
SpeedShop User’s Guide

007–3311–009

COPYRIGHT
© 1998–2002 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere
herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in
any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, IRIX, Onyx2, and Origin are registered trademarks and OpenMP and ProDev are trademarks of
Silicon Graphics, Inc.

MIPS, R4000, R4400, R5000, R14000, and R16000 are trademarks or registered trademarks of MIPS Technologies, Inc., R12000 is a
trademark of MIPS Technologies, Inc., used under license by Silicon Graphics, Inc. UNIX is a registered trademark of the Open Group
in the United States and other countries.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

New Features in this Guide

The ssfilter command, used to convert SpeedShop MPI experiment files to Vampir
format, is no longer supported.

A new command, sscompare, is documented; this command is used to create
comparison reports of data from experiment files. See "Comparing Experiment
Results", page 132, for information about the sscompare command.

Information about a new tracing experiment for MPI has been added to Chapter 6,
"Setting Up and Running Experiments: ssrun", page 71.

007–3311–009 iii

Record of Revision

Version Description

005 August 1998
Brings the manual into conformance with the 1.3.2 version of the
SpeedShop software.

006 April 1999
Supports the 1.4 version of the SpeedShop software.

007 October 2000
Supports the 1.4.1 version of the SpeedShop software.

008 November 2001
Supports the 1.4.3 version of the SpeedShop software.

009 September 2002
Supports the 1.4.4 version of the SpeedShop software.

007–3311–009 v

Contents

About This Guide . xvii

Related Publications . xviii

Obtaining Publications . xix

Conventions . xix

Reader Comments . xix

1. Introduction to Performance Analysis 1

Sources of Performance Problems 1

Fixing Performance Problems . 2

SpeedShop Tools . 3

Commands . 3

Experiment Types . 4

SpeedShop Libraries . 5

API . 6

Supported Programming Models and Languages 6

Using SpeedShop Tools for Performance Analysis 7

Using ssusage to Evaluate Machine Resource Use 8

Gathering and Analyzing Performance Data 8

Collecting Data for Part of a Program 11

2. Tutorial for C Users 13

Tutorial Overview . 13

Contents of the generic Program 14

Output from the generic Program 14

Tutorial Setup . 15

007–3311–009 vii

Contents

Analyzing Performance Data . 16

A usertime Experiment . 16

Performing a usertime Experiment 16

Generating a Report . 18

Analyzing the Report . 19

A pcsamp Experiment . 20

Generating a Report . 21

Analyzing the Report . 22

A Hardware Counter Experiment 23

Performing a Hardware Counter Experiment 23

Generating a Report . 23

Analyzing the Report . 24

A Basic Block Experiment . 25

Performing a bbcounts Experiment 25

Generating a Report . 27

Analyzing the Report . 28

An fpe Trace . 29

Performing an fpe Trace 29

Generating a Report . 29

Analyzing the Report . 30

3. Tutorial for Fortran Users 33

Tutorial Overview . 34

Tutorial Setup . 35

Analyzing Performance Data . 35

A usertime Experiment . 36

Performing a usertime Experiment 36

viii 007–3311–009

SpeedShop User’s Guide

Generating a Report . 37

Analyzing the Report . 38

A pcsamp Experiment . 39

Performing a pcsamp Experiment 39

Generating a Report . 40

Analyzing the Report . 41

A Hardware Counter Experiment 41

Performing a Hardware Counter Experiment 42

Generating a Report . 42

Analyzing the Report . 43

A bbcounts Experiment . 44

Performing a bbcounts Experiment 44

Generating a Report . 45

Analyzing the Report . 47

MPI Tracing Tutorial . 47

4. Experiment Types . 51

Selecting an Experiment . 51

Floating-Point Exception Trace Experiment (fpe) 53

Heap Trace Experiment (heap) 53

Hardware Counter Experiments (*_hwc, *_hwctime) 54

Two Tools for Hardware Counter Experiments 54

_hwc Hardware Counter Experiments 55

_hwctime Hardware Counter Experiments 57

Hardware Counter Numbers 59

Basic Block Counting Experiment (bbcounts) 62

How SpeedShop Prepares Files 62

007–3311–009 ix

Contents

How SpeedShop Calculates CPU Time for bbcounts Experiments 63

Inclusive Basic Block Counting 63

Using pcsamp and bbcounts Together 64

I/O Trace Experiment (io) . 65

MPI Call Tracing Experiment (mpi/mpi_trace) 66

NUMA Profiling Experiment (numa) 66

PC Sampling Experiment (pcsamp) 67

Call Stack Profiling Experiment (usertime/totaltime) 68

5. Collecting Data on Machine Resource Usage 69

ssusage Syntax . 69

ssusage Results . 69

6. Setting Up and Running Experiments: ssrun 71

Building Your Executable . 71

Special Information for MP Fortran Programs 72

Setting Up Output Directories and Files 73

Using Run-Time Environment Variables 74

User Environment Variables 74

Process Tracking Environment Variables 76

Expert-Mode Environment Variables 77

Using Marching Orders . 78

Defining the Base Experiment 79

Running Experiments . 81

ssrun Syntax . 81

ssrun Examples . 83

Example Using the pcsampx Experiment 83

x 007–3311–009

SpeedShop User’s Guide

Example Displaying Data in WorkShop 84

Example Using the -v Option 85

Using ssrun with a Debugger 85

Running Experiments on MPI Programs 86

Generating MPI Tracing Experiments 86

Generating Other Experiments for Programs Using MPI 90

Running Experiments on Programs Using Pthreads 91

Running Experiments on Programs That Use OpenMP Directives 91

Using Calipers . 92

Setting Calipers with the ssrt_caliper_point Function 93

Setting Time-Oriented Calipers 94

Setting Calipers with Signals 95

Setting Calipers with a Debugger 96

Effects of ssrun . 96

7. Analyzing Experiment Results 99

Using prof to Generate Performance Reports 99

prof Arguments . 99

prof Options . 100

prof Output . 105

Using prof with ssrun . 105

usertime Experiment Reports 106

pcsamp Experiment Reports 107

Hardware Counter Experiment Reports 108

bbcounts Experiment Reports 110

fpe Trace Reports . 113

Using prof Options . 114

007–3311–009 xi

Contents

Using the -dis Option . 114

Using the -S Option . 120

Using the -calipers Option 123

Using the -butterfly Option 124

Generating Reports for Different Machine Types 128

Generating Reports for Multiprocessed Executables 129

Determining Program Overhead 129

Generating Compiler Feedback Files 132

Comparing Experiment Results 132

8. Miscellaneous Commands 135

Using the thrash Command 135

thrash Syntax . 135

Effects of thrash . 136

Using the squeeze Command 136

squeeze Syntax . 136

Effects of squeeze . 137

Calculating the Working Set of a Program 137

Combining Multiple Experiment Files into One 139

Glossary . 143

Index . 147

xii 007–3311–009

Figures

Figure 3-1 An MPI Experiment in cvperf 49

Figure 6-1 MPI Numerical Format 89

007–3311–009 xiii

Tables

Table 1-1 Letter Codes in Process Experiment ID Numbers 9

Table 4-1 Summary of Experiments 52

Table 4-2 R10000 Hardware Counter Numbers 59

Table 4-3 R12000, R14000, R16000 Hardware Counter Numbers 61

Table 4-4 Basic Block Counts and PC Profile Counts Compared 64

Table 6-1 Setting Caliper Points 93

Table 7-1 Options for prof 100

007–3311–009 xv

About This Guide

The SpeedShop User’s Guide describes and illustrates methods for measuring program
performance using SpeedShop commands such as ssrun and prof. It also contains
tutorials that generate performance statistics for C and Fortran programs.

The SpeedShop performance tools described in this manual can help you to identify
specific performance problems. The techniques described in this manual are only a
part of performance tuning. Other areas that you can tune, but that are outside the
scope of this document, include graphics, I/O, the kernel, system parameters,
memory, and real-time system calls.

This book is intended for experienced programmers and others who are interested in
optimizing program performance.

The following chapters are included in this book:

• Chapter 1, "Introduction to Performance Analysis", page 1, provides a general
introduction to performance analysis concepts and techniques, plus an overview of
the SpeedShop tools.

• Chapter 2, "Tutorial for C Users", page 13, provides a tutorial on how to collect
performance data and generate reports for a C program.

• Chapter 3, "Tutorial for Fortran Users", page 33, provides a tutorial on how to
collect performance data and generate reports for Fortran programs running on
single-processor machines.

• Chapter 4, "Experiment Types", page 51, describes the types of experiments that
can be performed using SpeedShop tools.

• Chapter 5, "Collecting Data on Machine Resource Usage", page 69, describes how
to use the ssusage(1) command to collect information about a program’s
machine resource usage.

• Chapter 6, "Setting Up and Running Experiments: ssrun", page 71, explains in
detail how to set up and run experiments using ssrun(1), and explains how to
use caliper points to generate reports for part of a program.

• Chapter 7, "Analyzing Experiment Results", page 99, explains how to generate
reports from performance data using prof(1) and sscompare(1).

007–3311–009 xvii

About This Guide

• Chapter 8, "Miscellaneous Commands", page 135, explains how to use the
thrash(1) and squeeze(1) commands to determine the memory usage, or
working set, of your application. It also includes commands to print performance
data files.

Related Publications
The following documents contain additional information that may be helpful:

• Guide to SGI Compilers and Compiling Tools

• C Language Reference Manual

• MIPSpro C++ Programmer’s Guide

• ProDev WorkShop: Debugger User’s Guide

• ProDev WorkShop: Performance Analyzer User’s Guide

• ProDev WorkShop: Overview

• ProDev WorkShop: Static Analyzer User’s Guide

• ProDev WorkShop: ProMP User’s Guide

• MIPSpro Fortran 77 Programmer’s Guide

• MIPSpro Fortran 77 Language Reference Manual

• MIPSpro Fortran Language Reference Manual, Volume 1

• MIPSpro Fortran Language Reference Manual, Volume 2

• MIPSpro Fortran Language Reference Manual, Volume 3

• MIPSpro Fortran 90 Commands and Directives Reference Manual

• MIPSpro N32/64 Compiling and Performance and Tuning Guide

• Origin 2000 and Onyx2 Performance Tuning and Optimization Guide

• MPI Programmer’s Manual

xviii 007–3311–009

SpeedShop User’s Guide

Obtaining Publications
To obtain SGI documentation, go to the SGI Technical Publications Library at
http://techpubs.sgi.com.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

GUI This font denotes the names of graphical user interface
(GUI) elements such as windows, screens, dialog boxes,
menus, toolbars, icons, buttons, boxes, fields, and lists.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

007–3311–009 xix

About This Guide

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

xx 007–3311–009

Chapter 1

Introduction to Performance Analysis

This chapter provides a brief introduction to performance analysis techniques for SGI
systems and describes how to use them with SpeedShop to solve performance
problems. It includes the following sections:

• "Sources of Performance Problems", page 1, provides a general overview of
potential performance problems.

• "Fixing Performance Problems", page 2, shows you how to use SpeedShop to
isolate and fix performance problems.

• "SpeedShop Tools", page 3, describes SpeedShop commands, experiment types,
and libraries.

• "Using SpeedShop Tools for Performance Analysis", page 7, shows you how to
analyze your system performance.

Sources of Performance Problems
To tune a program’s performance, you must first determine where machine resources
are being used. At any point in a process, there is one limiting resource controlling
the speed of execution. Processes can be slowed down by:

• CPU speed and availability: a CPU-bound process spends its time executing in the
CPU and is limited by CPU speed and availability. To improve the performance of
CPU-bound processes, you may need to streamline your code. This can entail
modifying algorithms, reordering code to avoid interlocks, removing nonessential
steps, blocking to keep data in cache and registers, or using alternative algorithms.

• I/O processing: an I/O-bound process has to wait for input/output (I/O) to
complete. I/O may be limited by disk access speeds or memory caching. To
improve the performance of I/O-bound processes, you can try one of the
following techniques:

– Improve overlap of I/O with computation

– Optimize data usage to minimize disk access

– Use data compression

007–3311–009 1

1: Introduction to Performance Analysis

• Memory size and availability: a program that continuously needs to swap out
pages of memory is called memory-bound. Page thrashing is often due to accessing
virtual memory on a haphazard rather than strategic basis; cache misses result.
Insufficient memory bandwidth could also be the problem.

To fix a memory-bound process, you can try to improve the memory reference
patterns or, if possible, decrease the memory used by the program.

• Bugs: you may find that a bug is causing the performance problem. For example,
you may find that you are reading in the same file twice in different parts of the
program, that floating-point exceptions are slowing down your program, that old
code has not been completely removed, or that you are leaking memory (making
malloc calls without the corresponding calls to free).

• Performance phases: because programs exhibit different behavior during different
phases of operation, you need to identify the limiting resource during each phase.
A program can be I/O-bound while it reads in data, CPU-bound while it performs
computation, and I/O-bound again in its final stage while it writes out data. Once
you’ve identified the limiting resource in a phase, you can perform an in-depth
analysis to find the problem. And after you have solved that problem, you can
check for other problems within the phase. Performance analysis is an iterative
process.

• Cache thrashing: If an application does not access CPU caches efficiently, the
application will run slower whle the CPU and operating system reload cache
entries.

Fixing Performance Problems
The SpeedShop tools described in this manual can help you to identify specific
performance problems described later; these techniques are only a part of performance
tuning. You can also tune graphics, I/O, the kernel, system parameters, memory, and
real-time system calls. For a complete guide to all performance tools and the
documentation about those tools, see Guide to SGI Compilers and Compiling Tools.

Although it may be possible to obtain short-term speed increases by relying on
unsupported or undocumented quirks of the compiler, it is a bad idea to do so. Any
such “features” may break in future compiler releases. The best way to produce
efficient code that will remain efficient is to follow good programming practices. In
particular, choose good algorithms and leave the details to the compiler.

2 007–3311–009

SpeedShop User’s Guide

SpeedShop Tools
The SpeedShop tools allow you to run experiments and generate reports that track
down the sources of performance problems. SpeedShop consists of a set of commands
that can be run in a shell, an application programming interface (API) to provide
some control over data collection, and a number of libraries to support the commands.

This section provides an overview of the tools by first discussing the main
commands, then providing more detail on additional commands, experiment types,
libraries, the SpeedShop API, and supported programs and languages.

Commands

SpeedShop provides the following commands to help you analyze your programs:

• ssusage: Collects information about your program’s use of machine resources.
Output from ssusage can be used to determine where most resources are being
spent.

• ssrun: Allows you to run experiments on a program to collect performance data.
It establishes the environment to capture performance data for an executable,
creates a process from the executable (or from an instrumented version of the
executable) and runs it. Input to ssrun consists of an experiment type, control
flags, the name of the target, and the arguments to be used in executing the target.

• prof: Analyzes the performance data you have recorded using ssrun and
provides formatted reports. prof detects the type of experiment you have run and
generates a report specific to the experiment type. You can also use the cvperf
command to display the data through the WorkShop graphic user interface.

• sscompare: Analyzes the performance data in one or more experiment files
generated by SpeedShop and produces comparison reports.

SpeedShop provides the following additional commands:

• squeeze: Allocates a region of virtual memory and locks the virtual memory
down into real memory, making it unavailable to other processes.

• thrash: Allows you to allocate a block of memory, then access the allocated
memory to explore system paging behavior.

007–3311–009 3

1: Introduction to Performance Analysis

Experiment Types

The following are the most popular experiments using the ssrun command. (For the
complete list of experiments, see the ssrun(1) man page.)

• pcsamp experiments provide information on a program’s CPU usage using
statistical program counter sampling.

Data is measured by periodically sampling the program counter of the target
executable when it is executing in the CPU. The program counter shows the
address of the currently executing instruction in the program. The data that is
obtained from the samples is translated to a time that can be displayed at the
function, source line, and machine instruction levels. The actual CPU time is
calculated by multiplying the number of times a specific address is found in the
PC by the amount of time between samples. (For a definition of CPU time,
wall-clock time, and process virtual time, see the glossary.)

• hwc experiments display information from a variety of hardware counters using
statistical sampling.

Hardware counter experiments are available on R10000, R12000, R14000, and
R16000 systems that have built-in hardware counters. Data is measured by
counting each time the specified hardware counter exceeds its maximum value, or
overflows. You can specify the hardware counter and the overflow interval you
want to use. For more information on the hardware counter experiments, see
"Hardware Counter Experiments (*_hwc, *_hwctime)", page 54.

• usertime experiments display a program’s CPU time by statistical call-stack
profiling.

Data is measured by periodically sampling the call stack. The program’s call stack
data is used to attribute exclusive user time to the function at the bottom of each
call stack (that is, the function being executed at the time of the sample), and to
attribute inclusive user time to all the functions above the one currently being
executed. Exclusive time is the execution time of a given function but not any
functions that function calls, while inclusive time is the execution time both of a
given function and of any functions called by that function.

• The totaltime experiment returns wall-clock time in a manner identical to that
of the usertime experiment. It uses statistical callstack profiling, based on
wall-clock time, with a time sample interval of 30 milliseconds.

• bbcounts experiments display an estimated time based on linear basic blocks
counting.

4 007–3311–009

SpeedShop User’s Guide

Data is measured by counting the number of executions of each basic block and
calculating an estimated time for each function. This involves instrumenting the
program to divide the code into basic blocks, which are consecutive sequences of
instructions with a single entry point, a single exit point, and no branches into or
out of the sequence. Instrumentation also records a count of all dynamic
(function-pointer) calls.

Because an exact count of every instruction in your program is recorded, you can
also use the bbcounts experiment to determine the efficiency of your algorithm
and identify any code that is not executed.

• fpe experiments trace floating-point exceptions.

A floating-point exception trace collects each floating-point exception, including
the exception type and the call stack, at the time of the exception. prof(1)
generates a report showing inclusive and exclusive floating-point exception counts.

SpeedShop Libraries

Versions of the SpeedShop libraries libss.so and libssrt.so are available to
support applications built using shared libraries (called dynamic shared objects, or
DSOs) only and the old 32-bit, new 32-bit, or 64-bit application binary interfaces
(ABIs).

The following list describes the different SpeedShop libraries.

• libss.so: A shared library (DSO) that supports libssrt.so. The libss.so
data normally appears in experiment results generated with prof.

• libssrt.so: A shared library (DSO) that is linked in to the program you specify
when you run an experiment. All the performance data collection with the
SpeedShop system is done within the target processes by exercising various pieces
of functionality using libssrt. Data from libssrt.so does not normally
appear in performance data reports generated with prof.

• libfpe_ss.so: Supplements the standard libfpe.so for the purposes of
collecting floating-point exception data. See the fpe_ss(3) man page for more
information.

• libmalloc_ss.so: Inserts versions of malloc routines from libc.so.1 that
allow tracing all calls to malloc, free, realloc, memalign, and valloc. See
the malloc_ss(3) man page for more information.

007–3311–009 5

1: Introduction to Performance Analysis

• libpixrt.so: A shared library (DSO) used by programs that have been
instrumented for basic block counting.

API

The SpeedShop application programming interface (API) allows you to use the
ssrt_caliper_point function to set caliper points in your source code. See "Using
Calipers", page 92, for information on using caliper points. For information on other
API functions, see the ssapi(3) man page.

Supported Programming Models and Languages

The SpeedShop tools support programs with the following characteristics:

• Shared libraries (DSOs).

• Unstripped executables.

• Executables that call fork(2), sproc(2), system(3F), or exec(2).

• Executables using supported techniques for opening, closing, and delay-loading
DSOs.

• C, C++, Fortran (Fortran 77 and Fortran 90), or Ada (1.4.2 and older versions)
source code.

• Power Fortran and Power C source code. prof understands the syntax and
semantics of the multiprocessing run time and displays the data accordingly.

• pthreads, supported with data on a per-program basis.

• Message Passing Interface (MPI) or other message-passing paradigms. Currently
supported by providing data on the behavior of each process. The behavior of the
MPI library itself is monitored just like any other user-level code. See the MPI
Programmer’s Manual for details about the MPI library.

• The OpenMP collection of compiler directives, library routines, and environment
variables that can be used to specify shared memory parallelism.

6 007–3311–009

SpeedShop User’s Guide

Using SpeedShop Tools for Performance Analysis
Performance tuning typically consists of:

1. Examining machine resource usage

2. Breaking down the process into phases

3. Identifying the resource bottleneck within each phase

4. Correcting the cause of the bottleneck

Generally, you run the first experiment to break your program down into phases and
run subsequent experiments to examine each phase individually. After you have
solved a problem in a phase, you should re-examine machine resource usage to see if
there is further opportunity for performance improvement.

The general steps for a performance analysis cycle are as follows:

1. Build the application.

2. Run experiments on the application to collect performance data.

3. Examine the performance data.

4. Generate an improved version of the program.

5. Compare performance of improved version of the program against the previous
version. To do this, use the sscompare command to compare the new version to
the previous version to verify that improvements are being made.

6. Repeat steps 1 through 5 as needed.

To accomplish this using SpeedShop tools, do the following:

• Use the ssusage command to capture information on your program’s use of
machine resources.

• Use the ssrun command to capture different types of performance data over
either your entire program or parts of the program. ssrun can be used in
conjunction with dbx(1) or cvd(1), the WorkShop debugger.

• Use the prof command to analyze the data and generate reports.

007–3311–009 7

1: Introduction to Performance Analysis

Using ssusage to Evaluate Machine Resource Use

To determine overall resource usage by your program, run the program with
ssusage. The results of this command allow you to identify high-user CPU time,
high-system CPU time, high I/O time, and a high degree of paging. The ssusage(1)
command has the following format:

ssusage executable_name executable_args

From the ssusage output, you can decide which experiments to run to collect data
for further study. For more information on ssusage, see Chapter 5, "Collecting Data
on Machine Resource Usage", page 69, or see the ssusage(1) man page.

Gathering and Analyzing Performance Data

This section describes the steps involved in a performance analysis cycle when using
the line-based interface to the SpeedShop tools: the ssrun and prof commands.

To perform a performance analysis, follow these general steps:

1. Build the executable.

You can usually build the executable as you would normally. See "Building Your
Executable", page 71, for information on how to build the executable.

2. Specify caliper points if you want to analyze data for only a portion of your
program.

3. To collect performance data, issue the ssrun command with the following
parameters:

% ssrun ssrun_options -exp_type executable_name executable_args

The following options are available with the ssrun command:

• ssrun_options: zero or more valid options. For a complete list of options, see
the ssrun(1) man page.

• exp_type: experiment name.

• executable_name: executable name.

• executable_args: arguments to the executable.

8 007–3311–009

SpeedShop User’s Guide

Use the information in the following list to determine which experiments to run.
Each performance problem is followed by one or more experiment types:

• High-user CPU time: usertime, pcsamp (four variants), _hwc/_hwctime
(hardware counter experiments), or bbcounts.

• High-system CPU time: if floating-point exceptions are suspected, run an fpe
trace.

• High I/O time: bbcounts, then examine counts of I/O routines.

• High paging rates: bbcounts, then prof -cordfb and cord to rearrange
procedures.

For each process of the executable, the experiment data is stored in a file with a
name in the following form:

executable_name.exp_type.id

The experiment ID consists of one or two letters designating the process type,
followed by the process ID number. An example of a name is:

generic.pixbb.m10966

See the following table for letter codes and descriptions.

Table 1-1 Letter Codes in Process Experiment ID Numbers

Letter Codes Description

m Master process created by ssrun

p Process created by a call to sproc()

f Process created by a call to fork()

s Process created by a call to system()

e Process created by a call to exec()

fe Process created by a call to fork() and exec()

For more information on the ssrun command, see Chapter 6, "Setting Up and
Running Experiments: ssrun", page 71, or see the ssrun(1) man page.

007–3311–009 9

1: Introduction to Performance Analysis

4. To generate a report from the experiment, issue prof with the following
parameters:

% prof options data_file

• options: one or more valid options. For a complete list of options, see the
prof(1) man page or "prof Options", page 100.

• data_file: the name of the file in which the experiment data was recorded.

5. The sscompare command can be used to analyze the performance data in
experiment files that were generated by SpeedShop tools such as ssrun, and
produce a comparison report. When comparing application performance, make
sure to make a copy of the original binary code and a copy of the original
experiment file. Then you can compare the original experiment results with the
newer (hopefully improved) results.

The following are some useful comparisons:

• application performance before and after optimization

• multiple ranks in an MPI application

• multiple threads in an OpenMP applications

• different experiments for the same application

The comparison report produced by sscompare contains a legend and a table of
performance data. Each input file and the type of performance data it contains is
listed in the legend with a numeric column key. The table contains multiple
columns of data; the type of data is dependent on the options used to generate
the report.

sscompare can be used with the following SpeedShop experiment types:

• usertime

• pcsamp

• bbcounts

See the sscompare(1) man page or "Comparing Experiment Results", page 132,
for more details.

10 007–3311–009

SpeedShop User’s Guide

Collecting Data for Part of a Program

If you have a performance problem in only one part of your program, consider
collecting performance data for just that part. You can do this by setting caliper
points around the problem area when running an experiment, then using the prof
-calipers option to generate a report for the problem area or using the calipers
time line in the cvperf(1) window of WorkShop to view the area through a graphic
user interface.

You can record caliper points using one of the following methods:

• Direct calls to the SpeedShop API.

• The caliper signal environment.

• A debugger such as the ProDev WorkShop debugger.

• Periodic caliper points with pollpoint caliper points.

For more information on using calipers, see "Using Calipers", page 92.

007–3311–009 11

Chapter 2

Tutorial for C Users

This chapter provides a tutorial that shows you how to gather and analyze
performance data in a C program, using SpeedShop tools. The tutorial covers these
topics:

• "Tutorial Overview", page 13, introduces the sample program and explains the
different scenarios in which it will be used.

• "Tutorial Setup", page 15, steps you through the necessary setup for running the
experiment.

• "Analyzing Performance Data", page 16, steps you through five different
experiments, discussing first how to do the experiments, then how to interpret the
results.

Note: Because of inherent differences between systems and because of concurrent
processes that may be running on your system, your experiment will produce
different results from the one in this tutorial. However, the basic structure of the
results should be the same.

The C tutorial demonstrates the following experiments:

• usertime

• pcsamp

• basic block count (bbcounts)

• floating point exception (fpe)

For an example of an MPI tracing tutorial and a hardware counter experiment, see
Chapter 3, "Tutorial for Fortran Users", page 33.

Tutorial Overview
This tutorial uses a sample program called generic. There are three versions of the
program:

• generic directory : contains files for the n32-bit ABI

007–3311–009 13

2: Tutorial for C Users

• generico32 directory: contains files for the (old) 32-bit ABI

• generic64 directory: contains files for the 64-bit ABI

When you work with the tutorial, choose the version of generic most appropriate
for your system. A good guideline is to choose the version that corresponds to the
way you expect to develop your programs.

This tutorial was written and tested using the version of generic in the generic
directory.

Contents of the generic Program

The generic program was designed as a test and demonstration application. It
contains code to run scenarios that each test a different area of SpeedShop. The
version of generic used in this tutorial performs scenarios that:

• Build a linked list of structures

• Use a lot of user time

• Scan a directory and run the stat command on each file

• Perform file I/O

• Generate a number of floating-point exceptions

• Load and call a routine in a DSO

Output from the generic Program

Output from the program looks like the following:

0:00:00.000 ======== (27173) Begin script Fri 06 Feb 1998

15:03:31.

begin script ‘ll.u.cvt.d.i.f.dso’

0:00:00.002 ======== (27173) start of linklist Fri 06 Feb 2002
15:03:31.

linklist completed.

0:00:00.003 ======== (27173) start of usrtime Fri 06 Feb 2002

15:03:31.

usertime completed.

0:00:25.572 ======== (27173) start of cvttrap Fri 06 Feb 2002

14 007–3311–009

SpeedShop User’s Guide

15:03:57.
cvttrap completed, y = 2.60188e+14, z = 2.60188e+14.

0:00:25.806 ======== (27173) start of dirstat Fri 06 Feb 2002

15:03:57.

dirstat of /usr/include completed, 304 files.

0:00:26.618 ======== (27173) start of iofile -- stdio Fri 06 Feb 2002
15:03:58.

stdio iofile on /unix completed, 7307988 chars.

0:00:26.864 ======== (27173) start of fpetraps Fri 06 Feb 2002

15:03:58.

fpetraps completed.

0:00:26.865 ======== (27173) start of libdso Fri 06 Feb 2002
15:03:58.

dlslave_init executed

dlslave_routine executed

slaveusertime completed, x = 5000000.000000.

libdso: dynamic routine returned 13
end of script ‘ll.u.cvt.d.i.f.dso’

0:00:27.972 ======== (27173) End script Fri 06 Feb 2002

15:03:59.

Tutorial Setup
Copy the program to a directory where you have write permission and compile it so
that you can use it in the tutorial.

1. Change to the /usr/demos/SpeedShop directory.

2. Copy the appropriate generic directory and its contents to a directory where
you have write permission:

% cp -r generic your_dir

3. Change to the directory you just created:

% cd your_dir/generic

4. Compile the program, by entering:

% make all

This provides an executable for the experiment.

007–3311–009 15

2: Tutorial for C Users

Analyzing Performance Data
This section explains how to run the following experiments on the generic program,
generate the experiment’s results, and interpret the results:

• usertime. As a first cut at optimization, this may be the most useful experiment.
It breaks down a program into its functions and returns the CPU time used in
each. See "A usertime Experiment", page 16.

• pcsamp. This experiment uses a different method to return the CPU time. See "A
pcsamp Experiment", page 20.

• dsc_hwc. This experiment counts the number of times a required data item was
not in secondary data cache. If the data item is not in secondary data cache, it
must be fetched from memory, which requires more time. See "A Hardware
Counter Experiment", page 23.

• bbcounts. This experiment counts basic block usage and estimates a linear time.
It also maps out a complete call graph. See "A Basic Block Experiment", page 25.

• fpe. This experiment counts the number of floating-point exceptions in each
function. See "An fpe Trace", page 29.

You can follow the tutorial from start to finish, or you can choose the experiment you
want to perform.

A usertime Experiment

This section explains how to perform a usertime experiment. The usertime
experiment allows you to gather data on the amount of CPU time spent in each
function in your program.

Note: Due to statistical sampling of the call stack, not all functions may appear in the
experiment output.

For more information on usertime, see "Call Stack Profiling Experiment
(usertime/totaltime)", page 68.

Performing a usertime Experiment

From the command line, enter the following:

16 007–3311–009

SpeedShop User’s Guide

% ssrun -usertime generic

This command starts the experiment. Output from generic and from ssrun is
printed to stdout, as shown in the following example. A data file is also generated.
The name consists of the process name (generic), the experiment type (usertime),
and the experiment ID. In this example, the file name is
generic.usertime.m10981.

0:00:00.000 ======== (16957) Begin script Mon 18 Mar 2002

06:56:38.

begin script ‘ll.u.cvt.d.i.f.dso’
0:00:00.004 ======== (16957) start of linklist Mon 18 Mar 2002

06:56:38.

linklist completed.

0:00:00.005 ======== (16957) start of usrtime Mon 18 Mar 2002

06:56:38.
usertime completed.

0:00:18.736 ======== (16957) start of cvttrap Mon 18 Mar 2002

06:56:57.

cvttrap completed, y = 2.60188e+14, z = 2.60188e+14.

0:00:18.906 ======== (16957) start of dirstat Mon 18 Mar 2002
06:56:57.

dirstat of /usr/include completed, 264 files.

0:00:18.941 ======== (16957) start of iofile -- stdio Mon 18 Mar 2002

06:56:57.

stdio iofile on /unix completed, 7965088 chars.

0:00:20.426 ======== (16957) start of fpetraps Mon 18 Mar 2002
06:56:59.

fpetraps completed.

0:00:20.428 ======== (16957) start of libdso Mon 18 Mar 2002

06:56:59.

dlslave_init executed
dlslave_routine executed

slaveusertime completed, x = 5000000.000000.

libdso: dynamic routine returned 13

end of script ‘ll.u.cvt.d.i.f.dso’

0:00:21.217 ======== (16957) End script Mon 18 Mar 2002
06:56:59.

007–3311–009 17

2: Tutorial for C Users

Generating a Report

To generate a report on the data collected, enter the following at the command line:

% prof your_output_file_name > usertime.results

In this example, your_output_file_name would be generic.usertime.m10981. The
prof command prints results to stdout.

Note: Because of line width restrictions, the DSO, file name, and line number
information at the end of each line is wrapped to the next line in the following
sample output.

SpeedShop profile listing generated Mon Mar 18 07:00:30 2002

prof generic.usertime.m16957

generic (n32): Target program

usertime: Experiment name

ut:cu: Marching orders

R5000 / R5000: CPU / FPU

1: Number of CPUs

180: Clock frequency (MHz.)

Experiment notes--

From file generic.usertime.m16957:

Caliper point 0 at target begin, PID 16957

/speedtest/generic/generic

Caliper point 1 at exit(0)

Summary of statistical callstack sampling data (usertime)--

664: Total Samples

0: Samples with incomplete traceback

19.920: Accumulated Time (secs.)

30.0: Sample interval (msecs.)

Function list, in descending order by exclusive time

[index] excl.secs excl.% cum.% incl.secs incl.% samples procedure (dso: file, line)

[3] 18.570 93.2% 93.2% 18.570 93.2% 619 anneal (generic: generic.c, 1570)

[5] 0.750 3.8% 97.0% 0.750 3.8% 25 slaveusrtime (dlslave.so: dlslave.c, 22)

[8] 0.420 2.1% 99.1% 0.420 2.1% 14 __read (libc.so.1: read.s, 20)

18 007–3311–009

SpeedShop User’s Guide

[12] 0.150 0.8% 99.8% 0.150 0.8% 5 cvttrap (generic: generic.c, 318)

[13] 0.030 0.2% 100.0% 0.030 0.2% 1 _ngetdents (libc.so.1: ngetdents.s, 16)

[1] 0.000 0.0% 100.0% 19.920 100.0% 664 main (generic: generic.c, 102)

[2] 0.000 0.0% 100.0% 19.920 100.0% 664 Scriptstring (generic: generic.c, 185)

[4] 0.000 0.0% 100.0% 18.570 93.2% 619 usrtime (generic: generic.c, 1385)

[14] 0.000 0.0% 100.0% 0.030 0.2% 1 dirstat (generic: generic.c, 349)

[15] 0.000 0.0% 100.0% 0.030 0.2% 1 _readdir (libc.so.1: readdir.c, 135)

[9] 0.000 0.0% 100.0% 0.420 2.1% 14 iofile (generic: generic.c, 462)

[10] 0.000 0.0% 100.0% 0.420 2.1% 14 fread (libc.so.1: fread.c, 27)

[11] 0.000 0.0% 100.0% 0.420 2.1% 14 _read (libc.so.1: readSCI.c, 27)

[6] 0.000 0.0% 100.0% 0.750 3.8% 25 libdso (generic: generic.c, 623)

[7] 0.000 0.0% 100.0% 0.750 3.8% 25 dlslave_routine (dlslave.so: dlslave.c, 7)

Analyzing the Report

The report shows information for each function. The meanings of the column
headings are described below:

• The index column assigns a reference number to each function.

• The excl.secs column shows how much time, in seconds, was spent in the
function itself (exclusive time). Routines that begin with an underscore, such as
__start, are internal routines that you cannot change.

• The excl.% column shows the percentage of a program’s total time that was
spent in the function.

• The cum.% column shows the percentage of the complete program time that has
executed in the routines listed so far.

• The incl.secs column shows how much time, in seconds, was spent in the
function and descendents of the function.

• The incl.% column shows the cumulative percentage of inclusive time spent in
each function and its descendents.

• The samples column shows how many samples were taken when the process
was executing in the function and in all of the function’s descendants.

• The procedure (dso:file,line) columns list the function name, its DSO
name, its file name, and its line number. For example, the top line reports statistics
for the function anneal, the DSO generic, in the file generic.c, at line 1570.

007–3311–009 19

2: Tutorial for C Users

A pcsamp Experiment

This section explains how to perform a pcsamp experiment. The pcsamp experiment
allows you to gather information on actual CPU time for each function in your
program. For more information on pcsamp, see "PC Sampling Experiment (pcsamp)",
page 67.

From the command line, enter the following:

% ssrun -fpcsamp generic

This starts the experiment. The f prefix is added to pcsamp for this program because
the program runs quickly and does not gather much data using the default pcsamp
experiment name; adding the f prefix results in more data samples. Output from
generic and from ssrun is printed to stdout, as shown in the following example.

A data file is also generated. The name consists of the process name (generic), the
experiment type (fpcsamp), and the experiment ID. In this example, the file name is
generic.fpcsamp.m11140.

0:00:00.000 ======== (16969) Begin script Mon 18 Mar 2002

07:02:19.

begin script ‘ll.u.cvt.d.i.f.dso’

0:00:00.005 ======== (16969) start of linklist Mon 18 Mar 2002

07:02:19.

linklist completed.

0:00:00.008 ======== (16969) start of usrtime Mon 18 Mar 2002

07:02:19.

usertime completed.

0:00:18.260 ======== (16969) start of cvttrap Mon 18 Mar 2002

07:02:37.

cvttrap completed, y = 2.60188e+14, z = 2.60188e+14.

0:00:18.430 ======== (16969) start of dirstat Mon 18 Mar 2002

07:02:37.

dirstat of /usr/include completed, 264 files.

0:00:18.464 ======== (16969) start of iofile -- stdio Mon 18 Mar 2002

07:02:37.

stdio iofile on /unix completed, 7965088 chars.

0:00:18.813 ======== (16969) start of fpetraps Mon 18 Mar 2002

07:02:38.

fpetraps completed.

0:00:18.815 ======== (16969) start of libdso Mon 18 Mar 2002

07:02:38.

20 007–3311–009

SpeedShop User’s Guide

dlslave_init executed

dlslave_routine executed

slaveusertime completed, x = 5000000.000000.

libdso: dynamic routine returned 13

end of script ‘ll.u.cvt.d.i.f.dso’

0:00:19.577 ======== (16969) End script Mon 18 Mar 2002

07:02:39.

Generating a Report

To generate a report on the data collected, and to redirect the output to a file, enter
the following:

% prof your_output_file_name > pcsamp.results

Output similar to the following is generated:

SpeedShop profile listing generated Mon Mar 18 07:03:54 2002

prof generic.fpcsamp.m16969

generic (n32): Target program

fpcsamp: Experiment name

pc,2,1000,0:cu: Marching orders

R5000 / R5000: CPU / FPU

1: Number of CPUs

180: Clock frequency (MHz.)

Experiment notes--

From file generic.fpcsamp.m16969:

Caliper point 0 at target begin, PID 16969

/speedtest/generic/generic

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (fpcsamp)--

19329: Total samples

19.329: Accumulated time (secs.)

1.0: Time per sample (msecs.)

2: Sample bin width (bytes)

Function list, in descending order by time

007–3311–009 21

2: Tutorial for C Users

[index] secs % cum.% samples function (dso: file, line)

[1] 18.084 93.6% 93.6% 18084 anneal (generic: generic.c, 1570)

[2] 0.716 3.7% 97.3% 716 slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.329 1.7% 99.0% 329 __read (libc.so.1: read.s, 20)

[4] 0.147 0.8% 99.7% 147 cvttrap (generic: generic.c, 318)

[5] 0.031 0.2% 99.9% 31 _xstat (libc.so.1: xstat.s, 12)

[6] 0.012 0.1% 99.9% 12 __write (libc.so.1: write.s, 20)

[7] 0.004 0.0% 100.0% 4 fread (libc.so.1: fread.c, 27)

[8] 0.002 0.0% 100.0% 2 iofile (generic: generic.c, 462)

[9] 0.001 0.0% 100.0% 1 fprintf (libc.so.1: fprintf.c, 23)

[10] 0.001 0.0% 100.0% 1 _cerror (libc.so.1: cerror.s, 30)

0.002 0.0% 100.0% 2 **OTHER** (includes excluded DSOs, rld, etc.)

19.329 100.0% 100.0% 19329 TOTAL

Analyzing the Report

The report has the following columns:

• The [index] column assigns a reference number to each function.

• The secs column shows the amount of CPU time, in seconds, that was spent in
the function.

• The % column shows the percentage of the total program time that was spent in
the function.

• The cum.% column shows the percentage of the complete program time in
functions that have been listed so far.

• The samples column shows how many samples were taken when the process
was executing in the function.

• The function (dso: file, line) columns list the function, its DSO name,
its file name, and its line number.

22 007–3311–009

SpeedShop User’s Guide

A Hardware Counter Experiment

Note: This experiment can be performed only on systems that have built-in hardware
counters (machines with the R10000, R12000, R14000, or R16000 class of CPU).

This section takes you through the steps to perform a hardware counter experiment.
There are a number of hardware counter experiments, but this tutorial describes the
steps involved in performing the dsc_hwc experiment. This experiment captures
information about secondary data cache misses. For more information on hardware
counter experiments, see "Hardware Counter Experiments (*_hwc, *_hwctime)",
page 54.

Performing a Hardware Counter Experiment

From the command line, enter:

% ssrun -dsc_hwc generic

This starts the experiment. Output from generic and from ssrun is printed to
stdout. A data file is also generated. The name consists of the process name
(generic), the experiment type (dsc_hwc), and the experiment ID. In this example,
the file name is generic.dsc_hwc.m294398.

Generating a Report

To generate a report on the data collected and redirect the output to a file, enter the
following:

% prof your_output_file_name > dsc_hwc.results

The report should look similar to the following listing:

SpeedShop profile listing generated Mon Feb 2 11:11:44 1998

prof generic.dsc_hwc.m294398

generic (n32): Target program

dsc_hwc: Experiment name

hwc,26,131:cu: Marching orders

R10000 / R10010: CPU / FPU

16: Number of CPUs

195: Clock frequency (MHz.)

Experiment notes--

007–3311–009 23

2: Tutorial for C Users

From file generic.dsc_hwc.m294398:

Caliper point 0 at target begin, PID 294398

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of R10K perf. counter overflow PC sampling data (dsc_hwc)--

6: Total samples

Sec cache D misses (26): Counter name (number)

131: Counter overflow value

786: Total counts

Function list, in descending order by counts

[index] counts % cum.% samples function (dso: file, line)

[1] 131 16.7% 16.7% 1 init2da (generic: generic.c, 1430)

[2] 131 16.7% 33.3% 1 genLog (generic: generic.c, 1686)

[3] 131 16.7% 50.0% 1 _write (libc.so.1: writeSCI.c, 27)

393 50.0% 100.0% 3 **OTHER** (includes excluded DSOs, rld, etc.)

786 100.0% 100.0% 6 TOTAL

Analyzing the Report

The information immediately preceding the function list displays the following:

• The Total samples is the number of times the program counter was sampled. It
is sampled once for each overflow, or once each time the hardware counter exceeds
the specified value.

• The Counter name (number) indicates the hardware counter used in the
experiment. In this case, hardware counter 26 counts the number of times a value
required in a calculation was not available in secondary cache. For a complete list
of the hardware counters and their numbers, see Table 4-2, page 59.

• The Counter overflow value is the number at which the hardware counter
overflows or exceeds its preset value. In this case, the value is 131, which is the
default. The fdsc_hwc experiment runs the same hardware counter experiment
with the preset value of 29. You can change the overflow value by setting the
_SPEEDSHOP_HWC_COUNTER_OVERFLOW environment variable to a value larger
than 0, the _SPEEDSHOP_HWC_COUNTER_NUMBER environment variable to 26, and

24 007–3311–009

SpeedShop User’s Guide

running the prof_hwc experiment instead of dsc_hwc. See "_hwc Hardware
Counter Experiments" to learn how to choose a counter overflow value.

• The Total counts is the total number of times a value was not in secondary
cache when needed. This value is determined by multiplying the total number of
samples by the overflow value; extra counts that do not cause an overflow are not
recorded.

The function list has the following columns:

• The index column assigns a reference number to each function.

• The counts column shows the number of times a data item was not in secondary
cache when needed for a calculation during the execution of the function. As with
Total counts, a function’s counts value is determined by multiplying its
samples value by the overflow value.

• The % column shows the percentage of the program’s overflows that occurred in
the function.

• The cum.% column shows the percentage of the program’s overflows that
occurred in the functions listed so far. A function might have a low number in its
% column but a high value in its cum.% column if it executed late in the program.

• The samples column shows the number of times the program counter was
sampled during execution of the function. A sample is taken for each overflow of
the hardware counter.

• The function (dso: file, line) columns list the function name, the DSO,
the file name, and line number of the function.

A Basic Block Experiment

This section takes you through the steps to perform an bbcounts experiment. The
times returned represent an idealized computation. This experiment ignores potential
floating-point interlocks and memory latency time (cache misses and memory bus
contention). The times returned will always be lower than the times for an actual run.
For more information on the bbcounts experiment, see "Basic Block Counting
Experiment (bbcounts)", page 62.

Performing a bbcounts Experiment

From the command line, enter

007–3311–009 25

2: Tutorial for C Users

% ssrun -bbcounts generic

This starts the experiment. First the executable, rld, and the DSOs are instrumented.
This entails making copies of the libraries and executables, giving the copies an
extension of .pixie.

Output from generic and from ssrun is printed to stdout. A data file is also
generated. The name consists of the process name (generic), the experiment type
(bbcounts), and the experiment ID. In this example, the file name is
generic.bbcounts.m10966, and the following is written to stdout:

instrumenting /lib32/rld

instrumenting /usr/lib32/libssrt.so

instrumenting /usr/lib32/libss.so

instrumenting /usr/lib32/libm.so

instrumenting /usr/lib32/libc.so.1

instrumenting /speedtest/generic/generic

0:00:00.001 ======== (16991) Begin script Mon 18 Mar 2002

07:05:46.

begin script ‘ll.u.cvt.d.i.f.dso’

0:00:00.016 ======== (16991) start of linklist Mon 18 Mar 2002

07:05:46.

linklist completed.

0:00:00.025 ======== (16991) start of usrtime Mon 18 Mar 2002

07:05:46.

usertime completed.

0:00:19.943 ======== (16991) start of cvttrap Mon 18 Mar 2002

07:06:06.

cvttrap completed, y = 2.60188e+14, z = 2.60188e+14.

0:00:20.201 ======== (16991) start of dirstat Mon 18 Mar 2002

07:06:06.

dirstat of /usr/include completed, 264 files.

0:00:20.245 ======== (16991) start of iofile -- stdio Mon 18 Mar 2002

07:06:06.

stdio iofile on /unix completed, 7965088 chars.

0:00:20.623 ======== (16991) start of fpetraps Mon 18 Mar 2002

07:06:07.

fpetraps completed.

0:00:20.631 ======== (16991) start of libdso Mon 18 Mar 2002

07:06:07.

instrumenting /speedtest/generic/./dlslave.so

26 007–3311–009

SpeedShop User’s Guide

dlslave_init executed

dlslave_routine executed

slaveusertime completed, x = 5000000.000000.

libdso: dynamic routine returned 13

end of script ‘ll.u.cvt.d.i.f.dso’

0:00:22.058 ======== (16991) End script Mon 18 Mar 2002

07:06:08.

The output statements beginning with “instrumenting declares that ssrun is
instrumenting first the libraries and then the generic executable itself.

Generating a Report

To generate a report on the data collected, enter the following at the command line:

% prof your_output_file_name > bbcounts.results

This command redirects output to a file called bbcounts.results. The file contains
results that look similar to the following partial listing. The number of functions and
their names may also vary.

SpeedShop profile listing generated Mon Mar 18 07:07:06 2002

prof generic.bbcounts.m16991

generic (n32): Target program

bbcounts: Experiment name

it:cu: Marching orders

R5000 / R5000: CPU / FPU

1: Number of CPUs

180: Clock frequency (MHz.)

Experiment notes--

From file generic.bbcounts.m16991:

Caliper point 0 at target begin, PID 16991

/speedtest/generic/generic

Caliper point 1 at exit(0)

Summary of ideal time data (bbcounts)--

2048459432: Total number of instructions executed

3266522347: Total computed cycles

18.147: Total computed execution time (secs.)

1.595: Average cycles / instruction

007–3311–009 27

2: Tutorial for C Users

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions calls function (dso: file, line)

[1] 17.304 95.4% 95.4% 3114690027 1956780024 1 anneal (generic.pixbb: generic.c, 1570)

[2] 0.694 3.8% 99.2% 125000842 75000732 1 slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.139 0.8% 99.9% 25000068 15000054 1 cvttrap (generic.pixbb: generic.c, 318)

[4] 0.002 0.0% 100.0% 348146 324941 1286 general_find_symbol (rld: rld.c, 2038)

[5] 0.002 0.0% 100.0% 337349 305518 2874 resolve_relocations (rld: rld.c, 2636)

[6] 0.001 0.0% 100.0% 148338 148338 1301 elfhash (rld: obj.c, 1184)

[7] 0.001 0.0% 100.0% 95076 95076 4138 obj_dynsym_got (rld: objfcn.c, 46)

[8] 0.000 0.0% 100.0% 88459 88459 1663 strcmp (rld: strcmp.s, 34)

[9] 0.000 0.0% 100.0% 78410 69944 1 fix_all_defineds (rld: rld.c, 3419)

[10] 0.000 0.0% 100.0% 76859 74309 1289 resolve_symbol (rld: rld.c, 1828)

[11] 0.000 0.0% 100.0% 75590 58123 1 init2da (generic.pixbb: generic.c, 1427)

[12] 0.000 0.0% 100.0% 72817 71565 1256 resolving (rld: rld.c, 1499)

[13] 0.000 0.0% 100.0% 67753 62361 487 fread (libc.so.1: fread.c, 27)

[14] 0.000 0.0% 100.0% 48270 45600 53 _doprnt (libc.so.1: doprnt.c, 227)

[15] 0.000 0.0% 100.0% 48000 35200 1600 _drand48 (libc.so.1: drand48.c, 116)

[16] 0.000 0.0% 100.0% 38783 27864 628 __sinf (libm.so: fsin.c, 97)

[17] 0.000 0.0% 100.0% 34408 34320 6 search_for_externals (rld: rld.c, 3987)

.

.

.

.

Analyzing the Report

The columns in the report provide the following information:

• The index column assigns a reference number to each function.

• The excl.secs column shows the minimum number of seconds that might be
spent in the function under ideal conditions.

• The excl.% column shows how much of the program’s total time was spent in
the function.

• The cum.% column shows the cumulative percentage of time spent in the
functions listed so far.

• The cycles column shows the total number of machine cycles used by the
function.

28 007–3311–009

SpeedShop User’s Guide

• The instructions column shows the total number of instructions executed by a
function.

• The calls column shows the total number of calls made to the function.

• The function (dso:file, line) columns list the function, its DSO name, its
file name, and the line number.

An fpe Trace

This section takes you through the steps to perform a floating-point exception (fpe)
trace, which identifies functions in which floating-point exceptions have occurred. For
more information on the fpe trace, see "Floating-Point Exception Trace Experiment
(fpe)", page 53.

Performing an fpe Trace

From the command line, enter:

% ssrun -fpe generic

Output from generic and from ssrun is printed to stdout. A data file is created
with a name generated by concatenating the process name (generic), the experiment
type (fpe), and the experiment ID. In this example, the file name is
generic.fpe.m12213.

Generating a Report

To generate a report on the data collected, enter the following at the command line:

% prof your_output_file_name > fpe.results

The report should look similar to the following partial listing:

SpeedShop profile listing generated Mon Mar 18 07:09:16 2002

prof generic.fpe.m17002

generic (n32): Target program

fpe: Experiment name

fpe:cu: Marching orders

R5000 / R5000: CPU / FPU

1: Number of CPUs

180: Clock frequency (MHz.)

007–3311–009 29

2: Tutorial for C Users

Experiment notes--

From file generic.fpe.m17002:

Caliper point 0 at target begin, PID 17002

/speedtest/generic/generic

Caliper point 1 at exit(0)

Summary of FPE callstack tracing data (fpe)--

4: Total FPEs

0: Samples with incomplete traceback

Function list, in descending order by exclusive FPEs

[index] excl.FPEs excl.% cum.% incl.FPEs incl.% function (dso: file, line)

[1] 4 100.0% 100.0% 4 100.0% fpetraps (generic: generic.c, 406)

[2] 0 0.0% 100.0% 4 100.0% main (generic: generic.c, 102)

[3] 0 0.0% 100.0% 4 100.0% Scriptstring (generic: generic.c, 185)

Analyzing the Report

The report shows information for each function:

• The index column assigns a reference number to each function.

• The excl.FPEs column shows how many floating-point exceptions were found
in the function. .

• The excl.% column shows the percentage of the total number of floating-point
exceptions that were found in the function.

• The cum.% column shows the percentage of exclusive floating-point exceptions in
the functions that have been listed so far. The list is sorted by the number of
floating-point exceptions, with the most in the top line and the least in the bottom
line. Because all of the exceptions are in the first function listed in this example,
all entries in this column are 100%.

• The incl.FPEs column shows how many floating-point exceptions were
generated by the function and the functions it called.

30 007–3311–009

SpeedShop User’s Guide

• The incl.% column shows the percentage of the program’s total number of
floating-point exceptions in this function and the functions it called. Because
fpetraps is called through all of the other functions, they are all listed as 100%.

• The function (dso:file, line) columns list the routine name, its DSO
name, its file name, and its line number.

007–3311–009 31

Chapter 3

Tutorial for Fortran Users

This chapter provides two tutorials for using the SpeedShop tools to gather and
analyze performance data in a Fortran program. There are three versions of the first
program:

• The linpack directory contains files for the n32-bit ABI.

• The linpack64 directory contains files for the 64-bit ABI.

• The linpacko32 directory contains files for the o32-bit ABI.

The first tutorial covers the following topics:

• "Tutorial Overview", page 34, introduces the sample program and explains the
different scenarios in which it will be used.

• "Tutorial Setup", page 35, leads you through the necessary setup for running the
experiment.

• "Analyzing Performance Data", page 35, steps you through different experiments,
discussing first how to do the experiments, then how to interpret the results.

The second tutorial creates a Message Passing Interface (MPI) experiment. The
experiment file is generated by SpeedShop and displayed by the WorkShop
performance analyzer. See "MPI Tracing Tutorial", page 47.

Note: Because of inherent differences between systems and also due to concurrent
processes that may be running on your system, your experiment will produce
different results from the one in this tutorial. However, the basic structure of the
results should be the same.

The Fortran tutorial demonstrates the following experiments:

• usertime

• pcsamp

• hardware counters

• basic block count (bbcounts)

• MPI trace experiment

007–3311–009 33

3: Tutorial for Fortran Users

For an example of a floating point exception experiment (fpe), see Chapter 2,
"Tutorial for C Users", page 13.

Tutorial Overview
This tutorial is based on a standard benchmark program called linpackup. There
are two versions of the program: the linpack directory contains files for the n32-bit
ABI, and the linpacko32 directory contains files for the o32-bit ABI. Each linpack
directory contains versions of the program for a single processor (linpackup) and
for multiple processors (linpackd). When you work with the tutorial, choose the
version of the program that is most appropriate for your system. A good guideline is
to choose whichever version corresponds to the way you expect to develop your
programs.

This tutorial was written and tested using the single-processor version of the program
(linpackup) in the linpack directory.

The linpack program is a standard benchmark designed to measure CPU
performance in solving dense linear equations. The program focuses primarily on
floating-point performance.

Output from the linpackup program looks like the following:

.

.

.

norm. resid resid machep x(1) x(n)

5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00 1.00000000E+00

times are reported for matrices of order 300
dgefa dgesl total mflops unit ratio

times for array with leading dimension of 301

3.720E+00 4.000E-02 3.760E+00 4.835E+00 4.136E-01 6.714E+01

3.780E+00 3.000E-02 3.810E+00 4.772E+00 4.191E-01 6.804E+01

3.730E+00 4.000E-02 3.770E+00 4.822E+00 4.147E-01 6.732E+01
3.730E+00 4.000E-02 3.770E+00 4.822E+00 4.147E-01 6.732E+01

times for array with leading dimension of 300

3.800E+00 4.000E-02 3.840E+00 4.734E+00 4.224E-01 6.857E+01

3.810E+00 4.000E-02 3.850E+00 4.722E+00 4.235E-01 6.875E+01

34 007–3311–009

SpeedShop User’s Guide

3.770E+00 4.000E-02 3.810E+00 4.772E+00 4.191E-01 6.804E+01
3.782E+00 4.000E-02 3.822E+00 4.757E+00 4.205E-01 6.825E+01

Tutorial Setup
Copy the program to a directory where you have write permission and compile it so
that you can use it in the tutorial.

1. Change to the /usr/demos/SpeedShop directory.

2. Copy the appropriate linpack directory and its contents to a directory in which
you have write permission:

% cp -r linpack your_dir

3. Change to the directory you just created:

% cd your_dir/linpack

4. Compile the program by entering:

% make all

This provides an executable for the experiment.

Note: You must APO installed in order to build these files. For sales and
licensing information, contact your SGI sales representative.

Analyzing Performance Data
This section lists the steps you need to perform the following experiments on the
linpackup program, generate the experiment’s results, and interpret the results:

• The usertime experiment. It returns the CPU time used by each routine in your
program. See "A usertime Experiment", page 36.

• The pcsamp experiment. It returns CPU time for each routine in your program.
See "A pcsamp Experiment", page 39.

• The dsc_hwc (secondary data cache hardware counter) experiment. In a hardware
counter experiment, the program counter is sampled every time a hardware

007–3311–009 35

3: Tutorial for Fortran Users

counter exceeds a specified limit. In the experiment performed in this section, the
hardware counter keeps track of the number of times a data item required in a
calculation was not present in secondary data cache. When a data item is not in
cache, it must be retrieved from memory, which is a more time-consuming
process. See "A Hardware Counter Experiment", page 41.

• The bbcounts experiment. This experiment calculates the best time achievable.
See "A bbcounts Experiment", page 44.

A usertime Experiment

This section lists the steps you need to perform a usertime experiment. The
usertime experiment allows you to gather data on the amount of CPU time spent in
each routine in your program. For more information, see "Call Stack Profiling
Experiment (usertime/totaltime)", page 68.

Performing a usertime Experiment

From the command line, enter the following:

% ssrun -v -usertime linpackup

This starts the experiment. The -v flag tells ssrun to print a log to stderr.

Output from linpackup and from ssrun is printed to stdout, as shown in the
following example. A data file is also generated. The name consists of the process
name (linpackup), the experiment type (usertime), and the experiment ID. In this
example, the filename is linpackup.usertime.m12205.

ssrun: target PID 18819

ssrun: setenv _SPEEDSHOP_MARCHING_ORDERS ut:cu

ssrun: setenv _SPEEDSHOP_EXPERIMENT_TYPE usertime

ssrun: setenv _SPEEDSHOP_TARGET_FILE linpackup

ssrun: setenv _RLD_LIST libss.so:libssrt.so:DEFAULT

ssrun: setenv _RLDN32_LIST libss.so:libssrt.so:DEFAULT

ssrun: setenv _RLD64_LIST libss.so:libssrt.so:DEFAULT

Please send the results of this run to:

Jack J. Dongarra

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, Illinois 60439

36 007–3311–009

SpeedShop User’s Guide

Telephone: 312-972-7246

ARPAnet: DONGARRA@ANL-MCS

norm. resid resid machep x(1) x(n)

5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00

1.00000000E+00

times are reported for matrices of order 300

dgefa dgesl total mflops unit ratio

times for array with leading dimension of 301

3.010E+00 3.000E-02 3.040E+00 5.980E+00 3.344E-01 5.429E+01

3.010E+00 3.000E-02 3.040E+00 5.980E+00 3.344E-01 5.429E+01

3.010E+00 3.000E-02 3.040E+00 5.980E+00 3.344E-01 5.429E+01

3.010E+00 3.000E-02 3.040E+00 5.980E+00 3.344E-01 5.429E+01

times for array with leading dimension of 300

3.020E+00 3.000E-02 3.050E+00 5.961E+00 3.355E-01 5.446E+01

3.030E+00 3.000E-02 3.060E+00 5.941E+00 3.366E-01 5.464E+01

3.030E+00 3.000E-02 3.060E+00 5.941E+00 3.366E-01 5.464E+01

3.024E+00 3.000E-02 3.054E+00 5.953E+00 3.360E-01 5.454E+01

Generating a Report

To generate a report on the data collected, enter the following at the command line:

% prof your_output_file_name > usertime.results

The prof command interprets the type of experiment you have performed and prints
results to stdout. The following report shows partial prof output.

Note: Lines have been wrapped because of line width restrictions.

SpeedShop profile listing generated Tue Mar 19 06:52:47 2002

prof linpackup.usertime.m18819

linpackup (n32): Target program

usertime: Experiment name

ut:cu: Marching orders

007–3311–009 37

3: Tutorial for Fortran Users

R5000 / R5000: CPU / FPU

1: Number of CPUs

180: Clock frequency (MHz.)

Experiment notes--

From file linpackup.usertime.m18819:

Caliper point 0 at target begin, PID 18819

/speedlin/linpack/linpackup

Caliper point 1 at exit(0)

Summary of statistical callstack sampling data (usertime)--

1960: Total Samples

0: Samples with incomplete traceback

58.800: Accumulated Time (secs.)

30.0: Sample interval (msecs.)

Function list, in descending order by exclusive time

[index] excl.secs excl.% cum.% incl.secs incl.% samples procedure (dso: file, line)

[4] 54.600 92.9% 92.9% 54.600 92.9% 1820 daxpy (linpackup: linpackup.f, 495)

[5] 1.920 3.3% 96.1% 1.920 3.3% 64 matgen (linpackup: linpackup.f, 199)

[3] 1.800 3.1% 99.2% 56.250 95.7% 1875 dgefa (linpackup: linpackup.f, 221)

[7] 0.300 0.5% 99.7% 0.300 0.5% 10 idamax (linpackup: linpackup.f, 700)

[8] 0.120 0.2% 99.9% 0.120 0.2% 4 dscal (linpackup: linpackup.f, 670)

[9] 0.030 0.1% 99.9% 0.030 0.1% 1 dmxpy (linpackup: linpackup.f, 826)

[10] 0.030 0.1% 100.0% 0.030 0.1% 1 _type_f (libftn.so: fmt.c, 761)

[1] 0.000 0.0% 100.0% 58.800 100.0% 1960 main (libftn.so: main.c, 76)

[2] 0.000 0.0% 100.0% 58.800 100.0% 1960 linp (linpackup: linpackup.f, 3)

[6] 0.000 0.0% 100.0% 0.570 1.0% 19 dgesl (linpackup: linpackup.f, 324)

[11] 0.000 0.0% 100.0% 0.030 0.1% 1 do_fioxr8v (libftn.so: fmt.c, 1603)

[12] 0.000 0.0% 100.0% 0.030 0.1% 1 do_fio64_mp (libftn.so: fmt.c, 626)

Analyzing the Report

The report shows information for each function.

• The index column, which enumerates the routines in the program, provides an
index number for reference.

• The excl.secs column shows how much time, in seconds, was spent in the
routine itself (exclusive time).

38 007–3311–009

SpeedShop User’s Guide

• The excl.% column shows the percentage of a program’s total time that was
spent in the function. For example, the daxpy routine consumed 92.9% of the
program’s time.

• The cum.% column shows the percentage of the complete program time that has
been spent in the routines that have been listed so far.

• The incl.secs column shows how much time, in seconds, was spent in the
function and descendents of the function.

• The incl.% column shows the cumulative percentage of inclusive time spent in
each routine and its descendents.

• The samples column provides the number of samples taken from the function
and all of its descendants.

• The function (dso:file, line) column lists the routine name, its DSO
name, its file name, and its line number.

Note: Many functions shown here have only one or two hits. The data for those
functions is not statistically significant. (Routines that begin with an underscore, such
as __start, are internal routines that you cannot change.)

A pcsamp Experiment

This section lists the steps you need to perform a pcsamp experiment. The pcsamp
experiment allows you to gather information on actual CPU time for each source code
line, machine line, and function in your program. For more information on pcsamp,
see "PC Sampling Experiment (pcsamp)", page 67.

Performing a pcsamp Experiment

From the command line, enter the following:

% ssrun -pcsamp linpackup

This starts the experiment.

Output from linpackup and from ssrun is printed to stdout, as shown in the
following example. A data file is also generated. The name consists of the process
name (linpackup), the experiment type (pcsamp), and the experiment ID. In this
example, the file name is linpackup.pcsamp.m12333.

007–3311–009 39

3: Tutorial for Fortran Users

.

norm. resid resid machep x(1) x(n)

5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00

1.00000000E+00

.

.

.

Generating a Report

To generate a report on the data collected, enter the following at the command line:

% prof your_output_file_name > pcsamp.results

The prof command interprets the type of experiment you have performed and prints
results to stdout. The following report shows partial prof output.

SpeedShop profile listing generated Tue Mar 19 07:02:22 2002

prof linpackup.pcsamp.m18866

linpackup (n32): Target program

pcsamp: Experiment name

pc,2,10000,0:cu: Marching orders

R5000 / R5000: CPU / FPU

1: Number of CPUs

180: Clock frequency (MHz.)

Experiment notes--

From file linpackup.pcsamp.m18866:

Caliper point 0 at target begin, PID 18866

/speedlin/linpack/linpackup

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (pcsamp)--

5669: Total samples

56.690: Accumulated time (secs.)

10.0: Time per sample (msecs.)

2: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

40 007–3311–009

SpeedShop User’s Guide

[1] 53.050 93.6% 93.6% 5305 daxpy (linpackup: linpackup.f, 495)

[2] 1.860 3.3% 96.9% 186 matgen (linpackup: linpackup.f, 199)

[3] 1.430 2.5% 99.4% 143 dgefa (linpackup: linpackup.f, 221)

[4] 0.190 0.3% 99.7% 19 idamax (linpackup: linpackup.f, 700)

[5] 0.110 0.2% 99.9% 11 dscal (linpackup: linpackup.f, 670)

[6] 0.050 0.1% 100.0% 5 dmxpy (linpackup: linpackup.f, 826)

56.690 100.0% 100.0% 5669 TOTAL

Analyzing the Report

The report has the following columns:

• The index column assigns a reference number to each function.

• The secs column shows the amount of CPU time spent in the routine.

• The (%) column shows the percentage of the total program time that was spent in
the function.

• The cum.% column shows the percentage of the complete program time that has
been spent by the routines listed so far.

• The samples column shows how many samples were taken when the process
was executing in the function.

• The function (dso:file, line) columns list the routine name, its DSO
name, its file name, and its line number.

A Hardware Counter Experiment

Note: This experiment can be performed only on systems that have built-in hardware
counters (the R10000, R12000, R14000, and R16000 classes of machines).

Hardware counters keep track of a variety of hardware information. For a complete
list of hardware counter experiments, see the ssrun(1) man page.

This section lists the steps you need to perform a hardware counter experiment. The
tutorial describes the steps involved in performing the dsc_hwc experiment. This
experiment allows you to capture information about secondary data cache misses. For

007–3311–009 41

3: Tutorial for Fortran Users

more information on hardware counter experiments, see "Hardware Counter
Experiments (*_hwc, *_hwctime)", page 54.

Performing a Hardware Counter Experiment

From the command line, enter the following:

% ssrun -dsc_hwc linpackup

This starts the experiment. Output from linpackup and from ssrun will be printed
to stdout. A data file is also generated. The name consists of the process name
(linpackup), the experiment type (dsc_hwc), and the experiment ID. In this
example, the filename is linpackup.dsc_hwc.m438011.

Generating a Report

To generate a report on the data collected, enter the following at the command line:

% prof your_output_file_name > dsc_hwc.results

Output similar to the following is generated:

SpeedShop profile listing generated Mon Feb 2 13:56:59 1998

prof linpackup.dsc_hwc.m438011

linpackup (n32): Target program

dsc_hwc: Experiment name

hwc,26,131:cu: Marching orders

R10000 / R10010: CPU / FPU

16: Number of CPUs

195: Clock frequency (MHz.)

Experiment notes--

From file linpackup.dsc_hwc.m438011:

Caliper point 0 at target begin, PID 438011

/usr/demos/SpeedShop/linpack.demos/fortran/linpackup

Caliper point 1 at exit(0)

Summary of R10K perf. counter overflow PC sampling data (dsc_hwc)--

2929: Total samples

Sec cache D misses (26): Counter name (number)

131: Counter overflow value

383699: Total counts

42 007–3311–009

SpeedShop User’s Guide

Function list, in descending order by counts

[index] counts % cum.% samples function (dso: file, line)

[1] 309029 80.5% 80.5% 2359 daxpy (linpackup: linpackup.f, 495)

[2] 46636 12.2% 92.7% 356 dgefa (linpackup: linpackup.f, 221)

[3] 25938 6.8% 99.5% 198 matgen (linpackup: linpackup.f, 199)

[4] 1310 0.3% 99.8% 10 idamax (linpackup: linpackup.f, 700)

[5] 131 0.0% 99.8% 1 _FWF (libfortran.so: wf90.c, 47)

[6] 131 0.0% 99.9% 1 memset (libc.so.1: bzero.s, 98)

524 0.1% 100.0% 4 **OTHER** (includes excluded DSOs, rld, etc.)

383699 100.0% 100.0% 2929 TOTAL

Analyzing the Report

The information immediately above the function list displays the following:

• The Total samples is the number of times the program counter was sampled. It
is sampled once for each overflow, or each time the hardware counter exceeds the
specified value.

• The Counter name (number) indicates the hardware counter used in the
experiment. In this case, hardware counter 26 counts the number of times a value
required in a calculation was not available in secondary cache. For a complete list
of the hardware counters and their numbers, see Table 4-2, page 59.

• The Counter overflow value is the number at which the hardware counter
overflows, or exceeds its preset value. In this case, the value is 131, which is the
default. You can change the overflow value by setting the
_SPEEDSHOP_HWC_COUNTER_OVERFLOW environment variable to a value larger
than 0, the _SPEEDSHOP_HWC_COUNTER_NUMBER environment variable to 26, and
running the prof_hwc experiment rather than dsc_hwc.

See "_hwctime Hardware Counter Experiments", page 57 to learn how to choose
a counter overflow value.

• The Total counts is the total number of times a value was not in secondary
cache when needed. This value is determined by multiplying the total number of
samples by the overflow value; extra counts that do not cause an overflow are not
recorded.

The function list has the following columns:

007–3311–009 43

3: Tutorial for Fortran Users

• The index column assigns a reference number to each function.

• The counts column shows the number of times a data item was not in secondary
cache when needed for a calculation during the execution of the routine. As with
Total counts (described earlier), a routine’s counts value is determined by
multiplying its samples value (described later) by the overflow value.

• The % column shows the percentage of the program’s overflows that occurred in
the routine.

• The cum.% column shows the percentage of the program’s overflows that
occurred in the routines listed so far. For example, although the matgen routine
had only 6.8% of the program’s overflows, by the time it is encountered in the
routine list, 99.5% of the program’s total overflows have been recorded.

• The samples column shows the number of times the program counter was
sampled during execution of the routine. A sample is taken for each overflow of
the hardware counter.

• The function (dso:file, line) columns show the name, the DSO, the file
name, and line number of the routine.

A bbcounts Experiment

This section provides the steps you need to perform a bbcounts or basic block counts
experiment. This experiment counts basic block usage and estimates a linear time. It
also maps a complete call graph. See "Basic Block Counting Experiment (bbcounts)",
page 62.

Performing a bbcounts Experiment

From the command line, enter the following:

% ssrun -bbcounts linpackup

This starts the experiment. This entails making copies of the libraries and executables,
giving them an extension of .pixie.

Output from linpackup and from ssrun is printed to stdout, as shown in the
following example. A data file is also generated. The name consists of the process
name (linpackup), the experiment type (bbcounts), and the experiment ID. In this
example, the file name is linpackup.bbcounts.m77549.

44 007–3311–009

SpeedShop User’s Guide

instrumenting /lib32/rld
instrumenting /usr/lib32/libssrt.so

instrumenting /usr/lib32/libss.so

instrumenting /usr/lib32/libmp.so

instrumenting /usr/lib32/libftn.so

instrumenting /usr/lib32/libm.so
instrumenting /usr/lib32/libc.so.1

Generating a Report

To generate a report on the data collected, enter the following at the command line:

% prof your_output_file_name > bbcounts.results

The prof command redirects output to a file called bbcounts.results. The file
should contain results that look something like the following.

SpeedShop profile listing generated Tue Mar 19 07:05:08 2002

prof linpackup.bbcounts.m18879

linpackup (n32): Target program

bbcounts: Experiment name

it:cu: Marching orders

R5000 / R5000: CPU / FPU

1: Number of CPUs

180: Clock frequency (MHz.)

Experiment notes--

From file linpackup.bbcounts.m18879:

Caliper point 0 at target begin, PID 18879

/speedlin/linpack/linpackup

Caliper point 1 at exit(0)

Summary of ideal time data (bbcounts)--

4947867081: Total number of instructions executed

6648387101: Total computed cycles

36.935: Total computed execution time (secs.)

1.344: Average cycles / instruction

007–3311–009 45

3: Tutorial for Fortran Users

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions calls function (dso: file, line)

[1] 34.620 93.7% 93.7% 6231556465 4669997342 772633 daxpy (linpackup.pixbb: linpackup.f, 495)

[2] 1.325 3.6% 97.3% 238494366 155792196 18 matgen (linpackup.pixbb: linpackup.f, 199)

[3] 0.689 1.9% 99.2% 123962402 80774803 17 dgefa (linpackup.pixbb: linpackup.f, 221)

[4] 0.138 0.4% 99.6% 24871119 18629195 5083 dscal (linpackup.pixbb: linpackup.f, 670)

[5] 0.113 0.3% 99.9% 20362634 15660094 5083 idamax (linpackup.pixbb: linpackup.f, 700)

[6] 0.029 0.1% 99.9% 5226705 3695170 1 dmxpy (linpackup.pixbb: linpackup.f, 826)

[7] 0.007 0.0% 100.0% 1204552 761974 17 dgesl (linpackup.pixbb: linpackup.f, 324)

[8] 0.004 0.0% 100.0% 710271 659913 2166 general_find_symbol (rld: rld.c, 2038)

[9] 0.003 0.0% 100.0% 490666 447076 4700 resolve_relocations (rld: rld.c, 2636)

[10] 0.001 0.0% 100.0% 239219 239219 2180 elfhash (rld: obj.c, 1184)

[11] 0.001 0.0% 100.0% 163768 163768 7126 obj_dynsym_got (rld: objfcn.c, 46)

[12] 0.001 0.0% 100.0% 157763 157763 3095 strcmp (rld: strcmp.s, 34)

[13] 0.001 0.0% 100.0% 129442 125136 2168 resolve_symbol (rld: rld.c, 1828)

[14] 0.001 0.0% 100.0% 124086 121952 2139 resolving (rld: rld.c, 1499)

[15] 0.001 0.0% 100.0% 114658 102484 2 fix_all_defineds (rld: rld.c, 3419)

[16] 0.000 0.0% 100.0% 64956 64615 7 search_for_externals (rld: rld.c, 3987)

[17] 0.000 0.0% 100.0% 61565 59304 1116 __flsbuf (libc.so.1: _flsbuf.c, 25)

[18] 0.000 0.0% 100.0% 55557 42737 4274 obj_set_dynsym_got (rld: objfcn.c, 82)

[19] 0.000 0.0% 100.0% 42595 42594 867 x_putc (libftn.so: wsfe.c, 177)

[20] 0.000 0.0% 100.0% 42261 37264 1 linp (linpackup.pixbb: linpackup.f, 3)

[21] 0.000 0.0% 100.0% 24161 21845 28 x_wEND (libftn.so: wsfe.c, 225)

[22] 0.000 0.0% 100.0% 17014 17000 8 memset (libc.so.1: bzero.s, 98)

[23] 0.000 0.0% 100.0% 14671 13537 71 do_fio64_mp (libftn.so: fmt.c, 626)

[24] 0.000 0.0% 100.0% 14575 11501 53 wrt_E (libftn.so: wrtfmt.c, 353)

.

.

.

[331] 0.000 0.0% 100.0% 1 1 1 __istart (linpackup.pixbb: crt1tinit.s, 14)

46 007–3311–009

SpeedShop User’s Guide

Analyzing the Report

The report has the following columns:

• The index column assigns a reference number to each function.

• The excl.secs column shows the minimum number of seconds that might be
spent in the routine under ideal conditions.

• The excl.% column represents how much of the program’s total time was spent
in the routine.

• The cum.% column shows the cumulative percentage of time spent in the routines
listed so far.

• The cycles column shows the total number of machine cycles used by the routine.

• The instructions column shows the total number of instructions executed by a
routine.

• The calls column shows the total number of calls to the routine. For example,
there was just one call to the dmxpy routine.

• The function (dso:file, line) column lists the name, the DSO name, the
file name, and the line number for the routine.

MPI Tracing Tutorial
The mpi experiment traces and times calls to MPI routines; the results are viewable
with prof. The mpi_trace experiment produces the same results but the results are
viewable only in cvperf.

The following steps generate tracing data for an MPI program. Before running this
tutorial, you must first obtain a copy of the matmul.f file. You can perform a web
search to find a downloadable copy, or go to any of the following URLS to obtain a
copy of the file:

http://scv.bu.edu/SCV/Tutorials/F90/intrinsics/MATMUL.html

http://www.dartmouth.edu/~rc/classes/intro_mpi/matmult.html

Save the copy in the /usr/demos/SpeedShop directory.

1. First, set the MPI_RLD_HACK_OFF environment variable to prevent SpeedShop
confusion over the organization of the DSOs.

007–3311–009 47

3: Tutorial for Fortran Users

% setenv MPI_RLD_HACK_OFF 1

2. Compile the matmul.f source file and include the MPI library:

% f90 -o matmul matmul.f -lmpi

3. Now run the ssrun command as part of the mpirun(1) command on the
executable file to generate experiment files:

% mpirun -np 4 ssrun -mpi_trace matmul

The result will be a series of experiment files, one for each process (the identifier
begins with an f) and one for the master process (the identifier begins with an m):

matmul.mpi.f9587021
matmul.mpi.f9905720
matmul.mpi.f9930637
matmul.mpi.f9930718
matmul.mpi.m9951566

4. Finally, display an experiment file with the WorkShop cvperf(1) command. You
can use prof to display an mpi experiment and you can use cvperf to view an
mpi_trace experiment.

% cvperf matmul.mpi.f9587021

To display the output, select either MPI Stats View (Graphs) or MPI Stats View
(Numerical) from the Views menu. See Figure 3-1, page 49, for an illustration of
the MPI Stats View (Graphs).

48 007–3311–009

SpeedShop User’s Guide

Figure 3-1 An MPI Experiment in cvperf

007–3311–009 49

Chapter 4

Experiment Types

This chapter provides detailed information on each experiment type available within
SpeedShop. It contains the following sections:

• "Selecting an Experiment", page 51.

• "Floating-Point Exception Trace Experiment (fpe)", page 53.

• "Heap Trace Experiment (heap)", page 53.

• "Hardware Counter Experiments (*_hwc, *_hwctime)", page 54.

• "Basic Block Counting Experiment (bbcounts)", page 62.

• "I/O Trace Experiment (io)", page 65.

• "NUMA Profiling Experiment (numa)", page 66

• "PC Sampling Experiment (pcsamp)", page 67.

• "Call Stack Profiling Experiment (usertime/totaltime)", page 68.

For information on how to run the experiments described in this chapter, see Chapter
6, "Setting Up and Running Experiments: ssrun", page 71.

Selecting an Experiment
Table 4-1 shows the possible experiments you can perform using the SpeedShop tools
and the reasons why you might want to choose a specific experiment. The Clues
column shows when you might use an experiment. The Data Collected column
indicates performance data collected by the experiment. For detailed information on
the experiments, see the relevant section in the remainder of this chapter.

007–3311–009 51

4: Experiment Types

Table 4-1 Summary of Experiments

Experiment Clues Data Collected

fpe High system time. Presence
of floating-point operations.

All floating-point exceptions, with the exception type and
the call stack at the time of the exception. See
"Floating-Point Exception Trace Experiment (fpe)", page 53.

heap Memory utilization. Heap trace data from each processor in a multiprocessor
system. See "Heap Trace Experiment (heap)", page 53.

_hwc High user CPU time. On R10000, R12000, R14000, and R16000 class machines,
counts at the source line, machine instruction, and function
levels of various hardware events, including: clock cycles,
graduated instructions, primary instruction cache misses,
secondary instruction cache misses, primary data cache
misses, secondary data cache misses, translation lookaside
buffer (TLB) misses, and graduated floating-point
instructions. PC sampling is used. See "Hardware Counter
Experiments (*_hwc, *_hwctime)", page 54.

_hwctime High user CPU time. Similar to _hwc experiment, except that callstack sampling
is used. See "Hardware Counter Experiments (*_hwc,
*_hwctime)", page 54.

bbcounts CPU-bound. CPU time at the function, source line, and machine
instruction levels using basic block counting. See "Basic
Block Counting Experiment (bbcounts)", page 62.

io I/O-bound. Traces the following I/O system calls: read, readv, write,
writev, open, close, dup, pipe, creat. See "I/O Trace
Experiment (io)", page 65.

mpi mpi performance is poor. Traces and times calls to various MPI routines. See "MPI
Call Tracing Experiment (mpi/mpi_trace)", page 66

mpi_trace mpi performance is poor. Traces calls to various MPI routines and generates a file
viewable in the cvperf performance analyzer window. This
is a deprecated experiment and will be removed in a future
release. See "MPI Call Tracing Experiment
(mpi/mpi_trace)", page 66.

52 007–3311–009

SpeedShop User’s Guide

Experiment Clues Data Collected

numa Slow shared-memory
program.

On ccNUMA architecture machines, randomly samples
memory accesses and reports: instruction performing the
access, memory being accessed, ccNUMA node where
memory access originates, ccNUMA node containing the
memory, ccNUMA routing distance between these two
nodes. See "NUMA Profiling Experiment (numa)", page 66.

pcsamp High user CPU time. Actual CPU time at the source line, machine instruction, and
function levels by sampling the program counter at 10 or
1-millisecond intervals. See "PC Sampling Experiment
(pcsamp)", page 67.

totaltime Slow program, nothing else
known. Not CPU-bound.

Inclusive and exclusive real time for each function by
sampling the callstack at 30-millisecond intervals. See "Call
Stack Profiling Experiment (usertime/totaltime)", page
68.

usertime Slow program, nothing else
known. Not CPU-bound.

Inclusive and exclusive CPU time for each function by
sampling the callstack at 30-millisecond intervals. See "Call
Stack Profiling Experiment (usertime/totaltime)", page
68.

Floating-Point Exception Trace Experiment (fpe)
A floating-point exception trace collects each floating-point exception with the
exception type and the call stack at the time of the exception. Floating-point
exception tracing experiments should incur a slowdown in execution of the program
of no more than 15%. These measurements are exact, not statistical.

The prof command generates a report that shows inclusive and exclusive
floating-point exception counts.

Heap Trace Experiment (heap)
If you are running a heap trace experiment (heap) on a multiprocessor application,
you will get an experiment file for each process and an additional experiment file for
the master process. Each process experiment file can either contain a sample of the
data from the whole application or its own data only, as follows:

007–3311–009 53

4: Experiment Types

• By default, the experiment file for each process will contain data from all processes.

• If you set the _SSMALLOC_NO_BUFFERING environment variable before executing
ssrun, the experiment file for each process will contain only its own heap trace
data.

Hardware Counter Experiments (*_hwc, *_hwctime)
In the SpeedShop hardware counter experiments, overflows of a particular hardware
counter are recorded. Each hardware counter is configured to count from zero to a
number designated as the overflow value. When the counter reaches the overflow
value, the system resets it to zero and increments the number of overflows at the
present program instruction address. Each experiment provides two possible
overflow values; the values are prime numbers, so any profiles that seem the same for
both overflow values should be statistically valid.

The experiments described in this section are available for systems that have
hardware counters (R10000, R12000, R14000, and R16000 class machines). Hardware
counters allow you to count various types of events, such as cache misses and counts
of issued and graduated instructions.

A hardware counter works as follows: for each event, the appropriate hardware
counter is incremented on the processor clock cycle. For example, when a
floating-point instruction is graduated in a cycle, the graduated floating-point
instruction counter is incremented by 1.

These experiments are detailed by nature. They return information gathered at the
hardware level. You probably want to run a higher level experiment first. Once you
have narrowed the scope, you can use hardware counter experiments to pinpoint the
area to be tuned.

Two Tools for Hardware Counter Experiments

There are two tools that allow you to access hardware counter data:

• perfex(1) is a command-line interface that provides program-level event
information. For more information on perfex, see the perfex(1) man page. For
more information on hardware counters, see the r10k_counters(1) man page.

54 007–3311–009

SpeedShop User’s Guide

• SpeedShop allows you to perform the hardware counter experiments described in
the next sections ("_hwc Hardware Counter Experiments" and "_hwctime
Hardware Counter Experiments", page 57).

_hwc Hardware Counter Experiments

The _hwc hardware counter experiments show where the overflows are being
triggered in the program: at the function, source-line, or individual instruction level.
When you run prof on the data collected during the experiment, the overflow counts
are multiplied by the overflow value to compute the total number of events. These
numbers are statistical, meaning they are not precise. The generated reports show
exclusive hardware counts: that is, information about where the program counter
was. They do not show the callstack to get there

Hardware counter overflow profiling experiments should incur a slowdown of
execution of the program of no more than 5%. Count data is kept as 32-bit integers
only.

By preceding the experiment name with an f (for example, cy_hwc becomes
fcy_hwc), you reduce the value of an overflow to approximately one-fifth of the
original value. By preceding the experiment name with an s, you increase the value
of an overflow over the original value.

The following list describes the hardware counter experiments:

• [f|s]gi_hwc experiment: this experiment counts overflows of the graduated
instruction counter. The graduated instruction counter is incremented by the
number of instructions that were graduated on the previous cycle. The experiment
uses statistical PC sampling based on an overflow interval of 32,771. If the
optional f prefix is used, the overflow interval is 6,553. If the s prefix is used, the
overflow interval is 3,999,971.

• [f|s]cy_hwc experiment: this experiment counts overflows of the cycle counter.
The cycle counter is incremented on each clock cycle. The experiment uses
statistical PC sampling based on an overflow interval of 16,411. If the optional f
prefix is used, the overflow interval is 3,779. If the optional s prefix is used, the
overflow interval is 1,999,993.

• [f|s]ic_hwc experiment: this experiment counts overflows of the primary
instruction cache miss counter. The counter is incremented one cycle after an
instruction fetch request is entered into the miss handling table. The experiment
uses statistical PC sampling based on an overflow interval of 2,053. If the optional

007–3311–009 55

4: Experiment Types

f prefix is used, the overflow interval is 419. If the optional s prefix is used, the
overflow interval is 524,309.

• [f|s]isc_hwc experiment: this experiment counts overflows of the secondary
instruction cache miss counter. The secondary instruction cache miss counter is
incremented after the last 16-byte block of a 64-byte primary instruction cache line
is written into the instruction cache. The experiment uses statistical PC sampling
based on an overflow interval of 131. If the optional f prefix is used, the overflow
interval is 29. If the optional s prefix is used, the overflow interval is 65,537.

• [f|s]dc_hwc experiment: this experiment counts overflows of the primary data
cache miss counter. The primary data cache miss counter is incremented on the
cycle after a primary cache data refill is begun. The experiment uses statistical PC
sampling based on an overflow interval of 2,053. If the optional f prefix is used,
the overflow interval is 419. If the optional fs prefix is used, the overflow interval
is 524,309.

• [f|s]dsc_hwc experiment: this experiment counts overflows of the secondary
data cache miss counter. The secondary data cache miss counter is incremented on
the cycle after the second 16-byte block of a primary data cache line is written into
the data cache. The experiment uses statistical PC sampling, based on an overflow
interval of 131. If the optional f prefix is used, the overflow interval is 29. If the
optional s prefix is used, the overflow interval is 65,537.

• [f|s]tlb_hwc experiment: this experiment counts overflows of the translation
lookaside buffer (TLB) counter. The TLB counter is incremented on the cycle after
the TLB miss handler is invoked. The experiment uses statistical PC sampling
based on an overflow interval of 257. If the optional f prefix is used, the overflow
interval is 53. If the optional s prefix is used, the overflow interval is 19,997.

• [f|s]gfp_hwc experiment: this experiment counts overflows of the graduated
floating-point instruction counter. The graduated floating-point instruction counter
is incremented by the number of floating-point instructions that graduated on the
previous cycle. If the optional f prefix is used, the overflow interval is 6,553. If
the optional s prefix is used, the overflow interval is 3,999,971.

• [f|s]fsc_hwc experiment: this experiment uses statistical PC sampling based on
overflows of the failed store conditionals counter. If the optional f prefix is used,
the overflow interval is 401. If the optional s prefix is used, the overflow interval
is 19,997.

• prof_hwc experiment: for any hardware counter not otherwise covered in "_hwc
Hardware Counter Experiments", or to choose different overflow intervals for

56 007–3311–009

SpeedShop User’s Guide

those hardware counters, the prof_hwc experiment allows you to set a hardware
counter to use in the experiment and to set a counter overflow interval using the
following environment variables:

– _SPEEDSHOP_HWC_COUNTER_NUMBER: the value of this variable can be
between 0 and 31. Hardware counters are described in the MIPS R10000 User’s
Guide and on the r10k_counters(1) man page. The hardware counter
numbers are provided in the tables in "Hardware Counter Numbers", page 59.

– _SPEEDSHOP_HWC_COUNTER_OVERFLOW: The value of this variable can be any
number greater than 0. Some numbers may produce data that is not
statistically random, but rather reflects a correlation between the overflow
interval and a cyclic behavior in the application. You may want to do two or
more runs with different overflow values.

The default counter is the primary instruction-cache miss counter; the default
overflow interval is 2,053.

The experiment uses statistical PC sampling based on the overflow of the specified
counter, at the specified interval. Note that these environment variables cannot be
used for other hardware counter experiments. They are examined only when the
prof_hwc or prof_hwctime experiment is specified.

_hwctime Hardware Counter Experiments

The following sections describe _hwctime hardware counter experiments, which run
on R10000, R12000, R14000 and R16000 machines only. The _hwctime hardware
counter experiments also show where the overflows are being triggered in the
program. These experiments are similar to the _hwc experiments, but record the
callstack information rather than showing where the program counter was when the
overflow occurred.

See the perfex(1) and r10k_counters(5) man pages for other methods of returning
hardware-level information.

The following list describes these experiments:

• gi_hwctime experiment: hwct,17,1000003,0,SIGPROF:cu. Profiles the cycle
counter using the statistical call stack sampling, based on overflows of the
graduated-instruction counter, at an overflow interval of 1000003.

007–3311–009 57

4: Experiment Types

• cy_hwctime experiment: hwct,0,10000019,0,SIGPROF:cu. Profiles the cycle
counter using statistical call-stack sampling based on overflows of the cycle
counter, at an overflow interval of 10000019.

• ic_hwctime experiment: hwct,9,8009,0,SIGPROF:cu. Profiles the cycle
counter using statistical call-stack sampling, based on overflows of the primary
instruction-cache-miss counter, at an overflow interval of 8009.

• isc_hwctime experiment: hwct,10,2003,0,SIGPROF:cu. Profiles the cycle
counter using statistical call-stack sampling, based on overflows of the secondary
instruction-cache-miss counter, at an overflow interval of 2003.

• dc_hwctime experiment: hwct,25,8009,0,SIGPROF:cu. Profiles the cycle
counter using statistical call-stack sampling, based on overflows of the primary
data-cache-miss counter, at an overflow interval of 8009.

• dsc_hwctime experiment: hwct,26,2003,0,SIGPROF:cu. Profiles the cycle
counter using statistical call-stack sampling, based on overflows of the secondary
data-cache-miss counter, at an overflow interval of 2003.

• tlb_hwctime experiment: hwct,23,2521,0,SIGPROF:cu. Profiles the cycle
counter using statistical call-stack sampling, based on overflows of the TLB miss
counter, at an overflow interval of 2521.

• gfp_hwctime experiment: hwct,21,10007,0,SIGPROF:cu. Profiles the cycle
counter using statistical call-stack sampling, based on overflows of the graduated
floating-point instruction counter, at an overflow interval of 10007.

• fsc_hwctime experiment: hwct,5,5003,0,SIGPROF:cu. Profiles the cycle
counter using statistical call-stack sampling, based on overflows of the failed store
conditionals counter, at an overflow interval of 5003.

• prof_hwctime experiment: For any hardware counter not otherwise covered in
"_hwc Hardware Counter Experiments", or to choose different sampling
counter/overflow interval for any hardware counter time experiment, the
prof_hwctime experiment is available. Here, profiling is done for the counter
specified by the environment variable
_SPEEDSHOP_HWC_COUNTER_PROF_NUMBER using statistical call-stack sampling,
based on overflows of the counter specified by the environment variable
_SPEEDSHOP_HWC_COUNTER_NUMBER, at an interval given by the environment
variable _SPEEDSHOP_HWC_COUNTER_OVERFLOW.

58 007–3311–009

SpeedShop User’s Guide

Note: These environment variables cannot be used to override the counter
numbers or interval for other defined experiments. They are examined only when
the prof_hwctime or prof_hwc experiment is specified.

The default overflow and profiling counter is the cycle counter; the default
overflow interval is 10000019.

Hardware Counter Numbers

The possible numeric values for the _SPEEDSHOP_HWC_COUNTER_NUMBER and
_SPEEDSHOP_HWC_COUNTER_PROF_NUMBER variables are shown in the following
tables. Table 4-2, page 59, gives the hardware counter numbers for systems with
R10000 processors, and Table 4-3, page 61, gives them for systems with
R12000/R14000/R16000 processors. For the R10000 processors, if two counter
numbers need to specified, one counter number must be chosen from a group
including numbers 0–15 and the other counter number must be chosen from a group
including numbers 16–31 due to hardware restrictions. See the r10k_counters(5)
man page for further details.

Table 4-2 R10000 Hardware Counter Numbers

Number Indication

0 Cycles

1 Issued instructions

2 Issued loads

3 Issued stores

4 Issued store conditionals

5 Failed store conditionals

6 Decoded branches (rev 2.x processors) or resolved
branches (rev 3.x processors)

7 Quadwords written back from secondary cache

8 Correctable secondary cache data array ECC errors

007–3311–009 59

4: Experiment Types

Number Indication

9 Primary instruction-cache misses

10 Secondary instruction-cache misses

11 Instruction misprediction from secondary cache way
prediction table

12 External interventions

13 External invalidations

14 Virtual coherency conditions (or functional unit
completions, depending on hardware version)

15 Graduated instructions

16 Cycles

17 Graduated instructions

18 Graduated loads

19 Graduated stores

20 Graduated store conditionals

21 Graduated floating-point instructions

22 Quadwords written back from primary data cache

23 TLB misses

24 Mispredicted branches

25 Primary data cache misses

26 Secondary data cache misses

27 Data misprediction from secondary cache way prediction
table

28 External intervention hits in secondary cache

29 External invalidation hits in secondary cache

30 Store/prefetch exclusive to clean block in secondary cache

31 Store/prefetch exclusive to shared block in secondary
cache

60 007–3311–009

SpeedShop User’s Guide

Table 4-3 R12000, R14000, R16000 Hardware Counter Numbers

Number Indication

0 Cycles

1 Decoded instructions

2 Decoded loads

3 Decoded stores

4 Miss Handling Table occupancy

5 Failed store conditionals

6 Resolved conditional branches

7 Quadwords written back from secondary cache

8 Correctable secondary cache data array ECC errors

9 Primary instruction-cache misses

10 Secondary instruction-cache misses

11 Instruction misprediction from secondary cache way
prediction table

12 External interventions

13 External invalidations

14 Not implemented

15 Graduated instructions

16 Executed prefetch instructions

17 Prefetch primary data cache misses

18 Graduated loads

19 Graduated stores

20 Graduated store conditionals

21 Graduated floating-point instructions

22 Quadwords written back from primary data cache

23 TLB misses

24 Mispredicted branches

007–3311–009 61

4: Experiment Types

Number Indication

25 Primary data cache misses

26 Secondary data cache misses

27 Data misprediction from secondary cache way prediction
table

28 State of intervention hits in secondary cache

29 State of invalidation hits in secondary cache

30 Miss Handling Table (MHT) entries accessing memory

31 Store/prefetch exclusive to shared block in secondary
cache

Basic Block Counting Experiment (bbcounts)
The bbcounts experiment displays an estimated time based on linear basic block
counting.

Data is measured by counting the number of executions of each basic block and
calculating an estimated time for each function. This involves instrumenting the
program to divide the code into basic blocks, which are consecutive sequences of
instructions with a single entry point, a single exit point, and no branches into or out
of the sequence. Instrumentation also records a count of all dynamic
(function-pointer) calls.

Because an exact count of every instruction in your program is recorded, you can also
use the bbcounts experiment to determine the efficiency of your algorithm and
identify any code that is not executed.

How SpeedShop Prepares Files

To permit block counting, SpeedShop does the following:

• Divides the code into basic blocks, which are sets of instructions with a single
entry point, a single exit point, and no branches into or out of the set.

• Inserts counter code at the beginning of each basic block to increment a counter
each time that basic block is executed.

62 007–3311–009

SpeedShop User’s Guide

The target executable, rld, and all the DSOs are instrumented. Instrumented files
with an extension .pix*, where * depends on the ABI, are written to the current
working directory or to the directory specified by the
_SPEEDSHOP_OUTPUT_DIRECTORY environment variable, if set.

After instrumentation, ssrun executes the instrumented program. Data is generated
as long as the process exits normally or receives a fatal signal that the program does
not handle.

How SpeedShop Calculates CPU Time for bbcounts Experiments

The prof command uses a machine model to convert the block execution counts into
an estimated, exclusive CPU time at the function, source line, or machine instruction
levels. By default, the machine model corresponds to the machine on which the target
was run; the user can specify a different machine model (CPU processor model and
clock speed) for the analysis.

Note that the execution time of an instrumented program is three to six times longer
than an uninstrumented one. This timing change may alter the behavior of a program
that deals with a graphical user interface (GUI) or depends on events such as
SIGALRM that are based on an external clock. Also, during analysis the instrumented
executable might appear to be CPU-bound, whereas the original executable was
I/O-bound.

Basic block counts are translated to an estimated CPU time displayed at the function,
source line, and assembly instruction levels.

Inclusive Basic Block Counting

The basic block counting explained in the previous section allows you to measure
ideal time spent in each procedure, but it does not propagate the time up to the caller
of that procedure. For example, basic block counting may tell you that procedure
sin(x) took the most time, but significant performance improvement can only be
obtained by optimizing the callers of sin(x). Inclusive basic block counting solves
this problem.

Inclusive basic block counting calculates cycles just like regular basic block counting
and then propagates it in proportion to its callers. The cycles of procedures obtained
using regular basic block counting (called exclusive cycles) are divided up among its
callers in proportion to the number of times they called this procedure. For example,
if sin(x) takes 1000 cycles, and its callers, procedures foo() and bar(), call

007–3311–009 63

4: Experiment Types

sin(x) 25 and 75 times respectively, 250 cycles are attributed to foo() and 750 to
bar(). By propagating cycles this way, __start() usually ends up with all the
cycles counted in the program. (It is possible to write code that makes determining
the complete call graph impossible, in which case you may end up with parts of the
call graph disconnected.)

The assumption can be very misleading. If foo calls matmult 99 times for 2-by-2
matrices, while bar calls it once for 100-by-100 matrices, the inclusive time report will
attribute 99% of matmult()’s time to foo(), but actually almost all the time could
derive from the one call from bar().

To generate a report that shows inclusive time, specify the -gprof option to the prof
command.

Using pcsamp and bbcounts Together

The bbcounts experiment can be used together with the pcsamp experiment to
compare actual and ideal times spent in the CPU. A major discrepancy between
pcsamp CPU time and bbcounts CPU time indicates one or more of the following
situations:

• Cache misses and floating-point interlocks in a single process application

• Secondary cache invalidations in an application with multiple processes that is run
on a multiprocessor

A comparison between basic block counts (bbcounts experiment) and PC profile
counts (pcsamp experiment) is shown in Table 4-4.

Table 4-4 Basic Block Counts and PC Profile Counts Compared

Basic Block Counts PC Profile Counts

Used to compute bbcounts CPU
time.

Used to estimate actual CPU time.

Data collection by instrumentation. Data collection by the kernel.

64 007–3311–009

SpeedShop User’s Guide

Basic Block Counts PC Profile Counts

Slows program down by factor of
three or more.

Has minimal impact on program speed.

Generates an exact count of every
instruction.

Generates statistical, inexact counts.

I/O Trace Experiment (io)
The I/O trace experiment shows you the level of I/O activity in your program by
tracing various I/O system calls, for example read(2) and write(2).

The prof output of an I/O trace experiment yields the following information:

• The number of I/O system calls executed.

• The number of calls with an incomplete traceback.

• The [index] column assigns a reference number to each function.

• The number of I/O-related system calls from each function in the program.

• The percentage of I/O-related system calls from each function in the program.

• The percentage of I/O-related system calls encountered so far in the list of
functions.

• The number of I/O-related system calls made by a given function and by all the
functions ultimately called by that given function. For example, the main function
will probably include all of the program’s I/O calls with complete tracebacks.

• The percentage of I/O-related system calls made by a given function and by all
the functions ultimately called by that given function.

• The DSO, file name, and line number for each function.

The following ssrun command creates an I/O trace experiment file from the
executable file generic:

% ssrun -io generic

007–3311–009 65

4: Experiment Types

MPI Call Tracing Experiment (mpi/mpi_trace)
The mpi trace experiment traces calls to various MPI routines and generates a file that
is viewable in prof. For a list of the routines that are traced, see the ssrun man page.

The mpi_trace experiment traces calls to various MPI routines and generates a file
that is viewable in the cvperf Performance Analyzer window. For a list of the
routines that are traced, see the ssrun man page (this experiment will be removed in
a future release).

For more details about MPI experiments, see "Running Experiments on MPI
Programs", page 86.

NUMA Profiling Experiment (numa)
The NUMA profiler operates on a statistical basis by periodically interrupting the
running application. During each interrupt the application’s memory accesses are
examined. Interrupts are triggered periodically by waiting for a particular number of
CPU hardware performance counter events to occur. For example, the default setting
is to interrupt the running application after approximately 100 secondary data cache
misses have occurred.

During each interrupt, the profiler begins at the interrupted program counter location
and finds the nearest memory access for which it can accurately calculate a target
address. This address is then used to determine the ccNUMA node that contains the
memory being accessed. The profiler also determines which ccNUMA node is
executing the interrupted application thread.

Each time a sample is taken, the following information is stored in the experiments
data file:

• ID of the thread performing the memory access

• Program counter for the instruction performing the memory access

• Memory address being accessed

• ccNUMA node executing the memory access

• ccNUMA node containing the memory being accessed

• ccNUMA routing distance (in "hops") between these two ccNUMA nodes

This sampling process is repeated continuously until the application terminates.

66 007–3311–009

SpeedShop User’s Guide

The generated data can then be used to locate those lines of application code that
generate the largest number of remote memory accesses (’remote’ refers to the
situation in which a node is performing an access to memory that does not lie on that
node). By using facilities already present in IRIX (namely CPU sets and memory
locality domains) the application engineer can attempt to minimize these remote
accesses.

Applications running on a ccNUMA system do not see the same memory latency for
every memory access - even after accounting for all cache effects. Accessing memory
located on the same node as that on which you run your code is faster than accessing
memory on other nodes. By reducing the number of remote memory accesses the
application’s performance is enhanced.

PC Sampling Experiment (pcsamp)
The pcsamp experiment estimates the actual CPU time for each source code line,
machine code line, and function in your program. The prof listing of this experiment
shows exclusive PC sampling time. This experiment is a lightweight, high-speed
operation that makes use of the operating system.

CPU time is calculated by multiplying the number of times an instruction or function
appears in the PC by the interval specified for the experiment (either 1 or 10
milliseconds).

To collect the data, the operating system regularly stops the process, increments a
counter corresponding to the current value of the PC, and resumes the process. The
default sample interval is 10 milliseconds. If you specify the optional f prefix to the
experiment, a sample interval of 1 millisecond is used. (See "A pcsamp Experiment",
page 20, for an example.)

By default, the experiment uses 16-bit counters. If the optional x suffix is used, a
32-bit counter size will be used. Using a 32-bit bin provides more accurate
information, but requires additional memory and disk space. See "Example Using the
pcsampx Experiment", page 83, for an example.

• 16-bit bins allow a maximum of 65,536 counts.

• 32-bit bins allow over 4 billion counts.

PC sampling runs should slow the execution time of the program down no more than
5 percent. The measurements are statistical in nature, meaning they exhibit variance
inversely proportional to the running time.

007–3311–009 67

4: Experiment Types

Call Stack Profiling Experiment (usertime/totaltime)
The usertime and the totaltime experiments are useful experiments to start your
performance analysis. The usertime experiment returns CPU time for each function
while your program runs and the totaltime experiment returns real time for each
function.

These expeirments use statistical call stack profiling to measure inclusive and
exclusive user time. They take a sample every 30 milliseconds. Data is measured by
periodically sampling the callstack. The program’s callstack data is used to do the
following:

• Attribute exclusive user time to the function at the bottom of each callstack (that
is, the function being executed at the time of the sample).

• Attribute inclusive user time to all the functions above the one currently being
executed (those involved in the chain of calls that led to the function at the bottom
of the callstack executing).

The time spent in a procedure is determined by multiplying the number of times an
instruction for that procedure appears in the stack by the sampling time interval
between call stack samples. Call stacks are gathered when the program is running;
hence, the time computed represents user time, not time spent when the program is
waiting for a CPU. User time shows both the time the program itself is executing and
the time the operating system is performing services for the program, such as I/O.

The usertime experiment should incur a program execution slowdown of no more
than 15%. Data from a usertime experiment is statistical in nature and shows some
variance from run to run.

Note: For this experiment, o32 executables must explicitly link with -lexc.

68 007–3311–009

Chapter 5

Collecting Data on Machine Resource Usage

This chapter describes how to collect machine resource usage data using the
SpeedShop ssusage(1) command. Finding out the machine resources that your
program uses can help you identify performance bottlenecks and determine which
performance experiments you need to run. You can use the list in "Gathering and
Analyzing Performance Data", page 8, to identify which experiments to run, based on
the results of running ssusage on your program.

ssusage Syntax
The ssusage command has no options of its own. It takes the following form:

ssusage executable_name [executable_args]

• executable_name: name of the executable for which you want to collect machine
resource usage data.

• executable_args: arguments to your executable, if any

ssusage Results
The ssusage command prints output to stderr. For example, the ssusage
generic command provides output similar to the following:

...
22.03 real, 18.18 user, 0.21 sys, 7 majf, 120 minf, 0 sw, 241 rb, 0

wb, 135 vcx, 648 icx, 976 mxrss

The last two lines of the output constitute the machine resource usage information
that ssusage provides. Following is a description of each field from the report:

• real: the real, or wall-clock, time in which the executable ran, in seconds.

• user: user CPU time, excluding the time the operating system was performing
services for the executable, in seconds.

007–3311–009 69

5: Collecting Data on Machine Resource Usage

• sys: system CPU time, during which the system was performing services for the
executable, in seconds.

• majf: major page faults that cause physical I/O.

• minf: minor page faults that require mapping only.

• sw: process swaps.

• rb/wb: physical blocks read or written. These are attributed to the process that
first requests a block, but they do not necessarily directly correlate with the
process’s own I/O operations.

• vcx: voluntary context switches; those caused by the process’s own actions.

• icx: involuntary context switches; those caused by the scheduler.

• mxrss: maximum resident set size of the program, including any shared pages, in
kilobytes.

If the program terminates abnormally, a message is printed before the usage line.

70 007–3311–009

Chapter 6

Setting Up and Running Experiments: ssrun

This chapter provides information on how to set up and run performance analysis
experiments using the ssrun command; it has the following sections:

• "Building Your Executable", page 71

• "Setting Up Output Directories and Files", page 73

• "Using Run-Time Environment Variables", page 74

• "Using Marching Orders", page 78

• "Running Experiments", page 81

• "Running Experiments on MPI Programs", page 86

• "Running Experiments on Programs Using Pthreads", page 91

• "Running Experiments on Programs That Use OpenMP Directives", page 91

• "Using Calipers", page 92

• "Effects of ssrun", page 96

Building Your Executable
The ssrun command is designed to be used with normally built executables and
default environment settings. However, there are some cases where you need to
change the way you build your executable or set certain environment variables.

This section explains when to change the way you build your executable program.
For information on setting environment variables, see "Using Run-Time Environment
Variables", page 74.

• If you have used the ssrt_caliper_point(3) function provided in the
SpeedShop libraries, you have to explicitly link in the SpeedShop libraries file,
libss.so. For more information on setting caliper points, see "Using Calipers",
page 92.

007–3311–009 71

6: Setting Up and Running Experiments: ssrun

• If you are planning to build your executable using the -o32 option to the cc
command, and you want to run the usertime experiment, you must add -lexc
to the link line. For more information on cc -o32, see the cc(1) man page.

• If you have built a stripped executable, you need to rebuild a non-stripped version
to use with SpeedShop. For example, if you are using ld to link your C program,
do not use the -s option. Using the -s option strips debugging information from
the program object and makes the program unusable for performance analysis.

• If you have used compiler optimization level 3 (-O3) and you are performing
experiments that report function-level information, inlining can result in extremely
misleading profiles. The time spent in the inlined procedure will show up in the
profile as time spent in the procedure into which it was inlined. It is generally
better to use compiler optimization level 2 (-O2) or less when gathering an
execution profile.

Special Information for MP Fortran Programs

If you are compiling MP Fortran programs, you may encounter anomalies in the
displayed data:

• For all f90(1), f77(1), and fort77(1) MP compilations, parallel loops within the
program are represented as subroutines with names relating to the source routine
in which they are embedded. The naming conventions for these subroutines are
different for 32-bit and 64-bit compilations.

For example, in the linpack example program, most of the time is spent in the
routine DAXPY, which can be parallelized. The name differences are as follows:

– In an n32 or 64-bit MP version, the routine has the name DAXPY, but most of
that work is done in the MP routine named DAXPY.PREGION1.

– In an o32-bit version, the DAXPY routine is named daxpy_, and the MP routine
is _daxpy_519_aaab_.

• If you perform a bbcounts experiment, the source annotations for 32-bit and
64-bit compilations with the -g option differ and are not correct in most cases.

– In 64-bit source annotations, the exclusive time is correctly shown for each line,
but the inclusive time for the first line of the loop (do statement) includes the
time spent in the loop body. This same time appears on the lines comprising
the loop’s body, in effect representing a double-counting.

72 007–3311–009

SpeedShop User’s Guide

– In 32-bit source annotations, the exclusive time is incorrectly shown for the line
comprising the loop’s body. The line-level data for the loop-body routine
(_daxpy_519_aaab_) does not refer to proper lines. If the program was
compiled with the -mp_keep flag, the line-level data should refer to the
temporary files that are saved from the compilation. But the temporary files do
not contain that information, so no source or disassembly data can be shown.
The disassembly data for the main routine does not show the times for the
loop body.

– If the 32-bit program was compiled without the -mp_keep flag, the line-level
data for the loop-body routine is incorrect.

Most lines refer to line 0 of the file and the rest to other lines at seemingly
random places in the file. Consequently, false annotations will appear on some
lines. Disassembly correctly shows the instructions and their data, but the line
numbers are wrong. This reflects essentially the same double-counting problem
as seen in 64-bit compilations, but the extra counts go to other places in the
file, rather than to the first line of the loop.

Setting Up Output Directories and Files
When you run an experiment, performance data files are written to the current
working directory by default. They are named using the following convention:

executable_name.exp_type.id

The id consists of one or two letters (designating the process type) and the process ID
number. The following list describes the letter codes:

• m: master process created by ssrun.

• p: process created by a call to sproc().

• f: process created by a call to fork().

• s: process created by a call to system().

• e: process created by a call to exec()

• fe: process created by a call to fork() and exec()

• Rn: rank number of the MPI process that generated the experiment file.

• Tn: OpenMP thread that generated the experiment file.

007–3311–009 73

6: Setting Up and Running Experiments: ssrun

The following are examples of data file names:

stat.bbcounts.m10966
engines.pcsamp.m14493

In a single-process application, ssrun generates a single performance data file. In a
multiprocess application, ssrun generates a performance data file for each process.

You can change the default file name or directory for performance data files using
environment variables.

Using Run-Time Environment Variables
Several environment variables have been defined for use specifically with SpeedShop
to provide additional information to SpeedShop commands or SpeedShop library
routines at run time. This section provides information about available environment
variables, grouped by functionality:

• "User Environment Variables", page 74

• "Process Tracking Environment Variables", page 76

• "Expert-Mode Environment Variables", page 77

User Environment Variables

The following list describes a number of environment variables that are normally
used to control the operation of SpeedShop.

• _SPEEDSHOP_CALIPER_POINT_SIG sig_num: causes the specified signal number
to be used for recording a caliper point in the experiment.

• _SPEEDSHOP_HWC_COUNTER_NUMBER num: specifies the counter to be used for
prof_hwc experiments. Counters are numbered between 0 and 31, and are
described in the MIPS R10000 User’s Guide.

• _SPEEDSHOP_HWC_COUNTER_PROF_NUMBER num: specifies the counter that will
be profiled for prof_hwctime experiments.

• _SPEEDSHOP_HWC_COUNTER_OVERFLOW num: specifies the overflow value for
the counter to be used in prof_hwc experiments. The value for num must be 0 <
num <= 2147483647. Some choices may produce data that is not statistically

74 007–3311–009

SpeedShop User’s Guide

random but reflects a correlation between the overflow interval and a cyclic
behavior in the application. Users may want to do two or more runs with
different overflow values.

• _SPEEDSHOP_INSTR_ARGS: defines additional instrumentation arguments.

• _SPEEDSHOP_OUTPUT_DIRECTORY dir: causes the output data files to be placed
in the specified directory rather than the current working directory.

• _SPEEDSHOP_OUTPUT_FILENAME filename: causes the output file to be saved
under the specified name. If _SPEEDSHOP_OUTPUT_FILENAME is set to myfile,
the experiment file is named myfile.suffix (for example, myfile.m12345). If
_SPEEDSHOP_OUTPUT_DIRECTORY is also specified, the directory is prepended to
the file name you specify.

• _SPEEDSHOP_OUTPUT_NOCOMPRESS: Disables the compression of performance
data.

• _SPEEDSHOP_POLLPOINT_CALIPER_POINT timer_type, timer_interval: used to
add caliper points at regular time intervals into your experiment file (during
program execution). Caliper points set with this variable are recorded in the
performance data file generated by ssrun.

• _SPEEDSHOP_REUSE_FILE_DESCRIPTORS: opens and closes the file descriptors
for the output files every time performance data is to be written.

• _SPEEDSHOP_RLD: defines the full path name to rld, and enables rld profiling
(for pcsamp and _hwc experiments only). If the path name does not lead to rld,
SpeedShop determines the correct path name automatically. For example, if you
set _SPEEDSHOP_RLD to 1, SpeedShop will locate rld.

• _SPEEDSHOP_SBRK_BUFFER_ADDR address: defines the preferred starting address
to be used for the internal malloc arena. This option has to be used with extreme
care since it might result in memory region overlap.

• _SPEEDSHOP_SBRK_BUFFER_LENGTH: defines the segment grow size for the
internal malloc arena used. This arena is completely separate from the user’s
arena, and it usually grows in default segments of the size 0x100000.

• _SPEEDSHOP_VERBOSE or _SPEEDSHOP_VERBOSE non_empty_string: causes a
log of each program’s operation to be written to stderr. If this variable is set to
an empty string, only major events are logged; if it is set to a non-empty string,
more detailed events are logged.

007–3311–009 75

6: Setting Up and Running Experiments: ssrun

• _SPEEDSHOP_SILENT: suppresses all SpeedShop output other than fatal error
messages. If both _SPEEDSHOP_VERBOSE and _SPEEDSHOP_SILENT are set,
_SPEEDSHOP_VERBOSE is ignored.

• _SSMALLOC_NO_BUFFERING: if this environment variable is set, the experiment
file for each process will contain only its own heap trace data. Otherwise, the
experiment file for each process will contain data from all processes.

To set an environment variable that requires no arguments (for example,
_SPEEDSHOP_SILENT), use the following:

% setenv _SPEEDSHOP_SILENT

To set an environment variable that requires a number between 0 and 31 (for
example, _SPEEDSHOP_HWC_COUNTER_NUMBER), use the following:

% setenv _SPEEDSHOP_HWC_COUNTER_NUMBER 15

Process Tracking Environment Variables

A number of environment variables may be used for controlling the treatment of
processes spawned from the original target, as shown in the following list:

• _SPEEDSHOP_TRACE_FORK [True|False]: if True, specifies that processes
spawned by calls to fork() will be monitored if they do not call exec(). If they
do call exec() and _SPEEDSHOP_TRACE_FORK_TO_EXEC is not set to True, the
data covering the time between the fork() and exec() will be discarded. It is
True by default.

• _SPEEDSHOP_TRACE_FORK_TO_EXEC [True|False]: if True, specifies that a
process spawned by calls to fork() will be monitored, even if they also call
exec(). It is False by default.

• _SPEEDSHOP_TRACE_EXEC [True|False]: if True, specifies that a process
spawned by calls to any of the various flavors of exec() will be monitored. It is
True by default.

• _SPEEDSHOP_TRACE_SPROC [True|False]: if True, specifies that a process
spawned by calls to sproc() will be monitored. It is True by default.

• _SPEEDSHOP_TRACE_SYSTEM [True|False]: if True, specifies that system()
calls will be monitored. It is False by default.

76 007–3311–009

SpeedShop User’s Guide

• _SPEEDSHOP_TRACE_MPI_RANKS [True|False]: if True, specifies that
performance data should only be collected for the MPI ranks. It is False by default.

Expert-Mode Environment Variables

A number of variables may be used for debugging and finer control of the operation
of SpeedShop, as shown in the following list:

• _SPEEDSHOP_SAMPLING_MODE or _SPEEDSHOP_SAMPLING_MODE num: used for
PC sampling and hardware counter profiling. If set to 1, generates data for the
base executable only. If not set or set to a value other than 1, data is generated for
the executable and all the DSOs it uses.

• _SPEEDSHOP_INIT_DEFERRED_SIG sig_num: if specified, initialization of the
experiment is not performed when the target process starts. Initialization is
delayed until the specified signal is sent to the process. A handler for the given
signal is installed when the process starts. It is the user’s responsibility to ensure
that it is not overridden by the target code.

• _SPEEDSHOP_SHUTDOWN_SIG sig_num: if specified, termination of the experiment
is not performed when the target process exits. Termination happens when the
specified signal is sent to the process. A handler for the given signal is installed
when the process starts, and it is the user’s responsibility to ensure that it is not
overridden by the target code.

• _SPEEDSHOP_EXPERIMENT_TYPE exp_type: passes the experiment type to the
run–time DSO. The ssrun command’s -exp_type option, which usually specifies
the experiment type, overrides this variable. Values for exp_type can be found in
Table 4-1, page 52.

• _SPEEDSHOP_EXTRA_MARCHING_ORDERS mo_syntax: This environment variable
may be used to add marching orders to a predefined experiment. See the "Using
Marching Orders" section in this Chapter for more information.

• _SPEEDSHOP_MARCHING_ORDERS mo_syntax: passes the marching orders of the
experiment to the run–time DSO. The ssrun command’s -mo, marching orders,
option overrides this environment variable. If this variable is specified, it
overrides _SPEEDSHOP_EXPERIMENT_TYPE, as well as the ssrun command’s
-exp_type option. The mo_syntax is discussed in "Using Marching Orders", page 78.

• _SPEEDSHOP_SBRK_BUFFER_LENGTH size: defines the maximum size of the
internal malloc (memory allocation) area used. This area is completely separate
from the user’s area and has a default size of 0x100000.

007–3311–009 77

6: Setting Up and Running Experiments: ssrun

• _SPEEDSHOP_FILE_BUFFER_LENGTH size: defines the size of the buffer used for
writing the experiment files. The default length is 8 KB. The buffer is used only
for writing small records to the file; large records are written directly to avoid the
buffering overhead.

• _SPEEDSHOP_DEBUG_NO_SIG_TRAPS: disables the normal setting of signal
handlers for all fatal and exit signals.

• _SPEEDSHOP_DEBUG_NO_STACK_UNWIND: suppresses the stack unwind, as in
usertime experiments and at caliper samples, for all experiments. The option is
used as a workaround for various unwind bugs in libexc.

Using Marching Orders
Using marching orders is another method of specifying what experiment type you
want to run. One of the benefits of using marching orders is that it lets you customize
experiments. Any specification of explicit marching orders overrides the environment
variable _SPEEDSHOP_EXPERIMENT_TYPE or the -exp_type option on the ssrun
command, since these experiment type specifications are translated into possible
orders by the command.

Each experiment type corresponds to a marching orders specification. You can use
marching orders in either of the following ways:

• The _SPEEDSHOP_MARCHING_ORDERS environment variable. The following
example selects the usertime experiment:

% setenv _SPEEDSHOP_MARCHING_ORDERS ut:cu

• The -mo option on the ssrun command line. The following example selects the
pcsamp experiment:

% ssrun -mo pc,2,10000,0:cu a.out

• Adding marching orders to a predefined experiment by using the
_SPEEDSHOP_EXTRA_MARCHING_ORDERS environment variable. The following
example generates a useful resource usage graph when viewed with the
cvperf(1) command:

% setenv _SPEEDSHOP_EXTRA_MARCHING_ORDERS hb

% ssrun -pcsamp a.out

78 007–3311–009

SpeedShop User’s Guide

If the marching orders on the command line differ from those specified with the
environment variable, the command-line version takes precedence.

The number and meaning of the arguments for each marching order depend on the
specific marching order. The following specifies PC sampling, using 16-bit bins,
sampling every 10 microseconds, and sampling both the executable and all of its
DSOs:

pc,2,10000,0

The following specifies call stack sampling every 10 microseconds, based on process
virtual time plus system time spent on behalf of the process:

ut,10000,2

Defining the Base Experiment

The experiment specifier, with which a marching order begins, takes one of the
following values:

• ut: a time experiment that returns real time, virtual time, or user time. The default
arguments are 30000,2. The argument should be specified in multiples of 10,000.
The first argument is the interval between call stack samples in microseconds. The
second argument is the timer type used to measure the intervals; the supported
values are 0, 1, and 2, with the same meanings as for the second argument of hb
(described later). The argument value -1 is not valid for ut.

• pc: a 16-bit or 32-bit PC sampling (pcsamp) experiment. The default arguments
are 2,10000,0. The first argument is the size of the sample count bins in bytes.
The supported values are 2 (16 bits) and 4 (32 bits). The second argument is the
sampling rate in microseconds. Supported values are 10,000 (10-millisecond
sample interval) and 1000 (1-millisecond sample interval). The third argument is
the sampling mode:

– 0: selects the user executable and all its dynamic shared objects

– 1: selects only the user executable (without any dynamic shared objects)

• it: a 32-bit bbcounts experiment. Only 4-byte (32-bit) counters are supported.
No additional arguments are needed.

• mf: a memory allocation and deallocation experiment that traces calls to malloc,
realloc, free, memalign, and valloc routines. There are no arguments to this
marching order. The arguments to these routines and bad calls are recorded. Bad

007–3311–009 79

6: Setting Up and Running Experiments: ssrun

calls include malloc calls of 0 bytes, freeing invalid memory blocks, reallocating
invalid memory pointers, and calling memalign with invalid arguments. (For
descriptions of these routines, see the malloc(3) man page.)

• fpe: a floating-point exceptions (fpe) experiment. There are no arguments. The
call stack is sampled whenever a floating-point exception occurs.

• io: an I/O trace experiment. There are no arguments. The start time and end
time for each of the following I/O system calls are recorded: creat(2), open(2),
read(2), pread(2), write(2), pwrite(2), close(2), pipe(2), dup(2), lseek(2),
readv(2), and writev(2).

• mpit: MPI experiment. There are no arguments. The beginning time, ending time,
return value, and arguments are recorded. For a list of the routines traced, see
"Generating MPI Tracing Experiments", page 86.

Note: The output from this experiment can only be displayed by using the
cvperf(1) user interface; it cannot be displayed through prof.

• hwct: a hardware counter call stack profiling experiment (_hwctime). The default
arguments are xx,xxx,0,SIGPROF. The first argument is the hardware counter
number of the counter to be profiled. The second argument is the overflow interval
for the counter (a prime number should be specified). The third argument is the
hardware counter number of the counter whose overflow will trigger the sampling.

• hwc: a hardware counter PC profiling experiment (-hwc). The default arguments
are xx, xxx. The first argument is the hardware counter number. The second
argument is the overflow interval for the counter.

• hb: heart beat data collection. System-wide, per-process, and MPI resource usage
data is collected at regular time intervals. If the program creates multiple
processes, data is collected for each process. If the process is using the MPI library,
MPI library statistics are also recorded.

The default arguments are 1000000,2. The first argument is the interval in
microseconds between samples. The second argument is the time type to use, as
follows:

– 0: real (wall-clock) time.

– 1: virtual time. The timer runs while the user program is executing.

80 007–3311–009

SpeedShop User’s Guide

– 2: user time. The timer runs while the user program is executing or the system
is processing system calls made by the program.

• cu: caliper point usage data collection. It usually appears at the end of a marching
order, and there are no arguments. Usage data is recorded at caliper points. As
with the hb marching order, system-wide, per-process, and MPI resource usage
data is or can be collected at these points. But, the hb marching order collects data
based on time, and the cu marching order is based on caliper points that you can
set anywhere in your source code. For more information on setting caliper points,
see "Using Calipers", page 92.

• mpi: traces calls to MPI functions and collects data (such as the time taken by the
call, which thread made the call, etc.)

• nm: used to profile an application’s memory access patterns on ccNUMA
architectures. The profiler periodically interrupts the running application, and
during each interrupt, the application’s memory accesses are examined.

Running Experiments
This section describes how to use ssrun to perform experiments.

ssrun Syntax

The ssrun command takes the following form:

ssrun ssrun_options exp_type executable_name executable_args

The arguments are as follows:

• ssrun_options: zero or more of the options described in the following list. These
options control the data collection and the treatment of descendent processes or
programs, and they specify how the data is to be externalized.

• exp_type | exp exp_type: the experiment type. Experiments are described in detail
in Chapter 4, "Experiment Types", page 51.

• executable_name: the name of the program on which you want to run an
experiment.

007–3311–009 81

6: Setting Up and Running Experiments: ssrun

• executable_args: arguments to your program, if any.

The ssrun command generates a performance data file that is named as described in
"Setting Up Output Directories and Files", page 73.

The following list describes the options to the ssrun command:

• -hang: specifies that the process should be left waiting just before executing its
first instruction. This allows you to attach the process to a debugger.

• -mo marching_orders: allows you to specify marching orders. If this option is used,
the environment variable _SPEEDSHOP_MARCHING_ORDERS is not examined. If
both -exp_type and -mo are specified, the -mo option will override the value given
by -exp_type.

• -name argv0-value: specifies that the executable, or its appropriately
instrumented version, should be run with argv[0] set to argv0-value. Normally,
both instrumented and uninstrumented executables are run with argv[0] set to the
original executable_name name. argv0-value is also used in the executable_name
portion of the name of the performance data file.

• -port hostname portno: specifies that the process is to be left waiting, and
notifications of status are to be sent to the socket on the host named by hostname
and the port specified by portno. When the process is ready, a message of the form
"running pid host" will be sent to inform the requester of the PID of the executing
process and the host, which may be remote. A debugger can then attach to it and
take control of its execution.

• -quiet: suppresses all output other than error messages. If -quiet is specified,
the _SPEEDSHOP_SILENT environment variable is also set for the duration of the
ssrun command.

• -ranks mip-ranks: specifies that performance data should only be collected for
the MPI ranks in the comma-separated list of mpi-ranks.

• -v: prints a log of the operation of ssrun to stderr. The same behavior occurs
if the environment variable _SPEEDSHOP_VERBOSE is set to a null string.

• -V: prints a detailed log of the operation of ssrun to stderr. The same behavior
occurs if the environment variable _SPEEDSHOP_VERBOSE is set to a
nonzero-length string. This option can be used to see how to set the various
environment variables, and how to invoke instrumentation when necessary.

• -workshop: specifies special instrumentation so that the experiment files can be
read by WorkShop’s cvperf analyzer.

82 007–3311–009

SpeedShop User’s Guide

• -x display-id window-id: specifies that the process is to be left waiting and that the
window of the WorkShop debugger requesting the creation (as specified by the
display-id and window-id arguments on the command line) be informed of the PID
of the target process. A debugger can then attach to it and take control of its
execution.

ssrun Examples

This section provides examples of using ssrun with options and experiment types.
For additional examples, see Chapter 2, "Tutorial for C Users", page 13, or Chapter 3,
"Tutorial for Fortran Users", page 33.

Example Using the pcsampx Experiment

The pcsampx experiment collects data to estimate the actual CPU time for each
source code line, machine instruction, and function in your program. The optional x
suffix causes a 32-bit bin size to be used, allowing a larger number of counts to be
recorded. For a more detailed description of the pcsamp experiment, see "PC
Sampling Experiment (pcsamp)", page 67.

The following example performs a pcsampx experiment on the generic executable:

% ssrun -pcsampx generic

To see the performance data that has been generated, run prof on the performance
data file, generic.pcsampx.m12185, as shown in the following example:

% prof generic.pcsampx.m12185

The report is printed to stdout. (This layout of this report has been altered slightly
to accommodate presentation needs.) For more information on prof and the reports
generated by prof, see Chapter 7, "Analyzing Experiment Results", page 99.

SpeedShop profile listing generated Mon Feb 2 15:08:14 1998

prof generic.pcsampx.m12185

generic (n32): Target program

pcsampx: Experiment name

pc,4,10000,0:cu: Marching orders
R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

007–3311–009 83

6: Setting Up and Running Experiments: ssrun

Experiment notes--
From file generic.pcsampx.m12185:

Caliper point 0 at target begin, PID 12185

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (pcsampx)--

2729: Total samples

27.290: Accumulated time (secs.)

10.0: Time per sample (msecs.)

4: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 25.470 93.3% 93.3% 2547 anneal (generic: generic.c,
1573)

[2] 1.100 4.0% 97.4% 110 slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.310 1.1% 98.5% 31 __read (libc.so.1: read.s, 20)

[4] 0.240 0.9% 99.4% 24 cvttrap (generic: generic.c, 317)

[5] 0.150 0.5% 99.9% 15 _xstat (libc.so.1: xstat.s,

12)
[6] 0.010 0.0% 100.0% 1 __write (libc.so.1: write.s, 20)

[7] 0.010 0.0% 100.0% 1 _morecore (libc.so.1: malloc.c, 632)

27.290 100.0% 100.0% 2729 TOTAL

Example Displaying Data in WorkShop

To use the WorkShop graphic user interface to display the information gathered by
ssrun, include the -workshop option on the ssrun command line, as shown in the
following example:

% ssrun -workshop -pcsampx generic

The result is a file viewable through the cvperf WorkShop command:

% cvperf generic.pcsampx.m44800

84 007–3311–009

SpeedShop User’s Guide

Example Using the -v Option

To get information about how a SpeedShop experiment is set up and performed, you
can supply the -v option to ssrun.

The following example performs another pcsampx experiment on the generic
executable:

% ssrun -v -pcsampx generic

The ssrun command writes the following output to stderr. It displays information
as the command line is parsed and shows the environment variables that ssrun sets.

fraser 75% ssrun -v -pcsampx generic

ssrun: target PID 12345
ssrun: setenv _SPEEDSHOP_MARCHING_ORDERS pc,4,10000,0:cu

ssrun: setenv _SPEEDSHOP_EXPERIMENT_TYPE pcsampx

ssrun: setenv _SPEEDSHOP_TARGET_FILE generic
ssrun: setenv _RLD_LIST libss.so:libssrt.so:DEFAULT

...

The _RLD32_LIST environment variable is used with programs compiled with the
-n32 compiler option. The _RLD64_LIST environment variable is used with
programs compiled with the -64 compiler option. If neither is set, the value of
_RLD_LIST is the default. See the rld(1) man page for more information.

Using ssrun with a Debugger

To use the ssrun command in conjunction with a debugger such as dbx or the
WorkShop debugger, you need to call ssrun with the -hang option and the name of
your program.

Follow these steps to run the floating-point exceptions trace experiment on generic,
and then run generic in a debugger.

1. Call ssrun as follows:

% ssrun -hang -fpe generic

The ssrun command parses the command line, sets up the environment for the
experiment, calls the target process using exec, and halts the target process on
exiting from the call to exec.

007–3311–009 85

6: Setting Up and Running Experiments: ssrun

2. Note the process ID returned by ssrun.

3. In another window, start your debugging session as follows:

% cvd -pid process_id_number

4. Attach the process to the debugger.

5. Run the process from the debugger.

You can also invoke ssrun from within a debugger. In this case, ssrun leaves the
target halted on exiting the call to exec and informs the debugger of that fact.

You can also use a debugger to set calipers for the purpose of recording performance
data for a part of your program. See "Using Calipers", page 92, for more information
on setting calipers.

Running Experiments on MPI Programs
The Message Passing Interface (MPI) is a library specification for message passing,
proposed as a standard by a committee of vendors, implementors, and users. It
allows processes to communicate by passing data messages to other processes, even
those running on distant computers.

SpeedShop offers two types of experiments for MPI programs; see "Generating MPI
Tracing Experiments" which follows for more information.

• MPI tracing experiments: traces the use of MPI send, receive, and synchronization
routines and a few other routines.

• Other SpeedShop experiments: generates other SpeedShop experiments, such as
usertime and pcsamp.

See the MPI Programmer’s Manual for details about MPI use.

Generating MPI Tracing Experiments

Two different MPI experiments are available to help you trace calls to MPI routines.
The main difference in the two is how the results can be viewed:

• MPI_trace experiments tell you how many times, and at what locations within the
application, various routines from the MPI library are called. This is run by using

86 007–3311–009

SpeedShop User’s Guide

the -mpi_trace option to ssrun and it produces a file that is viewable in the
Performance Analyzer (cvperf(1)) window.

• MPI experiments trace calls to MPI functions and collect data such as the time
used by the call, which thread and MPI rank made the call, and so on. This type
of experiment is generated using the -mpi option to ssrun. The generated data
can then be analyzed using prof(1).

The ranks option to ssrun specifies that performance data should only be collected
for the MPI ranks in the comma-separated list used with ranks. See the ssrun(1)
man page for a list of the functions traced by each option and for more information
about the ranks option.

The following example demonstrates the mpi_trace option. You can use either of
the following versions of the ssrun command on an executable named a.out:

% mpirun -np 4 ssrun -mpi_trace a.out

% mpirun -np 4 ssrun -mo mpit:cu a.out

If you are running the application on four processors, you will see five output files:
one for each processor and one for the master process. The identifier portions of the
file names will start either with m for the master process or f (forked) for a process
running on one of the processors. If the first version of the ssrun command,
illustrated above, is used with an executable named myprog, file names similar to the
following will be assigned to the output:

myprog.mpi.m12345

myprog.mpi.f12346

myprog.mpi.R0.f12346

myprog.mpi.R1.f12347
myprog.mpi.R2.f12348

myprog.mpi.R3.f12349

The Rx identifier does not correspond to a processor number but it does correspond
to the MPI rank of the process for which the file was generated.

Depending on which option is used, output from the ssrun command can be viewed
in the WorkShop Performance Analyzer window or by using the prof(1) command.
You can bring up the Performance Analyzer with the cvperf(1) command. You can
view the information in either graphical or numerical format. Graphs that do not
contain data are not displayed. For an example of a portion of a numerical display,
see Figure 6-1, page 89.

007–3311–009 87

6: Setting Up and Running Experiments: ssrun

Note: The MPI tracing experiment does not track down communicators, and it does
not trace all collective operations.

88 007–3311–009

SpeedShop User’s Guide

Figure 6-1 MPI Numerical Format

007–3311–009 89

6: Setting Up and Running Experiments: ssrun

For a description of the use of the prof command, see "Running Experiments", page
81, for examples of the use of ssrun and prof.

Generating Other Experiments for Programs Using MPI

If your program uses MPI, you must set up SpeedShop experiments that will be
displayed in prof a little differently. There are two ways to accomplish this. The first
method takes two steps:

1. Set up a shell script that contains the call to ssrun and the experiment you want
to run.

For example, if you have an executable called testit and you want to run the
pcsampx experiment with a script named exp_script, the process might look
like the following:

#!/bin/sh

ssrun -pcsampx testit

2. Call mpirun with the script name using one of the following commands:

% mpirun -np 6 exp_script
% mpirun host1 2, host2 2 exp_script

The second method is to use one of the following:

% mpirun -np 6 ssrun -pcsampx testit

% mpirun host1 2, host2 2 ssrun -pcsampx testit

The master experiment file created on each MPI host might not contain performance
data from the application (depending on the MPI version) but from a master program
that spawns the members of an application group. You can choose to exclude that file
from performance analysis.

When using ssrun -bbcounts or ssrun -purify, you should take care that the
code for each separate host executes out of a different physical directory, not out of the
same directory mounted by the network file system (NFS). During process creation,
instrumentation is performed, and since different hosts may have different versions of
the same named library (libc.so.1, for example), conflicts may occur. You may also
need to use the -d option with mpirun to specify the directory on each host.

90 007–3311–009

SpeedShop User’s Guide

Running Experiments on Programs Using Pthreads
Pthreads is the multithreading model defined by the POSIX operating system
standard (IEEE1003.1c-1995). This standard contains a set of interfaces and semantics
for creating and managing threads within the POSIX operating system definition. The
basic SGI threads implementation consists of a library and a header file.

Applications using pthreads are specifically identified by SpeedShop. Performance
data collection is done on a per-program basis, rather than on a per-pthread basis.
Under IRIX 6.2, 6.3, and 6.4, SpeedShop creates as many experiment files as the
number of sproc(2) system calls used by the pthreads library to create and manage
the pthreads. In addition, cm_usage data is not supported, and SIGTERM is reserved
to be used to terminate the application normally. You should analyze all the
experiment files together via prof to get a valid profile for the code. Under IRIX 6.5,
SpeedShop creates only one experiment file. For usertime and fpe experiments,
however, you can specify the -pthreads option with prof to get the specified
pthread’s performance reports.

Running Experiments on Programs That Use OpenMP Directives
The OpenMP Fortran API and the OpenMP C/C++ API specify a collection of
compiler directives, library functions, and environment variables that can be used to
specify shared memory parallelism in Fortran, C, or C++ programs. The -mp
compiler option causes OpenMP directives to be used in creating an executable that
may be run using one or more processors.

Performance data collection is done on a per-processor basis. If an executable named
test1 is run under the ssrun command using n processors for a usertime
experiment, then files similar to the following are created for the performance data:

test1.usertime.m109327

test1.usertime.T0.p109331
test1.usertime.T1.p109345

test1.usertime.T2.p109353

The Tx identifier is the number of the OpenMP thread that generated the file. The
number of processors may be specified internally in the program using a call to an
OpenMP subroutine variable or function omp_set_num_threads, or externally via
the environment variable OMP_NUM_THREADS. The experiment output may be
examined via prof using the file for each process, or ssaggregate may be used to

007–3311–009 91

6: Setting Up and Running Experiments: ssrun

create an aggregated file from all of the experiment files. Then the results for the
entire experiment could be analyzed at once.

Using Calipers
In some cases, you may want to generate performance data reports for only a part of
your program. You can do this by selecting caliper points to identify the area of your
program or the time interval during execution for which you want to see performance
data. When you run prof, you can specify a region for which to generate a report by
supplying the -calipers option and the appropriate caliper numbers. For more
information on prof -calipers, see "Using the -calipers Option", page 123.

Table 6-1, page 93, shows the different ways you can set caliper points.

92 007–3311–009

SpeedShop User’s Guide

Table 6-1 Setting Caliper Points

Use This Approach... For These Benefits...

Explicitly link with the SpeedShop run-time and call
ssrt_caliper_point to set a caliper sample.

Lets you set a caliper point at a specific
location in the source program.

Set pollpoint caliper points at specified time intervals during
program execution using the
_SPEEDSHOP_POLLPOINT_CALIPER_POINT environment
variable.

Lets you set caliper points at time
intervals rather than at places in the code.

Define a signal to be used to set a caliper sample by specifying a
signal as a value to the environment variable
_SPEEDSHOP_CALIPER_POINT_SIG and then sending the target
the given signal.

Useful if you want to be able to set a
caliper point as your program is running.

Set a caliper sample trap in dbx or the WorkShop debugger.
Setting a trap involves setting a breakpoint and evaluating the
expression libss_caliper_point(1) when the process stops.

Useful if you are working with a
debugger in conjunction with SpeedShop.

An implicit caliper point is always present at the start of execution of the process. A
final caliper point is set when the process calls _exit. The implicit caliper point at
the beginning of the program is numbered 0, the first caliper point recorded is
numbered 1, and any additional caliper points are numbered sequentially.

In addition, caliper points are automatically set under the following circumstances to
ensure that at least one valid set of data is recorded:

• When a fatal signal is received, such as SIGQUIT, SIGILL, SIGTRAP, SIGABRT,
SIGEMT, SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGXCPU, or SIGXFSZ. Note that
this list does not and cannot include SIGKILL.

• When the program calls an exec function, such as execve() or execvp().

• When an exit signal is received, such as SIGHUP, SIGINT, SIGPIPE, SIGALRM,
SIGTERM, SIGUSR1, SIGUSR2, SIGPOLL, SIGIO, SIGRTMIN, or SIGRTMAX.

Setting Calipers with the ssrt_caliper_point Function

To set caliper points using the ssrt_caliper_point(3) function, follow these steps:

007–3311–009 93

6: Setting Up and Running Experiments: ssrun

1. Insert calls to ssrt_caliper_point in your source code. Call the function with
the argument 1 (meaning, True) and a string to help identify the caliper point in
the experiment file later on.

Example for C:

...

ssrt_caliper_point(1,"bgn_calc");

...

Example for Fortran:

. . .

INTEGER SSRT_CALIPER_POINT

. . .
i = SSRT_CALIPER_POINT (1, ’bgn_calc’)

. . .

You can insert one or more calls at any point in your code.

2. Link the SpeedShop library libss.so into your application. Place the -lss
option at the end of your compile or link command so that the library is the last
to be referenced.

3. Run your program with ssrun and the desired experiment type. For example, if
you want to run the bbcounts experiment on generic:

% ssrun -bbcounts generic

The caliper points you have set in the source file are recorded in the performance
data file that is generated by ssrun.

Setting Time-Oriented Calipers

To add caliper points at a regular time interval into your experiment file, set the
_SPEEDSHOP_POLLPOINT_CALIPER_POINT environment variable before you
generate an experiment. It takes the following form:

_SPEEDSHOP_POLLPOINT_CALIPER_POINT timer_type,timer_interval

The arguments are as follows:

• timer_type: can have one of the following values:

94 007–3311–009

SpeedShop User’s Guide

– 0: Real time. This is the total time a program spent while executing. It
includes both time spent when a program is swapped out waiting for a CPU
and the time the operating system is in control, performing some task for the
program such as I/O or executing a system call.

– 1: process virtual time. This is the time spent when the program is actually
running. This does not include either the time spent when a program is
swapped out waiting for a CPU or the time the operating system is in control,
performing some task for the program such as I/O or executing another
system call.

– 2: CPU time. This is process virtual time plus the time the system is running
on behalf of the process. The system time could include performing I/O or
executing other system calls.

• timer_interval: the integer interval, in seconds, at which a new caliper will be set.

The caliper points you have set with the _SPEEDSHOP_POLLPOINT_CALIPER_POINT
environment variable are recorded in the performance data file that is generated by
ssrun. For the usertime experiment, timer_type must be 2.

Setting Calipers with Signals

To set calipers with signals, follow these steps:

1. Set the _SPEEDSHOP_CALIPER_POINT_SIG variable to the signal number you
want to use.

Choose a signal that does not terminate the program. The signal should also not
be caught by the target program; doing so would interfere with its triggering a
caliper point.

The following signals are good choices because they do not have system-defined
semantics already associated with them:

SIGUSR1 16 /* user defined signal 1 */

SIGUSR2 17 /* user defined signal 2 */

2. Execute your program with ssrun.

3. In another window, enter a command such as ps or top to determine the process
ID of ssrun. This is also the process ID of the program you are working on.

007–3311–009 95

6: Setting Up and Running Experiments: ssrun

4. In this window, send the signal you used in step 1 to the process using the kill
command:

% kill -sig_num pid

Caliper point data is recorded at the point in the program where the signal sent
by the kill command interrupts the executing ssrun process.

Setting Calipers with a Debugger

From either dbx or the WorkShop debugger, you can set a caliper point anywhere it
is possible to set a breakpoint: at a function entry or exit, a line number, an execution
address, a watchpoint, or a pollpoint (timer-based). You can also attach conditions
and or cycle counts.

Use the following procedure:

1. Set a breakpoint in your program where you want a caliper point.

2. When the process stops, evaluate the expression ssrt_caliper_point(3). The
evaluation of the expression always returns zero, but a side effect of the
evaluation is the recording of the appropriate data.

3. Resume execution of the process.

Effects of ssrun
When you call ssrun, the system performs the following operations for all
experiments:

• Sets various environment variables like _SPEEDSHOP_MARCHING_ORDERS and
_SPEEDSHOP_EXPERIMENT_TYPE.

For more information on these environment variables, see "Using Run-Time
Environment Variables", page 74.

• Inserts the SpeedShop libraries libss.so and libssrt.so as part of your
executable using the environment variable _RLD_LIST.

• Invokes the file executable_name by calling exec().

96 007–3311–009

SpeedShop User’s Guide

• The SpeedShop run-time library writes the appropriate experiment data to the
output file.

007–3311–009 97

Chapter 7

Analyzing Experiment Results

This chapter provides information on how to view and analyze experiment results by
using the prof(1) report generator. This chapter has the following sections:

• "Using prof to Generate Performance Reports", page 99

• "Using prof with ssrun", page 105

• "Using prof Options", page 114

• "Generating Reports for Different Machine Types", page 128

• "Generating Reports for Multiprocessed Executables", page 129

• "Determining Program Overhead", page 129

• "Generating Compiler Feedback Files", page 132

• "Comparing Experiment Results", page 132

Using prof to Generate Performance Reports
Performance data is examined using prof, a text-based report generator that prints to
stdout.

Use either of the following syntaxes to generate a report from performance data
gathered during experiments recorded by ssrun(1):

prof [options][speedshop_data_file]...

or

prof [options] executable_name [speedshop_data_file]...

prof Arguments

The arguments for prof when used with data files from ssrun are as follows:

007–3311–009 99

7: Analyzing Experiment Results

• options: zero or more of the options described in Table 7-1, page 100.

• executable_name: the name of the executable file (including its path) created by the
compiler. This argument is needed if prof is unable to locate the executable
relative to the location of the data files being analyzed because the data or the
executable were moved after the files were created.

• speedshop_data_file: one or more names of performance data files generated by
ssrun. The file names may differ only in the ID portion of their names. The
exp_type portion of the names must be identical.

prof Options

The following table lists prof options that are current for this release. For more
information and for a list of any newly added options since this printing, see the
prof(1) man page.

Table 7-1 Options for prof

Name Result

-archinfo Reports the number of times each register was used as a destination, base
(integer registers only), or source; how many times each instruction opcode
was used; and some detailed statistics concerning branches jumps, and how
many delay slots were filled with no-op instructions. Works only with
bbcounts experiments.

-basicblocks Prints a list of all the basic blocks executed, ordered by the number of cycles
spent in each basic block. Works only with bbcounts experiments.

-b[utterfly] Causes prof to print a report showing the callers and callees of each
function, with inclusive time attributed to each. For bbcounts experiments,
the attribution is based on a heuristic. For the various callstack sampling and
tracing experiments, the attribution is precise. The usertime, totaltime,
and some _hwctime experiments are statistical in nature and so are not exact.
This option is ignored for experiments in which the data does not support
inclusive calculations. It delivers the same display as -gprof.

-calipers [n1,]n2 Restricts analysis to a segment of program execution. This option works only
for SpeedShop experiments.

100 007–3311–009

SpeedShop User’s Guide

Name Result

Causes prof to compute the data between caliper points n1 and n2, rather
than for the entire experiment.
If n1 >= n2, an error is reported.

If n2 is greater than the maximum number of caliper points recorded, it is set
to the maximum.

If n1 is omitted, zero (the beginning of the program) is assumed.

-calls Sorts the function list by the number of procedure calls rather than by time.
This option can only be used when generating reports for bbcounts
experiments.

-clock n Sets the CPU clock speed to (n), expressed in megahertz. This option is useful
when generating reports for bbcounts experiments. The default is the clock
speed of the machine on which the performance data was collected.

-[no]cordfb Enables or disables (-nocordfb) cord feedback file generation for the
executable only. Cord feedback is used to arrange procedures in the binary in
an optimal ordering. This improves both paging and instruction cache
performance. Users can use cord(1) or ld(1) to actually do the procedure
ordering.

-cordfball Enables cord feedback for the executable and all DSOs.

-cycle n Sets the cycle time to n nanoseconds. This parameter may be used as another
way of setting the clock speed. See also the description for -clock n.

-debug:dbg_flags Sets dbg_flags. dbg_flag should be specified as a hexadecimal value made by
adding up combinations of the hexadecimal values listed below (Example:
-debug:0x00000102):

GPROF_FLAG 0x00000001
COUNTS_FLAG 0x00000002

SAMPLE_FLAG 0x00000004

MISS_FLAG 0x00000008

FEEDBACK_FLAG 0x00000010

CORD_FLAG 0x00000020
USERPC_FLAG 0x00000040

MDEBUG_FLAG 0x00000080

BEAD_FLAG 0x00000100

LIBSSRT_FLAG 0x00000200

007–3311–009 101

7: Analyzing Experiment Results

Name Result

-dis[assemble] Disassembles and annotates the analyzed object code with cycle times if you
have run an bbcounts experiment, collected data using pixie, or have run
apcsamp or _hwc/_hwctime experiment.

-dislimit n Disassembles only those basic blocks with a frequency >= n%. This option
applies to the same experiments as the -disassemble option.

-dso dsoname Generates a report only for the named DSO. Only the base name, not the full
path name, of the DSO needs to be specified; the .so suffix is required.
Multiple instances of the -dso flag can be given.

-dsolist List all the DSOs in the program and their start and end text addresses.

-e[xclude] procedure_name If you use one or more -e[xclude] options, the profiler omits the specified
procedure from the listing. If any option uses an upper-case E for
-E[xclude], prof also omits that procedure from the base upon which it
calculates percentages.

-feedback Produces files with information that can be used to arrange procedures in the
binary in an optimal ordering using cord. The cord feedback files are named
program.fb or libso.fb. Procedures are normally ordered by their measured
invocation counts; if -gprof is also specified, procedures are ordered using
call graph counts, rather than invocation counts.

-fpe_counts For FPE experiments, this option restricts the output to only show data from
FPE events of type n. The default is to display the combined results from all
FPE events.

-fpe_type n Used with FPE experiments. Restricts the output to only show data from FPE
events of type n. The default is to display the combined results from all FPE
events.

-gprof (See -b[utterfly].)

-h[eavy] Lists the most heavily used lines of source code in descending order of use,
sorting lines by their execution time. This option can be used when
generating reports for bbcounts, pcsamp, or _hwc experiments.

-inclusive Sorts function list by inclusive data rather than by exclusive data. This option
can only be used when generating reports for those experiments that have
inclusive data; it is ignored for others.

102 007–3311–009

SpeedShop User’s Guide

Name Result

-l[ines] Lists the most heavily used lines of source code in descending order of use,
but lists lines grouped by procedure, sorted by cycles executed per procedure.
This option can be used when generating reports for bbcounts, pcsamp, or
_hwc experiments.

-nh Suppresses various header blocks from the output.

-o[nly] procedure_name If you use one or more -o[nly] options, the profile listing includes only the
named procedures, rather than the entire program. If any option uses an
uppercase -O[nly], prof uses only the named procedures, rather than the
entire program, as the base upon which it calculates percentages.

-overhead Generates overhead data for a parallel program. Overhead data includes how
much time was spent when the program had no parallel work to do, how
much time was lost when work was not spread evenly among the processors,
and so on.

-pthreads pthread_id Analyzes data only for the specified pthread identifier (for usertime,
totaltime, _hwctime, io, and fpe experiments on applications that use
pthreads on IRIX 6.5 or later systems). pthread_id may be a list of pthread
identifiers separated by commas.

-q[uit] n Condenses output listings by truncating -h[eavy], -l[ines], and -gprof
listings. You can specify n in three ways:

n, an integer, truncates everything after n functions are listed;

n%, an integer followed by a percent sign, truncates the listing after the first
entry that represents less than n percent of the total;

ncum%, an integer followed by cum%, truncates the listing after enough entries
have been printed to account for n percent of the cumulative total. If
-b[utterfly] is also specified, it behaves the same as -q n%.

For example, -q 15 truncates each part of the report after 15 lines of text, -q
15% truncates each part after the first entry that represents less than 15
percent of the whole, and -q 15cum% truncates each part after the entry that
brought the cumulative percentage above 15%.

-rel[ative] Shows percentage attribution in a butterfly report relative to the central
function. The default is to show percentages as absolute percentages over the
whole run.

007–3311–009 103

7: Analyzing Experiment Results

Name Result

-repository directory Uses the SpeedShop DSO information from directory instead of processing the
DSO in memory. This reduces the time it takes to retrieve source file
information, procedure name, and address from the DSO. If you have multiple
SpeedShop DSO repositories, you can use this option multiple times to define
all the needed repositories. It can also be used to save the experiments because
saving the DSO information will allow prof to not use the original DSO
(which may have been modified). The directory is used in Read-Only mode.

-r16000|r14000|-
r12000|-r10000

Overrides the default processor scheduling model that prof uses to generate
a report. If this option is not specified, prof uses the scheduling model for
the processor on which the experiment is being run. These options are only
meaningful for an bbcounts time experiment or pixie count data.

-showss Enables the display of functions from the SpeedShop run-time DSO. Usually
those functions are suppressed from the reports and computations. In
addition, some statistics for the prof command’s own memory usage will be
printed.

-S (-source) Disassembles and annotates the analyzed object code with cycle times, or PC
samples, and interleaves and lists the source code, if you have run a
bbcounts, pcsamp, or _hwc experiment.

-update_repository
directory

Processes the DSO and stores the information in directory. This option can
only be specified once, and is required to save the DSO information.
SpeedShop DSO information files have a _ssInfoabi extension, depending
on the abi (32, n32, or 64). The directory is used in Read-Write mode.

-u[sage] Prints a report on system statistics and timers.

-ws Generates, for the executable only, a working-set file for the current caliper
setting. This option is only meaningful for a bbcounts time experiment or
pixie count data. The file suffix is .ws.

-wsall Generates, for the executable and all the non-ignored DSOs, a working-set file
for the current caliper setting. This option is only meaningful for a bbcounts
time experiment. The file suffix is .ws.

-xdso dso_name Excludes the named DSO from any reports. Only the base name, not the full
path name, of the DSO need be specified; the .so suffix is required. Multiple
instances of the -xdso flag can be specified.

104 007–3311–009

SpeedShop User’s Guide

prof Output

The prof command generates a performance report that is printed to stdout.
Warning and fatal errors are printed to stderr.

Note: Fortran alternate entry point times are attributed to the main function or
subroutine, since there is no general way for prof to separate the times for the
alternate entries.

Using prof with ssrun

When you call prof with one or more SpeedShop performance data files, it collects
the data from all the output files and produces a listing. The prof command is able
to detect which experiment was run and generate an appropriate report. The
command can identify all of the experiment types used with the ssrun command.

In cases where prof accepts more than one data file as input, it sums up the results.
The multiple input data files must be generated from the same executable, using the
same experiment type.

The prof command may report times for procedures named with a prefix of *DF*, for
example *DF*_hello.init_2. DF stands for Dummy Function and indicates cycles
spent in parts of text which are not in any function: init, fini, and MIPS.stubs
sections, for example.

The most frequently used reports that prof generates are described in the following
sections:

• "usertime Experiment Reports", page 106

• "pcsamp Experiment Reports", page 107

• "Hardware Counter Experiment Reports", page 108

• "bbcounts Experiment Reports", page 110

• "fpe Trace Reports", page 113

007–3311–009 105

7: Analyzing Experiment Results

usertime Experiment Reports

For usertime experiments, prof generates CPU times for individual routines and
shows how those times compare with the rest of the program. The column heading
are as follows:

• The index column provides an index number for reference.

• The excl.secs column shows how much time, in seconds, was spent in the
function itself (exclusive time). For example, less than one hundredth of a second
was spent in __start(), but 0.03 of a second was spent in fread.

• The excl.% column shows the percentage of a program’s total time that was
spent in the function.

• The cum.% column shows the percentage of the complete program time that has
been spent in the functions that have been listed so far.

• The incl.secs column shows how much time, in seconds, was spent in the
function and descendents of the function.

• The incl.% column shows the cumulative percentage of inclusive time spent in
each function and its descendents.

• The samples column provides the number of samples of the function and all of
its descendants.

• The function (dso:file,line) column lists the function name, its DSO
name, its file name, and its line number.

The following example is an abbreviated version of the full report. For a complete
report, see "Generating a Report", page 18.

SpeedShop profile listing generated Mon Feb 2 11:07:15 1998

prof generic.usertime.m10981

generic (n32): Target program

usertime: Experiment name

ut:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file generic.usertime.m10981:

Caliper point 0 at target begin, PID 10981

106 007–3311–009

SpeedShop User’s Guide

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of statistical callstack sampling data (usertime)--

809: Total Samples

0: Samples with incomplete traceback

24.270: Accumulated Time (secs.)

30.0: Sample interval (msecs.)

Function list, in descending order by exclusive time

[index] excl.secs excl.% cum.% incl.secs incl.% samples function (dso: file, line)

[4] 22.770 93.8% 93.8% 22.770 93.8% 759 anneal (generic: generic.c, 1573)

pcsamp Experiment Reports

For [f]pcsamp[x] experiments, prof generates a function list annotated with the
number of samples taken for the function and the estimated time spent in the
function. The column headings are as follows:

• The [index] column assigns a reference number to each function.

• The secs column shows the amount of CPU time that was spent in the function.

• The % column shows the percentage of the total program time that was spent in
the function.

• The cum.% column shows the percentage of the complete program time that has
been spent in the functions that have been listed so far.

• The samples column shows how many samples were taken when the process
was executing in the function.

• The function (dso:file, line) column lists the function, its DSO name, its
file name, and its line number.

The following is output from an fpcsamp experiment:

SpeedShop profile listing generated Mon Feb 2 11:01:36 1998

prof generic.fpcsamp.m11140

generic (n32): Target program

007–3311–009 107

7: Analyzing Experiment Results

fpcsamp: Experiment name
pc,2,1000,0:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--
From file generic.fpcsamp.m11140:

Caliper point 0 at target begin, PID 11140

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (fpcsamp)--
23828: Total samples

23.828: Accumulated time (secs.)

1.0: Time per sample (msecs.)

2: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 22.279 93.5% 93.5% 22279 anneal (generic: generic.c,1573)

Hardware Counter Experiment Reports

For the various hwc experiments, prof generates a function list annotated with the
number of overflows of hardware counters generated by the function. The column
headings are as follows:

• The [index] column assigns a reference number to each function.

• The counts column shows the extrapolated event count based on the number of
samples and the overflow value for the particular counter.

• The % column shows the percentage of the program’s overflows that occurred in
the function.

• The cum.% column shows the percentage of the program’s overflows that
occurred in the functions that have been listed so far.

• The samples column shows the number of times the program counter was
sampled during execution of the function.

108 007–3311–009

SpeedShop User’s Guide

• The function (dso:file, line) column lists the name, the DSO, the file
name, and line number of the function.

The following is output from a dsc_hwc hardware counter experiment:

007–3311–009 109

7: Analyzing Experiment Results

SpeedShop profile listing generated Mon Feb 2 11:11:44 1998

prof generic.dsc_hwc.m294398

generic (n32): Target program

dsc_hwc: Experiment name

hwc,26,131:cu: Marching orders

R10000 / R10010: CPU / FPU

16: Number of CPUs

195: Clock frequency (MHz.)

Experiment notes--

From file generic.dsc_hwc.m294398:

Caliper point 0 at target begin, PID 294398

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of R10K perf. counter overflow PC sampling data (dsc_hwc)--

6: Total samples

Sec cache D misses (26): Counter name (number)

131: Counter overflow value

786: Total counts

Function list, in descending order by counts

[index] counts % cum.% samples function (dso: file, line)

[1] 131 16.7% 16.7% 1 init2da (generic: generic.c, 1430)

[2] 131 16.7% 33.3% 1 genLog (generic: generic.c, 1686)

[3] 131 16.7% 50.0% 1 _write (libc.so.1: writeSCI.c, 27)

393 50.0% 100.0% 3 **OTHER** (includes excluded DSOs, rld, etc.)

786 100.0% 100.0% 6 TOTAL

bbcounts Experiment Reports

For bbcounts experiments, prof generates a function list annotated with the
number of cycles and instructions attributed to the function and the estimated time
spent in the function.

The prof command does not take into account interactions between basic blocks.
Within a single basic block, prof computes cycles for one execution and multiplies it
with the number of times that basic block is executed.

110 007–3311–009

SpeedShop User’s Guide

If any of the object files linked into the application have been stripped of line number
information (with ld -x, for example), prof warns about the affected procedures.
The instruction counts for such procedures are shown as a procedure total, not on a
per-basic-block basis. Where a line number would normally appear in a report on a
function without line numbers, question marks appear instead. The column headings
are as follows:

• The [index] column assigns a reference number to each function.

• The excl.secs column shows the minimum number of seconds that might be
spent in the function under bbcounts conditions.

• The excl.% column represents how much of the program’s total time was spent
in the function.

• The cum.% column shows the cumulative percentage of time spent in the
functions that have been listed so far.

• The cycles column reports the number of machine cycles used by the function.

• The instructions column shows the number of instructions executed by a
function.

• The calls column reports the number of calls to the function.

• The function (dso:file, line) column lists the function, its DSO name, its
file name, and the line number.

The following is output from a bbcounts experiment.

SpeedShop profile listing generated Mon Aug 14 13:51:00 2000

prof -butterfly generic.bbcounts.m46372

generic (n32): Target program

bbcounts: Experiment name

it:cu: Marching orders

R12000 / R12010: CPU / FPU

127: Number of CPUs

400: Clock frequency (MHz.)

Experiment notes--

From file generic.bbcounts.m46372:

Caliper point 0 at target begin, PID 46372

generic

Caliper point 1 at exit(0)

007–3311–009 111

7: Analyzing Experiment Results

Summary of bbcounts time data (bbcounts)--

2048835049: Total number of instructions executed

2552056463: Total computed cycles

6.380: Total computed execution time (secs.)

1.246: Average cycles / instruction

Function list, in descending order by exclusive bbcounts time

[index] excl.secs excl.% cum.% cycles instructions incl.secs incl.%

calls function (dso: file, line)

[5] 6.088 95.4% 95.4% 2435240026 1956780024 6.088 95.4%

1 anneal (generic: generic.c, 1559)

If the -butterfly flag is added to prof, a list of callers and callees of each function
is provided:

Butterfly function list, in descending order by inclusive bbcounts time

attrib.% attrib.time(#calls) incl.time caller (callsite) [index]

[index] incl.% incl.time self% self-time procedure [index]

attrib.% attrib.time(#calls) incl.time callee (callsite) [index]

[1] 99.9% 6.376 0.0% 0.000 __start [1]

99.9% 6.376(0000001) 6.376 main [2]

0.0% 0.000(0000001) 0.000 __readenv_sigfpe [314]

0.0% 0.000(0000001) 0.000 __istart [315]

99.9% 6.376(0000001) 6.376 __start [1]

[2] 99.9% 6.376 0.0% 0.000 main [2]

99.9% 6.376(0000001) 6.376 Scriptstring [3]

99.9% 6.376(0000001) 6.376 main [2]

[3] 99.9% 6.376 0.0% 0.000 Scriptstring [3]

95.4% 6.088(0000001) 6.088 usrtime [4]

3.7% 0.238(0000001) 0.238 libdso [6]

0.8% 0.050(0000001) 0.050 cvttrap [9]

0.0% 0.000(0000001) 0.000 iofile [31]

0.0% 0.000(0000002) 0.000 genLog [36]

0.0% 0.000(0000001) 0.000 dirstat [56]

112 007–3311–009

SpeedShop User’s Guide

0.0% 0.000(0000001) 0.000 linklist [63]

0.0% 0.000(0000001) 0.000 fpetraps [65]

0.0% 0.000(0000002) 0.000 fprintf [54]

0.0% 0.000(0000002) 0.000 sprintf [49]

0.0% 0.000(0000061) 0.000 strcmp [47]

95.4% 6.088(0000001) 6.376 Scriptstring [3]

[4] 95.4% 6.088 0.0% 0.000 usrtime [4]

95.4% 6.088(0000001) 6.088 anneal [5]

0.0% 0.000(0000001) 0.000 genLog [36]

0.0% 0.000(0000001) 0.000 fprintf [54]

fpe Trace Reports

The fpe trace report shows information for each function. The function name is
shown in the right column of the report. The remaining columns are described below.

• The [index] column assigns a reference number to each function.

• The excl.FPEs column shows how many floating point exceptions were found in
the function.

• The excl.% column shows the percentage of the total number of floating-point
exceptions that were found in the function.

• The cum.% column shows the percentage of floating-point exceptions in the
program that have been encountered so far in the list.

• The incl.FPEs column shows how many floating-point exceptions were
attributed to the function and descendents of the function.

• The incl.% column shows the cumulative percentage of floating-point exceptions
attributed to the function and its descendents.

• The function (dso:file, line) column lists the function name, its DSO
name, its file name, and its line number.

SpeedShop profile listing generated Mon Feb 2 13:26:33 1998

prof generic.fpe.m12213

generic (n32): Target program

fpe: Experiment name

007–3311–009 113

7: Analyzing Experiment Results

fpe:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file generic.fpe.m12213:

Caliper point 0 at target begin, PID 12213

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of FPE callstack tracing data (fpe)--

4: Total FPEs

0: Samples with incomplete traceback

Function list, in descending order by exclusive FPEs

[index] excl.FPEs excl.% cum.% incl.FPEs incl.% function (dso: file, line)

[1] 4 100.0% 100.0% 4 100.0% fpetraps (generic: generic.c, 405)

Using prof Options
This section shows the output from calling prof with some of the options available
for prof.

Using the -dis Option

For pcsamp and bbcounts experiments, the -dis option to prof can be used to
obtain machine instruction information. prof provides the standard report and then
appends the machine instruction information to the end of the report. The following
example shows partial output from prof for a pcsamp experiment.

SpeedShop profile listing generated Tue Feb 3 10:48:59 1998

prof -dis generic.pcsamp.m14493

generic (n32): Target program

pcsamp: Experiment name

pc,2,10000,0:cu: Marching orders

R4400 / R4000: CPU / FPU

114 007–3311–009

SpeedShop User’s Guide

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file generic.pcsamp.m14493:

Caliper point 0 at target begin, PID 14493

/usr/demos/SpeedShop/c/generic

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (pcsamp)--

2707: Total samples

27.070: Accumulated time (secs.)

10.0: Time per sample (msecs.)

2: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 25.240 93.2% 93.2% 2524 anneal (generic: generic.c, 1573)

[2] 1.090 4.0% 97.3% 109 slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.390 1.4% 98.7% 39 __read (libc.so.1: read.s, 20)

[4] 0.230 0.8% 99.6% 23 cvttrap (generic: generic.c, 317)

[5] 0.090 0.3% 99.9% 9 _xstat (libc.so.1: xstat.s, 12)

[6] 0.010 0.0% 99.9% 1 __write (libc.so.1: write.s, 20)

[7] 0.010 0.0% 100.0% 1 _ngetdents (libc.so.1: ngetdents.s, 16)

[8] 0.010 0.0% 100.0% 1 _doprnt (libc.so.1: doprnt.c, 285)

27.070 100.0% 100.0% 2707 TOTAL

Disassembly listing, annotated with PC sampling overflows

.

.

.

/usr/demos/SpeedShop/linpack.demos/c/generic.c

anneal: <0x10006830-0x10006b3c> 2524 total samples(93.24%)

[1573] 0x10006830 0x27bdffd0 addiu sp,sp,-48 # 1

[1573] 0x10006834 0xffbc0020 sd gp,32(sp) # 2

[1573] 0x10006838 0xffbf0018 sd ra,24(sp) # 3

[1573] 0x1000683c 0x3c030002 lui v1,0x2 # 4

[1573] 0x10006840 0x246397e8 addiu v1,v1,-26648 # 5

007–3311–009 115

7: Analyzing Experiment Results

[1573] 0x10006844 0x0323e021 addu gp,t9,v1 # 6

[1575] 0x10006848 0xd7808370 ldc1 $f0,-31888(gp) # 7

<2 cycle stall for following instruction>

[1575] 0x1000684c 0xf7a00000 sdc1 $f0,0(sp) # 10

[1577] 0x10006850 0x24010001 li at,1 # 11

[1577] 0x10006854 0x8f82816c lw v0,-32404(gp) # 12

<2 cycle stall for following instruction>

[1577] 0x10006858 0xac410000 sw at,0(v0) # 15

[1578] 0x1000685c 0x8f998148 lw t9,-32440(gp) # 16

[1578] 0x10006860 0x0c00171b jal 0x10005c6c # 17

[1578] 0x10006864 0000000000 nop # 18

<2 cycle stall for following instruction>

[1586] 0x10006868 0xafa00008 sw zero,8(sp) # 21

[1586] 0x1000686c 0x8fa40008 lw a0,8(sp) # 22

<2 cycle stall for following instruction>

[1586] 0x10006870 0x28842710 slti a0,a0,10000 # 25

[1586] 0x10006874 0x108000ac beq a0,zero,0x10006b28 # 26

[1586] 0x10006878 0000000000 nop # 27

<2 cycle stall for following instruction>

[1588] 0x1000687c 0x24070001 li a3,1 # 30

[1588] 0x10006880 0xafa7000c sw a3,12(sp) # 31

[1588] 0x10006884 0x8f868164 lw a2,-32412(gp) # 32

<2 cycle stall for following instruction>

[1588] 0x10006888 0x8cc60000 lw a2,0(a2) # 35

<2 cycle stall for following instruction>

[1588] 0x1000688c 0x24c6ffff addiu a2,a2,-1 # 38

[1588] 0x10006890 0x8fa5000c lw a1,12(sp) # 39

<2 cycle stall for following instruction>

[1588] 0x10006894 0x00a6282a slt a1,a1,a2 # 42

[1588] 0x10006898 0x10a0009c beq a1,zero,0x10006b0c # 43

[1588] 0x1000689c 0000000000 nop # 44

<2 cycle stall for following instruction>

[1589] 0x100068a0 0x240a0001 li t2,1 # 47

^------ 1 samples(0.04%)------^

[1589] 0x100068a4 0xafaa0010 sw t2,16(sp) # 48

^------ 1 samples(0.04%)------^

[1589] 0x100068a8 0x8f898164 lw t1,-32412(gp) # 49

<2 cycle stall for following instruction>

[1589] 0x100068ac 0x8d290000 lw t1,0(t1) # 52

<2 cycle stall for following instruction>

[1589] 0x100068b0 0x2529ffff addiu t1,t1,-1 # 55

116 007–3311–009

SpeedShop User’s Guide

[1589] 0x100068b4 0x8fa80010 lw t0,16(sp) # 56

<2 cycle stall for following instruction>

[1589] 0x100068b8 0x0109402a slt t0,t0,t1 # 59

[1589] 0x100068bc 0x11000089 beq t0,zero,0x10006ae4 # 60

[1589] 0x100068c0 0000000000 nop # 61

<2 cycle stall for following instruction>

[1590] 0x100068c4 0x8faf000c lw t7,12(sp) # 64

^------ 27 samples(1.00%)------^

<2 cycle stall for following instruction>

[1590] 0x100068c8 0x25ef0001 addiu t7,t7,1 # 67

^------ 7 samples(0.26%)------^

[1590] 0x100068cc 0x000f7080 sll t6,t7,2 # 68

^------ 30 samples(1.11%)------^

[1590] 0x100068d0 0x01cf7021 addu t6,t6,t7 # 69

^------ 8 samples(0.30%)------^

[1590] 0x100068d4 0x000e70c0 sll t6,t6,3 # 70

^------ 5 samples(0.18%)------^

[1590] 0x100068d8 0x8faf0010 lw t7,16(sp) # 71

^------ 8 samples(0.30%)------^

<2 cycle stall for following instruction>

[1590] 0x100068dc 0x01cf7021 addu t6,t6,t7 # 74

^------ 9 samples(0.33%)------^

[1590] 0x100068e0 0x000e70c0 sll t6,t6,3 # 75

^------ 27 samples(1.00%)------^

[1590] 0x100068e4 0x8f8f817c lw t7,-32388(gp) # 76

^------ 14 samples(0.52%)------^

<2 cycle stall for following instruction>

[1590] 0x100068e8 0x01cf7021 addu t6,t6,t7 # 79

^------ 9 samples(0.33%)------^

[1590] 0x100068ec 0x25ce0008 addiu t6,t6,8 # 80

^------ 28 samples(1.03%)------^

[1590] 0x100068f0 0xd5c10000 ldc1 $f1,0(t6) # 81

^------ 7 samples(0.26%)------^

[1590] 0x100068f4 0x8fad000c lw t5,12(sp) # 82

^------ 10 samples(0.37%)------^

<2 cycle stall for following instruction>

[1590] 0x100068f8 0x25ad0001 addiu t5,t5,1 # 85

^------ 21 samples(0.78%)------^

[1590] 0x100068fc 0x000d6080 sll t4,t5,2 # 86

^------ 19 samples(0.70%)------^

[1590] 0x10006900 0x018d6021 addu t4,t4,t5 # 87

007–3311–009 117

7: Analyzing Experiment Results

^------ 9 samples(0.33%)------^

[1590] 0x10006904 0x000c60c0 sll t4,t4,3 # 88

^------ 14 samples(0.52%)------^

[1590] 0x10006908 0x8fad0010 lw t5,16(sp) # 89

^------ 8 samples(0.30%)------^

<2 cycle stall for following instruction>

[1590] 0x1000690c 0x018d6021 addu t4,t4,t5 # 92

^------ 8 samples(0.30%)------^

[1590] 0x10006910 0x000c60c0 sll t4,t4,3 # 93

^------ 30 samples(1.11%)------^

[1590] 0x10006914 0x8f8d817c lw t5,-32388(gp) # 94

^------ 10 samples(0.37%)------^

<2 cycle stall for following instruction>

[1590] 0x10006918 0x018d6021 addu t4,t4,t5 # 97

^------ 8 samples(0.30%)------^

[1590] 0x1000691c 0xd5820000 ldc1 $f2,0(t4) # 98

^------ 28 samples(1.03%)------^

[1590] 0x10006920 0x8fab000c lw t3,12(sp) # 99

^------ 9 samples(0.33%)------^

<2 cycle stall for following instruction>

[1590] 0x10006924 0x256b0001 addiu t3,t3,1 # 102

^------ 11 samples(0.41%)------^

[1590] 0x10006928 0x000b5080 sll t2,t3,2 # 103

^------ 25 samples(0.92%)------^

[1590] 0x1000692c 0x014b5021 addu t2,t2,t3 # 104

^------ 11 samples(0.41%)------^

[1590] 0x10006930 0x000a50c0 sll t2,t2,3 # 105

^------ 8 samples(0.30%)------^

[1590] 0x10006934 0x8fab0010 lw t3,16(sp) # 106

^------ 11 samples(0.41%)------^

<2 cycle stall for following instruction>

[1590] 0x10006938 0x014b5021 addu t2,t2,t3 # 109

^------ 7 samples(0.26%)------^

[1590] 0x1000693c 0x000a50c0 sll t2,t2,3 # 110

^------ 26 samples(0.96%)------^

[1590] 0x10006940 0x8f8b817c lw t3,-32388(gp) # 111

^------ 13 samples(0.48%)------^

<2 cycle stall for following instruction>

[1590] 0x10006944 0x014b5021 addu t2,t2,t3 # 114

^------ 9 samples(0.33%)------^

[1590] 0x10006948 0x254afff8 addiu t2,t2,-8 # 115

118 007–3311–009

SpeedShop User’s Guide

^------ 26 samples(0.96%)------^

[1590] 0x1000694c 0xd5430000 ldc1 $f3,0(t2) # 116

^------ 11 samples(0.41%)------^

[1590] 0x10006950 0x8fa9000c lw t1,12(sp) # 117

^------ 10 samples(0.37%)------^

<2 cycle stall for following instruction>

[1590] 0x10006954 0x00094080 sll t0,t1,2 # 120

^------ 11 samples(0.41%)------^

.

.

.

The listing shows statistics about the procedure anneal() in the file generic.c and
lists the beginning and ending addresses of anneal(): <0x10006830-0x10006b3c>.
The five columns display the following information:

Column Displays

1 Line number of the instruction: [1573].

2 Beginning address of the instruction: 0x10006830.

3 Instruction in hexadecimal: 0x27bdffd0.

4 Assembler form (mnemonic) of the instruction: addiu sp,sp,-48.

5 Cycle in which the instruction executed: # 1.

Other information includes:

• The number of times the immediately preceding branch was executed and taken
(bbcounts only).

• The total number of cycles in a basic block and the percentage of the total cycles
for that basic block; the number of times the branch terminating that basic block
was executed; and the number of cycles for one execution of that basic block
(bbcounts only).

• The total number of samples at an instruction (pcsamp only).

• Any cycle stalls, that is, cycles that were wasted.

007–3311–009 119

7: Analyzing Experiment Results

Using the -S Option

For bbcounts experiments, the -S option to prof can be used to obtain source line
information. prof provides the standard report and then appends the source line
information to the end of the report.

This example shows output from calling prof for a bbcounts experiment. Note that
some lines are wrapped here to accommodate page width:

SpeedShop profile listing generated Mon Jul 17 14:45:28 2000

prof -S generic.bbcounts.m190404

generic (n32): Target program

bbcounts: Experiment name

it:cu: Marching orders

R12000 / R12010: CPU / FPU

128: Number of CPUs

400: Clock frequency (MHz.)

Experiment notes--

From file generic.bbcounts.m190404:

Caliper point 0 at target begin, PID 190404

generic

Caliper point 1 bgn_calc

Caliper point 2 at exit(0)

Summary of bbcounts time data (bbcounts)--

2048886059: Total number of instructions executed

2552098900: Total computed cycles

6.380: Total computed execution time (secs.)

1.246: Average cycles / instruction

Function list, in descending order by exclusive bbcounts time

[index] excl.secs excl.% cum.% cycles instructions calls

function (dso: file, line)

[1] 6.088 95.4% 95.4% 2435240026 1956780024 1

anneal (generic: generic.c, 1560)

[2] 0.238 3.7% 99.1% 95000839 75000732 1

slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.050 0.8% 99.9% 20000056 15000054 1

cvttrap (generic: generic.c, 317)

120 007–3311–009

SpeedShop User’s Guide

[4] 0.001 0.0% 99.9% 503138 559313 5212

resolve_relocations (rld: rld.c, 2636)

[5] 0.001 0.0% 100.0% 274847 282220 1255

general_find_symbol (rld: rld.c, 2038)

[6] 0.000 0.0% 100.0% 116756 120371 3

fix_all_defineds (rld: rld.c, 3419)

[7] 0.000 0.0% 100.0% 115819 145585 1270

elfhash (rld: obj.c, 1184)

[8] 0.000 0.0% 100.0% 102496 146324 6406

obj_dynsym_got (rld: objfcn.c, 46)

[9] 0.000 0.0% 100.0% 89123 116619 948

fread (libc.so.1: fread.c, 27)

[10] 0.000 0.0% 100.0% 74339 58123 1

init2da (generic: generic.c, 1417)

.

.

.

disassembly listing

*DF*_generic.MIPS.stubs_1

*DF*_generic.MIPS.stubs_1@0x10001fd4-0x100023d8: <0x10001fd4-0x100023d8>

.

.

.

/usr/people/n4733/demos/SpeedShop/generic/generic.c

main: <0x10002500-0x10002640>

31 total cycles(0.00%) invoked 1 times, average 31 cycles/invocation

File ’/usr/people/n4733/demos/SpeedShop/generic/generic.c’:

Skipping source listing to line 91

92: void sproctestgrandchild(void *); /* sproc grandchild code */

93:

94: static struct timeval starttime; /* starting time - first timestamp */

95: static struct timeval ttime; /* last-recorded timestamp */

96: static struct timeval deltatime;

97:

98: int pagesize;

99:

100: main(unsigned argc, char **argv)

101: {

007–3311–009 121

7: Analyzing Experiment Results

[101] 0x10002500 0x27bdffd0 addiu sp,sp,-48 # 1

[101] 0x10002504 0xffbc0010 sd gp,16(sp) # 2

[101] 0x10002508 0xffbf0008 sd ra,8(sp) # 3

[101] 0x1000250c 0x3c010002 lui at,0x2 # 3

[101] 0x10002510 0x2421eb28 addiu at,at,-5336 # 4

[101] 0x10002514 0x0321e021 addu gp,t9,at # 5

[101] 0x10002518 0xafa40024 sw a0,36(sp) # 5

[101] 0x1000251c 0xafa5002c sw a1,44(sp) # 6

102: int i;

103:

104: /* initialize the timestamp */

105: (void) gettimeofday(& starttime, NULL);

[105] 0x10002520 0x27848198 addiu a0,gp,-32360 # 6

[105] 0x10002524 0x00002825 move a1,zero # 6

[105] 0x10002528 0x8f998064 lw t9,-32668(gp) # 7

<2 cycle stall for following instruction>

[105] 0x1000252c 0x0320f809 jalr ra,t9 # 8

[105] 0x10002530 0000000000 nop # 9

^--- 11 total cycles(0.00%) executed 1 times, average 11 cycles.---^

106:

107: /* set up to reap any children */

108: (void) sigset(SIGCHLD, (SIG_PF)reapSig);

[108] 0x10002534 0x24040012 li a0,18 # 1

[108] 0x10002538 0x8f858130 lw a1,-32464(gp) # 2

[108] 0x1000253c 0x8f998068 lw t9,-32664(gp) # 3

<2 cycle stall for following instruction>

[108] 0x10002540 0x0320f809 jalr ra,t9 # 4

[108] 0x10002544 0000000000 nop # 5

^--- 6 total cycles(0.00%) executed 1 times, average 6 cycles.---^

109:

110: if(argc == 1) {

[110] 0x10002548 0x8fa20024 lw v0,36(sp) # 1

[110] 0x1000254c 0x24030001 li v1,1 # 2

<2 cycle stall for following instruction>

[110] 0x10002550 0x1443000c bne v0,v1,0x10002584 # 3

[110] 0x10002554 0000000000 nop # 4

Preceding branch executed 1 times, taken 0 times.

^--- 5 total cycles(0.00%) executed 1 times, average 5 cycles.---^

111: Scriptstring(DEFAULT_SCRIPT);

[111] 0x10002558 0x8f848034 lw a0,-32716(gp) # 1

<1 cycle stall for following instruction>

122 007–3311–009

SpeedShop User’s Guide

[111] 0x1000255c 0x24848008 addiu a0,a0,-32760 # 2

[111] 0x10002560 0x8f998138 lw t9,-32456(gp) # 2

[111] 0x10002564 0x0c000a14 jal 0x10002850 # 2

[111] 0x10002568 0000000000 nop # 3

^--- 4 total cycles(0.00%) executed 1 times, average 4 cycles.---^

112: exit(0);

[112] 0x1000256c 0x00002025 move a0,zero # 1

[112] 0x10002570 0x8f99805c lw t9,-32676(gp) # 2

<2 cycle stall for following instruction>

[112] 0x10002574 0x0320f809 jalr ra,t9 # 3

[112] 0x10002578 0000000000 nop # 4

^--- 5 total cycles(0.00%) executed 1 times, average 5 cycles.---^

[112] 0x1000257c 0x10000020 b 0x10002600 # 1

[112] 0x10002580 0000000000 nop # 2

^--- 0 total cycles(0.00%) executed 0 times, average 2 cycles.---^

113: } else {

114:

115: i = argc;

[115] 0x10002584 0x8fa60024 lw a2,36(sp) # 1

[115] 0x10002588 0xafa60000 sw a2,0(sp) # 2

.

.

.

Using the -calipers Option

When you run prof on the output of an experiment in which you have recorded
caliper points, you can use the -calipers option to specify the area of the program
for which you want to generate a performance report. For example, if you record just
one caliper point in the middle of your program, prof can provide a report from the
beginning of the program up to the first caliper point using the following command:

% prof -calipers 0,1 executable_name.exp_type.id

The prof command can also provide a report from the caliper point to the end of the
program using the following command:

% prof -calipers 1,2 executable_name.exp_type.id

If you record two caliper points (0, 1, 2, 3), prof can generate a report from the
second to the third caliper point:

007–3311–009 123

7: Analyzing Experiment Results

% prof -calipers 1,2 executable_name.exp_type.id

Using the -butterfly Option

For bbcounts, usertime, and fpe experiments, the -butterfly option to prof
can be used to obtain inclusive metric information. prof provides the standard
report and then appends the inclusive function counts information to the end of the
report. The following example is partial output from prof, showing just the inclusive
function counts report.

With inclusive cycle counting, prof prints a list of functions at the end, which are
called but not defined. It also includes functions from libss; they are instrumented,
but their data is normally excluded.

The prof report does not list the cycles of a procedure in the inclusive listing for the
following reasons:

• init, fini, and MIPS.stubs sections are not part of any procedure.

• Calls to procedures that do not use a “jump and link” are not recognized as
procedure calls. (This is not true for bbcounts experiments.)

• When global procedures with the same name are executed in different DSOs, only
one of them is listed.

These exceptions are listed at the end of the report.

This example shows output from calling prof for a usertime experiment:

SpeedShop profile listing generated Thu Feb 12 13:52:09 1998

prof -butterfly generic.usertime.m10981

generic (n32): Target program

usertime: Experiment name

ut:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file generic.usertime.m10981:

Caliper point 0 at target begin, PID 10981

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

124 007–3311–009

SpeedShop User’s Guide

Summary of statistical callstack sampling data (usertime)--

809: Total Samples

0: Samples with incomplete traceback

24.270: Accumulated Time (secs.)

30.0: Sample interval (msecs.)

Function list, in descending order by exclusive time

[index] excl.secs excl.% cum.% incl.secs incl.% samples function

(dso: file, line)

[4] 22.770 93.8% 93.8% 22.770 93.8% 759 anneal

(generic: generic.c, 1573)

[6] 1.020 4.2% 98.0% 1.020 4.2% 34 slaveusrtime

(dlslave.so: dlslave.c, 22)

[9] 0.210 0.9% 98.9% 0.210 0.9% 7 cvttrap

(generic: generic.c, 317)

[12] 0.120 0.5% 99.4% 0.120 0.5% 4 _pm_create_special

(libc.so.1: pm.c, 191)

[14] 0.090 0.4% 99.8% 0.090 0.4% 3 _migr_policy_args_init

(libc.so.1: pm.c, 398)

[10] 0.030 0.1% 99.9% 0.180 0.7% 6 iofile

(generic: generic.c, 464)

[11] 0.030 0.1% 100.0% 0.150 0.6% 5 _doscan_f

(libc.so.1: inline_doscan.c, 615)

[1] 0.000 0.0% 100.0% 24.270 100.0% 809 __start

(generic: crt1text.s, 101)

[2] 0.000 0.0% 100.0% 24.270 100.0% 809 main

(generic: generic.c, 101)

[3] 0.000 0.0% 100.0% 24.270 100.0% 809 Scriptstring

(generic: generic.c, 184)

[5] 0.000 0.0% 100.0% 22.770 93.8% 759 usrtime

(generic: generic.c, 1377)

[15] 0.000 0.0% 100.0% 0.090 0.4% 3 dirstat

(generic: generic.c, 348)

[16] 0.000 0.0% 100.0% 0.090 0.4% 3 _pread

(libc.so.1: preadSCI.c, 33)

[13] 0.000 0.0% 100.0% 0.120 0.5% 4 _fullocale

(libc.so.1: _locale.c, 77)

[7] 0.000 0.0% 100.0% 1.020 4.2% 34 libdso

007–3311–009 125

7: Analyzing Experiment Results

(generic: generic.c, 619)

[8] 0.000 0.0% 100.0% 1.020 4.2% 34 dlslave_routine

(dlslave.so: dlslave.c, 7)

Butterfly function list, in descending order by inclusive time

attrib.% attrib.time incl.time caller

(callsite) [index]

[index] incl.% incl.time self% self-time function [index]

attrib.% attrib.time incl.time callee

(callsite) [index]

[1] 100.0% 24.270 0.0% 0.000 __start [1]

100.0% 24.270 24.270 main

(@0x10001fac; generic: crt1text.s, 177) [2]

100.0% 24.270 24.270 __start

(@0x10001fac; generic: crt1text.s, 177) [1]

[2] 100.0% 24.270 0.0% 0.000 main [2]

100.0% 24.270 24.270 Scriptstring

(@0x10002040; generic: generic.c, 111) [3]

100.0% 24.270 24.270 main

(@0x10002040; generic: generic.c, 111) [2]

[3] 100.0% 24.270 0.0% 0.000 Scriptstring

[3]

93.8% 22.770 22.770 usrtime

(@0x10002460; generic: generic.c, 214) [5]

4.2% 1.020 1.020 libdso

(@0x10002460; generic: generic.c, 214) [7]

0.9% 0.210 0.210 cvttrap

(@0x10002460; generic: generic.c, 214) [9]

0.7% 0.180 0.180 iofile

(@0x10002460; generic: generic.c, 214) [10]

0.4% 0.090 0.090 dirstat

(@0x10002460; generic: generic.c, 214) [15]

93.8% 22.770 22.770 usrtime

(@0x10005c30; generic: generic.c, 1393) [5]

[4] 93.8% 22.770 93.8% 22.770 anneal [4]

126 007–3311–009

SpeedShop User’s Guide

93.8% 22.770 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]

[5] 93.8% 22.770 0.0% 0.000 usrtime [5]

93.8% 22.770 22.770 anneal

(@0x10005c30; generic: generic.c, 1393) [4]

4.2% 1.020 1.020 dlslave_routine

(@0x5ffe0690; dlslave.so: dlslave.c, 9) [8]

[6] 4.2% 1.020 4.2% 1.020 slaveusrtime

[6]

4.2% 1.020 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]

[7] 4.2% 1.020 0.0% 0.000 libdso [7]

4.2% 1.020 1.020 dlslave_routine

(@0x100032a0; generic: generic.c, 650) [8]

4.2% 1.020 1.020 libdso

(@0x100032a0; generic: generic.c, 650) [7]

[8] 4.2% 1.020 0.0% 0.000 dlslave_routine [8]

4.2% 1.020 1.020 slaveusrtime

(@0x5ffe0690; dlslave.so: dlslave.c, 9) [6]

0.9% 0.210 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]

[9] 0.9% 0.210 0.9% 0.210 cvttrap [9]

0.7% 0.180 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]

[10] 0.7% 0.180 0.1% 0.030 iofile [10]

0.6% 0.150 0.150 _doscan_f

(@0x10002d48; generic: generic.c, 483) [11]

0.6% 0.150 0.180 iofile

(@0x10002d48; generic: generic.c, 483) [10]

[11] 0.6% 0.150 0.1% 0.030 _doscan_f [11]

0.5% 0.120 0.120 _fullocale

(@0x0fadebe4; libc.so.1: inline_doscan.c, 808) [13]

0.5% 0.120 0.120 _fullocale

007–3311–009 127

7: Analyzing Experiment Results

(@0x0fb0b1b8; libc.so.1: _locale.c, 84) [13]

[12] 0.5% 0.120 0.5% 0.120 _pm_create_special [12]

0.5% 0.120 0.150 _doscan_f

(@0x0fadebe4; libc.so.1: inline_doscan.c, 808) [11]

[13] 0.5% 0.120 0.0% 0.000 _fullocale [13]

0.5% 0.120 0.120 _pm_create_special

(@0x0fb0b1b8; libc.so.1: _locale.c, 84) [12]

0.4% 0.090 0.090 _pread

(@0x0fb05928; libc.so.1: preadSCI.c, 33) [16]

[14] 0.4% 0.090 0.4% 0.090 _migr_policy_args_init [14]

0.4% 0.090 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]

[15] 0.4% 0.090 0.0% 0.000 dirstat [15]

0.4% 0.090 0.090 _pread

(@0x10002a5c; generic: generic.c, 381) [16]

0.4% 0.090 0.090 dirstat

(@0x10002a5c; generic: generic.c, 381) [15]

[16] 0.4% 0.090 0.0% 0.000 _pread [16]

0.4% 0.090 0.090 _migr_policy_args_init

(@0x0fb05928; libc.so.1: preadSCI.c, 33) [14]

Generating Reports for Different Machine Types
If you need to generate a report for a machine model that is different from the one on
which the experiment was performed, you can use several of the prof options to
specify a machine model.

For example, if you record a bbcounts experiment on an R4000 processor with a
clock frequency of 100 megahertz, but you want to generate a report for an R10000
processor with a clock frequency of 196 megahertz, the prof command would be the
following:

% prof -r10000 -clock 196 generic.bbcounts.m4561

128 007–3311–009

SpeedShop User’s Guide

Generating Reports for Multiprocessed Executables
You can gather data from executables that use the sproc(2) and sprocsp(2) system
calls, such as those executables generated by POWER Fortran and POWER C. Prepare
and run the job using the same method as for uniprocessed executables. For
multiprocessed executables, each thread of execution writes its own separate data file.
View these data files with prof.

The only difference between multiprocessed and regular executables is how the data
files are named. The data files are named prog_name.experiment_type.id.

The experiment ID, id, consists of one or two letters (designating the process type)
and the process ID number. See Table 1-1, page 9 for the letter codes and their
meanings. This naming convention avoids the potential conflict of multiple threads
attempting to write simultaneously to the same file.

Determining Program Overhead
You can determine the overhead of a parallel program by including the -overhead
argument on the prof command line. The overhead information will be included at
the end of the usual report.

You can get the overhead report for any experiment, but it may be the most useful for
the following experiments:

• pcsamp

• usertime

• bbcounts

• The hardware counter experiments (*_hwc and *_hwctime)

Use the following steps to generate an overhead report on a system with multiple
processors.

1. Run the bbcounts experiment on the executable:

% ssrun -bbcounts linpackd

The ssrun command generates the following files, each from a different
processor, for an 8-processor program:

007–3311–009 129

7: Analyzing Experiment Results

linpackd.bbcounts.m422744
linpackd.bbcounts.p421778

linpackd.bbcounts.p422191

linpackd.bbcounts.p422252

linpackd.bbcounts.p422313

linpackd.bbcounts.p422620
linpackd.bbcounts.p422704

linpackd.bbcounts.p422731

2. Combine the experiment files into one experiment file using the ssaggregate(1)
command.

% ssaggregate -e linpackd.bbcounts* -o bbcounts.8ps

3. Execute the prof command with the -overhead option to create the data file.

% prof -overhead bbcounts.8ps >result

The result file contains the usual bbcounts experiment output with the overhead
information at the end. Note that some lines are wrapped here to accommodate page
width:

SpeedShop profile listing generated Fri Jun 25 09:21:27 1999

prof -overhead bbcounts.8ps

linpackd (n32): Target program

bbcounts: Experiment name

it:cu: Marching orders

R10000 / R10010: CPU / FPU

16: Number of CPUs

195: Clock frequency (MHz.)

Experiment notes--

From file bbcounts.8ps:

Caliper point 0 at target begin, PID 422744

linpackd

Caliper point 0 at target begin, PID 422620

linpackd

Caliper point 0 at target begin, PID 422731

linpackd

Caliper point 0 at target begin, PID 422704

linpackd

Caliper point 0 at target begin, PID 422252

linpackd

130 007–3311–009

SpeedShop User’s Guide

Caliper point 0 at target begin, PID 421778

linpackd

Caliper point 0 at target begin, PID 422191

linpackd

Caliper point 0 at target begin, PID 422313

linpackd

Caliper point 1 at exit(0)

Summary of bbcounts time data (bbcounts)--

29877509668: Total number of instructions executed

20592366537: Total computed cycles

105.602: Total computed execution time (secs.)

0.689: Average cycles / instruction

Function list, in descending order by exclusive bbcounts time

[index] excl.secs excl.% cum.% cycles instructions calls

function (dso: file, line)

[1] 72.955 69.1% 69.1% 14226219437 24895879414 140

__mp_slave_wait_for_work (libmp.so: mp_parallel_do.s, 593)

[2] 30.344 28.7% 97.8% 5917081268 4669997342 772633

daxpy (linpackd: linpack.f, 495)

.

.

.

OpenMP Report

Parallelization Overhead: 00.000%

Load Imbalance: 00.076%

Insufficient Parallelism: 69.085%

Barrier Loss: 00.002%

Synchronization Loss: 00.000%

Other Model-specific Overhead: 00.000%

The parallel model used in the program was OpenMP, although other parallel models
(such as MPI and pthreads) are supported. The categories for which information is
returned vary depending on the model. The OpenMP categories have the following
meanings:

007–3311–009 131

7: Analyzing Experiment Results

• Parallelization Overhead: the percentage of the program’s time spent doing
work necessary to a parallel program, such as distributing loop iterations and data
among the processors. The percentage is negligible for this program.

• Load Imbalance: the percentage of a program’s time lost because work was not
spread evenly across the processors. This number would be 0 if each processor
had exactly the same amount of work.

• Insufficient Parallelism: the percentage of a program’s time in which the
processors were not working in parallel. The number returned for this program
tells us that about two-thirds of the program time was not parallelized.

• Barrier Loss: the percentage of the program’s time used by the barrier process.
This is not the time processors spent waiting at barriers.

• Synchronization Loss: the percentage of the program’s time used by the
other synchronization processes.

• Other Model-specific Overhead: the percentage of a program’s time spent
in other OpenMP (in this case) processes.

The same aggregated experiment file created above can be used by the cvperf(1)
command to display overhead information in its own window. For an example, see
the ProDev WorkShop: Performance Analyzer User’s Guide.

Generating Compiler Feedback Files
If you run a bbcounts experiment, run prof with the -feedback option to
generate a feedback file that can be used to arrange procedures more efficiently on the
next compilation. You can rearrange procedures using the -fb option on compiler
command lines.

To reorder code regions for the cord(1) command, use the -cordfb or -cordfball
option to prof.

For more information, see your compiler man page or the cord(1) man page.

Comparing Experiment Results
After running experiments, you can compare experiment results by using the
sscompare command. This command can be used to analyze performance data

132 007–3311–009

SpeedShop User’s Guide

generated by ssrun and produce a comparison report. This can be particularly useful
when comparing the effects of different optimization techniques, for example, or
when comparing different experiments for the same application.

The sscompare command has the following syntax:

sscompare [-by type] [-individual] [-left caliper] [-output format]
[-path pathname] [-percentages] [-precision digits] [rough]
[-right caliper] [statistics] [-ut_exclusive] [-ut_inclusive]
[-width characters]

The comparison report contains a legend and a table of performance data. Each input
file and the type of performance data it contains is listed in the legend with a numeric
column key. The table contains multiple columns of data. There is one column for
each experiment file (if the individual option is used) or one for each statistic (if
the statistics option was used).

The following example demonstrates this command’s use. In this example, a
SpeedShop PC sampling experiment is run on the OpenMP implementation of the
NAS Conjugate Gradient Parallel Benchmark using four threads. The resulting
experiment files are then compared side-by-side using sscompare:

% setenv OMP_NUM_THREADS 4

% ssrun -fpcsampx cg.A

NAS Parallel Benchmarks 2.3 OpenMP C version - CG Benchmark

Size: 14000

Iterations: 15

...

...

...

% sscompare -by function -individual -percentages cg.A.fpcsampx.*

1: Exclusive ‘PC sampling’ time for cg.A.fpcsampx.T0.m2675229

2: Exclusive ‘PC sampling’ time for cg.A.fpcsampx.T1.p2676575

3: Exclusive ‘PC sampling’ time for cg.A.fpcsampx.T2.p2678981

4: Exclusive ‘PC sampling’ time for cg.A.fpcsampx.T3.p2681324

1 2 3 4

007–3311–009 133

7: Analyzing Experiment Results

63.973% 74.819% 67.227% 63.820% conj_grad (cg.A: cg.c, 356)

0.000% 22.881% 23.754% 24.255% __mp_slave_wait_for_work (libmp.so: mp_parallel_do.s, 593)

10.758% 1.608% 7.913% 10.943% __mp_barrier_nthreads (libmp.so: mp_barrier.c, 271)

16.161% 0.000% 0.000% 0.000% sparse (cg.A: cg.c, 709)

...

...

...

...

sscompare supports the following SpeedShop experiment types:

• usertime

• totaltime

• pcsamp

• bbcounts

134 007–3311–009

Chapter 8

Miscellaneous Commands

This chapter describes additional SpeedShop commands that are useful in analyzing
application performance. It contains the following sections:

• "Using the thrash Command", page 135

• "Using the squeeze Command", page 136

• "Calculating the Working Set of a Program", page 137

• "Combining Multiple Experiment Files into One", page 139

Using the thrash Command
The thrash command allows you to explore paging behavior by allocating a region
of virtual memory and accessing that memory either randomly or sequentially.

thrash Syntax

The syntax for the thrash(1) command is as follows:

thrash args [-n count] [-s] [-w time]

• args can be one of the following options:

– -k n: the amount of memory to access in kilobytes, where n is the number of
kilobytes. The minimum value for n is the size of one page, or the value will
be changed appropriately.

– -m n: the amount of memory to access in megabytes, where n is the number of
megabytes.

– -p n: the amount of memory to access in pages, where n is the number of
pages.

• -n [count]: the number of references to make before exiting. The default is 10,000.

• -s: sequential thrashing. The default is random.

007–3311–009 135

8: Miscellaneous Commands

• -w time: an integer amount of time, in seconds, thrash should sleep after
thrashing but before exiting. The default is 0 seconds.

Effects of thrash

After the memory is allocated, thrash prints a message on stdout, saying how
much memory it is using and then proceeds to access it. The following is an example:

% thrash -m 4

thrashing randomly: 4.00 MB (= 0x00400000 = 4194304 bytes = 1024 pages)

10000 iterations

You can use thrash in conjunction with ssusage(1) and squeeze(1) to determine
the approximate available working memory on a system, as described in "Calculating
the Working Set of a Program", page 137.

Using the squeeze Command
The squeeze command lets you specify an amount of virtual memory to lock down
into real memory, thus making it unavailable to other processes. This command can
be used only in superuser mode.

squeeze Syntax

The syntax for the squeeze(1) command is as follows:

squeeze [unit] amount

The following arguments are used:

• unit: can be one of the following options indicating the unit of measure. If no
option is specified, the default is megabytes.

– -k: kilobytes

– -m: megabytes

136 007–3311–009

SpeedShop User’s Guide

– -p: pages

– -%: a percentage of the installed memory

• amount: the amount of memory to be locked.

Effects of squeeze

The squeeze(1) command performs the following operations:

• Locks down the amount of virtual memory you supply as an argument to the
command.

• Prints a message to stdout that provides information on how much memory has
been locked and how much working memory is available.

• Sleeps indefinitely, or until interrupted by SIGINT or SIGTERM. At that time, it
frees up the memory and exits with an exit message.

Wait until after the exit message is printed before doing any experiments.

Here is an example that locks down 4 megabytes of memory:

% squeeze 4
squeeze: leaving 60.00 MB (= 0x03c01000 = 62918656) available memory;

pinned 4.00 MB (= 0x00400000 = 4194304) at address 0x1000e000;

from 64.00 MB (= 0x04001000 = 67112960) installed memory.

Use Ctrl-C to exit squeeze. The following message is printed:

squeeze exiting

Calculating the Working Set of a Program
You can use the thrash, squeeze, and ssusage commands together to determine
the approximate working set of a program. For all practical purposes, the working set
of your program is the size of memory allocated. The following procedure assumes
that you are running on a system that is either stand-alone or where the environment
will not change while you are running these tests.

Procedure 8-1 Calculating the Working Set

1. Determine the working set of the kernel and other applications:

007–3311–009 137

8: Miscellaneous Commands

• Choose a machine that has a large amount of physical memory (enough to
allow your target application to run without any paging other than at startup).

• Make sure that the machine is running a minimal number of applications that
will remain fairly consistent for the duration of these steps.

• Run thrash with ssusage to determine the working set of the kernel and
any other applications you have running.

In this example, the thrash command uses 4 MB of memory:

% ssusage thrash -m 4

When the thrash command completes, ssusage prints the resource usage of
thrash. The value labeled majf gives the number of major page faults (that
is, the number of faults that required a physical I/O). When you run on a
machine with a large amount of physical memory, this value is the number of
faults needed to start the program, which is the minimum number for any
run. For more information on ssusage, see Chapter 5, "Collecting Data on
Machine Resource Usage", page 69.

• As super user in a separate window, run the squeeze command to lock down
an amount of memory.

• Rerun thrash with ssusage, as shown here:

% ssusage thrash -m 4

• Repeat the previous two steps, increasing the amount of memory for
squeeze, until the majf number begins to rise.

The amount of working memory available reported by squeeze at the point
at which page faults begin to rise for thrash tells you the combined working
set of thrash (approximately 4 MB), the kernel, and any other applications
you have running.

• Deduct the 4 MB that thrash uses from the amount of working memory
reported by squeeze at the point the page faults began to rise.

This computation helps you find the approximate base working set of the
kernel and any other applications that are running on the machine. You will
need this number when you reach the next steps.

2. Determine the working set of the kernel and other applications:

138 007–3311–009

SpeedShop User’s Guide

• The applications that the machine is running should remain consistent with the
machine in the first step.

• Run ssusage with your program to ensure that the machine has the amount of
memory your program needs.

% ssusage prog_name

When your program exits, ssusage prints the application’s resource usage. The
majf field gives the number of major page faults. When run on a machine with a
large amount of physical memory, this value is the number of faults needed to
start the program, which is the minimum number for any run.

• In another window, become super user.

• In this new window, run squeeze to lock down an amount of memory. The
following example locks down 15 megabytes of memory:

% squeeze 15

• In the first window, rerun your program with ssusage.

• In the second window running squeeze, enter ctrl-c to cause squeeze to exit.

• Repeat these steps, using squeeze to lock down increasing amounts of memory
until the majf number begins to rise.

• Deduct the amount squeezed at the point at which the application begins to page
fault from the total amount of physical memory in the system. This computation
determines the combined working set of your program, the kernel, and any other
applications you have running.

3. Calculate the working set size of your program.

Deduct the amount of working memory calculated in step 1g from the combined
working set size calculated in step 2h. This computation determines the
approximate working set of your program.

Combining Multiple Experiment Files into One
The ssaggregate(1) command lets you combine the data from two or more
experiment files of the same experiment type (such as bbcounts) into a single file.
You can then view the new file with either prof(1) or the WorkShop performance
analyzer, cvperf(1).

007–3311–009 139

8: Miscellaneous Commands

The ssaggregate command takes the following form:

ssaggregate -e files -noverbose -o output_file

The following example combines two pcsamp experiments into a single file and
displays the file with prof:

% ssaggregate -e generic.pcsamp.f14636 generic.pcsamp.f14635 -o combo

% prof combo

The output from prof is as follows:

SpeedShop profile listing generated Tue Nov 24 11:30:03 1998

prof combo

generic (n32): Target program

pcsamp: Experiment name

pc,2,10000,0:cu: Marching orders

R5000 / R5000: CPU / FPU

1: Number of CPUs

180: Clock frequency (MHz.)

Experiment notes--

From file combo:

Caliper point 0 at target begin, PID 14635

/home/saffron02/speedshop/c/generic ll.u.cvt.d.i.f.dso ll.u.cvt.d.i.f.dso ll.u.cvt.d.i.f.dso

Caliper point 0 at target begin, PID 14636

/home/saffron02/speedshop/c/generic ll.u.cvt.d.i.f.dso ll.u.cvt.d.i.f.dso ll.u.cvt.d.i.f.dso

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (pcsamp)--

4012: Total samples

40.120: Accumulated time (secs.)

10.0: Time per sample (msecs.)

2: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 37.480 93.4% 93.4% 3748 anneal (generic: generic.c, 1573)

[2] 1.450 3.6% 97.0% 145 slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.490 1.2% 98.3% 49 _read (libc.so.1: read.s, 15)

[4] 0.330 0.8% 99.1% 33 _xstat (libc.so.1: xstat.s, 12)

140 007–3311–009

SpeedShop User’s Guide

[5] 0.300 0.7% 99.8% 30 cvttrap (generic: generic.c, 317)

[6] 0.030 0.1% 99.9% 3 _write (libc.so.1: write.s, 15)

[7] 0.010 0.0% 99.9% 1 fread (libc.so.1: fread.c, 27)

[8] 0.010 0.0% 100.0% 1 _syscall (libc.so.1: syscall.s, 15)

0.020 0.0% 100.0% 2 **OTHER** (includes excluded DSOs, rld, etc.)

40.120 100.0% 100.0% 4012 TOTAL

By default, ssaggregate issues periodic status messages while it is processing. The
-noverbose option turns the status messages off. See the ssaggregate(1) man
page.

007–3311–009 141

Glossary

basic block

A set of instructions with a single entry point, a single exit point, and no branches
into or out of the set.

bead

A record in an experiment.

caliper points

A caliper point is a point at which you wish to mark your program so that later you
may display performance taken between the marks (caliper points) you have set. A
caliper point may be set at a particular location in the source, after a particular time
interval, or when a particular signal is received by your program. An implicit caliper
point is always present at the start of execution of the process. A final caliper point is
set when the process calls _exit. Caliper points are numbered so you can select
them with displaying performance data.

call stack

A software stack of functions and routines that represent the state of the program at
any time. The functions and routines are listed in the reverse order, from top to
bottom, in which they were called. If function a is immediately below function b in
the stack, then a was called by b. The function at the bottom of the stack is the one
currently executing.

context switch

The act of saving the state of one process and replacing it with that of another when
both processes time-share a single processor.

counts

The number of times an event takes place during data gathering. For example, a
count may be kept of the number of times a function executes.

007–3311–009 143

Glossary

CPU time

Process virtual time plus time spent when the system is running on behalf of the
process, performing such tasks as executing a system call. This is the time returned in
pcsamp and usertime experiments. It can be specified in an experiment by using
the ut,30000,2 marching orders.

dynamic shared object (DSO)

An object file that is similar in structure to an executable program, but it has no main
program.

exclusive time

The execution time of a given function but not of any functions called by that
function. See inclusive time.

graduated instruction

As a performance enhancement, when an R10000 system comes to a point in the
execution of a program at which either of two paths might be taken, it begins to
execute both paths until it knows for sure which path is correct. Graduated
instructions are those on the path it will eventually follow. Issued instructions are
those on the path it does not follow.

inclusive time

The execution time both of a given function and of any functions called by that
function. See exclusive time.

overflow interval

As used by the hardware counter experiments, it is the number at which a hardware
counter exceeds a preset value. See the speedshop man page, dsc_hwc experiment.

PC

Program counter. A register that contains the address of the instruction that is
currently executing.

process virtual time

Time spent when a program is actually running. This does not include either 1) the
time spent when the program is swapped out and waiting for a CPU or 2) the time

144 007–3311–009

SpeedShop User’s Guide

when the operating system is in control, such as executing a system call for the
program. The marching orders ut,30000,1 return process virtual time.

rld

The runtime linker. This is invoked when a dynamic executable is run. It maps in
shared objects used by the executable, resolves relocations as ld does at static link
time, and allocates common, if required.

statistical data

Sampling. The results from this method of data gathering vary from run to run.

system time

The time the operating system spends performing services for a program, such as
executing system calls and I/O.

TLB

Translation lookaside buffer. This is hardware used by the CPU to quickly translate a
virtual address (such as the name of a variable) to a physical memory address.

TDT model

Target Description Table model. A CPU model used to calculate ideal time.

user time

The same as CPU time.

wall-clock time

Total time a program takes to execute, including the time it takes waiting for a CPU.
This is real time, not computer time. The marching orders ut,30000,0 return
wall-clock time.

007–3311–009 145

Index

A

API
setting calipers, 11

B

basic block counting
inclusive, 63
overview bbcounts experiment

overview, 5
bbcounts CPU time, 63
bbcounts experiment

effects, 96
tutorial experiments

bbcounts basic block counting, 25, 44
block counting, 62
bugs , 2
butterfly option, 124

C

cache thrashing, 2
calipers

automatic, 93
pollpoint

time oriented, 93
sample traps

using the debugger, 96
sample traps calipers, 93
setting calipers, 92
time-oriented, 94

calipers option, 123
calipers option to prof, 11
-calipers , 11

commands in SpeedShop, 3
compiler feedback files, 132
compiler optimization restrictions, 72
cord, 132
CPU time calculations, 63
CPU-bound processes, 1
cy_hwc experiment, 55
cy_hwctime experiment, 58

D

data display anomalies, 72
dc_hwc experiment , 56
dc_hwctime experiment, 58
debugger

setting calipers, 11, 93, 96
using ssrun, 85

demo program SpeedShop
C and C++, 13

dsc_hwc experiment, 56
dsc_hwctime experiment, 58
DSOs shared libraries, 6

E

environment variables, 74
_RLD_LIST, 96
_SPEEDSHOP_CALIPER_POINT_SIG, 74, 93, 95
_SPEEDSHOP_DEBUG_NO_SIG_TRAPS , 78
_SPEEDSHOP_DEBUG_NO_STACK_UNWIND, 78
_SPEEDSHOP_EXPERIMENT_TYPE, 77, 96
_SPEEDSHOP_FILE_BUFFER_LENGTH, 78
_SPEEDSHOP_HWC_COUNTER_NUMBER

, 57, 74

007–3311–009 147

Index

_SPEEDSHOP_HWC_COUNTER_OVERFLOW, 57,
75

_SPEEDSHOP_HWC_COUNTER_PROF_NUMBER
num , 74

_SPEEDSHOP_INIT_DEFERRED_SIG, 77
_SPEEDSHOP_INSTR_ARGS, 75
_SPEEDSHOP_MARCHING_ORDERS, 77, 96
_SPEEDSHOP_OUTPUT_DIRECTORY, 75
_SPEEDSHOP_OUTPUT_FILENAME, 75
_SPEEDSHOP_OUTPUT_NOCOMPRESS, 75
_SPEEDSHOP_POLLPOINT_CALIPER_POINT, 75,

94
_SPEEDSHOP_REUSE_FILE_DESCRIPTORS, 75
_SPEEDSHOP_RLD full_path_name, 75
_SPEEDSHOP_SAMPLING_MODE, 77
_SPEEDSHOP_SBRK_BUFFER_ADDR, 75
_SPEEDSHOP_SBRK_BUFFER_LENGTH, 75, 78
_SPEEDSHOP_SHUTDOWN_SIG, 77
_SPEEDSHOP_SILENT, 76
_SPEEDSHOP_TRACE_EXEC [True|False], 76
_SPEEDSHOP_TRACE_FORK, 76
_SPEEDSHOP_TRACE_FORK_TO_EXEC, 76
_SPEEDSHOP_TRACE_MPI_RANKS, 77
_SPEEDSHOP_TRACE_SPROC, 76
_SPEEDSHOP_TRACE_SYSTEM, 77
_SPEEDSHOP_VERBOSE, 76
_SSMALLOC_NO_BUFFERING, 76

examples
c tutorial, 13
fortran tutorial, 33

exec system call, 6
executable requirements

calipers, 72
executables

calculating a working set, 137
execution times, 63
experiment data

controlling output file, 73
file name examples, 73

experiment data files
combining, 139
performance data, 9

experiment types, 51
experiments

cy_hwc, 55
dc_hwc, 56
dsc_hwc, 56
fpe, trace floating-point exceptions, 53
gfp_hwc, 56
hardware counter, 54, 108
heap trace, 53
I/O trace, 65
isc_hwc, 56
pcsamp, 67
pcsamp and bbcounts, 64
prof_hwc, 57
selecting, 51
ssrun setup, 71
tlb_hwc, 56
totaltime, 4
types of, 51
usertime, 68

F

file preparation, 62
floating-point exception trace

experiment description, 53
overview, 5

fork processes, 6
Fortran

files for tutorial, 33
limitations, multiprocessor executables, 72

Fortran tutorial, 33
fpcsampx, 67
fpe trace experiment , 53

tutorial experiments
fpe trace floating-point exceptions, 29

fsc_hwc experiment, 56
fsc_hwctime experiment, 58

148 007–3311–009

SpeedShop User’s Guide

G

gfp_hwc experiment, 56
gfp_hwctime experiment, 58
gi_hwc experiment, 55
gi_hwctime experiment, 58

H

hardware counter experiment reports, 108
hardware counter experiments

cy_hwc, 55
cy_hwctime, 58
dc_hwc, 56
dc_hwctime, 58
dsc_hwc, 56
dsc_hwctime, 58
fsc_hwctime, 58
gfp_hwc, 56
gfp_hwctime, 58
gi_hwc, 55
gi_hwctime, 58
_hwc, 55
_hwctime, 57
ic_hwc, 56
ic_hwctime, 58
introduction, 54
isc_hwc , 56
isc_hwctime, 58
prof_hwc, 57
prof_hwctime, 59
tlb_hwc, 56
tlb_hwctime, 58
tutorial experiments, 23, 41

hardware counter numbers, 59
hardware counter tools, 54
heap trace, 53
_hwc hardware counter experiments, 55
_hwctime hardware counter experiments, 57

I

I/O trace experiment, 65
I/O-bound processes, 1
ic_hwc experiment, 56
ic_hwctime experiment, 58
inclusive basic block counting, 63
introduction to performance analysis, 1
isc_hwc experiment, 56
isc_hwctime experiment, 58

L

libfpe_ss.so
overview, 5

libmalloc.so
overview, 6

libpixrt.so
overview, 6

libraries
libss.so, 96
libssrt.so, 96
linking in SpeedShop, 94
overview, 5

libss.so, 5
libssrt.so

overview, 5

M

machine resource usage, 69
marching orders, 78

experiment specifier, 79
memory

locking, 136
memory–bound processes, 2
MP Fortran limitations, 72
MPI

with ssrun, 86

007–3311–009 149

Index

MPI message-passing paradigms, 6
multiprocessor executables, 6

profiling, 129

O

OpenMP
and ssrun, 92

OpenMP support, 7

P

pc sampling
pcsamp experiment

overview, 4
pcsamp experiment, 39

example, 83
PC sampling program, 67
tutorial experiments

PC sampling tutorial, 20
perfex, 54
performance analysis, 1

introduction, 1
phases, 7

performance problems
bugs, 2
cache thrashing, 2
CPU-bound processes, 1
I/O—bound processes, 1
memory–bound processes, 2
program phases, 2

prof
-butterfly example profiling

inclusive basic block counts, 112
options, 100
output, 105
overview, 3
-S example, 120
syntax, 100
using with ssrun, 99

prof command
butterfly option, 124
calipers option, 123

prof_hwc experiment, 57
prof_hwctime experiment, 59
profiling

bbcounts experiment experiments
bbcounts bbcounts experiment reports, 110

-clock option, 101
-dis option, 102
-dis option prof

-dis example, 114
-dsolist option, 102
-exclude option, 102
-feedback option, 102
fpe trace experiment experiments

fpe fpe trace experiment reports, 113
-fpe_type option, 102
hardware counter experiments, 108
-heavy option, 102
-lines option, 103
machine scheduler option reports

for different machine models, 128
-only option, 103
pcsamp experiment experiments

pcsamp pcsamp experiment reports, 107
processor scheduler option option, 104
-quit option, 103
-S option, 104, 120
usertime experiment experiments

usertime usertime experiment reports, 106
program overhead, 129
program phases, 2
pthreads, 6

and ssrun, 91

R

rearranging procedures, 132
reordering code regions, 62

150 007–3311–009

SpeedShop User’s Guide

_RLD_LIST variable , 96
run-time environment variables, 74

S

setup ssrun, 71
signals

setting calipers, 11, 95
SpeedShop

overview, 3
speedshop api , 6
SpeedShop demo

Fortran, 34
SpeedShop hardware counter experiments

introduction, 54
SpeedShop libraries, 96

libss.so libraries, 5
linking libss.so, 94

_SPEEDSHOP_CALIPER_POINT_SIG variable
, 74, 93, 95

_SPEEDSHOP_DEBUG_NO_SIG_TRAPS variable
, 78

_SPEEDSHOP_DEBUG_NO_STACK_UNWIND
variable , 78

_SPEEDSHOP_EXPERIMENT_TYPE variable
, 77, 96

_SPEEDSHOP_FILE_BUFFER_LENGTH variab, 78
_SPEEDSHOP_HWC_COUNTER_NUMBER, 57
_SPEEDSHOP_HWC_COUNTER_NUMBER

variable , 74
_SPEEDSHOP_HWC_COUNTER_OVERFLOW, 57
_SPEEDSHOP_HWC_COUNTER_OVERFLOW

variable , 75
_SPEEDSHOP_HWC_COUNTER_PROF_NUMBER

num variable, 74
_SPEEDSHOP_INIT_DEFERRED_SIGNAL

variable, 77
_SPEEDSHOP_INSTR_ARGS variable, 75
_SPEEDSHOP_MARCHING_ORDERS variable

, 77, 96
_SPEEDSHOP_OUTPUT_DIRECTORY variable , 75

_SPEEDSHOP_OUTPUT_FILENAME variable , 75
_SPEEDSHOP_OUTPUT_NOCOMPRESS

variable , 75
_SPEEDSHOP_POLLPOINT_CALIPER_POINT

environment variable, 93, 94
_SPEEDSHOP_POLLPOINT_CALIPER_POINT

variable
, 75

_SPEEDSHOP_REUSE_FILE_DESCRIPTORS
variable , 75

_SPEEDSHOP_RLD variable, 75
_SPEEDSHOP_SAMPLING_MODE variable, 77
_SPEEDSHOP_SBRK_BUFFER_ADDR variable, 75
_SPEEDSHOP_SBRK_BUFFER_LENGTH

variable, 75, 78
_SPEEDSHOP_SHUTDOWN_SIG variable, 77
_SPEEDSHOP_SILENT variable, 76
_SPEEDSHOP_TARGET_FILE variable, 96
_SPEEDSHOP_TRACE_EXEC variable, 76
_SPEEDSHOP_TRACE_FORK variable, 76
_SPEEDSHOP_TRACE_FORK_TO_EXEC

variable, 76
_SPEEDSHOP_TRACE_MPI_RANKS variable, 77
_SPEEDSHOP_TRACE_SPROC variable, 76
_SPEEDSHOP_TRACE_SYSTEM variable, 77
_SPEEDSHOP_VERBOSE variable

, 76
sproc system call, 6
squeeze

calculating a working set, 137
locking memory , 136
overview, 3

sscompare, 10
overview, 3

_SSMALLOC_NO_BUFFERING variable, 76
ssrt_caliper_point, 6, 72
ssrt_caliper_point calipers, 93, 94
ssrun

and OpenMP, 92
effects, 96
flags, 82

007–3311–009 151

Index

MPI programs , 86
overview, 3
overview ssrun

steps prof, 8
pthreads programs, 91
syntax, 82
using a debugger, 85
-v option example, 85

ssrun command
examples, 83
syntax, 81

ssrun setup, 71
ssusage

calculating a working set, 137
machine resource usage, 69
overview, 3

statistical call stack profiling
overview usertime experiment

overview, 4
statistical hardware counter sampling

overview hardware counter experiments
overview hwc experiments, 4

stripped executables programs, 72
system call, 6

T

thrash

calculating a working set, 137
overview, 4

thrash paging behavior, 135
tlb_hwc experiment, 56
tlb_hwctime experiment, 58
totaltime experiment, 4

totaltime call stack profiling, 68
Tutorial

c, 13
tutorial experiments

PC sampling, 39

U

user environment variables, 76
usertime experiment

restrictions, 72
tutorial experiments

call stack profiling, 16
usertime call stack profiling, 36

usertime call stack profiling, 68

W

working set , 137

152 007–3311–009

	New Features in this Guide
	Table of Contents
	List of Figures
	List of Tables

	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. Introduction to Performance Analysis
	Sources of Performance Problems
	Fixing Performance Problems
	SpeedShop Tools
	Commands
	Experiment Types
	SpeedShop Libraries
	API
	Supported Programming Models and Languages

	Using SpeedShop Tools for Performance Analysis
	Using ssusage to Evaluate Machine Resource Use
	Gathering and Analyzing Performance Data
	Collecting Data for Part of a Program

	2. Tutorial for C Users
	Tutorial Overview
	Contents of the generic Program
	Output from the generic Program

	Tutorial Setup
	Analyzing Performance Data
	A usertime Experiment
	A pcsamp Experiment
	A Hardware Counter Experiment
	A Basic Block Experiment
	An fpe Trace

	3. Tutorial for Fortran Users
	Tutorial Overview
	Tutorial Setup
	Analyzing Performance Data
	A usertime Experiment
	A pcsamp Experiment
	A Hardware Counter Experiment
	A bbcounts Experiment

	MPI Tracing Tutorial

	4. Experiment Types
	Selecting an Experiment
	Floating-Point Exception Trace Experiment (fpe)
	Heap Trace Experiment (heap)
	Hardware Counter Experiments (*_hwc, *_hwctime)
	Two Tools for Hardware Counter Experiments
	_hwc Hardware Counter Experiments
	_hwctime Hardware Counter Experiments
	Hardware Counter Numbers

	Basic Block Counting Experiment (bbcounts)
	How SpeedShop Prepares Files
	How SpeedShop Calculates CPU Time for bbcounts Experiments
	Inclusive Basic Block Counting
	Using pcsamp and bbcounts Together

	I/O Trace Experiment (io)
	MPI Call Tracing Experiment (mpi/mpi_trace)
	NUMA Profiling Experiment (numa)
	PC Sampling Experiment (pcsamp)
	Call Stack Profiling Experiment (usertime/totaltime)

	5. Collecting Data on Machine Resource Usage
	ssusage Syntax
	ssusage Results

	6. Setting Up and Running Experiments: ssrun
	Building Your Executable
	Special Information for MP Fortran Programs

	Setting Up Output Directories and Files
	Using Run-Time Environment Variables
	User Environment Variables
	Process Tracking Environment Variables
	Expert-Mode Environment Variables

	Using Marching Orders
	Defining the Base Experiment

	Running Experiments
	ssrun Syntax
	ssrun Examples
	Using ssrun with a Debugger

	Running Experiments on MPI Programs
	Generating MPI Tracing Experiments
	Generating Other Experiments for Programs Using MPI

	Running Experiments on Programs Using Pthreads
	Running Experiments on Programs That Use OpenMP Directives
	Using Calipers
	Setting Calipers with the ssrt_caliper_point Function
	Setting Time-Oriented Calipers
	Setting Calipers with Signals
	Setting Calipers with a Debugger

	Effects of ssrun

	7. Analyzing Experiment Results
	Using prof to Generate Performance Reports
	prof Arguments
	prof Options
	prof Output

	Using prof with ssrun
	usertime Experiment Reports
	pcsamp Experiment Reports
	Hardware Counter Experiment Reports
	bbcounts Experiment Reports
	fpe Trace Reports

	Using prof Options
	Using the -dis Option
	Using the -S Option
	Using the -calipers Option
	Using the -butterfly Option

	Generating Reports for Different Machine Types
	Generating Reports for Multiprocessed Executables
	Determining Program Overhead
	Generating Compiler Feedback Files
	Comparing Experiment Results

	8. Miscellaneous Commands
	Using the thrash Command
	thrash Syntax
	Effects of thrash

	Using the squeeze Command
	squeeze Syntax
	Effects of squeeze

	Calculating the Working Set of a Program
	Combining Multiple Experiment Files into One

	Glossary
	Index

