
Video Format Compiler
Programmer’s Guide

Document Number 007-3402-003

Video Format Compiler Programmer’s Guide
Document Number 007-3402-003

CONTRIBUTORS

Written by Gregory Eitzmann
Edited by Beverley Talbott
Production by Carlos Miqueo
Engineering contributions by Rob Wheeler, Jeffrey Chung, and Ed Hutchins.
St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© 1998, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and the Silicon Graphics logo are registered trademarks and
InfiniteReality is a registered trademark of Silicon Graphics, Inc.

iii

Contents

List of Examples ix

List of Figures xi

List of Tables xiii

Introduction xv
Compiler Functions xvi

Rules-Based Operation xvi
Simple Video Formats Using Templates xvii
Detailed Video Formats Using Native Compiler Language xviii

1. Running the Compiler With a Template 1
For Users of InfiniteReality 1

Template Overview 2
The Way Templates Work 2
Template Location 2
Writing Your Own Template 2

How to Use the Compiler With Templates 3
Compiler Options 3

2. Using the Block Sync Template 5
Parameters 5
About the Created Format 6
Examples of Template Use 6

iv

Contents

3. Building Blocks of a Video Format 9
Architecture of a Video Frame 10
The Horizontal Line 12
The Vertical Interval 16
Level of Sync 19
The Field of the Format 20

Interlaced Formats 20
Stereo Formats 21

Definitions of Components 24
The Pixel-to-Clock Ratio 24

4. Compiling Native Language Video Formats 27
Specification of Rules Files 27
Format Analysis 28
The Pre-Processor and Its Options 29

5. Native Compiler Language 31
Building a Video Frame 31

The High-Resolution Format 32
Execution Order 34

Assignment Statements 35
Time Expressions 35
User-Defined Variables 37

The General Parameters Section 38
Variables 39
The Pixel Rate 41

The Active Line Section 42
The Field Description 43

Field Components 44
Sync Transition Set 45
Field Attributes 48

Contents

v

6. Examples of Native Compiler Language 51
Using Examples 51
Interlaced Format 52
Stereo Format 55
Color Field Sequential 59
No Transitions 63

7. Board Hardware Definition 65
General Notes About Writing Definition Files 65

Variables 65
Statements 66

Board Description 67
Parameter Definition 67
Board Signal Assignment 68
Special Signal Definition 69

Rules Definition 70
The Edge Database 71
Initial State 71
The set signal Statement for Transitions 71
The within Statement for Location 73
The User Signals for Reference 83
System-Defined Variables 85
Built-In Functions 87
Examples of Writing Rules 87

Pre-Processing and Post-Processing Statements 91
Communication Between Format Source and Rules Files 91

8. Line-Based Format Definition Language 95
The Line-Based Language 96

Examples 97
Anticipating Line-Based Definitions in the Rules 98

A. Native Language Grammar 99

Index 103

vii

List of Examples

Example 2-1 1500 x 1200 at 72 Hz 7
Example 2-2 960 x 680 at 50 Hz 7
Example 2-3 640 x 480 at 60 Hz 7
Example 4-1 Use of -a ascii Output 28
Example 5-1 The Silicon Graphics Standard High-Resolution Format 32
Example 5-2 Standard Layout of Video Source File 34
Example 5-3 Example of General Section Layout 38
Example 5-4 The Active Line Template 42
Example 5-5 Field Composition 44
Example 5-6 Simple Sync Transition Sets, Whole Lines 45
Example 5-7 Simple Sync Transition Set, Half Lines 46
Example 5-8 Sync Transition Set Length 47
Example 6-1 Interlaced Format 52
Example 6-2 Stereo Format 55
Example 6-3 Color Field Sequential Format 59
Example 6-4 No Transitions 63
Example 7-1 Nested Board Rules Statements 74
Example 7-2 Narrowing Scope So No Time Remains 75
Example 7-3 Copying User Sync Signal to a Board Signal 84
Example 7-4 Copying the User Sync Signal 88
Example 7-5 Copying Another Signal With Changes 88
Example 7-6 Calculating Scalar Variables 89
Example 7-7 Using Control Statements in Rules 90
Example 7-8 Video Format Source Setting SerratedCSyncOnHSync 92
Example 7-9 Rules File Source Defining and Using SerratedCSyncOnHSync 92
Example 8-1 Setting a Signal on Every Line 97
Example 8-2 Use of Single Line Ranges 97
Example 8-3 Use of Function TransitionsDefineOnSignal 98

ix

List of Figures

Figure 2-1 Block Sync Patterns 6
Figure 3-1 Active Pixels and Blanking Region 10
Figure 3-2 Painting the Screen With a CRT 11
Figure 3-3 Line Showing Blanking Region 12
Figure 3-4 Detail of Horizontal Blanking Region 13
Figure 3-5 Detail of Horizontal Line in Screen Orientation 14
Figure 3-6 Summary of Horizontal Intervals 15
Figure 3-7 Detail of Vertical Regions in Screen Orientation 16
Figure 3-8 A Typical Vertical Blanking Region 17
Figure 3-9 Vertical Blanking Region of Commercial Sync Format 18
Figure 3-10 Different Levels of Sync 19
Figure 3-11 Interlaced Format Line Layout 20
Figure 3-12 Per-Window Stereo Line Layout 22
Figure 3-13 Full-Screen Stereo Line Layout 23
Figure 3-14 Quantization Example 25

xi

List of Tables

Table 2-1 Block Sync Template Parameters 5
Table 5-1 Values Specified in the General Section 39
Table 5-2 Values Specified in the Active Line Section 42
Table 5-3 Field Attributes 48
Table 7-1 Board Hardware Definition Variables 67
Table 7-2 Range Expressions 76
Table 7-3 Field Attribute Variables 86
Table 7-4 Format Information Variable 86
Table 7-5 Functions 87

xiii

Introduction

A video format is the set of electrical and timing characteristics that drive a monitor (or
any video output device). In the context of this book, a video format usually refers to the
video format source language you use to describe the video format itself.

This guide contains instructions you will need to write a video format. There is more than
one way to do create one.

There is no need to use a ten-pound hammer for a one-pound task. Most carpenters know
this. How complicated is your video format problem? Why are you writing a video
format, anyway?

If you just need to assemble a quick little format for a more-or-less normal monitor to a
resolution similar to the standard Silicon Graphics formats, see “Simple Video Formats
Using Templates” on page xv.

On the other hand, if you have a special monitor that requires special timing, see
“Detailed Video Formats Using Native Compiler Language” on page xvi.

xiv

Introduction

Compiler Functions

The compiler takes the video format source language file and produces a video format
object file. You can use this produced file to load video generation hardware. (Some
hardware architectures require an intermediate step that combines multiple video format
object files.)

Rules-Based Operation

The compiler produces video format object files for a single graphics architecture that
you specify. You name the target architecture by specifying which hardware rules
(supplied by Silicon Graphics) the compiler should follow when constructing the video
format object file. A rule is a description of the operation of the hardware, written and
provided by Silicon Graphics for each hardware architecture.

The compiler uses two rules: a board rule, which describes the circuit board driving the
video output and a“chip rule, which describes the behavior of the integrated circuit
producing the timing. Together, they define signals that drive video output boards. You
specify both rules on the command line when you run the compiler. For more
information on board definition rules files, see Chapter 7, “Board Hardware Definition.”
Chip definition files are not described in this book.

Sample Rules

The examples in this book use sample rules files, one for the chip and one for the board:
samplechip.def and sampleboard.def, respectively. They are installed when the video format
compiler is installed. You can use these rules to work along with the examples; however,
these rules do not represent real hardware and will not make a format that allows you to
do anything beyond the examples.

Legitimate Hardware Rules

The rules that accompany actual hardware allow you to build formats targeted to that
hardware. Note that the architecture of the hardware may be more restrictive than that
of other hardware or that of the sample rules files: not all hardware is created equal!

Introduction

xv

Caution: Do not modify the source of the hardware rules that Silicon Graphics supplies.
The rules describe the generation of many different signals and special scalar values and
have been generated with some care. If you change the rules, you will likely get
unpleasant results: the format will not run correctly; another part of the system will
operate in an erratic or incorrect way or you may actually damage monitor or display
hardware and invalidate your warranty.

Specifying Rule Sets

You can specify the rule set on the command line when executing the video format
compiler (all the command-line options are described in the man page [reference page]).
To specify the board and chip options, use the -c option of vfc. For example, to specify the
sample rules (see “Sample Rules” on page xiv), use this command:

/usr/bin/vfc -c board-sampleboard.def,chip=samplechip.def filename.vfs

The chip and board files, not edited by users, are installed in a standard directory where
the compiler knows to find them.

Simple Video Formats Using Templates

Use templates if you do not need the complexity of writing video formats in the native
compiler language and your format is simple enough that you can write it using one of
the standard templates. Your monitor should not require precise timing or it does can be
driven by a generic format (such as VESA-compliant monitors).

The value of templates is that you need not know much about video formats and need
know nothing at all about the native language of the compiler.

For general information on templates, read Chapter 1, “Running the Compiler With a
Template.” For formats for most multi-sync monitors, read Chapter 2, “Using the Block
Sync Template.”

xvi

Introduction

Detailed Video Formats Using Native Compiler Language

You write video formats the hard way—using the native language—when the
specification of your video format is too complicated or specific to be expressed using
templates.

To begin, you need to know about the nomenclature Silicon Graphics uses for video
formats—see Chapter 3, “Building Blocks of a Video Format.” This chapter also serves as
a tutorial for understanding the overall architecture of a video frame.

In Chapter 4, “Compiling Native Language Video Formats,” you can find instructions
for running the video format compiler.

The full native language for writing formats is explained in Chapter 5, “Native Compiler
Language.” This chapter contains the details of expressing a format to the compiler.

Before you begin writing, it is easier to start with an example of a video format and work
from there. Chapter 6, “Examples of Native Compiler Language,” shows annotated
examples of different styles of video format.

1

Chapter 1

1. Running the Compiler With a Template

Templates are fairly simple, and all run in the same general way: you run the compiler
with a predefined format whose values you supply on the command line. The compiler
replaces the variables in its template format with the values you supply and builds the
format.

For Users of InfiniteReality

Before continuing: have you considered hardware-based static resizing? With
InfiniteReality graphics hardware, you may be able to save the trouble of using a
template or creating a new video format. Instead, it may be possible to use a standard
output format.

If you need only to reduce the resolution (the size of the format in lines and pixels) from
one of the standard formats, you can instead use the ircombine(1G) tool to select a frame
buffer size different from the monitor displays. The hardware takes care of the rest,
magnifying the pixels in the frame buffer to the resolution of the monitor.

The ircombine online book has a great example of how you can use this feature.

2

Chapter 1: Running the Compiler With a Template

Template Overview

A template is a normal video format source file whose most important values have been
left blank. When you use the template, you specify those values through a parameter on
the command line when you run the compiler. On the command line, you use the name
of the parameter, assigning the value to it.

The Way Templates Work

There is no formal support in the video format compiler at all for templates: everything
is performed via cpp(1) substitution. Because the compiler uses cpp to process its files and
because the compiler allows you to specify cpp arguments on its command line, you
simply perform normal cpp assignments, such as

-DLINES_PER_FRAME=1024

The command-line option for passing arguments to cpp is -p. You will read more about
this in “Compiler Options” on page 3.

Template Location

You can use the standard system template that is shipped with the video format compiler
(see Chapter 2, “Using the Block Sync Template”) or you can write your own template.
Standard templates are stored in the directory /usr/gfx/ucode/common/vfc/vfs/.

Writing Your Own Template

If you will be writing many formats of the same kind, a template may be a shortcut for
you:

• You can eliminate simple cut-and-paste errors by using one debugged format into
which you can replace variables.

• You can control a master template that others can use from a simple Makefile.

How to Use the Compiler With Templates

3

How to Use the Compiler With Templates

You execute the video format compiler via a standard UNIX shell command line. The
compiler has several options which are described in full in the man page (reference page)
vfc(1).

Compiler Options

Besides specifying parameters, the most important options specify the board and chip
configuration for which you are targeting the output. For information on the board and
chip specification, see “Specifying Rule Sets” on page xv.

Passing Parameters to the Template

To specify parameters that are passed to the template, use the -p option to specify an
option to be passed directly to cpp (see “How to Use the Compiler With Templates” on
page 3 for information on parameters). For example, to pass the
-DLINES_PER_FRAME=1024 option to cpp, enter the following:

/usr/sbin/vfc -p "-DLINES_PER_FRAME=1024" ...

Be certain to surround the text with quotes; this keeps vfc from interpreting the option
instead of passing it to cpp.

Example

The individual template is the best example of its own use. However, for a contrived
example, presume the following:

• The name of the template is GoodTemplate.vfs.

• The rules files are sampleboard.def and samplechip.def.

• The template has two variables: VBL_A and VBL_B. These are assigned the values 3
and 4, respectively.

• The output object file (specified with the -o vfc option) will be MyFile.vfo.

4

Chapter 1: Running the Compiler With a Template

To create the file, enter the following:

/usr/sbin/vfc -p "-DVBL_A=3 -DVBL_B=4" \
-c chip=samplechip.def,board=sampleboard.def \
-o MyFile.vfo \
/usr/gfx/ucode/common/vfc/vfs/GoodTemplate.vfs

Although this example is available as part of the compiler installation and works as
written, it will not create an object file that you can use with hardware—the examples are
provided solely to permit practice of syntax. To use real hardware, you must use the rules
files shipped with that hardware; you must specify the name of a legitimate template to
create a meaningful format.

5

Chapter 2

2. Using the Block Sync Template

The block sync template creates the simplest format of all the templates, and if you are
using a typical multi-synchronous monitor, you are in luck. The sync signal this template
creates runs on most monitors that can accept a variety of sync signals because the
vertical sync signature is a simple block.

Of course, your format must fall within the range of what the monitor can
run–everything has its limits–but imagine of the block sync template with a cheerful,
sunny manner that makes most monitors giddy at the prospect of running a format you
create with this template.

Parameters

You can specify the parameters in Table 2-1 with the block sync template.

Table 2-1 Block Sync Template Parameters

Parameter Name Definition Default

ACTIVE_LINES The number of lines in the active (visible)
portion of the video format.

1024

ACTIVE_PIXELS The number of pixels in each line of the active
(visible) portion of the video format.

1280

FPS The number of video frames per second the
format should generate.

60

6

Chapter 2: Using the Block Sync Template

About the Created Format

The template is located in /usr/gfx/ucode/common/vfc/vfs/BlockSync.vfs. See that file for
details that may have changed since this document was published.

In general, the block sync template creates a simple horizontal blanking region with a
sync pulse on every line that makes a downward transition at the beginning of the line,
staying low for a small percentage of the line. The vertical blanking region has a short
back porch, a single sync pulse that continues for several lines and terminates with a
horizontal sync pulse, and a multiple line back porch. The durations of the total and the
components of both horizontal and vertical blanking regions are variable, scaling
themselves to the speed of the specified active region.

Figure 2-1 Block Sync Patterns

In Figure 2-1, you can see the layout of the sync pulses of the block sync template. This
is only a prototype; the durations of the horizontal and vertical sync pulses depend on
the size of the active pixel area you specify.

Examples of Template Use

You can use the following examples as a guide to using the block sync template. All
examples in this section use the sampleboard.def and samplechip.def rules; for information
on the sample rules, see “Sample Rules” on page xiv. Also, each example creates a file
called MyFormat.vfo via the -o option. For a comprehensive list of all the vfc options, see
the vfc man page (reference page).

Vertical Sync Pulse

Horizontal Sync Pulse

One
line

Examples of Template Use

7

Example 2-1 shows a high-resolution output that has 1200 lines and is 1500 pixels wide.
Its frame rate is 72 Hz.

Example 2-1 1500 x 1200 at 72 Hz

/usr/sbin/vfc \
-p "-DACTIVE_LINES=1200" \
-p "-DACTIVE_PIXELS=1500" \
-p "-DFPS=72" \
-c chip=samplechip.def,board=sampleboard.def \
-o MyFormat.vfo \
/usr/gfx/ucode/common/vfc/vfs/BlockSync.vfs

The format in Example 2-2 has 680 lines with 960 pixels per line. The frame rate is 50 Hz.

Example 2-2 960 x 680 at 50 Hz

/usr/sbin/vfc \
-p "-DACTIVE_LINES=680" \
-p "-DACTIVE_PIXELS=960" \
-p "-DFPS=50" \
-c chip=samplechip.def,board=sampleboard.def \
-o MyFormat.vfo \
/usr/gfx/ucode/common/vfc/vfs/BlockSync.vfs

The format in Example 2-3 has 480 lines with 640 pixels per line. The frame rate is 60 Hz;
note the frame rate is not specified because the default is already 60 Hz (see Table 2-1).

Example 2-3 640 x 480 at 60 Hz

/usr/sbin/vfc \
-p "-DACTIVE_LINES=480" \
-p "-DACTIVE_PIXELS=640" \
-c chip=samplechip.def,board=sampleboard.def \
-o MyFormat.vfo \
/usr/gfx/ucode/common/vfc/vfs/BlockSync.vfs

These are merely examples!

Although these examples are available as part of the compiler installation and work as
written, they will not create an object file that you can use with hardware—the examples
are provided solely to permit practice of syntax. To use real hardware, you must use the
rules files shipped with that hardware (see the user guide for your hardware for the
name); you must specify the name of a legitimate template to create a meaningful format.

9

Chapter 3

3. Building Blocks of a Video Format

Everyone has a unique way of describing the different parts of the format. To standardize
the nomenclature of the different formats, the video format compiler declares names and
properties for the different portions of video timing. In this chapter, you will find
information on the following topics:

• Architecture of a Video Frame

• The compiler’s definition of The Horizontal Line

• The compiler’s definition of The Vertical Interval

• The differences in the Level of Sync

• How The Field of the Format is assembled and how it differs from the frame

• Definitions of Components of the frame

• The Silicon Graphics definition and use of The Pixel-to-Clock Ratio

This chapter is very much a tutorial. If you are familiar with the nomenclature Silicon
Graphics uses in video formats, you can skip this chapter, using it only as reference.

10

Chapter 3: Building Blocks of a Video Format

Architecture of a Video Frame

What else is in a frame of video besides the pixels on the screen? Plenty!

Figure 3-1 Active Pixels and Blanking Region

Figure 3-1 shows the geometric relationship between the active pixels—the part of the
frame containing the picture you see on the screen—and the blanking region of a video
frame. Blanking commonly consumes as much as 25 percent of a video frame, quite a lot
for something you never see! So why include it?

We need the blanking region because of our terrible master: the cathode-ray tube (CRT).
(Throw in a dash of convention, a bit of backward compatibility, and a slice of history,
and you are up to 25 percent.) Old cathode-ray tubes, as well as many contemporary
versions, need time and signaling information to manipulate the direction of the spray of
electrons on the phosphorescent surface of the screen. Let us explain with a picture of the
screen.

Active Pixels

Blanking
Region

Architecture of a Video Frame

11

Figure 3-2 Painting the Screen With a CRT

The screens of most cathode ray tubes are drawn in a series of lines, left to right and top
to bottom. When the monitor finishes drawing one line and reaches its right-most
excursion, the beam is turned off (it is blanked) while the monitor returns the beam to the
left side of the screen. A similar thing happens when the last line on the screen is finished
drawing: the beam traverses to the top of the frame, ready to repeat its Sisyphusian task.

In the video format, what triggers the beam to return to the left side and to the top? It is
the magic of synchronization signals. Synchronization signals are special pulses in the
blanking region that tell the monitor the position at the beginning of the line; they also
provide the frame with some geometric stability by lining up the left side of every line.
When you write a video format, you specify the location and character of
synchronization pulses.

12

Chapter 3: Building Blocks of a Video Format

The Horizontal Line

Each line of the video frame consists of well-defined regions. The most interesting region
is that containing the active pixels (the picture drawn on the screen), but the blanking
region is necessary to define the beginning and ending of each line.

Figure 3-3 Line Showing Blanking Region

Figure 3-3 shows a typical line of a frame that contains active pixels. This figure shows
active lines preceding and following the full line in the middle. The gray area—the
picture content of the active pixel area—is variable because the picture in each line is
different from the other.

You can see the blanking regions that separate the active pixels in each horizontal line.
These are known as horizontal blanking regions because they constitute the black (or
blanked) area between two horizontal lines. Typically, all lines in the frame containing
active pixels have identical active and blanking geometries.

The synchronization pulse (the sync pulse) is the downward pulse in the blanking region.
This pulse triggers the monitor to stop moving the beam in the rightward direction and
resume drawing on the left side, one line lower. The horizontal line begins at the falling
edge of one sync pulse and ends at the falling edge of the next sync pulse.

Active Pixels Active Pixels
Blanking Blanking

time

The Horizontal Line

13

Figure 3-4 Detail of Horizontal Blanking Region

In Figure 3-4, you can see detail of the horizontal blanking region with the active pixels
of the previous line terminating on the left side of blanking and those of the next line
beginning on the right side of blanking. The components of the horizontal line are as
follows:

• The active pixels contain the picture content — the visible pixels.

• The horizontal front porch is the period of the line between the active pixels and the
beginning of the horizontal sync pulse.

Horizontal Blanking Region

Horizontal
Front
Porch

Horizontal
Back
PorchHorizontal

Sync

Active
Pixels

Active
Pixels

time

Beginning of Line

14

Chapter 3: Building Blocks of a Video Format

• The horizontal sync pulse is a change in voltage of the video signal. It is this change in
voltage that triggers the monitor to stop its rightward progress and begin drawing
again on the left side of the screen. The line begins with the start of the horizontal
sync pulse (and ends with the start of the next horizontal sync pulse).

• The horizontal back porch is the period of time between the end of the horizontal sync
pulse and the active pixels.

The front and back porches provide some dead time where the monitor can be black
before and after the active portion of the picture; this blackness is particularly important
during the period of time the electron beam flies back the screen’s left side to start
drawing once again. In composite video formats such as NTSC, PAL, and SECAM, the
horizontal back porch also contains the color burst, a color calibration reference.

If you are writing a video format because you have a special monitor, you need to know
the durations of each different section of the line. The durations themselves are usually
given in time units, although sometimes the durations are supplied in pixels (in which
case you should use the duration of a pixel).

Figure 3-5 Detail of Horizontal Line in Screen Orientation

If you compare a horizontal line in Figure 3-5 to Figure 3-4, you can see a correspondence
in the lines that contain active pixels. The horizontal front porch is the blanking region to
the right of the active pixels in Figure 3-5; the horizontal back porch is to the left of the
active pixels. The horizontal sync pulse cannot be shown in this kind of picture: it
triggers the beam to fly back to the left side to screen to begin painting again.

Horizontal
Front
Porch

One Horizontal Line

Horizontal
Back
Porch

Horizontal
Active
Pixels

The Horizontal Line

15

All this talk of horizontal brings up a term used in video shorthand notation: the
horizontal line is often referred to by the single roman letter H. The term is used so often
that it now defines even the length of a horizontal line: One H.

Figure 3-6 Summary of Horizontal Intervals

The diagram in Figure 3-6 wraps up our discussion of the horizontal interval, showing a
single line of active video (shown in grey) and surrounded by two horizontal blanking
regions (or periods).

Active
Video

Picture

Active Video

Front
Porch

Hor.
Sync
Pulse

Back
Porch

Blanking
Period

Blanking
Period

One line

Front
Porch

Hor.
Sync
Pulse

Back
Porch

16

Chapter 3: Building Blocks of a Video Format

The Vertical Interval

The vertical blanking region is similar in function to the horizontal blanking region: it has
dead time that allows the monitor to display black picture content and a synchronization
signal that directs the electron beam to fly back to its starting position. However, one
begins to think vertically instead of horizontally.

Figure 3-7 Detail of Vertical Regions in Screen Orientation

Figure 3-7 shows the vertical regions that are analogous to the horizontal regions found
in Figure 3-5. You can see that each of the regions is longer than that of its horizontal
counterpart, measured in lengths of multiple lines instead of portions of a line. The
vertical sync cannot be shown well in a screen orientation illustration such as Figure 3-7
because sync triggers the beam to fly back to the top of the screen so the monitor can
begin to show the next active area; it is represented here by a black band at the top of the
frame.

Vertical Active

Vertical Front Porch

Vertical Back Porch

Vertical Sync

The Vertical Interval

17

Normally, one thinks of a video frame consisting of each of these regions. However,
video formats consisting of more than one field have one vertical blanking region for
each field; in this circumstance, the vertical front porch of one field is followed by the
vertical sync of the next field.

To formalize the definition, the components of the vertical blanking region are as follows:

• The active lines, those containing the rendered frame buffer contents.

• The vertical front porch, the lines between the vertical sync and those containing
active pixels.

• The vertical sync, the lines containing one or more vertical sync pulses. The frame
begins at the start of vertical sync. In video formats with more than one field, each
field begins with a vertical sync.

• The vertical back porch, the lines between those containing active and those
containing vertical sync pulse(s).

Figure 3-8 A Typical Vertical Blanking Region

In Figure 3-8, you can see a vertical blanking region for a typical video format. The scale
is much larger than that shown in the diagrams of the “The Horizontal Line” section,
with each different component measuring more than one line (the number of lines varies,
depending on the format). The figure shows some of the lines of the previous field
followed by the vertical front porch, the vertical sync, the vertical back porch, and the
lines of the next field.

Vertical
Active

Vertical
Active

Vertical
Front
Porch

Vertical
Sync Vertical

Back
Porch One line

time

18

Chapter 3: Building Blocks of a Video Format

The vertical sync pulse triggers the monitor to stop its downward trek at the end of each
line. When it receives the vertical sync pulse, the monitor starts drawing new lines at the
top of the screen.

Each line in the frame is numbered, with the first line beginning with the beginning of
the vertical sync pulse. A specific point in the frame is usually referenced by line number
and an offset (in time units) into the line.

The vertical interval shown in Figure 3-8 is characteristic of a video format type known
as block sync; you can see the vertical sync is a single long synchronization pulse. The
block sync is common enough that a typical geometry of this form of pulse is included in
the block sync template; see Chapter 2, “Using the Block Sync Template” for information
on how the block sync template works.

Although the block sync type of video format is very common, other types of sync are
also in general use. Another popular type of video format is called commercial sync, which
contains smaller pulses in place of the large sync pulse.

Figure 3-9 Vertical Blanking Region of Commercial Sync Format

The smaller pulses of vertical sync shown in Figure 3-9 act in the same way as the long
sync pulse does in the block sync type of video format: vertical sync triggers the monitor
to start drawing at the top of the screen. This commercial sync format also has short
pulses through vertical front porch and some of vertical back porch. Characteristic of the
commercial sync type of video format, these pulses are called equalization pulses and ease
the monitor into and out of vertical sync. The half-line pulses in vertical sync are known
as serration pulses.

Vertical
Active

Vertical
Active

Vertical
Front
Porch

Vertical
Sync Vertical

Back
Porch

time

Level of Sync

19

Level of Sync

Most video formats have only two voltage levels of sync, low and high. Also, some
monitors (notably, those for high-definition television, or HDTV) require an additional
third level of sync called tri-level.

Figure 3-10 Different Levels of Sync

You can see the three different levels of sync in Figure 3-10:

• Low, also known as synchronization level. This is the lowest possible level of a sync
signal.

• High, also known as blanking level. This is the level attained during blanking when
sync signals do not drive the level otherwise.

• Tri, used for tri-level sync. This level of sync is at a predefined level, higher than the
blanking level.

High

Low

Tri

20

Chapter 3: Building Blocks of a Video Format

The Field of the Format

Thus far, we have discussed formats with only one field; that is, one contiguous set of
video lines surrounded by the front and back porches. Formats with only one field are
sometimes described as progressive scan formats. This single progression across and down
the screen differs from the pattern used by multiple-field formats which may need to
make many passes to draw the entire frame.

In the following sections, you can read about the following topics:

• “Interlaced Formats,” where lines are interleaved

• “Stereo Formats,” where the screen layout remains constant but content differs

Interlaced Formats

Figure 3-11 Interlaced Format Line Layout

The layout of the lines in Figure 3-11 shows the interleaving of lines of a typical two-field
interlaced video format. In the first field of this example, all the odd-numbered lines are
drawn. When the first field concludes, the drawing starts again at the top of the screen
but only the even-numbered lines are drawn. This differs from the line layout of the
progressive-scan frame shown in Figure 3-2 in which every line is drawn from top to
bottom.

Field 1

Field 2

The Field of the Format

21

The interlacing layout may differ from one video format to the next. Although the
example in Figure 3-11 shows the first field containing the odd-numbered lines, a
different video timing format may have the even-numbered lines in the first field.

The format shown in Figure 3-11 is has two fields, typical for interlaced formats.
However, there is no prohibition against formats with many more fields, if the monitor
requires it. Some output generation hardware may impose additional restrictions on the
number of fields you can create.

Stereo Formats

Stereoscopic vision video formats allow the viewer to see different images in each eye
and are used with in conjunction with hardware to aid the illusion (such as eyewear that
obscures one eye at a time). Silicon Graphics offers two different types of stereo formats:

• Per-Window Stereo, sometimes called new-style stereo. This stereo format allows
some windows to show stereoscopic images while other images maintain their
standard monoscopic display.

• Full-Screen Stereo, the old-style stereo format, is usually used only with applications
whose windows occupy the entire screen. During its initialization, the application
itself typically switches the video format to this format, restoring the previous
format on exit. This type of stereo format is not recommended for new
development.

Both of these stereo formats use the same method of addressing the monitor. Their
difference comes from the organization of the frame buffer.

22

Chapter 3: Building Blocks of a Video Format

Per-Window Stereo

Figure 3-12 Per-Window Stereo Line Layout

Contrast the multiple-field interlaced format with the way in which the graphics/video
subsystem creates a multiple-field video for stereo display, shown in Figure 3-12. In the
stereo video format, the frame is drawn twice as often as it would be for comparable
monocular vision.

The interlaced video format described in the previous section (“Interlaced Formats” on
page 20) has fields that differ because the monitor displays them differently. The stereo
format has fields that differ because the content of the frame buffer differs from each
field, but the monitor displays each of the fields in the same way, on the same location on
the monitor. The difference between the left and right fields in the frame buffer is that the
drawing program draws the fields slightly differently

In per-window stereo, each pixel in the frame buffer contains a different section for left
and right eyes (you can think of this as two pixels stored in the same address).

Figure 3-12 shows the left buffer drawn first, the right buffer second. A different monitor
might require that the right buffer be drawn first.

Frame buffer

Right
Left

Used as first field

Used as second field

Video output

The Field of the Format

23

Full-Screen Stereo

Figure 3-13 Full-Screen Stereo Line Layout

Compare Figure 3-13 to Figure 3-12 describing Per-Window Stereo. The difference
between these two stereo modes is relatively minor: full-screen stereo fetches its left and
right pixels from different locations, the pixels in the upper part of the frame buffer
displaying one eye, pixels in the lower part give the other eye.

This full-screen stereo mode also requires additional support. See
XSGISetStereoMode(3X11).

Frame Buffer

Left

Used as first field

Used as second field

video output

Right

24

Chapter 3: Building Blocks of a Video Format

Definitions of Components

The definition of video format components can differ from one specification to another.
For example, the PAL definition of the beginning of the frame is at the beginning of the
vertical synchronization pulse; the definition for NTSC places the beginning of the frame
at the first equalization pulse after the last line of active video (Report 624-4, Section 11A,
XVIIth Plenary Assembly of the CCIR, Düsseldorf, 1990).

Confusing? Yes. But not problematic to the construction and analysis of the frame.

To solve the problem of varying definitions, the video format compiler declares a
standard boundary for each component of the video frame. These boundaries apply
regardless of the video format used.

Under some circumstances, you may need to convert from the standard used by a video
format specification to the compiler’s definition. In the case of the position of the
beginning of frame in the NTSC and PAL video formats, the video format compiler uses
the same definition as does PAL, with the start of the frame beginning at the vertical
synchronization pulse. In this circumstance, the NTSC format adopts a slightly different
definition.

For definitions of horizontal line components, see “The Horizontal Line” on page 12;
vertical components are defined in “The Vertical Interval” on page 16.

The Pixel-to-Clock Ratio

This section describes an artifact of the way video is created. The pixel-to-clock ratio does
not have much to do with video formats themselves.

Video is often grouped into units of multiple pixels for handling in hardware. By
grouping pixels, the video hardware deals with a group of multiple pixels, not with
individual pixels.

What is the consequence of this grouping? Although the pixels retain their individual
identity from the frame buffer, the horizontal and vertical blanking intervals (see “The
Horizontal Line” on page 12 and “The Vertical Interval” on page 16) do not have the
same flexibility. You cannot program, for example, a sync transition to occur on an
arbitrary pixel boundary. Instead, these transitions can occur only at pixel positions that

The Pixel-to-Clock Ratio

25

are on the boundaries of these groups. The quantizing effect forces the compiler to alter
positions of some transitions.

Figure 3-14 Quantization Example

For example, Figure 3-14 shows the quantization effect of a hardware output device that
has a pixel-to-clock ratio of 3:1 (three pixels per clock). The series of transitions labeled
Specified shows the set of transitions as they might be specified to the compiler. Because
the hardware can resolve transitions only every three pixels, the compiler will round the
time of each transition to be that of the nearest clock transition. The result is shown in the
set of transitions labeled Actual.

Some output hardware is fixed at only one ratio, while other hardware may support
different quantization ratios based on the final frequency, optional attributes, or other
characteristics. The release notes accompanying the video format compiler for your
hardware will help you determine the quantization value you should expect. You can see
the quantization value applied to your video format by using the -a ascii command-line
option of the compiler.

Pixels

Clocks

Specified

Actual

27

Chapter 4

4. Compiling Native Language Video Formats

Compiling video formats is similar to compiling any other source language. A good
place to start is with the vfc man (reference) page; this shows the different options
available to you.

Moreover, using the compiler to create video format object files from your own source
files is similar to using templates. See “How to Use the Compiler With Templates” on
page 3 for a description of that process.

This chapter has the following main sections:

• “Specification of Rules Files”

• “Format Analysis”

• “The Pre-Processor and Its Options”

Specification of Rules Files

You can write a video format to run on multiple architectures. However, it must be
compiled independently for each architecture. To compile for each architecture, you
must specify two distinguishing characteristics of the target hardware: the chip and
board that will run the timing you generate with the compiler.

Use the -c option to specify the rules files used for each chip and board. For example, if
the rules file for the chip is samplechip.def and the board is sampleboard.def, you use the
following syntax:

vfc -c chip=samplechip.def,board=sampleboard.def ...

Refer to vfc(1) for details of which chip and board to use for each architecture. The man
(reference) page there is updated more frequently than is this document.

28

Chapter 4: Compiling Native Language Video Formats

Format Analysis

When it compiles a format, the video format compiler analyzes the frame to determine
locations and durations of salient features, such as sync, back porch, and so on. You can
use the -a ascii option to get a textual description.

Example 4-1 Use of -a ascii Output

1280x1024_60.vfo:
 Total lines per frame: 1065
 Total pixels per line: 1680
 Active lines per frame: 1024
 Active pixels per line: 1280
 Frames per second: 60
 Fields per frame: 1
 Swaps per frame: 1
 Pixel clock: 107.352 MHz, period = 9.31515 nsec
 Hardware pixel rounding: every 2 pixels
 Line analysis:
 Length: 1680 Pixels, 1 Lines, 15.6495 usec; (line 0)
 Frequency: 63.9 KHz, period = 15.6495 usec
 Horizontal Sync: 120 Pixels, 1.11782 usec; (line 38)
 Horizontal Back Porch: 240 Pixels, 2.23564 usec; (line 38)
 Horizontal Active: 1280 Pixels, 11.9234 usec; (line 38)
 Horizontal Front Porch: 40 Pixels, 372.606 nsec; (line 38)
 Field Information:
 Field Duration: 1.7892e+06 Pixels, 1065 Lines, 16.667 msec; (line 0)
 Vertical Sync: 5040 Pixels, 3 Lines, 46.9484 usec; (line 0)
 Vertical Sync Pulse: 5160 Pixels, 3.07143 Lines, 48.0662 usec; (line 0)
 Vertical Back Porch: 58800 Pixels, 35 Lines, 547.731 usec; (line 3)
 Vertical Active: 1.72e+06 Pixels, 1024 Lines, 16.025 msec; (line 38)
 Vertical Front Porch: 5040 Pixels, 3 Lines, 46.9484 usec; (line 1062)

In Example 4-1, you can see the output created by -a ascii to the standard high-resolution
video format (the format source is in Example 5-1). The definitions of each named section
is in the tutorial in Chapter 3, “Building Blocks of a Video Format.” In parentheses,
following some specifications, you will find the line number on which the compiler made
the determination of each item.

You can optionally specify a file name as an argument to this option, as in
-a ascii=/usr/tmp/foo; the default is stdout.

The Pre-Processor and Its Options

29

The Pre-Processor and Its Options

As a convenience to users, vfc uses a pre-processor when compiling formats. The default
is cc -E (see cc(1) for more information on the C-language preprocessor); however, not
all users have the C development environment. To use a different pre-processor, use the
-i option.

The -p option to vfc allows you to pass options directly to the pre-processor. Be certain to
quote the string you pass, for example:

vfc -p "-DFPS=30" ...

When you quote the string, it keeps vfc from interpreting the pre-processor’s option as
one of its own. You can specify as many -p options as you need: vfc will accumulate all
of them and apply them in order.

31

Chapter 5

5. Native Compiler Language

This chapter discusses the true basis for the video format compiler: the details of the
native language and what the pieces do.

• “Building a Video Frame” on page 31, shows the components of a video frame.

• “Assignment Statements” on page 35, describes the expressions permitted in the
video format source files.

• “The General Parameters Section” on page 38, reviews the basic variables that
describe the overall frame.

• “The Active Line Section” on page 42, discusses the parameters that describe the
active lines of the frame.

• “The Field Description” on page 43, describes how to define most of the detail of a
frame in the transitions of sync in each field.

Building a Video Frame

In writing a video format in the compiler’s native language, you describe the pattern of
the synchronization signal pulses. You also describe the durations of each component of
the horizontal line. Given this information, the compiler can produce a video format with
which you can program the video generation hardware.

You build the video frame from one or more video fields, and each field is built by
describing a series of components. The components are discussed in Chapter 3,
“Building Blocks of a Video Format.” Each field must be built independently because
each field describes a contiguous stand of video lines surrounded by blanking.

32

Chapter 5: Native Compiler Language

The High-Resolution Format

Usually, it is not necessaryto write a video format completely from scratch. Instead, try
copying or modifying an existing format source file. For block sync formats, the Silicon
Graphics standard high-resolution format is a good start. See Example 5-1.

Example 5-1 The Silicon Graphics Standard High-Resolution Format

/*
** 1280x1024_60.vfs - SGI standard format
*/

General
{
 FieldsPerFrame = 1;
 FramesPerSecond = 60;
 TotalLinesPerFrame = 1065;
 TotalPixelsPerLine = 1680;
 ActiveLinesPerFrame = 1024;
 ActivePixelsPerLine = 1280;
 FormatName = "1280x1024_60";
}

Active Line {
 HorizontalFrontPorch = 0.372 usec;
 HorizontalSync = 1.12 usec;
 HorizontalBackPorch = 2.23 usec;
 }

Field
{
 Vertical Sync =
 {
 {
 /*
 * Sync goes low here (at beginning of the
 * line, time = 0.0) but does not recover to the
 * high state until the first line of Vertical
 * Back Porch.
 */
 Length = 1.0H;
 Low = 0.0 usec;
 }
 repeat 2 {
 /* Two lines with no transitions */

Building a Video Frame

33

 Length = 1.0H;
 }
 }

 Vertical Back Porch =
 {
 {
 /*
 * Only one transition: sync goes high at the
 * time 1.12 usec (HorizontalSync) into the
 * frame.
 */
 Length = 1.0H;
 High = HorizontalSync;
 }
 repeat 34 {
 /*
 * Normal horizontal sync. Goes low at time=0.0,
 * at beginning of the line.
 */
 Length = 1.0H;
 Low = 0.0 usec;
 High = HorizontalSync;
 }
 }

 Active =
 {
 repeat 1024 {
 /* Normal horizontal sync */
 Length = 1.0H;
 Low = 0.0 usec;
 High = HorizontalSync;
 }
 }

 Vertical Front Porch =
 {
 repeat 3 {
 /* Normal horizontal sync */
 Length = 1.0H;
 Low = 0.0 usec;
 High = HorizontalSync;
 }
 }
}

34

Chapter 5: Native Compiler Language

The language in Example 5-1 is standard; the format is that of the Silicon Graphics
standard high-resolution monitor. The layout of the information in a format must follow
a special sequence.

Example 5-2 Standard Layout of Video Source File

General {
 /* Overall Description */
}

Active Line {
 /* The components of the horizontal blanking */
}

Field {
 /* Description of sync pattern for a field */
}

Field {
 /* Description of sync pattern for a field */
}

Example 5-2 shows the standard layout of the source file.

• The General section describes the overall geometry of the frame. For details on this
section, see “Assignment Statements” on page 35.

• The Active Line section describes the horizontal blanking section of an active line.
You can read about this section in “The Active Line Section” on page 42.

• The Field section describes the pattern of sync as it transitions between high and
low. You can add as many field sections as needed to describe your format, one for
each field. See “The Field Description” on page 43.

Execution Order

The compiler executes your video source program in the order as presented in
Example 5-2:

1. The General section.

2. The Active Line section.

3. The Field sections, in the order found in the source file.

Assignment Statements

35

Assignment Statements

The compiler uses assignment statements to derive much of the simple parametric
information in a video format.

You specify the values in the General section via a series of assignment statements using
this form:

variable = value;

The assignment statement is one form of an expression (the formal definition of the
“expression:” is in Appendix A, “Native Language Grammar”). The name of the variable
you are using depends on the section you are using. Refer to “The General Parameters
Section” on page 38, “The Active Line Section” on page 42, and “The Field Description”
on page 43 for details on the variables required.

Time Expressions

Many variables in the compiler deal with absolute or relative positions in the video frame
or with quantities of time. The compiler has special time expressions to deal with
specifying these values.

Permissible Syntax

• Number of pixels. You must use the pixels suffix when specifying this. For
example:

35 pixels

• Number of seconds. You must use the sec suffix for seconds, the msec suffix for
milliseconds (10e-3 seconds), or the usec suffix for microseconds (10e-6) seconds.
For example:

0.3 sec

55.2 msec

4.75 usec

• Number of lines. You must use the lines or the H suffix for to specify lines, as in:

5 lines

0.5 H

36

Chapter 5: Native Compiler Language

• Number of clock ticks. This expression, not normally used except within Silicon
Graphics, specifies the duration of hardware clock ticks. The duration of the clock is
often related in some way to the pixel frequency; however, it is dependent
completely upon the hardware on which your format will execute. An example of
the syntax is:

38 clocks

It makes no sense to specify a non-integer number of clocks; it will be quantized to
the nearest clock.

• The sum of two time elements:

(38 usec + 5 pixels)

• The difference of two time elements:

(2 lines - 3 usec)

• The product of time multiplied by a scalar:

(0.5H + 0.29 usec) * 5.5

• The quotient of a division of time by a scalar:

(25 lines + 3 pixels) / 2.0

For a formal definition of how to specify time units, see “constant-time:” in Appendix A,
“Native Language Grammar.”

Quantization

You will usually find it more satisfactory and more transportable to use expressions
specifying durations in seconds rather than in pixels or lines. The video format compiler
quantizes time expression in seconds to the nearest clock group multiple without
complaining; however, when quantizing time units specified in pixels or lines, the
compiler will report warnings if the exact position cannot be achieved.

For details on quantization of the pixel-to-clock ratio and quantization, see “The
Pixel-to-Clock Ratio” on page 24.

Assignment Statements

37

User-Defined Variables

You can use your own variables to supplement the compiler’s variables. User-defined
variables sometimes make calculations easier; they also allow you to communicate
information from one section to another.

You must always define a variable before you use it. The general form for variable
definition is as follows:

[storage-class] data-type variable-name [= value] ;

The items surrounded by square brackets ([]) are optional. For a formal definition, see
“compound-statement:” in Appendix A, “Native Language Grammar.” If you define
your own variables, the definition must come before any executable statements in the
compound statement block.

Data Types

You have your choice of one of the following data types when defining a variable:

• Integer—a 32-bit integer quantity. The data type is int.

• Double—a double similar to the double in the C language. The data type is double.

• Time—a specific time in the frame. You specify the data type as time. Time
variables can be specified in the units as described in “Time Expressions” on
page 35.

• String—a variable-length string. You specify the data type as string. You assign to
string variables with double-quoted strings, as in "High-Resolution Format".

Storage Classes

The video format compiler has two storage classes of variables, each with its own scope
and associated lifetime:

• Automatic Variables—These have the scope of the most tightly-enclosing
compound statement, a set of curly brackets ({ }); the lifetime of the variable is the
time in which the block is executed. This is the default storage class when you do
not specify one explicitly. For example, the time variable thirdPoint is declared
below as an automatic variable:

time thirdPoint;

38

Chapter 5: Native Compiler Language

• Exported Variables—these have scope across the entire source input file and lifetime
that becomes valid when the variable is first parsed and continues until the end of
the program. You must specify a storage class of exported, as in the declaration
below of the integer variable syncCount:

exported int syncCount;

The lifetime of exported variables is important: even before the section of source
code which defines the variable is executed, the variables are detected and
instantiated.

You can treat user variables as you would any predefined system variable in the
program.

Scope and Lifetime

If you do not have much experience with programming languages, you may not be
familiar with the terms scope and lifetime. Simply put, scope is the region of the program
where the variable is valid; lifetime is the duration when the variable contains valid data.

The General Parameters Section

The General section of the video format source file gives overall information about the
format. The General section is executed first so that it provides information about the
format to the rest of the compiler.

You provide the information in the General section in the general form shown in
Example 5-3.

Example 5-3 Example of General Section Layout

General {
 /* Overall Description */

assignment statement
assignment statement
assignment statement

 ...
}

The General Parameters Section

39

Variables

The assignment statements specify the values of several system-defined variables. If you
are looking for detail on assignment statements, see “Assignment Statements” on
page 35; the variables are listed in Table 5-1.

Table 5-1 Values Specified in the General Section

Variable Name Meaning Optional

FieldsPerFrame Integer. The number of fields in the video format. A
field is a contiguous set of active lines surrounded by
a vertical blanking interval. If a format has active
video lines that cease and restart later, the format has
more than one field.

No

FramesPerSecond Double. The number of frames to be displayed per
second, to the best resolution of the hardware. The
video format defines one frame; thus, the entire
video format repeats at the rate specified by this
variable. This value is used to establish the pixel
clock.

No

TotalLinesPerFrame Integer. The number of lines in the video frame,
including lines in vertical blanking. This value is
used to establish the pixel clock.

No

TotalPixelsPerLine Integer. The number of pixels in each line of video,
including pixels in horizontal blanking. This value is
used to establish the pixel clock.

No

40

Chapter 5: Native Compiler Language

ActiveLinesPerFrame Integer. The number of lines in the frame buffer used
by the video format. Note that this may not be the
same as the total number of active lines in the frame:
for single-field formats, the number of active lines in
the field is the same as that drawn from the frame
buffer; for multiple-field formats that are interlaced,
this is the total number of lines in all fields; for
multiple-field formats which repetitively fetch from
the same frame buffer space for each field (such as
stereo or field sequential color formats), this is the
number of lines in only one of the fields.

In the case of formats that contain active lines that
are only a portion of a line (such as that of the NTSC
and PAL half-lines), you must round each half line
up to the next whole-line size. Formally stated, set
this variable to the whole number of lines from
which pixels are extracted, regardless of whether a
whole line or just a partial line of pixels is extracted.
The mechanism you use to tell the compiler whether
active lines are half lines is described in “The Field
Description” on page 43.

No

ActivePixelsPerLine Integer. The number of pixels in one line of the
frame. If the format has fields that may begin or end
with half lines, supply the length of the whole line.

No

FrameBufferHeight Integer. The number of lines this format occupies in
the frame buffer. This variable defaults to the value
to which this variable should normally be set:
ActiveLinesPerFrame. However, some video formats
occupy irregular frame buffer footprints; in that
circumstance, you should set this variable to aid
frame buffer layout software.

Yes

FrameBufferWidth Integer. The number of pixels this format occupies in
the frame buffer. This variable defaults to the value
to which this variable should normally be set:
ActivePixelsPerLine. However, some video formats
occupy irregular frame buffer footprints; in that
circumstance, you should set this variable to aid
frame buffer layout software.

Yes

Table 5-1 (continued) Values Specified in the General Section

Variable Name Meaning Optional

The General Parameters Section

41

See Example 5-1 for an example of actual use of the General section.

The Pixel Rate

The pixel rate of the video format is expressed in pixels per second, the aggregate
bandwidth of all pixels flowing from an output port of the computer system. The formula
is as follows:

TotalLinesPerFrame * TotalPixelsPerLine * FramesPerSecond

The video output hardware of your computer system has a maximum pixel rate at which
it can operate. Refer to documentation on your particular system to determine the
maximum rate.

Within the compiler, the pixel rate is needed to perform conversions between time and
pixels. Thus, the General section is executed before any other section so conversions can
be computed.

ScreenHeight Integer. The number of lines this video format
occupies on a video monitor. This variable defaults
to the value in the variable ActiveLinesPerFrame. You
should set this variable if the screen height differs
from the default.

Yes

FormatName String. A descriptive name for the video format. Yes

FullScreenStereo Integer (acting as boolean). This is a special-purpose
variable used within Silicon Graphics engineering in
limited circumstances; users need never use it. This
variable specifies the format is to be used in
conjunction with a special fetch sequence from the
frame buffer to provide full-screen stereo
capabilities.

Yes,
defaults
to false.

Table 5-1 (continued) Values Specified in the General Section

Variable Name Meaning Optional

42

Chapter 5: Native Compiler Language

The Active Line Section

You describe the composition of the horizontal blanking in the Active Line section. It is
called Active Line because these parameters describe the behavior of the horizontal
blanking region on lines that contain active pixels. If you need a review of the
components of the horizontal blanking region, “The Horizontal Line” on page 12
describes its different sections. The active line section allows you to describe it.

You specify the Active Line section as shown in Example 5-4.

Example 5-4 The Active Line Template

Active Line {
 /* Active Line Component Description */

assignment statement
assignment statement
assignment statement

 ...
}

The assignment statements specify the system-defined variables that describe the length
of the components of horizontal blanking. The variables are listed in Table 5-2.

Specify the durations of each of the components in units of seconds, milliseconds, or
microseconds if possible. Placement on a specified pixel can lead to quantization
messages; see “Quantization” on page 36.

See Example 5-1 for an example of actual use of the Active Line section.

Table 5-2 Values Specified in the Active Line Section

Variable Name Meaning Optional

HorizontalFrontPorch Time. The length of time of the horizontal front
porch of an active line.

No

HorizontalBackPorch Time. The duration of the horizontal back porch of
an active line.

No

HorizontalSync Time. The duration of the horizontal sync pulse. No

The Field Description

43

The Field Description

When writing a video format, you must describe each field individually. As described in
“The Field of the Format” on page 20, a field consists of contiguous lines of video
surrounded by vertical blanking. Therefore, each time active lines cease and start again
in a format, you must define a new field.

To define the field, specify each transition of sync in the frame. You need not specify the
active section because it is implied by the values you specified earlier (as shown in “The
Active Line Section” on page 42); however, you must individually describe the
excursions between low, high, and tri-level of the sync signal (see “Level of Sync” on
page 19 for definitions of these levels).

For example, Figure 3-3 on page 12 shows an excerpt of a few lines of a typical frame of
video. If this picture were descriptive of the format you wish to write, you would need
to describe sync going from its high position to low position, then the low-to-high
transition; you would need to describe these two transitions for each of the blanking
regions in the diagram—and for the rest of the frame.

A field contains these general classes of description:

• The field components—the major vertical sections of the field, as described in “Field
Components” on page 44.

• The field attributes—additional information, not related to timing, that describes a
field. These are described in “Field Attributes” on page 48.

44

Chapter 5: Native Compiler Language

Field Components

The components of the field, as described in “The Vertical Interval” on page 16, are as
follows:

• Vertical sync.

• Vertical back porch.

• Vertical active.

• Vertical front porch.

You must define component in each field in the followering order.

Example 5-5 Field Composition

Field
{
 Vertical Sync =
 {

sync transition set
sync transition set
sync transition set

 ...
 }

 Vertical Back Porch =
 {

sync transition set
 ...
 }

 Active =
 {

sync transition set
 ...
 }

 Vertical Front Porch =
 {

sync transition set
 ...
 }
}

The Field Description

45

Example 5-5 shows an example of the layout you might use. The grammar is formally
described in “field-definition:” in Appendix A, “Native Language Grammar.” For a real
example, see Example 5-1.

You may place only sync transition sets within each of the field components. You may
use as many sync transition sets as needed to describe the format. For information on this
part of the language, see “Sync Transition Set” on page 45.

Be especially careful to place the proper active lines in the Active section: only and all
lines placed in the active component will have active pixels on them. If the first or last
line in the Active section is not a whole line (such as with the NTSC and PAL half lines),
only part of the output line will have active pixels.

Sync Transition Set

The sync transition set defines a set of transitions of the video sync signal on a line or
portion of a line. The length of the defined line portion is a required statement, the
transitions are optional. That is, it is possible to define a line with no transitions of sync.

Example 5-6 Simple Sync Transition Sets, Whole Lines

{
 /* Normal horizontal sync, one repetition */
 Length = 1.0H;
 Low = 0.0 usec;
 High = 1.19 usec;
}

repeat 3 {
 /* Normal horizontal sync, three rep. */
 Length = 1.0H;
 Low = 0.0 usec;
 High = 1.19 usec;
}

Two simple sync transition sets appear in Example 5-6, each set delimited by curly
brackets ({ }). All repetitions are concatenated to the previous set, so you must specify
the sync transition sets in the order in which they are to appear in the frame.

46

Chapter 5: Native Compiler Language

Example 5-7 Simple Sync Transition Set, Half Lines

repeat 6 {
 Length = 0.5H;
 Low = 0 usec;
 High = 27.1 usec;
}

A single simple transition set is in Example 5-7.

Repeat

The first sync transition set in Example 5-6 is executed once, while the second sync
transition set is repeated three times; otherwise they are identical. One could have
shortened the text of the definition simply by omitting the first set and specifying the
repeat value of the second set as repeat 4 instead of the two separate definitions.

The sync transition set shown in Example 5-7 also has a repetition factor—it is executed
six times.

If you do not specify an explicit repetition count, a sync transition set is executed once.

The repetition count can be an integer expression. See the formal grammar of
“sync-transition-multiplier:” in Appendix A in for a formal treatment.

Length

The length of the transition set is specified with an assignment to the length variable with
a duration, as in this example:

length = 0.5 lines;

The length of the two sync transition sets of Example 5-6 are both one line, so the total
length of all the sets in that example is four lines (1 line + 3(1 line) = 4 lines).

The length of the set in Example 5-7 is one half-line; when the compiler performs the six
repetitions, its total length is three lines.

The Field Description

47

Example 5-8 Sync Transition Set Length

repeat 100 {
 Length = 1.0 H;

sync transitions...
}

The sample source code in Example 5-8 shows 100 repetitions of a one-line set.
Regardless of what changes in the sync signal on the line, the source of this example
creates 100 lines of video.

Thus, the length specified is not dependent on any of the sync-level transitions. In fact, it
is possible to have a sync transition set with no transitions at all, just a length. For
example, see the vertical sync pulse of Figure 3-8; the pulse is more than three lines long,
so it has no transitions at all for two lines. The source file for this is shown in Example 5-1,
where the Vertical Sync component has two transition sets: one in which the sync
transition goes low, followed by two repetitions of the set where no transitions occur at
all—only the length.

Sync Level

The sync-level statements specify the time at which the sync transition changes level
(sync levels are defined in “Level of Sync” on page 19). You use this form:

level = time-expression;

The level can be high, low, or tri.

The time-expression is a time constant (see “Time Expressions” on page 35) or a time
variable. When you use time variables, you can make your source program easier to read
and less prone to error. In so doing, you document why sync is making a transition (by
using a descriptive name) and make cut-and-paste errors less likely than if you explicitly
use time values (because the text of variable names cannot be corrupted without the
compiler reporting an error).

For an example of using variables, see Example 5-1. It uses the variable HorizontalSync,
described in “The Active Line Section” on page 42. In that example, most of the sync
transitions (all but those in the vertical sync) make a transition to low at the beginning of
the line (0.0 usec). The sync transitions that define the point at which sync make the
transition to the high state do not specify a time constant but instead refer to the
HorizontalSync variable.

48

Chapter 5: Native Compiler Language

Field Attributes

Each field can have attributes assigned individually to it. These attributes describe
features of the frame not related to timing, such as how pixels should be fetched from the
frame buffer.

Each attribute is set before any of the components of the field are specified. The
components of the field are Vertical Sync, Vertical Back Porch, Vertical Active,
Vertical Front Porch (see “Field Components” on page 44). The attributes are set via an
assignment statement of this form:

attribute = value;

You can assign the attributes directly, or not specify them and allow the compiler to use
default values.

Table 5-3 Field Attributes

Attribute Description Default for each field

skip Also known as stride, this attribute specifies how lines
should be fetched from the frame buffer. The value
specifies the number of lines that should be skipped
in order to determine location of the next line for this
field.

To fetch the next consecutive line, skip is set to 1; this
is the case for progressive-scan single-field formats.
To fetch the line after the next consecutive line, skip
should be set to 2.

1

offset This attribute specifies the number of lines from the
top of the frame at which this field should begin
fetching.

To begin fetching a field’s pixels at the top line of the
allocated frame buffer, set offset to 0. To fetch
beginning at the second line of the frame buffer, set
offset to 1.

1

The Field Description

49

swap Use this attribute to control whether the graphics
subsystem should enable frame swap during the
corresponding field (i.e., should allow the hardware
to swap from front to back buffers when the program
calls the glXSwapBuffers(3G) function). To enable a
swap for a field, set swap to true; to disable swap for
a field, set swap to false.

Why enable instead of disabling swap on different
fields of a multi-field format? If you want inter-field
motion, you will need to swap on each field. This
motion is useful for broadcast-type and the RS-170
formats, which have pretty slow frame rates.
However, for stereo formats, swapping between
fields would yield motion between left and right eyes
(i.e., different images presented to each eye); this
could make for a nauseating display. Field sequential
monitors have plenty of tearing between color fields
on a good day. You probably do not want to make it
worse by presenting different images on color fields;
you would be deliberately causing misalignment.

true

eye This attribute is used for stereo (binocular) monitors.
It specifies for which eye the pixels in the field should
be fetched.

You can specify {Left} or {Right}; you may also
specify a comma-separated list.

{ Left, Right }

color This attribute is used for color field-sequential
monitors. It specifies which colors should be fetched
from the frame buffer for the field.

You can specify {Red}, {Green}, or {Blue}; you
can also specify a comma-separated list.

{ Red, Green, Blue }

Table 5-3 (continued) Field Attributes

Attribute Description Default for each field

51

Chapter 6

6. Examples of Native Compiler Language

The description of the language itself in Chapter 5, “Native Compiler Language,” is a
starting point for learning about the language of video formats. The examples in this
chapter will help solidify your understanding.

Read the next section, “Using Examples” on page 51, before proceeding to read the
examples. Each of these examples is presented in source form and has brief remarks
describing the important points:

• “Interlaced Format” on page 52 shows a two-field interlaced format.

• “Stereo Format” on page 55 shows a stereoscopic video format.

• “Color Field Sequential” on page 59 shows a video format for a color field
sequential monitor.

You may also be able to find examples on the Silicon Surf web site and on the developer’s
CDs. There is not a lot of interest in the general developer community (sniff!), but we get
space from time to time.

Using Examples

You will rarely need to write a format completely from scratch. Most people who write
formats find a format similar to what they are writing and modify it to suit their needs.
If you can, you should do the same.

Many of the examples that accompany this book (provided as part of the vfc installation)
and are in the directory /usr/gfx/ucode/common/vfc/vfs/. Refer to those files when writing
your own format.

52

Chapter 6: Examples of Native Compiler Language

Interlaced Format

This format is similar to the PAL-I timing format. Its two fields interlace spatially, as
described in “Interlaced Formats” on page 20.

Example 6-1 Interlaced Format

/*
** 768x576_25i.vfs - RGB PAL standard
*/

General
{
 exported time SerrationDuration;
 exported time EqualizationDuration;

 FieldsPerFrame = 2;
 FramesPerSecond = 25;
 TotalLinesPerFrame = 625;
 TotalPixelsPerLine = 944;
 ActiveLinesPerFrame = 576;
 ActivePixelsPerLine = 768;
 FormatName = "PAL";

 SerrationDuration = 27.3 usec;
 EqualizationDuration = 2.35 usec;
}

Active Line
{
 HorizontalFrontPorch = 1.3 Usec;
 HorizontalSync = 4.7 Usec;
 HorizontalBackPorch = 5.96 usec;
}

Field
{
 swap = true;
 skip = 1;
 offset = 0;

 Vertical Sync = {
 repeat 5 {
 Length = 0.5H;
 Low = 0 usec;
 High = SerrationDuration;
 }
 }

Interlaced Format

53

 Vertical Back Porch = {
 repeat 5 {
 Length = 0.5H;
 Low = 0 usec;
 High = EqualizationDuration;
 }
 repeat 17 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 {
 Length = 0.5H - HorizontalFrontPorch;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }

 Active = {
 {
 /* No sync edge transitions needed here. */
 Length = 0.5H + HorizontalFrontPorch;
 }
 repeat 287 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }

 Vertical Front Porch = {
 repeat 5 {
 Length = 0.5H;
 Low = 0 usec;
 High = EqualizationDuration;
 }
 }
}

Field
{
 swap = true;
 skip = 1;
 offset = 1;

54

Chapter 6: Examples of Native Compiler Language

 Vertical Sync = {
 repeat 5 {
 Length = 0.5H;
 Low = 0 usec;
 High = SerrationDuration;
 }
 }

 Vertical Back Porch = {
 repeat 5 {
 Length = 0.5H;
 Low = 0 usec;
 High = EqualizationDuration;
 }
 {
 Length = 0.5H;
 }
 repeat 17 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }

 Active =
 {
 repeat 287 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 {
 Length = 0.5H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }

 Vertical Front Porch = {
 repeat 5 {
 Length = 0.5H;
 Low = 0 usec;
 High = EqualizationDuration;
 }
 }
}

Stereo Format

55

Note the following features of the format shown in Example 6-1:

• The skip and offset attributes describe the monitor’s interlacing pattern.

– The skip = 1; of the first field is the same as skip = 1; of the second. Both
fields interlace similarly by drawing every other line, as described in
“Interlaced Formats” on page 20. You can find information on the skip
attribute in Table 5-3.

– The starting line at which each field begins differs. The first field uses the
attribute offset = 0; to indicate that drawing should begin on the first line of
the monitor. The second field uses offset = 1; to indicate that the first line of the
field is offset one line into the display of the monitor. Table 5-3 describes the
offset attribute.

The attributes are only part of the story and tell the graphics pipe how pixels should
be fetched from the frame buffer. The synchronizing pulses of the vertical sync
components of the field tell the monitor which frame is first.

• This format permits motion between the two fields. This motion is enabled with the
swap = true; attribute of the first field, echoed by the swap = true; attribute of
the second field. Were the second field to have its swap value set to false, no swaps
would be permitted between fields. See the swap attribute in Table 5-3.

Stereo Format

This format describes a two-field stereo format, close to the size of VGA. Monitors
showing field-based stereo display slightly different views in two successive fields. In
one field, only one eye is permitted to view the image (usually by special glasses); the
succeeding field is shown only to the other eye.

The format shown here is known as new-style stereo (also known as per-window stereo). It
differs from old-style stereo (or full-screen stereo) in that the new style fetches pixels of
both fields from the same location in the frame buffer; this is described in “Stereo
Formats” on page 21. The old-style stereo formats used pixels in different portions of the
frame buffer for each eye’s field. The new-style stereo format is shown in Example 6-2.

Example 6-2 Stereo Format

/*
** 640x480_120s.vfs - stereo VGA at 60Hz/frame
*/

56

Chapter 6: Examples of Native Compiler Language

General
{
 ActiveLinesPerFrame = 480;
 ActivePixelsPerLine = 640;
 FramesPerSecond = 60;
 FieldsPerFrame = 2;
 TotalLinesPerFrame = 1050;
 TotalPixelsPerLine = 800;
 FormatName = "640x480_120s - 120Hz Stereo VGA";
}

Active Line
{
 HorizontalFrontPorch = 0.397 usec;
 HorizontalSync = 1.190 usec;
 HorizontalBackPorch = 1.587 usec;
}

Field
{
 eye = { Left };
 swap = true;

 Vertical Sync = {
 {
 Length = 1.0H;
 Low = 0 usec;
 }
 repeat 2 {
 Length = 1.0H;
 }
 }

 Vertical Back Porch = {
 {
 Length = 1.0H;
 High = HorizontalSync;
 }
 repeat 31 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }

Stereo Format

57

 Active = {
 repeat ActiveLinesPerFrame {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }

 Vertical Front Porch = {
 repeat 10 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }
}

Field
{
 eye = { Right };
 swap = false;

 Vertical Sync = {
 {
 Length = 1.0H;
 Low = 0 usec;
 }
 repeat 5 {
 Length = 1.0H;
 }
 }

 Vertical Back Porch =
 {
 {
 Length = 1.0H;
 High = HorizontalSync;
 }
 repeat 28 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }

58

Chapter 6: Examples of Native Compiler Language

 Active =
 {
 repeat ActiveLinesPerFrame {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }

 Vertical Front Porch =
 {
 repeat 10 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }
}

Note these features of the format shown in Example 6-2:

• The format has two fields, both of which have similar structure. The significant
difference in timing of the two fields is the length of vertical sync: to allow monitor
hardware to discriminate between the two fields, the second field’s vertical sync
pulse is somewhat longer than that of the first (note the difference in the repeat
count).

How different do the sync signals of the two fields need to be? This is just an
example; unfortunately, monitor manufacturers have not adopted a common
standard for recognition of sync signals of the two fields. Check with the
documentation that accompanies your monitor for details; because this information
is often sketchy, you may need to contact the monitor manufacturer directly. If the
monitor is distributed by Silicon Graphics with your system, the company will
provide you with whatever information is available.

• The statements eye = {Left}; in the first field and eye = {Right}; in the second
field are the significant features in the example. They use the eye attribute described
in Table 5-3.

• Stereo displays should not have motion between the two fields; this would have an
unsettling effect on the viewer, potentially destroying the stereo effect. To inhibit
swap, the second field uses the statement swap = false;. Table 5-3 describes the
swap attribute.

Color Field Sequential

59

It is also useful to reduce the swap interval to reduce demand on the rendering
hardware of the graphics pipe. If swap were set to true for both fields, the pipe
would swap at 120 Hz instead of 60 Hz, halving the time between potential swaps.

Color Field Sequential

Field sequential monitors have special hardware. Instead of displaying all three colors
(red, green, and blue) simultaneously, these monitors display only one color at a time.
The monitor displays the entire picture once showing only the red pixels, another field
only with green, another blue. Each color field is shown at three times the normal rate so
thateach frame passes at the normal speed. When the fields pass rapidly, the eye merges
the sequential fields successfully. See Example 6-3.

Example 6-3 Color Field Sequential Format

/*
** 640x480_180q.vfs - field sequential
*/

#define SER (1.0H-HorizontalSync)

General
{
 FieldsPerFrame = 3;
 FramesPerSecond = 60;
 TotalLinesPerFrame = 1560;
 TotalPixelsPerLine = 880;
 ActiveLinesPerFrame = 480;
 ActivePixelsPerLine = 640;

 FormatName = "Field Sequential 640x480_180q";
}

Active Line {
 HorizontalFrontPorch = 40 pixels;
 HorizontalSync = 80 pixels;
 HorizontalBackPorch = 120 pixels;
}

/*
** red (synchronizing) field
*/

60

Chapter 6: Examples of Native Compiler Language

Field
{
 Color = { red };
 swap = true;

 Vertical Sync = {
 repeat 6 {
 Length = 1.0H;
 Low = 0 usec;
 High = SER;
 }
 }

 Vertical Back Porch = {
 repeat 33 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }

 Active = {
 repeat 480 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }

 Vertical Front Porch = {
 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }
}

/*
** green field
*/

Color Field Sequential

61

Field
{
 Color = { green };
 swap = false;

 Vertical Sync = {
 repeat 3 {
 Length = 1.0H;
 Low = 0 usec;
 High = SER;
 }
 }

 Vertical Back Porch = {
 repeat 36 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }

 Active = {
 repeat 480 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }

 Vertical Front Porch = {
 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }
}

/*
** blue field
*/

62

Chapter 6: Examples of Native Compiler Language

Field
{
 Color = { blue };
 swap = false;

 Vertical Sync = {
 repeat 3 {
 Length = 1.0H;
 Low = 0 usec;
 High = SER;
 }
 }

 Vertical Back Porch = {
 repeat 36 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }

 Active = {
 repeat 480 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }

 Vertical Front Porch = {
 {
 Length = 1.0H;
 Low = 0 usec;
 High = HorizontalSync;
 }
 }
}

No Transitions

63

Note these salient features of the format shown in Example 6-3:

• The three fields are similar in timing except for the length of vertical sync (note the
difference in the repeat count). In the first field, vertical sync is longer. This allows
hardware to discriminate between color fields and the beginning of the frame.

• The attribute of importance is that of color. This format differs because the different
fields specify Color = {red};, Color = {green};, and Color = {blue};. You can
find the description of this attribute in Table 5-3.

• Swaps are enabled only for the first field (swap = true;), disabled for the second
(swap = false;) and third (swap = false;). This inhibits motion between the two
fields. Table 5-3 describes this attribute.

No Transitions

You may find it necessary to produce a segment of time in your video format where the
synchronization signal makes no transitions at all. In Example 6-4, you can see a portion
of code extracted from the standard high-resolution format originally introduced in
Example 5-1.

Example 6-4 No Transitions

Vertical Sync =
 {
 {
 /*
 * Sync goes low here (at beginning of the
 * line, time = 0.0) but does not recover to the
 * high state until the first line of Vertical
 * Back Porch.
 */
 Length = 1.0H;
 Low = 0.0 usec;
 }
 repeat 2 {
 /* Two lines with no transitions */
 Length = 1.0H;
 }
 }

64

Chapter 6: Examples of Native Compiler Language

In this example:

• The first sync transition set executes only once (no explicit repeat statement) and
contains only a transition to the low state.

• The second sync transition set executes twice. This set has only a length associated
with it. Because no transitions are specified, the time passes without transitions. At
the end of this sync transition set, the synchronization signal is still set to the low
state.

65

Chapter 7

7. Board Hardware Definition

If you are on a video output hardware design team and are defining a new board with all
its rules, this chapter. If you are not on such a team, you can skip reading this chapter.

Two general sections make up the board definition:

• The board description in which you specify the board’s parameters (see the next
section, “General Notes About Writing Definition Files” on page 65). This section is
also where you define the names of the signals and describe their relationship to the
chip

• The rules definition (see “Special Signal Definition” on page 69). This is where the
transitions of all signals are defined.

Given a properly-defined chip definition file, the video format compiler synthesizes the
program needed to drive the chip to produce the signals you specify.

General Notes About Writing Definition Files

Variables

Don’t miss the touching description of “User-Defined Variables” on page 37. These
variables can be defined in the same way and scope as can variables in the C language.

Tip: Pay attention to exported variables, as described in “Storage Classes” on page 38. All
exported variables are written to the output file and can be used by the software that
loads video formats. Exported variables are handy for storing the results of calculations
made when producing the video format. These variables are typically calculated in the
rules section, but they are also often derived in the post-processing statements, described
in “Pre-Processing and Post-Processing Statements” on page 91. Exported variables have
a lifetime that begins when the variable is first parsed (not when the code section is
executed), so they may be defined in the rules section and set in the format source file.

66

Chapter 7: Board Hardware Definition

Statements

To help you deal with complicated situations, you may use “Control Statements” as you
would in the C language. Also, you can use “Diagnostic Statements” to warn the user of
errors during processing.

Control Statements

You may use the following statements, as you would in the C language:

if (expression) statement

if (expression) statement else statement

for (expression; expression; expression) statement

Diagnostic Statements

These statements allow you to pass information along to the user. The compiler prints
any string you specify as it would any other internally generated messages.

info string-expression

warning string-expression

error string-expression

The info and warning statements allows compilation to proceed; the error statement
causes the compiler to terminate before producing an output file and generates an error
status code on exit.

Tip: You can build string expressions by using the + operator. Any numeric value
expressions are converted to string expressions automatically, and expressions of quoted
strings to be concatenated are perfectly legal.

Board Description

67

Board Description

This section explains how to describe the board in the board definition file.

• The first part of this section of the board description file shows the different
parameters you can use to describe the board; see “Parameter Definition” on
page 67.

• The second part of this section of the board description file defines signal names; see
“Board Signal Assignment” on page 68.

• The next part of the board description file associates signals with special attributes;
see “Special Signal Definition” on page 69.

Before writing the rules, you should carefully describe your board. A thorough
description makes the compiler work harder for you.

Parameter Definition

These variables describe the way in which video is generated on your board. Some are
used for programming, others for bounds checking. The variables are in Table 7-1.

Table 7-1 Board Hardware Definition Variables

Variable Name Description Required

VideoClockRatioNumerator Integer. Part of the description of the
pixel-to-video clock ratio. This value describes
the number of pixels in the ratio.

Yes

VideoClockRatioDenominator Integer. Part of the description of the
pixel-to-video clock ratio. This value describes
the number of video clocks in the ratio.

Yes

SystemVideoClockRateMaximum Double. The highest rate at which the video
clock operates. This compiler reports an error
if the user’s format exceeds this rate.

Yes

SystemVideoClockRateMinimum Double. The lowest rate at which the video
clock operates. This compiler reports an error
if the user’s format is less than this rate.

Yes

68

Chapter 7: Board Hardware Definition

Board Signal Assignment

The chip definition (not described in this book) supplies the chip’s names for each signal
it can generate. Typically, these are the names of the pin-out of the chip (or may just be
names the chip uses internally). Because a single kind of format generation chip can be
used on more than one board, these names often do not have particular meaning (or can
sometimes have meaning other than their true use).

The signal name definition statement associates a chip’s signal name with a name
meaningful on the board. It is that board signal name that you can use within the rules
when you assign transitions.

You must have a board signal assignment statement for each signal you intend to use.
Although you need not use every signal on a chip, you must make the assignment for
those you do intend to use (even if the name of the chip and the board are identical).

DACRateMaximum Double. The highest rate at which the output
DAC operates. The compiler reports an error if
the user’s format exceeds this rate.

No

DACRateMinimum Double. The highest rate at which the output
DAC operates. The compiler reports an error if
the user’s format is less than this rate.

No

DisplayArchitecture String. The display architecture on which
generated .vfo files will successfully operate.
For example, MG_VC3 for MardiGras VC3
ASIC (IMPACT or Octane), O2_GBE for O2
GBE ASIC, or IR for InfiniteReality.

Yes

OptionHardware String. The option hardware on which
generated .vfo files will successfully operate.
For example, Presenter, DDO2, or GVO.

No

VfoVersion String. The version of the rules file. Can be
used during loading to constrain which
versions of builds may be used.

Yes

Table 7-1 (continued) Board Hardware Definition Variables

Variable Name Description Required

Board Description

69

The syntax of the statement is as follows:

signal board-signal-name uses chip hardware signal chip-signal-name;

• The board-signal-name is any string (usually in double quotes) you choose. The name
should be meaningful to application on the board; you will use this name in the
rules section (see “Rules Definition” on page 70).

• The chip-signal-name is the name assigned by the writer of the chip definition file.
You must specify it exactly as presented there.

Special Signal Definition

The compiler requires some additional information about how your output signals are
used when running. These signals drive the frame analysis process which is in turn used
to provide information for the -a ascii option (for more information, see vfc(1)). Frame
analysis is also used to drive the rules section of the compiler (see “Rules Definition” on
page 70).

Each special signal definition specifies the signal to fill each role. The general form is

signal-type is board-signal-name active direction ;

The signal-type is one of those detailed in the following paragraphs. The board-signal-name
is the same name you specified in the board signal assignment (see “Board Signal
Assignment” on page 69). The direction specifies the polarity of the signal when active
(either high or low).

The following are board signal assignments:

• Composite Sync Signal

composite sync signal is board-signal-name active direction ;

The composite sync signal is very important for frame analysis. The signal you
designate is used for determining the positions of all frame portions.

• Active signal

active signal is board-signal-name active direction ;

The active signal is used for frame analysis to determine on which lines active pixels
lie (those containing picture content — see “Architecture of a Video Frame” on
page 10 for details if you need them). The active lines are used to determine the
horizontal blanking interval values as well as to determine the number of fields in
the format (by counting the clusters of active lines).

70

Chapter 7: Board Hardware Definition

• Trilevel sync signal

trilevel sync signal is board-signal active direction ;

The trilevel sync specifies which, if any, of the output signals is used for tri-level
sync. If you define this signal, the compile defines the user tri-level signal for you.

• Pixel requesting signal

pixel requesting signal is board-signal active direction ;

If your board has a signal that corresponds to the transfer of video pixels, you
should specify it in this statement. The signal need not correspond to the time at
which the format would have the pixels transfer, but the duration in clocks must be
correct as measured by VideoClockRatioNumerator and VideoClockRatioDenominator
(see Table 7-1).

If you set this signal, the compiler can verify that no rounding errors have changed
the correct duration of the pixel requesting signal.

Rules Definition

This section of the definition file is where you can define the signal transitions necessary
to operate a video board. The master timing reference is the user’s video format: all
signals reference the user’s format for their temporal positions.

• The compiler stores all transitions in an internal form called the Edge Database. You
may find the discussion of “The Edge Database” on page 71 helpful in writing rules.

• Your principal weapon for altering signals is “The set signal Statement for
Transitions” on page 71.

• Read “The within Statement for Location” on page 73 to determine where signal
transitions should be set.

• The compiler offers some pre-defined signals you can copy or simply check. Those
are described in “The User Signals for Reference” on page 83.

• The compiler defines some variables for your use as well. Check “System-Defined
Variables” on page 85 for instructions.

Rules Definition

71

The Edge Database

All signal transitions in the format are placed in the edge database. This includes the
transitions the user specifies in the format (see “The User Signals for Reference” on
page 83) and the transitions on signals that are defined in the rules (see “The set signal
Statement for Transitions” on page 71). The within statement (see “The within Statement
for Location” on page 73) uses the edge database for reference with some signals.

The edge database is resident in the compiler until the compiler terminates. Because the
edge database is always ready for your use, you can reference it within pre-processing
and post-processing statements (see “Pre-Processing and Post-Processing Statements”
on page 91).

The edge database stores transitions in time units at the maximum internal resolution of
the edge database. Transitions are not quantized to the clock period until they are
extracted from the database. Delay of quantization attempts to minimize successive
quantization error when dealing with absolute time units.

Initial State

The initial state of the signal is the state of the signal at the beginning of the frame. You
have two choices: high or low. Syntax for the statement is as follows:

signal board-signal-name initial state direction ;

Some chip hardware has signals for which the initial state is programmable; the compiler
can set the initial state properly if you use this signal. Other hardware may have fixed
initial state requirements; the compiler can check to be certain your initial state setting is
compatible with hardware.

The set signal Statement for Transitions

Use the set signal statement to describe signal transitions on any signal you generate
with the video format compiler. This enters the transition in the edge database (for more
information on this part of the video format compiler, see “The Edge Database” on
page 71).

72

Chapter 7: Board Hardware Definition

Syntax for this statement is as follows:

set signal board-signal-name transition-direction at time-expression [error-handling];

The following are components of this statement:

• signal-name

The signal-name you use is any of the signals you have defined in the board signal
assignment (see “Board Signal Assignment” on page 69).

• transition-direction

The transition direction can be either high or low, similar to the manner in which
sync signals are defined in “Level of Sync” on page 19.

You may use a variable instead of these predefined keywords; define an integer
variable with the value you choose and use the variable for the direction. If you are
copying the polarity of the innermost range of the scope, you can use
CorrespondingPolarity.

• time-expression

You can use any of the time expression specified in “Time Expressions” on page 35.
Because you will probably be using within statements most of the time, make
ample use of the BeginTime and EndTime variables the compiler defines for you
(see “How You Can Use Range Information” on page 75).

If the time you specify is at a point before the beginning of the frame or after the end
of the frame, the compiler issues a warning message, but wraps the time to the
proper point in the current frame.

• error-handling

Error handling is an optional clause of the set signal statement. You need set it only
under circumstances that require it.

Only one error handling clause is defined at present:

– ignoring wrap error—This clause instructs the compiler not to issue a
warning if the time-expression is at a point before the beginning of the frame or
after the end of the frame.

Rules Definition

73

The within Statement for Location

The within statement gives you reference points to the architecture of a frame. You
specify a time range in which you are interested, and the compiler supplies the variables,
giving you the time position in the frame of that range. Given those variables, you can
use set signal to set transitions.

The compiler has two forms of the within statement:

• within (range-expression first-expression, last-expression [; warn-expression])
board-rules-statement

• within each (range-expression [; warn-expression]) board-rules-statement

Both statements use a range-expression to specify which portion of the frame should be
iteratively selected. The range expressions, explained in detail in the following sections,
permit you to specify logical portions of the frame (for example, vertical front porch,
Horizontal Sync, and so on); transitions of previously-defined signals; and absolute
periods of time.

You should understand these concepts—vertical front porch, Horizontal Sync, and so
on—before you begin. If you need a brief overview or if you want to know the compiler’s
definition of many of these terms, see Chapter 3, “Building Blocks of a Video Format.”

The within statement has clauses that permit you to specify which of the range
expressions you wish to choose by specifying the first and last instances of that range,
inclusive. Instances are one-based: the first instance is 1, the second instance is 2, the last
instance is “number of lines.” For example, the following would iteratively select lines
two, three, and four:

within (line 2,4) ...

The within each statement is a special case of the within statement. The within each
iteratively chooses every instance of the specified range. For example, the following
statement iteratively selects every horizontal front porch defined in the format:

within each (Horizontal Front Porch) ...

74

Chapter 7: Board Hardware Definition

Nesting Statements

Statements may be nested, with each statement successively narrowing the scope. For
example, the statement within Example 7-1 has narrowed its scope to the second line of
vertical back porch of the first field.

Example 7-1 Nested Board Rules Statements

within (field 1,1)

 within each (Vertical Back Porch)

 within (line 2,2)

 ...

In Example 7-1, the following are successively selected:

1. In within (field 1,1), the within statement selects the first field by specifying
the range beginning with field 1 and ending with field 1. Remember, instances are
one-based.

2. In within each (Vertical Back Porch), this statement selects the time span
embodied with the vertical back porch of field 1 (the field being narrowed in the
previous statement).

Note: Although “within each” would normally iterate through all instances of this
item within the parenting scope, only one vertical back porch exists for any field (so
the additional restriction is not necessary).

3. In within (line 2,2), the statement limits the scope to line 2 (both beginning and
ending with 2) of the previous scope (which had been narrowed to vertical back
porch of field 1).

By successively narrowing the scope, the above figure has selected a time span that starts
with the beginning of line 2 of vertical back porch of field 1 and ends with the end of line
2 of vertical back porch of field 1.

A nested scope can never exceed the bounds of a parenting scope. If a nested range
expression specifies a range greater than the range of the parenting scope, the scope is
simply limited to the parenting scope.

Rules Definition

75

It is possible to narrow a range such that no time remains in the innermost scope as in
Example 7-2.

Example 7-2 Narrowing Scope So No Time Remains

within each (Vertical Back Porch)

 within each (Vertical Front Porch)

 ...

Because vertical front porch and vertical back porch define mutually exclusive time
spans within the frame, the innermost range specifies no time span at all and is not a
valid scope.

How You Can Use Range Information

When in the bounds of a board rules selection, three variables become active. Their
values depend on the format as specified by the user and by previous signal definitions.

• BeginTime—returns the starting time of the innermost range. This variable is of
type time.

• EndTime—returns the end time of the innermost range. This variable is of type time.

• CorrespondingPolarity—returns the polarity of the innermost range. This
variable is of type integer.

• FramePortionIndex—returns the index of the within item iteration (that is., 0 for
the first execution of the within block, 1 for the second execution, and so on). This
variable is of type integer.

76

Chapter 7: Board Hardware Definition

Each range expression described in Table 7-2 sets values uniquely, according to its rules
and bounding scope.

Table 7-2 Range Expressions

Expression Syntax Description Start Time End Time Polarity

frame The entire frame. This is provided as
a convenience and is not strictly
necessary because it is the default
range. (See “Default Range” on
page 83.)

Zero seconds Duration of the
frame.

Positive

field The field of the frame.

The user defines the number of
frames in the field via the variable
FieldsPerFrame. (See “The General
Parameters Section” on page 38).

The beginning of
vertical sync for
this field

The end of vertical
front porch for this
field

Positive

line The whole line boundary. Line
durations are defined by the user’s
format via this formula:

FPS is set by the user via
FramesPerSecond and TLPF is set by
the user via TotalLinesPerFrame.
(These variables are described in
“The General Parameters Section” on
page 38.)

The beginning of
the whole line (as
calculated in
Description)

The end of the
whole line (as
calculated in
Description)

Positive

Rules Definition

77

pixel The whole pixel boundary. Pixel
durations are defined by the user’s
format via this formula:

FPS is set by the user via
FramesPerSecond, TLPF is set by the
user via TotalLinesPerFrame, and
TPPL is set by the user via
TotalPixelsPerLine. (These variables
are described in “The General
Parameters Section” on page 38.)

The start point of pixel is calculated
from the beginning of the frame, not
the beginning of the period;
therefore, it is possible to have a
nested pixel time range quantized to
a point not coincident with its parent
time range.

The user directly defines the total
number of pixels in the frame via this
equation (using the previously
defined variables):

The beginning of
the whole pixel (as
calculated in the
formulain the
description
column).

The beginning of
the whole pixel (as
calculated in the
formula in the
description
column).

Positive

Table 7-2 (continued) Range Expressions

Expression Syntax Description Start Time End Time Polarity

78

Chapter 7: Board Hardware Definition

Vertical Front
Porch

The first of three portions of the
vertical blanking interval. One
vertical blanking interval exists for
each field in the frame.

The vertical front porch for the first
field may be defined following the
active portion of the last field, yet still
be associated with the first field.

For formats that employ military
sync (see definition in theVertical
Sync entry of this table on page 79),
vertical front porch has a duration
equal to zero.

There is one vertical front porch in
each field.

These choices are
possible:

1) If the format,
such as NTSC and
PAL, has an
intra-line pulse
(that is, a pulse
that does not fall at
the beginning of a
whole line from
the beginning of
the frame), time
begins at the start
of that pulse.

2) If the format has
no intra-line pulse,
the time at the
beginning of the
first line following
the last active line
of the frame.

The time at the
leading edge of the
vertical sync pulse.
If this format
contains more
than one vertical
sync pulse, the end
of the vertical front
porch is the
leading edge of the
first pulse

Positive

Table 7-2 (continued) Range Expressions

Expression Syntax Description Start Time End Time Polarity

Rules Definition

79

Vertical Sync The second of three portions of the
vertical blanking interval. This is
often considered the true beginning
of the frame.

A vertical sync pulse is defined to be
a pulse that is longer than a
horizontal blanking pulse (found on
active lines).

Three types of vertical sync patterns
are possible:

1) Commercial sync (typical for
broadcast) that contains some
number of equalizing pulses
preceding sync pulses (in vertical
front porch); vertical sync, with
serration pulses; equalizing pulses
following sync pulses (in vertical
back porch).

2) Block sync (such as the Silicon
Graphics standard high-resolution
format) with a single long pulse that
may span several lines. See Chapter 2
for a discussion of block sync.

3) Military sync, which has no
vertical synchronization pulses and
simply has a period of time without
active lines.

Each field contains exactly one
vertical sync.

These choices are
possible:

1) For commercial
and block sync, the
time of the leading
edge of the first
vertical sync pulse.

2) For military
sync, the time of
the first full line
without active
picture.

These choices are
possible:

1) For commercial
sync, the time of
the beginning of
the first whole line
containing no
vertical sync
pulses (that is,
long pulses).

2) For block sync,
the beginning of
the first line where
the long sync pulse
ends.

3) For military
sync, the
beginning of the
first line
containing active
picture.

Negative

Table 7-2 (continued) Range Expressions

Expression Syntax Description Start Time End Time Polarity

80

Chapter 7: Board Hardware Definition

Vertical Back Porch The third of three portions of the
vertical blanking interval.

For formats that employ military
sync (see definition in theVertical
Sync entry of this table on page 79),
vertical back porch has duration
equal zero.

The end of vertical
sync (see
definition in the
Vertical Sync
entry of this table
on page 79).

These choices are
possible:

1) If the format
contains intra-line
pulses (see vertical
front porch), the
time of the first
active video.

2) If the format
does not contain
intra-line pulses,
the beginning of
the first line
containing active
picture.

Positive

Field Active The active portion of this field. It is
the time in the field exclusive of the
vertical blanking interval.

Each field contains exactly one Field
Active portion.

The end of vertical
back porch (see
definition in the
Vertical Back
Porch entry of
this table on
page 80).

The beginning of
vertical front
porch (see
definition in the
Vertical Back
Porch entry of
this table on
page 80).

Positive

Horizontal Front
Porch

The first of three portions of the
horizontal blanking interval
containing the dead time preceding
horizontal sync.

Each line contains exactly one
Horizontal Front Porch.

The end of active
video in the
previous line.

The beginning of
the horizontal sync
pulse.

Positive

Horizontal Sync The second of three portions of the
horizontal blanking interval defined
as the duration of time while the
horizontal sync pulse is low. The time
marks the point of the 50% crossing
of the pulse.

Each line contains exactly one
Horizontal Sync period.

The falling edge of
the sync pulse
(50% crossing).

The rising edge of
the sync pulse
(50% crossing).

Negative

Table 7-2 (continued) Range Expressions

Expression Syntax Description Start Time End Time Polarity

Rules Definition

81

Horizontal Back
Porch

The last of three portions of the
horizontal blanking interval,
containing the dead time following
horizontal sync. In composite
formats, this is used for color burst.

Each line contains exactly one
Horizontal Back Porch period.

The end of the
horizontal sync
pulse.

The beginning of
active video.

Positive

Line Active The active pixels in the line. The time of the
first active
element.

The time of the last
active element.

Positive

edge-transition-direction
edge of
board-signal-name

The time of the specified edge. This
directive allows you to specify a
transition that has a direction of
1) rising (low to high); 2) falling
(high to low); or any (matches both
rising and falling).

The transition refers to a change in
the sense of a board signal. The
transition must be defined prior to
the execution of the range expression
in which it is referenced; transitions
are defined in: 1) the “set signal”
statement (see “The set signal
Statement for Transitions” on
page 71); or 2) in one of the special
user signals, defined when the user
employs the compiled language (see
“The User Signals for Reference” on
page 83).

The polarity corresponds to the sense
of the transition. If the transition is a
falling edge, the polarity islow; if the
transition is rising, the polarity is
high.

The time of the
transition.

Same as start time. Can be
either. See
the
discussion
in the
Description
 column

Table 7-2 (continued) Range Expressions

Expression Syntax Description Start Time End Time Polarity

82

Chapter 7: Board Hardware Definition

pulse-transition-direction
pulse of
board-signal-name

The time of the specified pulse. This
directive allows you to specify a
transition that has a direction of
1) positive (signal in high state);
2) negative (signal in low state).

For a discussion of how transitions
are defined, see definition in the
“edge-transition-direction edge of
board-signal-name” entry of this
table on page 81.

The polarity corresponds to the sense
of the pulse. If the pulse is
positive-going, the polarity is
positive; if the pulse is
negative-going, the polarity is
negative.

The time of the
transition.

Same as start time Can be
either. See
the
discussion
in the
Description
 column

time-expression The specified duration. This allows
you to specify an absolute duration
as measured from the beginning of
the frame.

If you specify an iterative time value
that does not comprise exact
whole-number units of the frame, the
last time expression will be truncated
to the time at the end of the frame.
Put more simply, you will never get
an end time past the end of the frame,
even if the whole unit of time would
properly set it past the end of the
frame.

Consider i to be
the number of
iterations of the
time expressions
of duration d. The
start time is

Can be
either. See
the
discussion
in the
Description
 column

Table 7-2 (continued) Range Expressions

Expression Syntax Description Start Time End Time Polarity

Rules Definition

83

Default Range

The default range is the name given to the range before any range selections are applied
and is set to the entire frame. This is equivalent to setting the following range:

within each (frame) ...

Although not harmful, it is not necessary to use this construct.

Ranges That Do Not Fall on Whole-Unit Boundaries

Nested ranges always find the beginning and end of the whole unit for which they are
defined. Examine this example, where we assume vertical front porch contains 10.5 lines
and starts in the middle of a defined line of video. Watch what happens when the
following statements are used:

within each (Vertical Front Porch)

 within each (line)

 ...

In the above example, the statement within each (Vertical Front Porch) would be
repeated exactly 10 times, corresponding to the number of whole units (in this case, lines)
contained within vertical front porch. Because vertical front porch begins on a half-line
boundary, the first whole unit (line) begins half a line past the beginning of vertical front
porch.

In other words, nested ranges always round forward in time to the next whole unit.

The User Signals for Reference

The edge database contains the set of all transitions of signals from which the specific
chip hardware is loaded. In addition to the signals defined in the board and chip
definitions, the compiler defines several standard signals internally. These signals are
defined either automatically when the user employs the high-level language, or
manually if the user cites them using the line-based language.

84

Chapter 7: Board Hardware Definition

These signals can be referenced from within the hardware rules and should be used in
preference to the signals that they alias; these signals do not automatically generate any
other signal. For example (and most notably), you must produce the actual sync output
from the board. The actual sync signal must be copied from the “User Sync” signal; this
can be done trivially as in Example 7-4.

Example 7-3 Copying User Sync Signal to a Board Signal

/*
 * Copy the user sync signal to the board signal CSYNC
 */
within each (edge of user sync) {
 set signal “CSYNC” CorrespondingPolarity at BeginTime;
}

These signals represent a timing ideal that may differ from the actual representation on
the hardware. For example, the user active signal is the time at which the active signal
makes transitions during a line of video; however, the hardware may need to advance or
delay the actual active signal output from the chip. By specifying the ideal time at which
the transition should be made in the user signal, the rules may derive the chip time from
the ideal.

User Sync Signal

The user sync signal is high when the signal is at blanking level, low when at sync level.
Within the rules or the line-based language, you may refer to user sync (as in
Example 7-4).

User Blank Signal

The user blank signal is high when the signal is enabled (that is, the signal is high when
blanking is enabled, low when blanking is disabled and pixels are displayed). Within the
rules or the line-based language, you may refer to user blank.

The user blank signal aligns itself on whole lines, presuming a normal frame layout. This
works correctly with the half lines of commercial sync and with the whole lines of block
sync and military sync. If the source video format does not have its active area aligned
with whole lines, you should not use the user blank signal; instead, reference the user
sync signal directly (see “User Sync Signal” on page 84).

Rules Definition

85

User Active Signal

The user active signal is high when the signal is enabled (that is, high when pixels are
displayed). The distinction between user blank and user active is on those lines when
active takes only one-half the line (for example, first lines of one field of NTSC and PAL):
on those half lines, the duration of user active is the full line, while the duration of user
blank is half-line. With this difference between the signals, those hardware platforms that
must always fetch an entire line when requesting pixels may use both signals to create
the distinction; those that can request partial lines may do so by referencing only the
blank signal. Within the rules or the line-based language, you may refer to user active.

System-Defined Variables

The compiler defines several variables for your use. These variables are described in
several places:

• “How You Can Use Range Information” on page 75.

• Those variables in Table 5-2 on page 42.

• “Field Attribute Variables” on page 85.

• “Format Information Variables” on page 86.

Field Attribute Variables

These variables get their values from the attributes the user specifies for each field. The
attributes and their definitions are in Table 5-3.

Each variable is an array with each element corresponding to a field. The array is
zero-based, so the first field is in array element [0], the second in element [1], and so on.
How many fields in the format? You can use the variable FieldsPerFrame (see Table 5-2) to
find out.

86

Chapter 7: Board Hardware Definition

Format Information Variables

These are useful only after frame analysis takes place, so you can use them in either rules
definitions or post-processing operations.

a. These names are shown without the array index. All have FieldsPerFrame elements.

Table 7-3 Field Attribute Variables

Namea Data Type Description

FieldLineCount int The number of lines in the field.

FieldLineOffset int The offset specified by the user.

FieldLineSkip int The skip specified by the user.

FieldSwap boolean Is true if swap enabled this field, false if not.

FieldColor mask Is 1 for red, 2 for green, 4 for blue (multiple values can
be specified with inclusive-OR).

FieldEye mask Is 1 for left, 2 for right (multiple values can be specified
with inclusive-OR).

Table 7-4 Format Information Variable

Name Data Type Description

SwapsPerFrame int The number of swaps per frame.

Rules Definition

87

Built-In Functions

A limited number of functions are available to aid with writing rules.

Examples of Writing Rules

Copying User Sync

It is often necessary to create a signal with the same shape as the sync signal provided by
the user. Because the compiler provides the user sync signal as a predefined set of
transitions in the database, you can easily copy the signal. You can read about the user
sync signal in “User Sync Signal” on page 84.

Table 7-5 Functions

Function Name Returned
 Data
Type

Description

TransitionsDefinedOnSignal

(board-signal-name)

Boolean Returns true if the specified signal has any
transitions already defined on it, false if no
transitions were yet defined. Transitions may
already be defined on the signal if the signals
were user-defined signals (see “The User
Signals for Reference” on page 83); or were
defined with line-based language (see
Chapter 8, “Line-Based Format Definition
Language”). For a discussion of the use of this
function, see “Anticipating Line-Based
Definitions in the Rules” on page 98.

sec

(time-expression)

float Returns a floating-point value equal to the
number of seconds in time-expression.

88

Chapter 7: Board Hardware Definition

Example 7-4 Copying the User Sync Signal

within each (edge of user sync) {
 set signal "CSYNC" CorrespondingPolarity at BeginTime;
}

To copy user sync to a signal named CSYNC, this example uses the each edge range
expression; for information, see the entry “edge-transition-direction edge of
board-signal-name” in Table 7-2. For each edge of the user sync signal in the database,
the range expression causes within to execute the set signal statement. The
CorrespondingPolarity value copies the polarity of the user sync signal, while
BeginTime sets the transition to the same time as the user sync signal (see “How You Can
Use Range Information” on page 75 for information on these variables).

Copying Another Signal With Changes

It is unusual to use another true signal with no changes at all (why would a hardware
designer require two identical signals?). More often, some changes are necessary to make
a signal operate properly.

Example 7-5 Copying Another Signal With Changes

within each (rising edge of "IMPREG_LD") {
 set signal "XMAPREG_LD" high at BeginTime;
}
within each (falling edge of "IMPREG_LD") {
 set signal "XMAPREG_LD" low at BeginTime - 0.1 usec;
}
within each (positive pulse of "IMPREG_LD") {
 time pulseDuration;

 pulseDuration = (EndTime - BeginTime);

 if (pulseDuration < 1.0 usec)
 error "Insufficient IMPREG_LD pulse == " + pulseDuration;
}

The each rising edge range expression is similar to the copy operation shown in
“Copying User Sync” on page 87, yet this expression discriminates by copying only half
the edges (only the rising edges). For information, see the entry
“edge-transition-direction edge of board-signal-name” in Table 7-2. The time and
polarity of XMAPREG_LD transitions match those of IMPREG_LD.

Rules Definition

89

However, note the each falling edge range expression’s set signal statement. The
low transition of XMAPREG_LD is advanced by 0.1 usec; the new transition precedes the
time of IMPREG_LD by that amount of time.

The last range expression, each positive pulse, performs error checking and has no
set signal statement associated with it; see the entry “pulse-transition-direction
pulse of board-signal-name” in Table 7-2. This example shows checking the duration
of a pulse (delimited by BeginTime and EndTime). If the pulse is too short, the compiler
will issue an error message generated by the error statement; see “Diagnostic
Statements” on page 66.

Calculating Scalar Variables

The example in “Copying Another Signal With Changes” on page 88 shows calculation
of a variable for detecting an error state. It is possible to calculate exported variables for
later use as well (see “Variables” on page 65).

Example 7-6 Calculating Scalar Variables

{
 exported double HBackPorchClampStart;
 exported double HBackPorchClampLength;

 within (field active 1,1) {
 within (line 2,2) {
 time LineStartTime;

 LineStartTime = BeginTime;

 within each (Horizontal Back Porch) {
 time tBackPorchStart;
 time tBackPorchLength;

 tBackPorchStart = BeginTime - LineStartTime + 2 clocks;

 HBackPorchClampLength = sec(HorizontalBackPorch)/2;
 HBackPorchClampStart =
 sec(tBackPorchStart) + (HBackPorchClampLength/2);
 }
 }
 }
}

90

Chapter 7: Board Hardware Definition

The code in Example 7-6 shows the definition and calculation of two variables:
HBackPorchClampStart and HBackPorchClampLength. You can see the declaration of the
variables is the first item within a compound statement delimited by curly brackets ({ }).
Syntax requires you to declare items only at the beginning of a block.

Example 7-6 shows use of nested within statements. The innermost loop is defined as the
horizontal back porch area of second line of the first field’s active region of this format.

The exported length variable is calculated by determining the duration (in seconds) of
the back porch using the sec function. The exported start variable also uses the
tBackPorchStart variable, the calculated time position of the relative start location of
horizontal back porch within a line.

Control Statements

You can use if, for and while statements to alter control flow to execute different
sections of code. You can see their use in Example 7-7.

Example 7-7 Using Control Statements in Rules

{
 int nEdgeCnt = 0;

 /* check for serrations */
 within (Vertical Sync 1, 1) {
 within each (edge of user sync) {
 nEdgeCnt++;
 }
 }

 if (nEdgeCnt > 2) {
 /* we have serrations, so don’t create transitions */
 signal "PLL_PHASE" initial state = high;
 } else {
 /* mask out vertical from the PLL’s phase detector */
 signal "PLL_PHASE" initial state = low;
 within each (Vertical Sync) {
 set signal "PLL_PHASE" low at BeginTime - 2.5H
 ignoring wrap error;
 set signal "PLL_PHASE" high at EndTime + 2.5H
 ignoring wrap error;
 }
 }
}

Pre-Processing and Post-Processing Statements

91

The code in Example 7-7 performs different operations based on whether the user’s sync
signal contained serration pulses (see “The Vertical Interval” on page 16).

To determine whether the format has serrations, this code fragment counts the number of
transitions (using the each edge range expression) in the first vertical sync region. Note
that the variable nEdgeCnt is defined at the beginning of a compound statement because
syntax requires variables be declared there. If this variable were not needed, the extra curly
brackets ({ }) at the beginning and end of the example would probably not be needed.

If the format does have serrations, no signal transitions are defined—only the initial state
is set. However, if the sync signal does have serration pulses, the two set signal

statements are executed every vertical sync. The difference of 2.5 lines (2.5H) from the
beginning and end of the vertical sync region puts the transitions beyond the beginning
and end of the frame; therefore, the ignoring wrap error statement is needed to keep the
compiler from issuing a warning for this circumstance. See “The set signal Statement for
Transitions” on page 71.

Pre-Processing and Post-Processing Statements

These statements allow you to execute private functions needed to complete your
format. You can define pre- and post-processing statements in any file. These statements
are executed before and after the rules processing is performed, respectively.

The syntax of the statement is

preprocess { statement... }

postprocess { statement ... }

You may perform any processing you need within these statements. Moreover, you can
have as many pre- or post-processing statements as needed; they are executed in the
order the compiler encounters them.

Communication Between Format Source and Rules Files

In some circumstances, you may find it necessary to communicate some information
between the video format source file and the rules file. For example, you may wish to
direct the rules file to perform some special processing based on instructions in the
source file.

92

Chapter 7: Board Hardware Definition

As with most programming, you can find many ways to accomplish the same task using
vfc. However, exported variables (see “Storage Classes” on page 38) are designed to
make this work easy. The lifetime of these variables is unusual: regardless of where
exported variables are defined in any of the source files, their lifetime commences before
any code in any source file is executed. Thus, it is possible to define the variable in the
rules file and assign the variable in a video format source file (even though the code in
rules files is executed after the source).

As an example, imagine a display board which produces separate horizontal and vertical
sync signals in addition to the normal sync embedded in one of the (usually green) data
signals. In some circumstances, it may be useful to misappropriate the horizontal signal
to produce a composite output. For example, this trick is especially useful when trying
to genlock another SGI system to a format with an ambiguous sync signature.

In this circumstance, the author of the rules file needs to allow the author of the video
format source to transmit that information. The means to do this most easily is with an
exported variable. In our example, the variable is SerratedCSyncOnHSync.

Example 7-8 Video Format Source Setting SerratedCSyncOnHSync

General
{
 FieldsPerFrame = 2;
 FramesPerSecond = 25;
 TotalLinesPerFrame = 1065 * 2;
 TotalPixelsPerLine = 1680;
 ActiveLinesPerFrame = 1024;
 ActivePixelsPerLine = 1280;
 FormatName = “1280x1024_25r2 (PAL frame-reset)”;
 SerratedCSyncOnHSync = true;
}
...

In Example 7-8, the video format source is declared much the same as any other. The
addition to the normal variables set in this section is the assignment of
SerratedCSyncOnHSync to true.

Example 7-9 Rules File Source Defining and Using SerratedCSyncOnHSync

define board_hardware
{
 /* set this to generate a serrated CSync signal */
 /* on HSync for block sync formats */
 exported int SerratedCSyncOnHSync = 0;

Communication Between Format Source and Rules Files

93

...
 if (SerratedCSyncOnHSync) {
 info “Creating serrated composite for field-matched genlock”;
 PFDSourceSignalName = “HSYNC”;

 within each (field) {
 Time b;
 Time e;
 Time m;
 Time EndOfField;

 EndOfField = EndTime;

 within (Vertical Sync 1, 1) {
 b = BeginTime;
 e = EndTime;
 }

 within each (line) {
 if (BeginTime < EndOfField) {
 m = (BeginTime + EndTime) / 2;
 /* are we a line during vertical sync? */
 if ((m >= b) && (m < e)) {
 set signal “HSYNC” low at BeginTime;
 set signal “HSYNC” high at EndTime - lenHSync;
 }
 else /* standard line */
 {
 set signal “HSYNC” low at BeginTime;
 set signal “HSYNC” high at BeginTime+lenHSync;
 }
 }
 }
 }
 }
 else /* standard hsync pulse train */
 {
 PFDSourceSignalName = “CSYNC”;

 within each (line) {
 set signal “HSYNC” low at BeginTime;
 set signal “HSYNC” high at BeginTime + lenHSync;
 }
 }

94

Chapter 7: Board Hardware Definition

In Example 7-9, you can see the declaration of the variable SerratedCSyncOnHSync as the
first line in the rules file section. This declaration is the only thing you need to create the
exported variable for the lifetime of any source code. Later in the rules section, the
variable is used to determine behavior: if SerratedCSyncOnHSync is set, the rules file
simulates a composite sync signature for the format by supplying a different-looking
pattern during vertical sync than for lines outside of vertical sync.

95

Chapter 8

8. Line-Based Format Definition Language

From time to time, you may come across a video format for which rules are difficult to
write. Either the format is too complicated or the rules just do not quite apply. Rather
than contort rules files unnecessarily, there is an escape mechanism.

Writing a video format in line-based language allows you to express some or all of the
generated signals for each line.

Note: Normally, writing line-based definitions is reserved only for Silicon Graphics
engineering personnel who can anticipate problems in the relationship to other signals
this might cause in rules generation. If you do not understand those relationships, stop
now!

96

Chapter 8: Line-Based Format Definition Language

The Line-Based Language

To use the line-based language, you must put the directives in a special section, declared
as follows (similarly to that of the Field declaration):

Line Based {
statement...

}

The line-based language has but two statement types, one to set initial state, the other to
specify a transition:

Signal signal-name initial state = direction;

Transition Line Range signal-name = start-line to end-line direction at time-expression;

The line-based language is very simple. For each transition, you specify a line number
and time on that line. The components are as follows:

• signal-name is the signal being addressed. This is often the synchronization signal
produced by the hardware. You may also use one of the user signals as the signal
name (see “The User Signals for Reference” on page 83).

• direction is high or low, as described in “The set signal Statement for Transitions” on
page 71.

• Both start-line and end-line are integer line numbers on which the transition is to
occur. If you wish a transition to occur on only one line, specify both values to be the
same line number.

• For time-expression, you can use any of the time expressions specified in “Time
Expressions” on page 35.

The line-based initial state has the same function as the same statement in rules
generation, described in “Initial State” on page 71. The transition line range statement is
similar to that described in “The set signal Statement for Transitions” on page 71.

The Line-Based Language

97

Examples

The following example sets the signal HSYNC signal. The first statement sets the signal
to the low state on each line (note the range “1 to TotalLinesPerFrame”); the second
statement sets the signal to high at a different position on each line. The variable
GlobalDelay is private to this format and is set elsewhere in the source file.

Example 8-1 Setting a Signal on Every Line

Line Based {
 signal “HSYNC” initial state = low;

 Transition Lines Range “HSYNC” = 1 to TotalLinesPerFrame
 low at (GlobalDelay - HorizontalFrontPorch);

 Transition Lines Range “HSYNC” = 1 to TotalLinesPerFrame
 high at (HorizontalSync + HorizontalBackPorch +
 GlobalDelay - 1.0H);

}

The following example, also using the GlobalDelay variable, sets the VSYNC signal to
high on line 23 and low on line 311 (setting the low and high line numbers of the range
to the same value executes the statement on only that single line).

Example 8-2 Use of Single Line Ranges

Line Based {
 signal “VSYNC” initial state = low;

 Transition Lines Range “VSYNC” = 23 to 23
 high at (GlobalDelay - HorizontalFrontPorch);

 Transition Lines Range “VSYNC” = 311 to 311
 low at (GlobalDelay - HorizontalFrontPorch);
}

98

Chapter 8: Line-Based Format Definition Language

Anticipating Line-Based Definitions in the Rules

Did you read “The Edge Database” on page 71? Most of the activity in writing a format
and rules is the act of adding transitions to the edge database. Without taking some care,
you can add too many transitions if you write in line-based language.

How can you add too many transitions? If you specify a transition in line-based language
and then specify similar transitions in rules (see “The set signal Statement for
Transitions”), you will find both transitions in the edge database.

The solution? Use the function TransitionsDefinedOnSignal, described in Table 7-5.
This function allows you to detect whether the edge database already contains any
transitions on a specified signal.

Example 8-3 Use of Function TransitionsDefineOnSignal

/*
 * COMP_SYNC
 */
if (!TransitionsDefinedOnSignal("COMP_SYNC")) {

 /*
 * Should follow user sync exactly
 */
 signal "COMP_SYNC" initial state = high;
 within each (edge of user sync) {
 set signal "COMP_SYNC" CorrespondingPolarity at BeginTime;
 }
}

Example 8-3 shows proper use of the TransitionsDefinedOnSignal function. You can see
that no additional transitions are added using set signal if line-based language has
already been used to set the transitions.

99

Appendix A

A. Native Language Grammar

This format uses the notation that has become more or less standard: non-terminal tokens
followed by a colon. Indented items following the token are valid solutions. An ellipsis
(...) following any item means it can be repeated. Optional items have the suffix opt
appended to them. One departure from the standard: except for the first token, the
non-terminals are listed alphabetically.

The grammar starts with the non-terminal token “program”.

program:

 program-line...

active-line-section:

 compound-statement

compound-statement:

 {compound-statement-declaration... statement...}

compound-statement-declaration:

 declaration-storage-classopt declaration-data-type declaration-init , ... ;

constant:

 constant-double

 constant-int

 constant-string

 constant-time

constant-double:

 double-value

100

Appendix A: Native Language Grammar

constant-int:

0x int-value

true

false

high

low

constant-string:

 " quoted-string"

constant-time:

 constant-double pixels

 constant-double sec

 constant-double msec

 constant-double usec

 constant-double lines

 constant-double H

 constant-double clocks

declaration-data-type:

double

int

string

time

declaration-init:

 variable-name variable-initializationopt

declaration-storage-class:

exported

expression:

 constant

 variable

 (expression)

 ! expression

 ~ expression

101

 expression++

 expression * expression

 expression / expression

 expression % expression

 expression + expression

 expression - expression

 expression << expression

 expression >> expression

 expression < expression

 expression <= expression

 expression > expression

 expression >= expression

 expression == expression

 expression != expression

 expression || expression

 expression && expression

 expression | expression

 expression & expression

 expression = expression

eye-name:

right

left

field-definition:

field compound-statement

frame-portion-definition:

 frame-portion-identifier = { sync-transition-set... }

frame-portion-identifier:

vertical back porch

vertical front porch

vertical sync

active

102

Appendix A: Native Language Grammar

general-section:

general compound-statement

primary-color:

red

green

blue

program-line:

 general-section

 active-line-section

 field-definition

statement:

 expression

color = { primary-color , ... }

eye = { eye-name , ... }

 frame-portion-definition

if (expression) statement

if (expression) else statement

sync-transition-instruction:

length = time-expression ;

 sync-transition-direction = time-expression ;

sync-transition-multiplier:

repeat expression

sync-transition-set:

 sync-transition-multiplieropt { sync-transition-instruction... }

time-expression:

 expression

variable:

 identifier

variable-initialization:

 = expression

103

Index

A

active 69
active line section, of source file 42
active lines 17
active pixels 10, 13
active signal 69
ActiveLinesPerFrame 40
ActivePixelsPerLine 40
assignment statement 35

B

BeginTime 75
blanking region 10

horizontal 12
vertical 17

block sync 18, 79, 84
Blue 49
board xiv

C

chip xiv
clock 36
color 49, 63
commercial sync 18, 79, 84
composite sync signal 69
CorrespondingPolarity 72, 75
cpp 2

D

DACRateMaximum 68
DACRateMinimum 68
DisplayArchitecture 68
double 37

E

edge database 98
EndTime 75
equalization pulse 18
error 89
exported. see variables, exported.
eye 49, 58

104

Index

F

field 20, 69
components 44
range expression 76

field active
range expression 80

FieldColor 86
FieldEye 86
FieldLineCount 86
FieldLineOffset 86
FieldLineSkip 86
field-sequential 49
FieldsPerFrame 39, 76
FieldSwap 86
files

board definition 3
chip definition 3

FormatName 41
frame 10

range expression 76
frame analysis 69
FrameBufferHeight 40
FrameBufferWidth 40
FramePortionIndex 75
FramesPerSecond 39, 76, 77
functions 87

G

General 38
Green 49

H

H 15
half lines 45
hat 40
HDTV 19
High 19
high 47, 69, 71
horizontal back porch 14

range expression 81
horizontal blanking 12, 69
horizontal front porch 13, 73

range expression 80
horizontal sync 73

range expression 80
horizontal sync pulse 14
HorizontalBackPorch 42
HorizontalFrontPorch 42
HorizontalSync 42, 47

I

ignoring 72
initial state 71
int 37

L

Left 49
length 46
line

range expression 76
line active

range expression 81
Low 19
low 47, 69, 71

105

Index

M

military sync 79, 84

O

offset 48, 55
OptionHardware 68

P

pixel
range expression 77
rate 41
requesting signal 70

pixels,active 10, 13
progressive scan 20

Q

quantization 25, 71

R

range expression 76
Red 49
repeat 46
Right 49
rules xiv

S

sampleboard.def xiv, 3
samplechip.def xiv, 3
ScreenHeight 41
sec function 87
serration pulse 18
skip 48, 55
stereo 22, 49, 55

new-style 55
stride 48
swap 49
sync 69
sync pulse 12

horizontal 14
level 19, 47
vertical 17

synchronization pulse. see sync pulse.
SystemVideoClockRateMaximum 67
SystemVideoClockRateMinimum 67

T

Template 2
time 37

expressions 35
range expression 82

TotalLinesPerFrame 39, 76, 77
TotalPixelsPerLine 39, 77
TransitionsDefinedOnSignal 87
Tri 19
tri 47
tri-level sync 19, 70
trilevel sync signal 70

106

Index

U

user active 85
user blank 84
user sync 84, 87

V

variables
automatic 37
exported 38, 65
field attribute 85
system-defined 85
user-defined 37

vertical back porch 17, 74
range expression 80

vertical blanking region 17
vertical component

back porch 44
front porch 44
sync 44

vertical front porch 17, 73
range expression 78

vertical sync 17
VESA xv
VideoClockRatioDenominator 67
VideoClockRatioNumerator 67

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3402-003.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

