 0xfaf8c10 _xstat [14]

 0.03 0.00 1/1 0xfaf8c10 _stat [13]
[14] 0.1% 0.03 0.00 1 (1) _xstat [14]

 0.00 0.03 1/1 0x10002a5c iofile [9]
[15] 0.1% 0.00 0.03 1 (0) genLog [15]
 0.00 0.03 1/1 0x10006bc4 fprintf [16]

 0.00 0.03 1/1 0x10006bc4 genLog [15]
[16] 0.1% 0.00 0.03 1 (0) fprintf [16]
 0.00 0.03 1/1 0xfab55ec _doprnt [17]

 0.00 0.03 1/1 0xfab55ec fprintf [16]
[17] 0.1% 0.00 0.03 1 (0) _doprnt [17]
 0.00 0.03 1/1 0xfab215c _dowrite [18]

 0.00 0.03 1/1 0xfab215c _doprnt [17]
[18] 0.1% 0.00 0.03 1 (0) _dowrite [18]
 0.00 0.03 1/1 0xfab1ddc fwrite [19]

 0.00 0.03 1/1 0xfab1ddc _dowrite [18]
[19] 0.1% 0.00 0.03 1 (0) fwrite [19]
 0.03 0.00 1/1 0xfad30f8 _write [20]

 0.03 0.00 1/1 0xfad30f8 fwrite [19]
[20] 0.1% 0.03 0.00 1 (1) _write [20]

Generating Reports for Different Machine Types

107

Generating Reports for Different Machine Types

If you need to generate a report for a machine model that is different from the one on
which the experiment was performed, you can use several of the prof options to specify
a machine model.

For example, if you record an ideal experiment on an R4000™ processor with a clock
frequency of 100 megahertz, but you want to generate a report for an R10000 processor,
the prof command would be

prof -r10000 -clock 196 generic.ideal.m4561

Generating Reports for Multiprocessed Executables

You can gather data from executables that use the sproc() and sprocsp() system calls,
such as those executables generated by POWER Fortran and POWER C. Prepare and run
the job using the same method as for uniprocessed executables. For multiprocessed
executables, each thread of execution writes its own separate data file. View these data
files with prof like any other data files.

The only difference between multiprocessed and regular executables is how the data files
are named. The data files are named prog_name.experiment_type.id.

The experiment ID, id, consists of one or two letters (designating the process type) and
the process ID number. See Table 7-3 for letter codes and descriptions.This naming
convention avoids the potential conflict of multiple threads attempting to write
simultaneously to the same file.

108

Chapter 7: Analyzing Experiment Results: prof

Generating Compiler Feedback Files

If you run an ideal experiment, run prof with the -feedback option to generate a feedback
file that can be used to arrange procedures more efficiently on the next recompile. You
can rearrange procedures using the -fb flag to cc, or using the cord command. For more
information, view the cc or cord reference page.

Interpreting Reports

If the target process was blocked for a long time as a result of an instruction, that
instruction will show up as having a low or zero CPU time. On the other hand,
CPU-intensive instructions will show up as having a high CPU time.

One way to sanity-check inclusive cycle counts is to look at the percentage cycles for
__start(). If the value is anything less than 98 -99%, the inclusive report is suspect. Look
for other warnings that prof didn’t take into account certain procedures.

Table 7-3 Letter Codes in Experiment ID Numbers

Letter Code Description

m Master process created by ssrun

p Process created by a call to sproc()

f Process created by a call to fork()

s Process created by a call to system()

e Process created by a call to exec()

fe Process created by a call to fork() and exec()

109

Chapter 8

8. Using SpeedShop in Expert Mode: pixie

This chapter provides information on how to run pixie and prof without invoking ssrun.
By calling pixie directly, you can generate the following performance data:

• An exact count of the number of times each basic block in your program is executed.
A basic block is a sequence of instructions that is entered only at the beginning and
exits only at the end.

• Counts for callers of a routine as well as counts for callees. prof can provide
inclusive basic block counting by propagating regular counts to callers of a routine.

For more information on basic block counting and inclusive basic block counting, see
Chapter 7, “Analyzing Experiment Results: prof.”

This chapter contains the following sections:

• “Using pixie”

• “Obtaining Basic Block Counts”

• “Obtaining Inclusive Basic Block Counts”

110

Chapter 8: Using SpeedShop in Expert Mode: pixie

Using pixie

Use pixie to measure the frequency of code execution. pixie reads an executable program,
partitions it into basic blocks, and writes (instruments) an equivalent program
containing additional code that counts the execution of each basic block.

Note that the execution time of an instrumented program is two to five times longer than
that of an uninstrumented one. This timing change may alter the behavior of a program
that deals with a graphical user interface (GUI), or depends on events such as SIGALRM
that are based on an external clock.

pixie Syntax

The syntax for pixie is

pixie prog_name [options]

prog_name Name of the input program.

options Zero or more of the keywords listed in Table 8-1.

pixie Options

Table 8-1 lists pixie options. For a complete list of options, view the pixie reference page.

Table 8-1 Options for pixie

Name Result

-addlibs lib1.s0:...libN.so Adds lib1.s0:...libN.so to the library list of the executable. No
libraries are added by default.

-copy Produces a copy of the target with function list (map) and arc list
(graph) sections but does not instrument the target.

-counts_file file Specifies the name to be used for the output .Counts file. By default,
.Counts is appended to the original program name.

-dso Treats executable as an o32 DSO. Performs a search of standard o32
library directories. A .pix32 extension is used.

-dso32 Treats executable as an n32 DSO. Performs a search of standard n32
library directories. A .pixn32 extension is used.

Using pixie

111

-dso64 Treats executable as an n64 DSO. Performs a search of standard n64
library directories. A .pix64 extension is used.

-directory dir_name Writes output files to dir_name. Files are written to the current
directory by default.

-fcncounts Produces an instrumented executable that counts function calls and
arc calls, but not basic-block or branch counts.

-idtrace_file number Specifies a UNIX® file descriptor number for the trace output file.
Default is 19.

–[no]autopixieo32 Permits or prevents a recursive instrumenting of all dynamic
shared libraries used by the input file during run time. pixie keeps
the timestamp and checksum from the original executable. Thus,
before instrumenting a shared library, pixie checks any pixified files
that it finds matching the lib it is to instrument. If the fields match,
they are not instrumented. pixie cannot detect shared libraries
opened with dlopen() (and hence does not instrument them). All
used DSOs need to be instrumented for the pixified executable to
work. The default behavior with shared libraries is –noautopixie.
The default behavior with an executable is –autopixie.

-[no]idtrace [Disables] or enables tracing of both instruction and data memory.
Default is -noidtrace.

-[no]ittrace [Disables] or enables tracing of instruction memory references.
Default is -noittrace.

-[no]longbranch During instrumentation, some transformations can push a branch
offset beyond its legal range and pixie generates warnings about
branch offsets being out of range. This option causes pixie to
transform these instructions into jumps. The default is
-nolongbranch.

–[no]verbose Prints or suppresses messages summarizing the binary-to-binary
translation process. The default is –noverbose.

-pixie_file name Specify the name of the pixiefied executable.

-suffix .suffix Appends .suffix to the pixified executable and DSOs. The default
suffix is .pixie.

Table 8-1 (continued) Options for pixie

Name Result

112

Chapter 8: Using SpeedShop in Expert Mode: pixie

pixie Output

The pixie command generates a set of files with a .pixie extension. These files are
essentially copies of your original executable and any DSOs you specified in the call to
pixie with code inserted to enable the collection of performance data when the .pixie
version of your program is run.

If you use the -verbose flag with pixie, it reports the size of the old and new code. The
new code size is the size of the code pixie will actually execute. It does not count read-only
data (including a copy of the original text and another data block the same size as the
original text) put into the text section. Calling size on the .pixie file reports a much larger
text size than pixie -verbose, because size also counts everything in the text segment.

When you run the .pixie version of your program, one or more .Counts files are generated.
The name of an output .Counts file is that of the original program with any leading
directory names removed and .Counts appended. If the program executes calls to sproc(),
sprocsp() or fork(), multiple .Counts files are generated—one for each process in the
share group. In this case, each file will have the process ID appended to its name.

Obtaining Basic Block Counts

113

Obtaining Basic Block Counts

Use this procedure to obtain basic block counts. Also refer to Figure 8-1, which illustrates
how basic block counting works.

1. Compile and link your program. The following example uses the input file
myprog.c:

% cc -o myprog myprog.c

The cc compiler compiles myprog.c into an executable called myprog.

2. Run pixie to generate the equivalent program containing basic-block-counting code.

% pixie myprog

pixie takes myprog and writes an equivalent program, myprog.pixie, containing
additional code that counts the execution of each basic block. pixie also writes an
equivalent program for each shared object used by the program (in the form:
libname.so.pix*), containing additional code that counts the execution of each basic
block. For example, if myprog uses libc.so.1, pixie generates libc.so.1.pix*. (The value
of * depends on the ABI).

3. Set the path for your .pixie files. pixie uses the rld search path for libraries (see rld(1)
for the default paths). If the .pixie files are in your local directory, set the path as

% setenv LD_LIBRARY_PATH .

4. Execute the file(s) generated by pixie (myprog.pixie) in the same way you executed
the original program:

% myprog.pixie

This program generates a list of basic block counts in files named myprog.Counts. If
the program executes fork() or sproc(), a process ID is appended to the end of the
filename (for example, myprog.Counts.345) for each process.

Note: Your program may not run as you expect when you invoke it with a .pixie
extension. Some programs, uncompress and vi for example, treat their arguments
differently when the name of the program changes. You may need to rename the
.pixie version of your program back to its original name.

To generate a valid .Counts file, your program must terminate normally or with a
call to exit(). If it terminates with a signal such as SIGINT, the program must use a
signal handler and leave the program through exit().

114

Chapter 8: Using SpeedShop in Expert Mode: pixie

5. Run the profile formatting program prof specifying the name of the original
program and the .Counts file for the program:

% prof myprog myprog.Counts

prof extracts information from myprog.Counts and prints it in an easily readable
format. If multiple .Counts files exist, you can use the wildcard character (*) to
specify all of the files.

% prof myprog myprog.Counts*

You can run the program several times, altering the input data, to create multiple profile
data files.

The time computation assumes a “best case” execution; actual execution takes longer.
This is because the time includes predicted stalls within a basic block, but not actual stalls
that may occur entering a basic block. It also assumes that all instructions and data are in
cache, that is, it excludes the delays due to cache misses and memory fetches and stores.

The complete output of the –pixie option is often extremely large. Use the –quit option
with prof to restrict the size of the report. Refer to Chapter 7, “Analyzing Experiment
Results: prof,” for details about prof options.

Obtaining Basic Block Counts

115

Figure 8-1 How Basic Block Counting Works

Formatted listing

of profile statistics

Execute

prof progname.Counts

to format data

Execute new program

(progname.pixie)

to collect data

Execute pixie to create

a new equivalent program

pixie progname

Compile

progname.c

Data Files

(progname.

Counts)

116

Chapter 8: Using SpeedShop in Expert Mode: pixie

Examples of Basic Block Counting

The examples in this section illustrate how to use prof to obtain basic block counting
information from a C program, generic.

Example Using prof –invocations

The partial listing below illustrates the report generated for basic block counts in generic.
prof first provides a standard report of basic block counts, then provides a report
reflecting any options provided to prof.

% prof -i generic generic.Counts

Prof run at: Fri May 17 12:39:22 1996
 Command line: prof -i generic generic.Counts

 2662778530: Total number of cycles
 17.75186s: Total execution time
 1875323864: Total number of instructions executed
 1.420: Ratio of cycles / instruction
 150: Clock rate in MHz
 R4000: Target processor modelled

Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

cycles(%) cum % secs instrns calls procedure(dso:file)

2524610038(94.81) 94.81 16.83 1797940023 1 anneal(generic:/usr/demos/
SpeedShop/generic/generic.c)

135001332(5.07) 99.88 0.90 75000822 1
slaveusrtime(./dlslave.so:/usr/demos/

SpeedShop/generic/dlslave.c)
1593518(0.06) 99.94 0.01 1378788 4385 memcpy(/usr/lib32/libc.so.1:

/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
735797(0.03) 99.97 0.00 506627 4123 fread(/usr/lib32/libc.so.1:

/work/irix/lib/libc/libc_n32_M3/stdio/fread.c)
187200(0.01) 99.98 0.00 124800 1600 next(/usr/lib32/libc.so.1:

/work/irix/lib/libc/libc_n32_M3/math/drand48.c)

Obtaining Basic Block Counts

117

136116(0.01) 99.98 0.00 82498 1 iofile(generic:
/usr/demos/SpeedShop/generic/generic.c)

91200(0.00) 99.98 0.00 62400 1600 _drand48(/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/math/drand48.c)

...

• The cycles(%) column reports the number and percentage of machine cycles used
for the procedure. For example, 2524610038 cycles, or 94.81% of cycles were spent in
the anneal() procedure.

• The cum% column shows the cumulative percentage of calls. For example, 99.88% of
all calls were spent between the top two functions in the listing: anneal() and
slaveusrtime().

• The secs column shows the number of seconds spent in each procedure. For
example, 16.83 seconds were spent in the anneal() procedure. The time represents
an idealized computation based on modelling the machine. It ignores potential
floating point interlocks and memory latency time (cache misses and memory bus
contention).

• The instrns column shows the number of instructions executed for a procedure.
For example, there were 1797940023 instructions devoted to the anneal() procedure.

• The calls column reports the number of calls to each procedure. For example, there
was just one call to the anneal() procedure.

• The procedure (dso:file) column lists the procedure, its DSO name and
filename. For example, the first line reports statistics for the procedure anneal() in
the file generic.c in the generic executable.

118

Chapter 8: Using SpeedShop in Expert Mode: pixie

The partial listing below illustrates the use of the –i[nvocations] option. For each
procedure, prof reports the number of times it was invoked from each of its possible
callers and lists the procedure(s) that called it.

Procedures sorted in descending order of times invoked.
Unexecuted procedures are not listed.

Total number of procedure invocations: 15114
calls(%) cum% size(bytes) procedure (dso:file)

4385(29.01) 29.01 3416 memcpy (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)

4123(27.28) 56.29 1304 fread (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/stdio/fread.c)

1600(10.59) 66.88 312 next (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/math/drand48.c)

1600(10.59) 77.46 180 _drand48 (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/math/drand48.c)

628(4.16) 81.62 368 __sinf (/usr/lib32/libm.so:
/work/cmplrs/libm/fsin.c)

259(1.71) 83.33 524 __filbuf (/usr/lib32/libc.so.1:
/work/irix/lib/libc/libc_n32_M3/stdio/_filbuf.c)

The above listing shows the total procedure invocations (calls) during the run: 12113082.

• The calls(%) column reports the number of calls (and the percentage of total calls)
per procedure. For example, there were 4385 calls (or 29.01% of the total) spent in
the procedure memcpy().

• The cum% column shows the cumulative percentage of calls. For example, 56.29% of
all calls were spent between memcpy() and fread().

• The size(bytes) column shows the total byte size of a procedure. For example, the
procedure memcpy() is 3416 bytes.

• The procedure (dso:file) column lists the procedure, its DSO name and its
filename. For example, the first line reports statistics for the procedure memcpy() in
the file bcopy.s in libc.so.

Obtaining Basic Block Counts

119

Example Using prof –heavy

The following partial listing shows the source code lines responsible for the largest
portion of execution time produced with the –heavy option.

% prof -heavy generic generic.Counts

The partial listing below shows basic block counts sorted in descending order of cycles
used. The fields in the report are described in section “ideal Experiment Reports” section
in Chapter 7, “Analyzing Experiment Results: prof.”

Lines listed in descending order of cycle counts.

cycles(%) cum % times line procedure (dso:file)
2309934120(86.75%) 86.75% 14440000 1465 anneal (generic:/usr/demos/

SpeedShop/generic/generic.c)
207945880(7.81%) 94.56% 14440000 1464 anneal (generic:/usr/demos/

SpeedShop/generic/generic.c)
81000506(3.04%) 97.60% 5000000 29 slaveusrtime (dlslave.so:/usr/demos/

SpeedShop/generic/dlslave.c)
54000000(2.03%) 99.63% 5000000 30 slaveusrtime (dlslave.so:/usr/demos/

SpeedShop/generic/dlslave.c)
6600000(0.25%) 99.88% 380000 1463 anneal (generic:/usr/demos/

SpeedShop/generic/generic.c)
418380(0.02%) 99.89% 32981 493 memcpy (/usr/lib32/libc.so.1:

/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
418380(0.02%) 99.91% 32981 494 memcpy (/usr/lib32/libc.so.1:

/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
139482(0.01%) 99.91% 32981 496 memcpy (/usr/lib32/libc.so.1:

/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
139460(0.01%) 99.92% 32981 495 memcpy (/usr/lib32/libc.so.1:

/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)
130009(0.00%) 99.92% 10000 1461 anneal (generic:/usr/demos/

SpeedShop/generic/generic.c)

120

Chapter 8: Using SpeedShop in Expert Mode: pixie

Example Using prof –quit

You can limit the output of prof to collect information on only the most time-consuming
parts of the program by specifying the –quit option. You can instruct prof to quit after a
particular number of lines of output, after listing the elements consuming more than a
certain percentage of the total, or after the portion of each listing whose cumulative use
is a certain amount.

Consider the following sample listing:

% prof -quit 4 generic generic.Counts

 Prof run at: Fri May 17 14:09:12 1996
 Command line: prof -quit 4 generic generic.Counts

 2662778530: Total number of cycles
 17.75186s: Total execution time
 1875323864: Total number of instructions executed
 1.420: Ratio of cycles / instruction
 150: Clock rate in MHz
 R4000: Target processor modelled

Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

cycles(%) cum % secs instrns calls procedure(dso:file)

2524610038(94.81) 94.81 16.83 1797940023 1 anneal(generic:/usr/demos/
SpeedShop/generic/generic.c)

135001332(5.07) 99.88 0.90 75000822 1 slaveusrtime(./dlslave.so:
/usr/demos/SpeedShop/generic/dlslave.c)

1593518(0.06) 99.94 0.01 1378788 4385 memcpy(/usr/lib32/
libc.so.1:/work/irix/lib/libc/libc_n32_M3/strings/bcopy.s)

735797(0.03) 99.97 0.00 506627 4123 fread(/usr/lib32/
libc.so.1:/work/irix/lib/libc/libc_n32_M3/stdio/fread.c)

Obtaining Inclusive Basic Block Counts

121

Obtaining Inclusive Basic Block Counts

Inclusive basic block counting counts basic blocks and generates a call graph. By
propagating regular counts to callers of a routine, prof provides inclusive basic block
counting. For more information on inclusive basic block counting, see the “ideal
Experiment” section in Chapter 4, “Experiment Types.”

To see inclusive data, run the profile formatting program prof specifying the name of the
original program, the -gprof flag, and the .Counts file for the program.

% prof -gprof myprog myprog.Counts

prof extracts information from myprog.Counts and prints it in an easily readable format. If
multiple .Counts files exist, you can use the wildcard character (*) to specify all of the files.

% prof -gprof myprog myprog.Counts*

Example of prof –gprof

This section contains part of a sample output obtained by using the –gprof option. The
fields in the report are explained in detail in the report, but are not provided in this
example. For more information on the -gprof option, see Chapter 7, “Analyzing
Experiment Results: prof.” (The format of the output has been adjusted slightly.)

% prof -gprof generic generic.Counts

...
Prof run at: Fri May 17 14:42:25 1996
 Command line: prof -gprof generic generic.Counts
...
 self kids called/total parents
index cycles(%) self(%) kids(%) called+self name index
 self kids called/total children

[1] 2662767961 (100.00%) 71(0.00%) 2662767890(100.00%) 0 __start [1]
 44 2662767837 1/1 main [2]
 5 0 1/1 __istart[111]
 4 0 1/1 __readenv_sigfpe[112]
--

122

Chapter 8: Using SpeedShop in Expert Mode: pixie

 44 2662767837 1/1 __start [1]
[2] 2662767881(100.00%) 44(0.00%) 2662767837(100.00%) 1 main [2]
 2152 2662764245 1/1 Scriptstring[3]
 67 926 1/1 exit [58]
 96 309 1/1 _sigset [67]
 32 10 1/9 _gettimeofday[68]

...

123

Chapter 9

9. Miscellaneous Commands

This chapter describes SpeedShop commands for exploring memory usage and paging,
and for printing data files generated by SpeedShop tools. It contains the following
sections:

• “Using the thrash Command”

• “Using the squeeze Command”

• “Calculating the Working Set of a Program”

• “Dumping Performance Data Files”

• “Dumping Compiler Feedback Files”

124

Chapter 9: Miscellaneous Commands

Using the thrash Command

The thrash command allows you to explore paging behavior by allocating a region of
virtual memory, and either randomly or sequentially accessing that memory to explore
the system paging behavior.

thrash Syntax
thrash [args]

args One or more of the following flags:

Effects of thrash

Once the memory is allocated, thrash prints a message on stdout saying how much
memory it is using and then proceeds to thrash over it. Here’s an example:

fraser 82% thrash -m 4

thrashing randomly: 4.00 MB (= 0x00400000 = 4194304 bytes = 1024 pages)

 10000 iterations

You can use thrash in conjunction with ssusage and squeeze to determine the approximate
available working memory on a system, as described in the section “Calculating the
Working Set of a Program”.

-k N The amount of memory to access in kilobytes, where N is
the number of kilobytes.

-m N The amount of memory to access in megabytes, where N is
the number of megabytes.

-n count The number of references to make before exiting. The
default is 10,000.

-p N The amount of memory to access in pages, where N is the
number of pages.

-s Sequential thrashing. The default is random.

-w time The amount of time thrash should sleep after thrashing but
before exiting.

Using the squeeze Command

125

Using the squeeze Command

The squeeze command allows you to specify an amount of virtual memory to lock down
into real memory, thus making it unavailable to other processes. This command can only
be used only by superuser.

squeeze Syntax
squeeze [flag] amount

flag One of the following flags. If no flag is specified, the default is
megabytes.

amount The amount of memory to be locked.

Effects of squeeze

squeeze performs the following operations:

• Locks down the amount of virtual memory you supply as an argument to the
command.

• Prints a message to stdout that provide information on how much memory has been
locked, and how much working memory is available.

• Sleeps indefinitely, or until interrupted by SIGINT or SIGTERM. At that time, it
frees up the memory and exits with an exit message.

Wait until after the exit message is printed before doing any experiments.

Here’s an example:

fraser 1# squeeze 4
squeeze: leaving 60.00 MB (= 0x03c01000 = 62918656) available memory;
 pinned 4.00 MB (= 0x00400000 = 4194304) at address 0x1000e000;
 from 64.00 MB (= 0x04001000 = 67112960) installed memory.

Use Ctrl-C to exit squeeze. The following message is printed:

squeeze exiting

-k Kilobytes

-m Megabytes

-p Pages

-% A percentage of the installed memory

126

Chapter 9: Miscellaneous Commands

Calculating the Working Set of a Program

You can use the thrash, squeeze, and ssusage commands together to determine the
approximate working set of a program as follows. For all practical purposes, the working
set of your program is the size of memory allocated.

The process involves three steps. First you determine the working set of the kernel and
other applications:

1. Choose a machine that has a large amount of physical memory (enough to allow
your target application to run without any paging other than at start-up).

2. Make sure that the machine is running a minimal number of applications that will
remain fairly consistent for the duration of these steps.

3. Run thrash with ssusage to determine the working set of the kernel and any other
applications you have running.

In this example, the thrash command uses 4 MB of memory:

ssusage thrash -m 4

When the thrash command completes, ssusage prints the resource usage of thrash; the
value labelled majf gives the number of major page faults (i.e. the number of faults
that required a physical read.) When you run on a machine with a large amount of
physical memory, this value is the number of faults needed to start the program,
which is the minimum number for any run. For more information on ssusage, see
Chapter 5, “Collecting Data on Machine Resource Usage.”

4. As superuser in a separate window, run the squeeze command to lock down an
amount of memory.

5. Rerun thrash with ssusage:

ssusage thrash -m 4

6. Repeat steps 1 and 2, increasing the amount of memory for squeeze, until the majf
number begins to rise.

The amount of working memory available reported by squeeze at the point at which
page faults begin to rise for thrash tells you the combined working set of thrash
(approximately 4 MB), the kernel and any other applications you have running.

Calculating the Working Set of a Program

127

7. Deduct the 4 MB that thrash uses from the amount of working memory reported by
squeeze at the point the page faults began to rise.

This computation helps you find out the approximate working set of the kernel and
any other applications that are running on the machine. You’ll need this number
when you reach the next steps.

8. Determine the working set of the program you’re interested in. Make sure the
applications that the machine is running remain consistent with the setup from
step 2.

9. Run ssusage with your program to ensure that the machine has the amount of
memory your program needs.

ssusage prog_name

When your program exits, ssusage prints the application’s resource usage: the majf
field gives the number of major page faults. When run on a machine with a large
amount of physical memory, this value is the number of faults needed to start the
program, which is the minimum number for any run.

10. Switch to superuser.

11. Run squeeze to lock down an amount of memory. The following example locks down
15 megabytes of memory:

squeeze 15

12. Rerun your program with ssusage.

13. Repeat steps 11 and 12 until the majf number begins to rise.

14. Deduct the amount squeezed at the point at which the application begins to page
fault from the total amount of physical memory in the system.

This computation determines the combined working set of your program, the
kernel and any other applications you have running.

15. Deduct the amount of working memory calculated in step 7 from the total amount
of physical memory in the system.

This computation determines the approximate working set of your program.

128

Chapter 9: Miscellaneous Commands

Dumping Performance Data Files

All the performance data for a single process is in one file. The file begins with a prologue
and continues with a mixture of performance data, sample records, and control records.

The ssdump command can be used for printing performance data files. It provides a
formatted ASCII dump of one or more performance experiment data files. This
command is most likely to be useful in verifying performance data that does not seem
accurate when reported through prof.

ssdump Syntax
ssdump [options] {datafile1 ... datafileN} ...

options Zero or more of the following print options:

-d Prints detailed information for each bead. For
compressed beads, the compressed form will be
dumped.

-D Prints detailed information for each bead. For
compressed beads, the uncompressed form will be
dumped.

-h Prints the hex contents of the body of each bead.

-i index Prints only one bead at index in the file.

-q Suppresses printing of those fields that will normally
change from run to run such as process IDs and time
stamps. This option is useful for QA work, to enable
automatic comparisons of recorded experiments.

-s offset Prints only one bead at offset into the file.

Dumping Performance Data Files

129

Experiment File Format

The file is written as a string of “beads,” each of which is a record with

• a 32-bit type

• a 32-bit byte count

• a body whose length is given by the byte-count, rounded up to a double-word
boundary

The file prologue consists of these beads:

• file-identifier bead, which acts as a magic number, indicating that the file is a
SpeedShop data file

• machine and executable name

• hardware inventory describing the machine

• machine page size

• O/S revision, date, and checksum information about the executable

• target name (the target is the executable after instrumentation)

• arguments with which the target was invoked

• instrumentation performed

• types of performance data that are to be recorded in the remainder of the file

The following example calls ssdump on performance data for a pcsamp experiment:

ssdump generic.pcsamp.m847

130

Chapter 9: Miscellaneous Commands

Below is some partial output from ssdump. The format has been adjusted slightly to meet
presentation needs.

Printing experiment record file “generic.pcsamp.m847” (2688 bytes), last written
on Tue 15 Apr 1997 15:27:02
SpeedShop File Preface 1, offset 0 = 0x00000000 (size 32)

file type 1 (SSRUN); version 4
process control flags: 0xd

_SPEEDSHOP_TRACE_FORK=True
_SPEEDSHOP_TRACE_FORK_TO_EXEC=False
_SPEEDSHOP_TRACE_SPROC=True
_SPEEDSHOP_TRACE_EXEC=True
_SPEEDSHOP_TRACE_SYSTEM=False

ancestor exp file name:
created: Tue 15 Apr 1997 15:26:10.719

Hardware Inventory 2, offset 40 = 0x00000028 (size 280)
hardware inventory: 17 items
class 1, type 1, contrlr 100, unit 255, state 12
class 1, type 3, contrlr 0, unit 0, state 8192
class 1, type 2, contrlr 0, unit 0, state 8208
class 4, type 8, contrlr 0, unit 0, state 2
class 5, type 5, contrlr 0, unit 0, state 1
class 3, type 3, contrlr 0, unit 0, state 16384
class 3, type 4, contrlr 0, unit 0, state 16384
class 3, type 9, contrlr 0, unit 0, state 64
class 3, type 1, contrlr 0, unit 0, state 67108864
class 12, type 3, contrlr 0, unit 0, state 16
class 8, type 7, contrlr 17, unit 0, state 16777472
class 10, type 3, contrlr 0, unit 0, state 16400
class 8, type 0, contrlr 0, unit 0, state 1
class 2, type 1, contrlr 0, unit 13, state 2
class 2, type 2, contrlr 0, unit 2, state 0
class 2, type 2, contrlr 0, unit 1, state 0
class 7, type 14, contrlr 0, unit 0, state 0

Experiment name 3, offset 328 = 0x00000148 (size 8)
pcsamp

Experiment marching orders 4, offset 344 = 0x00000158 (size 16)
pc,2,10000,0:cu

Capture module symbol 5, offset 368 = 0x00000170 (size 16)
pc,2,10000,0

Capture module symbol 6, offset 392 = 0x00000188 (size 8)
cu

Dumping Performance Data Files

131

Executable file 7, offset 408 = 0x00000198 (size 8)
generic

Target file 8, offset 424 = 0x000001a8 (size 8)
generic

Target arguments 9, offset 440 = 0x000001b8 (size 32)
Time: Tue 15 Apr 1997 15:26:10.719, process pid = 847
arguments: ""

Target begin 10, offset 480 = 0x000001e0 (size 40)
process # -1, pid = 847, event # 0
event type = 0,0

at time = Tue 15 Apr 1997 15:26:10.719
Program Object List 11, offset 528 = 0x00000210 (size 312)

process # -1, pid = 847, event # 0, -- 5 DSOs
Program Object 0, Named `generic’

 Link Time Address: 0x0000000010000000
 Run Time Address: 0x0000000010000000
 Size: 0x0000000000007000 (28672)
 Base Pointer: 0x0000000000000000

Program Object 1, Named `/usr/lib32/libss.so’
 Link Time Address: 0x0000000009e50000
 Run Time Address: 0x0000000009e50000
 Size: 0x0000000000002000 (8192)
 Base Pointer: 0x0000000000000000

Program Object 2, Named `/usr/lib32/libssrt.so’
 Link Time Address: 0x0000000009da0000
 Run Time Address: 0x0000000009da0000
 Size: 0x000000000008b000 (569344)
 Base Pointer: 0x0000000000000000

Program Object 3, Named `/usr/lib32/libm.so’
 Link Time Address: 0x000000000f840000
 Run Time Address: 0x000000000f840000
 Size: 0x0000000000028000 (163840)
 Base Pointer: 0x0000000000000000

Program Object 4, Named `/usr/lib32/libc.so.1’
 Link Time Address: 0x000000000fa00000
 Run Time Address: 0x000000000fa00000
 Size: 0x0000000000108000 (1081344)
 Base Pointer: 0x0000000000000000

132

Chapter 9: Miscellaneous Commands

Target DSO open 12, offset 848 = 0x00000350 (size 56)
process # -1, pid = 847, event # 0

at time = Tue 15 Apr 1997 15:27:00.716
fname = ./dlslave.so

Program Object List 13, offset 912 = 0x00000390 (size 360)
process # -1, pid = 847, event # 0, -- 6 DSOs
Program Object 0, Named `generic’

 Link Time Address: 0x0000000010000000
 Run Time Address: 0x0000000010000000
 Size: 0x0000000000007000 (28672)
 Base Pointer: 0x0000000000000000

Program Object 1, Named `/usr/lib32/libss.so’
 Link Time Address: 0x0000000009e50000
 Run Time Address: 0x0000000009e50000
 Size: 0x0000000000002000 (8192)
 Base Pointer: 0x0000000000000000

Program Object 2, Named `/usr/lib32/libssrt.so’
 Link Time Address: 0x0000000009da0000
 Run Time Address: 0x0000000009da0000
 Size: 0x000000000008b000 (569344)
 Base Pointer: 0x0000000000000000

Program Object 3, Named `/usr/lib32/libm.so’
 Link Time Address: 0x000000000f840000
 Run Time Address: 0x000000000f840000
 Size: 0x0000000000028000 (163840)
 Base Pointer: 0x0000000000000000

Program Object 4, Named `/usr/lib32/libc.so.1’
 Link Time Address: 0x000000000fa00000
 Run Time Address: 0x000000000fa00000
 Size: 0x0000000000108000 (1081344)
 Base Pointer: 0x0000000000000000

Program Object 5, Named `./dlslave.so’
 Link Time Address: 0x000000005ffe0000
 Run Time Address: 0x000000005ffe0000
 Size: 0x0000000000001000 (4096)
 Base Pointer: 0x0000000000000000

Dumping Performance Data Files

133

Sample event trigger 14, offset 1280 = 0x00000500 (size 40)
process # -1, trap index # -1

at time = Tue 15 Apr 1997 15:27:01.989, #-1

Compressed PC sampling array (16-bit) 15, offset 1328 = 0x00000530 (size 320)
compressed short array, dso index = 0, array size = 7168, 156
compressed

Compressed PC sampling array (16-bit) 16, offset 1656 = 0x00000678 (size 16)
compressed short array, dso index = 1, array size = 2048, 4 compressed

Compressed PC sampling array (16-bit) 17, offset 1680 = 0x00000690 (size 40)
compressed short array, dso index = 2, array size = 142336, 16
compressed

Compressed PC sampling array (16-bit) 18, offset 1728 = 0x000006c0 (size 16)
compressed short array, dso index = 3, array size = 40960, 4 compressed

Compressed PC sampling array (16-bit) 19, offset 1752 = 0x000006d8 (size 64)
compressed short array, dso index = 4, array size = 270336, 28
compressed

Compressed PC sampling array (16-bit) 20, offset 1824 = 0x00000720 (size 48)
compressed short array, dso index = 5, array size = 1024, 20 compressed

PC sampling array (16-bit) 21, offset 1880 = 0x00000758 (size 16)
short array, dso index = -1, array size = 1

Resource usage 22, offset 1904 = 0x00000770 (size 680)

Sample data end marker 23, offset 2592 = 0x00000a20 (size 40)

Target termination 24, offset 2640 = 0x00000a50 (size 40)
process # -1, pid = 847, event # 0
event type = 0,0 (normal termination, exit status 0)

at time = Tue 15 Apr 1997 15:27:02.231

 ** End-of-File 25, offset 2688 = 0x00000a80 (size 0)

**** End of experiment record file “generic.pcsamp.m847”

134

Chapter 9: Miscellaneous Commands

Dumping Compiler Feedback Files

The fbdump command can be used to print out the compiler feedback files generated by
running prof -feedback. For more information on using compiler feedback files, view the
cord or cc reference pages.

fbdump Syntax
fbdump options filename

options Zero or more of the options described in table Table 9-1.

filename The feedback filename. This file has a .fb extension.

Table 9-1 Options for fbdump

Option Prints.

-all Feedback using all options. This is the default.

-ascii Feedback in the same style as earlier version of the feedback dump program.

-bb Feedback per basic block table as described in “cmplrs/fb.h”. If -verbose is
specified, all basic blocks are printed, even those with zero execution counts. If
-verbose is not specified, fbdump prints only the basic blocks that have non-zero
execution counts.

-call Feedback call table as described in “cmplrs/fb.h”. If -verbose is specified, all the
points of call are printed, even if they have not been called. If -verbose is not
specified, fbdump prints only the relevant information on the calls.

-header Feedback file header as described in “cmplrs/fb.h”.

-proc Feedback procedure table as described in “cmplrs/fb.h”. If -verbose is specified, all
procedures will be printed, even if they are not invoked. If -verbose is not specified,
fbdump prints only the relevant information on the procedures that have been
invoked.

-sections Feedback file section headers table as described in “cmplrs/fb.h”.

-str Feedback string table.

-verbose All the information in verbose mode including a table with all zero entries.

135

Index

Symbols

_RLD_LIST variable, 80
_SPEEDSHOP_CALIPER_POINT_SIG variable, 67,

77, 79
_SPEEDSHOP_DEBUG_NO_SIG_TRAPS variable,

71
_SPEEDSHOP_DEBUG_NO_STACK_UNWIND

variable, 71
_SPEEDSHOP_EXPERIMENT_TYPE variable, 70, 80
_SPEEDSHOP_FILE_BUFFER_LENGTH variable,

71
_SPEEDSHOP_HWC_COUNTER_NUMBER

variable, 57, 68
_SPEEDSHOP_HWC_COUNTER_OVERFLOW

variable, 57, 68
_SPEEDSHOP_INIT_DEFERRED_SIGNAL

variable, 70
_SPEEDSHOP_MARCHING_ORDERS variable, 70,

80
_SPEEDSHOP_OUTPUT_DIRECTORY variable, 68
_SPEEDSHOP_OUTPUT_FILENAME variable, 68
_SPEEDSHOP_OUTPUT_NOCOMPRESS variable,

68
_SPEEDSHOP_REUSE_FILE_DESCRIPTORS

variable, 67
_SPEEDSHOP_SAMPLING_MODE variable, 70
_SPEEDSHOP_SBRK_BUFFER_LENGTH variable,

70
_SPEEDSHOP_SILENT variable, 67

_SPEEDSHOP_TARGET_FILE variable, 80
_SPEEDSHOP_TRACE_EXEC variable, 69
_SPEEDSHOP_TRACE_FORK_TO_EXEC variable,

69
_SPEEDSHOP_TRACE_FORK variable, 69
_SPEEDSHOP_TRACE_SPROC variable, 69
_SPEEDSHOP_TRACE_SYSTEM variable, 69
_SPEEDSHOP_VERBOSE variable, 67

A

API, 7
setting calipers, 13

B

basic block counting, 26, 42, 51
overview, 6

C

C
examples, 15

calipers, 13, 64, 77
and prof, 102
automatic, 78
sample traps, 77, 79
ssrt_caliper_point, 77, 78
using signals, 77, 79
using the debugger, 77, 79

136

Index

-calipers option, 13
call stack profiling, 19, 34, 49
compiler feedback files, 108
compiler optimization restrictions, 64
cord, 108, 134
.Counts file, 113
CPU-bound processes, 2
cy_hwc experiment, 55

D

data display anomalies, 65
dc_hwc experiment, 56
debugger

setting calipers, 13, 77, 79
using ssrun, 74

dsc_hwc experiment, 56
DSOs, 8

E

environment variables
_RLD_LIST, 80
_SPEEDSHOP_CALIPER_POINT_SIG, 67, 77, 79
_SPEEDSHOP_DEBUG_NO_SIG_TRAPS, 71
_SPEEDSHOP_DEBUG_NO_STACK_UNWIND,

71
_SPEEDSHOP_EXPERIMENT_TYPE, 70, 80
_SPEEDSHOP_FILE_BUFFER_LENGTH, 71
_SPEEDSHOP_HWC_COUNTER_NUMBER, 57,

68
_SPEEDSHOP_HWC_COUNTER_OVERFLOW,

57, 68
_SPEEDSHOP_INIT_DEFERRED_SIGNAL, 70
_SPEEDSHOP_MARCHING_ORDERS, 70, 80
_SPEEDSHOP_OUTPUT_DIRECTORY, 68
_SPEEDSHOP_OUTPUT_FILENAME, 68
_SPEEDSHOP_OUTPUT_NOCOMPRESS, 68

_SPEEDSHOP_REUSE_FILE_DESCRIPTORS, 67
_SPEEDSHOP_SAMPLING_MODE, 70
_SPEEDSHOP_SBRK_BUFFER_LENGTH, 70
_SPEEDSHOP_SILENT, 67
_SPEEDSHOP_TARGET_FILE, 80
_SPEEDSHOP_TRACE_EXEC, 69
_SPEEDSHOP_TRACE_FORK, 69
_SPEEDSHOP_TRACE_FORK_TO_EXEC, 69
_SPEEDSHOP_TRACE_SPROC, 69
_SPEEDSHOP_TRACE_SYSTEM, 69
_SPEEDSHOP_VERBOSE, 67
LD_LIBRARY_PATH, 18

examples
C, 15
Fortran, 31

exec, 8
executables

calculating a working set, 126
stripped, 64

experiment data, 12
controlling output file, 66
file format, 129
filenames, 66

experiments
choosing, 11, 48
cy_hwc, 55
dc_hwc, 56
dsc_hwc, 56
fpe, 94
fpe trace, 11, 29, 59
gfp_hwc, 56
gi_hwc, 55
hardware counter, 24, 40, 54, 90
hardware counters, 11
ic_hwc, 55
ideal, 26, 42, 51, 91
isc_hwc, 55
 pcsamp, 50
pcsamp, 11, 21, 38, 89
prof_hwc, 57
tlb_hwc, 56
usertime, 11, 19, 34, 49, 88

137

Index

F

fbdump, 134
overview, 5

files
compiler feedback, 134
performance data, 12, 128

format, 129
floating-point exceptions, 29, 59
floating-point exception trace, 11

overview, 6
fork, 8
Fortran

examples, 31
limitations, 65

fpcsampx experiment, 50
fpe trace experiment, 11, 59, 94

overview, 6
tutorial, 29

G

generic program, 16
gfp_hwc experiment, 56
gi_hwc experiment, 55
-gprof

example, 121

H

hardware counter experiment, 90
hardware counter experiments, 11, 54

overview, 6
tutorial, 24, 40

hardware counter numbers, 58
hardware counter overflows, 24, 40, 54
hwc experiments, 11, 54

overview, 6

I

ic_hwc experiment, 55
ideal experiment, 51, 91

effects, 80
overview, 6
tutorial, 26, 42

I/O-bound processes, 3
isc_hwc experiment, 55

L

LD_LIBRARY_PATH variable, 18, 113
libfpe_ss.so, 7
libmalloc_ss.so, 7
libraries

libfpe_ss.so, 7
libmalloc_ss.so, 7
libssrt.so, 7, 80
libss.so, 7, 80
linking in SpeedShop, 78

libssrt.so, 7, 78, 80
libss.so, 7, 78, 80
linpack benchmark, 32
locking memory, 125

M

machine resource usage, 61
memory

locking, 125
memory-bound processes, 3
message-passing paradigms, 8
MP Fortran limitations, 65
MPI, 8

with ssrun, 75
multi-processor executables, 8, 65

profiling, 107

138

Index

P

paging behavior, 124
pcsamp experiment, 11, 50, 89

example, 72
overview, 6
tutorial, 21, 38

PC sampling, 50
tutorial, 21, 38

perfex, 54
performance analysis

phases, 9
theory, 2

performance data files
dumping, 128

performance problems, 2, 11
Bugs, 3
CPU, 2
I/O, 3
memory, 3

pixie, 51, 110
and prof –heavy example, 119
and prof –i example, 118
–autopixie option, 111
command option, 110
command syntax, 110
.Counts file, 113
examples, 113
output size, 114
overview, 5
restricting output, 114
setting search path, 113
–verbose option, 111

processes
forking, 8

prof
Also see profiling
-calipers example, 102
-calipers option, 13

compiler feedback, 134
-dis example, 95
-gprof example, 93, 102
–heavy example, 119
–invocations example, 118
options, 83
output, 87
overview, 5, 10
-S example, 98
steps, 10
syntax, 82
using with pixie, 82
using with ssrun, 82

prof_hwc experiment, 57
profiles

interpreting, 108
profiling

-calipers option, 102
–clock option, 83
command syntax, 82
-dis option, 95
–dis option, 84
–dsolist option, 84
–dso option, 84
–exclude option, 84
–feedback option, 85
fpe trace experiment, 94
-gprof option, 85, 102
hardware counter experiments, 90
–heavy option, 85

example, 119
ideal experiment, 91
inclusive basic block counts, 93
–invocations option, 85

example, 118
–lines option, 85
machine scheduler option, 107
multiprocessor executables, 107
–only option, 86
pcsamp experiment, 89

139

Index

procedure invocation example, 116
–procedures option, 86
processor scheduler option option, 86
–quit option, 86, 114, 120
-S option, 98
–S option, 86
usertime experiment, 88
–zero option, 86

program counter sampling, 50
programs

calculating a working set, 126
stripped, 64

pthreads, 8
and ssrun, 76

R

rearranging procedures, 108
reports

for different machine models, 107
fpe trace experiment, 94
hardware counter experiments, 90
ideal experiment, 91
interpreting, 108
pcsamp experiment, 89
usertime experiment, 88
using calipers, 102

rld
search path, 113

S

search path
rld, 113

setting calipers, 13, 77
shared libraries, 8
signals

setting calipers, 13, 77, 79
SpeedShop

overview, 4

SpeedShop API, 7
SpeedShop demo

generic, 16
linpack, 32

SpeedShop libraries, 80
libfpe_ss.so, 7
libmalloc_ss.so, 7
libssrt.so, 7
libss.so, 7
linking, 78

sproc, 8
squeeze, 125

calculating a working set, 126
overview, 5

ssdump, 128
ssrt_caliper_point, 7, 77, 78

executable requirements, 64
ssrun

effects, 80
examples, 72
flags, 71
MPI programs, 75
overview, 5, 10
pthreads programs, 76
restrictions, 64
setup, 64
steps, 10
syntax, 71
using a debugger, 74
-v option example, 74

ssusage
calculating a working set, 126
overview, 5

statistical call stack profiling
overview, 6

statistical hardware counter sampling
overview, 6

statistical PC sampling
overview, 6

stripped executables, 64
system, 8

140

Index

T

thrash, 124
calculating a working set, 126
overview, 5

tlb_hwc experiment, 56
tracing floating-point exceptions, 11
tutorial

C, 15
Fortran, 31

U

usertime experiment, 11, 49, 88
overview, 6
restrictions, 64
tutorial, 19, 34

W

working set, 126

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3311-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

